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Preface

Discussion on the nature of intelligence long pre-dated the development of the
electronic computer, but along with that devel opment came arenewed burst of investi-
gation into what an artificial intelligence would be. Thereis still no consensus on how
to defineartificial intelligence: Early definitions tended to discussthe type of behaviours
which we would class as intelligent, such as a mathematical theorem proving or dis-
playing medical expertise of ahigh level. Certainly such tasks are signalsto usthat the
person exhibiting such behaviours is an expert and deemed to be engaging in intelli-
gent behaviours; however, 60 years of experience in programming computers has shown
that many behaviours to which we do not ascribe intelligence actually require a great
deal of skill. These behaviours tend to be ones which all normal adult humans find
relatively easy, such as speech, face recognition, and everyday motion in the world.
The fact that we have found it to be extremely difficult to tackle such mundane prob-
lems suggests to many scientists that an artificial intelligence cannot simply display
the high-level behaviours of an expert but must, in some way, exhibit some of the low-
level behaviours common to human existence.

Yet this stance does not answer the question of what constitutes an artificial
intelligence but merely moves the question to what common low-level behaviours are
necessary for an artificial intelligence. It seems unsatisfactory to take the stance which
some do, that states that we would know one if we met one. This book takes a very
pragmatic approach to the problem by tackling individual problems and seeking to use
tools from the artificial intelligence community to solve these problems. The tech-
niques that are used tend to be those which are suggested by human life, such as
artificial neural networks and evolutionary algorithms. The underlying reasoning be-
hind such technologies is that we have not created intelligences through such high-
level techniques aslogic programming; therefore, there must be something in the actu-
ality of lifeitself which begetsintelligence. For example, the study of artificial neural
networks is both an engineering study in that some practitioners wish to build ma-
chines based on artificial neural networks which can solve specific problems, but it is
also a study which gives us some insight into how our own intelligences are generated.
Regardless of the reason given for this study, the common rationale is that there is
something in the bricks and mortar of brains — the actual neurons and synapses —
whichiscrucial to the display of intelligence. Therefore, to display intelligence, we are
required to create machines which also have artificial neurons and synapses.



Similarly, the rational e behind agent programsis based on a belief that we become
intelligent within our social groups. A single human raised inisolation will never be as
intelligent as one who comes into daily contact with others throughout his or her
developing life. Note that for thisto betrue, it isalso required that the agent be able to
learn in some way to modulate its actions and responses to those of the group. There-
fore, apre-programmed agent will not be as strong as an agent which is given the ability
to dynamically change its behaviour over time. The evolutionary approach too shares
thisview inthat thefinal population isnot a pre-programmed solution to a problem, but
rather emerges through the processes of survival-of-the fittest and their reproduction
with inaccuracies.

Whether any one technology will proveto bethe central onein creating artificial
intelligence or whether a combination of technologies will be necessary to create an
artificial intelligence is still an open question, so many scientists are experimenting
with mixtures of such techniques.

In this volume, we see such questionsimplicitly addressed by scientists tackling
specific problemswhich requireintelligence with both individual and combinations of
specific artificial intelligence techniques.

OVERVIEW OF THIS BOOK

In Chapter I, Tran, Abraham, and Jain investigate the use of multiple soft comput-
ing techniques such as neural networks, evolutionary algorithms, and fuzzy inference
methods for creating intelligent decision support systems. Their particular emphasisis
on blending these methods to provide a decision support system which is robust, can
learn from the data, can handle uncertainty, and can give some response even in situa-
tions for which no prior human decisions have been made. They have carried out
extensive comparative work with the various techniques on their chosen application,
whichisthefield of tactical air combat.

InChapter I, Tsoi, To, and Hagenbuchner tackle adifficult problemin text mining
— automatic classification of documents using only the wordsin the documents. They
discuss a number of rival and cooperating techniques and, in particular, give a very
clear discussion on latent semantic kernels. Kernel techniques have risen to promi-
nence recently due to the pioneering work of Vapnik. The application to text miningin
developing kernels specifically for this task is one of the major achievements in this
field. The comparative study on health insurance schedules makesinteresting reading.

Bai and Zhang in Chapter |11 take a very strong position on what constitutes an
agent: “An intelligent agent is a reactive, proactive, autonomous, and social entity”.
Their chapter concentrates very strongly on the last aspect since it deals with multi-
agent systems in which the relations between agentsis not pre-defined nor fixed when
it is learned. The problems of inter-agent communication are discussed under two
headings: The first investigates how an agent may have knowledge of its world and
what ontologies can be used to specify the knowledge; the second deals with agent
interaction protocols and how these may be formalised. These are set in the discussion
of a supply-chain formation.

Like many of the chaptersinthisvolume, Chapter |V formsamost amini-book (at
50+ pages), but Gluck and Fulcher give an extensive review of automatic speech recog-
nition systems covering pre-processing, feature extraction, and pattern matching. The



authors give an excellent review of the main techniques currently used including hid-
den Markov models, linear predictive coding, dynamic time warping, and artificial neu-
ral networks with the authors' familiarity with the nuts-and-bolts of the techniques
being evident in the detail with which they discuss each technique. For example, the
artificial neural network section discusses not only the standard back propagation
algorithm and self-organizing maps, but also recurrent neural networks and therelated
time-delay neural networks. However, the main topic of the chapter isthe review of the
draw-talk-write approach to literacy which has been ongoing research for almost a
decade. Most recent work has seen this technique automated using several of the
techniques discussed above. The result is a socially-useful method which is still in
development but shows a great deal of potential.

Petersson, Fletcher, Barnes, and Zelinsky turn our attention to their Smart Cars
project in Chapter V. This deals with the intricacies of Driver Assistance Systems,
enhancing the driver’s ability to drive rather than replacing the driver. Much of their
work is with monitoring systems, but they also have strong reasoning systems which,
since the work involves keeping the driver in the loop, must be intuitive and explana-
tory. The system involves a number of different technologies for different parts of the
system: Naturally, since thisis areal-world application, much of the data acquired is
noisy, so statistical methods and probabilistic modelling play abig part in their system,
while support vectors are used for object-classification.

Amandaand Noel Sharkey take amore technique-driven approach in Chapter VI
when they investigate the application of swarm techniquesto collective robotics. Many
of the issues such as communication which arise in swarm intelligence mirror those of
multi-agent systems, but one of the defining attributes of swarmsisthat the individual
components should be extremely simple, a constraint which does not appear in multi-
agent systems. The Sharkeys enumerate the main components of such a system as
being composed of a group of simple agents which are autonomous, can communicate
only locally, and are biologically inspired. Each of these properties is discussed in
some detail in Chapter V1. Sometimes these techniques are combined with artificial
neural networksto control theindividual agents or genetic algorithms, for example, for
devel oping control systems. The application to robotics gives a fascinating case-study.

In Chapter V11, thetopic of structural health management (SHM) isintroduced.
This"“isanew approach to monitoring and maintaining the integrity and performance
of structures as they age and/or sustain damage”, and Prokopenko and his co-authors
are particularly interested in applying this to aerospace systems in which there are
inherent difficulties, in that they are operating under extreme conditions. A multi-agent
system is created to handle the various sub-tasks necessary in such a system, whichis
created using an interaction between top-down dissection of the tasks to be done with
abottom-up set of solutionsfor specific tasks. Interestingly, they consider that most of
the bottom-up devel opment should be based on self-organising principles, which means
that the top-down dissection has to be very precise. Since they have a multi-agent
system, communication between the agentsisapriority: They create a system whereby
only neighbours can communicate with one another, believing that this gives robust-
ness to the whole system in that there are then multiple channels of communication.
Their discussion of chaotic regimes and self-repair systems provides a fascinating
insight into the type of system which NASA is currently investigating. This chapter
places self-referentiability as acentral factor in evolving multi-agent systems.
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In Chapter VIII, Beale and Pryke make an elegant case for using computer algo-
rithmsfor the tasks for which they are best suited, while retaining human input into any
investigation for the tasks for which the human is best suited. In an exploratory data
investigation, for example, it may one day be interesting to identify clustersin a data
set, another day it may be more interesting to identify outliers, while athird day may see
the item of interest shift to the manifold in which the data lies. These aspects are
specific to an individual’s interests and will change in time; therefore, they develop a
mechanism by which the human user can determine the criterion of interest for a spe-
cific data set so that the algorithm can optimise the view of the data given to the human,
taking into account this criterion. They discuss trading accuracy for understanding in
that, if presenting 80% of a solution makes it more accessible to human understanding
than a possible 100% solution, it may be preferable to take the 80% solution. A combi-
nation of evolutionary algorithms and a type of spring model are used to generate
interesting views.

Chapter 1 X sees an investigation by Verma and Panchal into the use of neural
networks for digital mammography. The whole process is discussed here from collec-
tion of data, early detection of suspicious areas, area extraction, feature extraction and
selection, and finally the classification of patterns into ‘benign’ or ‘malignant’. An
extensivereview of theliteratureisgiven, followed by a case study on some benchmark
datasets. Finally the authors make a pleafor more use of standard data sets, something
that will meet with heartfelt agreement from other researchers who have tried to com-
pare different methods which onefindsin the literature.

In Chapter X, Khosla, Kumar, and Aggarwal report on the application of particle
swarm optimisation and the Taguchi method to the derivation of optimal fuzzy models
from the available data. The authors emphasize the importance of selecting appropriate
PSO strategies and parameters for such tasks, as these impact significantly on perfor-
mance. Their approach is validated by way of datafrom arapid Ni-Cd battery charger.

As we see, the chapters in this volume represent a wide spectrum of work, and
each is self-contained. Therefore, the reader can dip into this book in any order he/she
wishes. There are also extensive references within each chapter which an interested
reader may wish to pursue, so this book can be used as a central resource from which
major avenues of research may be approached.

Professor Colin Fyfe
The University of Paisley, Scotland
December, 2005






Soft Computing Paradigms and Regression Trees 1

Chapter |

Soft Computing
Paradigms and
Regression Treesin
Decision Support Systems

Cong Tran, University of South Australia, Australia
Ajith Abraham, Chung-Ang University, Korea

Lakhmi Jain, University of South Australia, Australia

ABSTRACT

Decision-making is a process of choosing among alternative courses of action for
solving complicated problems where multi-criteria objectives are involved. The past
few years have witnessed a growing recognition of soft computing (SC) (Zadeh, 1998)
technologies that underlie the conception, design, and utilization of intelligent
systems. In this chapter, we present different SC paradigms involving an artificial
neural network (Zurada, 1992) trained by using the scaled conjugate gradient
algorithm (Moller, 1993), two different fuzzy inference methods (Abraham, 2001)
optimised by using neural network learning/evolutionary algorithms (Fogel, 1999),
and regression trees (Breiman, Friedman, Olshen, & Stone, 1984) for developing
intelligent decision support systems (Tran, Abraham, & Jain, 2004). We demonstrate
the efficiency of the different algorithms by developing a decision support system for
a tactical air combat environment (TACE) (Tran & Zahid, 2000). Some empirical
comparisons between the different algorithms are also provided.

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.



2 Tran, Abraham & Jain

INTRODUCTION

Several decision support systems have been devel oped in variousfieldsincluding
medical diagnosis (Adibi, Ghoreishi, Fahimi, & Maleki, 1993), business management,
control system (Takagi & Sugeno, 1983), command and control of defenceand air traffic
control (Chappel, 1992), and so on. Usually previous experience or expert knowledgeis
often used to design decision support systems. The task becomes interesting when no
prior knowledgeisavailable. Theneed for anintelligent mechanismfor decision support
comes from the well-known limits of human knowledge processing. It has been noticed
that the need for support for human decision-makers is due to four kinds of limits:
cognitive, economic, time, and competitive demands (Holsapple & Whinston, 1996).
Several artificial intelligence techniques have been explored to construct adaptive
decision support systems. A framework that could capture imprecision, uncertainty,
learn from the data/information, and continuously optimise the solution by providing
interpretable decision rules, would be the ideal technique. Several adaptive learning
frameworks for constructing intelligent decision support systems have been proposed
(Cattral, Oppacher, & Deogo, 1999; Hung, 1993; Jagielska, 1998; Tran, Jain, & Abraham,
2002b). Figure 1 summarizesthe basic functional aspects of adecision support system.
A database is created from the available data and human knowledge. The learning
process then builds up the decision rules. The developed rules are further fine-tuned,
depending upon the quality of the solution, using a supervised learning process.

To develop an intelligent decision support system, we need a holistic view on the
varioustasksto be carried out including datamanagement and knowledge management
(reasoning techniques). The focus of this chapter is knowledge management (Tran &
Zahid, 2000), which consists of factsand inference rules used for reasoning (Abraham,
2000).
Fuzzy logic (Zadeh, 1973), when applied to decision support systems, provides
formal methodol ogy to capturevalid patterns of reasoning about uncertainty. Artificial
neural networks (ANNS) are popularly known as black-box function approximators.
Recent research work shows the capabilities of rule extraction from atrained network
positions neuro-computing as a good decision support tool (Setiono, 2000; Setiono,
Leow, & Zurada, 2002). Recently evolutionary computation (EC) (Fogel, 1999) hasbeen
successful asapowerful global optimisation tool dueto the successin several problem
domains (Abraham, 2002; Cortes, Larrafieta, Onieva, Garcia, & Caraballo, 2001,
Ponnuswamy, Amin, Jha, & Castafion, 1997; Tan& Li,2001; Tan, Y u, Heng, & L ee, 2003).
EC works by simulating evolution on acomputer by iterative generation and alteration
processes, operating on a set of candidate solutions that form a population. Due to the
complementarity of neural networks, fuzzy inference systems, and evol utionary compu-
tation, the recent trend is to fuse various systems to form a more powerful integrated
system, to overcome their individual weakness.

Decisiontrees(Breimanet al., 1984) haveemerged asapowerful machine-learning
technique due to a simple, apparent, and fast reasoning process. Decision trees can be
relatedto artificial neural networksby mapping themintoaclassof ANNsor entropy nets
with far fewer connections.

In the next section, we present the complexity of the tactical air combat decision
support system (TACDSS) (Tran, Abraham, & Jain, 2002c), followed by sometheoretical
foundation on neural networks, fuzzy inference systems, and decision trees in the

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.
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Figure 1. Database learning framework for decision support system
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following section. Wethen present different adaptation proceduresfor optimising fuzzy
inference systems. A Takagi-Sugeno (Takagi & Sugeno, 1983; Sugeno, 1985) and
Mamdani-Assilian (Mamdani & Assilian, 1975) fuzzy inference system|earned by using
neural network learning techniquesand evolutionary computation isdiscussed. Experi-
mental resultsusing the different connectionist paradigmsfollow. Detail ed discussions
of these results are presented in the last section, and conclusions are drawn.

TACTICAL AIR COMBAT
DECISION SUPPORT SYSTEM

Implementation of a reliable decision support system involves two important
factors: collection and analysis of prior information, and the evaluation of the solution.
The data could be an image or a pattern, real number, binary code, or natural language
text data, depending on the objectsof the problem environment. An object of thedecision
problemisalsoknown asthedecision factor. These objectscan be expressed mathemati-
cally inthedecision problem domainasauniversal set, wherethedecision factor isaset
and the decision datais an element of this set. The decision factor is a sub-set of the
decision problem. If we call the decision problem (DP) as X and the decision factor (DF)
as “A”, then the decision data (DD) could be labelled as “a” . Suppose the set A has
membersa,, a,, ..., &, then it can be denoted by A= {a,,a,,..,a } or can be written as:

A={alieR} @
wherei is called the set index, the symbol “|" isread as “such that” and R isthe set of

nreal numbers. A sub-set “A” of X, denoted Ac X, isaset of elementsthat iscontained
within the universal set X. For optimal decision-making, the system should be able to

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.



4 Tran, Abraham & Jain

adaptively processtheinformation provided by words or any natural language descrip-
tion of the problem environment.

Toillustrate the proposed approach, we consider a case study based on atactical
environment problem. We aim to devel op an environment decision support system for
a pilot or mission commander in tactical air combat. We will attempt to present the
complexity of the problem with sometypical scenarios. In Figure 2, the Airborne Early
Warning and Control (AEW&C) is performing surveillance in a particular area of
operation. It has two Hornets (F/A-18s) under its control at the ground base shown as
“+" intheleft corner of Figure 2. An air-to-air fuel tanker (KB707) “0O” ison station —
thelocation and status of whichareknowntothe AEW& C. Oneof theHornetsison patrol
intheareaof Combat Air Patrol (CAP). Sometimelater, the AEW& C on-board sensors
detect hostile aircraft(s) shown as“O”. When the hostile aircraft enter the surveillance
region (shown as a dashed circle), the mission system software is able to identify the
enemy aircraft and estimate their distance from the Hornetsin the ground base or in the
CAP.

The mission operator has few options to make a decision on the allocation of
Hornets to intercept the enemy aircraft:

i Send the Hornet directly to the spotted area and intercept,

i Call the Hornet in the area back to ground base or send another Hornet from the
ground base.
i Call theHornet in the areafor refuel beforeintercepting the enemy aircraft.

The mission operator will base his/her decisions on a number of factors, such as:
i Fuel reserve and weapon status of the Hornet in the area,
i Interrupt time of Hornets in the ground base or at the CAP to stop the hostile,
i The speed of the enemy fighter aircraft and the type of weapons it possesses.

Figure 2. A typical air combat scenario

o Hostiles

Surveillance

Boundary " o
._‘!_l \_‘.
‘-. .5
. Fighter on CAP
N O

—+ + .. Tanker aircraft

Fighters at ground base
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Table 1. Decision factors for the tactical air combat

5

Fuel [ Intercept Weapon Danger Evaluation
reserve time status situation plan
Full Fast ici Very
Sufficient ENOEIOUS Good
Half | Normal Enough Dangerous | Acceptable
Low Sow | Insufficient | Endangered Bad

From the above scenario, it is evident that there are important decision factors of
thetactical environment that might directly affect the air combat decision. For demon-
strating our proposed approach, we will simplify the problem by handling only a few
important decision factorssuch as“fuel status”, “interrupt time” (Hornetsin the ground
base and in the area of CAP), “weapon possession status’, and “situation awareness”
(Table 1). The developed tactical air combat decision rules (Abraham & Jain, 2002c)
should be able to incorporate all the above-mentioned decision factors.

Knowledge of Tactical Air Combat Environment

How can human knowledge be extracted to adatabase? V ery often people express
knowledge as natural (spoken) language or using letters or symbolic terms. The human
knowledge can be analysed and converted into an information table. There are several
methods to extract human knowledge. Some researchers use cognitive work analysis
(CWA) (Sanderson, 1998); others use cognitive task analysis (CTA) (Militallo, 1998).
CWA isatechnique used to analyse, design, and evaluate human computer interactive
systems. CTA is amethod used to identify cognitive skills and mental demands, and
needsto perform thesetasksproficiently. CTA focuseson describing the representation
of the cognitiveelementsthat definegoal generation and decisionmaking. Itisareliable
method to extract human knowledge becauseit isbased on observationsor aninterview.
We have used the CTA technique to set up the expert knowledge base for building the
complete decision support system. For the TACE discussed previously, we have four
decision factors that could affect the final decision options of “Hornet in the CAP” or
“Hornet at theground base”. These are: “fuel status”’ being the quantity of fuel available
to perform the intercept, the “weapon possession status’ presenting the state of
availableweaponsinsidetheHornet, the“interrupt time” whichisrequired for theHornet
tofly andinterrupt the hostile, and the* danger situation” providing informationwhether
theaircraftisfriendly or hostile.

Each of the above-mentioned factors hasadifferent range of units, these being the
fuel (0to1000litres), interrupt time (0to 60 minutes), weapon status (0to 100 %), and the
danger situation (0 to 10 points). The following are two important decision selection
rules, which were formulated using expert knowledge:

i Thedecision selectionwill haveasmall valueif thefuel istoolow, theinterrupt time
is too long, the Hornet has low weapon status, and the Friend-Or-Enemy/Foe
danger is high.

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.



6 Tran, Abraham & Jain

Table 2. Some prior knowledge of the TACE

Fuel Interrupt Weapon Danger | Decision

status time status situation | selection

(litres) (minutes) (percent) (points) | (points)
0 60 0 10 0
100 55 15 8 1
200 50 25 7 2
300 40 30 5 3
400 35 40 45 4
500 30 60 4 5
600 2 70 3 6
700 15 85 2 7
800 10 R0 15 8
900 5 % 1 9
1000 1 100 0 10

i Thedecision selectionwill haveahighvalueif thefuel reserveisfull, theinterrupt
timeisfast enough, the Hornet has high weapon status, and the FOE danger islow.

In TACE, decision-making isalwaysbased on all states of all the decision factors.
However, sometimes a mission operator/commander can make a decision based on an
important factor, such as: Thefuel reserveof theHornet istoo low (dueto highfuel use),
the enemy has more powerful weapons, and the quality and quantity of enemy aircraft.
Table 2 shows the decision score at each stage of the TACE.

SOFT COMPUTING AND DECISION TREES

Soft computing paradigms can be used to construct new generation intelligent
hybrid systemsconsisting of artificial neural networks, fuzzy inference systems, approxi-
mate reasoning, and derivative free optimisation techniques. It iswell known that the
intelligent systems which provide human-like expertise such as domain knowledge,
uncertain reasoning, and adaptation to a noisy and time-varying environment, are
importantintackling real-world problems.

Artificial Neural Networks

Artificial neural networkshavebeen devel oped asgeneralisati ons of mathematical
model sof biological nervoussystems. A neural network ischaracterised by the network
architecture, the connection strength between pairs of neurons (weights), node proper-
ties, and update rules. The update or learning rules control the weights and/or states of
the processing elements (neurons). Normally, an objective function is defined that
represents the complete status of the network, and its set of minima corresponds to
different stable states (Zurada, 1992). It can learn by adapting itsweightsto changesin
the surrounding environment, can handle imprecise information, and generalise from
known tasksto unknownones. Thenetwork isinitially randomised to avoidimposing any
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of our own prejudices about an application of interest. The training patterns can be
thought of asaset of ordered pairs{ (x,,y,), (X, ¥,) »--»(X oY p)} wherex representsaninput
pattern and y, represents the output pattern vector associated with the input vector x.

A valuable property of neural networksisthat of generalisation, whereby atrained
neural network is ableto provide a correct matching in the form of output datafor a set
of previously-unseen input data. L earning typically occursthrough training, where the
training algorithm iteratively adjusts the connection weights (synapses). In the conju-
gategradient algorithm (CGA), asearchisperformed along conjugatedirections, which
produces generally faster convergence than steepest descent directions. A search is
made along the conjugate gradient direction to determine the step size, which will
minimisetheperformancefunctionalongthat line. A linesearchisperformedto determine
the optimal distance to move along the current search direction. Then the next search
direction is determined so that it is conjugate to the previous search direction. The
general procedure for determining the new search direction is to combine the new
steepest descent direction with the previous search direction. An important feature of
CGA isthat the minimization performed in one step is not partially undone by the next,
as is the case with gradient descent methods. An important drawback of CGA is the
requirement of aline search, whichiscomputationally expensive. The scaled conjugate
gradient algorithm (SCGA) (Moller, 1993) wasdesigned to avoid thetime-consumingline
search at each iteration, and incorporates the model-trust region approach used in the
CGA Levenberg-Marquardt algorithm (Abraham, 2002).

Fuzzy Inference Systems (FIS)

Fuzzy inference systems (Zadeh, 1973) are apopul ar computing framework based
on the concepts of fuzzy set theory, fuzzy if-then rules, and fuzzy reasoning. The basic
structure of the fuzzy inference system consists of three conceptual components: arule
base, which containsasel ection of fuzzy rules; adatabase, which definesthe membership
functions used in the fuzzy rule; and a reasoning mechanism, which performs the
inference procedure upon the rules and given facts to derive a reasonable output or
conclusion. Figure 3 showsthe basic architecture of aFISwith crisp inputs and outputs
implementing anon-linear mapping fromitsinput spaceto itsoutput (Cattral, Oppacher,
& Deogo, 1992).

Figure 3. Fuzzy inference system block diagram

— | Fuzzification > Infergnce 3 Defuzzification 3
. Interface Engine Interface
crisp fuzzy fuzzy crisp
input input output output
rules
Fuzzy Rule
Base
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8 Tran, Abraham & Jain

We now introduce two different fuzzy inference systems that have been widely
employedinvariousapplications. Thesefuzzy systemsfeaturedifferent consequentsin
their rules, and thustheir aggregation and defuzzification proceduresdiffer accordingly.

Most fuzzy systems employ the inference method proposed by Mamdani-Assilian
in which the rule consequence is defined by fuzzy sets and has the following structure
(Mamdani & Assilian, 1975):

If xis A and y is B, then z = C, 2

Takagi and Sugeno (1983) proposed an inference schemein which the conclusion
of afuzzy ruleisconstituted by aweighted linear combination of the crisp inputsrather
than afuzzy set, and which has the following structure:

If xis A and y is B ,then z = p, +q y+r )

A Takagi-Sugeno FIS usually needs asmaller number of rules, because its output
isalready alinear function of theinputsrather than aconstant fuzzy set (Abraham, 2001).

Evolutionary Algorithms

Evolutionary algorithms (EA ) are popul ation-based adaptive methods, which may
be used to solve optimisation problems, based on the genetic processes of biological
organisms (Fogel, 1999; Tan et al., 2003). Over many generations, natural populations
evolveaccordingtothe principlesof natural selectionand“ survival-of-the-fittest”, first
clearly stated by CharlesDarwinin“OntheOrigin of Species’. By mimicking thisprocess,
EAsare able to “evolve” solutions to real-world problems, if they have been suitably
encoded. The procedure may be written as the difference equation (Fogel, 1999):

x[t+1] =s(v(x[t])) 4

Figure 4. Evolutionary algorithm pseudo code

1. Generate the initial population P(0) at random and set i=0;

2. Repeat until the number of iterations or time has been
reached or the population has converged.

a. Evaluate the fithess of each individual in P(i)
b. Select parents from P(i) based on their fitness in P(i)
c. Apply reproduction operators to the parents and produce

offspring, the next generation, P(i+1) is obtained from the
offspring and possibly parents.
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where x (t) is the population at time t, v is a random operator, and s is the selection
operator. Thealgorithmisillustrated in Figure 4.

A conventional fuzzy controller makes use of a model of the expert who isin a
position to specify the most important properties of the process. Expert knowledge is
often the main source to design the fuzzy inference systems. According to the perfor-
mance measure of the problem environment, the membership functions and rule bases
are to be adapted. Adaptation of fuzzy inference systems using evolutionary computa-
tion techniques has been widely explored (Abraham & Nath, 2000a, 2000b). In the
following section, wewill discuss how fuzzy inference systems could be adapted using
neural network learning techniques.

Neuro-Fuzzy Computing

Neuro-fuzzy (NF) (Abraham, 2001) computing isapopular framework for solving
complex problems. If wehaveknowledge expressedinlinguisticrules, wecanbuildaFIS;
if wehavedata, or canlearnfromasimulation (training), wecan use ANNSs. For building
a FIS, we have to specify the fuzzy sets, fuzzy operators, and the knowledge base.
Similarly, for constructing an ANN for an application, the user needs to specify the
architecture and learning algorithm. An analysisreveal sthat the drawbacks pertaining
to these approaches seem complementary and, therefore, itisnatural to consider building
an integrated system combining the concepts. While the learning capability is an
advantage from the viewpoint of FIS, the formation of a linguistic rule base will be
advantageous from the viewpoint of ANN (Abraham, 2001).

In afused NF architecture, ANN learning algorithms are used to determine the
parametersof the FIS. Fused NF systems share datastructures and knowledge represen-
tations. A common way to apply alearning algorithm to afuzzy systemisto represent
itinaspecial ANN-likearchitecture. However, theconventional ANN learning algorithm
(gradient descent) cannot be applied directly to such a system as the functions used in
the inference process are usually non-differentiable. This problem can be tackled by
using differentiablefunctionsintheinference system or by not using the standard neural
learning algorithm. Two neuro-fuzzy learning paradigms are presented later in this
chapter.

Classification and Regression Trees

Tree-based models are useful for both classification and regression problems. In
these problems, thereisaset of classification or predictor variables (X)) and adependent
variable(Y). The X variablesmay beamixtureof nominal and/or ordinal scales (or code
intervals of equal-interval scale) and Y may be a quantitative or aqualitative (in other
words, nominal or categorical) variable (Breimanet al., 1984; Steinberg & Colla, 1995).

Theclassification and regressiontrees (CART) methodology istechnically known
asbinary recursive partitioning. The processis binary because parent nodes are always
split into exactly two child nodes, and recursive because the process can be repeated by
treating each child node as a parent. The key elements of a CART analysis are a set of
rules for splitting each node in atree;

i deciding when atree is complete, and

i assigning each terminal nodeto aclassoutcome (or predicted valuefor regression)
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10 Tran, Abraham & Jain

CART is the most advanced decision tree technology for data analysis, pre-
processing, and predictivemodelling. CART isarobust data-analysistool that automati-
cally searches for important patterns and relationships and quickly uncovers hidden
structureevenin highly complex data. CARTshinary decisiontreesaremoresparingwith
dataand detect morestructure beforefurther splitting isimpossibleor stopped. Splitting
isimpossibleif only one case remainsin aparticular node, or if all the casesin that node
are exact copiesof each other (on predictor variables). CART also allowssplitting to be
stopped for several other reasons, including that a node has too few cases (Steinberg
& Colla, 1995).

Onceaterminal nodeisfound, wemust decidehow to classify all casesfallingwithin
it. Onesimplecriterionisthe plurality rule: The group with the greatest representation
determinesthe class assignment. CART goes a step further: Because each node has the
potential for being aterminal node, a class assignment is made for every node whether
itisterminal or not. Therulesof classassignment can be modified from simpleplurality
to account for the costs of making a mistake in classification and to adjust for over- or
under-sampling from certain classes.

A common technique among the first generation of treeclassifierswasto continue
splitting nodes (growing thetree) until some goodness-of-split criterionfailed to be met.
Whenthequality of aparticular split fell below acertainthreshold, thetreewasnot grown
further along that branch. When all branches from the root reached terminal nodes, the
treewasconsidered complete. Onceamaximal treeisgenerated, it examinessmaller trees
obtai ned by pruning away branchesof the maximal tree. Oncethe maximal treeisgrown
and aset of sub-treesisderivedfromit, CART determinesthebest tree by testing for error
rates or costs. With sufficient data, the simplest method is to divide the sample into
learning and test sub-samples. Thelearning sampleisused to grow an overly largetree.
Thetest sampleisthen used to estimatetherateat which casesare misclassified (possibly
adjusted by misclassification costs). Themisclassification error rateiscal culated for the
largest tree and also for every sub-tree.

The best sub-tree is the one with the lowest or near-lowest cost, which may be a
relatively small tree. Cross validation is used if dataare insufficient for a separate test
sample. In the search for patternsin databases, it is essential to avoid the trap of over-
fitting or finding patterns that apply only to the training data. CARTs embedded test
disciplinesensurethat the patternsfound will hold up when applied to new data. Further,
the testing and selection of the optimal tree are an integral part of the CART algorithm.
CART handles missing valuesin the database by substituting surrogate splitters, which
are back-up rulesthat closely mimic the action of primary splitting rules. The surrogate
splitter containsinformationthatistypically similar towhat would befoundintheprimary
splitter (Steinberg & Colla, 1995).

TACDSS ADAPTATION USING
TAKAGI-SUGENO FIS

We used the adaptive network-based fuzzy inference system (ANFIS) framework
(Jang, 1992) to developthe TACD SSbased on aTakagi-Sugeno fuzzy inference system.
The six-layered architecture of ANFISisdepicted in Figure5.
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Figure 5. ANFIS architecture

consequent

premiss X parameters

Supposetherearetwoinputlinguisticvariables(ILV) Xand Yandeach ILV hasthree
membership functions(MF) A, A,and A, and B,, B, and B, respectively, then a Takagi-
Sugeno-type fuzzy if-then rule could be set up as:

Rule : If XisA and YisB thenf = p X+ q Y+r, 5)

whereiisanindexi=1,2..nand p, gandr arethelinear parameters.

Somelayersof ANFIS havethe same number of nodes, and nodesin thesamelayer
have similar functions. Output of nodesin layer-l isdenoted as O, ;, where| isthe layer
number and i isneuron number of the next layer. The function of each layer isdescribed
asfollows:

i Layer 1
The outputs of this layer is the input values of the ANFIS

Ol,y = y (6)

For TACDSSthefour inputsare“fuel status”, “weaponsinventory levels’, “time
intercept”, and the “danger situation”.

N Layer 2
The output of nodes in thislayer is presented as Ol,ip,i,’ whereipisthelLV and m
isthe degree of membership function of a particular MF.
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12 Tran, Abraham & Jain

0,,= My OF OZ,y,i =My, for i=1,2,and 3 @)
With three MFs for each input variable, “fuel status” has three membership
functions: full, half, and low, “timeintercept” hasfast, normal, and slow, “weapon
status” has sufficient, enough, and insufficient, and the “danger situation” has
very dangerous, dangerous, and endangered.

. Layer 3
Theoutput of nodesinthislayer isthe product of all theincoming signal's, denoted
by:
03,n = Wn: mAi(X) X mBi(y) (8)

wherei = 1,2, and 3, and nisthe number of the fuzzy rule. In general, any T-norm
operator will perform thefuzzy ‘ AND’ operationin thislayer. Withfour ILV and
threeMFsfor eachinput variable, the TACDSSwill have 81 (3*=81) fuzzy if-then
rules.

. Layer 4
Thenodesinthislayer calculatetheratio of theit" fuzzy rulefiring strength (RFS)
to the sum of all RFS.

Wh

o 81
O,,= W. = Y w, wheren=1,2,..,81 9
n=1

4.n

The number of nodesin this layer is the same as the number of nodesin layer-3.
The outputs of thislayer are also called normalized firing strengths.

i Layer 5
The nodes in this layer are adaptive, defined as:

O,,= W fi= wi(p, X+, y+r) (10)
wherep,, g, r, are the rule consequent parameters. This layer also has the same
number of nodes as layer-4 (81 numbers).

. Layer 6
The single nodein thislayer isresponsible for the defuzzification process, using
the centre-of-gravity techniqueto computethe overall output asthe summation of
all theincoming signals:

81
> win
& — n=1
Oy, = X wh f= 5
n=1

n=1

(11)
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ANFISmakesuse of amixture of back-propagationtolearnthe premiseparameters
and least mean square esti mation to determine the consequent parameters. Each stepin
the learning procedure comprises two parts: In the first part, the input patterns are
propagated, and the optimal conclusion parameters are estimated by an iterative least
mean square procedure, while the antecedent parameters (membership functions) are
assumed to befixed for the current cyclethrough thetraining set. Inthe second part, the
patternsare propagated again, and in thisepoch, back-propagation isused to modify the
antecedent parameters, whilethe conclusion parametersremainfixed. Thisprocedureis
theniterated, asfollows (Jang, 1992):

—f, o, -y,
ANFISoutputf= O, = Yw  + D w  +...+ Y w
= W(PXH Gy + 1)+ Wa(PXF Gy + 1)+ ok (DX+ Gy +r,)
=R+ (Y)a, + 11+ (p,+ (Y)a,+ 1+ ..+ (P, + (Y)g, + T, (12)
where n isthe number of nodesin layer 5. From this, the output can be rewritten as
f=F(@i,9 (13

where F isafunction, i isthe vector of input variables, and Sisaset of total parameters
of consequent of the n'" fuzzy rule. If there exists acomposite function H such that H ®
Fislinearin someelementsof S, thentheseelementscan beidentified by theleast square
method. If the parameter set is divided into two sets S, and S,, defined as:

S=s,@s5, (14)

where @ represents direct sum and o is the product rule, such that H o F islinear in the
elements of S, the function f can be represented as:

Hf)=H®F(,9 (15)

Givenvaluesof S, the Straining data can be substituted into equation 15. H(f) can
bewritten asthematrix equation of AX =Y, where Xisan unknown vector whoseelements
are parametersin S,.

If |S] =M (M being the number of linear parameters), then the dimensions of
matricesA, XandYarePM, Ml and PI, respectively. Thisisastandardlinear | east-squares
problem and the best solution of X that minimizes||AX - Y]|?istheleast square estimate
(LSE)X

X* = (ATA)IATY (16)
whereATisthetransposeof A, (ATA)ATisthepseudoinverseof Aif ATAisanon-singular.

Lettheit"row vector of matrix A beaand thei™ element of Y bey, then X canbecal cul ated
as:
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Xi+1 = Xi + S|+1a'|+1(y_ y- axi) (17)
T
L=5-28Y%u S g7 p.1 (18)
I 1+a1-+18a+1

TheLSE X* isequal to X . Theinitial conditionsof X, and S, are X, = 0and S,
= gl, wheregisapositivelarge number and | isthe identity matrix of dimension MxM.

When hybridlearningisappliedinbatch mode, each epochiscomposed of aforward
pass and a backward pass. In the forward pass, the node output | of each layer is
calculated until the corresponding matrices A and Y are obtained. The parameters of S,
areidentified by the pseudo inverse equation as mentioned above. After the parameters
of S, areobtained, the processwill computetheerror measurefor each training datapair.
Inthebackward pass, the error signal s (thederivatives of the error measure with respect
to each node output) propagates from the output to the input end. At the end of the

backward pass, the parameter S, is updated by the steepest descent method as follows:

a= —n @ (19)

where a isageneric parameter and 1 isthe learning rate and E is an error measure.

k

T] —-_
2
2D

where Kk is the step size.

For the given fixed values of parametersin S, the parametersin S, are guaranteed
to be global optimum pointsin the S, parameters space due to the choice of the squared
error measure. This hybrid learning method can decrease the dimension of the search
space using the steepest descent method, and can reduce the time needed to reach
convergence. The step size k will influence the speed of convergence. Observation
showsthat if kissmall, the gradient method will closely approximate the gradient path;
convergence will be slow since the gradient is being cal culated many times. If the step
sizekislarge, convergencewill initially be very fast. Based on these observations, the
step size k is updated by the following two heuristics (rules) (Jang, 1992):

(20

If E undergoes four continuous reductions, then increase k by 10%, and

If E undergoes continuous combinations of increase and decrease, then reduce
k by 10%.
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TACDSS ADAPTATION USING MAMDANI FIS

We have made use of the fuzzy neural network (FuNN) framework (Kasabov, Kim
& Gray, 1996) for learning the Mamdani-Assilian fuzzy inferencemethod. A functional
block diagram of the FUNN model isdepictedin Figure6 (Kasabov, 1996); it consists of
two phases of learning.

The first phase is the structure learning (if-then rules) using the knowledge
acquisition module. The second phaseisthe parameter |earning for tuning membership
functions to achieve a desired level of performance. FUNN uses a gradient descent
learning algorithmto fine-tunethe parameters of thefuzzy membership functions. Inthe
connectionist structure, the input and output nodes represent the input states and
output control-decision signals, respectively, whileinthehiddenlayers, thereare nodes
functioning asquantification of membership functions(MFs) and if-thenrules. Weused
the simple and straightforward method proposed by Wang and Mendel (1992) for
generating fuzzy rules from numerical input-output training data. The task hereisto
generateaset of fuzzy rulesfrom thedesired input-output pairsand then use these fuzzy
rules to determine the complete structure of the TACDSS.

Suppose we are given the following set of desired input (x,, X,) and output (y) data
pairs(x,, X, ¥): (0.6,0.2;0.2),(0.4,0.3;0.4). INnTACDSS, theinput variable“ fuel reserve”’
has a degree of 0.8 in half, adegree of 0.2 in full. Similarly, the input variable “time
intercept” has a degree of 0.6 in empty and 0.3 in normal. Secondly, assignx,, x,', and
y' to aregion that has maximum degree. Finally, obtain onerulefrom onepair of desired
input-output data, for example:

(x5 %y => [x'(0.8inhalf), x,}(0.2in fast), y* (0.6 in acceptable)],
R if x ishalf and x, isfast, then y is acceptable (21
(X2%,2y%), =>[x,(0.8inhalf),x,(0.6innormal),y*(0.8 inacceptable)],

R, if x ishalf and x, isnormal, theny is acceptable (22

Figure 6. A general schematic of the hybrid fuzzy neural network

Structure learning )
Explanation
s Knowledge » Fuzzyrule >
acquisition based
3
Insert rule Extract rule
y
I nput Pre Parameter learning Output
—> processing » using gradient descent ———»
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Assign adegreeto each rule. To resolve apossible conflict problem, that is, rules
having the same antecedent but a different consequent, and to reduce the number of
rules, we assign adegreeto each rule generated from data pairs and accept only therule
from aconflict group that has amaximum degree. In other words, thisstep isperformed
to delete redundant rules, and therefore obtain aconcise fuzzy rule base. Thefollowing
product strategy isused to assign adegreeto each rule. The degree of theruleisdenoted

by:
Ri:if x isAandx,isB, thenyisC(w,) (23)
Therule weight is defined as:
W, = m,(x)m,(,)m(y) (24)
For exampleinthe TACE, R, hasadegree of

W =m_(x)m_(x,) m, =0.8x0.2x0.6=0.096 (25)

cceptabl e(y)

and R, has a degree of

W2=m_ (x)m

- (X)?m (y)=0.8x0.6x0.8=0.384 (26)

normal acceptable

Note that if two or more generated fuzzy rules have the same preconditions and
consequents, then the rule that has maximum degreeis used. In thisway, assigning the
degree to each rule, the fuzzy rule base can be adapted or updated by the relative
weighting strategy: The moretask-related the rule becomes, the more weight degreethe
rulegains. Asaresult, not only isthe conflict problem resolved, but al so the number of
rules is reduced significantly. After the structure-learning phase (if-then rules), the
wholenetwork structureisestablished, and the network entersthe second | earning phase
to optimally adjust the parameters of the membership functions using agradient descent
learning algorithm to minimisetheerror function:

== 53200 -x)’ @

whered andy arethetarget and actual outputsfor aninput x. Thisapproachisvery similar
to the MF parameter tuning in ANFIS.

Membership Function Parameter Optimisation
Using EASs

We have investigated the usage of evolutionary algorithms (EAS) to optimise the
number of rulesand fine-tunethe membership functions(Tran, Jain, & Abraham, 2002a).
Given that the optimisation of fuzzy membership functions may involve many changes
tomany different functions, and that achangeto onefunction may affect others, thelarge
possiblesolution spacefor thisproblemisanatural candidatefor an EA-based approach.
Thishasalready beeninvestigated in Mang, Lan, and Zhang (1995), and hasbeen shown
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Figure 7. The chromosome of the centres of input and output MF’s
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tobemoreeffectivethan manual alteration. A similar approach hasbeentakento optimise
membership function parameters. A simple way is to represent only the parameter
showing the centre of MFs to speed up the adaptation process and to reduce spurious
local minimaover the centre and width.

The EA module for adapting FuNN is designed as a stand-alone system for
optimising the MFsif the rules are already available. Both antecedent and consequent
MFs are optimised. Chromosomes are represented as strings of floating-point numbers
rather than strings of bits. In addition, mutation of a gene is implemented as a re-
initialisation, rather than an alteration of the existing allegation. Figure 7 shows the
chromosome structure, including the input and output MF parameters. One point
crossover is used for the chromosome reproduction.

EXPERIMENTAL RESULTSFOR
DEVELOPING THE TACDSS

Our master data set comprised 1000 numbers. To avoid any bias on the data, we
randomly created two training sets (Dataset A - 90% and Dataset B - 80%) and test data
(10% and 20 %) from the master dataset. All experimentswere repeated three timesand
the average errors are reported here.

Takagi-Sugeno Fuzzy Inference System

In addition to the devel opment of the Takagi-Sugeno FIS, wealso investigated the
behaviour of TACDSSfor different membership functions (shapeand quantity per ILV).
We also explored theimportance of different learning methods for fine-tuning the rule
antecedents and consequents. Keeping the consequent parameters constant, we fine-
tuned the membership functions alone using the gradient descent technique (back-
propagation). Further, we used the hybrid learning method wherein the consequent
parameters were also adjusted according to the least squares algorithm. Even though
back-propagationisfaster than the hybrid technique, learning error and decision scores
were better for thelatter. We used three Gaussian M Fsfor each ILV . Figure 8 showsthe
threeMFsfor the“fuel reserve” ILV beforeand after training. Thefuzzy rule consequent
parameters before training was set to zero, and the parameters were learned using the
hybrid |earning approach.
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Figure 8. Membership function of the “fuel reserve” ILV (a) before and (b) after
learning
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Comparison of the Shape of Membership Functions
of FIS

In this section, we demonstrate the importance of the shape of membership
functions. We used the hybrid-learning technique and each ILV had three MFs. Table
3 showsthe convergence of the training RM SE during the 15 epoch learning using four
different membership functionsfor 90% and 80%training data. Eighty-onefuzzy if-then
ruleswerecreatedinitially using agrid-partitioning algorithm. We considered Generalised
bell, Gaussian, trapezoidal, and isosceles triangular membership functions. Figure 9
illustrates the training convergence curve for different MFs.

Asis evident from Table 3 and Figure 9, the lowest training and test error was
obtained using a Gaussian MF.
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Figure 9. Effect on training error for the different member ship functions
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Table 3. Learning performance showing the effect of the shape of MF

Root Mean Squared Error (E- 05)
Gaussian G-bell Trapezoidal Triangular
Epochs DataA|DataB|DataA|DataB|DataA|DataB|DataA|DataB
1 1406 | 1.305( 1.706 | 1.581 | 2.459 | 2.314 [ 0.9370| 0.8610
2 1372 1.274 | 1.652 | 1.537 | 2457 | 2285 | 1.789 | 1.695
3 1347 1.249( 1612 | 1.505| 2546 | 2441 | 1.789 | 1.695
4 1328 1.230 | 1.586 | 1.483 | 2546 | 2441 | 1.789 | 1.695
5 1312 1214 1571 | 1.471| 2546 | 2441 | 1.789 | 1.695
6 1.300 | 1.199 | 1.565 | 1.466 | 2.546 | 2441 | 1.789 | 1.695
7 1288 1.186 | 1.564 | 1.465| 2.546 | 2441 | 1.789 | 1.695
8 1277 | 1.173 | 1.565 | 1.464 | 2546 | 2441 | 1.789 | 1.695
9 1265( 1.160 | 1.565 | 1.459 | 2.546 | 2441 | 1.789 | 1.695
10 1254 1.148 | 1.565| 1.448 | 2546 | 2441 | 1.789 | 1.695
11 1243 | 1.138 | 1.565| 1.431 | 2546 | 2441 | 1.789 | 1.695
12 1236 1.132| 1.565| 1.409 | 2546 | 2441 | 1.789 | 1.695
13 1234 1132 1.565| 1.384 | 2546 | 2441 | 1.789 | 1.695
14 1238 1.138| 1.565| 1.355| 2546 | 2441 | 1.789 | 1.695
Test 144 | 122 | 1.78 | 1.36 | 2.661 | 2.910 [ 1.8583|1.8584
RMSE
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Mamdani Fuzzy Inference Syst

We used FuzzyCOPE (Watts, Woodford, & Kasabov, 1999) to investigate the
tuning of membership functions using back-propagation and evolutionary algorithms.
Thelearning rate and momentum were set at 0.5 and 0.3 respectively, for 10 epochs. We
obtained training RM SEs of 0.2865 (DataA) and 0.2894 (DataB). Wefurther improved
the training performance using evolutionary algorithms. The following settings were

em

used for the evolutionary algorithm parameters:

Population size=50
Number of generations= 100
Mutation rate=0.01

We used the tournament selection strategy, and Figure 10 illustrates the learning
convergence during the 100 generations for Datasets A and B. Fifty-four fuzzy if-then
ruleswere extracted after thelearning process. Table 4 summarizesthetraining and test

performance.

Figure 10. Training convergence using evolutionary algorithms
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Table 4. Training and test performance of Mamdani FISusing EA’s

Root Mean Squared Error (RMSE)

DataA

DataB

Training Test

Training

Test

0.0548 0.0746

0.0567

0.0612
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Figure 11. Neural network training using SCGA
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Table 5. Training and test performance of neural networks versus decision trees

DataA DataB
Training Testing Training Testing
RMSE
CART 0.00239 0.00319 0.00227 0.00314
Neural 0.00105 0.00095 0.00041 0.00062
Network

Artificial Neural Networks

We used 30 hidden neuronsfor Data A and 32 hidden neuronsfor DataB. We used
atrial-and-error approach tofinalizethearchitecture of the neural network. We used the
scaled conjugate gradient algorithm to develop the TACDSS. Training was terminated
after 1000 epochs. Figure 11 depicts the convergence of training during 1000 epochs
learning. Table 5 summarizesthetraining and test performance.

Classification and Adaptive Regression Trees

WeusedaCART simulation environment to devel op thedecision trees (www.salford-
systems.com/products-cart.html). We sel ected the minimum cost treeregardless of tree
size. Figures 12 and 13 illustrate the variation of error with reference to the number of
terminal nodes for Datasets A and B. For Data A, the developed tree has 122 terminal
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Figure 12.

Dataset A - Variation of relative error versus the number of terminal nodes
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Figure 14. Dataset A - Developed decision tree with 122 nodes

Figure 15. Dataset B - Developed decision tree with 128 nodes
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Figure 16. Test resultsillustrating the efficiency of the different intelligent paradigms
used in developing the TACDSS
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nodesasshowninFigure 14, whilefor DataB, therest of thetreehhad 128 terminal nodes
asdepicted in Figure 15. Training and test performance are summarized in Table 5.

Figure 16 comparesthe performance of the different intelligent paradigmsused in
developing the TACDSS (for clarity, we have chosen only 20% of the test results for
Dataset B).

DISCUSSION

Thefocusof thisresearchisto create accurate and highly interpretable (using rules
or tree structures) decision support systems for a tactical air combat environment
problem.

Experimental resultsusing two different datasetsreveal ed theimportance of fuzzy
inference engines to construct accurate decision support systems. As expected, by
providing moretraining data (90% of the randomly-chosen master dataset), the models
were ableto learn and generalise more accurately. The Takagi-Sugeno fuzzy inference
system hasthelowest RM SE on both test datasets. Sincelearninginvolvesacomplicated
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procedure, thetraining processof the Takagi-Sugeno fuzzy inference system took longer
compared tothe Mamdani-Assilian fuzzy inference method; hence, thereisacompromise
between performance and computational complexity (training time). Our experiments
using different membership function shapes also reveal that the Gaussian membership
function is the “optimum” shape for constructing accurate decision support systems.

Neural networks can no longer be considered as ‘black boxes'. Recent research
(Setiono, 2000; Setiono, Leow, & Zurada, 2002) hasrevealedthat itispossibleto extract
rulesfromtrained neural networks. In our experiments, we used aneural network trained
using the scaled conjugate gradient algorithm. Results depicted in Figure 5 also reveal
withthetrained neural network could not learn and generalise accurately compared with
the Takagi-Sugeno fuzzy inference system. The proposed neural network outperformed
both the Mamdani-Assilian fuzzy inference system and CART.

Two important features of the developed classification and regression tree are its
easy interpretability and low complexity. Due to its one-pass training approach, the
CART algorithm also hasthelowest computational load. For Dataset A, the best results
wereachieved using 122 terminal nodes(relativeerror =0.00014). AsshowninFigure 12,
whenthenumber of terminal nodeswasreducedto 14, therelativeerror increased to 0.016.
For Dataset B, thebest results could be achieved using 128 terminal nodes(relativeerror
=0.00010). AsshowninFigure 13, whentheterminal nodeswerereducedto 14, therelative
errorincreasedto 0.011.

CONCLUSION

In this chapter, we have presented different soft computing and machine learning
paradigmsfor developing atactical air combat decision support system. Thetechniques
explored wereaTakagi-Sugeno fuzzy inference systemtrained by using neural network
learning techniques, a Mamdani-Assilian fuzzy inference system trained by using
evolutionary algorithms and neural network learning, a feed-forward neural network
trained by using the scal ed conjugate gradient algorithm, and classification and adaptive
regression trees.

Theempirical resultsclearly demonstratethat all thesetechniquesarereliable and
could beused for constructing more complicated decision support systems. Experiments
on the two independent data sets also reveal that the techniques are not biased on the
dataitself. Compared to neural networksand regression trees, the Takagi-Sugeno fuzzy
inference system has the lowest RMSE, and the Mamdani-Assilian fuzzy inference
system hasthehighest RM SE. Intermsof computational complexity, perhapsregression
trees are best since they use a one-pass | earning approach when compared to the many
learning iterationsrequired by all other considered techniques. Animportant advantage
of the considered modelsisfast learning, easy interpretability (if-then rules for fuzzy
inference systems, m-of-n rules from a trained neural network (Setiono, 2000) and
decision trees), efficient storage and retrieval capacities, and so on. It may also be
concluded that fusing different intelligent systems, knowing their strengths and weak-
ness could help to mitigate the limitations and take advantage of the opportunities to
produce more efficient decision support systems than those built with stand-alone
systems.
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Our future work will be directed towards optimisation of the different intelligent
paradigms (Abraham, 2002), which we have already used, and also to develop new
adaptive reinforcement learning systems that can update the knowledge from data,
especially when no expert knowledge is available.
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Chapter I 1

Application of Text Mining
Methodologiesto Health
| nsurance Schedules

Ah Chung Tsoi, Monash University, Australia
Phuong Kim To, Tedis P/L, Australia

Markus Hagenbuchner, University of Wollongong, Australia

ABSTRACT

This chapter describes the application of a number of text mining techniques to
discover patterns in the health insurance schedule with an aim to uncover any
inconsistency or ambiguity in the schedule. In particular, we will apply first a simple
“bag of words” techniqueto study thetext data, and to evaluate the hypothesis: Isthere
any inconsistency in the text description of the medical procedures used? It is found
that the hypothesis is not valid, and hence the investigation is continued on how best
to cluster the text. Thiswork would have significance to health insurersto assist them
to differentiate descriptions of the medical procedures. Secondly, it would also assist
the health insurer to describe medical procedures in an unambiguous manner.
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AUSTRALIAN HEALTH INSURANCE SYSTEM

In Australia, there is a universal health insurance system for her citizens and
permanent residents. This publicly-funded health insurance scheme is administered by
a federal government department called the Health Insurance Commission (HIC). In
addition, the Australian Department of Health and Ageing (DoHA), after consultation
withthemedical fraternity, publishesamanual called M edicare Benefit Schedule (MBS)
in which it details each medical treatment procedure and its associated rebate to the
medical service providers who provide such services. When a patient visits a medical
service provider, the HIC will refund or pay the medical service provider at the rate
published in the MBS!' (the MBS is publicly available online from http://
www.health.gov.au/pubs/mbs/mbs/css/index.htm).

Therefore, the description of medical treatment proceduresin the MBS should be
clear and unambiguous to interpretation by a reasonable medical service provider as
ambiguitieswould lead to thewrong medical treatment procedure being used toinvoice
the patient or the HIC. However, the MBS has devel oped over the years, and isderived
through extensive consultations with medical service providers over alengthy period.
Consequently, theremay exist inconsistenciesor ambiguitieswithintheschedule. Inthis
chapter, we propose to use text mining methodologies to discover if there are any
ambiguitiesinthe MBS.

Figure 1. An overview of the MBS structure in the year of 1999
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The MBSisdivided into seven categories, each of which describes acollection of
treatments related to a particular type, such as diagnostic treatments, therapeutic
treatments, oral treatments, and so on. Each category isfurther divided into groups. For
example, in category 1, thereare 15 groups, A, A,, ..., A .. Within each group, there are
anumber of medical procedures which are denoted by unique item numbers. In other
words, the MBSisarranged in ahierarchical tree manner, designed so that it iseasy for
medical service providersto find appropriate itemswhich represent the medical proce-
dures provided to the patient.? This underlying MBS structure is outlined in Figure 1.

This chapter evaluates the following:

i Hypothesis— Giventhearrangement of theitemsin theway they areorganisedin
the MBS (Figure 1), are there any ambiguities within this classification? Here,
ambiguity is measured in terms of a confusion table comparing the classification
given by the application of text mining techniques and the classification givenin
the MBS. Ideadlly, if the items are arranged without any ambiguities at all (as
measured by text mining techniques), the confusion table should be diagonal with
zero off diagonal terms.

i Optimal gr ouping— Assuming that the classification givenin MBSisambiguous
(as revealed in our subsequent investigation of the hypothesis), what is the
“optimal” arrangement of theitem descriptionsusing text mining techniques (here
“optimal” ismeasured with respect to text mining techniques)?In other words, we
wishtofindan*“optimal” grouping of theitem descriptionstogether suchthat there
will beaminimum of misclassifications.

The benefits of thiswork are asfollows:

i FromtheDoHA point of view, it will allow thediscovery of any existing ambiguities
in the MBS. In order to make procedures described in the MBS as distinct as
possible, the described methodology can be employed in evaluating the hypoth-
esisindesigningthe MBS such that therewould not be any ambiguitiesfrom atext
mining point of view. Thiswill lead to abetter description of the procedures so that
therewill belittle misinterpretation by medical service providers.

i From aservice provider’ s point of view, the removal of ambiguitieswould allow
efficient computer-assisted searching. Thiswill limit misinterpretation, and allow
the implementation of a semi-automatic process for the generation of claims and
receipts.

i Whilethe “optimal grouping” processis mainly derived from acuriosity point of
view, thismay assist the HI C in re-grouping some of their existing descriptions of
itemsin the MBS, so that there will be less opportunities for misinterpretation.

Obviously, the validity of the described method liesin the validity of text mining
techniques in unambiguously classifying a set of documents. Unfortunately, this may
not be the case, as new text mining techniques are constantly being devel oped.

However, the value of the work presented in this paper lies in the ability to use
existing text mining techniquesandto discover, asfar aspossible, any ambiguitieswithin
the MBS. This is bound to be a conservative measure, as we can only discover
ambiguities asfar as possible given the existing tools. There will be other ambiguities
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which remain uncovered by current text mining techniques. But at least, using our
approach will clear up some of the existing ambiguities. In other words, thetext mining
techniques do not claim to be exhaustive. Instead, they will indicate ambiguities asfar
as possible, given their limitations.

Thestructure of thischapter isasfollows: Inthe next section, wedescribewhat text
mining is, and how our proposed techniques fall into the general fabric of text mining
research. Inthefollowing section, wewill describe the “bag of words” approach to text
mining. Thisisthe simplest method in that it does not take any cognizance of semantics
among thewords; each word istreated inisolation. In addition, thiswill give an answer
to the hypothesis as stated above. If ambiguities are discovered by using such asimple
text mining technique, then there must exist ambiguities in the set of documents
describing the medical procedures. Thiswill give usarepository of resultsto compare
with those when we use other text mining techniques. In the next section, we describe
briefly the latent semantic kernel (LSK) technique to pre-process the feature vectors
representing the text. In thistechnique, theintentionisthat it is possible to manipulate
theoriginal feature vectors representing the documents and to shorten them so that they
can better represent the “hidden” message in the documents. We show results which do
not assume the categories as given in the MBS.

TEXT MINING

Intext mining, therearetwo mainissues: retrieval and classification (Berry, 2004).
i Retrieval techniques— used to retrieve the particular document:

o  Keyword-based search — thisisthe simplest method in that it will retrieve
a document or documents which matches a particular set of key words
provided by the user. Thisis often called “ queries”.

o  Vector space-based retrieval method — thisisoften called a“bag of words”
approach. It representsthedocument intermsof aset of featurevectors. Then,
the vectors can be manipulated so as to show patterns, for example, by
grouping similar vectorsinto clusters(Nigam, McCallum, Thrun, & Mitchell,
2000; Salton, 1983).

o Latent semantic analysis — thisisto study the latent or hidden structure of
the set of documents with respect to “ semantics”. Here “semantics’ istaken
to mean “correlation” within the set of documents; it does not mean that the
technique will discover the “semantic” relationships between words in the
sense of linguistics (Salton, 1983).

o Probabilistic latent semantic analysis — thisisto consider the correlation
withinthe set of documentswithin aprobabilistic setting (Hofmann, 1999a).

i Classification techniques — used to assign data to classes.

o Manual classification — aset of documentsis classified manually into a set
of classes or sub-classes.

o Rule-based classification — a set of rules as determined by expertsis used
to classify a set of documents.

o Naive Bayes classification — this uses Bayes' theorem to classify a set of
documents, with some additional assumptions (Duda, 2001).

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.



Application of Text Mining Methodologies to Health Insurance Schedules 33

o Probabilistic latent semantic analysis classification — this uses the proba-
bilistic latent semantic analysis technique to classify the set of documents
(Hofmann, 1999b).

o  Support vector machine classification — this is to use support vector
machine techniques to classify the set of documents (Scholkopf, Burges, &
Smola, 1999).

Thischapter exploresthe*bag of words” techniqueto classify the set of documents
into clusters and compare them with those given in the MBS. The chapter also employs
the latent semantic kernel technique, atechnique from kernel machine methods (based
on support vector machine techniques) to manipulate the features of the set of docu-
ments before subjecting them to clustering techniques.

BAG OF WORDS

If wearegivenaset of mdocumentsD =[d,, d,,...,d ], itisquitenatural torepresent
them in terms of vector space representation. From this set of documentsitissimpleto
find out the set of vocabularies used. In order that the set of vocabularies would be
meaningful, careistaken by using the stemmisation technique which regards words of
the same stem to be oneword. For example, thewords* representation” and “ represent”
are considered as one word, rather than two distinct words, asthey have the same stem.
Secondly, inorder that the set of vocabularieswould be useful to distinguish documents,
weeliminatecommonwords, like“the”,“a’, and“is’ from the set of vocabularies. Thus,
after these two steps, it is possible to have a set of vocabularies w, w,,..., w_which
represents the words used in the set of documents D. Then, each document can be
represented as an n-vector with elements which denote the frequency of occurrence of
theword in the document d, and O if the word does not occur in the document d.. Thus,
from a representation point of view, the set of documents D can be equivalently
represented by aset of vectorsV-[v,,v,,...,v, ] ,wherev,isann-vector. Notethat thisset
of vectorsV may be sparse, as not every word in the vocabulary occursin the document
(Nigametal., 2000). Theset of vectorsV can beclustered together toform clustersusing
standard techniques (Duda, 2001).

Table 1. An overview over the seven categories in the MBS

Category | Number of items

1 158
2 108
3 2134
4 162
5 504
6 302
7 62

Total 4030
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Table 2. A confusion table showing the classification of documents (the actual
classifications as indicated in the MBS are given horizontally; classifications as
obtained by the naive Bayes method are presented vertically)

Category | 1 2 3 4 5 6 7 Total % Accuracy
1 79 0 0 0 0 0 0 79 100.00
2 1 25 9 0 12 7 0 54 46.30
3 12 3 1323 | 15 10 3 1 1367 96.78
4 1 0 62 18 0 0 0 81 222
5 0 3 18 0 229 1 1 252 90.87
6 0 2 0 0 1 148 0 151 98.01
7 3 0 1 1 2 0 24 31 77.42

Inour case, we consider each description of an MBSitem asadocument. We have
atotal of 4030 documents; each document may be of varying length, dependent on the
description of the particular medical procedure. Table 1 givesasummary of the number
of documents in each category.

After taking out commonly occurring words, wordswith the same stem count, and
so on, we find that there are atotal of 4569 distinct words in the vocabulary.

Wewill use 50% of thetotal number of itemsasthetraining dataset, whilethe other
50% will be used as atesting data set to eval uate the generalisability of the techniques
used. In other words, we have 2015 documentsin the training data set, and 2015 in the
testing data set. The content of the training data set is obtained by randomly choosing
itemsfrom aparticular group so asto ensurethat thetraining dataset issufficiently rich
and representative of the underlying data set.

Oncewerepresent the set of datain thismanner, we can then cluster them together
using a simple clustering technique, such as the naive Bayes classification method
(Duda, 2001). Theresults of this clustering are shown in Table 2.

Thepercentageaccuracy is, on average, 91.61%, with 1846 documentsout of 2015
correctly classified. It is further noted that some of the categories are badly classified,
for example, category-2 and category-4. Indeed, it isfound that 62 out of 81 category-4
items are misclassified as category-3. Similarly, 12 out of 54 category-2 items are
misclassified as category-5 items.

Thisresult indicates that the hypothesisis not valid; there are ambiguitiesin the
description of theitemsin each category, apart from category-1, which coul d be confused
with thosein other categories. In particular, thereisahigh risk of confusing thoseitems
in category-4 with those in category-3.

