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Preface


This book is a collection of essays, authored by eminent scholars in evo­
lutionary computation (EC), artificial intelligence (AI), operations research, 
complexity theory and mathematics. Each essay revolves around important, 
interesting and unresolved questions in the field of evolutionary computation. 

The book is designed to be a resource to at least three categories of readers. 
First of all, graduate students will find this book a rich source of open research 
issues. Imagine participating in an EC research seminar conducted by some of 
the best scholars in and around the field! The book also gives experts a chance 
to compare and contrast their understanding of the fundamental issues in EC 
with the perspectives of their peers. Finally, to the interested scholar it offers a 
sample of the kind of problems that are considered worth solving in EC. 

Much has been written about how great solutions often have a certain aes­
thetic appeal (symmetry, simplicity, originality, unity and so on). In sharp 
contrast, characteristics of great problems remain something of a mystery. It is 
useful to think of a problem as existing in at least one of four states: undiscov­
ered, unsolved, solved and hibernating. However, truly interesting problems 
— great problems — manage a simultaneous, contrary existence in all four 
quadrants. A great problem, to echo Walt Whitman, is often large and con­
tains multitudes. Every mature field has its great problems. Even fields with a 
progressive tradition, like Physics and Mathematics, have problems that refuse 
to stay solved. The problem of explaining the directionality of the thermody­
namic arrow of time, and the debate over whether mathematical objects are 
invented or discovered are but two examples that comes to mind. Great prob­
lems act as co-ordinate systems for the geography of our imaginations and 
explain why we do what we do. 

So it is gratifying (rather than alarming) that EC is also evolving its own 
collection of really hard problems. For example, is an evolutionary process 
an algorithmic process (in the sense of Church-Turing)? Are building blocks 
theoretical rather than empirical constructs? Which results in EC are dependent 
on problem representation and which ones independent of it? What precise 
role does crossover play? Is there a way to unify the different formalisms used 
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to model evolutionary processes? What are the characteristics of problems 
solvable by EC? Some of these problems are discussed at length in this volume. 

This book grew out of a proposed session for the 2001 International Con­
ference on Artificial Intelligence in Las Vegas, Nevada. I had thought that 
a collection of authoritative essays, each devoted to the description of a sub­
stantially unsolved problem in EC, could help bring coherence to the field, 
clarify its important issues, and provoke imaginations. The session was jok­
ingly dubbed the ‘Hilbert session’ in memory of David Hilbert’s outstanding 
example almost a century ago. Unfortunately, time constraints prevented the 
session from from going forward. But the highly positive response from the 
invitees, as well as from others who had heard about the idea, suggested that 
a book could be an alternate and appropriate forum for implementing the idea. 
The stray mentions of Hilbert in some of the essays thus hark back to the ori­
gins of this book. Needless to say, the essays were not written with the aim of 
being either as definitive or as predictive as Hilbert’s talk turned out to be. 

The authors in this collection are wonderfully varied in their backgrounds, 
writing styles and interests. But their essays are related by several common 
goals: extensions to EC theories, discussion of various formalisms, summaries 
of the state of the art, and careful speculation on what could be done to re­
solve various issues. The essays also leave no doubt that the ferment caused 
by active trading is producing a watershed event in the marketplace of ideas. 
Witness for example, the import of ideas from evolutionary theory into Algo­
rithmics (such as: population thinking, inheritance and recombination), and 
the export of ideas from mathematics and computer science into evolutionary 
theory (such as: stochastic models, complexity theory, computability). Ide­
ally, I would have liked to triple the size of the book, include at least a dozen 
more authors, and reprint essays from relevant collections. On the other hand, 
progress is a side-effect of achieving the possible. While the sample of ideas 
and authors herein is certainly not comprehensive, it is very much representa­
tive of what is possible in our field. 

EC is a young discipline, and consequently, it is still a field that has the rare 
chance to be defined in terms of its unsolved problems, rather than its solved 
ones. No doubt, the many encounters offered in this book, the journeys it will 
inspire, and the inevitable predilection of problems to get solved, will change 
this situation in the next few decades. But till then, this book is meant to serve 
as a beckoning toward the roads still not taken. 
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Chapter 1 

TOWARDS A THEORY OF ORGANISMS 
AND EVOLVING AUTOMATA 

Open Problems and Ways to Explore 

Heinz Mühlenbein 
FhG-AiS D-53754 Sankt Augustin 

muehlenbein@gmd.de 

Abstract	 We present 14 challenging problems of evolutionary computation, most of them 
derived from unfinished research work of outstanding scientists such as Charles 
Darwin, John von Neumann, Anatol Rapaport, Claude Shannon, and Alan Tur­
ing. The problems have one common theme: Can we develop a unifying theory 
or computational model of organisms (natural and artificial) which combines the 
properties structure, function, development, and evolution? There exist theories 
for each property separately as well as for some combinations of two. But the 
combination of all four properties seems necessary for understanding living or­
ganisms or evolving automata. We discuss promising approaches which aim in 
this research direction. We propose stochastic methods as a foundation for a 
unifying theory. 

1. INTRODUCTION 
The aim of this book is very ambitious. Its title is not: important problems of 

evolutionary computation, but Hilbert problems in evolutionary computation. 
What makes Hilbert’s problems so famous and unique? Hilbert designed his 
problems with the goal that “they could serve as examples for the kinds of 
problems the solutions of which would lead to advancements of disciplines 
in mathematics.” If we have a closer look at Hilbert’s twenty-three problems 
today, then we observe that some of the problems indeed lead to important 
research, but a few of them did not. One of the reasons seems to be how the 
problems have been formulated. Most of them are well defined, but some are 
more vaguely posed, making a solution difficult. 

In fact, the paper became famous because of question number two: Can it 
be proven that the axioms of arithmetic are consistent? Hilbert’s question is a 
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sub-problem of the general research program Hilbert had in mind: Can math­
ematics be axiomatized? The general problem was taken on by Russel and 
Whitehead and lead to three volumes of the Principia Mathematica. Gödel 
dealt with the more specific problem two and proved that the answer is nega­
tive. This put an end to the effort of Russel and Whitehead. The implication 
of Gödel’s result with regard to mathematics and the theory of computation in 
general is still a subject of hot discussions. 

In contrast, problem number six just reads: Can physics be axiomatized? In 
the explanation of the question Hilbert writes: “to axiomatize those physical 
disciplines, in which mathematics already plays a dominant role; these are first 
and foremost probability and mechanics.” To our surprise we see the calculus 
of probability as a part of physics! A closer inspection reveals that Hilbert’s 
moderate goal was a mathematically sound application of probability to kinetic 
gas theory. This research has been carried out by physicists, but without ever 
referring to a Hilbert problem. It lead to statistical physics as it appears today. 

My goal is modest. I will propose problems, mainly in evolutionary com­
putation, and name each after a famous scientist who has formulated or inves­
tigated the problem. This does not imply that the problem so named is the 
most important the scientist has worked on. Nor do I claim that the scientist 
has considered the problem to be the most important one he has worked on. 
I only want to demonstrate that most of the challenging problems have been 
identified very early and are with us for quite a time. And my second message 
is: we have to look much more often into older papers. Older scientific pa­
pers should not be considered as “fossils”. It is a fundamental misconception 
that science is continuously accumulating all the important available knowl­
edge and condensing the knowledge in surveys or textbooks. Many important 
scientific ideas and papers enter main stream science after 20 or more years. 

I will consider in the paper both – natural and artificial organisms. The 
emphasis will be on artificial automata. In order not just to summarize the 
problems, I will describe in the more technical sections 11 till 13 a theory I 
consider as a promising candidate for solving some of the problems presented. 
It is the theory of probability, used and extended in scientific disciplines as dif­
ferent as probabilistic logic, statistical physics, stochastic dynamical systems 
and function optimization using search distributions. These sections will be 
fairly selfish, because in selecting from the huge available literature the work 
of my research group will be over-represented. 
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2.	 EVOLUTIONARY COMPUTATION AND

THEORIES OF EVOLUTION


The goal of evolutionary computation is to make the development of pow­
erful problem solving programs easier. There have been tried at least three 
approaches to achieve this goal. 

1 Use a theory - develop a theory of problem solving and implement it on 
a computer 

2	 Copy the brain - analyze the human brain and make a copy of it on a 
computer 

3	 Copy natural evolution - analyze natural evolution and implement the 
most important evolutionary forces on a computer 

In the history of artificial intelligence research one of the three approaches 
was dominant at any one time. Evolutionary computation belongs to the third 
approach. Today this approach is gaining momentum. It relies on theories of 
evolution and of computation. The theory of computation is well advanced, 
so the problems of evolutionary computation lie in theories of evolution. If 
there existed a convincing constructive theory of evolution, then evolutionary 
computation would be just a matter of implementation - which of the major 
evolutionary forces to implement in what detail. 

But do we possess a constructive theory of evolution? Here the opinions dif­
fer extremely. The main stream theory of evolution is called New or Modern 
Synthesis. Its followers claim that it reconciles Darwin’s idea of continuous 
small variations with the concept of gene flows derived from population genet­
ics. The second major force of the Modern Synthesis is still Darwin’s concept 
of natural selection. But are these two forces sufficient to explain the wonders 
of evolution at least in some broad terms? 

There is no doubt that the modern synthesis is able to explain the change 
of gene frequencies on a small time scale. If there is enough diversification, 
then the theory correctly predicts further changes for a short time. But can it 
explain evolution for a long time? Here the crucial question is: How could it 
come to such a diversification, starting from a tiny cell? I like to formulate the 
problem with Darwin’s famous ending sentence of The Origin of Species by 
Means of Natural Selection ((Darwin, 1859)). 

“There is grandeur in this view of life, with its several powers, having been 
originally breathed into a few forms or into one; and that, whilst this planet 
has gone cycling on according to the fixed laws of gravity, from so simple a 
beginning endless forms most beautiful and most wonderful have been, and are 
being, evolved.” 
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Let me be more specific and cite some major problems which a theory of 
evolution would have to explain. Maynard (Smith and Szathmary, 1995), have 
called them the the major transitions in evolution (see table 1.1). 

The authors “solve” some of the problems with a very narrow version of 
the modern synthesis. “We are supporters of the gene centered approach pro­
posed by Williams and refined by (Dawkins, 1989).” In the gene centered 
approach, also called the selfish gene concept, the genes are the major actors. 
They possess an internal force to proliferate as much as possible. 

This caricature of a theory of evolution is used by the authors to explain the 
transition from solitary individuals to colonies, for example. The argument is 
as follows: If a female produces two offspring, but females can produce 3n 
offspring, then cooperation between the females pays off. Even if there is a 
fight between females and one becomes a queen, cooperation is still preferred 

of is larger than 2). Thus in the gene centered analysis a colony with 
a single queen has a selective advantage. 

