

FRONTIERS OF

EVOLUTIONARY COMPUTATION

Genetic Algorithms and

Evolutionary Computation

Consulting Editor, David E. Goldberg
University of Illinois at Urbana-Champaign

deg@uiuc.edu

Additional titles in the series:

Efficient and Accurate Parallel Genetic Algorithms, Erick Cantú-Paz ISBN: 0-

7923-7221-2

Estimation of Distribution Algorithms: A New Tool for Evolutionary

Computation, edited by Pedro Larrañaga, Jose A. Lozano ISBN: 0-7923-7466-5

Evolutionary Optimization in Dynamic Environments, Jürgen Branke ISBN: 0-

7923-7631-5

Anticipatory Learning Classifier Systems, Martin V. Butz ISBN: 0-7923-7630-7

Evolutionary Algorithms for Solving Multi-Objective Problems, Carlos A. Coello
Coello, David A. Van Veldhuizen, and Gary B. Lamont ISBN: 0-306-46762-3

OmeGA: A Competent Genetic Algorithm for Solving Permutation and
Scheduling Problems, Dimitri Knjazew ISBN: 0-7923-7460-6

The Design of Innovation: Lessons from and for Competent Genetic
Algorithms, David E. Goldberg ISBN: 1-4020-7098-5

Noisy Optimization with Evolution Strategies, Dirk V. Arnold ISBN: 1 -4020-
7105-1

Classical and Evolutionary Algorithms in the Optimization of Optical Systems,
Darko ISBN: 1-4020- 7140-X

Evolutionary Algorithms for Embedded System Design, edited by Rolf Drechsler,
Nicole Drechsler: ISBN: 1-4020- 7276-7

Genetic Algorithms and Evolutionary Computation publishes research monographs, edited
collections, and graduate-level texts in this rapidly growing field. Primary areas of coverage include
the theory, implementation, and application of genetic algorithms (GAs), evolution strategies (ESs),
evolutionary programming (EP), learning classifier systems (LCSs) and other variants of genetic and
evolutionary computation (GEC). Proposals in related fields
such as artificial life, adaptive behavior, artificial immune
systems, agent-based systems, neural computing, fuzzy GENAGENAGENA
systems, and quantum computing will be considered for GENAGENAGENA
publication in this series as long as GEC techniques are part of Genetic Algorithms and

or inspiration for the system being described. Manuscripts Evolutionary Computation

describing GEC applications in all areas of engineering,
commerce, the sciences, and the humanities are encouraged. http://www.wkap.nl/prod/s/GENA

FRONTIERS OF

EVOLUTIONARY COMPUTATION

edited by

Anil Menon
ProductSoft, Inc.

Pittsburgh, Pennsylvania, USA

KLUWER ACADEMIC PUBLISHERS
NEW YORK, BOSTON, DORDRECHT, LONDON, MOSCOW

eBook ISBN: 1-4020-7782-3
Print ISBN: 1-4020-7524-3

©2004 Kluwer Academic Publishers
New York, Boston, Dordrecht, London, Moscow

Print ©2004 Kluwer Academic Publishers
Dordrecht

All rights reserved

No part of this eBook may be reproduced or transmitted in any form or by any means, electronic,
mechanical, recording, or otherwise, without written consent from the Publisher

Created in the United States of America

Visit Kluwer Online at: http://kluweronline.com
and Kluwer's eBookstore at: http://ebooks.kluweronline.com

Contents

List of Figures xi

List of Tables xiii

Preface xv

Contributing Authors xvii

1
Towards a Theory of Organisms and Evolving Automata	 1
Heinz Mühlenbein

1 Introduction 1
2 Evolutionary computation and theories of evolution 3
3 Darwin’s continental cycle conjecture 5
4 The system view of evolution 7
5 Von Neumann’s self-reproducing automata 9
6 Turing’s intelligent machine 11
7 What can be computed by an artificial neural network? 13
8 Limits of computing and common sense 14
9 A logical theory of adaptive systems 16

10	 The for creating artificial intelligence 19
11 Probabilistic logic 20

11.1	 Von Neumann’s probabilistic logics 20
11.2	 The conditional probability computer 21
11.3 Modern probabilistic logic 22

12 Stochastic analysis of cellular automata 24
12.1	 The nonlinear voter model 24
12.2 Stochastic analysis of one dimensional SCA 26

13 Stochastic analysis of evolutionary algorithms 27
13.1	 Boltzmann selection 29
13.2	 Factorization of the distribution 29
13.3	 Holland’s schema analysis and the Boltzmann distribu­

tion 31
14 Stochastic analysis and symbolic representations 33
15 Conclusion 33

vi FRONTIERS OF EVOLUTIONARY COMPUTATION

2

Two Grand Challenges for EC 37

Kenneth De Jong
1 Introduction 37

2 Historical Diversity 38

3 The Challenge of Unification 39

3.1 Modeling the Dynamics of Population Evolution 40

3.1.1 Choosing Population Sizes 40

3.1.2 Deletion Strategies 40

3.1.3 Parental Selection 40

3.1.4 Reproduction and Inheritance 41

3.2 Choice of Representation 42

3.3 Characteristics of Fitness Landscapes 42

4 The Challenge of Expansion 44

4.1 Representation and Morphogenesis 44

4.2 Non-random Mating and Speciation 45

4.3 Decentralized, Highly Parallel Models 45

4.4 Self-adapting Systems 45

4.5 Coevolutionary Systems 46

4.6 Inclusion of Lamarckian Properties 46

4.7 Modeling Evolutionary Systems 47

5 Summary and Conclusions 47

3

Evolutionary Computation: Challenges and duties 53

Carlos Cotta and Pablo Moscato

1 Introduction 53

2 Challenge #1: Hard problems for the paradigm – Epistasis and

Parameterized Complexity 55

3 Challenge #2: Systematic design of provably good recombina­

tion operators 58

4 Challenge #3: Using Modal Logic and Logic Programming

methods to guide the search 62

4.1 Example 1 63

4.2 Example 2 64

5 Challenge #4: Learning from other metaheuristics and other

open challenges 67

6 Conclusions 69

4

Open Problems in the Spectral Analysis of Evolutionary Dynamics 73

Lee Altenberg

1 Optimal Evolutionary Dynamics for Optimization 76

1.1 Spectral Conditions for Global Attraction 78

1.2 Spectral Conditions for Rapid First Hitting Times 78

1.3 Rapid Mixing and Rapid First Hitting Times 80

1.4 Some Analysis 82

851.5 Transmission Matrices Minimizing
1.6 Rapid First Hitting Time and No Free Lunch Theorems 87

2 Spectra for Finite Population Dynamics 87

2.1 Wright-Fisher Model of Finite Populations 88

Contents	 vii

2.2 Rapid First Hitting Time in a Finite Population 90

3 Karlin’s Spectral Theorem for Genetic Operator Intensity 92

3.1	 Karlin’s Theorem illustrated with the Deceptive Trap

Function 93

3.2	 Applications for an Extended Karlin Theorem 95

3.3	 Extending Karlin’s Theorem 96

3.4 Discussion 98

4 Conclusion 99

5

and Adaptive Memory Metaheuristics

Gary A. Kochenberger, Fred Glover, Bahram Alidaee and Cesar Rego

Solving Combinatorial Optimization Problems via Reformulation 103

1 Introduction 104

2 Transformations 105

3 Examples 106

4 Solution Approaches 108

4.1 Tabu Search Overview 108

5 Computational Experience 109

6 Summary 110

6

Problems in Optimization 115

William G. Macready

1 Introduction 115

2 Foundations 116

3 Connections 120

4 Applications 125

5 Conclusions 127

7

EC Theory - “In Theory” 129

Christopher R. Stephens and Riccardo Poli

8

Asymptotic Convergence of Scaled Genetic Algorithms 157

Lothar M. Schmitt

1 Notation and Preliminaries	 162

1.1	 Scalars and vectors 162

1.2	 Matrices and operator norms 163

1.3	 Stochastic matrices 164

1.4 Creatures and populations 167

2 The Genetic Operators 168

2.1	 Multiple-spot mutation 169

2.2	 Single-cutpoint regular crossover 171

2.3 The fitness function and selection 174

3 Convergence of Scaled Genetic Algorithms to Global Optima 177

3.1	 The drive towards uniform populations 177

3.2	 Weak ergodicity 179

3.3	 Strong ergodicity 180

viii	 FRONTIERS OF EVOLUTIONARY COMPUTATION

3.4	 Convergence to global optima. 182

3.5 The Vose-Liepins version of mutation-crossover 186

4 Future Extensions of the Theory 187

4.1	 Towards finite-length analysis on finite-state machines 187

4.2	 Estimates for finite-length genetic algorithms à la Catoni 188

4.3	 Adding sampling noise 189

4.4	 Further analogy with simulated annealing: parallelism

and sparse mutation 189

4.5	 Analysis from inside-out and outside-in 190

4.6	 Non-monotone and self-adapting annealing sequences 191

4.7 Discrete vs. continuous alphabets 192

5 Appendix — Proof of some basic or technical results 192

9

of Genetic and Evolutionary Computation

John R. Koza, Matthew J. Streeter and Martin A. Keane

The Challenge of Producing Human-Competitive Results by Means 201

1 Turing’s Prediction Concerning Genetic and Evolutionary Com­

putation 202

2 Definition of Human-Competitiveness 202

3 Desirable Attributes of the Pursuit of Human-Competitiveness 203

3.1	 Utility 203

3.2	 Objectivity 204

3.3	 Complexity 204

3.4 Interminability 206

4 Human-Competitiveness as a Compass for Theoretical Work 206

5 Research Areas Supportive of Human-Competitive Results 207

6 Promising Application Areas for Genetic and Evolutionary Com­

putation 207

7 Acknowledgements 208

10

Case Based Reasoning 211

Vivek Balaraman

1 Introduction 211

2 Case-Based Reasoning 213

3 Case Memory as an Evolutionary System 216

3.1	 A Simple Model of ECM 217

3.1.1	 Case-Base 217

3.1.2	 Environment 217

3.1.3	 Generate Solution 218

3.1.4	 Evaluate 219

3.2	 Reorganize 219

3.3 Discussion 219

4 Hybrid Systems 224

4.1	 Type A - CBR as a memory, EA as the optimizer 225

4.2	 Type B - EA as CBR System Parameter Optimizers 226

4.3 Discussion 227

5 Evolving Higher Levels 229

5.1	 Schemas 229

5.2	 A brief aside on levels of higher expertise 231

Contents ix

5.3 Towards memory based reasoning 232

5.3.1 C-Schemas as Building Blocks 233

6 Conclusions 237

11

The Challenge Of Complexity 243

Wolfgang Banzhaf and Julian Miller

1 GP Basics and State of the Art 245

2 The Situation in Biology 248

3 Nature’s way to deal with complexity 249

4 What we can learn from Nature? 254

5 A possible scenario: Transfer into Genetic Programming 256

6 Conclusion 258

Author Index 261

Index 267

This page intentionally left blank

4.1	 The Deceptive Trap fitness landscape for three loci with

two alleles. 94

List of Figures

4.2	 There is only one attractor at each value but an ‘error

catastrophe’ is evident for
 94

4.3	 The mean fitness of the population at the global attractor

as a function of mutation rate. It decreases in accord

with Karlin’s theorem. 95

10.1	 CBR problem solving process 214

10.2	 Simple model of evolutionary case memory at genera­
tion
 218

10.3	 ECM as optimizers
 223

10.4 Type A: EA Using CBR
 225

10.5 TypeB: CBR Using EA
 226

10.6	 Experiences lead to schema which in turn index new ex­

periences 232

11.1	 The variation selection loop of GP and other artificial

evolutionary systems. 246

11.2	 The primary operations of GP, mutation and crossover,

as applied to programs represented by sequences of in­

structions. The instructions are coded as integer numbers. 247

xii FRONTIERS OF EVOLUTIONARY COMPUTATION

11.3	 Single cell and multi-cellular system. The environment
of a genome is primarily the cell in which it is residing.
Control is exerted both by the cell and its environment
via substances (black dots) diffusing around in intra- and
extracellular space. The genome in turn tries to influ­
ence its environment by providing orders to produce cer­
tain substances. If a multi-cellular being is constructed
a division and differentiation process is set into motion
which leads to a number of cells with a boundary to the
outside environment. The organism is the primary en­
vironment of a cell, with intra- and extra- organismal
message transfer via molecules (black dots). 250

11.4	 Transcription and translation as two important steps in
the process of mapping information from genotype to
phenotype. 252

11.5	 The network of data flow on registers as one example
of program phenotype. The corresponding program is
listed in the text as a linear sequence of instructions.
Adopted from (Brameier, 2003) 257

List of Tables

1.1 Major transitions in evolution; Maynard (Smith and Sza­
thmary, 1995) 4

9.1 Eight criteria for saying that an automatically created re­
sult is human-competitive 203

This page intentionally left blank

Preface

This book is a collection of essays, authored by eminent scholars in evo­
lutionary computation (EC), artificial intelligence (AI), operations research,
complexity theory and mathematics. Each essay revolves around important,
interesting and unresolved questions in the field of evolutionary computation.

The book is designed to be a resource to at least three categories of readers.
First of all, graduate students will find this book a rich source of open research
issues. Imagine participating in an EC research seminar conducted by some of
the best scholars in and around the field! The book also gives experts a chance
to compare and contrast their understanding of the fundamental issues in EC
with the perspectives of their peers. Finally, to the interested scholar it offers a
sample of the kind of problems that are considered worth solving in EC.

Much has been written about how great solutions often have a certain aes­
thetic appeal (symmetry, simplicity, originality, unity and so on). In sharp
contrast, characteristics of great problems remain something of a mystery. It is
useful to think of a problem as existing in at least one of four states: undiscov­
ered, unsolved, solved and hibernating. However, truly interesting problems
— great problems — manage a simultaneous, contrary existence in all four
quadrants. A great problem, to echo Walt Whitman, is often large and con­
tains multitudes. Every mature field has its great problems. Even fields with a
progressive tradition, like Physics and Mathematics, have problems that refuse
to stay solved. The problem of explaining the directionality of the thermody­
namic arrow of time, and the debate over whether mathematical objects are
invented or discovered are but two examples that comes to mind. Great prob­
lems act as co-ordinate systems for the geography of our imaginations and
explain why we do what we do.

So it is gratifying (rather than alarming) that EC is also evolving its own
collection of really hard problems. For example, is an evolutionary process
an algorithmic process (in the sense of Church-Turing)? Are building blocks
theoretical rather than empirical constructs? Which results in EC are dependent
on problem representation and which ones independent of it? What precise
role does crossover play? Is there a way to unify the different formalisms used

xvi FRONTIERS OF EVOLUTIONARY COMPUTATION

to model evolutionary processes? What are the characteristics of problems
solvable by EC? Some of these problems are discussed at length in this volume.

This book grew out of a proposed session for the 2001 International Con­
ference on Artificial Intelligence in Las Vegas, Nevada. I had thought that
a collection of authoritative essays, each devoted to the description of a sub­
stantially unsolved problem in EC, could help bring coherence to the field,
clarify its important issues, and provoke imaginations. The session was jok­
ingly dubbed the ‘Hilbert session’ in memory of David Hilbert’s outstanding
example almost a century ago. Unfortunately, time constraints prevented the
session from from going forward. But the highly positive response from the
invitees, as well as from others who had heard about the idea, suggested that
a book could be an alternate and appropriate forum for implementing the idea.
The stray mentions of Hilbert in some of the essays thus hark back to the ori­
gins of this book. Needless to say, the essays were not written with the aim of
being either as definitive or as predictive as Hilbert’s talk turned out to be.

The authors in this collection are wonderfully varied in their backgrounds,
writing styles and interests. But their essays are related by several common
goals: extensions to EC theories, discussion of various formalisms, summaries
of the state of the art, and careful speculation on what could be done to re­
solve various issues. The essays also leave no doubt that the ferment caused
by active trading is producing a watershed event in the marketplace of ideas.
Witness for example, the import of ideas from evolutionary theory into Algo­
rithmics (such as: population thinking, inheritance and recombination), and
the export of ideas from mathematics and computer science into evolutionary
theory (such as: stochastic models, complexity theory, computability). Ide­
ally, I would have liked to triple the size of the book, include at least a dozen
more authors, and reprint essays from relevant collections. On the other hand,
progress is a side-effect of achieving the possible. While the sample of ideas
and authors herein is certainly not comprehensive, it is very much representa­
tive of what is possible in our field.

EC is a young discipline, and consequently, it is still a field that has the rare
chance to be defined in terms of its unsolved problems, rather than its solved
ones. No doubt, the many encounters offered in this book, the journeys it will
inspire, and the inevitable predilection of problems to get solved, will change
this situation in the next few decades. But till then, this book is meant to serve
as a beckoning toward the roads still not taken.

Contributing Authors

Bahrain Alidaee is an associate professor of Operations Management at the
Business School, the University of Mississippi. His research interests include
combinatorial optimization, heuristic programming, and game theory. He has
published more than 40 articles in journals such as Management Science, Trans­
portation science, IEEE Transactions, European Journal of OR, Journal of
Operational Research, Computers and Operations Research, Production and
Operations Management and other journals. He is a member of INFORMS,
DSI, APICS, and POMS.

Lee Altenberg is Associate Professor of Information and Computer Sciences
at the University of Hawaii at Manoa. His interest is in systems phenomena,
and he has focused on the dynamics of evolutionary processes. Of particular
interest is the emergence of the representation problem in evolution, the evolu­
tion of the genotype-phenotype map, and evolutionary dynamics of modular­
ity. His publications bridge the fields of mathematical population genetics and
evolutionary computation. Recent civic projects include restoration of dryland
Hawaiian biodiversity, reduction of light pollution, and control of alien ungu­
lates on Maui.

Vivek Balaraman works as a research scientist in the Artificial Intelligence
Group of the Tata Research Development and Design Centre, Pune, India
where he has been since 1989. Prior to that he worked at the Knowledge Based
Computer Systems Laboratory, Department of Computer Science, Indian Insti­
tute of Technology, Madras. Since 1995 he has led the Case-Based Reasoning
research and development team at TRDDC. The research has led to the domain
independent CBR kernel engine which has been applied successfully on a vari­
ety of problems, among them diagnosis, experiential knowledge management
and cognitive structured search in tasks like directory assistance and job search
at portals. Patent applications have been filed for several aspects of this work.
Vivek’s research interests include machine learning, evolutionary theory and
cognitive memory models.

xviii FRONTIERS OF EVOLUTIONARY COMPUTATION

Wolfgang Banzhaf is Associate Professor of Applied Computer Science at the
University of Dortmund, Germany. He is lead author of the textbook Genetic
Programming — An Introduction and editor-in-chief of the Kluwer journal Ge­
netic Programming and Evolvable Machines. He has published more than 80
refereed conference and journal articles.

Carlos Cotta received the M.Sc. and Ph.D. degrees in 1994 and 1998, respec­
tively, in Computer Science from the University of Málaga (UMA), Spain. He
is currently affiliated to the Department of “Lenguajes y Ciencias de la Com­
putación” of the UMA, where he holds an Associate Professorship in Program­
ming Languages and Computer Systems. He has been previously appointed as
Lecturer (1995–1999), and Assistant Professor (1999–2001) in this institution.

His research interests are primarily in evolutionary algorithms, both from
the algorithmic (design techniques, theoretical foundations, parallelism, and
hybridization) and the applied (combinatorial optimization, data mining, and
bioinformatics) standpoint. He is the author or co-author of over 40 articles on
these topics.

He is a member of the European Network of Excellence on Evolution­
ary Computing (EvoNet), the European Chapter on Metaheuristics (EU/ME),
and the ACM Special Interest Group on Applied Computing (ACM SIGAPP)
among other research societies and organizations. He has also served in the
Programme Committee of the major conferences in the field (GECCO, CEC,
and PPSN among others), and has refereed articles for scientific journals such
as the Journal of Heuristics, and IEEE Transactions on Evolutionary Compu­
tation among others.

Kenneth A. De Jong is Professor of Computer Science at George Mason Uni­
versity, and a member of the research faculty at the Krasnow Institute. He
received his PhD at the University of Michigan under the direction of John
Holland. Dr. De Jong’s research interests include evolutionary computation,
adaptive systems, and machine learning. He is an active member of the evolu­
tionary computation research community with a large number of papers, Ph.D.
students, and presentations in this area. He is also involved in the organization
of many of the workshops and conferences on evolutionary computation, and
the founding Editor-in-chief of the journal Evolutionary Computation, pub­
lished by MIT Press. He is currently serving on the executive council of the
International Society for Genetic and Evolutionary Computation. Dr. De Jong
is head of the Evolutionary Computation Laboratory at GMU, consisting of a
group faculty members and graduate students working on a variety of research
projects involving the application of evolutionary algorithms to difficult com­
putational problems such as visual scene analysis and programming complex

xix Contributing Authors

robot behaviors. This group is also involved in extending current evolution­
ary computation models to include more complex mechanisms such as speci­
ation, co-evolution,and spatial extent. These ideas are being developed to im­
prove both the applicability and scalability of current evolutionary algorithms
to more complex problem domains. Funding for the lab comes from a vari­
ety of sources including DARPA, ONR, NRL, NSF, and local area companies.
Further details can are available at www.cs.gmu.edu/ eclab.

Fred Glover is the MediaOne Chaired Professor in Systems Science at the
University of Colorado, Boulder, and Distinguished Researcher and co-founder
of the Hearin Center for Enterprise Science at the University of Mississippi. He
has authored or co-authored more than three hundred published articles and six
books in the fields of mathematical optimization, computer science and artifi­
cial intelligence, with particular emphasis on practical applications in industry
and government. In addition to holding editorial and advisory posts for jour­
nals in the U.S. and abroad, Dr. Glover has been featured as a National Visiting
Lecturer by the Institute of Management Science and the Operations Research
Society of America and has served as a host and lecturer in the U.S. National
Academy of Sciences Program of Scientific Exchange. Professor Glover is the
recipient of the distinguished von Neumann Theory Prize, a member of the
National Academy of Engineering, and has received numerous other awards
and honorary fellowships, including those from the American Association for
the Advancement of Science (AAAS), the NATO Division of Scientific Affairs,
the Institute of Operations Resarch and Management Science (INFORMS), the
Decision Sciences Institute (DSI), the U.S. Defense Communications Agency
(DCA), the Energy Research Institute (ERI), the American Assembly of Colle­
giate Schools of Business (AACSB), Alpha Iota Delta, and the Miller Institute
for Basic Research in Science. He serves on the advisory boards of several
organizations and is co-founder of OptTek Systems, Inc.

Martin A. Keane received a Ph.D. in Mathematics from Northwestern Uni­
versity in 1969. He worked for Applied Devices Corporation until 1972, in
the Mathematics Department at General Motors Laboratory until 1976, and
was Vice-President for Engineering of Bally Manufacturing Corporation until
1986. He is currently chief scientist of Econometrics Inc. of Chicago and a
consultant to various computer-related and gaming-related companies.

Gary A. Kochenberger is the Professor of Operations Management, Univer­
sity of Colorado at Denver (since 1989). In recent years, his focus has been
on problems of a combinatorial nature as commonly found in logistical man­
agement, operations management, and related areas. He has published three

xx FRONTIERS OF EVOLUTIONARY COMPUTATION

books and more than 40 refereed articles in top journals in his field includ­
ing Management Science, Mathematical Programming, Journal of Optimiza­
tion Theory and Applications, Operation Research, Computers and Operations
research, Naval Research Logistics Quarterly, Journal of the Operational Re­
search Society, Interfaces, Operations Research Letters, and the Journal of the
Production and Operations Management Society and Transportation Science.
Moreover, he is actively engaged in several major journals including positions
as area editors for both INTERFACES and the Journal of the Production and
Operations Management Society (POMS).

John R. Koza received his Ph.D. in Computer Science from the University of
Michigan in 1972 under the supervision of John Holland. He was co-founder,
Chairman, and CEO of Scientific Games Inc. from 1973 through 1987 where
he co-invented the rub-off instant lottery ticket used by state lotteries. He has
taught a course on genetic algorithms and genetic programming at Stanford
University since 1988. He is currently a consulting professor in the Biomedical
Informatics Program in the Department of Medicine at Stanford University and
a consulting professor in the Department of Electrical Engineering at Stanford
University.

William Macready is a senior scientist with the Research Institute for Ad­
vanced Computer Science at NASA Ames Research Center. William has pub­
lished on topics including optimization, landscapes, molecular evolution, ma­
chine learning, economics, and methods of quantifying complexity. He is in­
terested in both the theoretical and practical aspects of optimization. Before
joining RIACS/NASA, William worked in industry solving optimization prob­
lems in logistics, supply chains, scheduling, and designed efficient optimiza­
tion approaches for clearing high-dimensional marketplaces.

Anil Menon received his Ph.D in Computer Science from Syracuse University
in 1998. His thesis Replicators, Majorization and Probabilistic Databases:
New Approaches For The Analysis Of Evolutionary Algorithms was awarded
the Syracuse All-University Best Doctoral Thesis Award in 1999. His research
interests lie in the areas of evolutionary computation and nonlinear optimiza­
tion, he has been published in the peer-reviewed International J. of Neural
Networks, IEEE Transactions On Evolutionary Computation, and the Foun­
dations of Genetic Algorithms. He has more than eight years of software de­
velopment experience in a wide variety of industries including, advanced data
access applications, supply chain solutions, and computer aided design and
manufacturing, His technical expertise lie in the areas of distributed databases,
process optimization, and automated code generation. Till recently, he was a

xxi Contributing Authors

Distinguished Engineer at Whizbang Research Labs, based in Provo, Utah. He
currently consults for ProductSoft, a Pittsburgh based software startup.

Julian Miller is a lecturer in the School of Computer Science, University of
Birmingham. He is author of around 75 research publications. He has an in­
ternational reputation in the research fields of evolvable hardware and genetic
programming. He is a regular programme chair and session chair for inter­
national conferences on evolvable hardware, and Genetic Programming, and
evolutionary computation. He is an associate editor of the Journal of Genetic
Programming and Evolvable Machines and IEEE Transactions on Evolution­
ary Computation. He teaches advanced MSc modules on Quantum and Molec­
ular Computation and a Nature Inspired Design and a first-year undergraduate
course on Artificial Intelligence Programming.

Heinz Mühlenbein is research manager of the team ‘Adaptive Sytems’ at the
Institut of Autonomous intelligent Systems of the Fraunhofer Gesellschaft in
Germany. He has worked in the areas of time-sharing operating systems, com­
puter networks, parallel computing, and since 1987, soft computing. He is on
the editorial board of journals in physics, parallel computing, heuristics, and
evolutionary computation. In addition he has published more than 30 refereed
journal articles.

Pablo Moscato is currently affiliated with The University of Newcastle, Aus­
tralia. A native from Argentina, he received a degree in Physics from Uni­
versidad Nacional de La Plata in 1987 and a PhD degree from UNICAMP,
Brazil. In 1988-89 was a Visiting Graduate Student at the California Insti­
tute of Technology and a member of the core research team of the Caltech
Concurrent Computation Program where he first introduced the denomination
of “memetic algorithms” in the computing literature. He has been Visiting
Professor at Universidad del Centro de la Provincia de Buenos Aires, Tandil,
Argentina (1995-1996), and UNICAMP, Campinas, Brazil (1996) where he
lectured on metaheuristics for combinatorial optimization. He has published
in Journal of Computer and System Sciences, Physics Letters A, Lecture Notes
in Computer Science, Annals of Operations Research, Applied Mathematics
Letters, Neural Networks World, Chaos, Solitons and Fractals, Production
Planning & Control, INFORMS Journal on Computing, Pesquisa Operacional,
and European Journal of Operations Research as well as several international
conferences. He is a member of the Editorial Board of The Journal of Mathe­
matical Modelling and Algorithms and a member of the Program Committee
of several international conferences. He is author or co-author of twelve chap­
ters of books. He also acted as co-ordinating editor of the section dedicated

xxii FRONTIERS OF EVOLUTIONARY COMPUTATION

to Memetic Algorithms of “New Ideas in Optimization”, McGraw-Hill, UK,
1999.

Riccardo Poli is a Professor of Computer Scince at the University of Essex.
He has co-authored the book Foundations of Genetic Programming and around
130 refereed publications (including 10 conference proceedings) on genetic
programming, genetic algorithms, image processing and neural networks and
other areas. He is an associate editor of Evolutionary Computation and of the
Journal of Genetic Programming and Evolvable Machines. He has been pro­
gramme committee member of over 40 international events and has presented
invited tutorials at 8 international conferences.

César Rego received his Ph.D. in Computer Science from the University of
Versailles and INRIA - France, after earning a MSc in Operations Research and
Systems Engineering from the Technical School (IST) of the University of Lis­
bon. His undergraduate degree in Computer Science and Applied Mathematics
is from the Portucalense University in Portugal. Part of his academic career
was done in the Portucalense University and he also taught at IST and Faculty
of Sciences of the University of Lisbon. Dr. Rego received an award from the
Portuguese Operational Research Society (APDIO) for his MSc thesis. He also
received the IFORS-Lisbon award for the best international paper published
by members of APDIO, an investigation over a four-year period. Finally, he
received an award as Researcher/Scholar of the year in School of Business,
MIS/POM area, University of Mississippi. Professor Rego’s publications have
appeared in books on metaheuristics and in leading journals on optimization
such as European Journal of Operational Research (EJOR), Journal of Oper­
ational Research Society (JORS), Parallel Computing, and Management Sci­
ence. He has developed some of the most efficient algorithms that currently
exist for the Traveling Salesman and Vehicle Routing Problems. In the prac­
tical realm, he has designed and implemented computer software for solving
real-world problems for several major companies. His main research interest
is the creation and empirical validation of optimization algorithms for solving
complex and practical problems. He is a member the APDIO, the INFORMS, a
senior researcher of the Hearin Center for Enterprise Science (HCES) and As­
sociate Professor of Management Information Systems and Operations Man­
agement in the School of Business of The University of Mississippi.

Lothar M. Schmitt teaches Mathematics and Computer Science at The Uni­
versity of Aizu (Japan). He holds the Dr.rer.nat. title from the Universitaet
des Saarlandes (Saarbruecken) and the Dr.rer.nat.habil. title from Universitaet
Osnabrueck and is currently associate professor in Aizu. His work includes

xxiii Contributing Authors

contributions in functional analysis, operator algebra theory, non-commutative
integration, quantum physics, biomechanical modeling, genetic algorithms and
optimization, language analysis and UNIX-based interactive teaching systems.
Otherwise, he enjoys family life, swimming, playing the piano, the arts and
fine dining. In 2003, he is listed in “Who’s Who in the World.”

Chris Stephens is Professor at the Institute for Nuclear Sciences of the UNAM
(Universidad Nacional Autonoma de Mexico) - the oldest university in the
Americas. He has had visiting positions at various leading academic insti­
tutions, including the Weizmann Institute, the Joint Institute for Nuclear Re­
search, Dubna, the University of Birmingham and the University of Essex. He
is also a founding partner of Adaptive Technologies Inc. and Adaptive Tech­
nologies SA de CV - research companies dedicated to the production of agent-
based technologies for dynamical optimization in finance and industry. Chris’s
research interests are very broad, having published over 70 research articles in
a wide array of international journals - ranging from Classical and Quantum
Gravity to the Journal of Molecular Evolution.

Matthew J. Streeter received a Masters degree in Computer Science from
Worcester Polytechnic Institute in 2001. His Masters thesis applied genetic
programming to the automated discovery of numerical approximation formu­
lae for functions and surfaces. His primary research interest is applying genetic
programming to problems of real-world scientific or practical importance. He
is currently working at Genetic Programming Inc. as a systems programmer
and researcher.

This page intentionally left blank

Chapter 1

TOWARDS A THEORY OF ORGANISMS
AND EVOLVING AUTOMATA

Open Problems and Ways to Explore

Heinz Mühlenbein
FhG-AiS D-53754 Sankt Augustin

muehlenbein@gmd.de

Abstract	 We present 14 challenging problems of evolutionary computation, most of them
derived from unfinished research work of outstanding scientists such as Charles
Darwin, John von Neumann, Anatol Rapaport, Claude Shannon, and Alan Tur­
ing. The problems have one common theme: Can we develop a unifying theory
or computational model of organisms (natural and artificial) which combines the
properties structure, function, development, and evolution? There exist theories
for each property separately as well as for some combinations of two. But the
combination of all four properties seems necessary for understanding living or­
ganisms or evolving automata. We discuss promising approaches which aim in
this research direction. We propose stochastic methods as a foundation for a
unifying theory.

1. INTRODUCTION
The aim of this book is very ambitious. Its title is not: important problems of

evolutionary computation, but Hilbert problems in evolutionary computation.
What makes Hilbert’s problems so famous and unique? Hilbert designed his
problems with the goal that “they could serve as examples for the kinds of
problems the solutions of which would lead to advancements of disciplines
in mathematics.” If we have a closer look at Hilbert’s twenty-three problems
today, then we observe that some of the problems indeed lead to important
research, but a few of them did not. One of the reasons seems to be how the
problems have been formulated. Most of them are well defined, but some are
more vaguely posed, making a solution difficult.

In fact, the paper became famous because of question number two: Can it
be proven that the axioms of arithmetic are consistent? Hilbert’s question is a

2 FRONTIERS OF EVOLUTIONARY COMPUTATION

sub-problem of the general research program Hilbert had in mind: Can math­
ematics be axiomatized? The general problem was taken on by Russel and
Whitehead and lead to three volumes of the Principia Mathematica. Gödel
dealt with the more specific problem two and proved that the answer is nega­
tive. This put an end to the effort of Russel and Whitehead. The implication
of Gödel’s result with regard to mathematics and the theory of computation in
general is still a subject of hot discussions.

In contrast, problem number six just reads: Can physics be axiomatized? In
the explanation of the question Hilbert writes: “to axiomatize those physical
disciplines, in which mathematics already plays a dominant role; these are first
and foremost probability and mechanics.” To our surprise we see the calculus
of probability as a part of physics! A closer inspection reveals that Hilbert’s
moderate goal was a mathematically sound application of probability to kinetic
gas theory. This research has been carried out by physicists, but without ever
referring to a Hilbert problem. It lead to statistical physics as it appears today.

My goal is modest. I will propose problems, mainly in evolutionary com­
putation, and name each after a famous scientist who has formulated or inves­
tigated the problem. This does not imply that the problem so named is the
most important the scientist has worked on. Nor do I claim that the scientist
has considered the problem to be the most important one he has worked on.
I only want to demonstrate that most of the challenging problems have been
identified very early and are with us for quite a time. And my second message
is: we have to look much more often into older papers. Older scientific pa­
pers should not be considered as “fossils”. It is a fundamental misconception
that science is continuously accumulating all the important available knowl­
edge and condensing the knowledge in surveys or textbooks. Many important
scientific ideas and papers enter main stream science after 20 or more years.

I will consider in the paper both – natural and artificial organisms. The
emphasis will be on artificial automata. In order not just to summarize the
problems, I will describe in the more technical sections 11 till 13 a theory I
consider as a promising candidate for solving some of the problems presented.
It is the theory of probability, used and extended in scientific disciplines as dif­
ferent as probabilistic logic, statistical physics, stochastic dynamical systems
and function optimization using search distributions. These sections will be
fairly selfish, because in selecting from the huge available literature the work
of my research group will be over-represented.

3 Towards a Theory of Organisms and Evolving Automata

2.	 EVOLUTIONARY COMPUTATION AND

THEORIES OF EVOLUTION

The goal of evolutionary computation is to make the development of pow­
erful problem solving programs easier. There have been tried at least three
approaches to achieve this goal.

1 Use a theory - develop a theory of problem solving and implement it on
a computer

2	 Copy the brain - analyze the human brain and make a copy of it on a
computer

3	 Copy natural evolution - analyze natural evolution and implement the
most important evolutionary forces on a computer

In the history of artificial intelligence research one of the three approaches
was dominant at any one time. Evolutionary computation belongs to the third
approach. Today this approach is gaining momentum. It relies on theories of
evolution and of computation. The theory of computation is well advanced,
so the problems of evolutionary computation lie in theories of evolution. If
there existed a convincing constructive theory of evolution, then evolutionary
computation would be just a matter of implementation - which of the major
evolutionary forces to implement in what detail.

But do we possess a constructive theory of evolution? Here the opinions dif­
fer extremely. The main stream theory of evolution is called New or Modern
Synthesis. Its followers claim that it reconciles Darwin’s idea of continuous
small variations with the concept of gene flows derived from population genet­
ics. The second major force of the Modern Synthesis is still Darwin’s concept
of natural selection. But are these two forces sufficient to explain the wonders
of evolution at least in some broad terms?

There is no doubt that the modern synthesis is able to explain the change
of gene frequencies on a small time scale. If there is enough diversification,
then the theory correctly predicts further changes for a short time. But can it
explain evolution for a long time? Here the crucial question is: How could it
come to such a diversification, starting from a tiny cell? I like to formulate the
problem with Darwin’s famous ending sentence of The Origin of Species by
Means of Natural Selection ((Darwin, 1859)).

“There is grandeur in this view of life, with its several powers, having been
originally breathed into a few forms or into one; and that, whilst this planet
has gone cycling on according to the fixed laws of gravity, from so simple a
beginning endless forms most beautiful and most wonderful have been, and are
being, evolved.”

4 FRONTIERS OF EVOLUTIONARY COMPUTATION

Let me be more specific and cite some major problems which a theory of
evolution would have to explain. Maynard (Smith and Szathmary, 1995), have
called them the the major transitions in evolution (see table 1.1).

The authors “solve” some of the problems with a very narrow version of
the modern synthesis. “We are supporters of the gene centered approach pro­
posed by Williams and refined by (Dawkins, 1989).” In the gene centered
approach, also called the selfish gene concept, the genes are the major actors.
They possess an internal force to proliferate as much as possible.

This caricature of a theory of evolution is used by the authors to explain the
transition from solitary individuals to colonies, for example. The argument is
as follows: If a female produces two offspring, but females can produce 3n
offspring, then cooperation between the females pays off. Even if there is a
fight between females and one becomes a queen, cooperation is still preferred

of is larger than 2). Thus in the gene centered analysis a colony with
a single queen has a selective advantage.

There are many flaws in the selfish gene concept. It is not constructive, it
does not investigate if the selection advantage of a particular gene can be re­
alized in a phenotype. Rabbits with wings would obviously have a selective
advantage. Why did it not happen? Two genes can also oppose each other
- gene 1 might increase by action and gene 2 by the opposite action
Which gene wins? Consider a female and its offspring as an example. The off­
spring are threatened. Should the mother protect the offspring, even on the risk
of her life? The notorious formula of Hamilton gives the result that the mother
should sacrifice her life if more than two offspring are threatened (Maynard
(Smith and Szathmary, 1995)). Hamilton argues as follows: in each offspring
there are only one half of the genes of the mother. Thus the genes of the mother
multiply if she protects at least three offspring. Ironically Darwin itself has de­
voted a whole chapter of his “The Origin of Species” to the problem insect
colonies pose to natural selection. His explanation is constructive. He shows
how many small changes in behavior can lead to very peculiar behavior, even
to slave making ants! This example shows dramatically the extreme simplifi­

5 Towards a Theory of Organisms and Evolving Automata

cation done by the selfish gene concept. It is my strong opinion that the selfish
gene concept does not enrich Darwin’s theory, but reduces it to a caricature.

The selfish gene concept has been opposed by a small group in biology,
most notably by the late Stephen J. Gould. Recently even philosophers of
science formulate a basic critic. I just cite (Griffiths, 2002). “The synthetic
theory bypassed what were at the time intractable questions of the actual re­
lationship between stretches of chromosomes and phenotypic traits. Although
it was accepted that genes must, in reality, generate phenotypic differences
through interaction with other genes and other factors in development, genes
were treated as black boxes that could be relied on to produce phenotypic vari­
ation with which they were known to correlate.”

I will discuss this problem later with my proposal of a system theory of
evolution. The major conclusion of this section is: there exists no general the­
ory of evolution today. The “theory” its proponents call “Modern Synthesis”
is an extremely simplified version of Darwin’s theory. It separates organisms
and environment. Natural selection is modeled by a fitness function, whereas
Darwin used the term only in a metaphoric sense. In fact, Darwin noticed
the misinterpretation of his theory even during his life. He wrote in the last
(1872) edition of “The Origin of Species”: “As my conclusions have lately
been much misrepresented, and it has been stated that I attribute the modifica­
tion of species exclusively to natural selection, I may be permitted to remark
that in the first edition of this work, and subsequently, I placed in a most con­
spicuous position — namely at the close of the Introduction — the following
words: “I am convinced that natural selection has been the main but not the ex­
clusive means of modification.” This has been of no avail. Great is the power
of steady misinterpretation.”

Therefore evolutionary computation has to be largely experimental. This
was already pointed out by John (von Neumann, 1954). “Natural organism are,
as a rule, much more complicated and subtle, and therefore much less well un­
derstood in detail, than are artificial automata. Nevertheless, some regularities,
which we observe in the organization of the former may be quite instructive
in our thinking and planning of the latter; and conversely, a good deal of our
experiences and difficulties with our artificial automata can be to some extend
projected on our interpretations of natural organisms.”

3.	 DARWIN’S CONTINENTAL CYCLE
CONJECTURE

I will describe my first problem in Darwin’s terms. In the chapter “Cir­
cumstances favorable to Natural Selection” Darwin writes: “A large number
of individuals by giving a better chance for the appearance within any given
period of profitable variations, will compensate for a lesser amount of vari­

6 FRONTIERS OF EVOLUTIONARY COMPUTATION

ability in each individual, and is, I believe, an extremely important element of
success.”

On the other hand Darwin observes that a large number of individuals in
a large continental area will hinder the appearance of new adaptations. This
happens more likely in small isolated areas. He writes: “Isolation, also, is an
important element in the process of natural selection. In a confined or isolated
area, if not large, the organic and inorganic conditions of life will be in a great
degree uniform; so that natural selection will tend to modify all individuals
of a varying species throughout the area in the same manner in relation to
the same conditions. But isolation probably acts more efficiently in checking
the immigration of better adapted organisms. Lastly, isolation, by checking
immigration and consequently competition, will give time for any new variety
to be slowly improved.”

Darwin then continues: “Hence an oceanic island at first sight seems to have
been highly favorable for the production of new species.” But Darwin notes a
conflict: “to ascertain whether a small isolated area or a large open area like
a continent, has been most favorable for the production of new organic forms,
we ought to make the comparison within equal times; and this we are incapable
of doing. ”

Despite of the above observation Darwin concludes: “I conclude, that for
terrestrial productions a large continental area, which will probably undergo
many oscillations of level, and which consequently will exist for long periods
in a broken condition, will be the most favorable for the production of many
new forms of life, likely to endure long and spread widely.” Darwin reasons as
follows: “For the area will first have existed as a continent, and the inhabitants,
at this period numerous in individuals and kinds, will have been subjected to
very severe competition. When converted by subsidence into large separate
islands, there will still exist many individuals of the same species on each
island;. . . and time will be allowed for the varieties in each to become well
modified and perfected. When by renewed elevation, the islands shall be re­
converted into a continental area, there will be again severe competition: the
most favored or improved varieties will be enabled to spread: there will be
much extinction of the less improved forms . . .”
I am very impressed about Darwin’s continental cycle conjecture, which he
made much earlier than Alfred Wegener in geology. Therefore I dedicate my
first problem to Darwin.

Problem 1 [Darwin]: Can we demonstrate or even prove the correctness of
Darwin’s Continent-Island cycle conjecture ?

The reader should have observed how carefully Darwin discusses the ar­
guments. I strongly recommend to read Darwin’s “The Origin of Species”.

7 Towards a Theory of Organisms and Evolving Automata

The most profound critique of modern “Darwinism” can be found in Darwin’s
book!1

It seems difficult to test Darwin’s conjecture in nature. I propose therefore
to use simulations as a first step. I have used the iterated prisoners dilemma
game to investigate problem 1 ((Mühlenbein, 1991a)). The results indicate
that Darwin’s conjecture might be correct. But the simulation model needs a
lot more refinement.

Darwin mentions at many places of the “Origin” that space is as important
for evolution as time. This has been shown in the context of genetic algorithms
by (Mühlenbein, 1991b). Space is also an important element of the shifting
balance theory of evolution proposed by (Wright, 1937). Without referring to
Darwin a subset of the problem, that is the difference of the evolution in a large
continent and small isolated islands, has been recently investigated by (Parisi
and Ugolini, 2002).

4. THE SYSTEM VIEW OF EVOLUTION

The next set of problems I will derive more abstract. The major weakness
of “Darwinism” in the form of the modern synthesis is the separation of the
individuals and the environment. In this model each individual (mainly
characterized by its genes) is assigned a fitness predicting the performance
of this individual within the environment E and given the other individuals.
This can be written as:

It seems impossible to obtain numerical values for the fitness. Therefore
theoretical biology has made many simplifications. The environment is kept
fixed, i.e the influence of other individuals is described by
some averages of the population, etc.. The shortcomings of the dichotomy
individual-environment in the Modern Synthesis have already been discussed.
The problem is still more difficult because each individual is in addition devel­
oping in a close interaction with its environment. The development problem
has been addressed recently by (Oyama, 2000), in her developmental system
theory. Unfortunately the theory is very informal, it has been formulated from
a philosopher’s point of view. Therefore I will describe the next problem as it
has been stated in the final address of Anatol Rapaport, the then retiring presi­
dent of General System Science Society
((Rapaport, 1970)).

1In addition I recommend the essays of Stephen J. Gould.

8 FRONTIERS OF EVOLUTIONARY COMPUTATION

Problem 2 [Rapaport+1]: Can we formulate a theory of organisms, which
incorporates being, acting, evolving, and developing?

I have named the problem Rapaport+1 because Rapaport identified only
three properties. He combined evolving and developing into a single property
becoming. The problem needs an explanation. It goes back to (Whitehead,
1948). In his book “Science and the Modern World” Whitehead warned that
the store of fundamental ideas on which the then contemporary science was
based was becoming depleted. Whitehead suggested that the concept of or­
ganism, hitherto neglected in physical science, might be a source of new ideas.
Whitehead tried to define what an organism characterizes.

We will describe the definition of Rapaport. “According to a soft definition,
a system is a portion of the world that is perceived as a unit and that is able
to maintain its identity in spite of changes going on in it. An example of a
system par excellence is a living organism. But a city, a nation, a business
firm, a university are organisms of a sort. These systems are too complex
to be described in terms of succession of states or by mathematical methods.
Nevertheless they can be subjected to methodological investigations.”

Rapaport then defines: “Three fundamental properties of an organism ap­
pear in all organism-like systems. Each has a structure. That is, it consists
of inter-related parts. It maintains a short-term steady state. That is to say, it
reacts to changes in the environment in whatever way is required to maintain
its integrity. It functions. It undergoes slow, long term changes. It grows,
develops, or evolves. Or it degenerates, disintegrates, dies.

Organisms, ecological systems, nations, institutions, all have these three
attributes: structure, function, and history, or, if you will, being, acting, and
becoming.”

Rapaport’s becoming captures both – the development of an organism from
the fertilized egg to the grown-up organism, and the evolution of the species
in a succession of many generations. There is no doubt that the relationship
between the two properties is a very close one. Ernst Haeckel even postulated
in 1890 a biogenetic law: Individual development is a shortened recapitulation
of the history of the phylum. Subsequent research has shown that there is some
truth in the law, but as a general statement it is incorrect. In my opinion it is
very important to distinguish between the development of an individual and
the evolution of a species.

To my knowledge, Rapaport’s talk did not lead to a scientific effort to build
such a theory of organisms. The reader will guess the reason: it is the sheer
complexity of the task! Instead research in biology remained concentrated on
a single property or to a combination of two properties. Thus population ge­
netics combines being and evolving, population dynamics combines being and

9 Towards a Theory of Organisms and Evolving Automata

acting. The developmental system theory mentioned earlier combines being
and developing.

The investigation of the above problem leads to another problem: In what
language should we frame a theory of organisms? Three approaches can be
tried:

The descriptive approach, using natural language

The micro-simulation approach

The mathematical approach

Today the descriptive approach has gained momentum, characterized by the
developmental system theory mentioned above (Oyama, 2000). Artificial Life
uses micro-simulation. But in micro-simulations it is very difficult to distin­
guish between the microscopic event and the more general pattern happening
in many simulations. Rapaport and, earlier, von Neumann advocated the math­
ematical approach. I go a step further and propose stochastic system theory as
the research foundation. Stochastic analysis has been successfully used in pop­
ulation genetics for at least 75 years. But population dynamics is still mainly
investigated with the help of deterministic differential equations. Thus I parti­
tion Rapaport’s problem into three problems.

Problem 3a: Can we develop a stochastic system theory, combining the
properties being and acting of organisms or automata in a 2-d space?

Problem 3b: Can we develop a stochastic system theory, combining the
properties being and developing of organisms or automata in a 2-d space?

Problem 3c: Can we develop a stochastic system theory, combining the as­
pects being, acting and evolving of organisms or automata in a 2-d space?

The answer to the first question is a definite yes. It is already an active
area of research. We will discuss the state of the art in stochastic analysis
in the technical sections 11 till 13. Problem 3b was first investigated by von
Neumann.

5.	 VON NEUMANN’S SELF-REPRODUCING
AUTOMATA

Von Neumann started his research with the concept of “complification”. He
used the term very informally. We will proceed in the same way. It is outside
the scope of this paper to discuss all the measures proposed for complexity.
Also the term automaton will be used in a broad manner. Von Neumann ob­
served: “If automaton A can produce B, then A in some way must have con­
tained a complete description of B. In this sense some decrease in complexity

10 FRONTIERS OF EVOLUTIONARY COMPUTATION

must be expected as one automaton makes another automaton.” But organisms
reproduce themselves with no decrease in complexity. Moreover, organisms
are indirectly derived from others which had lower complexity.

Problem 4 [von Neumann]: Can we construct automata which are able to
produce automata more complex than themselves?

Von Neumann tried several approaches to enable a scientific investigation
of the above problem. The main theory was collected by Burns and expended
into a theory of self-reproducing automata ((Burns, 1970)). But it is more in­
structive to look at von Neumann’s own description, summarized in the article
“The General and Logical Theory of Automata” ((von Neumann, 1954)). Von
Neumann started his research with a result of Turing. Turing wanted to give
a precise definition of what is meant by a computing automaton. His solution
was the Universal Turing Machine UTM. It consists of an automaton reading
and writing symbols on an infinite tape. Von Neumann decided that his au­
tomaton should have the power to simulate the UTM in a discrete cellular 2-d
space. Thus he investigated the problem how to construct an automaton which
reproduces itself in 2-d space and has the power of UTM.

Von Neumann’s construction proceeded as follows:
(a) Construct an automaton A, which when furnished the description of any

other automaton in terms of appropriate functions, will construct that entity.
(b) Construct an automaton B, which can make a copy of any instruction

that is furnished to it. This facility will be used when furnishes a description
of another automaton.

(c) Combine the automata A and B with a control mechanism which does
the following. will first cause A to construct the automaton which is de­
scribed by Next will cause B to copy the instruction Finally will
separate this construction from the system

(d) Form an instruction which describes this automaton D, and insert
into A within D. Call the aggregate which now results E.

E is clearly self-reproducing. But E cannot do anything besides reproduc­
tion. It needs a program. Therefore von Neumann proposed an extension:
Replace the instruction by an instruction which describes automa­
ton D plus another automaton F. This automaton reproduces itself and then
behaves like automaton F. Now if a “mutation” within the F part takes place, it
changes into This “mutant” is still self-reproductive.

Von Neumann believed that with this construction he had made crude steps
in the direction of a systematic theory of automata, especially towards forming
a rigorous concept of what constitutes “complication.” At a first glance, the
construction seems to be the solution of the automatic programming problem.
But why did von Neumann’s self-reproducing automata not have any practical

11 Towards a Theory of Organisms and Evolving Automata

relevance? The answer is simple: The construction does not solve the most
important problem: How do the programs get into the machine? The develop­
ment of programs is the problem, not their self-reproduction. Von Neumann’s
automata can in principle compute anything, but the programs have to be pro­
vided from the outside! Who provides these descriptions? A single built-in
program F is surely not enough, because von Neumann did not introduce se­
lection. Therefore the value of the mutant program F' for problem solving is
not checked. Thus von Neumann solved only part of the problem. Therefore
we extend problem 4.

Problem 5: What conditions are required to enable von Neumann’s au­
tomata to grow in complexity without external interventions?
A worthwhile extension of von Neumann’s approach would be to use a pop­
ulation of automata which interact with each other and which have to solve
a set of problems to survive and produce offspring. Thus I believe that for a
solution of problem 5 one needs both, Turing and Darwin. Turing provides
the concept of a universal automaton and Darwin provides the concept of a
changing environment metaphorically leading to natural selection.

The importance of von Neumann’s construction for today’s research has also
been emphasized by (McMullin, 2001).

6. TURING’S INTELLIGENT MACHINE
Von Neumann’s approach of using self-reproduction and the Universal Tur­

ing Machine was not the only method proposed to build intelligent machines.
In fact, von Neumann discussed the use of artificial neural networks as another
possibility. Before I describe this work, it is instructive to discuss how Tur­
ing himself approached the problem in his article “Computing machinery and
intelligence” ((Turing, 1950)). At first Turing defined the concept of intelli­
gence. A machine is intelligent if it passes a test Turing defined precisely: the
Turing test is an “imitation” game, played by three objects A, B and C. C is
the interrogator, A or B might be a machine. The machine passes the test if
the interrogator is not able to find out that a machine answers to his questions.
This gives our next problem.

Problem 6 [Turing]: Is it possible to build machines which pass the Turing
test?

Turing believed that the answer to the above question is positive and pro­
posed a method to construct such a machine. It is described in the section
“Learning Machines” of the above cited paper. Turing’s proposal seems to be
almost unknown, although it is contained in this well-known article. I find

12 FRONTIERS OF EVOLUTIONARY COMPUTATION

the proposal very fascinating. The arguments brought forward by Turing have
been used a number of times in artificial intelligence research, but obviously
without knowing that Turing already formulated them.

“As I have explained, the problem is mainly one of programming. Estimates
of the storage capacity of the brain vary from and I would be sur­
prised if more than was required to satisfactory playing of the imitation
game ... At my present rate I produce about a thousand digits of program a
day, so that about sixty workers, working steadily through the fifty years might
accomplish the job, if nothing went into the wastepaper basket. Some more
expeditious method seems desirable.”

Turing did not try to formalize a possible solution to problem 6. Any pro­
gram passing the test will do. It is the efficiency problem which leads Turing
to consider natural organisms, in this case the human mind. “In the process
of trying to imitate an adult mind we are bound to think a good deal about
the process which has brought it to the state that it is in. We may notice three
components:

(a) The initial state of the mind, say at birth,
(b) The education to which it has been subjected,
(c) Other experience

Instead of trying to produce a program to simulate the adult mind, why
not rather try to produce one which simulates the child’s?. . . . We have thus
divided our problem into two parts, the child programme and the education
process. These two remain very closely connected. We cannot expect to find
a good child machine at the first attempt... There is an obvious connection be­
tween this process and evolution, by the identifications

One may hope, however that this process will be more expeditious than
evolution. The survival of the fittest is a slow method for measuring advan­
tages... Opinions may vary as to the complexity which is suitable in the child
machine. One might try to make it as simple as possible consistently with the
general principles. Alternatively one might have a complete system of logical
inference programmed in.”

Turing reported: “I have done some experiments with one such child ma­
chine, but the teaching method was too unorthodox for the experiment to be
considered really successful.” The imitation game is the final test, one needs
some intermediate goals. “We may hope that machines will eventually com­
pete with men in all purely intellectual fields. But which are the best ones to

13 Towards a Theory of Organisms and Evolving Automata

start with?. . . Many people think that a very abstract activity, like the playing
of chess, would be the best. It can also be maintained that it is best to provide
the machine with the best sense organs that money can buy, and then teach it to
understand and speak English.” Today chess playing has been solved by brute
force programming. This solution is feasible due to the strict rules of chess
that enable fast and efficient game tree search. The progress in games like GO
is much slower. But we are still left with the language understanding problem.

Problem 7 [Turing]: Is it possible to create a machine which can be taught
to understand English?

Turing’s proposal belongs to the “copy the evolution” approach. In contrast
to nature the artificial evolution does not start with a cell, but with a well-
designed child. Turing’s approach is very informal, he believed that he could
program an intelligent system using about bits. I call this attitude the pro-
grammer’s approach. The system is programmed without a theory. One just
assumes that anything can be programmed. This attitude seems to be dominant
today. For Turing evolution is just a technique to shorten the programming
time.

7.	 WHAT CAN BE COMPUTED BY AN
ARTIFICIAL NEURAL NETWORK?

We now turn back to von Neumann and his approach to machine intelli­
gence. In contrast to Turing, von Neumann works more like a natural scientist.
He tries to formalize solution strategies. Thus his solutions are not programs,
but theories. In 1948 formal neural networks were already very popular in the
research community because of the work of McCulloch and Pitts. John (von
Neumann, 1954), investigated the power of neural networks in his famous talk
“The general and logical theory of automata”. In the section “Formal Neu­
ral Networks” von Neumann notes: “The McCulloch-Pitts result2 proves that
anything that can be exhaustively and unambiguously described, anything that
can be completely and unambiguously put into words, is ipso facto realizable
by a suitable finite neural network... Thus the remaining problems are these
two. First, if ascertain modes of behavior can be effected by a finite neural
network, the question still remains whether the network can be realized within
a practical size. . . Second, the question arises whether every existing modes of
behavior can be put completely and unambiguously into words. . .

There is no doubt that any special phase of any conceivable form of behav­
ior can be described completely and unambiguously in words. This description

2McCulloch-Pitts had proven that their formal neural networks are equivalent to a Turing machine.

14 FRONTIERS OF EVOLUTIONARY COMPUTATION

may be lengthy, but it is always possible. . . It is, however, an important limita­
tion, that this applies only to every element separately, and it is far from clear
how it will apply to the entire syndrome of behavior.”

Von Neumann then discusses more specifically the concept of identifica­
tion of analogous geometrical entities. He takes as example the concept of a
triangle.

“There is no difficulty in describing how an organism might be able to iden­
tify any two rectilinear triangles, which appear on the retina, as belonging to
the category “triangle”. There is also no difficulty in adding to this, that numer­
ous other objects, will also be classified and identified as triangles — triangles
whose sides are curved, triangles whose sides are not full drawn . . . This, in
turn, however constitutes only a small fragment of the more general concept
of analogy. Nobody would attempt to describe and define within any practical
amount of space the general concept of analogy which dominates our interpre­
tation of vision. There is no basis for saying whether such an enterprise would
require thousands or millions or altogether impractical numbers of volumes.
Now it is perfectly possible that the simplest and only practical way actually
to say what constitutes a visual analogy consist in giving a description of the
connections of the visual brain.”
This discussion leads to the next problem.

Problem 8 [von Neumann]: Can an artificial neural network of practical
size be designed which gives similar results on visual problems as the human
brain?

Turing also used an “analysis” of the human brain in order to show that an
intelligent machine can be programmed in bits. He wrongly assumed that
the performance of the brain can be characterized by its number of neurons,
about He did not consider the interconnection structure as relevant. The
only problem left to him is to obtain this program of digits. Von Neumann
is much more careful. It is not the number of neurons which matters, but
their interconnection structure. Today we know that even the interconnection
structure is not sufficient to define uniquely how the neurons process the visual
input. We need to know the dynamic interaction of all the neurons involved.

8.	 LIMITS OF COMPUTING AND COMMON
SENSE

I consider von Neumann’s discussion about computability extremely impor­
tant. To summarize his research on problem 8: First, von Neumann has serious
doubts that the concept of visual analogy can be formulated in a finite number
of words. Second, even if it can be formulated in a finite number of words, it

15 Towards a Theory of Organisms and Evolving Automata

might be that this number is greater than a practical size. The practical size
is defined by the real world. Finiteness is not enough, we need practical time
and practical space in our real world. The finiteness of our world puts an upper
limit to the largest program which can be computed in our world. The actual
determination of the practical size turned out to be very difficult. Therefore
complexity theory is formulated without an actual limit. The set of problems
which can be computed is defined differently. It lead to the distinction of Ptime
and NPtime problems: given a problem whose solution can be verified in poly­
nomial time, is there an algorithm which actually finds such a solution (this
means in polynomial time according to the size of the input.)? If both condi­
tions can be proven, we have a problem from class Ptime or short P, if only
the first condition is fulfilled we have an NPtime or short NP problem. Poly­
nomial time means exponential time But if is very
large, even can be a very large number, meaning that the problem can­
not be computed in reasonable time. Nevertheless all problems in class P are
considered to be easy computable.

The question if P is equal or not equal to NP is one of the most important
open questions in complexity theory. The basic classification has been refined
in a number of ways. I just mention the inclusion

There have been several attempts to compute the practical size of space or
the limit of time, using the finiteness of the universe and the laws of physics.
Bremermann was one of the first to compute explicitly an upper limit.
Bremermann’s bound: No data processing system, whether artificial or liv­

ing, can process more than bits per second per gram of its mass.

Bremerman used this bound to calculate the total number of bits processed
by a hypothetical computer the size of the earth within a time period equal to
the estimated age of the earth. He computed bits. Then he calculated the
mass of the universe and obtained his bound. The above limit is small by math­
ematical means. I call any number between and Bremermann’s limit
((Mtihlenbein, 1996)). Programs which are finite, but require more than
steps for solving, do not finish in our universe. This implies that the mathemat­
ical class of finite programs has to be divided into those below Bremermann’s
limit and above the limit.

Von Neumann had serious doubts that complex behaviors like the concept
of visual analogy can be described by a reasonable number of words, meaning
that the description can be read and processed in a lifetime. Despite the warn­
ing issued by von Neumann there have been many attempts to put so much
knowledge into a machine that it could behave intelligently. The earliest pro­

16 FRONTIERS OF EVOLUTIONARY COMPUTATION

posal was made by (McCarthy, 1959), in his article “Programs with common
sense”3. The most recent effort is due to (Lenat, 1995). With a team of up to 10
people he tried to code “common sense” knowledge into a rule-based database.
After almost 10 years of effort, he was still far away from the goal, formulated
as the next problem.

Problem 9 [McCarthy,Lenat]: Is it possible to put so much knowledge into
a computer, that it is able to read a newspaper and improve itself from thereon ?

Looking back to von Neumann’s discussion, I believe that the answer to this
question is negative. I do not recommend to work on this problem, because
proving that something is impossible is very difficult. Instead I recommend a
sub-problem, formulated in the paper “Computers and Automata” by (Shan­
non, 1953).

Problem 10 [Shannon]: Can we organize machines into a hierarchy of lev­
els, as the brain appears to be organized, with the learning of the machine
gradually progressing up through the hierarchy?

Hierarchy is used by Shannon very informally. He means levels of abstrac­
tions. Each level might use a different calculus. The machine should be able
to do inference on a lower level after a limited number of examples. This fea­
ture should then be used for learning at the next level. Up to now there are no
convincing theories how to solve this problem.

9.	 A LOGICAL THEORY OF ADAPTIVE
SYSTEMS

In the paper “Outline for a Logical Theory of Adaptive Systems” (Holland,
1970b), tried to continue the scientific endeavor initiated by von Neumann.
Holland wrote: “The theory should enable to formulate key hypotheses and
problems particularly from molecular control and neurophysiology. The work
in theoretical genetics should find a natural place in the theory. At the same
time, rigorous methods of automata theory, particularly those parts concerned
with growing automata should be used.”

Thus Holland’s proposal is a very early attempt to work on the general prob­
lem 2, a constructive theory of the evolution of automata. It tries to combine
being, acting, developing, and evolving. This proposal so important that I will
describe it in detail. Holland’s emphasis (like von Neumann‘s) is foremost

3The discussion of the talk started with a remark of Bar-Hillel: “Dr. McCarthy’s paper belongs in the
Journal of Half-Baked Ideas, the creation of which was recently proposed by Dr. I.J. Good.”

17 Towards a Theory of Organisms and Evolving Automata

on theories and systems, he does not claim to solve grand challenge applica­
tions with the proposed methods. This can be tried after the theories have been
developed.

“Unrestricted adaptability (assuming nothing is known of the environment)
requires that the adaptive system be able initially to generate any of the pro­
grams of some universal computer. . . With each generation procedure we as­
sociate the population of programs it generates;. . . In the same vein we can
treat the environment as a population of problems.” It is especially the last
sentence which relates Holland’s ideas to Darwin’s. Now let us have a closer
look at Holland’s model. First, there is a finite set of generators (programs)

The generation procedure is defined in terms of this set and a
graph called a generation tree. Each permissible combination of generators
is represented by a vertex in the generation tree. Holland now distinguishes
between auxiliary vertices and main vertices. Each auxiliary vertex will be
labeled with two numbers, called the connections and disconnection probabil­
ities. This technique enables to create new connections or to delete existing
connections. Each main vertex is labeled with a variable referred to as density.
The interested reader is urged to read the original paper ((Holland, 1970b)).

Holland claims that from the generation tree and the transition equations of
any particular generation procedure, one can calculate the expected values of
the densities of the main vertices as a function of time. Holland writes: “From
the general form of the transition equations one can determine such things
as conditions under which the resulting generation procedures are stationary
processes.” Thus Holland already tried to formulate a stochastic theory of
program generation! This is an idea still waiting to be explored.

Holland’s next extension of the system is similar in spirit to von Neumann’s
self-reproducing automata. Holland introduces supervisory programs which
can construct templates which alter the probabilities of connections. Tem­
plates play the role of catalysts or enzymes. Thus program construction is also
influenced by some kind of “chemical reactions.” The above process is not
yet adaptive. Adaptation needs an environment posing problems. Therefore
Holland proposes that the environment is treated as a population of problems.
These problems are presented by means of a finite set of initial statements and
an algorithm for checking whether a purported solution of the problem is in
fact a solution. “When we consider the interaction of an adaptive system with
its environment we come very soon to questions of partial solutions, subgoals
etc. The simplest cases occur when there is an a priori estimate of the nature of
the partial solution and a measure of the closeness of its approach to the final
solution.”

Holland then observes that a rich environment is crucial for the adaptation.
“Mathematical characterization of classes of rich environments relative to a
given class of adaptive systems constitutes one of the major questions in the

18 FRONTIERS OF EVOLUTIONARY COMPUTATION

study of adaptive systems. . . . An adaptive system could enhance its rate of
adaptation by somehow enriching the environment. Such enrichment occurs if
the adaptive system can generate subproblems or subgoals whose solution will
contribute to the solution of the given problems of the environment.”

It is very interesting to note that Holland distinguished three kinds of pro­
grams – supervisory programs, templates, and programs for the problem solu­
tion. The supervisory programs use a probabilistic generation tree to generate
programs, the templates are used as catalyst to “skew” the generation process.
Holland perceived a hierarchy of programs ((Holland, 1970a)):

1	 productive systems – the generator system is able to produce other gen­
erators

2	 autocatalytic systems – the generator system produces generators which
are used in the construction

3	 self-duplicating systems – the generator system produces duplicates of
itself

4	 general adaptive systems – has still to be defined

“The beginning of such a definition (of adaptive systems) lies in the fol­
lowing consideration: with the help of concepts such as autocatalytic and self-
duplicating generator systems it is possible to define such concepts as steady-
state equilibria and homeostasis for embedded automata… If the generator sys­
tem for such an automaton has a hierarchical structure, then a small change in
structure produces a small change in proportion to the “position” of the change
in the hierarchy… By making changes first at the highest level and then at pro­
gressively lower levels of the hierarchy, it should be possible to narrow down
rather quickly to any automaton in this category having some initially pre­
scribed behavior.”

I believe that Holland’s very first proposal is a very good starting point for
future research. It puts forward many ideas not yet contained in current re­
search. Holland’s proposal to use stochastic systems, their steady-state equi­
libria and homeostasis is in my opinion still a very promising approach for a
constructive evolution theory of automata. Holland itself never implemented
his general model. It remained a theoretical design. Therefore the next prob­
lem is still open.

Problem 11 [Holland]: Try to implement Holland’s model and prove its
usability by a convincing application.

After working about eight years on this theory Holland turned to a simpler
evolution model, in fact the Modern Synthesis mentioned before. The environ­
ment is hidden in a fitness function. Evolution reduces then to an optimization

19 Towards a Theory of Organisms and Evolving Automata

problem. This research lead to genetic algorithms. Holland believed that his
genetic algorithms have an almost optimal adaptation rate taking into account
the information which is available ((Holland, 1973; Holland, John H., 1975)).
But we will prove in Section 13 that it is our Boltzmann distribution algorithm
which fulfills his criterion for optimality!

Nobel laureate Gell-Man criticized at the Santa Fe institute that genetic al­
gorithms are unsuited to investigate self-organized evolution, because they use
a simple fitness function for a genotype. Therefore (Holland, John H., 1975),
later developed Echo. Unfortunately Echo lacks the theoretical foundation of
Holland’s first proposal. Therefore I will not discuss it in this paper.

10. THE FOR CREATING
ARTIFICIAL INTELLIGENCE

In another chain of reasoning we might ask ourselves: Maybe there is a way
of creating human like intelligence without copying nature too much. Instead
of starting with the Universal Turing Machine, we can start with the calculus
developed by Church and later called the It was implemented as
part of the LISP language by John McCarthy. The has the same
computational power as the Turing machine, but it is based on substitution.
LISP is an interpretative language, thus the LISP environment can be seen as
a very complex self-reproducing automaton. For the next problem I recom­
mend to read Minsky’s survey “Steps toward artificial intelligence” ((Minsky,
1961)). I only cite: “It is my conviction that no scheme for learning, or for
pattern recognition, can have very general utility unless there are provisions
for recursive, or at least hierarchical, use of previous results. We cannot expect
a learning system to come to handle very hard problems without preparing it
with a reasonable graded sequence of problems of growing difficulty. The first
problem must be one which can be solved in reasonable time with the initial
resources. The next must be capable of solution in reasonable time by using
reasonably simple and accessible combinations of methods developed in the
first, and so on.”

In my opinion we have even to go a step further. There seems to be no big
gain if the set of problems is hand crafted by a human. The program itself
should create some of the sub-problems. We now have to formulate a task for
this model. I rephrase a question from (Shannon, 1953):

Problem 12 [Shannon]: Can we program a digital computer so that even­
tually 99 percent of the orders it follows are written by the computer itself and
which solves difficult problems (e.g performs comparable to the human eye or
understands the English language?)

20 FRONTIERS OF EVOLUTIONARY COMPUTATION

I added the two applications in brackets, because Shannon forgot in his ques­
tion to specify the applications to be solved. But without an application the
above problem can easily be solved by a program which randomly generates
instructions.