A closeexamination of thelist of the 62 category-4itemswhich are misclassified as
category-3itemsby the naive Bayesclassification method indicatesthat they areindeed
very similar to thosein category-3. For simplicity, whenwe say itemsin category-3, we
mean that those items are also correctly classified into category-3 by the classification
method. Tables 3 and 4 give an illustration of the misclassified items. It is noted that
misclassified items 52000, 52003, 52006, and 52009 in Table 3 are very similar to the
category-3itemslistedin Table 4.
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Table 3. Category-4 Items 52000, 52003, 52006, and 52009 misclassified by the naive
Bayes method as Category-3 items

ItemNo Item Description

52000 | Skinand subcutaneous tissue or mucous membrane, repair of recent
wound of, on face or neck, small (not more than 7 cm long), superficial
52003 | Skinand subcutaneous tissue or mucous membrane, repair of recent
wound of, on face or neck, small (not more than7 cm long), involving
deeper tissue
52006 | Skinand subcutaneoustissue or mucous membrane, repair of recent
wound of, on face or neck, large (more than 7 cm long), superficial
52009 | Skinand subcutaneous tissue or mucous membrane, repair of recent
wound of, on face or neck, large (more than 7 cm long), involving deeper
tissue

Table4. Someitemsin Category 3which are similar to items 52000, 52003, 52006, and
52009

ItemNo Item Description

30026 | Skinand subcutaneous tissue or mucous membrane, repair of wound of,
other than wound closure at time of surgery, not on face or neck, small (not
more than 7cm long), superficial, not being a service to which another item
in Group T4 applies
30035 | Skinand subcutaneous tissue or mucous membrane, repair of wound of,
other than wound closure at time of surgery, on face or neck, small (not
more than 7cm long), involving deeper tissue
30038 | Skinand subcutaneous tissue or mucous membrane, repair of wound of,
other than wound closure at time of surgery, not on face or neck, large
(more than 7cm long), superficial, not being a service to which another item
in Group T4 applies
30041 | Skinand subcutaneous tissue or mucous membrane, repair of wound of,
other than wound closure at time of surgery, not on face or neck, large
(more than 7cm long), involving deeper tissue, not being a service to which
another itemin Group T4 applies
30045 | Skinand subcutaneous tissue or mucous membrane, repair of wound of,
other than wound closure at time of surgery, on face or neck, large (more
than 7cm long), superficial

30048 | Skinand subcutaneous tissue or mucous membrane, repair of wound of,
other than wound closure at time of surgery, on face or neck, large (more
than 7cm long), involving deeper tissue

It is observed that the way items 5200X are described is very similar to those
represented initems300Y'Y. For example, item 52000 describesamedical procedureto
repair small superficial cutsonthefaceor neck. Ontheother hand, item 30026 describes
the same medical procedure except that it indicates that the wounds are not on the face
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or neck, with the distinguishing feature that thisis not a service to which another item
in Group T4 applies. It is noted that the description of item 30026 uses the word “ not”
todistinguishthisfromthat of item 52000, aswel | asappending an extraphrase* not being
aservicetowhichanotheritemin Group T4 applies’. From avector space point of view,
the vector representing item 52000 isvery close® to item 30026, closer than other items
in category-4, due to the few extra distinguishing words between the two. Hence, item
52000 is classified as “one” in category-3, instead of “one” in category-4. Similar
observations can be made for other items shown in Table 3, when compared to those

shown in Table 4.

Table 5. Some correctly classified Category-1 items

Item No

Item description

3

Professional attendance at consulting rooms (not being a service to which any
other item applies) by a general practitioner for an obvious problem
characterised by the straightforward nature of the task that requires a short
patient history and, if required, limited examination and management -- each
attendance

Professional attendance, other than a service to which any other item applies,
and not being an attendance at consulting rooms, an institution, a hospital, or a
nursing home by a general practitioner for an obvious problem characterised by
the straightforward nature of the task that requires a short patient history and, if
required, limited examination and management -- an attendance on 1 or more
patients on 1 occasion -- each patient

13

Professional attendance at an institution (not being a service to which any other
item applies) by a general practitioner for an obvious problem characterised by
the straightforward nature of the task that requires a short patient history and, if
required, limited examination and management -- an attendance on 1 or more
patients at 1 institution on 1 occasion -- each patient

19

Professional attendance at a hospital (not being a service to which any other
item applies) by a general practitioner for an obvious problem characterised by
the straightforward nature of the task that requires a short patient history and, if
required, limited examination and management -- an attendance on 1 or more
patients at 1 hospital on 1 occasion -- each patient

20

Professional attendance (not being a service to which any other item applies) at
a nursing home including aged persons' accommodation attached to a nursing
home or aged persons' accommodation situated within a complex that includes
a nursing home (other than a professional attendance at a self contained unit) or
professional attendance at consulting rooms situated within such a complex
where the patient is accommodated in a nursing home or aged persons'
accommodation (not being accommodation in a self contained unit) by a
general practitioner for an obvious problem characterised by the
straightforward nature of the task that requires a short patient history and, if
required, limited examination and management -- an attendance on 1 or more
patients at 1 nursing home on 1 occasion -- each patient
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Table 6. Some correctly classified Category-5 items

Item No Item description

55028 Head, ultrasound scan of, performed by, or on behalf of, a medical practitioner
where: (a) the patient is referred by a medical practitioner for ultrasonic
examination not being a service associated with a service to which an itemin
Subgroups 2 or 3 of this Group applies; and (b) the referring medical
practitioner is not a member of a group of practitioners of which the first
mentioned practitioner is a member (R)
55029 Head, ultrasound scan of, where the patient is not referred by a medica
practitioner, not being a service associated with a service to which an item in
Subgroups 2 or 3 of this Group applies (NR)
55030 Orbital contents, ultrasound scan of, performed by, or on behalf of, a medical
practitioner where: (a) the patient is referred by a medical practitioner for
ultrasonic examination not being a service associated with a service to which an
item in Subgroups 2 or 3 of this Group applies; and (b) the referring medical
practitioner is not a member of a group of practitioners of which the first
mentioned practitioner is a member (R)
55031 Orbital contents, ultrasound scan of, where the patient is not referred by a
medical practitioner, not being a service asscciated with a service to which an
item in Subgroups 2 or 3 of this Group applies (NR)
55033 Neck, 1 or more structures of, ultrasound scan of, where the patient is not
referred by a medical practitioner, not being a service associated with a service
to which an item in Subgroups 2 or 3 of this Group applies (NR)

On the other hand, Tables 5 and 6 show items which are correctly classified in
category-1 and category-5 respectively. It is observed that items shown in Table 5 are
distinct from those shown in Table 6 in their descriptions. A careful examination of
correctly-classified category-1 items, together with a comparison of their descriptions
with those correctly-classified category-5 items confirms the observations shown in
Tables 5 and 6. In other words, the vectors representing correctly-classified category-
litemsare closer to other vectorsin the same category than other vectors representing
other categories.

SUPPORT VECTOR MACHINE AND
KERNEL MACHINE METHODOLOGIES

Inthissection, wewill briefly describe the support vector machine and the kernel
machine techniques.

Support Vector Machine and Kernel Machine
M ethodology

Inrecentyears, therehasbeenincreasinginterest inamethod called support vector
machines(Cristianni & Shawe-Taylor, 2000; Guermeur, 2002; Joachims, 1999; V apnik,
1995). In brief, this can be explained quite easily as follows. Assume a set of (n-
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dimensional) vectors x,, X,,..., X . Assuming that this set of vectorsis drawn from two
classes, 1 and -1. If these classes are linearly separable, then there existsastraight line
dividing these two classes as shown on the left of Figure 2. In Figure 2, it is observed
that the vectors are well separated. Now if the two classes cannot be separated by a
straight line, the situation becomes more interesting. Traditionally, in this case we use
anon-linear classifier to separatethe classesasshown ontheright of Figure 2. Ingeneral
terms, any two collections of n-dimensional vectorsare said to be linearly separableif
there exists an (n-1)-dimensional hyper-plane that separates the two collections.

Figure 2. lllustration of the linear separability of classes (the two classes at top are
separable by a single line, as indicated; for the lower two classes thereis no line that
can separate them)

Class A

Class B

12 T T T T T T T

10 | ¥ g
Class A
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Table 7. Exclusive-OR example

X y | class
0 0 1
1 1 1
0 1 0
1 0 0
Table8. Extended exclusive-OR example
X y z class
0] O 0 1
1 1 1 1
0] 1[0 0
110 0 0

Oneintuition isinspired by the following example: In the exclusive-OR case, we
know that it is not possible to separate the two classes using a straight line, when the
problem is represented in two dimensions. However, we know that if we increase the
dimension of the exclusive-OR example by one, theninthree dimensionsonecanfind a
hyper-plane which will separate the two classes. This can be observed in Tables 7 and
8, respectively.

Here it is observed that the two classes are easily separated when we simply add
one extradimension. The support vector machine uses thisinsight, namely, in the case
when it is not possible to separate the two classes by a hyper-plane; if we augment the
dimension of the problem sufficiently, it is possible to separate the two classes by a
hyper-plane. f(x) =w" ¢(x) + b, wherew isaset of weights, and b aconstant in thishigh-
dimensional space. The embedding of the vectors x in the high-dimensional planeisto
transform them equivalently to ¢(x), where ¢(-) is a coordinate transformation. The
guestion then becomes: how to find such atransformation ¢(-)?

Let us define akernel function asfollows:

K(x,2)<¢(X), ¢(2) >=¢(X)" ¢(2) @
where ¢isamapping from Xto aninner product feature spaceF. Itisnoted that the kernel

thusdefined issymmetric, in other words K(x, z) = K(z, x). Now | et us define the matrix
X =[x, X, ... x,]. Itispossibleto define the symmetric matrix:

[X, %, o %] )
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Inasimilar manner, it ispossibleto define the kernel matrix:

K=[0(x) o(x,) .. ofx )1 [0(x,) (X)) ... (X)] 3

Note that the kernel matrix K is symmetric. Hence, it is possible to find an orthogonal
matrix V suchthat K =VAVT, where A isadiagonal matrix containing the eigenvalues
of K. Itisconvenient to sort thediagonal valuesof Asuchthat 4, >4,>...> A . Itturns
out that one necessary requirement of the matrix K to be a kernel function is that the
eigenvaluematrix A must contain all positiveentries, in other words, 4 >0. Thisimplies
thatingeneral, for thetransformation ¢(-) tobeavalid transformation, it must satisfy some
conditionssuchthat thekernel functionformedissymmetric. ThisisknownastheMercer
conditions(Cristianni & Shawe-Taylor, 2000).

There are many possible such transformations; some common ones (Cristianni &
Shawe-Taylor, 2000) being:

Power kernel: K(x, z) =(K(x, z) + c)°wherep=2, 4, ...

2

Gaussiankernel: K(x,2) = exp( K(X) +K(z,2) - 2K (x,2) )
o

There exist quite efficient algorithms using optimisation theory which will obtain
aset of support vectorsand the corresponding weightsof the hyper-planefor aparticul ar
problem (Cristianni & Shawe-Taylor, 2000; Joachims, 1999). This is based on re-
formulating the problem as a quadratic programming problem with linear constraints.
Once it isthus re-formulated, the solutions can be obtained very efficiently.

It wasalso discovered that theideaof akernel isquite general (Scholkopf, Burges,
& Smola, 1999). Indeed, instead of working with the original vectorsx, itispossibleto
work with thetransformed vectors ¢(x) inthefeature space, and most classic algorithms,
for example, principal component analysis, canonical correlationanalysis, and Fisher’s
discriminant analysis, all haveequival ent algorithmsinthekernel space. Theadvantage
of working in the feature space is that the dimension is normally much lower than the
original space.

Latent Semantic Kernel Technique

The latent semantic kernel method follows the same trend as the kernel machine
methodology (Cristianini, Lodhi, & Shawe-Taylor, 2002). Thelatent semantickernel isthe
kernel machine counterpart of the latent semantic technique, except that it operatesin
alower dimension feature space, and hence is more efficient.

Inlatent semantic analysis, we have a set of documentsrepresented by D, interms
of V=[v,v,,...,v ]. Thisset of vectorscan be concatenated into amatrix D, then we may
apply asingular value decomposition on the matrix D as follows:

D=UZVT @
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whereD isanx mmatrix, U isanorthonormal nx nmatrix suchthat UUT =1,V isanortho
normal mx mmatrix, suchthat V™V =1, and X isanx mmatrix, with diagonal entries o,,
0,.., 0, ifn>mor o, 0,,...,0, ifm>n.

Oftenthesingular values c arearranged so that 6, > 6, > ... > ¢.. Thus, the singular
values o give some information on the “energy” of each dimension. It is possible that
some of the o may be small or negligible. Inthiscase, itispossibleto say that there are
only afew significant singular values. For example, if wehave o, > 6,> 6. >> ¢, > 0, , then
itispossibletoapproximatethesetby o,>0,>...> ¢, Inthiscase, itispossibleto perform
adimension reduction on the original dataso that it conformsto the reduced order data.
By reducing the order of representation, we are “ compressing” the data, thusinducing
it to have a“semantic” representation.

The idea behind the latent semantic kernel is, instead of considering the original
document matrix D, to consider thekernel matrix K =DTD. Inthiscase, thefeature space
dimensionissmaller, aswenormally assumethat there aremorewordsin thevocabulary
than the number of documents, in other words, n» m. Thus, by operating on mx mmatrix
D™D, itisasmaller spacethantheoriginal ndimensional space. Onceitisrecognised that
thekernel isK, wecanthen operateonthiskernel, for example, performing singular value
decomposition on the matrix K, and find the corresponding singular values.

One particular aspect of performing a singular value decomposition isto find a
reduced order model such that, inthereduced order spaceit will approximate the model
in the original space in the sense that the approximated model contains most of the
“energies” intheoriginal model. Thisconcept can also be applied to the latent semantic
kernel technique. It is possible to find a reduced order representation of the original
features in such a manner that the reduced order representation contains most of the
“energies’ inthe original representation.

Thelatent semantickernel algorithm (Cristianini, Lodhi, & Shawe-Taylor, 2002) can
be described as follows:

Given a kernel K, training set d,,..., d_and a number T:
fori =1tomdo:
norm2[i] =K(d, d);
forj=1to T do:
i, =argmax, (normz2[i]);
index[j] =i, ;
sizefj] = Jnormli
fori =1to mdo:

featfi, j1= (K(d,,d, )~ ., featli,t]* featfi, 1)/ sizd j];
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norm2[i] =norm2[i] - feat(i, j)* feat(i, );
end;
end;
return feat[i, j] asthej" feature of input i;
To classify a new example d:
forj=1to T do:
newfeat] j] = (K(d,d, ) - ., newfeat[t] * featfi,t])/sizd jI;
end;
return newfeat[j] as the j" feature of the example d.

Inour work, we usethelatent semanti c kernel method asapre-processing technique
in that we have a set of documents represented by the matrix D, and as mentioned
previously, thematrix isquite sparseinthat thereare many null valueswithinthematrix.
Hence, our aimisto project this representation onto arepresentation in areduced order
space so that most of the“ energies” arestill retained. Once we obtain this set of reduced
order representation, we can then manipul atethem in the sameway aswe manipul atethe
full feature vectors.

Application of Latent Semantic Kernel Methodology to
the Medical Benefit Schedule

We wish to apply the latent semantic kernel technique to the set of descriptions of
items as contained in the MBS. The vector representation as described in in the Bag of
Words section isused in the latent semantic kernel (L SK) approach, and it isknown as
the full feature vectors or, in short, full features.

Weapply theL SK algorithmtothefull featuresand produce reduced featureswhich
have adimension determined by avariable T (T < n, the number of wordsin the corpus).
In this paper, we will use the term L SK reduced features to represent such features.

Weusethefollowing proceduresin our experimentswith thelatent semantic kernel:
i Runbag of wor dsmethod to producefull features.

i Run L SK algorithm to produce L SK reduced features.

i Experimentswith both L SK and full featur esincluding:
o Binary classification — this will allow only binary classification using
support vector machine techniques
o  Multi-classification—thiswill allow multi-classclassification using support
vector machine techniques
o Clusteringtheitemsinthe MBSusing both full featuresand reduced features
o  Compare the clustering result using multi-classification results
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EXPERIMENTS USING
BINARY CLASSIFICATION

In this section we report the results of using abinary classification support vector
machinetechniquefor theclassification of theitems(Joachims, 1999). Thisisinteresting
in that it shows us the results of assuming one class, and the other items are assumed
to bein adifferent class.

Originally,itemsintheMBSareclassifiedinto sevencategories:. 1, 2,...,6 and 7. We
have trained a binary classifier for both the full features and for the reduced features
regarding each category versusthe others. For example, we use category-1 and assume
all the other categories are grouped as another class.

We run experiments on reduced features for each category wherethedimension T
of the reduced features was chosen from a set of values within the range [16; 2048].

Weshow theresultsof category-1versusother categoriesfirst, and then summarise
other situations and draw some general conclusions concerning the experiments.

For the experiment about category-1 versus others (see Table 9), we observe that
theaccuracy climbsfrom T = 16 rapidly to astableposition of amaximumat T= 32. Note
that even though the accuracies oscillate about this maximum value for later values of
T, this can be observed to be minor, and can be attributed to noise. From this, we can
concludethat if we classify category-1 versusall the other categories, then using T= 32
is sufficient to capture most of the gain. What thisimpliesisthat most of the energies
inthedocument matrix are already captured with 32 reduced order features. Thisshows
that the LSK algorithmisvery efficient in compressing the features from 4569 wordsin
the vocabulary to only requiring 32 reduced features. Note that it is not possible to

Table 9. Accuracy on thetraining data and testing data set for Category 1 with various
values of T and full features

T Train Train
Accuracy Correct (out of 2015) Accuracy Correct (out of 2015)

16 99.60 2007 99.31 2001

32 100 2015 99.75 2010

64 100 2015 99.75 2010
128 100 2015 99.80 2011
256 100 2015 99.80 2011
400 100 2015 99.70 2009
512 100 2015 99.75 2010
800 100 2015 99.75 2010
1024 100 2015 99.75 2010
1200 100 2015 99.80 2011
1400 100 2015 99.75 2010
1600 100 2015 99.75 2010
1800 100 2015 99.75 2010
2000 100 2015 99.75 2010
2048 100 2015 99.75 2010
full 100 2015 99.75 2010

features
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interpret thereduced features, asby nature they consist of atransformed set of features.

For experimentsinvolving other sets, for example, using category-2 versusall the
other categories, and so on, similar conclusions to that shown for category-1 are
observed. Itisfound thatin general asmall value of T issufficient to capture most of the
energiesinthedocument matrix. Each category versustherest peaksat aparticular value
of T. Onaverageitisfoundthat T = 128 would capture most of the gain possible using
the reduced features.

Theseexperimentsshow usthat theL SK algorithmisavery efficient pre-processing
unit. The observed efficiency islikely due to the sparseness of the full feature space. It
can capture most of the energies contained inthe document matrix using asmall reduced
feature set, in other words, with avalue of T = 128.

EXPERIMENTS USING
MULTIPLE CLASSIFICATIONS

In this section, we report on experiments with multi-classification using support
vector machine (SVM) methodology. We first discuss the generalisation of SVM’sto
multi-class classification, then we describe the experimental results.

SVM, asamethod proposed in Vapnik (1995), is suitablefor two-class classifica-
tions. There are a number of extensions which extend this method to multi-class
classification problems(Crammer & Singer, 2001; Guermeur, 2002; Lee, Lin, & Wahba,
2002). Itturnsout that itispossiblethat, instead of weighing the cost function asan equal
cost (indicating that both classes are equally weighed in a two-class classification
problem), one can modify the cost function and weigh the misclassification cost aswell
(Lee, Lin& Wahba, 2002). Onceformulated inthismanner, theusual formulationof SVM’s
can be applied.

In the Experiments Using Binary Classification section, we showed that by using
a small reduced feature such as T = 128, we can capture most of the energies in the
document matrix. Thefollowing result isobtained by running multi-class classification
using support vector machineonreduced featureswith the sametraining and testing data

Table 10. A confusion table showing the classification of documents (the row givesthe
actual classification as indicated in the MBS, while the column shows figures which
are obtained by using the support vector machine)

Category | 1 2 3 1 5 6 7 | toal %
accuracy
1 ZE 0 0 0 4 1 79 | 9367
2 0 28 | 13 | O 8 5 0 54 | 5.8
3 1 6 | 1310 | 16 | 20 2 12 | 1367 | %83
4 0 0 71 | 9 0 0 1 8L 1111
5 0 11 | 25 | 0 | 211 1 1 252 | 83.73
6 0 5 5 1 4 136 0 151 | 90.07
7 0 0 1 0 0 2 25 31 | 8065
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setsas previously. The average accuracy is 88.98%, with 1793 correctly classified out
of 2015(Table 10).

Notethat once again someof the HI C categoriesare poorly classified. For example,
out of 81 HIC category-4items, 71 areclassified ascategory-3, whileonly 9areclassified
as category-4. This further confirms the results obtained in the Bag of Words section,
namely that there are ambiguitiesin the HIC classifications of item descriptions.

EXPERIMENTSWITH
CLUSTERING ALGORITHMS

So far, we have experimented on MBS itemswhich are classified by categories as
contained in the MBS. We have shown that the MBS contained ambiguities using the
bag of words approach. In this section, we ask a different question: If we ignore the
grouping of the items into categories as contained in the MBS, but instead we apply
clustering algorithms to the item descriptions, how many clusters would we find?
Secondly, how efficient would these clusters be in classifying the item descriptions?
Efficiency is measured in terms of the confusion matrix in classifying unseen data.

The methodology which we used is as follows:

i Use aclustering algorithm to cluster the document matrix into clusters, and label
the clusters accordingly.
i Evaluatetheefficiency of theclustering algorithm using asupport vector machine.

The efficiency is observed by examining the resulting confusion matrix.

The main reason why we need to take a two-step process is that the clustering
algorithm is an unsupervised learning algorithm and that we do not have any a priori
information concerning which item should fall into which cluster. Hence, it is very
difficult to evaluate the efficiency of the clusters produced. In our methodology, we
evaluatetheefficiency of theclustersfromtheclustering algorithm by assuming that the
clusters formed are “ideal”, label them accordingly, and use the SVM (a supervised
training algorithm) to evaluate the clusters formed.

Clustering Using Full Features: Choice of Clustering
M ethod

Thefirst experiment was performed on the full features (in other words, using the
original document matrix). Different clustering methods were evaluated using various
criteria; wefound that the repeated bisection method of clustering givesthe best results.
Hence, we choose to use this clustering method for all future experiments.

Inthe clustering algorithm (Karypis, 2003; Zhao & Karypis, 2002), the document
matrix is first clustered into two groups. One of the groups is selected and bisected
further. This process continues until the desired number of clustersisobtained. During
each step, the cluster is bisected so that the resulting two-way clustering solution
optimises a particular clustering criterion. At the end of the algorithm, the overall
optimisationfunctionisminimised. Thereareanumber of optimising functionswhich can
beused. Weuseasimplecriterionwhich measuresthe pair-wise similaritiesbetweentwo
documents § and S as follows:
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Y cos(d,d)= Y did, ©)
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For aparticular cluster S of sizen,, the entropy is defined as:

E(S)=-—— 3 Miog ()

loggi='n " n

where q is the number of classes in the data set, and n' is the number of documents of
thei-th classthat were assigned to the r-th cluster. The entropy of the entire clustering
solution is defined as:

E=3 ME(s) @

Perfect clustering meansthat each cluster will contain only onetype of document,
that is, each document inthe same classbelongto the sametype. Inthiscase, theentropy
will bezero. Ingeneral, thisisimpossible. Theclustering result which providesthelowest
entropy would be the best clustering result. In this chapter, we made use of the Cluto
software (Karypis, 2003) for performing the clustering.

Clustering Using Reduced Features into k-Clusters and
Use of Support Vector Machine to Evaluate Cluster

Accuracy

For experimentsinthissection, weused reduced featureswith T = 128, together with
therepeated bisection clustering method. Our aimwasto useaclustering algorithmwith
the repeated bisection method to group item descriptions into clusters irrespective of
their original classificationintheMBS. Wedivided theitem descriptionsintok (constant)
clusters.

The detailed experimental procedures are asfollows:

. Use reduced features of all MBS items obtained using the latent semantic kernel
method as inputs into the clustering algorithm in order to group items into k-
clusters, where k is avariable determined by the user.

. Theoutput from the clustering algorithm givesk clusters. We perform clustering,
do a classification on MBS items using the reduced features and the SVM
methodology, however in this case cluster the item belonging to results from the
clustering method, not the MBS category.

. The classification output can be displayed in a confusion table which caninform
us on how well the clustering algorithm has performed.

In this section, we use the following notations:
. Cluster category — thisisthe cluster obtained using the clustering algorithm.
. HIC category — thisisthe category which is provided by the MBS.
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Clusters (k= 7)

First, weran aclustering algorithm to create seven cluster categories. From Table
11, we observe how itemsin HIC categories are distributed into cluster categories.

Fromthisitisobserved that the clustersas obtained by the clustering algorithm are
quite different from those indicated in the HIC category.

We then validated the classification results from the clustering algorithm using
SVM’s. Thisinformed us of the quality of the clustering algorithmin grouping theitem
descriptions. A classification accuracy of 93.70% on the testing data set (that is, 1888
correct out of 2015) was found.

Notethat for these experiments, we used the 50% trai ning and 50% testing data sets
asinall previous experiments. Thedistribution of itemsin the training and testing data
setsfor each cluster category was sel ected using arandom sampling schemewithin each
identified category.

Clusters (k = 8)

Inthissection, we experimented with eight clustersinstead of seven. Thisprovided
the clustering algorithm with more freedom to choose to cluster the item descriptions.
Whenwechoseseven clusters, weimplicitly tell thecluster algorithm that no matter how
the underlying data look like, we nevertheless only allow seven clusters to be found.
Inthismanner, eventhough theunderlying datamay be more conveniently clusteredinto
ahigher number of clusters, by choosing seven clusters we force the cluster algorithm

Table 11. Distribution of MBSitemsinto cluster categories (the cluster categoriesare
given horizontally, and HIC categories are presented vertically)

Class 1 2 3 4 5 6 7
1 0 3 10 0 230 0 0
2 10 39 442 16 107 69 6
3 0 0 1269 62 9 1 3
4 148 13 65 2 7 17 18
5 0 4 297 34 20 0 12
6 0 12 505 a7 18 35 21
7 0 37 146 1 113 180 2

Table 12. A confusion table obtained using the support vector machine method

Class 1 2 3 4 5 6 7 total | % accuracy
1 112 0 1 0 1 0 6 120 93.33
2 0 312 2 4 11 5 4 338 92.31
3 0 3 661 2 8 6 3 683 96.78
4 2 4 0 119 3 2 1 131 90.84
5 0 1 1 5 173 1 4 185 9351
6 1 1 6 2 9 282 4 305 92.46
7 0 13 0 4 6 1 229 253 90.51

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.



48 Tsoi, To & Hagenbuchner

Table 13. Distribution of MBSitemsinto eight cluster categories(thecluster categories
are given horizontally, and HIC categories are presented vertically)

Class| 1 2 3 4 5 6 7
1 0 4 10 0 244 0 0
2 10 39 326 17 104 70 6
3 0 0 1264 | 61 8 1 3
4 0 2 223 3 9 1 0
5 148 12 53 2 7 16 18
6 0 4 290 32 20 0 12
7 0 13 501 46 15 30 21
8 0 34 67 1 97 184 2

Table 14. A confusion table using support vector machine to validate the quality of
cluster categories

Cass| 1 | 2|3 |4|5]| 6| 7] 8]toa 0
accuracy
T 70 T 0[O0 T[]0 3= %
> T o0 [® 2035 15|26 %
310 3 (&[T 1|34 60| %
Z 1o lolo(i6] 0o 702 || %217
5 (2 202 108 45 25| 840
5 [0 21T 3 [ 210 20| m| %4
7T o35 a2 8 = T35 %24
8 10 3102 25T 025 926

to merge the underlying clusters into seven. On the other hand, if we choose eight
clusters, thisprovidesmorefreedomfor the clustering algorithmto cluster theunderlying
data. If itistruly seven clusters, thentheal gorithmwill report that thereare seven clusters
found. On the other hand, if the datais more conveniently clustered into eight clusters,
then by choosingto allow for the possibility of eight clusters, it will allow theclustering
algorithm to find one.

First, weran aclustering algorithm to create eight cluster categories (Table 13).

From Table 13, it is observed that the clusters as obtained by the clustering
algorithm are quite different from those indicated in the HIC category.

We then validated the classification results from the clustering algorithm using
SVM'’s. Thisinformed us of the quality of the clustering algorithmin grouping theitem
descriptions. A classificationaccuracy is94.14% (inother words, 1897 correct out of 2015
resulted).
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Summary of Observations
It was observed that:

1  The categories as given by the clustering algorithm are good in grouping the
medical item descriptionstogether. The eval uation using the SVM method shows
that it isaccurate in grouping them together, as the confusion table has dominant
diagonal elements, with few misclassified ones. The SVM isasupervised method.
Onceit istrained, it can be used to evaluate the generalisation capability of the
model on testing results with known classifications. Thus, by examining the
confusion table produced, it is possible to evaluate how well the model classifies
unseen examples. If the confusion tableis diagonally dominant, thisimplies that
there are few misclassifications. On the other hand, if the confusion table is not
diagonally dominant, thisimpliesthat thereare high numbersof misclassifications.
I'n our experiment, we found that the confusion table is diagonally dominant, and
hence we can conclude that the grouping as obtained by the clustering algorithm
is accurate. In other words, the clustering algorithm was able to cluster the
underlying data together into reasonably homogeneous groupings.

2 Theclassification given by the clustering algorithm increases with the number of
clusters, in other words, the degree of freedom in which the clustering algorithm
is provided. Obviously there will be an upper limit to a reasonable number of
clustersused, beyond whichtherewill not beany further noticeableincreaseinthe
classificationaccuracy. Itisobserved that theaccuracy of assuming seven clusters
(93.70%) and the accuracy of using eight clusters (94.14%) are very close to one
another. Hence we can conclude that the “ optimum” number of clustersisaround
seven or eight.

3 It is noted that the items in the HIC categories are distributed in the cluster
categories. This confirms our finding in the Bag of Words section that the HIC
categoriesarenot “ideal” categoriesfrom asimilarity point of view, inthat it can
induce confusion dueto their similarity.

CONCLUSION

We have experimented with classification and clustering on full features and
reduced features using the latent semantic kernel algorithm. The results show that the
LSK algorithm works well on Health Insurance Commission schedules. It has been
demonstrated that the HIC categories are ambiguous in the sense that some item
descriptions in one category are close to those of another. This ambiguity may be the
cause of misinterpretation of the Medicare Benefits Schedule by medical service
providers, leading to wrong charges being sent to the HIC for refund. It is shown that
by using clustering algorithms, the item descriptions can be grouped into a number of
clusters, and moreover, it isfound that seven or eight clusters would be sufficient. Itis
noted, however, that theitem descriptions asgrouped using the clustering algorithm are
quite different to those of the HIC categories. Thisimpliesthat if the HIC wishesto re-
group item descriptions, it would be beneficial to consider the clusters as grouped by
using clustering algorithms.
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Note that one may say that our methodology is biased towards the clustering
algorithm or classification methods because we only use the simpletop HIC categories
— categories 1through 7 asshowninFigure 1. Thisisonly avery coarseclassification.
Inactual fact, theitemsareclassifiedinthe MBSaccording to athree-tiered hierarchical
treeasindicated in Figure 1. For example, an item belongs to category-x group-y item
number z, wherex rangesfrom 1to 7,y rangesfrom 1 toy, (wherei indicatesthe category
thatitisin),and zrangesfrom 1toz (wherej dependsonwhich grouptheitemislocated).
Thisisavalid criticismin that the top HIC categories may be too coarseto classify the
item descriptions. However, at the current stage of devel opment of text mining methods,
itisquitedifficultto consider the hierarchical coding of theal gorithms, especially when
there areinsufficient numbersof training samples. Inthe MBS case, agroup may contain
only afew items. Thusthereisaninsufficient number of datatotrain either theclustering
algorithmor SVM. Henceour approachin considering thetop HI C categoriesmay be one
possible way to detect if there are any inconsistenciesinthe MBS given the limitations
of the methodology.

Even though in this chapter we have concentrated on the medical procedure
descriptions of ahealth insurer, the techniques can be equally applicable to many other
situations. For exampl e, our devel oped methodol ogy can be appliedtotax legislation, in
identifying whether there are any ambiguities in the description of taxable or tax-
exempted items. Other applicationsof our methodol ogy include: description of thesocial
benefit schedule in a welfare state, and the description of degree rules offered by a
university.
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ENDNOTES

! Note that this scheduled cost is somewhat different from those set by the medical
serviceprovider associations. A medical serviceprovider can elect tochargeat the
scheduled cost set by the medical service provider associations, or afraction of
it, and any gaps in between the charge and the refund by the HIC will need to be
met either by the patient, or through additional medical insurancecover specifically
designed to cover the gap payment.

2 Note that the Medical Benefit Scheduleisaliving document in that the schedules
are revised once every few years with additional supplements once every three
months. The supplements contain minor modificationsto particul ar sectionsof the
schedule, while the major revisions may contain re-classification of the items,
deletion or addition of items, mainly for newly introduced medical services, dueto
technol ogical advances, or clarification of theintent of existingitems. Theversion
of MBS used in this chapter is based on the November, 1998, edition with
supplements up to and including June 1, 2000.

3 Close here means the cosine of the angle between the two vectorsis close to 1.
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Chapter |11

Coordinating Agent
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Open Environments
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ABSTRACT

Anintelligent agent is a reactive, proactive, autonomous, and social entity. The social
ability of an agent is exercised in a multi-agent system (MAS), which constitutes a
collection of such agents. Current multi-agent systems mostly work in complex, open,
and dynamic environments. In an open environment, many facts, such as domain
constraints, agent number, and agent relationships, are not fixed. That brings a lot of
difficulties to coordinate agents’ interactions and cooperation. One major problem
that impedes agent interaction isthat most current agent interaction protocols are not
very suitable for open environments. In this chapter, we introduce an approach to
ameliorate agent interactions from two perspectives. First, the approach can enable
agents to form knowledge “ rich” interaction protocols by using ontologies. Second,
we use coloured Petri net (CPN) based methods to enable agents to form interaction
protocols dynamically, which are more suitable for agent interaction under open
environments.
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INTRODUCTION

It isbeyond dispute that multi-agent systems are one of the most important design
concepts for today’ s software. A multi-agent system (MAS) isacomputational system
that constitutes a collection of intelligent agents. An intelligent agent is a reactive,
proactive, autonomous, and social entity, which performsagiventask using information
gleaned fromitsenvironment. Ingeneral, intelligent agentspossessfour major properties
(Rao & Georgeff, 1992):

i Reactivity — agents can perceive their environment and respond in a timely
fashion to changes that occur in it;

i Pro-activity — agents not only can simply act in responseto their environments,
but also are able to exhibit goal-directed behaviours by taking the initiative;

i Autonomy — agents have somelevel of self-control ability, and they can operate
without the direct intervention of humans; and

i Social ability — agents interact with other agents.

Thesocial ability of an agentisexercisedinan MAS. AnMAS can be considered
as a society of agents that live and work together. In such a multi-agent society,
interactions between agents are unavoidable (Lesser, 1999). The interaction between
agents occurs when an agent has some intentions and has decided to satisfy these
through influencing other agents. Agent interactions are established through exchang-
ing messages that specify the desired performatives of other agents and declarative
representations of the contents of messages.

The messages exchanged among agents are composed in agent communication
languages (ACLSs), such as Knowledge Query and Manipulation Language (KQML)
(Finin, Labrou, & Mayfield, 1997) and the Foundation for Intelligent Physical Agents
(FIPA) ACL (FIPA, 2004). In addition, messages exchanged between agents need to
follow some standard patterns, which are described in agent interaction protocols
(Cranefield, Purvis, Nowostawski, & Hwang, 2002). Astheapplicationdomainsof MASs
aregetting moreand more compl ex, many current agent i nteracti on protocol sexhibit some
limitationsthat impede M A Simplementations. Firstly, many current application domains
of MASsrequireagentstowork in changing and uncertain (open) environments. Insuch
environments, interactions between agents may be influenced by some unexpected
factors, such as unexpected messages, |oss of messages, or deviation in the message
order. Most current agent interaction protocols lack mechanisms to handle these
unexpected factors. Secondly, agent architectures in some MASs are heterogeneous,
and different agents may possess different interaction protocols. Therefore, due to the
heterogeneity, when an agent initialises an interaction with others, it cannot guarantee
that its interaction protocol can be understood and accepted by other agents. Thirdly,
most agents are hard-coded using interaction protocols, which leadsto problems. More
specifically, issues such as when to use a particular protocol, what information to
transmit, what order to executetasks, and so on, areleft to agent designers. Thisfeature
reducesthe flexibility of the agent interactions because protocols are hard to modify at
runtime once they are pre-coded into the agents. Finally, many current interaction
protocols, such as KQML, are not specifically designed to carry knowledge. Thiskind
of knowledge “poor” (Lesser, 1998) protocol is not suitable for applications that need
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to exchange complex knowledge. In other words, lack of flexibility and robustness of
many current interaction protocol sgreatly limitstheimplementation of MASs. Accord-
ingly, how to build aflexibleand knowledge*rich” interaction protocol hasbecomeone
of the main research issuesin the area of MASs.

To address some of the above limitations, in thischapter weintroduce an approach
for agent interactionsthat can ameliorate agent interactionsfromtwo perspectives. First,
the approach can enable agentsto form knowledge“rich” interaction protocols. Toward
this objective, we use ontologies to represent knowledge of agents and ontology
facilitators to assist agents to search, acquire, and generate ontologies. Second, we
develop acoloured Petri net (CPN) based approach to enable agentsto form interaction
protocols dynamically, which means protocols are not hard-coded within agents but
generated by agents according to their capabilities and status.

The remainder of the chapter is arranged as follows. In the second section, we
present the concept of ontologies, theformal expressions of ontologies, and the general
framework for ontol ogy-based M A Ss. Basi ¢ descriptions of Petri nets(PNs), CPNs, and
how to use CPNsto model agent protocol, are presented in the third section. The CPN-
based approach, which enables agentsto form flexible protocols dynamically, isintro-
duced in the fourth section. In the fifth section, we discuss the potential applications of
methods introduced in this chapter. Finally, the conclusion and future direction of this
work are presented in the last section.

MULTI-AGENT SYSTEM ONTOLOGY AND
KNOWLEDGE LEVEL AGENT INTERACTIONS

To achieve knowledge-level interactions, agents need shared vocabularies to
compose their knowledge and conceptualizations of the domain of interest. These
conceptualizations can be expressed in ontologies, which are usually defined formally
by way of a semantic web or programming languages. To enable agents to establish
knowledge “rich” interaction protocols, it is necessary to define common ontol ogies of
the working domain of the MAS, and include ontology facilitators in MASs to assist
agents to search, acquire, and generate ontologies.

MAS Ontology and Formal Ontology Expressions

The term “ontology” is borrowed from philosophy. In the context of MASSs, an
ontology is defined as a computer-readabl e description of knowledge about concepts,
relationships, and constraints that can exist for an agent or a community of agents. In
general, ontologies of an MAS can be classified as common or special ontologies. A
common ontology is a description of common knowledge that is related to the MAS
working domain or the multi-agent society; aspecial ontology isadescription of some
specificknowledgethat isrelated to some particular agentsor asingleagent of theMAS.
During the MAS design phase, it is necessary to define both common ontol ogies of the
system working domain as well as ontology representation format. Benefiting from
knowledge engineering, common ontol ogies of many application domains have al ready
been definedinsomeontology libraries, established by several distinguished knowledge
engineering research institutes (for example, the Stanford KSL Ontolingua Server).
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Therefore, the common ontologies of an MAS domain could be defined by the MAS
designer, or by reference to exiting ontology libraries.

Ontol ogies are machine-readabl e knowledge specifications, and they are usually
described by formal languages, such as programming or semantic web languages.
Currently, there is no agreed standard for ontology representation (format); however,
several exclusive ontology languages such as OIL (Fensel, Harmenlen, Horrocks,
McGuinness, & Patel-Schneider, 2001) and DAML+OIL (Horrocks& vanHarmelen, 2001),
have been widely and successfully applied in many application areas. In Bai and Zhang

Figure 1. An ontology example

ontology-container
title "printer product”
creator “educt”
description "4 example ontology for itsam
of the auction site”
publisher "educt”
type “onrtology”
format "“OIL”
gource “http: ./ Swwwe. equct. com. au”
language “ea-au”

ontology-definitions

class-def defined item

zslot-def it emil
domain item

class-def defined digitalProduct
subclass-of item

zlass-def printsr
subelass-of

computerDigitalProduct

slot-def defined belongsTo

domain item

slot-def manufactorediy
domain item

slot-def printingSpesad
domain printer

slot-def printingTeachnologyr
domain printar

class-def laserdetPrintar
subclass-of priptar
slot-constraint

printingTechnology

has-value "Laser Jet”

clazs-def HpProduct

subclass—of item

s3lot-constraint
manufacturedBy
hazs—wvalus HewlettPackard
class-def HPLaserJetilllss
subclass-aof lgserdetPrintar AND
subc lass-of HPProduct
slot-constraint printingSpesd
has-value = Eppm*
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(2004b), we compared the advantages of some widely used ontology languages and
illustrate how to use ontol ogiesto describe knowledgein the domain of an onlineauction
system. InFigure 1, we give asimple exampleto show how to describean “item”, which
isakind of knowledgein onlineauction system domains, in an ontology. I nthisexample,
the ontology is expressed by the OIL language.

Ontology Facilitators in Ontology-Based M ASs
For an ontology-based MAS, itisnecessary toinclude ontology facilitators, which

assist agentsto search, acquire, and edit ontologies, into the system structure. We have

introduced the necessary ontology facilitators, which should beincluded in an ontol ogy-
based MAS, together with the framework of ontology-based MASsin Bai and Zhang

(2003; 2004a,b). In general, an ontology-based MAS should include the following

ontology facilitators (Figure 2):

i Ontology base — the database that stores the common ontologies of the MAS;

i Ontology board — the mediator that receives and collects new ontol ogies from
agents of the MAS;

i Ontology editor —thefacilitator that checksand collectsnew ontol ogiesfromthe
ontology board, modifies and edits these new ontol ogies according to a standard
ontology format of the MAS, then edits these new ontol ogies to common ontol o-
gies that can be read by all agents of the MAS;

i Ontology searcher — the ontology facilitator that searches related ontologies
from the ontology base according to queries of agents of the MAS; and

i Auction distributor —thefacilitator that publishesfresh or modified ontol ogies,
which are received from the ontology editor, to related agents of the MAS.

Figure 2. Ontology facilitators of ontology-based MAS's

Ontology Based MAS
Ontology Facilitators

EmolnggrB_as_e_J
Ontol ogy
Searcher

Oirtology E ditog

Drtology B oard

L]
DD

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.



Coordinating Agent Interactions Under Open Environments 57

COLOURED PETRI NETS AND
AGENT INTERACTIONS

Ontologies and ontology facilitators enable agents to include knowledge-level
messagesin their interactions. Aninherent problem ishow to enable agentsto establish
their interaction protocolsflexibly according to their status. In this section, we present
a CPN-based approach to flexibly form interaction protocols. We briefly introduce the
basic principlesof CPNsinthefirst sub-section, and explain how to apply CPNsto agent
interactions in the second sub-section.

Petri Nets and Coloured PN’s

Thebasic structure of aPN can beformally defined by the4-tupleof Figure3, where
Pisaset of Places, such asP1, P2, P3, and P4; T isaset of Transitions, suchasT1, T2,
and T3; Aisaset of Arcs, suchasthearcfromP1toT1, T1toP1, P2to T1; Nisaset of
Tokens. For example, inFigure 3, P1and P3 haveonetokenintheinitial state. Net structure
and transition firing rules are associated together to describe transfersfrom one system
state to another. There are a number of transition firing rules associated with different
typesof PN’s. However, all kinds of PN’ s shareacommon firing property: A transition
can befired if the token number of all input placesisequal to or greater than their arcs’
weights (Peterson, 1981). After atransitionisfired, thetokensat itsinput placeswill be
moved to its output places.

A CPN can bedefined by a9-tuple (Z, P, T, A, N, C, G, E, |) (Jensen, 1992), where
Y isaset of non-empty types, also called coloured sets; P is a set of places; T is a set
of transitions; Aisaset of Arcs; Nisanodefunction; Cisacolour function; Gisaguard
function; E isan arc expression function; and | isan initialization function.

CPNsdiffer from PN’ sbecausetheir tokensare not simply blank markers, but have
dataassociated withthem. A token’ scolour isaschemaor specification. Placesof CPNs
contain multi-sets of tokens. Arcs of CPNs specify the token(s) that they can carry, and
they can al so specify sometransfer conditions. Arcsexiting and entering aplacecan have
an associated constraint function to determine which multi-set elements are to be
removed or held. Transitions of CPNs are associated with guard functions that enforce
some constraints on tokens.

Figure 3. Petri net example
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Using CPNs to Model Agent Interaction Protocols

Thereisagrowing consensusthat aCPN isagood way to model agent interaction
protocols(Cranefield etal., 2002; Cost, 1999; Nowostawski, Purvis, & Cranefield, 2001,
Poutakidis, Padgham, & Winikoff, 2002). By using CPNs, an agent interaction protocol
can be modelled as a net of components, which are carriers of both protocol and
interaction policy.

In using CPNs to model an agent interaction protocol, the states of an agent
interaction are represented by CPN places. Each place has an associated type determin-
ing the kind of data that the place may contain. Data exchanged between agents are
represented by tokens, and the colours of tokens indicate their datavalue. The interac-
tion policies of a protocol are carried by CPN transitions and their associated arcs. A
transitionisenabledif all of itsinput places havetokens, and the colours of thesetokens
can satisfy constraints that are specified on the arcs. A transition can be fired, which
means the actions of this transition can occur, when thistransition is enabled. When a
transition occurs, it consumes all the input tokens as computing parameters, conducts
aconversationpolicy, and addsnew tokensinto all of itsoutput places. After atransition
occurs, the state (marking) of a protocol has been changed, and a protocol will bein a
terminal state when there is no enabled or fired transition.

Here we take the FIPA inform protocol (FIPA, 2004) as an example of how to use
CPNsto model agent interaction protocols. The FIPA request protocol can be modelled
asaCPN, asshowninFigure4. FromFigure 3, we can seethat therearefive statesin the
interaction, and these states are represented in five places, respectively. If thereisone
or moretokensinthe*” Start” place and thesetokens can satisfy the constraints specified
in the “send” arc (belonging to data type “message”), the “inform” transition will be
enabled. After the“inform” transitionisfired, atoken will beremoved from the“ Start”
place, and the “Received” and the “ Terminated1” place will get new tokens. After the
“Receive’ placegetsatoken, a“processinform” transition will be enabled. Finally, the
interaction will be terminated after the transition “processinform” isfired.

Figure 4. Use CPN to represent the FIPA inform protocol
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A CPN-BASED APPROACH
FOR MULTI-AGENT INTERACTION

As mentioned in the first section, most agents are hard-coded within interaction
protocols. Thisfeaturereducestheflexibility of agent interactionsbecauseprotocolsare
hard to modify at runtime once they are pre-coded into the agents. In this section, we
present a CPN-based approach to enable agentsto flexibly form interactions. Inimple-
menting this approach, agents do not need to interact with other agents with a fixed
protocol. Agentinteraction protocolswill begenerated duringinteractions, and they can
also modify their protocols according to their status during interactions. In general, the
approach iscomposed of two main procedures, namely, sending protocol specifications
and protocol analysis.

The Default Protocol and Sending Protocol

Specifications
In this approach, agents of a system have the default interaction protocol shown

in Figure 5. This default protocol comprises three components: two places that belong

tothe protocol specification (PS) type, and onetransition. Therel ated description of the
default interaction protocol is described as follows:

i PS (protocol specification) — PSisadatatype. A PStoken contains a protocol
specification that indicatesaninteraction protocol . Theformat of thisspecification
isgiveninFigure6.

i ClI (call interaction) place— In the default protocol, aCl placeisthe place that
conducts PS tokens. Agent may put a PS token, which specifies its desired
interaction protocol, into a Cl Place when the agent needs to interact with some
other agent(s).

i PS-set (protocol specification set) place— Inthedefault protocol, aPS-set place
is the place that receives PS tokens, sent by other agents.

Figure 5. Default interaction protocol
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Figure 6. Example specification of the inform protocol

F* Interaction Protocol
Drescriptioey agert inform protocol *F
(protocol
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sendduccess) (toreceivellace) (match message) )
(arc (name sendF ail) (to failPlace) (match
ertor_thessage] )

. SPS (send protocol specification) transition — In the default protocol, a SPS
transition sends protocol specifications(PS's). A Cl placeand PS-Set placearethe
input and output places of an SPStransition, respectively. The SPStransition can
be enabled when thereis/are token(s) inits Cl place. A PStoken will be removed
from the CI place to the PS-Set place after the SPS transition fires.

Thefirst procedure of the approach isthe sending protocol specification. When an
agent needs to interact with some other agent, it composes a PS to describe its desired
interaction protocol according to its requirement, and putsthe PSinto its Cl place. The
content of PSis a specification of a CPN-modelled interaction representation. In this
specification, theagent canindicateitsrequired dataasaplacethat needsthe other agent
to input atoken(s). The data type constraints can be described in corresponding place
types, and the data value constraints (token colours) can be described in constraint
functions of arcs. The format of the specification can be as shown in Figure 6, or as
defined by users. The corresponding CPN model is shown in Figure 7.

Figure 7. CPN model of inform protocol
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Protocol Analysis
After an agent receives a protocol specification, it will analyse whether it can
executetheinteractionwithitscurrent status. In Petri Net theory (Peterson, 1981), there
are many methods to analyse whether a PN model is executable. In this chapter, we use
matrix equation methods (Peterson, 1981) to eval uateinteraction protocol sthat an agent
receives. Beforeintroducing the protocol analysismethod, wefirst provide somerel ated
definitions:
i Definition 1: The place type (PT) of a place is the associated data type that
determines the kind of data/tokens which the place can contain.
i Definition 2: When an agent receives a PS, the PS place type set (PTS) isthe set
of place types that occur in the PS. For example, the PTS of the PSin Figure 7 is
{ message, error}.
i Definition 3: Theunderstandabletypeset (UTS) of an agent isthe set of datatypes
that exist in the knowledge base of the agent.

Place Type Analysis
Thefirst step of protocol analysis (placetype analysis) isto test whether the agent

can understand the PS that it received.

i Definition 4: If an agent with UT SreceivesaPS, the non-understandabl e type set
(NTS) of theagent is: NTS=PTS—(PTSU UTS), where PTSisthe PS placetype
set of the PS and UTS is the understandabl e type set of the agent.

Figure 8. Place type analysis example
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i Definition 5: An agent can understand a PS when PTSCUTSor NTS= @, where
PTSisthe PS place type set of the PS, UTS is the understandabl e type set of the
agent and NTS is the non-understandable type set of the agent.

During place type analysis, the agent generatesthe NTS according toitsUTS and
the PTS of the PS token. If the agent can understand the PS, which means that the
generated UTSisempty, the protocol analysiswill processthe second step. Otherwise,
the agent will attach its comments, which indicate the place type that it does not
understand, to the PS and send the PS back to the sender. In Figure 8, we giveasimple
example of placetypeanalysis, wherethere aretwo PStokensin the PS-set place (refer
alsotoFigure5) of Agent 3. Thesetwo PStokensareP1 and P2, which arereceived from
Agent 1and Agent 2, respectively. Thetableliststhe UTSof Agent 3. Comparing P1 and
P2 withthe UTSof Agent 3, wecan seethat Agent 3 can understand P1 but not P2 because
DataType7 in P2 is not in the UTS of Agent 3. Therefore, Agent 3 will comment,
‘DataType7 is un-understandable’, on P2, and send P2 back to Agent 2.

Interaction Analysis

The second step of protocol analysis (state checking) isto test whether the current
status of the agent is satisfactory to accept the PS, and whether the interaction will
conflict with the goal of the agent. According to the matrix equation method (Peterson,
1981) of PN theory, aPN model can beexpressedinamatrix format. For instance, thematrix
format of the PN model of Figure 3 can bedescribed by Equation (1), inwhich D*and D-
are matrices representing the output and input functions of the PN model, respectively.

10002110 0 -1-120
D=D'-D'=(0 2 1 0|-|{0 O O 1|=|0 +2 +1 -1 1)
00O1f)|j0010 0 0 -1+

Themarking of aPN model can berepresented asmarking set(m;, m,, ..., m, ), where
m_representsthetoken number of then™ place. For example, themarking of Figure3 can
berepresentedas(1, 0, 1, 0). Inthecontext of interaction analysisproblems, weintroduce
the following definitions, based on the matrix equation method:

i Definition 6: Theinteraction matrix (IM) isthe matrix of an interaction protocol
in PN model. IM-and IM* arematricesused to represent i nput and output functions
of the PN model. IM = IM* - IM~.

i Definition 7: The required token set (RTS) of aPSisthe multi-set of tokens that
the PS requires the agent to offer.

i Definition 8: The gain token set (GTS) of aPS isthe multi-set (Jensen, 1998) of
tokens that the agent gets through interactions.

With the IM of an interaction protocol, an agent can calculate the GTS that it will
gain through the interaction. Furthermore, the agent is able to check whether the
perspectiveresult of theinteractionisin conflict withitsown objective. For example, if
Agent-1 received Protocol-1 (as shown in Figure 9), the IM would be;
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Figure 9. Gain analysis example
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To makethetransitions of Protocol-1 fire, we need to haveamarkingm=(1, 1, 0,
1, 0). Since P1 and P2 havetokensininitial state, Agent-1 only needsto input tokensin
P4. Therefore, wecan have RTS=(0, 0, 0, 1, 0). Furthermore, we can find out the GT S of
Protocol-1 through the following calcul ations.

00 +1 -1 O

#/:H+Xl.|E:(:L:|,O,l0)+(l0)'[0 0 -1 0 +2

}=(lll0,0) ©)

00+ -1 O

"=+ %, IE= 0 0,2)-
U=+ %, (8 ,0)+(,)[0 0 -1 0 42

}= (1,1,0,0,2) 4

Intheabovecal culations, Equation (3) showsthemarkingtransition after T1isfired,
and Equation (4) showsthemarkingtransition after T2isfired (seealso Figure10). Since
Agent-1canonly gaintokensfrom P5, the GT Sof Protocol-1is(0, 0,0, 0, 2). According

Figure 10. Gain analysis example (afterT1 and T2 are fired)
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to the datatype of P4 and P5, we can see that through the interaction, Agent-1 will lose
one token of DataTypel and gain two tokens of DataType2. Therefore, Agent-1 will
evaluate whether the interaction is advantageous or harmful to its own goals.

POTENTIAL APPLICATIONS

Inthe previousthree sections, weintroduced how to use ontology to describe MAS
knowledge and a CPN-based approach to form multi-agent interactions. These two
methods are suitable for applications in complex dynamic environments. A potential
application of theapproachissupply chainformation (SCF) (Walsh, Wellman, & Y gge,
2000). A supply chain is a network that describes interrelated exchange relationships
among multiplelevelsof production. SCFisthe processof assembling complex produc-
tion and exchange relationships between companies. To adapt to rapidly changing
market conditions, companies need automated support for SCF to form and dissolve
business interactions dynamically.

Agent technologies are widely applied in automotive supply chain formation. In
such applications, the domain knowledge is usually mass and dynamic. Depending on
the market conditions, factors such as produce varieties, price, and supply-demand
relations are changeable. In this case, using ontologies to describe domain knowledge
and including ontology facilitatorsin the MAS (refer to the section on MAS Ontology
& Knowledge Level Agent Interactions) can bring lots of conveniences for knowledge
acquiring.

Another challenge of SCF applicationsis how to coordinate finite resources and
received interaction requests of agents. In SCF applications, agentsmay receivevarious
interaction requests from other agents. On the other hand, some resources of agentsare
finite. A firm might bepenalized if it acceptsinfeasibleinteraction requests. Therefore,
the agent of a firm has to analyse received interaction requests and gives proper
responses according to current resource availability within the firm. Using the CPN-
based approach introduced in the third and fourth sections makes it easier for agentsto
analyse and dispose various interaction requests. For SCF applications, various kinds
of resources and products can be defined as token data types, and a CPN can be used
to describe supply-request (SR) relations of afirm. For example, the CPN of Figure 11
showsthe SRrelationsof afirmcalled Firm-1. InthisFigure, placesP1 and P2 represent
two kinds of products of thefirm, R1 and R2 arereceived requests of P1 and P2, and S1,
S2, ..., Sharerequired resourcesto produce P1 and P2. Atthecurrent stage, Firm-1 accepts
arequest to produceP1, and S1, S2, and S3 all containtokens. Therefore, therequest can
besatisfied. If Firm-1receivesanother interaction request at thismoment, it will analyse
the received interaction protocol and make a decision according to its current status.
Supposing Firm-1receivesthethreedifferent protocolsin Figure 12, where Protocol-A
requeststhe firm to supply product P2 and promisesto requite M 1; Protocol-B requests
P2, promises to supply S4 and requite M1; and Protocol-C requests P2, promises to
supply S3 and S4 and requite M 1. According to the current status of Firm-1, Protocol-
A is infeasible because of the shortage of resource S4; Protocol-B is also infeasible
because resource S3 is occupied by request R1; only Protocol-C isfeasible because the
requester promisesto supply S4 and S3. Theabove examplecan a so beanalysed by using
the protocol analysis method introduced in the fourth section.
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Figure 11. Resource-production relation example
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Figure 12. Product request example
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CONCLUSION

The social ability of an agent is exercised in a multi-agent system. For MASs,
predefined agent interaction protocol s reduce the flexibility of agent interaction, espe-
cially in open environments. In this chapter, we have proposed an approach to enable
agents to form knowledge-level interaction protocols flexibly. Furthermore, in this
approach, agents can also analyse whether the received protocol is understandable,
whether theinteraction can be accepted with the current status of the agent, and whether
theinteraction conflictswith the agents' objectives. Thesefeatures make agentsableto
select or generate suitable protocols to interact with each other under open working
environments.
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Chapter |V

Literacy by Way of
Automatic Speech
Recognition

Russell Gluck, University of Wollongong, Australia

John Fulcher, University of Wollongong, Australia

ABSTRACT

The chapter commences with an overview of automatic speech recognition (ASR),
which covers not only the de facto standard approach of hidden Markov models
(HMMs), but also the tried-and-proven techniques of dynamic time warping and
artificial neural networks (ANNS). The coverage then switchesto Gluck’ s (2004) draw-
talk-write (DTW) process, developed over the past two decades to assist non-text
literate people become gradually literate over time through telling and/or drawing
their own stories. DTW has proved especially effective with “illiterate” people from
strong oral, storytelling traditions. The chapter concludes by relating attemptsto date
in automating the DTW process using ANN-based patter n recognition techniqueson an
Apple Macintosh G4™ platform.
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INTRODUCTION: SPEECH PRODUCTION

Generally speaking, the aims of automatic speech recognition (ASR) aretwofold:
firstly, to extract the salient features of the incoming speech signals, then secondly to
map theseinto themost likely word sequences, with the assi stance of embedded acoustic
and language models (Huang, Acero, & Hon, 2001).

Natural, conversational, continuous speech often incorporates false starts, re-
peated phrases, non-grammatical phrases (ums and ahs), and pauses, which bear little
relation to written (text) punctuation. Some characteristics of speech which make
recognition, whether by humansor machine, difficult include: background noiselevels,
variations in speaker loudness, pitch, emphasis (stress), and speech rate, not only
between different speakers (either from within the same culture or due to different
dialects), but also on different occasions with the same speaker (for example, with or
without a head cold). Even worse, we tend to make assumptions as to what words
(phonemes) we expect to hear next, based not only on the context of surrounding words
(phonemes), but also on cultural mores. Further, since there is not always a strong
correlation between theacoustic properties of speech waveformsand thelinguistic units
that they represent, thiscan | ead to ambiguousinterpretation. Ambiguitiescanalso arise
due to the fact that similar-sounding words can have quite different meanings (hom-
onyms); conversely, different-sounding words can have similar meanings (synonyms).

A person’ sfundamental frequency (number of vibrations per second) isafunction
of their vocal cord mass, and typically ranges between 50 and 250Hz for males, and
roughly twice this frequency for females.

We generate speech (phones) using a combination of voice box, or larynx (the
vibration source), lungs (energy or power source), vocal tract and nasal passage
(resonant cavities), together with the articulatory organs (lips, teeth, tongue, jaws,
cheeks, and alveolar ridge — that region in the roof of the mouth which makes contact
with the tip of the tongue) (Masaki, 2000). The lips, teeth, tongue, jaw, and cheeks are
all capable of changing the shape of the basic resonant cavity, thereby producing
different sounds. For example, thelipsareinvolved inthe production of English vowels
and the consonants /b/ and /p/; the teeth (and lips) in /f/ and /v/; the alveolar ridge in
/d/, In/ and /t/, and the cheeksin /b/ and /p/. Likewise, various constrictionsin our air
passageways produce different sounds (for example, /p/, /b/ and /f/). Furthermore,
sounds can be produced either withthevocal cordsvibrating, referredto as* phonation”
or voiced (for instance, /g/, /m/, /z/), or without, in other words “voiceless” (such as/f,
kI, Ipl,Idl, Itl) (Keller, 1994).

Thusfromasignal processing point of view, wecanregard speech asatime-varying
sound wave, whose frequency components are determined by changes in the size and
shape of the vocal tract and associated physiology. Peaksin the energy spectrum of the
speech waveform are referred to as acoustic resonant frequencies or “formants”. Most
vowels comprise more than three formants; however, the first three (F1 ~500Hz, F2
~1800Hz, F3~2500Hz), usually sufficefor purposes of classification and/or recognition
(higher-frequency formantsreflect voice quality and individual speaker characteristics)
(Ainsworth, 1997). Thuswe can conceive of speech asthe superposition of anumber of
frequency components of varying amplitudesand phases. Assuch, and in common with
signal processing generally, speech is amenable to either Fourier series analysis (for
continuous — analog — signals), or once digitized, to Fourier transforms (for discrete
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signals). Speech recognition is invariably implemented on some form of computer
platform; thusthe raw speech signal must first be converted from analogto digital form.

Acoustic signals, including speech, are characterized by features such as pitch,
duration, amplitude (loudness, signal strength, power/energy), and phase of each
frequency component. As it happens, only the first three are relevant from a speech
recognition perspective, sincethehuman ear isinsensitiveto phase (Katigiri, 2000). Now
since phonemes, the basic linguistic unit, are characterized by frequency, time, and
energy, it makes more senseto use three-dimensional spectrograms rather than process
the raw (albeit filtered) time-varying speech waveform. Filtering is necessary since
speech, like any other one-dimensional time-varying acoustic signal, is susceptible to
interference from background noise.

SPEECH RECOGNITION

Humans use not just auditory informationin recognizing speech, but ahost of non-
verbal cuesaswell — morespecifically, aspeaker’ sfacial movements(mouth, eyebrows,
and so on), body gestures, thedirection from which the sound arrives, background noise
levels, cultural context, knowledge of the language (vocabulary), dialect/accent, the
influence of thelocal environment (and moreglobally thestate of theworld at large), and
so forth. Prosody refers to longer timescal e (supra-segmental) speech characteristics
which assist listeners to distinguish between utterance types (namely, statements/
declarations versus questions/interrogations versus commands/imperative sentences,
in other words, the speaker’ s intent), to clarify both sentence structure and syntax, to
interpret word emphasis (stress, timing, rhythm, melody, and/or intonation), to indicate
whoseturnitisto speak intheconversation (pauses), and to correlate acoustic structure
withthespeaker’ semotional state (Cosatto, Ostermann, Graf, & Schroeter, 2003; Keller, 1994).

We also need to be cognizant of the fact that the ear canal itself constitutes a
resonant cavity, and assuch, filters sounds prior to their impacting on the ear drum, and
thence, via the auditory nerve, to the aural processing areain the brain.

All of this makes the automatic recognition of continuous speech by computer a
difficult task. Further, alot of important human speech processing takes place between
the ear drum and the auditory nerve, prior to reaching the aural processing region of the
brain.

Figure 1. Generic ASR system

reference
templates
(vectors/
pesch features)
- (vectors)
N 1-of-n
Preprocessor . / speech
noise filtering; Acoustic Pattern | Patterns
N ADC: =—p | Feature f=—p hi -
segmentation; FFT extraction matching

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.



Literacy by Way of Automatic Speech Recognition 71

Isolated, single-speaker recognition is a much more viable proposition than con-
tinuous, multi-speaker recognition; thelatter isamuch lessconstrained problem, and as
such isconsiderably moredifficult to solve. For one thing, detection of inter-word gaps
ismuch more of achallenge. More constrained tasks, such asisolated word recognition,
word spotting or speaker authentication, morereadily lend themsel vesto implementation
by computer; indeed, numerous such applications have made their way to the market-
place (see the State-of-the Art section).

From a machine learning perspective, speech signals are regarded as yet another
time- varying pattern. Assuch, standard pattern recognition techniques can be applied.
Not surprisingly though, more specialized and appropriate methods have been devel -
oped for speech recognition.

A typical speech recognition system is shown in Figure 1.

Processing of speech signals can be undertaken either in the time or frequency
domains. High pass filtering of a raw speech signal will produce RMS amplitude
envelopes; application of a fast Fourier transform will facilitate the extraction of
frequency components.

Automatic speech recognition has traditionally been attempted using template
matching and distance measures, probabilistic classification, and/or artificial neural
networks.

Pre-Processing

Prior to recognition proper, the speech signal must first be pre-processed, in order
tofilter out background noise, to correct for microphonedistortion, and to convert from
analog to digital form, in order to facilitate subsequent processing on acomputer. The
speechwaveformisnext translated from thetimedomainto thefrequency domain by way
of fast Fourier or similar transform.