There are many flaws in the selfish gene concept. It is not constructive, it 
does not investigate if the selection advantage of a particular gene can be re­
alized in a phenotype. Rabbits with wings would obviously have a selective 
advantage. Why did it not happen? Two genes can also oppose each other 
- gene 1 might increase by action and gene 2 by the opposite action 
Which gene wins? Consider a female and its offspring as an example. The off­
spring are threatened. Should the mother protect the offspring, even on the risk 
of her life? The notorious formula of Hamilton gives the result that the mother 
should sacrifice her life if more than two offspring are threatened (Maynard 
(Smith and Szathmary, 1995)). Hamilton argues as follows: in each offspring 
there are only one half of the genes of the mother. Thus the genes of the mother 
multiply if she protects at least three offspring. Ironically Darwin itself has de­
voted a whole chapter of his “The Origin of Species” to the problem insect 
colonies pose to natural selection. His explanation is constructive. He shows 
how many small changes in behavior can lead to very peculiar behavior, even 
to slave making ants! This example shows dramatically the extreme simplifi­



5 Towards a Theory of Organisms and Evolving Automata 

cation done by the selfish gene concept. It is my strong opinion that the selfish 
gene concept does not enrich Darwin’s theory, but reduces it to a caricature. 

The selfish gene concept has been opposed by a small group in biology, 
most notably by the late Stephen J. Gould. Recently even philosophers of 
science formulate a basic critic. I just cite (Griffiths, 2002). “The synthetic 
theory bypassed what were at the time intractable questions of the actual re­
lationship between stretches of chromosomes and phenotypic traits. Although 
it was accepted that genes must, in reality, generate phenotypic differences 
through interaction with other genes and other factors in development, genes 
were treated as black boxes that could be relied on to produce phenotypic vari­
ation with which they were known to correlate.” 

I will discuss this problem later with my proposal of a system theory of 
evolution. The major conclusion of this section is: there exists no general the­
ory of evolution today. The “theory” its proponents call “Modern Synthesis” 
is an extremely simplified version of Darwin’s theory. It separates organisms 
and environment. Natural selection is modeled by a fitness function, whereas 
Darwin used the term only in a metaphoric sense. In fact, Darwin noticed 
the misinterpretation of his theory even during his life. He wrote in the last 
(1872) edition of “The Origin of Species”: “As my conclusions have lately 
been much misrepresented, and it has been stated that I attribute the modifica­
tion of species exclusively to natural selection, I may be permitted to remark 
that in the first edition of this work, and subsequently, I placed in a most con­
spicuous position — namely at the close of the Introduction — the following 
words: “I am convinced that natural selection has been the main but not the ex­
clusive means of modification.” This has been of no avail. Great is the power 
of steady misinterpretation.” 

Therefore evolutionary computation has to be largely experimental. This 
was already pointed out by John (von Neumann, 1954). “Natural organism are, 
as a rule, much more complicated and subtle, and therefore much less well un­
derstood in detail, than are artificial automata. Nevertheless, some regularities, 
which we observe in the organization of the former may be quite instructive 
in our thinking and planning of the latter; and conversely, a good deal of our 
experiences and difficulties with our artificial automata can be to some extend 
projected on our interpretations of natural organisms.” 

3.	 DARWIN’S CONTINENTAL CYCLE 
CONJECTURE 

I will describe my first problem in Darwin’s terms. In the chapter “Cir­
cumstances favorable to Natural Selection” Darwin writes: “A large number 
of individuals by giving a better chance for the appearance within any given 
period of profitable variations, will compensate for a lesser amount of vari­
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ability in each individual, and is, I believe, an extremely important element of 
success.” 

On the other hand Darwin observes that a large number of individuals in 
a large continental area will hinder the appearance of new adaptations. This 
happens more likely in small isolated areas. He writes: “Isolation, also, is an 
important element in the process of natural selection. In a confined or isolated 
area, if not large, the organic and inorganic conditions of life will be in a great 
degree uniform; so that natural selection will tend to modify all individuals 
of a varying species throughout the area in the same manner in relation to 
the same conditions. But isolation probably acts more efficiently in checking 
the immigration of better adapted organisms. Lastly, isolation, by checking 
immigration and consequently competition, will give time for any new variety 
to be slowly improved.” 

Darwin then continues: “Hence an oceanic island at first sight seems to have 
been highly favorable for the production of new species.” But Darwin notes a 
conflict: “to ascertain whether a small isolated area or a large open area like 
a continent, has been most favorable for the production of new organic forms, 
we ought to make the comparison within equal times; and this we are incapable 
of doing. ” 

Despite of the above observation Darwin concludes: “I conclude, that for 
terrestrial productions a large continental area, which will probably undergo 
many oscillations of level, and which consequently will exist for long periods 
in a broken condition, will be the most favorable for the production of many 
new forms of life, likely to endure long and spread widely.” Darwin reasons as 
follows: “For the area will first have existed as a continent, and the inhabitants, 
at this period numerous in individuals and kinds, will have been subjected to 
very severe competition. When converted by subsidence into large separate 
islands, there will still exist many individuals of the same species on each 
island;. . . and time will be allowed for the varieties in each to become well 
modified and perfected. When by renewed elevation, the islands shall be re­
converted into a continental area, there will be again severe competition: the 
most favored or improved varieties will be enabled to spread: there will be 
much extinction of the less improved forms . . .” 
I am very impressed about Darwin’s continental cycle conjecture, which he 
made much earlier than Alfred Wegener in geology. Therefore I dedicate my 
first problem to Darwin. 

Problem 1 [Darwin]: Can we demonstrate or even prove the correctness of 
Darwin’s Continent-Island cycle conjecture ? 

The reader should have observed how carefully Darwin discusses the ar­
guments. I strongly recommend to read Darwin’s “The Origin of Species”. 
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The most profound critique of modern “Darwinism” can be found in Darwin’s 
book!1 

It seems difficult to test Darwin’s conjecture in nature. I propose therefore 
to use simulations as a first step. I have used the iterated prisoners dilemma 
game to investigate problem 1 ((Mühlenbein, 1991a)). The results indicate 
that Darwin’s conjecture might be correct. But the simulation model needs a 
lot more refinement. 

Darwin mentions at many places of the “Origin” that space is as important 
for evolution as time. This has been shown in the context of genetic algorithms 
by (Mühlenbein, 1991b). Space is also an important element of the shifting 
balance theory of evolution proposed by (Wright, 1937). Without referring to 
Darwin a subset of the problem, that is the difference of the evolution in a large 
continent and small isolated islands, has been recently investigated by (Parisi 
and Ugolini, 2002). 

4. THE SYSTEM VIEW OF EVOLUTION 

The next set of problems I will derive more abstract. The major weakness 
of “Darwinism” in the form of the modern synthesis is the separation of the 
individuals and the environment. In this model each individual (mainly 
characterized by its genes) is assigned a fitness predicting the performance 
of this individual within the environment E and given the other individuals. 
This can be written as: 

It seems impossible to obtain numerical values for the fitness. Therefore 
theoretical biology has made many simplifications. The environment is kept 
fixed, i.e the influence of other individuals is described by 
some averages of the population, etc.. The shortcomings of the dichotomy 
individual-environment in the Modern Synthesis have already been discussed. 
The problem is still more difficult because each individual is in addition devel­
oping in a close interaction with its environment. The development problem 
has been addressed recently by (Oyama, 2000), in her developmental system 
theory. Unfortunately the theory is very informal, it has been formulated from 
a philosopher’s point of view. Therefore I will describe the next problem as it 
has been stated in the final address of Anatol Rapaport, the then retiring presi­
dent of General System Science Society 
((Rapaport, 1970)). 

1In addition I recommend the essays of Stephen J. Gould. 
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Problem 2 [Rapaport+1]: Can we formulate a theory of organisms, which 
incorporates being, acting, evolving, and developing? 

I have named the problem Rapaport+1 because Rapaport identified only 
three properties. He combined evolving and developing into a single property 
becoming. The problem needs an explanation. It goes back to (Whitehead, 
1948). In his book “Science and the Modern World” Whitehead warned that 
the store of fundamental ideas on which the then contemporary science was 
based was becoming depleted. Whitehead suggested that the concept of or­
ganism, hitherto neglected in physical science, might be a source of new ideas. 
Whitehead tried to define what an organism characterizes. 

We will describe the definition of Rapaport. “According to a soft definition, 
a system is a portion of the world that is perceived as a unit and that is able 
to maintain its identity in spite of changes going on in it. An example of a 
system par excellence is a living organism. But a city, a nation, a business 
firm, a university are organisms of a sort. These systems are too complex 
to be described in terms of succession of states or by mathematical methods. 
Nevertheless they can be subjected to methodological investigations.” 

Rapaport then defines: “Three fundamental properties of an organism ap­
pear in all organism-like systems. Each has a structure. That is, it consists 
of inter-related parts. It maintains a short-term steady state. That is to say, it 
reacts to changes in the environment in whatever way is required to maintain 
its integrity. It functions. It undergoes slow, long term changes. It grows, 
develops, or evolves. Or it degenerates, disintegrates, dies. 

Organisms, ecological systems, nations, institutions, all have these three 
attributes: structure, function, and history, or, if you will, being, acting, and 
becoming.” 

Rapaport’s becoming captures both – the development of an organism from 
the fertilized egg to the grown-up organism, and the evolution of the species 
in a succession of many generations. There is no doubt that the relationship 
between the two properties is a very close one. Ernst Haeckel even postulated 
in 1890 a biogenetic law: Individual development is a shortened recapitulation 
of the history of the phylum. Subsequent research has shown that there is some 
truth in the law, but as a general statement it is incorrect. In my opinion it is 
very important to distinguish between the development of an individual and 
the evolution of a species. 

To my knowledge, Rapaport’s talk did not lead to a scientific effort to build 
such a theory of organisms. The reader will guess the reason: it is the sheer 
complexity of the task! Instead research in biology remained concentrated on 
a single property or to a combination of two properties. Thus population ge­
netics combines being and evolving, population dynamics combines being and 
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acting. The developmental system theory mentioned earlier combines being 
and developing. 

The investigation of the above problem leads to another problem: In what 
language should we frame a theory of organisms? Three approaches can be 
tried: 

The descriptive approach, using natural language 

The micro-simulation approach 

The mathematical approach 

Today the descriptive approach has gained momentum, characterized by the 
developmental system theory mentioned above (Oyama, 2000). Artificial Life 
uses micro-simulation. But in micro-simulations it is very difficult to distin­
guish between the microscopic event and the more general pattern happening 
in many simulations. Rapaport and, earlier, von Neumann advocated the math­
ematical approach. I go a step further and propose stochastic system theory as 
the research foundation. Stochastic analysis has been successfully used in pop­
ulation genetics for at least 75 years. But population dynamics is still mainly 
investigated with the help of deterministic differential equations. Thus I parti­
tion Rapaport’s problem into three problems. 