LISP was the first language used by Koza for Genetic Programming. But
within the framework of our discussion, Koza’s model is too restricted. It
works only for one problem at a time. For each problem we need examples
describing the input-output relations of the problem to be solved. The pop­
ulation of solutions is changed according to the mechanisms used by genetic
algorithms.

11. PROBABILISTIC LOGIC
All problems up to now have been formulated in the very early days of

electronic computers. For the early researcher a possible solution of these
problems was either a theory or a successful application in pattern recognition
or language understanding. Furthermore, in order to develop and understand
the model, either classical mathematics or abstract automata defined by a
flexible language have been used. Several times stochastic systems have been
proposed for the mathematical analysis. Von Neumann explicitly expressed
the feeling, having in mind artificial automata as model organisms, that a new
theory is urgently needed ((von Neumann, 1954)): “This new system of formal
logic will move closer to another discipline which has been little linked in the
past with logic. This is thermodynamics, primarily in the form it was received
from Boltzmann, and is that part of theoretical physics which comes nearest in
some of its aspects to manipulating and measuring information. Its techniques
are much more analytical than combinatorial.”

Von Neumann’s prediction has become true. Probability has been extended
to probabilistic logic. But first we will describe two early attempts in this area.

11.1	 VON NEUMANN’S PROBABILISTIC
LOGICS

To my knowledge von Neumann was the first to use the term probabilistic
logic in his paper “Probabilistic Logics and the Synthesis of Reliable Organ­
isms from Unreliable Components” (von Neumann, 1956). I shortly describe
his model.

“With every basic organ is associated a number such that in any operation
the organ will fail to function correctly ... Suppose the organ receives a stim­
ulation at time t and no later ones. Let the probability that the organ is still
excited after s cycles be denoted by Then the recursion formula

21 Towards a Theory of Organisms and Evolving Automata

is valid.” It is easy to show that the equation has the solution

Therefore von Neumann concludes that for meaning
in von Neumann’s opinion that the component functions randomly. But let us
now investigate the problem in a precisely defined automaton setting. The au­
tomaton has two states {0,1}. At each step the automaton changes with proba­
bility
we would see that the automaton changes states only after

 from the given state to the opposite state. If we observe the automaton,
steps on the

average. Such a behavior is very different from that of a random automaton,
which changes states at each step with probability 0.5. But both automata have
a limit distribution with The difference between the distributions
becomes apparent if joint distributions like are considered, where

denotes the state of the automaton at step
Von Neumann’s analysis did not capture the reliability problem. Therefore

his “solution” to the problem of unreliable components did not have any practi­
cal value. Von Neumann approached probabilistic logic from the most difficult
point of view, namely the stochastic view. This means to define logic with time
dependent dynamics! It is much easier to define probabilistic logic from the
logic point of view, without time and dynamics. This is discussed in the next
sections.

11.2	 THE CONDITIONAL PROBABILITY
COMPUTER

The importance of conditional probabilities for the classification of objects
given a vector of features was first recognized by (Uttley, 1959). In its simplest
form Uttley’s conditional probability computer consists of n binary input units

and m output units

Definition 1 Let denote the probability of x. Then
defines the univariate marginal distributions of variable

Let be a sub-vector of x. Then the marginal distribution is defined as
Let y, z be disjoint sub-vectors of x. Then con­

ditional probabilities are defined as for

Given an input vector of features x, the conditional computer looks for

For the computation of the maximum, Uttley proposed to compute all pos­
sible conditional probabilities for a learning set. As Uttley observed,

22 FRONTIERS OF EVOLUTIONARY COMPUTATION

a conditional probability computer would allow to compute all logical infer­
ences, if we identify “from y follows z” by the condition The
drawback of this proposal is that it needs units.Thus the computation is
exponential in time and space.

There have been several attempts to use less units and also to deal with in­
complete input. Most notably are the early efforts of Minsky and Selfridge, and
independently by Papert (both papers have been published in (Cherry, 1961)).
In both papers the assumption is made that all are independent. This is
very unrealistic. It needed a long time to solve the computation problem and
the incomplete input problem.

11.3 MODERN PROBABILISTIC LOGIC

Modern probabilistic logics can be seen as a candidate for von Neumann’s
new system of formal logic. It connects probability theory with logic by as­
signing probabilities to clauses.

Definition 2 A probabilistic statement that z is true given y is a conditional
probability with “truth” value

Thus probabilistic logic is just probability theory with a different interpre­
tation. Let be the number of binary concepts. In addition let a number of
clauses be specified. The specifications are called the constraints.

For any specification we have a set of probability models (P-models) which
can either be empty (i.e the constraints violate the laws of probability), con­
tain a single P-model, or contain a number of P-models (the specification is
incomplete.) If the P-model is unique, we can compute the probability of an
arbitrary prepositional sentence by summing up probabilities. The probability
of a conditional statement can be obtained by dividing the probability

by the probability
But unique P-models are unrealistic. The specification has to set all of the

variables defining the distribution. Consequently, for incomplete specifi­
cations the missing information must be added by some automatic completion
procedure. This is achieved by the maximum entropy principle. The entropy
of a distribution is defined by

The maximum entropy principle formulates the principle of indifference. If
no constraints are specified, the uniform random distribution is assumed. The
principle has been first proposed by (Jaynes, 1957).

23 Towards a Theory of Organisms and Evolving Automata

Maximum entropy principle: Find the maximal entropy distribution for
which satisfies the given marginals.

This principle has a long history in physics and probabilistic logic. The
interested reader is referred to (Jaynes, 1957). The following theorem has been
proven by ((Cover and Thomas, 1989)).

Theorem 3 If the given constraints are consistent, then there exists a unique
distribution of maximum entropy.

Consistent means that the marginal distributions derived from the constraints
fulfill all the constraints which can be derived from the laws of probability the­
ory. The most popular algorithm to compute the maximum entropy distribution
is called iterative proportional fitting. To give the reader a flavor of the theory
we present a simple example.

Example: Given the three expressions ’having a full-time job’ ’working in
a technical domain’ and ’male’ the following information is specified

Then the maximum entropy solution gives, for instance
(see 4).

The maximum entropy principle solves the incomplete data problem. But
iterative proportional fitting scales exponentially in the number of variables.
Thus a simpler technique has to be found. Such a method has recently been
discovered. It uses the principle of conditional independence. Its graphical
representation is called a graphical model. For our discussion the following
definition is sufficient.

Definition 4 A graphical model is a graph G, where two variables are con­
nected by an edge if they appear together in one constraint.

The new method tries to find a factorization of the distribution. There is
lots of literature available how this can be done, we just mention (Lauritzen,
1996). The algorithm computes cliques and generates a junction tree J. A
junction tree is an undirected tree the nodes of which are clusters of variables.
The clusters satisfy the junction property: For any two clusters and and any
cluster on the unique path between and in the junction tree the relation

4Whether this very precise value is justified by logical arguments is still a subject of hot discussions.

24 FRONTIERS OF EVOLUTIONARY COMPUTATION

is true. The edges between the clusters are labeled with the intersection of the
adjacent clusters; we call these labels separating sets or separators Then
the probability can be factored into

The modified iterative proportional fitting algorithm uses only the computed
clusters of the factorization as marginals. This algorithm produces exactly the
same result as the standard iterative proportional fitting. If all factors of the
factorization have a number of variables which is independent of the global
number then the algorithm is polynomial.

The crucial question remains: Which graphical models lead to bounded fac­
torizations? We give here just one negative result ((Mühlenbein and Mahnig,
2003)):

Theorem 5 Graphical model models which are 2-D grids lead to factoriza­
tions which have at least one factor with variables. Thus for these prob­
lems the computational amount to compute the maximum entropy distribution
is still exponential.

12.	 STOCHASTIC ANALYSIS OF CELLULAR
AUTOMATA

Another new application of stochastic systems and probabilistic logic are
cellular automata. The stochastic analysis of cellular automata was already ad­
vocated by (Wolfram, 1994), in his paper “Twenty Problems in the Theory of
Cellular Automata”. The next problem combines Wolfram’s problems ten and
eleven.

Problem 13 [Wolfram]: What is the correspondence between cellular au­
tomata and stochastic systems, and how are cellular automata affected by noise
and other imperfections ?

We have worked on this problem. In order to provide the reader with
more detailed information, I will discuss a simple example. It is taken from
((Mühlenbein and Höns, 2002)).

12.1 THE NONLINEAR VOTER MODEL

We consider a model of two species (or two opinions). For the spatial dis­
tribution we assume a one-dimensional stochastic cellular automaton (SCA)
defined by a circle of cells. Each cell is occupied by one individual, thus
each cell is characterized by a discrete value We set

25 Towards a Theory of Organisms and Evolving Automata

and The state of cell at time is defined by the states of cells
at time The state transitions of the voter model depend only

on This class of automata is called totalistic.
For the stochastic voter model the transitions are defined as follows.

denotes the transition probability given is a small
stochastic disturbance parameter. The model is defined by If one
speaks of positive frequency dependent invasion. This model is also called the
majority vote model, because the individuals join the opinion of the majority
in the neighborhood. For the model is called a negative frequency
dependent invasion process. In this case the minority opinion has more weight.
The deterministic cellular automata are given by and The voter
model has been intensively investigated by micro simulations.

We will first analyze the voter model by the theory of Markov chains. Let
denote a vector, We use the

following conventions. Capital letters denote the names of variables, lower
case letters assignments. The distinction between the name of a variable and
an assignment is essential for the definition of marginal distributions. When
there cannot be a confusion between name or assignment, we will use lower
case letters and abbreviations. For notational simplicity we will assume binary
variables
The time evolution of the distribution is given for one step by the equation

defines a matrix.

Definition 6 The stochastic process is a Markov process if is indepen­
dent of

The stochastic voter model is a Markov process. For a Markov process we
have

For we have Therefore the theorem of Frobenius-
Perron can be applied. The largest eigenvalue of the matrix is 1. Its unique
eigenvector defines the stationary distribution. Thus we have the following
theorem.

26 FRONTIERS OF EVOLUTIONARY COMPUTATION

Theorem 7 The stochastic voter model with has a unique limit
distribution. It is given by the left eigenvector belonging to the eigenvalue

It is numerically impossible to analyze a large cellular automaton by stan­
dard Markov techniques. It takes an exponential amount of computation to
compute the exact stationary distribution.

We propose a different approach. We approximate the distribution
by distributions using a small number of parameters. For this approximation
we use the theory of graphical models mentioned before.

12.2	 STOCHASTIC ANALYSIS OF ONE
DIMENSIONAL SCA

For notational convenience we set and We
will now derive difference equations involving marginal distributions with a
few number of parameters. We obtain from the definition of the voter model
for the von Neumann neighborhood in 1-D

gives the probability of cell i containing a 1. The conditional distribu­
tion is uniquely defined by the transitions of the cellular
automaton, in our case by the voter model with parameters and But on the
right side tri-variate marginals appear. For these we obtain

Thus now marginal distribution of size 5 enter. In order to stop this expansion
we approximate the marginal distributions of order 5 by marginal distributions
of order 3. From the definition of the SCA we obtain

From the theory of graphical models we obtain the approximation

Inserting the last two equations into equation (1.6) gives the difference equa­
tions for the tri-variate marginal distributions. The approximations have to

27 Towards a Theory of Organisms and Evolving Automata

fulfill constraints derived from probability theory.

In the same manner approximations of different precision can be obtained.
We just discuss the simplest approximation, using uni-variate marginal distri­
butions. Here equation (1.6) is approximated by

The approximation by univariate marginal distributions leads to differ­
ence equations only, but these difference equations are nonlinear. It seems
very unlikely that analytical solutions of these equations can be obtained. For
spatially homogeneous problems we have In this case the
probabilities do not depend on the locus of the cell. This is the mean-field limit
known from statistical physics ((Opper and Saad, D., editors, 2001)). With

we obtain the mean-field equation

For and the equation has stable fix-points at and
For the equation has a stable attractor at Thus the

mean-field limit approximation indicates a bifurcation for This inter­
pretation is tempting, but not quite correct. The relation between the attractors
of the SCA and the fix-points of equation (1.9) is much more complicated
((Mühlenbein and Höns, 2002)).

The approximation of 2-D spatial distributions is much more difficult than
the approximation of 1-D automata. Here the junction tree algorithm is needed.
The interested reader is referred to ((Mühlenbein and Höns, 2002)).

13.	 STOCHASTIC ANALYSIS OF
EVOLUTIONARY ALGORITHMS

The broad applicability of the new developments in probability theory can
be demonstrated by another example, namely evolutionary algorithms
(Mühlenbein and Mahnig, 2000). This application is easier than the analysis
of cellular automata. The distribution remains focused because of selection.

Let a function be given. We consider the optimization prob­
lem

28 FRONTIERS OF EVOLUTIONARY COMPUTATION

For the solution Holland proposed in 1973 an algorithm called genetic al­
gorithm ((Holland, John H., 1975)). The following discussion is taken from (
(Mühlenbein and Mahnig, 2003)).

Genetic algorithms are defined on a microscopic level. Given two strings, a
new point is generated by recombination/crossover. A stochastic analysis of a
genetic algorithm requires the computation of a recurrence equation

Here x and denote genotypes (binary vectors), denotes the
probability for a transition from to x at generation Because of selection
the transition probabilities are time dependent.

(Vose, 1999), has derived such an equation for the Simple Genetic Algo­
rithm with proportionate selection, crossover, and mutation. The computation
of the crossover probabilities are especially difficult. Since crossover operates
on two arbitrary strings x and y of the selected population, one has to use the
joint distribution in equation (1.11). But even for the binary case, the
transfer matrix is of size It is extremely difficult to analyze
the distribution using this general equation.

But let us proceed further. Equation (1.11) should not be the end result of a
stochastic analysis, but just the beginning. We will concentrate on distributions
which are defined by a small number of parameters or can be approximated by
distributions with a small set of parameters. Since we treat the marginal distri­
butions as deterministic variables, the analysis is valid for infinite populations
only. Fluctuations arising by virtue of finite populations can be investigated in
principle, but it is extremely difficult. Due to of the sampling theory in statis­
tics our analysis can be seen as the limit case of large finite populations where
the size goes to infinity.

A good candidate for optimization using a search distribution is the Boltz­
mann distribution.

Definition 8 For define the Boltzmann distribution of a function
as

where is the partition function. To simplify the notation and/or can
be omitted.

The Boltzmann distribution is usually defined as The term
is called the energy and the temperature. The Boltzmann distribution
is suited for optimization because it concentrates with increasing around the
global optima of the function. In theory, if it were possible to sample efficiently
from this distribution for arbitrary optimization would be an easy task.

29 Towards a Theory of Organisms and Evolving Automata

13.1	 BOLTZMANN SELECTION

Our proposed algorithm incrementally computes the Boltzmann distribution
by using Boltzmann selection.

Definition 9 Given a distribution and a selection parameter Boltzmann
selection calculates the distribution of the selected points according to

We can now define the BEDA (Boltzmann Estimated Distribution Algo­
rithm). It can easily be proven that BEDA converges to the set of all global
optima if ((Mühlenbein and Mahnig, 2002b)). BEDA is a
conceptional algorithm, because the calculation of the distribution requires a
sum over exponentially many terms. We next transform BEDA into a practical
algorithm. This means to reduce the number of parameters of the distribution
and to compute an adaptive schedule for

13.2	 FACTORIZATION OF THE
DISTRIBUTION

In this section the factorization method introduced for graphical models is
applied.

Definition 10 Let be index sets, Let be func­
tions depending only on the variables with Then

30 FRONTIERS OF EVOLUTIONARY COMPUTATION

is an additive decomposition of the fitness function

From the additive decomposition we construct a graphical model by con­
necting those variables which are contained in the same sub-function. This
definition is identical to the graphical model earlier introduced in probabilistic
logic. In addition we need the following definitions:

Definition 11 Given we define for the sets and

We set

In the theory of decomposable graphs, are called histories, residuals and
separators ((Lauritzen, 1996)). (Mühlenbein et al., 1999) have proven the

following theorem.

Theorem 12 (Factorization Theorem) Let be a Boltzmann distribu­
tion with

and be an additive decomposition. If

then,

The constraint defined as equation (1.18) is called the running intersection
property. This severe assumption is identical to the junction property defined
in equation (1.2).

With the help of the factorization theorem, we can turn the conceptional al­
gorithm BEDA into FDA, the Factorized Distribution Algorithm. If the condi­
tions of the factorization theorem are fulfilled, the convergence proof of BEDA
is valid for FDA also. FDA can in principle be used with any selection scheme,
but then the convergence proof is no longer valid. Therefore we believe that
Boltzmann selection is an essential part in using the FDA.

Since FDA uses finite samples of points to estimate the conditional prob­
abilities, convergence to the optimum will depend on the size of the samples
(the population size). FDA has experimentally proven to be very successful on

31 Towards a Theory of Organisms and Evolving Automata

a number of functions where standard genetic algorithms fail to find the global
optimum.

For the interested reader we give a short overview of additional work. The
scaling behavior for various test functions as well as the computation of the
graphical model by sampling data instead of using the structure of the fitness
function in investigated in (Mühlenbein and Mahnig, 1999). An early survey
can be found in (Mühlenbein and Mahnig, 2000). A large application is solved
in (Mühlenbein and Mahnig, 2002a). For a recent survey the reader is referred
to (Mühlenbein and Mahnig, 2003).

13.3	 HOLLAND’S SCHEMA ANALYSIS AND
THE BOLTZMANN DISTRIBUTION

We now turn to the very first analysis of genetic algorithms made by (Hol­
land, John H., 1975). We will introduce here Holland’s terminology. But first
we will show that this terminology was unnecessary.

Remark: Marginal distributions define schemata For the researchers working
on the theory of genetic algorithm it is important to mention that marginal dis­
tributions are equivalent to schema probabilities introduced in (Holland, John
H., 1975). We just give an example for Let define
a schema. Then the probability of the instances of schema in the population

is by definition equal to the marginal distribution
Thus Holland’s schema analysis is nothing else than a stochastic analysis in
the space of marginal distributions. We prefer to use the notation common in
probability theory. In fact, one of the main reasons that schema theory did not
come very far is the imprecise terminology. In our stochastic analysis con­

32 FRONTIERS OF EVOLUTIONARY COMPUTATION

ditional probabilities play an essential role. But the concept of conditional
schema probabilities has not yet entered the traditional schema theory.

Thus in Holland’s terminology defines a schema and its probabil­
ity. This probability is in our notation the marginal distribution Hol­
land derived the following conjecture about a good population based search
algorithm.

((Holland, John H., 1975),p.88): Each (schema) represented in (the cur­
rent population) should increase (or decrease) in a rate proportional to
its “observed” “usefulness” (average fitness of schema minus
average fitness of the population)

Holland claimed that the simple genetic algorithm behaves according to the
above equation. This is not true. Instead we have the surprising result:

with
fulfills Holland’s equation (1.20).

Theorem 13 The Boltzmann distribution

Proof: Taking the derivative we easily obtain

Let define a schema, the corresponding marginal distribution. Then

Thus the Boltzmann distribution with the fixed annealing schedule
fulfills Holland’s equation. According to Holland’s analysis F D A with us
schedule should be an almost optimal algorithm!

In addition, our factorization theorem can be seen as a mathematically com­
plete schema theorem. It tells which schemata are necessary to generate the
whole distribution. The usual schema theorems describe only the evolution of
single schemata, but not how the distribution can be generated.

I hope this short discussion demonstrates that we now have a solid theory of
genetic algorithms. But we are still far away from Holland’s “logical theory of
adaptive systems.”

33 Towards a Theory of Organisms and Evolving Automata

14.	 STOCHASTIC ANALYSIS AND

SYMBOLIC REPRESENTATIONS

We will use the stochastic analysis on more and more complex models.
Finally we hope to analyze Holland’s general model (problem 11) with the
stochastic techniques presented above. Cellular automata can be seen as spe­
cial cases of Holland’s model. All automata perform in the same way, that is
we have just one generator. Instead of a tree we have a one or two dimensional
space. Selection can be modeled between neighboring automata. The reader
has noticed that the stochastic analysis of cellular automata is already fairly
difficult. This indicates that the analysis of Holland’s model will be really
difficult.

But in order to make progress in creating more intelligent machines, still an­
other big step has to be done. In the paper we mainly advocated the probability
calculus. With probabilistic logic a first connection is made between symbolic
propositions and quantitative variables. This connection has to be extended. It
is apparent that ultimately we have to combine stochastic analysis with more
general symbolic representations. It might be that cellular automata can be
used as a first test. This was already proposed by (Wolfram, 1994).

Problem 14 [Wolfram]: What higher-level descriptions of information pro­
cessing in cellular automata can be given?

“One approach is statistical in nature. It consists in devising and describing
attractors for the global evolution of cellular automata. All initial configura­
tions in a particular basin of attraction may be thought of as instances of some
pattern, so that their evolution towards the same attractor may be considered as
a recognition of the pattern.

Another approach is to use symbolic representations for various attributes
or components of cellular automaton configurations . . . perhaps data could be
represented by an object like a graph, on which transformations can be per­
formed in parallel . . . it seems likely that a radically new approach is needed.”
((Wolfram, 1994)). To my knowledge Wolfram did not publish any proposal
how to solve his problem.

15.	 CONCLUSION

In my opinion, the big problems in the theory of organisms and artificial
automata have been recognized from the very beginning. In biology it is con­
nected to Darwin, Waddington and Mayr, in electronic computation to von
Neumann, Turing, Shannon. Some of the proposals for solving the challeng­
ing problems in computation have been far too optimistic, other proposals have
not been implemented because the implementation was too difficult. There­

34 FRONTIERS OF EVOLUTIONARY COMPUTATION

fore subsequent developments have lead to a fragmentation and specialization
of research. This is true for biology as well as for computer science. Today
evolutionary computation is divided into genetic algorithms, evolutionary al­
gorithms, genetic programming, artificial life, and evolvable hardware – not to
mention more specialized models like ant colony optimization, memetic algo­
rithms, or classifier systems. But each model itself is too simple to solve the
problems presented.

The challenging problems faded away, less difficult problems and simpler
models have come into the center of attention. An exception is the problem
of all problems: “Can we produce artificial intelligence comparable to or even
surpassing human intelligence?” Researchers have often been too optimistic
about the time scale to solve this problem. Whereas in the 60’s many re-
searcher’s predicted a solution in about 10 years, the time scale has now been
increased to about 50 years! I am very skeptical that the above goal can be
reached. But in my opinion there will be no progress at all, unless some of the
problems presented here will have been solved during this 50 years.

REFERENCES

Burns, A. W. (1970). Essays on Cellular Automata. University of Illinois Press,
Urbana.

Cherry, C. (1961). Information Theory: Fourth London Symposium. Butter-
worth, London.

Cover, T. M. and Thomas, J. A. (1989). Elements of Information Theory. Wiley,
New York.

Darwin, C. (1859). The Origins of Species by Means of Natural Selection. Pen­
guin Classics, London.

Dawkins, R. (1989). The Selfish Gene. Oxford University Press, Oxford. (Sec­
ond Edition).

Griffiths, P. E. (2002). The philosophy of molecular and developmental biol­
ogy. In Blackwell Guide to Philosophy of Science. Blackwell Publishers.

Holland, J. H. (1970a). Iterative circuit computers. In Burns, A. W., editor,
Essays on Cellular Automata, pages 277–296. University of Illinois Press,
Urbana.

Holland, J. H. (1970b). Outline for a logical theory of adaptive systems. In
Burns, A. W., editor, Essays on Cellular Automata, pages 296–319. Univer­
sity of Illinois Press, Urbana.

Holland, J. H. (1973). Genetic algorithms and the optimal allocation of trials.
Siam Journal on Computing, 2(2): 88–105.

Holland, J. H. (1975). Adaptation in Natural and Artificial Systems: An Intro­
ductory Analysis with Applications to Biology, Control, and Artificial In­

35 REFERENCES

telligence. University of Michigan Press, Ann Arbor, MI. Second edition.
Cambridge, MA. The MIT Press 1992.

Jaynes, E. T. (1957). Information theory and statistical mechanics. Phys. Re­
view, 6:620–643.

Lauritzen, S. L. (1996). Graphical Models. Clarendon Press, Oxford.
Lenat, D. B. (1995). Cyc: A large-scale investment in knowledge infrastruc­

ture. Comm. of the ACM, 38:924–948.
McCarthy, J. (1959). Programs with common sense. In Mechanisation of

Thought Processes, pages 75–84. Her Majesty’s Stationery Office, London.
McMullin, B. (2001). John von Neumann and the evolutionary growth of com­

plexity: Looking backward, looking forward... Artificial Life, 6:347–361.
Minsky, M. (1961). Steps toward artificial intelligence. Proc. of IRE, 49:8–30.
Mühlenbein, H. (1991a). Darwin’s continent cycle theory and its simulation by

the Prisoner’s Dilemma. Complex Systems, 5:459–478.
Mühlenbein, H. (1991b). Evolution in time and space - the parallel genetic

algorithm. In Rawlins, G., editor, Foundations of Genetic Algorithms, pages
316–337. Morgan Kaufmann, San Mateo.

Mühlenbein, H. (1996). Algorithms, data and hypothese: Learning in open
worlds. In Mahler, G., May, V., and Schreiber, M., editors, Molecular Elec­
tronics: Properties, Dynamics, and Applications, pages 5–22. Marcel Dekker,
New York.

Mühlenbein, H. and Höns, R. (2002). Stochastic analysis of cellular automata
with application to the voter model. Advances in Complex Systems, 5((2-
3)):301–337.

Mühlenbein, H. and Mahnig, T. (1999). FDA – a scalable evolutionary algo­
rithm for the optimization of additively decomposed functions. Evolutionary
Computation, 7(4):353–376.

Mühlenbein, H. and Mahnig, T. (2000). Evolutionary algorithms: From recom­
bination to search distributions. In Kallel, L., Naudts, B., and Rogers, A., ed­
itors, Theoretical Aspects of Evolutionary Computing, Natural Computing,
pages 137–176. Springer Verlag, Berlin.

Mühlenbein, H. and Mahnig, T. (2002a). Evolutionary optimization and the
estimation of search distributions with applications to graph bipartitioning.
Journal of Approximate Reasoning, 31(3):157–192.

Mühlenbein, H. and Mahnig, T. (2002b). Mathematical analysis of evolution­
ary algorithms. In Ribeiro, C. C. and Hansen, P., editors, Essays and Surveys
in Metaheuristics, Operations Research/Computer Science Interface, pages
525–556. Kluwer Academic Publisher, Norwell.

Mühlenbein, H. and Mahnig, T. (2003). Evolutionary algorithms and the Boltz­
mann distribution. In De Jong, K., Poli, R., and Rowe, J., editors, Foun­
dations of Genetic Algorithms 7. Morgan Kaufmann Publishers, San Fran­
cisco.

36 FRONTIERS OF EVOLUTIONARY COMPUTATION

Mühlenbein, H., Mahnig, T., and Ochoa, A. R. (1999). Schemata, distributions
and graphical models in evolutionary optimization. Journal of Heuristics,
5(2):215–247.

Opper, M. and Saad, D. (editors) (2001). Advanced Mean Field Methods. MIT
Press, Cambridge.

Oyama, S. (2000). Evolutions’s Eye. Duke University Press, Durham.
Parisi, D. and Ugolini, M. (2002). Living in enclaves. Complexity, 7:21–27.
Rapaport, A. (1970). Modern systems theory – an outlook for coping with

change. General Systems, XV:15–25.
Shannon, C. E. (1953). Computers and automata. Proc. of IRE, 41:1234–1241.
Smith, J. M. and Szathmary, E. (1995). The Major Transitions in Evolution.

W.H. Freeman, Oxford.
Turing, A. M. (1950). Computing machinery and intelligence. Mind, 59:433–

460.
Uttley, A. M. (1959). Conditional probability computing in a nervous system.

In Mechanisation of Thought Processes, pages 19–152. Her Majesty’s Sta­
tionery Office, London.

von Neumann, J. (1954). The general and logical theory of automata. In The
world of mathematics, pages 2070–2101. Simon and Schuster, New York.

von Neumann, J. (1956). Probabilistic logics and the synthesis of reliable or­
gans from unreliable components. Annals of Mathematics Studies, 34:43–
99.

Vose, M. D. (1999). The Simple Genetic Algorithm: Foundations and Theory.
MIT Press, Cambridge.

Whitehead, A. N. (1948). Science and the Modern World. Pelican Books, New
York.

Wolfram, S. (1994). Cellular Automata and Complexity. Addison-Wesley, Read­
ing.

Wright, S.	 (1937). The distribution of gene frequencies in populations. Proc.
Nat. Acad. Sci., 24:253–259.

Chapter 2

TWO GRAND CHALLENGES FOR EC

Unification and Expansion

Kenneth De Jong
Computer Science Department

George Mason University

Fairfax, VA 22030

kdejong@gmu.edu

Abstract The field of evolutionary computation has developed and matured significantly
over the past 40 years. As with other disciplines attempting to understand com­
plex adaptive systems, this progress has raised as many new and interesting
questions as it has answered. In this chapter I describe some of the key open
questions by organizing them in the form of two grand challenges: unification
and expansion.

Keywords: Evolutionary computation, evolutionary algorithms, open research issues, grand
challenges.

1. INTRODUCTION

Although more than 40 years old, the field of evolutionary computation (EC)
continues to grow at a rapid pace. This growth, in turn, places a certain amount
of healthy “stress” on the field as current understanding and traditional ap­
proaches are stretched to the limit by challenging new problems and new areas
of application.

So, an occasion like this is an opportunity to reflect on where the field is
and the challenges that lie ahead. In the following sections I attempt to do
so by first noting the important historical events that have strongly influenced
the field as we see it today, and then describing some of the key open ques­
tions by organizing them in the form of two grand challenges: unification and
expansion.

38 FRONTIERS OF EVOLUTIONARY COMPUTATION

2. HISTORICAL DIVERSITY

Although one can certainly find earlier activities, I believe that there is
general agreement that the 1960s was a key historical period that has signifi­
cantly shaped the field of evolutionary computation. During that period several
groups around the world including Rechenberg and Schwefel at the Technical
University of Berlin (Rechenberg, 1964), Fogel, et al. at General Dynamics
in San Diego (Fogel et al., 1966), and Holland at the University of Michi­
gan in Ann Arbor (Holland, 1962) were captivated by the potential of taking
early simulation models of evolution a step further and harnessing these evo­
lutionary processes in computational forms that could be used for complex
computer-based problem solving.

Rechenberg and Schwefel were motivated by the need to solve difficult en­
gineering optimization problems and came up with an approach they called
evolutionsstrategie, or evolution strategies (ESs). Fogel and his colleagues
sought to use evolutionary techniques to bypass the bottleneck of building in­
telligent agents by hand, which they named evolutionary programming (EP).
In Holland’s case, the motivation was the design and implementation of robust
adaptive systems, capable of dealing with an uncertain and changing environ­
ment, and lead to the development of genetic algorithms (GAs).

GAs owe their name to an early emphasis on representing and manipulating
individuals in terms of their genetic makeup rather than using a phenotypic
representation. Much of the early work used a universal internal representation
involving fixed-length binary strings with “genetic” operators such as mutation
and crossover defined to operate in a domain-independent fashion at this level
without any knowledge of the phenotypic interpretation of the strings (Holland,
1975; De Jong, 1975).

By contrast, evolution strategies (ES) and evolutionary programming (EP)
were developed initially using more problem-specific “phenotype” representa­
tions. In the case of ES the focus was on building systems capable of solv­
ing difficult real-valued parameter optimization problems (Schwefel, 1981).
The “natural” representation was a vector of real-valued “genes” that was ma­
nipulated primarily by mutation operators designed to perturb the real-valued
parameters in useful ways. The early work in EP centered on systems for
evolving finite state machines capable of responding to environmental stim­
uli, and developing operators (primarily mutation) for effecting structural and
behavioral change over time (Fogel et al., 1966).

These early beginnings have had an enormous influence on the field. In fact
an indication of their inspirational power is that these historical labels are no
longer all that useful in describing the enormous variety of current activities
on the field. GA practitioners are seldom constrained to universal fixed-length
binary implementations. ES practitioners have incorporated recombination op­

39 EC Challenges: Unification & Expansion

erators into their systems. EP is used for much more than just the evolution of
finite state machines. Entire new subareas such as genetic programming (Koza,
1992) have developed, and the literature is filled with provocative new terms
and ideas such as “messy GAs” (Goldberg, 1991).

As a consequence, the field today is highly diversified with many new and
exciting application areas, but at the same time generating many new chal­
lenges as well. I see these challenges as falling into two primary categories
that constitute “grand” challenges for the field, and discuss each of them in the
remainder of this chapter.

3. THE CHALLENGE OF UNIFICATION

The diversity of the EC field today can be viewed as both a blessing and a
curse in the sense that it reflects both the vitality of the field and the difficulty
in articulating a cohesive view. However, in my opinion, developing a unifying
EC framework is a key requirement for continued growth and development of
the field.

One strategy for achieving this is to focus on the core set of features and
issues common to any EC activity. This allows one to understand the relation­
ships between different approaches when contrasted in a common framework,
it facilitates the transfer of ideas from one approach to another, and it serves as
a solid platform from which to develop new approaches. Given the wide diver­
sity of the field, this may seem like a hopeless task. However, developments
over the past few years suggest that considerable progress can be made in this
direction by adopting an object-oriented, class hierarchy point of view. In this
section I briefly summarize this approach.

At the highest level of abstraction, the EC community shares the common
goal of solving difficult computational problems using an evolutionary algo­
rithm (EA) as a key element of the approach. In order to compare and contrast
different approaches, we need a common framework for describing EAs. In
my opinion, all EAs share the following basic features:

A population of individuals

A notion of fitness

A notion of population dynamics (births, deaths) biased by fitness

A notion of inheritance of properties from parent to child

Focusing on EAs at this level of abstraction not only helps one to compare and
contrast specific instances, but also helps to identify and clarify a number of
critical issues that are common to the entire field. I summarize a few of these
in the following sections.

40 FRONTIERS OF EVOLUTIONARY COMPUTATION

3.1 MODELING THE DYNAMICS OF
POPULATION EVOLUTION

At a high level of abstraction we think of evolutionary processes in terms
of the ability of more-fit individuals to have a stronger influence on the future
makeup of the population by surviving longer and by producing more offspring
that continue to assert influence after the parents have disappeared. How these
notions are turned into computational models varies quite dramatically within
the EC community. This variance hinges on several important design decisions
discussed briefly in the following subsections.

3.1.1 Choosing Population Sizes. Most current EAs assume
a constant population size N which is specified as a user-controlled input pa­
rameter. So called “steady state” EAs rigidly enforce this limit in the sense
that each time an offspring is produced resulting in N + 1 individuals, a selec­
tion process is invoked to reduce the population size back to N. By contrast,
“generational” EAs permit more elasticity in the population size by allowing

offspring to be produced before a selection process is invoked to delete
K individuals.

Although we understand that the size of an EA’s population can affect its
ability to solve problems, we have only the beginnings of a theory strong
enough to provide a priori guidance in choosing an appropriate fixed size (e.g.,
(Goldberg et al., 1992), not much theory regarding appropriate levels of elastic­
ity (K), and even less understanding as to the merits of dynamically adjusting
the population size.

3.1.2 Deletion Strategies. The processes used to delete in­
dividuals varies significantly from one EA to another and includes strategies
such as uniform random deletion, deletion of the K worst, and inverse fitness-
proportional deletion. It is clear that “elitist” deletion strategies that are too
strongly biased towards removing the worst can lead to premature loss of di­
versity and stagnation at suboptimal solutions. It is equally clear that too little
fitness bias results in unfocused and meandering search. Finding a proper bal­
ance is important but difficult to determine a priori with current theory.

3.1.3 Parental Selection. Similar issues arise with respect
to choosing which parents will produce offspring. Biasing the selection too
strongly towards the best individuals results in too narrow a search focus, while
too little bias produces a lack of needed focus. Current methods include uni­
form random selection, rank-proportional selection, and fitness-proportional
selection.

We understand these selection strategies in isolation quite well (Back, 1995;
Blickle and Thiele, 1995). However, it is clear that parental selection and indi­

41 EC Challenges: Unification & Expansion

vidual deletion strategies must complement each other in terms of the overall
effect they have on the exploration/exploitation balance. We have some the­
ory here for particular cases such as Holland’s “optimal allocation of trials”
characterization of traditional GAs (Holland, 1975), and the “1/5” rule for ESs
(Schwefel, 1981), but much stronger results are needed.

3.1.4 Reproduction and Inheritance. In addition to these
selection processes, the mechanisms used for reproduction also affect the bal­
ance between exploration and exploitation. At one extreme one can imagine a
system in which offspring are exact replicas of parents (asexual reproduction
with no mutation) resulting in rapid growth in the proportions of the best indi­
viduals in the population, but with no exploration beyond the initial population
members. At the other extreme, one can imagine a system in which the off­
spring have little resemblance to their parents, maximizing exploration at the
expense of inheriting useful parental characteristics.

The EC community has focused primarily on two reproductive mechanisms
which fall in between these two extremes: 1-parent reproduction with mutation
and 2-parent reproduction with recombination and mutation. Historically, the
EP and ES communities have emphasized the former while the GA community
has emphasized the latter.

However, these traditional views are breaking down rapidly. The ES com­
munity has found recombination to be useful, particularly in evolving adaptive
mutation rates (Bäck and Schwefel, 1993). Various members of the GA com­
munity have reported improved results by not using recombination (de Garis,
1990), by not using mutation (Koza, 1992), or by adding new and more pow­
erful mutation operators (Eshelman and Schaffer, 1991). More recently the
virtues of N-parent recombination (N > 2) have been explored (Eiben, 1996).

As before, we have the tantalizing beginnings of a theory to help understand
and guide the use and further development of reproductive mechanisms. Be­
ginning with Holland’s initial work, the GA community has analyzed in con­
siderable detail the role of crossover and mutation (see, for example, (De Jong,
1975; Goldberg, 1989; Vose and Liepins, 1991; Booker, 1992; Spears, 1998).
The ES community has developed theoretical models for optimal mutation
rates with respect to convergence and convergence rates in the context of func­
tion optimization (Schwefel, 1995).

However, the rapid growth of the field is pressing these theories hard with
“anomalous results” (Forrest and Mitchell, 1992) and new directions not cov­
ered by current theory. One of the important issues not well understood is the
benefit of adaptive reproductive operators. There are now a variety of empiri­
cal studies that show the effectiveness of adaptive mutation rates (e.g., (Foga­
rty, 1989), (Bäck and Schwefel, 1993), or (Fogel, 1995b)) as well as adaptive

42	 FRONTIERS OF EVOLUTIONARY COMPUTATION

recombination mechanisms (e.g., (Schaffer and Morishima, 1987) or (Davis,
1989)).

3.2	 CHOICE OF REPRESENTATION

One of the most critical decisions made in applying evolutionary techniques
to a particular class of problems is the specification of the space to be explored
by an EA. This is accomplished by defining a mapping between points in the
problem space and points in an internal representation space.

The EC community differs widely on opinions and strategies for select­
ing appropriate representations, ranging from universal binary encodings to
problem-specific encodings for TSP problems and real-valued parameter opti­
mization problems. The tradeoffs are fairly obvious in that universal encodings
have a much broader range of applicability, but are frequently outperformed
by problem-specific representations which require extra effort to implement
and exploit additional knowledge about a particular problem class (see, for ex­
ample, (Michalewicz, 1994)). An intriguing idea being explored is to allow
the representation to adapt to the particular characteristics of a problem (e.g.,
“messy GAs” (Goldberg et al., 1991)).

Although there are strong historical associations between GAs and binary
string representations, between ESs and vectors of real numbers, and between
EP and finite state machines, it is now quite common to use representations
other than the traditional ones in order to effectively evolve more complex
objects such as symbolic rules, Lisp code, or neural networks. Claiming one
EA approach is better than another on a particular class of problems is not
meaningful any more without motivating and specifying (among other things)
the representations chosen.

What is needed, but has been difficult to obtain, are theoretical results on
representation theory. Holland’s schema analysis (Holland, 1975) and Rad-
cliffe’s generalization to formae (Radcliffe, 1991) are examples of how theory
can help guide representation choices. Similarly “fitness correlation” (Man­
derick et al., 1991) and operator-oriented views of internal fitness landscapes
(Jones, 1995) emphasize the tightly coupled interaction between choosing a
representation for the fitness landscape and the operators used to explore it.
Clearly, much more work is required if effective representations are to be eas­
ily selectable.

3.3	 CHARACTERISTICS OF FITNESS
LANDSCAPES

The majority of the EC applications to date has been with problem domains
in which the fitness landscape is time-invariant and the fitness of individuals
can be computed independently from other members of the current population.

43 EC Challenges: Unification & Expansion

This is a direct result of the pervasiveness of optimization problems and the
usefulness of evolutionary algorithms (EAs) in solving them. This has led to
considerable insight into the behavior of EAs on such surfaces including such
notions as “GA-easy”, “GA-hard”, and “deception”.

Much of this work has involved optimization problems that are unconstrained
or lightly constrained (e.g., upper and lower bounds on the variables). The sit­
uation becomes more difficult as the complexity of the constraints increases.
The ability to exploit constraint knowledge is frequently the key to successful
applications, and that in turn can imply creative, non-standard representations
and operators (Michalewicz and Schoenauer, 1996). How to do this effectively
is still an interesting and open research issue.

Things become even more interesting and open ended if we attack problem
classes in which the fitness landscape varies over time. There are at least three
important problem classes of this type for which research results are badly
needed: autonomously changing landscapes, the evolution of cooperative be­
havior, and ecological problems.

Problems involving autonomously changing landscapes frequently arise
when fitness is defined in terms of one or more autonomous entities in the envi­
ronment whose behavior can change independently of any of the search activity
of an EA. Typical examples are mechanical devices that age, breakdown, etc,
or changes in weather patterns which dramatically change the “fitness” of a
particular ship on the open sea. If we apply typical optimization-oriented EAs
to such problems, the strong pressures to converge generally result in a loss of
the population diversity needed to respond to such changes. We currently have
very little insight regarding how to design EAs for such problems.

Rule-learning systems (Holland, 1986; Grefenstette et al., 1990), iterated
prisoner’s dilemma problems (Axelrod, 1987; Fogel, 1995a), and immune sys­
tem models (Forrest et al., 1993) are examples of problems in which fitness
is a function of how well an individual complements other individuals in the
population. Rather than searching for a single optimal individual, the goal is
to evolve groups of individuals (generalists, specialists, etc.) that collectively
solve a particular problem.

If we apply typical optimization-oriented EAs to such problems, the strong
pressures towards homogeneity in the population make it difficult to maintain
different but cooperative individuals. Additional mechanisms for rewarding
groups of individuals seem to be required (e.g., bucket brigades, profit sharing),
but we have little in the way of theory to guide us.

Ecology-oriented problems present a third and perhaps most difficult class
of landscapes in which the shape of the fitness landscape is directly affected
by the evolutionary process itself. Perhaps a better way to think of this is in
co-evolutionary terms in which multiple interacting evolutionary processes are
at work modeling the availability of resources (Holland, 1992), prey-predator

44	 FRONTIERS OF EVOLUTIONARY COMPUTATION

relationships, host-parasite interactions (Hillis, 1990), and so on. Very few of
our insights from the optimization world appear to carry over here.

4. THE CHALLENGE OF EXPANSION

In the previous section, we argued that a unified EC framework is needed to
provide a deeper understanding of the many forms of evolutionary computa­
tion that exist and their use as effective problem solvers. However, the interest
in using EAs to solve problems that violate traditional assumptions, continues
to grow. We already have examples of EAs which are powerful function opti­
mizers, but which are completely ineffective for evolving cooperative behavior
or tracking a changing landscape. Modified EAs are now being developed for
these new problem classes, but are also much less useful as traditional optimiz­
ers.

This presents us with our second grand challenge: how to extend and expand
our repertoire of EAs in an effective and principled manner. My answer is that
we use the unified framework discussed in the previous section as the platform
for doing so. In this section I illustrate this approach by describing several key
expansion areas.

4.1	 REPRESENTATION AND
MORPHOGENESIS

In the earlier section on representation issues we discussed the tradeoffs
between problem-independent and problem-specific representations. Closely
related to this is the biological distinction between the more universal geno­
typic descriptions of individuals in the form of plans for generating them and
the phenotypic descriptions of the actual generated structures.

Historically, much of the EA work has involved the evolution of fairly sim­
ple structures that could be represented in phenotypic form or be easily mapped
onto simple genotypic representations. However, as we attempt to evolve in­
creasingly more complex structures such as Lisp code (Koza, 1992) or neural
networks (de Garis, 1990), it becomes increasingly difficult to define forms of
mutation and recombination which are capable of producing structurally sound
and interesting new individuals. If we look to nature for inspiration, we don’t
see many evolutionary operators at the phenotype level (e.g., swapping arms
and legs!). Rather, changes occur at the genotype level and the effects of those
changes instantiated via growth and maturation. If we hope to evolve such
complexity, we may need to adopt more universal encodings coupled with a
process of morphogenesis (e.g., (Harp et al., 1989), or (Stanley and Miikku­
lainen, 2002)).

EC Challenges: Unification & Expansion	 45

4.2	 NON-RANDOM MATING AND

SPECIATION

Currently, most EAs incorporate a random mating scheme in which the
species or sex of an individual is not relevant. One problem with this, as with
real biological systems, is that the offspring of parents from two species are of­
ten not viable. As we move to more complex systems which attempt to evolve
cooperating behavior and which may have more than one evolutionary pro­
cess active simultaneously, the roles of non-random mating and speciation will
become an important issue.

Some solutions to these problems have been suggested, such as crowd­
ing (De Jong, 1975), sharing (Goldberg and Richardson, 1987), and tagging
(Booker, 1982). Unfortunately, these solutions tend to make fairly strong as­
sumptions, such as the number of species and/or the distribution of niches in
the environment. For some problems these assumptions are reasonable. How­
ever, in many cases such properties are not known a priori and must evolve as
well (Spears, 1994).

4.3	 DECENTRALIZED, HIGHLY PARALLEL
MODELS

Because of the natural parallelism within an EA, much recent work has
concentrated on the implementation of EAs on both fine and coarse grained
parallel machines. Clearly, such implementations hold promise of significant
decreases in the execution time of EAs.

More interestingly, though, for the topic of this paper, are the evolutionary
effects that can be naturally implemented with parallel machines, namely, spe­
ciation, nicheing, and punctuated equilibria. For example, non-random mating
may be easily implemented by enforcing parents to be neighbors with respect
to the topology of the parallel architecture. Species emerge as local neighbor­
hoods within that topology. Subpopulations in equilibrium are “punctuated”
by easily implemented migration patterns from neighboring subpopulations.

However, each such change to an EA significantly changes its semantics
and the resulting behavior. Our admittedly weak theory about traditional EAs
needs to be strengthened and extended to help us in better understanding and
designing these parallel implementations. In the case of finely grained, neigh­
borhood models some significant progress is being made along these lines (see,
for example, (Sarma, 1998)).

4.4	 SELF-ADAPTING SYSTEMS

Another theme that has been arising with increasing frequency is the in­
clusion of self-adapting mechanisms with EAs to control parameters involving

46	 FRONTIERS OF EVOLUTIONARY COMPUTATION

the internal representation, mutation, recombination, and population size. This
trend is due in part to the absence of strong predictive theories that specify such
things a priori. It is also a reflection of the fact that EAs are being applied to
more complex and time-varying fitness landscapes.

Some important issues that need to be solved involve the self-adaptation
mechanism itself. For example, do we use an EA or some other mechanism?
If we use an EA, how do we use fitness as a performance feedback for self-
adaptation?

On a positive note, the EC community has already empirically illustrated the
viability of self-adaptation of mutation and recombination as noted earlier, as
well as adaptive representations like Argot (Shaefer, 1987), messy GAs (Gold­
berg et al., 1991), dynamic parameter encoding schemes (Schraudolph and
Belew, 1992), and Delta coding (Whitley et al., 1991). Thesis work of Turner
(Turner, 1998) suggests that simple performance-based mechanisms can be ef­
fectively used to dynamically tune parent selection and operator usage.

4.5	 COEVOLUTIONARY SYSTEMS

Hillis’ work (Hillis, 1990) on the improvements achievable by co-evolving
parasites along with the actual individuals of interest gives an exciting glimpse
of the behavioral complexity and power of such techniques. Holland’s Echo
system (Holland, 1992) reflects an even more complex ecological setting with
renewable resources and predators. More recently, Rosin (Rosin and Belew,
1995) and Potter (Potter, 1997) have shown the benefits of both “competitive”
and “cooperative” co-evolutionary models.

Each of these systems suggests an important future role for co-evolution in
EAs, but they raise more questions than they answer concerning a principled
method for designing such systems as well as the kinds of problems for which
this additional level of complexity is both necessary and effective. One promis­
ing approach currently being explored is the use of evolutionary game theory
(Ficici and Pollack, 2000; Wiegand et al., 2002).

4.6	 INCLUSION OF LAMARCKIAN
PROPERTIES

Although EAs may be inspired by biological systems, many interesting
properties arise when we include features not available to those systems. One
common example is the inclusion of Lamarckian operators, which allow the
inheritance of characteristics acquired during the lifetime of an individual.

In the EC world this is beginning to show up in the form of hybrid systems
in which individuals themselves go through a learning and/or adaptation phase
as part of their fitness evaluation, and the results of that adaptation are passed
on to their offspring (e.g., see (Turney et al., 1996)). Although initial empirical

REFERENCES 47

results are encouraging, we presently have no good way of analyzing such
systems at a more abstract level.

4.7 MODELING EVOLUTIONARY SYSTEMS

With few exceptions this entire discussion so far has been presented from a
computer science and engineering perspective, namely, the use of EAs as com­
putational tools to solve difficult computer science and engineering problems.
This is, to a great extent, a reflection of the individuals in the field and their
interests. It should be clear, however, that an equally plausible direction is to
use EAs as models of biological and other evolving systems.

However, there is a problem here in that it is difficult to achieve both compu­
tational utility and biological plausibility in a single model. As a consequence,
most of the computationally oriented EAs that have been developed over the
past 40 years are quite inadequate as modeling tools. Rather, significant devel­
opment effort is usually required to rework an existing EA for systems model­
ing efforts (see, for example, (Burke et al., 1998)). What I have seen in the past
few years is a significant growth of interest in these kinds of EA applications,
and a growing sense of a need to fill the gap between currently developed EAs
and the kinds of EAs needed for effective evolutionary systems modeling tools.

5. SUMMARY AND CONCLUSIONS
This is an exciting time for the EC field. The increased level of activity has

resulted in an infusion of new ideas and applications that are challenging old
tenets and requiring fundamental changes in the ways in which we model and
use evolutionary algorithms.

I have attempted to summarize this in the form of two grand challenges:
unification and expansion. I believe that progress in these areas is critically
important for the continued growth of the field.

REFERENCES

Axelrod, R. (1987). The evolution of strategies in the iterated prisoner’s dilemma.
In Davis, L., editor, Genetic Algorithms and Simulated Annealing, pages
32–41. Morgan Kaufmann.

Bäck, T. (1995). Generalized convergence models for tournament and (mu,
lambda) selection. In Eshelman, L., editor, Proceedings of the Sixth Inter­
national Conference on Genetic Algorithms, pages 2–9. Morgan Kaufmann.

Bäck, T. and Schwefel, H.-P. (1993). An overview of evolutionary algorithms
for parameter optimization. Evolutionary Computation, 1(1): 1–23.

Blickle, T. and Thiele, L. (1995). A mathematical analysis of tournament se­
lection. In Eshelman, L., editor, Proceedings of the Sixth International Con­
ference on Genetic Algorithms, pages 9–16. Morgan Kaufmann.

48 FRONTIERS OF EVOLUTIONARY COMPUTATION

Booker, L. (1982). Intelligent Behavior as an adaptation to the task environ­
ment. PhD thesis, University of Michigan, Ann Arbor.

Booker, L. (1992). Recombination distributions for genetic algorithms. In Whit­
ley, D., editor, Foundations of Genetic Algorithms 2, pages 29–44. Morgan
Kaufmann.

Burke, D., De Jong, K., Grefenstette, J. J., Ramsey, C. L., and Wu, A. (1998).
Putting more genetics into genetic algorithms. Evolutionary Computation,
6(4):387–410.

Davis, L. (1989). Adapting operator probabilities in genetic algorithms. In
Schaffer, J. D., editor, Proceedings of the Third International Conference
on Genetic Algorithms, pages 60–69. Morgan Kaufmann.

de Garis, H. (1990). Genetic programming: modular evolution for Darwin ma­
chines. In Proceedings of the International Joint Conference on Neural Net­
works, pages 194–197. Lawrence Erlbaum.

De Jong, K. (1975). Analysis of the behavior of a class of genetic adaptive
systems. PhD thesis, University of Michigan, Ann Arbor.

Eiben, G. (1996). Multi-parent’s niche: N-ary crossovers on NK-landscapes.
In Proceedings of the Fourth International Conference on Parallel Problem
Solving from Nature, pages 319–335. Springer Verlag.

Eshelman, L. and Schaffer, D. (1991). Preventing premature convergence in
genetic algorithms by preventing incest. In Belew, R. K. and Booker, L. B.,
editors, Proceedings of the Fourth International Conference on Genetic Al­
gorithms, pages 115–122. Morgan Kaufmann.

Ficici, S. and Pollack, J. (2000). A game-theoretic approach to the simple co­
evolutionary algorithm. In Schoenauer, M., Deb, K., Rudolph, G., Yao, X.,
Lutton, E., Merelo, J., and Schwefel, H.-P., editors, Proc. of the Sixth Con­
ference on Parallel Problem Solving from Nature (PPSN VI), pages 467–
476. Springer-Verlag.

Fogarty, T. (1989). Varying the probability of mutation in the genetic algo­
rithm. In Proceedings of the Third International Conference on Genetic Al­
gorithms, pages 104–109. Morgan Kaufmann.

Fogel, D. B. (1995a). On the relationship between the duration of an encounter
and the evolution of cooperation in the iterated prisoner’s dilemma. Evolu­
tionary Computation, 3(3):349–363.

Fogel, D. B. (1995b). Evolutionary Computation. IEEE Press.
Fogel, L., Owens, A., and Walsh, M. (1966). Artificial intelligence through

simulated evolution. John Wiley.
Forrest, S., Javornik, B., Smith, R., and Perelson, A. (1993). Using genetic al­

gorithms to explore pattern recognition in the immune system. Evolutionary
Computation, 1(3): 191–212.

49 REFERENCES

Forrest, S. and Mitchell, M. (1992). Relative building block fitness and the
building block hypothesis. In Whitley, D., editor, Foundations of Genetic
Algorithms 2, pages 109–126. Morgan Kaufmann.

Goldberg, David E., Deb, Kalyanmoy, and Clark, J. (1992). Accounting for
noise in sizing of populations. In Whitley, D., editor, Foundations of Genetic
Algorithms 2, pages 127–140. Morgan Kaufmann.

Goldberg, David E., Deb, Kalyanmoy, and Korb, B. (1991). Don’t worry, be
messy. In Belew, R. K. and Booker, L. B., editors, Proceedings of the Fourth
International Conference on Genetic Algorithms, pages 24–30. Morgan
Kaufmann.

Goldberg, David E. and Richardson, J. (1987). Genetic algorithms with sharing
for multimodal function optimization. In Grefenstette, J. J., editor, Proceed­
ings of the Second International Conference on Genetic Algorithms, pages
41–49. Lawrence Erlbaum.

Goldberg, David E. (1989). Genetic Algorithms in Search, Optimization, and
Machine Learning. Addison-Wesley.

Grefenstette, J. J., Ramsey, C. L., and Schultz, A. (1990). Learning sequential
decision rules using simulation models and competition. Machine Learning,
5(4):355–381.

Harp, S., Samad, T., and Guha, A. (1989). Towards the genetic synthesis of
neural networks. In Proc. of the Third International Conference on Genetic
Algorithms, pages 360–369. Morgan Kaufmann.

Hillis, D. (1990). Co-evolving parasites improve simulated evolution as an op­
timization procedure. Physica D, 42:228–234.

Holland, J. H. (1962). Outline for a logical theory of adaptive systems. JACM,
9:297–314.

Holland, J. H. (1975). Adaptation in natural and artificial systems. University
of Michigan Press.

Holland, J. H. (1986). Escaping brittleness: The possibilities of general-purpose
learning algorithms applied to parallel rule-based systems. In Michalski, R.,
Carbonell, J., and Mitchell, T, editors, Machine Learning, volume 2, pages
593–624. Morgan Kaufmann.

Holland, J. H. (1992). Adaptation in natural and artificial systems, second edi­
tion. MIT Press.

Jones, T. (1995). Evolutionary algorithms, fitness landscapes, and search. PhD
thesis, University of New Mexico.

Koza, John R. (1992). Genetic Programming: On the programming of comput­
ers by means of natural selection. Bradford Books, Cambridge.

Manderick, B., de Weger, M., and Spiessens, P. (1991). The genetic algorithm
and the structure of the fitness landscape. In Belew, R. K. and Booker, L. B.,
editors, Proceedings of the Fourth International Conference on Genetic Al­
gorithms, pages 143–150. Morgan Kaufmann.

50 FRONTIERS OF EVOLUTIONARY COMPUTATION

Michalewicz, Z. (1994). Genetic Algorithms + Data Structures = Evolution
Programs. Springer-Verlag.

Michalewicz, Z. and Schoenauer, M. (1996). Evolutionary algorithms for con­
strained optimization problems. Evolutionary Computation, 4(1): 1–32.

Potter, M. (1997). The Design and Analysis of a Computational Model of Co­
operative Coevolution. PhD thesis, George Mason University.

Radcliffe, N. J. (1991). Forma analysis and random respectful recombination.
In Belew, R. K. and Booker, L. B., editors, Proceedings of the Fourth Inter­
national Conference on Genetic Algorithms, pages 222–229. Morgan Kauf­
mann.

Rechenberg, I. (1964). Cybernetic solution path of an experimental problem.
Library Translation 1122, August 1965. Farnborough Hants: Royal Aircraft
Establishment. English translation of lecture given at the Annual Confer­
ence of the WGLR at Berlin in September, 1964.

Rosin, C. and Belew, R. K. (1995). Methods for competitive co-evolution:
Finding opponents worth beating. In Eshelman, L., editor, Proceedings of
the Sixth International Conference on Genetic Algorithms, pages 373–380.
Morgan Kaufmann.

Sarma, J. (1998). An Analysis of Decentralized and Spatially Distributed Ge­
netic Algorithms. PhD thesis, George Mason University.

Schaffer, D. and Morishima, A. (1987). An adaptive crossover mechanism for
genetic algorithms. In Grefenstette, J. J., editor, Proceedings of the Sec­
ond International Conference on Genetic Algorithms, pages 36–40. Morgan
Kaufmann.

Schraudolph, N. and Belew, R. K. (1992). Dynamic parameter encoding for
genetic algorithms. Machine Learning, 9(l):9–22.

Schwefel, H.-P. (1981). Numerical optimization of computer models. John Wi­
ley and Sons.

Schwefel, H.-P. (1995). Evolution and optimum seeking. Wiley.
Shaefer, C. (1987). The argot strategy: adaptive representation genetic opti­

mizer technique. In Grefenstette, J. J., editor, Proceedings of the Second
International Conference on Genetic Algorithms, pages 50–58. Lawrence
Erlbaum.

Spears, W. M. (1994). Simple subpopulation schemes. In Proc. of the Evolu­
tionary Programming Conference, pages 296–307. World Scientific.

Spears, W. (1998). The Role of Mutation and Recombination in Evolutionary
Algorithms. PhD thesis, George Mason University.

Stanley, K. and Miikkulainen, R. (2002). Evolving neural networks through
augmenting topologies. Evolutionary Computation, 10(2):99–127.

Turner, M. (1998). Performance-based Self-adaptive Evolutionary Behavior.
PhD thesis, George Washington University.

51 REFERENCES

Turney, P., Whitley, D., and Anderson, R. (1996). Evolution, learning, and in­
stinct: 100 years of the baldwin effect. Evolutionary Computation, 4(3).

Vose, M. D. and Liepins, G. E. (1991). Schema disruption. In Belew, R. K. and
Booker, L., editors, Proceedings of the Fourth International Conference on
Genetic Algorithms, pages 237–242. Morgan Kaufmann.

Whitley, D., Mathias, K., and Fitzhorn, P. (1991). Delta coding: an iterative
search strategy for genetic algorithms. In Belew, R. K. and Booker, L. B.,
editors, Proceeding of the Fourth International Conference on Genetic Al­
gorithms, pages 77–84. Morgan Kaufmann.

Wiegand, P., Liles, W., and De Jong, K. (2002). Analyzing cooperative coevo­
lution with evolutionary game theory. In Fogel, D., editor, The IEEE World
Congress on Computational Intelligence, pages 1600–1606. IEEE Press.

This page intentionally left blank

Chapter 3

EVOLUTIONARY COMPUTATION:
CHALLENGES AND DUTIES

Carlos Cotta
Dept. Lenguajes y Ciencias de la Computación, Universidad de Málaga

ETSI Informática (3.2.49), Campus de Teatinos, 29071-Málaga, Spain

ccottap@lcc.uma.es

Pablo Moscato
School of Electrical Engineering and Computer Science,

University of Newcastle,

Callaghan, NSW, 2308 Australia

moscato@densis.fee.unicamp.br

Abstract	 Evolutionary Computation (EC) is now a few decades old. The impressive de­
velopment of the field since its initial conception has made it one of the most
vigorous research areas, specifically from an applied viewpoint. This should
not hide the existence of some major gaps in our understanding on these tech­
niques. In this essay we propose a number of challenging tasks that –according
to our opinion– should be attacked in order to fill some of these gaps. They
mainly refer to the theoretical basis of the paradigm; we believe that an effective
cross-fertilization among different areas of Theoretical Computer Science and
Artificial Intelligence (such as Parameterized Complexity and Modal Logic) is
mandatory for developing a new corpus of knowledge about EC.

1. INTRODUCTION
On July 2, 2002, we made several queries using one of the most popular

databases for retrieval of research publications, the Web of Science1 . Undoubt­
edly, one of the best jewels of the crown of Theoretical Computer Science is
the theory of NP-completeness (Garey and Johnson, 1979), so we thought
that it would be relevant to identify how many papers have been published
and catalogued in this database that include either the terms ‘NP-hard’ or ‘NP-

http://www.isinet.com 1

54 FRONTIERS OF EVOLUTIONARY COMPUTATION

complete’ in either the title or the abstract or even as a keyword. It has been
reported elsewhere that “thousands” of problems have been already catalogued
as NP-hard, so we thought that this search would at least help to indirectly
quantify the presence of NP-completeness theory in the scientific and tech­
nological literature. Surprisingly for us, only 4,111 documents contained at
least one of these terms. We expected this number to be larger provided the
significance and widespread usefulness of this classification.

This result is curious, we hoped to get a larger figure, since, for compari­
son purposes, the same database retrieved 1,361 documents containing either
‘salesman problem’ or ‘salesperson problem’, in general referring to a partic­
ular problem member of the NP Optimization class (the traveling salesman
problem, MIN TSP).

Regarding the current use of “single-agent” metaheuristic optimization
methods, two of them take the lead with “Simulated Annealing” (Kirkpatrick
et al., 1983) (4,676) and “Tabu Search” (Glover and Laguna, 1997) (856).
These metaheuristics have been introduced at least one decade after the the­
ory of NP-completeness and they are widely used in practice. Noting that
any metaheuristic method turns into a heuristic when applied to a particular
problem, it is also relevant to query for “heuristic” or “heuristics” giving an
impressive number of 15,933 documents in the database, most of them on algo­
rithmic approaches to solve a problem modeled in formal mathematical terms.

There are many possible interpretations for the results of these database
queries, and each of these interpretations is the amalgamation of a number of
factors and conjectures. The reader may agree with us in that the great success
of metaheuristics in solving in practice many hard optimization problems is
certainly one of the circumstances to take into account. In our opinion, a subtle
shift in research focus is also a major factor in this result. More precisely, it
may be that the relative weight of applied research (recall that most of the
works dealing with metaheuristics are of applied nature) has increased with
respect to fundamental research. The wide availability of computing resources
is crucial in this sense: testing and comparing different approaches for solving
a problem can be much more amenable than complex mathematical analysis.
This philosophy could be summarized in “try to get probably good solutions to
your problem, for provably good solutions are overwhelmingly hard to obtain ”.
For most problem domains, we should take extreme care in order to define
what can be a challenging instance, since it may be extremely easy to find
optimal solutions (Krivelevich, 2002), biasing the chosen scenario favoring
exact methods (see the discussion in (Berretta and Moscato, 1999)).

While the lack of a proper mathematical analysis is not something to be
inherently criticized from a scientific point of view, it is true that the lack of
solid theoretical basis for most metaheuristics will jeopardize their successful
utilization in the Century. Quoting Lewis and Papadimitriou (Lewis and
Papadimitriou, 1998):

55 EC: Challenges & Duties

“Explaining and predicting the impressive empirical success of some of these
algorithms is one of the most challenging frontiers of the theory of computation
today.”

Indeed, developing formal theories for grasping the optimization dynamics of
these algorithms, and to devise appropriate metaheuristics for solving specific
problems appear as the major challenges researchers have to face. This is
specifically true in the field of evolutionary algorithms (Bäck et al., 1997)
(EAs), one of the metaheuristics families with stronger impetus, yet whose
foundation-knowledge corpus remains very incomplete.

In this essay, we will try to identify some of the principal challenges whose
solution we believe may constitute important milestones for EA development.
Each of these challenges will be described in a different section. It must be
noted that their numbering is not intended to represent any relevance order. On
the contrary, the reader is invited to rank them according to his/her particular
vision of the field.

2.	 CHALLENGE #1: HARD PROBLEMS
FOR THE PARADIGM – EPISTASIS AND
PARAMETERIZED COMPLEXITY

It is absolutely necessary to identify and understand the relative “hardness”
of finding appropriate algorithms for specific problems, in particular with re­
spect to the computational complexity classes to which the problems belong.
We believe that it would be a better attitude, particularly toward building a
bridge with Theory of Computation, to try firstly to identify hard problems
for EAs in relationship with known computational classes. At present, the
approach of creating “toy problems” that are “hard” for the paradigm, while
partly useful for identifying some particular issues that need consideration,
does not lead to an articulated, systematic approach to understand for which
problems, or problem instances, the EA approach is competitive or even supe­
rior, to exact approaches or other metaheuristics. We may ask:

Is there any way to find efficient algorithms based on evolutionary search princi­
ples which always give good approximations to optimization problems to which
it is hard to find the optimal solution ?

From some perspective, the answer of this question is most probably “No”,
since under the commonly believed assumption that we know that
there are some problems that can not be approximated with efficient algorithms
at all. On the other hand, this question can be relativized by answering: “It de­
pends on the problem” since we know that for some problems that are equally
hard to be solved to optimality, some can be very well approximated with effi­
cient algorithms. This leaves some room for the possibility that some problems
can be efficiently approximated using algorithms based on evolutionary tech­
niques while others do not.

56 FRONTIERS OF EVOLUTIONARY COMPUTATION

To study the central question presented above, we identify three comple­
mentary research directions:

Identify N P-Optimization problems for which the evolutionary search
paradigm has proved not to be competitive against the best heuristic or
approximation algorithm known for those problems.

Identify which optimization problems can be approached using an evo­
lutionary search paradigm and identify the reasons.

For the problems of the two groups mentioned above, it will be impor­
tant to find links with the theory of computational complexity and the
complexity classes (regarding approximability and, in particular, param­
eterized complexity (Fellows, 2002)) that those problems belong to.

Ideally, the outcome of the above research will also provide interesting clues
in terms of relating computational complexity classes with the typical mea­
sures of “EA-hardness” such as epistasis (Davidor, 1991; Forrest and Mitchell,
1991). This phenomenon –the non-additive fitness dependence among several
genes– has a direct influence in the difficulty an EA faces for solving a certain
problem (defined as the combination of a particular representation and fitness
function). It is customary to quantify epistasis by means of a integer fixed pa­
rameter, say The existence of such a parameter in the context of the
discussion about complexity classes mentioned above immediately suggest a
possible connection with the paradigm of parameterized complexity (PC) (for
an interesting introduction to the general topic see (Downey et al., 1999)). This
paradigm extends the classical paradigm by analyzing the complexity of prob­
lems with respect to a certain parameter (or set of parameters). Recall that
classical classifications such as the conspicuous P – N P dichotomy are based
in a worst-case scenario. For instance, the paradigmatic SAT problem is known
to be easily solvable in general (for a particular type or randomly-generated in­
stances) except for instances located at the phase transition between satisfiabil­
ity and non-satisfiability (Gent and Walsh, 1994). The existence of structural
parameters upon which to base the complexity analysis can be very useful to
isolate such scenarios. The PC paradigm establishes a hierarchy of parameter­
ized complexity classes

that allows discriminating problems of different complexity according
to the chosen parameter. For example, problems in the FPT (fixed-parameter
tractable) class have algorithms whose worst-case complexity is
where is the parameter, and arbitrary function of only, and is a con­
stant. In contrast, the complexity of solving problems in W[1] is
substantially harder in general.

A prototypical example of an NP-complete problem whose parameterized
version is fixed-parameter tractable is VERTEX COVER. This problem can be

57 EC: Challenges & Duties

defined as follows:

COVER

Instance: An undirected graph G(V, E), with an integer

Question: Does there exist a set of vertices, such that for
every it holds that or

If the size of the set is taken as a parameter, this problem can be shown

in
 FPTto be in (Downey and Fellows, 1995), existing algorithms for solving it

 i.e., linear in for fixed and polynomial in for
This surprising result can be achieved by combining the results of

(Chen et al., 1999) and the speed-up method of (Niedermeier and Rossmanith,
2000). Notice that while VERTEX COVER would be dismissed as “probably
intractable” according to its NP-hardness, it turns out to be perfectly solvable
for a wide range of values for its structural parameter.

A lesson can be extracted, since we may apply these algorithms for recombi­
nation operators. They appear to be greatly advantageous when the population
has begun to converge to similar individuals. We will return to this issue in the
next challenge.

As mentioned above, the W-hierarchy allows encapsulating problems of in­
creasing difficulty. The membership of a certain problem to a precise PC class
is established by means of Boolean circuits. These are traditional networks of
logical gates that take a potential solution as an input, and output a Boolean
value indicating whether that is a solution for the problem considered. The
structure of the circuit obviously depends on the problem, and its complexity
determines the precise PC class to which membership is established. More pre­
cisely, an important parameter is the weft of the circuit. This is the maximum
number of logical gates whose fan-in is unrestricted (depends on the problem
data) in an input-output path. The higher the weft for a constant depth of the
circuit, the higher the class the circuit belongs to.