Figure 2. 3-Dimensional spectrogram
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Figure 3. Short-timescale spectrum
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The resulting 3D spectrogram (frequency versus time versus signal strength/
intensity, see Figure 2) assists in the recognition process. Narrow-band spectrograms
reflect changesin pitch (frequency), whereas wideband spectrograms provideinforma-
tionregarding formant structure. Furthermore, a2D “slice” through this 3D spectrogram
ataspecifictimeyieldsa“ short-time” spectrum (energy vs. frequency) characterized by
constituent harmonics and an overall spectral envelope (Figure 3). Peaksin the former
correspond to the various acoustic resonant frequencies (formants), whereas the | atter
reflects the shape/size of the various articulatory organs involved in producing the
speech (namely, thelips, tongue, and so on). Formantsare the principal determinants of
vowels, while the harmonic structure is a result of vocal cord vibration, which is
considered to mainly convey speaker identity and prosodicinformation (Katigiri, 2000).

Segmentation Methods

One of the primary pre-processing tasks is to separate the incoming (acoustic)
speech signal into basic“ units” or segments. Thiscan be performed on the basis of time,
varioussignal characteristics (such asfundamental frequency, overall spectral shape or
signal strength (power)/energy threshold), or on the basis of phonetics (the science of
speech). Moreover, the segment size can be either fine- or coarse-grained. For small
vocabulary, meaning isolated word recognition (word spotting), large size segments
suffice; for large vocabulary, meaning multi-speaker, continuous speech recognition,
shorter timescal e units are more appropriate.

It should be pointed out that in word spotting (or key phrase detection), the entire
utterance is comprised of known words, and as such constitutes a much more con-
strained problem than with ASR generally (in which we do not know which words are
coming next in sequence). In other words, the former is amenable to classic pattern
recognition techniques.

Phonemes are the smallest discrete sound units (abstractions), allophones are
variants of phonemes used in everyday speech which pertain to specific contexts, and
diphones (dyads or demi-syllables) aretransitions between neighbouring segments. By
contrast, a syllable is a larger, separately utterable segment, and comprises a linear
sequenceof phonemes of theform consonant-vowel-consonant (CV C). For the purposes
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of speech recognition, both vowels and consonants can be defined in terms of their
phonetic properties; however, incorporation of prosody characteristics invariably
improves performance. To put this into perspective, the English language comprises
around 300,000 words, but only ~10,000 syllables, ~12,000 morphemes (grammatical
categories), between 1,000 and 2,000 demi-syllables/diphones, and only around 40
phonemes (16 vowels + 24 consonants). Furthermore, spoken phoneme sequences bear
littlerelationtothe spelling and punctuation which characterizeswrittentext (especially
for English).

Acoustic Feature Detection and Extraction

Various acoustic features can be extracted from speech signals, whether these be
prosodic, or alternatively derived from time- or frequency-domain characteristics, as
previously observed. A number of these can be combined to form an acoustic feature
vector, which in turn can be used for pattern matching/recognition/classification
purposes, in other words, as reference templates (vectors) stored in a look-up table
(Figure4). Thuswords can be regarded as a sequence of feature vectors. |n some cases,
these features are sufficiently distinct (well- defined) that they can bereadily separated
into classesthat correspond to non-overlapping regions in the feature space. Hence the
acoustic features can be grouped into categories (classes) without the need for training
(supervision).

Thisraises the issue of the overhead needed to store such alook-up table. In this
context, vector quantization, the process of categorizing input data into clusters
(codebook vectors) prior to transmission/storage, can be useful. Vector quantization
dividesn-dimensional spaceinto smaller 2™regions, where misthe number of codebook

Figure 4. n-Dimensional/element acoustic feature vector

. (acoustic)
feature#l
[ | feature#2

feature#3

featuretn-1

n
. featuretn

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.



74 Gluck & Fulcher

Figure 5. Acoustic filter bank
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address bits, known to both transmitter and receiver. This codebook can be used to
translate vectors in n-D space (actually the centres-of-gravity of “regions’) into
addresses with minimum distortion, and vice versa. Thus, VQ can be thought of as
performing datacompression (dimensionality reduction) prior tostorage. Alternatively,
V Q can beregarded as performing K-means clustering on the incoming speech signals
(Sridharan, Leis, & Paliwal, 2000).

Extraction of speech features can be undertaken using a variety of different
methods, including acousticfilter banks (Zwicker, 1961), auto-regressive modeling (Atal
& Hanauer, 1971; Itakura& Saito, 1970), cepstrum, theinverse Fourier Transform of the

Figure 6. Linear predictive coding (auto-regressive modelling)
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logarithmic spectrum (the peak of which correspondsto pitch), dynamicfeaturemodeling
(McDermott & Katagiri, 1991; Waibel, Hanazawa, Hinton, Shikano, & Lang, 1989), and
probabilistic methods. In the early days of ASR, filter banks (Figure 5) were popular.
Thesegaveway duringthe 1970sand early-to-mid 1980sto linear prediction coefficients
(LPCs) (Figure 6). Sincethat time, the cepstrum approach has been predominant, since
it leadsto lessvariability. For instance, inthe HTK System, 12 mel-frequency cepstral
coefficients(MFCC), together with thesignal strength, arecombinedtoformal3-element
acoustic feature vector (Y oung, Wood, & Byrne, 1996).

Linear predictivecodingisaparametric method, inwhichthenext sasmpleinthetime
seriesisderived from acombination of theweighted sum of the previous (and therefore
known or predictable) samples X, together with unpredictable noise, asindicated in
Egn. 1:

X, = _Xn, X +e (1)

i=1

The coefficients a can be estimated using either auto-correlation or covariance
techniques. The set of LPCs for each sampling time interval constitutes an acoustic
feature vector.

Dynamic Time War ping

Since we regard speech signals as just another type of pattern, one approach to
ASR isto compare new utterances with templates stored in alook-up table. Thisis not
as straightforward as it first appears, however, since people speak at different rates
(including the same speaker on different occasions). This means that such stored
templateswill needtobe“ stretched” or “ compressed” prior to matching. Thisisprecisely
what is behind the idea of dynamic time warping.

Short (10-30mSec) segmentsaretypically used indynamictimewarping. InFigure
7, afreshly-captured sequence of speech vectors is compared with a reference vector
sequence (template) stored in alook-up table. Obviously thiswill only be effective for
single speakers; multi-speaker recognition would necessitate the use of averaged
reference feature vectors, and hence would lead to degraded performance.

A dynamic programming latticeismaintai ned during successiveiterations (sample
periods), indicating how close (in a minimum distance, dissimilarity, or short-time
spectral distortion sense) each feature vector isin the sequence; obviously a45° straight
lineindicatesaperfect match. Thus, dynamictimewarping automatically adjuststhetime
scale of the incoming speech signal to better align with the stored templates prior to
matching proper.

Dynamictimewarpingiseffectivefor isolated word recognition, but becomes|ess
viable as the number of templates increases, due to the exponentially-increasing time
required to compute the distance matrices. Notwithstanding, the dynamic timewarping
technique can be extended to handle sequences of words, and even continuous
recognition, but with thelatter weal so need to consider syntax inorder to discountillegal
word sequences.
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Figure 7. Dynamic time war ping example
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Hidden Markov Models (HMMs)

Dynamic time warping uses template matching; by contrast, HMM uses a proba-
bilistic approach based on Bayesdecisiontheory, and generally speaking, |eadsto better
speech recognition performance. Any stochastic (random) process can be represented
by an nth-order Markov model. Hidden Markov models can be thought of as stochastic
systems (automata) which comprise a state vector-S, a transition matrix-V, and an
emission matrix, thelatter comprising the probabilitiesof “emitting” aparticular “sym-
bol” from a given state-S. In other words, each state has an associated probability
distributionfunction (PDF) P(V|S) for each acoustic (feature) vector V, together with a
set of state transition probabilities P(S |Sj), in other words, of moving from state-S to
state-S (Ferguson, 1980; Huang, Akiri, & Jack, 1990). A simpletwo-stateHMM isshown
in Figure 8. During training, these probabilities are estimated from the sequences of
symbolsproduced by typical (representative) speech utterances, usingthe Baum-Welch
algorithm, which correl atesprobabilitieswithlocal maxima.

Recognition requires much less computation than training. It is possible to use a
recursive formula to calculate the probability that each word HMM produced the
observed data, the model with the highest probability of being selected asthe oneto best
represent thewordin question. An efficient dynamic programming technique, theViterbi
algorithm, can be invoked to efficiently compute the probabilities of each HMM
generating aspecific spoken sequence of speech symbols, inother words, themost likely
path throughthevariousmodel states(actually, these probabilitieswill invariably beless
than thetrue probabilities; nevertheless, in most casesit |eadsto acceptabl e recognition
performance).

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.



Literacy by Way of Automatic Speech Recognition 77

Figure 8. A two-state hidden Markov model
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Since some word segments (phonemes) exhibit more variability than others, itis
possible to generate a stochastic model for every word in our reference vocabulary (for
example, Figure9). By contrast, anexampleof aninvariant rule (albeit withwrittenrather
than spoken English) isthat a“q” isinvariably followed by a“u”; by contrast, many
different letters can follow the letter “b”.

In the context of speech recognition, HMMs can be used to represent different
words as adifferent sequence of states, together with probabilities of moving from one
state to permitted successor state, along with probability distributions defining the
expected observed features for each state. By the way, the “hidden” in HMM refersto
the fact that only the acoustic vectors are observed, not the state sequences.

HMMslead to improved performance compared with dynamic time warping, and
indeed is the de facto speech recognition method in use nowadays.

Hybrid ANN/HMM systems estimate the class condition probabilitiesP(V|S) of a
speech vector V, given that the system isin state S, using ANNsrather than Bayesians
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(Katagiri, 2000). SinceANNslearnaposteriori probabilities—P(S|V) —they must first
be converted to class conditional probabilities before they can be used in HMMs. This
can be achieved using Bayes' theorem:

P(SIV)P(V)

PVIS)=—0g

2

Artificial Neural Networks (ANNS)

Despitetheir well knownlimitations, artificial neural networks (ANNS) areadmira-
bly suited to pattern classification and/or pattern recognition (Fulcher, 1997). They
would appear, then, to be a natural approach for speech recognition, since from a
classification/recognition perspective speech is simply another pattern (Lippmann,
1989). Asit happens, and despite alot of research effort during the 1980’ sand 1990's,
the de facto speech recognition technique used nowadays is not ANNs, but HMMs.
Nevertheless, aswe shall see, ANNs are especially suited to the application of interest
in this chapter, namely, speech recognition for developing literacy in non-text literate
users.

Several different types of ANN have been applied to speech recognition over the
years, including multi-layer perceptron/back-propagation (Brunet, Pandya, & Pinera
1994; Wu & Chan, 1993), Self-Organizing Map (Kohonen, 1997), Time-Delay Neural
Networks(Lang, Waibel, & Hinton, 1990; Waibel, Hanazawa, Hinton, Shikano, & Lang,
1989), recurrent networks (Robinson, Hochberg, & Renals, 1996; Schuster, 2000),
Learning Vector Quantization (McDermott, 2000; McDermott & Katigiri, 1991), and
probabilistic neural networks(Haton, 2000), not to mention modular/hierarchical ANNs
(Jordan & Jacobs, 1992, 1994) and hybrid systems(Fritsch, Hild, Meier, & Waibel, 2000).
We focus here on MLP, SOM, and TDNN.

MULTI-LAYER PERCEPTRON/
BACK-PROPAGATION (MLP/BP)

When alay person refers to ANNS, they are invariably referring to multi-layer
perceptrons trained using the back-propagation learning algorithm. A typical such
network isshown in Figure 10.

Representative input-output training (vector) pairsare presented to the network in
succession. For each presentation, the error difference between the actual output and
the desired output is used to alter the network weights, firstly those connecting the
hidden layer to the output layer, thence those connecting the input and hidden layers.
In this manner, the errors are said to propagate backwards from output layer to input
layer, hence the term Back-Propagation learning algorithm. Repeated presentations of
all input-output training exemplarsisneeded, sincetheweightswill be adjusted in many
different directionsby thetimethefirst exemplar pairisrevisited. Not surprisingly then,
many iterations are normally required in order for the network to converge to a global
minimum, such that all input-output pattern pairs have been learnt. Consequently, one
inherent feature of MLPsistheir long training times; nevertheless, once trained, such
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Figure 10. Multi-layer perceptron/back-propagation
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networkscanrespond instantaneously toinputsthey have not previously met (and recall
the output pattern associated withit). Asiscommon with all ANNs, MLPs are capable
of generalization, and moreover are both noise- and fault-tolerant.

Based on the Kolmogorov representation theorem, it can bereadily shown that two
hidden layersat most arerequiredto providearbitrary decision boundariesinthesolution
space (energy landscape). Furthermore, feed-forward networks with non-polynomial
activation functions are capable of approximating any continuous function, to any
degreeof accuracy (Hornik, 1991; L eshno, 1993). Zhang, Xu, and Ful cher (2002) extended
thisimportant result to higher-order ANN groups, in which each element is a standard
ML P/BPand uses piecewiserather than polynomial activation functionsand thresholds;
more specifically, such ANN groups can approximate any kind of pi ecewise continuous
function, to any degree of accuracy.

Now from a speech recognition perspective, the speech signals are treated as just
another input pattern, regardless of whether this vector isderived from digitized time-
varying waveformsor from 3D Spectrograms (the frequency domain).

SELF-ORGANIZING FEATURE MAP (SOM)

Unlike MLPs, Kohonen's self-organizing feature map (SOM) is an unsupervised
network. It is not trained using representative exemplars; rather, it forms its own
classifications, which may or may not make sense to the user.!

SOMsareakind of associative memory inspired not only by the self-organizing and
adaptivefeaturesof the human brain, but more especially by itslocalized activity. More
specifically, SOM is based on the premise that the brain uses spatial mapping in order
tointernally map complex data structures.
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Categories are formed within SOM, according to the statistical properties of the
input patterns, as opposed to those imposed by the trainer in asupervised network. The
input speech signal is fed into a 2D array, each node of which connects to its nearest
neighbours, and which has a weight vector associated with it. The node which most
closely matches the input (in a Euclidean distance sense) is selected, and its weight
vector, together with the weight vectors of all nodesin its “neighbourhood”, is moved
tomoreclosely alignwiththeinput vector. During training, the si ze of thisneighbourhood
is gradually reduced, with its boundaries determined by the so-called Mexican hat
function. These neighbourhoods act as feature classifiers on the input data. The nodes
in the output layer start off as randomly organized (vectors pointing in random direc-
tions), but end up as a self-organized feature map.

Theabove competitivelearning, or clustering, constitutesan ordered mapping, and
an output is produced in the form of a 2D topological phoneme (photonic) map which
corresponds to the input speech sequence; the photonic map produces a dynamic trace
of the spoken words. What is more, continuous speech input patterns will trigger the
same path through this 2D photonic map, independent of speech rate.

Kohonen (1997) used SOMs as the basis for his “phonetic typewriter”, which
produces written text when presented with speech input. Actually, the phonetic type-
writer uses a hybrid system, a combination of SOM and rule-based expert system, the
latter being needed in order to resolve context due to the surrounding phonemes
(grammar).

Output node clustersare formed during training and labelled manually afterwards,
with the assistance of the expert system rule base.

Theusual Nygvist Sampling criterion appliesto the speech input, namely, that the
samplerate needsto be at | east twice the highest frequency component of theincoming
speech signal. Pre-processing takestheformof 5.3 KHzlow passfiltering, 12-bit anal og-
to-digital conversion, and 256-point FFT conversion. The resulting 15 frequency band

Figure 11. Self-organizing feature map
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continuous (normalised) pattern vector, together with the RMS value of the speech
signal, arecombinedtoformthe 16-bit feature vector fed into the SOM. Post-processing
(asdescribed earlier) isinvoked to correct misclassifications.

Theinputstothe SOM aretimeslicesof the speech waveform; outputsare phoneme
classifications, decided on the basis of several consecutive inputs.

Reported accuracy is between 85-95% for the Finnish language, which, unlike
English, islargely phoneme-based.

RECURRENT AND TIME DELAY
NEURAL NETWORKS

Theproblem of different speaker rateswasaddressed previously by way of dynamic
time warping, which effectively compresses (“stretches”) the raw speech waveformin
order to better match the timeframe of the stored (reference) template, prior to pattern
matching proper. Alternative approachesincluderecurrent ANNsand timedelay neural
networks.

ML Psareonly capable of |earning static (time-independent) i nput-output (vector,
pattern) mappings. In order to model dynamic systems, a neural network needs to
incorporate someform of memory, in other words, prior knowledge. Oneway of achieving
thisisto add time delays (the val ues of which are modified during learning) to the basic
MLP architecture, resulting in the recurrent network of Figure 12.

A sequence of acoustic input vectors presented to the network produces a
corresponding sequence of output and internal state vectors. After presentation of the
last vector, the final output and state vectors are compared with the target (desired)
output and arbitrary state vectors, respectively. Error signals are derived, working in
reverse from the last to the first vector in the sequence. The weights are then altered by
an amount equal to the average weight change resulting from the preceding back-
propagation phases. In this manner, temporal variations are reflected in the internal

Figure 12. Recurrent neural network
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Figure 13. Time delay neural network
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network states. Moreover, the path travel ed through the state spaceistime-independent,
unlike TDNNswhich, aswe shall see, employ afixed timewindow.

Time delay neural networks are feed-forward ANNs whose hidden and output
neurons arereplicated acrosstime (Lang, Waibel, & Hinton, 1991). Different parts of a
TDNN perform the same computations but on different time-shifted versions of the
inputs. The input to each node is a combination of the current input and the n previous
inputs (wheren=2for H1, 4 for H2, and 7 for the output layer, as shown in Figure 13).

Waibel etal. (1989) usedthe TDNN of Figure 13to discriminatebetweentheisolated
syllables “bee”, “dee” and “gee”.

Inarelated study, Lang and Hinton (1988) applied asimilar TDNN to*“bee”, “ dee”,
“ee” and “vee” discrimination (which obviously necessitated the use of four rather than
three output neurons). They achieved arecognition accuracy of 93% ontest, not training
data. In the latter TDNN, 192 (16* 12) input neurons encoded the 2D spectrogram, the
hidden layer consisted of 10 copiesof eight neurons, and the output layer comprised six
copies of four neurons. The total number of synaptic weights was 544. The various
hidden neuron replicas applied the same set of synaptic weights to narrow (three time
step) windows of the spectrogram. Likewise, the variousoutput neuron replicasapplied
the same set of synaptic weights to narrow (five time step) windows in the “pseudo-
spectrogram” computed by the hidden layer.

Multi-stage TDNNs extend the basic idea from single phoneme recognition to
phoneme sequences (words), and incorporate non-linear timealignment of theincoming
speech with stored models(not unlikethat described earlier with dynamictimewarping)
(Fritschetal., 2000).
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OTHER SOFT COMPUTING APPROACHES

Soft computing refersto techniques that are not algorithmic-based, with hard and
fastinbuilt rules; rather, they involve someform of learning (iterating over timetowards
aviablesolution), and are, inthemain, biologically inspired. Artificial neural networks,
genetic/evolutionary algorithms, genetic programming, and fuzzy logic are commonly
grouped together under this banner. These techniques can also be used to construct
hybrid systems, thereby | eading toimproved performance (Stadermann & Righoll, 2003).
Other examplesarethe GA refinementstobothDTW and HMMs(Man, Tang, & Kwong,
1999), and ANN/HMM hybrid approaches (Ganapathiraju & Picone, 2000; Trentin & Gori,
2004).

THE STATE-OF-THE-ART

Automatic speech recognition has made great strides over the past several de-
cades, and most notably during the last few years due to successive refinements of the
basic algorithms. Automated directory assistance, voice dictation, help desks, and even
airline reservations have become commonplace, the performance of which, however,
remainsvariable.

Despitethis, thefieldisstill viewed asrather fragileandimmature, withindustry and
the public reluctant to embrace the avail abl e technology. Two major challengesremain
with ASR in the large, these being reduction of: (a) the substantial difference in
performance between noise-free and noisy acoustic environments, and (b) recognition
error rates in conversational/casual speech (Deng & Huang, 2004). Multi-modal and
multi-sensor system designs are being adopted in order to adequately address these
challenges. Another driving force in the advancement of ASR technology isthe annual
DARPA-sponsored speech-to-text evaluation program, which has inspired a roughly
10% reduction per annum since its inception in the late 1980s (www.nist.gov/speech/
tests/spk/2000).

On the other hand, speaker authentication technology is maturing at arapid rate,
with several products now on offer in the marketplace (for example, Scansoft’s
SpeechSecure™, Courion’ sPasswordCourier®, Vocent Solutions' Confirmed Caller™,
and similar voice authentication offeringsfrom Nuance Communications, Voice.Trust,
VoiceVault, and similar start-ups) (Vaughan-Nichols, 2004). It should be pointed out that
speaker/voiceauthentication/verificationisamuch more constrained problem compared
with ASR and/or natural |anguage understanding, and hence more amenabl eto sol ution.
Nevertheless, and in common with all biometric techniques, voice authentication faces
considerable hurdlestowidespread adoption by thegeneral public, not theleast of which
are concerns over security and privacy (Fulcher, 2005).

Compared with alternative biometric approaches, voice authentication possesses
certain advantages and disadvantages. The former include less intrusiveness and the
ability to perform remote authentication; the latter include lower accuracy, greater
template storage requirements, and users’ unwillingness to repeat themselves when
prompted by the system. From a speech recognition perspective, the stored template
(user “voiceprint”) comprises frequency information, phoneme pronunciation, word
combinations, accents, and additional linguistic/idiomatic features(such as pauses, ums
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& ahs, and the like). Voice authentication has found its way into credit card products,
such as ComDot™ (http://www.beepcard.com).

Voice translators have also started to migrate from the research labs to the
marketplace, especially for mobile computing, for example, the Arabic-English
Speechalator (CMU, Cepstrum, Mobile Technologies & Multimodal Technologies),
Phraselator® (VoxTec), and NEC. The task of such translatorsis entire phrase rather
than individual word recognition, and assuchislessambitious (and hence moredoabl e).

Also, considerableeffort hasbeen put into the continued devel opment of “industry
standard” speech platforms such as the open source Sphinx suite of tools (Walker,
Lamere, Kwok, Raj, Singh, Gouvea, Wolf, & Woepel, 2004), the World Wide Web
Consortium’ s(WC3) VoiceXML, and associ ated Speech Recognition Grammar Specifica-
tion (SRGS), Speech ApplicationLanguage Tags(SALT) by Cisco, Intel, and Philips, and
Microsoft’s Speech Server technology (targeted for Visual Studio.NET™).

Lastly, futuristic speech research continues at leading institutions, including |1BM
(“superhuman” speech), Microsoft, Intel, and Carnegie-Mellon University, to mention
but afew.

THE DRAW-TALK-WRITE
APPROACH TO LITERACY

Draw-talk-write— DTW — isaprocessthat enablesliteracy-inefficient, visually-
strong and orally-proficient people to become literate in a range of contexts and
disciplines, on some occasions enabling them to proceed on to tertiary studies (and
successfully so) (Gluck, Vialle, Lysaght, & Larkin, 1998). The process has evolved
through working with peoplewho have had storiesto tell and who have al so had extreme
difficulty in putting the story of their ideas, thoughts, work, and experiencesinto textin
a form that meets the requirements of their audience, discipline, and most of all,
themselves.

Evolution of the DTW process began as one of the authors (Gluck) worked with
indigenous Australiansin squatter camps, jails, pre-vocational and vocational courses,
undergraduate and postgraduate degrees to enable them to work toward meeting their
literacy-specific needs. The process has far-reaching repercussions beyond this
community sector (Gluck, Vialle, & Lysaght, 1999a,b). DTW continuesto evolvethrough
collaborative work with both indigenous and non-indigenous Australians to facilitate
the drawing, telling, and writing the stories of their PhD (and other Doctoral) disserta-
tions. Fundamental to the DTW approach is that students’ own rich personal stories
serve as the mediating agent. Moreover, DTW by way of speech recognition has
underpinningsin Vygotsky’s concept of “tool mediation” (Rieber & Carton, 1987; van
der Veer & Valsinger, 1994).

Getting Started: Asking for Help, Safety to Learn,

and Joining In

Themajority of students entering the DTW process do not feel safetowrite. Their
experiences of writing have generally been ones of struggle, not feeling up to the task,

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.



Literacy by Way of Automatic Speech Recognition 85

and knowing themselvesas*inadequate” writers. They havealsofelt, andin many cases
experienced, what they have written as not “good enough” for the audience they have
been writing for. Most significantly, what they have written has not met their own
expectations. Students’ fear of failure hasat timesbeen pal pable. To say that writing and
reading has not been a safe experience for the overwhelming majority of such students
is an understatement. They have risked asking for help and joining the program, often
asameansof last resort, totry an alternativeway whichinvolvesdrawing, talking, writing
then reading, and finally redefining or retelling their story of themselves as writers.

The students’ preparedness to ask for help and try another way has provided an
opportunity for them to utilise the DTW method to recreate their stories of themselves
as “adequate”, “good”, or even “excellent” writers. It also enables them to experience
and know writing as arewarding activity.

Thechallengefor thelearning facilitator iswhether they havewhat it takestolisten
to, hear, acknowledge, and respond to students' needs in away that enables the latter
to access and utilise the help on offer, in other words, to develop a safe place in which
the student and facilitator can join and begin to journey from where they are to where
they want and need to go (Gluck & Draisma, 1997).

DTW hasevolved in the context of creating |earning spaceswithin which students
feel safeto ask for and receive help, and learning facilitators are safe to offer help and
to put thisin aform that can be accessed and used by the students, even in the face of
opposition from “conventional” teaching practitioners and educators.

Determining Students’ Needs and How to Meet Them

Possibilitiesfor determining what the students’ needsare and how these can be met
are revealed by the students as they feel safe enough to risk beginning to join with the
learning facilitator working on their writing assignments. For exampl e, asthey talk about
what they are trying to write, the students begin to reveal snippets of their learning and
writing storiesthroughwhat they say and do. Their talking, together with thefacilitator’s
listening, observation, and interaction with the students, are essential parts of forming
successful learning relationships, because as they talk and position themselves within
theworkspace, they begintoreveal their fearsof writing and their desiresto successfully
complete the written assignment.

As studentstalk, they frequently begin to risk sharing their stories of writing and
reading, and thefacilitator beginsto hear and gain an understanding of their experiences
of themselves as writers. While the students talk, the facilitator listens to their voices,
and checkswhat they have heard against observations of the students’ physical posture
and their positioning of themselvesin relation to the facilitator and the chaotic state of
thephysical learning space (thefacilitator’ sofficeisaconglomeration of incongruencies,
with no books on the shelves, an electronic whiteboard that acts as atheatre scrim upon
which to project and record images, an office floor which serves as a stage, a pink pig
with wings sitting on top of acomputer, and a purple tutu with silver trim adorning the
door; asacolleague hasremarked: “ Onerespondstoincongruencies’. Morespecifically,
incongruencies can be used in the learning context to generate possibilities for both the
students’ and the facilitator’s learning).

Where there is congruency between the student’s voice, body posture, and their
positioning of themselves within the room, the facilitator is then able to identify and
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respond to the learning needs embedded in their stories. Listening and observation is
from the perspective of feeling one’ sway into what the students are saying, hearing the
essence of their learners' voices, and then responding to those voicesin avoicethat is
empathic, and furthermore isin language and actions that the students can identify and
resonate with. Responses frequently employ humour and street language that students
would normally use away from the formality of a“right and proper” teaching situation.

Listening to Align

Listeningtolearners’ storiesenablesalignment with the essence of their voices, as
well asidentification of their learning strengths, or “dominant intelligence” (Gardner,
1983). Gardner defines intelligence as “the ability to solve problems, or to create
products, that are valued within one or more cultural settings’, and proposes seven
distinctintelligences, thesebeing: visual/spatial, musical, verbal, |ogical/mathematical,
interpersonal, intrapersonal, and bodily/kinaesthetic. By gaining an understanding of
the student’ sdominant intelligences, we are abl e to reframe positionsand actionsin the
learning context and process so that they are directed toward facilitating a student’s
individual and collective learning through their dominances and gifts. The focusisto
utilise the student’s strongest ability to bring their stories “in-line” with other modes
through which clear communication with others is most easily achieved. In turn, this
provides a medium and way of being and acting with students that brings them, their
learning story, their dominances, the assignment in question, the relevant theory, and
inherent literacy demands of the disciplines they are studying, and the facilitator into
relationship.

Effectively understanding student strengths provides a means of facilitating
“conditions for learning” that enable the student to be immersed in the discipline, and
to receive demonstration of how learning and assessment are structured in the culture
of the discipline (Cambourne & Turbill, 1987). This provides them with a basis for
devel oping expectations of what “ success” meansin thediscipline, and to cometo grips
with how they can begintorespondtowhat isrequired. Demonstration and expectations
enablethestudentsto do away with“ guesswork” and theideathat peoplewho “dowell”
have access to some academic and learning “magic”.

Oncethestudent beginsto know what theplaying field of thedisciplineis, they have
some awareness of what is required of them should they “have ago”, and thereby give
themselves a chance of success. Acceptance of where they are, where they need to go,
and what they needto doto get thereisnot apainlessor risk-free process. However, their
willingnesstohaveago, and to begin approximating what isrequiredisgreatly enhanced
if thestudentisabletorisk translating or reframing the assignment inthe context of their
own language and their cultural and social context — their way of being in and making
meaning of theworld. Cambourne’ s* conditionsfor learning” have been utilised asatool
for reflecting on and making meaning of the student’ s learning process, practices, and
needs, and for assessing the appropriateness of the teaching and learning process. In
turn, this has been used so that the learner’ s process/practice and needs can be aligned
with instruction and learning facilitation that meets student needs. The “conditions for
learning” have also contributed to the mix in which tasks in the DTW process were
specified (Gluck, Draisma, Fulcher, & Worthy, 2004).
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Joining and Working through Kinaesthetic and

Spatial Intelligences

Thefollowing example providesinsight into working through aspecific student’s
kinaesthetic and spatial intelligenceto enhancetheir processof repositioning or bringing
themselves into relationship with the culture of learning, language, and patterns of
working within the discourse. The example al so tells how using the student’ s dominant
intelligences enabled them to reposition or redefine themselves as learners, and to use
images and their body experiences to make meaning of the world. These images and
experiences provided a starting point for the student to begin to tell her story of the
assignment, firstly in her own language, and then in the language of the discipline.
Studentsbecome multilingual asthey beginto acquire and master thelanguageand ways
that work is carried out in the culture of the disciplinesin which they study. As many
indigenous students have exclaimed:

When | go home | get trouble because my mates tell me | don’t speak right
any more. They tell me | speak university. So | have to be careful when | go
home to speak like they do. | allow myself to fall back into it. It becomes
automatic after a while.

While at schooal, this student focused only during dance classes. Following school
she entered classical dance education at university; however, aknee injury prevented
her from graduating and pursuing acareer asaprofessional dancer. It transpired that she
now wanted to become an environmental scientist, but without possessing any of the
requisite background in mathematics, biology, or chemistry: “I told you, I’ve been
dancin’”.

The student was brought into relationship with chemistry and maths through her
kinaesthetic and visual strengths, together with the disciplines she had acquired as she
was apprenticed into the thinking of the world of dance. The process of immersing the
dancer in the disciplines of chemistry and mathematics so that she could receive
demonstration of how learning and assessment were structured in the culture of these
disciplinesbeganwithjoining, listening, and dealing with her expectationsof herself and
her fears. For example, she had never studied chemistry nor written auniversity essay.

Her first assignment required her to consider the differences between gases and
liquids. Shewas at aloss as to how to begin to respond to what was required. Despite
thelearningfacilitator (Gluck) never having studied chemistry, heneverthelesshad prior
experience in enabling Aboriginal students to succeed in chemistry (Draisma, Gluck,
Hancock, Kanitz, Price, Knell, Sharman, & Squires, 1994) and physics(Gluck & Draisma,
1997).

Webegan by listening to her fearsand expectations of herself. It soon becameclear
that she needed to becomeaware of what shewasrequired todoinorder to haveachance
of success. In effect, sherequired demonstration of thewritten formthat her assignment
needed to take; in other words, “What’ s it supposed to ook like?’" She also needed to
know who totalk with, how and whereto acquirerelevant information, how to assemble
and consider that information, and how to present her analysis (in other words,
production).
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Oncethe listening process was compl eted, the student’ s experience of dance was
used to reframe the assignment. She needed to experience and come to know that the
learning processes and skillsacquired during her dance education weretransferableand
useable in science education.

Thestudent experienced connection (transferability) astheofficefloor wascleared
and used as a stage on which to assemble the attributes of gases and liquids. Student
and facilitator then danced the attributes around in amanner that allowed the former to
compare and contrast the nature of gases and liquids. Information on attributes was
obtained by reference to class notes, texts, and asking other students (more capable
peers) within the science disciplines. The student was then assisted to recall images of
the choreography and dance process and utilise it asabasis for structuring, recording,
and writing draft text to approximate what the chemistry subject required. As she
produced assignment drafts, she was encouraged to reflect on the work process so that
shewas aware that each draft provided a building block upon which she could build her
argument — her story of the assignment, as it were. As the drafts approximated what
could be acceptabl e to the markers, the student wasintroduced to the idea of taking her
draft paper to the lecturer to seek his expert commentary. The paper was then revised,
submitted, and subsequently passed. The work provided a model that enabled her to
begin to be apprenticed into ajourney from being a dancer to becoming awriter.

The student was also able to utilise her understanding of the importance of drills
and skillsin learning and mastering the disciplines within dance to appreciate her need
to develop drillsand skillsthat would support her acquisition and mastery of chemistry
and mathematics. For example, during mathematics classes she was able to understand
what was being demonstrated, and to apply the principles within the demonstration to
solveproblemswithinthestructureof the classand presenceof thetutor. However, once
sheleft the classroom and was presented with an assignment, an examination, or in-class
quizzes, shewasunableto repeat the problem-solving process. A meetingwascalled with
an empathic maths tutor. After some discussion, the student and the tutor understood
the importance of drills, skills, and practice in becoming consciously (and uncon-
sciously) skilled inlearning and performing ballet. It wasthen asmall step to bring into
her awareness the importance of drills and skills in performing and learning to apply
mathematical skillsand knowledgetoarangeof problemsinarange of settings— quizzes,
assignments and examinations. A series of mathematical drills and skills and practice
problems were devel oped with the student. As she began to use them to reinforce the
learning that had taken placeinformal classes, she becameunconsciously skilledinusing
the tools of mathematics and enculturated into its language and thinking.

The process of building approximations through discussion and images, and the
development of drills and skillsto enable her to go from consciously to unconsciously
skilled, was repeated as the student went on to other assignments. After afew assign-
ments, she required less and |ess assistance. The process was not smooth or emotion
free; itwasat timeshighly charged, and required the student to continue to make hersel f
willingto ask for and use help from moreexpert othersasshejourneyed toward becoming
and recognising herself as awriter.

The notion of travelling or journeying from where she was to where she needed to
go, in other words, toward her potential, with the help of more expert othersisakin to
traversing Vygotsky’s*“zone of proximal development” (ZPD), “the distance between
the actual developmental level as determined by independent problem solving, and the
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level of potential development as determined through problem solving under adult
guidance or in collaboration with more capable peers’ (Vygotsky, 1978, p. 86).

Thenatureof therelati onship between the dancer and thefacilitator isencapsul ated
by Wells (1999) in the following assembly of extracts from Vygotsky’s Thinking and
Foeech (1937/1987):

leading (her) to carry out activities that force (her) to rise above (herself).
(p.213)

The teacher, working with the (student) on a given question, explains,
informs, inquires, corrects, and forces the (student herself) to explain. All
this work on concepts, the entire process of their formation, is worked out
by the (student) in collaboration with the adult in instruction. Now, (when
the student) solves a problem ... (she) must make independent use of the
results of that earlier collaboration. (pp. 215-216)

The process of facilitating dancing, recalling images, and recording her story into
text, then using that asabasisfor devel oping approximationsand afinal submissionwith
the hel p of more expert otherswasnot astraightforward or simpleprocess. Rather, it was
a means of evolving an experience and generating images and text that enabled the
student to use her way of making meaning to construct her story of the assignment and
bring it into alignment with the requirements of the discipline. As she risked dancing,
recalling and usingimages, making approximations, and putting theminto text sothat the
story was outside of herself, enabled her to stand back — to stand outside of herself —
to see what she was creating and how it was being created. Moreover, these creations,
movement, images, and text were part of her structuring knowledge and her becoming a
writer. They were tangible, observable signposts of her process of becoming awriter.

The student does not remember the dancing that took place in the learning
facilitator’ soffice. By contrast, it remainsastrong memory for thelatter, becauseitisa
vividreminder of thevalue of generatingimagesand body experienceswhen facilitating
learning with people who have dominance in kinaesthetic and spatial intelligence.

THE ‘ANTI-IDIOT’ SPRAY

The following story encapsulates some of the difficult times experienced by this
same environmental science student during her journey. It also tells how the student’s
being a dancer and performer provided a medium to work through those challenges.

A chanceencounter outsidethe Aboriginal Education Centre produced thefollow-
ing exchange:

Russell:  How's it going?
Student:  All right.

R What are you working on?

S  Anessay for environmental studies.
R When'sit due?

S Next week.
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Bring it down to my office and I'll have a look now if that’s ok?
When I’ ve finished me smoke.

R Where are you up to?
S I'vecompleted it.

R Whereisit?

S It'sinmy bag.

R Can | have a look?
S  Yeah

R

S

Shortly afterwards, the student arrived with essay in hand.

R Have you shown this to anyone else?

S  What do you mean?

R Haveyou runit past your tutor or lecturer, you know the people who are going
to mark it so that you can check whether you have covered what they want and
put in a form they require?

No way.

Well, that is what consultation times are for, to get feed back so that you can
redraft and submit beforeit is marked.

No way! I‘m not going to do that!

Why not?

Because | don’t want to look like anidiot! If it isnot up to scratch, | will find out
when | get it back. It’ll either pass or fail. And | am not going to be humiliated
by the tutor or thelecturer. | amnot going to feel or look like an idiot asthey tell
me my draft is no good and then tell me the final is no good. | would rather just
hand it in. It either passes or fails.

Py

wxnw

At this point, Russell pushes none too politely past the student and yells down the hall
to the Student Counsellor located three doors away:

R Hey Fred, have you got the Anti-ldiot Spray there?

Fred: (from inside his office) How much do you need?

R I’'mgoingto need a carton of the bloody stuff because we have a major case here.
Have you got a minute?

Thestudent wasleaning against thedoorframe and | ooking for escapefrom the* hal lway
theatre” into which she was being thrust; however, there was no escape because both
facilitator and counsellor were blocking her retreat.

F  What's happening?

R Shehasdonethe essay and doesn’t want to show it to the tutor or lecturer before
she submits. She’ sfrightenedif it’ snot up to scratch, she'll look likeanidiot! She
reckons she'd be better off submitting without feedback and redrafting.

F  Yeah, she needs the spray bad.

R& F (in unison): Getting feedback and using it to redraft your final submission iswhat
it's about. That is the Anti-lIdiot Spray.
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S  I'mtired of doing draftsand getting feedback. | just want to writethe bloody thing
and put it in. It shits me that | can’t just write the bloody thing straight off!

R Welcometotheworld of writing. It takestimeto draft and redraft, and asyou know

it takes arse glue and a fist to write. That isall that isrequired, arse glue and a

fist. You glueyour arseinthe seat, produce a draft, useyour fist to knock on doors

of people who know what is required, get their feedback, and then rework and

submit. It’s better to appear like anidiot at draft time than to prove you are one

when you get a fail because you didn't follow the pattern that has proved

successful for you.

Yeah (with great resignation).

So who is the tutor?

Greg.

Do you get on all right with Greg?

Yeah he’s good.

So use my phone and set up an appointment.

Ok.

NDWLWDWDDW

The student then phoned to arrange an appointment, went and met with the tutor,
redrafted and submitted her assignment (and subsequently passed).

R Just prior to her graduation and taking up employment in the environmental
science field the student shared that her strongest memory was of the two of us
walking down to the Faculty Office, me standing at the end of the hall way
blocking her escape as she proceeded to the tutor’s door, made a fist, knocked
and asked the discipline’s‘more expert other’ for help and using it to redraft and
submit — and the Anti-Idiot Spray continued working through the rest of her
degree.

Telephone conversations with the student after she took up employment have also
revealed she continues to utilise more expert others as she continues her learning
journeys through her professional life.

Stop “ Shoulding” on Your self

Difficulties that the students experienced with their writing are related to similar
difficulties that the learning facilitator has likewise experienced (and continues to
experience) when writing, together with what the latter (and others) do in practice to
overcome them. These storiestell of fear of ablank page (or blank screen), feelings of
inadequacy, and being physically, mentally, and emotionally taxed by theboring activity
calledwriting.

R | takegreat pleasurein telling the students how | failed English every year | was
at school and how | regarded myself as'illiterateor literacyinefficient’, even after
| had completed a number of university degrees. | relate how | felt | could never
say what | wanted to in a way that | perceived got my message to the audience |
was writing for. Most of all, | retell how | didn’t meet my expectations of what |
thought | should be able to do as a writer. For example, | retell the feelings that
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| had as assignments or refereed articles would be handed back — a feeling of
doom. | also tell them stories of how | have recreated my story of writing so that
| can now experience writing as enjoyable, exciting, and an adventurein telling
my story —an adventurein which | nolonger ‘should on’” myself. | relate and act
out stories of how | was ‘should on’ from a great height by teachers, colleagues,
and most of all myself. My self talkwas‘ | should’ beabletowritelikeother people
— that mob that gets ‘top marks' or has refereed articles easily accepted.

In sharing experiences of writing, it is emphasised that the writing processis personal
— itisabout me, it isabout my story. Whatever the assignment or the writing task, itis
acknowledged that the student is taking arisk by telling their story of the assignment
or thesis. The process of writing isshifted fromtelling or reporting something objective
and separate from themsel vesto something that is personal and that istheirs, something
that they construct. Itisal so emphasised that their writing and their experience of writing
is one of becoming and coming to know through building and telling their story.

R | frequently act outinthetheatre of my office: Your initial draft may be excrement
toyou. And by thetimeyou havefinished, youwill knowyour first terrifying death-
defying act of Drawing, Talking, and Writing, and making the first draft contain
the excrement that will give you the fertiliser you need to grow your work. Your
fertilizer for growth starts with the basic excrement. So just get it down and stop
“shoulding’ on yourself.

JUST GET IT DOWN, MAKE A BEGINNING:
STOP “SHOULDING” ON YOURSELF!

Students are encouraged to get down on the page whatever they think and feel is
the story — to just make abeginning on the story they aretrying to tell so that they can
reflect on what they have put down: “ Take what you like, useit as abuilding block for
therest of your story” . Thisemphasisinvariably resultsin studentsexclaiming: “| should
beableto sit down and just writewhat isup in my head, put it on the page, and just walk
away. | shouldbeabletodoitall inonego!” Thefacilitator then utilisestheideaof being
“should on” to tell stories of how they were should on from agreat height by teachers,
and most of all by thelatter’ sunrealistic expectationsof himself. Thestudentsinvariably
have no difficulty inidentifying with stories of being “should on” by others, and most
of all by themselves.

Once student and learning facilitator have joined through the “should ons”, once
they have personalised the writing process, once they have shared stories, they are able
to come to awareness and acceptance, and then begin to take actions that enable the
devel opment of another way, away that enablesthemtotell the storiesof what they want
to write in away that meets the needs of their audiences and themselves.

Just likethedancer (seepreviously), most studentsareinitially resistant totheidea
of personalising their story of their assignment, let alone draw, talk, and then writetheir
assignment. However, there is nothing like desperation to generate willingnessto join
and try another way. By the time students have reached the facilitator’s door, they are
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generally “running scared” and running out of optionsfor staying in theinstitution and
completing their studies. Consequently, they are generally prepared to roll the writing
dice one more time. At some time in the joining process they are asked: “What is the
definition of insanity?” They generally respond with incredulous expressions and
silently consider running out the door. But when desperate enough students do not run,
an opportunity presentsitself totalk about theinsanity of continuingto employ aprocess
of writing that has never worked for themin the past, and expecting it will miraculously
work in the future.

Stumbling on Another Way with Desperate People

TheKoori Mail — an Aboriginal newspaper — was publishing students’ personal
accountsof whothey were, wherethey had comefrom, what they were doing beforethey
had cometo university, what they wanted to cometo university for, what they did to get
into university, and how they were being supported and succeeding in their studies.
Aboriginal inmatesinamaximumand high security jail read these storiesand approached
their education officer toask if thelearning facilitator (Gluck) would gotothejail andtalk
with them. Thegist of the conversationsthat subsequently took place between the Head
of the Aboriginal Education Centre, Gluck, and the prisoners could be summarised as
follows:

Prisoners: We read those stories in the Koori Mail and we need to get some of that
literacy. Otherwise we are going to get out of here and find ourselves comin’
straight back inside. You know some of us have been doin’ life on install ments —
in and out, in and out the door. The main gateis like a bloody revolvin’ door.

As we sat there trying to think how to respond, our eyes drifted around the
cavernous brick room paintedin prison green. Our eyesfocused ontheonly decorations,
afew paintings in the Aboriginal xray and dot painting styles of northern and central
Australia.

We: Who did those paintings? (A few of the men identified themselves asthe artists).
You like to paint?

Spokesperson: Yeah we like to paint and paintin’ isn't gonnaearnusalivin’ and keep
usout of here [prison]. We' ve had paintin’ courses. We can paint. We need to get
some literacy. And we don’t want that TAFE? mob, we' ve tried their literacy and
it doesn’t do anything for us. It’ sjust bloody boring. Shit, we told em not to come
back. Last thing they wanted to teach us gardening! In here!

We replied: Ok what about we teach you literacy through art.

The spokesperson replied: Yeah that sounds like a good idea.

Accordingly, it was arranged to work with the prisonersto enable them to become
literate through art. The prisonersdid lots of painting but little writing. Some prisoners
begantotell the story of their painting, and thiswas used in turn to build text (including
afew poems); they felt safe enough to talk with the facilitator about their painting. An
exhibition was subsequently held at the University Gallery, with the Regional Com-
mander for Corrective Services opening the show.
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Jail security protocols made the use of tape recorders and computers problematic.
Consequently, when the prisoners were not able to write, or talk and write at the same
time, thefacilitator recorded what the prisoner said by way of handwritten notes, which
werethen used as abasisfor further drafts (which wereleft in the hands of the prisoner
for his own safekeeping). Both the painting and the story being told were the property
of the prisoner; moreover, they weretheexpertsonthestory of their story. Consequently,
they had control and ownership of what was painted, spoken, and transcribed into text,
aswell asthe power to adjust, redraft, or delete whatever they had to say; they also had
the power to participate, observe, or withdraw. Most significantly, whatever they said
wascorrect from their perspective, sincethey werethe expert; in aprison environment,
thisisaremarkable state!

Not only did the facilitator learn about people being expert on the story of their
story, but also how to work with enabling them to tell and build that story, so they were
ableto usetheir language and their context (social, historical, and cultural) asthe basis
for being and becoming a student, and expert in learning. The process of eliciting their
story and bringing outside resources and expertise to their process in a manner that
enabled them to reinforce and value their expertise was critical to their repositioning
themselvestorepaint, retell, and rewritetheir story of themselves. Thevalueof their story
and expertise wasreinforced by listening, observing, and acknowledging what they had
done, and then introducing material into the discussion in a manner that enabled them
to access and utilise what they liked and discard what they did not. The key was not the
resources, but rather it was the process of joining, safety, and the nature of the
interpersonal relationship that enabled outside material to be brought into the relation-
shipor learning spaceinaformthat they could control and takewhat they liked and | eave
the rest.

In its most basic form, drawing, talking, and writing enabled the learner to risk
presenting and telling in their language, that contained their voice, who they were, and
todiscussit with thefacilitator asboth a“ more expert other” and “aco-learner”. Where
the prisoner considered that what was introduced to the discussion enabled them to
enhancetheir story, they were thenin aposition to consider incorporating that material
intotheir story and owningit. For example, ayoung man doing hisfirsttime*“inside” came
into theroom and sat with the other students and watched them paint. After ashort time,
he picked up a sheet of paper and painted a kangaroo in the x-ray style of the Northern
Territory. The fellow next to him was painting in the dot style of central Australia:

R Hi I'mRussell. (pause) That’s a terrific kangaroo.
Inmate: Yeah (silence) Yeah. I’ m painting a kangaroo. (long silence) What' sthis class
all about anyway?

A discussion ensued as to how the class had come about as a direct response to
inmates’ initiative. Once the politics of who we were and why we were there had been
discussed, the inmate felt confident enough to say:

Inmate: I’ ve known for years |’ ve got Aboriginal blood in me. But | don’t know much
about who | am, where | come from, who my family is.
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This information provided a massive amount of material that was able to be
introduced into discussion with the student. Moreover, discussions in such a prison
setting were not private; everyone else in the room was listening in and watching this
interaction. Thusinformation about and themesinherent in his painting were ableto be
introduced in future discussions relevant to large numbers of the inmates.

The preceding short statement provided direction for the introduction of material
on the connection between painting and law — painting tellsastory, what the symbols
mean, what country they relate to, ownership of information, racism, and arguments of
blood and identity. As a direct result of this brief discussion, materials (videos and
books) that provided information on thetopicswereableto belocated. Furthermore, and
with the prisoners’ agreement, geneal ogical and historical recordswere accessed at the
Institute of Aboriginal and Islander Affairs, in order to begin to determine who their
families were, where they came from, and what piece of land was their country. The
process and the introduction of thisinformation led to a difference in the way the men
talked, painted, and (inthe case of afew) wrote. Asthey assimilated theinformation, their
discussion, drawing, and painting presented a story of what their work was and what it
washbecoming. They al so presented astory of themsel vesas someonewho wasbecoming
alearner, astoryteller, and awriter.

THE LANGUAGE OF
PRESENTING OURSELVES

Thedifferencesin experiences and the language used to present ourselvesto each
other provided arich opportunity for all to learn. A shared understanding of language
gradually developed through working together. As intimacy of language grew, this
enabled the integration of information from outside each other’s experience into indi-
vidual stories. Thisis equivalent to Lysaght’s (2001) emphasis on the importance of
language and the development of shared language in the learning and devel opment of
female adult students from non- traditional backgrounds “We present ourselvesto the
world through the language we use and, to alarge extent, our own understandings are
developed through the access we have to the languages of others” (Vygotsky, 1962,
1978).

DTW provides an arena in which to share stories and experiences, to the extent
whereby a learning facilitator could become a co-learner in a high security prison.
Conversely, prisoners could present themsel ves as not only prisoners, but alternatively
as painters, discussants, learners, writers, experts, and custodians of their story of
themselves and what they were becoming. DTW gave prisoners a process, a tool for
portraying who they were, standing outside themselves/their story that allowed them to
observe, reflect, and discuss themselves and their reflections with themselves and, if
they chose, with others.

The adoption of DTW as atool for individual and group reflection was evident in
one of the men’swork. He was a prolific painter, and most of his painting was donein
his cell, alone; he painted little if anything in class and was continually seeking
informationon cultureand prisoners’ rights. Heal so started theideaof aK oori prisoners’
newsletter, that led to conversation on how the artwork and what was written could be
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shown to the outside community through the Koori Mail (asit eventuated, theideawas
not able to be pursued because he was released prior to the arrangement being made).

The idea of the Koori prisoners' newsletter enabled the prisoners to begin to
construct, tell, or portray their own storiesto themselves, to be their own audience and,
if they wished, allow othersto be membersof their audience, an audiencewithwhomthey
could choose to share their stories and receive feedback. They had control of what to
let out, what to let in, and what to keep private and unchanged. Most of all, it provided
them with the safety to tell their own story to themselves and witness it.

DTW provides aprocessinwhich it is possible for the prisoner to become aware
of their story, to accept it, and be apprenticed to being and acting on their own behal f
by using their “dark side” to write anew positive story. Wasthe prison work a success?
Firstly, afew prisonersuponreleasefrom high security madetheir way tothe University
and spent afew weeksworking at their own paceandintheir ownway whilethey thought
about comingto university officially and what they wanted to do. All of these peoplehad
addiction issues and were subsequently linked with rehabilitation programs. Secondly,
one postgraduate student claims the DTW process allowed him to bring himself into
relationship with his past, hisworst stories and fears that were depressing and prevent-
ing himfromreleasing himself towrite: “1 needed the saf e place, ameans of getting there,
and the ability to recognisethat | had to giveit to myself. Drawing, talking, and writing
allowed me the safety to risk taking the journey”.

MORE DESPERATE PEOPLE AND THE
CONNECTION TO COMPUTERS

Work with indigenous prevocational and vocational students attending TAFE or
incarcerated in prisons and university undergraduate and postgraduate students hasled
to an appreciation of the role of drawing, talking, and writing in people’s journeys to
literacy efficiency. Working with Aborigines in a range of educational settings has
provided experiencesthat led to theideathat computer software could be produced that
incorporated drawing, talking, voicerecognition, and writing. |deally, the softwarewould
respond to the student rather than demanding that the user adapt to the demands
(constraints) of the machine.

A period of study leavewasundertaken by Gluck inthe spring of 2000, working with
indigenous visual arts students at an Aboriginal Technical And Further Education —
TAFE — college. Themajority of these studentswere literacy-inefficient in the context
of their course work. In addition, some could not read the captions under the picture of
the sports star on the back page of newspapers. By the end of this study leave, some of
these students achieved literacy efficiency that would have allowed them to enter, and
with help successfully complete, undergraduate studies at university. Moreover, the
studentshad become computer literate, and were ableto utilizeacomputer asan integral
part of their DTW process.
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MAKING SENSE OF THE STUDY LEAVE

At the completion of this study |leave period, three students and a teacher were
asked: “What’s it been like for you working with me?” Each student was approached
separately, and their account of the experiencerecorded, typed into text, and then given
back to them for checking and amendment. Each student was then given acopy of their
completed transcript and a copy of theinterview tape. It was agreed that the facilitator
could keep a copy of the transcript and the accompanying tape for study purposes. A
similar process was undertaken with the teacher with whom Gluck had worked very
closely during histime at the college.

Theinterviewswere undertaken at the end of the college year, ayear that resulted
in students devel oping and using their storiesto become literacy-efficient visual artists
inthe creative artsdiscipline. The students' processes culminated in them being ableto
risk collaboration with music and theatre students, so that elementsof their storieswere
performed and presented in public to the arts community, their families, friends, and
colleagues. Thefull text of all the storiesthat thevisual art studentshad devel oped during
the year was displayed in books on the walls of the performance space.

The transcription of the students’ and teacher’ s interviews took place during the
college summer vacation. The process of typing, checking, and amending thetranscripts
yielded richesbeyond words. The processof transcribing theinterviewswiththeteacher
and two of the students was relatively straightforward. The patterns or combination of
wordsand meaning were easily identified and transcribed. However, thetranscription of
the third student’ sinterview was exhausting — his 90-minute tape took many weeksto
transcribe. Listening to his tape and attempting to transcribe verbatim led to repeated
loss of focus of the words spoken and comprehension of what he talked about.
Eventually, it wasrealised that he had filled his speech with thinking and cultural saf ety
phrases such as “sort of thing like that”. For example, his speech went something like
this:

| was walkin’ down the mission, sort of thing like that with my mates sort
of thing like that when we ran into the mission superintendent sort of thing
like that and he sort of thing like that asked us sort of thing like that where
we sort of thing like that were going sort of thing like that. We stopped sort
of thing like that and said we wer e sort of thing like that going sort of thing
like that to the river sort of thing like that to fish for red fin.

After recognising the patterns in the speech, it was possible to go back to his tape and
easily makemeaning and record verbatim. The processwasidentical to working one-to-
onewiththestudent onthecomputer: hetalked, andthelearningfacilitator automatically
filtered out histhinking and safety phrases. When these “ phrases” were edited out, the
followingtext emerged:

| waswalkin’ down the mission with my mates when weran into the mission
superintendent. He asked where we were going. We stopped and said we
wer e going to the river to fish for red fin.
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However as Ernie Blackmore, an indigenous PhD student in English, and familiar with
DTW, observed:

And this [the version where the phrases are edited out] is crap! Although
it tells the ‘story’ it is not the ‘voice’ or the intent of the narrator. It is
homogenised beyond the point of recognition.

Safety phrases remain an integral part of the student’ s everyday speech and urban
voice. Everything that he said, including the thinking and safety phrases, was re-
recorded into text. When this transcript was presented to the student at the beginning
of the next school year, his use of safety and thinking phrases was highlighted using
strike-throughs:

| was walkin’ down the mission, sort-ef-thingtke-that with my mates sert
ofthingtkethat when we ran into the mission superintendent sert-efthing
tkethat and he sert-of-thingtikethat asked us sert-efthingtkethat where
we sertof-thingtkethat were going sort of thing like that. We stopped sert
ofthingtkethat and said we wer e -sert-of-thingtkethat-going sert-of-thing
tike-that to the river sort-ef-thingtkethat to fish for red fin.

The student immediately recognised the saf ety and thinking patternsin his speech
and recalled what he was doing/thinking when he used them to deal with themanagement
arm of the mission and bureaucracy in general. He also recognised that these patterns
continue to be an integral part of both his everyday speech and for the process of
transacting business. They have become an integral part of his urban indigenous voice
as he negotiates with education, social security, housing, medical, and arange of other
bureaucracies and social and cultural contexts.

Upon witnessing hisuse of cultural and safety “phrases”, the student experienced
an“ah ha'”, Eureka, or “light bulb” moment. He was able to see how his speech could
be put into text and easily edited so that it was readily understandable by others. He
recognised that if the computer could put his speech into text, safety and thinking
phrases could either be suppressed or noted with astrike-through. Thiswould give him
achoice of texts. The computer was atool for mediating and communicating meaning
across cultural contexts.

Thestrike-through process al so provided ameans of demonstrating to histeachers
that hewasnot illiterate or literacy-inefficient. Rather, it allowed teachersto recognise
hisdexterity and inventivenesswhen dealing with and working acrosscomplex social and
cultural domains/contexts. From this point on, teachers began to see him in a different
light. Thiswas not a person who could not speak a coherent phrase; this was a highly
accomplished reader of cultural and social contextswho could devel op and createstories
and communicatetheminamanner that wasappropriateto ensuring hissafety. Oncethe
student and histeachers had gained insight into hisway of voicing and communicating
his story, he began to experiment by risking to build and communicate intimate stories
and arguments that were suitable for a range of audiences. For example, as the strike-
through section of transcript was presented to the student, he was ableto talk about and
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provide other layers of information that detailed the place of social and cultural safety
phrases.

The discussion about the phrases then provided an opportunity for the storyteller
to provide insights to his process of thinking, acting, and being:

| was walkin’ down the mission, sortef-thingtkethat [thinking pause]
with my mates sert-of-thingtke-that [thinking pause feeling his way into
the context of the mission]

when we ran into the mission superintendent sort-of-thing—tike-that
[thinking pause continuing to feel his way into the context of the mission
and beginning of a safety phrase]

and he sertefthingtikethat [ furthering safety phrase—how muchisit safe
to divulge to the listener/teacher/transcriber]

asked ussertoefthingtikethat [ safety phrasewith respect to thelistener and
the frame of reference — the superintendent]

where we sort-of-thing-tke-that were going sort-ef-thingtikethat. [ safety

pause and contexting continued]

We stopped sert-of-thing-tke-that [thinking and safety phrase and then
decision to provide the next level of information]

We looked at each other, [visually] for hints on what to say [as we built a
safe response to the superintendent] because he had the power to cause us
all sorts of problems. [In those days the superintendent had the power to
withhold rations, determine who could stay on the mission, and much
more.] You had to be careful what you said. So we would let little bits of
information out and see the superintendent’s reactions and then add some
mor e that we thought was safe. We would also be looking into each others
faces[ and body language/signals] to check out that we wer e giving out safe
information. Every one of us walking down the mission knew talking with
the superintendent could be dangerous [for the people talking and for
othersreferred to.]

and said we wer e sert-of-thingtkethat going sortoef-thingtikethat tothe
river sertof-thingtkethat to fish for red fin.

Now thisextralevel of information could be builtintothestory if theteller wished.
The computer makesit easy toincorporatethisextralevel of information providing you
have a safe environment in which someone can utilise a tool to record and put the
conversationintotext form. Theability andfacility to converse, tonarrate, tell and record
the story with the tip of one’'s tongue rather than through one’s finger tips allows the
teller toincorporate saf ety phrasesinto thetext, and then to decidewhat to dowith them.
Decisions on what to do would be influenced by many factors, such as the cultural and
social origin and physical location of both teller and listener, and the sense of audience
of both.
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PUTTING STUDENTS STORIESINTO TEXT
ON SCREEN AND READING IT BACK:
A TOOL FOR ENHANCING LITERACY

Work with one of the more literacy-inefficient students started with the learning
facilitator acting asaword recogniser; the student talked, and the facilitator typed and
read back what the former had said. The process of reading the student’s transcribed
story back to him ashefollowed thetext onthe screen often resulted in their intervening
and providing more information, which was subsequently added to the story. More
importantly, it wasnoticed that hislipsbegantomoveinsyncwiththefacilitator’ svoice
as the latter read the story back to him from the screen. The student had begun to
recognise the patterns of words and phrasesin the text of his story on the screen. Then
one magical day he said:

You didn’t read exactly what’s on the screen. You made a mistake.

Atthispoint it wasclear hefelt safeto begin to transform hisplacein the learning
relationship from student toward co-learner. Not long after thisevent, the student began
toregularly correct the recording and reading process, by saying: “ Y ou didn’t record or
read exactly what | said”. Shortly after this, the student began to read aloud what was
on the screen and began to use the keyboard to edit his story.

Thestudent’ sprocessof mentally (silently) reading back hisown material promoted
hisacquisition and control of text and language. Even more importantly, it was discov-
ered that his reading back of the text reflected his anticipation of what should or could
beonthe screen, acombination of memory, anticipation, and meaning-making. Signifi-
cant divergence between what he anticipated he had said, what was recorded, and what
was read back often signalled that information was missing from the story. This
frequently led the student to devel op and include awhole new level of information and
direction that enhanced his story.

Having accessto hisown story onthe screen facilitated the student’ s preparedness
to risk reading aloud, because he knew the context and detail of the information in the
story intimately. Consequently, he could anticipate what was going to be on the screen.
The idea of “mistakes”, together with the courage it takes to experiment, was often
discussed with the student. In discussing mistakes, it was emphasised that the story was
his story, he was the expert of his story; nobody else knew or owned his story. He had
the power to tell and control what hetold and to whom, in other words, who had theright
to access his story. The computer provided a good deal of safety because the student
was ableto put his story on adisc, take it out of the machine, and put it in a safe place.
This can still result in withholding all the “truth” from disclosure because the process
does not always guarantee safety.

The process of reading the text back to the student as he followed it on the screen
often gave him the space to listen to and evaluate whether the information he was
divulging was appropriate for theaudienceit wasto bedeliveredto. It also gave himthe
facility to question and be questioned whether the story flowed and “hung together”.

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.



Literacy by Way of Automatic Speech Recognition 101

Russell: | well remember the day he was reading back, and it became obviousto methat
histext did not flow. Thestory wasflowing, thenitjarred, kicked, bucked just like
achainsaw hittinganail inalog. Hequickly moved on, and at theend of hisreading,
| read his passage back to him. | used my voice and actions to suggest something
wasmissing— arelationship hidden, not divulged. At thispoint wewere standing
face to face, at most 15cm between us; he verbally exploded as | said:

R Thisdoesn’twork. Tell memoreabout thisrelationship and how it connectstothis.
(There was some unfinished business; we wer e talking about a very closerelative
that was mentioned in his story.)

S  Thisisgetting too personal mate. I’ mtelling you mate! Y ou mate are not going to

know this stuff!! This is my stuff!!! Family business! (emphasis on “ mate” ;

vehemence with which the words were spat; | was covered in spittle). We stood
staring at each other, which culturally is a huge confrontation and can proceed
to getting the crap beaten out of one. | stood still and said:

Writing is personal.

Thisistoo personal thisis my business!

| continued to stay very still. | dropped the level of my voiceto a normal speaking

voice and we began to be able to relax the process. And | proceeded to say: Well

it's your decision as to what goesin here.

PR Rpy

Therichesthat flowed from this reading back process were huge. From this point
on, the writer recognised the value of reading back, the use of voice, body, text, and
visuals. The floodgates opened, and he began to write like he had never written before.
He came to know he was writing about himself for himself, in other words, for self-
explorationand growth. The question of safety and security of information still remains,
however.

Thelearning facilitation process wasfar removed from repetitive drillsand skills.
The student experienced the computer asatool that he could safely experiment with and
use to develop, to control, to tell and communicate his stories while simultaneously
learning to becomputer-literateand literacy-efficient. For example, hewasableto make
statements to the effect of:

The computer isatool. It allows metakethe boring crap out of writing. Like
when | wasat school it wasexhausting [the processof drafting and redrafting
withapencil wasphysically and emotionally taxing]. Bloody boring [tedium,
the repetition] and having to get it right! [the teacher’ sway, the way of the
mainstream in alanguage and context that was not relevant to the student’s
private, cultural and social world. Theworld beyond theincarceration space
of the classroom]. Anyway | was put down the back of the classroom next to
the window so that | could stare out the window: ‘Be quiet! And just wait

for classto be finished'.