Problem 3a: Can we develop a stochastic system theory, combining the 
properties being and acting of organisms or automata in a 2-d space? 

Problem 3b: Can we develop a stochastic system theory, combining the 
properties being and developing of organisms or automata in a 2-d space? 

Problem 3c: Can we develop a stochastic system theory, combining the as­
pects being, acting and evolving of organisms or automata in a 2-d space? 

The answer to the first question is a definite yes. It is already an active 
area of research. We will discuss the state of the art in stochastic analysis 
in the technical sections 11 till 13. Problem 3b was first investigated by von 
Neumann. 

5.	 VON NEUMANN’S SELF-REPRODUCING 
AUTOMATA 

Von Neumann started his research with the concept of “complification”. He 
used the term very informally. We will proceed in the same way. It is outside 
the scope of this paper to discuss all the measures proposed for complexity. 
Also the term automaton will be used in a broad manner. Von Neumann ob­
served: “If automaton A can produce B, then A in some way must have con­
tained a complete description of B. In this sense some decrease in complexity 
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must be expected as one automaton makes another automaton.” But organisms 
reproduce themselves with no decrease in complexity. Moreover, organisms 
are indirectly derived from others which had lower complexity. 

Problem 4 [von Neumann]: Can we construct automata which are able to 
produce automata more complex than themselves? 

Von Neumann tried several approaches to enable a scientific investigation 
of the above problem. The main theory was collected by Burns and expended 
into a theory of self-reproducing automata ((Burns, 1970)). But it is more in­
structive to look at von Neumann’s own description, summarized in the article 
“The General and Logical Theory of Automata” ((von Neumann, 1954)). Von 
Neumann started his research with a result of Turing. Turing wanted to give 
a precise definition of what is meant by a computing automaton. His solution 
was the Universal Turing Machine UTM. It consists of an automaton reading 
and writing symbols on an infinite tape. Von Neumann decided that his au­
tomaton should have the power to simulate the UTM in a discrete cellular 2-d 
space. Thus he investigated the problem how to construct an automaton which 
reproduces itself in 2-d space and has the power of UTM. 

Von Neumann’s construction proceeded as follows: 
(a) Construct an automaton A, which when furnished the description of any 

other automaton in terms of appropriate functions, will construct that entity. 
(b) Construct an automaton B, which can make a copy of any instruction 

that is furnished to it. This facility will be used when furnishes a description 
of another automaton. 

(c) Combine the automata A and B with a control mechanism which does 
the following. will first cause A to construct the automaton which is de­
scribed by Next will cause B to copy the instruction Finally will 
separate this construction from the system 

(d) Form an instruction which describes this automaton D, and insert 
into A within D. Call the aggregate which now results E. 

E is clearly self-reproducing. But E cannot do anything besides reproduc­
tion. It needs a program. Therefore von Neumann proposed an extension: 
Replace the instruction by an instruction which describes automa­
ton D plus another automaton F. This automaton reproduces itself and then 
behaves like automaton F. Now if a “mutation” within the F part takes place, it 
changes into This “mutant” is still self-reproductive. 

Von Neumann believed that with this construction he had made crude steps 
in the direction of a systematic theory of automata, especially towards forming 
a rigorous concept of what constitutes “complication.” At a first glance, the 
construction seems to be the solution of the automatic programming problem. 
But why did von Neumann’s self-reproducing automata not have any practical 
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relevance? The answer is simple: The construction does not solve the most 
important problem: How do the programs get into the machine? The develop­
ment of programs is the problem, not their self-reproduction. Von Neumann’s 
automata can in principle compute anything, but the programs have to be pro­
vided from the outside! Who provides these descriptions? A single built-in 
program F is surely not enough, because von Neumann did not introduce se­
lection. Therefore the value of the mutant program F' for problem solving is 
not checked. Thus von Neumann solved only part of the problem. Therefore 
we extend problem 4. 

Problem 5: What conditions are required to enable von Neumann’s au­
tomata to grow in complexity without external interventions? 
A worthwhile extension of von Neumann’s approach would be to use a pop­
ulation of automata which interact with each other and which have to solve 
a set of problems to survive and produce offspring. Thus I believe that for a 
solution of problem 5 one needs both, Turing and Darwin. Turing provides 
the concept of a universal automaton and Darwin provides the concept of a 
changing environment metaphorically leading to natural selection. 

The importance of von Neumann’s construction for today’s research has also 
been emphasized by (McMullin, 2001). 

6. TURING’S INTELLIGENT MACHINE 
Von Neumann’s approach of using self-reproduction and the Universal Tur­

ing Machine was not the only method proposed to build intelligent machines. 
In fact, von Neumann discussed the use of artificial neural networks as another 
possibility. Before I describe this work, it is instructive to discuss how Tur­
ing himself approached the problem in his article “Computing machinery and 
intelligence” ((Turing, 1950)). At first Turing defined the concept of intelli­
gence. A machine is intelligent if it passes a test Turing defined precisely: the 
Turing test is an “imitation” game, played by three objects A, B and C. C is 
the interrogator, A or B might be a machine. The machine passes the test if 
the interrogator is not able to find out that a machine answers to his questions. 
This gives our next problem. 

Problem 6 [Turing]: Is it possible to build machines which pass the Turing 
test? 

Turing believed that the answer to the above question is positive and pro­
posed a method to construct such a machine. It is described in the section 
“Learning Machines” of the above cited paper. Turing’s proposal seems to be 
almost unknown, although it is contained in this well-known article. I find 
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the proposal very fascinating. The arguments brought forward by Turing have 
been used a number of times in artificial intelligence research, but obviously 
without knowing that Turing already formulated them. 

“As I have explained, the problem is mainly one of programming. Estimates 
of the storage capacity of the brain vary from and I would be sur­
prised if more than was required to satisfactory playing of the imitation 
game ... At my present rate I produce about a thousand digits of program a 
day, so that about sixty workers, working steadily through the fifty years might 
accomplish the job, if nothing went into the wastepaper basket. Some more 
expeditious method seems desirable.” 

Turing did not try to formalize a possible solution to problem 6. Any pro­
gram passing the test will do. It is the efficiency problem which leads Turing 
to consider natural organisms, in this case the human mind. “In the process 
of trying to imitate an adult mind we are bound to think a good deal about 
the process which has brought it to the state that it is in. We may notice three 
components: 

(a) The initial state of the mind, say at birth, 
(b) The education to which it has been subjected, 
(c) Other experience 

Instead of trying to produce a program to simulate the adult mind, why 
not rather try to produce one which simulates the child’s?. . . . We have thus 
divided our problem into two parts, the child programme and the education 
process. These two remain very closely connected. We cannot expect to find 
a good child machine at the first attempt... There is an obvious connection be­
tween this process and evolution, by the identifications 

One may hope, however that this process will be more expeditious than 
evolution. The survival of the fittest is a slow method for measuring advan­
tages... Opinions may vary as to the complexity which is suitable in the child 
machine. One might try to make it as simple as possible consistently with the 
general principles. Alternatively one might have a complete system of logical 
inference programmed in.” 

Turing reported: “I have done some experiments with one such child ma­
chine, but the teaching method was too unorthodox for the experiment to be 
considered really successful.” The imitation game is the final test, one needs 
some intermediate goals. “We may hope that machines will eventually com­
pete with men in all purely intellectual fields. But which are the best ones to 
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start with?. . . Many people think that a very abstract activity, like the playing 
of chess, would be the best. It can also be maintained that it is best to provide 
the machine with the best sense organs that money can buy, and then teach it to 
understand and speak English.” Today chess playing has been solved by brute 
force programming. This solution is feasible due to the strict rules of chess 
that enable fast and efficient game tree search. The progress in games like GO 
is much slower. But we are still left with the language understanding problem. 

Problem 7 [Turing]: Is it possible to create a machine which can be taught 
to understand English? 

Turing’s proposal belongs to the “copy the evolution” approach. In contrast 
to nature the artificial evolution does not start with a cell, but with a well-
designed child. Turing’s approach is very informal, he believed that he could 
program an intelligent system using about bits. I call this attitude the pro-
grammer’s approach. The system is programmed without a theory. One just 
assumes that anything can be programmed. This attitude seems to be dominant 
today. For Turing evolution is just a technique to shorten the programming 
time. 

7.	 WHAT CAN BE COMPUTED BY AN 
ARTIFICIAL NEURAL NETWORK? 

We now turn back to von Neumann and his approach to machine intelli­
gence. In contrast to Turing, von Neumann works more like a natural scientist. 
He tries to formalize solution strategies. Thus his solutions are not programs, 
but theories. In 1948 formal neural networks were already very popular in the 
research community because of the work of McCulloch and Pitts. John (von 
Neumann, 1954), investigated the power of neural networks in his famous talk 
“The general and logical theory of automata”. In the section “Formal Neu­
ral Networks” von Neumann notes: “The McCulloch-Pitts result2 proves that 
anything that can be exhaustively and unambiguously described, anything that 
can be completely and unambiguously put into words, is ipso facto realizable 
by a suitable finite neural network... Thus the remaining problems are these 
two. First, if ascertain modes of behavior can be effected by a finite neural 
network, the question still remains whether the network can be realized within 
a practical size. . . Second, the question arises whether every existing modes of 
behavior can be put completely and unambiguously into words. . . 

There is no doubt that any special phase of any conceivable form of behav­
ior can be described completely and unambiguously in words. This description 

2McCulloch-Pitts had proven that their formal neural networks are equivalent to a Turing machine. 
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may be lengthy, but it is always possible. . . It is, however, an important limita­
tion, that this applies only to every element separately, and it is far from clear 
how it will apply to the entire syndrome of behavior.” 

Von Neumann then discusses more specifically the concept of identifica­
tion of analogous geometrical entities. He takes as example the concept of a 
triangle. 

“There is no difficulty in describing how an organism might be able to iden­
tify any two rectilinear triangles, which appear on the retina, as belonging to 
the category “triangle”. There is also no difficulty in adding to this, that numer­
ous other objects, will also be classified and identified as triangles — triangles 
whose sides are curved, triangles whose sides are not full drawn . . . This, in 
turn, however constitutes only a small fragment of the more general concept 
of analogy. Nobody would attempt to describe and define within any practical 
amount of space the general concept of analogy which dominates our interpre­
tation of vision. There is no basis for saying whether such an enterprise would 
require thousands or millions or altogether impractical numbers of volumes. 
Now it is perfectly possible that the simplest and only practical way actually 
to say what constitutes a visual analogy consist in giving a description of the 
connections of the visual brain.” 
This discussion leads to the next problem. 