At this point, the resemblance between the weft of a Boolean circuit and the
structural interdependence of genes in epistatic representations suggests that
some deep connection may exist between PC and the yet informal notion of
“EA-hardness”. Disentangling this connection (if it effectively exists) consti­
tutes a very attractive challenge both for Computer Science theoreticians and
EA researchers.

58 FRONTIERS OF EVOLUTIONARY COMPUTATION

3.	 CHALLENGE #2: SYSTEMATIC DESIGN
OF PROVABLY GOOD RECOMBINATION
OPERATORS

Recombination is undoubtedly a major component of evolutionary algo­
rithms, at least in the case of genetic algorithms (GAs). While its intuitive role
has been always clear (to combine the information present in a set of solutions
to create new solutions), the guidelines for designing effective recombination
operators have experienced a remarkable evolution. It is increasingly accepted
that instead of directly manipulating the syntactic units used to encode solu­
tions, the operator must extract “relevant” information from these solutions
and recombine it (with independence of whether solutions are encoded on the
basis of these particular information pieces or not). Unfortunately, the concept
of “relevance” is hardly defined in formal terms. For instance, solutions of the
N P optimization problem MIN TRAVELING SALESMAN (MIN TSP) can be
encoded as permutations or even as binary strings. However, operators work­
ing directly on these encodings such as cycle crossover (Oliver et al., 1987)
or uniform crossover (Syswerda, 1989) will in general provide worse perfor­
mance than operators extracting the relevant information. For the symmetric
instances of the MIN TSP it has been shown that the preservation of some
features, in particular common edges is indeed a good strategy (Mathias and
Whitley, 1992), and this lead to the proposal of several “edge recombination”
methods (Moscato, 1999).

We will refer to these relevant “pieces of information” as features. We note,
however, that in most of the cases where the problem to be solved is intractable,
these features generally correspond to predicates computable in polynomial-
time. Back to the symmetric instance of the MIN TSP example, when a re­
combination operator requires to “find all common edges of the par­
ents ” this can be understood as checking predicates (where

denotes the number of cities). Each one of them corresponds to one edge
between two cities, and we return the edges for which the associate predicate
returns a ‘Yes’ for all parents.

After having identified the relevant features (let us suppose we managed
to find all features of a set of parent solutions in polynomial-time), the next
and obviously important step is deciding how we can use this information.
While blind recombination operators that randomly shuffle the set of features
were more typical in the past, the addition of problem-domain knowledge to
guide the process is becoming increasingly popular. The terms hybrid GAs
and memetic algorithms (MAs) (Moscato, 1989) (Moscato, 1999) have been
coined to denote these methods that use smarter reproductive operators and
periods of single-agent optimization.

59 EC: Challenges & Duties

There exist a plethora of mechanisms to create these smart recombination
operators, e.g., (Cotta and Troya, 1998; Radcliffe and Surry, 1994), but, up
to the best of our knowledge, no complexity results for some of the decision
problems involved have been reported. For instance, suppose we have a num­
ber of tours from a relatively large population of size Let us
also suppose that of them have lengths values which are below the cur­
rent population’s average length value, but one has a value well above average.
To strengthen the argument we can even suppose that it is actually the longest
tour in the entire population. While the preservation of edges/features present
in all parents can still make some sense, we notice that the preservation of
edges/features present in the best parents and not present in the worst
tour, seems also a valuable heuristic to create new solutions. Analogously, the
avoidance of a feature present in the worst tour and not present in the other

tours is certainly another appealing heuristic.
It is clear that, while there might be other heuristics of interest for special

cases, the previous example clearly depicts the existence of a more general
problem: given a set of parents, find the optimal subset of features to avoid
and to preserve. This problem already appears when we have parents that can
be categorized in two different classes. A natural measure of optimality is the
cardinality of the set, since we expect that is already a small number in
comparison with the size of the instance, then we only expect to make a valid
inference if the number of chosen features is also small.

We think that the EC community may critique itself in having not yet de­
fined a systematic effort to understand how to extract useful features from pop­
ulations of solutions. Although some ad-hoc approaches work for particular
problems, most recombination approaches are naive attempts to solve a more
fundamental issue, that of extracting particular characteristics/features that the
optimal solutions might have and, possibly more important, which features
might not be present in them.

Related with this latter point, it must be noted that we still lack a formal
framework for recombination, similar for instance to that we have for Local
Search (Johnson et al., 1988; Yannakakis, 1997). In this sense, an interest­
ing new direction for theoretical research arose after the introduction of two
computational complexity classes, the PMA class (for Polynomial Merger Al­
gorithms problems) and its unconstrained analogue, the uPMA class. We will
define the classes PMA and uPMA by referring to three analogous algorithms
to the ones that define the class of Polynomial Local Search problems (PLS).
These definitions (specially for PMA) are particularly dependent on an algo­
rithm called that will help to formalize the notion of recombination
of a set of given solutions, as generally used by most MAs (as well as other
population approaches). The input of a algorithm is a set of

feasible solutions. They can be informally called “parent” solutions

60 FRONTIERS OF EVOLUTIONARY COMPUTATION

and, if successful, the delivers as output at least one feasible solution
(with some constraints). For the uPMA class the construction of the new solu­
tion is less restricted than for PMA. In general, recombination processes can be
very complex with many side restrictions involving the detection, the preser­
vation or avoidance, and the feasible combination of features already present
in the parent solutions.

Definition (uPMA). Let be an instance of an optimization problem P.
With we denote the set of all possible outputs (i.e.,
feasible solutions) that the algorithm can give if it receives as input
the pair for problem P.

time algorithms and (where and
A recombination problem belongs to uPMA if there exist three poly-

are
integer numbers such that that satisfy the following proper­
ties:

Given an input (formally a string the determines
whether is an instance of problem P and in this case produces a set of

different feasible solutions

Given an instance of P and an input (formally a string the
determines whether this input represents a set of feasible so­

lutions, i.e. and in that case it computes the value of the
objective function associated to each one of them, i.e.

P
 optimum,

with

Given an instance of and a set of feasible solutions the
determines whether the set is a and, if

it is not, it outputs at least one feasible solution
strictly better value of

for a minimization problem, and
for a maximization problem).

Analogously, the PMA class is more restricted since it embodies a particular
type of recombination. For uPMA the type of recombination is implicit in the
way the group neighborhood is defined. However, the definition for PMA
is still general enough to encompasses most of the recombination procedures
used in practical population-based approaches.

Definition (PMA). A recombination problem belongs to PMA if
there exist three polynomial-time algorithms and

(where and are integer numbers such that

61 EC: Challenges & Duties

such that the and satisfy the same properties required by
the uPMA class but the is constrained to be of a particular type, i.e.:

Given an instance of P and a set of feasible solutions the
merger determines whether the set is a optimum, and, if
it is not, it does the following:

For each it solves polynomial-time decision problems
Let D be a matrix of Boolean

coefficients formed by the output of all these decision problems,
i.e.

It creates a set of constraints C, such that C can be partitioned
in two subsets, i.e. Each constraint is rep­
resented by a predicate such that its associated decision problem

can be solved in polynomial-time for every feasible solution
Any predicate is a polynomial-time computable function that

has as input the Boolean matrix D and the instance It is re­
quired that at least one predicate to be a non-constant function
of at least two different elements of

It outputs at least one offspring, i.e. another feasible solution
with strictly better value of (i.e.

max for a minimiza­
tion problem, and

for a maximization problem) subject to

where is an integer weight associated to constraint

Conducting research to identify problems, and their associated recombination
procedures, such that membership, in either PMA or uPMA, can be proved
is a definitely important task. It is also hoped that after some initial attempts
on challenging problems completeness and reductions for the classes can be
properly defined.

We should also note that the definition are such that they would naturally
give several new interesting parameterized complexity problems. So, while
proving NP-hardness is a good start, we hope that the research focus should
be directed towards proving many problems to be fixed-parameter tractable.
In essence, that would lead toward developing “optimal” recombination op­
erators, that while exponential on the parameters, can be polynomial on the
instance size.

62 FRONTIERS OF EVOLUTIONARY COMPUTATION

4.	 CHALLENGE #3: USING MODAL LOGIC
AND LOGIC PROGRAMMING METHODS
TO GUIDE THE SEARCH

Looking ahead one of the possible directions that EC can take, after check­
ing the current trends, it is then reasonable to affirm that increasingly more
complex schemes evolving solutions, agents, as well as representations, will
soon be implemented. The way they would handle information (actually it is
a “distributed” information for it is carried by a population of solutions, which
can be transmitted, recombined, and analyzed) have some points in common
with Blackboard Systems (Englemore and Morgan, 1988). This has been rec­
ognized in the past yet it is conspicuously hardly being mentioned in the cur­
rent metaheuristics literature. We are proposing to call these new methods as
Belief Search and to show they can work in an EC setting, we will resort to two
illustrative examples. We will assume that the formula has the following
meaning “agent believes with strength (at least) that is true”, such that
the strength values are restricted to be rational numbers in [0,1]. Let us also
suppose we accept as an axiom that from being true we can deduce for
all Now let us suppose that our agents are trying to solve a MIN TSP and
that the particular instance being considered is Euclidean and two-dimensional.
Let represent the proposition “edge is present in the optimum tour” and
let be true if edges and cross each other, and false otherwise. It can
be proved (a “folk theorem”) that for such particular type of TSP instances (a
form of problem-domain, or better, instance-domain knowledge) “if edges
and cross each other, then and can not both be present in the optimal
tour”. Then we can assume that this is known by all agents, and by the previ­
ous axiom we can deduce that agent 2 now believes
Now let us suppose that agent 1 believes, with strength 0.4, that “either edge

We will not enter into the discussion of how that agent reached
that belief and we take it as a fact. Now let us suppose that another agent be­
lieves, at a level 0.7 that

or but not both, is present in the optimal tour”. We will represent this
as

then we write This
is curious, since this kind of assumption confuses our common sense. In gen­
eral we do not see any relationship between the fact that two edges cross and
that we can deduce that as a consequence one of them should be present in
the optimum tour. We can take this as a fact, as if a “co-evolving” algorithm,
is generating these predicates to guide the search. However, note that agent 3
believes in this relationship (at a 0.7 level) for a particular pair of edges and

Now, what can we say about the distributed belief of this group of three
agents ? How can we recombine this information ? At this point we need to
introduce a logic to recombine belief information. Discussions on which par­
ticular type of logic to guide heuristic search process is a much more elegant

EC: Challenges & Duties 63

and useful method than keeping on discussing values of parameters based on
trial-and-error experimental tests. It may also lead to improved convergence
in Estimation-of-Distributions (EDA) metaheuristics (Larrañaga and Lozano,
2001).

According to one possible selection for such a logic, just picked to exem­
plify the discussion, we can use a multi-agent epistemic logic recently
introduced by Boldrin and Saffiotti, the opinions shared by a set of different
agents can be recombined in a distributed belief. Using we can deduce

The distributed belief about proposition is then stronger than
any individual belief about it, and is even stronger than what you would get
if any agent would believe the three facts. We offer now two examples on its
application.

4.1 EXAMPLE 1
In we have the following axioms and inference rules, where and
range over formulas of and over rational numbers in [0,1]; and

The five axioms are:

The three inference rules are :

(MP) Modus Ponens from and deduce

(NEC) Necessitation from deduce

(US) Uniform substitutions

A formula is said to be a theorem of written if is obtained
from A0-A4 by a finite number of applications of MP, NEC and uniform sub­
stitutions. Then, if we will write to mean

Proposition: Given (see below) then

Proof:

64 FRONTIERS OF EVOLUTIONARY COMPUTATION

We can leave to the reader the task of checking this example following sec­
tion 3.3. of (Boldrin and Saffiotti, 1999).

Another interesting exercise is the following: let be the predicate
“edge (respectively, is present in the optimal tour”. The task is then to
deduce according to what can be distributively believed about individual
edges and if in addition to the three previous agents there are also two
other agents, such that

4.2 EXAMPLE 2

The following are theorems of

If the agents are trying to solve an Euclidean, 2-dimensional instance of the
TSP, then we also have the instance-dependent axioms or IDAs.

In addition, we also know that:

Proposition: Given (see below) then

65 EC: Challenges & Duties

Proof:

analogously we can deduce:

and now we will use one of the theorems:

and now we combine the information using the other theorem:

66 FRONTIERS OF EVOLUTIONARY COMPUTATION

We note that, by computing the distributed belief of the set of solutions
in an EA (or agents in an MA), it is possible to use this information to bias
constructive algorithms. This said, a Belief-Search-based EA can also bene­
fit from constructive heuristics already available in the literature. In addition,
exact search methods can prioritize some pending decisions based on the in­
formation that is distributively believed. This may also allow parallel search
by a set of agents, allowing the agents to have many alternatives instead of the
depth-first or best-first guiding procedures generally used.

By no means we affirm that is the definitive logic that should be used to
guide EAs with Belief Search. We mention this, since is related to multi-
modal logics of partial belief and it may be the case that some other forms
for connectives are more appropriate than the T-norm proposed for merging
information. However, already embodies very interesting features that
we would like to highlight and we have not noticed in other logics of belief.
First, it allows nested epistemic reasoning, i.e., an expression like can
be interpreted as agent believes at level that is distributively believed at
level B”. This is very interesting since some ad-hoc heuristics for generaliz­
ing recombination operators, like the rebel, conciliator, and obsequent behav­
iors (Berretta and Moscato, 1999), can be interpreted in terms of an underlying
nested epistemic reasoning. Second, the negation is typically modal conveying
the concept of absence of information. As remarked by Boldrin and Saffiotti,
this contrast with the algebraic approach of other logics in which negation rep­
resents positive information on some “orthogonal” formula. Again, this is best
illustrated with the MIN TSP as our favorite example. A strong belief on a
subset of edges to be in the optimal solution does not necessary mean
that the remaining edges might not be in the optimal solution. Modal

67 EC: Challenges & Duties

logic seems to have an interesting role in this respect. Finally, according to
Boldrin and Saffiotti, can be extended to also include a set of epistemic
operators with G being a subset of the agents. The intended meaning of
this is that they will combine the distributed belief of subsets of the agents.

5.	 CHALLENGE #4: LEARNING FROM

OTHER METAHEURISTICS AND OTHER

OPEN CHALLENGES

Evolutionary Computation metaheuristics are far from being the only method
of choice to perform heuristic search. We have shown in the introduction how
Simulated Annealing (SA) and Tabu Search (TS) are among the most popu­
lar ‘“single-agent” stochastic optimization methods. The key of the success is
the simplicity of their implementation and the fact that for many optimization
problems (and the problem instances under study) it is relatively easy to get
very good solutions. One of the authors of this chapter, back in 1989, intro­
duced the denomination of ‘memetic algorithms’ (MAs) as a paradigm aimed
to liberate population-search methods from the current biologically motivated
metaphors at that time. Several ideas were introduced, the use of single-agent
metaheuristics for individual search optimization steps, the use of different
neighborhoods for the different agents, the study of correlation of local optima,
etc. After more than a decade from that work, we see that several ideas have
been upraised up to the point of constituting new metaheuristics, like variable
neighborhood search (VNS) (Hansen and 2001). We can quote
from (Moscato, 1989):

Another advantage that can be exploited is that the most powerful computers in
the network can be doing the most time-consuming heuristics, while others are
using a different heuristics. The program to do local search in each individual
can be different. This enriches the whole, since what is a local minima for one of
the computers is not a local minima for another in the network. Different heuris­
tics may be working fine due to different reasons. The collective use of them
would improve the final output. In a distributed implementation we can think in
a division of jobs, dividing the kind of moves performed in each computing indi­
vidual. It leads to an interesting concept, where instead of dividing the physical
problem (assignment of cities/cells to processors) we divide the set of possible
moves. This set is selected among the most efficient moves for the problem.

and also,
Is this the ultimate solution for the problems that the search involves ? Is it

wise to use a set of many different moves, to continue adding different moves
ad infinitum ? Certainly not. Effective moves are those that, on the average,
create a new configuration with similar values of the objective value, reflect­
ing the efficient use of the correlation between the configurations given by the
representation.

Despite the clear coincidences present in these early discussions, and contrar­
ily to what the reader might suspect, we are not interested in claiming that
the VNS ideas were already contained in MAs. On the contrary, we view the
systematic development of particular strategies as a healthy sign. If a simpler

68 FRONTIERS OF EVOLUTIONARY COMPUTATION

metaheuristic (SA, TS, VNS, GRASP, etc.) performs the same as a more com­
plex method (GAs, MAs, Ant Colonies, etc.) we should either resort to the
simpler method, or to the one that has less free parameters, or to the one that
is easier to implement. On the other hand, such a fact challenges us to adapt
the more complex methodology to beat a simpler heuristic, if that is possible at
all. What we do not consider as a healthy sign, however, are the attempts to en­
capsulate some metaheuristics on stretched confinements. For instance, a MA
is not just a “hybrid” GA, or a “parallel GA”, or a GA in which all solutions
are local optima. Actually this latter strategy was not part of the proposed def­
initions, since already the MAs in 1988 and 1989 were using SA or stochastic
methods and the solutions were far from being locally optimal at the time of
recombination. Not every method that uses a population and a recombination
operator is a GA, not every hybrid GA is a MA. An “ant colony” metaheuristic
(Dorigo et al., 1996) is indeed a new idea, but when the “ants” use local search,
the resulting algorithm exhibits a strong resemblance to an MA.

We think that there are several “learned lessons” from work in other meta-
heuristics. For instance, TS decides to accept another new configuration
(whether a feasible solution or not) without restriction to the relative objec­
tive function value of the two solutions. This has lead to good performance in
some configuration spaces where evolutionary methods and Simulated Anneal­
ing perform poorly. A classical example of this situation is the MIN NUMBER

PARTITIONING problem (Berretta and Moscato, 1999). In addition, we have
also identified some problems with evolutionary search methods in instances
of the TSP in which the entries of the distance matrix have a large number of
decimal digits. We believe that there is an inherent problem to be solved, for
evolutionary methods to deal with fitness functions that have so many decimal
digits. Traditional rank-based or fitness-based selection schemes to keep new
solutions in the current population fail. It would be then reasonable to investi­
gate whether some ideas from basic TS mechanisms could be adapted to allow
less stringent selection approaches.

Problems like STRIPS planning (Bylander, 1994) or the less known Sokoban
(Culberson, 1999) can provide good test-beds for the performance of EC meth­
ods in problems of other complexity classes. Unfortunately, although there are
exceptions (Westerberg and Levine, 2001) they are seldom addressed. Other
related challenges have been described in (Selman et al., 1997). Multi-objective
optimization is another interesting field full of new challenges where several
metaheuristics are being evaluated (Coello, 1999).

In (Selman et al., 1997) we can read in their second challenge:

Minsky (1967) was foundational in establishing the theory of computation, but
after Hartmanis (1971) there has been a fixation with asymptotic complexity. In
reality lots of problems we face in building real AI systems do not get out of
hand in terms of the size of problems for individual modules–in particular with

69 EC: Challenges & Duties

behavior-based systems most of the submodules need only deal with bounded
size problems.

We have recently initiated work in an area which we have tentatively called
Evolutionary Analysis of Algorithms (Cotta and Moscato, 2003). This ap­
proach deals with the problem of finding, for a fixed-size, the worst-case in­
stance for a particular algorithm; there are problems that by their intrinsic na­
ture have been defined with a natural upper-bound on the instance size. Then
the real challenging problem is to find new methods allowing “co-evolution”
between the tasks of designing a better algorithm and the worst-case instance.
This hopefully will lead to more robust methodology for algorithms develop­
ment.

6. CONCLUSIONS

By looking back at the development of Evolutionary Computation in the
previous decades, we can say that it is a healthy field. The number of re­
searchers and published articles is steadily growing at a superlinear rate (Alan-
der, 1994). So is also the number of successful applications of these tech­
niques. Hence, the field is now well grounded and mature enough to endeavor
the challenging task of understanding how, when and why these techniques
work or should be deployed on an specific problem.

We have proposed a number of challenges whose successful resolution will
–in our opinion– provide major boosts for the vigorous development of the
field. Obviously, these challenges are only a part of a bigger picture, as the
reader will verify by reading other essays in this collection. They neverthe­
less reflect our view of the area, a view in which the lack of a solid theoretical
corpus as well as insufficient connections with other areas of metaheuristic op­
timization (let alone with other areas of Theoretical Computer Science) consti­
tute a Damocles’ sword whose existence we have to face (and indeed solve).

It is up to us, EC researchers, to determine whether future EC practitioners
will regard the field as a collection of elaborate recipes to be adapted to one’s
taste, or as a cooking book from which to learn how to cook the dish he/she
likes. Admittedly, this is an ambitious objective. It is also true that some of the
most optimistic perspectives about the capabilities of the paradigm a decade
ago were dismissed by theoretical results such as Hart & Belew’s hardness
results (Hart and Belew, 1991) and Wolpert & Macready’s No Free Lunch
Theorem (Wolpert and Macready, 1997), so in principle, this could be the case
for some of these challenges. However, we have to consider that these past
experiences did not compromise the future of EC; on the contrary, they allowed
redirecting efforts in more fruitful ways. Theoretical results cannot thus be
negative, for they represent the underlying truth about the paradigm. It is to
this underlying ground upon which we have to settle and adapt. Whatever the

70 FRONTIERS OF EVOLUTIONARY COMPUTATION

outcome of the challenges we have depicted in this essay, this should be the
philosophy with which we have to react.

REFERENCES

Alander, J. (1994). Indexed bibliography of genetic algorithms and neural net­
works. Technical Report 94-1-NN, University of Vaasa, Department of In­
formation Technology and Production Economics.

Bäck, T., Fogel, D., and Michalewicz, Z. (1997). Handbook of Evolutionary
Computation. Oxford University Press, New York NY.

Berretta, R. and Moscato, P. (1999). The number partitioning problem: An
open challenge for evolutionary computation ? In Corne, D., Dorigo, M.,
and Glover, F., editors, New Ideas in Optimization, pages 261–278. McGraw-
Hill, Maidenhead, Berkshire, England, UK.

Boldrin, L. and Saffiotti, A. (1999). A modal logic for merging partial belief of
multiple reasoners. Journal of Logic and Computation, 9(1):81–103. Online
at http://www.aass.oru.se/~asaffio/.

Bylander, T. (1994). The computational complexity of propositional STRIPS
planning. Artificial Intelligence, 69(1-2): 165–204.

Chen, J., Kanj, I., and Jia, W. (1999). Vertex cover: further observations and
further improvements. In Proceedings of the International Workshop
on Graph-Theoretic Concepts in Computer Science, number 1665 in Lecture
Notes in Computer Science, pages 313–324. Springer-Verlag.

Coello, Coello, C. A. (1999). An updated survey of evolutionary multiobjec­
tive optimization techniques: State of the art and future trends. In Angeline,
P. J., Michalewicz, Z., Schoenauer, M., Yao, X., and Zalzala, A., editors,
Proceedings of the Genetic and Evolutionary Computation Conference, vol­
ume 1, pages 3–13, Piscataway, NJ. IEEE Press.

Cotta, C. and Moscato, P. (2003). A mixed evolutionary-statistical analysis of
an algorithm’s complexity. Applied Mathematics Letters, 16(l):41–47.

Cotta, C. and Troya, J. (1998). Genetic forma recombination in permutation
flowshop problems. Evolutionary Computation, 6(1):25–44.

Culberson, J. (1999). Sokoban is PSPACE-complete. In Lodi, E., Pagli, L., and
Santoro, N., editors, Proceedings in Informatics 4, Fun With Algorithms,
pages 65–76, Waterloo. Carleton Scientific.

Davidor, Y. (1991). Epistasis variance: A viewpoint on GA-hardness. In Rawl­
ins, G., editor, Foundations of Genetic Algorithms, pages 23–35. Morgan
Kaufmann.

Dorigo, M., Maniezzo, V., and Colorni, A. (1996). The ant system: Optimiza­
tion by a colony of cooperating agents. IEEE Transactions on Systems, Man,
and Cybernetics-Part B, 26(1):29–41.

71 REFERENCES

Downey, R. G. and Fellows, M. R. (1995). Fixed parameter tractability and
completeness I: Basic theory. SIAM Journal of Computing, 24:873–921.

Downey, R. G., Fellows, M. R., and Stege, U. (1999). Computational Tractabil­
ity: The View From Mars. Bulletin of the European Association for Theo­
retical Computer Science, 69:73–97.

Englemore, R. and Morgan, T. (eds.) (1988). Blackboard Systems. Addison-
Wesley.

Fellows, M. R. (2002). Parameterized Complexity: The main ideas and con­
nections to practical computing. Electronic Notes in Theoretical Computer
Science, 61. available at http:/www.elsevier.nl/locate/entcs/volume61.html.

Forrest, S. and Mitchell, M. (1991). What makes a problem hard for a genetic
algorithm? some anomalous results and their explanation. In Belew, R. and
Booker, L., editors, Proceedings of the International Conference on Ge­
netic Algorithms, pages 182–189, San Mateo, CA. Morgan Kaufman.

Garey, M. and Johnson, D. (1979). Computers and Intractability: A Guide to
the Theory of N P-Completeness. W.H. Freeman and Company, San Fran­
cisco.

Gent, I. and Walsh, T. (1994). The SAT phase transition. In Cohn, A., editor,
Proceedings of European Conference on Artificial Intelligence, pages
105–109. John Wiley & Sons.

Glover, F. and Laguna, M. (1997). Tabu Search. Kluwer Academic Publishers,
Boston, MA.

Hansen, P. and N. (2001). Variable neighborhood search: Princi­
ples and applications. European Journal of Operational Research, 130(3) :
449–467.

Hart, W. and Belew, R. K. (1991). Optimizing an arbitrary function is hard for
the genetic algorithm. In Belew, R. K. and Booker, L., editors, Proceedings
of the International Conference on Genetic Algorithms, pages 190–195,
San Mateo CA. Morgan Kaufmann.

Johnson, D., Papadimitriou, C. H., and Yannakakis, M. (1988). How easy is
local search ? Journal of Computers and System Sciences, 37:79–100.

Kirkpatrick, S., Gelatt Jr., C., and Vecchi, M. (1983). Optimization by simu­
lated annealing. Science, 220(4598):671–680.

Krivelevich, M. (2002). Sparse graphs usually have exponentially many opti­
mal colorings. Electronic Journal of Combinatorics, 9(1):#R27.

Larrañaga, P. and Lozano, J. A., editors (2001). Estimation of Distribution
Algorithms. A New Tool for Evolutionary Computation. Kluwer Academic
Publishers, Boston.

Lewis, H. and Papadimitriou, C. H. (1998). Elements of the Theory of Compu­
tation. Prentice-Hall, Inc., Upper Saddle River, New Jersey.

Mathias, K. and Whitley, D. (1992). Genetic operators, the fitness landscape
and the traveling salesman problem. In Männer, R. and Manderick, B., edi­

72 FRONTIERS OF EVOLUTIONARY COMPUTATION

tors, Parallel Problem Solving From Nature II, pages 259–268, Amsterdam.
Elsevier Science Publishers B.V.

Moscato, P. (1989). On Evolution, Search, Optimization, Genetic Algorithms
and Martial Arts: Towards Memetic Algorithms. Technical Report Caltech
Concurrent Computation Program, Report. 826, California Institute of Tech­
nology, Pasadena, California, USA.

Moscato, P. (1999). Memetic algorithms: A short introduction. In Corne, D.,
Dorigo, M., and Glover, F., editors, New Ideas in Optimization, pages 219–
234. McGraw-Hill, Maidenhead, Berkshire, England, UK.

Niedermeier, R. and Rossmanith, P. (2000). A general method to speed up
fixed-parameter-tractable algorithms. Information Processing Letters, 73:
125–129.

Oliver, I., Smith, D., and Holland, J. R. C. (1987). A study of permutation
crossover operators on the traveling salesman problem. In Grefenstette, J. J.,
editor, Proceedings of the International Conference on Genetic Algo­
rithms, pages 224–230, Hillsdale NJ. Lawrence Erlbaum Associates.

Radcliffe, N. J. and Surry, P. D. (1994). Fitness Variance of Formae and Per-

of the
Proceedingsformance Prediction. In Whitley, D. and Vose, M. D., editors,

Workshop on Foundations of Genetic Algorithms, pages 51–72,
San Francisco. Morgan Kaufmann.

Selman, B., Kautz, H. A., and McAllester, D. A. (1997). Ten challenges in
propositional reasoning and search. In Proceedings of the International
Joint Conference on Artificial Intelligence (IJCAI’97), pages 50–54.

Syswerda, G. (1989). Uniform crossover in genetic algorithms. In Schaffer, J.,
editor, Proceedings of the International Conference on Genetic Algo­
rithms, pages 2–9, San Mateo, CA. Morgan Kaufmann.

Westerberg, C. H. and Levine, J. (2001). Investigation of different seeding
strategies in a genetic planner. In Boers, E., Cagnoni, S., Gottlieb, J., Hart,
E., Lanzi, P., Raidl, G., Smith, R., and Tijink, H., editors, Applications of
Evolutionary Computing, volume 2037 of Lecture Notes in Computer Sci­
ence, pages 505–514. Springer-Verlag, Berlin Heidelberg.

Wolpert, D. H. and Macready, W. G. (1997). No free lunch theorems for opti­
mization. IEEE Transactions on Evolutionary Computation, l(l):67–82.

Yannakakis, M. (1997). Computational complexity. In Aarts, E. and Lenstra, J.,
editors, Local Search in Combinatorial Optimization, pages 19–55. Wiley,
Chichester.

Chapter 4

OPEN PROBLEMS IN THE SPECTRAL
ANALYSIS OF EVOLUTIONARY
DYNAMICS

Lee Altenberg
Information and Computer Sciences,

University of Hawai‘i at Manoa,

Honolulu, HI U.S.A.

altenber@hawaii.edu

Abstract	 The dynamics of evolution can be completely characterized by the spectra of
the operators that define the dynamics, under broad classes of selection and ge­
netic operators, in both infinite and finite populations. These classes include
frequency-independent selection, uniparental inheritance, and generalized mu­
tation. Several open questions exist regarding these spectra:

1	 For a given fitness function, what genetic operators and operator intensities are optimal
for finding the fittest genotype? The concept of rapid first hitting time, and analog of
Sinclair’s “rapidly mixing” Markov chains, is examined.

2	 What is the relationship between the spectra of deterministic infinite population mod­
els, and the spectra of the Markov processes derived from them in the case of finite
populations?

3	 Karlin proved a fundamental relationship between selection, rates of transformation un­
der genetic operators, and the consequent asymptotic mean fitness o the population.
Developed to analyze the stability of polymorphisms in subdivided populations, the the­
orem has been applied to unify the reduction principle for self-adaptation, and has other
applications as well. Many other problems could be solved if it were generalized to ac­
count for the interaction of different genetic operators. Can Karlin’s theorem on operator
intensity be extended to account for mixed genetic operators?

INTRODUCTION

A general theory for the performance and design of evolutionary algorithms
has proven difficult to achieve. This difficulty sets in even before we delve
into search spaces with great complexity, or algorithm operators with great

74 FRONTIERS OF EVOLUTIONARY COMPUTATION

complexity. We find it in the simplest “canonical” models of evolutionary
algorithms owing to their nonlinear structure and stochastic dynamics.

Nonlinearity and stochasticity can be eliminated by making a variety of sim­
plifying assumptions—in essence, exploring a subspace on the boundaries of
the general problem. Linearity is produced by assuming constant selection and
uniparental transmission (i.e. where the offspring type is determined by the

type of its one parent). Determinism is produced by assuming an infinite pop­
ulation. A model with these assumptions produces a linear dynamical system
whose trajectory and attractors can be described in closed form, and decom­
posed in terms of its spectrum of eigenvalues and eigenvectors.

Actual evolutionary algorithms depart from this boundary in two important
ways: finite populations, and recombination between two (or more) parents.

Recombination is the main innovation of genetic algorithms, aimed at allow­
ing combinations of partial solutions to be assembled. Recombination between
two parents changes the dynamics of the infinite population model from linear
to quadratic. In this case, we can no longer obtain a spectrum of eigenvalues
and eigenvectors; the methods of nonlinear analysis must be employed, such as
characterization of fixed points and their stability, domains of attraction, and
Lyapunov functions. A great deal of work has been on the dynamics of re­
combination and selection for models at various points on the boundary of the
general problem. A recent compendium can be found in (Christiansen, 2000).
For more on quadratic dynamical systems see Rabinovich et al. (1992), Arora
et al. (1994). . Progress has been made in the dynamics of recombination
in the absence of selection, in both infinite and finite population models, by
Rabani et al. (1995) , and for simple selection, by Rabinovich et al. (1999).
Numerous analyses for other models on the boundary of the general problem
can be found in the evolutionary computation and population genetics litera­
ture.

Evolutionary algorithms employ finite populations of a size considerably
less than the cardinality of the search space, since a primary goal of the al­
gorithms is to locate desired elements of the search space without exhaustive
search.

Finite population algorithms typically use Bernoulli sampling to generate
new samples of the search space. This changes the model of the algorithm
from deterministic to stochastic, a Markov chain which has a linear state tran­
sition matrix, but whose dimensions are exponentially increased beyond the
number of elements in the search space. The first model of finite population
dynamics was developed based on Bernoulli sampling by Wright (1931) and
Fisher (1930). In the Wright-Fisher model, the number of states in the Markov
chain for the finite population model is compared to a dimension of

for the infinite population model, where is the number of different geno­
types, and N is the population size. Hence, the dimensionality of the state space

75 Spectral Analysis of Evolutionary Dynamics

is vastly increased in the finite population model over the infinite population
model.

This comparison can be made more concrete by describing the difference
in terms of points in the dimensional simplex. In the infinite pop­
ulation model, the system state is represented as a single point in the sim­
plex which moves deterministically one generation to the next. In the finite
population model, the state is represented as a probability distribution over a
cloud points in the simplex, restricted to the lattice of coordinates

The distribution of the cloud of points is what
changes every generation.

Because the uniparental, infinite population model has a complete solution,
in terms of the spectrum of the linear operators, it presents the logical starting
point to try to understand a number of unanswered questions in the design and
dynamics of evolutionary algorithms. So it is the uniparental, infinite popula­
tion model that I begin with. There are three primary open questions I want to
discuss:

1 What is the optimal transmission matrix for finding global optima of a
search space?

2	 What is the relationship between the spectrum of the infinite population
model and the spectrum of the finite population model?

3	 Can a key theorem of Karlin on the effects of operator intensity be gen­
eralized?

THE CANONICAL MODEL
The ‘canonical’ model I shall be referring to throughout is the model of an

infinite population evolving with discrete, non-overlapping generations, under
constant fitness coefficients and generalized uniparental transmission. Let x be
the vector of frequencies of different types in the population, so

and which is to say that the
simplex. Then the recursion on x is:

where is the vector of frequencies in the next time step; W is the diagonal
matrix of fitness coefficients,

76 FRONTIERS OF EVOLUTIONARY COMPUTATION

is the mean fitness of the population, used as a normalizer to maintain the
system state as frequencies; and

is the matrix of transmission probabilities, the probability that type
produces an offspring of type so

In vector form, these identities are:

where

The trajectory of the system is:

where 	is the normalizer.

1.	 OPTIMAL EVOLUTIONARY DYNAMICS
FOR OPTIMIZATION

For an optimization problem, we assume that an objective function
is defined on each element of the search space; here, I assume that the

goal is to find the element with maximum objective function value. Exhaustive
search or random search of such a space will require on the average sam­
ples to have sampled an optimum if it is unique (which will be by assumption
throughout unless specified otherwise). If an algorithm can find the optimum
in an average of samples, for some small constant then it is clearly
doing better than “blind search”.

However, evolutionary algorithms can perform much better than The
canonical example for an “evolutionary algorithm-easy” problem is the ONE­
MAX problem, where the fitness increases with the number of loci that have
1 as their allelic value (Ackley, 1987). The number of samples required by a

MAX problem is where L the number of loci,
simple mutation-selection algorithm to find the global optimum in the ONE-

77 Spectral Analysis of Evolutionary Dynamics

is the size of the search space, is the set of alleles for each locus, the
cardinality of for binary strings).

So, as a performance goal, we would like the time complexity our evolu­
tionary search to be on the order of the ONEMAX problem, taking
samples in order to find the global optimum. To be a little more lenient with
the performance requirements, we can relax the condition for “EA-easy” to
polylogarithmic time, meaning that it takes samples to find the
optimum, where is a polynomial in

So, we wish to know what conditions on an evolutionary algorithm will
allow it to find the global optimum in samples. To be precise,
we wish to know when the distribution of the first hitting times for producing
the optimal individual has a median value (since expected hitting times are
often be nonconvergent) of

Evolutionary algorithms often have multiple domains of attraction (at least
samples.

in the metastable sense (van Nimwegen et al., 1999)), which imposes a sec­
ondary search problem: finding the initial conditions that are in the domain
of attraction containing the global optimum. The multiple-attractor problem
is usually described as “multimodality” of the fitness function, but it must be
understood that the fitness function by itself does not determine whether the
EA has multiple domains of attraction—it is only the relationship of the fitness
function to the variation-producing operators that produces multiple-attractors
(Altenberg, 1995).

In order to preclude this secondary search problem, the algorithm must ex­
hibit a single, global attractor that contains the global optimum.

So, I wish to find what spectral properties give rise to these characteristics
of an evolutionary algorithm:

1 Rapid First Hitting Time: It finds the global optimum using a num­
ber of samples that are where is the cardinality of the
search space. I will call this the rapid first hitting time property.

2	 Global Attraction: It finds the global optimum regardless of the initial
samples taken, i.e. the simplex must have one global attractor containing
the optimum.

Search problem that present obstacles to 1. include long path problems, and
the needle-in-a-haystack. Search problem that present obstacles to 2. include
deception, rugged adaptive landscapes, and multimodal objective functions.

78	 FRONTIERS OF EVOLUTIONARY COMPUTATION

1.1	 SPECTRAL CONDITIONS FOR GLOBAL
ATTRACTION

For the canonical model Eq. (4.1), the global attraction condition, 2. above,
can be stated precisely as:

where we index the global optimum type as 1.
Condition (4.3) is guaranteed if and only if T is primitive (irreducible and

acyclic), i.e. there is some such that From the Perron-Frobenius
theorem (Gantmacher, 1959), primitiveness guarantees that there be a strictly
positive eigenvector TW. This
eigenvector

corresponding to the leading eigenvalue of
normalized so is the global attractor,

since the composition of the population converges to it regardless of the initial
composition x(0).

Primitiveness in the transmission matrix corresponds to the property of er­
godicity.

It should be noted that when some types have a fitness of 0, then their fre­
quency becomes irrelevant to the dynamics, so the transmission probabilities

where are also irrelevant. Hence, primi­
tiveness is required only for the restriction

For simplicity, I will henceforth assume all fitnesses are positive.
It should be noted that ergodicity in the infinite population model gives us

little guarantee that the system in the finite population model will exhibit a
global attractor, due to the phenomenon of metastability or broken ergodicity
(Palmer, 1982). While ergodicity in the infinite population model is necessary
for ergodicity in the finite population model, it is not sufficient. The Markov
chain for the finite population model must in addition be rapidly mixing (Sin­
clair, 1992) to avoid broken ergodicity, as will be discussed later.

1.2	 SPECTRAL CONDITIONS FOR RAPID
FIRST HITTING TIMES

What properties of T and W—which here completely define the canonical
evolutionary algorithm—lead to rapid first hitting times? W incorporates the
map between the objective function and the fitness values, and we could
certainly focus on the properties of this map. I can pose the following (without
belaboring its precise details):

Open Question: For a given transmission matrix, T, what is the optimum

79 Spectral Analysis of Evolutionary Dynamics

selection scheme to find the global optimum with a rapid first hitting time?

Here, however, since the canonical model assumes that W is fixed, we wish
to consider the problem for arbitrary W. This leaves only T, the transmission
matrix, to be explored.

We can, without loss of generality, label the unique optimal point in the
search space with so

We can trivially guarantee a hitting time of 1 by simply constructing a trans­
mission matrix that produces the optimum by mutation:

Transmission in this case is biased to find the optimum without any help from
selection. Clearly, such a priori knowledge does not capture the nature of the
implicit knowledge that an evolutionary algorithm must contain to have rapid
first hitting times (Altenberg, 1995). The essence of evolutionary search is
that transmission in the absence of selection is unable to produce adaptation
or optimization. Only when selection and transmission are combined does
adaptation occur. The translation of this principle into a condition on T would
require that all types evolve to equal frequency in the absence of selection, i.e.

Condition (4.4) for “fair” transmission implies that

1 The transmission matrix is doubly stochastic, i.e. T 1 = 1;

2 The transmission matrix is primitive, i.e. irreducible and acyclic.

So, our question about the optimal characteristics of T can be posed thus:

Open Question:

first hitting time?
“fair” transmission matrix is optimal for finding the global optimum with rapid

Given a fitness Junction on a points in a search space, what

A rapid first hitting time refers to the number of samples that need to be
taken before finding the global optimum. But in an infinite population, an

80 FRONTIERS OF EVOLUTIONARY COMPUTATION

infinite number of samples are taken each generation. So clearly, to adapt the
infinite population model to the problem of rapid first hitting time, we need a
proper translation.

In a finite population, with discrete, non-overlapping generations, the num­
ber of samples, until the optimum is found is:

where N is the population size, is the first hitting time (in generations), and
is the fraction of the population each generation that comprise new samples.

Hence, to achieve rapid first hitting times, the population size and the first
hitting time itself must each be polylogarithmic in the size of the
search space, since

1.3	 RAPID MIXING AND RAPID FIRST
HITTING TIMES

Vitanyi (2000) has investigated the problem of rapid first hitting time in the
finite population model, and proposes two criteria that will ensure rapid first
hitting time:

1	 the second-largest eigenvalue of the matrix representing the Markov pro­
cess is bounded away far enough from 1 so that the Markov chain is
rapidly mixing, as defined by Sinclair (1992).

2	 the stationary distribution gives probability greater than

to the set of states that contain the global optima, where
 is a
polynomial in the log of the size of the search space.

The identification of the second-largest eigenvalue as a measure of the speed
of convergence of the Markov chain in evolutionary dynamics goes all the
way back to Wright (1931) and Fisher (1930), who solved the second-largest
eigenvalue for the Markov process representing the finite population model.

where NThis eigenvalue is is haplotype
population size. It gives the rate of convergence to fixation on a single haplo­
type due to genetic drift, and is also the rate of decrease in the frequency of
heterozygotes in the population. See Ewens (1997, pp. 17, 76, 79, 82, 85-90,
105-107, and Appendix B).

Other more recent work investigating the second-largest eigenvalue includes
Suzuki (1995), (Rudolph, 1997), Schmitt et al. (2001a,2001b). .

The condition defined by Sinclair (1992) to produce what he calls rapid
mixing in a Markov chain is as follows. Sinclair lays out his concept of rapid
mixing by first defining the relative pointwise distance (r.p.d.) on a Markov

81 Spectral Analysis of Evolutionary Dynamics

process with transition matrix P as:

where
defines

is the cardinality of the state space for the chain. Additionally, one

The Markov chain is said to be rapidly mixing if there exists a polynomial
such that:

(Sinclair, 1992, p. 56).
The second-largest eigenvalue determines the rate at which the components

of the probability distribution that are orthogonal to the limiting distribution
die away. Rapid mixing concerns the rate of convergence of a Markov chain to
its limiting probability distribution. The definition of fast optimization which
depends on rapid mixing I call rapid first hitting time by analogy.

I propose a slightly different set of criteria from Vitanyi (2000) to allow
rapid first hitting time to be defined in the infinite population model. We can
translate the above discussion into a condition for rapid first hitting time in the
deterministic model thus:

Definition: Rapid First Hitting Time. Consider a deterministic evolutionary

for all Let
algorithm with a unique global optimum, which we set to be type 1, so

The evolutionary algorithm is said to possess a rapid first hitting time if there
exist polynomials in and such that

For the canonical evolutionary algorithm, this re­
quires that for all x(0) there exist polynomials and
such that:

82 FRONTIERS OF EVOLUTIONARY COMPUTATION

Of course, it must be emphasized that this ‘translation’ carries with it no
presumption that the infinite population model adequately approximates the
behavior the first hitting time in the finite population model. The first hitting
time is a concept that properly belongs to stochastic processes; it is a random
variable. The use of the infinite population model to approximate the first
hitting time has been taken before in the “takeover time” models (Goldberg
and Deb, 1991), where a deterministic, infinite population model is used to
approximate the time to fixation of a genotype in a finite population. It is
clear that this approximation will be inadequate and misleading under the very
circumstances in which an evolutionary algorithm is of interest, namely, when
it can find the fittest elements of the search space by sampling only a fraction
of the search space. This circumstances will be discussed in Section 2.1. I
claim only that this use of the infinite population model may lead us to results
that may be worth investigating more rigorously in the finite population model.

1.4 SOME ANALYSIS

We can assume without significant loss of generality that TW permits a
Jordan canonical representation as

Q TW,where the matrix consists of columns that are the eigenvectors of
and is the diagonal matrix of the eigenvalues

of TW. This assumption will simplify the analysis.

The condition applies if we assume that transition probabilities are sym­

S
hence

metric, i.e. which is typical of the mutation operators used on
data structures in evolutionary computation. This is verified by noting that
since any symmetric matrix has Jordan form so we can take

We must assume here that all fitnesses are non-zero,
With this assumption we can then represent the trajectory of the population

as:

Then for
We can arbitrarily permute the indices so that
and so that follows the order of the
fitnesses, while follows the order of the eigenvalues. In particular,

Spectral Analysis of Evolutionary Dynamics 83

is the strictly positive leading eigenvector of TW, with (note that
by definition Thus:

The trajectory of the frequency of the optimal type is:

Further evaluation of yields:

using So we obtain:

Substituting the above into (4.6), setting and rearranging, we
obtain the condition:

84 FRONTIERS OF EVOLUTIONARY COMPUTATION

Since we substitute and
to get:

At this point, we take interest in the second-largest eigenvalue Let us
define

For any if is small enough, then

In this case, condition (4.10) is met provided

or

Hence, for small enough the only condition for rapid first hitting time is that

We know that selection is required in order for
the frequency of the optimum at equilibrium be on the order of

since the prin­

ciple eigenvector of T has by the fairness assumption. Thus:

Theorem 1 If the system exhibits rapid first hitting
time, then there exists a critical value such that the system

no longer exhibits rapid first hitting time for all

Characterizing the dependence of on T and W remains an open question.
Now, it remains to be asked, what transmission matrices T minimize

Spectral Analysis of Evolutionary Dynamics 85

1.5 TRANSMISSION MATRICES
MINIMIZING

If we find a transmission matrix that gives then the only
condition we require for rapid first hitting time is (4.12). The rank- 1 matrix

yields

and
selection:

and

We have When we include

is also a rank-1 matrix, with eigenvalues

Thus, it would appear that the rank-1 matrix would be a candidate trans­
mission matrix to achieve rapid first hitting times. However, this hope is
instantly dashed by noting that for UW, which is not greater
than We might ask if we can find another rank-1 matrix where

but the is precluded by the condition that T be ‘fair’, and
thus doubly-stochastic, requiring that for all This result is not
unexpected, when we consider that the rank-1 matrix corresponds to random
search.

So, we are left with the following:

Open Question: For a given set of fitnesses, W, what classes of fair trans­
mission matrices maximize while minimizing so as to satisfy the
conditions for rapid first hitting time ?

One step we may take in defining the notion of classes of transmission ma­
trices is to note that the topology of transmission may be separated from the
operator intensity by the following parameterization:

where Pis the mutation rate, and is a transmission matrix in which
at least one value (Altenberg and Feldman, 1987). For those genetic

86 FRONTIERS OF EVOLUTIONARY COMPUTATION

operators that can be represented as graphs, where a vertex represents a type,
and an edge represents an operator transformation from one type to another,
then P naturally corresponds to a normalized adjacency matrix for the graph.

We can see immediately that if the matrix becomes re­
ducible, so if then for all For small the following
should be readily shown:

Conjecture If the system exhibits rapid first hitting
time, then the system

will exhibit rapid first hitting time for for some polynomial

in and will not exhibit rapid first hitting time for

Let us return to the example of the ONEMAX problem as the paradigmatic
EA-easy problem. The transmission matrix for the ONEMAX problem is sim­
ple bit-flip mutation, which produces an L-dimensional binary hypercube when
represented as a graph between genotypes that mutate to one another. When
fitnesses are permuted to the proper order (which Liepins et al. (1990) prove
can always be done), the problem becomes the ONEMAX problem. Hence,
one can conjecture that a transmission matrix representing the binary hyper­
cube would be a primary candidate for rapid first hitting time. However, it
is clear that W can be designed for which no rapid first hitting time can be
achieved:

Conjecture It is possible to choose small enough so that if

then there exists no fair transmission matrix that can produce rapid first hitting
time.

With the proper constraints on W, however, we may find the following:

Conjecture Consider a search space, with Let the fitness
values be Consider a binary encoding of the indices, such
that if and only if the Hamming distances, H[,], between the binary
encodings satisfies Let

where P is the normalized adjacency matrix for the L-dimensional
binary hypercube under this encoding. Then for some if
then there exists such that the system has rapid
first hitting time.

87 Spectral Analysis of Evolutionary Dynamics

Other examples of evolutionary systems that attain rapid first hitting times
can be found in Vitanyi (2000).

We may also consider a class of transmission matrices which can never
achieve rapid first hitting time for any set of fitnesses, namely, the “long path??
(Horn et al., 1994) matrices:

Conjecture Let where for
otherwise.

Then, there are no fitnesses W, nor values such that the system

has rapid first hitting time.

1.6	 RAPID FIRST HITTING TIME AND NO

FREE LUNCH THEOREMS

It should be noted that the concept of rapid first hitting times allows us to
distinguish between transmission matrices in a way that the No Free Lunch
Theorem (Wolpert and Macready, 1995; Wolpert and Macready, 1997) can.

The No Free Lunch Theorem states, in the current context, that all transmis­
sion matrices have the same performance when averaged over all permutations
of a set of fitnesses. However, Wolpert and Macready (1995) point out that
minimax properties can be used to distinguish search algorithms. In this case,
an example of a minimax property is the existence, or lack of existence, of a
permutation of fitnesses for a given transmission matrix such that rapid first
hitting time occurs, as discussed above.

So, while a long path operator and a binary hypercube operator will have
the same average performance in locating the global optimum over all permu­
tations of fitness, there will be some permutations that we expect will give the
binary hypercube a rapid first hitting time, while none that will give the long
path operator a rapid first hitting time. In this way, we can make a definite
judgement that the binary hypercube is superior to the long path operator for
optimization.

At this juncture, I will refrain from pursuing the numerous possibilities that
exist for investigating these open questions, and leave them for forthcoming
work.

2.	 SPECTRA FOR FINITE POPULATION
DYNAMICS

One of the important open questions in evolutionary computation is the rela­
tionship between the dynamics of the infinite and the finite population models.

88	 FRONTIERS OF EVOLUTIONARY COMPUTATION

The Wright-Fisher model of finite populations1 is derived from the canonical
model of an infinite population by the addition of only one free parameter—the
population size. It thus provides the ideal model in which pose this question.

2.1	 WRIGHT-FISHER MODEL OF FINITE

POPULATIONS

In the Wright-Fisher model of a finite population, the action of selection
and genetic operators on the current members of the population produces a
probability distribution from which each member of the population in the next
generation is drawn independently. It is as if an infinite zygote pool was created
from which only finite many can survive with equal probability.

The elements of the Wright-Fisher model are mostly the same as for the
infinite population model. Let:

N be the population size;

x be the vector of frequencies of each type in the population, corresponding
to individuals of type

be the vector of the frequencies of each type in the population in the next
generation, corresponding to individuals of type produced by
taking N independent samples from the distribution y(x);

be the vector representing the probability distribution for
drawing an individual of type to compose the population in the next
generation. T and W again represent the transmission matrix and fit­
ness matrix, respectively.

Since the population consists of discrete individuals, the frequency vectors are
now restricted to a lattice of discrete points on the simplex namely

The Wright-Fisher model forms a Markov chain, whose transition matrix on
frequency vectors is:

The Markov theory of Wright and Fisher is known in the genetic algorithms community as the “Nix
and Vose model” (Nix and Vose, 1991) since this community developed largely without awareness of prior
work in mathematical population genetics. Other work on Markov chains in genetic algorithms includes
(Goldberg and Segrest, 1987), and (Davis and Principe, 1993).

1

89 Spectral Analysis of Evolutionary Dynamics

with entries

where has the 1 in the position.

If we make the assumption that T is primitive, and
 then we may

employ the Jordan form (4.7):

Wright and Fisher analyzed some simple cases for this Markov system and
derived a number of their properties, including rates of convergence, probabil­
ities of fixation, time to fixation, and stationary distributions of allele frequen­
cies.

In the special case of T = W = I, and the solution for all the eigen­
values of M was found by Feller (1951), and by Cannings (1974) through
his method of “exchangeable processes” (see Ewens 1979, pp. 77-79). The
solution is:

where
Regrettably, the method of exchangeable processes can not be applied when

different individuals have different offspring probability distributions. We are
therefore left with the following:

 refers to the eigenvalues of M, not of TW.

Open Question: What is the relationship between the eigenvalues and eigen­
vectors of TW and those of M?

Since M is defined explicitly in terms of the eigenvalues and eigenvectors
of TW in (4.14), establishing their relationship with the eigenvalues of M
is simply a matter of algebra. The complexity of the algebra, however, ob­
scures the relationship. One may be able to simplify the sums in (4.14) by
making assumptions that cause one term to dominate the sum, for example,
if But the utility of such an approach has yet to be demon­
strated.

One can nevertheless make the following observations. Because the state
space of the system is restricted to the lattice and the situation
of interest is when the vast majority of the entries of

90 FRONTIERS OF EVOLUTIONARY COMPUTATION

any must be 0. Thus, has no points on the interior of
and is in fact restricted to the low-dimensional boundaries of

Thus, the indices of the non-zero components of x make up a sparse set. Let
us define the sparse set:

Then we may rewrite (4.14) as:

The trajectory of points in the finite population model will be radically dif­
ferent from the trajectory in the infinite population model. In the finite popula­
tion model, a probability distribution will move over the surface of while
in the infinite population model, the system will immediately enter the interior
of since TW > 0. Evolution in the finite population model can be views
as transitions between one edge of and another,
with the probability of transition being highest for types where the terms

are the largest.
My earlier discussion of the transmission matrix representing the binary hy­

percube took place in the context of the infinite population model. I conjecture
that it will exhibit rapid first hitting time properties in the infinite population
dynamics. However, it seems apparent that the binary hypercube mutation will
be especially advantageous in traversing the low-dimensional boundaries of
the simplex in the finite population model.

I suspect that methods which can analyze (4.14) as a flow along the low-
dimensional boundaries of the simplex may prove to be most helpful in under­
standing finite population dynamics. In the work of van Nimwegen (1999) we
find this approach applied to specific models of mutation and selection, with
a nice harvest of analytical results. Answers to the general spectral problem,
however, await discovery.

2.2	 RAPID FIRST HITTING TIME IN A
FINITE POPULATION

For a Wright-Fisher model, we can define the criteria for rapid first hitting
time in terms of the actual first hitting time for the Markov chain. Here I depart
only slightly from Vitanyi (2000).

Let us refer to the set of populations that contain the global optimum as:

and conversely,

91 Spectral Analysis of Evolutionary Dynamics

Suppose that the population always begins fixed on one type other than the
optimum, so

Define to be the restriction of M to Then the probability that the
global optimum first appears after generation is:

We can define the criteria for rapid first hitting time in terms of the speed at
which declines with

As a basis for comparison, we can consider how
 behaves for random
search, i.e. where Then

for all
 So

In order for to be reduced to to be specific, say we
have:

thus for large hence which is what we
expect. The essential idea for rapid first hitting time is that we would like

The the obvious candidate for a condition to define rapid
first hitting time would be:

Definition: Rapid First Hitting Time in a Finite Population. The evolution­
ary algorithm is said to possess a rapid first hitting time if there exist polyno­
mials in and such that and

Clearly, the smaller the spectral radius of the more easily that rapid first
hitting time is achieved.

We are then ready to pose the main open question regarding the spectrum of
evolutionary systems:

Open Question: What conditions on the eigenvalues and eigenvectors of
TW satisfy condition (4.17) for rapid first hitting time?

92 FRONTIERS OF EVOLUTIONARY COMPUTATION

3.	 KARLIN’S SPECTRAL THEOREM FOR

GENETIC OPERATOR INTENSITY

Samuel Karlin derived a quite fundamental theorem for evolutionary dy­
namics in a paper that examines the role of population subdivision in maintain­
ing genetic diversity (Karlin, 1982). The problem at hand was to understand
whether migration would enhance or inhibit the maintenance of genetic diver­
sity. Karlin took the approach of finding the conditions that would prevent an
allele from becoming extinct, i.e. which would cause it to increase when rare.
To this end, he proved a general theorem on the spectral radius of the stability
matrix which solved his problem for the case of any number of demes, any
migration pattern, and any selection regime—quite extraordinary in its gener­
ality. I present theorem below. The square matrix P represents the migration
pattern, represents the overall migration rate, and the diagonal matrix W
represents the average (or ‘marginal’) selection coefficients of an allele when
rare.

Theorem 2 (Karlin, 1982)
Let

where P is an irreducible Markov matrix, and let W be a diagonal matrix with
strictly positive diagonal elements, where for any scalar Then the
spectral radius is strictly decreasing in

An allele goes extinct when rare if and is protected from
extinction if Since decreases with the conse­
quence of this result is that more migration makes it more difficult to maintain
genetic diversity.

In the process of answering the question about migration, Karlin produced a
result far more fundamental. Its first application outside of that specific ques­
tion was its use by Altenberg (Altenberg, 1984; Altenberg and Feldman, 1987)
to unify the Reduction Principle result for the evolution of genetic systems.
In several earlier studies that separately modeled the evolution of mutation,
recombination, and migration rates, the same result kept arising: new alleles
which reduced these rates could always invade a population. By applying Kar-
lin’s theorem, I showed that each of these results were in fact special cases of
the same result: that when an allele that modifies rates of mutation, recom­
bination, migration, or any other transformation of type is introduced into a
population near equilibrium, it will increase in frequency if it uniformly re­
duces the rates of transformation, and go extinct if it uniformly increases the
rates of transformation.

93 Spectral Analysis of Evolutionary Dynamics

Another immediate result from Karlin’s theorem regards the mean fitness
under a mutation-selection balance. The mean fitness of haploid system de­
creases with increasing mutation rates:

Corollary 1 Consider an evolutionary system consisting of

constant selection,

asexual genetic operators, and

discrete, non-overlapping generations.

The mean fitness of the population at an attractor is a decreasing function of
the probability of the genetic operator acting.

Proof. Let the asexual genetic operator be represented by the Markov
matrix M, and let is the probability of applying the operator. Then the
transmission matrix for the algorithm is:

and the recursion for discrete, non-overlapping generations is:

For the global attractor, which is the leading eigenvector of TW (whose
existence and positive value are established by the Perron-Frobenius Theorem
(Gantmacher, 1959), we have:

Hence the mean fitness of the global attractor,

is a decreasing function of the operator probability

3.1	 KARLIN’S THEOREM ILLUSTRATED
WITH THE DECEPTIVE TRAP
FUNCTION

Suppose a mutation operator is ergodic: i.e. repeated application of the
operator can mutate any genotype into any other genotype. Then, under an
algorithm of constant selection and mutation, the Perron-Frobenius Theorem
shows that there is only one domain of attraction of the system—i.e. one
‘fitness peak’, as discussed in Section 1.1. This may seem contradictory to

94 FRONTIERS OF EVOLUTIONARY COMPUTATION

intuition about ‘multi-modal’ fitness landscapes, in which one would expect
multiple domains of attraction. But multiple domains do not occur in haploid,
infinite population models under ergodic mutation; finite populations are re­
quired to produce quasi-stability of multiple attractors. The global nature of
the attractor for ergodic mutation under infinite population size is illustrated
with the Deceptive Trap fitness landscape (Ackley, 1987), shown in Figure
4.1. In terms of the hypercube topology, this is a bimodal fitness function. The
frequency vector of the global attractor is shown as a function of the mutation
rate, for a simple point mutation model, in Figure 4.2. The mean fitness of the
attractor is seen to decrease as a function of the mutation rate, as the Karlin
theorem proves. This is shown in Figure 4.3.

95 Spectral Analysis of Evolutionary Dynamics

3.2	 APPLICATIONS FOR AN EXTENDED
KARLIN THEOREM

Several problems are encountered for which an extended Karlin theorem
would allow solution, but which are currently unsolved. One of these is in
modifier theory. This has been called ‘self-adaptation’ (Schwefel, 1987; Bäck,
1996) in the Evolutionary Computation literature. In Altenberg (1984) and
Altenberg et al. (1987) it is proven that the Reduction Principle for linear vari­
ation in transmission holds for modifiers that are tightly linked to haplotypes
under viability selection (Altenberg and Feldman, 1987, Result 3, p. 565). It
is conjectured that the result would also hold for looser linkage to the modifier

where:

with Q, S, and

locus. The analysis requires that we show for that the spectral radius of
decreases in

being Markov matrices (see (Altenberg and Feldman, 1987)
for details). The proof awaits an extension of Karlin’s theorem for

The other context of unsolved problems occurs when several transformation
processes act on types in the population, such as the simultaneous action of
mutation, recombination, and migration. This can result in recursions of the
form:

where A, B, and C are Markov matrices representing different transformation
processes, and and are the overall rates of those processes. We wish to
know how the spectral radius of changes as a function of each
parameter and Such a result would allow understanding of genetic
recombination can evolve in the presence of mutation under certain circum­
stances (Altenberg, 1984; Kondrashov, 1988). It is clear that for certain cases

96 FRONTIERS OF EVOLUTIONARY COMPUTATION

of A, B, C, and W, the spectral radius is not monotonically decreasing in
each of and However, specifying the conditions that produce an in­
crease in the spectral radius with respect to etc. requires an extension
of Karlin’s theorem. The existence of cases of increase led to the “Principle of
Partial Control” for the evolution of genetic modifiers:

Conjecture (Altenberg, 1984, p. 149) When a modifier gene has only partial
control over the transformations occurring at selected loci, then it is possible
for this part of the transformation to evolve an increase.

3.3 EXTENDING KARLIN’S THEOREM

We need to extend Karlin’s theorem on linear variation from products of the
form

to products of the more general form

Open Question: Let

where A and B are irreducible Markov matrices, and W is a diagonal matrix

with strictly positive diagonal elements. For what conditions on A, B, and W

B,W A for
Explicit

is the spectral radius strictly decreasing in

Karlin proved that the spectral radius is decreasing
in Clearly each matrix pair { } determines a class of matrices
which the spectral radius is decreasing in
characterization of this class is not immediately obvious. However, one can
follow Karlin‘s proof to produce a condition which would provide the answer
if it could be solved.

Suppose that

where A and B are Markov matrices.

97 Spectral Analysis of Evolutionary Dynamics

I retrace the analysis of Karlin (1982, pp. 195-196). Define

Let be the vector for which the supremum is attained. The Donsker-
Varadhan (1975) variational formula for the spectral radius gives:

where 1 is the vector of ones, stands for the vector

of components

and we set Let be the vector at which this supremum is
attained.

Since both and are unique critical points as implicitly de­
fined.

for all Hence

with fixed. Further evaluation paralleling Karlin (1982) yields the
condition

For Karlin uses Jensen’s inequality to give:

By using the principal eigenvector

98 FRONTIERS OF EVOLUTIONARY COMPUTATION

the supremum definition of gives:

Thus was it is proved that for The analysis of (4.20) for
does not allow us to use (4.21), and is unsolved. This leaves us with:

Open Question: What conditions on the matrices A and B, and scalars
and produce

where and are the vectors producing the suprema of expres­
sions (4.18) and (4,19)?

Another direction to extend Karlin’s theorem, which would be quite relevant
to the issue of rapidly mixing Markov chains and rapid first hitting times, is to
say something about the second-largest eigenvalue. I would offer (without
claiming undue certitude) the following:

Conjecture
Let

where P is an irreducible Markov matrix, and let W be a diagonal matrix with
strictly positive diagonal elements. Then the ratio of the second-largest eigen­
value to the spectral radius is strictly increasing
in

3.4 DISCUSSION
Karlin’s theorem, because it holds for arbitrary Markov and fitness matri­

ces, captures a fundamental property of Darwinian dynamics, the interaction
of selection and transformation caused by genetic operators. What is not gen­
erally understood is how multiple genetic operators interact with one another.
The difficulty of analyzing Wright’s Shifting Balance Theory (Wright, 1931),
which is about the interaction of recombination, mutation, migration, selection,
and drift, exemplifies the mathematical difficulties. Attempting to understand
the interaction of multiple genetic operators brings us to the need to extend
Karlin’s theorem.

99 REFERENCES

4. CONCLUSION

I hope that the reader, having followed the lines of discussion through this
essay, may come away with the conclusion that the spectra of evolutionary sys­
tems provide a useful means to pose, and occasionally to solve, problems in
evolutionary dynamics. I have used the spectral representation of the general­
ized mutation-selection system to address the question of when an evolution­
ary algorithm is useful for function optimization. I have described an analog
to “rapidly mixing Markov chains” (Sinclair, 1992) that is appropriate for opti­
mization, “rapid first hitting time”. The conditions needed for an evolutionary
algorithm to exhibit rapid first hitting time can be described in terms of the
spectra of the linear systems that represent them.

I have also posed, questions on the dynamics of finite populations in terms
of the spectra of the underlying operators. Tying together the spectra of infinite
population models with the spectra of the finite population models into which
they are embedded remains a major open question in the theory of evolutionary
dynamics. Progress may result if flows over the low-dimensional boundaries
of the simplex can be modeled.

Lastly, I have reviewed an important theorem by Karlin (1982) on the spec­
tral properties of genetic operator intensity. Extensions of this theorem would
find immediate application.

Since these are spectral problems, there may indeed already be analytic tech­
niques that could be applied to their solution. It is hoped that this essay may
bring attention to these problems and thus hasten their solution.

REFERENCES

Ackley, D. H. (1987). A Connectionist Machine for Genetic Hillclimbing, vol­
ume SECS28 of The Kluwer International Series in Engineering and Com­
puter Science. Kluwer Academic Publishers, Boston.

Altenberg, L. (1984). A Generalization of Theory on the Evolution of Modifier
Genes. PhD thesis, Stanford University. Available from University Micro­
films, Ann Arbor, MI.

Altenberg, L. (1995). The Schema Theorem and Price’s Theorem. In Whitley,
D. and Vose, M. D., editors, Foundations of Genetic Algorithms 3, pages
23–49. Morgan Kaufmann, San Mateo, CA.

Altenberg, L. and Feldman, M. W. (1987). Selection, generalized transmission
and the evolution of modifier genes. I. The reduction principle. Genetics,
117:559–572.

Arora, S., Rabani, Y., and Vazirani, U. (1994). Simulating quadratic dynami­
cal systems is PSPACE-complete. In Proceedings of the 26th Annual ACM
Symposium on Theory of Computing, pages 459–467.

100 FRONTIERS OF EVOLUTIONARY COMPUTATION

Bäck, T. (1996). Evolutionary Algorithms in Theory and Practice: Evolution­
ary Strategies, Evolutionary Programming and Genetic Programming. Ox­
ford University Press, Oxford.

Cannings, C. (1974). The latent roots of certain Markov chains arising in ge­
netics: a new approach, I. haploid models. Advances in Applied Probability,
6:260–290.

Christiansen, F. B. (2000). Population Genetics of Multiple Loci. John Wiley
and Sons, LTD, Chichester.

Davis, T. E. and Principe, J. C. (1993). A Markov chain framework for the
simple genetic algorithm. Evolutionary Computation, l(3):269–288.

Donsker, M. D. and Varadhan, S. R. S. (1975). On a variational formula for the
principal eigenvalue for operators with maximum principle. Proceedings of
the National Academy of Science, USA, 72:780–783.

Ewens, W. J. (1979). Mathematical Population Genetics. Springer-Verlag,
Berlin.

Feller, W. (1951). Diffusion processes in genetics. In Neyman, J., editor, Pro­
ceedings of the Second Berkeley Symposium on Mathematical Statistics and
Probability, pages 227–246. University of California Press, Berkeley.

Fisher, R. A. (1930). The Genetical Theory of Natural Selection. Clarendon
Press, Oxford.

Gantmacher, F. R. (1959). The Theory of Matrices, volume 2. Chelsea Publish­
ing Company, New York.

Goldberg, David E. and Deb, Kalyanmoy (1991). A comparative analysis of
selection schemes used in genetic algorithms. In Rawlins, G., editor, Foun­
dations of Genetic Algorithms, pages 69–93. Morgan Kaufmann, San Ma­
teo, CA.

Goldberg, David E. and Segrest, P. (1987). Finite Markov chain analysis of
genetic algorithms. In Proceedings of the Second International Conference
on Genetic Algorithms, pages 1–8.

Horn, J., Goldberg, David E., and Deb, Kalyanmoy (1994). Long path prob­
lems. In Schwefel, H. P. and R. Männer, editors, Parallel Problem Solving
from Nature—PPSN III, volume 866, Berlin. Springer-Verlag.

Karlin, S. (1982). Classification of selection-migration structures and condi­
tions for a protected polymorphism. In Hecht, M. K., Wallace, B., and Prance,
G. T., editors, Evolutionary Biology, volume 14, pages 61–204. Plenum
Publishing Corporation.

Kondrashov, A. S. (1988). Deleterious mutations and the evolution of sexual
reproduction. Nature(London), 336:435–440.

Liepins, G.	 and Vose, M. D. (1990). Representational issues in genetic opti­
mization. Journal of Experimental and Theoretical Artificial Intelligence,
2(2):101–115.

101 REFERENCES

Nix, A. E. and Vose, M. D. (1991). Modeling genetic algorithms with Markov
chains Annals of Mathematics and Artificial Intelligence , 5:79–88.

Palmer, R. G. (1982). Broken ergodicity. Advances in Physics, 31:669–735.
Rabani, Y., Rabinovich, Y., and Sinclair, A. (1995). A computational view of

population genetics. In Annual ACM Symposium on the Theory of Comput­
ing, pages 83–92.

Rabinovich, Y., Sinclair, A., and Wigderson, A. (1992). Quadratic dynamical
systems. In IEEE Symposium on Foundations of Computer Science, pages
304–313.