The student later went on to research and write his own material and began to
combine his visual, oral, and textual abilities with his telling stories of his people's
survival and growth.

By using the student’ s context, stories, and the language of hislabour of everyday
meaning-making, hehad arich basefor facilitating hisacquisition and control of Creative
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Arts language and learning. | remember him telling me one Friday afternoon how his
writing wasinforming hisartwork. A base had been laid that opened the possibility for
him to further his study within the Creative Arts disciplines and enhance his creative
process through writing. The process of becoming literacy-efficient through his own
storiesalso provided astarting point for thinking about what form asoftwareimplemen-
tation of DTW could take. Safety issuesstill remain paramount. A way through the safety
process is enabling students to tell their stories and fictionalise reality, in which we
switchthetruthfor fictionandfictionfor truth, and create aplaceinwhich they canwork
safely.

First Adventures with Speech Recognition: Smashing
Affairs and Serendipity

Following the af orementioned period of study | eave, experimentation commenced
with commercial speech recognition software, nhamely IBM ViaVoice® and Dragon
NaturallySpeaking™. More specifically, the learning facilitator read the text output
displayed onthe computer screen back to thetext-illiterate user, after which the student
repeated the phrases, in other words, manually closing of the feedback loop. Work also
continued one day per week with the vocational students.

Any idea of using commercial, off-the-shelf speech recognition software was
abandoned after a number of near “smashing” experiences with indigenous university
and TAFE students. For example, the students’ frustration with commercial word
processing and speech recognition packages boiled over to the point where some
students physically attacked the computers!

It soon became apparent that word recognition software needed to be developed
that was compatible with the needs of literacy-inefficient, orally-proficient, visually-
strong computer illiterate peoplefroman oral story-telling tradition. More specifically,
feedback ideally should be provided in the student’s own voice, and not the learning
facilitator’s (or even worse, synthetic voice output as produced by speech recognition
packages).

At the same time, work resumed with Marion, an undergraduate student in early
childhood education, as she worked toward detailing a rationale that supported her
literacy learning facilitation practice. She was encouraged to pose alearning situation
that she may befaced with when shewasworking in her community. Next, shewasasked
to think of the “worst case” classroom scenario she could imagine, tell her story of the
scenario in her own language, and then put it into text (the language of which was
subsequently refined in order to be acceptable to other academics in the faculty). She
was then asked to come up with a strategy for solving this “worst case” scenario, and
todetail therelevant theoristsand their theoriesthat underpinned her proposed practice.

Marionthen proceeded to generate anarrative (adream sequence) inwhich shewas
visited by the theorists, and asked them questions on what they would do and how they
would utilise their theories to facilitate the child’s learning. Within her narrative, the
theorists asked her questions and demonstrated in dance how they would intermingle
their theories and actions to meet the child’s learning needs. Marion’s narrative was
recorded, refined, and used as a basis for her to begin to explicate her rationale for
teaching: “....dialoguingwithreal orimagined others...isanessential part of the process
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of textual composition that even the most knowledgeabl e others are able to continueto
learnintheZone of Proximal Development” (Wells, 1999).

Werealised that the work wasin avery different genre than what the marker was
accustomed to receiving. Thework was submitted and with asmall amount of represen-
tation the case for adifferent genre was accepted and the essay was passed. Theory and
the language of the discipline were being recast as atool for her use. DTW provided a
process for the student to develop a coherent whole between context, practice and
theory. It enabled her to write astory that could provide anew direction for her learning
and teaching.

However when Marion cameto discussfurther assignments, she began her process
from her position of developing and presenting argumentsinwaysand in the genre that
had previously failed her. After much thrashing about, she invariably returned and
continued toreturnto and usethe drawing, talking, and writing processthat underscored
the initial success. It was frustrating, though, to see Marion repeatedly start her
investigation and development of assignments from a position that, despite being
previously accepted by the faculty, was not one that served her learning needs. A
subsequent altercation with the learning facilitator led to the explication of the process
and afirst draft of the stepsinvolved in “Opening the Door to Literacy”. These were
subsequently incorporated into a submission to the Apple University Development
Fund, through which scheme initial funding for the development of voice recognition
software based on DTW was forthcoming.

The learning theories that provide the theoretical underpinnings of DTW were
presented at appropriate conferences (Fulcher, Gluck, Worthy, Draisma, & Vialle, 2003;
Gluck et al., 2004); indeed, the coming together of researchersfromdiversefieldscould
be viewed as the equivalent of a group zone of proximal development and quasi-
community of practice (not to mention arealization that similar task sets to facilitate
literacy efficiency with studentswho werefrom different social and cultural backgrounds
had been independently evolved and used by different collaborators). This coming
together also allowed us to articulate the four related tasks that are at the heart of the
draw-talk-writeprocess, namely:

1  talking with the learning facilitator about the assignment topic and relating it to
their personal experience,

2 utilising that personal experience to draw, decipher, and tell a detailed story or
createascenario that can beused to fulfil therequirements of the assignment topic
or areaof inquiry,

3 researching the topic and determining atheoretical perspective that supports the
story as an example suitable for the assignment topic, and

4. refining the assignment through revisiting steps (1) through (3).

The above four-stage DTW process has been validated by way of “show cause”
(restricted) students enrolled in the Bachel or of Teaching program at the University of
Wollongong (Fulcher et al., 2003).
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Enabling PhD Students to Develop and Write Their

Dissertations

The most recent learning facilitation work has been undertaken with doctoral
students, namely ErnieBlackmore (English, University of Wollongong), FrancesL aneyrie
(Management, University of Wollongong), and Robyn Thompson (Education, Univer-
sity of Canberra). Thework takesplaceinthefacilitator’ soffice, whichinreality operates
asatheatre. Anelectronic whiteboard occupiesawall and servesasatheatre scrim upon
which to talk out our thoughts and draw them on the board. This board is not state of
the art; it does not connect to acomputer, and it does not record voices. Consequently,
sessions are recorded, and students take both tape recording and type with them when
they leave. It is not always quiet and demure in this theatre/office; it gets intense and
stormy at times (recepti onistscamped adj acent to the offi ce sometimes obj ect to thework
because they cannot hear their phone conversations).

The tape recordings, scrim drawings, and the physical movement and interaction
between student and facilitator all contribute to the students’ telling of the stories that
ultimately becometheir PhD theses; Erniehhascoined theterm“literary dramaturgy” for
describing this process. Robyn experienced the processin atheatre that heavily relied
on butcher’s paper pinned up to the balcony of her house as she brought her thesis to
completion. Russell’ swork processeswere utilised by Robyn asasingle site case study
for her thesis. Othershaveexperienced it aswehavedrawnwith sticksinthered hot earth
of north east Arnhem Land and the north west of the Kimberly.

The process does not require high level s of technology if you have peoplewho can
read and write and transcribe what is said or acted out into text in a timely fashion.
However, the participants need to be really dedicated to the task because of the sheer
physical demands and the time required for transcription. Ernie and Frances have a
collection of tapes that they have yet to transcribe, but more importantly they retain
images generated as a result of the experience in the theatre of Russell’s office. The
images are dated and provide alog of (access to) the conversations which transpired.
Also, thedrawingsand their devel opment act asmuch morethan simply providing alog
or areflective space. As Ernie says, “the process is diminished when we do not have
immediate accessto thetext — text that is synchronised with our voices, not amachine-
synthesised voice, what’s more.”

Thewhite board process enables usto work quickly and spontaneously and to take
risks with thoughts that we could not do if sitting and writing. Writing is slow and
laboriousand frequently requires“arseglue” isolation and demandsthat we expressour
thoughts and what we want to say through the tips of our fingers on akey board, pen,
or pencil; moreover, it requires usto be stationary, fixed in front of acomputer or book
inwhichwerecord. Alternatively, thedrawing, talking, and writing processall owsusto
physically move and to use and be aware of our voice levels, body postures, and
language, aswell asthe way we position ourselvesin relation to each other and to “the
scrim”, within thetheatre of our work. Awareness of our positioninginrelation to each
other, the scrim/whiteboard, and theforecourt or stage of our working theatre (the office
floor) allows usto read each other’ s body language and emotional responses. It allows
usto observe and practice protocols of challenge without confrontation and aggression,
for emotional violence to be contained, and for superior/inferior positioning to be
handledinaway that safety and generativerelationshipsareenhanced. Thereisno place
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for loss of face because we are able to flow and become used to evolving rather than
forming fixed positions. Fixity isnot entertained, and direct eye contact and thechallenge
of posture and gesture is used within cross-cultural bounds. There is no escape as we
are focused in away that reorients the learning environment to conditions for learning
focused on the student and the facilitator acquiring language and making meaning by
co-production.

Thetheatre of our work and, in particular, the scrim or screen and the forecourt of
our theatre upon which we place, stir, boil, construct, and project our work allowsusto
record and layer the evolution of the argument. Printouts allow usto locate where our
diversionsfitintheoverall of thepastiche. Thisvisual location and tracking of argument
provides agood deal of security for risking our diving into and developing a part. The
doing allows usto know how to locate and shift as we develop the whole; it definitely
enlivens the process. The sharing of the pen and the eraser greatly enhances the
collaborative role — one pen user at atime. The person with the pen hasthetalking and
painting stick. Each person is not independent; we are in relationship with the other in
the drawing-talking-writing of thiswhite board theatre. Each person realizes that what
is unfolding or evolving is mutually dependent on the other, in other words, a co-
production or collaborative enterprise. It fitswith atraditional process of developing,
teaching, and sharing knowledge. No one holds the key to “the knowledge” or to
knowledge production. We focus on co-creation, interdependence, and knowledge
dissemination similar to thetheatre of ceremony wherebark paintingsare developed and
utilized in the conduct of indigenous ceremonies. Confrontation, conflict, and creation
are contained within the theatre of healthy mutual inter-dependence and co-production.

Thewhiteboardtheatre processallowsexploration to be concretized, pictured, and
reworked at speed because the stored image provides a record that allows the fear of
losing or forgetting or being distracted to be accommodated.

Theprocessisparticularly suitedto athesisbecauseit isabout thewho, how, what,
where, when, with whom, costs, and benefits of urban indigenous voices, and the role
of contemporary theatre in the development and conduct of these voices.

Ernie: There have been any number of walks around the campus, for whatever reason,
and many of these walks have been an extension of thework inthe“theatre” space
that isyour office. And on many occasions, although not as many asought to have
occurred, the tapes continued to role. Under these circumstances, other localities
becamethetheatre, including many visitsfor lunch to Food Re-Thought, wherewe
used their paper tablecloths as substitute whiteboards. It isinteresting to note that
when we returned to the “theatre” of your office the discussions continued with
the white board being very quickly drawn back into the process, asit allowed for
the argumentsto be presented to and into a“safe”, familiar, trustworthy, but most
of all afamiliar place where there was afeeling that judgement was on hold. This
sense of “freedom” then permitsthe free flow of ideas and information from both
student and facilitator.

Out beyond ideas of right doing and wrong doing thereisafield. I'll meet
you there. Rumi (A Great Wagon, c1250).
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The movement and the confrontation that can take place through the theatre or the
“literary dramaturgy” should not be underestimated. It invokes movement by allowing
all participants to collaboratively utilise the many different conceptions or ideas and
fieldsthat are encrypted and present in the fragments of their individual and collective
drawing, gesture, and speech. Most of all, it allowsthe participantsto explore and depict
the relationship between what is and what is becoming; it enables an understanding of
relationships.

Frances: The drawing can be alengthy process. It isnot about getting the pictureright;

itisabout defining and putting the parts down in an image and then getting them
... or drawing the relationship between them so that the relationship isright for
me. Spending all the time getting the drawing or the relationships between the
elements of theimageright allowsthewriting to flow because | havethe structure
and the relationship/interrelationship sitting not just before my eyes— 1 have it
in my mind and my body. My body remembers how | put it together; it isalso the
physical process and the relationship process with the physical layout of
Russell’ stotally shamboli ¢ office, which almost comesup to the state of mirroring
my private working space at home. | can see the positioning of ourselves before
the electronic white board, and | can also associate the emotional state that is
present as | produce the drawings and depict the relationships. The emotional
content isthat | identify with my thoughts asinterviewer and empathize with the
interviewee in my study. Synthesis of my identification and empathy produced
moments of awar eness, clarity and acceptance that led to the action of drawing.
Having gone through a similar sense of awareness to that being shared by the
interviewees (in my study) and have that reflected back to me provided the light
bulb moment As the drawing and the talking led to the awareness at the forefront
of my mind, that awareness was drawn and accepted.
Drawing in the theatre provides a mechanism or task for bringing seemingly
unconnected ideas, concepts, theories, and experiencesinto a visual image, and
then | am able to talk to the image, record it, and then use that as a basis for
writing. The unpacking of the meaning and the connectionsin theimage provides
for a well-articulated space, an interactive space, because it allows for a
conversation and a shared drawing space that leads to the production and
knowing of something that would otherwise not have been generated.

It should be pointed out that the drawingsreferred to above are artefacts and texts.
They are a concrete expression, the embodiment of a principle, an abstract idea. The
drawings are part of a semiotic mediation process that is housed in the literary-
dramaturgy (the semiotic mediation process al so appliesto movement and dance). The
drawings are even more powerful when read and used as a thinking device and a basis
for building further text and meaning through dialoguewith self and others. Importantly,
the drawings are representative of what the drawer knew at the time of drawing, and are
toolsfor creating aplatform for further coming to know and extending the upper bounds
of thedrawers’ ZPD. Thedrawingsmadeintheliterary-dramaturgy processarealso part
of a co-production.

Itisno coincidencethat the emphasisthroughout ison theimportance of all writing
(all research) being about story, adevel oping story, astory of becoming. It isthe belief
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of theauthorsthat lifeisastory, and that the tasksinvolved in the processthat underlies
the DTW software in many ways provides a technology that facilitates narrative
development and narrative therapy processes. It also parallels |language development
processesin childrenand adults, particularly theway inwhich private speech or internal
speech is used, and the impact that voicing or putting thought into words changes the
mental processes or development.

InErnie’ sexperience, theliterary dramaturgy processprovideshimwiththe safety
towrite:

Many attempts have been made (to write), but if you're not safe you' re not
safe, and the resources ar e not resources. You haveto join at the heart and
the spirit and the soul. Safety is essential to enabling people to ‘go within
in order to go without’ and ‘to go without in order to go within’; safety to
go into the secret space within themsel ves so that they can begin to prepare
their story, the private space (to) access and assemble the story. Safety
provides the means of going through the (seemingly) impenetrable barrier
to the theatre of work that houses the potential.

...the accepted normisthe written word, black print on a white page. ...We
do allow ourselves as adults to use visual aids, photographs, paintings,
movies, videos, electronically and print-generated images to convey
messages, Cartooniststell storiesin pictureswithout words, ... | can create
the image and then use my verbal account to develop the text.

Therehavebeentimeswhen Erniehasbeen absol utely stuck, unableto beginwork.
At thispoint, thelearning facilitator hasdrawn astory or put animage on the board and
proceeded to use the image to “spark up” or “kick start” the process. The following
saying (aphorism) appears on the top of Russell’ swhite board that evokes a picture that
fits with the narrative process:

Inorder to gowithinyou haveto go without; In order to go without you have
to go within.

Serendipity Continued

A 2003 Apple University Development Grant led to the authors working
collaboratively with a graduate student and final-year undergraduate software project
groups within the School of IT and Computer Science on DTW software devel opment.
The collaboration required specification of what functionsthe software wasrequired to
perform, aswell ashow it would be accessed and controlled by theclient users(students).
The SITACSstudentswereinitially keento beginwork. After anintroductory meeting,
regular project meetings were held between the students and the learning facilitator.

M eetingstook placeeither inthefacilitator’ soffice orinameetingroomwhereone
of the walls was taken up by large white boards. From the time of the first meeting, the
facilitator began to tell and draw stories of how he had worked, facilitated, and been a
co-learner with literacy-inefficient students as they journeyed towards literacy effi-
ciency. Similarly, the Facilitator and students set out on their own journey to co-evolve
the basis of the software for the DTW process.
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The SITACS students appeared to listen to the stories from the perspective of
identifying and devel oping components that would enable them to devel op the human
computer interface (HCI). They were intent on eliciting thingsto be done and aligning
themwiththingsthey knew they could easily achieve. During the meetings, they wanted
and continually sought directions/specifications. Instead, they were told stories of
workingwith computer and literacy-inefficient peopleand thelatter’ sjourneystoliteracy
efficiency, whichinturn generated ideas underlying the demand for thissoftware. They
contained thick descriptions of the relationships that developed during the journeys
between learners, facilitator, co-learners, and technology. For example, the stories
contained information onwho the user popul ation were, how they had successfully been
enabled to access and utilise computers to enhance their leaning, their attitudes to
access, use, and security of information, what they used information technology for, and
the contextsin which they were likely to use aDTW program. From the perspective of
the learning facilitator, the stories contained critical information for the design and
development of an effective HCI between literacy-inefficient people and the proposed
word recognition software.

The students becameirritated with the focus on story and rel ationship orientation.
A major irritant for themwasapparently their lack of experienceincritically listeningto
storiesand using therich datawithin themto inform software evolution. This presented
achallenge because one of the facilitator’s major toolsfor conveying informationisto
tell storiesthat focuson relationships. Consequently, Marion was brought together with
the SITACS students in order to share individual (and joint) experiences of the DTW
process. Marion was able to contribute her experience of becoming literacy efficient
throughDTW, andthe SITACSstudentswereableto experiencestoriesviaMarion. This
was particularly useful because in addition to her experience of becoming literacy
efficient through her participation in the evolution of the DTW process, she:

i had contributed to the learning relationships that enabled the learning facilitator
to begin to imagine, speak of, and define adirection for creating DTW software;

i isan activemember of her indigenouscommunity, acommunity that hasapotential
need for processes and resources that can facilitate journeys into literacy effi-
ciency through drawing, talking, and writing;

i isan activemember of alearning community within her homecommunity, aqualified
pre-school teacher, and literacy teacher, and is soon to be a qualified primary
school teacher;

i iscomputer literate, well beyond thelearning facilitator’s experience, and hasan
intimate understanding of the technological milieu that members of the user
population are exposed to on adaily basis; and

i is similar in age to the students.

Marion’ sincorporationinto thework processenabled anumber of tough situations
tobemediated. For example, the SITACS studentswere concerned about their ability to
integrate adrawing function into the software. Their response could be paraphrased as:

Our experience of becoming literate did not involve drawing; so it’s not

necessary to draw to become literate. Incorporating the drawing function
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in the softwareis difficult or beyond our programming experience, so let’s
put it on the back burner. It's not a priority.

Marion was able to relate her experience of the value of drawing in orally- and
visually- strong people’ sjourneysintoliteracy efficiency. Consequently, theintegration
of thedrawing functioninto the software came off thebackburner. In essence, sheplayed
a mediating role between the information within the facilitator’s stories, her literacy
journey, her journeys with others, and the product-focused world of the SITACS
students.

Her introduction into thework process contributed to the devel opment of ashared
way of working and language that enabled us to move beyond each of our individual
storiesthat we brought to the project. We were then abl e to begin to produce something
that individually we would not have been able to consider. We had entered a well-
articulated space, we had a new way of talking and relating with each other and the
technology, and we were becoming co-learners.

Insummary:

i we were able to put our ideas into language and drawings that we could use as a
basis for questioning and mediating meaning and devel oping shared direction,

i the studentswere ableto beimmersed in thick descriptionsof how acomputer and
literacy-inefficient person whoisorally- and visually-strong can utilise drawing,
talking, and writing processes to become literacy efficient,

i the students began to consider and pursue possibilities beyond what they knew
they could do easily and quickly, in other words, the familiar, and

i our collectivedirectionwasto inch toward producing ahuman computer interface
that would go beyond our individual experiences of computer users and literacy
journeys.

We had generated a relationship space that could be characterised as a well-
articul ated space, aspacethat enabled usto do and speak of what we coul d not otherwise
have done (Latour, 1991). And within that space we operated a group zone of proximal
development aswefacilitated each other’ slearning. As Thompson (2003, p. 161) notes:

Bringing people into ‘well articulated’ spaces will allow a new language
to evolve ... the importance of facilitating and engaging people in well
articulated spaces, of bringing people and things into a relationship to
enable them to speak in a different way. | am now compelled to focus on
relationships rather than things, and the mutuality of those relationships
rather than concentrating on ‘components of a product’ (Williams, 1997,
p. 48) and objects per se.

Itwasinthisspirit of facilitating awell-articul ated spacethat Marion, thefacilitator,
and the SITACS students were brought together so that we could open ourselves up to
possibilities. The processwasfascinating fromthefacilitator’ spoint of view and at times
exasperating for the students.

The environment within the theatre of our work affords usthe luxury of being able
torisk aligning and defining ourselves with the unknown and what could be. Further, it
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allows usto cease justifying our position through what we “know” . We are freed from
defending our “positions” which in turn allows us to flow and imagine and become. It
enables us to be freed from the shackles of what could be referred to as the death of a
new beginning, since the discordant, rather than harmony, is valued.

The safety of the DTW processin the office “theatre” has allowed usto surrender
and explorewhat could become, whether wethink wewill likeit or not. The processallows
us to become willing to let the unknown, the unacknowledged, the half thought, the
unsubstantiated, the hunch to bubble up into awareness, be shared with and acknowl-
edged by atrusted other within our community, and then if we choosetakeit to apublic
space. The theatre of the office provides a relationship space that is the equivalent of
awell-articulated space, a spacethat formsaswe bring ourselvesinto relationship with
the known, the unknown, and the “ not yet”, so that we are able to conceive and generate
knowing and do what we would not otherwise have been able to do.

INAPPROPRIATENESS OF USING
COMMERCIAL (OFF-THE-SHELF)
SPEECH RECOGNITION SOFTWARE
FOR DRAW-TALK-WRITE

Current best practicein assisting orally-proficient, literacy-inefficient speakersto
become written-text literate is labour-intensive, and involves a learning facilitator
working one-on-one with the speaker, as previously described. An automatic word
recognition system is currently under development to enable people to impart their
storiesdirectlyintext form, without the assistance of ahuman facilitator, in other words,
automation of the DTW process. It should be emphasized that this system differs from
virtually all other speech recognition systemsin that users are not required to interact

Figure 14. Conventional ASR system
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viawritten text (such as Kohonen, 1988); at the heart of the systemisaneural network-
based pattern recognizer which transl ates speech patternsinto visual rather than textual
cues.

Commercial speech recognition packages such as IBM’s ViaVoice® for PC or
Macintosh (www-306.ibm.com/software/voice/viavoice) and Dragon’'s
NaturallySpeaking™ (www.dragontalk.com/) for M S-Windows™ typically adapt them-
selvestoindividual usersduringaninitial training or “ settlingin” period (although some
would argue that users need to adapt themselves to the idiosyncrasies of the software
— sic). Such adaptation is predicated, however, on users being text literate, in other
words, being able to first read, then respond to feedback presented to them by way of
thecomputer’ sscreen. Obviously such anapproachisnot viablefor text-illiterateusers,
who nevertheless are typically orally proficient, and often come from aculturerich in
imagery and story-telling. M ore appropriate feedback for such userswould therefore be
images rather than written text.

Automation of the DTW Process

Theaim of thisstudy isto replace the one-on-one humanfacilitator in the feedback
loop (Figureld — adaptivelearning) with an automated system — one based on aneural
network patternclassifier. Further, our basic aimisnolonger to producetext output from
speechinput, but rather images. Cast intermsof apattern recognition problem, suddenly
artificial neural networks become relevant again, whereas for conventional speech
recognition they have been largely superseded by hidden Markov models.

A 2002 pilot study centered around the M acintosh-based proof-of-concept system
shown in Figure 15. It comprised: (a) avoice input pre-processor (microphone, sound
card, and noisefilter), (b) afast Fourier transform package (which converted sampled
wordsto frequencies), and (c) an ANN pattern classifier (the output from which wasthe
1-of-n “best match” from the reference word look-up table). We hasten to add that this
reference vocabulary was kept very small in thisfirst instance.

Figure 15. Original Macintosh-based system (2002)
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Figure 16. Apple Macintosh G4™ screen dumps of Talk-Write software (top: user
manual; bottom: input)
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By theend of this12-monthinaugural study, whilst some successwasforthcoming
with each of these three sub-sections, the overall system performance was somewhat
lacking.

A second system wasdevel oped thefollowing year. A screen dump fromthe Apple
Mac G4 screenisshownin Figure 16, from which we seeintegration of IBM ViaVoice®,
aswell as support for additional input devices — namely scanner, graphics tablet and
mouse. These latter devices are needed in order to augment speech input. More
specifically, usersare able to input their own drawings (either pre-prepared or new, via
the tablet or mouse), in order to complement their oral stories.

Asafirst approximation to speech recognitionfor literacy, images could simply be
linked on a one-to-one basis with words in the inbuilt vocabulary look-up table —
whether that be as part of the Macintosh OS/X™ inbuilt speech library, or third-party
software packages such as Dragon NaturallySpeaking™ or IBM ViaVoice® (the latter
isshowninFigure 16). Ultimately however, weareai mingto do thistheother way around
— in other words, to produce image output from speech input, then link the former on
aone-to-onebasistotext. Over timethe user beginsto associate (internalize) thesewords
and images as part of the DTW process.

Other system features critical to producing an automated DTW “engine” are:

1  storage of speech input in aform easily indexed and retrieved as needed, and
2 synchronised playback of keywords/phrases in the speaker’s own voice rather
than in the unrealistic styles used in commercial speech synthesis packages.

Uptothepresent time, anunrealistically small referencevocabulary hasbeen used,;
obviously this would need to be expanded significantly before a production version is
released into the marketplace. More to the point, we have yet to determine just what
constitutes a “minimum yet sufficient”-sized vocabulary to enable users to tell their
stories (and no doubt this will vary considerably from user to user).

CONCLUSION

This work-in-progress has thrown up numerous exciting possibilities for future
investigation. Apart from the system issues outlined above, thereis much experimenta-
tion that could be performed to determine optimum pattern recognition configurations
(to date, only simple, naive multi-layer perceptron/back-propagation neural networks
have been used). Likewise, we haveyet to benchmark ANNsagainst alternative pattern
classifier approaches.

Thefuture possibilitiesand applications of draw-talk-writearelimited only by our
fears and lack of perceived safety. For example, “literary dramaturgy” has recently
enabled people to consider and experiment public writing processes with literacy-
inefficient people. DTW providesrich potential for minoritiesto voice, witness, and be
heard by audiences who demand text and belittle those that have not mastered it.

What we need to assist usin our endeavours is technology that can record voice
into text, synchroniseit with playback inthe voice of the narrator and the production of
images, in other words, an intelligent system which incorporates word recognition, but
which is configured in a manner that enables computer illiterate people to utilise the
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system. Thus the computer system needs to respond to the user, rather than constrain
people because they cannot meet the demands or limitations of the machine.

Lastly, successful automation of DTW on a computer platform would have far-
reaching consequences beyond the specific (text-illiterate) section of the population of
interest in the present study. Indeed, any community possessing a strong oral (story-
telling) tradition could stand to benefit from thistechnology. M oreover, sincethesystem
output isimages rather than text, it would have universal appeal.
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ENDNOTES

! Twowell known examplesof ANNsIearning unexpected i nput-output associations
are (a) sunny versus cloudy days instead of images of forests with and without
Army tanks, and (b) photographs of ‘ males' versus‘females’ being classified not
on the basis of gender, but rather on the amount of white space between the tops
of their heads and thetop of the photograph [ref. The Dream Machine, Episode#4,
BBC1991].

2 Technical And Further Education — technical/vocational post-secondary school
colleges.

APPENDIX: AUTOMATIC SPEECH
RECOGNITION RESOURCES

| — Speech Resear ch:

i http://research.microsoft.com/srg/ (Redmond, USA);
http://research.microsoft.com/speech/ (China)

. www.al maden.ibm.com/

i www.speech.cs.cmu.edu (Carnegie Mellon University)

|1 — Speech Resour ces:

i http://cmusphinx.sourceforge.net/html/cmusphinx.php (Linux, Unix & Windows)

i http://online.ldc.upenn.edu/ (Linguistic Data Consortium, Univer sity of Pennsyl -
vania)

i http://emu.sourceforge.net/release.shtml (Emu = Tcl/Tk-based Linux/Solaris, +
windows/Mac binaries)

I11 — Speech Databases:
i www.hist.gov/speech/tests/spk/2000/ (US Department of Commerce) — see al so

The DARPA TIMIT Acoustic-Phonetic continuous speech corpus (CD-ROM)
NIST Speech Disk 1-1.1, NTISorder# PB91-505065, 1990

i www.speech.cs.cmu.edu/comp.speech/

i http://isw3.ai st-nara.ac.jp/l S/Shikano-lab/database/internet-resource/e-www-
site.html#Speech%20Database
i http://mambo.ucsc.edu/psl/speech.html

IV —Other Speech-Related Siteof I nterest:
i www.biometrics.org/html/research.html (speech & other biometrics)
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Chapter V

Smart Cars:.
The Next Frontier

Lars Petersson, National ICT Australia, Australia
Luke Fletcher, Australian National University, Australia
Nick Barnes, National ICT Australia, Australia

Alexander Zelinsky, CSIRO ICT Centre, Australia

ABSTRACT

This chapter gives an overview of driver assistance systems (DAS) in general and the
Smart Cars project in particular. Inthe Driver Assistance Systems Section, a set of key
competencies for an effective DAS are identified by comparing with a human co-pilot,
namely, traffic situation monitoring, driver’ sstate monitoring, vehiclestatemonitoring,
communication with the driver, vehicle control, and a reasoning system. It is also
recognised that such a system must be intuitive, non-intrusive and override-able. A few
of the currently available commercial systems are mentioned in the following section.
The Smart Cars project, which is a joint project between the Australian National
University and National ICT Australia, is then introduced. A number of different
research directions within the project are then presented in detail: obstacle detection
and tracking, speed sign detection and recognition, pedestrian detection, and blind
spot monitoring.
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Figure 1. The research platform, a 1999 Toyota Land Cruiser™, equipped with the
appropriate actuators, sensors, and computing power to perform monitoring and
control of the vehicle

INTRODUCTION

The number of cars in use on our roads increases every year, and with that, the
number of accidents. However, by introducing systems and technologies that help the
driver in difficult or dangerous situations, the car industry has been able to keep the
number of fatal accidents down. Examples of such systems are ABS-brakes and smart air
bag deployment. New, more advanced technologies that can help the driver have, in
recent years, started to be deployed in production vehicles. Examples of such systems
are parking aids, lane departure warning systems, and emergency brake systems. The
research in the Smart Cars project is particularly concerned with such advanced driver
assistance systems, namely, that assist the driver in controlling the car, but keep the
driver in the loop. Impressive work in this and related areas has been performed by
Dickmanns and Zapp (1987), Dickmanns (1999, 2000), Broggi, Bertozzi, and Fascioli
(2001), Mertz, McNeil, and Thorpe (2000), Zhao and Thorpe (2000), Aufere, Gowdy,
Mertz, Thorpe, Wang, and Yata (2003), and Bertozzi, Broggi, Carletti, Fascioli, Graf,
Grisleri, and Meinecke (2003). Their work deals to a large extent with the sensing aspect
of driver assistance, which is essential to create robust and reliable systems. An
interesting research area is, however, how to handle the information flow generated.
Depending on the context, information has different significance. For example, how are
warnings most efficiently conveyed?

DRIVER ASSISTANCE SYSTEMS

A driver assistance system (DAS) may perform activities like relieving the driver of
distracting routine activities, warn about upcoming situations, and possibly take control
of'the carifanaccidentis imminent. Depending on the task to be performed, a DAS must
have appropriate levels of competencies in a number of areas. If we consider the DAS
from the perspective of a human co-pilot, it is easier to pick out the important aspects.
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To be of assistance, the co-pilot needs to be aware of what is going on outside of the
car; for example, arethereany pedestriansin sight, wherearethey going, how istheroad
turning, and soon. Moreover, wewould like our co-pilot towarn usif wehavenot noticed
an upcoming situation. That means that not only should the co-pilot be aware of what
is going on outside of the car, but also what is happening inside, in other words, the
driver’ sresponses. In addition, our co-pilot must know where the vehicleisgoing, how
fast it is going, if we are braking, accelerating, and so forth, in order to make good
decisions. Good decisions are aresult of good reasoning. A successful driver/co-pilot
team requires good communication. The co-pilot must not be intrusive or present the
driver withtoo muchinformation. Finally, if the co-pilot noticesthat thedriver doesnot
respond to a situation that will result in an accident, they must be able to take control
of the car.

Returning to our non-human (automated DA S) co-pilot, we can condensetheabove
to the following key competencies:
i Traffic situation monitoring
i Driver’ s state monitoring
i V ehiclestatemonitoring
. Communicationwiththedriver
o Vehiclecontrol

i Reasoning system

The first three collect information which the DAS can use to analyse the current
situation. Thefourth— communicationwiththedriver — providesbothinputtotheDAS
and output to thedriver. For example, thedriver can specify an overall goal, or theDAS
can giveinformation to thedriver. Vehicle control isnecessary if it isexpected that the
DA Sshouldbeableto perform any semi- or fully-autonomous manoeuvres. A reasoning
system may range from adirect mapping from aninput to an output, toacomplex system
using the latest advances in artificial intelligence. The level of competence in each
category is dependent on the specific task to be solved.

Finally, with ahuman co-pilot, the DA S should possess thefollowing behavioural
characteristics:

o I ntuitive— The behaviour of the DA S must makeimmediate sensein the context
of the standard driving task.
i Non-intrusive — It must not distract or disrupt the driver unlessit is necessary.

° Override-able— Thedriver has ultimate control and can refuse assistance.

COMMERCIAL SYSTEMS

Thecar industry and related compani esare quickly moving towards more compl ex
systems to deploy in production vehicles. These range from non-critical systems such
as automatic parking to safety critical systemslike emergency brakes.

Toyotarecently released an automatic parallel parking aid that comesas an option
on their Prius™ model. The system uses arear camerathat views the potential parking
spot, and the driver selects an appropriate areawithin that view by moving linesin the
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image. After confirming the intended spot, the driver keeps their foot lightly on the
braking pedal, and the car will start backing up, steering automatically. Thesystemisstill
in its early stages of development, and can, so far, only park when it is possible to
continuously back into a parking space. Although it currently has obvious limitations,
it clearly showsthat major car manufacturersarewilling to deploy highly complex aids
in order to remain competitive.

In the area of active safety, Honda has introduced a Collision Mitigation Brake
System (CMS), initsInspire™ model. The system predictsrear-end collisionsand assists
brake operation to reduce the impact to occupants and the vehicleitself. A millimetre-
waveradar isused to estimate distancesto vehiclesahead, relative speeds, and expected
paths. Intheevent of alikely collision, thereisan audiblealarm, tightening of the seatbelt,
and a brake assist function that compensates for insufficient pedal pressure to reduce
the speed of impact. A systemlikethisisclearly asafety critical systemwhich can cause
accidents by itself if triggered by mistake.

There are also commercial systems that monitor the actions of the driver like
faceLAB™ from Seeing Machines (http://www.seeingmachines.com). faceLAB™ can
track the pose of the head and the direction of the eye gaze, and can measure the amount
of timetheeyelidsareclosed. Volvo and other car manufacturersplantoincorporatethis
into their advanced driver assistance systems.

THE SMART CARS PROJECT

TheSmart Cars projectisajoint project betweenthe Australian National University
and National ICT Australia. The project was initiated in 2000 by Professor Alexander
Zelinsky within the Research School of Information Sciences and Engineering. A
research platform was built using a 4WD Toyota Landcruiser by equipping it with
sensors and computing hardware, and by modifying the steering, braking, and accelera-
tor. In our current research, we are particularly concerned with advanced driver assis-
tance, systemsthat assist thedriver in controlling thecar, but keep thedriver intheloop.
This paradigm addresses, to some extent, the robustnessissue. Compl etely autonomous
systems need to be extremely robust and reliable — errors can be fatal — whereas an
assistive system enhances the driver’s existing capabilities. Using both external and
internal sensing, a natural step is to fuse the available data and suggest a suitable
response.

Thefocusof thisprojectistofurther identify effective methodsfor advanced driver
assistance, to develop particular sensing, detection, and human-machine interface
systems, and to make them robust and reliable.

Obstacle Detection and Tracking

Reliable obstacle detection and tracking has proved a challenging problem in
automotiveresearch. A moving sensor, varied lighting, and unknown object appearance
preclude many classic segmentation techniques such as background subtraction or
appearance-based feature detection. In response, progress has tended along two
avenues. superior sensing and constraining the problem. Superior sensors have in-
cluded laser range finders, millimetre wave radars, or large baseline stereo cameras
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(Broggi etal., 2001; Grover, Brooker, & Durrant-White, 2001; Roberts& Corke, 2000).
Constrained problem-based sol utions have used significant assumptions like flat road
models, featureless road surfaces, or looking for known/car-like objects (Dellaert,
Pomerleau, & Thorpe, 2001). Our approach takes the middle ground with standard
sensors and some weak constraints on the problem. The strength of the techniqueisthat
it combines several sensor data processing techniques and some reasonable assump-
tions about the obstacles (such as a consistent size and |ocation over time) to develop
arobust detection and tracking system. A key strength of the system is that additional
information sources (like better sensors, or image processing algorithms) can easily be
added, to improve the overall performance or to handle a particular case, without
modification to the existing system.

System Overview

The obstacle detection and tracking system has three phases of operation: detec-
tion, distillation, and tracking.

Figure 2 shows these phases which operate concurrently, detecting new obstacles
whiletracking previously-detected obstacles. Thefirst phase usesaset of “bottom up”,
whole- image techniques (stereo disparity, optical flow, colour consistency) to search
the image space for likely obstacles. The second phase uses the particle filter-based
“distillation_algorithm” to provide hypothesis-based or “top-down” processing on the
results of the first phase — the “distillation algorithm” has also been used for face
tracking (Loy, Fletcher, Apostol off, & Zelinsky, 2002) and lanetracking (A postol of f &
Zelinsky, 2003). Sets of particlesrepresenting each potential obstacle are injected into
the filter state-space in a Gaussian distribution around the detected obstacle location.
Particles representing unsubstantiated obstacles dissipate. The remaining potential

Figure 2. Phase 1. obstacle detection, phase 2. obstacle distillation, phase 3. obstacle
tracking
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obstaclesaretracked withinthedistillation framework between frames. Found obstacles
arerepresented by clusters of particleswhich remain consistent over time. The centroid
and spread of these clusters are then used to bootstrap an extended Kalman filter to
explicitly track each obstacle.

Obstacle Detection

The obstacle detection phase is based on the coarse segmentation of potential
obstacles from a stereo template correl ation-based disparity map and image gradient-
based optical flow data. Asmentionedin Frankeand Heinrich (2002), therange of optical
flow values and disparities encountered in the road scene islarge. Image pyramids are
used to compute fast disparity and flow maps acrossalarge range of disparities. For the
caseof optical flow, weimplement amethod similar to Simocelli (1999). Theoptical flow
is computed for the most coarse images, then the result is used to warp the next higher
imageresol utionto maintain an acceptably small imagemotionat eachlevel. The penalty
for using a coarse-to-fine approach isthat any errors occurring at any image resol ution
are propagated and amplified into the finer images.

For the disparity map estimation, image pyramids give a couple of added benefits
in addition to increasing the range of disparities estimated; in the case of the disparity
map estimation, noimagewarping betweenresol utionsis performed. Correl ation-based
techniquesare plagued with theissue of using the correct template window size. A large

Figure3. Top: greyscaleimage; bottom: disparity mapwithroad surfaceremoved (dark
isfar, bright is close; the car on theleft isacross a disparity range from 15-23 pixels,
the car on the right at seven pixels, carsin the distance are 4-6 pixels)
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Figure 4. Road scene with obstacles identified with bounding boxes
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window allowsamorereliable match, but causesoverly-smooth disparity maps. A small
window size allows for finer features to be represented, but introduces noise due to
erroneous matches. Fortunately, obstacle detection in road scenes usually supports the
rule-of-thumb that close objects are large, and distant objects, such as vehicles further
alongtheroad, aresmall. Using animage pyramid and cal cul ating the disparity for each
imageresol ution with the samesize correl ation window meansthat thelatter iseffectively
halved for each image resolution, going from coarse to fine. This property is what we
would prefer to match: large objects at large disparities, and smaller objects at small
disparities(likenear the horizon). Asno warpingisdone between imageresol utions, we
can avoidthe propagation of errorsbetweenimageresolutions. At higher resolutionswe
are interested in finding distant objects with small disparities, whereas larger objects
such as close vehicles are recovered at coarser image resolutions. Oneissue that arises
isthat coarse resolution images can only resolve disparities to half the accuracy of the
next higher image resolution. As this works in opposition to the property of disparity
estimates deteriorating as a function of the inverse of the distance, the effect on the
resultant disparity map is acceptable.

The stereo disparity map uses an iterative box filtering technique developed by
Faugeras, Hotz, Mathieu, Viéville, Zhang, Fua, Théron, Moll, Berry, Vuillemin, Bertin, and
Proy (1993) and implemented asdescribed by Kagami, Okada, I naba, and I noue (2000).

Theoptical flow and stereo dataisoverlayed, and a series of simple heuristicsare
used to remove noise, outliers, and background objects. The stereo data is further
processed by removing the road surface using the V-Disparity technique developed by
Labayrade, Aubert, and Tarel (2002). Thedisparity mapisaccumulated per row intoa2D
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histogram. The ground plane is assumed to be dominant, making a contour in the
histogram. The contour isapproximated by line segments, and the road surface can then
be subtracted from the disparity image. Figure 3 showsaroad scenewith the segmented
disparity image underneath. The obstacles are visible once the road surface has been
removed. Potential obstacles are extracted from thisimage using basic constraints of a
minimum hei ght and maximum height. Figure4 showstheresultant segmented road scene.
Note that several false positives exist. This is acceptable as the desired result of this
phaseisalow number of false negatives (missed obstacl es) at the expense of somefalse
positives (phantom obstacles), which will befiltered in the second phase of the system.

ObstacleDistillation

In this phase the potential obstacles identified above are “distilled”, using the
“distillation algorithm”, (Loy et al., 2002) into consistently-detected obstacles. The
“distillationalgorithm” (Figure5) isacombination of aparticlefilter withanintelligent
Ccue processing system. The cue processing system changes the rate at which different
sensor data is incorporated into the particle filter based on how well the sensors are
performing. For example, stereo datamay bedisrupted by amomentary occlusion of one
camera, in which case the information from this cueisignored in favour of other cues
which are unaffected.

Sets of particles representing each obstacle candidate are injected into the state-
space in a Gaussian distribution around the potential obstacle’s detected location.
Stereo disparity, optical flow, and colour consistency cues are again used to evaluate
the potential obstacles; thistime, however, only the projected locations of the particles
are evaluated, not the whole image. Over several iterations of the filter, particles
representing unsubstantiated obstacles dissipate. The remaining particles clump into
obstacles which are tracked within the particle filter between frames. Found obstacles
arerepresented by clusters of particleswhich remain consistent over time. Each cluster
of particles that survives a minimum number of iterations is then checked against a
Gaussian distribution at its centroid. If the Gaussian distribution adequately describes
the cluster or particles, an extended Kalman filter-based tracker is initialised (phase
three). Figure 6 illustrates clusters of particles detected representing obstacles to be
replaced withKalmanfilters.

Figure 5. Distillation — a visual cue processing framework
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Figure 6. Obstacle distillation: Uni-modal clustersin the particle filter are extracted
for tracking.

probabilities

Obstacle Tracking

In the third phase of the system, an extended Kalman Filter and image template
correlation is used to track each obstacle independently. Using the obstacle location
extracted from the previous phase, a uniqueness detector is used to identify good image
correl ationtempl atesfrom each of the stereo cameras. Thiscollection of templatesisthen
used to track the obstacle. The correlation templates are tracked independently in the
image using normalised cross correlation. The collection of templates associated with
each obstacleisthen evaluated by using the mean shiftintheimageand correlation val ue.
Templatestrackinginconsistently or unreliably are discarded. Theremaining templates
are used to estimate the new location of the obstacle fed to the extended Kalman filter.
The extended Kal man filter tracks the location of the vehiclein the 3D road coordinate
system and uses a constant velocity motion model. The size of the vehicle estimated in
the previous phase is assumed to be constant. Eventually the obstacle tracked is lost:
either overtaken, obscured, too far infront of the vehicleto be seen, or any other random
failure. Thisconditionisidentified by either noreliableimagetemplatesremainingor by
adivergenceintheco-variance matrix of thefilter. In either case, thesystemwill discard
the extended Kalman filter and, as a precaution, inject a cluster of particles at the final
location of the object back into the particle filter in the above phase of the system.

Figure7 showsthe output of the obstacl etracking engine. Each car istracked using
anindependent extended Kalmanfilter andimagetemplatecorrelation. Later inthisimage
sequence, the centre car islost due to atemplate tracking failure (only one templateis
tracking reliably at this stage), then the second phase of the system quickly detectsthe
vehicle again and tracks it using a new filter and new image templates. Also in this
sequence, the car on the far right is obscured by an overtaking vehicle. Again this
obstacle is lost, and the overtaking vehicle is detected and tracked instead.
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Figure 7. Output of obstacle tracker; rectangles indicate obstacle bounding boxes
“+” indicate correlation template locations; “*” indicate centroid of obstacle)

Speed Sign Detection and Recognition

Thetask wearelooking at hereis, withthehel p of camera(s), to automatically detect
and recognise road signs. Automatic road sign detection and recognition is avaluable
helptothedriver sincethesystem can, for example, makethedriver aware of the current
speed limit or an upcoming stop sign.

Solving this problem, it makes sense to use the fact that the roadway is well
structured. Under Australianlaw, the appearance of road signsishighly restricted. They
must be of aparticular size, and be awhite sign with black numbers surrounded by ared
circle. Unlessthesign hasbeentampered with, signswill appear approximately orthogo-
nally to the road direction. Finally, signs are always placed to be easily visible, so the
driver can see them without having to look away from the road.

The system must be able to work at frame rate (30Hz) which poses constraints on
themethodsto be used. A direct approachisto apply normalised crosscorrelationtothe
raw traffic sceneimage; however, thisapproachiscomputationally prohibitive, although
there are methods to reduce thisslightly (Betke & Makris, 1994).

Dealing with the problem of extensive computation, wewould liketo discard most
partsof theincoming images, thereby only performing expensive cal cul ationson rel evant
areas. One approach to do this is to divide the problem into two separate problems,
namely detection and classification. By using a cheap detection stage, we are able to
perform a more expensive classification stage. Many approaches have introduced
separate stages for sign detection and classification of different types of signs, for
example, Priese, Klieber, Lakmann, Rehrmann, and Schian, (1994); Miura, Kanda, and
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Figure 8. A typical candidate sign detected by the fast radial symmetry detector (a) at
the size it appears in the image, and (b) close-up. The outer circle and numbers are
narrow. Despiteits consistent appearance asa small imageto our eyes, it containsfew
pixels that could be said to be red, black, or even white.

(@ [ (o) I

Shirai (2000); Paclik, Novovicova, Somol, and Pudil, (2000); and Johansson (2002). This
is particularly useful when alarge number of sign types are to be classified. We argue
that this can be an effective means of managing computation for even asmall number of
sign typesif adetection stage is available that haslow computational cost, facilitating
real-timeoperation. It allowscomputational ly intensiveclassification to be performed on
only asmall part of theinput image stream, without requiring assumptions about where
signs may appear.

Detecting candidate regions by using colour segmentation is the most common
method for the detection stage. However, since the different colours (red, black, and
white) of the texturein the sign do not occupy more than acouple of pixelsnext to each
other, the bleeding of colours between pixels makesit virtually impossible to find any
consistent colours(see Figure 8). Dealing with thisproblem could easily removethefast
segmentation advantage of the two-step approach and requires further research.

Another approach to detection is a priori assumptions about image formation. At
itssimplest, one can assumethat the road is approximately straight, so large portions of
theimage can beignored as signs will not appear in them. However, such assumptions
can break down on curved roads, or with bumps such as speed humps. A more
sophisticated approach isto use some form of detection to facilitate scene understand-
ing, and thuseliminatealargeregion of theimage. For example, Piccoli, DeMicheli, Parodi,
and Campani (1996) suggest large uniform regions of the image that correspond to the
road and sky, and thus only looking in the region alongside the road and bel ow the sky
wheresignsarelikely to appear. However, thiswill not be adequatein moredifficult road
scenes, such as shown in Figure 9(b). They also suggest ignoring one side of theimage
assignswill only come up on oneside. Thisisinadequate for multi-lane highways, and
isthrowing away information in scenes such as Figure 9(a).

We propose a new efficient method for sign detection: the fast radial symmetry
detector (Loy & Zelinsky, 2003). It is applicable to signs with a circular feature, a
significant sub-set of signs. Many shape detectors are non-robust because they require
closed shapes. Robust techniques such as Hough circle detection (Minor & Sklansky,
1981) are slow to compute over-large images. The fast radial symmetry detector is
efficient enough to be run as a detector at frame rate. We are able to eliminate the vast

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.



Smart Cars 131

Figure 9. Some sample images with speed signs present (The quality of sign and the
lighting varied within our sequences, along with the scale of the sign that appeared.
Also, more than one sign may appear in a single image)

majority of fal sepositivesby considering only radially symmetric regionsthat are stable
across several images, and have a high count of pixelsrelative to the radius.

Wethen apply crosscorrelation tothesmall number of candidates. Thiswill beover
arestricted part of theimage. For cross-correl ation, scaleisaproblem, typically requiring
multiple templates at different resolutions. However, from theradiusreturned from the
fast radial symmetry detector, we know the approximate scale of the template.

Thefollowing presents preliminary work on asystem for visual speed sign recog-
nition. Itidentifiespossiblecandidate speed signsinanimagestream from avideo camera
mounted withinthecar looking alongtheroad. It then classifiesthe sign asto what speed
the sign indicated. This information can then be compared against the vehicle's
speedometer, and passed onto the driver if it appears that they have not reacted to the
change of conditions. Our approach exploitsthe structured nature of theroadtofacilitate
fast processing. Currently, the system hasonly been eval uated on 40 and 60 Km/hr signs.

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.



132 Petersson, Fletcher, Barnes & Zelinsky

Figure 10. Some sampl eimages showing how thefast radial symmetry algorithmisable
to detect circles in images

Candidate Detection

Thefast radial symmetry detector (Loy & Zelinsky, 2003) isavariant onthecircular
Hough transform that executesin order kp, where p isthe number of pixels, and kisthe
number of discrete radii that are searched. Thisisin contrast to the traditional circular
Houghtransform that executesin order kbp. For thetraditional circular Houghtransform,
each edge pixel voteson all circles over adiscrete set of radii k that could pass through
that edge pixel. The factor b comes from discretisation into a number of bins on the
gradient of circular tangentsthat coul d passthrough thispoint. Thefast radial symmetry
detector eliminatesthefactor b by taking the gradient of the edge point directly from the
output of the Sobel edge detector. In thisway, the computation of theradial symmetry
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detector isreduced by afactor of b, but also theresulting circlemap issimplified by one
dimension. Thismakesit suitablefor real timeuse, for example, 13.2 msfor a240x 320image
(Loy & Zelinsky, 2003). Figure 10 showsthealgorithm at work in some sampleimages.

Consistency checking can be performed over time. A circlemust appear for at | east
acertain number of concurrent frames; it cannot have changed radius too much, and it
must be in the same region of the image. It may be possible to model car motion in
predicting the new location of the image where the sign should appear. However, one
would have to assume a smooth straight road, which is quite restrictive, or include
feedback of steeringdirection, whichiscomplex, but may contributefurther. Theoutput
of our detection phaseistheregion of theimageinwhich the candidate appears, aradius
— representing the scale of the candidate — and a centre point of the candidate.

Classification

We apply standard normalised cross-correlation. A template wastakenfromareal
image for each of the possible sign numbers. Thereis some variance in the appearance
of the text on speed signs, so it would be desirable to take a number of candidates
showing different text styles; currently, we just have a single basic template for each
speed. The template taken consisted of simply the actual numbers. We selected alarge
clear sign for the template. This was then scaled down in size by linear interpolation
acrossall colour channelsto form atotal of eight scalesfor each template. At runtime,
a sub-set of these templates, chosen on the basis of candidate radius, was compared
against the candidate. The maximum value of these was sel ected asthefigure represent-
ing the quality of the match to atemplate.

Asthesignisassumed to be vertical and parallel to theimage plane, no scaling or
rotation of thetemplateisnecessary. Further, asthe centroid of the candidateisknown,
theapproximatelocation wherethe numberswould beif they werepresent isal so known.
We perform the cross-correl ation with the centroid moving over asmall region for each
template. These efficienciesresult in afast classification stage, again facilitating real-
time processing.

Results

Thesystemwasrun over several raw image sequencestaken from the experimental
vehicle (Figure 1). The sequences come from cameras in a binocular head located
approximately intheposition of therear-view mirror. All imagesused in theexperiments
were taken of signs on public roads around Canberra, including on the Australian
National University campus. Some of the sequencesweretaken at frameratewhiledriving
at around the speed limit, while othersweretaken whilestationary in thenormal position
on the road in front of the signs.

The two phases were eval uated independently. Theradial symmetry detector was
runover atotal of 1,107 framesfromthe camera. From thissequence, 152 sign candidates
were detected. Of these, 90% were correctly detected. Thisisquiteagood number from
afast early classification stage. For most scenes, asthe sign approached, it was detected
many timesbeforeit passed out of view, whichwould givethe classification sub-system
agood chanceto correctly classify the sign. For the clear scenes, the sign was detected
for most frameswhereit appeared. Our resultsindicate that requiring aclassification to
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be consistent for several frames would eliminate most of the false positives generated
by the symmetry detector.

Each candidate that was returned wasindividually evaluated for being either a40
or a 60 sign. From 126 valid candidates, 96% were correctly classified. Of these,
unfortunately, all incorrect classificationswerein asingle class— 40 signs. Of the 25,
40 signs returned as candidates, 75% were correctly classified. Thisis still a highly
promising result. Classification of asequence of imagescould beimproved by requiring
temporal continuity of classification before accepting acandidate. Thisisquite accept-
able within adriving situation as we would expect to be able to view asign for at |east
several framesif we are processing at framerate.

Pedestrian Detection

On our roads, traffic accidents involving pedestrian-vehicle collisions cause
significant fatality and injury. Automotive manufacturerswill soon be required to meet
certain impact ratings for pedestrian-vehicle collisions (Fredriksson, Haland, & Y ang,
2001). To achieve these requirements, manufacturers are considering the inclusion of
active pedestrian protection systems (PPS) such as rising engine hoods, pedestrian
protection airbags, and providing warning to the driver. Such active systems require
knowledge of pedestrian presence for correct activation and deployment. We have
developed a prototype to fulfil the sensory needs for PPS.

Figure 11. The distinction between critical and non-critical pedestrians (we aim to
detect the critical pedestrians)

Non-critical pedestrians

Critical pedestrian
Potential path

of pedestrian

Field of view

Path of vehicle
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Considering the automotive application for this work, the sensory system should
achievemorethan just pedestrian detection. Sufficient pedestrianinformation should be
provided to enable intelligent decisions regarding pedestrian presence for correct PPS
deployment. Once detected, a pedestrian needs to be localised and tracked to provide
the necessary pedestrian information:

i pedestrian location

i pedestrian size

° pedestrian velocity

i certainty of prediction

Furthermore, a crucial requirement regarding the automotive application is to
achieve low fal se detection rates since the consequences of fal se detection are signifi-
cant. Tofulfil such needs, weuseavision-based, 3D temporal approach for detecting and
tracking pedestrians.

Our system aims to detect at least the critical pedestriansin front of the vehicle;
critical pedestriansareregarded asthosewho could beinjured by thevehicle (seeFigure
11).

Previous work in this area has utilised arange of sensing technologies including
laser (Fuerstenberg & Lages, 2003), radar (Gavrila, 2000), and computer vision. Computer
visionisshowingthegreatest potential, primarily because of itshigher spatial resol ution,
enabling better discrimination between pedestrians and non-pedestrians. The ap-
proaches can be categorised as either 2D or 3D. Figure 12 depicts the fundamental
difference between a 2D and 3D approach.

A 2D imageanalysisaimsto recognise patternsin animage which resemblethat of
apedestrian. These 2D approaches scan the entire image space, which is slow and, we

Figure 12. The difference between (a) 2D and (b) 3D approaches to the problem of
pedestrian detection

(a)
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believe, is prone to false detections. Furthermore, a 2D approach does not provide
additional pedestrian information for use with PPS; robust range estimates cannot be
provided and, therefore, such systems merely provide adetection/non-detection result.
However, despite the drawbacks of such an approach, the development of 2D pattern
analysis techniques to actually recognise pedestrians has made significant progress.
These pattern analysis techniques include methods to detect pedestrian shape and
walking motion.

Webelievea3D approachto pedestrian detectionwill achievelower fal sedetection
ratessincegreater sceneunderstandingisgained. Furthermore, a3D approachinherently
generates pedestrian information useful for PPS. Consider the simple example of a
roadside billboard depicting a human. Most 2D methods would erroneously detect the
human on the billboard as a pedestrian who could be injured by the vehicle. 3D
information is necessary to realise the human image belongs to alarger structure.

System Architecture

As mentioned above, to reach the necessary low detection rates and real-time
performance necessary for PPS, rather than attempting a“brute force” 2D image scan,
we use a3D temporal approach. Stereo visionisused for perceiving the environment in
front of ahost vehicle, thusproviding 3D sceneinformation. The camerasetup isshown
inFigure13.

The software consists of three components: obstacle detection, obstacle classifi-
cation, and pedestrian tracking (Figure 14).

Obstacle Detection

General obstacles are detected by segmenting a 3D representation of the scenein
front of thehost vehicle. Such 3D representationisobtained from adisparity map created
fromthestereoimagepair. We generate densedisparity mapsusing the sum-of-absol ute-
differences(SAD) algorithm. Prior to disparity map generation, theimagepair isrectified
to ensuregood correspondence matching. Objectsare segmented from the disparity map
using the v-disparity algorithm (Labayrade, Aubert, & Tarel, 2002), which isarobust,
fast, and accurate method for segmenting noisy disparity maps. The method provides
scene understanding by recovering the ground surface and recognising which objects
are sitting on this surface. Furthermore, v-disparity is well suited to a moving camera
platform sincefew assumptionsregarding the ground surfacein front of thehhost vehicle
aremade (in other words, ground plane calibration isnot required). Therefore, segmen-
tationisstill achieved when the vehicleisapproaching both inclined and declined road
surfaces. Figure15illustratesthe operation of thev-disparity object detection algorithm.

ObstacleClassification

Once segmented, each obstacleisclassified as either pedestrian or non-pedestrian
based on pedestrian shape using support vector machines (SVM). However, prior to
such classification, we use a simple heuristic based on object size to eliminate objects
not resembling thesizeof thehuman figure (for example, avehicleiseasily disregarded).
Adult- and child-sized pedestrians are used to set the limitsfor object size passed by the
heuristic, with atolerance on the limitsto ensure that pedestrianswhose size isaltered
by accessories (for instance, an umbrella) are not rejected. This heuristic isnot only a
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Figure 13. System hardware - the host vehicle is equipped with a stereo camera
configuration, a PC, and appropriate power supply accessories

Stereo cameras near
rear-view mirror

Figure 14. Pedestrian detection software structure
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fast initial classification, but it eliminates the possibility of these objects being incor-
rectly classified by the SV M.

Our SVM classificationisbased onthe methodsin Papageorgiou and Poggio (1999)
since, of the 2D image analysis techniques, this method demonstrated the most encour-
aging results. Their single SVM was used to implicitly determine amodel of pedestrian
shape in a front/rear pose, whereas our system uses two SVMs, one to recognise
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Figure 15. (a) Left image, (b) disparity map, (c) v-disparity image, (d) segmentation
of the left image
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pedestrians in a front/rear pose and another to recognise side pose. Therefore, seg-
mented objects are classified with two SVMs.

The pedestrian shape was extracted by using a vertical and horizontal 3"3 Sobel
edge detector. However, this pedestrian representation is too large to be efficiently
handled by aSVM. Therefore, only the most di stingui shing pixelsfrom thisedge image
were chosen as the pedestrian representation. These pixels were chosen as those that
consistently have high and low pixel valuesin the average edge images (Figure 16).

Figure 17 summarisestheprocessof off-lineSVM training and on-line SV M segment
classification. Each SV M wastrained on adatabase of approximately 1,500 positiveand
20,000 negative grey scale images. Using an out-of-sample test image database (150
positive, 2000 negativeimages), our SV Mswere capabl e of approximately 75% positive
detection and 2% fal se detection.

Pedestrian Tracking
Both obstacle detection and classification generally provide robust results. How-
ever, the results can be incorrect, with obstacle localisation results being noisy and
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Figure 16. Pedestrian shaperepresentation (a) front, vertical edges, (b) front, horizontal
edges, (c) side, vertical edges, (d) side, horizontal edges

(a) (b) (c) (d)

Figure 17. Summary of object classification
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Figure 18. Example of how the probability that an object is a pedestrian varies with
classification history (a) a typical non-pedestrian object, (b) a typical pedestrian
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obstacle classification providing false detection. Pedestrian tracking aims to filter
localisation results and minimise the effect of fal se positive and negative classification
by temporally accumul ating detection and classification estimatesfrom each frame. The
tracking algorithm combines a Kalman filter with a Bayesian approach to provide
estimates of location, velocity, and pedestrian classification certainty over time.

Example results from analysing an object’s classification history are depicted in
Figure 18. These show how the probability of an object being a pedestrian varies with
classification history. A pedestrian, typically receiving mostly positive classifications,
hasacertainty which remainshigh. Onthe other hand, anon-pedestrian, whichtypically
receives few positive classifications, has a certainty which remains low.

Results

Our system was evaluated by in-vehicle testing in both simple and complex
scenarios, with scene complexity rated according to 3D structure. Pedestrian tracking
could be maintained with relative pedestrian speeds up to ~40km/hr (data processing
power isthe factor which limitstracking speed). Four scenarios were used to quantita-
tively determinedetection rates. These sequenceswereanalysed frame-by-frame. Table
1 presents a summary of results from the four sequences.

Figure 19 illustrates example results from the test sequences. On average, we
achieved 83.5% positive detection and 0.4% false detection. The false detections are
partly due to tracking continuing after the pedestrian left the field of view (caused by
poorly selected tracking parameters). There were only very few obstacles tracked as a
result of incorrect classification (in approximately 2,500 test framesanalysed, only four
non-pedestrianswere momentarily tracked dueto tracking beinginitiated fromincorrect
classification). This suggests a fal se detection rate of 0.3%.

Todemonstratetheimproved performancewe achieved through using both 3D and
temporal information, we modified our system to generate results based purely on a2D
image analysis and a 3D analysiswith no temporal component. A comparison between
the results obtained from such versions of our system is shown in Figure 20.

Table 1. Quantitative results from the four test sequences

Tmage Scenario Scenario Nurher Mosl  Vehi- || Pogilive MNegalive
Seqeunce Description | Complexity | of  critical cle  Speed || Detection | Detection
Numhber pedestrians {km/hr) Rate (%) | Rate (%)
1 Though simple 1 15 98 U]
carpark
2 Through moderate 3 20 I} 2
carpark |
3 Through moderate 5 30 89 .4
busy pedes-
trian strect
4 By con- | diffienlt 5 20 80 0.2
gested
pedestrian
zone
Average 83.5 .3
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Figure 19. Example results from the four test scenarios
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Figure 20. Comparison of results from different versions of our system to highlight the
fact that a 3D temporal approach achieves superior results
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Blind Spot Monitoring

Collisions can occur around automotive vehicles as a result of surrounding areas
that are obscured from the driver’s view point (Figure 21 (a)). In 2002, 58 children were
backed overandkilled in the U.S. by pickup trucks or sports utility vehicles, because the
child was too small to be seen (Kids & Cars, 2003). Trucks have an added blind-spot area
at the front corner of the vehicle, which is depicted in Figure 21(b). Blind spots are the
cause of many accidents with other vehicles, as well as more vulnerable road users. The

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.



144 Petersson, Fletcher, Barnes & Zelinsky

Figure 21. (a) The area behind the car that is completely obscured from the driver’s
view point; (b) blind spot for a right hand drive truck
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European Commission for Transport (2003) reports that in Belgium, an average of one
cyclist iskilled every month by turning trucks.

It is apparent from these statistics that there is a definite need to improve safety
around cars and trucks, particularly concerning blind spots. There are several methods
currently availableto assist driversin avoiding such collisions. The simplest method is
theinstallation of devicestoincreasethedriver’ sfield of view, such asextramirrorsand
wide-angle lenses. However, these still rely on an alert human observer. Another
approach is to use an automated system using sensors such as sonar or radar. In these
systems, range dataisprocessed, and thedriver iswarnedif acollisionisimminent. The
main drawback of the sonar sensorsistheir low angular resolution. A laser scanner could
also be used, but only athin two-dimensional plane can be monitored. Hencethereisa
need to develop new ways of sensing obstacles; one way is to use panoramic stereo
vision.