Problem 8 [von Neumann]: Can an artificial neural network of practical 
size be designed which gives similar results on visual problems as the human 
brain? 

Turing also used an “analysis” of the human brain in order to show that an 
intelligent machine can be programmed in bits. He wrongly assumed that 
the performance of the brain can be characterized by its number of neurons, 
about He did not consider the interconnection structure as relevant. The 
only problem left to him is to obtain this program of digits. Von Neumann 
is much more careful. It is not the number of neurons which matters, but 
their interconnection structure. Today we know that even the interconnection 
structure is not sufficient to define uniquely how the neurons process the visual 
input. We need to know the dynamic interaction of all the neurons involved. 

8.	 LIMITS OF COMPUTING AND COMMON 
SENSE 

I consider von Neumann’s discussion about computability extremely impor­
tant. To summarize his research on problem 8: First, von Neumann has serious 
doubts that the concept of visual analogy can be formulated in a finite number 
of words. Second, even if it can be formulated in a finite number of words, it 



15 Towards a Theory of Organisms and Evolving Automata 

might be that this number is greater than a practical size. The practical size 
is defined by the real world. Finiteness is not enough, we need practical time 
and practical space in our real world. The finiteness of our world puts an upper 
limit to the largest program which can be computed in our world. The actual 
determination of the practical size turned out to be very difficult. Therefore 
complexity theory is formulated without an actual limit. The set of problems 
which can be computed is defined differently. It lead to the distinction of Ptime 
and NPtime problems: given a problem whose solution can be verified in poly­
nomial time, is there an algorithm which actually finds such a solution (this 
means in polynomial time according to the size of the input.)? If both condi­
tions can be proven, we have a problem from class Ptime or short P, if only 
the first condition is fulfilled we have an NPtime or short NP problem. Poly­
nomial time means exponential time But if is very 
large, even can be a very large number, meaning that the problem can­
not be computed in reasonable time. Nevertheless all problems in class P are 
considered to be easy computable. 

The question if P is equal or not equal to NP is one of the most important 
open questions in complexity theory. The basic classification has been refined 
in a number of ways. I just mention the inclusion 

There have been several attempts to compute the practical size of space or 
the limit of time, using the finiteness of the universe and the laws of physics. 
Bremermann was one of the first to compute explicitly an upper limit. 
Bremermann’s bound: No data processing system, whether artificial or liv­

ing, can process more than bits per second per gram of its mass. 

Bremerman used this bound to calculate the total number of bits processed 
by a hypothetical computer the size of the earth within a time period equal to 
the estimated age of the earth. He computed bits. Then he calculated the 
mass of the universe and obtained his bound. The above limit is small by math­
ematical means. I call any number between and Bremermann’s limit 
((Mtihlenbein, 1996)). Programs which are finite, but require more than 
steps for solving, do not finish in our universe. This implies that the mathemat­
ical class of finite programs has to be divided into those below Bremermann’s 
limit and above the limit. 

Von Neumann had serious doubts that complex behaviors like the concept 
of visual analogy can be described by a reasonable number of words, meaning 
that the description can be read and processed in a lifetime. Despite the warn­
ing issued by von Neumann there have been many attempts to put so much 
knowledge into a machine that it could behave intelligently. The earliest pro­
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posal was made by (McCarthy, 1959), in his article “Programs with common 
sense”3. The most recent effort is due to (Lenat, 1995). With a team of up to 10 
people he tried to code “common sense” knowledge into a rule-based database. 
After almost 10 years of effort, he was still far away from the goal, formulated 
as the next problem. 

Problem 9 [McCarthy,Lenat]: Is it possible to put so much knowledge into 
a computer, that it is able to read a newspaper and improve itself from thereon ? 

Looking back to von Neumann’s discussion, I believe that the answer to this 
question is negative. I do not recommend to work on this problem, because 
proving that something is impossible is very difficult. Instead I recommend a 
sub-problem, formulated in the paper “Computers and Automata” by (Shan­
non, 1953). 

Problem 10 [Shannon]: Can we organize machines into a hierarchy of lev­
els, as the brain appears to be organized, with the learning of the machine 
gradually progressing up through the hierarchy? 

Hierarchy is used by Shannon very informally. He means levels of abstrac­
tions. Each level might use a different calculus. The machine should be able 
to do inference on a lower level after a limited number of examples. This fea­
ture should then be used for learning at the next level. Up to now there are no 
convincing theories how to solve this problem. 

9.	 A LOGICAL THEORY OF ADAPTIVE 
SYSTEMS 

In the paper “Outline for a Logical Theory of Adaptive Systems” (Holland, 
1970b), tried to continue the scientific endeavor initiated by von Neumann. 
Holland wrote: “The theory should enable to formulate key hypotheses and 
problems particularly from molecular control and neurophysiology. The work 
in theoretical genetics should find a natural place in the theory. At the same 
time, rigorous methods of automata theory, particularly those parts concerned 
with growing automata should be used.” 

Thus Holland’s proposal is a very early attempt to work on the general prob­
lem 2, a constructive theory of the evolution of automata. It tries to combine 
being, acting, developing, and evolving. This proposal so important that I will 
describe it in detail. Holland’s emphasis (like von Neumann‘s) is foremost 

3The discussion of the talk started with a remark of Bar-Hillel: “Dr. McCarthy’s paper belongs in the 
Journal of Half-Baked Ideas, the creation of which was recently proposed by Dr. I.J. Good.” 
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on theories and systems, he does not claim to solve grand challenge applica­
tions with the proposed methods. This can be tried after the theories have been 
developed. 

“Unrestricted adaptability (assuming nothing is known of the environment) 
requires that the adaptive system be able initially to generate any of the pro­
grams of some universal computer. . . With each generation procedure we as­
sociate the population of programs it generates;. . . In the same vein we can 
treat the environment as a population of problems.” It is especially the last 
sentence which relates Holland’s ideas to Darwin’s. Now let us have a closer 
look at Holland’s model. First, there is a finite set of generators (programs) 

The generation procedure is defined in terms of this set and a 
graph called a generation tree. Each permissible combination of generators 
is represented by a vertex in the generation tree. Holland now distinguishes 
between auxiliary vertices and main vertices. Each auxiliary vertex will be 
labeled with two numbers, called the connections and disconnection probabil­
ities. This technique enables to create new connections or to delete existing 
connections. Each main vertex is labeled with a variable referred to as density. 
The interested reader is urged to read the original paper ((Holland, 1970b)). 

Holland claims that from the generation tree and the transition equations of 
any particular generation procedure, one can calculate the expected values of 
the densities of the main vertices as a function of time. Holland writes: “From 
the general form of the transition equations one can determine such things 
as conditions under which the resulting generation procedures are stationary 
processes.” Thus Holland already tried to formulate a stochastic theory of 
program generation! This is an idea still waiting to be explored. 

Holland’s next extension of the system is similar in spirit to von Neumann’s 
self-reproducing automata. Holland introduces supervisory programs which 
can construct templates which alter the probabilities of connections. Tem­
plates play the role of catalysts or enzymes. Thus program construction is also 
influenced by some kind of “chemical reactions.” The above process is not 
yet adaptive. Adaptation needs an environment posing problems. Therefore 
Holland proposes that the environment is treated as a population of problems. 
These problems are presented by means of a finite set of initial statements and 
an algorithm for checking whether a purported solution of the problem is in 
fact a solution. “When we consider the interaction of an adaptive system with 
its environment we come very soon to questions of partial solutions, subgoals 
etc. The simplest cases occur when there is an a priori estimate of the nature of 
the partial solution and a measure of the closeness of its approach to the final 
solution.” 

Holland then observes that a rich environment is crucial for the adaptation. 
“Mathematical characterization of classes of rich environments relative to a 
given class of adaptive systems constitutes one of the major questions in the 
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study of adaptive systems. . . . An adaptive system could enhance its rate of 
adaptation by somehow enriching the environment. Such enrichment occurs if 
the adaptive system can generate subproblems or subgoals whose solution will 
contribute to the solution of the given problems of the environment.” 

It is very interesting to note that Holland distinguished three kinds of pro­
grams – supervisory programs, templates, and programs for the problem solu­
tion. The supervisory programs use a probabilistic generation tree to generate 
programs, the templates are used as catalyst to “skew” the generation process. 
Holland perceived a hierarchy of programs ((Holland, 1970a)): 

1	 productive systems – the generator system is able to produce other gen­
erators 

2	 autocatalytic systems – the generator system produces generators which 
are used in the construction 

3	 self-duplicating systems – the generator system produces duplicates of 
itself 

4	 general adaptive systems – has still to be defined 

“The beginning of such a definition (of adaptive systems) lies in the fol­
lowing consideration: with the help of concepts such as autocatalytic and self-
duplicating generator systems it is possible to define such concepts as steady-
state equilibria and homeostasis for embedded automata… If the generator sys­
tem for such an automaton has a hierarchical structure, then a small change in 
structure produces a small change in proportion to the “position” of the change 
in the hierarchy… By making changes first at the highest level and then at pro­
gressively lower levels of the hierarchy, it should be possible to narrow down 
rather quickly to any automaton in this category having some initially pre­
scribed behavior.” 

I believe that Holland’s very first proposal is a very good starting point for 
future research. It puts forward many ideas not yet contained in current re­
search. Holland’s proposal to use stochastic systems, their steady-state equi­
libria and homeostasis is in my opinion still a very promising approach for a 
constructive evolution theory of automata. Holland itself never implemented 
his general model. It remained a theoretical design. Therefore the next prob­
lem is still open. 

Problem 11 [Holland]: Try to implement Holland’s model and prove its 
usability by a convincing application. 

After working about eight years on this theory Holland turned to a simpler 
evolution model, in fact the Modern Synthesis mentioned before. The environ­
ment is hidden in a fitness function. Evolution reduces then to an optimization 
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problem. This research lead to genetic algorithms. Holland believed that his 
genetic algorithms have an almost optimal adaptation rate taking into account 
the information which is available ((Holland, 1973; Holland, John H., 1975)). 
But we will prove in Section 13 that it is our Boltzmann distribution algorithm 
which fulfills his criterion for optimality! 

Nobel laureate Gell-Man criticized at the Santa Fe institute that genetic al­
gorithms are unsuited to investigate self-organized evolution, because they use 
a simple fitness function for a genotype. Therefore (Holland, John H., 1975), 
later developed Echo. Unfortunately Echo lacks the theoretical foundation of 
Holland’s first proposal. Therefore I will not discuss it in this paper. 