Rabinovich, Y. and Wigderson, A. (1999). Techniques for bounding the conver­
gence rate of genetic algorithms. Random Structures Algorithms, 14:111–
138.

Rudolph, G. (1997). Convergence properties of evolutionary algorithms.

Hamburg.

Schmitt, F. and Rothlauf, F. (200la). On the importance of the second largest
eigenvalue on the convergence rate of genetic algorithms. In Spector, L.,
Goodman, E. D., Wu, A., Langdon, W. B., Voigt, H.-M., Gen, M., Sen, S.,
Dorigo, M., Pezeshk, S., Garzon, M. H., and Burke, E., editors, Proceedings
of the Genetic and Evolutionary Computation Conference (GECCO-2001),
pages 559–564, San Francisco, California, USA. Morgan Kaufmann.

Schmitt, F. and Rothlauf, F. (2001b). On the mean of the second largest eigen­
value on the convergence rate of genetic algorithms. Technical Report Work­
ing Paper 1/2001, University of Bayreuth, Department of Information Sys­
tems, Universitaetsstrasse 30, D-95440 Bayreuth, Germany. Working Papers
in Information Systems.

Schwefel, H.-P. (1987). Collective phenomena in evolutionary systems.
Preprints of the 31st Annual Meeting of the International Society for Gen­
eral Systems Research, Budapest, 2:1025–1033.

Sinclair, A. (1992). Algorithms for random generation and counting: A Markov
chain approach. Birkhäuser, Boston.

Suzuki, J. (1995). A Markov chain analysis on simple genetic algorithms. IEE
Transactions on Systems, Man and Cybernetics, 25(4):655–659.

van Nimwegen, E. J. (1999). The Statistical Dynamics of Epochal Evolution.
PhD thesis, Universiteit Utrecht, Amsterdam.

van Nimwegen, E. J., Crutchfield, J. P., and Huynen, M. (1999). Metastable
evolutionary dynamics: Crossing fitness barriers or escaping via neutral paths?
Bulletin of Mathematical Biology, 62:799–848.

Vitanyi, P. (2000). A discipline of evolutionary programming. Theoretical Com­
puter Science, 241(l–2):3–23.

Wolpert, D. H. and Macready, W. G. (1995). No free lunch theorems for search.
Technical Report SFI-TR-95-02-010, Santa Fe Institute, Santa Fe, NM.

102 FRONTIERS OF EVOLUTIONARY COMPUTATION

Wolpert, D. H. and Macready, W. G. (1997). No free lunch theorems for opti­
mization. IEEE Transactions on Evolutionary Computation, l(l):67–82.

Wright, S. (1931). Evolution in Mendelian populations. Genetics, 16:97–159.

Chapter 5

SOLVING COMBINATORIAL OPTIMIZA­
TION PROBLEMS VIA REFORMULATION
AND ADAPTIVE MEMORY META­
HEURISTICS

Gary A. Kochenberger
School of Business

University of Colorado at Denver

Gary.Kochenberger@cudenver.edu

Fred Glover
School of Business

University of Colorado at Denver

Fred.Glover@Colorado.edu

Bahram Alidaee
Hearin Center for Enterprise Science

University of Mississippi

Balidaee@bus.olemiss.edu

Cesar Rego
Hearin Center for Enterprise Science

University of Mississippi

Crego@bus.olemiss.edu

Abstract	 Metaheuristics - general search procedures whose principles allow them to es­
cape the trap of local optimality using heuristic designs - have been successfully
employed to address a variety of important optimization problems over the past
few years. Particular gains have been achieved in obtaining high quality solu­
tions to problems that classical exact methods (which guarantee convergence)
have found too complex to handle effectively. Typically a metaheuristic method
is crafted to suit the particular characteristics of the problem at hand, exploit­
ing to the extent possible the structure available to enable a fruitful and efficient
search process. An alternative to this problem specific solution approach is a
more general methodology that recasts a given problem into a common modeling

104 FRONTIERS OF EVOLUTIONARY COMPUTATION

format, permitting solutions to be derived by a common, rather than tailor-made,
heuristic method.

The optimization folklore strongly emphasizes the unproductive consequences
of converting problems from a specific class to a more general representation,
since the “domain-specific structure” of the original setting then becomes invisi­
ble and can not be exploited by a method for the more general problem represen­
tation. Nevertheless, there is a strong motivation to attempt such a conversion in
many applications to avoid the necessity to develop a new method for each new
class. We demonstrate the existence of a general problem representation that fre­
quently overcomes the limitation commonly ascribed to such models. Contrary
to expectation, when a specially structured problem is translated into this general
form, it often does not become much harder to solve, and sometimes becomes
even easier to solve provided the right type of solution approach is applied. The
model with this appealing property is the Quadratic Unconstrained Integer Pro­
gramming (QUIP) problem in binary variables, accompanied by the device of
introducing quadratic infeasibility penalty functions to handle constraints. Not
only is the model capable of representing a wide range of “special case” problem
classes, but it can be advantageously exploited by adaptive memory (tabu search)
metaheuristics and associated evolutionary (scatter search) methods. Computa­
tional outcomes disclose the effectiveness of this combined modeling and so­
lution approach for problems from a diverse collection of challenging settings.

1. INTRODUCTION

The Quadratic Unconstrained Integer Program (QUIP1) can be written in
the form:

where Q is an by matrix of constants and x is an of zero-one
variables. QUIP is notable for its ability to represent a significant variety of
important problems. The applicability of this representation has been reported
in diverse settings such as social psychology (Harary, 1954), financial analy­
sis (Laughunn, 1970), (McBride and Yormack, 1980), computer aided design
(Krarup and Pruzan, 1978), traffic management (Gallo et al., 1980), (Witsgall,
1975), machine scheduling (Alidaee et al., 1994), cellular radio channel al­
location (Chardaire and Sutler, 1994), and molecular conformation (Phillips
and Rosen, 1994). Moreover, many combinatorial optimization problems
pertaining to graphs such as determining maximum cliques, maximum cuts,
maximum vertex packing, minimum coverings, maximum independent sets,
and maximum independent weighted sets are known to be capable of being

1 We are indebted to Anil Menon for suggesting this name and acronym.

105 Optimization, Reformulation & Metaheuristics

formulated by the QUIP problem as documented in papers of (Pardalos and
Rodgers, 1992), and (Pardalos and Xue, 1994).

The application potential of QUIP is yet substantially greater than this, how­
ever, due to reformulation methods that enable certain constrained models to be
re-cast in the form of QUIP. (Hammer and Rudeanu, 1968) and (Hansen, 1979)
show that any quadratic (or linear) objective in bounded integer variables and
constrained by linear equations can be reformulated as a QUIP model. Our
purpose is to report results that disclose this wide array of potential reformu­
lations into the QUIP format is not merely a representational novelty, but is a
source of practical consequences. The following material draws upon recent
findings in by (Kochenberger et al., 1998) and in (Glover et al., 1999b).

2. TRANSFORMATIONS

We take as our starting point the constrained problem

This model describes both the quadratic and linear case since the linear case
results when Q is a diagonal matrix. Problems with inequality constraints can
also be put into this form by representing their bounded slack variables by a
binary expansion. These constrained quadratic optimization models are con­
verted into equivalent QUIP models by adding a quadratic infeasibility penalty

D

function to the objective function in place of explicitly imposing the constraints

where the matrix and the additive constant result directly from the ma­
trix multiplication indicated. Dropping the additive constant, the equivalent
unconstrained version of our constrained problem becomes,

From a theoretical standpoint, a suitable choice of the penalty scalar P can
always be chosen such that the optimal solution to QUIP(PEN) is the optimal
solution to the original constrained problem (Hammer and Rudeanu, 1968).
Similar theoretical outcomes apply to many types of representations other than
the QUIP model, of course, and the issue of interest is whether there is any
practical merit in undertaking such a transformation in the QUIP case. The
same question arises by reference to another transformation, which likewise

106 FRONTIERS OF EVOLUTIONARY COMPUTATION

falls within the context of the QUIP model. We refer to the preceding gen­
eral transformation as transformation # 1. A very important special class of
constraints that arise in many applications can be handled by an alternative ap­
proach, given below, which we call transformation #2. Many problems have
considerations that isolate two specific alternatives and prohibit both from be­
ing chosen. That is, for a given pair of alternatives, one or the other but not
both may be chosen. If and are binary variables denoting whether or not
alternatives and are chosen, the standard constraint that allows one choice
but precludes both is:

Then, for a positive scalar P, adding the penalty function to the objec­
tive function is a simple alternative to imposing the constraint is a traditional
manner. This penalty function has sometimes been used by to convert certain
optimization problems on graphs (e.g., the maximum clique problem) into an
equivalent QUIP model. Its potential application, however, goes far beyond
graph problems as we demonstrate in later sections of this paper.

3. EXAMPLES

Before highlighting a variety of problem classes to which we have success­
fully applied the foregoing transformation approaches, we give two small ex­
amples from classical problem settings to provide concrete illustrations:

Example 1 Set Partitioning:

subject to:

and x binary. Applying transformation #1 with P = 10 gives the equivalent
QUIP model:

where the additive constant is 40 and,

107 Optimization, Reformulation & Metaheuristics

Solving QUIP(PEN) by the method2 of (Glover et al, 1999c) we obtain an
optimal solution for which In the straightforward
application of transformation #1 to this example, it is to be noted that the re­
placement of the original problem formulation by the QUIP(PEN) model did
not involve the introduction of new variables. In many applications, transfor­
mation #1 and transformation #2 can be used in concert to produce an equiva­
lent QUIP model, as demonstrated next.

Example 2 P-Median Problem:

The P-Median problem can be modeled as: : can be modeled as:

subject to:

where is the weighted distance from facility to demand node if
a facility is located at location and if demand node is assigned to
the facility at location

The first two sets of constraints can clearly be accommodated by transfor­
mation #1. The last set of constraints can be handled by transformation #2 by a
“trick” of replacing the y variables by their compliments. (This same approach
can be employed to model many fixed charge problems.)

To illustrate, consider the 12 variable example with
and the C matrix:

2Almost any method will work for this example.

108 FRONTIERS OF EVOLUTIONARY COMPUTATION

For P = 20, the additive constant is 80 and the matrix for the equivalent
QUIP model is:

Solving QUIP(PEN) gives for which
which is optimal for the original problem.

4. SOLUTION APPROACHES

Due to its computational challenge and application potential, QUIP has been
the focus of a considerable number of research studies in recent years, includ­
ing both exact and heuristic solution approaches. Notable recent studies ad­
dressing QUIP are those by (Williams, 1985), (Pardalos and Rodgers, 1990),
(Boros et al., 1989), (Chardaire and Sutter, 1994), (Glover et al., 1998),(Glover
et al., 1999a), (Alkhamis et al., 1998), (Beasley, 1999), (Lodi et al., 1997),
(Amini et al., 1999), and (Glover et al., 1999a). Other promising work is re­
ported by (Katayama et al., 2000) and (Merz and Freisleben, 1999). These
various studies approach the problem by branch and bound, decomposition,
tabu search, simulated annealing, and evolutionary methods such as genetic al­
gorithms and scatter search. Each of these approaches exhibits some degree of
success. However, the exact methods degrade rapidly with problem size, and
have meaningful application to general QUIP problems with no more than 100
variables. For larger problems, heuristic methods are required. Two methods
we have found to be particularly successful for a wide variety of problems are
based on tabu search and on the related evolutionary strategy scatter search
(Amini et al., 1999). In the following we highlight our tabu search approach.

4.1 TABU SEARCH OVERVIEW

Our TS method for QUIP is centered around the use of strategic oscillation,
which constitutes one of the primary strategies of tabu search. The variant of
strategic oscillation we employ may be sketched in overview as follows.

109 Optimization, Reformulation & Metaheuristics

The method alternates between constructive phases that progressively set
variables to 1 (whose steps we call “add moves”) and destructive phases that
progressively set variables to 0 (whose steps we call “drops moves”). To con­
trol the underlying search process, we use a memory structure that is updated
at critical events, identified by conditions that generate a subclass of locally
optimal solutions. Solutions corresponding to critical events are called critical
solutions. A parameter span is used to indicate the amplitude of oscillation
about a critical event. We begin with span equal to 1 and gradually increase it
to some limiting value. For each value of span, a series of alternating construc­
tive and destructive phases is executed before progressing to the next value. At
the limiting point, span is gradually decreased, allowing again for a series of
alternating constructive and destructive phases. When span reaches a value of
1, a complete span cycle has been completed and the next cycle is launched.

Information stored at critical events is used to influence the search process
by penalizing potentially attractive add moves (during a constructive phase)
and inducing drop moves (during a destructive phase) associated with assign­
ments of values to variables in recent critical solutions. Cumulative critical
event information is used to introduce a subtle long term bias into the search
process by means of additional penalties and inducements similar to those dis­
cussed above. A complete description of the framework for the method is given
in (Glover et al., 1999c).

5. COMPUTATIONAL EXPERIENCE

Our results of applying the tabu search and associated scatter search meta-
heuristics to combinatorial problems recast in QUIP form have uniformly at­
tractive in terms of both solution quality and computation times. As intimated
earlier, although our methods are designed for the completely general form of
QUIP, without any specialization to take advantage of particular types of prob­
lems reformulated in this general representation, our outcomes have typically
proved competitive with or even superior to those of specialized methods de­
signed for the specific problem structure at hand. Our broad base of experience
with QUIP as a modeling and solution framework includes a substantial range
of problem classes including:

Quadratic Assignment Problems

Capital Budgeting Problems

Multiple Knapsack Problems

Task Allocation Problems (distributed computer systems)

Maximum Diversity Problems

P-Median Problems

110 FRONTIERS OF EVOLUTIONARY COMPUTATION

Asymmetric Assignment Problems

Symmetric Assignment Problems

Side Constrained Assignment Problems

Quadratic Knapsack Problems

Constraint Satisfaction Problems (CSPs)

Set Partitioning Problems

Fixed Charge Warehouse Location Problems

Maximum Clique Problems

Maximum Independent Set Problems

Maximum Cut Problems

Graph Coloring Problems

Graph Partitioning Problems
Details of our experience with these and other problems are documented in

the paper by (Kochenberger et al., 1998). We are currently solving problems
via QUIP with more than 10,000 variables in the quadratic representation. The
significance of this is underscored by that fact that the well-known transforma­
tion of the binary quadratic representation into a binary linear programming
representation produces problems containing more than 50,000,000 zero-one
variables. Currently we are working on enhancements that will permit larger
instances to be solved.

6. SUMMARY

We have demonstrated how a variety of disparate combinatorial problems
can be solved by first re-casting them into the common modeling framework
of the unconstrained quadratic binary program. Once in this unified form,
the problems can be solved effectively by adaptive memory tabu search meta-
heuristics and associated evolutionary (scatter search) procedures.

Our findings challenge the conventional wisdom that places high priority on
preserving linearity and exploiting specific structure. Although the merits of
such a priority are well-founded in many cases, the QUIP domain appears to
offer a partial exception. In forming QUIP(PEN), we destroy any linearity that
the original problem may have exhibited. Moreover, any exploitable structure
that may have existed originally is “folded” into the matrix, and the general
solution procedure we apply takes no advantage of it. Nonetheless, our solu­
tion outcomes have been remarkably successful, yielding results that rival the
effectiveness of the best specialized methods.

111 REFERENCES

This combined modeling/solution approach provides a unifying theme that
can be applied in principle to all linearly constrained quadratic and linear pro­
grams in bounded integer variables, and the computational findings for a broad
spectrum of problem classes raises the possibility that similarly successful re­
sults may be obtained for even wider ranges of problems. As the research com­
munity continues to provide improved solution methodologies for the QUIP
model, the unified framework that QUIP represents for modeling and solving
combinatorial problems via reformulation will become an increasingly attrac­
tive alternative to traditional specialized representations. These developments,
with their apparent promise, open up a new set of research challenges and op­
portunities for the optimization community.

ACKNOWLEDGEMENTS

The authors would like to give credit to Anil Menon for his comments that
led to an improved paper (as well as his coining of the “QUIP” terminology).
We would also like to acknowledge the support we have received for our work
via ONR grants N000140210151 and N000140010598.

REFERENCES

Alidaee, B., Kochenberger, G., and Ahmadian, A. (1994). 0-1 quadratic pro­
gramming approach for the optimal solution of two scheduling problems.
International Journal of Systems Science, 25:1–408.

Alkhamis, T. M., Hasan, M., and Ahmed, M. A. (1998). Simulated annealing
for the unconstrained binary quadratic pseudo-boolean function. European
Journal of Operational Research, 108:641–652.

Amini, M., Alidaee, B., and Kochenberger, G. (1999). A scatter search ap­
proach to unconstrained quadratic binary programs. In Come, Dorigo, and
Glover, F., editors, To appear in New Methods in Optimization. McGraw-
Hill Publishers.

Beasley, J. E. (1999). Heuristic algorithms for the unconstrained binary quadratic
programming problem. Working Paper, Imperial College.

Boros, E., Hammer, P., and Sun, X. (1989). The ddt method for quadratic 0-1
minimization. Technical Report RRR 39-89, RUTCOR Research Center.

Chardaire, P. and Sutter, A. (1994). A decomposition method for quadratic
zero-one programming. Management Science, 4:704–712.

Gallo, G., Hammer, P., and Simeone, B. (1980). Quadratic knapsack problems.
Mathematical Programming, 12:132–149.

Glover, F., Amini, M., Kochenberger, G., and Alidaee, B. (1999a). A new
evolutionary metaheuristic for the unconstrained binary quadratic program­
ming: A case study of the scatter search. Technical report, School of Busi­
ness, University of Colorado, Boulder.

112 FRONTIERS OF EVOLUTIONARY COMPUTATION

Glover, F., Kochenberger, G., and Alidaee, B. (1998). Adaptive memory tabu
search for binary quadratic programs. Management Science, 44:336–345.

Glover, F., Kochenberger, G., Alidaee, B., and Amini, M. (1999b). Uncon­
strained quadratic binary program approach to quadratic knapsack prob­
lems. Working Paper, Hearin Center for Enterprise Science, University of
Mississippi.

Glover, F., Kochenberger, G., Alidaee, B., and Amini, M. (1999c). Tabu with
search critical event memory: An enhanced application for binary quadratic
programs. In Voss, S., Martello, S., Osman, I., and Roucairol, C., editors,
Meta-Heuristics: Advances and Trends in Local Search Paradigms for Op­
timization. Kluwer Academic Publisher, Boston.

Hammer, P. and Rudeanu, S. (1968). Boolean Methods in Operations Research.
Springer-Verlag, New York.

Hansen, P. (1979). Methods of nonlinear 0-1 programming. Annals Discrete
Math, 5:53–70.

Harary, F. (1953/54). On the notion of balanced of a signed graph. Michigan
Mathematical Journal, 2:143–146.

Katayama, K., Tani, M., and Narihisa, H. (2000). Solving large binary quadratic
programming problems by an effective genetic local search algorithm. In
Proceedings of the 2002 Genetic and Evolutionary Computation Confer­
ence, San Francisco, CA. Morgan Kaufmann.

Kochenberger, G., Glover, F., Alidaee, B., and Rego, C. (1998). Applications
of the unconstrained quadratic binary program. Working Paper, University
of Colorado.

Krarup, J. and Pruzan, A. (1978). Computer aided layout design. Mathematical
Programming Study, 9:75–94.

Laughunn, D. J. (1970). Quadratic binary programming. Operations Research,
14:454–461.

Lodi, A., Allemand, K., and Liebling, T. M. (1997). An evolutionary heuris­
tic for quadratic 0-1 programming. Technical Report OR-97-12, D.E.I.S.,
University of Bologna.

McBride, R. D. and Yormack, J. S. (1980). An implicit enumeration algorithm
for quadratic integer programming. Management Science, 26:282–296.

Merz, P. and Freisleben, B. (1999). Genetic algorithms for binary quadratic
programming. In Proceedings of the 1999 International Genetic and Evo­
lutionary Computation Conference (GECCO ’99), pages 417–424. Morgan
Kaufmann.

Pardalos, F. and Xue, J. (1994). The maximum clique problem. The Journal of
Global Optimization, 4:301–328.

Pardalos, P. and Rodgers, G. P. (1990). Computational aspects of a branch and
bound algorithm for quadratic zero-one programming. Computing, 45:131–
144.

113 REFERENCES

Pardalos , P. and Rodgers, G. P. (1992). A branch and bound algorithm for max­
imum clique problem. Computer & OR, 19:363–375.

Phillips, A. T. and Rosen, J. B. (1994). A quadratic assignment formulation of
the molecular conformation problem. The Journal of Global Optimization,
4:229–241.

Williams, A. C. (1985). Quadratic 0-1 programming using the roof duality
with computational results. Technical Report Rutcor Research Report 8-85,
Rutgers University, New Brunswick, NJ.

Witsgall, C. (1975). Mathematical methods of site selection for electronic sys­
tem (ems). NBS Internal Report.

This page intentionally left blank

Chapter 6

PROBLEMS IN OPTIMIZATION

William G. Macready
Research Institute for Advanced Computer Science

Computational Sciences Division

NASA Ames Research Center

Mail Stop 269-4

Moffett Field, CA 94035-1000

wgm@email.arc.nasa.gov

Abstract A series of problems and challenges is posed to help guide future work in opti­
mization.

Keywords: optimization foundations, optimization connections, optimization applications

1. INTRODUCTION
At the beginning of the last century, David Hilbert presented an invited pa­

per to the Second International Congress of Mathematicians, framing what he
saw as the future of mathematics (Hilbert, David, 1902). In his paper, Hilbert
posed 23 important and then unsolved mathematical problems. These prob­
lems formed the backbone of much of 20th century mathematics, and today
most of these problems have been at least partially solved.

Our scope here is more modest, though the problems are no less difficult.
What are the problems and challenges that must be addressed in the next cen­
tury of work in optimization?1 Like mathematics in 1900, optimization has
a solid foundation upon which to build, and it has no shortage of deep unan­
swered questions. Thus, I expect significant progress in both the short and long
terms.

Since there is no shortage of problems that researchers in optimization can
address, it is important to enumerate desiderata to limit the selection of prob­
lems. Our most important criterion is that the problem should be rich enough

1See (CONDOR, 1988) for an operations research perspective on a similar question.

116 FRONTIERS OF EVOLUTIONARY COMPUTATION

to lead to new problems and insights. As Hilbert himself said, “As long as a
branch of science offers an abundance of problems, so long is it alive; a lack
of problems foreshadows extinction...” (Hilbert, David, 1902). Indeed I expect
that the answers to the questions posed here have answers with implications
beyond optimization itself. A second requirement reflects on the utility of the
question. Since optimization is preeminently a practical field, the solution to
any problem should be of practical utility. Theory should ultimately support
the development of algorithms. We should not, however, use this requirement
to limit ourselves to purely immediate engineering concerns. Who could have
foreseen that the theory of computational complexity in the 1960s would ul­
timately result in polynomial-time algorithms for linear programming in the
1980s (Karmarkar, 1984), and general polynomial-time interior-point methods
for convex problems in the 1990s (Nesterov, Yurii and Nemirovskii, Arkadii,
1994)? Finally, we require problems that are difficult, and therefore interest­
ing, but will also allow for progress. Problems may in fact be very difficult so
long as they suggest a course of action with tractable stepwise challenges.

The problems posed here are divided into three categories: foundations,
connections and applications. In 1900 Hilbert was interested in axiomatizing
all of mathematics (and physics!). Though we now know through the work of
Godel, Turing, and others, that Hilbert’s grand hopes cannot be fulfilled, it is
essential to examine the theoretical foundations of optimization. It is exciting
for present-day researchers that at the core of optimization there are mostly
unanswered questions. Another category of questions focuses on the connec­
tions of optimization to other fields and the discovery of synergies between
these fields. We focus on the relation between work in machine learning and
optimization. Finally, we conclude with a series of future novel applications of
optimization.

2. FOUNDATIONS

If there is any established principle in optimization (whether discrete and/or
continuous, constrained or unconstrained, single- or multi-objective), it is the
need to tradeoff between exploration and exploitation. For our purposes we ex­
press this principle as the problem of discovering and exploiting the structure
inherent in any particular optimization task. Recent work has formalized the
futility of optimization without assumptions about the structure of the problem
at hand (Wolpert and Macready, 1997). The first problem concerns a formal­
ization of this most basic tenet.

Problem 1: Investigate the essence of the optimization problem through a
general formalization of: (1) the notions of problem structure, (2) a broadly ap­
plicable definition of a search algorithm, (3) measures of algorithm efficiency,

117 Problems in Optimization

and (4) the means whereby the search algorithm exploits the problem structure
efficiently.

This formalization should be general enough to capture a broad range of
real-world optimization tasks but not so abstract as to yield no concrete insight.
Consequently, it is probably best to initially limit the scope to single-objective
cost functions which map discrete and/or continuous configu­
rations to real cost values We make no explicit mention of
constraints,
tion of the search space
focusing on a smaller class of possible algorithms

2
 since these can be incorporated through an appropriate defini-

Likewise it is probably best to begin this program
A natural class of com­

monly applied algorithms is one which determines new populations of points
from previously sampled populations.3 Generally then, we consider an

optimization algorithm to be an iterated application of two basics steps: an
infer step which makes inferences about the structure of a problem, and an act
step which uses the inference to determine where next to sample. We represent
these basic steps by

where I indicates any prior information that may be available, indicates any
is list

of points,
neighborhood structure imposed on the search space

and their fitnesses, sampled from the problem ordered ac­
cording to the time at which they were sampled, and indicates any associated
constraints. Structure is represented by a probability distribution over the
values at sampled and unsampled points and the action step uses this infer­
ence, the location of previously sampled points, the neighborhood structure,
and constraints to sample at new configurations. To be general, we write this
sample as coming from a probability distribution over unsampled

values.

What can we expect if this endeavor is carried out? Most importantly we

will better understand what it means for an algorithm to be well-suited to solv­
ing a particular class of problems. It would also be surprising if this pro­
gram did not suggest new types of algorithms which differ in the manner in
which they represent and exploit problem structure. We would better under­
stand the differences between the myriad algorithms and heuristics currently
in use. Hopefully, this would lead to insight into the construction of efficient

2Of course, in a practical sense this solves nothing since may be sufficiently complex that even find­
ing a feasible may be NP complete. However, the present problem is concerned entirely with
understanding the relationship a problem, it’s structure, and algorithms for exploiting that structure.
3Populations may contain only a single point.

118 FRONTIERS OF EVOLUTIONARY COMPUTATION

(according to some criteria) algorithms. This itself suggests the next funda­
mental problem.

Problem 2: Given a characterization of an optimization task through its
structure as defined in Problem 1, develop a procedure to programmatically
generate an efficient algorithm.

Both of these problems represent formidable challenges, yet I believe that
they still satisfy our requirement of stepwise tractability. How might a pro­
gram of research begin to attack these problems? A first step is the realization
that a characterization of structure will likely not completely describe the ob­
jective function or class of objective functions. Of necessity the formalization
must operate without complete knowledge of all facets of the optimization task.
Certainly we don’t know the maxima! Consequently, the formalization will
be based on probability theory and structure will likely be represented (either
explicitly or implicitly) through probability densities of the form
Even these small steps towards recognizing what the formalization must ul-
timately look like suggest interesting avenues. The geometric structure that
automatically accompanies the probabilistic setting (Amari, 2000) allows us
to speak of nearby structures. It may not be unrealistic to expect a geometric
interpretation of the coupling between problems, their structures, and efficient
algorithms.

Without doubt, these first two problems are the most important I shall de­
scribe, and their correct formulation and solution will require input from less
ambitious programs. I describe two concrete problems, the first of which
should provide insight into the characterization of structure, and the second
of which should provide guidance into the construction of efficient algorithms
from structure specification.

Problem 3: Given a pair of search algorithms and construct opti­
mization tasks (either mappings or structure characterizations)
for which is efficient and is inefficient. Then, construct optimization tasks
for which is inefficient while is efficient. Characterize the differences be­
tween these optimization tasks and relate them back to differences in and

The first part of this problem which asks for the optimization problems is
straightforward (at least for small optimization problems). We expand the ob­
jective function in some convenient basis (e.g. a Fourier basis for continuous
spaces or a Walsh basis for sequence spaces):
may by undercomplete, complete, or overcomplete. The objective function is
defined by the expansion coefficients

The basis

Note that we can limit the objective
functions to a smaller class of objective functions, say for example symmetric
travelling salesperson problems, through a suitable choice of an undercomplete
basis.

Problems in Optimization 119

4If is a measure of the efficiency of algorithm over on
objective f, then we can find for which performs well but does not by
maximizing with respect to the expansion coefficients
define

which
 We label the set of such objectives Similarly, we can

construct problems for which performs much more poorly than
by maximizing

Given the problem sets
 and a characterization of the im­

portant differences between the sets of functions is difficult, but there are many
machine learning algorithms that could be applied to the task. We might first
explore simple clustering algorithms to see if the coefficients from each class
tend to cluster near each other. Alternatively, classification algorithms could
attempt to predict the class or based on the expansion coeffi­
cients. Whatever the form of the characterization of the two sets of objectives,
we would then attempt to relate this back to characteristics of the two search
algorithms and

This procedure, if successfully carried out for many pairs of commonly used
algorithms, should yield valuable insight into the differences between common
algorithms. An interesting related question may follow from such studies:

Problem 4: Develop a framework in which to describe existing optimization
algorithms and which is general enough to encompass new algorithms.

There are multiple tasks buried within this problem. For the infer step:
Problem 5: Is there a broadly applicable manner in which to represent

and exploit problem structure including structure specified a priori or inferred
through sampling from the objective?
For the act step:

Problem 6: Is there a general way to structure and parameterize the manner
in which new points are sampled based on the inferences of Problem 5?

The proper framework in which to consider act mappings will be informed
by many examples of the ways in which algorithms exploit problem structure. I
pose an instance of this exploitation problem for a particular problem structure
which may be exactly solvable and is easily generalizable to more complex
objective function structures.

Problem 7: Given that a one dimensional objective function was generated
by a simple Brownian random walk, determine an algorithm which is efficient
in quickly locating the maximum of the objective.

This problem is appealing in its apparent simplicity and much is known
about the distribution of peaks and valleys on such surfaces (Mansour, 2002).
The solution to this problem should be of interest to the optimization practi­
tioner since the solution is likely to be generalizable to many more interesting

4Examples of such measures can be found in (Macready and Wolpert, 1996).

120 FRONTIERS OF EVOLUTIONARY COMPUTATION

problems. The surface generated by the random walk may be generalized to
dimensions and/or biased in various ways. Such surfaces are easily generated
(Massopust, 1995) so that extensive empirical tests may be performed.

The solution to problem 7 may be applied to a more realistic (and accord­
ingly difficult) problem:

Problem 8: Given a detailed knowledge of problem structure through a
Gaussian process, construct an efficient algorithm tailored to this structure.

Gaussian processes are simple ways to specify the relationships between
objective values at different points in the search space (MacKay, 2003). They
are adaptable to many different types of search spaces whether continuous or
discrete. Any problem structure implicitly contains a relationship between the
objective values at different values. For example, a very smooth objective
function has very similar objective values for nearby values. Gaussian pro­
cesses build directly on this notion by specifying a probability distribution over
objective values and at two different values. To keep
things as simple as possible imagine that our objective function has been scaled
and shifted so that it has an average value of 0 and a variance of 1. As the name
implies, Gaussian processes describe the probability distribution with a Gaus­
sian:

The elements in the covariance matrix are given by the expected value:
If the search space is continuous and the objective function is

relatively smooth, a common form for the covariance matrix elements is:

This form expresses the property that the correlation in fitness at two different
values decays exponentially with the distance between the points. As hinted

at in this simple example, Gaussian processes can compactly describe a wide
range of structure that may be present in the fitness function. In fact, a family
of landscapes based on this idea can be formed, many of whose properties
can be determined analytically. If we could design algorithms to exploit this
structure we would be a long way towards having efficient and practical new
search algorithms.

3. CONNECTIONS

In this section we move from questions concerning the foundations of op­
timization to ideas from other fields that optimization may draw upon. Given
our perspective that optimization is an exercise in inferring and capitalizing
on problem structure, it is not surprising that machine learning offers many

121 Problems in Optimization

insights into better optimization. While the bulk of this section explores con­
nections with machine learning, we also pose questions seeking to integrate
different approaches to optimization.

The field of machine learning seeks to embody the learning process in com­
puters. A complete introduction to machine learning may be found in (Duda
et al., 2001). Machine learning methods may usefully be categorized into three
types of learning, all of which are applicable to optimization.

Unsupervised learning seeks to uncover structure in unlabelled data. A pro­
totypical problem is density estimation, whereby given a set of data
try to determine the probability density that may have generated the data. As

 we

a limiting case, clustering algorithms which group the data into like aggrega­
tions are a common tool. As alluded to in Problem 3, unsupervised learning
algorithms may help us to uncover exploitable structure in problems.

Supervised learning is another branch of machine learning which tries to
learn relationships between factors. The prototypical problem here is to learn
the mapping from to given a set of labelled data This is an im­
portant problem allowing for the prediction of output values at new input

points. The output may either be continuous or discrete resulting in either
regression or classification tasks. Supervised learning algorithms may be used
to model the structure in a problem and to suggest means of exploiting the
structure.

A third branch of machine learning is called reinforcement learning. Re­
inforcement learning is concerned with maximizing a reward function in an
unknown and potentially noisy environment. Dynamic programming is a well-
studied kind of reinforcement learning which is useful when the search space
is small and discrete. Of these three tasks, reinforcement learning problems
are generally the most difficult. Reinforcement learning problems share much
in common with optimization through the need to balance exploration with
exploitation. The bandit problem, which many researchers in evo­
lutionary optimization are familiar with, may be readily approached through
reinforcement learning methods.

The modern probabilistic approach to machine learning has provided re­
searchers a common language in which to describe a wide variety of learning
algorithms. Graphical models (Jordan, M., 1999) allow for efficient proba­
bilistic inference by exploiting the dependency structure between variables.
Perhaps this same machinery can also be exploited for optimization.

Problem 9: Can new algorithms be developed by exploiting a probabilistic
framework for optimization ? In particular, what novel insights are obtained by
viewing optimization as an inverse problem?

At present there is increasing interest in using graphical models to encode
dependencies between optimization variables. See (Larrañaga et al., 1999;
Mühlenbein et al., 1998) for a summary of recent work. This work is promis­

122 FRONTIERS OF EVOLUTIONARY COMPUTATION

ing in that it explicitly represents aspects of problem structure as computa­
tionally efficient probabilistic models. While this avenue of work is likely to
continue to grow and yield important results, I will focus on another aspect of
the application of probability theory to optimization.

Admitting the possibility of noise contaminating an objective function, it
is convenient to write the objective function as the probability distribution

This gives the distribution of objective values at a given value.5

We can view optimization as an inverse problem if we take the perspective that
the goal of any optimization algorithm is to determine given the objec­
tive This is not a common view of optimization, but if we did have
access to we could sample from this distribution at whatever value
we wanted to obtain a solution for, and obtain an value likely to generate this

In essence, determining the “inverse” distribution would solve our problem.
6Of course, the above argument is merely suggestive and leaves much unsaid.

Nevertheless I believe it will be fruitful to look at optimization from this novel
perspective.

This view of optimization suggests that probabilistic inference should play
an important role in optimization. In fact, we are already beginning to see this
through the nascent unification of constraint programming and integer pro­
gramming. In (Hooker, 2000) it is shown that important improvements to opti­
mization algorithms can be gained through logical inference.7 Constraint pro­
gramming (Tsang, 1993) is concerned with inferring the values that variables
may take on if they are required to satisfy constraints. For example, if binary
variables and are related by the constraint and we know that

then we can infer in any feasible solution that In such ways the
search space can be trimmed dramatically. Such inferences are logical in that
they determine the allowed values other variables may take precisely. These

tribution over
efforts may be generalized to probabilistic inference where we refine the dis-

 as information obtained during the search becomes
available.

We leave probability theory and turn to an important theoretical develop­
ment in supervised learning that inspired a new class of successful algorithms
– the bias-variance tradeoff. The bias-variance tradeoff decomposes the error
of any supervised learning algorithm into two contributions - a bias contri­
bution which measures the match between an algorithm and the true target,
and a variance contribution which measures the specificity of the match (Ge-
man et al., 1992). The two contributions are not independent, but the result is

5If the objective is not noisy then where is Dirac’s delta function.
6In fact the density is not even strictly defined since it is not normalizable for values outside the
range of objective values. However, such problems are easily addressed.
7There have been conferences on the integration of AI and OR techniques since 1999. See the website
www.crt.umontreal.ca/cpaior/ for the 2003 installment.

123 Problems in Optimization

important because it leads to new algorithms. Researchers realized that perfor­
mance could be improved by combining learning algorithms which drive the
variance term down without significantly affecting the bias term. Many ways
of combining learning algorithms have arisen in recent times (stacking, bag­
ging, boosting, etc.) based on understanding of the bias-variance tradeoff. If
a similar procedure could be carried out for optimization algorithms, results
would likely also be dramatic. Thus we are led to another important problem.

Problem 10: Develop theory and algorithms which allow for the combining
of different optimization algorithms into a single algorithm which has better
performance than all of its constituents.

Using existing work in machine learning, it is clear how to combine algo­
rithms for improved inference of the structure in a problem (the infer step).
However, even given a common framework in which to represent problem
structure (see Problem 4), it is not at all clear how to combine optimization
procedures which exploit this structure (the act step). This should be an area
of significant future effort.

We close this section of connections between machine learning and opti­
mization by examining the application of reinforcement learning (RL) to a par­
ticular class of optimization tasks. Due to the similar nature of the tasks, there
are many opportunities for cross-fertilization of optimization and RL includ­
ing the rewarding of valuable stage-setting activities (e.g. crossing a valley of
low fitness) or through rewarding important components of any good solution.
Some researchers are beginning to explore such connections either directly us­
ing RL (Boyan and Moore, 2003) or indirectly through heuristics (Dorigo, M.
et al., 1999). While such activities are rife with new questions, I would like to
propose another currently unstudied problem related to reinforcement learning.

Accompanying the development of inexpensive computing power has been
a rise in the application and sophistication of simulation models. From weather
prediction and galaxy formation to consumer modelling and crowd dynamics,
simulations are ubiquitous and will only become more prevalent with time. Of­
ten, however, the simulation itself is only a means to an end. Once a calibrated
simulation model has been constructed, some of its input parameters need to
be tuned in order to understand how to effect some desired outcome (e.g. what
should the layout of a store be in order to maximize the time consumers spend
in the store?). A common approach to this problem is to define an objective
function and recast the problem as a minimization. For any given run of the
simulation, the objective measures the distance of the obtained end state from
the desired end state. By applying the minimization algorithm, the outer level
optimization hopefully finds parameters which result in small differences from
the desired simulation outcome. This approach, while conceptually straight­
forward, is horribly inefficient. In most cases the simulation itself is both
computationally expensive and stochastic making this direct approach to the

124 FRONTIERS OF EVOLUTIONARY COMPUTATION

problem infeasible. Since this is likely to become an increasingly common use
of optimization, I have posed this as an important future problem.

Problem 11: Many optimization problems require tuning the parameters of
a simulation or dynamical system so that the system exhibits desired behav­
ior. Increase the efficiency of this process by using reinforcement-learning-like
methods to exploit the information available in the dynamics of the simulation.

The naive optimization approach outlined above is wasteful of the informa­
tion available to tune the simulation parameters. The dynamics of the sim­
ulation are not taken into account; only its final attractor which is compared
with the desired result is considered. Surely, improved performance could be
obtained by monitoring the behavior of the simulation before it attains its end
state. There is reason to believe that ideas from reinforcement-learning could
prove helpful, since there is a direct mapping of this problem onto the prob­
lem solved by reinforcement learning. The value of the objective function can
serve as input into the reward function with valuable stage-setting dynamics
being rewarded prior to the end of the algorithm.

To close this section, I end with an important connection between optimiza­
tion and the scientific method itself. A disturbing cultural trend within the
optimization community is the preponderance of head-to-head competitions
of algorithms against one another. No paper which proposes a new algorithm
is complete without a comparison against other algorithms on a tiny set of
problems. Often these problems are not even benchmark problems, but rather
problems the author has defined to show the strengths of the new algorithm.
This is all the more distressing since we know that algorithms behave the same
when averaged over all possible problems (Wolpert and Macready, 1997). A
comparison of two algorithms merely showing which one is better is almost
useless without understanding why it is better than the other. Some other less
obvious but equally pernicious aspects of the current comparative culture are
convincingly discussed in (Hooker, 1996). Thus, researchers need to seriously
consider the following problem.

Problem 12: Develop test problems and methodologies for a more “scien­
tific” establishment of the strengths and weakness of different algorithms.

Algorithm comparison is not unimportant, but we desperately need new
classes of test problems. The goal of these test problems is to provide insight
as to why one algorithm performed better than the other on these problems.
Ideally, these problems should have features that are deemed important in de­
termining the success of algorithms run on these problems, and these features
should be easily tunable. The types of features and the form of the test func­
tions can be informed from the results of Problem 4 for a unified modelling
and testing framework.

However, to determine why an algorithm performed well or poorly requires
a change in research emphasis. After an algorithm has been developed, more

125 Problems in Optimization

time should be spent on hypotheses concerning its efficacy on different prob­
lems and less on comparing it with other algorithms. Empirical tests of these
hypotheses should be performed and hypotheses adjusted accordingly. In short,
we should apply the scientific method itself when it comes to the comparison
of algorithms.

4. APPLICATIONS

In this final section, I pose problems in the applications of optimization
rather than problems in optimization itself. The first two of these problems are
driven by the growth of the internet.

Problem 13: Design distributed, bottom-up optimizing agents which opti­
mize globally using predominantly local information.

Interest in multi-agent systems has exploded in recent times. Researchers
are trying to engineer distributed systems solving a wide variety of different
problems including optimization (Wolpert et al., 2003). I expect that such
efforts will become more important over time due to the practical value in
solving this problem. As an example, one of the most important applications
of optimization from a financial perspective is the optimization of the supply
chains which link businesses together. With the internet and electronic com­
merce, businesses are now linked more closely than ever. Past supply chain
gains made by operational researchers which optimized locally, improving a
single step within a single business, have been exhausted. The future of addi­
tional efficiency improvements is in optimizing across an entire supply chain.
Unfortunately, much of the global optimization must be accomplished using
local information because companies are unwilling to divulge proprietary in­
formation. Moreover, even if the information is available, it rapidly becomes
obsolete in the modern volatile business climate.

The internet has also enabled the development of avatars or human surro­
gates which act to fulfill the requests of humans. There are two steps in ac­
complishing this: 1) eliciting the preferences from the human and 2) acting
to maximize those preferences. Preferences can conveniently be captured in
one or more utility functions.8 The second step is likely to be an important fu­
ture application for optimization methods. Despite significant previous effort
(Keeney and Raiffa, 1993) elicitation of preferences remains problematic and
no entirely satisfactory solution is available.

Problem 14: Develop algorithms and procedures whereby qualitative ob­
jective functions (in particular utility functions) can be quantified or otherwise
represented so that they may be optimized.

8Though admittedly, not without some drawbacks.

126 FRONTIERS OF EVOLUTIONARY COMPUTATION

As suggested in the problem statement, it may not be necessary to for­
mally represent the objective function as an algorithm. We have seen many
interesting examples where evolutionary algorithms have been used to con­
struct aesthetically appealing designs utilizing user-defined fitness functions.
Other iterative approaches might allow the human to guide the search as it pro­
gresses. If such techniques can be extended to easily capture human desires
into computationally-convenient forms, new applications will abound.

I close with an open-ended suggestion rather than a specific problem. The
development of genetic programming (Koza, 1992) in the early 1990s was im­
portant because it brought attention to optimization on a much larger class of
problems. Today, we are no longer confined to optimize over traditional search
spaces like but can also consider problems defined over bizarre search
spaces like fragments of computer code. In spite of these new applications
I believe we have only begun to explore new applications of optimization.9

Problem 15: Explore novel applications of optimization by considering
more general notions of search spaces and constraints. As a concrete ex­
ample of new applications, we can look to mathematics. Formal systems in
mathematics provide fertile opportunities for novel optimization applications.
In most cases, the formal systems10 defined by mathematicians and computer
scientists used to study particular problems can easily be encoded in an al­
gorithmically convenient manner. Defining an objective function over these
formal systems will result in entirely new classes of optimization problems.
We might, for example, want to build a formal system having certain char­
acteristics. If we can define an objective quantifying the difference between
any formal system and one with the attributes we desire then we can optimize
to find such structures. Of course, the optimization will only be successful if
our representation of the problem results in a relatively smooth objective land­
scape. As a concrete example of the power of this approach, we might use
some of the algebras that have been developed to model concurrency in com­
puter systems (Milner, 1999). There is no reason why, in principle, we cannot
optimize over representations of mobile concurrent processes11 to construct
processes that perform certain tasks in as parallel a manner as possible.

New applications like these will surely bring new questions. How do we
even begin to think theoretically of the properties of such spaces when the
configurations represent complex formal systems? How do we combat the

9 Interestingly, the field of machine learning is now exploding with new applications by using kernel methods

which map many different input spaces (e.g. text documents, bioinformatic sequences, phylogenetic trees,

rankings, etc.) to linear vector spaces where the learning algorithms operate. See www.kernel-machines.org

for more information.

10These formal systems may be either discrete (discrete groups, algebras, graphs, logics, calculi) or contin­

uous (continuous groups, algebras, vector spaces).

11 Mobile processes can change their patterns of interaction over time.

REFERENCES 127

entropic force resulting in ever larger configurations? Work in this direction
has begun (a recent example of some theoretical properties of the search space
of trees is found in (Bastert et al., 2001)), and will become more important.

5. CONCLUSIONS

Optimization has a bright and interesting future if the problems posed here,
and the countless others not considered, are any indication. If, in a hundred
years, researchers can look back on these problems as we do on David Hilbert’s
problems seeing most of them solved, optimization will be a vastly more influ­
ential field than it is today. The answers to these questions will have spawned
myriad new applications and perhaps will have shaped the way we view other
disciplines and the natural world itself.

Acknowledgements I would like to thank BiosGroup Inc. and RIACS/NASA
for support, and Mohammed El-Beltagy, Stuart Kauffman, Jose Lobo, and
Michele Shouse for input.

REFERENCES

Amari, S. (2000). Methods of Information Geometry, volume 191 of AMS
Translations of Mathematical Monographs. AMS and Oxford University
Press.

Bastert, O., Rockmore, D., Stadler, P. F., and Tinhofer, G. (2001). Landscapes
on spaces of trees. Technical Report SFI preprint 01-01-006, Sante Fe Insti­
tute.

Boyan, J. and Moore, A. (2003). Learning evaluation functions to improve
local search. Journal of Machine Learning Research, to appear.

CONDOR (1988). Operations research: the next decade. Operations Research,
36:619–637. (Committee On the Next Decade in Operations Research).

Dorigo, M., Di Caro, G., and Gambardella, L. (1999). Ant algorithms for dis­
crete optimization. Artificial Life, 5:137–172.

Duda, R., Hart, P., and Stork, D. (2001). Pattern classification. Wiley, New
York.

Geman, S., Bienenstock, E., and Doursat, R. (1992). Neural networks and the
bias/variance dilemma. Neural Networks, 4:1–58.

Hilbert, David (1902). Mathematical Problems, Paris, 1900. Translation by
Mary Winston published in the Bulletin of the American Mathematical So­
ciety.

Hooker, J. (1996). Testing heuristics: we have it all wrong. Journal of Heuris­
tics, 1:33–42.

Hooker, J. (2000). Logic-based methods for optimization. Wiley, New York.
Jordan, M. ed. (1999). Learning in graphical models. MIT Press, Cambridge.

128 FRONTIERS OF EVOLUTIONARY COMPUTATION

Karmarkar, N. (1984). A new polynomial-time algorithm for linear program­
ming. Combinatorica, 4:373–395.

Keeney, R. and Raiffa, H. (1993). Decisions with Multiple Objectives. Cam­
bridge University Press, Cambridge.

Koza, John R. (1992). Genetic programming: on the programming of comput­
ers by means of natural selection. MIT Press, Cambridge.

Larrañaga, P., Etxechabarria, R., Lozano, J. A., Sierra, B., Inza, I., and Penna,
J. M. (1999). A review of the cooperation between evolutionary compu­
tation and probabilistic graphical models. In Proceedings of the II Second
Symposium on Artificial Intelligence, pages 314–324.

MacKay, D. (2003). Gaussian processes - a replacement for supervised neural
networks? available at http://wol.ra.phy.cam.ac.uk/mackay/abstracts/gp.html.

Macready, W. G. and Wolpert, D. H. (1996). What makes an optimization prob­
lem hard? Complexity, 5.

Mansour, T. (2002). Counting peaks at height in a Dyck path. unpublished,
available at http://arxiv.org/abs/math.CO/0203222.

Massopust, P. (1995). Fractal functions, fractal surfaces, and wavelets. Aca­
demic Press.

Milner, R. (1999). Communicating and mobile systems: the calculus. Cam­
bridge University Press, Cambridge.

Mühlenbein, H., Mahnig, T., and Ochoa, A. R. (1998). Schemata, distributions
and graphical models in evolutionary optimization. Journal of Heuristics, 5.

Nesterov, Yurii and Nemirovskii, Arkadii (1994). Interior-Point Polynomial Al­
gorithms in Convex Programming. Society for Industrial and Applied Math­
ematics, Philapelphia.

Tsang, E. (1993). Foundations of constraint satisfaction. Academic Press.
Wolpert, D. H., Bandari, E., and Tumer, K. (2003). Improving simulated an­

nealing by recasting it as a non-cooperative game. In preparation.
Wolpert, D. H. and Macready, W. G. (1997). No Free Lunch Theorems for

Search. Transactions on Evolutionary Computation, 1.

Chapter 7

EC THEORY - “IN THEORY”

Towards a Unification of Evolutionary Computation
Theory

Christopher R. Stephens
Instituto de Ciencias Nucleares

UNAM, Mexico

stephens@nuclecu.unam.mx

Riccardo Poli
Department of Computer Science

University of Essex, UK

rpoli@essex.ac.uk

Abstract	 We present a personal overview of EC theory. In particular, we try to show
that recent theoretical developments have pointed the way to a grand unifica­
tion of different branches of EC, such as Genetic Algorithms and Genetic Pro­
gramming, and also different theoretical models, such as the Vose model and
Holland’s Schema theorem. We give a broad outline of this unification program
showing how the different elements above are related to each other via changes
of representation on the space of EC models. Based on our work we pose a series
of challenges which if met, we believe, will lead to a much deeper understanding
of EC and the various types of evolutionary algorithm.

Keywords:	 Schema theory, Vose model, Unification, Genetic Algorithms, Genetic Program­
ming, Evolutionary strategies, Building Blocks

INTRODUCTION

Relatively speaking, Evolutionary Computation (EC) is a fairly immature
subject. It exhibits many different facets without a high degree of intellectual
consensus. It sometimes seems that it is all things to all people. It is a subject
that is principally empirical and phenomenological. Moreover, it is empirical
and phenomenological within a very ill defined framework, in distinction to the

130 FRONTIERS OF EVOLUTIONARY COMPUTATION

world as seen through the eyes of physics and biology. This is because in EC
the only real limit to what can be studied is the imagination. In its more “sci­
entific” guise it is related to an older, more mature field - population genetics
- but without the constraints that nature imposes and without the same degree
of intellectual coherence that comes with maturity. Mathematically speaking it
is the study of certain classes of heuristic algorithms based on populations of
objects (Vose, 1999), though as we shall see what these classes are is far from
clear. Seen from the “engineering” point of view it is an area where the ana­
logical use of “natural selection” appears as a moulding force in the creation
of more “competent” problem-solvers (Goldberg, 2002).

One salient characteristic of EC theory is that it is difficult. It is also very
exciting. It is relatively simple to write an evolutionary algorithm (EA). It is
exceedingly difficult to understand its behavior other than at a superficial level.
Even fairly simple EAs, such as a Genetic Algorithm (GA) with selection and
mutation only, present formidable difficulties.1 This stark contrast between the
ease with which an EA can be written and the complexity of understanding its
behavior leads to a very large expectation gap between EC “practitioners”, who
focus on the empirical aspects, and often seem capable of thinking of five new
genetic operators before breakfast, and the theorists who, to the practitioners,
seem fixated on no selection or “counting ones”.

Unlike more mature areas of science there is not even a clear consensus on
what should be the task of EC theory. Is it to provide recipes for practitioners,
to provide exact computational models, to allow a deeper understanding of a
complex system, all of these, none of these, or what? Having established what
theory should do, it is then important to ask ourselves - “What has it done?”
and “Where is it going?” A goal of this article is to give, albeit briefly, our
personal view on this.

Different approaches to EC theory have been proposed in the past. These in­
clude schema theories (Holland, 1975), the Vose model (Nix and Vose, 1992),
the statistical mechanics approach (Prügel-Bennett and Shapiro, 1994) and
more. Is there a model that is superior to all others? Often, models are judged
by their clarity, simplicity, and ability to explain and predict. Is there a frame­
work that does this best? Once we have established what the task of EC theory
should be, it will be easier to answer these questions.

A theoretical model is also often judged by how well it unifies a range of
phenomena. As there are many different flavors of EA - GAs, Genetic Pro­
gramming (GP), Evolution Strategies (ES) etc. - one may ask if there is a

1These problems can, in fact, be mapped to problems familiar in very well established branches of science,
such as statistical mechanics. Even there, however, where there is vast experience, they remain an enormous
challenge.

131 EC Theory - “In Theory”

theoretical framework that encompasses them all? If not, then which is the
framework with the broadest applicability?

The framework with the broadest applicability is inhomogeneous Markov
chain theory. However, describing EC as a subset of such a theory means very
little. So, what are the essential elements common to different EAs? These are:
a choice of genotype-phenotype map, a choice of fitness function and a set of
evolution operators. Here, our first objective is to present a unified theoreti­
cal framework applicable to virtually any type of fitness function, any type of
genotype-phenotype map, any type of selection and any type of mutation and
crossover.2 Our second objective is to demonstrate that all current and past
theoretical models of EAs are in fact simply mathematical transformations of
one another.

In no way do we want to give the impression that we have totally achieved
these objectives. Rather, we are indicating in which direction we believe EC
theory should move and what we see as the principal challenges ahead.

THE ROLE OF THEORY IN EC
We begin by asking - what should be the task of EC theory? Is it reason­

able, for instance, to think that a theoretician should be able to deduce from
first principles after exactly how many generations there’s a 95% chance that a
better optimal individual will not be found in the following 50 generations for
a particular 555-job job-shop scheduling problem with three point crossover
with probability 0.9 and mutation probability 0.02? We would categorically
deny that this is the principal task of the theory. In fact, we will probably never
be able to answer questions such as this. Equally, we may ask if it is the ex­
clusive task of EC theory to consider only very general, global results such as
the “No Free Lunch” theorem. Once again, we would say no, rather, theory is
at its most powerful when between the very detailed and the very general - but
just where?

In the EC community there is a strong distinction between “scientific” the­
ory and “engineering” theory (Goldberg, 2002). These differ both in terms
of methodology and motivation. The role of theory in science is to explain
and understand phenomena (often results of controlled experiments) within a
formal, well defined framework. The role of theory in engineering is to “build
better bridges”. Sometimes the theory used is rooted in an underlying scientific
theory, but often uses rules of thumb that are far removed from the scientific
roots. We emphasize that it is not a question of which is the superior approach.
They address very different concerns. Here, though, we will be very much

2We believe a unified framework can be given for many other classes of EA, including new ones like ant
systems, artificial immune systems, etc. but this is beyond the scope of this article.

132 FRONTIERS OF EVOLUTIONARY COMPUTATION

more concerned with EC theory from the scientific perspective with, however,
one eye always on the engineering point of view wherein we may also examine
things from a practitioner’s standpoint.

In many sciences a large part of theory is associated with taxonomy - clas­
sification with respect to natural relationships. In EC, various high-level tax­
onomic labels are at our disposal, such as GP, GAs, ES etc. Whether these
labels are optimal, or even useful other than in an historic sense, however, is a
debatable point, as we shall see. Taxonomy allows us to understand common­
ality between different things. Subsequently we must understand why such
commonality exists. For instance, the periodic table was initially an empirical
and phenomenological construct until the atomic theory gave it a firm “micro­
scopic” foundation. What is the “periodic table” for EC? Does such a construct
exist? If nothing of this nature existed it would be deeply worrying as it would
mean that a theoretical treatment of each and every EA and/or problem would
be different. It is clear however that there is commonality. The question is
more - can it be suitably formalized? At the other extreme one could claim
a type of “hyperuniversality”, such as was present in the original version of
the Building Block Hypothesis (Goldberg, 1989c; Grefenstette, 1993), which
claimed that all GAs behaved in the same way in finding an optimum - via
fit, short schemata. We now know that this, in its strict form, is wrong, being
rather an engineering rule-of-thumb with only limited validity, and that such
a degree of hyperuniversality does not exist. Nevertheless, a prime job of EC
theory should be to tell us what EAs and problems, or classes of EAs and
problems, are likely to lead to similar outcomes or behavior. It does not need
to be elaborated on that a deeper understanding of this would be of great use
to practitioners.

Passing beyond the taxonomic component of EC theory we should also ask
that the theory be able to predict, at least within some more or less approximate
scheme, the dynamical evolution of an EA. To address this one needs to start
with a framework that at least formally captures the behavior of an EA. This
can be at the level of a theory or model which is exact or approximate from
the outset. All else being equal an exact model is preferable. Great progress
has been made in the last decade in exact formulations of EA dynamics. For
instance, the work of Michael Vose and collaborators (Vose, 1999; Nix and
Vose, 1992) in the context of the simple GA, where the transition probability
matrix for the population evolution is iterated as for a Markov chain, and the
work of Stephens, Poli and collaborators (Stephens and Waelbroeck, 1997;
Stephens and Waelbroeck, 1999; Stephens, 2001; Poli and McPhee, 2001a;
Poli, 2000a; Poli, 2001 a), where an exact dynamics is modelled in terms of
schemata, thus leading to a generalized and exact form of Holland’s original
Schema theorem (Holland, 1975), are two such approaches.

133 EC Theory - “In Theory”

Beyond the mathematical representation of EC theory one should also re­
quire that the theory give some intuitive framework within which an EA, or
class of EAs, can be understood. The concept of a fitness landscape from pop­
ulation biology (Wright, 1932; Wright, 1967; Reidys and Stadler, 2002) is a
prime example of a construct that offers a framework to do just that. The origi­
nal Schema theorem of Holland and associated Building Block Hypothesis are
another very important example. In the seventies and eighties, and to a lesser
extent later, they, in fact, seemed to provide a perfectly valid and sufficient
theoretical foundation for GAs. So much so that, in the early to late nineties,
developing a schema theorem like Holland’s became the target for GP theorists
too.3

Finally, it would be useful to better understand the relationship of EC theory
to other more well-established areas in computer science, mathematics, biol­
ogy and physics. This, for example, would allow us to know whether what
has been done in EC is novel. More generally it would make it possible to
remove barriers between disciplines and allow for an easier exchange of ideas
and results.

Having established some criteria by which we may judge a theory to be
“good” or not we may ask: Out of the many possible approaches to EC theory
and motivations to develop it, under what circumstances is one better than
another, or is there one which is superior to all others under all these roles? We
will provide our answer to this in the rest of the chapter.

EC THEORY - THE “BARE NECESSITIES”
In this section we wish to give a brief, non-rigorous exposition of the fun­

damentals of EC theory, as we see them, that essentially could be applied to
any EA. Thus, we try to maintain as much generality as possible, in particular
to show how a unified theoretical framework, encompassing most, if not all,
standard EAs, can be developed. Formally, an EA is an algorithm that takes

3It is worth pointing out that for many years there has been a hot debate in EC as to the strengths and
weaknesses of the notion of schema and of Holland’s Schema theorem, their usefulness having been widely
criticised (see for example (Chung and Perez, 1994; Altenberg, 1995; Fogel and Ghozeil, 1997; Fogel
and Ghozeil, 1998)), as has the Building Block Hypothesis (Grefenstette, 1993; Stephens et al., 1999).
While some criticisms are really not justified, as discussed in (Radcliffe, 1997; Poli, 2000b; Holland, 2000),
others are reasonable. The debate has certainly led to some degree of confusion in the field, with most
EC practitioners being divided into two different camps: those who still think Holland’s Schema theorem
provides a satisfactory theoretical foundation for GAs, not having heard, or not caring, about the debate
about its weaknesses, and those who believe there is nothing good, not just in Holland’s Schema theorem,
but in the notion of schema itself and any theory built on it. Until very recently most EC theoreticians
belonged to this second category (see for example (Vose, 1999, preface) and (Bäck and Fogel, 2000, Page
xxxiv)). Many of them thought that only Vose’s model (Nix and Vose, 1992; Vose, 1999) could provide
a serious and mathematically sound way of modelling GAs. Both types of practitioners and theorists are
wrong.

134 FRONTIERS OF EVOLUTIONARY COMPUTATION

as input a population of “objects” (strings, trees etc.4) and a fitness function,
at a given time, and gives as output the population at a later time. Canonically
the evolution is a Markov process generated by a set of genetic operators that
act stochastically. The fact that an EA is a stochastic process has the important
ramification that we may only expect to make statistical predictions in terms of
the dynamics. The objects live on a configuration5 space X, of dimensionality

with elements where the index As EAs are
population based one needs to consider sets of elements, some of which may
be repeated multiply. Thus, we denote a population by
where represents the proportion of objects of type in the population. Each
object is assigned a quality or fitness, via a fitness function
This notion leads one to the important concept of a fitness landscape, where
one thinks of a topography wherein represents a height function “above”
the space X. The intuition behind the landscape concept is that populations
will seek the peaks in the landscape and move away from the valleys. Often,
always in the case of population biology, the fitness landscape possesses a de­
generacy, i.e. many genotypes have the same fitness (i.e. corresponding to the
same phenotype). One can speak of a “symmetry”, strictly speaking an equiv­
alence relation, in this case and ask if this symmetry is preserved by genetic
operators other than selection. A concrete example of this is the equivalence
under selection of those genotypes that correspond to phenotypes of the same
fitness. A dynamics is imposed via an evolution operator, such that in the
infinite population limit, where is the probability distribution at time

The specific form of depends on the specific set of ge­
netic operators used, which in their turn depend on families of parameters. We
will generically focus on the standard ones: selection, mutation and recombi­
nation. Selection is an operator that depends on the fitness values of the objects.
The number of parameters necessary depends on the type of fitness function
and the amount of degeneracy of For instance, for a counting-ones GA
problem only N fitness values are needed, while for the Eigen model (Eigen
et al., 1989) (“needle-in-a-haystack” fitness function) only two, in both cases
the genotype-phenotype map being highly degenerate. Mutation, a one-body
operator, usually only depends on one parameter - the mutation probability ­
that is applied uniformly to each locus, though more general operators can eas­
ily be considered. Two-parent recombination generically depends on the set
of recombination distributions, that characterize the transferral of
genetic material from parents to offspring, where is the probability to
form an offspring object, given two parent objects, and and a crossover

4We believe that this generality extends to even more complex objects such as Neural or Bayesian networks

etc.

5Configurations will most usually be thought of as genotypes.

135 EC Theory - “In Theory”

“mode”, i.e. a rule for redistributing genetic material between parent and
offspring objects. The complexity inherent in this representation can be ap­
preciated by writing down the exact string evolution equation for the simple
case of three-bit strings as in (Whitley, 1992). We mentioned previously that
taxonomy is important without being specific as to what exactly should be clas­
sified. One may think that EAs themselves should be classified. An EA alone
however, is in some sense a “black box” which takes a “problem” (usually a
fitness landscape and an initial population) as input and then gives an output
(the population at a later time). A given EA, though, may have very different
characteristics with respect to a given measure on one problem versus another.
Another way to see this is that an EA does not fully specify the dynamics of
the system, whereas an EA and a problem together do. Hence, we are led to
consider a taxonomy of EA/problem pairs. We will call an EA/problem pair a
“model”. In this context we may characterize a particular model, by a set of
parameters where represents the fitness landscape
and selection mechanism, mutation and recombination. With these
three in hand we can specify a very large class of models. We will denote this
space of models, We believe that a better understanding of the taxonomy
of EAs and fitness landscapes can be achieved by studying In principle one
could put a metric on and talk about how close one model is to another. A
less rigorous, but more pragmatic, approach is to think of two models as being
“close” if they lead to “similar” behavior. Of course, to do this one must define
“similarity measures”. At any rate, continuity on would lead one to believe
that models with similar parameter values should behave similarly, except, of
course, in the neighborhood of a singularity.

As a simple example of this approach, consider a GA without mutation and
selection but with crossover acting on N-bit strings. In this case we
can think of as containing only distinct models. If we chose as similarity
measure, the number of generations needed for the correlation function

to decrease by a factor where denotes population average and
and are the allele values at loci and then one would find, for example
for that With the specific
values one may determine, for example, that 2-point crossover is closer to 1­
point crossover than 15-point crossover.

One can think of population flows as taking place on X, the configuration
space, or on the fitness landscape. All the main branches of EC - GP,
GAs, ES etc. - fall into this general framework. The chief differences lie
more in what objects are being represented in X and what specific operators
constitute For instance, in GAs the represent fixed length strings. In GP
they are program trees and in machine code GP (Nordin and Banzhaf, 1995a;
Nordin, 1997) or Grammatical evolution (O’Neill and Ryan, 2001) they are
variable length strings. We shall also see that “coarse grained” representations,

136 FRONTIERS OF EVOLUTIONARY COMPUTATION

such as schemata, or particular sets of schemata - Building Block Schemata ­
also offer very useful basis representations. Interestingly, in nature, genotypes
are variable length due to phenomena such as gene duplication and deletion.
Additionally, a non-linear structure can also be more appropriate, when for
instance modelling protein secondary or tertiary structure.

Rather than considering one type of basis as being more “general” or fun­
damental than another it is useful to think of passing between different basis
representations via coordinate transformations on X, via embeddings of X in
a larger or higher dimensional space, or, in the case of true coarse grainings,
via projections. Probably the best known alternative coordinate system is the
Walsh basis (Goldberg, 1989a; Goldberg, 1989b). Another example of a coor­
dinate transformation, whose importance and utility we will examine shortly, is
the following: take fixed length binary strings of length N. In this case X is the
N-dimensional Boolean hypercube, the N string loci forming a complete or­
thonormal basis for the hypercube. Now change to an alternative basis, which
we term the Building Block Basis (BBB) (Stephens, 2003), which consists of
all schemata corresponding to a given string, where the choice of string is ar­
bitrary. Formally, where are strings, iff is a member
of Building Block and is zero otherwise. The coordinate transformation en­
gendered by yields a basis which is not orthonormal. We will consider the
BBB more extensively later. An example of an embedding transformation,
at least in principle, would be that of passing from variable length strings of
up to maximum size with binary alleles to a fixed length basis representa­
tion of size by including a third allele value that specifies that there was
no corresponding bit in the variable length case. Of course, for these more
general transformations development of the operators and the corresponding
theory necessary to maintain syntactic correctness of the offspring is a totally
open issue. In this case, one might be better off using the theory for variable
length structures already developed in GP.6 Finally, a simple projective coarse
graining would be that of passing between genotype and phenotype.

The above types of map give us flexibility in terms of what particular repre­
sentation we may find most suitable for a problem and also give a more unified
framework within which we may view different elements of EC, such as GP
and GAs, in a more coherent light. In fact, our lack of understanding and con­
sideration of such transformations is one of the reasons why EC theory has
been, and continues to be, fragmentary.

An even more important reason for considering general classes of trans­
formation associated with X is that it facilitates an understanding of the dy­

6Of course, using this basis representation and developing appropriate operators for it would just lead to a
form of GP which is isomorphic to current forms, and therefore the theory for such a GA-type of GP would
just be isomorphic to the theory already developed there.

137 EC Theory - “In Theory”

namical equations associated with the true effective degrees of freedom of the
model. These effective degrees of freedom will more often than not be ag­
gregations of the underlying “microscopic” degrees of freedom and may be
made more manifest via a coordinate transformation, embedding or coarse-
graining/projection. Additionally, it may be the case that effective degrees of
freedom most naturally emerge in an approximation to the dynamics rather
than the exact dynamics.

As the model dynamics moves a population composed of individual objects
around in X an important precondition for understanding the dynamics is a
notion, of neighborhood, nearness, distance, or accessibility on X. In some
settings, such as binary GAs, a natural neighborhood relation is associated
with the Hamming metric. In more complicated cases, such as GP, where one
requires a metric on the space of trees of variable size and shape, this is a much
more subtle question. Additionally, different genetic operators are often most
naturally associated with different notions of nearness. For instance, mutation
is very naturally associated with Hamming distance. This is not the case for
recombination however. One may be led in this way to consider a different
metric for every operator (Jones, 1995). However, given that the dynamics of
the model is due to a single composition of different genetic operators, it is
questionable as to what extent this picture is useful.

GENERIC GENETIC DYNAMICS

The space of models, is of very high dimensionality if one thinks of all
possible genetic operators. Selection, mutation and recombination form a very
important subset and we will now restrict attention to them. For transparency
we will also consider the dynamics in the infinite population limit, writing
evolution equations for the probability distribution of objects, where

is the probability for finding object
populations is relatively straightforward.

at time The extension to finite

Formally at least, the following also applies to GP as well as GAs:

where is the probability to find objects of type after selection and
crossover. The matrix elements of the mutation matrix, give the proba­
bility to mutate object to object In the simple case of fixed length GAs for

instance, where is the Hamming distance
between the two strings and N is the strings’ length. For mutation Hamming
distance is clearly a very natural metric. Explicitly is given by

138 FRONTIERS OF EVOLUTIONARY COMPUTATION

where In the case of proportional selection is the probability to select
where is the average population fitness. is an

interaction term between objects, i.e. objects and are selected and crossed
over (“interact”) to potentially form an object depends not only on
the objects and but also on the particular recombination mode. In the case
of homologous crossover the recombination modes are just crossover masks
with being the sum over all possible recombination masks. In the case of
non-homologous crossover the modes are more general than masks.