Panoramic Imaging

Conventional camerastypically haveonethird or lessof the perceivedfield of view
of the human eye. Thefield of view on acamera can beincreased in several ways. One
method isto take many imagesfrom morethan one static camera, or to useasinglerotating
camera(Szeliski, 1994). Disadvantagesaretheadditional cost for morecameras, and the
timetomoveand acquireoneimagefor thelatter. Furthermore, the need for moving parts
decreasestherobustness of thesystem. Alternately, awideanglelenscan provideawide
field of view without moving components, but such lenses are extremely bulky, expen-
sive, and suffer from large angular distortion.

Convex mirrors are one approach to panoramic imaging that have been utilised
extensively inthefield of robotic navigation (Matsumoto, Ikeda, Inaba, & Inoue, 1999;
Y agi, Kawato, & Tsuji, 1994). Thesensor consistsof avideo camerawhichviewsacone-
like mirror. With the mirror on the optical axis, afull 360 can be viewed in the azimuth
direction. The minimum and maximum angles of el evation captured are dependant upon
the profile of themirror surface. This method of panoramic imaging has several advan-
tages. Sinceitisapassivesensor, itspower requirementsaresmall, and thelack of moving
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Figure 22. (a) A raw image from a panoramic sensor which utilises a convex mirror;
(b) the corresponding unwarped image

@ ™

components means that the sensor could be made in a robust manner, which would
requireminimal maintenance.

Anexampleof animageacquired by apanoramic sensor canbeseeninFigure22(a).
These raw images are difficult for humansto understand, but they can be unwarped to
createamoreintuitive panorama, asseenin Figure 22(b). Thisallowsthe application of
many conventional image processing techniques, which will be discussed further inthe
Obstacle Detection section.

Thedistortion introduced by the mirrors can beremoved in several different ways.
One method isto transform the panoramic image from a Cartesian to apolar coordinate
system. Another approach isto project the warped image onto avirtual surface. In our
system, we have chosen to project the image onto a virtual cylinder.

Stereo Panoramic Imaging
Binocular vision systemsare used widely in computer vision for range estimation.
However, these utilise cameraswith small fieldsof view tominimiselensdistortion. Itis
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al so possibleto estimaterange using stereo panoramic systems. Conroy (2000) designed
a stereo panoramic sensor that consisted of a single video camera and a double-lobed
mirror. However, thissystem suffersfromlow imageresol utionand limited range-finding
capabilities, duetothesmall distance (baseline) betweenthemirrors. In Gluckman, Nayar,
and Thoresz (1998), Ollis, Herman, and Singh (1999), and Ng, Triverdi, and Ishiguro
(1999), sometheoretical and preliminary range estimationisinvestigated for systemsof
two or more panoramic sensors. Sogo and | shiguro (2000) implemented apeopl e-tracking
system. However, the system was based on background subtraction, which isnot easily
extensibleto thismoving camera application.

System Overview

Our system consists of two panoramic sensorsas shown in Figure 23(a). Approxi-
mately 200" of the sensor field of view is utilised.

Oncethe sensor has captured images of the blind-spot, theseimages are processed
using an on-board PC to determine where obstacles are situated in the work space. The
resultscanthen be sent to awarning systemto notify thedriver, asshownin Figure 23(b).

Range Computations

Themirror profiles chosen do not conform to the single viewpoint constraint, and
as a consequence, the range finding techniques used in conventional stereo vision
would yield only approximate results. However, depth can be computed by using
triangul ation methods. Two corresponding points, P, and P, intheraw panoramicimages,
can be mapped back to apoint on each mirror, using knowledge of the surfaceprofileand
thecamerapinholemodel. Using Snell’ slaw of reflection, itisthen possibleto determine
the intersection of the two rays of light to estimate the position of a point P in three-
dimensional space (Figure24).

Sensor Resolution

The curved mirror surfaces create a more complicated depth resolution than for
conventional stereoimaging systems, and thisvariesaccordingtothemirror profile. The
graphinFigure25wasgenerated by computing thedepth for every possiblepair of image

Figure 23. (a) The stereo panoramic sensor, attached to the test vehicle in a horizontal
configuration; (b) overview of the stereo panoramic vision system
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Figure 24. Range estimation of a point P in three dimensional space, given the
projection P, and P, in the stereo panoramic images
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pixel correspondences, up to a maximum disparity of 64. The depth was calculated using
the approach described in the Range Computations Section. The maximum disparity
search of 64 creates a circular dead zone, since objects in this area will have a disparity
greater than this value. Such blind regions are, however, also present in the sensors
mentioned in the Blind Spot Monitoring section.

Due to the limited CCD resolution, particularly toward the bottom of the panoramic
image, discretisation errors become significant. The discretisation of three-dimensional
space causes an error in the range and height estimation, because a point in space can
only be mapped to the closest point in Figure 25. Figure 26(a) shows the maximum
discretisation error along a ray of light with an elevation angle of 90" to the lower mirror
axis. The discretisation error in height of an obstacle along this same ray of light is
displayed in Figure 26(b).

Disparity Maps

With the camera axes aligned, the epipolar constraint corresponds to radial lines.
When the images are unwarped, these become vertical parallel epipolar lines (Figure 27),
and permit the application of many conventional image processing techniques. In this
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Figure 25. Depth resolution of the stereo panoramic sensor, for a maximum disparity
of 64 pixels
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Figure 26. Discretisation errors of a typical panoramic sensor
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case, disparity mapsaregenerated by performing stereo matching along theselinesusing
a standard window-based normalised cross correlation search.

Obstacle Detection

Obstacle detection was performed by first applying the v-disparity algorithm
(Labayrade, Aubert, & Tarel, 2002) to the panoramic disparity mapsand then segmenting
the output. This algorithm was developed for conventional stereo vision systems, and
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Figure 27. Epipolar lines are mapped from radial lines in the warped image (a) to
parallel lines in the unwarped image (b)
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Figure 28. Obstacle detection resultsfromtheray-traced images: (a) unwarped image,
with obstacles detected, (b) disparity map, (c) v-disparity, (d) u-disparity
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has not yet been utilised in panoramic vision. It is well suited to this application as it
requiresno a priori knowledge of the exact orientation of the ground plane, andisable
to segment noisy disparity maps.

Anexampleof adisparity mapisdisplayedinFigure28(b). Thehigher theintensity
of a pixel, the higher the disparity and, therefore, the closer an object is to the stereo
sensor. Thev-disparity imageiscreated by placing each pixel fromthedisparity mapinto
bins according to their position along the vertical axis and intensity (Figure 28(c)). As
aresult, theground plane appears asan angled line. Objectsappear asnear vertical lines
abovethe ground plane, with the background displayed astheleftmost object. A Hough
transform is used to detect the lines in the v-disparity image, and the height of the
obstacles is determined by the length of the line. The width of an object is found by
mapping these pixelsto au-disparity image, asshownin Figure28(d). Inthisimage, pixels
are placed in bins according to their horizontal position and intensity value.

System Evaluation

The stereo panoramic system was eval uated to determine the range accuracy and
effectiveness of the obstacle detection algorithm. This was done using ground truth
data, and through field experiments.

A ground truth analysis was performed by creating artificial panoramic images
using the Persistence of Vision (POV) Raytracer (http://www.povray.org/). Objects
wereplacedinan environment around avirtual panoramic sensor at known locations, and
thePOV-Ray softwarewasused to render images of thisscene. Oncetheimageshad been
unwarped, the corresponding featureswere sel ected manually, and rangewas cal cul ated
from these disparities.

AscanbeseeninFigure29, theaveragerangeerror generally remained below 20cm,
with the standard deviation increasing to 76cm at arange of 6m. Theincreasesin error

Figure 29. Results from the ground truth analysis (the average range error (left)
generally remainswithin 0.2m; the standard deviation of the error is displayed on the
right)
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and standard deviation are partially due to human error; however, as expected, the
majority of thiscan be attributed to the range discretisation error as shown in Figure 26.
Theaverage error in height estimation was much lower, alwaysremaining below 15cm,
while the standard deviation was no greater than 25cm. Again, this reflects the
discretisation error in height estimation givenin Figure 26. Theestimation of theazimuth
angular position wasparticularly impressive, withamaximum error of 3, and astandard
deviation in the measurements of only 0.8".

The obstacle detection algorithm was evaluated by automatically segmenting
obstacles from the environment. Figure 28(a) displays results of the obstacle segmen-
tation in the simulated environment. The algorithm was able to detect at |east sections
of all obstacles, except for one sphere, which did not have enough contrast with the
background for the stereo matching algorithm to be successful.

Field Experiments

A three-by-five metre grid with one metreintervalswas marked out on the ground.
Images were captured and treated in the same way as described in the previous section.

InFigure 30, it can be seenthat theerror inrange measurementswaslarger thanthat
for thegroundtruth analysis. Theerror remained below 30cm until arange of 4m, where
itincreased. Aswell ashuman error and resol utionissues, contributing factorsareslight
camera-mirror misalignment, and errorsintheplacement of thegrid. However, theangular
estimate was again very accurate, remaining within 2 of the actual position, increasing
to within 5" at 4m; the standard deviation was always below 0.6".

Thedisparity mapsproduced inthese experimentswereextremely noisy compared
to those generated with ground truth data. Despite this, the v-disparity algorithm was
able to produce results of a sufficient quality to successfully segment obstacles, as
shown in Figure 31. However, due to the high noise ratio present in the real-world

Figure 30. The average range error (left), and range error standard deviation (right)
calculated from the field experiments, using a sensor with a 31cm baseline (the
estimated range generally falls within 0.4m of the true value)
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Figure 31. Obstacle detection results fromthe field experiments: (a) unwar ped image,
with obstacle detected. (b) disparity map. (c) v-disparity. (d) u-disparity
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panoramic disparity images, fal se detection of obstacles became apparent in theimage
sequences. These generally only occurred in single frames and, as a result, false
detectionswereeasily filtered out by checking for temporal consistency. Thesystemwas
modified to only report an object once it had been detected in at least two consecutive
frames, and to continue to track the object until it had been lost in the same number of
consecutive frames.

SUMMARY

We have suggested a new approach for obstacle detection, for the purpose of
monitoring vehicle blind-spots. It was shown that stereo panoramic vision can be used
to generate disparity maps from which objects can be segmented. This was done by
applying thev-disparity algorithm, which has previously not been utilised in panoramic
image processing. We found that this method was very powerful for segmenting
obstacles, evenin extremely noisy disparity maps. Our resultsindicatethat range can be
estimated reliably using a stereo panoramic sensor, with excellent angular accuracy in
the azimuth direction. Furthermore, this sensor has the advantage of a much higher
angular resolution and larger sensing volume than the driver assistance systems
currently available.
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CONCLUSION

In thischapter, we have given an overview of driver assistance systemsin general
together with asample of the current research effort that is made within the Smart Cars
project. The example systems presented show that today there are algorithms and
techniques that are mature enough to be of practical use for driver assistance. Modern
computershave aprocessing power that allowsthe use of advanced methods, increasing
robustness, and reliability of the sensing algorithms. There is, however, a need to
develop appropriate user interfaces. For example, if a pedestrian is detected to be on a
collision course with the vehicle, what is then the best way to alert the driver without
distracting him/her? Moreover, with the plethoraof non-critical informationthat can be
extracted from the road scene, how do we avoid overwhelming the driver? Human
machineinterfaces (HMI) isaresearch areathat needs much attention in the future. An
interesting area to also pursue is telematics used in vehicles. That is, exchanging
informationto andfromthevehiclewithroadinfrastructure, or other vehicles. Anexample
of atelematicsapplication may be, inthe case of an accident, to automatically assessthe
status of the vehicle's passengers, and through wireless communication with the road
infrastructure, provide information to rescue services.
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Chapter VI

TheApplication of
Swarm Intelligence
to Collective Robots

Amanda J. C. Sharkey, University of Sheffield, UK

Noel Sharkey, University of Sheffield, UK

ABSTRACT

This chapter considers the application of swarm intelligence principles to collective
robotics. Our aimisto identify the reasons for the growing interest in the intersection
of thesetwo areas, and to eval uate the progressthat hasbeen madeto date. Inthe course
of thischapter, wewill discusstheimplications of taking a swarmintelligent approach,
and review recent research and applications. The area of “ swarm robotics” offers
considerable promise for practical application, although it is still in itsinfancy, and
many of the tasks that have been achieved are better described as*“ proof-of-concept”

examples, rather than full-blown applications. In the first part of the chapter, we will
examine what taking a swarm intelligence approach to robotics implies, and outline
itsexpected benefits. We shall then proceed to review recent swarmrobotic applications,
before concluding with a case study application of predator-prey robotics that
illustrates some of the potential of the approach.
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TAKING A SWARM INTELLIGENCE
APPROACH TO COLLECTIVE ROBOTICS

What is Swarm Intelligence?

To beableto deliberate over the reasons for taking aswarm intelligence approach
to collectiverobotics, we need to first provide an account of what swarmintelligenceis.
Swarmintelligenceisacomparatively recently articulated notion. The concept wasfirst
introduced by Beni and Wang (1989) in their investigations of simul ated self-organising
agents in the context of cellular robotic systems. A more extensive definition was
provided by Bonabeau, Dorigo, and Theraulaz (1999), who suggested the term should
be applied to:

any attempt to design algorithms or distributed problem-solving devices
inspired by the collective behaviour of social insect colonies ... and other
animal societies.

Agassounon, Martinoli, and Easton (2004) suggest that swarm intelligence takes
itsinspiration:

from the biological examples provided by social insects ... such as ants,
termites, bees, and wasps, and by swar ming, flocking, herding, and shoaling
phenomena in vertebrates.

By contrast, Martinoli (1999) assertsthat such bio-inspirationisnot necessary, and
that the defining characteristic of swarm intelligence should be an emphasis on local
control and communication (as opposed to global), claiming that:

swarm intelligence arises from local interactions and is based on local
infor mation and communi cation mechanisms. (Martinoli, 1999)

Nonethel ess, an emphasison |ocal as opposed to global interactionisitself clearly
biologically-inspired. Bonabeau and Theraulaz (2000) suggest theterm “swarmintelli-
gence’ is applicable to the “collective behaviour that emerges from a group of social
insects”. It would seem then, that theterm can be applied to both theemergent collective
behaviour of biological swarmsor colonies, andtoalgorithmsinspired by living systems.

In either case, the notion of swarmintelligenceisgrounded in an awareness of the
sophisticated collective behaviour that can emerge from the combinati on of many simple
individuals, each operating autonomously. Despitetheir often extensivesize— colonies
of the African driver ant Anomma wilverthi may contain as many as 22 million workers
patrolling an areaasmuch as50,000 square metersin extent (Raignier & van Boven, 1955)
— insect soci eties are abl e to mai ntai n themselvesasacollective, and to accomplish the
coordinated action needed to construct nests, to feed and raise their young, and to react
toinvasion or other interference despite, or perhaps because of, the limited behavioural
and representational capabilities of their individual members, and the absence of
centralised control mechanisms.
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Swarm intelligence algorithms have been shown to be useful for both static
problems(for example, application of theant colony systemtothetravelling sal esperson
problem— Dorigo & Gambardella, 1997), and dynamic problems, notably load balancing
intelecommunication networks (Schoonderwoerd, Holland, Bruten, & Rothkrantz, 1997).
In the ant colony system’s solution for the travelling salesperson problem, a set of
agents, or “ants’ search for good solutions and communicate through pheromone-
mediated indirect communication. The results show the system to be competitive with
other heuristic algorithms such as genetic algorithms, evolutionary programming, and
simulated annealing. Interestingly, although the system is biologically inspired, its
operation departs from that of real ants through the introduction of faster pheromone
decay. Inreal ants, if a shorter path is presented after alonger path, it is not adopted
because the longer path will have been marked by pheromone; whereasin an artificial
system, thisproblemisavoided by introducing pheromonedecay (Bonabeau & Theraulaz,
2000). Thework of Schoonderwoerd et al. (1997) also reliesin the application of an ant
colony algorithm, and on the removal of obsol ete sol utions by applying amathematical
version of pheromone evaporation.

A swarm intelligence approach has then been applied to a number of tasks and
practical applications. The notion, abstracted away from biology, depends on
decentralisedlocal control of alargenumber of simpleagents. Theroleof theenvironment
isstressed, althoughthat environment isoftenvirtual rather thanreal. Althoughaswarm
intelligence systemwill contain no explicit model of theenvironment, individual agents
can both receive information about the environment and act on that environment to
change it. The advantages of swarm intelligence include the idea that the resulting
collectivesystemswill be scal ablebecausethe samecontrol architectureisused for both
a few and for thousands of units. This results in increased flexibility because the
individual units can be dynamically added or removed without the need for explicit
reorganisation. It also increases robustness because of the reliance on unit redundancy
and minimalist unit design. At the same time the reliance on autonomy and self-
sufficiency can increase the flexibility of the system and its ability to adapt quickly to
rapidly-changing situations.

Swarm Robotics

Our concern here is with the application of swarm intelligence principles to
collectiverobaotics. Theresult can be termed “ swarm robotics’, although thereis some
debate about the definition of thisterm. Nonethel ess, the emerging consensus seemsto
be that swarm roboticsinvolves groups of simple robots: that are autonomous; that are
not controlled centrally or remotely; that are capable only of local communication; and
whose operation isin some sense biologically inspired. Such robot collections inherit
many of the advantages of swarm intelligence, and can be seen to offer a number of
benefitsif deployed in environmentsthat are unknown, hostile, and liable to unpredict-
ablechange. Weshall consider these advantagesin moredetail bel ow, but can summarise
them briefly here. The absence of centralised control can reduce problems associated
with communication bottlenecksand delays. Similarly, theinsistenceonlocal rather than
global communication, or in most cases, the absence of any inter-robot communication,
meansthat asin swarmintelligence, the same control system can be used for any number
of robots without the need for recalibration and adjustments to communication proto-
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cols. The use of many cheap and expendable robots with limited communicative and
sensorial abilitiescan alsoreduce costs. Atthe sametime, aswarmintelligence approach
can profit fromreliability through redundancy, sincethe ability to complete atask need
not be jeopardised by the failure of individual robots, or of a centralised controller. In
addition, as argued by Brooksin founding papersin this area, (Brooks, 1999), autono-
moussimplerobotscanreact totheenvironmentinreal time, without the need to complete
intensive sense-plan-act cycles of analysis. And the stress in autonomous robotics on
acloserelationship to, and exploitation of, the physical environment, particularly when
combined with adaptive techniques for developing robot control systems, can often
havetheresult of finding simpler and more effective solutionsthan thosethat areusually
obtained by more traditional methods that depend on human designers.

Inthe following sub-sections, we shall consider some of the key characteristics of
swarmroboticsinturn: biological inspiration; individual simplicity; control; communi-
cation; and finally, group composition. In our considerations, wewill address centrality
of that characteristic, and the benefits and limitations likely to result fromiit.

Biological Inspiration

A close relationship to biology is one of the defining features, and one of the
strengths, of taking a swarm intelligence approach to robot collectives. The notion of
biological inspirationisalmost explicitintheterm*“swarmintelligence”, andiscentral to
both swarm robotics and behaviour-based robotics. Animals, as Sharkey (2003) com-
ments, “ exhibit ...remarkable capacities for flexible adaptation to novel circum-
stances”, and a strength of modern robotics is its ability to capture some of the
capabilities of biological entities. Biologically-inspired robotics has its roots in the
seminal work of Grey Walter (1953), and re-emergedinthe 1980’ swith Brooks' develop-
ment of behaviour-based robotics (Brooks, 1999), and Braitenberg’ sdemonstrations of
theemergence of complex behavioursfromacombination of very simpleneural networks
encoding different taxes(Braitenberg, 1984).

The relationship between behaviour-based robotics and biological systemsis a
reciprocal one: an understanding of the mechanisms underlying animal and insect
behaviour can be exploited to build flexible robotic control systems; and such systems
can be used to test the behavioural consequences of biological models. Sharkey (2003)
identifiesgeneralised and specific classesof bio-roboticsresearch: generalised research
being astrand dedicated to applying broad notionsfromthelifesciencesto robot control,
whilst specific research is geared towards testing the more specific implications of
biological models. In the same article, Sharkey identifies athird, theoretical strand in
whichtheimplicationsof such bio-roboticsresearchfor theoriesand viewsof life, mind,
and cognition, areexplored, astrand of limited relevanceto morepractical concernsand
onethat is not explored further here.

Generalisedresearch, inwhich our understanding of thebiol ogical mechanismsthat
underlie animal and insect behaviour is exploited, is clearly related to our present
concerns. Such research can involve, for example, exploiting an understanding of the
simple mechanisms that underlie the seemingly complex behaviours of social insects
such as bees and ants, to develop biologically-inspired control systemsfor robots. For
instance, some of the organisational mechanisms of ants or bees could be adapted for
collectionsof robots, to arrive at novel emergent sol utions (see section below on Group
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Composition). Likewise, models of bird flocking, fish schooling, and toad detour
behaviour have formed the basis of reactive robotic systems (Arkin, 2003). And the
adoption of evolutionary methods, and the research area of evolutionary robotics can
al so be seen as exampl es of generalised bio-robotics, asarelearning techniques such as
reinforcement learning (see the Explicitly Cooperative Tasks section on methods for
developing control systems).

Specific biologically-inspired research is also of some, albeit more indirect, rel-
evanceto our present concerns. It isonly possibleto apply mechanisms based on those
of biological systemsif those systems themselves are understood. Hence, detailed and
specific accounts of biological systems (for example, of ants cooperating to movelarge
prey items — see referencesin Kube & Bonabeau, 2000) are relevant, as are papersin
which explanations of the underlying mechanisms are tested. And such research can
directly lead to the development of solutionsfor practical tasksto which collections of
robotscan beapplied. For example, all of theseelementscan befoundinastudy by Kube
and Bonabeau (2000) (further described below in the section on Applications). In their
paper, they provide a model of cooperative transport in ants, from which they derive
testable predictions about the kind of stagnation recovery mechanisms to be expected
depending on ecological conditions, and prey size. Kube and Bonabeau suggest that,
“because the model is able to reproduce many of the collective features of cooperative
transport in ants with a minimum of plausible assumptions, it suggests that these
assumptions may be sufficient to explain the behaviour observed in ants’. At the same
time, the repositioning and realigning behaviour observed in ants when copied in a
robotic system provides a solution to the stagnation that results when several robots
apply equal force to push an object from several opposing directions at once.

In brief, biological inspiration isacentral tenet of swarm robotics and behaviour-
based robotics. The whole notion of swarm intelligence depends on such inspiration.
What is less clear is how strictly such inspiration should be interpreted: there is the
minimalist position, according to which the abilities of robotsin acollective should be
restricted to a minimal level in order to gain the advantages of a swarm intelligent
approach; and there is also the position that some of the specialist capabilities afforded
by modern el ectronicsshould be exploited where possible. Inthe main, the swarmrobotic
studies described in the next section, and in the case study, are better described as
minimalist.

Individual Simplicity

The simplicity of the individual robots in a collective is another of the features
emphasi sed inaswarmintelligence-based approach, asitisin behaviour-based robotics.
The use of simple robots can result in aless costly system, and one that is more robust
in the sense that simple robots are less likely to fail (since thereis less to go wrong).
Another advantage of simplicity istheability to respond rapidly and flexibly to changes
in the environment. The kind of simplicity we have in mind refersin particular to the
control system used. Individual robots in a collective can themselves be subject to
reactive, or deliberative control. A reactive architecture is one that “tightly couples
perception to action without the use of intervening abstract representations” (Arkin,
1998). A deliberative architecture, on the other hand, relies on abstract representations
of theworld. Between thetwo liethose systemsthat extend purely reactive systemswith

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.



162 Sharkey & Sharkey

some memory capabilities; in other words, rather than just reacting to a stimulus, the
robots are affected by an internal register which has some form of memory.

The earlier formulations of behaviour-based robotics stressed the importance of
reactivity (Brooks, 1986, 1991), and its advantages in terms of the ability to respond
quickly to stimuli in the environment. More recent formulations of behaviour-based
robotics have incorporated some degree of memory and representation needed to
accomplish more complex tasks, while maintaining an emphasis on avoiding the use of
centralised representationsand control (Mataric, 1997b). Arkin (1990) advocated theuse
of control systems consisting of ahybrid of reactiveand deliberative control. However,
the situationsin which deliberative control islikely to be the preferred option are those
inwhich uncertainty islimited, and theworld can be accurately modelled, not the kinds
of situation for which swarm robotics are best suited. An emphasis on the application
of swarmintelligence principlesto collectiveroboticsimpliestheuse of control systems
that are as simple and reactive as possible.

The simplest control system for an individual robot, then, is onein which control
isasclose as possibleto sensors and actuatorsas, for example, when an artificial neural
network is used and the inputs are stimulated by raw sensor values, while the outputs
control motor speed and direction. At a higher level, the architecture can be organised
into basic behaviours, each representing a perception-action loop. The starting pointis
usually behavioural modules responsible for robot movement (for example, a wander
module, and an obstacle avoidance module). Higher level modules responsible for
finding objects or moving towards a goal can then be added, depending on the task in
guestion. Decisions about the design of behavioural modules are usually the responsi-
bility of ahuman designer. Once a set of behavioural modulesis chosen, some method
of combining themisrequired. Behavioural modul escan be combined by meansof either
asel ectionmethod (switching control to themost appropriatemodule), or by fusing them.
We shall consider examples of each of thesein turn.

Probably the best known selection method is that represented by Brooks'
subsumption architecture. Inasubsumption architecture (Brooks, 1986), afixed priority
scheme is defined for basic behaviours such that enabling one of them results in the
suppression or inhibition of others, so that only one behaviour isactive at any onetime.
An alternative switching mechanism was proposed by Maes (1989) based on spreading
activation between modules. A morerecent devel opment of Maes' system was proposed
by Jung and Zelinsky (1999): asel ection method termed architecturefor behaviour-based
agents, (ABBA). The selection mechanism is based on a winner-take-all scheme.
Activation is spread among competence modules on the basis of the output of feature
detectors, and the pre-conditioning competence module. When the activation level of
acompetence modul e reachesthreshold, it becomes active. The scheme has been tested
on two heterogeneous Yamabico robots (http://www.roboken.esys.tsukuba.ac.jp/
english/Y amabico) performingacollaborative cleaning task.

Switching and sel ection methodsrely on the assumption that only one behavioural
modul e should be active at any onetime. Thealternative approachisto adopt someform
of fusion of modules, wheretheoutputsof several active modulesarefused, or combined
insomeway, toresultinasinglebehaviour that reflectstheinfluence of several modules.
For example, under themotor schema-based approach (Arkin, 1989), primitivebehaviours,
or motor schemes, can beactivesimultaneously, and combined cooperatively. Behaviour
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is obtained by multiplying the vector response of each motor schemaby again, and then
summing and normalizing the result. The DAMN architecture (Payton, Rosenblatt, &
Keirsey, 1990) used by researchers at Carnegie-Mellon University for controlling
unmanned ground vehicles, similarly relies on fusion, using a scheme by which each
behaviour votes for and against each of a set of possible vehicle actions, and an arbiter
performs command fusion to select the most appropriate action.

Tosummarise: Theapplication of swarmintelligenceto collectiveroboticsimplies
the need for simplerobotsthat can respond rapidly and flexibly to theenvironment. The
main way to achieve this, at present, is to rely on a system of reactive control at the
individual level, or aset of reactive behavioural modules combined through someform
of action selection.

Collective Control

We now turn to a consideration of the way in which a collection of robots can be
coordinated in order to accomplish a task. The emphasis in swarm intelligence is on
decentralised control, or autonomy. I nrobotics, acollection of autonomousrobotsisan
exampleof decentralised control, sincethereisno centralised controller responsiblefor
their coordination. Insect societies are similarly only locally, or indirectly controlled;
there is no central body or agent that issues commands to organise the nest or colony.
One of the advantages of decentralised control in swarm roboticsisanincreasein fault
tolerance (again, there is no risk that a centralised controller will fail and result in a
deterioration or breakdown of the system). Individual autonomous robots can also
respond more quickly and flexibly to a changing environment, since they can respond
directly to information from their own sensors, and do not need to wait for centralised
instructions.

It is possible for cooperative behaviour to emerge as the result of the combined
effect of individual behaviours. Few woul d disagreethat the cooperation foundininsect
societiesistheresult of emergent properties, rather than planning. Similarly, instances
of apparently cooperative behaviour can befound in collections of autonomous robots;
examples are described in the following section on applications. A classic example of
decentralised control of agroup of robotsisthat of the Frisbee-sorting robots of Holland
and Melhuish (1999). Here the cooperation that occursisemergent, sincetheindividual
robots are simple and autonomous, and incapable of direct communication with each
other: they each follow afixed set of reactiverules.

Questions about how best to achieve such emergent behaviours in robots are
currently an active focus of research. One method is to handcraft the rules or control
mechanisms. The adaptive, cooperative behaviour of the Frisbee-sorting robotsis the
combined result of individual robots following afixed set of reactive rules, and shows
that it is quite possible to generate adaptive behaviour without the use of learning
algorithms. Therearemany casesof adaptivebehavioursthat are genetically determined:
for example, “ hard-wired” reflexes and instincts. Control mechanismsfor robots could
then, for exampl e, consist of relatively simple*“rule-like” mechanisms, encodedinterms
of handcrafted weightsfor aneural network, such that when an obstacleis detected via
arobot’ ssensors, theresultisthat it turnsaway fromit. Similarly, asubsumption-based
system of behavioural modules could result in adaptive behaviour, despite having been
handcrafted rather than learnt or evolved. The Case Study section providesan example.
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A popular and effective alternative to handcrafting such control mechanismsisto
use genetic algorithms to evolve them. Nolfi and Floreano (2000), in their book on
evolutionary robotics, describe some of the numerous exampl es of the el egant sol utions
that can be obtained when evol utionary techniques allow the environment to determine
their design. Neural networksareparticularly useful control mechanismsfor autonomous
robotsbecause of their flexibleresponseto noisy environments, butitisnot obvioushow
to provide detailed training feedback about what arobot should do at each time step. An
evolutionary algorithm, and itsassociated fitnessfunction, providesamechanismfor an
overall evaluation of the performance of the network over the entire eval uation period.
It can also be used to evolve any parameter of the neural network, in other words, not
just the weights, but also the learning rule, neuron transfer function, and network
topology. Some interesting work has also been initiated in which evolutionary tech-
niques have been applied to the modular design of a neural network controller (Nolfi,
1997), although this approach has not yet been fully developed or exploited.

Evolutionary robotics has been shown to be useful in the development of effective
control mechanisms for individual robots. The feedback it provides also offers a
mechanism for devel oping effective control strategiesfor amulti-robot team, although
research inthisareaisvery muchinitsinfancy. To date, questions about the evolution
of multi-robot, or multi-agent systemshaveprimarily beeninvestigatedin simulation (for
instance, Baldassarre, Nolfi, & Parisi, 2002; Martinoli, 1999), but we anticipatethat this
isan areathat will receive an increasing amount of attention in the near future.

Currently, questions about how to use evolutionary techniques to evolve robotic
control structuresform aparticularly activefocusfor research. Of course, itisnever the
case that a control system is simply evolved in response to the environment: The
researcher has always made some contribution. Choices and decisionswill have had to
be made about certain aspects such asthe environment, thetask, theinitial architecture,
and evolutionary operators such asthefitnessfunction, for example. Nonethelessthere
isstill muchto be said for keeping such intervention as much to aminimum as possibl e,
based on the underlying idea of getting as close as possible to emulating natural
evolution. Aninteresting study intermsof an attempt to reducethelevel of experimenter
intervention is a technique termed “embodied evolution” (Watson, Ficici, & Pollack,
2002). Watson, Ficici, and Pollack’ sreported aim isto create an evol utionary technique
that can be run automatically on a group of robots without the need for global
communication, or arelianceon simulation. Robotsareleft inthetask environment (the
task in question being one of phototaxis, or attempting to reach a light source from
different starting positions). The evolutionary mechanism used was crossover, with a
simpleneural network control architecture serving asthe evolutionary substrate. Using
amechanismtermed probabilistic genetransfer algorithm (PGTA), each robot maintains
a virtual energy level that reflects its performance, and probabilistically broadcasts
geneticinformationlocally, at arate proportional toitsenergy level. Robotsthat areclose
enough to each other will pick up thisinformation, and allow the broadcast genes to
overwritesomeof their own. Robotsaccept broadcast geneswith aprobability inversely
related to their own energy levels. Theresult is that those robots with a higher energy
level (becausethey haveperformed thetask moreeffectively) aremoreableto broadcast
information, andlesslikely toallow their own genesto be overwritten. Themethod, when
tested, compared favourably to a hand-designed solution to the same task.
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Thereisalso interest in the combination of evolutionary and learning techniques,
whereaneural network control structureisfurther refined by alifetimelearning process
(Nolfi, 2003). Such an approach can be used to devel opindividual swith apredisposition
tolearn: evolving effectivestarting conditions, or initial weight matrices; or evolvingthe
tendency to behavein such away that theindividual is exposed to appropriate learning
experiences. The consequence of combining evolution and learning has been shownin
some studies (for example, Nolfi & Parisi, 1997) to lead to some promising results. A
further areathat offers promiseisto explore the application of evolutionary techniques
to the design decisions about the initial set of behavioural modules and to the methods
used to combine them.

Aninteresting alternative to evolving neural network weightsfor control systems
isto develop atraining set by remotely controlling arobot around an environment, and
collecting examplesof inputsand corresponding appropriate motor responses (Sharkey,
1998). Other than this, the main alternativeto handcrafting neural networks, or evolving
their weights, is to use reinforcement learning algorithms. Such algorithms have the
advantage of not requiring atraining set; what is needed instead is a scalar evaluation
of behaviour to guide learning. The evaluation could be provided by atrainer, or by the
agentitself asaresult of itsinteraction with the environment. What isneeded isapolicy,
or mapping from states to actions, that maximises positive reinforcement. Various
algorithmshavebeen explored from Q-learning (Watkins, 1989) tothelearning classifier
system advocated by Dorigo and Colombetti (1998) that incorporates a reinforcement
algorithm closely related to Q-learning to adjust the strength of itsrules, and a genetic
algorithm to search the space of possible rules.

Reinforcement learning has al so been applied to theissue of collective behaviour.
Mataric (1997) presents a method through which four mobile robots learn, through
reinforcement, social rulesabout yieldingand sharinginformationinaforagingtask. The
problem is one of finding a way of reinforcing individual robots for behaviour that
benefits the group as awhole, since greedy individualist strategies will result in poor
performance in group situations with resource competition. The solution she investi-
gatesisonethat relies on social reinforcement for appropriate use of four behaviours:
yielding, proceeding, communicating, and listening. Her results indicate improved
foraging behaviour in agroup of four mobile robots subject to social reinforcement, as
comparedto agroup usingonly greedy individual strategies. Inthesocial reinforcement
condition, robots were rewarded (a) for making progress to sub-goals of finding food,
or returning home (b) for repeating another robot’s behaviour and (c) for observing
reinforcement delivered to another robot; in other words, vicarious reinforcement,
whether positive or negative, is shared amongst all robots in the locality.

Inconclusion: Theapplication of swarmintelligent principlestothe control of robot
collection is best exemplified by studies in which no use is made of global control.
Decentralised control is needed to achieve the full advantages of scalability and
redundancy, and thereisaconsiderable body of research that hasinvestigated different
methods of achieving desired collective behaviourswithout resorting to global control.
There are also some other examples, such as that of ALLIANCE architecture (Parker,
1998), that share several featureswith swarmrobotics (for example, theuse of robotsthat
individually are subject to decentralised control), but in which some form of global
control, or global communication (see next sub-section) is employed.
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Communication

Communicationisof courseclosely linkedtothecontrol of robot collectives. Again
our concern hereiswith swarm intelligence, and hence with minimal and local commu-
nication. Thisisan areathat isbeginningto receive moreattention. For someinthearea
such as Luc Steels (1996), the concern is to develop explanations of the evolution of
complex communicative abilities. For others, the concern is to make use of limited
communicativeabilitiesto extend the capabilities of thegroup. Communication of some
form is likely to be required to accomplish some form of task allocation, and the
coordination needed tojointly undertakeand completeatask. Clearly biological systems
such asthose formed by social insects depend on some forms of communication. These
includealarm, recruitment, and recognition (Wilson, 1971), but alsoindirect communi-
cation by means of the environment. Cao, Fukunaga, and Kahng (1997) identify three
maj or formsof inter-robot communi cation: interaction via(a) theenvironment (b) sensing
and (c) communications. We shall make use of their distinctions, since they are useful
in terms of robots, but note that the distinction between sensing and communication is
not aparticularly useful oneintermsof social insects, sincethe communicationthey are
capable of depends on their ability to sense chemical pheromones.

Interaction via the Environment

Thesimplest form of interaction relieson communication through theenvironment,
aformof communicationthatisclearly biologically inspired. Theterm stigmergy isused
to refer to such communication, and was proposed first by Grassé (1959) in the context
of hisstudiesof termitenest building. Intermites’ stigmergiclabour, itisthe product of
work previously accomplished, not direct communication between nest mates, which
induces insects to perform further labour. For example, Grassé distinguished three
successive stages in the construction of a single foundation arch by workers of
Macroter mes (Bellicositermes) bellicosus. In the first stage, when workers encounter
building material of pellets of soil and excrement in a container, they all explore the
container individually. In a subsequent stage of “uncoordinated work” the pellets are
carried about and put down in aseemingly haphazard fashion. Eventually, seemingly by
chance, two or three pellets get stuck on top and workers begin to add more pellets on
top, until acolumn beginsto grow. If asecond columnislocated nearby, when acertain
height isreached, they begin to bend the column towardsthe neighbouring column, with
the result that eventually the two columns meet, the arch is finished, and the workers
moveaway.

Although Grassé's claim that the stigmergic explanation is perfect has been
criticised (for instance, Stuart, 1967, pointed out the inability of a simple stigmergic
machineto shut down when the job isfinished), the concept of indirect communication
viathe environment remains a useful one in swarm robotics. Holland and Melhuish’s
(1999) study of sorting examines the operation of stigmergy and self-organisationin a
homogenous group of physical robots. Their robots move and drop Frisbees, or pucks,
in an arena, in a manner that depends on their encounters with pucks that have been
dropped by other robots. If apuck isencountered by arobot that isnot already carrying
one, the robot picksit upinits gripper. If arobot bumpsinto a puck when it is already
carryingoneinitsgripper, thiscausestherobot toreleaseitsgripper andto drop the puck
it was carrying. The effect of following such simple behavioural rulesisthat the pucks
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eventually end up being clustered together: aresult that can be described as stigmergic,
since the robots are responding to the “work” of other robots that have deposited the
Frisbees. Further rules such as responding slightly differently to pucks of two different
colours, and reversing backwards before dropping pucks of one colour can be shown to
result in sorting the pucks. The task is claimed to be analogous to the brood sorting
behaviours of ants, and similar rules seem to describe the ants’ behaviour. The study
provides a clear demonstration of the exploitation of real-world physics, and of the
emergence of higher-level behaviour (sorting) from the combined effect of anumber of
robotsfollowing simplereactiverules.

Interaction via Sensing

Interaction via sensing refersto local interactions that occur between robots as a
result of their ability to sense one another, but without explicit communication. Such
sensing would permit a robot to distinguish between other robots, and objects in the
environment, sometimestermed “kinrecognition” (Mataric, 1993). A recent exampl e of
this would be the “infrared sniffing” implemented by Noel Sharkey on the robots
showcased at Magna (see Case Study section), where the predators can detect the prey
and viceversa, by detecting theinfrared signal sthey emit, whilestill relying on sending
out infrared signals themselves in order to detect other obstacles and objects in the
environment. Social insectsareal so clearly abletorecognise nest mates, an ability made
clear by their concomitant ability to detect alieninsect intruders. They can al so be shown
to beableto distinguish between castesand life stages of nest mates (Wilson, 1971), and
it seemslikely that chemical pheromonesareimplicated in these abilities.

Interaction via Communication

There are some systems, such as the ALLIANCE architecture (Parker, 1998)
mentioned in the preceding sub-section on Collective Control, that rely on global
communication, allowing each robot to beaware of theactivitiesof all other team mates.
Parker argues that this is legitimised by the poor sensory capabilities available in
autonomous robotics. However, such communication does not fit well with the biologi-
cally-inspired notion of swarmintelligence. Inaddition, itispossibletoidentify anumber
of disadvantagesto areliance onglobal communication, asoutlined by Martinoli (1999).
First, global communication is difficult to scale up, and bottlenecks soon arise when
group size increases. Second, such communication requires more sophisticated and
expensive hardware, which can reduce the robustness, and increase the expense of the
robots. Andthird, clearly social insectsare not aware of all the activitiesof other colony
members, but are able to coordinate their activities. They rely instead on stigmergic
signalsandlocal communication. It makessense, therefore, where simpleand expendable
robots are appropriate, to rely instead on simpler forms of communication.

Nonethel ess, some robotic applications such as those of Parker (1998) do rely on
global communication. Thereisalso someresearch, exemplified by that of Steels(1996)
inwhichlinguistic communication between robotsisexplored, withtheaim of exploring
the evolutionary emergence of language. Thisresearch is of interest from the point of
view of cognitive science, and of exploring evolutionary explanations of the origin of
language, but is of limited relevance to more practical domains.

Eventhough insect societiesare not capabl e of global communicationwhereby the
sameinformationisbroadcast to all themembers of the society, they are capabl e of local
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communication. They predominantly make use of chemical signals, asopposed tovisual
or auditory signals. They constantly touch each other, but do not seem to make use of
touchto convey muchinformation. Chemical signals, or pheromones, areimplicated (at
least) inalarm and recruitment, and in recognition according to Wilson (1971). Evenin
theclassic exampleused by Grasséto explain nest buildingintermites, itislikely (Wilson,
1971) that more than stigmergy isinvolved. Stuart (1967) looked at the conditions that
affected the halting of repair work to termite nest walls. He found that chemical
communication wasinvolved, as odour trails were used to recruit workers to the scene
when abreachinthenest wall occurred. Termitescontinued building, or repairing, until
the disturbing stimuli of air currents and lowered humidity were removed.

To date there hasbeen little attempt in swarm roboticsto incorporate mechanisms
of local communication; the emphasis has rather been on minimalism, and keeping the
robots as simple as possible. Clearly, however, the equivalent of pheromone trails are
made use of in swarm intelligence applications (see the What is Swarm Intelligence?
section), and are beginning to be explored in robotic studies also. It isquite possible to
justify local communication on the basis of the source of biological inspiration for the
approach of swarm robotics; since ants and beesuseit, it may well turn out to be useful
in swarm robotics also, and it is quite likely that future developmentswill find waysto
make greater use of such communication in future.

Group Composition

Initially, swarm robotic research, such asHolland and M el huish (1999), focused on
the development of swarms of identical robots. More recently, there has been an
increased interest in the deployment of different types of robot. In their taxonomy of
multi-agent systems, Dudek, Jenkin and Milios (2002) include group composition
(homogeneous or heterogeneous) as one of the axes that can be used to discriminate
between collectives. It should, however, be pointed out that even agroup of seemingly
identical robotswill become heterogeneous, asdifferencesin sensor tuning, calibration,
robot drift, and wear and tear amplify initially negligible differences (in the Case Study
section, itisfoundthat certain Predator robots, are much moreeffectiveat catching Prey
than others, even though their software and hardware are intended to be identical).
Nonethel ess, while acknowledging that homogeneity-heterogeneity isbest viewed asa
continuum rather than adiscrete classification, it remainsthe case that some studiesare
explicitly concerned with agroup of robotsthat can at least initially be considered to be
identical (homogenous groups), while othersare concerned with groupsthat are clearly
notidentical sincethey differ intheir mechanics, their sensing, their rolewithinthegroup,
or their controllers, or underlying basic behaviours.

The development and use of heterogeneous groups of robots can be justified both
intermsof biological inspiration and practical applications. Wecan briefly consider the
biological justificationfirst. The social organisation of ants, social beesand wasps, and
termites all depends on polymorphism, defined as the co-existence of two or more
functionally-different casteswithinthe samesex. Threebasic femal e castes, for instance,
can befoundin ants: theworker, the soldier, and the queen. Termitesal so have asoldier
caste specialised for colony defence, and a worker caste. The existence of castes
provides a mechanism for the division of labour that depends both on morphol ogical
differences and on the age of the insects, since there is usually atemporal division of
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labour in asequence that |eads from nest-work, to brood care, to foraging. Even abrief
consideration of the organisation of social insects makesit clear that current investiga-
tionsinswarmrobotics, whilebiologically inspired, do not even comeclosetoreflecting
their complexity and effectiveness.

Nonetheless, there are clearly advantages to the use of heterogeneous groups of
robotsfor real-world applications. Often an application demands capabilitiesthat cannot
be easily built into asinglerobot: arobot cannot be both big and small at the sametime;
similarly, asinglerobot may not be able to carry all the sensors needed for a particular
task. For example, Grabowski, Navarro-Serment, Panedis, and Khosla, (2002) describea
heterogeneous team they developed for mapping and exploration: ateam that consists
of four types of robot (large All Terrain Vehicles, medium sized Tank robots, Pioneer
robots, and centimetrescaleMillibots). The All TerrainV ehiclescantransport thesmaller
robots to distant places of interest; the Pioneers are designed to facilitate exchange of
information between team members; the Tank robotsare autonomousand can undertake
individual missionsor coordinatethe Millibots; and the Millibots are so small that they
can manoeuvreinto small spaces. Their teamishierarchically organised, and appliedin
the task domain of exploration and mapping.

Another example of a heterogeneous group is the marsupial robots employed by
Robin Murphy and her colleagues. Murphy (2002) arguesfor the benefits of transporter
or marsupial robots, enabling thetransportati on of small task-specificrobotstothetarget
area, without loss of battery power. The domain sheis particularly interested in isthat
of search and rescue, and in her marsupial robot teams, mother robots can transport
daughter robotsover rubbleto thetarget site, and can al so offer backup and protection,
for instance, recharging facilities, collection and processing of sensor data, and shelter
from environmental conditions (such as planetary nights).

It can be seen then that there are a number of practical advantages to forming a
collection of robotsof varied abilities. Also, from thebiological point of view, asBirk and
Belpaeme (1998) point out, ecosystems with only one species are not biologically
plausible. The many issuesto beinvestigated in thisareainclude: the measurement and
representation of the degree of heterogeneity; task allocation between members of a
heterogeneous team; physical cooperation and coordination between members; and
communication.

Issues about the measurement and representation of heterogeneity have been
explored by a number of researchers. The most obvious way in which robots in a
heterogeneousteam might differ isintermsof their physical form. For example, agroup
of robotsmight differinitsmethod of locomotion, which of courseaffectstheir mobility.
For instance, inthe marsupial robotsinvestigated by Murphy, the mothersand daughters
are physically different in that the mothers have the ability to transport and protect the
daughters. Grabowski et al. (2002) al so consider theeffect of different formsof propulsion
in their heterogeneous groups. Kephera robots, for example, are wheeled, with small
wheelshoused in the centre of the robot (http://www.k-team.com/robots/). Thisisgood
for flat surfaces, but not for inclines. The millibots they use, on the other hand, can be
equipped withthick rubber treads, all owing themto climbinclines. A heterogeneousteam
could also differ in their sensorial capabilities, and in behavioural capabilities. Other
researchershaveexplored heterogeneity in groupsof robotsthat existsonly in software;
the heterogeneousgroup of robotsstudied by Ijspeert, Martinoli, Billard, and Gambardella,
(2001) differ only inthelength of timethey grip thesticks, inastick pulling experiment.
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An important issue in heterogeneous and in homogenous robot teams is the way
in which task allocation is carried out. One way in which this can be accomplished is
through the adoption of specialised roles. For example, in the research described by
Goldberg and Mataric (2002), the number of collisions between robots is reduced by
using adominance hierarchy; dominant robotsaregiven priority. Analternative method
is to use individual activation thresholds for task allocation. Although it used to be
assumed that task allocation within insect societieswasarigid process (Gordon, 1996),
morerecent research hasfocused on behavioural flexibility and stressed theimportance
of external and decentralised factors such as pheromones or individual encounters (for
example, Bourke & Franks, 1995). | nan activation-threshold model, individual sreact to
stimuli intrinsically bound to thetask in question. For example, neglected brood, or the
corpses of dead ants, diffuse an odour of increasing strength. When this stimulus
reaches threshold value, an individual reacts by performing the relevant activity (such
as grooming the brood, or carrying a corpse out of the nest). If individuals do not have
the same threshold values, recruitment is gradual, and team size is thereby regulated.
Krieger and Billeter (2000), using teamsof upto 12 real robots, implemented asimpleand
decentralised task allocation mechanism based on individual activation thresholds.
Their results show that this mechanism resulted in efficient and dynamical task alloca-
tion.

Another related issue is that of finding a method of measuring the degree of
heterogeneity presentinagroup. Parker (1994), in her PhD thesis, introduced the concept
of task coverage, which measurestheability of agiventeam member to achieveaspecific
task, a measure which decreases as groups become more heterogeneous. Balch (2002)
introduces a method for measuring robot group diversity, based on social entropy, and
argues for the importance of a quantitative metric. He concentrates on evaluating
diversity in teams of mechanically-similar agents that use reinforcement learning to
develop behavioural policies.

In summary, the issue of group composition, and the move from collections of
seemingly identical robots to the development of heterogeneous groups, isonethat is
increasingly coming to the forein collectiverobotics. Interestingly, it is not something
that seems to be considered in swarm intelligence research, despite its biological
justification. However, in swarmroboticsthere seemsto beagradual movement towards
increasing task differentiation, and heterogeneity as more complex applications are
considered and attempted.

APPLICATIONS

The task domains for which collections of simple autonomous robots seem most
appropriate are those that occur in areas that are inaccessible or hazardous to humans,
andthat arelikely to benefit from having anumber of small, light, expendable, and cheap
robots. These include surveillance, monitoring, de-mining (detecting and removing
mines), toxic waste disposal, exploration, and search. However, in the current state of
research, such tasks are usually not actually carried out, but rather anal ogous tasks, or
tasks that involve components of these, are investigated. Foraging, for instance,
involves many subcomponents of the task associated with toxic waste clean up, while
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being closely related to the foraging behaviour of biological agents such as ants. Kube
and Bonabeau (2000) in abrief review of tasksto which aswarm intelligence approach
has been taken, write:

As the reader will perhaps be disappointed by the simplicity of the tasks
performed by state-of-the-art swarm-based robotic systems.... let usremind
her or him.. (that) .. it ssemsurgent to work at the fundamental level of what
algorithms should be put into these robots: understanding the nature of
coordinationin groupsof simpleagentsisafirst step towardsimplementing
useful multirobot systems.

In the following sub-sections, we will look at a number of task domainsin which
swarmrobotic, or collectiverobotic, solutionshave been sought, although asexplained,
these often explore only components of an application. Where real-world applications
have been devel oped (for instance, in Urban Search and Rescue), these often involve a
compromisein which swarm intelligent methods are combined with global control and
communication, or even remote control and tel eoperation.

Traffic Control and Moving in Formation

Assoon ascollectionsof robotsare used, issuesof traffic control becomerelevant.
Cao, Fukunaga, and Kahng (1997) in their review of collective robotics, report the use
of traffic rules by several researchers to avoid collision and deadlock. Goldberg and
Mataric (2002) describe apack controller that reducesthe number of collisionsbetween
robots returning home, by establishing a dominance hierarchy. Robots returning home
are given priority depending on their position in the dominance hierarchy, an approach
shown to significantly reduce the number of collisions compared to a homogenous
robotic controller. Thisand related solutionsareof interest, although theneed for traffic
control isreduced in swarm roboti ¢ studies because of the emphasisin behaviour-based
robotics on collision avoidance as one of the most basic behaviours.

Movinginformationisusually investigated asaleader-follower task in which one
robot followsanother. Desai, Ostrowski, and Kumar (1998) report astudy inwhich robots
can communicatelocally, and where by means of such communication they convergeand
move together. Dudek, Jenkin, Milios, and Wilkes, (1996) describe |leader-follower
experimentsinwhich aleader robot signal sitsintention to thefollower robot by making
specific motions prior to the intended movement.

Maintenance of Energy: Recharging and Artificial

Ecosystems

The ability of simple robots to locate and return to a base for recharging when
necessary isonethat would be particul arly useful whenthey aredeployedininaccessible
areas. The maintenance of energy has been researched in afew studies, although often
thisis simulated rather than actual. Grey Walter’s research (1953) provided an early
exampleof arechargingtask. Hiselectronic “tortoise” wasattracted to and docked with
a recharging station when its power was low. When it had sufficient energy, it was
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repelled by the recharger. The behaviour of the tortoise was driven by simple reactive
behaviours: head toward weak light, back away from strong light, and turn-and-push to
avoid obstacles. The case study below provides a further example of an artificial
ecosystem, as does the study reported by Birk and Belpaeme (1998), in which robots
competed with energy-draining lamps for power.

Explicitly-Cooperative Tasks

Some tasks or scenarios can benefit indirectly from cooperation between robots
(such as predator robots showing emergent cooperation to catch prey robots). However,
there are also some tasks that are explicitly designed to require cooperation. Box
pushing, where the box in question istoo heavy to be pushed by asingleindividual, is
acasein point. Similarly, atask of pulling sticks out of the ground can be set up so as
to require cooperation.

Box Pushing

Parker (2002) considerstheapplication of alearning versionof ALLIANCEtoabox-
pushing task, using the task to address issues raised by removing and replacing team
members. However, asmentioned earlier, the ALLIANCE architecture dependson global
communicative abilities that are not representative of swarm intelligence. Kube and
Zhang (1996) describe a box-pushing system in which a number of robots move boxes
to an indicated goal. Kube and Bonabeau (2000) further explore the same task and its
relationship to the cooperative transport performed by ants. Interestingly, some of the
behaviours observed in ants are adapted for use in the robots. When cooperatively
transporting prey, ants show realigning and repositioning behaviours. These same
behaviourswere adapted for use with robots, to overcome the stagnation that can result
from several robots pushing the object in different directions. Therobotic systemrelies
on the robots’ tendency to move towards the brightly-lit goal. Stagnation is avoided
through the use of some of the repositioning and realigning strategies noticed in ants.

Robotic Soccer

Robotic soccer isan explicitly-cooperativegameby definition, but relieson afixed
size of team, and usually on global observation and communicationto players. Nonethe-
less, it provides an interesting framework within which to investigate cooperative
behaviours, although much of this has been done in simulation (for example, Pagello,
D’Angelo, Montesello, Garelli, & Ferrari, 1999).

Cooperative Multi-Robot Observation of Multiple Moving Targets

Thisisadomain investigated by Parker and her colleagues that they describe as
an inherently cooperative task, and arich test bed for research on multi-robot coopera-
tion, learning, and adaptation. Parker (2002) considers methods for applying reinforce-
ment learning techniquesto the problem, showing that it is possible to come closeto a
human-generated solution.
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Stick Pulling

Thistask isonethat is set up so asto require the collaboration of two robotsto be
successful. The task is to locate sticks in a circular arena and to pull them out of the
ground, where the length of the stick means that a single robot cannot pull it out of the
ground alone, but must collaborate with a second robot. Ijspeert et al. (2001) report a
study in which the effect on task performance of the number of robots and of gripping
timeisinvestigated. The study is of particular interest sinceit provides one of the few
examples of a collaborative robotic experiment where the robots are controlled using
swarmintelligence principles, and they arephysical, not simulated robots, and morethan
three robots (up to six were used). Their robots are based on swarm intelligence
principles; they depend on reactive control and minimal sensing capabilities. Their
results, using real robots, a web simulator, and a probabilistic model, show that
collaboration canresultintheabsence of signalling or planning, or communication other
than astigmergic communicationinwhichthestate of the environment ischanged. They
varied the number of robots, the number of sticks, and the gripping time parametersfor
individual robots. Collaboration ratesincreased as more robots were added to agroup.
They found that a heterogeneous group of robots using a simple signalling scheme
(heterogeneity being introduced at the software level, with robots differing from each
other intheir gripping time parameter) increased collaboration rate under some circum-
stances.

Foraging

Essentially,inforaging, as, for example, interpreted by Goldberg and M ataric (2002),
robots search designated regions of spacefor certain objects, and oncefound, bring the
objectsto apre-specified goal region. Assuch, thetask isclosely related to toxic waste
cleanup. It also has relevance to search and rescue (see below), and is one of the
canonical test bedsfor cooperative robotics (Cao, Fukunaga, & Kahng 1997). A variety
of approaches have been taken to the task, ranging from simple stigmergy (Beckers,
Holland, & Deneubourg, 1994), to theformation of chainsal ongwhich objectsare passed
tothegoal (Drgoul & Feber, 1993).

Exploration, Mapping, and Search

Although most of the exploration algorithms that have been proposed have dealt
withsinglerobot exploration, anumber of multi-robot exploration algorithmshavebegun
to appear intheliterature. Given thetime and cost associated with exploration, it seems
aparticularly suitabletask for arobot collective. Y amauchi (1999) investigatesamethod
for thedecentralised coordination of multi-robot exploration. Autonomously-controlled
robots explore using frontier-based exploration. Every robot maintainsits own map, an
occupancy grid, but communicates it also to other robots.

Eachrobot storesthelocal gridsreceived from other robotsand integratesthemwith
itsownlocal gridtoformitsown global map reflecting what isknown about theterritory.
The approach as described is interesting in the way in which robots both share
information, but also maintain their own maps and make independent decisions about
where to explore. The advantages of an occupancy, or evidence grid, liein theway in
which they can be used to fuse information from different types of sensors and from
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different robots. A related approach in which different guesses about the location of a
robot arecombined inan evidencegrid, ispursued inresearch by Gerecke, Sharkey, and
Sharkey (2000). The communication of maps between robots means that the method is
less biologically plausible than swarm-based methods depending on local communica-
tion; however, the shared communication of honey-bees as they dance to indicate the
location of nectar sources, or potential nest-sites, bears some similarities.

Other examplesof multi-robot exploration exist. Burgard, M oors, Fox, Simmons, and
Thrun (2000) provide another example of two autonomous robots cooperating to
construct a probability-based occupancy grid representation of space. Dudek, Jenkin,
& Milios (1996) show that a collective of robots can explore atopological (graph-like)
environment more effectively than a single robot. Robots independently explore parts
of the graph, keeping track of where they have visited, and meeting on a prearranged
schedule to merge their maps and subdivide the remaining unexplored portions of the
graph. Rekleitis, Dudek, and Milos (1997) show how two or morerobots can coordinate
amotion strategy to construct an accurate metric map even without odometry.

Grabowski et al. (2002) describe amapping and exploration application, in which
small millibotsexplorean environment and communicateitto ateam leader, who collects
all sensor information and usesan occupancy grid representationto build up acomposite
map of the area. However, the system relies on keeping track of the location of all the
robots, using an ultrasound-based localization system in which millibots act as both
beacons and |ocalization receivers.

Coordinated search has al so been investigated. Spiresand Goldsmith (1998) raise
the question of how best to coordinate agroup of robotsto efficiently search an areafor
targets (such aslandmines). The solution they suggest, and for which they present some
preliminary results, isadecentralised approach in which robotstraverse a space-filling
curve.

In all these examples, the aim is to exploit the increased information obtaining
capability of agroup, asopposedtoasinglerobot, andto find efficient ways of combining
thisinformation. Theexploitation of theincreased information-gathering capabilities of
several redundant robots can be seen to have parallelsin the current enthusiasm in the
machine learning community for ensemble approaches (Sharkey, 1999), in which the
outputs of several redundant classifiers can be combined to form a more accurate
classification.

Search and Rescue

Urban search and rescueisareal application domaininwhich collectionsof robots
have been deployed. Robin Murphy’ steam at the Centrefor Robot-Assisted Search and
Rescue, (CRASAR) University of South Florida, is apparently ready to respond to
national and international eventswithin four hours. They participated in the search and
rescueat the September 11""World Trade Towerscollapse, deploying robotsat the scene
withinsix hours. They used “ man packable” robotswhich could be carriedin backpacks
by one or two people. Their emphasisison the devel opment of software for agilerobots
that can access areas that are inaccessible to humans. As with most practical applica-
tions, the approach taken isnot apurist one; inthefield, acombination of human remote
control and a hybrid deliberative/reactive control mechanism is used.
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Predator-Prey Scenarios

Research on heterogeneous groups has not always |ooked at cooperation. Various
researchershaveinvestigated competitionin predator/prey scenarios. Nolfi and Floreano
(2000), for instance, have considered the way in which the evol ution of two competing
populationswith coupled fitness may reciprocally drive each other to increasing levels
of complexity. Most such investigations have considered only asingle example of both
predator and prey. By contrast, Noel Sharkey’ spredator and prey robots (see Case Study
section below) at the M agna Science Adventure Centrein Rotherham consist of several
predators, and several prey: aset up that facilitates the investigation of the cooperation
that can emerge as aresult of applying evolutionary mechanisms to groups of robots.
Predator-prey scenarios can thus be used to explore both competitive and cooperative
relationships between robots. Another related example is that of Birk and Belpaeme
(1998) who describe a multi-agent system also based on heterogeneous robots. They
developed an artificial ecosystem containing three different species, and describe the
potential for cooperation and competition that is present in the scenario.

CASE STUDY:
PREDATOR AND PREY ROBOTS AT MAGNA

I nthispenultimate section of our chapter, we describethe predator-and-prey robots
developed by one of the authors (Noel Sharkey) as a museum exhibit for public
engagement with science at the Magna Science Adventure Centre in Rotherham, UK
(http://www.visitmagna.co.uk/). In the earlier Maintenance of Energy section, we
introduced the concept of artificial ecologies, as pioneered by Grey Walter. Sharkey
extended thebiological inspiration of recharging to the development of anartificial food
chain where the main currency was electricity. Some of the robots recharge under light

Figure 1. Predator robot
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Figure 2. Prey robot

Figure 3. Prey robot “ feeding” in light

and other robots steal the charge — as an analogy to the food chain in natural systems.
The robot colony is divided into two distinct “species’” consisting of five Predators
(Figurel) andten Prey (Figure 2).

Tomaintainenergy levels, the Prey have solar panelsontheir topstorechargetheir
batteriesby driving them under light trees (Figure 3) which they must first seek out using
infrared and solar sensors.
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Figure 4. Predator robot catching prey

Figure 5. Predator robot spiking prey

ThePredators, ontheother hand, must hunt the Prey to maintaintheir energy levels.
They capture the Prey (Figure 4) by lifting them off the ground and then they extract
energy by driving ametal fang onto abrassplatein themiddleof the Prey (Figures5and
6).

Thetask of the prey wasto escape capture from the predators and maintain energy

levelsby charging under light trees, whilethetask of the predatorswasto catch the prey
and steal battery power.
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Figure 6. Close-up of prey top

One of the main aims was to illustrate the effective behaviour that can arisein a
collection of reactiverobotsequipped with very simple sensing capabilities. Each of the
robots was equipped with eight infrared (IR) sensors. These were equally distributed
around the circular prey — the dark “windows” just beneath the top in Figure 2. On the
oval-shaped predators, thereweretwo infrared (IR) sensors on each side and one on the
back. Because of the hunting task, the predator had three sensors focused on the front.
The only other sensors used were bump sensors and solar sensors. Each predator had
two bump sensors on the front to detect contact with the prey. These were inset so that
they would only trigger on contact with a prey robot and not awall. The prey had solar
sensors to enable centring under lights.

The IR sensors have three different functionsfor the colony. First, theintensity of
thereflected IR light isused to detect distancesto objectsfor navigating around thearena
without bumping into obstacles and other robots. Second, the IRs are used on the prey
robots for detecting bright lights for recharging.

Finally, the IRs are the only means that the robots have for detecting the presence
of other robots. Each robot speciesemitsauniquelR signatureintheform of pulses. The
width of these pulses determinesif arobot is“friend” or “foe” with the predator pulse
about 2.5timeswider thantheprey pulse. Thisnovel usewastermed, “infrared sniffing”.
Theprey are sensitiveto theinfrared signature of the predatorsand useit to detect their
approach. The predators use the infrared signature of the prey to detect and hunt them.

Therobots are controlled by anumber of independent behaviour modulesthat are
initially prioritised andthentriggered by environmental cues— similar to Brook’ s(1986)
subsumption architecture. The behaviour of the prey is controlled by six modules:

1  Object module — an 8x2 artificial neural network that takes input from the IR
distance-sensing mode and steers the robot away from objects.
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2 Predator sensingmodule— an8x2artificial neural network (ANN) that takesinput
fromthe"“infrared sniffing” modethat sendsthe robot on an abrupt departurefrom
the direction of any detected predator. Equal priority is given to all sensors.

3 Preysensingmodule— an 8x2 ANN that takesinput from the“infrared sniffing”
mode (preliminary experimentsinvestigated the effect of evolving thismodule).

4.  Wander module— aprogrammed modul e that determined the default behaviour
and speed of robot aswell assendingitinrandomdirections. Thisoperated if none
of the other modules were triggered.

5 Lightdetection module—an8x2 ANN that takesinputintheformof lightintensity
with two outputsto the motorsto enablelight following. Thismoduleistriggered
by excessive background light on the IR sensors.

6. Lighttreemodule—a4x2 ANN that takesvoltage changeonthequadrantsof the
solar panels and steers the robot to the centre of the light source above it.

The predator behaviour is controlled by six modules:

1  Object module—an8x2 ANN similar tothat usedintheprey but designedtotake
the shape of the predator into account.

2 Predator sensing module — an 8x2 ANN that takes input from the “infrared
sniffing” mode that enables the predatorsto avoid each other at greater distances
than in the IR distance-sensing mode.