10. THE FOR CREATING 
ARTIFICIAL INTELLIGENCE 

In another chain of reasoning we might ask ourselves: Maybe there is a way 
of creating human like intelligence without copying nature too much. Instead 
of starting with the Universal Turing Machine, we can start with the calculus 
developed by Church and later called the It was implemented as 
part of the LISP language by John McCarthy. The has the same 
computational power as the Turing machine, but it is based on substitution. 
LISP is an interpretative language, thus the LISP environment can be seen as 
a very complex self-reproducing automaton. For the next problem I recom­
mend to read Minsky’s survey “Steps toward artificial intelligence” ((Minsky, 
1961)). I only cite: “It is my conviction that no scheme for learning, or for 
pattern recognition, can have very general utility unless there are provisions 
for recursive, or at least hierarchical, use of previous results. We cannot expect 
a learning system to come to handle very hard problems without preparing it 
with a reasonable graded sequence of problems of growing difficulty. The first 
problem must be one which can be solved in reasonable time with the initial 
resources. The next must be capable of solution in reasonable time by using 
reasonably simple and accessible combinations of methods developed in the 
first, and so on.” 

In my opinion we have even to go a step further. There seems to be no big 
gain if the set of problems is hand crafted by a human. The program itself 
should create some of the sub-problems. We now have to formulate a task for 
this model. I rephrase a question from (Shannon, 1953): 

Problem 12 [Shannon]: Can we program a digital computer so that even­
tually 99 percent of the orders it follows are written by the computer itself and 
which solves difficult problems (e.g performs comparable to the human eye or 
understands the English language?) 
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I added the two applications in brackets, because Shannon forgot in his ques­
tion to specify the applications to be solved. But without an application the 
above problem can easily be solved by a program which randomly generates 
instructions. 

LISP was the first language used by Koza for Genetic Programming. But 
within the framework of our discussion, Koza’s model is too restricted. It 
works only for one problem at a time. For each problem we need examples 
describing the input-output relations of the problem to be solved. The pop­
ulation of solutions is changed according to the mechanisms used by genetic 
algorithms. 

11. PROBABILISTIC LOGIC 
All problems up to now have been formulated in the very early days of 

electronic computers. For the early researcher a possible solution of these 
problems was either a theory or a successful application in pattern recognition 
or language understanding. Furthermore, in order to develop and understand 
the model, either classical mathematics or abstract automata defined by a 
flexible language have been used. Several times stochastic systems have been 
proposed for the mathematical analysis. Von Neumann explicitly expressed 
the feeling, having in mind artificial automata as model organisms, that a new 
theory is urgently needed ((von Neumann, 1954)): “This new system of formal 
logic will move closer to another discipline which has been little linked in the 
past with logic. This is thermodynamics, primarily in the form it was received 
from Boltzmann, and is that part of theoretical physics which comes nearest in 
some of its aspects to manipulating and measuring information. Its techniques 
are much more analytical than combinatorial.” 

Von Neumann’s prediction has become true. Probability has been extended 
to probabilistic logic. But first we will describe two early attempts in this area. 

11.1	 VON NEUMANN’S PROBABILISTIC 
LOGICS 

To my knowledge von Neumann was the first to use the term probabilistic 
logic in his paper “Probabilistic Logics and the Synthesis of Reliable Organ­
isms from Unreliable Components” (von Neumann, 1956). I shortly describe 
his model. 

“With every basic organ is associated a number such that in any operation 
the organ will fail to function correctly ... Suppose the organ receives a stim­
ulation at time t and no later ones. Let the probability that the organ is still 
excited after s cycles be denoted by Then the recursion formula 
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is valid.” It is easy to show that the equation has the solution 

Therefore von Neumann concludes that for meaning 
in von Neumann’s opinion that the component functions randomly. But let us 
now investigate the problem in a precisely defined automaton setting. The au­
tomaton has two states {0,1}. At each step the automaton changes with proba­
bility
we would see that the automaton changes states only after 

 from the given state to the opposite state. If we observe the automaton,
steps on the 

average. Such a behavior is very different from that of a random automaton, 
which changes states at each step with probability 0.5. But both automata have 
a limit distribution with The difference between the distributions 
becomes apparent if joint distributions like are considered, where 

denotes the state of the automaton at step 
Von Neumann’s analysis did not capture the reliability problem. Therefore 

his “solution” to the problem of unreliable components did not have any practi­
cal value. Von Neumann approached probabilistic logic from the most difficult 
point of view, namely the stochastic view. This means to define logic with time 
dependent dynamics! It is much easier to define probabilistic logic from the 
logic point of view, without time and dynamics. This is discussed in the next 
sections. 

11.2	 THE CONDITIONAL PROBABILITY 
COMPUTER 

The importance of conditional probabilities for the classification of objects 
given a vector of features was first recognized by (Uttley, 1959). In its simplest 
form Uttley’s conditional probability computer consists of n binary input units 

and m output units 

Definition 1 Let denote the probability of x. Then 
defines the univariate marginal distributions of variable 

Let be a sub-vector of x. Then the marginal distribution is defined as 
Let y, z be disjoint sub-vectors of x. Then con­

ditional probabilities are defined as for 

Given an input vector of features x, the conditional computer looks for 

For the computation of the maximum, Uttley proposed to compute all pos­
sible conditional probabilities for a learning set. As Uttley observed, 
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a conditional probability computer would allow to compute all logical infer­
ences, if we identify “from y follows z” by the condition The 
drawback of this proposal is that it needs units.Thus the computation is 
exponential in time and space. 

There have been several attempts to use less units and also to deal with in­
complete input. Most notably are the early efforts of Minsky and Selfridge, and 
independently by Papert (both papers have been published in (Cherry, 1961)). 
In both papers the assumption is made that all are independent. This is 
very unrealistic. It needed a long time to solve the computation problem and 
the incomplete input problem. 

11.3 MODERN PROBABILISTIC LOGIC 

Modern probabilistic logics can be seen as a candidate for von Neumann’s 
new system of formal logic. It connects probability theory with logic by as­
signing probabilities to clauses. 

Definition 2 A probabilistic statement that z is true given y is a conditional 
probability with “truth” value 

Thus probabilistic logic is just probability theory with a different interpre­
tation. Let be the number of binary concepts. In addition let a number of 
clauses be specified. The specifications are called the constraints. 

For any specification we have a set of probability models (P-models) which 
can either be empty (i.e the constraints violate the laws of probability), con­
tain a single P-model, or contain a number of P-models (the specification is 
incomplete.) If the P-model is unique, we can compute the probability of an 
arbitrary prepositional sentence by summing up probabilities. The probability 
of a conditional statement can be obtained by dividing the probability 

by the probability 
But unique P-models are unrealistic. The specification has to set all of the 

variables defining the distribution. Consequently, for incomplete specifi­
cations the missing information must be added by some automatic completion 
procedure. This is achieved by the maximum entropy principle. The entropy 
of a distribution is defined by 

The maximum entropy principle formulates the principle of indifference.  If  
no constraints are specified, the uniform random distribution is assumed. The 
principle has been first proposed by (Jaynes, 1957). 
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Maximum entropy principle: Find the maximal entropy distribution for 
which satisfies the given marginals. 

This principle has a long history in physics and probabilistic logic. The 
interested reader is referred to (Jaynes, 1957). The following theorem has been 
proven by ((Cover and Thomas, 1989)). 

Theorem 3 If the given constraints are consistent, then there exists a unique 
distribution of maximum entropy. 

Consistent means that the marginal distributions derived from the constraints 
fulfill all the constraints which can be derived from the laws of probability the­
ory. The most popular algorithm to compute the maximum entropy distribution 
is called iterative proportional fitting. To give the reader a flavor of the theory 
we present a simple example. 

Example: Given the three expressions ’having a full-time job’ ’working in
a technical domain’ and ’male’ the following information is specified 

Then the maximum entropy solution gives, for instance 
(see  4). 

The maximum entropy principle solves the incomplete data problem. But 
iterative proportional fitting scales exponentially in the number of variables. 
Thus a simpler technique has to be found. Such a method has recently been 
discovered. It uses the principle of conditional independence. Its graphical 
representation is called a graphical model. For our discussion the following 
definition is sufficient. 

Definition 4 A graphical model is a graph G, where two variables are con­
nected by an edge if they appear together in one constraint. 

The new method tries to find a factorization of the distribution. There is 
lots of literature available how this can be done, we just mention (Lauritzen, 
1996). The algorithm computes cliques and generates a junction tree J.  A 
junction tree is an undirected tree the nodes of which are clusters of variables. 
The clusters satisfy the junction property: For any two clusters and and any 
cluster on the unique path between and in the junction tree the relation 

4Whether this very precise value is justified by logical arguments is still a subject of hot discussions. 



24 FRONTIERS OF EVOLUTIONARY COMPUTATION 

is true. The edges between the clusters are labeled with the intersection of the 
adjacent clusters; we call these labels separating sets or separators Then 
the probability can be factored into 

The modified iterative proportional fitting algorithm uses only the computed 
clusters of the factorization as marginals. This algorithm produces exactly the 
same result as the standard iterative proportional fitting. If all factors of the 
factorization have a number of variables which is independent of the global 
number then the algorithm is polynomial. 

The crucial question remains: Which graphical models lead to bounded fac­
torizations? We give here just one negative result ((Mühlenbein and Mahnig, 
2003)): 

Theorem 5 Graphical model models which are 2-D grids lead to factoriza­
tions which have at least one factor with variables. Thus for these prob­
lems the computational amount to compute the maximum entropy distribution 
is still exponential. 

12.	 STOCHASTIC ANALYSIS OF CELLULAR 
AUTOMATA 

Another new application of stochastic systems and probabilistic logic are 
cellular automata. The stochastic analysis of cellular automata was already ad­
vocated by (Wolfram, 1994), in his paper “Twenty Problems in the Theory of 
Cellular Automata”. The next problem combines Wolfram’s problems ten and 
eleven. 

Problem 13 [Wolfram]: What is the correspondence between cellular au­
tomata and stochastic systems, and how are cellular automata affected by noise 
and other imperfections ? 

We have worked on this problem. In order to provide the reader with 
more detailed information, I will discuss a simple example. It is taken from 
((Mühlenbein and Höns, 2002)). 