Equations (7.1) and (7.2), as an exact representation of the dynamics in
terms of incidence vectors for objects, in the case of fixed-length GAs, where
a crossover mode is simply a mask, are equivalent to the Vose model or, in­
deed, to earlier formulations in population biology (see (Bürger, 2000) and
references therein). It looks quite different because we are using a less con­
densed notation in order to bring the different roles that each operator play to
the fore. These equations however are also valid for objects other than fixed-
length strings. A particular criticism of the Vose model has been that although
elegant it looks all but hopeless to get other than very general information from
the equations. Also, the equations are far removed from older elements of GA
theory such as the Schema theorem and Building Block Hypothesis. This has
led proponents of the Vose approach to question both the validity and the utility
of the latter. As the above equations are equivalent to the Vose equations we
may understand the enormity of the task of trying to obtain either quantitative
or qualitative results from them. They represent coupled, simultaneous
non-linear difference equations. At the level of mutation and selection the
problem is linear hence, conceptually at least, the problem is easily addressed
- one must find the eigenvalues and eigenvectors of the mutation/selection ma­
trix. The introduction of recombination at first sight leads to a degree of com­
plexity far beyond that of selection and mutation.

To write the interaction constants more explicitly we would have to consider
a more definite model. However, we may make some generic comments. First
of all, unless the mode creates object from and Generi­
cally, this is very unlikely and hence the vast majority of interactions are zero.
For instance, in GAs with binary alleles for a given and is a

square matrix. However, only of the order of matrix elements
are non-zero. Thus, the microscopic representation is very inefficient, there
being very few ways of creating a given target by recombination of strings.
The vast majority of string recombination events are neutral in that they lead
to no non-trivial interaction. These comments also hold for more complicated
types of object.

139 EC Theory - “In Theory”

UNDERSTANDING GENETIC DYNAMICS: FIT­
NESS, IS IT “EFFECTIVE”?

Having written down a generic dynamics how do we understand it? In pop­
ulation biology the concept of a fitness landscape has played an important role.
Standard intuition views a fitness landscape as a rugged terrain where popu­
lations flow towards fitness peaks. Thus, natural selection can be viewed as a
type of “hill climbing” on this topography.

The classical fitness concept, and associated fitness landscape, however, do
not take into account the important effect the mixing genetic operators may
have in determining the complete reproductive success of an individual. In
particular, the effect of these genetic operators can be such that population
flows on the standard fitness landscape cannot be understood with any degree
of intuition. In fact, the flows can be quite counterintuitive, leading to situa­
tions where populations flow against the fitness gradient. A simple concrete
example is, once again, the Eigen model where the fitness landscape is just one
isolated fitness peak in an otherwise flat landscape. In the absence of mutation
the entire population will eventually climb to the top of the fitness peak. In
the presence of mutation the proportion of the population associated with the
peak is less than one. However, above a certain critical mutation rate (Eigen
et al., 1989), the peak proportion is what it would be in a completely ran­
dom population on a flat fitness landscape. The landscape remains the same,
i.e. with a single peak, yet selection does not act, in the sense that there is no
preference for the peak. Clearly hill climbing is not a very useful analogy here.

The mixing operators can also lead to directed flows on neutral networks
due to an “induced” breaking of the genotype-phenotype symmetry (Stephens,
1999a; Angeles et al., 1998; Stephens et al., 1998; Mora et al., 1999). Such
phenomenon, unlike the case of population flow due to positive selection can­
not be naturally understood in terms of hill climbing on a standard fitness
landscape either. However, all these phenomena can be intuitively understood
within the framework of a different paradigm - effective fitness7 (Stephens and
Waelbroeck, 1998; Stephens, 1999b; Stephens and Vargas, 2000; Stephens and
Vargas, 2001; Poli, 2000a; Stadler and Stephens, 2003), albeit with the conse­
quence that effective fitness is not a constant quantity but rather depends on the
state of the entire system and hence is intrinsically time dependent. We define
the effective fitness in the case of objects as

7Effective (or adjusted) fitness was first introduced in (Nordin and Banzhaf, 1995b; Goldberg, 1989a) in the
context of accounting for the destructive effect of crossover in the framework of Holland’s Schema Theorem
where a simple constant factor multiplies the landscape fitness.

140 FRONTIERS OF EVOLUTIONARY COMPUTATION

One may think of the effective fitness as representing the effect of all genetic
operators in a single reproductive selection factor. Here, we have assumed
proportional selection. Effective fitness can easily be generalized for other
selection mechanisms however. is the fitness value at time required to
increase or decrease by pure reproductive selection by the same amount
as all the genetic operators combined in the context of a reproductive fitness

If the effect of the genetic operators other than selection is
to enhance the reproductive success of object Obviously, the converse is true
when

The exact functional form of the effective fitness obviously depends on the
set of genetic operators involved. For the fairly general case of equation (7.1)
we have

In the limit (or in more general circumstances when the
strengths of operators other than reproductive selection 0)

The key element behind effective fitness, irrespective of its mathematical
definition, is that population flows in the presence of operators other than pure
reproductive selection are much more readily understood in terms of it. In
fact, to go further, even in the case of pure reproductive selection, if one per­
forms any sort of coarse graining and considers schemata rather than strings,
then population flow is more readily understood in terms of an effective fitness
landscape rather than the reproductive one. As an example, for the evolution of
a particular order-1 schema in a population of N-bit strings it is more natural

schema than the collective dynamics of the
to consider the time dependent one-dimensional landscape associated with the

string types that go up to
make the 1-schema. The job of evolution at the end of the day is to produce fit
offspring which in their turn produce fit offspring which in their turn... It is no
use having an individual with high reproductive fitness that is associated with
a high probability to mutate to a very low fitness individual.

In the case of the Eigen model the effective fitness of the master sequence
or needle, under selection and mutation only, is

where and are the fitnesses of the needle and the “hay” respec­
tively. In the limit and we see that the effective
fitness landscape becomes flat thereby giving an intuitive explanation for the
behavior in the vicinity of the critical mutation rate. We can thus think of evolu­
tion as a hill-climbing process on an effective fitness landscape (which is time

141 EC Theory - “In Theory”

dependent). In this model mutation breaks the genotype-phenotype symmetry
among the non-needle strings in such a way that those strings that are closer in
Hamming distance to the needle have more reproductive success. Once again,
this cannot be understood in terms of the fitness landscape as it is flat for the
non-needle strings. The analog of equation (7.5) for non-needle strings shows
us however that the effective fitness of strings that are close to the needle is
higher than that of distant strings. Effective fitness in this sense is a direct
measure of the strength of the breaking of the genotype-phenotype symmetry
and hence offers both a qualitative and quantitative framework within which
phenomena such as GP bloat and evolutionary robustness may be understood.

UNDERSTANDING GENETIC DYNAMICS:
WHAT ARE THE RIGHT EFFECTIVE DEGREES
OF FREEDOM?

All genetic operators affect what are the appropriate effective degrees of
freedom8 for a particular model, although in potentially very different ways.
For selection, almost by definition, the principal effective degree of freedom
is the phenotype. For pure mutation they are the eigenvectors of the mutation
matrix, the most relevant ones being those with the largest eigenvalues. When
combining selection and mutation it becomes much more difficult to determine

the needle-in-a-haystack landscape for N-bit strings. In this case there are
genotypes but only two phenotypes - the “needle” and the “hay”. For selection
only, due to the strong genotype-phenotype symmetry the dynamics is much
more simply considered in terms of fitness equivalence classes, as there are
only two of them. However, as we pointed out in the previous section mutation
breaks this symmetry. In this case the more appropriate effective degrees of
freedom are the error classes (sets of strings a fixed Hamming distance from
the needle.)

the correct effective degrees of freedom. As a simple example, consider again

Schemata offer another class of effective degree of freedom, where one
coarse grains to a smaller number of fixed loci than in the original model. This
has been familiar in population biology for a long time, where reduction to a
small number of loci is ubiquitous. There, however, traditionally the coarse
graining has been posited and a reduced model for the schemata dynamics di­
rectly written down rather than, more correctly, deriving the schemata dynam­
ics from the underlying microscopic dynamics. Interestingly, any schemata
coarse graining, except in exceptional cases will lead to schema fitnesses that

8By number of degrees of freedom we mean the number of variables needed to describe the state of an
“object”. In many cases those variables can actually be dependent on one another. In these cases, it is often
possible to identify a smaller set of independent variables to describe the system in an exact or approximate,
but, sufficient way. We call these the effective degrees of freedom of the system.

142 FRONTIERS OF EVOLUTIONARY COMPUTATION

are time dependent as they depend on the dynamics of the population. Thus,
if one thinks of a fitness landscape for schemata, it will inevitably be time de­
pendent. It is obviously of great interest to then ask when and under what ap­
proximation can the time dependence be ignored? It is natural to imagine that
if fitness is defined with respect to a certain phenotypic character that depends
principally on a small number of genotypic loci then the resultant landscape
should be approximately time independent. Although a particular schemata-
type coarse graining might suggest itself, the space of schemata-type coarse
grainings has huge dimensionality (e.g. for N-bit strings and a
cardinality alphabet). Hence, the search for a set of schemata that capture
the effective degrees of freedom is in an even larger space than the original
problem! The question is under what circumstances does a particular set of
schemata suggest itself? The chief cornerstones of early GA theory - Hol-
land’s Schema theorem and the Building Block Hypothesis - gave an apparent
answer to this question - that it is fit, short schemata that are the effective de­
grees of freedom, the associated intuition being intimately linked to selection
and the destructive effect of crossover. At that time no exact equations that
took into account schema creation were known and the apparent contradiction
between an hypothesis that posited the existence of building blocks and a the­
orem that did not take into account how building blocks formed higher order
schemata was overlooked.

Holland’s Schema theorem and the Building Block Hypothesis strongly as­
serted that crossover plays a privileged role in the utility of EAs. The fun­
damental dynamical equations (7.1) and (7.2), as in the Vose model, and as
in older exact population biology models, both for the case of fixed-length
strings, are written in terms of the microscopic degrees of freedom, i.e. the
strings themselves. However, the simple structure hides the large scale redun­
dancy inherent in this representation (i.e. the vast majority of the are zero)
and the complication associated with the sums over the and Recently, it
has become possible to write these equations in a form that extends and gener­
alizes Holland’s Schema theorem, allows for a critical and rigorous analysis of
the Building Block Hypothesis and is still intimately linked to a microscopic
formulation that is equivalent to the Vose model. In its original formulation it
encompassed fixed-length, linear genomes. Importantly, however, it has now
also been extended to variable-length linear and tree-like representations (Poli,
2000a; Poli and McPhee, 2001a; Poli, 2001a).

In the fixed-length case9 one may understand the relationship between the
two formulations in terms of a linear coordinate transformation

9We conjecture that it is also true in the case of more general objects. The very fact that the exact schema
equations for GP are so close to their GA counterparts in the BBB lend weight to this conjecture. Obviously,
coordinate transformations on these more complex spaces need to be better understood.

143 EC Theory - “In Theory”

to the BBB mentioned previously. A simple example is in the case of two
bits where while The invertible
matrix the inversion leading back to the original string basis, is such that

where is any schema associated with the string
Note that as the choice of vertex is arbitrary there are totally equivalent
BBBs.

The BBB is complete but clearly not orthonormal. By construction is a
fixed point of this transformation. Apart from the vertex points in corre­
spond to higher dimensional objects in For instance, 1* and *1 are one-
planes in while ** is the whole space. Note that the BBs here are not neces­
sarily short or fit and are certainly not static when considered in the context of
the evolution equation. Note as well that we are not working here in the space
of all schemata. The BBB, in fact, forms a very small subset of the latter. Nev­
ertheless, these are what are being processed by recombination. In the BBB,
in the case of homologous crossover, one finds

where One may ask what is the advantage of
going to this new basis? In the original string basis the properties and symme­
tries of are very hidden. However, this is not the case for
which has the property that for a given mask only interactions between BBs
that construct the target schema are non-zero, i.e. unless
corresponds to a schema which is the complement of with respect to Fur­
thermore, unless is equivalent to where by equivalent we
mean that for any 1 in the mask we have a 1 at the corresponding locus in
and for any 0 we have a *.10 These two important properties mean that the two
summations over and in (7.6) both disappear and we are left with only the
sum over masks with an “interaction” constant which depends only on
the mask. For example, for three bits, mask 100 and target string 111 recom­
bination of 011 with 110,100 or 101 all lead to the desired target. However,
in the BBB the mask 100 specifies as first BB parent the schema 1**. The
second BB parent *11 follows naturally by complementarity.

In this has the interesting interpretation that for a target schema of
dimensionality only geometric objects “dual” in the
subspace of that corresponds to may interact. I.e. a ob­
ject recombines only with a object. Additionally, a

object may only be formed by the interaction of higher

10This happens because a particular mask projects out a particular element of the BBB, while the other
building block is specified purely by complementarity.

144 FRONTIERS OF EVOLUTIONARY COMPUTATION

dimensional objects. In this sense interaction is via the geometric intersection
of higher dimensional objects. For example, the point 11 can be formed by the
intersection of the two lines 1* and *1. Similarly, 1111 can be formed via
intersection of the three-plane 1*** with the line *111, or via the intersection
of the two two-planes 11** and **11.

As mentioned, one of the primary advantages of the BBB representation is
that the sums over and disappear. One obtains, for an arbitrary string

where is the probability to select the BB (note
that the mask uniquely specifies which element, of the BBB to choose) and

the probability to select the BB which is uniquely specified as the
complement of in Both and are elements of the BBB associated
with The above equation clearly shows that recombination is most naturally
considered in terms of the BBB. In the string basis there were of the order of

elements of to be taken into account for a fixed In the BBB there is
only one term. Of course, we must remember that the coarse grained averages
of and contain terms, still, the reduction in complication is enormous.
Thus, we see that recombination as an operator naturally introduces the idea
of a coarse graining, the natural effective degrees of freedom associated with
crossover being the BBs we have defined.

Inserting (7.7) in (7.1) we can try to solve for the dynamics. However, in
order to do that we must know the time dependence of and Although
the number of BB basis elements is we may generalize and consider the
evolution of an arbitrary schema, To do this we need to sum with
on both sides of the equation (7.1). This can simply be done to obtain again
the form (7.1), where this time the index runs only over the elements

of the schema partition and where again In
this case however is the Hamming distance between the two schemata.
For instance, for three bit strings the schema partition associated with the first
and third bits is {1 * 1, 1 * 0, 0 * 1, 0 * 0}. In this case and

is the probability of finding the schema
after selection and crossover. Note the form invariance of the equation after

coarse graining. To complete the transformation to schema dynamics we need
the schema analog of (7.7). This also can be obtained by acting with on
both sides of the equation. One obtains

where
where

represents the part of the schema inherited from the first parent and
that part inherited from the second and

145 EC Theory - “In Theory”

is the set of masks that affect Obviously, these quantities depend on the type
of crossover implemented and on properties of the schema such as defining
length. Note that the BBB naturally coarse grains here to the BBB appropriate
for the schema as opposed to the string

Thus, we see that the evolution equation for schemata has exactly the same
form as (7.7), there being only a simple multiplicative renormalization (redef­
inition) of the crossover probability This form invariance, first
shown in (Stephens and Waelbroeck, 1997; Stephens and Waelbroeck, 1998),
demonstrates that BB schemata in general are a preferred set of coarse grained
variables and more particularly the BBB is a preferred basis in the presence
of recombination. It has also been shown (Vose, 1999) that schemata, more
generally, are the only coarse graining that leads to invariance in the presence
of mutation and recombination. Considering again the structure of (7.7) and
(7.8) we see that variables associated with a certain degree of coarse graining
are related to BB “precursors” at an earlier time, which in their turn ... etc.
This hierarchical structure terminates at order-one BBs as these are unaffected
by crossover. Thus, for example, the level-one BB combinations of 111, i.e.
BBs that lead directly upon recombination to 111, are: 11*:**1, 1*1:*1*
and 1**:*11. The level-two BBs are 1**, *1* and **1. Thus, a typical
construction process is that BBs 1* * and *1* recombine at to form the
BB 11* which at some later time recombines with the BB **1 to form the
string 111.

In this basis the validity of the Building Block Hypothesis can be examined.
From the structure of (7.7) we see, in fact, that in a certain sense the Building
Block Hypothesis emerges as a logical consequence of the equations. The
hierarchical structure of the equation and its solution show unequivocally how
fine grained schemata are built up from more coarse grained BBs. However,
the supposition that BBs are fit and short is not generally true. The BBs that
are important are those of high effective fitness. These may be short or long,
fit or unfit depending on the particular characteristics of the fitness landscape
and the other operators. Thus we can construct an Effective Building Block
Hypothesis (but note that this is not a conjecture, but a mathematically provable
consequence of the equations) which applies not only to GAs but to other EAs,
such as GP, that fall within our unified framework:
Effective BBH: an EA with crossover works by repeatedly combining low-

order schemata of above average effective fitness to form higher-order ones.

In the above, simply to be more concrete, we have used the fixed-length rep­
resentation characteristic of GAs. However, it is important to emphasize that
almost everything we have said has a natural generalization, with basically
exactly the same intuition, at the level of variable-length or tree-like represen­
tations, a subject we will now consider further.

146 FRONTIERS OF EVOLUTIONARY COMPUTATION

THE TWISTED ROAD TO UNIFICATION: GP

To this point we have tried to present as unified a view as possible of EC
theory. However, when we have passed from the abstract to the concrete we
have up to now used standard GAs as a point of contact. It is important to
emphasize however that much of what we have previously described has been
rigorously generalized to the case of GP, which presents a host of very difficult
and challenging problems not present in GAs. So, if developing a theory for
GP and similar evolutionary paradigms is so difficult, why do it? That is, what
do we gain from moving away from fixed-length representations into a world
of variable size structures?

The first obvious answer to this is that we will understand GP itself better,
one motivation being to use theory in GP to achieve analogous things to those
achieved using GA theory, such as explanations, predictions, engineering de­
sign principles, etc. In the wider context of EC theory in general, however,
the first thing we gain is a better understanding of what we were doing before.
Work on GP theory has shown us that the evolution of fixed-length strings is
in fact a special case of a much broader space of algorithms which include the
evolution of: non-binary strings, strings where different loci can have different
numbers of alleles, strings whose alleles can take a countably or uncountably
large number of different values (like in ESs), strings whose length can be
changed by the operators, trees with fixed or variable shape and size, trees
built with countably or uncountably large primitive sets (e.g. imagine an ES­
GP hybrid), graphs with and without labelled links, and so on.

Secondly, because of the previous point, we have a unique opportunity to
completely unify EC theory. In fact, any piece of theory one can produce
which is applicable in general to this larger space of algorithms, automatically
leads to corresponding results for all the subclasses, and, conversely, any spe­
cific result available in one of the subclasses will indicate the possibility that
there could be a corresponding, undiscovered result for the general class. Natu­
rally, because ES and GA theory is more developed than GP theory, we should
expect that, initially, GP theory will aim at extending pre-existing results, but
eventually, as the unification progresses, the biggest rewards should come from
working directly in the broader space.

Thirdly, until now EC theory has only borrowed from theoretical popula­
tion genetics, it has never exported results. There are many reasons for this.
Partly, there is a communication problem between computer scientists and ge­
neticists. This is not just due to the different languages we use to describe
our evolutionary systems: mostly it is due to the different types of systems we
study. Geneticists study diploid representations and consider recombination
operators where homologous strands are aligned (by content) and may have
variable lengths due to gene deletion and gene duplication events. EC theo­

147 EC Theory - “In Theory”

rists have almost always limited their studies only to haploid representations
of fixed length undergoing position-preserving recombination operators. Mov­
ing away from fixed-length representations and position-preserving operators
by embracing GP theory is a good step in the direction of being able to export
our theoretical results to population genetics.

For many years GP appeared to be completely unrelated to GAs, or other
fixed-length representation EAs. The differences in the representation adopted
and in the semantics of the structures being evolved have been two major ob­
stacles in bridging the gap between them. However, the characteristics of the
operators adopted in GP w.r.t. those of other EAs have been one other major ob­
stacle. Mainstream GP used crossover operators that transfer genetic material
without necessarily respecting its original position in the parents. Fixed-length
EAs typically did the opposite, and most EA theory was based on this very
assumption. So, although people felt that there had to be some way to extend
GA theory to incorporate GP, in practice that was impossible until two stepping
stones became available: the notion of one-point crossover in GP and a natural
extension of the notion of GA schema to GP (Poli and Langdon, 1997). GP
one-point crossover is an operator where the parents are first aligned starting
from their root node and recursively traversing the two trees in parallel, stop­
ping the exploration of each branch when an arity mismatch occurs. Then a
common crossover point is chosen among the matching nodes and the subtrees
rooted in that node in the parents are swapped to produce the offspring. Despite
the useful concepts of GP one-point crossover and GP schema, however, other
notions like, for example, defining length, what constitutes a building block,
and so on, required a good deal of trial and error to get right. (By “getting
right” here we mean that those definitions represent proper generalizations of
equivalent GA notions.)

Indeed, after the GP-one-point-crossover breakthrough it has required around
half a decade for homologous-GP theory to generalise some of the most fun­
damental results in GA theory, such as Stephens’ exact schema theory for
crossover (Poli, 2000a; Poli and McPhee, 2001b; Langdon and Poli, 2002),
Vose’s model for crossover (Poli et al., 2001) and Geiringer’s theorem (Poli
et al., 2002b; Poli et al., 2002c; Poli et al., 2002a). Only last year, thanks to
some of the tools developed in this endeavor and to some good luck, it has fi­
nally been possible to write an exact schema-based model for GP with its more
standard forms of crossover (Poli, 2001b).

EC THEORY: THE CHALLENGES AHEAD

As mentioned in the introduction: EC theory is a very exciting field with a
large number of challenging problems worthy of the attention of any energetic

148 FRONTIERS OF EVOLUTIONARY COMPUTATION

scientist dedicated enough and with enough passion to attack them. Here we
give our own personal view of some of the main ones.
C1: How do we classify EC models so that we can answer the fundamental
question: when do we expect the dynamics of two different models to be qual­
itatively (and maybe at some point quantitatively) similar? (This is also of vital
importance for practitioners). We need to understand much better the space
in which EC models live and the use of metrics and similarity measures. Obvi­
ously, to answer the above we need to have a formalism within which we can
work - ours in just one possibility.
C2: A deeper understanding of the various transformations - coordinate trans­
formations, embeddings, coarse-grainings/projections and others - that change
basis is, we believe, crucial for obtaining a truly unified picture of different
models. It is also crucial for identifying and manipulating the appropriate ef­
fective degrees of freedom of a model. We have discussed various basis rep­
resentations: the genotypic (in terms of the “microscopic” objects) and phe­
notypic representations, and the BB representation. Each has its advantages
and disadvantages. The genotypic representation is fundamental but rarely,
if ever, are the real effective degrees of freedom directly related to the geno­
type. The phenotypic representation would be most appropriate in a strong
selection regime. BB schemata in GAs and their extension to GP appear to
be perfect at capturing the regularities present in homologous crossover oper­
ators and are most obviously the appropriate effective degrees of freedom in
the case of weak selection and strong crossover. The question remains though,
which coarse graining and, more generally, which basis is most appropriate for
a given model. We have answers only for a small set of special cases. However,
the answer here is very much related to the question of model classification, i.e.
find a good basis or coarse graining for a given member of a class and the same
basis should be useful for other members of the class. To distinguish one basis
or coarse graining from another a quality measure (which would, of course, be
parametrized by the particular problem and search algorithm at hand), would
be useful in order to rank them.
C3: A more general understanding of the different bases themselves is we
believe also of great importance. The BBB is, effectively, a very recent devel­
opment and much remains to be understood about it. The space of trees of vari­
able size and shape is also not well understood. Furthermore, a major challenge
is to move beyond trees to a world of more general graphs. Graphs are maybe
the most powerful representation available in computing. Anything from linear
structures, to parallel systems, to neural networks, to organizations, etc. can be
represented with graphs of one type or another. Extending the EC theory to
this type of structures would give it an almost all-encompassing scope. Only a
tiny amount of progress has been made here (Greene, 2000).

149 EC Theory - “In Theory”

C4: How rugged or smooth is This is very important for being able to es­
timate the degree of validity of various exact models and approximations. Too
often practitioners scoff at theoreticians working with simple model fitness
landscapes, such as flat landscapes, counting ones or needle-in-a-haystack be­
lieving that they have no relevance to “real-world” problems. However, these
simple models are representatives of classes of models. For example, if we
consider dynamics on a linear landscape with 1-pt crossover and then add a
small amount of epistasis do we expect to see big qualitative changes in the
resulting model? Alternatively, starting with a genepool GA on a linear land-

we expect qualitatively different behavior? The structure of
scape and then adding weak epistasis and changing to three point crossover do

can be studied
in this sense empirically.
C5: Currently, exact schema-based models only exist for homologous type of
crossover operators and subtree-swapping type of operators. However, these
two classes of operators are two extremes of a continuum: one, the case in
which perfect alignment of structure is imposed on the trees undergoing cross­
over, the other, the case in which alignment between the parent trees is not even
attempted. However, this continuum is full of interesting alternatives. For ex­
ample, in nature, the alignment of DNA strands is based on a matching process
between bases (and, consequently, between genes). It would be interesting to
extend this notion to tree-like structures and be able to model theoretically this
type of process. So, being able to categorize, characterize and model the op­
erators in this continuum is an important challenge ahead. The same kind of
thing should be done for unary operators, where GP theory so far is limited to
subtree-type of mutations.
C6: Effective fitness seems to offer a generalization of fitness that preserves
the “hill-climbing” intuition of the latter even in the presence of operators
other than selection. How general is its utility in explaining phenomena, both
qualitatively and quantitatively, that do not fit into the selection/hill-climbing
paradigm such as bloat (Langdon and Poli, 1997), evolution on neutral net­
works (Reidys and Stadler, 2001), evolutionary robustness (van Nimwegen
et al., 1999) etc.?
C7: Although the development of exact evolution equations has been rapid
there remains a disquieting lack of tools with which solutions to the equations
may be found. In particular, we know of no systematic approximation schemes
that have been studied, though several come to mind, such as an expansion
around the strong selection limit, perturbing in the mutation or crossover rate.
Alternatively, in the strong-crossover, weak-selection limit an expansion in
principle should be possible in terms of the deviation away from flatness of
the landscape. Often, expansions require an exact solution around which to ex­
pand. Hence, it is important to find as many exact solutions as possible which
may serve as starting points of an expansion. All this remains to be done.

150 FRONTIERS OF EVOLUTIONARY COMPUTATION

C8: All of the above we would classify as challenges primarily associated with
the scientific point of view of EC. Lest we forget the engineering perspective:
the developed theory should be tested to see if it can provide theoretically-valid
recipes for practitioners: Which genotype-phenotype map, operators, fitness
function, search algorithm, population size, number of generations, number of
runs, crossover probability, anti-bloat method, etc. should one use for a given
problem or a given class of problems? Perhaps a simple step in this direction is
to find approximations a-la Goldberg (Goldberg, 2002) which can really help a
designer, but are based on something better and more rigorous than Holland’s
version of the schema theorem. Or maybe we need to find ways of charac­
terizing the sampling behavior of different operators and defining whether this
behavior matches the shape of a particular fitness landscape and to which de­
gree? In all this we have just started scratching the surface (McPhee and Poli,
2002).

Of course, the above list is by no means exhaustive, though we believe there
is enough there to keep very many EC theoreticians busy for many years to
come. Hopefully, it may help to stimulate a new generation of theoreticians as
it is currently stimulating both ourselves, our collaborators and our students.
We strongly believe that EC benefits strongly from an interdisciplinary ap­
proach and we would hope that more talented researchers from other fields
will enter the fray bringing with them their own points of view and toolboxes.
In particular, EC was inspired by evolution in nature. It would be more than
fitting if EC theory could offer something back to its “older, bigger brother” ­
population biology.

ACKNOWLEDGEMENTS

CRS is grateful for financial support from DGAPA project ES100201 and
Conacyt project 30422-E. RP would like to thank the members of the NEC
(Natural and Evolutionary Computation) group at Essex for helpful comments
and discussion. The authors would like to thank the editor Anil Menon for
exceptionally helpful comments and suggestions.

REFERENCES

Altenberg, L. (1995). The Schema Theorem and Price’s Theorem. In Whitley,
L. D. and Vose, M. D., editors, Foundations of Genetic Algorithms 3, pages
23–49, Estes Park, Colorado, USA. Morgan Kaufmann.

Angeles, O., Stephens, C. R., and Waelbroeck, H. (1998). Emergence of algo­
rithmic language in genetic systems. Biosystems, 47:129–147.

Bäck, T.	 and Fogel, D. B. (2000). Glossary. In Bäck, T., Fogel, D. B., and
Michalewicz, T., editors, Evolutionary Computation 1: Basic Algorithms
and Operators. Institute of Physics Publishing.

151 REFERENCES

Bürger, R. (2000). The Mathematical Theory of Selection, Recombination, and
Mutation. Wiley, Chichester, UK.

Chung, S. W. and Perez, R. A. (1994). The schema theorem considered insuf­
ficient. In Proceedings of the Sixth IEEE International Conference on Tools
with Artificial Intelligence, pages 748–751, New Orleans.

Eigen, M., McCaskill, J., and Schuster, P. (1989). The molecular Quasispecies.
Adv. Chem. Phys., 75:149–263.

Fogel, D. B. and Ghozeil, A. (1997). Schema processing under proportional
selection in the presence of random effects. IEEE Transactions on Evolu­
tionary Computation, l(4):290–293.

Fogel, D. B. and Ghozeil, A. (1998). The schema theorem and the misalloca­
tion of trials in the presence of stochastic effects. In Porto, V. W., Saravanan,
N., Waagen, D., and Eiben, A. E., editors, Evolutionary Programming VII:
Proc. of the 7th Ann. Conf. on Evolutionary Programming, pages 313–321,
Berlin. Springer.

Goldberg, D. E. (1989a). Genetic algorithms and Walsh functions: I. A gentle
introduction. Complex Systems, 3(2): 129–152.

Goldberg, D. E. (1989b). Genetic algorithms and Walsh functions: II. Decep­
tion and its analysis. Complex Systems, 3(2): 153–171.

Goldberg, D. E. (1989c). Genetic Algorithms in Search, Optimization, and Ma­
chine Learning. Addison-Wesley, Reading, Massachusetts.

Goldberg, D. E. (2002). The Design of Innovation. Kluwer Academic Publish­
ers, Boston.

Greene, W. A. (2000). A non-linear schema theorem for genetic algorithms.
In Whitley, D., Goldberg, D. E., Cantu-Paz, E., Spector, L., Parmee, I., and
Beyer, H.-G., editors, Proceedings of the Genetic and Evolutionary Com­
putation Conference (GECCO-2000), pages 189–194, Las Vegas, Nevada,
USA. Morgan Kaufmann.

Grefenstette, J. J. (1993). Deception considered harmful. In Whitley, L. D., ed­
itor, Foundations of Genetic Algorithms 2, San Mateo, CA. Morgan Kauf­
man.

Holland, J. H. (1975). Adaptation in Natural and Artificial Systems. University
of Michigan Press, Ann Arbor, USA.

Holland, J. H. (2000). Building blocks, cohort genetic algorithms, and
hyperplane-defined functions. Evolutionary Computation, 8(4):373–391.

Jones, T. (1995). Evolutionary Algorithms, Fitness Landscapes and Search.
PhD thesis, The University of New Mexico, Albuquerque, NM.

Langdon, W. B. and Poli, R. (1997). Fitness causes bloat. In Chawdhry, P. K.,
Roy, R., and Pant, R. K., editors, Soft Computing in Engineering Design and
Manufacturing, pages 13–22. Springer-Verlag London.

Langdon, W. B. and Poli, R. (2002). Foundations of Genetic Programming.
Springer-Verlag.

152 FRONTIERS OF EVOLUTIONARY COMPUTATION

McPhee, N. F. and Poli, R. (2002). Using schema theory to explore interactions
of multiple operators. In Proceedings of the Genetic and Evolutionary Com­
putation Conference (GECCO-2002), New York, USA. Morgan Kaufmann.
(accepted as full paper).

Mora, J., Stephens, C. R., Waelbroeck, H., and Zertuche, F. (1999). Symme­
try breaking and adaptation: Evidence from a simple toy model of a viral
neutralization epitope. Biosystems, 51:1–14.

Nix, A. E. and Vose, M. D. (1992). Modeling genetic algorithms with Markov
chains. Annals of Mathematics and Artificial Intelligence, 5(1):79–88.

Nordin, P. (1997). Evolutionary Program Induction of Binary Machine Code
and its Applications. PhD thesis, der Universitat Dortmund am Fachereich
Informatik.

Nordin, P. and Banzhaf, W. (1995a). Complexity compression and evolution. In
Eshelman, L., editor, Genetic Algorithms: Proceedings of the Sixth Interna­
tional Conference (ICGA95), pages 310–317, Pittsburgh, PA, USA. Morgan
Kaufmann.

Nordin, P. and Banzhaf, W. (1995b). Complexity compression and evolution.
In Eshelman, L., editor, Genetic Algorithms: Proceedings of the Sixth In­
ternational Conference (ICGA95), pages 310–317, Pittsburgh, PA. Morgan
Kaufmann.

O’Neill, M. and Ryan, C. (2001). Grammatical evolution. IEEE Transaction
on Evolutionary Compuation. Forthcomming.

Poli, R. (2000a). Exact schema theorem and effective fitness for GP with one-
point crossover. In Whitley, D., Goldberg, D. E., Cantu-Paz, E., Spector,
L., Parmee, I., and Beyer, H.-G., editors, Proceedings of the Genetic and
Evolutionary Computation Conference, pages 469–476, Las Vegas. Morgan
Kaufmann.

Poli, R. (2000b). Why the schema theorem is correct also in the presence of
stochastic effects. In Proceedings of the Congress on Evolutionary Compu­
tation (CEC 2000), pages 487–492, San Diego, USA.

Poli, R. (200la). Exact schema theory for genetic programming and variable-
length genetic algorithms with one-point crossover. Genetic Programming
and Evolvable Machines, 2(2): 123–163.

Poli, R. (2001b). General schema theory for genetic programming with subtree­
swapping crossover. In Genetic Programming, Proceedings of EuroGP 2001,
LNCS, Milan. Springer-Verlag.

Poli, R. and Langdon, W. B. (1997). A new schema theory for genetic pro­
gramming with one-point crossover and point mutation. In Koza, J. R., Deb,
K., Dorigo, M., Fogel, D. B., Garzon, M., Iba, H., and Riolo, R. L., editors,
Genetic Programming 1997: Proceedings of the Second Annual Conference,
pages 278–285, Stanford University, CA, USA. Morgan Kaufmann.

153 REFERENCES

Poli, R. and McPhee, N. F. (200la). Exact schema theory for GP and variable-
length GAs with homologous crossover. In Proceedings of the Genetic and
Evolutionary Computation Conference (GECCO-2001), San Francisco, Cal­
ifornia, USA. Morgan Kaufmann.

Poli, R. and McPhee, N. F. (2001b). Exact schema theory for GP and variable-
length GAs with homologous crossover. Technical Report CSRP-01-4, Uni­
versity of Birmingham, School of Computer Science.

Poli, R., Rowe, J. E., and McPhee, N. F. (2001). Markov models for gp and
variable-length gas with homologous crossover. Technical Report CSRP-
01-6, University of Birmingham, School of Computer Science.

Poli, R., Rowe, J. E., Stephens, C. R., and Wright, A. H. (2002a). Allele diffu­
sion in linear genetic programming and variable-length genetic algorithms
with subtree crossover. In Proceedings of EuroGP 2002.

Poli, R., Stephens, C. R., Wright, A. H., and Rowe, J. E. (2002b). On the
search biases of homologuous crossover in linear genetic programming and
variable-length genetic algorithms. In Langdon, W. B., Cantú-Paz, E., Math­
ias, K., Roy, R., Davis, D., Poli, R., Balakrishnan, K., Honavar, V., Rudolph,
G., Wegener, J., Bull, L., Potter, M. A., Schultz, A. C., Miller, J. F., Burke,
E., and Jonoska, N., editors, GECCO 2002: Proceedings of the Genetic and
Evolutionary Computation Conference, pages 868–876, New York. Morgan
Kaufmann Publishers.

Poli, R., Stephens, C. R., Wright, A. H., and Rowe, J. E. (2002c). A schema-
theory-based extension of Geiringer’s theorem for linear GP and variable-
length GAs under homologous crossover. In De Jong, K., Poli, R., and
Rowe, J., editors, Proceedings of the Foundations of Genetic Algorithm
(FOGA-VII) Workshop, Torremolinos.

Prügel-Bennett, A. and Shapiro, J. L. (1994). An analysis of genetic algorithms
using statistical mechanics. Physical Review Letters, 72:1305–1309.

Radcliffe, N. J. (1997). Schema processing. In Baeck, T., Fogel, D. B., and
Michalewicz, Z., editors, Handbook of Evolutionary Computation, pages
B2.5–1–10. Oxford University Press.

Reidys, C. M. and Stadler, P. F. (2001). Neutrality in fitness landscapes. Appl.
Math. & Comput., 117:321–350.

Reidys, C. M. and Stadler, P. F. (2002). Combinatorial landscapes. SIAM Re­
view, 44:3–54.

Stadler, P. F. and Stephens, C. R. (2003). Landscapes and effective fitness.
Comm. Theor. Biol, to be published. Santa Fe Insitute Working Paper: 02-
11–062.

Stephens, C. R. (1999a). Effect of mutation and recombination on the genotype-
phenotype map. In Banzhaf, W., Daida, J., Eiben, A. E., Garzon, M. H.,
Honavar, V., Jakiela, M., and Smith, R. E., editors, Proceedings of the Ge­

154 FRONTIERS OF EVOLUTIONARY COMPUTATION

netic and Evolutionary Computation Conference, volume 2, pages 1382–
1389, Orlando, Florida, USA. Morgan Kaufmann.

Stephens, C. R. (1999b). Effective fitness landscapes for evolutionary systems.
In Angeline, P. J., Michalewicz, Z., Schoenauer, M., Yao, X., and Zalzala,
A., editors, Proceedings of the Congress on Evolutionary Computation, vol­
ume 1, pages 703–714, Mayflower Hotel, Washington D.C., USA. IEEE
Press.

Stephens, C. R. (2001). Some exact results from a coarse grained formulation
of genetic dynamics. In Spector, L., Goodman, E. D., Wu, A., Langdon,
W. B., Voigt, H.-M., Gen, M., Sen, S., Dorigo, M., Pezeshk, S., Garzon,
M. H., and Burke, E., editors, Proceedings of the Genetic and Evolutionary
Computation Conference (GECCO-2001), pages 631–638, San Francisco,
California, USA. Morgan Kaufmann.

Stephens, C. R. (2003). The renormalization group and the dynamics of genetic
systems. Acta Phys. Slov., to be published. Preprint: cond-mat/0210217.

Stephens, C. R., García Olmedo, I., Mora Vargas, J., and Waelbroeck, H. (1998).
Self-adaptation in evolving systems. Artificial Life, 4:183–201.

Stephens, C. R. and Vargas, J. M. (2000). Effective fitness as an alternative
paradigm for evolutionary computation I: general formalism. Genetic pro­
gramming and evolvable machines, l(4):363–378.

Stephens, C. R. and Vargas, J. M. (2001). Effective fitness as an alternative
paradigm for evolutionary computation II: examples and applications. Ge­
netic programming and evolvable machines. Forthcoming.

Stephens, C. R. and Waelbroeck, H. (1997). Effective degrees of freedom in ge­
netic algorithms and the block hypothesis. In Bäck, T., editor, Proceedings
of the Seventh International Conference on Genetic Algorithms (ICGA97),
pages 34–40, East Lansing. Morgan Kaufmann.

Stephens, C. R. and Waelbroeck, H. (1998). Effective degrees of freedom in
genetic algorithms. Phys. Rev., 57:3251–3264.

Stephens, C. R. and Waelbroeck, H. (1999). Schemata evolution and building
blocks. Evolutionary Computation, 7(2): 109–124.

Stephens, C. R., Waelbroeck, H., and Aguirre, R. (1999). Schemata as build­
ing blocks: Does size matter? In Banzhaf, W. and Reeves, C., editors, Foun­
dations of Genetic Algorithms 5, pages 117–133. Morgan Kaufmann, San
Francisco, CA.

van Nimwegen, E., Crutchfield, J. P., and Huynen, M. A. (1999). Neutral evo­
lution of mutational robustness. Proc. Natl. Acad. Sci. USA, 96:9716–9720.

Vose, M. D. (1999). The simple genetic algorithm: Foundations and theory.
MIT Press, Cambridge, MA.

Whitley, D. (1992). An executable model of a simple genetic algorithm. In
Whitley, D., editor, Foundations of Genetic Algorithms Workshop (FOGA­
92), Vail, Colorado.

155 REFERENCES

Wright, S. (1932). The roles of mutation, inbreeding, crossbreeeding and se­
lection in evolution. In Jones, D. F., editor, Proceedings of the Sixth Inter­
national Congress on Genetics, volume 1, pages 356–366.

Wright, S. (1967). “Surfaces” of selective value. Proc. Nat. Acad. Sci. USA,
58:165–172.

This page intentionally left blank

Chapter 8

ASYMPTOTIC CONVERGENCE OF
SCALED GENETIC ALGORITHMS TO
GLOBAL OPTIMA

A gentle introduction to the theory

Lothar M. Schmitt
School of Computer Science and Engineering, The University of Aizu

Aizu- Wakamatsu City, Fukushima Prefecture 965-8580, Japan

lothar@u-aizu.ac.jp

THIS WORK IS DEDICATED TO JOANNE WATAR1 AND MAKOTO YOSHIDA IN AlZU-WAKAMATSU.

Abstract We present a self-contained theoretical framework for a scaled genetic algo­
rithm over the alphabet {0,1} which converges asymptotically to global optima
as anticipated by Davis and Principe in analogy to the simulated annealing algo­
rithm. The algorithm employs multiple-bit mutation, single-cut-point crossover
and power-law scaled proportional fitness selection based upon an arbitrary fit­
ness function. In order to achieve asymptotic convergence to global optima,
the mutation and crossover rates have to be annealed to zero in proper fashion,
and power-law scaling is used with logarithmic growth in the exponent. Our
analysis shows that a large population size allows for a particularly slow an­
nealing schedule for crossover. For the foremost described setting, a detailed
listing of theoretical aspects is presented including prerequisites on inhomoge­
neous Markov chains. In particular, we focus on: (i) The drive towards uniform
populations in a genetic algorithm. (ii) Weak and strong ergodicity of the in­
homogeneous Markov chain describing the probabilistic model for the scaled
algorithm. (iii) Convergence to globally optimal solutions. We discuss various
generalizations and extensions of the core framework presented in this exposi­
tion such as larger alphabets or other versions of the mutation-crossover oper­
ator, in particular, the Vose-Liepins version of mutation-crossover. This refers
to recent work by the author in [Theoretical Computer Science 259 (2001), 1–
61] and [Technical Report 2002-2-002, Aizu University] where similar types of
algorithms are considered over an arbitrary-size alphabet and convergence for
arbitrary fitness function under more general conditions is shown. Finally, we
present an outlook on further developments of the theory.

158 FRONTIERS OF EVOLUTIONARY COMPUTATION

Keywords:	 asymptotic convergence of genetic algorithms, multiple-bit mutation, single­
cutpoint crossover, unbounded power-law scaled proportional fitness selection,
simulated annealing, inhomogeneous Markov chains.

CONTENT

1. Notation and Preliminaries

1.1. Scalars and vectors. 1.2. Matrices and operator norms. 1.3. Stochastic matrices.
1.4. Creatures and populations.

2. The Genetic Operators

2.1. Multiple-spot mutation. 2.2. Single-cutpoint regular crossover. 2.3. The fitness func­
tion and selection.

3. Convergence of Scaled Genetic Algorithms to Global Optima

3.1. The drive towards uniform populations. 3.2. Weak ergodicity. 3.3. Strong ergodicity.
3.4. Convergence to global optima. 3.5. The Vose-Liepins version of mutation-crossover.

4. Future Extensions of the Theory

4.1. Towards finite-length analysis on finite-state machines. 4.2. Estimates for finite-length ge­
netic algorithms à la Catoni. 4.3. Adding sampling noise. 4.4. Further analogy with simu­
lated annealing: parallelism and sparse mutation. 4.5. Analysis from inside-out and outside-
in. 4.6. Non-monotone and self-adapting annealing sequences. 4.7. Discrete vs. continu­
ous alphabets.

5. Appendix — Proof of some basic or technical results

INDEX OF SYMBOLS AND KEYWORDS IN OR­
DER OF APPEARANCE

< · >, vector in free vector
sp(.), 1, P(·),

Z, R, C, lim. N,
space, ·)* , 1.2:

f,
spot, 2.1: multiple-spot mutation

2.3:

1.1 :
compact, (fully positive,

 operator norm 1.3: stochastic.

single-cutpoint regular crossover selector mask
unbounded power-law scaling logarithmic exponentiation

1.4: A, L,
2.2:

 J,
schedule B, proportional fitness

selection operator 3.1: mutation flow inequality, 3.2:
trajectories, annealing schedule for mutation 3.3: annealing schedules
for crossover 3.4: steady-state flow inequality (line 26). 3.5: VLGA.

INTRODUCTION

Every endeavor such as the quest for new frontiers in theory of genetic algo­
rithms must have a port of embarkation established on firm ground. This work
tries, conservatively, to describe a theoretical basis for research on scaled ge­

159 Aymptotic Convergence of Scaled Genetic Algorithms

netic algorithms that use unbounded power-law scaling for the fitness function
and otherwise standard operations for mutation and crossover. However, at the
end of the exposition, we shall reach a point where the reader is challenged to
engage in research on a number of quite non-trivial, theoretical, open problems
but with a solid foundation in mind. The target audience of this exposition are,
in general, scholars interested in the field of evolutionary computation. The au­
thor has tailored the presentation in such a way that it should be conveniently
accessible for advanced undergraduate or beginning graduate students in com­
puter science with a solid, standard mathematical background, or a lecturer
who wants to include the topic of scaled genetic algorithms into a course and
searches for a mostly self-contained framework.

As primary goal of this work, we shall rigorously establish the Global Opti­
mization Theorem 3.4.1 which shows that a properly scaled genetic algorithm
converges for arbitrary fitness function to a probability distribution over uni­
form populations containing only elements of maximal fitness.

There are a number of excellent surveys on genetic algorithms: for exam­
ple, essays by Beyer, Schwefel & Wegener (Beyer et al., 2002), Mühlenbein
(Mühlenbein, 1997), and the monographs by Goldberg (Goldberg, 1989),
Mitchell (Mitchell, 1996), and Vose (Vose, 1999b). As Mühlenbein points
out in the introduction to (Mühlenbein, 1997), evolutionary algorithms based
upon “mutation, mating, and selection” were already introduced in the 1960’s
as a tool for optimization. See the paper by Bremermann, Rogson & Salaff
(Bremermann et al., 1966). Genetic algorithms, a particular case of evolution­
ary algorithms, were invented by Holland (Holland, 1975) and are by now a
well-established tool for search and optimization. A given optimization task
is encoded in such a way that candidate solutions are understood as elements
in a finite collection of creatures in a model “world”, and a fitness function

exists which has to be maximized. In the model for genetic
algorithms presented in this exposition, creatures (candidate solutions) are
identified with their genetic information which consists of an ordered string of
letters selected from {0, 1}. The collection of creatures in the current, fixed­

tion which are applied cyclically and iteratively until a termination condition is
size population is subject to three operations: mutation, crossover, and selec­

satisfied. A genetic algorithm is called simple, if the three operations mutation,
crossover, and selection stay constant over the course of the algorithm.

In this work, we shall be interested in the asymptotic behavior of the ge­
netic algorithm, i.e., the probabilistic behavior of the algorithm if never halted.
Asymptotic behavior of genetic algorithm has been investigated by many au­
thors: Agapie (Agapie, 2001), Aytug & Koehler (Aytug and Koehler, 1996),
Cerf (Cerf, 1996; Cerf, 1998) Davis&Principe (Davis, 1991; Davis and Principe,
1991; Davis and Principe, 1993), Fogel (Fogel, 1994), Goldberg (Goldberg,
1990), He & Kang (He and Kang, 1999), Holland (Holland, 1975) Leung,

160 FRONTIERS OF EVOLUTIONARY COMPUTATION

Chen, Xu & Leung (Leung et al., 1998), Liepins & Vose (Vose and Liepins,
1991), Lozano, Larrañaga, Graña & Albizuri (Lozano et al., 1999), Mahfoud
& Goldberg (Mahfoud, 1993; Mahfoud and Goldberg, 1992; Mahfoud and
Goldberg, 1995), Nix & Vose (Nix and Vose, 1992), Poli & Langdon (Poli,
2001; Poli and Langdon, 1998), Rodolph (Rudolph, 1994), Suzuki (Suzuki,
1997; Suzuki, 1998), and Vose (Vose, 1999b). However, a proof of asymptotic
convergence for a genetic algorithm of fixed, relatively small population size
using scaled proportional fitness selection has only recently been obtained in
(Schmitt, 2001, Thm. 8.6, Rem. 8.7). Other work that claims a result of con­
vergence to global optima such as (Rudolph, 1994; He and Kang, 1999; Green­
wood and Zhu, 2001; Agapie, 2001; Cerf, 1996; Cerf, 1998) or (Vose, 1999b,
Ch. 3, p. 147) require usually some auxiliary, special condition, limit or set­
ting to achieve their goal such as the trivial elitist selection strategy or infinite
population limit. The analysis presented here and in (Schmitt, 2001; Schmitt,
2002) sets boundary conditions for proper design and implementation of ge­
netic algorithms that actually do stop after a finite but large number of cycles.
Let denote the stochastic matrix describing the individual step of the scaled
genetic algorithm at time and let be the steady-state probability
distribution of Theorem 3.3.2 establishes strong ergodicity of the inho­
mogeneous Markov chain It shows that for large the probability
distribution describing the state of the algorithm after steps is close to the
limit of the This allows for development of a stopping-criterion for
a genetic algorithm which is scaled as in the Global Optimization Theorem
3.4.1. These aspects are discussed after the proof of Theorem 3.3.2. Compare
work by Aytug & Koehler (Aytug and Koehler, 1996) and Leung, Chen, Xu&
Leung (Leung et al., 1998) in this regard.

The concept of ergodicity plays an important role in the behavior of the
scaled genetic algorithm considered in the Global Optimization Theorem 3.4.1.
Weak ergodicity as discussed in section 3.2 assures that the (probabilistic) tra­
jectories of the algorithm are independent from initial populations. If the algo­
rithm is started at population then the probability distribution describing the
state of the algorithm after steps is given by

Weak ergodicity essentially says that for any initial populations or the
states and i. e., probabilistic trajectories will be arbitrary close for

The shrinking of the distance as is due
to a shrinking property of scaled mutation which is established in Proposition
1.3.1 combined with Proposition 2.1.2.2.

Strong ergodicity as discussed in section 3.3essentially assures that

exists and is independent of the initial population
 Theorem

3.3.2 actually determines that with as defined above.

161 Aymptotic Convergence of Scaled Genetic Algorithms

As a consequence, we can discuss as limit of the via the steady-state
flow inequality established in the proof of the Global Optimization Theorem
3.4.1 (line 26) to obtain convergence to global optima. Strong ergodicity is
in our case a somewhat immediate technical consequence of weak ergodicity
due to the nature of the entries of the stochastic matrices describing the scaled
genetic algorithm. See the proof of Theorem 3.3.2 for details.

The mathematical model presented in this exposition uses an inhomoge­
neous Markov chain over a finite population space Thus, the state space
of the genetic algorithm consists of probability distributions over populations.
Most authors model populations as multi-sets following the work of Davis &
Principe (Davis, 1991; Davis and Principe, 1991; Davis and Principe, 1993),
Liepins&Vose (Vose and Liepins, 1991), and Nix & Vose (Nix and Vose, 1992).
A more general Markovian framework for stochastic search methods using
multi-sets is given by Vose’s theory of random heuristic search (Vose, 1999a;
Vose, 1999b). As in (Schmitt et al., 1998; Schmitt and Nehaniv, 1999; Schmitt,
2001; Schmitt, 2002), the model used in this exposition considers populations
as strings of letters in the underlying alphabet and not as multi-sets. As out­
lined in (Schmitt, 2001, Sec. 2.9), the multi-set model can easily be embedded
into the tensor-string model considered here. Rudolph (Rudolph, 1994) devel­
oped his Markov chain model for genetic algorithms in the tensor-string model
approximately around the same time as (Schmitt et al., 1998).

What makes our approach different is that we do not attempt to unite the
genetic operators mutation, crossover and selection to one operator which is
subsequently analyzed. We rather analyze the genetic operators separately to
isolate key properties: Crossover plays a dual role enhancing mutation in the
mixing phase of the algorithm (Schmitt, 2001, Thm. 6.1) as well as enhanc­
ing selection in the contraction-phase of the algorithm in some cases (Schmitt,
2002, Sec. 2.5, Prop. 2.6.2). Mutation is responsible for weak ergodicity (see
section 3.2) and the probabilistic flow away from uniform populations (Propo­
sition 3.1.1.2). Fitness-selection is responsible for contraction towards uni­
form populations (Proposition 2.3.2.4). Mutation-selection is responsible for
convergence to uniform populations in the zero mutation-rate limit (Theorem
3.1.2.3). All three genetic operators act together to obtain the steady-state flow
inequality which shows convergence to global optima (proof of the Global Op­
timization Theorem 3.4.1, line 26).

Research by Davis & Principe (Davis and Principe, 1993) advocates to es­
tablish a framework for scaled genetic algorithms in analogy to the simulated
annealing algorithm (Aarts and van Laarhoven, 1989). The main result of this
exposition, the Global Optimization Theorem 3.4.1, achieves the following
goals: A general-purpose, scaled, genetic algorithm is described that converges
to global optima. The setup is quite similar to that of the simulated annealing
algorithm. There are no special requirements in regard to the fitness function or

162 FRONTIERS OF EVOLUTIONARY COMPUTATION

the fitness-landscape. The number of creatures in populations can stay small
and can be set as low as where is the length of the genome of crea­
tures (candidate solutions) as strings over {0,1}. Explicit cooling schedules for
mutation and crossover, and exponentiation schedules for fitness-selection are
given. The genetic algorithm presented in the Global Optimization Theorem
3.4.1 consequently satisfies all goals formulated by Davis & Principe (Davis
and Principe, 1993, p. 270).

At the end of this exposition, we shall discuss future extensions of genetic
algorithm theory as seen by this author. It is emphasized that the theory should
focus on analysis of finite length algorithms on finite state machines follow­
ing, e.g., work by Catoni (Catoni, 1990; Catoni, 1991b; Catoni, 1991a; Catoni,
1992) on the simulated annealing algorithm. Other interesting aspects of the
theory of simulated annealing such as adding sampling noise following work
by Kushner (Kushner, 1987) and considering sparse mutation matrices are also
discussed. In addition, a case is made for a systematic analysis of custom-
designed genetic algorithms in regard to specific problem instances which in
a way inverts the point of view put forward in this exhibition of genetic algo­
rithms as a black-box all-purpose method.

1. NOTATION AND PRELIMINARIES

Before we describe the proposed scaled genetic algorithm, investigate its
components, and prove its asymptotic convergence, we need to collect a num­
ber of definitions and elementary facts in this section. The notation used here
is essentially the same as in (Schmitt, 2001; Schmitt, 2002). We shall assume
that the reader is fluent in linear algebra, calculus and basic probability theory.
For a reference on linear algebra, see the introductory monographs by Lang
(Lang, 1970) and Greub (Greub, 1975). For a reference on calculus and anal­
ysis including some Banach space theory, see the introductory monograph by
Lang (Lang, 1970). In regard to probability theory, we first refer the reader
to the treatise by Feller (Feller, 1968; Feller, 1971) as well as to the books by
Chung (Chung, 1974), Isaacson & Madsen (Isaacson and Madsen, 1961) and
Seneta (Seneta, 1981).

1.1 SCALARS AND VECTORS

Let Z, R, and C denote the integers, the real numbers, the non-negative
real numbers, and the complex numbers, respectively. Let denote limes
superior, and lim denote limes inferior. For any subset of a vector space,
let Set and For elements
of a set, let if and let otherwise, i.e., is the

163

1.2

Aymptotic Convergence of Scaled Genetic Algorithms

Kronecker delta. Let
Let

in Recall that for
of

denote the standard unit vectors1 in
be the set of unit vectors

the canonical inner product
and and the usual Hamming-norm or -norm of are given by

Note that we can express any uniquely in the form
i.e., is expressed in the format of a vector in the free vector space over the

(sum over coefficients times symbols Let
and be the vectors of real resp. imaginary parts of
entries of

Let be the set of probability distributions
over the set of “pure states” or equivalently, let be the set
of all convex combinations of elements of
(Lang, 1968, p. 111: Thm. VI.6) and bounded in

is closed (under limit-taking)
Hence, is compact,

and any sequence of vectors in has a convergent subsequence (Lang, 1968,
p. 140: Thm. VIII.5). is the relevant state space of our investigation.

We shall use the notation
 to denote the adjoint of a vector or matrix
Let The notation for differs by a factor
from the notation introduced in (Schmitt et al., 1998, p. 104), but coincides
with the notation used in (Schmitt and Nehaniv, 1999; Schmitt, 2001; Schmitt,
2002).

MATRICES AND OPERATOR NORMS
Let denote the set of matrices with entries in a set
A matrix in will be called fully positive. Let

A matrix will operate by matrix multiplication from
the left on column vectors in Note that a number of authors including
Isaacson &Madsen (Isaacson and Madsen, 1961) and Seneta (Seneta, 1981) use
row vectors and matrix multiplication from the right. Realizing that

allows to express the coefficients of X in such a way that larger
numbers of subscripts attached to a particular symbol are avoided. The set of

X X).eigenvalues of X, i.e., the spectrum of will be denoted as sp(
The matrix associated with the identity map will be denoted by

1. For any let is a projection,
i.e., but only for an orthogonal projection, i.e.,

and is a row vector, then we shall write for

well as the canonical tensor product construction for the free vector space over populations which is
discussed in (Schmitt. 2001, Sec. 2.6).

1Coefficients of vectors or matrices are enumerated with indices starting from 0 since this establishes a
natural correspondence of indices with the canonical order on populations as discussed in section 1.4 as

164 FRONTIERS OF EVOLUTIONARY COMPUTATION

the matrix obtained from X by replacing the first row of X with Let the
flip-matrix be defined as follows:

We shall use the to denote products of possibly non-commuting
matrices as follows

The operator norm of with respect to the Hamming norm
on is given by

as in (Schaefer, 1974, p. 5: eq. (5)). The proofs of the following simple facts
listed in lines (5–7) are given in section 5:

Line (7)
 X,

 is identical to (Schaefer, 1974, p. 5: eq. (7’))- It says that
is the maximum over the -norms of the columns of and it shows that
component-wise convergence of matrices is exactly the same as -wise
convergence. As a direct consequence of line (7), we also obtain the following
results:

1.3 STOCHASTIC MATRICES

In this section, we shall take advantage of the fact that the mutation oper­
ator contributes fully positive matrices to the inhomogeneous Markov chain
describing the probabilistic model of the scaled genetic algorithm considered
in this exposition (see Proposition 2.1.2.1). As a benefit, we can circumvent
most of the more general theory of stochastic matrices and establish key in­
gredients of our mathematical framework for scaled genetic algorithms such
as (1) “weak ergodicity of the inhomogeneous Markov chain describing the
algorithm” and (2) “the existence of a uniquely determined steady state distri­
bution of a single step of the genetic algorithm” in a short, simple and mostly
self-contained way.

A matrix in is called column-stochastic or for short stochas­
tic, if each of its columns sums to 1. The next line lists several basic facts about
stochastic matrices. The proof is given in section 5.

165 Aymptotic Convergence of Scaled Genetic Algorithms

If we assume that a probabilistic algorithm such as a genetic algorithm acts
on a state space then a single step at time of such an
algorithm shall be described by a stochastic matrix In that case,

equals the transition probability from state to state in step
of the algorithm. If we consider the stochastic matrices and associated
with two consecutive steps and ask for the transition probability from state
to state under both steps combined, then we have to consider all possible
paths and disjoint events For a particular

we know that transition occurs with probability
The portion of the latter probability is then

the probability for passage Thus, the total probability for passage
from state to state under steps and combined is given by

Hence, transition probabilities for combined steps of a probabilistic algorithm
are given by the combined matrix product of the associated stochastic matrices.

See the first chapter of Schaefer’s book (Schaefer, 1974) for a good and
short introduction to theoretical aspects of stochastic matrices. One may be
inclined to develop a theory for stochastic matrices and genetic algorithms
over real vector spaces. However, it is useful to develop such theory over
complex vector spaces since certain aspects such as spectral calculus (Rudin,
1973, p. 243: eq. (2)) and Frobenius’ Theorem (Schaefer, 1974, p. 22: Thm.
6.5) are inherently complex theory. This is demonstrated in (Schaefer, 1974)
and (Schmitt et al., 1998; Schmitt and Nehaniv, 1999; Schmitt, 2001; Schmitt,
2002). In particular, see (Schmitt and Nehaniv, 1999, Lemma 7.1.3) for a
connection between the steady-state distribution of a fully positive stochastic
matrix and complex spectral calculus as well as (Schmitt, 2002, section 2.1) for

operator acting on the free vector space over the underlying alphabet
a discussion of the spectrum of mutation in relation to the unitary cyclic-shift

Section 3.2 discusses weak ergodicity of the inhomogeneous Markov chain
underlying the model for the scaled genetic algorithm considered in this ex­
position. The following result shortens the discussion of weak ergodicity con­
siderably compared to, e.g., (Isaacson and Madsen, 1961; Seneta, 1981). The
proof of Proposition 1.3.1 is listed in section 5.

Let such that1.3.1. Proposition.
Let and be stochastic matrices for Let

Then we have

166 FRONTIERS OF EVOLUTIONARY COMPUTATION

In many papers (e.g., (Davis and Principe, 1991; Davis and Principe, 1993;
Schmitt et al., 1998; Schmitt and Nehaniv, 1999; Schmitt, 2001; Schmitt,
2002; Suzuki, 1997; Suzuki, 1998; van Nimwegen et al., 1999)), the machin­
ery of Perron-Frobenius theory (Schaefer, 1974, p. 22: Thm. 6.5, p. 23: Cor.
1) is invoked to obtain the uniquely determined steady-state distribution of the
stochastic matrix describing a single step of a genetic algorithm. The proofs
of Proposition 1.3.2, Corollary 1.3.3 and Corollary 1.3.4 which are listed in
section 5 develop a simple framework based essentially on the compactness of

to achieve the same objective. We start with listing the relevant result for
fully positive, stochastic matrices.

1.3.2. Proposition. Let be a fully positive, stochastic matrix.
Then there exists such that i.e., is a fully positive,
normalized right eigenvector of X to eigenvalue 1. If is such that

then for some i.e., the eigenspace pertaining to
eigenvalue 1 of X is one-dimensional.

Perron-Frobenius theory, in particular, (Schaefer, 1974, p. 23: Cor. 2) shows
that 1 is actually the only eigenvalue of absolute value 1 of a fully positive
stochastic matrix X. A simple discussion of stretching the norm of eigen­
vectors under application of a stochastic matrix X shows that there are no
eigenvalues with absolute value strictly greater than 1 in view of line (10), i.e.,

1.3.3. Corollary. Let be a stochastic matrix. Then there ex­
ists such that i.e., is an right eigenvector of X to eigenvalue
1 and a probability distribution.

The proof of Corollary 1.3.3 listed in the appendix is simpler than (Schae­
fer, 1974, p. 7: Prop. 2.3). The following result will be used to show that the
stochastic matrix associated with an individual step of a scaled genetic algo­
rithm has a positive, invariant right eigenvector which is uniquely determined
up to scalar multiples.

1.3.4. Corollary. Let and be stochastic ma­
trices. Then MX is fully positive and possesses an invariant right eigenvector

which as such is uniquely determined up to scalar multiples.
In addition, If M is invertible, then, is an invariant
right eigenvector of XM which as such is uniquely determined up to scalar
multiples. In addition,

167 Aymptotic Convergence of Scaled Genetic Algorithms

1.4 CREATURES AND POPULATIONS
In this introductory exposition, we shall only consider binary genetic al­

gorithms which use the underlying alphabet However, in
applications where real parameters are optimized in a compact domain of

it may be advantageous to consider a larger, discrete alphabet
representing a finite, equidistant set of real numbers2. Such an approach is
advocated and used, e.g., in work by Markus, Renner, & Vanza (Márkus et al.,
1997, p. 48), Kondoh & Schmitt (Schmitt and Kondoh, 2000), and Savchenko&
Schmitt (Savchenko and Schmitt, 2001). See also work by Nomura & Shimo­
hara (Nomura and Shimohara, 2001). One task in future work is certainly to
generalize the approach taken here and in (Márkus et al., 1997; Savchenko and
Schmitt, 2001; Schmitt and Kondoh, 2000; Schmitt, 2001; Schmitt, 2002) to
the case of a continuous alphabet.

We shall consider (the genome of) creatures or candidate solutions in the
model world to which the genetic algorithm is applied as strings of length
over the alphabet where usually Let denote the set of
creatures.

The set of populations to which the genetic algorithm is applied, is the
set of of creatures, We shall assume that is even, and

if not explicitly stated otherwise. Set
 Then every population is
(canonically identified with) a string of length L over Let

If
is a population, then we define

and If then we shall write
if A spot in the genome is, by definition, the position of

one of the letters in a word over representing a creature or population. For
we define the Hamming distance as the number of spots in

the genome where and differ.
The vector space underlying our model for genetic algorithms is the free

complex vector space3 over Thus, becomes the basis of which is con­
sistent with the notation introduced in section 1.1. Every population can
be identified canonically with an integer in i.e., the letters com­
prising are used as digits to define the integer in binary representation. This
induces a natural order on Now, we identify with

2If a regular programming language such as Fortran or C is employed for the Implementation of the genetic
algorithm, then only a finite set of real numbers is used. In many cases, the search space can be
restricted further by a rough analysis of the given optimization problem to a finite interval

3(Schmitt, 2001, Sec. 2.6) discusses the identification of with the L-fold tensor product of the free
vector space over . This can be used for analysis of mutation as in (Schmitt, 2001, Prop. 3.3, Prop. 3.6)
and various crossover operators as in (Schmitt, 2002, Sec. 2.4–5).

168 FRONTIERS OF EVOLUTIONARY COMPUTATION

and by linear extension, this defines an isomorphism Let
By suppressing notation for the particular isomorphism just de­
fined, we can consistently denote the of where X stands for
a linear operator acting on and the corresponding matrix acting on as

Let be the free vector space over all populations which are uniform,
i.e., which consist of copies of a single creature. Consequently, shall
denote the set of uniform populations. In addition, shall denote the orthog­
onal projection onto The following simple result whose proof is listed in
section 5 allows for compact notation in some of the subsequent results and
proofs.

1.4.1. Proposition. Let be a linear map such that
for every Then X satisfies and

2. THE GENETIC OPERATORS

The genetic operators can be categorized into two groups: the mixing opera­
tors mutation and crossover which are used concurrently in a genetic algorithm,
and the selection operators such as proportional fitness selection, tournament
selection or simulated annealing type selection which provide alternatives for
implementation of a genetic algorithm. However, crossover has some common
features with selection such as leaving uniform populations invariant.

Mutation-crossover has been investigated by many researchers. The most
common and simple framework investigated is multiple-spot mutation com­
bined with single-cutpoint crossover in the multi-set model for populations
over a binary alphabet. Earlier references include the work of Davis & Principe
(Davis and Principe, 1991; Davis and Principe, 1993), Vose & Liepins (Vose
and Liepins, 1991), and Nix & Vose (Nix and Vose, 1992). Other work which
has significance to the present work are the papers by Suzuki (Suzuki, 1997;
Suzuki, 1998) (compare (Schmitt, 2001, Sec. 8.3)). In (Vose and Wright,
1998a; Vose and Wright, 1998b), Vose & Wright discuss the mutation-crossover
matrix via the Walsh-transform. Note that the Vose-Liepins version of mutation-
crossover is different than the mutation-crossover operation discussed here.
Section 3.5 discusses how to embed the Vose-Liepins version of mutation-
crossover into the model presented here.

In contrast to popular belief, one must observe that mutation and not cross­
over is the main thriving force for mixing in a genetic algorithm. Mutation
assures weak ergodicity, and as an immediate consequence strong ergodicity
of the Markov chain describing the mathematical model for the genetic al­

Aymptotic Convergence of Scaled Genetic Algorithms 169

gorithm (see section 3.2 and Theorem 3.3.2). In the generic situation of a
blind search with a fitness function of largely unknown behavior, it is muta­
tion and not crossover that drives the algorithm. In particular, mutation cre­
ates the noise that destroys uniform populations containing suboptimal solu­
tions which is something crossover cannot do. Note that Banzhaf, Francone &
Nordin (Banzhaf et al., 1996) report experimental results that favor larger mu­
tation rates, i.e., strong mixing by mutation. There are quite natural situations
where crossover asymptotically plays no role in the probabilistic outcome of a
genetic algorithm (cf . (Schmitt, 2001, Thm. 8.3.3, Thm. 8.5.2–3)). Crossover
assists mutation in accelerating the mixing process towards the uniquely deter­
mined fix-point of the fully positive, symmetric mutation-crossover operator

(cf. Proposition 2.2.3.4). This statement is made very precise
in (Schmitt et al., 1998, Prop. 10) and (Schmitt, 2001, Thm. 6.1). However,
there are “royal road cases” where by the design of the fitness landscape the
acceleration by crossover is significant (cf. work by Jansen & Wegener (Jansen
and Wegener, 2001)). In regard to the family of selection operators, we shall
restrict us here to the case of proportional fitness selection which is discussed in
detail in section 2.3. With respect to tournament selection, we refer the reader
to work by Goldberg (Goldberg, 1990), (Goldberg,) as well as Goldberg &
Deb (Goldberg and Deb, 1991), and to the monographs by Mitchell (Mitchell,
1996, p. 170) and Michalewicz (Michalewicz, 1994, p. 59). In regard to sim­
ulated annealing type selection, we refer the reader to the introductory paper
by Aarts & Van Laarhoven (Aarts and van Laarhoven, 1989), work by Lozano,
Larrañaga, Graña & Albizuri (Lozano et al., 1999) and Mahfoud & Goldberg
(Mahfoud and Goldberg, 1992; Mahfoud and Goldberg, 1995), (Schmitt et al.,
1998, p. 124: Rem. on Simulated Annealing) and (Schmitt, 2001, Sec. 6.2).