3 Wander module— asinthe prey, it sets default behaviour, speed, and direction
of the robot.

4. Preysensingmodule— an 8x2 ANN that takesinput fromthe“infrared sniffing”
mode and turns the robot in the direction of the sensed prey.

5 Attentional module — a 3x2 ANN that takes input from the front three IRs in
“sniffing” mode. This has a sequential dependency on the prey-sensing module,
and is only triggered when a prey has been detected and the predator has been
orientated to facein itsdirection. Once activated, the attentional module entirely
directsthebehaviour of therobot whiletheprey isinitssights. If it losesthe prey,
it startsagain. Theattentional modulewasrequired becausewithout it, the predator
would keep swapping which prey it was chasing.

6.  Kill module— essentially a programmed reflex. When a prey hitsthe front inset
bump sensors, it triggersthelifting mechanismwhich liftstherobot intotheair and
initiates the movement of the copper-tipped spike into the brass plate of the prey.
The spike is connected directly onto a circuit on the predator that drains battery
fromthe prey. Lifting in the air was not necessary for the energy transfer but was
added to heighten the drama of the museum show.

The application worked well for the clients at Magna. It was so popular with the
mediaand the publicthat therewere 7x30 minute shows per day. Thirty thousand people
came to see the showsin the first week and 400,000 in the first six months. Each show
started with aninformal family-friendly | ecture, and then the public watched a20-minute
free run of the robots. The number of robots varied and depended on the number of
breakdowns. During very busy periods, three predators and eight prey were used so that
there were two spare predators and two spare prey.
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The number of catches per show ranged from fiveto 27. The average number was
11 inthe 20 minute period. Interestingly, it was not the number of predators that made
the difference, but rather which predator. Although they were all made to identical
specifications, there were minor differences between them. For example, one of the
predators, Gaak, became famous for its catches. It always caught more than any of the
others even with aless good control algorithm.

On first consideration, the robots described in this study do not seem particularly
swarm-like, intermsof their sizeand number. I n other respectsthough, they can be seen
to adhere to swarm-intelligent principles. They are biologically inspired (Biological
Inspiration section), albeitin ageneralised, not aspecific sense, sincethey are not based
on any particular animal or insect. They areindividually-simplerobotsin that they are
controlled inareactive manner, using acombination of behavioural modules(Individual
Simplicity section). The behavioural modules took the form of handcrafted weightsin
artificial neural networks(their valuesset onthebasisof trial and error experimentation,
andthenevolvedtoacertain extent). They areclearly autonomous: not subject to remote
or global control (Collective Control section). They arecapableof only limitedandlocal
communication (Communication section); the infrared sniffing to detect predators and
prey constitutesaform of robot interaction viasensing (Communication section). Their
effective operation in the displays— avoiding obstacles and catching prey — provides
a good illustration of the apparently complex behaviour that can result from simple
reactivemechanisms. They do, however, represent an unusual use of robots, inthat their
applicationisone of educational entertainmentinamuseum. However, itisapparent that
such an application can provide a useful source of funding for the further development
of robotics.

CONCLUSION

In this chapter, we have considered what it means to take a swarm intelligence
approach to collective robotics; we also looked at recent research and a case study. In
thisfinal section, we shall review the strengths and limitations of the approach, and its
likely futuredirections.

Strengths and Limitations of the Approach
The main strengths of the swarm-based approach to robotics stem from its design
philosophy, and reliance on the use of simple expendabl e robots that can accomplish a
task through emergent cooperation. Swarmintelligenceisabiol ogically-inspired notion,
and restson the concept of simpleautonomousagents, with an emphasison decentralised
control and communication. Intelligent behaviour emergesfromtheinteractionsof such
agents with each other, and with their environment. When the notion of swarm intelli-
gence is realised in physical robots, it can be termed “swarm robotics’. The main
characteristics of swarm robotics are:
1 thatitisbiological inspired (in a general, rather than a specific sense, Sharkey,
2003);
2 simplicity at the individual level (robots controlled by means of a system of
behavioural or reactive modules that enable afast response to the environment);
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3. therobot collective is not centrally controlled (the robots are autonomous) and
4.  therobots are capable of only local or indirect communication.

There are several strengths that can be derived from these characteristics. The
principle motivation of swarm roboticsis based on the idea that by emulating some of
the characteristics of biological swarms, some of their emergent capabilities might be
achieved. A swarm of autonomous redundant robots could be used to accomplish tasks
in areasthat areinaccessible or hazardousto humans. Simplicity and reactive control at
thelevel of individual robots could mean that they would be ableto respond rapidly and
flexibly to an unknown and changing environment. Local control and communication
means that individual robots could be added or removed from the collective without the
risk of task failureor theneedfor recalibration. Similarly, theuseof local rather than global
control and communi cation meansthat therewoul d be no problemswithacommunication
bottleneck, or with the failure of a centralised processor.

However, applying aswarm intelligence approach to robot collectives al so neces-
sarily engenders somelimitations. For astart, it impliestheneed to limit, or restrict, the
abilities of the individual robots. The insistence on autonomy, simplicity, and local
communication restricts the kind of task for which such robots could be used; complex
tasksthat require the detailed and centralised communication of changing instructions,
for example, will not be appropriate. In addition, since part of the promise of swarm
robotics is the notion of emergent behaviour, there is the question of finding ways of
achieving the desired emergent behaviour. There are asyet no straightforward methods
for designing the component behaviours that will result in the emergent behaviour
required for the performance of user-designated tasks. Obtaining a solution for a
particular task islikely to require aconsiderable amount of experimentation, tofind the
best robots, behaviours, and control systems to accomplish it in a particular environ-
ment. Possible methods (evolutionary algorithms, and neural network learning) were
briefly outlined in the chapter, but represent only a starting point for solutions. Other
limitationsstemfromthelimited abilitiesof current robots. Clearly, thereare many insect
behaviours of which they are incapable, for instance, in terms of their mobility and
sensors. Nonethel ess, the promise is that there are some tasks that can be better solved
throughaswarmintelligent approach, than by methodsinvolving centralised processing
and control, and fewer more sophisticated robots.

Future research is likely to progress some of these areas towards more complete
applications, although it will be interesting to see the extent to which a purist approach
will bemaintained, or whether aswarm-based approach will inevitably be augmented by
direct control methods. One way of doing thiswould be to take a hybrid approach, and
incorporate some more sophisticated robotsinto acollection. For example, it could prove
useful to use a more sophisticated robot to shepherd, or transport, a swarm of simpler
robotstoarequiredlocationto completeatask. Itisalsolikely that, inthefuture, attempts
will bemadetoincorporate some moreaspectsof the organi sation of insect societiesinto
swarm robotics. Such efforts are beginning to be apparent in the explorations of the
mechanisms of task allocation, and of caste divisions and dominance hierarchies
reported earlier. Further research could al so belegitimately used to extend the capabili-
ties of individual robots. It could be used legitimately in the sense of still being
biologically plausible, since although insect societies are clearly organised on
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decentralised principles, itisquitelikely that individual insectsare capabl e of morethan
purely reactive behaviour. Thereisevidencethat they can form somekinds of represen-
tation, and can communicate with each other to a greater extent than has yet been
modelledinrobotics; bees, for example, canrecogniselandmarks, and can perform dances
that |et other members of the hive know where to find good sources of food outside the
nest. The possibility of incorporating a more detailed knowledge of insect behaviours
into swarm robotics is one that may be realised in the future.
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ABSTRACT

An approach to the structural health management (SHM) of future aerospace vehicles
is presented. Such systems will need to operate robustly and intelligently in very
adver se environments, and be capabl e of self-monitoring (and ultimately, self-repair).
Networks of embedded sensors, active elements, and intelligence have been selected
to form a prototypical “ smart skin” for the aerospace structure, and a methodol ogy
based on multi-agent networ ks devel oped for the system to i mplement aspects of SHM
by processes of self-organisation. Problems are broken down with the aid of a
“responsematrix” intooneof threedifferent scenarios: critical, sub-critical, and minor
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damage. From these scenarios, three components are selected, these being: (a) the
formation of “ impact boundaries’ around damage sites, (b) self-assembling “ impact
networks” , and (c) shape replication. A genetic algorithm exploiting phase transitions
in systems dynamics has been developed to evolve localised algorithms for impact
boundary formation, addressing component (a). An ant colony optimisation (ACQO)
algorithm, extended by way of an adaptive dead reckoning scheme (ADRS) and which
incorporates a “ pause” heuristic, has been developed to address (b). Both impact
boundary formation and ACO-ADRS algorithms have been successfully implemented
ona*“ concept demonstrator” , whileshapereplication algorithmsaddressing component
(c) have been successfully simulated.

INTRODUCTION

Structural health management (SHM) is expected to play a critical role in the
development and exploitation of future aerospace systems, operating in harsh working
environments and responding to various forms of damage and possible manufacturing
and/or assembly processvariations. SHM isanew approach to monitoring and maintain-
ing the integrity and performance of structures as they age and/or sustain damage. It
differsfrom the traditional approaches of periodic inspection and out-of-service main-
tenance by aiming for continuous monitoring, diagnosis, and prognosis of the structure
whileitisin service, damage remediation and, ultimately, self-repair. Thisrequiresthe
use of networked sensors and active elements embedded in the structure, and an
intelligent system capable of processing and reducing the vast quantities of data that
will be generated, to provide information about the present and future states of the
structure, and to make remediation and repair decisions.

This chapter outlines an approach being taken to the development of next-
generation SHM systems, and the development of a flexible hardware test-bed for
evaluating and demonstrating the principles of the approach. Thisintroductory section
will outlinethegeneral requirementsof an SHM system, providean overview and relevant
details of the hardware test-bed, and i ntroduce our approach to the systems-level issues
that must be solved.

Structural health management systems will eventually be implemented in awide
range of structures, such as transport vehicles and systems, buildings and infrastruc-
ture, and networks. Much of the current research effort isaimed at the highval ue, saf ety-
critical areaof aerospacevehicles. CSIROisworkingwithNASA (Abbott, Doyle, Dunlop,
Farmer, Hedley, Herrmannet al ., 2002; Abbott, Ables, Batten, Carpenter, Collings, Doyle
etal., & Winter, 2003; Batten, Dunlop, Edwards, Farmer, Gaffney, Hedley et al., 2004,
Hedley, Hoschke, Johnson, Lewis, Murdochetal., & Farmer, 2004; Price, Scott, Edwards,
Batten, Farmer, Hedley et al ., 2003; Prokopenko, Wang, Price, Vaencia, Foreman, Farmer,
2005a) and other key industry playersto develop and test concepts and technol ogiesfor
next-generation SHM systems in aerospace vehicles. While many of the principles of
SHM systemsdescribed in thischapter arequitegeneral, aesrospacevehicleswill beused
throughout as example structures.
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General Requirements of a Structural Health
Management System

The key requirements of an advanced health monitoring system are that it should

be able to detect damaging events, characterize the nature, extent, and seriousness of
thedamage, andrespond intelligently inwhatever timescal eisrequired, either to mitigate
theeffectsof thedamageor to effectitsrepair. Strictly speaking, apuremonitoring system
isexpected only toreport damagerather thanto formulatearesponse, butitispreferable
that the ultimate objective of responding to damage be borne in mind from the outset.

1

The statement of key requirements serves to sub-divide the problem as follows:

Detection of damaging events, whichrequiressomeknowledge of theenvironment
in which the vehicle will be operating, the threats that it will face, and the
development of sensors as well as a strategy for using them to detect damage
events well within the time required for the system to respond. For events that
require arapid response, the best solution will often involve the use of passive,
embedded sensors.

Evaluation of the extent and severity of the damage. Thismay or may not bea
separate process from event detection. It may use different sensors, or the same
sensorsmay beused in adifferent way. Itismorelikely to employ active sensors,
which may be embedded in the structure or could be mobile and autonomous.
Diagnosisof thedamage, whichincludesidentification of the nature of thedamage
(for example, isit dueto corrosion, fatigue, impact, and so on?) and its cause. An
intelligent system should be able to utilize data from a vast array of sensors to
deduceinformation about the eventsthat have occurred and the resulting damage,
onawhole-of-vehiclebasis. Knowledge of the cause of damage may enableactions
to be taken to reduce the rate of damage progression. Diagnosis also requires an
assessment of the effect of the damage on the performance capability andintegrity
of the structure.

Prognosisfor the structurerequires prediction of the future progression of the
damage and assessment of the effect of the forecast damage on structural perfor-
mance. It requires an estimate of the future operating conditions of the structure.
Formulation of the response: intelligent decision-making. The nature of the
responsewill depend on anumber of factorssuch astherange of possibleresponse
mechanisms, the diagnosis of the damage (steps 2 and 3 above), the available
response time as deduced from the diagnosis and prognosis (step 4), and so on.
A response may consist of a sequence of actions. Major damage may demand an
immediate emergency response, such as the rapid isolation of awhole section of
thevehicle, followed by amore considered damage eval uation and repair strategy.
Execution and monitoringof theresponse. Inadditiontorepair, aholistic response
may involve changes to the flight or operational characteristics of the vehicle,
either to mitigate the effects of the damage or to assist in the avoidance of further
damage. The effectiveness of the response will require monitoring.

Thefirst and second of these points are what is generally referred to as structural

health monitoring. Itiscurrently carried out in avery limited way in specific regions of
selected structures (for instance, some aircraft, some items of large infrastructure),
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generally using a small number of sensors connected to a data logger or computer.
Ultimately, large numbersof sensorswill berequired to detect and evaluateawiderange
of possible damage types within alarge and complex structure.

NASA’s vision of self-monitoring robust aerospace vehicles includes both local
and global SHM systems(Generazio, 1996). Thelocal actionsare anticipated to autono-
mously identify, evaluate, and trigger an appropriate response, including repair, for a
widerange of damage or defect conditionsin aerospace materials and structures, using
distributed micro-sized sensors, multiple miniature robotic agents, micro-sized repair
tools, and self-healing smart structures. In parallel, global actionsshould enable dynamic
evaluation of structural integrity across large and remote areas. Thisdual architecture,
in turn, entails the need for dynamic and decentralised algorithms used in all the key
requirements enumerated above.

An additional key requirement of an autonomous SHM system isrobustness. The
system must be ableto operateeffectively inthe presence of damageto the structureand/
or failure of system components: its performance must degrade“ gracefully” rather than
catastrophically when damageoccurs. Scalability, reliability, and performanceverifica-
tion are also needed.

Also of great importance to any SHM system is the provision of an efficient and
robust communicationssystem. Unlesslocal actionsaresufficient, thekey requirements
mentioned above will rely on communication from a damage site to another part of the
vehicle, for example, to initiate secondary inspections, repair, or in extreme cases,
appropriateemergency action. Such communicationswill most likely behierarchical and
flexible, since the site to which damage is reported will vary with time, as well asthe
damage location and severity. Robustness must also be a feature, with continuing
communications ensured even in severe damage situations.

In order to address these requirements, we have chosen to apply a multi-agent
system (MAS) approach to the architecture, and seek to devel op design methodologies
that will enable the desired responses of the system (the remedial actions) to emerge as
self-organised behaviours of the communicating system of sensing and acting agents.
Theparticular MAS structure which isthefocus of thischapter isagroup of contiguous
agents, locally connected and forming the surface of athree-dimensional object. Each
agent has sensing and computational capabilities, and can communicate only with its
immediateneighbours. Thusall communications, local, regional, and global needto occur
through these agent-to-agent links. Although such constraints impede the flow of
information, there is a significant potential redundancy which can aid robustness.
Varioustypes of communicationswill be needed, ranging from local cell-to-cell hand-
shaking to check status, to emergency global communicationsin case of severedamage,
which must be carried out as rapidly as possible whenever needed.

Much of this research has been undertaken as part of the CSIRO-NASA Ageless
Aerospace Vehicle (AAV) project, which also includes an experimental test-bed and
concept demonstrator (CD) system, whoseaimisto detect, locate, and eval uateimpacts
by fast particles. A software simulation package has al so been developed. The purpose
of thesetwotoolsisto provideversatileresearch platformsfor investigationsof sensing,
data processing, communications, and intelligence issues, and for demonstrating solu-
tions for some of these issues. The architecture of the system is highly modular, being
composed of “cells” that constitute the outer skin of the vehicle. Each cell consists of
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asmall region of thevehicle skin, anumber of sensorsattached to the skin, aprocessing
unit, and communication ports. Each of these cellsisan agent in the multi-agent system
architecture. This system will be described in more detail in the Ageless Aerospace
Vehicle Project section.

The Approach to Intelligent SHM System Development

The approach adopted here to the development of system intelligenceis based on
a multi-agent system (Ferber, 1999) in which the desired responses emerge by self-
organisation. What is meant by self-organisation? The following definition, in the
context of patternformationin biological systems, wasgiven by Camazine, Deneubourg,
Franks, Sneyd, Theraulaz, and Bonabeau, (2001):

Self-organizationisaprocessinwhich patternat theglobal level of asystem
emer ges solely from numerous interactions among the components of the
system. Moreover, the rules specifying interactions among the system’'s
components are executed using only local information, without reference
to the global pattern.

This definition captures two important aspects of self-organisation. Firstly, the
global behaviour of the system of many interacting components (agents) isaresult only
of the interactions between the agents, and secondly, that the agents have only local
information, and do not have knowledge of the global state of thesystem. Typically, this
emergent behaviour at the system level isnot easily predictablefromlocal agents’ rules
and interactions.

Self-organisation occurs in both biological and non-biological systems. In non-
biological systems, self-organisationisproduced by aflow of energy intothe systemthat
pushesit beyond equilibrium: the windsthat produce characteristic ripplesin sand, the
temperature gradients that produce Bénard convection cells in a viscous fluid, the
thermodynamic forces that |ead to crystal growth and characteristic molecular confor-
mations are all examples of these external energy inputs. However, the nature of the
emergent behaviour depends critically on the interactions between the low-level com-
ponents of the systems— the grains of sand, the moleculesin thefluid, the atomsinthe
crystalsand molecules. Theseinteractions are determined by thelaws of natureand are
immutable.

In biological systems, on the other hand, the interactions between components of
a system may change over generations as a result of evolution. There are selection
pressures based on adaptation to the environment and survival. These selection
pressures lead to emergent behaviour that is desirable for the survival of the systemin
the environment in which it has evolved, but which may be undesirable in other
environments. Similarly, when using evolutionary methods for the design of complex
SHM systemsthat empl oy sel f-organi sed responsesto damage, thereisaneed toidentify
appropriate selection pressures. These, through their contribution to an evolutionary
fitness function, will constrain the agent interactions to produce desirable emergent
responses. Such selection pressures will be further discussed later in this chapter.

Current approaches devel oped for complex systems, and in particular, multi-agent
networks, either solveindividual problemsusing evolutionary algorithms, or restrict the
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solution space so that emergent behaviour is impossible. Both these approaches are
inadequate, the first because of high computational needs and the loss of an intuitive
feel for the results, and the second because it is likely to over-constrain the range of
possible solutions: it is noted that biological systems make extensive use of the rich
solution space provided by the complexity of natural systems. In order to emulate this
capability, ageneral design methodology, retaining the essential complex behaviour of
multi-agent systems, is needed. Design in this context means the ability to specify the
local agent properties so that they interact to produce a desired global result.
Inthischapter, wedescribeaninitial hybrid top-down/bottom-up (TDBU) attempt
at subdividing a set of high-level goals into intermediate hierarchical objectives, and
exploring thesolution spaceat eachintermediatelevel of thehierarchy. In particular, we
explicitly definethe mainfunctional SHM sub-tasks, working downwardsfrom thetop-
level design goals. The next stageis, for each sub-task, to design localised algorithms
working from thebottom up and using aniterative processincluding thefollowing steps:
1  forward simulation leading to emergent behaviour for a task-specific class of
localised algorithms;
2 quantitative measurement of desirable qualities shown by the emergent patterns
(for example, spatiotemporal stability, connectivity, and so on); and
3 evolutionary modelling of the algorithms, with the metrics obtained at step (b)
contributing to the fitness functions.

While the eventual optimal solution to the overall SHM problem may not involve
sequential stepsthrough the sub-tasks|listed above, our initial approach isto dividethe
problem along the lines indicated. Thus we will first aim to develop procedures to
characterise damage (in terms of its nature, location, extent, and severity), then form a
diagnosis, then a prognosis, and finally make decisions and take appropriate actions.

A diagnosis, or the confidence in a diagnosis, may change with time, as the
development of damageismonitored and moreinformation becomesavailable. Oneof the
major benefits of SHM isthe ability it providesto detect damage at an early stage and
tomonitor itsdevel opment, leading to improved diagnostic capabilitiesand, ultimately,
more efficient repair strategies. Similarly, aprognosis, which depends on prediction of
thefuture progression of thedamage, can be modified with time asthe damage devel ops.

The Response Matrix Approach to Comparing Response

Characteristics

Itisclear that anintelligent systemin asafety-critical environment must be ableto
respond very differently in different circumstances. In the event of sudden critical
damage, such as amajor impact, the most important characteristic of the response may
be speed. Some undesirable side effects may be a tolerable trade-off for a rapid and
effective emergency response. On the other hand, an acceptable response to slowly
devel oping non-critical damage, such as highcycle fatigue or corrosion, must be more
deliberative and targeted, and response speed isunlikely to be arelevant consideration.
Inorder to provideabasisfor comparison of responsetypes, and to guide thinking about
the processes by which responses are produced, the following simple response matrix
method has been developed.
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The response matrix seeks to classify aresponse on the basis of its spatial extent
andthedegree of deliberationrequiredtoformtheresponse. Thespatial extentisdefined
intermsof systemcells, whereacell isthesmallestintelligent unit of thesystem. Examples
of cellsinthe AAV test-bed are described in the Agel ess Aerospace Vehicle section. A
responseis categorized as“local” if only asingle cell isinvolved, as“neighbourhood”
if only asmall group of neighbouring cellsisinvolved, or as“global” if alarger region,
such asacomplete sub-structure or eventhewholestructureisinvolvedin theresponse.
The nature of aresponseis considered to be “reactive” if it is maderapidly, using only
the initially-sensed data, and with effectively no feedback that could be classed as
deliberation. It is said to be “strongly deliberative” if there are long feedback |oops
involved in obtaining additional sensed data, and making a response that would be
classified as being highly intelligent. A “moderately deliberative’ response would
involve some deliberation by the system, but with shorter feedback |oopsthan required
for astrongly deliberative response. Some examples of these responseswill be outlined
below to clarify these definitions; but first, three levels of damage will be defined.

Three levels of damage will be referred to throughout this chapter. The first is
critical damage, which is sufficiently severe to threaten the integrity of the structure,
and possibly the survival of thevehicle. Critical damagewill generally occur suddenly,
or presumably its precursors would have been detected and corrected. It will require an
emergency responsethat must berapid and effective, evenif subsequent, morethorough
diagnosis shows it to have been an over-reaction. The second level is sub-critical
damage, which, although severe enough to require an immediate response, is not
sufficiently threatening to the vehicle's survival to require an emergency response.
Thirdly, thereisnon-critical, or minor damage, which does not necessarily require an
immediate response, but which must be monitored to track its progression with time (as
with, for example, corrosion or fatigue damage), or its possible interaction with other
damage mechanisms.

In terms of these levels of damage, areactive response will generally be invoked
only by critical damage, or by an indication of the likelihood of critical damage: it will
generally be preferableto react to the likelihood of critical damage than not. A reactive
responseispre-programmed (such asan emergency evacuationfromabuilding), and will
befollowed by amoredeliberative eval uation and diagnosis. It may include physical and/
or electronic isolation of acell, neighbourhood, or sub-structure, and the initiation of
autonomic and fast temporary repairs. Theresponsetoindications of sub-critical or non-
critical damagewill beto eval uate the severity of thedamage, by monitoring the outputs
of sensors other than those that indicated the damage, or by initiating active damage
evaluation (ADE) using either embedded or mobile sensors. The ADE and subsequent
remedial actionsmay be moderately deliberative or strongly deliberative, depending on
the amount of information and prior knowledge which is required for a diagnosis. A
moderately deliberative response might consist of arapid diagnosisfrom asingle set of
ADE data, followed by animmediate remedial response. On the other hand, an accurate
diagnosisof non-critical damage might requirethe damage progression to be monitored
for sometime, or it may require several setsof ADE dataand comparison with aphysical
damage model, and this would be considered a strongly deliberative response.

Examples of the waysin which chains of responsesto different typesand level s of
damage can be classified using the response matrix approach are shownin Table 1. Two
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formsof potentially critical damage, afast particle (perhapsamicro-meteoroid) impact
onasinglecell, and large body impact or an explosion that causes severe damageto a
whole sub-structure, as well as one of non-critical damage to one or more cells, are
considered. Inthe cases of critical damage, theinitial reactiveresponsethat isrequired

Table 1. The response matrix approach for classification of system responses, with
examples for three types of damage, as outlined in the text
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to ensure survival isfollowed by amore deliberative response to obtain more specific
information about the damage, to produce more appropriatelong-termremediation of the
damage, and to enablethe systemtolearnto deal better with similar eventsinthefuture.
Similar sequences of reactive and deliberative response to danger (“panic” response)
and damage can be recognized in animals, including humans.

Top-Down/Bottom-Up Design (TDBU) and the Response

Matrix

One way of viewing the response matrix is as the top-down part of the TDBU
approach to design which was outlined in the Approach to Intelligent SHM System
Development section. For arange of damage scenarios and the desired system response
to each, the response matrix infers the large-scale components necessary for the
appropriate response to occur. The components, whilst not unique, are chosen as high-
level and as broad in spatial extent as possible, in line with the minimal hierarchical
decomposition of the problem which is the intention of the TDBU approach.

Itisenvisagedthat mostif not all of thecomponentswould beimplemented by self-
organisation within the multi-agent structure. If the decomposition istoo broad, then
there may be difficulty in achieving such self-organising solutions, while if it is too
prescriptive, then the result may be an unsatisfactory system outcome. Of course, the
ideal would be to achieve complete, self-organised responses to al likely damage
scenarios without having to decompose the problem. The possibility of thisisunlikely,
at least inthenear future, because of thecompl exity of multi-agent systems, soaminimal
hierarchical decomposition isagood compromise.

Themaost important componentsare damage detection, local assessment of damage,
higher-level assessment (diagnosis and prognosis), and response (actions). Some of
thesewill betreated in detail inlater sections. However, thereisonecritical component
which cannot be left out of the equation. Thisiscommunications, which isanecessary
part of all damage scenarios, and at |east as complex and difficult to handle properly as
the others mentioned above.

Communications

Agentsinamulti-agent system communicateeither directly or throughtheenviron-
ment (stigmergy) to form anetwork which usually exhibitscomplex behaviour (Holland
& Melhuish, 1999). If theagentsarefixedin space, ason theskin of anaerospacevehicle,
then direct inter-agent communi cationsformsthe basis of the network. Aswill be seen,
the particular agent networks of interest here generally only support communications
between adjacent neighbours. Although this appears at first glance to be arestriction,
it is also the main source of network robustness because of the large redundancy
provided by the network.

There are many different communications tasks which the network hasto be able
to handle, ranging from simple status queries and responses for adjacent neighboursto
thereporting of acritical damagesituationto aremotesitefromwhich appropriateaction
can beinitiated. Although communications tasks vary with the damage scenario, they
all share the need to transfer information robustly and efficiently from one part of the
network to another, in an environment where both transmit and receive sites may not
know the other’s location (which may change with time anyway). In addition, the
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environment itself istime-variable, particularly in times of significant damage. Secure
communicationsinsuch an environmentisageneral task of significant difficulty which,
however, needs to be solved since the survival of the vehicle may depend on it.

In amulti-agent system it would seem natural to seek self-organising solutionsto
this problem, and some progress has been made in this area, including one application
presented in the Impact Boundaries section.

BACKGROUND AND RELATED WORK

Self-organisationistypically defined asthe evol ution of anon-equilibrium system
into an organised formintheabsence of external pressures. Over thelast years, anumber
of examples employing self-organisation have been suggested in the broad context of
biological and bio-inspired multi-agent systems: the formation of diverse spatial struc-
tures by groups of ants (Deneubourg & Goss, 1989), the growth and morphogenesis of
networksof galleriesinthe ant Messor sancta (Buhl, Deneubourg, & Theraulaz, 2002);
a propulsive motion of locally-connected mobile automata networks, dynamically
organising into simplespatial structureswhileevolvingtoward task-specific topologies
(Wessnitzer, Adamatzky, & Melhuish, 2001); a pattern formation of self-assembling
modular robotic units, with the emergent chaining behaviour being analogous to the
process of polymerisation, and the emergent clustering behaviour being similar to the
autocatalytic process used by pheromone-depositing bark beetle larvae (Trianni, La-
bella, Gross, Sahin, Dorigo, & Deneubourg, 2002); fault-tolerant circuit synthesisona
self-configurable hardware platform provided by the Cell Matrix approach (Durbeck &
Macias, 2002); a self-assembly of network-like structures connecting a set of nodes
without using pre-existing positional information or long-range attraction of the nodes,
using Brownian agents producing different local (chemical) information, responding to
itinanon-linear manner (Schweitzer & Tilch, 2002).

Traditional multi-component systems do not exhibit self-organisation; instead,
they rely onfixed multiplelinksamong the componentsin order to efficiently control the
system, having fairly predictable and often pre-optimised properties, at the expense of
being less scalable and less robust. In the SHM context, condition-based maintenance
(CBM), aprocesswherethe condition of equipment isautomatically monitored for early
signs of impending failure, followed by diagnostics and prognostics, has become
popular for multi-component systems due to its cost and reliability advantages over
traditional scheduled maintenance programs. However, according to a NASA Jet
Propulsion Laboratory (JPL) report on Prognostics M ethodol ogy for Complex Systems
(Gulati & Mackey, 2003), CBM is frequently difficult to apply to complex systems
exhibiting emergent behaviour and facing highly stochastic environmental effects. A
scalable solution capable of providing a substantial |ook-ahead capability is required.
The JPL solution involves an automatic method to schedule maintenance and repair,
based on acomputational structure called theinformed maintenancegrid, and targeting
the two fundamental problems in autonomic logistics: (1) unambiguous detection of
deterioration or impending loss of function, and (2) determination of thetimeremaining
to perform maintenance or other corrective action based upon information from the
system (Gulati & Mackey, 2003). The solution based on the JPL work does not account
for self-organisation and is not directly applicableto distributed multi-agent networks.
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A recent paper by Prosser, Allison, Woodard, Wincheski, Cooper, Price, Hedley,
Prokopenko, Scott, Tessler, and Spangler, (2004) has given an overview of NASA
research and development related to SHM systems, and has discussed the requirements
for SHM systems architectures. Characteristics such as scalability, flexibility and
robustnesswereidentified asbeingimportant requirements. Biological systems, includ-
ing those referred to above, provide many examples of these characteristics in self-
organising multi-agent systems. Indeed, it has been asserted that biological complexity
and self-organisation have evolved to provide these characteristics. For example,
Klyubin, Polani and Nehaniv (2004) indicated that evolution of the perception-action
loopinnatureaimsat improving theacquisition of information from theenvironment and
isintimately related to selection pressures towards adaptability and robustness— their
work demonstrated that maximisation of information transfer can giverisetointricate
behaviour, induce anecessary structurein the system, and ultimately beresponsiblefor
adaptively reshaping the system. In order toinvestigatethe practical implementation of
biol ogically-inspired conceptsto structural health management systems, an experimen-
tal multi-agent test-bed has been developed. Thiswill be described in the next section.

THE AGELESS AEROSPACE
VEHICLE PROJECT

I ntroduction

The CSIRO-NASA Ageless Aerospace Vehicle (AAV) project has developed and
examined conceptsfor self-organising sensing and communi cation networks (Abbott et
al., 2002; Abbott et al., 2003; Priceet al., 2003; Batten et al., 2004; Hedley et al ., 2004;
Prokopenko et al., 2005a). These conceptsare being devel oped, implemented, and tested
inan experimental test-bed and concept demonstrator: ahardware multi-cellular sensing
and communi cation network whoseaimisto detect and react toimpactsby high-velocity
projectilesthat, for avehiclein space, might bemicro-meteoroidsor spacedebris. High-
velocity impacts are simulated in the laboratory using short laser pulses and/or steel
spheres fired using a light-gas gun.

The test-bed has been built as a tool for research into sensor design, sensing
strategies, communication protocols, and distributed processing using self-organising
multi-agent systems. It hasbeen designed to bemodular and highly flexible: By replacing
the sensors and their associated interface and data acquisition electronics, the system
can be readily reconfigured for other applications.

Figures 1 and 2 contain aschematic overview of the system and photographs of its
physical implementation, respectively. The physical structure is a hexagonal prism
formed from a modular aluminium frame covered by 220 mm x 200 mm, 1-mm thick
aluminium panel sthat form the outer skin of the structure. Each such panel containsfour
“cells”, and each of the six sides of the prism contains eight of these panels. The skin
therefore consists of 48 aluminium panels and 192 cells. Cells are the fundamental
building blocks of the system: they are the el ectronic modul es containing the sensing,
processing, and communication el ectronics. Each cell occupiesan areaof ~100 mm x 100
mm of the skin, mounted on theinside of which arefour piezo-electric polymer (PVDF)
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Figure 1. Architecture of the test-bed
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sensors in a 60 mm square array, to detect the acoustic waves that propagate through
the skin as aresult of an impact.

Each cell contains two electronic modules (Figure 2), one of which acquires data
from the sensors, while the other runs the agent software and control s the communica-
tions with its neighbouring cells. Importantly, a cell communicates only with four
immediate neighbours. Thetest-bed does not employ centralised controllersor commu-
nication routers.

Also shown in Figure 1 are a PC cluster and a workstation. The cluster is used to
simulate alarger network of cells, and isused for research into the emergent behaviour
of multi-agent algorithmsinvery large networks. Theworkstationisusedtoinitialiseand
configurethetest-bed, andto monitor the network during operation, for visualization and
debugging purposes. However, itisnot part of the sensor network and doesnot influence
or control the system behaviour during normal operation. This workstation is the
“System Visualization” block shown in Figure 3 (upper right), which is a schematic
diagram of the multi-agent system architecture of the test-bed system.

A picture of the current state of the physical test-bed, with some panels removed
toreveal theinternal structureand electronics, isshowninFigure2. A 12V power supply
is mounted on the base of the hexagon, and power is distributed viathe top and bottom
edges. Communication betweenthetest-bed and PCsisvial.5 Mbits/sserial linksusing
USB.
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Figure 2. Photograph of the test-bed (top); a single cell consisting of a network
application sub-module (NAS) and a data acquisition sub-module (DAS) (center
photograph); the bottom photograph shows an aluminium panel containing four cells
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Figure 3. Schematic diagram of a progression of agent-based system architectures,
leading to the complex multi-agent ar chitectur e of the test-bed systemin the upper right
of the diagram. Each cell in the test-bed is a local agent, capable of obtaining local
information about damage from its sensors, and capable of communicating only with
itsdirect neighboursin the mesh network. The workstation referred tointhetext isthe
System Visualization block.
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Cell Properties and Single-Cell Functionality

A modular approach to the sensing and electronics was adopted to enhance
flexibility, re-configurability and ease of manufacture (Hedley et al., 2004, Battenetal .,
2004). Eachmodule, or cell, contains sensing elements, signal processing (analogueand
digital), and communications, using the following logical layering of these functions:
1  Sensors— piezo-electric polymer sensors attached to the aluminium skin.

2 Analoguesignal processing — including amplification, filtering, and other pro-
cessing of the sensor signals required prior to digitization of the signals.

3. Samplingand datapre-processing—including digitization, calibration correction,
data reduction, and other processing that can be performed using only the local
signals.

4.  Dataanalysisand localised agent algorithms— at thislevel, datais processed
using information from local sensors and neighbouring modules.

5 Inter-modulecommunication — comprising the software stack and the physical
links to provide communication between modules.
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Theselayersaredivided into two groups, the data acquisition layer (DAL), which
consists of layers 1 to 3, and the network application layer (NAL), which consists of
layers4and5. Theseareimplemented as separate physical sub-modules, calledthe Data
Acquisition Sub-module (DAS) and network application sub-module (NAS), respec-
tively. This separation allows replacement of one type of sensor, and its associated
electronics, with another sensor sub-modul e, without changing the main processing and
communications hardware, hence allowing a range of sensor types to be tested.

The DAS provides gain and filtering for the four attached piezo-electric sensor
signals (which have componentsupto 1.55 MHz after anal oguefiltering). Thesesignals
aredigitized at 3 Msampl es/sec using al12-bit analogue-to-digital converter, andinitial
processing to estimate the time of arrival of asignal on each sensor is performed using
digital signal processing. This information is passed to the NAS using a high-speed
synchronous serial communicationslink, and power isreceived from the NAS over the
same connector.

The NAS containsboth a400 M1PSfixed-point digital signal processor (DSP) and
400k gate field programmable gate array (FPGA), along with 2 Mbytes of non-volatile
memory and 8 Mbytes of volatile memory. These resources are used by the software
agentsrunningineach cell, which providethe network intelligence. Each NA S contains
aunique 64-bitidentifier. AnNAS containsfour ports, used for communication withits
four nearest neighbours and for power distribution. This providesahighly robust mesh
network structurethat will maintain connectivity evenif asignificant number of cellsor
communicationslinksaredamaged.

Impact Detection

Piezo-electric sensors, consisting of a2.5 mm-diameter, 110 um-thick filmof PVDF
(polyvinylidenefluoride) coated on both sideswith aconductive gold layer, are bonded
to aluminium sheets which form the “skin” of the concept demonstrator, providing a
suitable method for detecting the plate waves in the aluminium sheets.

The DAS continuously samples four analogue channels, storing the data in a
circular buffer containing 200 samples, or 64 psof data, from each channel, and checking
if asample has deviated by more than 90mV from the channel’ s average value. Once a
channel has exceeded this selected threshold, a further 184 samples are taken on each
channel, an impact is flagged, and the buffers are processed.

Thesignalsfromthefour sensorsaredetected by the DAL electronics, narrow-band
filtered, amplified, and digitized. Then the earliest arrival timeis subtracted from the
other threetimesto givethreetimedelays. Thesedelaysareused to estimatethelocation
of theimpact relativeto the centre of the squareformed by thefour sensorsused. In other
words, the impact is triangulated based on measured arrival times of the lowest-order
extensional wave and the known group velocity (about 5300 m/s) of these wavesin the
aluminium plate at aparticular frequency (about 1.5 MHz).

If standard triangulation techniques were applied to these three time delays, the
equationsfor three hyperbolae would need to be solved simultaneously. Further, asthe
digitizationrateislimitedtoaround 3MHzinthepresent hardware, thetimeof arrival of
the extensional waves may not be determined accurately enough for solutions to these
equations to exist. Searching for near solutions can be done, but this would take a
significant amount of processor time and memory in the present configuration.
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Figure 4. Left — Position of sensors and the area of the panel covered by the look-up
table (the table is transformed to the other eight octants to cover the full panel);
Right — Graphical representation of look-up table points and estimates of the
positional errors (the top left-hand corner represents the centre of the group of four
sensors, and theaxes' labelsaremillimetresfromthe centre of the squareformed by the
sensors. The white dots are the points in the look-up table: Their spacing is an
indication of the uncertainty in the estimate of the location of an impact).
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Instead, the present version of the demonstrator employed afaster way: alook-up
table. Aseach cell hasfour sensorsarranged at the corners of a60 mm square, the look-
up tablewill bethe same for each of the eight octantswhose origin isat the centre of the
square. For the present size of aluminium panel, thelargest areathat needsto be covered
by thelook-uptableisatruncated, isoscel es(at 45 degrees) right triangle (Figure 4), 165
mmlongand 143mminthetruncated direction. Thisgeometry will cover the*worst case”
of an impact in a corner of the panel diagonally opposite that of the cell containing the
four sensorsbeing used. Thisareawasthen divided into 1-mm squares. For each square,
thetimedelaysmay be cal culated and used toformasix-figure“index” that isassociated
witheach position. Thisindex number isformed fromthethreedel ay timesfrom each pair
of sensors, the first two digits being the shortest delay time (in number of time step
intervals of 320 ns), the second two-digit number isthe next longest delay time, and the
final two-digit number the longest delay time. While the total number of points (onal-
mm grid) insidethistruncated triangul ar areaisabout 13,600, thetotal number of unique
points(pointsthat havedifferentindex numbers) isonly 1,071 dueto thefinitetime-step
interval. Themean position of all the 1-mm cellsthat havethe sameindex number isstored
in the look-up table with that index number. The look-up table is stored in the flash
memory on the DSP.

When animpactisregistered, thedelaysarefirst ordered to quickly determinewhich
octant of the Cartesian plane contained the impact site. Depending on the order of the
impacts(thetimeof arrival at each of the sensors) oneof eight co-ordinatetransformation
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matricesisused to translatethelook-up tableresult to the correct orientation. Theindex
number of the impact is then found in the look-up table, and the average position
associated with that index number multiplied by the appropriatetransformation matrix is
given as the location of theimpact. In this way, any of the four sets of four sensors on
apanel can detect the location of an impact.

DAMAGE SCENARIOS

I ntroduction

In the Introduction section we outlined the processes associated with a damage
situation and categorised themintermsof amatrix whosetwo variablesare spatial extent
and degree of deliberation. This is a convenient means of describing a wide range of
damage situations by breaking them down into components which rangein extent from
local to global and in the associated processing needed, from purely reactive (minimal
processing) to strongly deliberative (requiring significant high-level cognition). Thisis
similar to the response of biological organisms to damage, as was discussed.

Three different damage situations have been selected for discussion, two of them
in considerable detail. These are (a) critical damage, defined as damage severe enough
to threaten the integrity of the vehicle, generally caused by a sudden event (such as a
major impact or explosion), (b) sub-critical damage which, although severe enough to
require immediate action, does not invoke an emergency response, and (c) non-critical
or minor damage, which does not necessarily require animmediate response, but which
must be monitored continually in terms of its cumulative effects. Each of these will be
described in terms of its components and analysed in terms of the two variablesin the
matrix, spatial extent and degreeof deliberation. Since(a) ismostly reactivewhile(b) and
(c) requirevarying degreesof deliberation, thelatter twowill betreated in sufficient detail
to illustrate how the necessary computations may be accomplished in self-organising
fashion in amulti-agent environment.

Thefollowing three sub-sections outline self-organi zing responses to sub-critical
and non-critical damage. This section, therefore, sets the context for these subsequent
discussions.

Critical Damage

Critical damage means damage severe enough to threaten the integrity of the
vehicle, requiring immediate action to ensureits survival. Theinitial response to such
asituation must almost certainly bereactive, since the necessary actionswill need to be
implemented asrapidly aspossible. It will almost certainly be global inextent, sincethe
wholestructurewill need to know about eventsof thisimport, evenif theinitial reaction
occursintheneighbourhood of thedamagesite. Intermsof theresponsematrix, acritical
damage event may be represented as shown in Table 2.

In such situations time is of the essence, and both detection and communication
must be done as quickly as possible. The requirements on the communi cations network
areto send an alarm asrapidly as possibleto one or more (probably) unknown locations
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Table 2. Critical damage event response matrix

Component Spatial extent Deliberation
Detection L ocal/Neighbour hood Reactive
Report Neighbourhood or Global Reactive
Actions: Isolate damaged region Global Reactive

using only theadjacent-cell communicationlinks. Inaddition, theremay exist barriersto
communication due to the network configuration itself or to significant prior and
continuing damage. Thus the communications environment is largely unknown and
changing, providing amajor challenge. Somework hasbeen done on these problems, but
muchmoreisneeded (Li, Guo, & Poulton, 2004). Detection of critical damageby thecell
network is also difficult because of the necessary time constraints, and it will almost
certainly begood policy to err ontheside of caution. Somekind of local activity measure
will probably be best, but again very little research exists as yet.

Theemergency responseto critical damagewill almost alwaysbefollowed by more
deliberative actions once the immediate saf ety of the vehicle has been assured. Thisis
outlined in the response matrix, and follows a path very similar to that for sub-critical
damage, which is described in the next sub-section.

Sub-Critical Damage

Sub-critical damageistakento mean|oca damageto oneor anumber of cellswhich,
although serious enough to require immediate action, does not threaten the immediate
survival of thevehicle. Intermsof theresponse matrix, such eventsmay be broken down
asdescribed in Table 3.

Damage detection occurs at the local (cellular) level as described in the Ageless
Aerospace Vehicle section, and is followed by a local response whose purpose is to
define the extent of the damage and allow the assessment of its severity. For the AAV,
thisinvolvesthe self-organised formation of impact boundaries (Foreman, Prokopenko
& Wang, 2003; L ovatt, Poulton, Price, Prokopenko, Valencia, & Wang, 2003; Prokopenko
etal., 2005a; Wang & Prokopenko, 2004), which aredescribedin somedetail inthelmpact
Boundaries section below. When an assessment has been made, it must be communi-
cated to somepoint onthevehiclefromwhich appropriate action may be generated. This
isnot reactive, but may beat either neighbourhood or global level. The sameissuesapply
regarding communications, which have been discussed in the Critical Damage sub-
section.

Theappropriate actionwill depend on circumstance, and three examplesare given
above. These range from local repair, which may indeed be reactive, to invoking a
secondary inspection mechanism to obtain additional information about the nature and
severity of the damage. This may be carried out within the neighbourhood, or it may
requireglobal interactions. Anintriguing possibility for future aerospacevehiclesisself-
replication, where a replacement for the damaged section is manufactured by a self-
organising process. Thisis discussed more fully in the Shape Replication section that
follows.
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Table 3. Sub-critical damage event response matrix

Component Spatial Extent Deliberation
Detection Local Reactive
Local response Neighbourhood Moderately deliberative
Assess Neighbourhood Moderately deliberative
Report Neighbourhood Strongly deliberative
or Global
Actions: Secondary Inspection Neighbourhood Strongly Deliberative
or Global
Local repair Local Reactive or Moderately
deliberative
Self-replication Global Moderately deliberative

Non-Critical (Minor) Damage

The last damage scenario to be analysed in some depth is non-critical or minor
damage. As outlined in the Response Matrix sub-section, such damage is typified by
minor impacts, fatigue, or corrosion, processeswhich do not interfereimmediately with
thefunctioning of acell, but whichmay lead to structural failureif accumulated over time.
Itisnecessary to monitor such damage, not only to assessitslong-term impact, but also
because of its possible interaction with more serious types of damage. Aswould be
expected considering thelonger time-scal efor thisdamage mechanism, assessment and
action are quite deliberative, and of broader (neighbourhood or global) extent than
previously discussed examples, although detection will most likely still belocal. Refer-
ringtotheresponsematrix, apossiblebreakdown for non-critical damageisasdescribed
inTable4.

Although the detection of non-critical damageislocal and reactive, all other steps
are either broader in extent or degree of deliberation. Thisisto be expected since any
assessment and resulting action must involve a number of non-critical damage sites.
There is thus a need for the self-organisation of information regarding non-critical
damage so that the rel evant assessment can be made and acted upon. The most important
of such information comprises the locations of damage sites and the severity of their
damage, and there are several ways in which this information may be made to self-
organise. One promising method is by the formation of an impact network, which is
essentially away of advantageously linking non-critical damage sites (Prokopenko et
al., 2005a; Wang, Valencia, Prokopenko, Price, & Poulton, 2003). Not only doesthismake
the necessary information available for processing, but it offers amechanism by which
secondary inspection (or repair) agents may rapidly assess the damage. The formation
and use of impact networks is discussed in the section on Impact Networks and Ant
Colonies.

IMPACT BOUNDARIES

Typically, the damage on the AAV skin caused by a high-velocity impact is most
severe at the point of impact (an epicentre). It will be assumed that not only arethecells
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Table 4. Non-critical damage event response matrix

Component Spatial extent Deliberation
Detection Local Reective
L ocal assessment Local Moderately deliberative
Form impact network Global Moderately deliberative
Report network status Neighbourhood Moderately deliberative
or Global

Assess network status Global Strongly deliberative

Actions: Secondary inspection Global Strongly deliberative

Repair Global Strongly deliberative

at the epicentre severely damaged, but that damage spreads to neighbouring cells,
perhaps as a result of severe vibration, blast, or electromagnetic effects. One effect of
this propagated damage is likely to be observed as damage to the communication
capability of the neighbouring cells. For the sake of aspecific example, we simulatethe
effect of this extended damage by assuming a communications error rate that is
propagated out with an exponential decay to acertainradius(Lovatt et al., 2003). Inthis
example, the damage can be characterised by a probability P, of an error corrupting a
message bit i, dependent on proximity of the affected communication port to the
epicentre:

~Lp-dye
R=50-2) ®

where d is the distance between the involved communication port and the epicentre of
the impact with theradius R, and o. isthe exponential decay of the communication |oss
(we haveinvestigated arange of values, including linear decays, o. = 1, and high-order
polynomial decays, o.< 7). Multipleimpactsresultin overlapping damaged regionswith
quite complex shapes.

I nthissection wedescribemulti-cellular impact boundaries, self-organisinginthe
presenceof cell failuresand connectivity disruptions, andtheir usein damage eval uation
and possibly self-repair.

Itisdesirablethat animpact boundary, enclosing damaged areas, formsacontinu-
ously- connected closed circuit. On the one hand, this circuit may serve as areliable
communication pathway around theimpact-surrounding region withinwhich communi-
cations are compromised. Every cell on a continuously-connected closed circuit must
alwayshavetwo and only two neighbour cells, designated asthecircuit members(circuit-
neighbours of this cell). On the other hand, a continuously-connected closed impact
boundary provides a template for repair of the impact-surrounding region, uniquely
describing its shape (Figure 5). Both these functionalities of impact boundaries can be
contrasted with non-continuous “guard walls’ investigated by Durbeck and Macias
(2002) that simply isol atefaulty regionsof the Cell Matrix, without connecting el ements
of a“guardwall” inacircuit. Animpact boundary enablesashape-replication of amulti-
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Figure5. White cellsaredestroyed, red (dark-grey) cellsform* scaffolding” , and blue
(black) cells form the “ frame” (boundary links are shown as white double-lines).
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cellular impact-surrounding region, which can serve as an example of an end-to-end
solutionto animportant SHM sub-task of damage eval uation and subsequent self-repair.
The damage eval uation part (emergent evolvableimpact boundaries) isimplementedin
the AAV-CD, while the shape-replication part isonly simulated at this stage.

Inorder to serveeither asacommunication pathway or arepair template, animpact
boundary should be stable despite communication failures caused by proximity to the
epicentre, and such stability isour primary aim. In pursuing this aim, we deal with the
following spatial self-organising layers:

. Scaffolding region, containing the cellsthat suffered significant communication
damage;

. Frameboundary, aninner layer of normal cellsthat areableto communicatereliably
among themselves; and

. Closed impact boundary, connecting the cells on the frame boundary into a
continuous closed circuit by identifying their circuit-neighbours.

The “frame” separates the scaffolding region from the cells that are able to
communicate to their normal functional capacity. In order to support a closed continu-
ously-connected circuit, aregular frame should not be too thin (a scaffolding cell must
not be adjacent toanormal cell), and should not betoo thick (theremust beno framecells
inthedirectionorthogonal to alocal framefragment). Theseinternal layers(scaffolding,
frame, and closed boundary) completely define an impact-surrounding region as a
layered spatial hierarchy. In general, the impact-surrounding region can be seen as an
example of annular spatial sorting: “forming a cluster of one class of objects and
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surrounding it with annular bands of the other classes, each band containing objects of
only one type” (Holland & Melhuish, 1999). It could be argued that, as an emergent
structure, the impact-surrounding region has unique higher-order properties, such as
having an inside and an outside (Prokopenko et al., 2005a).

Evolvable Localised Algorithm

The algorithm producing continuously-connected closed impact boundaries and
the metrics quantitatively measuring their spatiotemporal stability are described in
Foreman, Prokopenko, and Wang (2003) and Prokopenko et al. (2005a), whileagenetic
algorithm evolving agent properties which form impact boundaries satisfying these
spatiotemporal metricsis presented in Wang and Prokopenko (2004). Here we briefly
sketch the main elements of the evolved algorithm.

Every cell sends a Ping message to each of its neighbours regularly, and an
Acknowledgment reply when it receives a Ping message. For each communication port
i,abinary circular array A isused to storethe communication historiesfor acknowledg-
ments. The size of the array is called the communication history length p. For each
communication port, a Boolean success variable P, is set to true if the percentage of
AcknowledgmentsreceivedintheA isgreater than or equal to acertainthreshold P. This
variable is hysteretic: it changes only when a sufficient communication history is
accumulated. Thislagging of an effect behind its cause providesatemporary resistance
to change and ensures a degree of stability in the treatment of communication connec-
tions between any two cells. A neighbour i is considered to be communicating when P,
istrue. The algorithm uses the following main rules:

i Each cell switchesto the Scaffolding state and stops transmitting messages if the
number of communicating neighbours v is less than a certain threshold 9 For
example, if A( = 1, then a cell switches to Scaffolding state if there are no
communicating neighbours (v < 1).

i Each cell switchesto Frameboundary state S if thereisat | east onecommunicating
neighbour and at |east one miscommunicating neighbour.

i Each cell switchesto Closed boundary state S, if the cell stateis S, and there are
at least two communicating neighbours.

The Closed boundary cells send and propagate (within a time to live period 1)
specific Connect messages, |eading to self-organisation of acontinuousimpact bound-
ary. The cellsthat stopped transmitting messages may need to resume communications
under certain conditions, for example, when a repair action is initiated, and their
neighbours are again ready to receive communications (that is, when the cause of
asymmetry iseliminated). The conditionsfor resumption of communicationshaveto be
precise so that they are not reacted upon prematurely, interfering with boundary
formation. A variant of these recovery conditionsis given:

i Each cell switchesto the Recovery state S if the sequenceP,, ..., P describing the

statesof all four portsdoesnot changefor aspecified number of consecutivecycles
..
1
i A cell staysinthe Recovery state S and may send communi cation messages during

the next mt, cycles.
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Ingeneral, thedescribed policy achievesthedesired stability and continuity of self-
organising impact boundaries. I n addition, we have observed emergent spatiotemporal
structures— recovery membranes— that separatethe boundariesfromrecovering cells.
A recovery membrane always forms on the inside of the closed boundary, and on the
outside of therecovering area. I nterestingly, unlike scaffolding and frameboundary, the
membrane is not a designated state into which a cell can switch. Membrane cells shut
down their communicationslike other scaffolding cells, but do not resume communica-
tions because recovery conditions are not applicable, as the miscommunicating
neighbours are not stable. Without amembrane, the cells on the frame boundary would
beconfused by intermittent messagesfrom scaffol ding cell sattempting recovery. Figure
6illustratesacheckered-pattern recovery membrane shownwith dark-grey colour, while
the recovering cells are shown in yellow (darker shade of white).

Thethreshold 9 limiting the number of communicating neighboursin switchingto
the Scaffolding state, significantly affects smoothness of a resulting boundary. In
particular, if A’ =1 — inother words, acell switchesto the Scaffolding stateif thereare
no communi cating neighbours (v < 1) — then someboundary linksmay not be“ smooth”:
Thereare morethan two ports connected by thelink (Figure 7). If A’=2—thatis, acell
switches to the Scaffolding state if there is at most one communicating neighbour (v <
2) — then all boundary links are“smooth” (for instance, the case depicted in Figure 6).
If &’ = 3, then any impact boundary is arectangle. Finaly, if A’ = 4, then the impact-
surrounding region fillsthewholeof the AAV array. Thissimpletaxonomy of boundary
typeswill be useful when we classify shape-replication algorithms as well.

Figure6. Fivewhite cells at the epicentre are destroyed, scaffolding cellsthat attempt
recovery are shown in yellow (darker shade of white); a recovery membrane, shownin
red (dark-grey), “ absorbs” and separates them from the frame, shown in blue (black)
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Figure 7. Four white cells are destroyed (a recovery membrane is not shown); the
middle boundary link on the right-hand side is not smooth.
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Spatiotemporal Stability, Phase Transitions, and

Evolving Boundaries

The evolution of impact boundaries is based on spatiotemporal metrics incorpo-
rated within afitness(objective) function. Theanalysispresented by Foreman, Prokopenko,
and Wang (2003) and Prokopenko et al . (2005a) used two metricsto characterise stability
of emergent impact boundaries: spatial and temporal.

The spatial metric is based on the variance in the size of the connected boundary-
fragment (CBF). A CBF issimply aset F of cellsinthe Closed state S such that every
cell in Fisconnected with at |east one other cell in F, and there exists no cell outside F
which isconnected to at |east one cell in F (an anal ogue of a maximally-connected sub-
graph or a graph component). We cal culate the maximum size Hsp(t) of CBFsin self-
organising impact boundaries at each cycle. Its variance O'sz over timeisthen used as
aspatial metric within the objective function. This metric isinspired by random graph
theory and isintended to capture spatial connectivity inimpact boundaries. A continu-
ous boundary may, however, change its shape over time, without breaking into frag-
ments, whilekeepingthe size of CBF almost constant. Therefore, atemporal metric may
berequired aswell.

In order to analyse temporal persistence, we consider state changes in each cell
at every timestep. Given six symmetric boundary linkspossibleineach squarecell (“left-
right”, “top-bottom”, “left-top”, and so on), there are 2% possible boundary states
(including “no-boundary”), and m= 22 transitions. The entropy Htemp(t) of aparticular
frequency distribution S(t), wheretisatimestep, and i isacell transitionindex: 1<i <
m, can be calculated asfollows (Equation 2):
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where nisthetotal number of cells, and S(t) isthe number of timesthe transitioni was
used at timet acrossall cells. Thevariance O'temp2 of theentropy H temp(t) over timeisused
asatemporal metric within the objective function.

Our task is complicated by the fact that emergent structures are characterised by
aphasetransition detectable by either c_?or otempz, rather than aparticular valuerange.
Therefore, simply rewarding low values for these entropy-based metrics would be
insufficient. In particular, it has been observed (Foreman, Prokopenko, & Wang, 2003;
Wang & Prokopenko, 2004) that both metricsarel ow-to-mediumfor algorithmswith zero-
length communication u (tropistic algorithmsand chaotic regimes— Figure 8), increase
dramatically for pintherangel<u <p ,wherey isacritical valueat and below which
complex unstable behaviours occur (Figure 9), and undergo a phase transition to very
low valueswhen p > i (ordered regimes).

The critical value y, is, of course, dependent on all other parameters used by the
algorithm. Neverthel ess, the chaotic regimes, which aremorestable simply duetoasmall

number of connections, can often beidentified by alow averageHTp of themaximum sizes
Hsp(t) of CBFsinimpact boundaries, ruling out at | east zero-length histories. In particular,

Figure 8. A chaotic boundary with Hisps 16 and zero-length communication p; a
membrane does not form at all (both 05p2 and ctempz are low-to-medium)
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Figure 9. An unstable boundary with p close to its critical value; the membrane is
fragmentary (both ¢ sz and Glempz are close to their peaks; i.e, a phase transition)
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impact boundarieswiththe averageHispslS canbesafely ruled out; theresulting chaotic
patterns, illustrated in Figure 8, are of no interest.

On the other hand, a preference among ordered regimes towards shorter histories
isanother useful identifier of aphasetransitionandthecritical value,. Besides, ashorter
communication history u enables a quicker response, as do lower values of T and rt,.

Thus, our experiments used minimisation of the following objective function:

M if H,<16;

f(B)=11 T s O 3
5(4.00';+1056[im)+/.1+1+717+ﬁH5p if Hg>16 ©

whereM isthemaximal integer value provided by the compiler. Thecoefficient B reflects
the relative importance of the length of impact boundaries in the objective function;
sometimesit may be asimportant to obtain the smallest possible impact perimeter asit
is to maintain the shortest possible communication history. We alternated between
B,=0.25andB,=2.0.

Each experiment involves an impact at a pre-defined cell and lasts 500 cycles; the
first 30 cycles are excluded from the series Hsp(t) and Htemp(t) in order not to penalise
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longer history lengths .. Werepeat the experiment threetimesfor every chromosome (a
combination of parameters) and average the objective (fithess) values obtained over
theseruns. The details of the genetic operators, the employed replacement strategy, and
acomparative analysis of metrics are described in Wang and Prokopenko (2004). Here
we only summarise the results.

The experiment minimising the objective function f (0.25) evolved solutionswith

long robust and continuous impact boundaries with E =40 (Figure 10), around large
impact-surrounding regions, whilerequiring fairly short hysteresis: p=2andr =8. The
stabilisation of animpact boundary around alarge region occurs at the periphery of the
communication damage, wherethe communication failure probability fallsto zerodueto
the error correction code, and the process has a cascading nature, where the boundary
expandsto eventually cover theentireimpact-surrounding region. In summary, the case
B =0.25 resultsin longer boundaries that are sometimes capable of morphing without
breaking into fragments.

On the other hand, minimisation of fsp(Z.O) resulted in more compact impact-

surrounding regi ons(HiSp =32, Figure 11) and thinner membranes, at the expense of longer
hysteresis: p = 6 and n = 8. These boundaries generally keep the shape of a regular
octagon. This case (b = 2.0) results in shorter boundaries that cannot morph without
breaking into fragments, so any instability leads to fragmentation. Both solutions
favoured T = 1 as expected for square cells.

Figure 10. A large checkered-pattern membrane, with short hysteresis, within a
mor phing but closed and continuous boundary (f = 0.25)
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Figure 11. A small membrane, with long hysteresis, within a regular octagonal
boundary (B = 2.0)
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These results are promising and demonstrate the possibility for amulti-objective
design of localised algorithms. In particul ar, the desired responsetimeaswell assize (and
potentially, shape) of impact boundaries become the design parameters and may be
specified in advance, leaving the precise logic and parameterisation of the localised
algorithms to selection pressures. We believe that the proposed methodology is well
suited to the design at the edge of chaos, where the design objective (for example, a
specific shape) may beunstable, whileother parameters (such astheresponsetime) may
beoptimal.

The impact boundaries form patterns that may be used in damage assessment and
diagnostics, aswell astemplates for repair, and provide reliable communication path-
ways around impact-surrounding regions. Their multiple roles illustrate two kinds of
emergence: pattern formation and intrinsic emergence, distinguished by Crutchfield
(1994):

i Pattern formation refers to an external observer who is able to recognise how
certain unexpected features (patterns) “emerge” or “self-organise” during a pro-
cess (for example, convective rolls in fluid flow, and spiral waves and Turing
patternsin oscillating chemical reactions). The patterns may not necessarily have
specific meaning within the system, but obtain a special meaning to the observer
when detected,;
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i Intrinsicemer gencereferstotheemergent featureswhich areimportant withinthe
system because they confer additional functionality to the system itself, like
supporting global coordination and computation (for instance, the emergence of
coordinated behaviour in a flock of birds allows efficient global information
processing through local interaction, which benefits individual agents).

Inthenext sectionweshall illustrate how stableand continuousimpact boundaries
can beused astemplatesfor multi-cellular shape-replication, whilethefollowing section
will describe a self-organising communication mechanism among remote cells. This
mechanism may be used, in particular, to communicate the information represented by
the emergent boundary patterns to remote cells playing the role of observers and/or
controllers, if necessary.

SHAPE REPLICATION:
TOWARDS SEL F-REPAIR

Ingeneral, individual failed cellscan bereplaced one by one—thisis, after all, the
point of having ascal able solution. Moreover, any impact-surrounding region enclosed
withinitsimpact boundary can also be repaired by replacing individual failed cellsone
by one. Sometimes, however, it may berequiredto replaceanimpact-surrounding region
in one step, for example, to minimise the overhead of disconnecting individual cell-to-
cell links. Replacing thewhol eregionwithin aboundary would requirearemoval of only
the links between the boundary and normal cells. In this sub-section, we provide an
example where a self-organised impact boundary (produced by the evolved algorithm)
may be used in self-repair, or more precisely, in shape replication.

Giventhe planar grid topology, each cell on the closed impact boundary may have
six boundary links, connecting ports*“left-right”, “left-top”, and so on. Enumerating four
communication ports from zero to three (“bottom” to “right” clockwise) allows us to
uniquely label each boundary link with atwo-digit number A— for example, “ 32" would
encode alink between the “right” and “top” ports (Figure 12). Then, the whole impact
boundary canbeencodedinan ordered list of theselabels. However, in order toreplicate
the bounded shape, filling it cell by cell, we need to introduce a system of coordinates
relativeto acell containing the shapelist. More precisely, the boundary genomeisalist
of triples(c.,3,A), where (o) arerelative coordinatesof acell with theboundary link A.

Theshapereplication algorithmsdevel oped in the context of AAV (Prokopenko &
Wang, 2004) are based on the principles of multi-cellular organisation, cellular differen-
tiation, and cellular division — similar to the embryonics approach (Mange, Sanchez,
Stauffer, Tempesti, Marchal, & Piguet, 1998; Sipper, Mange, & Stauffer, 1997). A desired
shape is encoded when an emergent impact boundary inspects itself and stores the
“genome” in a“mother” cell. The genome contains both data describing the boundary
and aprogram of how tointerpret thesedata. Themother cell isthen seeded inanew place
outside the affected AAV array. An execution of its program initiates cell-replication
inthedirectionsencoded inthe genome (Figure 13). Each cell-replication stepinvolves
copying of the genome (both data and the program) followed by differentiation of the
data: an appropriate shift of certain coordinates. Newly produced cells are capable of
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Figure 12. Boundary links
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cellular division, continuing the process until the encoded shapeis constructed (Figure
14).