12.1 THE NONLINEAR VOTER MODEL 

We consider a model of two species (or two opinions). For the spatial dis­
tribution we assume a one-dimensional stochastic cellular automaton (SCA) 
defined by a circle of cells. Each cell is occupied by one individual, thus 
each cell is characterized by a discrete value We set 
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and The state of cell at time is defined by the states of cells 
at time The state transitions of the voter model depend only 

on This class of automata is called totalistic. 
For the stochastic voter model the transitions are defined as follows.


denotes the transition probability given is a small 
stochastic disturbance parameter. The model is defined by If one 
speaks of positive frequency dependent invasion. This model is also called the 
majority vote model, because the individuals join the opinion of the majority 
in the neighborhood. For the model is called a negative frequency 
dependent invasion process. In this case the minority opinion has more weight. 
The deterministic cellular automata are given by and The voter 
model has been intensively investigated by micro simulations. 

We will first analyze the voter model by the theory of Markov chains. Let 
denote a vector, We use the 

following conventions. Capital letters denote the names of variables, lower 
case letters assignments. The distinction between the name of a variable and 
an assignment is essential for the definition of marginal distributions. When 
there cannot be a confusion between name or assignment, we will use lower 
case letters and abbreviations. For notational simplicity we will assume binary 
variables 
The time evolution of the distribution is given for one step by the equation 

defines a matrix. 

Definition 6 The stochastic process is a Markov process if is indepen­
dent of 

The stochastic voter model is a Markov process. For a Markov process we 
have 

For we have Therefore the theorem of Frobenius-
Perron can be applied. The largest eigenvalue of the matrix is 1. Its unique 
eigenvector defines the stationary distribution. Thus we have the following 
theorem. 
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Theorem 7 The stochastic voter model with has a unique limit 
distribution. It is given by the left eigenvector belonging to the eigenvalue 

It is numerically impossible to analyze a large cellular automaton by stan­
dard Markov techniques. It takes an exponential amount of computation to 
compute the exact stationary distribution. 

We propose a different approach. We approximate the distribution 
by distributions using a small number of parameters. For this approximation 
we use the theory of graphical models mentioned before. 

12.2	 STOCHASTIC ANALYSIS OF ONE 
DIMENSIONAL SCA 

For notational convenience we set and We 
will now derive difference equations involving marginal distributions with a 
few number of parameters. We obtain from the definition of the voter model 
for the von Neumann neighborhood in 1-D 

gives the probability of cell i containing a 1. The conditional distribu­
tion is uniquely defined by the transitions of the cellular 
automaton, in our case by the voter model with parameters and But on the 
right side tri-variate marginals appear. For these we obtain 

Thus now marginal distribution of size 5 enter. In order to stop this expansion 
we approximate the marginal distributions of order 5 by marginal distributions 
of order 3. From the definition of the SCA we obtain 

From the theory of graphical models we obtain the approximation


Inserting the last two equations into equation (1.6) gives the difference equa­
tions for the tri-variate marginal distributions. The approximations have to 
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fulfill constraints derived from probability theory. 

In the same manner approximations of different precision can be obtained. 
We just discuss the simplest approximation, using uni-variate marginal distri­
butions. Here equation (1.6) is approximated by 

The approximation by univariate marginal distributions leads to differ­
ence equations only, but these difference equations are nonlinear. It seems 
very unlikely that analytical solutions of these equations can be obtained. For 
spatially homogeneous problems we have In this case the 
probabilities do not depend on the locus of the cell. This is the mean-field limit 
known from statistical physics ((Opper and Saad, D., editors, 2001)). With 

we obtain the mean-field equation 

For and the equation has stable fix-points at and 
For the equation has a stable attractor at Thus the 

mean-field limit approximation indicates a bifurcation for This inter­
pretation is tempting, but not quite correct. The relation between the attractors 
of the SCA and the fix-points of equation (1.9) is much more complicated 
((Mühlenbein and Höns, 2002)). 

The approximation of 2-D spatial distributions is much more difficult than 
the approximation of 1-D automata. Here the junction tree algorithm is needed. 
The interested reader is referred to ((Mühlenbein and Höns, 2002)). 

13.	 STOCHASTIC ANALYSIS OF 
EVOLUTIONARY ALGORITHMS 

The broad applicability of the new developments in probability theory can 
be demonstrated by another example, namely evolutionary algorithms 
(Mühlenbein and Mahnig, 2000). This application is easier than the analysis 
of cellular automata. The distribution remains focused because of selection. 

Let a function be given. We consider the optimization prob­
lem 



28 FRONTIERS OF EVOLUTIONARY COMPUTATION 

For the solution Holland proposed in 1973 an algorithm called genetic al­
gorithm ((Holland, John H., 1975)). The following discussion is taken from ( 
(Mühlenbein and Mahnig, 2003)). 

Genetic algorithms are defined on a microscopic level. Given two strings, a 
new point is generated by recombination/crossover. A stochastic analysis of a 
genetic algorithm requires the computation of a recurrence equation 

Here x and denote genotypes (binary vectors), denotes the 
probability for a transition from to x at generation Because of selection 
the transition probabilities are time dependent. 

(Vose, 1999), has derived such an equation for the Simple Genetic Algo­
rithm with proportionate selection, crossover, and mutation. The computation 
of the crossover probabilities are especially difficult. Since crossover operates 
on two arbitrary strings x and y of the selected population, one has to use the 
joint distribution in equation (1.11). But even for the binary case, the 
transfer matrix is of size It is extremely difficult to analyze 
the distribution using this general equation. 

But let us proceed further. Equation (1.11) should not be the end result of a 
stochastic analysis, but just the beginning. We will concentrate on distributions 
which are defined by a small number of parameters or can be approximated by 
distributions with a small set of parameters. Since we treat the marginal distri­
butions as deterministic variables, the analysis is valid for infinite populations 
only. Fluctuations arising by virtue of finite populations can be investigated in 
principle, but it is extremely difficult. Due to of the sampling theory in statis­
tics our analysis can be seen as the limit case of large finite populations where 
the size goes to infinity. 

A good candidate for optimization using a search distribution is the Boltz­
mann distribution. 

Definition 8 For define the Boltzmann distribution of a function 
as 

where is the partition function. To simplify the notation and/or can 
be omitted. 

The Boltzmann distribution is usually defined as The term 
is called the energy and the temperature. The Boltzmann distribution 
is suited for optimization because it concentrates with increasing around the 
global optima of the function. In theory, if it were possible to sample efficiently 
from this distribution for arbitrary optimization would be an easy task. 
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13.1	 BOLTZMANN SELECTION 

Our proposed algorithm incrementally computes the Boltzmann distribution 
by using Boltzmann selection. 

Definition 9 Given a distribution and a selection parameter Boltzmann 
selection calculates the distribution of the selected points according to 

We can now define the BEDA (Boltzmann Estimated Distribution Algo­
rithm). It can easily be proven that BEDA converges to the set of all global 
optima if ((Mühlenbein and Mahnig, 2002b)). BEDA is a 
conceptional algorithm, because the calculation of the distribution requires a 
sum over exponentially many terms. We next transform BEDA into a practical 
algorithm. This means to reduce the number of parameters of the distribution 
and to compute an adaptive schedule for 

13.2	 FACTORIZATION OF THE 
DISTRIBUTION 

In this section the factorization method introduced for graphical models is 
applied. 

Definition 10 Let be index sets, Let be func­
tions depending only on the variables with Then 
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is an additive decomposition of the fitness function 

From the additive decomposition we construct a graphical model by con­
necting those variables which are contained in the same sub-function. This 
definition is identical to the graphical model earlier introduced in probabilistic 
logic. In addition we need the following definitions: 

Definition 11 Given we define for the sets and 

We set 

In the theory of decomposable graphs, are called histories, residuals and 
separators ((Lauritzen, 1996)). (Mühlenbein et al., 1999) have proven the 

following theorem. 

Theorem 12 (Factorization Theorem) Let be a Boltzmann distribu­
tion with 

and be an additive decomposition. If 

then, 

The constraint defined as equation (1.18) is called the running intersection 
property. This severe assumption is identical to the junction property defined 
in equation (1.2). 

With the help of the factorization theorem, we can turn the conceptional al­
gorithm BEDA into FDA, the Factorized Distribution Algorithm. If the condi­
tions of the factorization theorem are fulfilled, the convergence proof of BEDA 
is valid for FDA also. FDA can in principle be used with any selection scheme, 
but then the convergence proof is no longer valid. Therefore we believe that 
Boltzmann selection is an essential part in using the FDA. 

Since FDA uses finite samples of points to estimate the conditional prob­
abilities, convergence to the optimum will depend on the size of the samples 
(the population size). FDA has experimentally proven to be very successful on 
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a number of functions where standard genetic algorithms fail to find the global 
optimum. 

For the interested reader we give a short overview of additional work. The 
scaling behavior for various test functions as well as the computation of the 
graphical model by sampling data instead of using the structure of the fitness 
function in investigated in (Mühlenbein and Mahnig, 1999). An early survey 
can be found in (Mühlenbein and Mahnig, 2000). A large application is solved 
in (Mühlenbein and Mahnig, 2002a). For a recent survey the reader is referred 
to (Mühlenbein and Mahnig, 2003). 

13.3	 HOLLAND’S SCHEMA ANALYSIS AND 
THE BOLTZMANN DISTRIBUTION 

We now turn to the very first analysis of genetic algorithms made by (Hol­
land, John H., 1975). We will introduce here Holland’s terminology. But first 
we will show that this terminology was unnecessary. 

Remark: Marginal distributions define schemata For the researchers working 
on the theory of genetic algorithm it is important to mention that marginal dis­
tributions are equivalent to schema probabilities introduced in (Holland, John 
H., 1975). We just give an example for Let define 
a schema. Then the probability of the instances of schema in the population 

is by definition equal to the marginal distribution 
Thus Holland’s schema analysis is nothing else than a stochastic analysis in 
the space of marginal distributions. We prefer to use the notation common in 
probability theory. In fact, one of the main reasons that schema theory did not 
come very far is the imprecise terminology. In our stochastic analysis con­
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ditional probabilities play an essential role. But the concept of conditional 
schema probabilities has not yet entered the traditional schema theory. 

Thus in Holland’s terminology defines a schema and its probabil­
ity. This probability is in our notation the marginal distribution Hol­
land derived the following conjecture about a good population based search 
algorithm. 

((Holland, John H., 1975),p.88): Each (schema) represented in (the cur­
rent population) should increase (or decrease) in a rate proportional to 
its “observed” “usefulness” (average fitness of schema minus 
average fitness of the population) 

Holland claimed that the simple genetic algorithm behaves according to the 
above equation. This is not true. Instead we have the surprising result: 

with 
fulfills Holland’s equation (1.20). 

Theorem 13 The Boltzmann distribution 

Proof: Taking the derivative we easily obtain


Let define a schema, the corresponding marginal distribution. Then 

Thus the Boltzmann distribution with the fixed annealing schedule 
fulfills Holland’s equation. According to Holland’s analysis F D A with us 
schedule should be an almost optimal algorithm! 