2.1 MULTIPLE-SPOT MUTATION

Mutation models random change in the genetic information of creatures,
and is inspired by random change of genetic information in living organisms,
e.g., through the effects of radiation or chemical mismatch. Multiple-spot mu­
tation has been studied theoretically by many authors as discussed in the
introductory paragraphs to section 2. See also (Schmitt et al., 1998, Sec. 2.1,
p. 110 ff., “multiple-bit mutation”), (Schmitt, 2001, Sec. 3.3), (Schmitt, 2002,
Sec. 2.2). In this section, we shall repeat some of the analysis in (Schmitt et al.,
1998). However, our discussion here will be limited to the absolute minimum.
Multiple-spot mutation is the most commonly used procedure for mutation in
implementations of genetic algorithms.

2.1.1. Definition (multiple-spot mutation Let
denote the mutation rate, and for execute the following two steps:

170 FRONTIERS OF EVOLUTIONARY COMPUTATION

in the current population. The decision for change is made positively with
probability
the letter at spot

(STEP 2) If the decision has been made positively in step 1, then

(STEP 1) Decide probabilistically whether or not to change the letter at spot

 is altered, i.e., the bit at spot is flipped.

Let
 also denote the stochastic matrix associated with multiple-spot mu­

tation. acts on in the sense of line (12) and describes transition proba­
bilities for entire populations.

If then mutation is the identity operation. If then the cur­
rent population is bit-wise complemented. In what follows, we shall usually
exclude these two trivial cases, if we discuss mutation.

2.1.2. Proposition. Let denote multiple-spot mutation as in Def­
inition 2.1.1 with mutation rate Suppose that Then we
have:

then

1 The coefficients of are given as follows:

In particular, is a fully positive and symmetric.

2 If

3 If then In addition,

4 If is sufficiently small, then is an invertible matrix.

5 is the uniquely determined invariant probability distribution of

PROOF: In order to pass from to one has to make the decision to change
one of bits times, and one has to retain bits at spots.
Independently from the order of such steps, the combined probability for the
required procedure is given by One has

This shows statement (1). If
then This combined with statement
(1) shows statement (2).	 By statement (1), one has

Observing that is stochastic then yields statement
(3). The determinant is a continuous (polynomial) function in the
coefficients of Statement (3) shows that as

This implies that for sufficiently small Consequently,
is invertible (Lang, 1970, p. 108: Thm. 8) for such This shows statement
(4). Since is symmetric, it follows that is an invariant vector of
Proposition 1.3.2 now shows the remainder of statement (5). Q.E.D.

Aymptotic Convergence of Scaled Genetic Algorithms	 171

Proposition 2.1.2.4 is contained in (Schmitt et al., 1998, Prop. 3.4) or the
slightly stronger (Schmitt, 2001, Prop. 3.6.3) which show that is invertible4

for

2.2	 SINGLE-CUTPOINT REGULAR

CROSSOVER

Crossover models the exchange of genetic information of creatures and is
inspired by exchange of genetic information in living organisms, e.g., during
the process of sexual reproduction. The crossover operator is treated here only
in a very short manner: the definition of regular single-cutpoint crossover is
given and some basic consequences are derived. Nevertheless, the analysis
presented here shall improve some of the results in (Schmitt et al., 1998, Sec.
2.2, “simple crossover”).

Recall that the size of populations is supposed to be an even inte­
ger. Regular crossover shall refer to a procedure where the creatures
in the population are sequentially paired, and a specific crossover operation
is then applied to each of the pairs with probability
This follows, e.g., Goldberg’s approach (Goldberg, 1989, p. 16–17). Single­
cutpoint regular crossover has previously been studied in the tensor-string model
for populations in (Schmitt et al., 1998, Sec. 2.2), (Schmitt, 2001, Sec. 5.2) and
(Schmitt, 2002, Sec. 2.4).

2.2.1. Definition (elementary single-cutpoint crossover). Let
and is called the cutpoint5. Let

be the current population, Then
the elementary single-cutpoint crossover operation is defined by the
following three steps: (STEP 1) Pick creatures and

from where (STEP

2) For do: ((If then switch letters by setting
and If then copy letters by setting and

)) (STEP 3) Replace by and replace by
in

4 Based upon the tensor product description of (Schmitt, 2001, Sec. 2.6), one represents as a cor­
responding tensor product of “spot mutation matrices” Then, one obtains

equals the factor contributed by mutation to the spectrum of the
combined mutation-crossover matrix in Koehler’s Theorem (Koehler, 1994, p. 419), i.e., the Vose-Liepins
conjecture. A tensor-product description of mutation is known in Theoretical Biology. See, e.g., work by
Griffiths &Taveré (Griffiths and Taveré, 1997).
5The case is considered in (Schmitt et al., 1998, Sec. 2.2, p. 113: footnote) mainly for mathematical
convenience. See also the discussion of Geiringer’s Theorem in (Schmitt, 2001, Sec. 5.4). Some readers
may find the case a more natural setting.

172 FRONTIERS OF EVOLUTIONARY COMPUTATION

We shall also denote the stochastic matrix associated with the elementary
single-cutpoint crossover operation by acts on in the
sense of line (12) and describes transition probabilities for entire populations.

It is easy to see from Definition 2.2.1 that any two operators and
commute. Clearly, one has

is a map that is its own inverse. This shows that up to a
rearrangement of the basis of is a block diagonal matrix con­
sisting of 1 of proper dimension corresponding to the populations invariant
under Hence

since

 and flip matrices f as defined in equation (2).
is symmetric, and

commutes with moves letters around but does
not alter them; and it does not matter whether the entire collection of letters in
a population is mutated spot-wise before or after being rearranged.

One then randomizes the choice of the cut-cutpoint giving every possi­
ble value for equal probability. This yields the averaged single-cutpoint
crossover operation which is given by the following “averaged” stochas­
tic matrix:

Simply observe that for the expression
equals the combined probability for a transfer

under disjoint events where the specific action determined by is
chosen with probability is symmetric and commutes with as an

that commute
with
R-linear (convex) combination of symmetric matrices

 Any two and commute since all commute, i.e.,
we have

Line (13) shows that for
If one decides with positive probability whether or not to apply

averaged single-cutpoint crossover to a population, then the stochastic matrix
associated with this operation is given by In fact, the
probability to activate transition under equals and then
is the probability for transition On the other hand

is the probability for not invoking These considerations
shall be useful in the proof of Proposition 2.2.3.

173 Aymptotic Convergence of Scaled Genetic Algorithms

2.2.2.Definition (single-cutpoint regular crossover Let
be the crossover rate. For do the next two steps:

(STEP 1) Decide probabilistically whether or not crossover takes place in the
current population involving parent creatures and The decision for
crossover to take place is made positively with probability (STEP 2) If
the decision for crossover involving creatures and has been made
positively in step 1, then execute i.e., chose a random cutpoint and
switch letters in spots as determined by

Let also denote the stochastic matrix associated with single-cutpoint reg­
ular crossover. acts on in the sense of line (12) and describes transition
probabilities for entire populations.

The case of a negative decision in step 1 above is referred to as cloning in
(Vose, 1999b, p. 43). We summarize basic properties6 of in the next result.

2.2.3. Proposition. Let denote multiple-spot mutation as in Def­
inition 2.1.1 with mutation rate Let denote single-cutpoint
regular crossover as in Definition 2.2.2. Then we have:

1

2 is a symmetric matrix whose coefficients are polynomials in

3 for every

4 is symmetric with uniquely determined invariant prob­
ability distribution

PROOF: Taking into account the discussion shortly before Definition 2.2.2, we

processes/matrices
 (11),

see that is defined as the sequential application of stochastic
 for As discussed in

section 1.3, line the action of the whole of then corresponds to the
product of the matrices for the individual steps. Since all commute by
line (15), the order in the matrix product can be reversed. This shows statement
(1). Now, we have:

6One has using line (14), the fact that all
commute, (Rudin, 1973, Thm. 11.23), and This, Proposition 2.2.3.1 and (Rudin,
1973, Thm. 11.23) imply for sufficiently small an estimate for the second largest modulus
in This improves (Schmitt et al., 1998, Prop. 10) and (Schmitt, 2001, Thm. 6.1). The estimate

corresponds to (but does not equal) the factor contributed by crossover in the third
largest eigenvalue obtained in Koehler’s Theorem (Koehler, 1994, p. 419), i.e., the Vose-Liepins conjecture.
The reason for the factor 2 above and a leading factor 1/2 in Koehler’s Theorem will become apparent in
section 3.5. See (Schmitt, 2001, Thm. 6.2) for a related result where the spectrum of mutation-crossover (but
not the Vose-Liepins version) is computed in the multi-set model as a projection of the mutation-crossover
matrix in the tensor-string model.

174 FRONTIERS OF EVOLUTIONARY COMPUTATION

Hence, is symmetric. The fact that has entries that are polynomials in
follows directly from statement (1). This shows statement (2). Observe that

is invariant under every as discussed above in consequence of
line (13). This shows statement (3). The discussion of also shows that
every and, consequently, their product commutes with

Now, statement (2) and Proposition 2.1.2.1 show that
This shows that is symmetric. Thus, is an

invariant vector of The remainder of statement (4) now follows from
Proposition 2.1.2.1 and Corollary 1.3.4. Q.E.D.

Regular single-cutpoint crossover also commutes with population-wise
single-spot mutation as discussed in (Schmitt, 2001, Sec. 5.2.1.2) but not with
creature-wise single-spot mutation.

There are other canonical crossover operators to chose from: (1) (Schmitt
et al., 1998, p. 117) discusses unrestricted crossover where the positions of
creatures to be mated are chosen at random in Unrestricted crossover
also commutes with population-wise single/multiple-spot mutation, cf. (Schmitt,
2001, Sec. 5.3.1.2). (2) (Schmitt, 2002, Sec. 2.4) discusses regular multiple­
cutpoint and uniform crossover which also commute with the latter two muta­
tion operators. (3) (Schmitt, 2002, Sec. 2.5) discusses gene-lottery crossover
which does not commute with mutation.

Observe that in every example for crossover discussed here, the given
crossover operation may alter every creature in the population. Thus, the pop­
ulation before crossover and the population after crossover may be disjoint, if
they are seen as sets of creatures.

2.3	 THE FITNESS FUNCTION AND
SELECTION

Fitness selection models reproductive success of adapted organisms in their
environment and, usually, includes a random rearrangement of the creatures
(individuals) in a population. In this work, we shall restrict the analysis to
scaled proportional fitness selection based upon a given fitness function

(consult, e.g., Goldberg’s book (Goldberg, 1989, p. 16), (Schmitt
et al., 1998, Sec. 2.3), or (Schmitt, 2001, Sec. 7.1)) which is used in standard
applications of genetic algorithms to select the creatures in the future popula­
tion from the creatures in the present population after the crossover-mutation
operation. is the set of all pairs such that Let

have elements. J will be called the selector mask.

175 Aymptotic Convergence of Scaled Genetic Algorithms

Suppose that is non-trivial in that for every
(to assure that the selection operator is well-defined). In addition, we

shall assume that for any two creatures and for any two populations
such that and one has:

This induces a quasi order on (recall that We shall write

if
Typical examples for fitness functions satisfying
the above are a fitness function whose values are independent
of the population and rank based upon a function The reader may
give a suitable definition of rank or consult (Schmitt, 2001, Sec. 7.3). Using
a selection method based upon rank induced by a given raw fitness function

was proposed by Baker (Baker, 1987). Let

be the set of maximal elements in in regard to the quasi order induced by the
fitness function. The optimization algorithm is supposed to maximize in the
sense of finding an element of Let

measures the “strength” of second-to-best creatures
containing elements where both creatures and

in populations
are sitting on

components/spots of corresponding to J. is easy to determine, if the
fitness function is given by rank. We shall suppose that is non-trivial in
that

Next, we define power-law scaling of the fitness function in accordance
with, e.g., (Goldberg, 1989, p. 124), (Schmitt et al., 1998, Sec. 2.3), (Schmitt,
2001, Sec. 7.1), (Suzuki, 1997, p. 65), (Suzuki, 1998, p. 100). In fact, we set
for

In addition, define In this exposition,
we shall only consider logarithmic scalings as listed above which are un­
bounded. It has been shown in (Schmitt, 2001, Thm. 8.5), that faster scalings
with, e.g., linear growth in the exponent are of limited value,
in particular, in regard to the use of a crossover operation. In fact, such algo­
rithms are asymptotically equivalent to a “take-the-best” algorithm (Schmitt,
2001, Def. 8.4) where one cycle of the algorithm consists of the mutation-step
and picking maximal creatures in the current population. Finally, scaled pro­
portional fitness selection is defined as follows:

176 FRONTIERS OF EVOLUTIONARY COMPUTATION

2.3.1. Definition (scaled proportional fitness selection
Let be the selector mask as defined above. Let and

be as in line (19). Suppose that is the current
population with For let denote the
number of copies of in Now, the new population
is assembled as follows: for execute the following step: ((Select
creature probabilisticly among the creatures in such that a particu­
lar has relative probability
for being selected as

Let also denote the stochastic matrix associated with scaled proportional
fitness selection. acts on in the sense of line (12) and describes transition
probabilities for entire populations.

Definition 2.3.1 generalizes (Schmitt, 2001, Sec. 7.1, eq. (23)). The follow­
ing Proposition collects basic properties of the scaled fitness selection operator

2.3.2. Proposition. Let where is the size
of the selector mask Let denote scaled proportional fitness
selection as in Definition 2.3.1 with scaling as in line (19). Suppose that

Then
we have

1

2 If then

3

4 If
 then

PROOF: If then one must have In
this situation, is the proportional
strength and selection probability for among the These
probabilities for the independent selection-events are then multi­
plied together. If then one of the products
must equal 0. This shows statement (1). If then only one creature is
available for selection from which shall reproduce again. This shows
statement (2). If a particular has maximal fitness-value in
this set, then the probability to select in one step of the for-loop in Defi­
nition 2.3.1 is greater or equal Hence, the probability to generate
the uniform population is greater or equal Consequently,

This shows statement (3). Let us finally show statement
(4). Using Proposition 1.4.1, statements (2) and (3), we obtain for

177 Aymptotic Convergence of Scaled Genetic Algorithms

3.	 CONVERGENCE OF SCALED GENETIC

ALGORITHMS TO GLOBAL OPTIMA

3.1	 THE DRIVE TOWARDS UNIFORM

POPULATIONS

In this section, we shall investigate the convergence of a scaled genetic al­
gorithm towards uniform populations. This is a result of the tendency of the
selection operator to produce uniform populations (cf. Proposition 2.3.2.3)
and the fact that the mutation rate is scheduled to converge to zero. Results
related to the present discussion have previously been obtained in (Schmitt
et al., 1998, Thm. 15.4–5) (Schmitt, 2001, Thm. 8.1.3, Thm. 8.2.3–4) and
(Schmitt, 2002, Thm. 3.1.1.3).

The results (Schmitt et al., 1998, Thm. 17), (Schmitt, 2001, Thm. 8.1, Thm.
8.2), and quite drastically (Schmitt, 2001, Thm. 8.3) show that a genetic algo­
rithm with strictly positive mutation rate limit cannot asymptotically converge
to a probability distribution over populations containing only globally opti­
mal creatures. This includes the case of the simple genetic algorithm. Conse­
quently, in order to obtain asymptotic convergence to global optima, the muta­
tion rate has to be annealed to zero. Theorem 3.1.2 shows that in this situation
the algorithm must converge to a probability distribution over uniform popu­
lations only. Thus, even though the goal of an optimization algorithm should
be to find just one copy of an optimal creature, the fabric of the algorithm will
asymptotically deliver a uniform population containing optimal creatures. We
point out that a properly designed, scaled, asymptotically converging genetic
algorithm as in the Global Optimization Theorem 3.4.1 allows for probabilistic
estimates in regard to running the algorithm only a finite but larger number of
cycles and approaching the limit probability distribution over uniform popula­
tions containing globally optimal creatures, cf. the discussion after the proof of
Theorem 3.3.2 and (Isaacson and Madsen, 1961, p. 160: proof of Thm. V.4.3).

The next result simplifies and generalizes the approach taken in (Schmitt
et al., 1998, Prop. 2.4, Prop. 4.4), (Schmitt, 2001, Prop. 3.4.4, Prop. 3.7.4)
and (Schmitt, 2002, Prop. 2.2.3) by showing a mutation flow inequality for the
combined crossover-mutation operator without referring much to the particular
action of mutation.

3.1.1. Proposition (mutation flow inequality). Let denote
multiple-spot mutation as in Definition 2.1.1 with mutation rate

178 FRONTIERS OF EVOLUTIONARY COMPUTATION

Let denote single-cutpoint regular crossover as in Definition 2.2.2. Then
we have:

1 and

for every 2

PROOF: If then changing a single spot in the genome under
multiple-spot mutation makes non-uniform. By Proposition 2.1.2.1 the prob­
ability for this to occur is strictly positive as well as the probability for retaining

under multiple-spot mutation. Hence, the combined probability for obtaining
a uniform population from under multiple-spot mutation, i.e.,
is an element of (0, 1). If then by Proposition 2.1.2.3 we have:

Taking into account that is
finite shows that and This shows statement (1).

To show statement (2), observe first that applying
lines (8) and (10). Using Proposition 2.2.3.3 and Proposition 1.4.1, we obtain:

The constant in Proposition 3.1.1 has been explicitly computed in (Schmitt
et al., 1998, Prop. 4.4) and the more general (Schmitt, 2001, Prop. 3.7.4). The
mutation flow inequality shows how the mutation operation controls the bal­
ance between uniform and non-uniform populations in a genetic algorithm. If
the mutation flow inequality is combined in a proper way with the contraction
of the selection operator towards uniform populations established in Proposi­
tion 2.3.2.4, then this ensures that the combined probability over non-uniform
populations in the steady-state distribution of a simple genetic algorithm be­
comes small for small mutation rates. This fact is shown in statement (3) of
the next Theorem taking into account Proposition 3.1.1.1.

3.1.2. Theorem. Let denote multiple-spot mutation as in Defini­
tion 2.1.1 with mutation rate Suppose that is given
as in Proposition 3.1.1.1. Let denote single-cutpoint regular crossover as
in Definition 2.2.2. Let where is the size of the
selector mask Let denote scaled proportional fitness selec­

179 Aymptotic Convergence of Scaled Genetic Algorithms

tion as in Definition 2.3.1 with scaling as in line (19). Then we have for

1

2

3 then

for

If is an invariant vector of

PROOF: Using Proposition 2.3.2.2, Proposition 1.4.1, Proposition 2.3.2.4 and
Proposition 3.1.1.2, one has

This shows statement (1). Statement (1) shows statement (2) for since
To complete the proof of statement (2), we proceed by

induction:

Statement (3) is now obtained as follows:

3.2 WEAK ERGODICITY
From now on, we shall set In accordance with the

discussion in section 1.3, we see that describes the probabilistic passage
in one cycle of the genetic algorithm. For

define Let Weak ergodicity
of the inhomogeneous Markov chain as discussed in the books by
Isaacson & Madsen (Isaacson and Madsen, 1961, p. 142–151, p. 151: Thm.

Thm. 4.9) refers to the phenomenon that the trajectories
141:V.3.2) or Seneta (Seneta, 1981, p. 85–86, p. 134–142, p. 137: Thm. 4.8, p.

 and of
sequential application of the to initial probability distributions and
become arbitrary close as for any initial offset However, weak
ergodicity does not imply that exists.

180 FRONTIERS OF EVOLUTIONARY COMPUTATION

If we set then Proposition 2.1.2.2 shows that
has entries that are bounded below by Proposition

1.3.1.2 applied with then shows that

i.e., weak ergodicity.

Note that where A and B are stochastic matrices
acting on since each of the columns of A – B is a difference of elements
of

3.3 STRONG ERGODICITY

Let and be as in section 3.2. Strong ergodicity as discussed
in (Isaacson and Madsen, 1961, p. 157: Sec. V.4) or (Seneta, 1981, p. 92:
Sec. 3.3, p. 149: Sec. 4.5) refers to the existence of

Using that we see
that
for any initial offset

i.e., the asymptotic probabilistic outcome (limit) of
applying the sequentially to is independent from the initial prob­
ability distribution or distribution sequence. This holds, in particular, if

i.e., the algorithm starts at a user-selected population.

technical but rather powerful result:
To establish strong ergodicity of we need the following

3.3.1. Proposition. Let
inition 2.1.1 with mutation rate
note single-cutpoint regular crossover as in Definition 2.2.2 with crossover

denote multiple-spot mutation as in Def-
Let de-

rate fixed. Let denote scaled proportional fit­
ness selection as in Definition 2.3.1 with scaling as in line (19). Let

By Corollary 1.3.3, has an invariant probability distri­
bution If is sufficiently large enough, then is uniquely determined.
In addition,

1. exists.

The proof of Proposition 3.3.1 which is listed in section 5 runs along the lines
are essentially something like

rational functions in
of the following idea: The coefficients of the

which must take values in [0, 1] since
Consequently, these functions cannot have a pole at and

consequently must even be (almost) differentiable in This implies
monotone behavior and summability.

3.3.2. Theorem. Let denote multiple-spot mutation as in Definition
2.1.1 with mutation rate Let denote single­
cutpoint regular crossover as in Definition 2.2.2 with crossover rate

181 Aymptotic Convergence of Scaled Genetic Algorithms

fixed. Let denote scaled proportional fitness selection as
in Definition 2.3.1 with scaling as in line (19). Let

1 Then the inhomogeneous Markov chain
 is strongly ergodic.

2 If is arbitrary and is as in Proposition 3.3.1, then

PROOF: Let be as in Proposition 3.3.1. Let be fixed. For

let Using the remark in the last paragraph of
section 3.2, we know that In addition,

since is an invariant vector of Now,
using the triangle inequality repeatedly, using lines (9) and
(10), we have:

The last conclusion in the line (20) uses Proposition 3.3.1.1. Now, we have
which shows the

existence of Thus,
for

every and This completes the proof of both statements of the
Theorem. Q.E.D.

Theorem 3.3.2 is a short, simplified variant of (Isaacson and Madsen, 1961,
p. 160: Thm. V.4.3). It is included here for the sake of completeness and the
convenience of the reader. The proof of Theorem 3.3.2 illustrates the asymp­
totic behavior of ergodic, scaled genetic algorithms. The reader should realize
in which manner the interplay of weak ergodicity and the convergence behav­

182 FRONTIERS OF EVOLUTIONARY COMPUTATION

ior of the in particular, in regard to the summability of

or coordinate-wise monotone behavior of
 contributes to the asymp­
totic behavior of the ergodic, scaled genetic algorithm established above. In
principle, one can say that “The genetic algorithm follows the trajectory of the

 since the
quantity
steady-state distributions of the individual steps of the algorithm.”

becomes small for large as established above. Using
the explicit form of the mutation and crossover schedules, Proposition 1.3.1,
the inequalities in the above proof and the steady-state flow inequality estab­
lished in the proof of the Global Optimization Theorem 3.4.1 (line 26), then
allow to develop stopping criteria similar to results by Aytug & Koehler (Aytug
and Koehler, 1996).

3.4 CONVERGENCE TO GLOBAL OPTIMA.
The following Theorem 3.4.1 is the main result of this exposition. It shows

that a carefully scaled genetic algorithm converges for arbitrary fitness func­
tion to a probability distribution over uniform populations containing only el­
ements of (see definition (17)). Thus in the case of a binary alphabet,
(Schmitt, 2001, Thm. 8.6, Rem. 8.7) are simplified and strengthened consid­
erably in regard to applicability and implementation. However, there is a
price to pay in that we require the crossover-rate being annealed to 0 for the
algorithm described below. Such a condition is not needed in (Schmitt, 2001,
Thm. 8.6, Rem. 8.7). Note that our analysis in Theorem 3.4.1 superseeds the
approach taken in Vose’s book (Vose, 1999b) where it is always assumed that
the fitness function is injective (Vose, 1999b, p. 25: footnote).

Let denote multiple-

fixed.
Suppose Let

(18). Let

B satisfies:

3.4.1. Theorem (Global Optimization).
spot mutation as in Definition 2.1.1 with mutation rate

Let denote single-cutpoint regular crossover as in Definition 2.2.2
with crossover rate Let the selector mask
satisfy either

be given by definition denote scaled proportional fit-
ness selection as in Definition 2.3.1 with scaling
Suppose that
Then we have:

1 The inhomogeneous Markov chain describing the scaled ge­
netic algorithm is strongly ergodic, cf. Theorem 3.3.2.1.

2 Let denote a steady-state distribution of an individual
steps of the scaled genetic algorithm. For sufficiently large

is uniquely determined up to scalar multiples as invariant right eigen­
vector of cf. Proposition 3.3.1. Let cf. Proposition

183 Aymptotic Convergence of Scaled Genetic Algorithms

3.3.1.2. Then is strictly positive only over uniform populations gen­
erated by creatures in

3
population. Then,

cf. Theorem

Let be the probability distribution for the selection of the initial
describes the state of the algo­

rithm after step and we have:
3.3.2.2. Consequently, the states of the scaled genetic algorithm con­
verge to (a probability distribution over) uniform populations generated
by globally optimal creatures.

PROOF: We only have to establish that is strictly positive only over uni­
form populations generated by creatures in All other claims in Theorem
3.4.1 have already been established in previous results.

Part 1: Convergence towards uniform populations. Let
Theorem 3.1.2.3 implies:

where is given as in Proposition 3.1.1.1. This shows that is non­
zero only over uniform populations.

Part 2: Convergence towards populations containing maximal creatures.
To complete the proof, we show that is strictly positive only over popula­
tions in i.e., populations that contain only globally optimal
creatures. The idea for the following argument is to derive an estimate for

as Let

from
If

quently,

 cf.,

the probabilistic flow between and if the homogeneous
Markov chain defined by is in steady state. This is based upon the fact that

Let be the orthogonal projection onto and let be
the orthogonal projection onto Let

Part 2a: The flow towards In order to make a transition under mutation
 to a population one has to change at most the letters

in the spots corresponding to a single creature in and, conse-
 then Proposition 2.2.3.1 shows that Thus, for

sufficiently large for every A transition from
to a population under fitness selection occurs with proba-

bility bounded below by Proposition 2.3.2.3. Hence, we have for
and summations over

184 FRONTIERS OF EVOLUTIONARY COMPUTATION

Hence, we have for such that

Inequality (22) is trivial, if Let
Let denote the number of

components in that are occupied by elements in The probability
for selecting an arbitrary element in the process of the
scaled proportional fitness selection operation is then given by

The expression in line (23) is bounded below by
Hence we have:

Hence, there exists such that for sufficiently small

Part 2b: The flow towards In order to estimate the probabilistic flow
from to in application of to we distinguish two cases:

CASE 1: Initial mutation-crossover step destroys all globally optimal crea­
tures with positions in J. In order to make a transition from to a pop­
ulation via mutation-crossover, one has to change every creature
with position in J to a creature in In that case, a subsequent selec­
tion operation cannot generate an element of Since crossover and mutation
commute by Proposition 2.2.3.4, we may assume that crossover is applied first.
Then the crossover operation alone may achieve changing every creature with
position in J to a creature in By Definition 2.2.2 or Proposition
2.2.3.1 and the choices for J, the combined probability for this to happen is
bounded from above for small by
Mutation may then keep the resulting
Suppose that crossover only changed creatures with position in J in
If then the probability for this to happen is bounded from
above by terms in the order of then the
probability for this to happen is bounded from above by terms in the order of

Then mutation has to alter at least one spot in the un­
changed creatures in
the combined probability for the latter to happen is bounded by

Jwith position in . By Proposition 2.1.2.1,

which is then multiplied by terms in the order of to obtain an
upper bound for the combined probability of the anticipated transition. The

185 Aymptotic Convergence of Scaled Genetic Algorithms

(i.easymptotically largest estimate ., for sufficiently small obtained in this
discussion is the term

CASE 2: Initial crossover-mutation step retains globally optimal creatures
with positions in J. An initial application of to yields

elements with probability bounded from above by
for small since at least one spot in a creature with position in J

in must be changed by mutation, or crossover must be applied. If selection is
then applied to
is bounded from above by

then the combined probability to generate elements of
as was shown in line (24).

Hence, we have for and summations over

Part 2c: The steady-state flow inequality. Combining inequalities (22) and
(25) yields the steady-state flow inequality as follows:

26

that Q.E.D.

Inequality () shows that
This shows

 and completes the proof.

Theorem 3.3.2 is shown in more general versions in (Schmitt, 2002, Thm.
3.3.2, Cor. 3.3.3, Cor. 3.3.4). In particular, other more general crossover op­
erators are allowed that need not commute with mutation. It shows the quite
remarkable effect that with increasing population size, one is allowed to use a
more relaxed cooling schedule for crossover. Thus for larger population size,
the algorithm-design, i.e., definition of data-structures (creatures), which is ex­
ploited by crossover plays a more important role. Overall, crossover has more
time and opportunity to perform its enhancement of the mixing phase of the ge­
netic algorithm. See (Schmitt et al., 1998, Prop. 10) and (Schmitt, 2001, Thm.
6.1) where this statement is given a precise meaning in terms of contraction
properties of the combined mutation-crossover operator.

186	 FRONTIERS OF EVOLUTIONARY COMPUTATION

3.5	 THE VOSE-LIEPINS VERSION OF
MUTATION-CROSSOVER

Vose (Vose, 1999b, Sec. 5.4: p. 44) describes one cycle of the (simple) ge­
netic algorithm as follows: (a) Obtain two parents by the selection function,
(b) Mutate the parents by the mutation function. (c) Produce the mutated par-
ent’s child by the crossover function. (d) Put the child into the next generation.
(e) If the next generation contains less than members, go to step (a). is the
population size. Consult also the analysis by Vose&Liepins (Vose and Liepins,
1991). In what follows, VLGA shall refer to a genetic algorithm whose cycle is
described by steps (a)–(e) as above.

The procedure of pairing creatures to produce offspring in the VLGA pro­
duces one child at a time while regular crossover as defined in Definition 2.2.2,
in (Schmitt, 2001, Sec. 5.2.1), (Schmitt et al., 1998, Sec. 2.2) following, e.g.,
Goldberg’s book (Goldberg, 1989, p. 16–17) produces 2 offspring from 2 par­
ents in a single crossover-step.

If denotes the population size of a VLGA, then we set and use
the selector mask The reader will easily check that a cycle

in the setting described in this exposition corresponds exactly to
the VLGA as listed above. This embeds the VLGA into the model developed
here and in (Schmitt et al., 1998; Schmitt and Nehaniv, 1999; Schmitt, 2001;
Schmitt, 2002). After every cycle, the next selection step will disregard the
offspring for obtained through mutation-crossover in the
previous cycle and randomly arrange the chosen new parents. Thus, we do not

43: line 25). We need not assume that the given fitness function
have to perform a “selection-step from the two offspring” as in (Vose, 1999b, p.

in the sense of (Vose, 1999b, p. 25) is injective as in all of (Vose, 1999b).
Besides application of the Global Optimization Theorem 3.4.1 given above,

the new model for the VLGA allows for application of the results in (Schmitt,
2001), their extensions as discussed in (Schmitt, 2002, Sec. 4.1), and the main
results (Schmitt, 2002, Thm. 3.3.2, Cor. 3.3.3, Cor. 3.3.4). In particular,
(Schmitt, 2001, Thm. 8.2, Thm. 8.3) and their extension discussed in (Schmitt,
2002, Sec. 4.1) show ergodicity but non-convergence to global optima for the
VLGA with strictly positive mutation limit which includes the case of the sim­
ple VLGA. On the other hand, (Schmitt, 2001, Thm. 8.5, Thm. 8.6) and their
extensions as well as (Schmitt, 2002, Thm. 3.3.2, Cor. 3.3.3, Cor. 3.3.4) show
convergence to global optima of the scaled VLGA.

187 Aymptotic Convergence of Scaled Genetic Algorithms

4. FUTURE EXTENSIONS OF THE THEORY

4.1 TOWARDS FINITE-LENGTH ANALYSIS
ON FINITE-STATE MACHINES

In order to channel future development of theory of genetic algorithms, let
us for a brief moment turn to the past. Theoretical description of genetic al­
gorithms can be roughly classified in two categories or —considering a time
line— overlapping phases: The first phase is characterized by schema-theory
following (Holland, 1975) (including the variant of building block hypothesis,
cf. (Goldberg, 1989, p. 41–45)), the second phase is characterized by Markov-
chain analysis. Schema-theory has overall failed to produce any significant
general convergence results (to global optima) be it for the genetic algorithm
or the more elaborate setting of genetic programming. This does not say that
schema-theory may not be useful to explain one-step behavior of a genetic al­
gorithm in an environment where the fitness function is changing over time.
See work by Lux and Schornstein in that regard (Lux and Schornstein, 2002).
In the personal opinion of this author, schema-theory is a pleasant heuristic tool
but should be abandoned as means to analyze genetic algorithms as optimiza­
tion procedure. This admittedly blunt point of view is cautiously shared by
Vose (Vose, 1999b, p. 211: lines 1–4). There are schema-theorems in existence
where “mutation is ignored and the interplay crossover-selection man­
ages optimization.” Such work considers nothing but non-ergodic genetic drift
as described and analyzed in (Schmitt and Nehaniv, 1999, Sec. 6) and (Schmitt,
2001, Sec. 7.5). This setting implies that the probabilistic outcome of the zero-
mutation-rate genetic algorithm strongly depends upon the initial population
or distribution of populations. This fact is rather obvious by considering the
extreme case of an initial, suboptimal, uniform population. There are other
schema-theorems in existence where “mutation is supposed to work constantly
in the background and the interplay crossover-selection manages optimiza­
tion.” Such algorithms must essentially fail by virtue of (Schmitt et al., 1998,
Thm. 17), (Schmitt, 2001, Thm. 8.1–3). See also Rudolph’s book (Rudolph,
1997).

Markov chain analysis of genetic algorithms is, in the opinion of this author,
still in its infancy. Such analysis was initiated notably through work by Liepins
& Vose (Vose and Liepins, 1991), Nix & Vose (Nix and Vose, 1992), and Davis
&Principe (Davis, 1991; Davis and Principe, 1991; Davis and Principe, 1993).
However, even though it is fairly simple (as shown in this exhibition) to set
up a mathematical model for genetic algorithms based upon Markov chains, it
has taken quite some time that non-elementary results with correct proof ap­
peared in the literature. In important contributions, Davis&Principe (Davis and
Principe, 1991; Davis and Principe, 1993) found that annealing the mutation
rate to zero alone does not imply convergence of the genetic algorithm to global

188	 FRONTIERS OF EVOLUTIONARY COMPUTATION

optima. (Schmitt et al., 1998, Thm. 17) and (Schmitt, 2001, Thm. 8.1–3) show
that increasing the selection pressure alone must fail as well. Thus, annealing
the mutation rate to zero and increasing the selection pressure properly are re­
quired to assure at least asymptotic convergence to global optima. A significant
contribution is then Cerf’s work (Cerf, 1996; Cerf, 1998) which, however, as­
sumes the auxiliary condition of a larger population-size that strongly depends
upon the problem instance. Cerf’s work seems to indicate that an “infinite
population limit” may be a mathematical solution to achieve a comprehensive
theoretical model for genetic algorithms. In the personal opinion of this author,
such an approach is also of limited value mainly for the following reason: if
optimization is performed with a computer, then we are dealing with some­
thing quite small and finite, i.e., a small number of candidate solutions with
a small number of genes. Genetic optimization in computers does not deal
with large ensembles in the sense of statistical physics (Landau and Lifschitz,
1975) where an infinite number-of-particle limit may be appropriate. Genetic
algorithms should be analyzed probabilisticly but in the spirit of Knuth (Knuth,
1997b; Knuth, 1997c; Knuth, 1997a): an algorithm that runs on a finite-state
machine for a finite period of time. This point of view forces one to rethink
even any asymptotic result such as the Global Optimization Theorem 3.4.1
which must be seen together with the discussion of stopping criteria after the
proof of Theorem 3.3.2. See also section 4.2 in this regard.

To summarize the discussion in this section, let it be stated that future the­
oretical research on genetic algorithms and genetic programming should pri­
marily deal with finite-length algorithms on finite-state machines and estimates
in regard to approaching infinite-length asymptotics and global optima using a
probabilistic framework. Thus, theory is at its beginning.

4.2	 ESTIMATES FOR FINITE-LENGTH
GENETIC ALGORITHMS À LA CATONI

Similar to the work presented in this exhibition, the simulated annealing al­
gorithm was initially investigated in regard to its asymptotic behavior. See,
e.g., the essay by Aarts, & van Laarhoven for an excellent introduction and
overview in regard to the simulated annealing algorithm. Asymptotic analy­
sis of simulated annealing probably reached a peak in work by Hajek (Hajek,
1988).

At this point, let us mention that Lozano, Larrañaga, Graña & Albizuri
(Lozano et al., 1999) have developed a genetic algorithm with a simulated-
annealing-type selection strategy which converges asymptotically to global op­
tima. This provides an alternative to the selection mechanism developed here.
See also work by Mahfoud & Goldberg (Mahfoud and Goldberg, 1992; Mah­
foud and Goldberg, 1995).

Aymptotic Convergence of Scaled Genetic Algorithms	 189

Work by Catoni (Catoni, 1990; Catoni, 1991b; Catoni, 1991a; Catoni, 1992)
based upon large deviation estimates took analysis of the simulated annealing
algorithm to a higher level. It constitutes a major advance in regard to devel­
oping probabilistic estimates for finite-length simulated annealing algorithms,
i.e., stopping criteria for these algorithms.

Future theoretical research on genetic algorithms and genetic programming
should apply Catoni’s work to the setting of scaled genetic algorithms with a
simulated annealing type selection strategy or scaled proportional fitness se­
lection.

4.3	 ADDING SAMPLING NOISE

Kushner (Kushner, 1987) has extended the study of simulated annealing in
yet another direction: it is assumed that the fitness function is sampled via
Monte-Carlo simulation (see Binder’s book (Binder, 1978)) and therefore the
setting of the optimization algorithm is perturbed by sampling noise. Kush­
ner presents an analysis of this setting via the theory of large deviations and
discusses applications to global optimization via Monte Carlo methods. This
study should be extended to the case of the genetic algorithm in all its standard
incarnations. See also the discussion in (Beyer et al., 2002, Sec. 2).

4.4	 FURTHER ANALOGY WITH
SIMULATED ANNEALING:
PARALLELISM AND SPARSE
MUTATION

There are many similarities between the genetic algorithm as presented here
and the simulated annealing algorithm. However, there are also fundamental
differences. Genetic algorithms have an inherent parallelism, simulated an­
nealing does not. Simulated annealing corresponds to population-size
Consequently, if one searches for an enveloping concept for simulated anneal­
ing and genetic algorithms, then one has to consider parallel simulated anneal­
ing (see, e.g., (Azencott, 1992) for an overview).

A more mathematical/thermodynamic distinction between the two types of
probabilistic algorithms is that the genetic algorithm presented here is weakly
ergodic because the fully positive, scaled stochastic matrices associated with
the generator-phase of the algorithm assure weak ergodicity (see section 3.2).
In the simulated annealing procedure, weak ergodicity is obtained through
carefully scaling the selection operator such that repeated combination of a

shrinking ability similar to the combined shrinking by operators
Proposition 1.3.1. In both cases, increasing selection pressure assures con­
vergence to global optima. If one considers the simulated annealing algorithm

constant, non-fully-positive generator-matrix and selection retains enough
 in

190	 FRONTIERS OF EVOLUTIONARY COMPUTATION

with a fully positive generator matrix, then for any cooling schedule a globally
optimal solution must be found eventually. One could therefore argue that the
Global Optimization Theorem 3.4.1 has a certain weakness in that fully pos­
itive mutation matrices are used (i.e., ergodicity is obtained too easily) even
though the setting is standard in genetic algorithm applications.

Population-wise single-spot mutation as discussed in (Schmitt et al., 1998,
Sec. 2.1: “one-bit mutation”, Thm. 15) and (Schmitt, 2001, Sec. 3.2, Thm. 8.1)
constitutes a non-fully-positive (sparse) mutation matrix which may implement
a stronger analogue to the simulated-annealing type setting. The quoted The­
orems deal with the applications of population-wise single-spot mutation in
genetic algorithms with strictly positive limit mutation rate which includes the
case of the simple genetic algorithm.

In order to strengthen the analogy between the genetic algorithm presented
here and the simulated annealing algorithm in regard to a neighborhood-based
search, future theoretical research should generalize (Schmitt, 2001, Thm. 8.5,
Thm. 8.6) and their extensions discussed in (Schmitt, 2002, Sec. 4.1) as well
as (Schmitt, 2002, Thm. 3.3.2, Cor. 3.3.3, Cor. 3.3.4), Theorem 3.4.1 and
finite-length estimates to a setting where sparse mutation operators such as
population-wise single-spot mutation are used.

4.5	 ANALYSIS FROM INSIDE-OUT AND
OUTSIDE-IN

There are, in principle, two major ways to analyze genetic algorithms: from
inside-out and outside-in. The approach taken in this exhibition is to analyze
the genetic algorithm from outside-in. The algorithm is understood as an all-
purpose tool which is used in a black-box scenario, i.e., on a fitness function
of largely unknown behavior and characteristics. Thus, this analysis could
be characterized as “finding a least upper bound” for suitable implementation
of genetic algorithms. They are seen here as an ergodic “cooling procedure”
similar to the simulated annealing algorithm setting which is inspired by the
real-world process that is used to generate large crystals such as rubies by
carefully cooling heated material.

The opposite way to analyze genetic algorithms is from inside-out, i.e., to
systematically analyze the behavior of possibly different, specially designed
genetic algorithms for specific classes of problem instances. Such a way of
analysis is even more in the spirit of Knuth (Knuth, 1997b; Knuth, 1997c;
Knuth, 1997a). It could be characterized as “finding greatest lower bounds”
for specific classes of problem instances and corresponding suitable imple­
mentations of genetic algorithms. The survey by Beyer, Schwefel & Wegener
(Beyer et al., 2002, Sec. 3) advocates and illustrates this approach to theoret­
ical analysis of genetic or evolutionary algorithms. It is pointed out that this

Aymptotic Convergence of Scaled Genetic Algorithms	 191

direction of research leads to a vast, unknown territory waiting for exploration.
In regard to this point of view, consult, e.g., work by Droste, Jansen, Tinnefeld
& Wegener (Droste et al., 2002; Droste et al., 2003; Jansen and Wegener, 2001).

To summarize the discussion in this section, let it be stated that future the­
oretical research on genetic algorithms and genetic programming should also
deal with detailed analysis of specific classes of problem instances and the
behavior of corresponding suitable genetic algorithm implementations.

4.6	 NON-MONOTONE AND
SELF-ADAPTING ANNEALING
SEQUENCES

In practical applications of genetic algorithms, one may be interested in an­
nealing the mutation-rate (noise) in a rapid manner for a period of time in order
to give the algorithm time to “thoroughly explore the neighborhood” of the cur­
rent population and/or let crossover dominate as mixing operator, and then to
increase the mutation rate again if the algorithm has “settled,” i.e., the fitness
values in the population have become close to uniform, or the population be­
came close to uniform itself. Concurrently with the mutation rate, the fitness
selection scaling and the crossover rate may be altered in a non-monotone way
as well.

Such scheduling of the mutation-rate and other parameters may be steered
by an external schedule where an estimate for the “settling-time” has been
obtained through experiments, or may be self-adaptive. Anily & Federgruen
(Anily and Federgruen, 1987, Thm. 2) have shown for the simulated annealing
algorithm that one can use certain non-monotone sequences for the cooling
parameter and still obtain an asymptotically converging simulated annealing
algorithm. The reader may adapt Anily & Federgruen’s work to the situation
of the Global Optimization Theorem 3.4.1 to obtain asymptotically converg­
ing genetic algorithms with more general annealing schedules for mutation,
crossover and selection than presented in this work.

The author conjectures that the Global Optimization Theorem 3.4.1 can be
generalized to the following situation with self-adapting, random-nature an­
nealing schedules for mutation, crossover and selection: The mutation rate,
the crossover rate and the exponentiation for the fitness-scaling are chosen at
runtime depending upon the state of the algorithm. If the algorithm repeat­
edly returns to the same state (i.e., population), then the mutation rate and
crossover rate are increased by a certain magnitude and the selection-pressure
is decreased correspondingly. Overall, the parameters follow similar trajecto­
ries as proposed in the Global Optimization Theorem 3.4.1. See Agapie’s work
(Agapie, 2001) in regard to this conjecture.

192 FRONTIERS OF EVOLUTIONARY COMPUTATION

4.7 DISCRETE vs. CONTINUOUS
ALPHABETS

Many applications of genetic algorithms, in particular, in engineering are
optimization problems where R-valued parameters are optimized in a bounded
or unbounded domain. As discussed in section 1.4, one pragmatic approach to
optimization of R-valued parameters is to accept that computer languages such
as Fortran or C usually use only a finite subset of the real numbers. Another
reason for “discrete” optimization of R-valued parameters is the following: a
bit-string such as may on the one hand be understood as
the binary number but can on the other hand be seen
as the label of a leaf in a binary tree of depth 12. Thus (arguing here in a purely
heuristic manner), discrete implementation allows a genetic algorithm to map
a “floating compromise between real, fractal and purely discrete structures”.

However, there exist a considerable amount of research in evolutionary op­
timization for R-valued parameters as outlined in (Beyer et al., 2002, Sec. 2).
One may therefore also pursue the generalization of the approach presented
here and in (Schmitt, 2001; Schmitt, 2002) to the case of a “continuous” al­
phabet such as [0, 1] or R.

5.	 APPENDIX — PROOF OF SOME BASIC
OR TECHNICAL RESULTS

This appendix lists a collection of proofs of some of the more basic results
used in this exposition for the convenience of the reader.

PROOF 4

for every and

and

 of lines (5) and (6): The definition of in line () via the supre­
mum shows that is the smallest constant such that

then one has:

Q.E.D.

PROOF 7): Let

This shows Conversely,
for every since

Q.E.D.

PROOF 10): (7). If
then

 of line (
such that Then

1. This shows that

of line (follows directly from line
and

This shows Applying the latter
to the columns of Y yields that XY is stochastic.	 Q.E.D.

193 Aymptotic Convergence of Scaled Genetic Algorithms

PROOF of Proposition 1.3.1: We first note that
Hence, Since

Using line (7 Hence,
every coefficient of is in one has with

), we conclude that
This shows statement (1) of

Proposition 1.3.1. Using the statements in line (10), and applying statement
(1) to inductively, we obtain

One also has:
as This shows Inequality (27)

then shows statement (2) of Proposition 1.3.1. Q.E.D.

PROOF

since

 of Proposition 1.3.2: We have for some
Let Then there exists a subsequence

that converges to is compact. Now we have:

where Proposition 1.3.1.1 was applied repeatedly in the second-to-last step.

Thus, X is

X.
If then

and
Then,

This shows must be fully positive since
fully positive and, consequently, every component of is a convex combination
of strictly positive entries of

 is such that
Now, chose large enough such that
let since both and are
invariant vectors of X. Applying Proposition 1.3.1.1 again, we get

since This shows Hence, is a
scalar multiple of Similarly, one obtains that is a scalar multiple of

This concludes the proof of Proposition 1.3.2. Q.E.D.

PROOF of Corollary 1.3.3: The matrix is
stochastic and fully positive for By Proposition 1.3.2, there exists

194 FRONTIERS OF EVOLUTIONARY COMPUTATION

Sincesuch that is compact, there exists a subsequence
that converges to Then, we have

PROOF of Corollary 1.3.4: MX is fully positive since every column of MX
is a convex combination of the strictly positive columns of M. Proposition
1.3.2 shows that a right eigenvector with the desired properties exists.

Any possible invariant right eigenvector
 of XM satisfies

Thus,
 for some Hence, if M is invertible, then

is uniquely determined up to scalar multiples. Corollary 1.3.3 shows that
XM has an invariant right eigenvector Then, since M is
stochastic. Hence, Q.E.D.

PROOF for
Hence,

of
we have

Q.E.D.

 of Proposition 1.4.1: We have
and since the

actions of the two linear operators coincide on the basis In addition,

PROOF of Proposition 3.3.1: Proposition 2.1.2.4 shows that for
is an invertible matrix, Corollary 1.3.4 applied with then

Since

shows that is uniquely determined for In order to show statement (1),
we have to show that

for fixed and every is finite, it is enough
to show that for fixed and every

Let then is up to scalar multiples the uniquely determined solution
of i.e., generates the one-dimensional kernel of
Adding the rows of to the first row (which is an admissible operation
under the Gauss elimination algorithm (Greub, 1975, p. 97: 3.17)), we see
that the kernel of is generated by as well. Since

we see that has kernel {0},. Thus,
is invertible, and the equation

uniquely determines In this situation,
can be computed using Cramer’s Rule (Lang, 1970, p. 182: Thm. 3) which
amounts to computing quotients of determinants.

Using Proposition 2.3.2.1 and
we obtain for the coefficients of the selection operator

195 REFERENCES

for
Proposition 2.1.2.1 shows that the coefficients of are

polynomials in Proposition 2.2.3.1 shows that the coefficients of are
polynomials in Combining the latter two statements with line (28) and

we obtain for computed via Cramer’s
rule:

distinct,

W.L.O.G., that since

distinct,

We can assume and is the
component of a probability distribution and, consequently, stays bounded as

This shows that exists. This implies
statement (2) of Proposition 3.3.1.

We substitute for a constant in line (29) to obtain

distinct, distinct.

Hence, is bounded by some constant for
By the Mean Value Theorem (Lang, 1968, p. 60: Thm. III.1), we have

for such that and every

This completes the proof of statement (1) of Proposition 3.3.1. Statement (2)
follows from statement (1) but was already obtained above in passing. Q.E.D.

REFERENCES

Aarts, E. H. L. and van Laarhoven, P. J. M. (1989). Simulated Annealing: An
Introduction. Statistica Neerlandica, 43:31–52.

Agapie, A. (2001). Theoretical analysis of mutation-adaptive evolutionary al­
gorithms. Evolutionary Computation, 9:127–146.

196 FRONTIERS OF EVOLUTIONARY COMPUTATION

Anily, S. and Federgruen, A. (1987). Ergodicity in Parametric Non-Stationary
Markov Chains: An Application to Simulated Annealing Methods. Opera­
tions Research, 35:867–874.

Aytug, H. and Koehler, G. J. (1996). Stopping Criteria for Finite Length Ge­
netic Algorithms. INFORMS Journal on Computing, 8:183–191.

Azencott, R., editor (1992). Simulated Annealing — Parallelization Techniques.
John Wiley & Sons Publishers.

Baker, J. E. (1987). Reducing Bias and Inefficiency in the Selection Algorithm.
In Grefenstette, J. J., editor, Genetic Algorithms and Their Applications:
Proceedings of the Second International Conference on Genetic Algorithms.
Lawrence Erlbaum Publishers.

Banzhaf, W., Francone, F. D., and Nordin, P. (1996). The Effect of Extensive
Use of the Mutation Operator on Generalization in Genetic Programming
using Sparse Data Sets. In Ebeling, W., Rechenberg, I., Schwefel, H. P., and
Voigt, H. M., editors, 4th International. Conference. on Parallel Problem
Solving from Nature (PPSN96), pages 300–309. Springer Verlag.

Beyer, H.-G., Schwefel, H.-P., and Wegener, I. (2002). How to analyse evolu­
tionary algorithms. Theoretical Computer Science, 287:101–130.

Binder, K. (1978). Monte Carlo methods in Statistical Physics. Springer Ver­
lag.

Bremermann, H. J., Rogson, J., and Salaff, S. (1966). Global Properties of
Evolution Processes. In Pattee, H. H., Edelsack, E., Fein, L., and Callahan,
A., editors, Natural Automata and Useful Simulations, pages 3–42. Spartan
Books, Washington DC.

Catoni, O. (1990). Large Deviations for Annealing. PhD thesis, Université
Paris XI.

Catoni, O. (1991a). Applications of Sharp Large Deviations Estimates to Opti­
mal Cooling Schedules. Annales de Institute Henri Poincaré. Probabilités
ét Statistique, 27:493–518.

Catoni, O. (1991b). Sharp Large Deviations Estimates for Simulated Anneal­
ing Algorithms. Annales de Institute Henri Poincaré Probabilités ét Statis­
tique, 27:291–383.

Catoni, O. (1992). Rough Large Deviations Estimates for Simulated Anneal­
ing — Application to Exponential Schedules. The Annals of Probability,
20:1109–1146.

Cerf, R. (1996). An Asymptotic Theory for Genetic Algorithms. In Alliot,
J. M., Lutton, E., Ronald, E., Schoenauer, M., and Snyers, D., editors, Artifi­
cial Evolution. European Conference AE 95. Brest, France, September 4–6,
1995. Selected Papers, volume 1063 of Lecture Notes in Computer Science,
pages 37–53. Springer Verlag.

Cerf, R. (1998). Asymptotic Convergence of Genetic Algorithms. Advances in
Applied Probability, 30:521–550.

197 REFERENCES

Chung, K. L. (1974). A Course in Probability Theory. Academic Press Pub­
lishers. Second edition.

Davis, T. (1991). Toward an Extrapolation of the Simulated Annealing Con­
vergence Theory onto the Simple Genetic Algorithm. PhD thesis, University
of Florida.

Davis, T. E. and Principe, J. C. (1991). A Simulated Annealing-like Con­
vergence Theory for the Simple Genetic Algorithm. In Belew, R. K. and
Booker, L. B., editors, Proceedings of the Fourth International Conference
on Genetic Algorithms ’91, pages 174–181. Morgan Kaufmann Publishers.

Davis, T. E. and Principe, J. C. (1993). A Markov Chain Framework for the
Simple Genetic Algorithm. Evolutionary Computation, 1:269–288.

Droste, S., Jansen, T., Tinnefeld, K., and Wegener, I. (2003). A new framework
for the valuation of algorithms for black-box optimization. In De Jong, K,
Poli, R., and Rowe, J., editors, Foundations of Genetic Algorithms 7, pages
197–214. Morgan Kaufmann Publishers.

Droste, S., Jansen, T., and Wegener, I. (2002). On the Analysis of the (1 + 1)
Evolutionary Algorithm. Theoretical Computer Science, 276:51–81.

Feller, W. (1968). An Introduction to Probability Theory and Its Applications.
Volume 1. John Wiley & Sons Publishers. (third edition).

Feller, W. (1971). An Introduction to Probability Theory and Its Applications.
Volume 2. John Wiley & Sons Publishers. (second edition).

Fogel, D. B. (1994). Asymptotic Convergence Properties of Genetic Algo­
rithms and Evolutionary Programming: Analysis and Experiments. Cyber­
netics and Systems, 25:389–407.

Goldberg, D. E. Genetic Algorithms Tutorial. Genetic Programming Confer­
ence, Stanford University, (July 13, 1997).

Goldberg, D. E. (1989). Genetic Algorithms, in Search, Optimization & Ma­
chine Learning. Addison-Wesley Publishers.

Goldberg, D. E. (1990). A Note on Boltzmann Tournament Selection for Ge­
netic Algorithms and Population Oriented Simulated Annealing. Complex
Systems, 4:445–460.

Goldberg, D. E. and Deb, K. (1991). A Comparative Analysis of Selection
Schemes used in Genetic Algorithms. In Rawlins, G. J. E., editor, Founda­
tions of Genetic Algorithms, pages 69–93. Morgan Kaufmann Publishers.

Greenwood, G. W. and Zhu, Q. J. (2001). Convergence in Evolutionary Pro­
grams with Self-Adaptation. Evolutionary Computation, 9:147–157.

Greub, W. (1975). Linear Algebra. Springer-Verlag.
Griffiths, R. C. and Taveré, S. (1997). Computational Methods for the Coales­

cent. In Donnelly, P. and Taveré, S., editors, Progress in Population Genetics
and Human Evolution, volume 87 of IMA Volumes in Mathematics and its
Applications, pages 165–182. Springer Verlag.

198 FRONTIERS OF EVOLUTIONARY COMPUTATION

Hajek, B. (1988). Cooling Schedules for Optimal Annealing. Mathematics of
Operations Research, 13:345–351.

He, J. and Kang, L. (1999). On the Convergence Rates of Genetic Algorithms.
Theoretical Computer Science, 229:23–39.

Holland, J. H. (1975). Adaptation in Natural and Artificial Systems. University
of Michigan Press. Extended new edition. MIT Press (1992).

Isaacson, D. L. and Madsen, R. W. (1961). Markov Chains: Theory and Appli­
cations. Prentice-Hall Publishers.

Jansen, T. and Wegener, I. (2001). Real royal road functions — where crossover
provably is essential. In Spector, L. and Goodman, E. D., editors, GECCO
2001, Proceedings of the Genetic and Evolutionary Computation Confer­
ence, pages 375–382. Morgan Kaufmann Publisher.

Knuth, D. E. (1997a). The Art of Computer Programming. Volume 3: Sorting
and Searching. Addison-Wesley Publishers, Second Edition edition.

Knuth, D. E. (1997b). The Art of Computer Programming. Volume 1: Funda­
mental Algorithms. Addison-Wesley Publishers, Third Edition edition.

Knuth, D. E. (1997c). The Art of Computer Programming. Volume 2: Seminu­
merical Algorithms. Addison-Wesley Publishers, Third Edition edition.

Koehler, G. J. (1994). A Proof of the Vose-Liepins Conjecture. Annals of Math­
ematics and Artificial Intelligence, 10:408–422.

Kushner, H. J. (1987). Asymptotic Global Behavior for Stochastic Approxi­
mation and Diffusions with Slowly Decreasing Noise Effects: Global Mini­
mization via Monte Carlo. SIAM Journal of Applied Mathematics, 47:169–
185.

Landau, S. D. and Lifschitz, E. M. (1975). Lehrbuch der thoeretischen Physik
V. Statistische Physik. Berlin: Akademie Verlag.

Lang, S. (1968). Analysis I. Addison-Wesley Publishers.
Lang, S. (1970). Linear Algebra. Addison-Wesley Publishers, 2nd edition.
Leung, Y., Chen, Z.-P., Xu, Z.-B., and Leung, K.-S. (1998). Convergence Rate

for Non-Binary Genetic Algorithms with Different Crossover Operators.
The Chinese University of Hong Kong. (Preprint).

Lozano, J. A., Larrañaga, P., Graña, M., and Albizuri, F. X. (1999). Genetic
Algorithms: bridging the Convergence Gap. Theoretical Computer Science,
229:23–39.

Lux, T. and Schornstein, S. (2002). Genetic learning as an Explanation of Styl­
ized Facts of Foreign Exchange Markets. Manuscript, Universität Kiel, Lon­
don School of Economics. pdf-file, www.bwl.uni-kiel.de/vwlinstitute/gwrp/
publications/publications.htm.

Mahfoud, S. W. (1993). Finite Markov Chain Models of an Alternative Selec­
tion Strategy for Genetic Algorithms. Complex Systems, 7:155–170.

REFERENCES 199

Mahfoud, S. W. and Goldberg, D. E. (1992). A Genetic Algorithm for Parallel
Simulated Annealing. In Männer, R. and Manderick, B., editors, Parallel
Problem Solving from Nature, 2, pages 301–310. Elsevier Publishers.

Mahfoud, S. W. and Goldberg, D. E. (1995). Parallel Recombinative Simulated
Annealing: a Genetic Algorithm. Parallel Computing, 21:1–28.

Márkus, A., Renner, G., and Vanza, J. (1997). Spline Interpolation with Ge­
netic Algorithms. In Kunii, T. L., Falcidieno, B., Savchenko, V. V., and
Pasko, A., editors, Proceedings of the International Conference on Shape
Modeling, 1997, March 3–6, The University of Aizu, Aizu-Wakamatsu, Japan,
pages 47–54. IEEE Computer Society Press.

Michalewicz, Z. (1994). Genetic Algorithms + Data Structures = Evolution
Programs. Springer Verlag, 2nd edition.

Mitchell, M. (1996). An Introduction to Genetic Algorithms. MIT Press.
Mühlenbein, H. (1997). Genetic Algorithms. In Aarts, E. and Lenstra, L., ed­

itors, Local Search in Combinatorial Optimization, pages 131–171. John
Wiley & Sons Publishers.

Nix, A. E. and Vose, M. D. (1992). Modeling Genetic Algorithms with Markov
Chains. Annals of Mathematics and Artificial Intelligence, 5:79–88.

Nomura, T. and Shimohara, K. (2001). An Analysis of Two-Parent Recombina­
tions for Real-Valued Chromosomes in an Infinite Population. Evolutionary
Computation, 9:283–308.

Poli, R. and Langdon, M. (1998). Schema Theory for Genetic Programming
with One-Point Crossover and Point Mutation. Evolutionary Computation,
6(3):231–252.

Poli, R. (2001). Exact Schema Theory for Genetic Programming and Variable-
Length Genetic Algorithms with One-Point Crossover. Genetic Program­
ming and Evolvable Machines, 2:123–163.

Rudin, W. (1973). Functional Analysis. McGraw-Hill Publishers.
Rudolph, G. (1994). Convergence Analysis of Canonical Genetic Algorithms.

IEEE Transactions on Neural Networks, 5:96–101.
Rudolph, G. (1997). Convergence Properties of Evolutionary Algorithms. Ham­

burg: Verlag Dr. Kovac.
Savchenko, V. and Schmitt, L. M. (2001). Reconstructing occlusal surfaces of

teeth using a genetic algorithm with simulated annealing type selection. In
Anderson, D. C. and Lee, K., editors, Proceedings of the Sixth ACM Sym­
posium on Solid Modeling and Applications, pages 39–46. ACM Press.

Schaefer, H. H. (1974). Banach Lattices and Positive Operators, volume 215
of Die Grundlehren der mathematischen Wissenschaften in Einzeldarstel­
lungen. Springer-Verlag.

Schmitt, L. M. (2001). Theory of Genetic Algorithms. Theoretical Computer
Science, 259:1–61.

200 FRONTIERS OF EVOLUTIONARY COMPUTATION

Schmitt, L. M. (2002). Theory of Genetic Algorithms II. – Convergence to op­
tima for arbitrary fitness function. Technical Report 2002-2-002, The Uni­
versity of Aizu. (Submitted for journal publication).

Schmitt, L. M. and Kondoh, T. (2000). Optimization of Mass Distribution in
Articulated Figures with Genetic Algorithms. In Hamza, M. H., editor, Pro­
ceedings of the 1ASTED International Conference “Applied Simulation and
Modelling”, pages 191–197. IASTED/ACTA Press.

Schmitt, L. M. and Nehaniv, C. L. (1999). The Linear Geometry of Genetic Op­
erators with Applications to the Analysis of Genetic Drift and Genetic Algo­
rithms using Tournament Selection. In Nehaniv, C. L., editor, Mathematical
and Computational Biology: Computational Morphogenesis, Hierarchical
Complexity, and Digital Evolution, An International Workshop, 1997, Oc­
tober 21–25, The University of Aizu, Aizu-Wakamatsu, Japan, volume 26 of
Lectures on Mathematics in the Life Sciences Series, pages 147–166. Amer­
ican Mathematical Society.

Schmitt, L. M., Nehaniv, C. L., and Fujii, R. H. (1998). Linear Analysis of
Genetic Algorithms. Theoretical Computer Science, 200:101–134.

Seneta, E. (1981). Non-negative Matrices and Markov Chains. Springer Series
in Statistics. Springer Verlag.

Suzuki, J. (1997). A Further Result on the Markov Chain Model of Genetic
Algorithms and Its Application to a Simulated Annealing-like Strategy. In
Belew, R. K. and Vose, M. D., editors, Foundations of Genetic Algorithms
4, pages 53–72. Morgan Kaufmann Publishers.

Suzuki, J. (1998). A Further Result on the Markov Chain Model of Genetic Al­
gorithms and Its Application to a Simulated Annealing-like Strategy. IEEE
Trans. on Systems, Man, and Cybernetics — Part B, 28:95–102.

van Nimwegen, E., Crutchfield, J. P., and Mitchell, M. (1999). Statistical Dy­
namics of the Royal Road Genetic Algorithm. Theoretical Computer Sci­
ence, 229:41–102.

Vose, M. D. and Wright, A. H. (1998a). The Simple Genetic Algorithm and the
Walsh Transform: Part I, Theory. Evolutionary Computation, 6:253–273.

Vose, M. D. and Wright, A. H. (1998b). The Simple Genetic Algorithm and the
Walsh Transform: Part II, The Inverse. Evolutionary Computation, 6:275–
289.

Vose, M. D. (1999a). Random Heuristic Search. Theoretical Computer Sci­
ence, 229:103–142.

Vose, M. D. (1999b). The Simple Genetic Algorithm: Foundations and Theory.
MIT Press.

Vose, M. D. and Liepins, G. E. (1991). Punctuated Equilibria in Genetic Search.
Complex Systems, 5:31–44.

Chapter 9

THE CHALLENGE OF PRODUCING
HUMAN-COMPETITIVE RESULTS
BY MEANS OF GENETIC AND
EVOLUTIONARY COMPUTATION

John R. Koza
Stanford University

Stanford, California

koza@stanford.edu

Matthew J. Streeter
Genetic Programming Inc.

Mountain View, California

mjs@tmolp.com

Martin A. Keane
Econometrics Inc.

Chicago, Illinois

martinkeane@ameritech.net

Abstract	 Human-competitive results include those equivalent to new scientific results
published in peer-reviewed scientific journals, solutions to long-standing or in­
disputably difficult problems, patented inventions, and results that tie or beat hu­
man contestants in regulated competitions. We argue that the pursuit of human-
competitive results is not only a worthy goal in itself, but a useful compass for
guiding the future growth of the field. We say this for reasons of utility, ob­
jectivity, complexity, and interminability. We believe that the continuing gen­
eration of evermore important human-competitive results relies on progress in
three areas of research: multiobjective optimization, parallel computing, and the
development and perfection of competent genetic and evolutionary search meth­
ods. Addressing the characteristics of human-competitive problems is one way
to expand the theoretical underpinnings of the field of genetic and evolutionary
computation.

Keywords: Genetic programming, human-competitive results

202 FRONTIERS OF EVOLUTIONARY COMPUTATION

1. TURING’S PREDICTION CONCERNING
GENETIC AND EVOLUTIONARY
COMPUTATION

In his seminal 1948 paper “ Intelligent Machinery,” Turing identified three
ways by which human-competitive machine intelligence might be achieved. In
connection with one of those ways, Turing said:

“There is the genetical or evolutionary search by which a combination of genes
is looked for, the criterion being the survival value.” (Turing, 1948)

Turing did not specify how to conduct the “genetical or evolutionary search”
for machine intelligence. In particular, he did not mention the idea of a
population-based parallel search in conjunction with sexual recombination
(crossover) as described in John Holland’s 1975 book Adaptation in Natural
and Artificial Systems. However, in his 1950 paper “Computing Machinery
and Intelligence,” Turing did point out:

“We cannot expect to find a good child-machine at the first attempt. One must
experiment with teaching one such machine and see how well it learns. One can
then try another and see if it is better or worse. There is an obvious connection
between this process and evolution, by the identifications,

Structure of the child machine = Hereditary material

Changes of the child machine = Mutations

Natural selection = Judgment of the experimenter” (Turing, 1950)

That is, Turing correctly perceived that one possibly productive approach to
machine intelligence would involve an evolutionary process in which a descrip­
tion of a computer program (the hereditary material) undergoes progressive
modification (mutation) under the guidance of natural selection (i.e., selective
pressure in the form of what we now call “fitness”).

2. DEFINITION OF HUMAN-COMPETITIVE

We contend that the pursuit of producing human-competitive results is a
worthy compass for guiding the future growth of the field of genetic and evo­
lutionary computation.

When we use the term “human-competitive” in connection with evaluating
the results of an automated problem-solving method, we mean it in the sense
used by machine learning pioneer Arthur Samuel (1983):

“[T]he aim [is]...to get machines to exhibit behavior, which if done by humans,
would be assumed to involve the use of intelligence.” (Samuel, 1983)

To make the idea of human-competitiveness concrete, we say an automatically
created solution to a problem is human-competitive if it satisfies one or more
of the eight criteria in table 9.1.

203 Producing Human-Competitive Results

3.	 DESIRABLE ATTRIBUTES OF THE
PURSUIT OF
HUMAN-COMPETITIVENESS

The pursuit of producing human-competitive results by means of genetic
and evolutionary computation is a worthy goal on the grounds of utility, objec­
tivity, complexity, and interminability.

3.1 UTILITY
Arthur Samuel’s vision for the field of machine learning matches that of the

founders of the field of artificial intelligence, namely the automatic creation
of computational techniques that are able to solve problems in a human-like
way. The goal of both of these fields is to augment the capacity of humans to
solve problems and to extend the range of complexity of problems that can be
solved.

The augmentation of human capacity is especially relevant in fields where
massive amounts of primary data requiring examination, classification, and
integration is accumulating in computer readable form. Examples include bi­
ological DNA and protein sequence data, astronomical observations, geolog­
ical and petroleum data, financial time series data, satellite observation data,
weather data, marketing databases, and the universe of web pages, e-mail mes­
sages, news stories, and communication messages.

204 FRONTIERS OF EVOLUTIONARY COMPUTATION

The extension of problem complexity includes examples where conven­
tional techniques of mathematical analysis are unable to solve evermore com­
plex real-world problems. The field of design provides numerous problems.
Design is a major activity of practicing engineers. Engineers are often called
upon to design complex structures (e.g., controllers, circuits, antennas, net­
works of chemical reactions) that satisfy certain prespecified high-level design
goals. The design of a complex structure typically involves tradeoffs between
a number of competing considerations. The end product of the design process
is usually a satisfactory, as opposed to a perfect, design.

3.2 OBJECTIVITY

In attempting to evaluate an automated problem-solving method, the ques­
tion arises as to whether there is any real substance to the demonstrative prob­
lems that are published in connection with the method. Published demonstra­
tive problems are often contrived toy problems that circulate exclusively inside
academic groups that study a particular methodology, but have no relevance to
any actual work that is being done in any field of science or engineering.

As will seen from table 9.1, the eight criteria for human-competitiveness
have the desirable attribute of being at arms-length from the fields of artifi­
cial intelligence, machine learning, and genetic and evolutionary computation.
That is, a result cannot acquire the rating of “human competitive” merely be­
cause it is endorsed by researchers inside the specialized fields that are attempt­
ing to automate the problem-solving process. Instead, a result produced by an
automated method must earn the rating of “human competitive” independent
of the fact that it was mechanically generated. The earning of this rating from
the outside confers objectivity on the rating.

Thus, for example, an automated method that produces a proof for a problem
in algebraic topology would be considered “human-competitive” if algebraic
topologists regard the theorem as a publishable result in their field. On the
other hand, an automated method that solves a toy problem (e.g., the towers of
Hanoi, block stacking, cannibals and missionaries, exclusive-or) would not be
considered “human-competitive” because the solution is not publishable in its
own right as a new scientific result (and is, in fact, only of interest because it
was mechanically created).