Two algorithms for the AAV shape replication are described by Prokopenko and
Wang (2004). The first algorithm solves the problem for connected and disconnected
shapes. The second algorithm, in addition, recovers from possible errors in the “ge-
nome”, approximating missing fragments. In particul ar, thegenomeispartially repaired
(Figure 15) within each cell which detected a discontinuity. Although the repaired
genome does not cover all the missing cells, it does not introduce any cells which were
not in the original shape, exhibiting the soundness but not completeness property. In
other words, the repaired boundary is contained within the original shape. Importantly,
there is aredundancy in the shape replication process: other cells which did not suffer
any damage would successfully replicate the parts not encoded in the partially repaired
genomes.

Figure 13. Shape replication: Boundary cells encoded in the genome but not yet
produced are shown with dashed lines.

Left: Ablack cell (seed) producestwo whitecells, indicated by arrows. Right: Two morecellsare
being produced: one of themis a scaffolding cell, pointed to by the horizontal arrow (theinside
direction is recognised by the vertical strip being ‘crossed’” above and below the considered
location).
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Figure 14. Completed shape replication

The shape-replication algorithms handle both standard (“blueprint”) and non-
standard emergent shapes, self-organising in response to damage. Moreover, it is
possibleto combinethesetypes. For example, structural datacan beencodedintheform
of triples, and agiven genome can be extended i n run-timewith the dataproduced by self-
inspecting emergent boundaries. Similarly, the self-repair phase within a cell which
detected an anomaly inthe genome may draw some datafromthestructural “blueprints’
rather than approximate segments between disconnected fragments.

Importantly, the first algorithm, not involving a recovery of the genome from
possible errors, replicates shapes encoded in either smooth or non-smooth boundaries;
it doesnot depend onthethreshold 4 limiting the number of communi cating neighbours
inswitchingtothescaffolding state. The second, genome-repairing, algorithm, however,

Figure 15. The cell shown inside a circle attempts self-repair
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Left: the corrupted triples are shown with the ‘star’-like signs. Right: the repaired triples are
marked with crosses.
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cannot deal with non-smooth boundaries — that is, when A = 1 and a cell switchesto
the scaffolding state if there are no communicating neighbours. Thus, adding the
selection forcerewarding genome-recoverability would lead to evol ution of only smooth
and stable impact boundaries (2 = 2). In other words, the taxonomy of boundary types,
based on the threshold 2/, isrelated to aclassification of shape-replication algorithms;
for example, it isconceivable that some replication sub-tasks may tolerate only rectan-
gular shapes (A = 3).

The shapereplication process described in this section can be used in repairing the
impact-surrounding regions in one step. As mentioned before, this is not the only
feasible strategy, and failed cells can be replaced individually. In addition, thereis a
possibility to employ self-healing materials; however, thisreaches beyond the scope of
our investigation.

IMPACT NETWORKSAND ANT COLONIES

Decentralised inspection across the AAV network array may require an impact
network among cells that registered impacts with energies within a certain band (for
example, non-critical impacts). The self-organising impact networks create an adaptive
topology allowing inspection agents (communication packetsor, potentially, swarming
robots) to quickly explore the area and evaluate the damage (for example, identify
densities of impactstypical for ameteor shower, evaluate progression of corrosion, or
totrace cracks propagation) — particularly where anumber of individually non-critical
damage sitesmay collectively lead to amore serious problem. Robotic agents may need
an impact network which solves atravelling salesperson problem (TSP). On the other
hand, a shortest or minimum spanning tree (MST) is often required in order to enable
decentralised inspectionswhenvirtual (software) agentsareemployed, and may provide
a useful input for the TSP. In this section we present an extension of an ant colony
optimisation (ACO) algorithm, using an adaptive dead reckoning scheme (ADRS) and
producing robust and reconfigurable minimum spanning trees connecting autonomous
AAV cells. A novel heuristicisintroducedto solvetheblocking problem: reconfiguration
of anexisting pathwhichisnolonger availableor optimal . Dynamic formation of arobust
reconfigurable network connectingremote AAV cellsthat belong to aspecific classwas
analysedinour previouswork (Abbott et al., 2003; Wang et al ., 2003). The ACO algorithm
developed in these studies successfully approximates minimum spanning trees, but
occasional alternativepathsaround critically damaged areasmay still emerge, competing
with the shortest paths and slowing the algorithm’s convergence.

Let us define an AAV impact network. A two-dimensional AAV array can be
represented by aplanar grid graph G(V,E): the product of path graphson mand nvertices,
which are points on the planar integer lattice, connected by the edges E(G) at unit
distances (Figure 16). Thecellswhich represent specific pointsof interest (for example,
the cells which detected non-critical impacts, or the cells playing a role of local
“hierarchs”, “observers’, or “controllers”) form asub-set P of V(G). Weneedtoidentify
thoseedgesZin E(G) which connect theverticesin P minimally, sothat thetotal distance
(asum of unit distances assigned to edges Z) is shortest. Thisproblemisessentially the
standard minimum spanning tree problem, except that a spanning tree is defined for a
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graph, and not for aset of vertices. Our problemissometimesreferredtointheliterature
astherectilinear minimum (terminal-) spanningtree(RMST) problem — afundamental
problem in VLSI design — and in which the verticesin P are referred to as terminals
(Kahng & Robins, 1995). Theimportant difference between MST and RM ST isthat rather
than choosing MST edges out of the graph edges E(G) directly connecting pairs of
vertices, we need to find multi-edgerectilinear paths between verticesin P, minimising
thetotal distance. Thiscan be doneviaan auxiliary complete graph A, whose vertex set
is P and in which the edge pq for p, g € P with p# g haslength equal to the Manhattan
distance between nodes p and g. After astandard MST A isidentified in the graph A,
wemerely needto convertall edgesin A_torectilinear pathsonthegrid graph G (Figure
16).

However, the impact network problem, however, is complicated by possible “ ob-
stacles” created by discontinuitiesinthe AAV grid graph G. Initially, the grid graph G
issolid; it doesnot haveany “holes’, soitscomplement intheinfinite orthogonal planar
grid is connected. New critical impacts may create such holes in the grid. Figure 16
illustratesthe RM ST problem withtwo scenarios. Thefirst caseisshowninthetop part,
andinvolvesthreeedgesandasimpleM ST A withthetotal distanceof eight. Thesecond
case is shown in the bottom part: some cells are destroyed (the corresponding vertices
areremoved), and the auxiliary compl ete graph should be updated because one shortest
path haschanged (fromfiveto seven). Thisrequiresarecomputation of itsM ST (thenew
MST distanceis nine), with another edge being selected and converted to arectilinear
path. Thisillustrates that a new obstacle may not just require that a new shortest path
is found between the two involved cells (the problem investigated by Wu, Widmayer,
Schlag, & Wong, (1987)), but rather thanthewhole M ST isre-eval uated. Moreover, there
are caseswhen acell/terminal isno longer needed to beincluded inthe RM ST, or anew
cell/terminal needsto be added. Incremental updates of an old rectilinear spanning tree
may provide apractical solution, but aquick divergence froman RM ST isasignificant
problem.

Thus, from agraph-theoretic standpoint, the representation of the impact network
problem changes over time due to insertion of new nodes (for example, non-critical
impacts) or del etion of old nodesno longer fitting theimpact range, whilethe problem’s
properties change due to varying connection costs (for example, critical impacts
destroying existing paths). In short, the problem changes concurrently with the problem-
solving process (Prokopenko et al., 2005a), and we need a dynamic and decentralised
computation of arectilinear minimum terminal-spanning treeinthe presence of obstacles.
If theinformation (such astheauxiliary graph A) wasavailablein onecentral point, then
the RMST problem would essentially become an MST problem, with a subsequent
conversiontorectilinear paths. In thiscasetherequired computationitself would not be
NP-hard, although the fully dynamic case, in which both insertions and del etions must
be handled online, without knowing the sequence of eventsin advance, would still be
quite intensive. Eppstein (1996) estimated a running time of a fully dynamic graph
mi nimum spanning treealgorithmasO(n*?log? n+ n?), where £ isa(very small) constant,
per update. In our case, the auxiliary graph Aisnot even known at any single node/cell,
so the desired algorithm should be both decentralised and fully dynamic.

These factors suggested that the problem of forming minimum spanning trees on
the AAV skin can be efficiently tackled by ant colony optimisation (ACO) algorithms,
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Figure 16. Three impact nodes are shown in black

The top-left figure shows a complete auxiliary graph A (dashed lines) with three edges. The
conversion of its MST to rectilinear paths on the AAV grid graph isshown in the top-right figure
(bold edges). Twolower figuresshow thegraph with some verticesremoved. Thebottom-left figure
showsan updated auxiliary graph A, and thebottom-right figureshows conversion of thenew MST
to rectilinear AAV paths.

proposed and enhanced over recent years by Dorigo and his coll eagues(Colorni, Dorigo,
& Maniezzo, 1992; Dorigo& Di Caro, 1999; Dorigo, Maniezzo, & Colorni, 1996), rather
than distributed dynamic programming (Bellman-Ford) algorithms. Essentially, the ACO
algorithms use the ability of agents to indirectly interact through changes in their
environment (stigmer gy) by depositing pheromonesand formingapheromonetrail. They
also employ aform of autocatalytic behaviour — allelomimesis: the probability with
which an ant choosesatrail increaseswith the number of antsthat chosethe same path
in the past. The process is thus characterised by a positive feedback loop (Dorigo,
Maniezzo, & Colorni, 1996). An overview of the ACOmeta-heuristicanditsapplicability
can befoundin Dorigoand Di Caro (1999).

Inthe AAV-CD the antsareimplemented ascommuni cation packets, sothepolicies
areimplemented via appropriate message passing, wherethe cells are responsible for
unpacking the packets, interpreting them, and sending updated packets further if
necessary. Thus, ants cannot moveinto the cellswith damaged (or shutdown) commu-
nication links, so critically-impacted cell sform obstacles, and the ants are supposed to
find the shortest paths around them using positively-reinforced pheromone trails. For
our problem, itisimpractical to usetwotypesof pheromone (such as“nest” and“food”)
because each impact cell (node) servesboth asa“nest” anda“food” source. Therefore,
having two typesof pheromoneper nodewould have created multiple pheromonefields,
combinatorially complicating the network. In addition, dissipation of pheromone over
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large distancesisnot practical either, asit would lead to “flooding” of the network with
messages. Hence, the algorithms devel oped for the AAV network use only one type of
non-dissipative evaporating pheromone.

The ACO-ADRS Algorithm

The algorithm presented in Abbott et al. (2003) and Wang et al. (2003) was based
onahybrid method of establishingimpact networks, using asingleimpact gradient field
(IGF) and adead reckoning scheme (DRS), complementing the autocatal ytic process of
ant-like agents. Following Prokopenko et al. (2005a) and Prokopenko, Wang, and Price
(2005), wesummarise hereamajor variant of thisalgorithm, without an | GF, and relying
only on DRS. The behaviour of exploring antsincludes the following:

(E1) each impact node generates a number of exploring ants every T cycles; each ant
hasa“timeto live” counter t,, decremented every cycle;

(E2) an exploring ant performs a random walk until either (a) another impact node is
found, or (b) the ant hasreturned to the homeimpact node, or (c) the ant can move
to acell with anon-zero trail intensity;

(E3) if anexploringant can movetoacell withanon-zerotrail intensity, the destination
cell is selected according to transitional probabilities;

(E4) at each step from cell i to cell j, an exploring ant updates the x- and y-shift
coordinates from the home node (initially set to 0).

The DRSrequiresthat each ant remembersthe x- and y-shift coordinates from the
home node. These coordinatesarerelative, they simply reflect how many cells separate
theant from thehomenodeintermsof x andy at the moment, and shoul d not be confused
witha“tabu” list of an ACO agent containing all visited nodesintermsof someabsolute
coordinate or identification system. The DRS enables the agents to head home when
another impact node is |ocated:

(R1) when another impact node is found, the exploring ant switches to a return state,
rememberstheratio g=y/x corresponding to thefound node' scoordinatesrelative
to the home node, and starts moving back to the home node by moving to cells
where the y- and/or x-shift coordinates(s) would be smaller and their ratio would
be as close as possible to g; if both x- and y-shift are zero (the home node), the
returning ant stops;

(R2) if thecell suggested by the DRS (minimisation of x- and/or y-shift, whilemaintaining
g) cannot be reached because of a communication failure (an obstacle), the ant
selects an obstacle-avoiding move according to the transitional probabilities;
upon this selection the ant keepsto the chosen path until the obstacleis avoided,
as recognised by comparison of current y/x ratio with g;

(R3) each cycle, areturning ant deposits pheromone in the quantity inversely propor-
tional to the traversed return distance q (q is incremented by 1 each cycle); the
deposited pheromoneislimited by apre-defined maximume,__ .

The pheromone is deposited on the cells themselves rather than communication
links; we deal with pheromone trail intensities ¢. at the cell j, used in calculating
transitional probabilities and determining which neighbour cell should be chosen by an
incoming ant packet to continuetheir travel. Theintensity of trail ? (t) onthenodej gives
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information on how many ants have traversed the node in the past, and is updated each
time an ant agent k passes through the node:

Oy
()

@, (t) = min(e, (t) + +Proax) 4

where o, is a constant quantity specified for each generated ant k, g, is the distance
traversed by the ant k, and ¢, isalimit on pheromone trail intensity. Intuitively, the
quantity o, representsapheromonereserveof theant k, consumed during thereturntrip.
At the beginning of each cycle, the pheromone evaporates at the rate p € (0,1):

o, O=A-p)o;O) =y (1) ®

where v is the retention rate. A study of the impact network stability is provided by
(Prokopenko et al., 2005a). An improvement to the DRS algorithm included adaptive
pheromone reserve quantity o, and “timeto live” counter 7, , and a* pause” heuristic
(Prokopenko, Wang, Scott, Gerasimov, Hoschke, & Price, 2005b). The pheromone
reserveisadaptively allocated by the generating node, based on the antsreturned to the
node in the past:

Oy = max(Yld! O in) (6)

where g isthe minimal distancetraversed by thereturned ants, y, isascaling factor, and
o,.,isalower limit for the pheromone reserve allocated for an ant. Analogously,

T =Min(y, G, Trc) ()

where 7__isan upper limit for the counter, and , isascaling factor. Equations (6) and
(7) define the adaptive dead reckoning scheme (ADRS), which contributes to a faster
reconfiguration of trails and minimum spanning trees.

The “pause” heuristic contributes to a better convergence of the DRS and ADRS
algorithms. L et us consider decisionsof areturning antinthesituation when an obstacle
blocks a DRS path towards the home node. If the ants used both “nest” and “food”
pheromones, then an ant returningtothe“ nest” andtracing the“ nest” pheromone (while
depositingthe“food” pheromone) would benefit from the stigmergy asboth shorter and
longer paths around the obstacle were chosen in the past by some ants going in the
oppositedirection. Inother words, when anantisat the“ decision” node, thetransitional
probabilitieswouldreflect thedifferencebetweenthealternativetrail-to-nest intensities.
Similarly, an ant tracing the “food” pheromone would use at the decision node the
difference between thealternativetrail-to-food intensities created by the returning ants
that have traversed either shorter or longer paths around the obstacle in the past. This
feature is very important in the beginning — when a new obstacle appears — and the
transitional probabilities at the decision node are uniformly distributed. The autocata-
Iytic processisthen “kick-started” by the ants going in the opposite direction and using
a different pheromone type. The ants going along a shorter return path deposit more
pheromone than the ants that select alonger path around an obstacle — simply because
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the deposited quantity is inversely proportional to the traversed distance. A higher
guantity of pheromone attracts more ants. Eventually, the alternative shortest path is
established between a pair of impact nodes.

The DRS algorithm uses only one type of pheromone (the “impact” pheromone).
Therefore, the ants going in the opposite directions and using the same pheromonetype
obscure the difference between the alternative trail intensities at the decision node,
confounding the choice. For example, a returning ant facing an obstacle ahead and
excluding abacktrack possibility hasa50:50 chanceof turningleft or right, whenthetrails
are not yet established. Choosing a direction at this decision node results in the ant
depositing the pheromone either on theleft or theright node. Clearly, thisdeposit isnot
an informed choice, being driven by a 50:50 chance, and may in fact obscure the
pheromone trail. The update of the pheromone on both left and right nodes should, in
fact, be done only by the ants going in the opposite direction, as these ants have
traversed an alternative path. Toreiterate, thisdilemmaisnot present when the antsuse
two types of pheromones. A simple solution enhancing the DRS algorithm, using only
one pheromone type, is provided by the “pause” heuristic:

(R4) anant, facing an obstacle at cyclet and making atransition to the next node, does
not deposit any pheromone at cycle t+1, resuming pheromone deposits only from
cyclet+2.

The “pause” heuristic initially produces gaps in the trails, next to each decision
point (Figure 17). However, these gaps are eventually filled by the ants going in the
opposite direction, leading to the reinforcement of the shortest trail. Figures 17-19
illustrate this dynamic with snapshots of the 24 x 8 AAV-CD network array, visualised
by the Debugger tool.

The enhanced ADRS algorithm produces rectilinear minimum spanning trees,
resulting inreconfigurableimpact networks, and performswell indealing withtwo well-
known problems: the bl ocking problem and the shortcut problem. Blocking occurswhen
a trail that was found by the ants is no longer available due to an obstacle and an

Figure 17. White cells detected non-critical impacts

An initial vertical trail is destroyed by a horizontal obstacle (seven cells are removed). The
returning ants explore two alternative possibilities. The gaps in both trails form next to each
decision node.
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alternative trail is needed. The shortcut corresponds to a new shorter trail becoming
availableduetorepaired cells(Schoonderwoerd, Holland, Brutten, & Rothkrantz, 1997).

Experimental Results

Theanalysisof algorithm convergenceisbased on the concept of aconnectedtrail-
fragment (CTF). A CTFisaset F of cellswith ¢ > (where #isagiventhreshold), such
that every cell in F isconnected with at | east one other cell in F, and there existsno cell
outside F which is connected to at least one cell in F. We focus here on one important
design parameter: pheromoneretention rate y which determines how much pheromone
isleftinthecell at theend of each cycle (y=1.0 meansthat thereisno evaporation). We
carried out 10 experiments with three impacts, for different pheromone retention rates
between 0.1 and 0.99. During each experiment, wecalculated theaveragesizeof CTFsin
impact networks, H(y), at eachtime-point, and its standard deviation, s(y), over time. It
wasobservedthat low retentionrates(for instance, w = 0.86) lead to chaotictrails; critical
retention rates (such as, w =0.94) lead to unstabletrails (“the edge of chaos”); and high
retention rates (for example, y = 0.98) support stabletrails. Thecritical retention rates
between y =0.90and y = 0.94 resultinthemost “ complex” dynamics: atrail frequently

Figure 18. The gaps of the shorter trail are filled, while the longer trail slowly
evaporates without gaps being robustly filled
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formsand breaks. A detailed pictureemergesfrom Figures20 and 21. Both plotsindicate
aclear peak inthestandard deviation: o () peaksintheneighbourhood of y =0.9, making
the phase transition apparent, and clearly separating ordered and desirable robust
scenarios from chaotic and under-performing cases.

Thus, tracing theaveragesize H of CTFs, and itsvariance o2, over timeallowed us
to identify emergence of rectilinear minimum spanning trees as a phase transition in
network connectivity. Our experiments have shown that the ADRS algorithm enhanced
with the“pause” heuristic outperformsthe original algorithm in terms of these metrics.
In particular, we first compared the performance of these two variants in a scenario
without obstacles, focusing on the contribution of adaptive pheromonereserve quantity
and time-to-live counter. The comparison between maximumsof o (y) for theenhanced
ADRS algorithm and the original variant, where the latter was evaluated over three
experiments, shows that the ADRS enhancement results in approximately 9% less
dispersed dataat the edge of chaos (in other words, the standard deviation at itsmaximum
is2.57 against 2.79, given the samemean si ze of CTFs), and amore pronounced minimum
of o (y) after the phase transition, at the retention rate v = 0.96.

Secondly, we compared the algorithms in a scenario with two impacts and an
obstacle, focusing on the contribution of the “pause” heuristics to the solution of the
blocking problem. We carried out 10 experiments for each value of the pheromone
retention rate in the range between 0.81 and 0.99. During each experiment, a simple
straight trail (length 9) wasinitially formed between two obstacles, and then broken at
cycle 200. Asbefore, we calculated the average size of CTFsinimpact networks, H(y),
at each time-point, and its standard deviation, o (y), over time. The same three types of
dynamics, chaotic, complex, and ordered, were observed. Thisscenarioismorechalleng-
ing because two “ordered” phases are observed (Figure 21). The first (and the one we
areinterested in) isthe emergence of the stable shorter trail around the obstacle (length
15) as opposed to the longer trail (Iength 21), followed by the emergence of both stable
trails around the obstacle (combined length 29). Thefirst “ordered” phaseis separated
fromthechaotic phase(y <0.94) by the* edge of chaos” (w = 0.94-0.96), andisidentified
by theminimumof o (), alsoat theretentionrate w =0.96 . Thesecond “ ordered” phase
occurs at very high retention rates v > 0.99, and is of no interest: there is enough
pheromone to support many trails.

Thus, in terms of solving the blocking problem, the optimal pheromone retention
rate w can beidentified asthe onewhich attains the minimum of the standard deviation
o (y), following theedge of chaos pointed to by thefirst maximumof o (), asweincrease
. When the optimal rate v is identified, one can compare the performance of the
algorithmsat their optima.

The algorithm enhanced with the “ pause” heuristicsisas good asthe main variant
intermsof thetimeit takesfor the shorter trail to becomethe primary choice (on average
147 cycles after the obstacle, for the new algorithm, against 152 cycles for the main
variant), and significantly outperformed it in terms of data dispersion both at the edge
of chaos and at the optimum:

i the average (over 10 runs) standard deviation at itsfirst edge-of-chaos maximum
is4.92 against 6.08 (24% improvement), and

i the average standard deviation at itsfirst ordered-phase minimum is 3.48 against
5.01 (44% improvement), given the same mean size of CTFs.
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Importantly, shorter trails around the obstacle appear as quickly as before but are
much more stable with the modified algorithm. In other words, the pause heuristic does
not delay emergence of the shorter trail asthe primary choice, but makesresultant trails
significantly more stable. The main share of the improvements is due to the “pause”
heuristics rather than ADRS (which improves dispersion in the order of 10%).

In this section, we considered the emergence of impact network pre-optimising
decentralised inspections on an AAV skin, and introduced a new local heuristic
improving performance of themodified ACO-DRSalgorithm. In summary, themodified
algorithm involves one type of non-dissipative evaporating pheromone, simple ant-
routing tablescontai ning normalised pheromoneval uesonly for immediate neighbours,
one type of ant with limited private memory; the dead reckoning scheme, and the
transitional probabilitiesmodel with obstaclethreshold. The ADRSalgorithm enhanced
withthe“pause” heuristicisdeployedinthe AAV-CD and robustly solvesblocking and
shortcut problems, producing rectilinear minimum spanning trees for impact-sensing
networks.

Figure 20. Background (left z-axis): average size H of CBF’s, for different retention
rates: y <0.90 (chaotic), w = 0.90-0.94 (unstable), and y > 0.94 (stable). Foreground
(right z-axis, in red colour): standard deviation o (y) of the average size H(y)
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Figure 21. The scenario with three impacts and no obstacles. Standard deviation s of
theaveragesize H, for the enhanced ADRSalgorithm; phasetransitionisevidentinthe
range v = 0.90—-0.94
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Figure22. Thescenariowithtwoimpactsand an obstacle. A chaotic phase (fragmentary
trails) is separated by the edge of chaos (first maximumisaty = 0.94) from the first
ordered phase (stable short trails), followed by another phase transition to combined
trails (v > 0.98)
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Whilewe have not evolved parametersfor the ACO-DRS algorithm, the observed
phasetransitions clearly identify the critical valuesthat would be selected by agenetic
algorithm (GA) in rewarding stable pheromone trails — similarly to the evolution of
impact boundariesguided by the stability metrics. Inany case, an optimisation technique
should provide avery comprehensive exploration at the edge of chaos. For example, the
first phase transition in the dynamics produced by the main variant of our algorithmis
in the range v = 0.975-0.977, and can be easily missed by a GA with inadequate
replacement strategies.

DISCUSSION: SELF-ORGANIZATION
SELECTION PRESSURES

Self-organising solutions presented in the preceding three sections depend on
selection pressures or forces which, through their contribution to the evolutionary
fitnessfunctions, constrain the emergent behaviour. One example of ageneric selection
pressureisthe spatiotemporal stability of emergent patterns: arguably, any pattern has
to be stable before exhibiting another useful task-oriented feature. The sub-critical
damage scenario illustrated the use of spatiotemporal stability in evolving impact
boundaries (Impact Boundaries and Shape Replication sections). The impact networks
(Impact Networks and Ant Colonies section) employ stability as well: the observed
phasetransitionsclearly identify the critical valuesthat would satisfy afitnessfunction
rewarding stable pheromonetrails.

Another example of anindependent selectionforceisnetwork connectivity, which
rewards specific multi-agent network topol ogies. Thisforce, webelieve, isrelated to both
efficiency and robustness, which were identified by Venkatasubramanian, Katare,
Patkar, and Mu, (2004) ascritical measuresunderlying optimal network structures. Inthis
context, the efficiency of agraph is defined asthe inverse of its average vertex-vertex
distance, and isrelated to the short-term survival. Effective accessibility isdefined via
anumber of vertices reachable from any vertex of a graph component, added over all
components. Intuitively, it identifies how quickly a vertex can be reached from other
vertices. Structural robustnessisthen defined with respect to avertex astheratio of the
effective accessibility of the graph, obtained by deleting this vertex from the original
graph, to the maximum possibl e effectiveaccessibility. Intuitively, thismeasure captures
the importance of this vertex to the connectivity (accessibility) of the graph; in other
words, how much the connectivity would be affected if this vertex is removed. Using
these definitions, it is possible to define average-case structural robustness as the
average computed over all the vertices, or worst-case structural robustness as the
minimum computed over all thevertices. Venkatasubramanian et al. (2004) arguethat after
removal of a vertex, some or all of the sub-graphs could still be functional, and use
normalised efficiency of the largest remaining component as an indicator of the func-
tional robustness of the system after damage, relating it to the long-term survival. Both
efficiency and robustness identify, in our view, aspects of connectivity needed for
emergence of optimal multi-agent networks.

Another important selection force is an information-storage ability and self-
referentiality of representation, providing an emergent pattern with ameansfor replica-
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tion. A well-known exampleiscrystal growth, involving template-based copying process
and error correction, and preserving aspects of the crystal structure on macroscopic
scales. Each crystal stores a self-referential template (for example, the cross-sectional
shape), which may beused inreproduction by splitting. Thisself-referring arrangement
isarguably very simple: thetemplate for growth isthe crystal’ s cross-section, whichis
directly used in the crystal growth. A much more involved example is the genotype-
phenotype relationship, where the degree of self-referentiality is much higher, and the
reproduction involves many intermediate steps, mapping genotype into phenotype.

The shapereplication process described in the Shape Replication section can also
beexplainedin self-referential terms(Prokopenko & Wang, 2004), empl oying twological
levels. Itiswell-knownthat sel f-replication of asystem can becharacterised by emergent
behaviour and tangled hierarchies exhibiting Strange L oops:

an interaction between levels in which the top level reaches back down
towardsthebottomlevel andinfluencesit, whileat thesametimebeingitsel f
determined by the bottom level. (Hofstadter, 1989)

The shape replication process can be described in these terms as well. An impact
boundary emergesat alevel whichishigher than the object level whereindividual cells
areinteracting. The genome of the enclosed multi-cellular shapeisamodel of animpact
boundary, and embedding thishigher-level model withinevery involved cell at the object
level isself-referential.

The genome model is obtained by self-inspection of the impact boundary. The
process of self-inspectionismirrored by the self-inspection of the genome, carried out
internally by each cell at every replication step in order to detect discontinuitiesin the
encoded boundary. Similarly, self-repair of the entire damaged impact-surrounding
regionisreflectedintheinternal self-repair of themodel (genome). Following Hof stadter’ s
language, the top-level pattern (a boundary) emergesitself out of interactions of cells,
whilealso reaching down to the bottom level and influencing it. Thisexamplewith self-
referential shapereplicationdidnotinvolveexplicit metricsfor self-referential inspection
and repair processes. Neverthel ess, our conjectureisthat thedegree of self-referentiality
can be measured and used in evolving multi-agent networks.

Responsesto critical damage highlight therole of alow computation and commu-
nication complexity as another selection force. The main principle in considering
emergency and/or “panic” responsesisthat the system needsto alter its prioritiesfrom
long-term survival to emergency short-term survival, on many levels. In terms of the
AAV, an emergency response may therefore require changing priorities of communica-
tion messages, an increasein therate of polling the buffers of the communication ports,
redirection of more power to specific modul es, whiletemporarily disabling other modules,
and so on. Subsequently, it may cause an activation of secondary passive and mobile
sensors. This cascading scenario requires a fast and unconscious (un-reasoned)
reaction, immediately upon adetection of aspecific sensory input (trigger). Thistrigger
should be detected locally, simply because detecting and matching near-simultaneous
remote sensory inputs would have to be done “deeper” within the system, leaving less
time for the emergency response. In other words, the trigger is “locally-situated” both
in space and time, and the sel ection pressure rewarding alow computation and commu-
nication complexity would guide an evolution of adequate responses.
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CONCLUSION

Thischapter haspresented an approach to thestructural health management (SHM)
of future aerospace vehiclesthat will need to operate robustly in very adverse environ-
ments. Such systemswill need to beintelligent and to be capabl e of self-monitoring and
ultimately, self-repair. The robustness requirement is best satisfied by using a distrib-
uted rather than a centralised system, and this has been assumed from the outset.
Networks of embedded sensors, active elements, and intelligence have been selected to
form aprototypical “smart skin” for the aerospace structure, and a methodol ogy based
on multi-agent networks developed for the system to implement aspects of SHM by
processes of self-organisation. This has been developed in the context of a hardware
test-bed, the CSIRO/NA SA “ concept demonstrator” (CD), acylindrical structurewitha
metallic smart skin with 196 sensor/actuator/processor modules. A humber of SHM
algorithmsrelated to damage detection and assessment have been devel oped and tested
on this demonstrator.

A future aerospace vehicle will be expected to respond to a variety of damage
situationswhich, moreover, vary with timeand circumstance. Designing ageneral system
with distributed intelligence which can self-organise solutions to many different prob-
lems is a very difficult task which we have simplified considerably by dividing the
problems into manageable components as described in the Response Matrix Approach
section, then seeking self-organising solutions to each component. This top-down/
bottom-up (TDBU) approach allows solutions to be achieved whilst retaining the
flexibility and emergent behaviour expected from complex multi-agent networks.

This breakdown of problems into components was achieved with the aid of a
“responsematrix” (Table1) andthreesignificant scenarioswere analysed inthisfashion.
These were (a) critical damage, which threatens the integrity of the vehicle, (b) sub-
critical damage, which requiresimmediate action althoughisnot life-threatening, and (c)
minor damage, whose cumulative effects need to be monitored and acted on when
appropriate. From these scenarios, three main components were selected, and self-
organising solutions developed for each and tested on the hardware test-bed. These
components were: (1) the formation of “impact boundaries’ around damage sites,
allowing the extent of any damage to be assessed and communicated to other parts of
thevehicle; (2) self-assembling“impact networks”, robust communicationslinkswhich
connect damage sites, enabling inspection of minor damage; and (3) shape replication,
ademonstration of an autonomous repair mechanism by which the network “grows”, at
aremotesite, anew region of the correct shapeto replace adamaged area. Thefirst two
of these have been successfully implemented on the hardware test-bed, giving confi-
dencein the feasibility of the overall approach.

Futurework will continuewith theimplementation of other necessary components,
such asdetail ed diagnosisand prognosisfor thedifferent damage scenarios (Prokopenko
et al., 2005b), sensor-data clustering (Mahendra, Prokopenko, Wang, & Price, 2005;
Prokopenko, Mahendra, & Wang, 2005), robust communication to action-initiating sites
(Li, Guo, & Poulton, 2004) and actionsaimed at repair or mitigation of damage. Onesuch
development, currently in the preliminary stages, aims at developing a means of
secondary inspection, an independent system which, when invoked by a report of
possible damage, is capable of examining the relevant site and assessing the extent of
the damage.
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Looking further ahead, it is clear that the functionalities of sensing, computation,
and action must merge with the material properties of the vehicle, moving closer to the
real meaning of asmart skin. Although it may be some time before such a development
is fully realised, recent progress in materials science and nano-technology gives
confidence that it is achievable. We believe that the basic approach outlined in this
chapter, of seeking self-organising solutionsto critical componentswithinanintelligent
multi-agent framework, will still form the backbone of such future devel opments.
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Chapter V111

KnowledgeThrough
Evolution

Russell Beale, University of Birmingham, UK

Andy Pryke, University of Birmingham, UK

ABSTRACT

This chapter argues that a knowledge discovery system should be interactive, should
utilise the best in artificial intelligence (Al), evolutionary, and statistical techniques
in deriving results, but should be able to trade accuracy for understanding. Further,
it needsto provide a meansfor usersto indicate what exactly constitutes” interesting” ,
aswell asunder standing suggestions output by the computer. One such systemisHaiku,
which combinesinteractive 3D dynamic visualization and genetic algorithmtechniques,
and enables usersto visually explore features and eval uate explanations generated by
the system. Three case studies are described which illustrate the effectiveness of the
Haiku system, these being Australian credit card data, Boston area housing data, and
company telecommunications network call patterns. We conclude that a combination
of intuitive and knowledge-driven exploration, together with conventional machine
learning algorithms, offers a much richer environment, which in turn can lead to a
deeper understanding of the domain under study.
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INTRODUCTION

Inthismodernworld, informationiscollected all thetime: from our shopping habits
to web browsing behaviours, from the calls between businesses to the medical records
of individuals, dataisacquired, stored, and gradually linked together. In this morass of
data, there aremany relati onshipsthat arenot downto chance, but transforming datainto
informationisnot atrivial task. Dataisobtai ned from observati on and measurement, and
hasnointrinsic value. But fromit we can create information: theories and rel ationships
that describe the relationships between observations. And from information we can
create knowledge: high-level descriptionsof what and why, explaining and understand-
ing the fundamental data observations. The mass of data available allows us to
potentially discover important relationships between things, but the sheer volume
dictatesthat we need to use the number-crunching power of computersto assist uswith
this process.

Datamining, or knowledge discovery asit is sometimes called, isthe application
of artificial intelligence and statistical analysis techniques to datain order to uncover
information. Givenanumber of large datasets, wearefundamentally interested infinding
and identifying interesting rel ationships between different itemsof data. Thismay beto
identify purchasing patterns, which are then used for commercial gain through guiding
effectivepromaotions, or toidentify linksbetween environmental influencesand medical
problems, allowing better public health information and action. We may be trying to
identify the effects of poverty, or to understand why radio-frequency observations of
certain stars fluctuate regularly. Whatever the domain of the data, we are engaged in a
search for knowledge, and are looking for interesting patterns in the data.

Butwhat is“interesting” ?Oneday, it may bethat thedatafallsinto ageneral trend,;
the next it may be the few outliersthat are the fascinating ones. Interest, like beauty, is
inthe eye of the beholder. For thisreason, we cannot |eave the search for knowledge to
computers alone. We have to be able to guide them asto what it is we are looking for,
which areasto focustheir phenomenal computing power on. In order for datamining to
begenerically useful tous, it must theref ore have someway inwhichwecanindicatewhat
isinteresting and what is not, and for that to be dynamic and changeable. Many data
mining systemsdo not offer thisflexibility inapproach: they are one-shot systems, using
their inbuilt techniquesto theorise and analyse data, but they addressit blindly, asthey
are unable to incorporate domain knowledge or insightsinto what is being looked for;
they have only one perspective on what is interesting, and report only on data that fit
such aview. Many such systemshavebeen utilised effectively, but webelievethat there
is more to data mining than grabbing just the choicest, most obvious nuggets.

Therearefurther issueswith current approachesto datamining, inthat theanswers
are often almost asincomprehensible as the raw data. It may be that rules can be found
toclassify datacorrectly intodifferent categories, butif therulestodo so are pageslong,
then only the machinecan do the classification: wemay know how to dotheclassification,
but have no insight into why it may be like that. We have gained information, but not
knowledge. We believethat we should be ableto understand the answersthat the system
gives us. In order to achieve this, it may be that we need broader, less accurate
generalisationsthat are comprehensibleto the human mind, but thenfeel confidentinthe
main principlesto allow the machineto do classification based on much more complex

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.



236 Beale & Pryke

rulesthat arerefinements of these basi ¢ principles. For example, “if it’ sred and squishy,
it'sastrawberry” iseasy to understand. Evenif that’strue only 80% of thetime, it'sa
useful rule, and easier to grasp than:

red, deforms 4mm under 2N pressure, >3cm diameter = strawberry &
red, deforms 1mm under 2N pressure, <6cm diameter = cherry &
red, deforms 3 mm under 4N pressure, >5cm diameter = plum

else raspberry

which may be 96% correct but ishardly memorable. For many datamining systems, the
rules developed are far more complex than this, each having numerous terms, with no
overall pictureableto emerge. For statistical-based systems, the parameter setsareeven
harder to interpret.

Since“interesting” isessentially ahuman construct, wearguethat we need ahuman
in the datamining loop; if weareto devel op an effective system, we need to allow them
to understand and interact with the system effectively. We should al so take advantage
of the capabilities of the user, many of which we havetried to emulate with Al systems
for many years, and are still along way from reproducing effectively. A key exampleis
the human visual system, which isvery effective at picking out trends within amist of
data points, capable of dealing with occlusion, missing values, and noise without
conscious effort. On the other hand, processing vast numbers of points and deriving
complex statistics is something much better suited to computers.

Thisleadsusto concludethat aknowledge discovery system should beinteractive,
should utilisethe best in artificial intelligence, evolutionary, and statistical techniques
in deriving results, but should be able to trade accuracy for understanding; it also needs
to provide away of allowing the user to indicate what isinteresting and to understand
the suggestions that the computer makes. An ideal system should be symbiotic, each
benefiting from theintrinsic abilitiesof theother, and holistic, producing resultsthat are
much more powerful than each could achieve on their own (Pryke & Beale, 2005).

KNOWLEDGE DISCOVERY WITH HAIKU

The Haiku system was developed with these principles in mind, and offers a
symbiotic system that couples interactive 3D dynamic visualization technology with a
novel genetic algorithm. The system creates a visualisation of the data which the user
cantheninteract with, defining which areasareof interest and which can beignored. The
system then takes this input and processes the data using a variety of techniques,
presenting the results as explanations to the user. These are in both textual and visual
form, allowing the user to gain abroader perspective on what has been achieved. Using
thisinformation, they can refine what the system should look at, and slowly focusin on
developing knowledge about whatever it is they are interested in. As well as using
conventional rule generation techniques, Haiku al so hasaspecifically designed genetic
algorithmic approach to producing explanations of data. Each of these componentsis
described in more detail asfollows.
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VISUALISATION

The visualisation engine used in the Haiku system provides an abstract 3D
perspective of multi-dimensional data. The visualisation consists of nodes and links,
whose propertiesaregiven by the parametersof thedata. Dataelementsaffect parameters
such asnodesize, mass, link strength, el asticity, and so on. Multiple elements can affect
one parameter, or a sub-set of parameters can be chosen.

Many forms of data can be visualisated in Haiku. Typical data for data mining
consists of anumber of individual “items” (representing, for example, customers) each
with the samenumber of numerical and/or nominal attributes. What isrequired for Haiku
visualisation is that a distance can be calculated between any two items. The distance
calculation should match anintuitiveview of thedifferencesbetweentwoitems. In most

cases, asimpleand standard di stance measure performswell: with dataelements x.= [x,,
X,,...X ], the distance d between elements Xa and Xo iS:

d=\Z—Z\=i§“;,xa-—xm M

An example of thisisshownin Table 1.

Thetotal distanced=-26.53. Clearly, many variationsof thisexist— aweighted sum
can beused, and so on. Oneof the characteristics of the systemisthat the user can choose
which parametersare used to create the distance metric, and which ones affect the other
characteristics of the visualisation.

Inthevisualisation, anodeis created that represents an item. These nodes may be
all equivalent, or may have characteristicsinherited from the data (for example, number
of children may be used, not in the standard distance measure, but in the mass of the
node). Links are created between all the nodes, which act as springsand try to movethe
nodes about in the space.

Tocreatethevisualisation, nodesareinitially scattered randomly intothe 3D space,
with their associated links. This 3D space obeysaset of physical-type laws, which then
affect thisinitial arrangement. Linkstend towant to assumeaparticular length (directly
related to the distance measure between the nodes), and tend to pull inwards until they
reach that length, or push outwards if they are compressed, just as a spring doesin the
real world. Nodes tend to repel each other, based on their mass. This whole approach
canbeseenasaforce-directed graphvisualisation. Thisinitial stateisallowedto evolve,
and thelinksand nodes shufflethemselvesaround until they reach alocal minimum, low-
energy steady state. Thereasoning behind these choices of effectsisthat wewant related

Table 1. Calculating distance between two data items

Dataltem | Phone | Shopping | Petrol | Children | Age Sum
bill distance
Customerl | 124.23 235.12 46.23 2 34
Customer2 34.56 281.46 123.09 0 29
Distance 89.67 46.34 76.86 2 5 219.87
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thingsto benear to each other, and unrelated thingsto befar away. Therefore, by creating
linksthat are attractive between datapointswith similar characteristics, weachievethis
clumping effect. The data points themselves, the nodes in the visualisation, are made
repulsive so that the system does not collapse to a point, but instead are individually
distinguishable entities, slightly separated from their similar neighbours.

This approach achieves a number of things. It allows us to visualise high-
dimensional data in a comprehensible and compact way. It produces results that are
similar to those achieved using approaches such as multi-dimensional scaling, but is
somewhat more comprehensible because it tries to cluster “similar” things with other
“similar” ones. Itiscertainly truethat the choiceof distancemetric, and particularly which
items to include and which to map to node characteristics, can affect the resulting
visualisation, but we are searching for insight and meaning, not trying to come up with
a single right solution. At different times, different features can be examined, and
different resultsachieved; thisisaninherent characteristic of searchingfor information,
rather than anintrinsic problemwith theapproach. In any movefrom ahigh-dimensional
space to alower one, information will have to be lost; this approach at |east preserves
some of the main similarity characteristics of the original datasets.

The physics of the space are adjustable, but are chosen so that a steady state
solution can bereached that isstatic; thisisunlikethereal world, inwhich asteady state
existsthat involvesmaotion, with onebody orbiting another. Thisisachieved by working
in anon-Newtonian space. Inthereal physical world (a Newtonian space), we have the
following condition:

F=ma @

where F istheforce applied to abody, mthe mass of that body, and aisthe accel eration
produced. This can be re-written as:

dv
” ©)

where v is the velocity of the object.

When the visualisation isin alocal minimum, there is no net force on any of the
bodies(inother words, all thespring-likeforcesfromthelinksand repul sivenodal forces
balance each other out), and so for each node, F = 0. Thus:

0=m® = ¥ _ oy = constant 4
dt dt

Therefore, in a steady-state Newtonian space, each node may potentially have zero or
a constant velocity. In other words, the steady state solution has dynamic properties,
with bodiesmovingin orbit, for example.

In our space, we redefine (2) to be:

F=mv (5)
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When we reach the steady state, we have (for non-zero masses):
O=nv=v=0 (6)

Thus, in our representations the steady state that the arrangement evolves to is static.
Thisrepresentation canthenbeexplored at will by rotatingit, zoomingin, andflying
through and around it. It is a completely abstract representation of the data, and so has
no built-in preconceptions. Different data-to-attribute mappings will clearly give
different structures, but the system can at least produce a view of more than three
dimensions of the raw data at once. A typical structureis shown in Figure 1.

To evolve the structure, each node is checked for links to other nodes, and the
forcesof thoselinksisadded vectorially to give anet force, and the nodeisthen moved
according to that force using Equation 5 above. Computationally, the process scales
exponentially with the number of links, which isusually proportional to the number of
datapoints, sotheevolutiontothestablestructure movesfrom being areal-time process
that you can watch towards one that has to be allowed to run for along period of time
as the dataset increases in size.

Ingeneral, thisisnot aproblem, sincetheinitial arrangement of dataisrandomand
theevolutionary processisnotinitself informative (althoughitisinteresting to observe).
However, when the visualisation is used as a component in the datamining tool, thisis
designed to be an interactive process, so we have taken a number of approaches to
speeding up the relaxation to steady state. The first involves re-coding the system into
OpenGL/DirectX, to take advantage of the power of modern graphics processors,
especially for 3D work. The second places the nodes into the space in a non-random
position initially; each nodeis placed “near” anodeit hasalink to. Thisis marginally
more computationally expensive initially, but reduces the numbers of nodes that have
to move alarge amount through the visualisation, and hence cause large scal e changes
in other nodal positions. The most effective approach is to use predominantly local

Figure 1. Nodes and links self-organised into a stable structure
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relaxation; however, instead of considering all theforcesto act over infinitedistance, we
can limit nodal interactions to be very local, so that nodes which are along way away
do not exert any forcesontheonesin question (much likeassuming that the gravitational
effects of all the stars except the sun are negligible).

Oncethe system hasundergone someinitial relaxation, which providessomelevel
of organisation, we can also focus on the local neighbourhood much more, and
occasionally recompute the longer-range interactions. Thisisakin to organising atight
cluster properly, but then treating that as one structure for longer-range effects. A
combination of these approaches allows us to produce an effective steady state
representation, even with large datasets, in interactive time.

PERCEPTION-ORIENTED VISUALISATION

The interface provides full 3D control of the structure, from zooming in and out,
moving smoothly through the system (flyby), rotating it in 3D, and jumping to specific
points, all controlled with the mouse. Sometypical structuresemerge, recognisablefrom
dataset to dataset. For example, acommon oneisthe“dandelion head”: asingle central
node connected to anumber of other nodes with the same strength links. The links pull
the attached nodes towards the central one, but each node repelsthe others, and so they
spread out on the surface of a sphere centred on the main node. Thislooks much like a
dandelion head. Another typical structure occurswhen anumber of dandelion headsare
loosely linked together. The effect of the other headsin the chain forcesthe outer nodes
away from being equidistantly spaced on the sphere and makes them cluster together
somewhat on the side away fromthelink, and aseriesof “florets” are created, all linked
together. It isbecause of thisthat some usershavetermed thevisualisation “ cauliflower
space”.

Thevisualisationinitself providesalot of information about the dataset. We have
usedthevisualisationinisolationfor anumber of tasks (Hendley, Drew, Beale, & Wood,
1999). One of the more effective ones has been the visualisation of users’ internet
browsing behaviour. Each page visited is represented by a node, and their page
transitionsarerepresented by thelinks. Typically, usersstart on ahomeor anindex page,
and move out and back a number of times before moving off down a promising thread:
thisbehaviour, when visualised inreal time, producesadandelion head with increasing
numbers of “seeds” (the outer nodes) and then switches towards a floret as the thread
isfollowed. A new index-typepageisreached (sometimesafter one hop, sometimesafter
many, and another floret iscreated. Often, therearelinksback totheoriginally explored
pages, and when the user follows these, the visualisation pulls itself into a ring,
representing anotion of closureand returning that hasan exact analogy inthereal world
(Wood, Drew, Beale, & Hendley, 1995). A different representation is formed if we
visualise the structure of web pages: pages themselves are nodes again, but hyperlinks
map to visualisation links. A Web site hasafairly typical cauliflower image, caused by
closely interrelated and interlinked sections, tied back to acommon homeor index page,
with links off to other cauliflowers where the site links externally to other sites.

The system has also been used to assist users to comprehend their progress in
information retrieval tasks. Using a digital library as our domain, for each query a
representation of theresultswasreturned. A large node represented the query, and was
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Figure 2. Visualising the result of a single query: “ visualisation colour graphics’

Figure 3. Adding a second query: “ 3D surface graphics’

Figure 5. A sequence of four queries
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fixed in the 3D space. Each document that matched the query was a mobile node, with
alink attaching it to the query, with the link strength being how relevant the document
wasto that query. Aninitial query would return anumber of documents, so a distorted
dandelion head would appear. However, asecond query that returned some of the same
documents would show links from those documents to both fixed nodes, and hence the
degree of overlap could be easily seen. Such an approach allowed the user, in real time,
to see how effectively they were exploring the space of documents, and how those were
interrelated tothe queriesmade (Beale, McNab, & Witten, 1997; Cunningham, Holmes,
Littin, Beale, & Witten, 1998). This is important as subsequent searches are often
dependent on the results of the previous ones, so having arepresentation of the history
and its rel ationships to the present search matches more closely what the user is doing
internally. A walkthrough of the processis shown in Figures 2 through 5.

Interaction with the Data Visualisation
When features of interest are seen in the visual respresentation of the data, they
can be selected using the mouse. This opens up a number of possibilities:
. Dataidentification
. Revisualisation

i Explanation

Thesimplest of these (dataidentification) isto view theidentifiersor detailsor items
inthe feature, or export thisinformation to afile for later use.

Another option is re-visualise the dataset without the selected data or to focusin
and only visualise the selected data. This can be used to exclude distorting outliers, or
to concentrate ontheinteractionswithin an areaof interest. Of course, we can datamine
the whole dataset without doing this, the approach taken by many other systems. One
of thefeatures of the Haiku systemisthisinteractiveindication of thethingsthat weare
currently interested in, and the subsequent focussing of the knowledge discovery
process on best describing that data only.

A key feature of the system isthat this user selection process takes full advantage
of the abilities of our visual system: humans are exceptionally good at picking up gross
featuresof visual representations. Our abilitieshaveevolvedtowork well inthe presence
of noise, of missing or obscured data, and weareableto pick out simplelinesand curves,
as well as more complex features such as spirals and undulating waves or planes. By
allowing user input into the knowledge discovery process, we can effectively use a
highly efficient systemvery quickly aswell asreducing thework that the computational
system has to perform.

Explanation

The most striking feature of the system isits ability to “explain” why features of
interest exist. Typical questions when looking at a visual representation of data are:
“Why aretheseitemsout ontheir own?”, “What arethe characteristicsof thiscluster?”,
“How do these two groups of items differ?”. Answers to these types of question are
generated by applying a machine |earning component.

The interaction works as follows: First, agroup or number of groups is selected.
Then the option to explain the groups is selected. The user answers a small number of
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guestions about their preferences for the explanation (short/long) (highly accurate/
characteristic), and so on. The system returns a set of rules describing the features
selected.

Asanalternative, theclassic machinelearning system C4.5 (Quinlan, 1992) may be
used to generate classification rules. Other data mining systems may be applied by
saving the selected feature information to acomma-separated value file.

RuleVisualisation

Rules generated using C4.5 or the GA-based method can be visualised within the
system to give extra insight into their relationships with the data. Rules are usually
represented by massive nodes that do not move far in space, and are regularly spaced.
Links show which rules apply to which data, and hence unclassified dataand multiply-
classified data are shown well.

From this, the processing moves towards the computer, as the genetic algorithm-
based process takes over.

GENETIC ALGORITHMS FOR DATA MINING

Weuseageneticalgorithm (GA) approach for anumber of reasons. Thefirstisthat
aGA isableto effectively explore alarge search space, and modern computing power
meanswe cantake advantage of thiswithin areasonabletimeframe. Weuseaspecial type
of GA that evolvesrules; these producetermsto describetheunderlying dataof theform:

IFterm OPvalue|range (AND ...) THEN term OPvalue|range (AND ...) (7)

whereterm isaclass from the dataset, OP is one of the standard comparison operators
(<,>,=,5,2),valueisanumericor symbolicvalue, andrange isanumericrange. A typical
rulewould therefore be:

IF colour =red AND consistency = soft THEN fruit = strawberry (8)

A set of theserulescan, in principle, describeany arbitrary situation. Therearetwo
situationsthat are of interest to us; classification, whentheleft hand side of the equation
triesto predict asingle class (usually known) on the right hand side, and association,
or clustering, whenthesystemtriestofind rulesthat characterise portions of the dataset.
Thealgorithmfollowsfairly typical genetical gorithmic approachesinitsimplementation,
but with specialised mutation and crossover operators, in order to explore the space
effectively. We start with anumber of random rules, and evolve the population through
subsequent generations based on how well they perform.

The genetic algorithm aimsto optimise an obj ective function, and manipul ation of
thisfunctionallowsusto exploredifferent areas of the search space. For example, wecan
strongly penalise rules that give false positive results and achieve a different type of
description, than rules that may be more general and have greater coverage but make a
few more mistakes. Each ruleisanalysed interms of the objective function and given a
score, which is its fitness. The fittest rules are then taken as the basis for the next
population, and new rulesarecreated. Crossover pointsarechosento bein syntactically-
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similar positions, in order to ensure that we are working with semantically-meaningful
chunks. Mutation is specialised: for ranges of values, it can expand or contract that
range; for numbers, it canincrease or decreasethem; for operators, it can substitutethem
with others.

Statistically principled comparisons showed that thistechniqueisat least as good
asconventional machinelearningat classification (Pryke, 1999), but hasadvantagesover
the more conventional approachesin that it can perform clustering operations as well.
One of the key design featuresisto produce asystem that has humanly-comprehensible
results. Rules of the form in Equation 7 are inherently much more understandabl e than
decision trees or probabilistic or statistical descriptions. It isalso true that short rules
aregoing to beeasier to comprehend than|onger ones. Sincethe GA istryingtominimise
an objective function, we can manipulatethisfunctionto achievedifferent results. If we
insist that the rules produced must be short (and hence easier to understand), then the
systemwill trade of f accuracy and/or coverage but will give usshort rules, becausethey
are “fitter”, which provide ageneral overview that is appropriate for much of the data.
Becausethe Haiku systemisinteractiveand iterative, when we havethishigher level of
comprehension, we can go back into the system and allow therul esto becomelonger and
hence more specific, and accuracy will then increase.

FEEDBACK

Theresultsfrom the GA arefed back into the visualisation: identified clusterscan
be coloured, for example, or rules added and linked to the data that they classify, asin
Figure®.

Inthisfigure, rules are the large purple (left and centre), fuschia (rightmost) and
green (top) spheres, with the data being the smaller spheres. Links are formed between
the rules and the data that is covered by the rule, and the visualisation has reorganised
itself toshow thisclearly. Wehaveadditionally coloured the dataaccording toitscorrect
classification (clear in colour, harder to seein greyscale).

A number of things areimmediately apparent from this visualisation, much more
easily than would bethe casefrom atextual description. Onthevery left of Figure6, one
rule covers exactly the same data as the second sphere from the left, except it also
misclassifies one green data point. But this second sphere, while correctly classifying
all itsown datacorrectly, also misclassifiesmuch of the other dataaswell, shown by the
many linksto the different coloured dataitems. The visualisation shows us that we can
removethisrule, simplifyingthe description, without reducing coverageand improving
accuracy. On theright hand side of the picture, theruleclearly doesvery well; it covers
all its data and does not misclassify anything. The rule at the top has mixed results.

The systemisfully interactive, in that the user can now identify different charac-
teristics and instruct the GA to describe them, and so the process continues.

This synergy of abilities between the rapid, parallel exploration of the structure
space by the computer and the user’ sinnate pattern recognition abilitiesand interest in
different aspects of the data produces a very powerful and flexible system.
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Figure 6. Rules and classified data

CLASSIC CASE STUDY 1:
WELL KNOWN DATASETS

Several machine learning datasets from the UCI Machine Learning Repository
(Blake & Merz, 1998) were used to benchmark the performance of data mining and
classification. It should be noted that it focuses on quantitative performance, whereas
the qualitative experience and use of perception-based mining techniques is not as-
sessed. However, good results on these datasets in quantitative terms will give us
confidence when analysing new datasets.

The GA-based approach gave perfectly acceptabl eresults, with statistical analysis
showing it performed better than C4.5 (Quinlan, 1992) on the“ Australian Credit Data”
(p=0.0018). No significant difference in performance was found for the other two
datasets. These results are summarised in Table 2.

CASE STUDY 2:
INTERACTIVE DATA MINING OF HOUS NG DATA

Figure 7 shows a 2D view of the system’svisual clustering of the Boston housing
data. Two user selected groups have been indicated.

GA -based datamining wasthen applied to these user identified groups. Thefitness
function was chosen so as to bias the system towards the discovery of rules which are
short and accurate (Table 3).

This case study illustrates the following qualitative aspects of the system. The
interactive visual discovery approach has revealed new structure in the data by visual
clustering. Subsequent application of the data mining algorithm has generated concrete
information about these “soft” discoveries. These ruleslook at a variety of aspects of
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Table 2. Quantitative benchmarking performance

Dataset Genetic algorithm C4.5
% correct % correct

Australian Credit 86% 82%
(Quinlan, 1987)

Boston Housing 64% 65%
(Quinlan, 1993)

Pima Indians Diabetes 73% 73%

(Smith et al., 1988)

the system, from their location to their tax ratesto their social status, and providerules
that are accurate, short, and cover much of the data, and they are comprehensible.
Together, interactivedatamining hasdelivered increased knowledge about awell-known
dataset.

Having proven its worth on known datasets, we have used the system to try to
discover new phenomena.

CASE STUDY 3:
APPLYING HAIKU TO TELECOMSDATA

Justification

Massive amounts of data are generated from monitoring telecommunications
switching. Evenasmall company may make many thousandsof phonecallsduring ayear.
Telecommuni cations compani es have amountain of dataoriginally collectedfor billing

Figure 7. Clusters selected in the Boston housing data

»
]
e
Py 'f |
e i A
!‘ﬁ Group 2 agy

, & L
. broup 1
L . e —

&

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.



Knowledge Through Evolution 247

Table 3. Rules generated from Boston housing data

Rule Accuracy | Coverage
(%) (%)
Bounds_river=true = GROUP_1 100 43
PropLargeDevelop = 0.0 AND 9.9 <= A 83

older_properties_percent <= 100.0 AND
Pupil_teacher ratio = 20.2 = GROUP 1

Bounds_river=false AND 4 <= 100 7
Highway access<=8 = GROUP_2
Bounds_river=false AND 264 <= Tax_rate 100 69
<=403= GROUP 2

2.02 < Industry_proportion <= 3.41 = 98 13
GROUP_2

5.68 <= Lower_status percent <= 6.56 = 9% 75
GROUP_2

Bounds_river=false = GROUP_2 73 100

purposes. Telecoms data reflects business behaviour, so is likely to contain complex
patterns. For this reason, Haiku was applied to mine this data mountain.

Data

Thedataconsidered detail ed the calling number, reci pient number, and duration of
phone callsto and from businessesin amedium sized town. Other information available
included business sector and sales chanels. All identity data was anonymized.

Call Patterns of High Usage Companies

Visualisation

A number of companies with particularly high numbers of calls were identified.
These were visualised separately to identify patterns within the calls of individual
companies.

Figure 8 showsaclustering of callsfrom asingle company. The most immediately
obviousfeatureisthe“bluewave” to theright of theimage; this has been labelled “A”.

Also visible are various other structures, including the two clusters labelled “B”
and“C".

Discoveries
After identifying these features, we then asked the system to “explain” their
characteristics. The following rules were discovered by the system, and translated into
sentenceform for clarity:
. All callsin group A areto directory enquiries.
o  Further investigation, selecting parts of the “blue wave” showed that the
wavestructurewasarranged by hour of day in onedimension and day of week
in the other.
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Figure 8. Calls from one company, automatically clustered by Haiku (three areas are
apparent — labelled A, B and C)

. Within group B, about 70% of calls are to two numbers. 90% of calls to these
numbersfall intothegroup B. Almost all of the remaining 30% of callsin group B
are to another two numbers.

. Most long-distancel SDN callsareingroup B. All but onecall inthegroup hasthese
properties. Most callsin the group are also charged at the same rate.

. About 80% of Group C callsareSDN calls, and about 10% are from payphones.
About one third occur between 21:00 and 22:59, and about one half start at 15
minutes past thehour. Most arelong-distancecalls. About 50% of thecallsarevery
long, lasting between 8 and 15.5 hours.

For this dataset, Haiku discovers some very interesting facts about the calling
patterns of a company. Notice that we can produce short, comprehensible rules that
cover asignificant portion of the dataset, which areintrinsically much more usablethan
detailed descriptions of 100% of the data. These insights can then be used by the
company to optimisetheir phoneusage, or, asfor thisstudy, to feed back to thetelecoms
company some concepts for marketing and billing strategies.

CONCLUSION

The Haiku system for information visualisation and explanation provides a useful
interface for interactive data mining. By interacting with a virtual data space created
dynamically from the data properties, greater insight can be gained than by using
standard machine learning- based data mining. It allows users to explore features
visually, to direct the computer to generate explanations and to evaluate the results of
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their exploration, again in the visual domain. By using a novel genetic algorithmic
approach, we can bias rules generated to give us first a general overview and then
progressively refine their accuracy and coverage as our understanding increases. This
combination of intuitive and knowledge-driven exploration with the mechanical power
of thelearning algorithms provides amuch richer environment and can |ead to a deeper
understanding of the domain.
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Chapter | X

Neural Networksfor the
Classification of Benign
and M alignant Patternsin
Digital Mammograms

Brijesh Verma, Central Queensland University, Australia

Rinku Panchal, Central Queensland University, Australia

ABSTRACT

Thischapter presents neural networ k-based techniques for the classification of micro-
calcification patterns in digital mammograms. Artificial neural network (ANN)
applicationsin digital mammography are mainly focused on featur e extraction, feature
selection, and classification of micro-calcification patterns into ‘benign’ and
‘malignant’. An extensive review of neural network based techniques in digital
mammography is presented. Recent developments such as auto-associators and
evolutionary neural networks for feature extraction and selection are presented.
Experimental results using ANN techniques on a benchmark database are described
and analysed. Finally, a comparison of various neural network-based techniques is
presented.
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INTRODUCTION

Every year many women diefrom breast cancer worldwide. A recent study on breast
cancer showsthat oneof every three cancer diagnosesinwomenisabreast cancer (http:/
/www.breastcancerfund.org - Breast Cancer Facts 2003). Reports by various cancer
institutes estimate that one in eight women devel ops breast cancer in the U.S. (http://
www.breastcancerfund.org/disease facts.htm - Breast Cancer Facts 2002), oneinnine
women in the UK and Canada (http://www.cancerscreening.nhs.uk/breastscreen/
breastcancer.html), and one in ten women in Australia (http://www.nbcc.org.au/). The
Australian National Breast Cancer Centreal so reportsthat nearly 3% of womendiefrom
breast cancer worldwide, with therisk increasing with age, particularly after 50.

Digital mammography isconsideredto be one of themost reliablemethodsfor early
detection of breast cancer. Theintroduction of mammography screeningin 1963 brought
amajor revolution to breast cancer detection and diagnosis. It has been widely adopted
in many countries, including Australia, as a nationwide public health care program.
According to the American College of Radiology, the decline in the number of breast
cancer deaths corresponds directly to an increase in routine mammography screening
(http://www.acr.org).

Indigital mammography, most breast cancersaredetected by the presence of micro-
calcifications, which areone of themammographic hallmarksof early breast cancer; they
appear as asmall bright spot on the mammogram. To decide whether a suspicious area
onadigital mammogram containsabenign or malignant breast abnormality, traditionally
the tissue has to be removed for examination using breast biopsy techniques.

Advanced image processing techniques are able to detect breast abnormalities
efficiently; though their classification as“malignant” or “benign” still remainsachal-
lenging problem (Aghdasi, Ward, & Palcic, 1994; Gonzalez & Woods, 1993; Jain, 1995;
Karssemeijer, 1994; Karssemeijer, Thijssen, Hendriks, & van Erning, 1998; K opans, 1998;
Lee& Bottema, 2000; Masek, Attikouzel, & deSilva, 2000; Neiber, Mueller, & Stotzka,
2000; Pereira& Azevedo, 2000; Sonka& Fitzpatrick, 2000; Umbagh, 1998; Wei, Laurence,
& Clark, 1994; Yin, Giger, Vyborny, Doi, & Schmidt, 1993; Y oon, Ro, Kim, & Park, 2002;
Zheng, Qian, & Clarke, 1994).

The abundance of variety and lack of individuality in micro-calcification patterns
make their classification challenging for expert radiologists, even in high-resolution
mammaograms. Worldwide mass usage of screening mammography generates numerous
amountsof mammogramsevery year, whichrequiresalargenumber of skilled radiol ogists
forinterpretation. Thevariety of abnormal structures, long reading time, and monotony
of interpretation work often produces human errors, missing either malignant cases or
more benign biopsies. Therefore, thereisacritical need for anintelligent system which
can interpret mammograms accurately and uniformly using expert knowledge based on
learning from experience. Along with expert radiol ogists, acomputer-aided intelligent
classification technique can be effectively used to improve and speed up the overall
interpretation process.