In addition, our factorization theorem can be seen as a mathematically com­
plete schema theorem. It tells which schemata are necessary to generate the 
whole distribution. The usual schema theorems describe only the evolution of 
single schemata, but not how the distribution can be generated. 

I hope this short discussion demonstrates that we now have a solid theory of 
genetic algorithms. But we are still far away from Holland’s “logical theory of 
adaptive systems.” 
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14.	 STOCHASTIC ANALYSIS AND

SYMBOLIC REPRESENTATIONS


We will use the stochastic analysis on more and more complex models. 
Finally we hope to analyze Holland’s general model (problem 11) with the 
stochastic techniques presented above. Cellular automata can be seen as spe­
cial cases of Holland’s model. All automata perform in the same way, that is 
we have just one generator. Instead of a tree we have a one or two dimensional 
space. Selection can be modeled between neighboring automata. The reader 
has noticed that the stochastic analysis of cellular automata is already fairly 
difficult. This indicates that the analysis of Holland’s model will be really 
difficult. 

But in order to make progress in creating more intelligent machines, still an­
other big step has to be done. In the paper we mainly advocated the probability 
calculus. With probabilistic logic a first connection is made between symbolic 
propositions and quantitative variables. This connection has to be extended. It 
is apparent that ultimately we have to combine stochastic analysis with more 
general symbolic representations. It might be that cellular automata can be 
used as a first test. This was already proposed by (Wolfram, 1994). 

Problem 14 [Wolfram]: What higher-level descriptions of information pro­
cessing in cellular automata can be given? 

“One approach is statistical in nature. It consists in devising and describing 
attractors for the global evolution of cellular automata. All initial configura­
tions in a particular basin of attraction may be thought of as instances of some 
pattern, so that their evolution towards the same attractor may be considered as 
a recognition of the pattern. 

Another approach is to use symbolic representations for various attributes 
or components of cellular automaton configurations . . . perhaps data could be 
represented by an object like a graph, on which transformations can be per­
formed in parallel . . . it seems likely that a radically new approach is needed.” 
((Wolfram, 1994)). To my knowledge Wolfram did not publish any proposal 
how to solve his problem. 

15.	 CONCLUSION 

In my opinion, the big problems in the theory of organisms and artificial 
automata have been recognized from the very beginning. In biology it is con­
nected to Darwin, Waddington and Mayr, in electronic computation to von 
Neumann, Turing, Shannon. Some of the proposals for solving the challeng­
ing problems in computation have been far too optimistic, other proposals have 
not been implemented because the implementation was too difficult. There­
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fore subsequent developments have lead to a fragmentation and specialization 
of research. This is true for biology as well as for computer science. Today 
evolutionary computation is divided into genetic algorithms, evolutionary al­
gorithms, genetic programming, artificial life, and evolvable hardware – not to 
mention more specialized models like ant colony optimization, memetic algo­
rithms, or classifier systems. But each model itself is too simple to solve the 
problems presented. 

The challenging problems faded away, less difficult problems and simpler 
models have come into the center of attention. An exception is the problem 
of all problems: “Can we produce artificial intelligence comparable to or even 
surpassing human intelligence?” Researchers have often been too optimistic 
about the time scale to solve this problem. Whereas in the 60’s many re-
searcher’s predicted a solution in about 10 years, the time scale has now been 
increased to about 50 years! I am very skeptical that the above goal can be 
reached. But in my opinion there will be no progress at all, unless some of the 
problems presented here will have been solved during this 50 years. 
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Abstract The field of evolutionary computation has developed and matured significantly 
over the past 40 years. As with other disciplines attempting to understand com­
plex adaptive systems, this progress has raised as many new and interesting 
questions as it has answered. In this chapter I describe some of the key open 
questions by organizing them in the form of two grand challenges: unification 
and expansion. 

Keywords: Evolutionary computation, evolutionary algorithms, open research issues, grand 
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1. INTRODUCTION 

Although more than 40 years old, the field of evolutionary computation (EC) 
continues to grow at a rapid pace. This growth, in turn, places a certain amount 
of healthy “stress” on the field as current understanding and traditional ap­
proaches are stretched to the limit by challenging new problems and new areas 
of application. 

So, an occasion like this is an opportunity to reflect on where the field is 
and the challenges that lie ahead. In the following sections I attempt to do 
so by first noting the important historical events that have strongly influenced 
the field as we see it today, and then describing some of the key open ques­
tions by organizing them in the form of two grand challenges: unification and 
expansion. 
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2. HISTORICAL DIVERSITY 

Although one can certainly find earlier activities, I believe that there is 
general agreement that the 1960s was a key historical period that has signifi­
cantly shaped the field of evolutionary computation. During that period several 
groups around the world including Rechenberg and Schwefel at the Technical 
University of Berlin (Rechenberg, 1964), Fogel, et al. at General Dynamics 
in San Diego (Fogel et al., 1966), and Holland at the University of Michi­
gan in Ann Arbor (Holland, 1962) were captivated by the potential of taking 
early simulation models of evolution a step further and harnessing these evo­
lutionary processes in computational forms that could be used for complex 
computer-based problem solving. 

Rechenberg and Schwefel were motivated by the need to solve difficult en­
gineering optimization problems and came up with an approach they called 
evolutionsstrategie, or evolution strategies (ESs). Fogel and his colleagues 
sought to use evolutionary techniques to bypass the bottleneck of building in­
telligent agents by hand, which they named evolutionary programming (EP). 
In Holland’s case, the motivation was the design and implementation of robust 
adaptive systems, capable of dealing with an uncertain and changing environ­
ment, and lead to the development of genetic algorithms (GAs). 

GAs owe their name to an early emphasis on representing and manipulating 
individuals in terms of their genetic makeup rather than using a phenotypic 
representation. Much of the early work used a universal internal representation 
involving fixed-length binary strings with “genetic” operators such as mutation 
and crossover defined to operate in a domain-independent fashion at this level 
without any knowledge of the phenotypic interpretation of the strings (Holland, 
1975; De Jong, 1975). 

By contrast, evolution strategies (ES) and evolutionary programming (EP) 
were developed initially using more problem-specific “phenotype” representa­
tions. In the case of ES the focus was on building systems capable of solv­
ing difficult real-valued parameter optimization problems (Schwefel, 1981). 
The “natural” representation was a vector of real-valued “genes” that was ma­
nipulated primarily by mutation operators designed to perturb the real-valued 
parameters in useful ways. The early work in EP centered on systems for 
evolving finite state machines capable of responding to environmental stim­
uli, and developing operators (primarily mutation) for effecting structural and 
behavioral change over time (Fogel et al., 1966). 

These early beginnings have had an enormous influence on the field. In fact 
an indication of their inspirational power is that these historical labels are no 
longer all that useful in describing the enormous variety of current activities 
on the field. GA practitioners are seldom constrained to universal fixed-length 
binary implementations. ES practitioners have incorporated recombination op­
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erators into their systems. EP is used for much more than just the evolution of 
finite state machines. Entire new subareas such as genetic programming (Koza, 
1992) have developed, and the literature is filled with provocative new terms 
and ideas such as “messy GAs” (Goldberg, 1991). 

As a consequence, the field today is highly diversified with many new and 
exciting application areas, but at the same time generating many new chal­
lenges as well. I see these challenges as falling into two primary categories 
that constitute “grand” challenges for the field, and discuss each of them in the 
remainder of this chapter. 

3. THE CHALLENGE OF UNIFICATION 

The diversity of the EC field today can be viewed as both a blessing and a 
curse in the sense that it reflects both the vitality of the field and the difficulty 
in articulating a cohesive view. However, in my opinion, developing a unifying 
EC framework is a key requirement for continued growth and development of 
the field. 

One strategy for achieving this is to focus on the core set of features and 
issues common to any EC activity. This allows one to understand the relation­
ships between different approaches when contrasted in a common framework, 
it facilitates the transfer of ideas from one approach to another, and it serves as 
a solid platform from which to develop new approaches. Given the wide diver­
sity of the field, this may seem like a hopeless task. However, developments 
over the past few years suggest that considerable progress can be made in this 
direction by adopting an object-oriented, class hierarchy point of view. In this 
section I briefly summarize this approach. 

At the highest level of abstraction, the EC community shares the common 
goal of solving difficult computational problems using an evolutionary algo­
rithm (EA) as a key element of the approach. In order to compare and contrast 
different approaches, we need a common framework for describing EAs. In 
my opinion, all EAs share the following basic features: 

A population of individuals 

A notion of fitness 

A notion of population dynamics (births, deaths) biased by fitness 

A notion of inheritance of properties from parent to child 

Focusing on EAs at this level of abstraction not only helps one to compare and 
contrast specific instances, but also helps to identify and clarify a number of 
critical issues that are common to the entire field. I summarize a few of these 
in the following sections. 
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3.1 MODELING THE DYNAMICS OF 
POPULATION EVOLUTION 

At a high level of abstraction we think of evolutionary processes in terms 
of the ability of more-fit individuals to have a stronger influence on the future 
makeup of the population by surviving longer and by producing more offspring 
that continue to assert influence after the parents have disappeared. How these 
notions are turned into computational models varies quite dramatically within 
the EC community. This variance hinges on several important design decisions 
discussed briefly in the following subsections. 

3.1.1 Choosing Population Sizes. Most current EAs assume 
a constant population size N which is specified as a user-controlled input pa­
rameter. So called “steady state” EAs rigidly enforce this limit in the sense 
that each time an offspring is produced resulting in N + 1 individuals, a selec­
tion process is invoked to reduce the population size back to N. By contrast, 
“generational” EAs permit more elasticity in the population size by allowing 

offspring to be produced before a selection process is invoked to delete 
K individuals. 

Although we understand that the size of an EA’s population can affect its 
ability to solve problems, we have only the beginnings of a theory strong 
enough to provide a priori guidance in choosing an appropriate fixed size (e.g., 
(Goldberg et al., 1992), not much theory regarding appropriate levels of elastic­
ity (K), and even less understanding as to the merits of dynamically adjusting 
the population size. 

3.1.2 Deletion Strategies. The processes used to delete in­
dividuals varies significantly from one EA to another and includes strategies 
such as uniform random deletion, deletion of the K worst, and inverse fitness-
proportional deletion. It is clear that “elitist” deletion strategies that are too 
strongly biased towards removing the worst can lead to premature loss of di­
versity and stagnation at suboptimal solutions. It is equally clear that too little 
fitness bias results in unfocused and meandering search. Finding a proper bal­
ance is important but difficult to determine a priori with current theory. 