3.3 COMPLEXITY

Pursuing producing human-competitive results necessarily leads one toward
addressing complexity (and away from toy problems).

To give one example, systems with which real world engineers and scientists
work typically contain massive regularity, symmetry, homogeneity, and modu­
larity. For example, non-trivial analog electrical circuits almost always contain

205 Producing Human-Competitive Results

multiple occurrences of certain subcircuits (e.g., Darlington emitter-follower
sections, current mirrors, cascodes, voltage divider subcircuits). At a higher
level, analog circuits often also contain multiple occurrences of various more
complex entities, such as filters, op amps, oscillators, voltage-controlled cur­
rent sources, and phase-locked loops. Similarly, digital circuits almost always
contain multiple occurrences of certain standard cells. And, digital circuits
often also contain multiple occurrences of higher-level entities (e.g., counters,
registers, multiplexers). The design of large circuits would be considerably
more difficult (and perhaps even impractical) if the designer had to separately
think through the design of each subcircuit from the first principles of elec­
tronic design on each occasion when it is needed. Reuse enables the designer
to solve a particular problem once and, thereafter, simply reuse the already-
learned solution.

However, in spite of the manifest importance of reuse in solving problems
in many fields, problems exhibiting reuse are historically virtually absent in
the in the literature of automated problem-solving methods.

Recalling our own work on genetic programming, the pursuit of human-
competitive results forced us to focus very early on the importance of reuse
in producing scalable automated problem-solving. This focus on producing
human-competitive results led to the development of concepts such as automat­
ically defined functions (a way to implement subroutines in genetically evolved
computer programs) as described in a paper entitled “Hierarchical Automatic
Function Definition in Genetic Programming” at the 1992 Foundations of Ge­
netic Algorithms Workshop (Koza, John R., 1993). However, given the compu­
tational resources available in 1992, this paper merely contained a theoretical
discussion about how to implement this mechanism accompanied by a solution
to the “toy” even-parity problem. (See also (Koza, John R., 1992) and (Koza,
John R., 1994)). Later work, such as the 1999 book Genetic Programming III:
Darwinian Invention and Problem Solving (Koza, John R. et al., 1999) and the
2003 book Genetic Programming IV. Routine Human-Competitive Machine In­
telligence (Koza, John R. et al., 2003) demonstrated that this automated mech­
anism for reuse could actually deliver human-competitive results in a variety
of fields.

The point is that, in 1992, it was the (distant) driving goal of producing
human-competitive results that motivated our study of the regularity, symme­
try, homogeneity, and modularity inherent in many non-trivial problems. This
study, in turn, led to the development of mechanisms for automated reuse. Ab­
sent the driving goal of producing human-competitive results, mechanisms for
automated reuse might not have been pursued at all. Thus, we believe that the
pursuit of the complexity inherent in human-competitive results can act as one
(but, by no means, the only) compass for future extensions to the theoretical
foundations of genetic and evolutionary computation.

206	 FRONTIERS OF EVOLUTIONARY COMPUTATION

3.4 INTERMINABILITY

Pursuing producing human-competitive results is an inherently interminable
process.

It is unlikely, in the foreseeable future, that any automated method will ei­
ther match the subtlety of human-produced results or duplicate the breadth of
areas where human intelligence is applied.

Thus, as each human-competitive result is produced, additional evermore
challenging human-competitive problems will appear on the horizon.

4.	 HUMAN-COMPETITIVENESS AS A

COMPASS FOR THEORETICAL WORK

A small percentage of theoretical work arises solely from intellectual cu­
riosity. A larger percentage of theoretical work is done simply because a re­
searcher happens to be facile in a certain technique and “looks for the keys
near the lamppost.”

The significant theoretical work in a field arises from a shrewd assessment
of which issues have the capability of advancing the field and which are mere
academic curiosities. While it is sometimes fashionable to say that theoretical
work requires no justification at all, all theoretical work is not, in fact, equal.
The inequality becomes manifest if reviews some of the seminal examples of
theoretical work in the field of genetic and evolutionary computation.

For example, Holland shrewdly perceived in Adaptation in Natural and Ar­
tificial Systems that the genetic algorithm is a massive parallel competition
among schemata (the “combination of genes” that Turing spotted in his 1950
paper) and that the genetic algorithm searches for ever-better schemata in an ar­
guably near-optimal way (Holland, J. H., 1975). The emphasis of this entirely
theoretical book is on explaining, arguing for the relevance of, and proving the­
orems supporting this central theme. The book mentions, in passing, dozens of
other theoretical issues and curiosities relating to the genetic algorithm. How­
ever, instead of proving theorems or otherwise dwelling on these side issues,
they are simply noted.

As a more recent example, Goldberg’s The Design of Innovation: Lessons
from and for Competent Genetic Algorithms (Goldberg, 2002) is guided by
an overarching goal of making genetic and evolutionary search scalable, more
efficient, and “competent.” It is a theoretical work (augmented by numerous
well-chosen experiments), but it is theory that squarely addresses specific is­
sues that manifestly have the ability to advance the field.

207 Producing Human-Competitive Results

5.	 RESEARCH AREAS SUPPORTIVE OF
HUMAN-COMPETITIVE RESULTS

The continuing generation of evermore important human-competitive re­
sults relies on progress in three areas of research: multiobjective optimization,
parallel computing, and the development and perfection of competent genetic
and evolutionary search methods.

First, because the solution to the vast majority of human-competitive prob­
lems involve subtle and complex combinations of competing considerations,
the techniques of multiobjective optimization indexOptimization!multiobjective
(Zitzler, Eckart et al., 2001) are likely to be increasing important in the pursuit
of human-competitive results.

Second, because the solution to human-competitive problems often requires
relatively large expenditures of computational resources, techniques for effi­
cient parallelization (Cantu-Paz, 2000) are likely to be increasing important in
the pursuit of human-competitive results.

Third, most importantly, the recognized deficiencies in current genetic and
evolutionary search methods need to be addressed along the lines set forth in
The Design of Innovation: Lessons from and for Competent Genetic Algo­
rithms (Goldberg, 2002).

6.	 PROMISING APPLICATION AREAS FOR
GENETIC AND EVOLUTIONARY
COMPUTATION

Since its early beginnings, the field of genetic and evolutionary computation
has produced a cornucopia of results.

Methods of genetic and evolutionary computation may be especially pro­
ductive in areas having some or all of the following characteristics:

where the interrelationships among the relevant variables are unknown
or poorly understood (or where it is suspected that the current under­
standing may possibly be wrong),

where finding the size and shape of the ultimate solution to the problem
is a major part of the problem,

where large amounts of primary data requiring examination, classifica­
tion, and integration is accumulating in computer readable form,

where conventional mathematical analysis does not, or cannot, provide
analytic solutions,

where an approximate solution is acceptable (or is the only result that is
ever likely to be obtained), or

208 FRONTIERS OF EVOLUTIONARY COMPUTATION

where small improvements in performance are routinely measured (or
easily measurable) and highly prized.

7. ACKNOWLEDGEMENTS
The authors especially thank David E. Goldberg of the University of Illinois

at Urbana-Champaign for comments that aided in focusing and refining this
chapter and to the editor, Anil Menon, for numerous helpful and perceptive
comments on earlier drafts of this chapter.

REFERENCES

Cantu-Paz, E. (2000). Efficient and Accurate Parallel Genetic Algorithms.
Kluwer Academic Publishers, Boston.

Goldberg, D. E. (2002). The Design of Innovation: Lessons from and for Com­
petent Genetic Algorithms. Kluwer Academic Publishers, Boston.

Holland, J. H. (1975). Adaptation in Natural and Artificial Systems: An Intro­
ductory Analysis with Applications to Biology, Control, and Artificial In­
telligence. University of Michigan Press, Ann Arbor, MI. Second edition.
Cambridge, MA. The MIT Press 1992.

Koza, John R. (1992). Genetic Programming: On the Programming of Com­
puters by Means of Natural Selection. MIT Press, Cambridge, MA.

Koza, John R. (1993). Hierarchical automatic function definition in genetic
programming. In Whitley, D., editor, Foundations of Genetic Algorithms,
volume 2, pages 297–318. Morgan Kaufmann Publishers, San Mateo, CA.

Koza, John R. (1994). Genetic Programming II: Automatic Discovery of
Reusable Programs. MIT Press, Cambridge, MA.

Koza, John R., Bennett III, Forrest, H., Andre, David, and Keane, Martin A.
(1999). Genetic Programming III: Darwinian Invention and Problem Solv­
ing. Morgan Kaufmann, San Francisco, CA.

Koza, John R., Keane, M. A., Streeter, M. J., Mydlowec, W., Yu, J., and Lanza,
G. (2003). Genetic Programming IV: Routine Human-Competitive Machine
Intelligence. Kluwer Academic Publishers.

Samuel, A. L. (1983). AI: Where it has been and where it is going. In Proceed­
ings of the Eighth International Joint Conference on Artificial Intelligence,
pages 1152–1157, Los Altos, CA. Morgan Kaufmann.

Turing, A. M. (1948). Intelligent machinery. Reprinted in Ince, D. C. (editor).
1992. Mechanical Intelligence: Collected Works of A. M. Turing. Amster­
dam: North Holland. Pages 107-127.

Turing, A. M. (1950). Computing machinery and intelligence. Mind, 59:433–
460. Reprinted in Ince, D. C. (editor). 1992. Mechanical Intelligence: Col­
lected Works of A. M. Turing. Amsterdam: North Holland. Pages 133-160.

209 REFERENCES

Zitzler, E., Deb, K., Lothar, T., Coello, Coello, C. A., and David, C., edi­
tors (2001). Evolutionary Multi-Criterion Optimization, First International
Conference, EMO 2001, Zurich, Switzerland. Lecture Notes in Computer
Science. Volume 1993, Springer-Verlag: Berlin, Germany.

This page intentionally left blank

Chapter 10

CASE BASED REASONING

An Evolutionary Computation Perspective

Vivek Balaraman
Artificial Intelligence Group

Tata Research Development & Design Centre, Pune, India

vivekb@pune.tcs.co.in

Abstract	 Case-Based Reasoning (CBR) is the model of human problem solving using
prior experiences (called cases). A case memory is a learning environment
where new cases are being injected, existing cases getting purged and yet others
adapted to fit situations in response to environmental pressures. As experience
accumulates, case memories ideally progress incrementally towards expertise.
At present however there is the lack of a framework to understand the nature
of this progression and how various factors influence it. In this essay, using the
analogy with natural selection, we cast case memories as evolutionary systems
to see whether the perspective affords us any insights. We examine case mem­
ory processes in the light of their evolutionary role and enquire into the nature
of search in evolutionary case memories (ECM). We show that while there are
several unresolved questions, the perspective affords us interesting speculations
and observations. As an extended application of the ECM perspective we exam­
ine whether the evolution of cases can lead to abstract knowledge levels. There
is evidence that experiential knowledge may not suffice to achieve higher levels
of task expertise but may require abstract knowledge structures such as schema.
However, little is currently known about how schema come into existence. We
explore the intriguing possibility that schema may evolve from cases as an evo­
lutionary operation. The essay also raises a number of research problems that
can be attempted by both CBR and Evolutionary System communities.

1. INTRODUCTION
Case-Based Reasoning (CBR) is a computational model of instance based

human problem solving. Derived from Schank’s theory of dynamic memory
(Schank, 1982), CBR has been used with some success in a variety of appli­
cation areas such as call centre resolution (Nguyen et al., 1993), estimation
(Bisio and Malabocchia, 1995), (Gonzalez and Laureano-Ortiz, 1992), experi­

212 FRONTIERS OF EVOLUTIONARY COMPUTATION

ence management (Bergmann et al., 1999a), (Khemani et al., 2002) and cog­
nitive information retrieval (Balaraman et al., 2003). Research has focused
on improving the engineering of the technology by examining facets such as
retrieval algorithms (Borner, 1998), (Chakraborti and Balaraman, 2003), orga­
nization (Burkhard and Lenz, 1996), maintenance (Leake, 1996), (Smyth and
McKenna, 1999) and development methodologies (Bergmann et al., 1999b),
(TRDDC, 2000).

However, an area which needs to be better understood in a case memory
is it’s temporal locus in terms of problem solving ability and how this locus
comes to be as a combination of internal processes and external environmen­
tal effects. Change is a continual presence in case memories. New cases are
injected as previously unencountered experiences, unfit cases get purged and
existing cases are adapted to fit problem situations. Every problem solving in­
teraction may lead to changes in case memory. The changes may be a mere
strengthening of a case’s success factor or weakening of another but over time,
these changes lead at a case level to survival of some cases at the expense of
others and globally to an improvement in the competence of the case memory.
Each process in the case memory also biases the evolution of the case-base.
Because these changes are incremental and the factors that lead to them im­
plicit in the case memory processes, their cumulative influence is not well un­
derstood. A framework is required to understand the nature of change in case
memories and how this affects the behavior of the case memory over time.
Such a framework can also be used to understand the biases and limitations of
current processes and enable the creation of better problem solvers.

In this essay we cast case memories as evolutionary systems to see if this
perspective helps us understand the temporal behavior of a case memory. We
explore the conventional model of case-based systems, recast it to an evolu­
tionary model (which we call Evolutionary Case Memory or ECM) and view
it from this changed perspective. We discuss how this view can help us to un­
derstand the evolutionary role played by each case memory process and while
there are several unresolved questions, yet lead us to interesting observations
and speculations. We also examine the evolution of abstract knowledge struc­
tures (called schemas) from cases. There is evidence that experiential knowl­
edge alone is insufficient to lead to higher levels of expertise and that schemas
are required. There is however little understanding of the process by which
schemas come into existence. We explore schema creation as an evolutionary
exercise over cases. The approach borrows ideas from the very different notion
of schema in genetic algorithms. This discussion too leads to some interesting
insights and open questions that can be taken up for further exploration.

A small caveat. Given the complexity of case memory operation, it would
be unrealistic to expect an exact mapping between the concepts and operators
of evolutionary algorithms and case memories. The analogies are meant to be
interpreted in the spirit of Bunge’s cautious optimism:

213 Case Based Reasoning

“There is no question that analogy can be fruitful in the preliminary exploration
of new scientific territory, by suggesting that the new and the unknown is, in
some respects, like the old and the known. If B behaves like A in certain re­
gards, then it is worthwhile to hypothesize that it does so in other respects as
well. Whether nor not the hypothesis succeeds, we shall have learned some­
thing, while nothing will have been learned if no hypothesis at all had been
formulated…The question is to decide what to stress at a given stage of research:
whether resemblance or difference should be emphasized.” (Bunge, 1968).

Some Clarifications: a) While this essay samples existing work in the very
large space of CBR and EA, it was not intended to be a comprehensive survey
but merely indicative of the work underway. We apologize in advance for any
omissions. b) Literature refers to CBR both as a cognitive principle and it’s
computational implementation. In order to ground the discussion in this essay
we view CBR as a computationally implementable model of a cognitive prin­
ciple. c) While most CBR systems share some characteristics, there are also
several exceptions. As referring to exceptions at each point of the discussion
would lead to the argument getting lost in a morass of conditionals, we omit
such references. Thus, when we refer to CBR systems, it should be taken to
mean typical CBR systems.

2. CASE-BASED REASONING

CBR (Schank and Riesbeck, 1987) is derived from a long sequence of work
by Roger Schank’s group that began with the work on Conceptual Dependency
(CD) (Schank, 1972), moved on to the world of scripts (Schank and Abelson,
1977) and culminated in the theory of dynamic memory (Schank, 1982). The
overall goal was to build automated systems that would be able to ‘understand’
and answer non-trivial queries about textual episodes such as newspaper re­
ports or stories. An interesting sidelight of this sequence is due the fact that
unusually with AI theories, the progression to a new theory was dictated by
experimental evidence that pointed to the cognitive incompleteness of the pre­
ceding theory. Thus deficiencies in CD1 (Schank and Abelson, 1977) prompted
the scripts model, whose limitations in turn(Schank, 1982) led to the Dynamic
Memory (DM) model. CBR may be considered a subset of the DM model fo­
cused on experiential problem solving. Problem solving is modeled as a search
for and application of the best fitting prior instance. Such problem solving us­
ing cases is typical in ill structured domains such as legal reasoning, disaster
management and help desk call resolution (Kolodner, 1993), (ICSR, 1995­
2002). However, while CBR may be most useful in such domains, it has also
found wide applicability in classical AI domains such as estimation, design,
planning and diagnosis (ICSR, 1995-2002).

1The implicit knowledge problem, discussed in further detail in section 5.1.

214 FRONTIERS OF EVOLUTIONARY COMPUTATION

The basic components of current case-based reasoning systems are, the
case-base, a similarity computation engine that maps and aligns a new situ­
ation with the case- base to identify the set of matched cases, the adaptation
engine to transform a retrieved case to fit it to the current problem requirements
and a learning engine that maintains the case-base.

The case-based process of problem solving works as follows (see Figure
10.1). The new problem (called the input case) is compared to the cases in the
case-base by the matching engine. This yields a set of closely matching cases.
This is similar to the cognitive notions of Alignment & Mapping (Forbus et al.,
1991), (Holyoak and Koh, 1987) where the current situation is aligned with
prior knowledge and the aligned features are then mapped to each other for
correspondence. The adaptation engine adapts the retrieved case(s) to fit the
requirements of the input case. The [adapted] cases are then applied to the
problem. This is similar to the cognitive notion of Transfer (Forbus et al.,
1991) where the learning of the past is transferred to understand the current
situation. The learning engine then decides whether the input case is worth
adding to the case-base or whether an existing case is to be updated. The key
engineering aspects of a case-based system are:

1 Case knowledge acquisition: Often the biggest hurdle in developing
knowledge based systems is acquiring the knowledge. While this prob­
lem is considered to be simpler than with more abstract structures such

215 Case Based Reasoning

as rules, it remains a vexing issue (TRDDC, 2000). Raw case knowledge
exists in a variety of unstructured forms and is often incomplete or full
of noise. Converting this to a form that can be reasoned over continues
to be a big problem especially in multi-expert, multi-user scenarios.

2	 Organization of the case-base: The structure of the case-base indicat­
ing how the cases are stored with respect to one another. Case-base
organization has to solve conflicting requirements. From the point of
speed of retrieval, the best organization is each case existing in a sepa­
rate compartment, which guarantees high Precision. However from the
point of view of Recall2, the best organization is all the cases heaped in
one container. Choosing an organization so that these conflicting goals
are maximally satisfied is a challenge.

3	 Representation and indexing of the cases: Representation is concerned
with the structure and content of each case in the case-base. The key
issues in representation are: structure wise it must include all significant
aspects of the actual case and second, content wise the modeling must be
adequate3. Failure in either lead to low precision and recall. Indexing is
the selection of those features of the case that will be used to retrieve the
case. Choice of wrong indexes would lead to the case not being retrieved
when it should and being retrieved when it should not. Index selection
to ensure high precision and recall is again a challenge.

4	 Similarity measure: The similarity measure is the metric that computes
the correspondence between the input case and the cases in the case-
base. The similarity measure is the primary way of assessing the qual­
ity of the case-based system. As with the other parameters, the choice
of the wrong metric would have a direct effect on precision and recall.
Most similarity measures provide an element of parameterization to en­
able tuning of the measure to obtain high precision and recall. The
most common similarity measures are nearest neighbor/distance mea­
sures (Balaraman and Vattam, 1998). For such measures a lot of work
has focused on optimal weight learning(Kolodner, 1993), (Kelly and
Davis, 1991).

5	 Adaptation: The process by which cases are adapted. Adaptation can be
One-case in that a single case is adapted to fit the new situation or Many-
case where the case proposed is synthesized from elements drawn from
several cases (Kolodner, 1993), (Leake, 1996).

2 Precision and Recall are metrics borrowed from Information Retrieval. Precision measures the percentage
of retrieved cases that are relevant while Recall measures the percentage of relevant cases that are retrieved.
3This essentially means choosing the right type.

216 FRONTIERS OF EVOLUTIONARY COMPUTATION

6	 Maintenance: The process by which new cases are added, old cases up­
dated or deleted. Reckless addition of new cases could lead to a large
sized case- base with high redundancy and long retrieval times, while
the other extreme of no addition would lead to a static system that can­
not solve newer problems. The challenge of maintenance therefore is to
ensure that redundancy is reduced while ensuring maximal competence
of the existent cases.

This section has necessarily simplified the issues in case- based reasoning.
Those wanting more information can refer to the introductory books by Schank
and Riesbeck (Schank and Riesbeck, 1987), Kolodner (Kolodner, 1993), newer
books on the subject by Leake (Leake, 1996) and Lenz (Lenz et al., 1998) as
well as the numerous conference proceedings (ICSR, 1995-2002).

3.	 CASE MEMORY AS AN EVOLUTIONARY
SYSTEM

Why should a case memory be viewed as an evolutionary system and what
do we hope to gain from it? There are at systems least four reasons:

Viewing learning as evolution: Case memories are learning, adaptive envi­
ronments which seek over time to maximize their problem solving capabilities
which in experiential memories is usually a function of the case- base size.
This maximization however has to take into account time response demands
which act to limit the growth of the case-base. As a consequence of these
opposing forces, cases in a case memory have to compete for inclusion and
retention. Since the latter decision is based on task performance, cases are
also in competition for retrieval and selection. Thus while case memories are
learning systems, the learning of the new might be at the expense of the old.
There thus appears to be a similarity to evolutionary processes. A reason there­
fore for viewing case memories as evolutionary systems is to model learning
as evolution. This is by no means an isolated perspective. Earlier speculations
such as GA classifiers, Genetic Machine Based Learning systems (Goldberg,
2000) and the Copycat system of Hofstadter have adopted similar perspectives.

To understand the processes of change: As said earlier, there is a lack of a
framework to model or understand the nature of change in case memories and
how this influences the performance of these systems over time. That there
is change is indisputable. But there is no framework within which the rela­
tionship between the factors that drive change in the case-based system, the
changes in the case- base and the performance of the case memory as a whole
can be studied. Casting case memories as evolutionary systems will allow

Case Based Reasoning 217

change to be studied within a framework and with a robust set of formalisms.

To understand biases and limitations: It should not be forgotten that CBR
is still a very nascent technology. Proposed in 1987, CBR has seen intensive
use only over the last decade. Perhaps naturally, the application domains have
tended to be those with an immediate need for such problem solving. Since the
technology has followed the need, current case-base processes may have biases
built into their functioning that are suited for only a certain class of domains.
These as well as limitations may get revealed by casting them in a model where
the cumulative influence of each process on the performance of the whole can
be studied. As an example, case selection strategy tends to be elitist in cur­
rent systems. The best seeming case is applied. But an elitist strategy may
not be right in all domains. There is perhaps a need for studies on the lines of
De Jong’s in function optimization to understand the relation between various
case-base processes and their influence on case memory both at a snapshot in
time and cumulatively over a period.

To open up new possibilities: An improved understanding can lead to im­
provements in the technology which in turn may lead to opening up of new
and interesting application domains.

3.1 A SIMPLE MODEL OF ECM

The model that will be presented below is the case memory process stripped
to it’s bare essentials. We present each process and entity to understand the
plain vanilla process. In the simplest model, there are 3 case memory pro­
cesses, an external environment and the case-base which contains the popula­
tion of cases. We view each interaction with the environment as a generation.
The environment poses a problem to the ECM. GenerateSolution reacts by
proposing a solution to the problem by retrieving similar cases and processing
them to fit the problem. Evaluate gives a decision on whether the solution was
acceptable both in terms of quality and time response and finally Reorganize
modifies the case-base in the light of the decision. We now examine each entity
in the model.

3.1.1 Case-Base. The case-base is the set of cases. We assume
where iseach case in the case-base is the pair is the problem and

the solution. Let be the union of the problem parts of all cases in the case-
base at generation t and the union of all solutions. Then the case-base at
generation t is given as

3.1.2 Environment. The environment poses a set of problems
to the case memory and evaluates the solutions suggested by the case

218 FRONTIERS OF EVOLUTIONARY COMPUTATION

memory. We assume that at the end of each problem solving cycle, the en­

vironment gives it’s decision on two factors, whether the solution worked and
whether the time response was within an assumed performance threshold
The decision may be given as the tuple where is the decision on solu­
tion quality and is the decision on time performance.

3.1.3 Generate Solution. GenerateSolution can be seen as the
sequence of processes Retrieve [Select] [Adapt]. The square parentheses
indicates that the enclosed process is optional.

The Retrieve operator takes a case-base and compares it with the new
problem to yield a set of relevant4 cases. Retrieve :

Relevance is computed in terms of similarity in problem space. A num­
ber of retrieve operators have been proposed among them the nearest neigh-
bor/distance measure, the MAC/FAC model of Forbus (Forbus et al., 1991),
feature counting and template matching.

While Retrieve retrieves the top cases on the basis of problem space
similarity, there could be other considerations to decide the cases that will
actually be selected for application.

Select : acts on the retrieved set and produces a re­
ordered set that gives the suggested order using one or more selection factors.
Sample selection factors are TaskPer formance and SelectionStrategy.

4What relevant means is dictated by the use environment.

Case Based Reasoning 219

Two cases with equivalent similarity scores could vary considerably in their ac­
tual solving ability. TaskPer formance measures the actual utility of a case
in solving problems. A simple task performance measure may be a function
over the number of successes and number of failures. TaskPer formance
takes the cases passed on to it by retrieve and sorts them on problem solving
ability. SelectionStrategy takes the list of cases passed on to it by the preced­
ing processes and decides the actual case(s) which will be passed on to Adapt
or applied on the problem. There could be other selection factors.

Adapt takes the set of selected cases, modifies one or more of them for
applicability and generates the case(s) that will actually be applied to the prob­
lem. Adapt is usually driven by the differences between the input problem and
the set of selected cases suggested by Select and works to modify the cases

as a whole, GenerateSolution :

generates a candidate solution as a response to the problem posed by the envi­

ronment.

Adapt :
i.e. GenerateSolution

to bring them in line with the problem. So seen

3.1.4 Evaluate. Evaluate applies the proposed solution to the
problem posed by the environment. The environment decision tuple
reveals whether the case is successful, not successful in solving the problem
and whether the time performance was acceptable.

3.2 REORGANIZE

At the end of a problem solving cycle, Reorganize : decides
the actions to be carried out on the case memory based on the performance in
terms of success in problem solving and other criteria such as times taken by
retrieval and adaptation. Reorganize translates the feedback from evaluation
to an evolutionary action on the case- base. Some actions based on functions
of current case memories are: add new case, add adapted case, delete case,
modify case, replicate case and modify, purge case-base, restructure case-base,
strengthen case task performance and weaken case task performance. Standard
evolutionary operations like crossover and mutation have also been proposed
(Soh and Tsatsoulis, 2001).

3.3 DISCUSSION
We presented a simple model of an evolutionary case memory. Some obser­

vations based on the model and current case memories.

1 Retrieve applies selective pressure both by commission and omission.
A case is retrieved only if the problem part of the case matches the prob­
lem presented by the environment. A poorly indexed or represented case
will get retrieved when it should not and not retrieved when it should.

220	 FRONTIERS OF EVOLUTIONARY COMPUTATION

Secondly, over time, problem distribution might change. Problem distri­
bution is the relation between new problems and the existing problems
in the case-base. Even a well indexed case might never get retrieved if
no problems arise for which the case is relevant. And finally, if retrieval
time is poor, it might signal a need to purge the case- base of unfit or un­
used cases ((Leake and Wilson, 1999) and (Portinale et al., 1999) may be
referred for a discussion on problem-distribution metrics and forgetting
strategies).

2 TaskPer formance is similar to the notion of Strength discussed in
GA classifiers which is based on the contribution of the classifier to suc­
cessful problem solving. Strength was based on factors like taxes, bid
values and receipts. A minimal model of change in TaskPer formance
would include the current TaskPer formance values of the contribut­
ing cases and the current decision on success or failure. Let be the
performance values of the S cases selected for application in generation

Then TaskPer formanceChange :

3	 SelectionStrategy has some similarities to reproduction strategy in
GAs. ReproductionStrategy decides the individuals that will pass on
their genes to the next generation and biases the search process. Simi­
larly, SelectionStrategy decides the cases that will actually contribute
to solving the current problem and thus biases the problem solving. Cur­
rent CBR systems use an elitist case selection strategy. The N most
similar cases are selected. Since CBR systems can be seen as single
generation problem solvers, where a problem is presented in one part
of the cycle and a solution proposed in another, using the best avail­
able choice may well be the right strategy. Recent work on diversity
conscious retrieval (McSherry, 2002) where cases are selected based on
solution diversity point to the fact that even in the current spectrum of
application domains, different domains require different case selection
strategies. There is a need to study what would be optimum case selec­
tion strategies in different domains and it’s biasing effect on case-base
performance.

4	 Present case-based systems use a number of adaptation techniques, rules,
adaptation formulae, model based adaptation, adaptation cases and even
genetic algorithms (Kolodner, 1993), (Leake, 1996), (Gomez et al., 1999).

5	 Adapt extends the coverage of the case-base but at a cost. With pow­
erful adaptation techniques, even a small sized case-base can handle a
large number of problems enabling minimal retrieval times. However,
adaptation especially using model based techniques can be time con­
suming which might negate the time advantage gained by Retrieve.

221 Case Based Reasoning

Reorganize has to decide whether the adaptation effort is worth the
retrieval time gains or it is better to add the adapted case to the case-base
leading to an increase in retrieval time but reduced adaptation effort for
a similar problem.

6	 At each generation, the solution(s) proposed to Evaluate is a single case
or a very small set of cases. Thus, only a very small subset of the case-
base is evaluated at each cycle.

7 There are 2 processes that lead to change in existing cases, Adapt and
Reorganize. While Reorganize has a direct influence, Adapt plays a
secondary role.

8	 Reorganize leads to incremental changes on the case-base. Unless trig­
gered by factors like need to purge cases, the fraction of cases affected
at each generation are a very small subset of the cases in the case-base.
However, since a case memory is used to solve a wide range of prob­
lems, the cases affected may be a significant percentage of the cases that
are relevant in the current problem context.

9	 Since only a percentage of the cases in the case-base are affected in each
generation ECM may be viewed as evolutionary systems with overlap­
ping populations.

10	 In the simplest scenarios, a case may be added without affecting other
cases. However, workers such as Portinale (Portinale et al., 1999) pro­
pose schemes where for every case to be added, an existing case which
is either of low task performance strength or unused is deleted. This
appears to have some similarity to the niche crowding strategy sug­
gested by de Jong (Goldberg, 2000). Smyth and McKenna (Smyth and
McKenna, 1999) propose coverage checks that will only add cases that
have a different solution coverage as compared to existing cases. The in­
tention in both is to have compact yet maximally competent case- bases.

11	 Reorganize may not just lead to addition, modification and deletion of
cases but also to restructuring of the case-base. The case-base may not be
a flat structure but have a complex organization. Cases may be clustered
around prototypes, organized as a tree or a network. A case indexed
under a wrong prototype would need to get correctly classified. A dense
uncategorized case cluster may signal the need to evolve a higher level
structure. Restructuring can affect both time performance and goodness
of retrieval. Restructure is similar to graph transformation.

12	 Optimizers can be viewed as evolutionary systems where the question
asked by the environment is unchanged at each generation, with the se­
quence of answers leading incrementally to an optima or near optima.

222 FRONTIERS OF EVOLUTIONARY COMPUTATION

On the other hand, in ECM, different generations lead to different ques­
tions being asked. Thus different segments of the population are evalu­
ated or affected in each generation.

13	 While ECM may be evolutionary they are not called on to be optimizers.
The solution proposed in each generation to a question is not an opti­
mal but a workable solution. Current use environments do not demand
optimality but acceptable solutions within a timeframe.

14	 If ECM are evolutionary systems as we assume, then it might be worth
asking whether ECM can simulate optimizers. ECM may be viewed
as optimizers where the same problem is posed repeatedly over succes­
sive generations until the solution is optimal or near optimal (see Fig­
ure 10.3). At each generation, Evaluate would indicate the goodness
of the proposed solution(s).This however calls into question the nature
of search in ECM. Since each generation leads to Adapt proposing an
adapted case to Evaluate, exploration of the search space is depen­
dent upon If we assume that the cases proposed at each generation,

are added to the case-base and the case-base reaches
optima in generation N , optima can be realized only if the sequence of
processes applied successively for N generations on an incrementally
expanding case- base lead to it. It should be noted that Retrieve, Select
and Adapt as implemented by current CBR systems are deterministic.
It would be interesting to ask what form the four major processes should
take to be able to prove that the process will finally lead to optima.

15	 Conversely we can also perhaps understand the need for a memory for
previous solutions if evolutionary systems are asked to produce a work­
able solution within a finite time and for a wide range of problem sit­
uations. While conventional ES may be capable of producing an opti­
mal solution, the time constraint might force them to do 2 things, cut
short the number of generations and examine the seeding and or solu­
tion injection strategy. The memory can thus ‘kick start’ the solution
determination process.

16	 We assumed in the simple model that the processes themselves are static.
I.e. Retrieve, Select, Adapt and Reorganize themselves don’t change
over time. In general, this is not a valid assumption. Each of these pro­
cesses may also change over time. Adaptation knowledge may grow
with time, retrieval parameters such as feature weights and indexes may
change (see section 4.2 for a discussion on Type B systems which op­
timize such parameters) to provide better precision or recall and new
selection strategies may be learnt. Evolution may thus not be restricted
to the world of cases.

223 Case Based Reasoning

Questions and research areas:

[Q1] How do the processes that lead to proposing a solution (Retrieve, Select
and Adapt) individually influence selection pressure and bias the problem
solving process?

[Q2] Are there correlates in evolutionary algorithms to the kind of operations
carried out by reorganize?

[Q3] Conversely, if we restrict Reorganize operations to the set of evolution­
ary operations in EA, where could such an ECM be used? Section 4 suggests
that candidates could be design, configuration and agent based reasoning do­
mains.

[Q4] Current case-based systems use deterministic strategies in their func­
tioning. This may be largely due to the fact that current case-based systems
are largely used as decision aids where the user is interested in the N ‘best’
choices. There could however be domains where deterministic policies might
be ineffective, indeed even counterproductive. There is a need to explore this
possibility from two ends, both by developing non-deterministic correlates to
these operators as well as exploring domains which might need more complex
policies. An example of the latter could be autonomous systems such as agents
which are required to satisfy multiple, possibly conflicting goals by taking a
series of decisions in a possibly adversarial and information incomplete world.

224 FRONTIERS OF EVOLUTIONARY COMPUTATION

[Q5] How would different combinations of Retrieve, Select, Adapt and Re­
organize operators influence effectiveness of problem solving and the growth
in competence of the case-base? Each operation biases the process of problem
solving and consequent change in the case-base in a certain way. If Retrieve*
is the set of possible retrieve operations and similarly Select*, Adapt*,
Evaluate* and Reorganize* are the set of select, adapt, evaluate and re­
organize operators, it would be interesting to study the performance of the
case-base and it’s progress towards expertise with different combinations of
operators. Indeed, probably the biggest gain in viewing case memories as evo­
lutionary systems is to see each process not in isolation but how their cumula­
tive effect over time biases the ECM in a certain direction.

[Q6] How can ECM be made to simulate optimizers? Exploring this question
will allow us to understand the different ways an ECM can explore a search
space. We may also gain insight into how task competence grows in dense
problem distribution spaces. Different choices of arriving at as well as dif­
ferent choice of reorganize operators might realize different search techniques.
Which of them are cognitively valid and also computationally useful is a dif­
ferent problem which also needs study.

This simple model of the ECM has provided a number of interesting obser­
vations as well as areas requiring further exploration. We now take a look at
some previous work on intermingling case-based reasoning and evolutionary
algorithms.

4. HYBRID SYSTEMS
There has already been a fair amount of work on hybrid systems that com­

bine case-based and evolutionary systems. These systems can be characterized
as Loosely Coupled. In Loosely coupled systems, a case-based system oper­
ates on a case-base and carries out case retrieval and incremental maintenance.
Coupled to this is an EA system that operates on an optimization space. Each
system works on a space suited to it’s individual strengths but yet has a com­
plementary problem solver that remedies the weaknesses. We classify loosely
coupled systems into two rough categories: Type A systems use the CBR sys­
tem primarily as a memory and use EA as the optimizer. Given a problem
the CBR system retrieves a set of related cases which are used to seed the EA
system or inject solutions at intermediate stages of evolution of the EA. Type
B systems use the EA mechanism to optimize the parameter settings of a CBR
system. We discuss each in turn.

225 Case Based Reasoning

4.1	 TYPE A - CBR AS A MEMORY, EA AS

THE OPTIMIZER

Evolutionary Algorithms are theoretically robust, i.e. convergence is not
dependent on the distribution of the initial or intermediate populations. While
there is no explicit theoretical dependence of the convergence quality or rate
on the composition of the population, work such as by Louis on combina­
torial logic circuit design (Louis, 2002) show that in practice, choice of dis­
tribution can play a part in speed and quality of convergence. Studies by
Bohm and Geyer-Schulz (Bohm and Geyer-Schulz, 1996) show that there are
biases built into the generation of random populations (that is, random ini­
tialization may not achieve uniform initialization) that affect performance ad­
versely. One solution to improving performance may lie in coupling an EA
system with a CBR system containing prior good solutions (see Figure 10.4).

Louis has used a CBR system to provide
not initial populations but to inject solu­
tions at intermediate stages of evolution.
The resultant system CIGAR consider­
ably outperformed a system using ran­
dom population initialization and injec­
tion. Since the CBR system is also used
to store solutions generated by the EA
system, the CIGAR system as a whole
is a learning system whose performance
improves over time. As Louis puts it,
“These performance gains imply that
fewer evaluations are required to reach
a certain design quality and the orga­
nization deploying this system builds a
knowledge base of cases.” Perez (Perez
et al., 2001) have also used a CBR cou­
pled to a GA for combinatorial logic de­

sign. This work’s interest lies in their combining CBR and GA in two ways:
CBR is used to provide seed populations to the GA mechanism as in CIGAR.
Additionally, cases are also mined to extract highly fit building blocks that oc­
cur across a set of cases. We will return to this latter aspect in section 5.3.1.
Another interesting system is by Soh and Tsatsoulis (Son and Tsatsoulis, 2001)
who use a GA to seed and maintain a case-base. The domain is agent based re­
source scheduling and goal satisfaction. Agents negotiate with one another for
access to shared resources to best satisfy global or local goals. Cases are nego­
tiation strategies that an agent uses either for initiating a request or responding
to a request. The GA component maintains a case evolution trace in the form of

226 FRONTIERS OF EVOLUTIONARY COMPUTATION

a hierarchy. Cases evolve in the hierarchy based on intrinsic and environmental
fitness. Unique and fit cases are promoted to the case memory. The GA acts
like a case nursery and the CBR environment as the test bed to test the utility
of cases so produced. Cases found to have low utility are removed from the
case memory but retained in the hierarchy since under different environmental
situations they might become useful again.

From a CBR perspective, EA are seen as optimizers of solutions in a CBR
system. Since CBR systems make no claim to optimality of solutions stored
in the system, an EA system can be used to combine one or more sub-optimal
cases to create optimal or near optimal solutions. Thus an EA system can also
be considered to be a multi-case adaptation mechanism as the final solution
could have elements from multiple cases. An illustrative example is the work
by De Silva and Maher (Gomez et al., 1999) who use a Genetic Algorithm to
optimally design an architecture that conforms to Feng Shui principles. The
work can be seen either as a GA system using cases to provide initial popula­
tions or a rare case-based system that can use a GA as a multi-case adaptation
mechanism. Viewed as the latter, parametric adaptation of cases is achieved
through mutation and structural adaptation through crossover.

4.2	 TYPE B - EA AS CBR SYSTEM

PARAMETER OPTIMIZERS

CBR systems are typically used in ill
structured, ill bounded domains where
finding any solution is considered good.
Optimality of solution is not a criterion.
A domain that illustrates these charac­
teristics is problem resolution in call
centers and help-desks (Nguyen et al.,
1993). Metrics are often simply whether
or not the problem was solved. Solu­
tions also tend to be textual making it
difficult to assess goodness without ex­
tensive semantic analysis.

EA on the other hand are applied in
hard well bounded domains such as op­
timization in engineering or manufactur­
ing. Such domains have 2 important
characteristics, viz., solutions or solu­

tion parameters are expressible in enumerated or quantitative terms and sec­
ond, solutions can be objectively measured for their goodness using formal
functions (such as an objective or fitness function). These functions can a pri­

Case Based Reasoning 227

ori accurately determine the effectiveness of a solution without actually trying
it out. Such functions are difficult to specify in CBR application domains. The
exception to this are CBR applications in domains like configuration or design,
an example of which we examined earlier (Gomez et al., 1999).

Thus, use of EA by the CBR community has been largely focused on im­
proving the Quantifiable aspects of case- based systems (see Figure 10.5).
These are usually the weights or “importances” of case features and the se­
lection of the best indexes. The much referenced Kelly and Davis (Kelly and
Davis, 1991) was the first to discuss how a GA could be used to decide on
feature weights5 of a CBR system. Shin and Han (Shin and Han, 1999) use a
GA to decide on the best indexing features for a case-based system for stock
market prediction. An EA approach is feasible because the parameters to be
optimized (presence or absence of a feature as an index, the feature weights for
a KNN type similarity measure) can be expressed as an enumeration, a binary
value or a numeric.

4.3 DISCUSSION
The following observations can be made:

1 A significant difference between ECM and systems such as CIGAR is
the fact that in ECM, the case memory itself is modeled as an evolution­
ary process while in most Type A systems, the CBR component serves
merely as a store house of cases and the GA component does the bulk of
the processing. While CIGAR’s GA component does store intermediate
solutions in the case memory and similarly requests cases for injection,
the interaction between the two components is intermittent and not cyclic
as in ECM. The extreme situation may be where the CBR component
provides merely the initial seed to the GA component and there is no
further interaction until the latter has finished cranking out the optima.

2 From an ECM perspective the system proposed by Soh can be viewed as
Retrieve, Select, Adapt and Evaluate being carried out by the CBR
component and Reorganize by the GA component. Classical evolu­
tionary operators like crossover and mutation are used to evolve new
cases in contrast to most CBR systems. In a sense, the functionality of
the ECM as proposed in the earlier section may be said to be realized in
this implementation. The system as a whole evolves incrementally and
grows in competence over time.

3 The Soh system discusses a number of operations that change the case-
base in evolutionary terms such as Evolutionary Incompatibility that is

5Good feature weights lead to good precision and recall.

228 FRONTIERS OF EVOLUTIONARY COMPUTATION

in effect a case forgetting strategy based on case utility, Evolutionary
Enhancement that seeks to compensate for changing problem distribu­
tion, Evolutionary Refinement that is a form of case replication with
modification and Evolutionary Breakthrough that discusses how new
cases are handled and propagated. It is interesting that many of the op­
erations briefly listed under Reorganize can be recast as evolutionary
operations.

4	 The system proposed by de Silva and Maher can be viewed as Retrieve
being carried out by the CBR component and Adapt by the GA compo­
nent. However, Adapt is in effect an optimizer which bundles Evaluate
within it’s cycle. There is no indication whether the system has a
Reorganize component to learn new designs.

5	 If the case-base stores the optimized or near optimized solutions gen­
erated by the EA solver in Type A systems, an issue may be lack of
divergence in the stored cases for a class of problems. The cases may be
clustered in a single region which used as seeds might lead to quick but
sub-optimal convergence. While this problem has been recognized and
handled by Louis (Louis, 2002) it may be beneficial to refer to CBR work
on a similar theme. There has been a lot of recent attention on Diversity-
conscious retrieval(McSherry, 2002), (Bradley and Smyth, 2001). These
approaches lead to the CBR system recommending cases that are max­
imally diverse but similarity preserving. Type A systems might benefit
from experimenting with these approaches. Alternately, at the time of
adding cases to the case-base for a given problem context, a diversity
check among the solutions of the candidates for addition may be made.
Only cases whose solutions have a minimum diversity may be added.

Based on our discussion on ECM, some questions and areas requiring further
exploration:

[Q7] While we have given rough mappings between different Type A systems
and ECM, it will be interesting to study how hybrid CBR and EA operations
as seen in Type A systems can be equivalently realized within the framework
of ECM.

[Q8] What changes would need to be made to the ECM model to realize Type
B operations? We assumed in the discussion on ECM that the processes them­
selves are static and don’t change over time.

Case Based Reasoning 229

5. EVOLVING HIGHER LEVELS
The ECM model presented in section 3 only discussed experiential knowl­

edge or cases. But there is considerable evidence that human problem solving
uses a number of non-instance knowledge structures such as rules or schema.
But where do rules or schema originate? While there could well be hard coded
schema templates for certain cognitive tasks like language acquisition, it is too
much to expect such templates to exist for tasks like eating at a restaurant or
opening a bank account. Occam’s Razor indicates that experiences being the
most common knowledge currency, higher level structures could be abstrac­
tions over cases. In this section, we explore how higher level structures can be
viewed as an evolution over cases. But before we delve into that, we take a
look at what higher level structures are and the role they play in cognition and
human problem solving.

5.1 SCHEMAS

How is human knowledge organized? Early workers such as Bartlett con­
jectured knowledge only as abstract prototypical structures called schema and
disallowed instance based problem solving(Brewer, 2000). However, as re­
ported by Smith (Smith et al., 1992), a number of current cognitive theories
organize their functioning purely on the basis of experiences with the hypoth­
esis that abstract structures are implicit in a collection of experiences and no
explicit higher level structures are required. However, neither extreme of pure
schema or pure instance appears tenable in the face of cognitive evidence.

Medin and Ross (Medin and Ross, 1989) have surveyed and presented ev­
idence of instance based human problem solving. Similarly Smith, Langston
and Nisbett (Smith et al., 1992) presented 8 criteria to decide whether abstract
structures such as rules are used in human reasoning and showed that these
criteria are met by cognitive evidence. Others such as Neisser (Neisser, 1976),
Mero (Laszlo, 1990) have presented arguments to demonstrate that understand­
ing is closely related to having abstract cognitive structures which they have
labeled schema.

Correspondingly, in Artificial Intelligence, computational modes of prob­
lem solving consist in essence of case-based reasoning (Schank and Riesbeck,
1987), (Kolodner, 1993), the ubiquitous rule based reasoning and script/frame
based/model based reasoning (Schank and Abelson, 1977), (Minsky, 1981).

There is thus support from direct cognitive evidence as well as support­
ing evidence in the form of computational intelligence theories that problem
solving exists at multiple levels of reasoning and representation. So what are
schema? A schema can be defined as an abstract structure that contains knowl­
edge of prototypical objects or processes encountered in common experience.
The notion of schema was first discussed by Bartlett in his classic, Remem­

230 FRONTIERS OF EVOLUTIONARY COMPUTATION

bering (Bartlett, 1932). Bartlett hypothesized that understanding was based on
existing knowledge structures possessed by humans which he labeled Schema.
While the pure schema theory favored by Bartlett conjectured that knowledge
existed only in the form of schema, more relaxed theories allow individual ex­
periences to be stored under a more general schema (Brewer, 2000). Example
schemas are: Racing-Car-Schema, Fast-Food-Restaurant-Schema, Withdraw-
Money-From-ATM-Schema, Traveling-By-Bus-Schema. Each of these would
describe the structure of the object or the process of which they are prototypes.

The idea of schema has subsequently found support among numerous work­
ers in cognitive science and artificial intelligence. Though there are slight dif­
ferences Schema are also called cognitive schemata, scripts and frames (Min-
sky, 1981),(Carlos, 1997). It is interesting to note that Rich and Waters in
their work on automating program development (Rich and Waters, 1990) con­
jecture template knowledge structures called Clichés. Given a problem, they
hypothesized that experienced programmers do not code from first principles
but instead compose the solution using ‘chunks’ of commonly used program
fragments labeled Clichés. Clichés seem to be merely another form of schema.

Schank’s work provides a good illustration both of the nature of episodic
schema (called scripts) and the need for such structures. Schank’s earlier the­
ory of Conceptual Dependency (Schank, 1972) proved unable to handle the
problem of implicit knowledge. Conceptual Dependency or CD was based on
the idea of having a semantic representation of text removed from the syntax.
CD modeled sentences using a core set of primitives called Actions. Each
action was a graphical frame with slots. Understanding was viewed as a slot
filling exercise with the unfilled slots of one sentence leading to expectations
of the information to come. While CD was successful in certain classes of
language to language translation, the main goal namely, understanding proved
elusive.

To explain the problem in CD, let us look at the following sentence: John
got on a bus and alighted at his destination.

A natural language understanding system must on the basis of this one sen­
tence be able to answer questions such as: What is a bus?, Why did John get
into the bus?, What did John do in the bus? and Why did John get off the bus?

These questions can be answered only by the use of knowledge outside the
information communicated in the sentence. Since CD lacked such external
knowledge, it was unable to simulate the understanding process. This lacu­
nae in the CD theory led Schank to conjecture about knowledge structures
called scripts (Schank and Abelson, 1977). A script was a pattern describing a
commonly occurring episode. Thus a script Traveling-by-bus might have the
following ordered sub-events: Wait for the bus, Get on the bus, Calculate fare
from entry point to destination, Pay fare, Sit if seats are available and Alight at
destination. In addition to the sub-events in the script, the script also contained

Case Based Reasoning	 231

information such as pre-conditions for script application, the roles of different
entities in the script, the objects (called props) that figure in the script and the
expected post-condition after script application.

With such a script, the understanding system could now answer some of
the questions listed above. In essence, the schema, script theory and their
derivations argue that understanding and task expertise is based on a wealth
of knowledge structures at different levels. At the bottom are the individual
experiences or episodes and at higher levels are schema like structures.

5.2	 A BRIEF ASIDE ON LEVELS OF

HIGHER EXPERTISE

Studies of chess players (Charness, 1981), (Reynolds, 1982) and nursing
professionals (Dreyfus and Dreyfus, 1986) show that there appear to be a well
graded path to expertise. The accumulation of mere experience does not lead
to expertise. While some argue that there are five levels of expertise and others
four, there appears to be agreement that expertise acquisition is not a linear
process but can be quantized into levels. Mero (Laszlo, 1990) for example,
characterizes expertise into 4 levels:

1 Beginner: Recently introduced to the task. Equivalent to a chess player
who just knows the legal moves.

2	 Advanced student: Has some task competence. Equivalent to 1 year of
experience and learning in the task.

3	 Candidate master: Has graduated to a level of excellence. Equivalent to
anywhere between 3 to 5 years of experience and learning in the task.
It also appears from studies of chess players that the level of candidate
master is the maximum level to which knowledge explication is possible.
Knowledge beyond this level has been difficult to extract and encode.

4	 Grandmaster: The highest level and while competence at this level is not
time dependent, might require around 10 years.

The path from beginner to grandmaster also appears to involve two processes
(Laszlo, 1990):

1 Increase in the number of schemata: As expertise builds up, the number
of schemata increase. Estimates indicate that a beginner has less than
100 schemata, an advanced learner less than 1000, a candidate master
about 5000 and a grandmaster about 50,000.

2	 Evolution of very complex schemata: In addition to the increase in the
schemata, the schemata possessed also appear to grow tremendously in

232 FRONTIERS OF EVOLUTIONARY COMPUTATION

complexity. Thus a schema of a beginner in chess might have an in­
terpretation of a few positions. A schema at the level of a grandmas­
ter might involve numerous interpretations, reference hundreds of actual
games (especially master and higher level games) and winning strate­
gies. Grandmaster schemata also appear to possess intriguing properties
such as tangled hierarchies which Mero dramatically likens to the seem­
ing impossibility of Eicher’s pictures and Bach’s fugues.

Thus not only do the number of abstract structures increase but so does their
structural and content complexity. The point of this digression has been to
show both the existence of quantized higher levels as well as their complexity.
In this essay, we assume there is a single higher level that indexes or subsumes
a set of experiences.

5.3	 TOWARDS MEMORY BASED
REASONING

The most common knowledge currency are experiences, the events encoun­
tered in the course of navigating the world. CBR as we have seen is problem
solving purely through use of this world. However, the preceding sections in­
dicate that expertise requires a combination of experiences and schema like
structures (except possibly in chaotic domains where all knowledge is expe­
riential). The question is, “How do abstract knowledge levels come to be?.”
While the computational world has solutions in the form of induction algo­
rithms such as ID3 (Quinlan, 1986) and C4.5 (Quinlan, 1993) which given a
set of cases would churn out a corresponding set of rules, our concern is to
remain true where possible to the cognitive continuum where cases might lead
to schema and new cases are in turn indexed under existing schema with both
processes leading to incremental modifications of each level (see Figure 10.6).
In section 3 we explored the ECM model which discusses case memories as

evolutionary systems. We saw how various processes act as selective pres­

sures and lead to incremental evolution in the case-base. There is however no

reason why evolution should be restricted to the world of cases. In the discus­

233 Case Based Reasoning

sion on Restructure in section 3.3 we discussed the notion that a dense set of
cases might require a higher level structure for better differentiability. But how
will such a structure come into existence? In the next section we explore the
idea that even schema creation can be viewed as an evolutionary exercise over
cases. This approach borrows ideas from the very different notion of schemas
in genetic algorithms.

5.3.1 C-Schemas as Building Blocks. A schema in genetic
algorithms is a very different beast from the schema discussed in the preceding
sections. A schema as defined by Goldberg (Goldberg, 2000), is, “a similarity
template describing a subset of strings with similarities at certain string po­
sitions.” To distinguish the two we henceforth call the Cognitive Schema as
C- Schema and the Genetic algorithm schema as G-Schema. The notion of
a G-Schema was introduced to explain why the seemingly random processes
of genetic algorithms yet lead to effectiveness in problem solving. As Gold­
berg put it, “Just as a child creates magnificent fortresses through the arrange­
ment of simple blocks of wood, so does a genetic algorithm seek near optimal
performance through the juxtaposition of short, low order, high performance
schemata or building blocks.” The assumption in the Building Block Hypothe­
ses (BBH) as it has been labeled is that as the population moves towards higher
and higher fitness levels, highly fit gene sequences emerge that can be found
in increasing frequencies in the population. Genetic algorithms work, it was
argued, because of this process of agglomeration of highly fit blocks. While
there have been no unconditional proofs of the BBH, it yet gives a plausible
and intuitively appealing reason for the effectiveness of the technique.

We are interested in how C-Schemas emerge from experiences. C-Schemas
as we discussed in the previous section are higher level knowledge structures.
The direction we explore takes two ideas from Evolutionary Algorithms. The
first is to define C-Schemas as abstract patterns operating over cases much as
G-Schemas are abstractions over individual chromosomes. The second is to
model generation of C-Schemas from cases as an evolutionary process. Let

where, and

In other words, we define each case as a bit string. Define the set of C-Schemas,

where, and

We assume that experiences are encoded as bit strings. Each C-Schema is a
pattern based on the ternary alphabet of [0,1, *] that subsumes a set of experi­
ences much like G- Schemas are defined. However, while G-Schemas are im­

234 FRONTIERS OF EVOLUTIONARY COMPUTATION

plicit in the population, C-Schemas are assumed to be explicit structures. Thus
the C-Schema 101 * *011 would subsume the cases {10111011, 10101011}.

In this view, as cases accumulate, C-Schema emerge as highly fit patterns
or building blocks that subsume and index a set of related cases. Unlike G-

NSchemas which in a population of chromosome strings, exist in the order
of where is the string length, C-Schemas being highly recurrent
abstract patterns are assumed to be far fewer than the number of cases. This is
because cognitively, C-Schemas may assist in 2 ways, first by improving speed
of top-down retrieval as search can begin at the level of C-Schemas which
being fewer than experiences would be easier to process and secondly as a
means of organization of memory, where abstract structures act as preliminary
filters and index experiences which can provide the fine grain processing. An
interesting perspective borrowed from G-Schemas is to consider C- Schemas
as sampling the solution space. When a C- Schema is explored, it can be said
to simultaneously explore a number of potential solutions. From this point of
view too, C-Schemas can be seen as preventing exhaustive search among fine
grained knowledge by acting as a preliminary filter.

A C-Schema is a highly fit pattern. But what does fitness mean in this sce­
nario? We hypothesize that the fitness of a C-Schema is based on the following
2 considerations:

1 Genericity: A fit C-Schema should be able to maximally subsume ex­
isting cases. I.e. Fewer the schema the better. This is Genericity, or to
use GA terminology, short order C-Schema. More the abstraction, better
the C-Schema.

2	 Utility: A general C-Schema is useless if the C- Schema is not useful in
actual problem solving. Thus the second factor that makes a fit schema
is Utility, being able to solve the problems it faces, in other words our
old friend, TaskPer formance. The task performance of a C-Schema
may be derived either using the same principles used to derive task per­
formances of an individual case or it can be based on the average task
performance of the cases it subsumes.

These are conflicting considerations. The Genericity factor would drive the
evolution towards very general C-Schemas while the Utility factor would drive
the evolution towards very specific schemas in the regions of maximal task
performance. If the fitness function is chosen carefully, this would lead at the
end to a set of C-Schemas that provide adequate coverage and are yet effective.

Let be the set of cases in the case-base. Let
be the set of C-Schemas. Associated with each

C-schema is a set defined as the set of cases in the case-base subsumed
by That is,

235 Case Based Reasoning

The utility of a C-Schema is defined as the average over the task perfor­
mances of the set of cases subsumed by the C-Schema. That is,

The fitness of a C-Schema is a function over its generality and utility. That is,

Once the fitness is calculated for each C-schema the evolutionary selection
operator is applied on the current to generate the next

The evolutionary process begins with a set of cases, and uses operators
to propose candidate C-Schema. fitness of these C-Schema are then evaluated
and new populations generated using the operators which process continues
until the set of C-Schemas realized have reached a threshold fitness level. We
now give 2 hypotheses:

Hypothesis A: In domains where a few general principles are operational over
a wide number of experiences, we might expect that the evolutionary process
would lead to a small number of short order C-Schema.

Hypothesis B: In domains where the specific context of the problem solving
affects the quality of solution, there are likely to be a number of high order
C-Schema.

We point to an interesting work by Perez, Coello Coello and Aguirre (Perez
et al., 2001) on extracting design patterns from cases in combinatorial logic
design. Part of this work has been discussed in section 4.1. However, besides
using cases to inject solutions into the population, the cases are also used to
deduce highly fit building blocks. Information was stored on each individual
in a GA population and data collected over several generations. This set of in­
dividuals was treated as a case-base and a tree clustering algorithm generated a
tree where each leaf node is a case. Higher level nodes obviously are abstrac­
tions over the leaf nodes under them. In terms of our model, each higher level
node is a C-Schema that subsumes the set of cases beneath. Nodes close to the
leaves will obviously be high order C-Schema and those higher up lower order.
We had stated in Hypotheses A that domains where a few general principles
can subsume all experiences should lead at the end of the evolutionary process
to a small number of short order C-Schema. Perez’s work confirms this intu­
ition. The highly fit building blocks when analyzed were found to implicitly
represent De Morgan’s laws, the commutative law and the distributive law.

As far as we are aware, little is known about how schema or higher structures
actually evolve from experiences. We feel the main use of using an evolution­

236 FRONTIERS OF EVOLUTIONARY COMPUTATION

ary approach to C- Schema generation is to cast the problem in a different light,
within a different framework and moreover a robust formal framework. From
the CBR community perspective, viewing the dynamism of human memory
as an evolutionary operation may enable questions to be framed in a problem
solving universe with the potential to provide interesting insights as has hope­
fully been demonstrated here. While Perez’s work was not aimed at memory
modeling, it showed that Hypotheses A and B might be testable and moreover
that interesting and even non- intuitive higher level structures can be realized.

The approach throws up several interesting problems, such as:

[Q9] How should case knowledge and schema knowledge be encoded? While
we have used bit strings to illustrate the approach, there is every likelihood that
different encodings will be required.

[Q10] The ECM framework views evolution in case memories as incremental.
By the same token, the evolution of C-Schemas from cases should also be an
incremental operation rather than occurring in a flurry. What evolutionary op­
erators ? should be used?

[Q11] What form should the fitness function F take?

[Q12] Can Hypotheses A and B be confirmed?

[Q13] If the operation of evolving schemas from cases is to be added to the
ECM model, how will operations like Reorganize and Retrieve change, one
to create such higher level structures and the other to reason over them?

[Q14] What case representations will enable similarity based reasoning as well
as play their part in an evolution mechanism?

[Q15] How can this approach be enriched to enable the generation of the levels
of expertise discussed in section 5.2? The current approach merely discusses
how a C-Schema can be an abstraction over cases. The preceding sections
however pointed to a growth both in number and complexity of C-Schema as
expertise increases.

[Q16] How will C-Schema index cases? What should be the organization of
a case-base that includes both C-Schema and cases? Since cases also evolve,
how will the indexing change over time?

237 REFERENCES

6. CONCLUSIONS

Computational models of human memory while mere approximations of
the original are also complex in their own right. Just as we become increas­
ingly competent at tasks over time, progressing from the level of beginner to
increased levels of expertise, so do computational models seek to progress to­
wards increased expertise with time. But how do case memories progress to­
wards expertise and how do the various case memory processes guide it in it’s
quest? We felt that this question needed to be better understood. To answer the
question, we cast case memories as evolutionary systems to focus attention on
the nature of change in case memories. The essay can be seen as a beginning
attempt to get to grips with this difficult problem. It has led us to some inter­
esting observations and a number of questions which, if addressed may lead to
better clarity. We further extended the field of enquiry to look not just at the
case world but into the even mistier higher world of schema. Here again, an
evolutionary approach to understand how schema can be created from cases
lead us to some interesting insights and a number of open questions.

Are case memories evolutionary systems? In his critique of the Sociobiol­
ogy program, Richard Lewontin warned against the urge to “Darwinize” phe­
nomena.

“Darwin’s theory of evolution by means of natural selection is an extremely
powerful explanatory device ... I shall call this practice of providing an ad hoc
Darwinian explanation for any phenomenon, Darwinizing, by analogy with ‘har­
monizing’ in which facile harmonies are built spontaneously around a theme for
the sake of a few moment’s enjoyment.” (Lewontin, 1976).

Is this essay therefore an attempt to Darwinize case-based reasoning? We have
argued why the analogy not only makes sense but is also useful. It may even be
necessary. We believe that models such as the Evolutionary Case Memory are
required not only to understand the process of incremental movement towards
expertise but to provide a sound basis to progress to the next generation of case
based problem solvers.

ACKNOWLEDGEMENTS

Anil Menon for convincing me to write the essay, the patience to wait for
it and many useful comments. Swaroop Vattam, Sutanu Chakraborti, Deepak
Khemani for useful comments. Lakshmi Ramamurthy for reviews and much
else besides.

REFERENCES

Balaraman, V., Chakraborti, S., and Khemani, D. (2003). Knowledge light data
heavy systems: Trawlers and locators. (Under Review).

238 FRONTIERS OF EVOLUTIONARY COMPUTATION

Balaraman, V. and Vattam, S. (1998). Finding common ground in case based
systems. In Sasikumar, M., Durgesh, R., Praksah, P. R., and Ramani, S.,
editors, Proceedings of the International Conference on Knowledge Based
Systems, India, pages 25–37.

Bartlett, F. (1932). Remembering. Cambridge University Press.
Bergmann, R., Breen, S., Goker, M., Manago, M., and Wess, S. (1999a). Devel­

oping Industrial Case-Based Reasoning Applications: The INRECA Method­
ology, volume 1612 of Lecture Notes in Artificial Intelligence. Springer Ver­
lag, Berlin.

Bergmann, R., Breen, S., Goker, M., Manago, M., and Wess, S. (1999b). Devel­
oping Industrial Case-Based Reasoning Applications: The INRECA Method­
ology, volume 1612 of Lecture Notes in Artificial Intelligence. Springer Ver­
lag, Berlin.

Bisio, R. and Malabocchia, A. (1995). Cost estimation of software projects
through case-based reasoning. In Veleso, M. and Aamodt, A., editors, Pro­
ceedings of First International Conference on CBR, ICCBR-95, pages 11–
22. Springer.

Bohm, W. and Geyer-Schulz, A. (1996). Exact uniform initialization for ge­
netic programming. In Belew, R. K. and Vose, M. D., editors, Foundations
of Genetic Algorithms IV, pages 379–407, San Francisco, California, USA.
Morgan Kaufmann.

Borner, K. (1998). Cbr for design. In Lenz, M., Bartsch-Sporl, B., Burkhard,
H.-D., and Wess, S., editors, Case Based Reasoning Technology, volume
1400 of Lecture Notes in Artificial Intelligence, pages 201–233. Springer-
Verlag, Berlin.

Bradley, K. and Smyth, B. (2001). Improving recommendation diversity. In
Proceedings of the Twelfth Irish Conference on Artificial Intelligence and
Cognitive Science, Maynooth, Ireland, pages 85–94.

Brewer, W. (2000). Bartlett’s concept of the schema and its impact on theo­
ries of knowledge representation in contemporary cognitive psychology. In
Saito, A., editor, Bartlett, Culture and Cognition, pages 69–89. Psychology
Press.

Bunge, M. (1968). Analogy in quantum theory: From insight to nonsense. The
British Journal for the Philosophy of Science, 18(4):265–286.

Burkhard, H.-D. and Lenz, M. (1996). Case retrieval nets: Basic ideas and ex­
tensions. In Burkhard, H.-D. and Lenz, M., editors, Fourth German Work­
shop on Case-Based Reasoning: System Development and Evaluation, vol­
ume 55 of Informatik-Berichte, pages 103–110. Berlin.

Carlos, R. (1997). Schemata, frames and dynamic memory structures. Techni­
cal Report 7-97, University of Kent at Canterbury, United Kingdom.

Chakraborti, S. and Balaraman, V. (2003). A fast algorithm for pruning of
search spaces in retrieval over very large case bases. (Under Review).

REFERENCES 239

Charness, N. (1981). Search in chess: Age and skill differences. Journal of
experimental psychology, 7:467–476.

Dreyfus, H. and Dreyfus, S. (1986). Mind over Machine. The Free Press.
Forbus, K., Gentner, D., and Law, K. (1991). MAC/FAC: a model of similarity

based retrieval. Cognitive Science, 19(2): 141–205.
Goldberg, D. E. (2000). Genetic Algorithm in Search, Optimization & Machine

Learning. Addison Wesley.
Gomez, d., Garza, A., and Maher, M. L. (1999). An evolutionary approach to

case adaptation. In Case based reasoning research and applications, Third
international conference on case-based reasoning, pages 167–172, Berlin.
Springer-Verlag.

Gonzalez, A. J. and Laureano-Ortiz, R. (1992). A case-based reasoning ap­
proach to real estate property appraisal. Expert systems with Applications,
4(2):229–246.

Holyoak, K. J. and Koh, K. (1987). Surface and structural similarity in analog­
ical transfer. Memory and Cognition, 15:332–340.

ICSR (1995-2002). International conferences on case-based reasoning ICCBR
-1995 to 2002.

Kelly, J. D. and Davis, L. (1991). Hybridizing the genetic algorithm and the
k-nearest neighbors classification algorithm. In Proceedings of the fourth
international conference on genetic algorithms, pages 377–383, San Diego,
CA. Morgan Kauffmann.

Khemani, D., Selvamani, R. B., Dhar, A. R., and Michael, S. (2002). Infofrax:
Cbr in fused cased refractory manufacture. In Craw, S. and Preece, A. D.,
editors, Proceedings of the 6th European Conference on Case-Based Rea­
soning (ECCBR) 2002, volume 2416 of Lecture Notes in Artificial Intelli­
gence, pages 560–574. Springer-Verlag.

Kolodner, J. (1993). Case-based reasoning. Morgan Kauffmann, San Mateo,
CA.

Laszlo, M. (1990). Ways of thinking. World Scientific Publishing Co., Singa­
pore.

Leake, D. (1996). Case Based Reasoning: Experiences, Lessons & Future Di­
rections. AAAI Press/MIT Press, Boston.

Leake, D. and Wilson, D. (1999). When experience is wrong: Examining cbr
for changing tasks and environments. In Althoff, D., Bergmann, R., and
Branting, K., editors, Proceedings of the Third International Conference on
Case-Based Reasoning, volume 1650 of Lecture Notes in Artificial Intelli­
gence, pages 218–232. Springer-Verlag.

Lenz, M., Bartsch-Spoerl, B., D., B. H., and Wess, S. (1998). Case Based
Reasoning Technology: From Foundations to Applications. Springer-Verlag,
Berlin.

240 FRONTIERS OF EVOLUTIONARY COMPUTATION

Lewontin, R. C. (1976). Sociobiology - a caricature of darwinism. Proceedings
of the Biennial Meeting of the Philosophy of Science Association, 2:22–31.

Louis, S. (2002). Genetic learning for combinational logic design. In et. al.,
W. B. L., editor, Proceedings of the Genetic and Evolutionary Computation
Conference, (GECCO’2002) Workshop on Approximation and Learning in
Evolutionary Computing, pages 21–26, San Francisco, CA. Morgan Kauf­
mann.

McSherry, D. (2002). Diversity-conscious retrieval. In Craw, S. and Preece,
A. D., editors, Proceedings of the 6th European Conference on Case-Based
Reasoning (ECCBR) 2002, volume 2416 of Lecture Notes in Artificial Intel­
ligence, pages 218–233. Springer-Verlag.

Medin, D. L. and Ross, B. H. (1989). The specific character of abstract thought:
Categorization, problem solving and induction. In Sternberg, R. J., editor,
Advances in the psychology of human intelligence, volume 5. Lawrence Erl­
baum, Hillsdale, N. J.

Minsky, M. (1981). A framework for representing knowledge. In Haugeland,
J., editor, Mind design - Philosophy, Psychology, Artificial Intelligence, pages
95–128. MIT Press, Cambridge, MA.

Neisser, U. (1976). Cognition and reality. Freeman Publishers.
Nguyen, T., Czerwinski, M., and Lee, D. (1993). Compaq Quicksource - pro­

viding the consumer with the power of AI. AI Magazine, 14(3):50–60.
Perez, E. I., Coello, Coello, C. A., and Aguirre, A. H. (2001). Extracting and

reusing design patterns from genetic algorithms using case-based reasoning.
In Y. Liu et. al., editor, Evolvable Systems: From Biology to Hardware (ICES
2001), volume 2210 of Lecture Notes in Computer Science, pages 244–255.
Springer-Verlag.

Portinale, L., Torasso, P., and Tavano, P. (1999). Speed-up, quality and com­
petence in multi-modal case-based reasoning. In Althoff, D., Bergmann, R.,
and Branting, K., editors, Proceedings of the Third International Confer­
ence on Case-Based Reasoning, volume 1650 of Lecture Notes in Artificial
Intelligence, pages 303–317. Springer-Verlag.