Artificial neural networks (ANNS) have extraordinary generalization capabilities,
which makethem very suitable for usein computer-aided intelligent systemsfor breast
cancer diagnosis(Bakic & Barzakovic, 1997; Cheng, Cai, Chen, Hu, & Lou, 2003; Wei,
Nishikawa, & Doi, 1996; Wu, 1993). ANNsareadaptiveintelligent toolsthat |earn from
examples (training set) and generalize new cases (test set) which they have never seen
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before. Recently artificial neural networks have been used in the detection and classi-
fication of calcification and masstypesof breast abnormalities. Some ANNS, alongwith
other intelligent techniques, produce promising results in distinguishing benign from
malignant patterns.

The remainder of this chapter is divided into four sections. The first presents a
general overview of research methodol ogy using neural networks. Thissection presents
various benchmark databases, detection algorithms, feature extraction, selection, and
classification techniques. The next section presents some recent results using neural
evolutionary and auto-associator-based neural classification techniques. A compara-
tiveanalysisof neural techniquesispresentedinthefollowing section. Thefinal section
concludes the chapter.

RESEARCH METHODOLOGY USING
ARTIFICIAL NEURAL NETWORKS

A general overview of research methodology for the classification of micro-
calcification patternsusing neural networksispresentedin Figure 1 and described below.
The research methodology comprises the following stages:

Digital mammography database.

Detection algorithm, or “suspicious area’” marked by radiologists.
Areaextraction using detection algorithm or chain code provided by radiol ogists.
Feature extraction (optional).

Feature selection (optional).

Classification of patternsinto “benign” and “malignant”.

o, wWwNPE

Figure 1. Research methodology overview

Detection Feature Selection of feature
algorithm extraction or combination of
or area marked techniques features
by radiologists (optional)
Suspicious Features extracted
areas by neural
extracted networks or other
from digital conventional
mammograms techniques
Benign Selected feature or
or combination of
malignant features or
suspicious area
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Figure2. Digital mammograms (L-R: normal; architectural distortion; calcifications)

Digital Mammography Database

Digital Mammogram

Digital mammograms are created by using acamera, scanner, or specific mammo-
gram digitizer. Usually 12 bits (4096 grey levels) per pixel are used to produce a high-
resolution digital mammogram without loss of information. Figure 2 shows digital
mammaograms containing normal, architectural distortion, and calcifications patterns.
Themammogramsaretaken fromthe Mammographic I mageAnalysis Society benchmark
database (http://www.wiau.man.ac.uk/servicessMIAS/MIASweb.html).

Digital mammogramsarevery useful inidentifying breast abnormalitiesearlier than
they can bediagnosed by physical examination. Asshownin Figure 3, breast abnormali-
tiescan bedividedinto threetypes, namely: micro-cal cification, circumscribed |esions,
and spiculated lesions. Most breast cancers are detected by the presence of micro-
calcifications.

Figure 3. Breast abnormalities (L-R: micro-calcification; circumscribed lesion;
spiculated lesion))
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Benchmark Databases

Theimplementation and testing of new algorithms/techniques, including artificial
neural networks for the detection and classification of benign and malignant patterns,
requires an appropriate training and testing database. Various international organiza-
tions and societies have created several digital mammography databases; some of the
most popular of these are described below.

The Digital Database for Screening Mammography (DDSM) is one of the most
popular digital mammography databases for training and testing new breast cancer
detection techniques (Heath, Bowyer, Kopans, Moore, & Kegelmeyer, 2000). The
databaseisavailablefreeof cost fromthefollowingwebsite: http://marathon.csee.usf.edu/
Mammaography/Database.html

DDSM hasalready been divided into training and test mammograms, which makes
it easier to test and compare various techniques. The database contains approximately
2,500 studies. Each study includestwoimages (ML O — medio-latral obliqueand CC—
cranio caudal views) of each breast, along with someassociated patient i nformation such
as age at time of study, density rating, subtlety rating for abnormalities, description of
abnormalities, image information, type of scanner, spatial resolution, and so forth.
I mages contai ning suspicious areas have associated pixel-level “ground truth” informa-
tion about the locations and types of suspicious regions.

The Nijmegen database has been a very popular database for a number of years;
however, currently it is unavailable. It was removed from the web on March 31, 2000,
because much better databases— such asDDSM — had become available. The DDSM
databaseprovidesamuchlarger, and thusmorediverse, set of mammogramswith ground
truth.

The UCI Repository contains two breast cancer databases (the Breast Cancer
Database from the Ljubljana Oncology Institute, and the Wisconsin Breast Cancer
Database), which are mainly used by the machine learning community for the analysis
of ML algorithms. The database containsnineinput feature valuesand two output values
(“benign” and“malignant” classes). Thesedatabasesdo not contain digital mammograms,
so they cannot be used to test new feature extraction techniquesor detection algorithms.
A detailed description of this database can be found in Blake and Merz (1998).

The Mammaographic Image Analysis Society (MIAS) Databaseis an organization
of UK research groups interested in the understanding of digital mammograms. MIAS
hasgenerated adatabase of digital mammograms (http://www.wiau.man.ac.uk/services/
MIAS/MIASweb.html). Filmstakenfromthe UK National Breast Screening Program have
been digitized to 50 micron pixel edgesusing aJoyce-L oebl scanning micro-densitometer
— adevicelinear in the optical density range 0-3.2 and representing each pixel with an
8-bitword. Thedatabase contains320digitized filmsandisavailableonaDAT-DDStape.
It also includes radiologist “truth” markings on the locations of any abnormalities that
may be present.

Detection of Breast Abnormalities

The aim of manual or automatic detection of breast abnormalities is to find
suspicious areas on amammogram which may or may not contain amalignant pattern.
Computer-based detection is done by using various statistical and intelligent tech-
niques, including artificial neural networks. Manual detection is done by two to three
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expert radiologists based on their knowledge and experience. The program or expert
radiologists provide centre and radius or chain code for detected breast abnormalities.
The benchmark databases described above (DDSM, MIAS) contain suspicious areas
marked by expert radiol ogists.

ANNshavebeen used for thedevel opment of detectionalgorithms. Wei, Nishikawa,
and Doi (1996) used ashift invariant feed-forward network for thedetection of clustered
micro-calcifications. They obtained over an 88% detectionrate; however, thealgorithm
wasonly tested on asmall benchmark database. Sajda, Spence, and Pearson (1995) and
Sajda, Spence, Pearson, and Nishikawa, (1996) used hierarchical feed-forward networks
and contextual informationtoimprovedetection. Diahi, Frouge, Giron, and Fertil, (1996)
also used hierarchical networks and obtained over 90% detection rate for micro-
calcifications and masses. Comparative analyses of various neural networks and other
detection algorithms can be found in Woods, Doss, Bowyer, Solka, Priebe, and
Kegelmeyer, (1993), Bakicand Barzakovic (1997), and Cheng et al. (2003).

Christoyianni, Dermatas, and K okkinakis (1999; 2000) used radial basis function
neural networks with a set of decision criteria for detecting circumscribed masses in
mammaograms. They reported a 72.72% detection rate on 22 mammograms containing
circumscribed lesionstakenfromthe M 1A Sdatabase. Thelesion sizesvaried from 18to
198 pixelsinradius. Kimand Park (1999) used back-propagation (BP) neural networksto
evaluatethe performanceof different typesof feature extractiontechniquesintheir study
of clustered micro-calcification detectionin digitized mammograms. They haveattained
thehighest (0.93) A, value (conventional bi-normal model used asanindex of diagnostic
performance for the receiver operating characteristic (ROC) curve) with features ex-
tracted through the surrounding region-dependence method.

Yu and Guan (2000) used general regression neural networks to analyse the
discriminatory power of wavel et and statistical featuresviasequential forward/backward
selection methods for detecting micro-calcifications. Their method attained a90% true
positive detection rate at the cost of 0.5 false positive per image, while using 40 images
containing 105 clusters of micro-calcificationsfrom the Nijmegan database.

Comparative analyses of various neural networks and other detection algorithms
canbefoundinWoodset al. (1993), Bakic and Brzakovic (1997), and Cheng et al. (2003).

Area Extraction Based on Chain Code from the DDSM

Database

TheDDSM databasehasan .OVERLAY filefor every mammogram, which contains
information about the chain code used to extract the exact area. With the help of chain
code values, the boundary of each suspicious area of the mammogram can be readily
located.

Neural Network as Feature Extractor

Thefeature extraction processisoptional in classifying “benign” and “ malignant”
patterns; however, it is one of the most important processes. The role of the feature
extraction processin digital mammography isto take suspicious areasidentified by the
detection algorithms or expert radiol ogists and extract someimportant features (single
or multiple values) which may help classifiers to distinguish malignant patterns from
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Figure 4. Feature extraction using an auto-associator

| DDSM database |
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‘.icsfile’ and‘.OVERLAY’ file Mammogram file

!

4 Extract suspicious area

v v

Bl_RADScategorized Grey-level image features
features (optional) l (optional)

Extract features from hidden units

normal (benign) patterns. Mainly, statistical feature extraction techniques have been
used in the past few decades. The most common features used in digital mammography
are entropy, contrast, moment, correlation, mean, deviation, area, shape, smoothness,
average grey-level, texture, and BI-RADS (breast imaging reporting and data system)
features.

Neural networkshaverecently been applied asfeature extractorsin digital mammog-
raphy (Chenget al., 2003; Panchal & Verma, 2005). Self -organizing maps (SOMs) and
auto-associators are the most common types of neural networks used for feature
extractionindigital mammography. SOM isbased on unsupervised learning, inwhichan
inputimageistaken and mappedinto asmall output vector (Chenget al., 2003); asimple
Kohonenlearning algorithmisused. Auto-associatorsare based on supervised | earning,
and can compressand extract structural featuresfrom theinput data (Panchal & Verma,
2005). In an auto-associator, the same inputs and target outputs are used to train the
network. Back-propagation or RBF-based trainingisused to minimizetheerror between
inputs and targets. Once we reach an acceptable error, the training is stopped and the
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features are extracted from the hidden units. More detail s of using an auto-associator to
extract featuresfrom adigital mammogram (from the DDSM database) are provided in
Figure4.

Neural Networks for Feature Selection

Feature selection is an important process in any classification problem because
some irrelevant features may affect the classification rate and increase the cost. The
feature selection processrequires careful selection of which featuresto useto represent
thepatternsto beclassified. Feature sel ection aimstofind the best feature or combination
of features which may achieve the highest classification rate. Many statistical tech-
niques, such as best-first search, feature weighting, and hill-climbing, have been used
for feature selectionin digital mammography.

There has been also some research using neural techniques in the area of digital
mammaography tofind the best feature or combination of featureswhich canimprovethe
classification rate. Artificial neural networks have been used for feature selection as a
stand-alone technique (Verma & Zakos, 2001), or in conjunction with evolutionary
algorithms(Zhang, Verma, & Kumar, 2004).

The following steps can be used for feature selection using aneural evolutionary
technique:

Initializethe population.

Generate the inputs and get the parameters from the trained ANNSs.
Compute the fitness for every individual of the current population.

Reproduce the new population by performing selection strategy, crossover, and
mutation operators.

Calculate the fitness of the new population.

Check the number of generation and go back to step 2.

WD

o O

Neural Network as Classifier

Neural network classifiershavebeenwidely appliedinreal-world applications. The
purpose of this section isto review neural classifiersin digital mammography. ANNs
have been used in classifying suspicious areas using either the whole area or just
features.

Chitre, Dhawan, and M oskowitz (1993) used aback-propagation neural network for
imagestructurefeaturesfor micro-cal cification classification, and compared their results
with statistical classifiers. They obtained a classification rate of 60%, which was better
than that achieved with statistical classifiers.

Dhawan, Chitre, and M oskowitz (1993) used aback-propagation neural network by
inputting aset of 10 spatial grey-level dependence features extracted from 85 difficult-
to-diagnose mammograms, and obtained a classification accuracy of 74%.

Jiang, Nishikawa, Wolverton, Metz, Schmidt, and Doi (1997) compared theclassi-
fication performance of a neural network classifier with those of five radiologists.
Experimental resultsshowed that the neural network classifier performed better than the
radiologistsintermsof boththeareaunder theROC curve (A ) andthe partial areaindex
(0:90A.).

Vzerma(1998) employed BPwith momentum and direct solution method (DSM) —
based training algorithmsto train afeed-forward neural network for the classification of
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micro-calcification. A classification rate of 81.25% was achieved for malignant micro-
calcifications.

Christoyianni, Dermatas, and K okkinakis(1999) compared RBFwith ML P networks
in the classification of all kind of abnormalities, by processing two types of texture
features: a statistical descriptor based on high-order statistics (grey-level histogram
momentsor GLHM), and thespatial grey-level dependence(SGL D) matrix. Variousneural
network topologiesweretested onthe M| A Sdatabase. Dueto theextensivetraining and
computational complexity for both training and testing, the ML Pclassifier outperformed
theRBFclassifier. Morespecifically, therecognition accuracy of theMLPclassifier was
approximately 4% better than that obtained by the RBF networksfor GLHM features.

Patrocinio, Schiabel, Benatti, Goes, and Nunes (2000) demonstrated that only afew
features, suchasirregularity, number of micro-calcificationsinacluster, and cluster area,
wereneeded astheinputsof aneural network to separateimagesinto two distinct classes:
“suspicious’ and “probably benign”. An optimal neural network architecture selected
by a simulated annealing optimization technique led to improved classification perfor-
mance (Gurcan, Chan, Sahiner, Hadjiiski, Petrick, & Helvie, 2002; Gurcan, Sahiner, Chan,
Hadjiiski, & Petrick, 2001).

Vermaand Zakos (2001) devel oped acomputer-aided diagnosissystem for digital
mammogramsbased onfuzzy-neural and feature extractiontechniques. They used afuzzy
techniqueto detect micro-cal cification patternsand aBP neural network to classify them.
The micro-calcification areas from 40 cases from the Nijmegen digital mammographic
database were used for their experiments. A classification rate of over 88.9% was
obtained.

Markey, Lo, and Floyd (2002) used afeed-forward back-propagati on neural network
intheir comparative study on the classification of massand cal cification types of breast
abnormalities. They attained higher A, values for mass compared with calcification
breast abnormalities on both databases (Duke University Medical Center and The
University of Pennsylvania Medical Center). They suggested that different types of
abnormalities should be considered separately when eval uating classifier performance.

Gavrielides, Lo, and Floyd (2002) used two feed-forward neural networks, thefirst
to detect if the passed fuzzy-scaled inputs calculated from histogram features of
suspicious clusters are positive or negative, and the second to classify the already-
detected cluster into “true positive” or “false positive” clusters. They attained a 93.2%
classification rate on 44 malignant clusters.

Neural networksin conjunction with evolutionary algorithms have al so been used
for feature selection and classification of malignant and benign patterns (Anastasio,
Y oshida, Nagel, Nishikawa, & Doi, 1998; Lo, Land, & Morrison, 2000; Sahiner, Chan,
Petrick, Helvie, & Goodsitt, 1998; Verma& Zakos, 2001; Zhang, Verma, & Kumar, 2004).
Lo, Land, and Morrison (1999) proposed an evol utionary al gorithm-based neural network
for reliableclassification of breast lesionsinto“benign” and“malignant”. Themainidea
was to reduce the complexity involved in deciding network configuration and learning
algorithm in network training, to achieve reliable classification without under/over
training of dataor network entrapment inlocal minima— themajor risksinherentinthe
traditional ANN paradigm.
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EXPERIMENTAL RESULTSUSING
NEURAL-EVOLUTIONARY TECHNIQUES

We have recently investigated two novel neural network-based approaches for
feature extraction, selection, and classification of breast abnormalities (benign/malig-
nant). Thefirst approach (Zhang, Verma, & Kumar, 2004) isbased on neural evol utionary
feature selection and classification. The second approach (Panchal & Verma, 2005) is
based on a combination of auto-associator and MLP classifier.

A benchmark database (DDSM) was used for the experiments. A total of 126
calcification cases and 117 mass cases (masses may and often do have calcificationsin
them) were used for the experiments. Experimentswere run using 84 cal cification cases
(43benign, 41 malignant) for training, and 42 cal cification areas (22 benign, 20 malignant)
for testing purposes. Another set of experimentswas conducted using 78 (40 benign and
38 malignant) mass cases for training, and 39 (20 benign, 19 malignant) for testing.

Thefollowing 20 featureswere used for the experiments: (1) number of pixels, (2)
histogram, (3) average grey level, (4) average boundary grey level, (5) difference, (6)
contrast, (7) energy, (8) modified energy, (9) entropy, (10) modified entropy, (11) standard
deviation, (12) modified standard deviation, (13) skew, (14) modified skew, (15) age, (16)
density, (17) calcificationtype/massshape, (18) cal cification distribution/massmargin,
(19) assessment, and (20) subtlety.

Neural Evolutionary Feature Selection and

Classification

Evolutionary algorithms for feature selection have been used to find the most
significant feature (or combination of features). Various experiments using different
parameters were conducted to find the most significant feature (or combination of
features) that best classifies a suspicious area as “benign” or “malignant”.

The experiments were conducted by using the classification rate on the test set to
calculate the fitness for reproduction in evolutionary feature selection. The number of
hidden units and the output threshold were adjusted to find the combination of the
featuresand neural network architecturethat achieved the best classification rate onthe
test set. The results of the experiments are presented below.

Experimental Results for Calcification Cases

The results using 14 features (1-14 listed above) for calcification cases are pre-
sented in Table 1. The highest classification rate on the test set was 90.5%. The highest
classification rate was obtained with selection of the following feature vector:
10011011000011, which meansthat the most significant featuresarenumbers1, 4, 5, 7,
8,13, and 14. A combination of only sevenfeaturesprovided the best classification rate.

Theresultsusing all 20 featuresfor calcification casesarepresentedin Table2. The
highest classification rate on the test set was 88.1%. The highest classification rate was
obtained by selecting thefeature vectorsat row numbers5, 7, 8, and 9, which meansthat
there are at least four combinations of features that are more important than others.
Feature number one was selected for all four combinations.
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Table 1. Feature selection and classification rate using 14 features

Features #Hidden | Classification rate (%)
(1 means selected) | units | Trainingset | Test set
10110101000110 4 69.0 8L.0
01101000011000 6 73.8 85.7
10100010011111 8 714 83.1
10100010011111 8 72.6 85.7
10011011000011 10 76.2 90.5
10011011000011 10 78.6 85.7
11111011011010 12 714 85.7
11111011011010 12 78.6 83.3
01100100111001 14 76.2 83.1
10011011000110 14 78.6 83.3
00110110010101 16 73.8 83.1

Table 2. Feature selection and classification rate using 20 features

Features #Hidden| Classification rate (%)

(1 means selected) units | Training set | Test st
10001001010010000001 4 73.8 83.3
01100000011110000101 6 75.0 85.7
10010001101011101010 8 76.0 83.3
11110001101011101110 8 72.6 85.7
11110110010000100111 10 63.1 88.1
11110110010000100111 10 8L.0 8L0
11111010000111101010 12 73.8 88.1
10101000111011000001 14 79.8 83.3
10101000111011000001 14 72.6 88.1
11010001001100001100 16 69.5 88.1
10001001010010000001 4 73.8 83.3

Experimental Results for Mass Cases

Theresultsusing 14 features for mass cases are presented in Table 3. The highest
classificationrateonthetest set was89.7%. Thehighest classification rate was obtained
with selection of thefollowing featurevector 10100100011010, which meansthat the most
significant features are feature numbers 1, 3, 6, 10, 11, 13. A combination of only six
features provided the best classification rate.

Theresults using 20 features for mass cases are presented in Table 4. The highest
classificationrateonthetest set was87.2%. Thehighest classification rate was obtai ned
by selecting thefollowingfeaturevector: 11000101010011101010, which meansthat the
most significant featuresarenumbers1, 2, 6, 8, 10, 13, 14, 15,17, and 19. A combination
of only 10 features provided the best classification rate.
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Table 3. Feature selection and classification rate using 14 features

Features #Hidden Classification rate (%)
(1 means selected) | units | Training set | Test set
10011011000110 4 64.1 84.6
10011011000110 4 705 82.1
11100011111010 6 65.4 82.1
11100011111010 6 615 84.6
11000110100010 8 705 82.1
11000110100010 8 65.4 87.2
11011110000010 10 731 82.1
11011110000010 10 65.4 87.2
10100100011010 12 59.0 89.7
10100100011010 12 71.8 82.1
10011011000110 4 64.1 84.6

Table 4. Feature selection and classification rate using 20 features

Features #Hidden Classification rate (%)

(1 means selected) units | Training set | Test set
11110011001010101101 4 60.3 82.1
01110100000110001100 6 60.3 84.6
11100101100001011010 8 70.5 84.6
11100101100001011010 8 75.6 79.4
11001010111010101100 10 66.7 84.6
11001010111010101100 10 74.4 79.5
11000101010011101010 12 75.6 87.2
11000101010011101010 12 78.2 82.1
11110011001010101101 4 60.3 82.1
01110100000110001100 6 60.3 84.6
11100101100001011010 8 70.5 84.6

Auto-Associator Feature Extractor and Neural

Classifier

Anauto-associator in conjunctionwith an ML P-based classifier wasused to extract
new features and classify breast abnormalitiesinto “benign’” and “malignant”.

Experimental Results for Calcification Cases

Tables 5 and 6 show the results obtained for calcification cases using 14 and 20
features, respectively. A 100% classification rate on the training set was achieved with
both 14 and 20 features. The highest classification rate on thetest set reached 90.5% (20
features). With 14 features, the classification rates on the training and test sets were
95.2% and 85.7%, respectively.
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Table 5. Classification results with 14 features for calcification cases

Auto-associator Neural network classifier
#Hidden # #Hidden # Classification Classification
units Iterations units Iterations | rate [%] on rate [%)] on test
training set set
4 10000 14 20000 92.9 83.3
6 10000 20 30000 98.8 81
6 20000 14 40000 98.8 83.3
10 10000 18 20000 100 81
12 20000 6 5000 90.5 85.7
14 10000 16 5000 90.5 85.7
14 20000 6 10000 95.2 85.7

Table 6. Classification results with 20 features for calcification cases

Auto-associator Neural network classifier
#Hidden # #Hidden # Classification Classification
units Iterations units Iterations rate [%] on rate [%)] on test
training set set
8 10000 6 20000 100 81
8 10000 8 20000 100 83.3
8 10000 8 40000 100 85.7
10 10000 6 5000 100 83.3
10 20000 14 30000 100 88.1
10 30000 10 5000 100 88.1
10 70000 6 10000 100 90.5

Table 7. Classification results with 14 features for mass cases

Auto-associator Neural network classifier
#Hidden # #Hidden # Classification Classification
units Iterations units Iterations | rate [%)] on rate [%)] on test
training set set
4 10000 6 5000 78.2 82.1
4 10000 10 5000 75.6 84.6
4 10000 10 20000 80.8 87.2
4 10000 14 30000 78.2 89.7
6 20000 8 50000 100 74.4
6 40000 12 20000 84.6 84.6
6 70000 20 20000 83.3 89.7
6 100000 6 50000 87.2 82.1
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Table 8. Classification results with 20 features for mass cases

Auto-associator Neural network classifier
#Hidden # #Hidden # Classification Classification
units Iterations units Iterations | rate [%] on rate [%] on
training set test st
4 10000 10 30000 100 66.7
4 20000 8 20000 87.2 69.2
4 30000 8 20000 85.9 718
4 30000 10 50000 97.4 718
10 20000 6 30000 100 69.2
12 30000 8 20000 100 76.9

Experimental results for mass cases

Theresultsfor mass cases are presented in Tables 7 and 8. The highest classifica-
tion rate with 14 features on the test set was 89.7%. The classifier network wastrained
using 20 hidden neurons and 20,000 iterations on neural associative patterns, obtained
from an auto-associator neural network (AANN) trained with six hidden neurons over
70,000iterations.

The highest classification rate with 20 features on the test set was 76.9%. The
classifier network wastrained using eight hidden neuronsand 20,000 iterationson neural
associative patterns, obtained froman AANN trained with 12 hidden neuronsover 30,000
iterations.

Table 9 shows the distribution of both correct “malignant” and “benign” classifi-
cation as well as misclassification results (in other words, “malignant” classified as

Table 9. Distribution of malignant and benign classification and misclassification
results

Dataset Feature* Classification rate (%)
vector Total | Malignant | Malignant | Benign | Benignas
test (TPF) as benign (TNF) malignant
(FNF) (FPF)
Figure4 — Yaxisscale (D (2) 3 (4) (5)
Calcification 1 85.7 76.2 23.8 95.2 4.8
Calcification 2 0.5 85.7 14.3 95.2 4.8
Mass 1 89.7 95.2 4.8 83.3 16.7
Mass 2 76.9 66.7 333 83.9 1.1

* Feature vector 1-14 features; Feature vector 2-20 features
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Figure 4. Classification results with feature vector 1 and 2
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“benign” and vice versa), for the highest test classification rates obtained using the
proposed research technique. Major changes were observed in malignant classification
for both groups of the dataset when both types of features were combined together. For
calcification cases, themalignant classification rateimproved when 14 features (1-14, as
listed at the start of this section) were combined with six other features (15-20 listed
earlier); the benign classification rate remained unchanged. For mass cases, when both
types of features were combined, the malignant classification rate decreased signifi-
cantly; in contrast, benign classification improved slightly.

Classification Accuracy
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Table 10. Comparative analysis of neural network-based techniques in digital
mammography

Neural Feature Feature Databases Classification Reference
technique | extraction | selection rate [%0]
SOM-MLP | SOM N/A Duke 98 (sensitivity) | Markey et al. (2003)
University 25 (specificity)
DDSM 86.5
RBFNN Texture N/A MIAS 65and 77 Bovis et al. (2000)
BPNN Cluster N/A unknown 60 Chitre et al. (1993)
BPNN Wavelets Neural unknown 80 Kocur et al. (1996)
network
RBFNN Texture & | N/A unknown 74 Dhawanet al. (1995)
wavelets Database
BPNN N/A N/A 157 images | 90 Jiang et al. (1997)
BPNN ROI's N/A LLN 87 Verma (1998)
DSMNN ROI's N/A Nijmegan 86.6 Verma (1998)
BPNN 14 features | Neural Nijmegan 88.9 Verma& Zakos
network (2001)
EANN l4features | EA DDSM 9.5 Zhang et al. (2004)
AANN 14 features| N/A DDSM 90.5 Panchal & Verma
and AANN (2005)
BPNN BI-RADS | N/A Duke MassAz—-0.93 | Markey, Lo, & Floyd
University Calcification (2002
Az—-0.63
University of | MassAz—0.88
Pennsylvania | Calcification
Az-0.76
BPNN 4features | N/A MIAS 85 Lee & Tsai (2004)
GANN 4features | N/A MIAS 7 Lee & Tsai (2004)
BPNN LVQ-NN N/A DDSM CC View — Khuwaja & Abu-Rezq
97.3 (2004)
MLO View -
96.18
EPPNN BI-RADS | EPNN Duke 74 Lo et al. (2000)
University
PNN BI-RADS | N/A Duke 73.5,AzValue | Loetal. (2000)
University —0.826
BPNN Shape N/A Foothills 90.5 (%- Shen et al. (1993)
Hospital Benign,
87-Malignant)
RBFNN Texture N/A MIAS 78.15 Christoyianni et al.
(2000)
MLPNN Texture N/A MIAS 82.35 Christoyianni et al.
(1999)
BPNN Histogram | Fuzzy DDSM 93.2- Gavrielides et al.
Malignant (2002)
BPNN Texture N/A MIAS 7 Bovis & Singh (2000)
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COMPARATIVE ANALYSIS

Inthelast few decades most researchersin the area of digital mammography have
used back-propagation neural networks (BPNN) with various feature extraction and
selection techniques. However, a few researchers have applied other types of neural
networkstotheclassification of breast abnormalitiesindigital mammograms, including:
radial basis function (RBFNN), learning vector quantization (LVQNN), probabilistic
(PNN), evolutionary programming and probabilistic (EPPNN), K ohonen networks/ self-
organising maps (SOM), direct solution method-based (DSMNN), evolutionary algo-
rithm-based (EANN) and auto-associator-based (AANN).

Results obtained using these nine different neural techniques are presented in
Table 10 (taken from published papers). It is easy to compare and analyse theresultsif
they are produced using the same criteriaand benchmark database; however, thisisnot
the case in using neural networksin digital mammography. Some researchers combine
detectionand classification, whileothersusevery small databases. Also, someresearch-
ers are not very clear about their results in terms of classification rates for benign and
malignant patterns. Thus there is no consistency in conducting experiments and
reporting results, which makes it very difficult to compare them and draw conclusions
as to which technique is best.

Despite the popularity of benchmark databases such as DDSM and MIAS, not all
researchers list results obtained from the same test set. The DDSM database, for
instance, hasfreely availabletraining and test sets. Recently someresearchersusingthis
database report results appropriately by listing the classification rates on the test set;
they list the classification ratesfor benign and malignant cases, and some also included
true positive, false positive, and ROC curves.

Itissurprisingthat RBF neural networksdo not performwell, achieving only 78.15%
classification using texture features on the MIAS database. SOMs in conjunction with
ML Psperform better, achieving 98% sensitivity and 25% specificity (which corresponds
to a classification rate of 86.5%). Back-propagation neural networks do not achieve
consistent results, the lowest (60%) being achieved with clustering, and the highest
(93.7%) with ahistogram feature and fuzzy selection. Many other resultslay inbetween,
atypical one being 90.5% using auto-associators or evolutionary algorithms. We have
some concerns about the high results (over 97%) reported using BPNN and LV Q-NN.
Overall, BPNN in conjunction with various feature extraction and sel ection techniques
performswell.

DISCUSSION AND CONCLUSIONS

Wehavepresented an application of artificial neural networksfor theclassification
of breast abnormalitiesin digital mammograms. A review of ANN-based techniquesfor
detection, feature extraction, feature selection, and classification of “benign” and
“malignant” patternshasbeen presented. Somerecent advancesinfeatureextractionand
selection in conjunction with neural classifiers have been described, and experimental
results using the DDSM database were presented in Tables 1-9. The highest classifica-
tion rate achieved was 90.5%.
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It was found that combining features |eads to higher classification rates than for
separate features. Auto-associator-based feature extraction (without using a separate
selection strategy) performed as well as neural evolutionary selection, both achieving
a90.5% classificationratefor calcification data.

A comparative analysis of neural network-based techniques using different data-
bases, feature extraction, feature selection, and classification techniques has been
presented. Ninedifferent typesof neural networkshavebeen appliedtotheclassification
of benign and malignant patterns in digital mammograms. The most frequently used
neural networks for such classification were based on the back-propagation algorithm.
Neural networks for feature extraction and selection have also been based on self-
organization, auto-association, and evolutionary algorithms. The classification accu-
racy achieved by neural network-based techniques varies from 60% to 97.3%. The
reasons for such variation were the various feature extraction and selection techniques
themselves, thetraining parameters, and the database used. Many researchershave used
very small databases and different criteria to report their final results, making it very
difficult to compare and analyse the classification rates obtained using these different
neural techniques. Therefore, we would like to encourage researchers to report their
results on a benchmark database test set, in terms of classification ratesfor benign and
malignant micro-calcifications, aswell aslisting all training parameters.

Finally, wewould liketo say that the review of advancesin neural techniques and
the results presented in this chapter show that neural network-based techniques are a
promising tool for the classification of benign and malignant patterns in digital
mammograms.
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ABSTRACT

Nature is a wonderful source of inspiration for building models and techniques for
solving difficult problemsin design, optimisation, and control. More specifically, the
study of evolution, the human immune system, and the collective behaviour of insects/
birds have guided the origin of evolutionary algorithms, artificial immune systems, and
optimisation techniques based on swarmintelligence, respectively. In this chapter, we
present the use of particle swarm optimisation (PSO) and the Taguchi method for the
identification of optimised fuzzy model sfromtheavailabledata. PSOisa member of the
broad category of swarm intelligence (Sl) techniques based on the metaphor of social
interaction. It has been used for finding promising solutions in complex search spaces
through the interaction of particlesin a swarm, and is especially useful when dealing
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with a high number of dimensions and situations wher e problem-specific information
is not available. However, caution needs to be exercised in selecting PSO, as the
performance of PSO largely depends on their values. In this chapter, a systematic
reasoning approach based on the Taguchi method is also presented to quickly identify
PSO parameters. The Taguchi method is a robust design approach that helps in
optimisation, and which requires relatively few experiments. Although we focus here
on the use of PSO and the Taguchi method for fuzzy model identification, these
techniques have much broader use and application. In order to validate our approach,
data fromtherapid Nickel-Cadmium (Ni-Cd) battery charger developed by the authors
were used. Theresultsare based on real data and illustrate the viability and efficiency
of the approach.

INTRODUCTION

Inrecent years, the concept of fuzzy set theory hasreceived considerabl e attention,
both in academiaand industry, duetoitsability to handle ambiguous or vague concepts
of human perception for complex systemsproblems, inwhichitisextremely difficult to
describethe system model smathematically. M oreover, the concept of fuzzy set hasbeen
applied successfully in many disciplines.

Theproblem of fuzzy system modelling or fuzzy model identificationisgenerally the
determination of a fuzzy model for a system or process by making use of linguistic
information obtai ned from human experts, and/or numerical information obtained from
input-output measurements. The former approach is known as knowledge-driven mod-
elling, while the latter is known as data-driven modelling. In this chapter, attention is
focused on building fuzzy models from the available data using PSO, arelatively new
optimisation technique.

The performance of PSO and other evolutionary algorithms, to a great extent,
depends upon the choice of appropriate parameters. Generally, these parameters are
selected through a hit-and-miss (trial-and-error) process, which is unsystematic and
requires unnecessarily rigorous experimentation. In this chapter, we propose a system-
atic approach based on the Taguchi method for theidentification of the optimal strategy
parametersof PSO for fuzzy model identification.

The remainder of the chapter is structured as follows: The next section serves as
abrief introductionto swarmintelligence and the PSO al gorithm. Brief i nformation about
thefuzzy model identification problemisprovided inthefollowing section. Somedetails
about therapid Ni-Cd battery charger are then provided. A framework for fuzzy model
identification through using the PSO algorithm is presented in the next section. The
proposed framework hasbeen applied toidentify fuzzy modelsfor arapid Ni-Cd battery
charger. A description of the Taguchi method, together with selection of appropriate
parametersfor the PSO algorithm for fuzzy model identification, isgiveninthe next-to-
last section. Here we al so present acomparison of the computational effortsrequired by
both the Taguchi method and the traditional approach, which involves exhaustive
combinationsof the PSO operating parameters. Concluding remarksaremadeinthefinal
section.
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SWARM INTELLIGENCE AND
THE PSO ALGORITHM

Thefield of swarm intelligence (SI) has been inspired by the social behaviour of
ants, termites, bees, wasps, birds, fishes, and other biological creatures, andisemerging
asaninnovativeand powerful computational metaphor for solving complex problemsin
design, optimisation, and control. Sl could be defined as (Kennedy & Eberhart, 2001):

Any attempt to design algorithms or distributed problem-solving devices
inspired by the collective behaviour of insect colonies and other animal
societies.

Research into social insect behaviour suggests that intelligent group behaviour
emerges out of simple interactions between individuals, which otherwise have limited
capabilities.

The motivation behind the PSO algorithm is the social behaviour of animals, for
instance, theflocking of birdsand the schooling of fish. PSO hasitsoriginin simulation
for visualising the synchronized choreography of bird flocks by incorporating concepts
such as nearest-neighbour velocity matching and accel eration by distance (Eberhart &
Shi, 2001; Kennedy & Eberhart, 1995, 2001; Parsopoul os& Vrahatis, 2002). L ater, itwas
realized that such simulation could be used for optimisation and resulted in the first
simpleversion of PSO (Kennedy & Eberhart, 1995). Sincethen, many variantsof PSO have
been suggested by different researchers (Eberhart & Kennedy, 1995; Shi & Eberhart,
2001; Xie, Zhang, & Y ang, 2002).

The PSO algorithm, like other evolutionary algorithms (EAS), is a stochastic
technique that uses a population of potential solutions (called particles) to probe the
search space and also does not require gradient information of the objective function
under consideration. Unlike other EAs, such as genetic algorithm (GA), PSO favours
collaboration among the candidate solutions instead of rivalry. The majority of
evolutionary optimisation algorithmsare based on Darwin’ stheory of “ Survival-of-the-
Fittest”. In particle swarms, it is not the drive of survival that breeds quality solutions;
rather, the individuals strive to improve themselves by imitating traits from their
successful peers. In PSO, the particles have an adaptable velocity that determinestheir
movement in the search space. Each particle also hasamemory and henceis capabl e of
remembering the best position in the search space it has ever visited.

Oneof themost promising advantagesof PSO over GAsisitsalgorithmicsimplicity,
asit uses only primitive mathematical operators, which accounts for itslow computa-
tional overhead. The three major operators in GAs are: selection, crossover, and
mutation, and there exist many optionsfor implementation thereof. For example, one may
go for roulette-wheel or tournament selection, single or double-point crossover, and so
on, whereas in PSO the only operation is velocity calculation.

Two broad variants of PSO algorithm have been developed: one with a global
neighbourhood called the gbest model, and the other with alocal neighbourhood known
as the Ibest model. The gbest model maintains only a single best solution, and each
particle moves towards its previous best position and towards the best particle in the
whole swarm. The best particle acts as an attractor, pulling all the particles towardsit.
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In the Ibest model, each particle moves towards its previous best position, and also
towards the best particle in its restricted neighbourhood and thus maintains multiple
attractors. A sub-set of particlesis defined for each particle from which the local best
particleisthen selected. Particlessel ected to bein asub-set havenorelationto each other
in the search space domain. Thus, the difference between two variants is based on the
set of particleswithwhichagiven particlewill interact directly. Notethat the gbest model
isactually aspecial case of |best (in which neighbourhood sizeisequal to swarm size).
In this chapter, we use the gbest model for fuzzy model identification.

Consider that the search space is d-dimensional and ith particle in the swarm can
be represented by X, = (X, X,,.--, X,,) and its velocity can be represented by another d-
dimensional vector V, = (v,,, V,,, ..., V,,). Let the best previously-visited position of this
particle bedenoted by P, = (p,,, p,, ---, P,,)- If thegth particleisthe best particle and the
iteration number is denoted by the superscript, then the swarm ismodified according to
the following equations (1) and (2) suggested by Eberhart and Shi (2001).

vt = (W +6n" (P = %a) + 6 (P — Xa) @

Xg' =Xy + V" @)
where x = constriction factor; w = inertiaweight; ¢, = cognitive parameter; c, = social
parameter, and r, and r, are random numbers distributed evenly in the range (0,1).

These parameters, x, w, ¢, and c,, along with V__ are the strategy/operating
parameters, and the performance of the PSO algorithm to a great extent depends on
appropriate sel ection of these parameters (Eberhart & Shi, 2001). The parameter V. is
defined by the user to bethe maximumvelocity along any dimension, whichimpliesthat
if the velocity along any dimension exceedsV,__, it shall be clamped to thisvalue. The
inertiaweight governs how much of the previous velocity should be retained from the
previous time step. Generally the inertia weight is not kept fixed, but is varied as the
algorithm progresses, so astoimprove performance (Eberhart & Shi, 2001; Parsopoul os
& Vrahatis, 2002). This setting allows the PSO to explore alarge area at the start of a
simulation run, andto refinethe search later by asmaller inertiaweight. The parameters
¢, andc, influencethemaximumsizeof thestep that aparticlecantakeinasingleiteration,
and the random numbersr, and r,, help in maintaining diversity of the population. The
constriction factor was introduced by Clerc (1999) to ensure convergence.

THE FUZZY MODEL
IDENTIFICATION PROBLEM

Generally, the problem of fuzzy model identificationincludesthefollowingissues
(Hellendoorn & Driankov, 1997; Yen & Langari, 2003):

. Selecting the type of fuzzy model,
. Selecting the input and output variables for the model,

. I dentifying the structure of the fuzzy model, which includes determination of the
number and types of membership functions for the input and output variables, as
well asthe number of fuzzy rules,
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i Identifying the parameters of antecedent and consequent membership functions,
and
i Identifying the consequent parameters of the fuzzy rule base.

Three commonly-used types of fuzzy model are Mamdani-type, Takagi-Sugeno,
and Singleton.
In Mamdani models, each fuzzy ruleis of theform:

R:1fxisA and...andx isA thenyisB 3

In Takagi-Sugeno models, each fuzzy ruleis of theform:

R:Ifx isA and... and xnisAmthenyiSZapg +C 4

i=1
Whereas in Singleton models, each fuzzy ruleis of the form:

R:IfxisA and...and X isA thenyisC (5)
wherex,,..., X aretheinput variables and y isthe output variable, A ,..., A, B arethe
linguistic values of theinput and output variablesin theith fuzzy rule, and a and C are
constants. Infact, the Singleton fuzzy model can be seen asaspecial case of the Takagi-
Sugeno model when a=0. The input and output variables take their values in their
respective universes of discourse or domains. In this chapter, we have considered
identification based on Mamdani and Singleton fuzzy models only.

Some commonly used techniquesfor creating fuzzy model sfromtheavail ableinput-
output data are Genetic Algorithms (Bastian, 1996; Carse, Fogarty, & Munro, 1996;
Nelles, 1996; Nozaki, Morisawa, & Ishibuchi, 1996), thefuzzy c-means(FCM) clustering
algorithm (Khosla, Kumar, & Aggarwal, 2003a; Setnes& Roubos, 1999), neural networks

(Hellendoorn & Driankov, 1997), and the adaptive neuro fuzzy inference system model
(ANFIS) (Khosla, Kumar, & Aggarwal, 2003b; Melin& Castillo, 2005).

RAPID NICKEL-CADMIUM
BATTERY CHARGER

Batteries can be classified into two main groups: primary batteries and secondary
batteries. Unlike primary batteries, secondary batteriesoncedischarged can bereturned
totheir fully charged state and can be discharged and charged many times, thus making
themeconomical. Nickel-cadmium (Ni-Cd), nickel metal hydride(Ni-MH) andlithiumion
(Li-lon) are some commonly-used secondary batteries.

The most common method to charge Ni-Cd batteries is by means of a constant-
current source at the rate of 0.1C (trickle charge), wherethe charging rateis commonly
expressed asamultipleof therated capacity of the battery (Linden, 1995); for example,
for abattery with C=500 mAh, 0.1C correspondsto acharging current of 50 mA. At this
rate, the battery takes between 12 and 16 hoursto charge, and can withstand overcharg-

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.



278 Khosla, Kumar & Aggarwal

Table 1. Input and output variables for rapid Ni-Cd battery charger, along with their
universes of discourse

Input variables Universe of
discourse
Temperature (T) 0-50°C
Temperature gradient (dT/dk) 0-1 (°C/sex)
Output variable
Charging rate (Ct) 0-8C

ing without harm. Some chargers have the capability of charging batteries in about 5
hoursusing higher charging currents. However, with high charging rates (C/3 or higher),
caremust betakento avoid overcharging, asit may resultin excessiveriseintemperature,
which can harmthebatteries(Buchmann, 1997). Themain objectivefor the devel opment
of arapid battery charger isto charge Ni-Cd batteries quickly, but without causing any
damagetothem. Sincethebehaviour of Ni-Cd batteriesat very high charging ratesisnot
available, therewasneed to obtai n thesethrough experimentation. Based oninitial trials
with a charging rate of 8C, coupled with the fact that a Ni-Cd battery is capable of
supplying currentsof theorder of 8C without damage (Wan, 1996), theupper limit of the
charging current wasfixed at 8C— namely 4A — sincethetarget batterieshad acapacity
Cof 500 mAh.

Based on rigorous experimentation with Ni-Cd batteries (Khosla, 1997; Khosla,
Kumar, & Aggrawal, 2002), it was observed that the two input variables used to control
the charging rate (Ct) are absolute temperature (T) of the battery and its temperature
gradient (dT/dt). The input and output variables identified for a rapid Ni-Cd battery
charger along with their universes of discourse are listed in Table 1 (this data set
comprised 561 points, and is available at http://research.4t.com).

A FRAMEWORK FOR
FUZZY MODEL IDENTIFICATION
WITH THE PSO ALGORITHM

Optimisation playsanimportant roleinmany fields. A common problem, however,
ismodel fitting, wherethe goal isto find the model parameters so that the error between
the desired output and actual output can be minimised. Many real-world problems can
be translated into optimisation ones, and the design of fuzzy modelsfrom the available
data is no exception. Fuzzy system design and fuzzy model identification can be
formulated asasearch and optimisation problem in high-dimensional space, whereeach
point correspondsto afuzzy system, in other words, represents membership functions,
rule-base, and hencethe corresponding system behaviour. Given someobjective/fitness
function, the system performanceformsahyper-surface, and designing the optimal fuzzy
system is equivalent to finding the optimal location on this hyper-surface. The hyper-
surfaceisgenerally infinitely large, nondifferentiable, complex, noisy, multimodal, and
deceptive (Shi, Eberhart, & Chen, 1999).

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.



Swarm Intelligence and the Taguchi Method for Identification of Fuzzy Models 279

Figure 1. Fuzzy model identification using PSO
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These characteristics make EAsbetter candidates for searching the hyper-surface
than traditional, gradient-based methods. PSO algorithms, like GAs, are able to find
optimal or near optimal solutionsin a given complex search space, and can be used to
modify/learnfuzzy model parameters. Theideaof fuzzy model identificationthrough PSO
algorithmisillustratedin Figure 1.

Model Formulation
There are certain issues required to be addressed for solving any optimisation

problem. These issues are:

i Definingthesolution space— Thisinvolvesdefining thevariablesto be optimised
and their respective domains.

i Definingtheconstraints— Here, itisrequired to defineaset of constraintswhich
must be followed by the candidate solutions.

i Definingthefitness(objective) function — Thefitness/objectivefunction not only
represents the quality of each solution, but also acts as a link between the
optimisation algorithm and the problem under consideration. It is imperative to
select a good fitness function that accurately represents, in a single number, the
goodness of the solution. Further, it is expected that the selected fitness function
should exhibit afunctional dependence that is relative to the importance of each
characteristic being optimised.

The goal of optimisationisto find values that satisfy the defined constraints, and
that maximise (or minimise) thefitnessfunction.

Therefore, in order to use PSO for the identification of optimised fuzzy models
successfully, we haveto define the solution space, constraints, and the fitness function.

Another important consideration isthe solution encoding, that is, how to represent
afuzzy systemby aparticle. Inorder for aparticleto completely represent afuzzy system,
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Figure 2. A multi-input, single-output fuzzy model
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all necessary information about the rule-base and membership functionsis required to

be specified. It is also advisable to evolve the membership functions and rule-base

simultaneously, since they are co-dependent in a fuzzy system.
For the model formulation, consider a multi-input, single-output (M1SO) system

with ninputs as shown in Figure 2. The numbers of fuzzy setsfor theinputsarem, , m,,

m,,...... , M, respectively.
Some of the assumptions used for model formulation are:

1  Only triangular membership functions were used for both input and output
variables.

2 Thenumber of membership functionsfor eachinput and output variablewere kept
fixed.

3 Thefirst and last membership functions of each input and output variable were
represented with left- and right-skewed triangles.

4.  Thecentresof all thetriangular membership functionswerefixed and were placed
symmetrically over the universe of discourse.

5 A completerule-basewas considered (arule-baseis said to be complete when all
possible combinationsof input membership functionsof all theinput variablesare
considered).

Itisimportant to mention herethat amulti-input, multi-output (MIMO) model can
be written as a set of M1SO models.

Encoding Method for Membership Functions

Consider a triangular membership function, and let parameters x ', x.° and x
represent the coordinates of the left anchor, cortex, and right anchor of the k" linguistic
variable, as shown in Figure 3.

An efficient and convenient way to characterize this membership function is by
using a parametric representation by means of the 3-tuple (x, X% X.").

Thusthe parameters of themembership functionsfor theinput and output variables
are represented by the following particle:

| c r | c r | c r | c r
(Xl’Xl 'Xl'XZ’XZ’XZ’ ""Xn’Xn’Xn'Xn+l'Xn+l 'Xn+1) (6)

The index n+1 corresponds to the membership functions of the output variable.
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Figure 3. Characteristics of a triangular membership function
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During theentirerun of the PSO algorithm, thefollowing constraintswereimposed
for every membership function of input and output variables:

|
X! <XE<X! (7)

At the same time, the overlapping between the adjacent membership functions is
also ensured by imposing additional constraints. If for the purpose of simplicity we
consider that a variable is represented by three fuzzy sets as in Figure 4, then those
additional constraints to ensure overlapping can be represented as:

X SX <X <X <X <X (8
wherex . andx__ arethe minimum and maximum values of the variable, respectively.

The additional constraints represented in Equation (8) can be generalized for any
number of membership functions and are represented as:

| r | r | r | r
X SX <X <X <X < <X, <X S<X'<X T<X 9)

The particle size required to encode the membership functions for each variable,
while considering the assumptions made earlier in this section, can be represented as:

ParticleSize=2m, — 2 (10)

InFigure4, m=3 and hencethe particlesizefor encoding the variable consisting of
three membership functionsis 2* 3-2=4.

Equation (10) can be generalized for thefuzzy system of Figure 2. Thedimensions
of the particle to encode only membership functions for input and output variables for
aMamdani fuzzy model can be represented asin Equation (11).

n+l

Particle size (for membership functions) = Z(Zm -2) (11

i=1
where n isthe number of input variables, and m the number of fuzzy setsfor ith input.
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Figure 4. Representation of overlapping through constraints for a variable with three
member ship functions
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As mentioned earlier, the index n+1 corresponds to the membership functions of the
output variable.

Encoding Method for Fuzzy Rules

Let us again consider the system shown in Figure 2, taking into account the
assumption that acompleterule-baseisbeing considered. The particlesizerequired for
representing the entire rule-base is given by Equation (12).

Particlesize (for rule base) = ﬁm (12

i=1

Here each dimension represents the index of the membership functions of the output
variable.

Particle dimensions required for encoding the Mamdani fuzzy model can be ob-
tained in Equation (13) by simply adding Equations (11) and (12).

n+l n

Particlesize(Mamdani model) = ) (2m -2)+] ] m (13)
i=1 i=1

If we consider the Singleton fuzzy model and assumethat the consequent singleton
valuesaretinnumber, thenthe particledimensionsrequired for encoding themodel can
beobtained simply from Equation (13) after alittlemodification, whichisrepresented by
Equation (14).

Particle size (singleton model) = i(Zm -2)+t +H m (14)
i=1 i=1
Themean squareerror (M SE) defined in Equation (15) isused asthefitnessfunction

for rating thefuzzy model.
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Figure 5. Flowchart of the framework for fuzzy model identification using PSO
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wherey(k) isthe desired output and ¥ (k) the actual output, and N isthe number of data
pointstaken for model validation.

The framework for identifying the fuzzy model using the PSO algorithmisrepre-
sented in Figure 5.

The corresponding pseudo-code for the used framework islisted as follows:

Begin
Define strategy parameters for PSO Algorithm;
Iteration = 0;

Create initial particle swarm;
while Iteration £ Maximum lteration
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Constrain Swarm;
Build fuzzy model for each particle;
Evaluate each fuzzy model & calculate MSE using Eqn.(15);

Get v as defined in Eqn.(1);

Determine new position of each particle by using Eqn.(2);
Iteration = lteration+1;
end
End

Now itispossiblethat during the movement of the swarm, some particlesmay move
out of the bounds defined by the system constraints. It is therefore necessary to
constrain the exploration to remain inside the valid hyperspace. Whenever a particle
movestoapoint representing aninvalid solution, itisreset withinthevalid bounds. Thus
all the particles in the swarm are scrutinized after every iteration to ensure that they
represent only valid solutions.

Application Example

Now let usconsider the case of aNi-Cd rapid battery charger, whichisatwo input,
singleoutput system. From an opti misation point of view, theinput and output variables
identified for the system have already been described in the previous section along with
their universes of discourse.

Figure6. Particleof 21 dimensionsrepresenting a Mamdani fuzzy model with two input
variables, one output variable, and nine rules
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Encoding
» method for
1 me’nbership
‘1‘2"3’ 4 ‘5‘6‘7‘8‘ |9‘1o"11"12" functions
‘13‘14‘15‘16‘17‘18‘19‘20‘21‘
dT/dt
Ct Encoding
method for
1 2 3 logic rules
1 Rule1 Rule2 Rule3
T2 Rule4 Rule5 Rule 6
3 Rule 7 Rule 8 Rule9

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.



Swarm Intelligence and the Taguchi Method for Identification of Fuzzy Models 285

Figure7. Particleof 22 dimensionsrepresenting a singleton fuzzy model with two input
variables, one output variable, and nine rules
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If we consider that each input and output variablefor thissystem isrepresented by
threefuzzy sets, thenthe particlesizeto encodeaMamdani fuzzy model may becal culated
from Equation (13) asfollows:

n+l n

2.(2m-2)+[Im (13)
=(2%3-2)+(2*3-2)+(2*3-2)+3*3=21

TheparticlerepresentingaMamdani fuzzy model for the Ni-Cd rapid battery charger
isshown in Figure 6.

If we consider five possible consequent values for the singleton model, then the
corresponding fuzzy model can berepresented by a22-dimension particle, obtained from
Equation (14), asshownin Figure 7.

Simulation Results

The simulations were carried out using software tools developed by the authors,
namely, the PSO toolbox (http://sourceforge.net/projects/psotoolbox) and PSO fuzzy
modeler for Matlab (http://sourceforge.net/projects/fuzzymodeler). These tools are an
open-sourceinitiativeand have been released under general publiclicense (GPL). They
are hosted on SourceForge.net, the world’ slargest open-source software development
Web site.

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.



286 Khosla, Kumar & Aggarwal

Table 2. PSO algorithm parameters for fuzzy model identification in the Ni-Cd battery
charger

Parameter Value
Swarm size 30
[terations 2500
[ 2
C, 2
W4 (INErtia weight at the start of PSO run) 1
Weng (INertia weight at the end of PSO run) 01
Vmax 100
Table 3. Smulation results
M SE of fuzzy system
corresponding to
Model swarm’s gbest Simulation
After 17 After 2500 time
Iteration Iterations
Mamdani 12.46 0.1455 19.424 hours
Singleton 46.94 0.1123 16.633 hours

The strategy parameters (for both the Mamdani and Singleton models) of the PSO
algorithmused for fuzzy model identification of theNi-Cd rapid battery charger arelisted
in Table 2, and the simulation results obtai ned for both models (obtained using an Intel
Pentium-1V desktop computer with 256M B RAM) are presented in Table 3. Centre-of -
Gravity and Weighted Average defuzzification techniques (Y en & Langari, 2003) were
selected for the Mamdani and Singleton fuzzy models, respectively.

The results clearly show the effectiveness of the approach, as considerable
improvement inthe performance of fuzzy model swasachieved after the completerun of
the PSO algorithm. The longer simulation time for the Mamdani fuzzy model can be
attributed to its more complicated defuzzification process.

The performance of the Singleton model identified through PSO was found to be
even better than the Tagaki-Sugeno fuzzy model identified from the same databy using
ANFIS model (Jang, 1993), where a M SE of 0.1321 was obtained (Khosla, Kumar, &
Aggarwal, 2003b).

TAGUCHI METHODOLOGY
AND EXPERIMENTS

Inordertoillustratetheeffect of choiceof strategy parameters, we conducted some
experimentswith different sets of parametersto identify the Mamdani fuzzy modelsfor
the Ni-Cd battery charger. Theresultsare tabulated in Table 4, and the large variations
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Table4. Smulation resultswith different sets of strategy parameters (swarmsize = 30;
iterations = 2500)

C1 Co Wistart Wend Vmax MSE
0.5 0.5 0.9 0.1 50 10.229
1 1 0.9 0.4 100 6.898
15 1 2 0.3 50 0.3739
2 2 0.9 0.3 75 0.0489

in the values of fithess function (MSE) clearly indicate the dependence of the PSO
algorithm performance on the choice of strategy parameters.

In this section, we shall discuss how, by using the Taguchi method, it is possible

to arrive at good strategy parameters by performing asmall number of experiments.

The main features of the Taguchi method are listed below (Bagchi, 1993; Chou,

Chen, & Li, 2000; Ross, 1996; Taguchi, Chowdhury, & Wu, 2005; Tsai, Liu, & Chou, 2004):

The fundamental principle of the Taguchi method, an important tool for robust
design, istoimprovethequality of aproduct by minimising theeffect of the causes
of variation, without eliminating the causes, per se.

Thetwo major toolsusedinthe Taguchi method arethe orthogonal array (OA) and
thesignal-to-noise-ratio (SNR).

OA isamatrix inwhichtherowsrepresent thelevel of factorsin each run, and the
columns represent a specific level that can be changed for each run. The OAsare
represented by the following notation: L _(b°), where aisthe number of runs, b the
number of levels, and c the number of columns. (In our experiments, we have used
L,.(4°) toidentify thebest strategy parametersfor PSOwithfivefour-level factors).
The array is referred to as “orthogonal” because all columns can be evaluated
independently of one another.

SNR is indicative of quality, and the purpose of the Taguchi experiment is to
determine the best level for each operating parameter such that the SNR is
maximised (or minimised).

The OAs of the Taguchi method are fractional factorial designs that are used to
study alargenumber of parameterswith asmall number of experiments. Ontheother
hand, afull factorial design which representsthetraditional or classical approach
requires running all possible combinations (for example, consider a process that
involvesfivefour-level factors. Thetotal number of experiments (combinations)
= 4°=1024. If L (4°) OA is selected, only 16 experiments are required to be
performed).

The steps of the Taguchi method (Ross, 1996; Taguchi, Chowdhury, & Wu, 2005)

are depicted in the form of aflowchart in Figure 8 and are described as follows:
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Step O:

Start

Step 1:

In this step, it is required to define a clear and concise statement
of the problem to be solved.

Step 2:

Implies identifying the objective function through some output
measurable  characteristics, which represent the qudity
characteristic.

Step 3:

Identify the control factors and their levels that shall influence the
selected quality characteristic.

Step 4:

This step involves selection of an appropriate orthogonal array for
the experiments.

Step 5:

Involves computer simulations (actual physical experiments)
appropriate for the problem under consideration.

Step 6:

Generaly, techniques like SN response graphs (Ross & Taguchi,
1996; Taguchi, Chowdhury & Wu, 2005) are used to analyze the
data generated through experimentsin Step 5.

Step 7:

The data analysis carried out in Step 6 helps in identifying
optimum level of control factors.

Step 8:

A confirmation experiment is run with the optimum control
factors obtained in Step 7. This is basicaly a validation or
invalidation of optimum levels of control factors. An
unsatisfactory confirmatory experiment implies that additional
experiments are required to be performed (Go to Step 3).

Step 9:

Stop

The Taguchi method is divided into three main phases: (1) the planning phase,
(2) the conducting phase, and (3) the analysis phase. The planning phase includes
steps 1 through 4, step 5 is the conducting phase, and the analysis phase comprises

steps 6 to 8.

Useof the Taguchi method for finding the optimum strategy parametersof the PSO

algorithm for fuzzy model identification iselaborated bel ow:

Step O:

Start

Step 1:

The objective isto identify a good combination of strategy parameters
so that the performance of the PSO agorithm for fuzzy model
identification can be improved.

Step 2:

SNR represents the quality characteristic, and for the system under
consideration is defined as: SNR = 10/MSE, where Mean Square
Error (MSE) was defined earlier in Equation (15) (a high SNR
implies good performance).

Step 3:

The factors (A-E) and the corresponding parameters are listed in
Table 5. The levels of each operating parameter are listed in Table 6.

Steps4 &

OA Ly(4°), as discussed above and listed in Table 7, has been
selected. The table aso includes the results obtained through
computer smulation. Some of the parameters fixed for the complete
run are: Swarm size = 30; Iterations = 2500; Constriction factor = 1

Step 6:

From the results obtained from different experiments, aresponse table
and response graphs have been obtained. The response table is used
for recording the processed data, and it presents the calculations of
effects from the orthogonally-designed experiments. The response
graph is a graphica representation of the data presented in the
response table, which can be used to quickly identify the effects of
the different parameters.
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Step 7: From the response graphs, the optimum level of each factor can be
predicted as the level that has the highest SNR value. Thus the
optimal configuration identified from the response graphs is
AgB4C2D1E2.

Step 8: The confirmatory experiment was run with the optimum control
factors obtained in Step 7 and listed in Table 9.

With these strategy parameters for PSO, the MSE obtained was
0.03679 and thus the SNR was 271.8130. The values of SNR
obtained from al experiments in the selected OA, along with the
confirmatory experiment with the optimum parameters, are plotted in
Figure 10, which clearly shows that the SNR for the confirmatory
experiment is indeed superior to all the SNR's listed in Table 7. Thus,
the best performance was obtained with the parameters identified
through the Taguchi method, which validates the approach.

Step 9: Stop

From the datapresented in Table 7, the entriesfor the response table (Table 8) are
calculated asfollows:

0.9776+0.9797 + 32.0307 +1.1496

AverageSNRfor A = 2 =8.7844 (18)

Figure 8. Flowchart of Taguchi optimisation methodology
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Table 5. Factors and their corresponding parameters

Factor Corresponding
strategy parameter
of PSO

A C1

B C2

C Wstart
D Wend
E Vimax

Table 6. Levels of the different parameters

Factor Level
1 2 3 4
A 0.5 1 15 2
B 0.5 1 15 2
C 09 1 15 2
D 0.1 0.2 0.3 04
E 50 75 100 125

Table 7. L, (4°) OA and results

Factor SN ratio
Experiment MSE | nom<E)
number A|B|C|DJ|E

1 11121 10209 |09776

2 1(2(2]2]|2| 10208 | 0.9797

3 1(3(3]3]|3]| 0312 |320307

4 1(4(4]4]|4| g6988 | 1.14%

5 2111234 ggap |1.0107

6 212|1(4]|3]| 68983 | 1.44%

7 213|412 01479 | 676133

8 2141321 3534 |270

9 3111342 01105 | 90.4977

10 312431 03739 | 267451

11 313124 71799 | 13928

12 3141213 00389 | 257.0694

13 411(4(2]3( o339 | 297708

14 412(3(1]4( 03004 | 32306

15 4132 4|1 64665 | 15464

16 414113]|2]| 00489 | 2044990
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Table 8. Response table (SNRs)

Factor
Level A B C D E
1 87844 | 305642 | 52.0798 | 89.4952 | 8.0148
2 18.2159 15.3737 65.1515 8.7334 90.8974
3 93.9263 25.6458 394098 | 66.0714 | 80.0801
4 67.0342 | 116.3770 | 313197 | 23.6609 | 8.9684
1.0107+1.4496 + 67.6133+ 2.7902
Average SNRfor A, = 2 =18.2159
0.9776+1.0107 +90.4977 + 29.7708
Average SNRforB, = 2 =30.5642
0.9797+1.0107 + 257.0694 +1.5464
AverageSNRfor C, = 1 =65.1515
...and so on.

(19)

(20)

(21)

From the response table shown in Table 8, the response graphs can be derived (see

Figure9).
The predicted best strategy parameters are summarized in Table 9.

Figure 9. Response graphs
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Table 9. Predicted best strategy parameters

Factor (Level) | Value
AQ3) 15
B(4) 2
C(2) 1
D(1) 0.1
E(2 75

Table 10. Computational overhead comparison

Full factorial design Fractional factorial design
(traditional) (Taguchi method)
Time for 1 experiment 19.424 hours 19.424 hours
Total number of experiments 1024 16
(5 factors, each with 4 levels) 3] (with L1s(4°) OA)
Total time for experimentation 828.16 days 12.94 days

Figure 10. SNR plots from all OA experiments and the confirmatory experiment
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Comparison of Computational Overhead Between the
Taguchi Method and the Traditional Approach

Assuming that the process of running the experiments is automated, and the
experiments are being performed 24 hours aday, 365 days per year, the computational
efforts required for the Taguchi method and for the traditional approach are compared
in Table 10. Theresults show that huge savingsin terms of number of experiments and
hence the computation time can be achieved by following the Taguchi approach.
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CONCLUDING REMARKS

In this chapter, we have described the use of the PSO algorithm for identification
of optimised fuzzy models from the available data. Simulation results give a clear
indication of the ability of PSO to arrive at good fuzzy models.

The suggested framework can be extended to increase the flexibility of the search
by incorporating additional parameters so that the search for the optimal solution could
be executed in terms of number of membership functions for each variable, the type of
membership function, and the number of rules. Future work could be to investigate the
influence of swarm size, and number of iterations, aswell as possibly trying variants of
the PSO algorithm for identifying fuzzy models with an objective to improve their
performancefurther.

We have also presented the use of the Taguchi method to quickly identify the
strategy parameters for the PSO algorithm. Computer simulations were carried out to
confirm that improvements are achieved when the optimal operating parametersfor the
fuzzy model identification are obtained through the Taguchi method. Along the same
lines, this approach can be used for finding a good set of operating parameters of PSO
for any other system under consideration, with an objectivetoimprovetheperformance.
This can be achieved using fewer experiments, and hence little computational effort.

The proposed techniquesareuniversal innature, and therearenolimitationstotheir
usage. Futurework could focuson using these methodsfor other fieldsand applications.

Throughout this chapter, we also introduced the PSO toolbox and PSO fuzzy
modeler for Matlab open-source software tools. PSO toolbox is a collection of Matlab
m-filesthat can be used to implement the PSO al gorithm, whereas PSO fuzzy model er for
Matlab is capable of generating optimised fuzzy models from the available data.
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