Quinlan, J. R. (1986). Induction from decision trees. Machine Learning, 1(1):
81–106.

Quinlan, J. R. (1993). C4.5: Programs that Learn. Morgan Kaufmann, San
Mateo.

Reynolds, R. I. (1982). Search heuristics of chess players of different calibers.
American journal of psychology, 95:383–392.

Rich, C. and Waters, R. C. (1990). The Programmer’s Apprentice. ACM Press.
Schank, R. (1972). Conceptual dependency: A theory of natural language un­

derstanding. Cognitive Psychology, 3:552–631.
Schank, R. (1982). Dynamic memory: A theory of reminding and learning in

computers and people. Cambridge University Press, Cambridge, MA.

241 REFERENCES

Schank, R. and Abelson, K. (1977). Scripts, plans, goals and understanding.
Lawrence Erlbaum, Hillsdale, N. J.

Schank, R. and Riesbeck, C. (1987). Inside case-based reasoning. Lawrence
Erlbaum, Hillsdale, N. J.

Shin, K. and Han, I. (1999). Case-based reasoning supported by genetic algo­
rithms for corporate bond rating. Expert Systems With Applications, 16(2):
85–95.

Smith, E., Nisbett, R., and Langston, C. (1992). The case for rules in reasoning.
Cognitive Science, 16(1): 1–43.

Smyth, B. and McKenna, E. (1999). Building compact competent case bases.
In Althoff, D., Bergmann, R., and Branting, K., editors, Proceedings of the
Third International Conference on Case-Based Reasoning, volume 1650 of
Lecture Notes in Artificial Intelligence, pages 329–342. Springer-Verlag.

Soh, L.-K. and Tsatsoulis, C. (2001). Combining genetic algorithms and case
based reasoning for genetic learning of a casebase: A conceptual framework.
In L. Spector et. al., editor, Proceedings of the Genetic and Evolutionary
Computation Conference, (GECCO’2001), pages 376–383, San Francisco,
CA. Morgan Kaufmann.

TRDDC (2000). CBDM: A case-base development methodology. Technical
Report 2001-AI-CBR-02, Tata Research Development and Design Centre,
Pune, India.

This page intentionally left blank

Chapter 11

THE CHALLENGE OF COMPLEXITY

Wolfgang Banzhaf
Department of Computer Science

University of Dortmund, Germany

banzhaf@cs.uni-dortmund.de

Julian Miller
School of Computer Science

The University of Birmingham, UK

j.miller@cs.bham.ac.uk

Abstract In this chapter we discuss the challenge provided by the problem of evolving
large amounts of computer code via Genetic Programming. We argue that the
problem is analogous to what Nature had to face when moving to multi-cellular
life. We propose to look at developmental processes and there mechanisms to
come up with solutions for this ”challenge of complexity” in Genetic Program­
ming.

Keywords: Genetic Programming, Evolutionary Algorithm, Complexity, Scaling Problem,
Development, Heterochrony

INTRODUCTION

The purpose of this chapter is to pose a challenge to the sub-area of Evolu­
tionary Computation (EC) dealing with algorithm evolution, Genetic Program­
ming (Koza, 1992). Genetic Programming (GP) has a fundamental mechanism
which distinguishes it from other branches of EC, namely a means to adapt the
complexity of its solutions (Banzhaf et al., 1998). Such a mechanism needs
to be in place in GP since the resulting solutions are programs and algorithms,
or, in other words, active entities which usually require input from somewhere
that is subsequently transformed into output through the target program or al­
gorithm.

It has been shown in recent years, that there are lower bounds on the com­
plexity of solutions to algorithmic problems in GP (Langdon, 1999b). Below

244 FRONTIERS OF EVOLUTIONARY COMPUTATION

a certain threshold, no algorithm would be able to perform a predefined task.
Above that threshold, however, numerous programs would be able to perform
the task. Evolution in GP is thus expected to lead the programs it breeds past
this threshold, to be able (only after passing) to home in on one or the other of
the many solutions that exist there. One might expect that GP would be well
equipped to handle tasks of varying complexity because of its basic ability to
adapt complexity.

As it turns out, however, GP is not able to handle complexity gracefully, it
has a scaling problem. As is well known from other search algorithms, more
complexity means larger search spaces. Larger search spaces in turn mean
a combinatorial explosion in the number of possible solutions which need to
be visited. Even a path-oriented algorithm like an evolutionary algorithm suf­
fers from the problem of scaling under such circumstances. Although GP is
regularly able to evolve programs of length 50 to 100 lines of code, this is a
far cry from what would be needed to provide a useful method for day-to-day
assistance for programmers.

Various remedies have been looked at over the years. Modularization of
programs is one important method to improve scalability. The problem at hand
is divided into sub-problems which are supposed to be less difficult (and thus
would require less complex solutions). These sub-problems could be solved
in a divide-and-conquer method, whereby the overall solution is put together
from the various sub-solutions evolved independently. Koza (Koza, 1994) has
done an entire series of well thought-out experiments in order to show, that
GP is indeed able to proceed along those lines, provided it is equipped with
appropriate means (ADFs in his approach). ADFs are good at structuring a
global solution into parts, and by repeated use through calls from the main
program with different arguments they provide reusability features for code in
multiple sub-tasks. There have been other approaches toward modularization
in the last decade (Angeline and Pollack, 1994; Banzhaf et al., 1999; Rosca
and Ballard, 1994), all trying to develop methods for better scalability.

However, all of these methods have failed to deliver on the fundamental
challenge to GP which can be summarized in the following task:

Using GP, evolve a program whose purpose is so complex that it requires
100,000 or a million lines of hand-written code or 10,000 modules of average
size 100 lines of code.

Application examples coming to mind are the following tasks

Direction and control of the processes in a production plant

Safe operation of an aircraft under a variety of weather conditions

Design of a convenient multi-functional desktop computer tool, such as
an editor or a mailer

245 The Challenge of Complexity

Maintaining a large network of computers as a self-repairing system

Translation of one human language into another

Recognition of pieces of art and music from visual or audio clues

Evolution of a program playing Go with human-competitive performance

A computer operating system based on self-regulation

etc.

In other words, the challenge is to radically dispose of the complexity limits
for the evolution of computer code, and aim at complexities heretofore only
achieved by large teams of human programmers.

This chapter is therefore devoted to offering a possible solution to this chal­
lenge. This solution, however, can only be framed in very abstract, sometimes
speculative words. Taken literally, it will not suffice to arrive at a workable
mechanism. But the goal here is to set the mind of the reader into such a
framework that she or he might come up with appropriate ideas to approach
this challenge.

The rest of the chapter is organized as follows. Sec 1 summarizes very
shortly the fundamental idea behind GP, Sec 2 looks at an ostensibly similar
scaling problem situation in the area of Biology. Sec. 3 discusses Nature’s way
to deal with this problem, the introduction of a developmental process between
the information storage in the genotype and the active entity, the phenotypic
organism that results from its expression. Sec. 4 then tries to formulate a few
principles of this solution to the problem that might be transferable into Genetic
Programming. Sec. 5, finally goes one step further and proposes a possible
scenario for the introduction of development into GP. Sec. 6 briefly discusses
earlier experiences with the introduction of development, mostly treated under
the heading genotype-phenotype-mapping.

1. GP BASICS AND STATE OF THE ART
Genetic Programming is part of the area of Evolutionary Algorithms which

apply search principles analogous to those of natural evolution in a variety of
different problem domains, notably parameter optimization. The major dis­
tinction between GP and these other areas of Evolutionary Algorithms is that
GP controls active components like symbolic expressions or instructions as
opposed to simple parameters, and that GP is able to develop its own represen­
tation of a problem by allowing variable complexity of its individuals.

As other evolutionary algorithms GP follows Darwin’s principle of differ­
ential natural selection. This principle states the following preconditions for
evolution to occur via (natural) selection:

246 FRONTIERS OF EVOLUTIONARY COMPUTATION

A population of entities called individuals is formed which can repro­
duce or can be reproduced.

There is heredity in reproduction, i.e. individuals produce similar off­
spring.

In the course of reproduction variation occurs that affects the likelihood
of survival and therefore of reproducibility of individuals.

Due to excessive reproduction individuals are caused to compete for fi­
nite resources. Not all can survive the struggle for existence. Differential
natural selection exerts pressure towards improved individuals.

Thus a variation and selection loop is iterated which constantly tries to improve
solutions (see Figure 11.1).

The representation of programs, or generally structures, in GP has a strong
influence on the behavior and efficiency of the resulting algorithm. As a conse­
quence, many different approaches toward choosing representations have been
adopted in GP. The resulting principles have been applied even to other prob­
lem domains such as design of electronic circuits or art and musical composi­
tion.

The mechanism behind GP works with a population of programs which are
executed or interpreted in order to judge their behavior. Usually, a scoring
operation called fitness measurement is applied to the outcome of the behavior.
For instance, the deviation between the quantitative output of a program and
its target value (defined through an error function) could be used to judge the
behavior of the program. This is straight-forward if the function of the target
program can be clearly defined. Results may also be defined as side-effects of
a program, such as consequences of the physical behavior of a robot controlled
by a genetically developed program. Sometimes, an explicit fitness measure is
missing, for instance in a game situation, and the results of the game (winning
or loosing) are taken to be sufficient scoring for the program’s strategy. The
general approach is to test a variety of programs at the same problem and to
compare their performance relative to each other.

The outcome of fitness measurement are used to select programs. There are
a number of different methods for selection, both deterministic and stochastic.

247 The Challenge of Complexity

These selection schemes determines (i) which programs are allowed to survive
(overproduction selection), and (ii) which programs are allowed to reproduce
(mating selection). Once a set of programs has been selected for further repro­
duction, the following operators are applied:

reproduction

mutation

crossover

Reproduction simply copies an individual, mutation varies the structure of an
individual under control of a random number generator, and crossover mixes
the structure of two (or more) programs to generate one or more new programs
(see Figure 11.2). Additional variation operators are applied in different ap­
plications. Most of these contain problem-specific knowledge in the form of
heuristic search recipes adapted to the problem domain.

In this way, fitness advantages of individual programs are exploited in a
population to lead to better solutions. A key effort in Genetic Programming
is the definition of the fitness measure. Sometimes the fitness measure has to
be iteratively improved in order for the evolved solutions to actually perform
the function they were intended for. The entire process can be seen in close
analogy to breeding animals. The breeder has to select those individuals from
the population which carry the targeted traits to a higher degree than others.

In the meantime, many different representations for GP were studied, among
them generic data structures such as sequences of instructions or directed graphs,
as well as more exotic data structures such as stacks or neural networks. Today,
many different approaches are considered as GP, from the evolution of parse
trees to the evolution of arbitrary structures. The overarching principle is to

248 FRONTIERS OF EVOLUTIONARY COMPUTATION

subject structures with variable complexity to forces of evolution by applying
mutation, crossover and fitness-based selection. The results are not necessarily
programs.

When analyzing search spaces of programs it was realized that their size is
many orders of magnitude larger than search spaces of combinatorial optimiza­
tion problems. A typical size for a program search space might be
as opposed to a typical search space for a combinatorial optimization prob­
lem of the order of Although this might be interpreted as discouraging
for search mechanisms, it was also realized that the solution density in pro­
gram spaces is, above a certain threshold, constant with changing complexity
(Langdon, 1999a). In other words, there are proportionally many more valid
solutions in program spaces than in the spaces of combinatorial optimization
problems.

2. THE SITUATION IN BIOLOGY
The situation in biology is also complicated. Life needs many supporting

structures. Even single-cell organisms are already very sophisticated. Let’s
take the bacterium E.Coli as an example (Harold, 2001b).

A bacterium is an autonomous living system and organizes molecules into
a particular dynamic pattern that keeps it alive. Following Neidthardt et al,
(Neidhardt, 1996) there are a total of molecules (excluding water
with molecules) in appr. 3250 different varieties (proteins, m-,t-RNA,
DNA, lipids, small metabolites and ions, peptidoglycan, etc.). The genome of
E.Coli is a single, circular molecule of base pairs, which is to say it
contains 6 Mbits of information (again accounting for redundancy in the code)
Notably, E. Coli has approximately 4300 protein coding genes (88 % of the
genome) 0.8 % stable RNAs, 0.7 % repeats. 11 % of the genome might con­
tain regulatory information (for a recent classification, see (Thomas, 1999)).
Mushegian and Koonin (Mushegian and Koonin, 1996) identify a subset of
256 shared genes between two very simple bacterial organisms (H. influenzae
and M. genitalium) which seem to provide the essential functions of life for
those creatures. So how can all this multitude be organized by such a little
genome?

Even more difficult is the situation in multicellular life. Take a human
genome with its nucleotides. Each nucleotide carries 2 bits, hence
for a rough estimate we arrive at 4 Gbit maximum information content of the
genome (the number was reduced from a simple multiplication, since due to
code redundancy the information content is about 1/3 smaller).

On the other hand, take the number of cells of a human body as a rough
estimate of the phenotype’s information content: According to various esti­
mates, the body amounts to approximately cells. The estimate is raw

249 The Challenge of Complexity

and difficult to quantify more accurately because the number of cells changes
dynamically. Cells are produced and die during the life of an individual. Now
assuming that each cell has an information content of at least 1 Mbit, this re­
sults in the requirement for bits Gbit, or times the human
genome! Note that the estimate of 1 Mbit per cell is unrealistically low, as
we shall see when we consider free-living single-cell creatures. According to
Calow (1976) (Calow, 1976), the cells of the human body have to be weighed
in with a much larger information content, resulting in a total of bits
for the body!

We can see easily, that these numbers are completely out of proportion,
which means that the information in the genome must be used in a sophisti­
cated way so as to produce a viable organism. We might call this the informa­
tion dilemma of the genotype-phenotype relation.

3.	 NATURE’S WAY TO DEAL WITH

COMPLEXITY

In his now famous book ‘The way of the cell’ biologist Frank M. Harold
explains: “Genes specify the cell’s building blocks; they supply raw materials,
help regulate their availability and grant the cell independence of its environ­
ment. But the higher levels of order, form and function are not spelled out
in the genome. They arise by the collective self-organization of genetically
determined elements, effected by cellular mechanisms that remain poorly un­
derstood.” (Harold, 2001b), p.69.

Thus, there are other aspects of natural biochemical systems, so far not fully
understood, that structure interactions and determine the fate of molecules.
These aspects constrain the possible directions that genes could affect their
products. Self-organization and self-assembly are among them as are physical
(and other) laws. In addition, the natural abundance of certain materials, en­
ergy, or even information plays an important role. These aspects are providing
the environment in which a living system is supposed to survive.

Nature’s self-organizing properties are beginning to be seen in all scien­
tific and technical disciplines (Banzhaf, 2002). But is self-assembly without
a genome sufficient to explain the intricate organization of a cell? For exam­
ple, if all the necessary substructures and molecules were present in a medium,
would they be able to form an E.Coli bacterium? Here we follow again the
argument of Harold (Harold, 2001b) and Rosen (Rosen, 1994). The answer
is “No”, because self-assembly can never be a fully autonomous process. In
addition, some cell components cannot be formed by self-assembly since they
need to be formed by, e.g., cutting and splicing. Further, membrane proteins
catalyze directional reactions (uni-directional through the membrane) (Harold,
2001a). The direction itself is, however, provided by the cell, not by the amino

250 FRONTIERS OF EVOLUTIONARY COMPUTATION

acid sequence of the protein or its gene. More generally, a great deal of lo­
calized behavior takes place within a cell. Localization, however, cannot be
provided by the genes, it is a feature of their environment, i.e. of the cell (see
Figure 11.3).

The conclusion is inevitable: Cells do not self-assemble. But how do they
succeed instead? They grow! Rudolf Virchow (1858) was the first to formulate
this realization1 in a now famous biological law: Omnis cellula e cellula (every
cell originates from a cell). No cell has not come from another cell.

In other words, there is a tight coupling between what the genome instructs
and what natural laws and resources in the environment allow the cell to do. In
a way the genome exploits all physical laws available (together with all sorts
of material, energy and information fluxes) in order to organize a living being.

The real trick of Nature was to hit upon a system of organizing characters
(RNA, then DNA and protein) that allows open-ended evolution to proceed.
That is to say that the system does not close down upon encountering enormous

1One should be careful to include both (i) scaling up and (ii) diversification / specialization in one’s notion
of growth.

251 The Challenge of Complexity

complexity, both in the environment and in handling its inner mechanisms.
Clearly, only a combinatorial system has enough power to grow to each level of
complexity demanded (and also to shrink to a lower level if necessity dictates).

“Biological forms are not fragile or contrived, quite the contrary, they are the
’generic forms’ most likely to be found by self-organizing dynamic systems,
and therefore both probable and robust. We may imagine systems ’exploring
the space’ available to the particular dynamics of each kind, and see evolu­
tion as the process by which their morphologies are transformed one into the
other.” (Harold, 2001b), p. 198. It may be added that natural evolution is an
opportunistic process in the sense that whatever works is exploited as much as
possible. Thus, the notion of a very limited exploration of the design space, as
put forward by Gould (Gould, 1980; Gould, 2002) can be brought into agree­
ment with the above opinion. Going back to the question of how development
could organize the massive amount of molecules into orchestrated multicellular
organisms, it seems to us that the exploitation of the natural (physical) tenden­
cies to self-organize, i.e. to form self-maintaining networks of structures on
which matter, energy and information flows, is the key recipe that genomes
use. In other words, genomes are specifying or, better, influencing the interac­
tions that lead to these networks and take place in them. What was built on top
of single-cell life, then, were elaborate mechanisms for cell communication
and differentiation, based on the same principles as single-celled life was. The
enormous number of genes added to single cell organisms can be put to use for
the purpose of (a) adaptation of the cells to multicellular environments and (b)
coordination between cells, a task that is obviously very complicated.

A proper definition of biological development is in order here. At present,
biological understanding might be summarized in the following statement: De­
velopment is a differential transcription (and translation) of genes in different
cells and tissues at different times and rates, with each step ultimately initiated
by the transcription and translation of the previous step.

The operations of transcription and translation probably warrant some ex­
planation. Figure 11.4 shows the typical sequence of events from DNA to
protein activity. After the mRNA copy is transcribed from DNA, it is pro­
cessed and transported out of the nucleus of the cell. It then is translated at a
ribosome into a sequence of amino acids which fold into a native structure able
to perform biochemical activity.

The control and timing of transcription and translation in cells is called reg­
ulation and can be imagined as follows: The products of certain genes are
not used in building the organism directly but rather are used to interact with
other genes’ products, with environmental cues, or with the DNA of other
genes (both expressed and non-expressed parts thereof). By interaction they
change the course of events in a cell, depending on the presence of interac­
tion partners and the strength of their mutual effects. In this way, networks of

252 FRONTIERS OF EVOLUTIONARY COMPUTATION

253 The Challenge of Complexity

interaction are formed among genes, called regulatory networks. As already
mentioned, however, genes do not restrict their interactions to other genes, but
may also interact with environmental material. In this way, they can interfere
with another network of biochemical reactions that is formed within a cell, the
metabolic network. However: “Genes seem to be distant from the biochemi­
cal network, maintaining control only by carefully timed ‘injections’ of their
products into crucial ‘branching points’ where small inputs have big effects.”
(Harold, 2001b). Notably, most of the order of a cell is created by the underly­
ing network, with only occasional but decisive intervention by genes.

In summary: The biochemical network of interactions between substances
is the underlying substrate of a system of control built upon the effect of ad­
ditional substances (signalling substances), that are itself produced by genes.
The system is highly combinatorial in that many of the biochemical (mainte­
nance) substances can interact with each other and with the signal substances.
It is through a control of the expression of the where and when of the signals
that genes exert their control on the underlying networks. One other key insight
of developmental biology is the notion of heterochrony (Haeckel, 1866; Gould,
1977; McKinney and McNamara, 1991) which seems to be able to explain a
whole plethora of phenomena found in the developmental process (and in evo­
lution, for that matter) (McKinney, 1999). Heterochrony describes the fact that
during differentiation, a large amount of control can be exerted on develop­
ment by controlling three variables only: (a) the onset, (b) the rate and (c) the
offset of the expression of certain genes. As such, the phenomenon is not very
much different from what must happen in single-celled organisms where, in
response to changing growth and environmental conditions, certain genes alter
their rate of expression.

Though we don’t have much space to delve into this very interesting phe­
nomenon, one angle on heterochrony is worth looking at more closely: Its
relation to the discovery of novelty in evolution. Citing McKinney and McNa­
mara, (McKinney and McNamara, 1991): “Heterochrony is the cause of most
developmental variation and heterochrony can cause major novelties. The main
reason for heterochrony to be able to cause major novelties, even new tissues
is the fact that it can alter the regulative development of cells already early
on in development which will give rise to major ‘jumps’ in morphospace.”
And later, the authors write: “Heterochrony can be applied at different levels
(molecular, cellular, tissue, organism). It is interesting to note that ‘small’ rate
or timing changes at the lower levels will often translate into complex result at
the higher levels. The nonlinearity of the system will amplify some changes
(pos. feedback) and dampen others (neg. feedback) as they cascade upwards.”
(McKinney and McNamara, 1991), p.48.

May it suffice to add one more key insight of developmental biology that
is just starting to surface in detailed studies of early embryonic development

254 FRONTIERS OF EVOLUTIONARY COMPUTATION

of multicellular organisms: Interesting recent results suggest that the control
of timing of developmental events, i.e. the actual mechanism by which het­
erochrony can be enacted, is due to an encoding of time and strength of ex­
pression of genes into the strength of interaction between (regulatory) genes
(Arnone, 2002; Davidson, 2001; Gaudet and Mango, 2002).

4. WHAT WE CAN LEARN FROM NATURE?

In the previous discussion we have seen some similarity to the problems in
Genetic Programming. So a natural question would be what we could learn
from Nature. Here we list a few of the aspects of the developmental process
in Nature which might provide hints to our efforts in artificial evolutionary
systems.

1 Nature stands before what we have called the information dilemma:
How to instruct a body with so few genes? The size of a genome is very
small for to provide the required information for a phenotypic organism.
Nature’s recipes are:

The channeling or canalizing of environmental complexity (infor­
mation, energy, matter, laws, interactions, dynamics, boundaries)
into the developing phenotype. The complexity of the organism
stems mainly from outside and has not to be provided by the geno­
type. The genotype mainly directs the assembly.

The stability of an organism (whether mature or developing) is a
steady state, not a static equilibrium. It is in a continual state of
growing and dying to maintain itself. Nature is dealing with open
systems (due to physical constraints) where energy and entropy
considerations are important. Responsiveness to environment is
much better this way.

Development allows for open-ended evolution since it is a con­
structive process where layers of complexity are built onto each
other (with the possibility of ever larger complexity).

There is a built-in tendency of development to be recursive (see
L-systems), which allows hierarchy-building in a very natural way.

Development happens by way of communication between cells, i.e.
it’s a social system of cells. More generally, there are many combi­
natorial subsystems interacting with each other, erecting networks
of communication flow.

Fitness tests for phenotypic organisms are always punctual, i.e.
individuals are never tested completely and therefore considered

255 The Challenge of Complexity

ready. Instead, multi-functionality is important and punctual fit­
ness tests which would test for, e.g., metabolism efficiency today
and for, e.g., adaptive capabilities tomorrow, allow for it to develop.

2	 Time is the most important aspect of development. It results in the for­
mation of a 4D space in biological development.

Time and dynamics is a key to survival in real-time environments.
No wonder it plays the major role in development also.

Different time-scales (usually required by the environment) are
easy to achieve, since development is intrinsically hierarchical.

The time dimension is a way to “mold” results of development, as
can be seen by the notion of heterochrony.

There is labor division (and gradually more so) in the course of
development.

Incremental fitness is an important concept, too, i.e. there is a re­
quirement of primitive functionality from the very beginning which
is gradually refined until the organism is “mature.”

In terms of fitness landscapes: The fitness landscape gradually
sharpens (becomes more rugged) in the course of development.

The developmental process has an enormous degree of fault toler­
ance. Repair mechanisms are abound, as well as adaptability, and
the ability of regeneration.

There is a chain of being - from the first living thing to the last cell
in a multi- cellular individual. This would be interrupted without
development.

Sexuality requires a 1-cell stage for each living being (for the unique­
ness of information exchange in recombination). Thus Nature needs
a mechanism for an organized transition from the one-cell stage to
the multi-cell individual.

3	 The mechanisms of development are constructive

Starting from a single cell, whole bodies are constructed, consist­
ing of millions and billions of cells.

Development erects networks (metabolic, signaling, regulatory) of
increasing complexity, within and between cells.

Development makes use of neutrality, i.e. there are some phases in
development where nothing happens if looked at from the behavior
of the phenotype.

256 FRONTIERS OF EVOLUTIONARY COMPUTATION

Development allows the exploitation of side-effects, perhaps in a
very efficient way. Side-effects are an important source of innova­
tion for evolution, since they are unintentional effects which turn
out to be useful for other purposes. Producing side-effects is what
development can do, discerning their usefulness is left to evolution.

5.	 A POSSIBLE SCENARIO: TRANSFER
INTO GENETIC PROGRAMMING

A linear genetic program is a sequence of instructions that is followed one
by one. This might be a good way to organize a genome, as the subsequent ex­
ecution of steps is a rather natural way of following this information. However,
it is not a very natural way to look at program behavior, i.e. the phenotypes.
We propose that, instead, complex programs of the type of interest here should
be considered as networks of interacting objects which are to behave in com­
plicated ways depending on the flow of input and required output. Thus, if one
were to set up a system of interacting objects, designating input and output ob­
jects and their communication means, one would have a natural analogue to a
biochemical network. Note that this does not necessarily imply that we ought
to consider non-sequential programs here. Rather, it is the more general case.

Figure 11.5 shows a dataflow graph of a program phenotype. This is the
graphical translation of the following program (line with ”!” are not contribut­
ing to fitness):

void gp(r)

double r[4];

{

...

r[3] = r[1] - 3;

*
r[1] =	 r[2] r[1];

! r[3] = r[1] / r[0];

r[0] = r[1] - 1;

r[1] = r[2] * r[0];

r[1] = r[0] * r[1];

! r[0]	= r[2] + r[2];

r[2] = pow(r[1], r[0]);

! r[2] = r[0] + r[3];

! r[0] = r[3] - 1;

! r[1] = r[2] - r[0];

! r[3] = pow(r[0], 2);

! r[2] = r[2] + r[1];

r[0] = r[1] + 9;

r[0] = r[1] / r[3];

! r[0] = r[2] * r[2];

! r[2] = r[1] * r[3];

! r[0] = r[0] + r[2];

257 The Challenge of Complexity

}

In the language of object-oriented programming, objects possess attributes
for receiving messages and methods for sending messages and performing
other functions. Input driving the program system would be considered an
information flow to be taken advantage of for a given purpose (output), and
the right combination of interactions would be searched for by a genetic search
method on the level of genes. Taking advantage would mean that those net­
works are differentially selected that perform, after development, the prescribed
task better than others.

As for the “reconfiguration” of the object network, this would not happen
through a direct modification of objects but rather through additional layers of
message producing objects, and through their corresponding messages. The
messages would act like signaling substances and interfere with the object
network in a constructive way, e.g. by inhibition or by excitation, and the
objects producing these messages would be genes located in sequence on a
genome. Thus each gene would specify an object, where such an object would
be even allowed to interact with other objects’ specification of products. The
most difficult part is presumably the latter, since it requires the ability for self-
modification.

Perhaps one could even go down to the level of instructions (as equivalent
to objects in the above sense). Instructions have an operation (through the op­

258 FRONTIERS OF EVOLUTIONARY COMPUTATION

code) and operands (input and output) to digest messages. The problem with
instructions is that the desired behavior of a program needs to come about by
side-effects of instructions only. Since there are flags to be set by instructions,
in principle there could be a way. It would have to be decided, what the side
effects are (1. one could select for the flags, or 2. one could select for values
in registers and define a network of interactions between flags of instructions,
although that might be more difficult).

How could heterochrony come into play? The idea would be to influence the
underlying information flow in the network of objects by means of variation in
“timing” of expression. That would be a very smooth way of variation, even
expressible directly as a simple parameter evolution. On the other hand, Na-
ture’s example teaches us how to translate timing signals into pattern matching.
So there would be another way to control time-dependent development.

Finally, the network of interacting objects could be built up by a develop­
mental process, perhaps starting from one object. In this case the object would
act like a cell with its genome directing the expansion into a larger network of
interacting objects, possibly using pre-defined objects that have been specified
already and only need to be coopted into the network.

Perhaps we have ventured too far now. However, we know that a simple
division and diversification process of objects can reach any size of a network
in logarithmic time. As such it is perfectly imaginable that the process envi­
sioned here will quickly reach the desired complexity for any prescribed task.
Nevertheless we have to leave it to the reader and further considerations how
such a scenario could be realized in a computer.

6. CONCLUSION

Some ideas related to the present contribution have been published in the
past. Notable is Gruau’s (Gruau, 1993) system of cellular encoding which uses
a grammar tree to produce programs in a simple developmental process for GP.
This work has later been applied by Koza (Koza, 1994) and others to produce
electric circuit designs. Cangelosi (Cangelosi, 1999) was the first to try to make
use of heterochrony in the context of GAs. A number of people are working
on regulation and evolutionary algorithms using regulation, like in the work of
Kennedy et al. (Kennedy and Osborn, 2001). The genotype-phenotype map­
ping has been studied in different papers, see for example (Smith et al., 2001)
and just recently has been the subject of a special journal issue (Kargupta,
2002) under the heading “gene expression computing”.

In the present contribution we have tried to provide a challenge to Genetic
Programming which would be worth to meet in the long run. We have argued
that Nature had to solve an analogous problem which it did by inventing the de­
velopmental process. We have discussed a number of aspects of development

REFERENCES	 259

that seemed to us relevant in the context of artificial evolutionary processes,
and sketched one way to achieve a similar mechanism in GP. It remains to be
seen whether GP can meet that challenge in the future.

ACKNOWLEDGMENTS

W.B. acknowledges the hospitality of the Institute of Genomics and Bioin­
formatics at UC Irvine under its director Pierre Baldi, where part of this work
has been written.

REFERENCES

Angeline, P. and Pollack, J. (1994). Coevolving high-level representations. In
Langton, C., editor, Proc. Artificial Life III, pages 55 – 71, Reading, MA.
Addison Wesley.

Arnone, M. (2002). Bringing Order to Organogenesis. Nature Genetics, 30:348
– 350.

Banzhaf, W. (2002). Self-Organizing Systems, volume 14 of Encyclopedia of
Physical Science and Technology, pages 589–598. Academic Press, New
York.

Banzhaf, W., Banscherus, D., and Dittrich, P. (1999). Hierarchical Genetic
Programming using local modules. Technical Report CI-56/99 of SFB 531,
University of Dortmund.

Banzhaf, W., Nordin, P., Keller, R., and Francone, F. D. (1998). Genetic Pro­
gramming - An Introduction. Morgan Kaufmann, San Francisco, CA.

Brameier, M. (2003). Linear Genetic Programming. PhD thesis, Department
of Computer Science, University of Dortmund. (to appear).

Calow, P. (1976). Biological Machines: A cybernetic approach to life. E. Arnold,
London.

Cangelosi, A. (1999). Heterochrony and adaptation in developing neural net­
works. In W. Banzhaf et al., editor, Proceedings of GECCO99 Genetic and
Evolutionary Computation Conference, pages 1241–1248, San Francisco,
CA. Morgan Kaufmann.

Davidson, E. H. (2001).	 Genomic Regulatory Systems. Academic Press, San
Diego.

Gaudet, J. and Mango, S. E. (2002). Regulation of Organogenesis by the
Caenorhabditis elegans FoxA Protein PHA-4. Science, 295:821 – 825.

Gould, S. J. (1977). Ontogeny and Phylogeny. Belknap Press of Harvard Uni­
versity Press, Cambridge, MA.

Gould, S. J. (1980). The Evolutionary Biology of Constraint. Daedalus, 109:39
– 52.

Gould, S. J. (2002). The Structure of Evolutionary Theory. Belknap Press of
Harvard University Press, Cambridge, MA.

260 FRONTIERS OF EVOLUTIONARY COMPUTATION

Gruau, F. (1993). Genetic Synthesis of Modular Neural Networks. In Forrest,
S., editor, Proceedings of the 5th International Conference on Genetic Algo­
rithms, ICGA-93, pages 318–325, San Francisco, CA. Morgan Kaufmann.

Haeckel, E. (1866). Generelle Morphologie der Organismen. Reimer, Berlin.
Harold, F. (2001a). Gleanings of a chemiosmotic eye. Bioessays, 21:848–855.
Harold, F. (2001b). The Way of the Cell. Oxford University Press, Oxford.
Kargupta, H. (2002). Editorial: Computation in Gene Expression. Genetic Pro­

gramming and Evolvable Machines, 3:111–112.
Kennedy, P. J. and Osborn, T. R. (2001). A Model of Gene Expression and

Regulation in an Artificial Cellular Organism. Complex Systems, 13.
Koza, John R. (1992). Genetic Programming. MIT Press, Cambridge, MA.
Koza, John R. (1994). Genetic Programming II. MIT Press, Cambridge, MA.
Langdon, W. B. (1999a). Boolean function fitness spaces. In Poli, R., Nordin,

P., Langdon, W. B., and Fogarty, T., editors, Proceedings EuroGP’99, Berlin.
Springer.

Langdon, W. B. (1999b). Scaling of Program Tree Fitness Spaces. Evolution­
ary Computation, 7:399 – 428.

McKinney, M. (1999). Heterochrony: Beyond words. Paleobiology, 25:149 –
153.

McKinney, M. and McNamara, K. (1991). Heterochrony: The Evolution of On­
togeny. Plenum Press, New York.

Mushegian, A. and Koonin, E. (1996). A minimal gene set for cellular life
derived by comparison of complete bacterial genomes. Proc. Natl. Acad.
Sci. (USA), 93:10268 – 73.

Neidhardt, F. C. (1996). Escherichia Coli and Salmonella typhimurium. ASM
Press, Washington, DC.

Rosca, J. and Ballard, D. (1994). Hierarchical selforganization in genetic pro­
gramming. In Proc. of the 11th Int. Conf. on Machine Learning, pages 252
– 258, San Mateo, CA. Morgan Kaufmann.

Rosen, R. (1994). Life Itself. Columbia University Press, New York.
Smith, T., Husbands, P., and O’Shea, M. (2001). Neutral Networks and Evolv­

ability with Complex Genotype-Phenotype mapping. In Kemelen, E. and
Socik, S., editors, Proc. 6th ECAL-01, Prague, 2001, pages 272 – 281,
Berlin. Springer.

Thomas, G. H. (1999). Completing the E.	 coli proteome: a database of gene
products characterised since completion of the genome sequence. Bioinfor­
matics, 7:860 – 861.

Author Index

Aarts, E. H. L. 161, 169 Belew, R. K. 46, 69
Abelson, K. 213, 229, 230 Bennett III, Forrest, H. 205
Ackley, David H. 76, 94 Bergmann, R. 212
Agapie, A. 159, 160, 191 Berretta, R. 54, 66, 68
Aguirre, A. H. 225, 235 Beyer, H.-G. 159, 189, 190, 192
Aguirre, R. 133 Bienenstock, E. 122
Ahmadian, A. 104 Binder, K. 189
Ahmed, M. A. 108 Bisio, R. 211
Alander, J. T. 69 Blickle, T. 40
Albizuri, F. X. 160, 169, 188 Bohm, W. 225
Alidaee, B. 104, 105, 107–110 Boldrin, L. 64
Alkhamis, T. M. 108 Booker, L. 41, 45
Allemand, K. 108 Borner, K. 212
Altenberg, L. 77, 79, 85, 92, 95, 96, 133 Boros, E. 108
Amari, S. 118 Boyan, J. 123
Amini, M. 105, 107–109 Bradley, K. 228
Anderson, R. 46 Brameier, M. xii, 257
Andre, David 205 Breen, S. 212
Angeles, O. 139 Bremermann, H. J. 159
Angeline, P. 244 Brewer, W. 229, 230
Anily, S. 191 Bunge, M. 213
Arnone, M. 254 Bürger, Reinhard 138
Arora, Sanjeev 74 Burke, D. S. 47
Axelrod, R. 43 Burkhard, H. D. 212, 216
Aytug, H. 159, 160, 182 Burns, A. W. 10
Azencott, R. 189 Bylander, T. 68

Bäck, T. 133 Calow, P. 249
Baker, J. E. 175 Cangelosi, A. 258
Balaraman, V. 212, 215 Cannings, Chris 89
Ballard, D. 244 Cantu-Paz, Erick 207
Bandari, E. 125 Carlos, R. 230
Banscherus, D. 244 Catoni, O. 162, 189
Banzhaf, W. 135, 139, 169, 243, 244, 249 Cerf, R. 159, 160, 188
Bartlett, F. 230 Chakraborti, S. 212
Bartsch-Spoerl, B. 216 Chardaire, P. 104, 108
Bastert, O. 127 Charness, N. 231
Beasley, J. E. 108 Chen, J. 57

262 FRONTIERS OF EVOLUTIONARY COMPUTATION

Chen, Z.-P. 160

Cherry, C. 22

Christiansen, Freddy B. 74

Chung, K. L. 162

Chung, S. W. 133

Clark, J. 40

Coello, Coello C. A. 68, 207, 225, 235

Colorni, A. 68

CONDOR 115

Corne, D. 207

Cotta, C. 59, 69

Cover, T. M. 23

Crutchfield, James P. 77, 149, 166

Culberson, J. 68

Czerwinski, M. 211, 226

Darwin, C. 3
Davidor, Y. 56
Davidson, E. H. 254
Davis, L. 42, 215, 227
Davis, T. E. 88, 159, 161, 162, 166, 168, 187
Dawkins, R. 4
de Garis, H. 41, 44
De Jong, K. 38, 41, 45–47
de Weger, M. 42
Deb, Kalyanmoy 40, 42,46, 82, 87, 169, 207
Dhar, A. R. 212
Di Caro, G. 123
Dittrich, P. 244
Donsker, M. D. 97
Dorigo, M. 123
Doursat, R. 122
Downey, R. G. 56, 57
Dreyfus, H. 231
Dreyfus, S. 231
Droste, S. 191
Duda, R. 121

Eiben, G. 41
Eigen, M. 134, 139
Englemore, R. 62
Eshelman, L. 41
Etxechabarria, R. 121
Ewens, Warren J. 80, 89

Federgruen, A. 191
Feldman, M. W. 85, 92, 95
Feller, W. 162
Feller, William 89
Fellows, M. R. 56, 57

Ficici, S. 46

Fisher, Ronald A. 74, 80

Fitzhorn, P. 46

Fogarty, T. 41

Fogel, D. B. 41, 43, 55, 133, 159

Fogel, L. 38

Forbus, K. 214, 218

Forrest, S. 41, 43, 56

Francone, F. D. 169, 243

Freisleben, B. 108

Fujii, R. H. 161, 163, 165, 166, 169, 171,

173–175, 177, 178, 185–188, 190

Gallo, G. 104
Gambardella, L. 123
Gantmacher, F. R. 78, 93
García Olmedo, I. 139
Garey, M.R. 53
Garza, A. 220, 226, 227
Gaudet, J. 254
Gelatt Jr., C.D. 54
Geman, S. 122
Gent, I. P. 56
Gentner, D. 214, 218
Geyer-Schulz, A. 225
Ghozeil, A. 133
Glover, F. 54, 105, 107–110
Goker, M. 212
Goldberg, David E. 40–42, 45, 46, 82, 87, 88,

130–132, 136, 139, 150, 159, 160, 169,
171, 174, 175, 186–188, 206, 207, 216,
221, 233

Gomez, de Silva 220, 226, 227
Gonzalez, A. J. 211
Gould, S. J. 251, 253
Graña, M. 160, 169, 188
Greene, William A. 148
Greenwood, G. W. 160
Grefenstette, J. J. 43, 47, 132, 133
Greub, W. 162, 194
Griffiths, P. E. 5
Griffiths, R. C. 171
Gruau, F. 258
Guha, A. 44

Haeckel, E. 253
Hajek, B. 188
Hammer, P. 104, 105, 108
Han, I. 227
Hansen, P. 67, 105

263 Author Index

Harary, F. 104
Harold, F. 248, 249, 251, 253
Harp, S. 44
Hart, P. 121
Hart, W.E. 69
Hasan, M. 108
He, J. 159, 160
Hilbert, David 115, 116
Hillis, D. 44, 46
Holland, J. H. 16–19, 28, 31, 32, 38, 41–43,

46, 130, 132, 133, 159, 187, 206
Holland, J. R. C. 58
Holyoak, K. J. 214
Höns, R. 24, 27
Hooker, J. 122, 124
Horn, J. 87
Husbands, P. 258
Huynen, Martijn A. 77, 149

ICSR
Inza, I. 121
Isaacson, D. L. 162, 163, 165, 177, 179–181

Jansen, T. 169, 191
Javornik, B. 43
Jaynes, E. T. 22, 23
Jia, W. 57
Johnson, D.S. 53, 59
Jones, T. 42, 137
Jordan, M. 121

Kang, L. 159, 160
Kanj, I. A. 57
Kargupta, H. 258
Karlin, S. 92, 97, 99
Karmarkar, N. 116
Katayama, K. 108
Kautz, H. A. 68
Keane, Martin A. 205
Keeney, R. 125
Keller, R. 243
Kelly, J. D. 215, 227
Kennedy, P. J. 258
Khemani, D. 212
Kirkpatrick, S. 54
Knuth, D. E. 188, 190
Kochenberger, G. 104, 105,107–110
Koehler, G. J. 159, 160, 171, 173, 182
Koh, K. 214
Kolodner, J. 213, 215, 216, 220, 229

Kondoh, T. 167

Kondrashov, A. S. 95

Koonin, E. 248

Korb, B. 42, 46

Koza, John R. 41, 44, 126, 243, 244, 258

Krarup, J. 104

Krivelevich, M. 54

Kushner, H. J. 162, 189

Laguna, M. 54
Landau, S. D. 188
Lang, S. 162, 163, 170, 194, 195
Langdon, M. 160
Langdon, W. B. 147, 149, 243, 248
Langston, C. 229
Lanza, Guido 205
Larrañaga, P. 63, 121, 160, 169, 188
Laszlo, Mero 229, 231
Laughunn, D. J. 104
Laureano-Ortiz, R. 211
Lauritzen, St. L. 23, 30
Law, K. 214, 218
Leake, D. 212, 215, 216, 220
Lee, D. 211, 226
Lenat, D. B. 16
Lenz, M. 212, 216
Leung, K.-S. 160
Leung, Y. 160
Levine, J. 68
Lewis, H.R. 54
Lewontin, R. C. 237
Liebling, T. M. 108
Liepins, G. E. 41, 86, 160, 161, 168, 186, 187
Lifschitz, E. M. 188
Liles, W. 46
Lodi, A. 108
Lothar, T. 207
Louis, S. 225, 228
Lozano, J. A. 63, 121, 160, 169, 188
Lux, T. 187

MacKay, D. 120
Macready, William G. 69, 87, 116, 119, 124
Madsen, R. W. 162, 163, 165, 177, 179–181
Maher, M. L. 220, 226, 227
Mahfoud, S. W. 160, 169, 188
Mahnig, T. 24, 27–31, 121
Malabocchia, A. 211
Manago, M. 212
Manderick, B. 42

264 FRONTIERS OF EVOLUTIONARY COMPUTATION

Mango, S. E. 254

Maniezzo, V. 68

Mansour, T. 119

Márkus, A. 167

Massopust, P. 120

Mathias, K. 46, 58

McAllester, D. A. 68

McBride, R. D. 104

McCarthy, J. 16

McCaskill, J. 134, 139

McKenna, E. 212, 221

McKinney, M. 253

McMullin, B. 11

McNamara, K. 253

McPhee, Nicholas F. 132, 142, 147, 150

McSherry, D. 220, 228

Medin, D. L. 229

Merz, P. 108

Michael, S.M. 212 .

Michalewicz, Z. 42, 43, 55, 169

Miikkulainen, R. 44

Milner, R. 126

Minsky, M. 19, 229, 230

Mitchell, M. 41, 56, 159, 166, 169

Mladenović, N. 67

Moore, A. 123

Mora, J. 139

Mora Vargas, J. 139

Morgan, T. 62

Morishima, A. 42

Moscato, P. 54, 58, 66–69

Mühlenbein, H. 7, 24, 27, 28, 30, 31, 121, 159

Mushegian, A. 248

Mydlowec, William 205

Narihisa, H. 108

Nehaniv, C. L. 161, 163, 165, 166, 169, 171,

173–175, 177, 178, 185–188, 190

Neidhardt, F. C. 248

Neisser, U. 229

Nemirovskii, Arkadii 116

Nesterov, Yurii 116

Nguyen, T. 211, 226

Niedermeier, R. 57

Nisbett, R. 229

Nix, A. E. 88, 130, 132, 133, 160, 161, 168,

187

Nomura, T. 167

Nordin, P. 135, 139, 169, 243

Ochoa, A. R. 30, 121

Oliver, I. M. 58

O’Neill, Michael 135

Opper, M. 27

Osborn, T. R. 258

O’Shea, M. 258

Owens, A. 38

Oyama, S. 7, 9

Palmer, Richard G. 78

Papadimitriou, C. H. 54, 59

Pardalos, F. 105

Pardalos, P. 105, 108

Parisi, D. 7

Penna, J. M. 121

Perelson, A. 43

Perez, E. I. 225, 235

Perez, R. A. 133

Phillips, A. T. 104

Poli, R. 132, 133, 139, 142, 147, 149, 150,

160
Pollack, J. 46, 244

Portinale, L. 220, 221

Potter, M. 46

Principe, J. C. 88, 159, 161, 162, 166, 168,

187

Prügel�Bennett, Adam 130

Pruzan, A. 104

Quinlan, J. R. 232

Rabani, Yuval 74

Rabinovich, Yuri 74

Radcliffe, N. J. 42, 59, 133

Raiffa, H. 125

Ramsey, C. L. 43, 47

Rapaport, A. 7

Rechenberg, Ingo 38

Rego, C. 105, 110

Reidys, Christian M. 133, 149

Renner, G. 167

Reynolds, R. I. 231

Rich, C. 230

Richardson, J. 45

Riesbeck, C. 213, 216, 229

Rockmore, D. 127

Rodgers, G. P. 105, 108

Rogson, J. 159

Rosca, J. 244

Rosen, J. B. 104

265 Author Index

Rosen, R. 249

Rosin, C. 46

Ross, B. H. 229

Rossmanith, P. 57

Rothlauf, Franz 80

Rowe, J. E. 147

Rudeanu, S. 105

Rudin, W. 165, 173

Rudolph, G. 80, 160, 161, 187

Ryan, Conor 135

Saad, D. 27

Saffiotti, A. 64

Salaff, S. 159

Samad, T. 44

Samuel, Arthur L. 202

Sarma, J. 45

Savchenko, V. 167

Schaefer, H. H. 164–166

Schaffer, D. 41, 42

Schank, R. 211, 213, 216, 229, 230

Schmitt, Florian 80

Schmitt, L. M. 160–163, 165–169, 171,

173–178, 182, 185–188, 190, 192
Schoenauer, M. 43
Schornstein, S. 187
Schraudolph, N. 46
Schultz, A. 43
Schuster, P. 134, 139
Schwefel, H.-P. 38, 41, 95, 159, 189, 190, 192
Segrest, P. 88
Selman, B. 68
Selvamani, R. B. 212
Seneta, E. 162, 163, 165, 179, 180
Shaefer, C. 46
Shannon, C. E. 16, 19
Shapiro, Jonathan L. 130
Shimohara, K. 167
Shin, K. 227
Sierra, B. 121
Simeone, B. 104
Sinclair, Alistair 74, 78, 80, 81, 99
Smith, D. J. 58
Smith, E. 229
Smith, J. Maynard xiii, 4
Smith, R. 43
Smith, T. 258
Smyth, B. 212, 221, 228
Soh, L-K. 219, 225
Spears, W.M. 41, 45

Spiessens, P. 42
Stadler, P. F. 127, 133, 139, 149
Stanley, K. 44
Stege, U. 56
Stephens, Chris R. 132, 133, 136, 139, 145,

147

Stork, D. 121

Streeter, Matthew J. 205

Sun, X. 108

Surry, P. D. 59

Sutter, A. 104, 108

Suzuki, J. 80, 160, 166, 168, 175

Syswerda, G. 58

Szathmary, Eors xiii, 4

Tani, M. 108
Tavano, P. 220,221
Taveré, S. 171
Thiele, L. 40
Thomas, G. H. 248
Thomas, J. A. 23
Tinhofer, G. 127
Tinnefeld, K. 191
Torasso, P. 220, 221
TRDDC 212, 215
Troya, J.M. 59
Tsang, E. 122
Tsatsoulis, C. 219, 225
Tumer, K. 125
Turing, Alan M. 11, 202
Turner, M. 46
Turney, P. 46

Ugolini, M. 7
Uttley, A. M. 21

van Laarhoven, P. J. M. 161, 169
van Nimwegen, Erik Jan 77, 90, 149, 166
Vanza, J. 167
Varadhan, S. R. S. 97
Vargas, J. Mora 139
Vattam, S. 215
Vazirani, Umesh 74
Vecchi, M.P. 54
Vitanyi, Paul 80, 81, 87, 90
von Neumann, John 5, 10, 13, 20
Vose, Michael D. 28, 41, 86, 88, 130, 132,

133, 145, 159–161, 168, 173, 182, 186,
187

266 FRONTIERS OF EVOLUTIONARY COMPUTATION

Waelbroeck, H. 132, 133, 139, 145

Walsh, M. 38

Walsh, T. 56

Waters, R. C. 230

Wegener, I. 159, 169, 189–192

Wess, S. 212, 216

Westerberg, C. H. 68

Whitehead, A. N. 8

Whitley, Darrell 46, 58, 135

Wiegand, P. 46

Wigderson, Avi 74

Williams, A. C. 108

Wilson, D. 220

Witsgall, C. 104

Wolfram, S. 24, 33

Wolpert, D. H. 69, 116, 119, 124, 125

Wolpert, David H. 87

Wright, Alden H. 147, 168

Wright, Sewall 7, 74, 80, 98, 133

Wu, A. S. 47

Xu, Z.-B. 160

Xue, J. 105

Yannakakis, M. 59

Yormack, J. S. 104

Yu, Jessen 205

Zertuche, F. 139

Zhu, Q.J. 160

Zitzler, E. 207

Index

Adaptation, 6, 17, 45, 46, 215, 220, 251

optimal rate, 19

see also Exploration/Exploitation, 34

Agent, 125, 223, 225

and Evolutionary Programming, 38

belief models, 62–67

goal satisfaction, 225

multi-agent systems, 125

resource scheduling, 225

single-agent metaheuristic, 54, 58

Allele, 135, 136, 138, 146

Alphabet

discrete v/s continuous, 192

Annealing, 108

schedule, 32

schedules, 191

simulated, 54, 67, 169, 188

Artificial Intelligence, 3, 19, 203

19

Automata

and Darwin, 11

cellular, 24

voter model, 24

complexity, 10

Holland’s programs, 18

kernel machines, 126

Shannon, 16

Turing Machine, 10

von Neumann, 9, 17, 20

Avatars, 125

BBB, 136, see Building Block:basis representa­

tion

BBH, 233, see Building Block:Hypothesis

BEDA, see Probability Models:Boltzmann Dis­

tribution Algorithm

Bias-Variance Tradeoff, 122

Bifurcation, 27

Biology, 248

cell, 248

developmental, 7, 253

key insight, 253

Blackboard System, 62

Boltzmann Distribution, 28

Boltzmann Selection, 29

Branch and Bound, 108

Bremermann’s Bound, 15

Building Block

basis representation, 136, 142–145, 148

Effective Hypothesis, 145

Hypothesis, 132, 133, 142, 233

Walsh Basis, 136

C-Schema, 233

C-schema, see Schemas:cognitive

Call Centre Resolution, 211

Case Based Reasoning

applications, 211, 213

as dynamic memory, 213

components, 214

definition, 211

engineering aspects, 212, 214

how it works, 214

issues, 212

limitations, 217

operators

Alignment, 214

Mapping, 214

SelectionStrategy, 218

Transfer, 214

origins, 213

Case Memory

adaptation, 215

as evolutionary systems, 212, 216, 237

definition, 211

Evolutionary, 212

Case-base, 214, 217

organization, 215

CD, 213, see Conceptual Dependency

Cellular Radio Channel Allocation, 104

Chess, 13

Chromosome

representation, 38, 42, 56–58, 159, 192,

245, 247

CIGAR, 225

Cliché, 230

Coevolutionary Systems, 46

Cognitive Information Retrieval, 212

268 FRONTIERS OF EVOLUTIONARY COMPUTATION

Cognitive Schemas, 212, 229

and fitness, 234

design patterns, 235

examples, 230

experiential, 233

utility of, 234

Cognitive Schemata, 230, see Schemas:cognitive

Combinatorial Optimization, see also Optimiza­

tion, QUIP Problem

boolean circuits, 57

number partitioning problem, 68

SAT Problem, 56

TSP problem, 42, 54, 58, 62, 64, 66, 68

Vertex Cover, 56

Complexity

via development, 8, 251, 253, 254

via self-assembly, 249

challenge of, 9, 204, 243

computational, 15, 53, 56

hierarchical transitions, 255

hierarchy

W -hierarchy, 56, 57

of visual processing, 14, 15

parametric, 55–57

Computer Aided Design, 104

Conceptual Dependency, 213, 230

limitations, 213, 230

Configuration, 33, 67, 117, 134, 223

space, 68, 135

Constraint Programming, 122

Creature, 159, see Chromosome

Darwin

continental cycle conjecture, 5

insect colonies, 4

natural selection principle, 3, 245

Origin of Species, 3–7

Degeneracy, 134

Design, 38, 104, 204, 227, 246

of crossover operators, 58–61

of fitness landscape, 169

pattern extraction, 235

Diversity-Conscious Retrieval, 228

DM, 213, see Dynamic Memory

Dynamic Memory

Schank’s theory, 211, 213

Dynamic Programming, see Learning:reinforcement

E. Coli, 248

EA, see Evolutionary Algorithm

ECM, 212, see Evolutionary Case Memory

EDA metaheuristic

seesee Probability Models:distribution,

70

Eigen model, 134, 140

EP, see Evolutionary Programming

Epistasis, 55

definition, 56

Ergodicity

broken, 78

strong, 160, 180, 182

weak, 160, 164, 179, 180

ES, see Evolutionary Strategies

Estimation, 211

Estimation-of-Distributions algorithm

seeProbability Models:distribution, 70

Evolution

as information transmission, 248

computational metaphors, 8, 12, 16

constructive theories, 3, 4

major transitions, 4

Modern Synthesis, 3

natural selection principle, 3

selfish gene, 4–5

systems view, 5, 7

Evolution Strategies, 130

origins, 38

Evolutionary Algorithm, 130

as metaheuristic, 55

convergence, 30, 63, 225, see also Ge­

netic Algorithm

deletion strategies, 40

ergodicity, see Ergodicity

exploration/exploitation in, 41, 116, 121

Karlin’s Theorem, 92

model space, 135, 148

models, see Models:evolutionary

Vose-Nix/Vose-Liepins model, 88

operator intensity, 73, 85, 157, 169, 182,

191

overview, 39, 133–137

parental selection, 40

population size, 40

problem difficulty, 43, 57

rapid first hitting time, 77–82, 90–91

rapid mixing, 80–82

rapidly mixing, 78

speciation, 45

spectral analysis, 77, 95

transmission function, 74, 76, 79

Evolutionary Case Memory, 212

as optimizers, 222

model, 217

open questions, 223, 228

operators

Adapt, 219

Evaluate, 217, 219

GenerateSolution, 217, 218

Reorganize, 217, 219

Retrieve, 218

Select, 218

TaskPerformance, 218

Evolutionary Computation, 3, 37, 129, 243

and coevolution, 46

and constraints, 43

INDEX 269

and Lamarckianism, 46

and self-adaptation, 45, 95

application to biology, 47

developmental approach, 44, 256

diversity of, 33, 39, 129

expansion problem, 44

objectives, 42, 202

origins, 38

parallelism, 45, 206, 207

representation, choice of, 42

tasks of theory, 131–133

unification problem, 39, 130

Evolutionary Programming, 38, 42

origins, 38

Evolutionary Scatter Search, 108

Evolutionsstrategie, see Evolution Strategies

Experience Management, 212

Exploration/Exploitation

balance of, 41, 116, 121

FDA, see Probability Models:Factorized Distri­
bution Algorithm

Financial Analysis, 104

Fitness, 93, 174

additive function, 30

effective, 139–141, 149

landscape, 42, 93, 120, 134, 149, 255

characteristics,42–44
needle-in-a-haystack, 134, 140, 141

logarithmic scaling, 175

power-law scaling, 175

reactive landscapes, 43

royal road function, 166, 169

Fitness:non-additive, 56

Frames, 230, see Schemas:cognitive

G-Schema, 233, see Schemas

Gaussian Processes, 120

Gene

extinction, 92

genome spot, 167

modifier, 92, 95

see also Allele, Chromosome, 34

selfish, 4–5

Genericity, 234

Genetic Algorithm, 108, 129, 167

and simulated annealing, 161, 188, 189

applications, 226

convergence, 41, 157, 159, 177

global optima, 93, 157, 160, 161, 177,

182

crossover, 168

averaged single cut-point, 172

compared to mutation, 41, 168

cyle, 58

edge, 58

elementary single cut-point, 171

good design, 58–61

multiple cut-point, 174

rates, 157, 180–182, 191

regular single cut-point, 172

uniform, 58, 174

unrestricted, 174

messy, 39, 42, 46

mutation, 168

multiple-spot, 169

rates, 157, 161, 169, 177, 187, 191

origins, 38

relation to GP, 146

scaled, 158, 195

selection, 68, 168

annealing type, 169

Boltzmann, 29

proportional, 169, 174, 175

selector mask, 174

tournament, 169

stopping criteria, 160, 182, 188, 189

Genetic Programming, 20, 126, 129, 201, 243

and heterochrony, 258

developmental approach, 256

origins, 205

overview, 245

promising applications, 207

relation to GA,ES,EP, 146

representations, 247

scaling problem, 244, 248

Genotype, 19, 44, 73, see also Configuration,

245, 254

Genotype-Phenotype Relation, 131, 245

degeneracy of, 134

information dilemma, 249

examples, 248

Nature’s solution, 249, 254

symmetry breaking, 139

transcription and translation, 251, see

Heterochrony

timing, 251

Graph

decomposable, 30

models, see Probability Models:graphical

models

running interesection property, see Tree:junction

separating sets, 24

separators, 24

Graph:Running Intersection Property, 30

Gruau’s System, 258

H. Influenzae, 248

H. Sapien, 248

Heterochrony, 253

applications to Genetic Programming,

258

first implementation, 258

Hilbert Problems, 1, 115

Host-Parasite Interactions, 44

270 FRONTIERS OF EVOLUTIONARY COMPUTATION

Human-competitiveness, 201

criteria,definition, 202

desirability of, 203

Hybrid Systems, 224

CIGAR, 225

loosely coupled, 224

Type A, 224

Type B, 224, 226

Immune Systems, 43

Induction Algorithms, 232

Iterated Proportional Fitting, 24

Karlin’s Theorem, 92

One-Max example, 93

Kernel Machines, 126

Learning, 121

as evolution, 216

boosting performance, 123, 124

canonical, 75–76
ECHO model, 19
Holland’s model, 17–19
Koza’s model, 20
Markov chain, 74, 161, 187
Stephens-Poli model, 137–138
systems view, 7, 9
Vose-Nix/Vose-Liepins model, 88, 132
Wright’s Shifting Balance model, 98
Wright-Fisher model, 88–90

Gaussian Processes, 120
MAC/FAC model, 218
probabilistic, see Probability Models
space of, 135, 148
voter model, 24

Molecular Conformation, 104
Morphogenesis

and Evolutionary Computation, 44
morphospace, 253

machines, 11, 202 Neural Networks, 13–14

reinforcement, 121 NFL Theorem, 69, 131

dynamic programming, 121

supervised, 121

unsupervised, 121 Occam’s Razor, 229

Logic Optimization, see also Combinatorial Optimiza­

combining beliefs, 62	 tion,QUIP Problem
bandit problem, 121 modal, 62–67

probabilistic, 20, 21, 121 infer+act model, 117

Logic Programming, 62	 and machine learning, 120
combining techniques, 123

M. Genitalium, 248	 comparing search algorithms, 55, 118

MA, see Memetic Algorithm Gaussian Processes, 120

MAC/FAC model, 218 inverse view, 122

Machine Scheduling, 104 new applications, 126

Matrix problem transformation, 104

column-stochastic, 164 problems related to applications, 125

doubly-stochastic, 79 selecting good problems, 115

ergodicity, see Ergodicity	 Sokoban problem, 68

fair transmission, 79 STRIPS problem, 68

fully positive, 163 testing and benchmarking, 56, 124

Markov chain, 74 theoretical issues, 55, 116

rapid mixing, 81
overview, 163, 167 P-median problem, 107
primitive, 78, 79 Phase Transition, 56
transmission, 74–76 Polynomial Merger Algorithms (PMA), 59

Memetic Algorithm, xxi, 58, 67 Precision, 215
Memory Based Reasoning, 232 Principle
Metaheuristics, 54, 63, 67 conditional independence, 23

adaptive memory, 104, 109 exploration/exploitation, 116

choice of, 67 Feng Shui, 226

definition, 103 maximum entropy, 22

need for theory, 54 natural selection, 3, 245

Models Partial Control, 96
cellular, 24 Reduction Principle, 92, 95
degrees of freedom, 141 Prisoner’s Dilemma, 7, 43
Eigen, 134 Probability Models
evolutionary, 3–5, 132 infer+act model, 117

271 INDEX

Boltzmann Distribution Algorithm, 29

Boltzmann distribution algorithm, 19, 28

distribution, 134, 137

Estimation-of-Distributions algorithm,

63

limit, 21, 25

marginals, 21, 23, 25, 26, 28, 31

factorization theorem, 30

Factorized Distribution Algorithm, 30

graphical models, 23, 26, 30, 121

bounded factorization, 23–24

logic, 20, 121

conditional probability computer, 21

von Neumann, 20

maximum entropy principle, 22

Problem Solving

infer+act model, 117

cognitive evidence, 229

expertise hierarchy, 231

human, 211, 229

instance based, 229

schema based, 229

transformations, 105, 136

Quadratic Unconstrained Integer Programming,

see QUIP

QUIP Problem, 104

applications, 104

Examples, 106, 109

P-median problem, 107

scalability, 109

solving, 108

transformation-1, 105

transformation-2, 106

Recall, 215

Recombination, see crossover

Renormalization, 145

Resource Availability Problem, 43

Rule-learning Systems, 43

SCA, 24, see Automata:cellular

Schema Theorem

Holland, 32, 132, 133, 139, 142

Mühlenbein, 32

Stephens-Poli, 142

Schema Theory

limitations of, 31, 32, 133, 187

Schemas, 31, 32, 133, 135, 140, 142, 233

open questions, 236

Scripts, 213, 230

limitations of, 213

Search Space, 117

Belief Search, 62

Evolutionary scatter search, 108

local search, 59

reduction of, 122

Tabu search, 54, 67, 108

overview, 108

trees, 127

unusual instances, 126

variable neighborhood search, 67

Similarity Measure, 215

Social Psychology, 104

Sokoban problem, 68

Statistical Physics, 27, 130

STRIPS planning problem, 68

Tabu Search, 54, 108

overview, 108

Timing, see also Heterochrony

importance of, 255

transcription and translation, 251

Topology, 85

Hamming metric, 137, 141, 144, 163,

164, 167

relevance of, 134, 139

Traffic Management, 104

Transformation

between theories, 136, 146–147

coordinate, 136

embedding, 136

problems related to, 148

QUIP problem, 105

Tree

junction, 23, see Graph:Running Intere­

section Property

phylogentic, 126

search, 127

Turing

“child machine”, 12, 202

and evolution, 202

imitation game, 12

test, 11

Turing machine, 10

Unconstrained Polynomial Merger Algorithms

(uPMA), 59, 60

Virchow’s Law, 250

Walsh Basis, 136

Weight Learning, 215

	Frontiers of Evolutionary Computation
	Cover

	Contents
	List of Figures
	List of Tables
	Preface
	Contributing Authors
	1 Towards a Theory of Organisms and Evolving Automata
	1 Introduction
	2 Evolutionary computation and theories of evolution
	3 Darwin's continental cycle conjecture
	4 The system view of evolution
	5 Von Neumann's self-reproducing automata
	6 Turing's intelligent machine
	7 What can be computed by an artificial neural network?
	8 Limits of computing and common sense
	9 A logical theory of adaptive systems
	10 The for creating artificial intelligence
	11 Probabilistic logic
	11.1 Von Neumann's probabilistic logics
	11.2 The conditional probability computer
	11.3 Modern probabilistic logic

	12 Stochastic analysis of cellular automata
	12.1 The nonlinear voter model
	12.2 Stochastic analysis of one dimensional SCA

	13 Stochastic analysis of evolutionary algorithms
	13.1 Boltzmann selection
	13.2 Factorization of the distribution
	13.3 Holland's schema analysis and the Boltzmann distribution

	14 Stochastic analysis and symbolic representations
	15 Conclusion

	2 Two Grand Challenges for EC
	1 Introduction
	2 Historical Diversity
	3 The Challenge of Unification
	3.1 Modeling the Dynamics of Population Evolution
	3.1.1 Choosing Population Sizes
	3.1.2 Deletion Strategies
	3.1.3 Parental Selection
	3.1.4 Reproduction and Inheritance

	3.2 Choice of Representation
	3.3 Characteristics of Fitness Landscapes

	4 The Challenge of Expansion
	4.1 Representation and Morphogenesis
	4.2 Non-random Mating and Speciation
	4.3 Decentralized, Highly Parallel Models
	4.4 Self-adapting Systems
	4.5 Coevolutionary Systems
	4.6 Inclusion of Lamarckian Properties
	4.7 Modeling Evolutionary Systems

	5 Summary and Conclusions

	3 Evolutionary Computation: Challenges and duties
	1 Introduction
	2 Challenge #1: Hard problems for the paradigm – Epistasis and Parameterized Complexity
	3 Challenge #2: Systematic design of provably good recombination operators
	4 Challenge #3: Using Modal Logic and Logic Programming methods to guide the search
	4.1 Example 1
	4.2 Example 2

	5 Challenge #4: Learning from other metaheuristics and other open challenges
	6 Conclusions

	4 Open Problems in the Spectral Analysis of Evolutionary Dynamics
	1 Optimal Evolutionary Dynamics for Optimization
	1.1 Spectral Conditions for Global Attraction
	1.2 Spectral Conditions for Rapid First Hitting Times
	1.3 Rapid Mixing and Rapid First Hitting Times
	1.4 Some Analysis
	1.5 Transmission Matrices Minimizing
	1.6 Rapid First Hitting Time and No Free Lunch Theorems

	2 Spectra for Finite Population Dynamics
	2.1 Wright-Fisher Model of Finite Populations
	2.2 Rapid First Hitting Time in a Finite Population

	3 Karlin's Spectral Theorem for Genetic Operator Intensity
	3.1 Karlin's Theorem illustrated with the Deceptive Trap Function
	3.2 Applications for an Extended Karlin Theorem
	3.3 Extending Karlin's Theorem
	3.4 Discussion

	4 Conclusion

	5 Solving Combinatorial Optimization Problems via Reformulation and Adaptive Memory Metaheuristics
	1 Introduction
	2 Transformations
	3 Examples
	4 Solution Approaches
	4.1 Tabu Search Overview

	5 Computational Experience
	6 Summary

	6 Problems in Optimization
	1 Introduction
	2 Foundations
	3 Connections
	4 Applications
	5 Conclusions

	7 EC Theory - "In Theory"
	8 Asymptotic Convergence of Scaled Genetic Algorithms
	1 Notation and Preliminaries
	1.1 Scalars and vectors
	1.2 Matrices and operator norms
	1.3 Stochastic matrices
	1.4 Creatures and populations

	2 The Genetic Operators
	2.1 Multiple-spot mutation
	2.2 Single-cutpoint regular crossover
	2.3 The fitness function and selection

	3 Convergence of Scaled Genetic Algorithms to Global Optima
	3.1 The drive towards uniform populations
	3.2 Weak ergodicity
	3.3 Strong ergodicity
	3.4 Convergence to global optima.
	3.5 The Vose-Liepins version of mutation-crossover

	4 Future Extensions of the Theory
	4.1 Towards finite-length analysis on finite-state machines
	4.2 Estimates for finite-length genetic algorithms à la Catoni
	4.3 Adding sampling noise
	4.4 Further analogy with simulated annealing: parallelism and sparse mutation
	4.5 Analysis from inside-out and outside-in
	4.6 Non-monotone and self-adapting annealing sequences
	4.7 Discrete vs. continuous alphabets

	5 Appendix - Proof of some basic or technical results

	9 The Challenge of Producing Human-Competitive Results by Means of Genetic and Evolutionary Computation
	1 Turing's Prediction Concerning Genetic and Evolutionary Computation
	2 Definition of Human-Competitiveness
	3 Desirable Attributes of the Pursuit of Human-Competitiveness
	3.1 Utility
	3.2 Objectivity
	3.3 Complexity
	3.4 Interminability

	4 Human-Competitiveness as a Compass for Theoretical Work
	5 Research Areas Supportive of Human-Competitive Results
	6 Promising Application Areas for Genetic and Evolutionary Computation
	7 Acknowledgements

	10 Case Based Reasoning
	1 Introduction
	2 Case-Based Reasoning
	3 Case Memory as an Evolutionary System
	3.1 A Simple Model of ECM
	3.1.1 Case-Base
	3.1.2 Environment
	3.1.3 Generate Solution
	3.1.4 Evaluate

	3.2 Reorganize
	3.3 Discussion

	4 Hybrid Systems
	4.1 Type A - CBR as a memory, EA as the optimizer
	4.2 Type B - EA as CBR System Parameter Optimizers
	4.3 Discussion

	5 Evolving Higher Levels
	5.1 Schemas
	5.2 A brief aside on levels of higher expertise
	5.3 Towards memory based reasoning
	5.3.1 C-Schemas as Building Blocks

	6 Conclusions

	11 The Challenge Of Complexity
	1 GP Basics and State of the Art
	2 The Situation in Biology
	3 Nature's way to deal with complexity
	4 What we can learn from Nature?
	5 A possible scenario: Transfer into Genetic Programming
	6 Conclusion

	Author Index
	Index
	Team DDU