3.1.3 Parental Selection. Similar issues arise with respect 
to choosing which parents will produce offspring. Biasing the selection too 
strongly towards the best individuals results in too narrow a search focus, while 
too little bias produces a lack of needed focus. Current methods include uni­
form random selection, rank-proportional selection, and fitness-proportional 
selection. 

We understand these selection strategies in isolation quite well (Back, 1995; 
Blickle and Thiele, 1995). However, it is clear that parental selection and indi­
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vidual deletion strategies must complement each other in terms of the overall 
effect they have on the exploration/exploitation balance. We have some the­
ory here for particular cases such as Holland’s “optimal allocation of trials” 
characterization of traditional GAs (Holland, 1975), and the “1/5” rule for ESs 
(Schwefel, 1981), but much stronger results are needed. 

3.1.4 Reproduction and Inheritance. In addition to these 
selection processes, the mechanisms used for reproduction also affect the bal­
ance between exploration and exploitation. At one extreme one can imagine a 
system in which offspring are exact replicas of parents (asexual reproduction 
with no mutation) resulting in rapid growth in the proportions of the best indi­
viduals in the population, but with no exploration beyond the initial population 
members. At the other extreme, one can imagine a system in which the off­
spring have little resemblance to their parents, maximizing exploration at the 
expense of inheriting useful parental characteristics. 

The EC community has focused primarily on two reproductive mechanisms 
which fall in between these two extremes: 1-parent reproduction with mutation 
and 2-parent reproduction with recombination and mutation. Historically, the 
EP and ES communities have emphasized the former while the GA community 
has emphasized the latter. 

However, these traditional views are breaking down rapidly. The ES com­
munity has found recombination to be useful, particularly in evolving adaptive 
mutation rates (Bäck and Schwefel, 1993). Various members of the GA com­
munity have reported improved results by not using recombination (de Garis, 
1990), by not using mutation (Koza, 1992), or by adding new and more pow­
erful mutation operators (Eshelman and Schaffer, 1991). More recently the 
virtues of N-parent recombination (N > 2) have been explored (Eiben, 1996). 

As before, we have the tantalizing beginnings of a theory to help understand 
and guide the use and further development of reproductive mechanisms. Be­
ginning with Holland’s initial work, the GA community has analyzed in con­
siderable detail the role of crossover and mutation (see, for example, (De Jong, 
1975; Goldberg, 1989; Vose and Liepins, 1991; Booker, 1992; Spears, 1998). 
The ES community has developed theoretical models for optimal mutation 
rates with respect to convergence and convergence rates in the context of func­
tion optimization (Schwefel, 1995). 

However, the rapid growth of the field is pressing these theories hard with 
“anomalous results” (Forrest and Mitchell, 1992) and new directions not cov­
ered by current theory. One of the important issues not well understood is the 
benefit of adaptive reproductive operators. There are now a variety of empiri­
cal studies that show the effectiveness of adaptive mutation rates (e.g., (Foga­
rty, 1989), (Bäck and Schwefel, 1993), or (Fogel, 1995b)) as well as adaptive 
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recombination mechanisms (e.g., (Schaffer and Morishima, 1987) or (Davis, 
1989)). 

3.2	 CHOICE OF REPRESENTATION 

One of the most critical decisions made in applying evolutionary techniques 
to a particular class of problems is the specification of the space to be explored 
by an EA. This is accomplished by defining a mapping between points in the 
problem space and points in an internal representation space. 

The EC community differs widely on opinions and strategies for select­
ing appropriate representations, ranging from universal binary encodings to 
problem-specific encodings for TSP problems and real-valued parameter opti­
mization problems. The tradeoffs are fairly obvious in that universal encodings 
have a much broader range of applicability, but are frequently outperformed 
by problem-specific representations which require extra effort to implement 
and exploit additional knowledge about a particular problem class (see, for ex­
ample, (Michalewicz, 1994)). An intriguing idea being explored is to allow 
the representation to adapt to the particular characteristics of a problem (e.g., 
“messy GAs” (Goldberg et al., 1991)). 

Although there are strong historical associations between GAs and binary 
string representations, between ESs and vectors of real numbers, and between 
EP and finite state machines, it is now quite common to use representations 
other than the traditional ones in order to effectively evolve more complex 
objects such as symbolic rules, Lisp code, or neural networks. Claiming one 
EA approach is better than another on a particular class of problems is not 
meaningful any more without motivating and specifying (among other things) 
the representations chosen. 

What is needed, but has been difficult to obtain, are theoretical results on 
representation theory. Holland’s schema analysis (Holland, 1975) and Rad-
cliffe’s generalization to formae (Radcliffe, 1991) are examples of how theory 
can help guide representation choices. Similarly “fitness correlation” (Man­
derick et al., 1991) and operator-oriented views of internal fitness landscapes 
(Jones, 1995) emphasize the tightly coupled interaction between choosing a 
representation for the fitness landscape and the operators used to explore it. 
Clearly, much more work is required if effective representations are to be eas­
ily selectable. 

3.3	 CHARACTERISTICS OF FITNESS 
LANDSCAPES 

The majority of the EC applications to date has been with problem domains 
in which the fitness landscape is time-invariant and the fitness of individuals 
can be computed independently from other members of the current population. 
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This is a direct result of the pervasiveness of optimization problems and the 
usefulness of evolutionary algorithms (EAs) in solving them. This has led to 
considerable insight into the behavior of EAs on such surfaces including such 
notions as “GA-easy”, “GA-hard”, and “deception”. 

Much of this work has involved optimization problems that are unconstrained 
or lightly constrained (e.g., upper and lower bounds on the variables). The sit­
uation becomes more difficult as the complexity of the constraints increases. 
The ability to exploit constraint knowledge is frequently the key to successful 
applications, and that in turn can imply creative, non-standard representations 
and operators (Michalewicz and Schoenauer, 1996). How to do this effectively 
is still an interesting and open research issue. 

Things become even more interesting and open ended if we attack problem 
classes in which the fitness landscape varies over time. There are at least three 
important problem classes of this type for which research results are badly 
needed: autonomously changing landscapes, the evolution of cooperative be­
havior, and ecological problems. 

Problems involving autonomously changing landscapes frequently arise 
when fitness is defined in terms of one or more autonomous entities in the envi­
ronment whose behavior can change independently of any of the search activity 
of an EA. Typical examples are mechanical devices that age, breakdown, etc, 
or changes in weather patterns which dramatically change the “fitness” of a 
particular ship on the open sea. If we apply typical optimization-oriented EAs 
to such problems, the strong pressures to converge generally result in a loss of 
the population diversity needed to respond to such changes. We currently have 
very little insight regarding how to design EAs for such problems. 

Rule-learning systems (Holland, 1986; Grefenstette et al., 1990), iterated 
prisoner’s dilemma problems (Axelrod, 1987; Fogel, 1995a), and immune sys­
tem models (Forrest et al., 1993) are examples of problems in which fitness 
is a function of how well an individual complements other individuals in the 
population. Rather than searching for a single optimal individual, the goal is 
to evolve groups of individuals (generalists, specialists, etc.) that collectively 
solve a particular problem. 

If we apply typical optimization-oriented EAs to such problems, the strong 
pressures towards homogeneity in the population make it difficult to maintain 
different but cooperative individuals. Additional mechanisms for rewarding 
groups of individuals seem to be required (e.g., bucket brigades, profit sharing), 
but we have little in the way of theory to guide us. 

Ecology-oriented problems present a third and perhaps most difficult class 
of landscapes in which the shape of the fitness landscape is directly affected 
by the evolutionary process itself. Perhaps a better way to think of this is in 
co-evolutionary terms in which multiple interacting evolutionary processes are 
at work modeling the availability of resources (Holland, 1992), prey-predator 
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relationships, host-parasite interactions (Hillis, 1990), and so on. Very few of 
our insights from the optimization world appear to carry over here. 

4. THE CHALLENGE OF EXPANSION 

In the previous section, we argued that a unified EC framework is needed to 
provide a deeper understanding of the many forms of evolutionary computa­
tion that exist and their use as effective problem solvers. However, the interest 
in using EAs to solve problems that violate traditional assumptions, continues 
to grow. We already have examples of EAs which are powerful function opti­
mizers, but which are completely ineffective for evolving cooperative behavior 
or tracking a changing landscape. Modified EAs are now being developed for 
these new problem classes, but are also much less useful as traditional optimiz­
ers. 

This presents us with our second grand challenge: how to extend and expand 
our repertoire of EAs in an effective and principled manner. My answer is that 
we use the unified framework discussed in the previous section as the platform 
for doing so. In this section I illustrate this approach by describing several key 
expansion areas. 

4.1	 REPRESENTATION AND 
MORPHOGENESIS 

In the earlier section on representation issues we discussed the tradeoffs 
between problem-independent and problem-specific representations. Closely 
related to this is the biological distinction between the more universal geno­
typic descriptions of individuals in the form of plans for generating them and 
the phenotypic descriptions of the actual generated structures. 

Historically, much of the EA work has involved the evolution of fairly sim­
ple structures that could be represented in phenotypic form or be easily mapped 
onto simple genotypic representations. However, as we attempt to evolve in­
creasingly more complex structures such as Lisp code (Koza, 1992) or neural 
networks (de Garis, 1990), it becomes increasingly difficult to define forms of 
mutation and recombination which are capable of producing structurally sound 
and interesting new individuals. If we look to nature for inspiration, we don’t 
see many evolutionary operators at the phenotype level (e.g., swapping arms 
and legs!). Rather, changes occur at the genotype level and the effects of those 
changes instantiated via growth and maturation. If we hope to evolve such 
complexity, we may need to adopt more universal encodings coupled with a 
process of morphogenesis (e.g., (Harp et al., 1989), or (Stanley and Miikku­
lainen, 2002)). 
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4.2	 NON-RANDOM MATING AND

SPECIATION


Currently, most EAs incorporate a random mating scheme in which the 
species or sex of an individual is not relevant. One problem with this, as with 
real biological systems, is that the offspring of parents from two species are of­
ten not viable. As we move to more complex systems which attempt to evolve 
cooperating behavior and which may have more than one evolutionary pro­
cess active simultaneously, the roles of non-random mating and speciation will 
become an important issue. 

Some solutions to these problems have been suggested, such as crowd­
ing (De Jong, 1975), sharing (Goldberg and Richardson, 1987), and tagging 
(Booker, 1982). Unfortunately, these solutions tend to make fairly strong as­
sumptions, such as the number of species and/or the distribution of niches in 
the environment. For some problems these assumptions are reasonable. How­
ever, in many cases such properties are not known a priori and must evolve as 
well (Spears, 1994). 

4.3	 DECENTRALIZED, HIGHLY PARALLEL 
MODELS 

Because of the natural parallelism within an EA, much recent work has 
concentrated on the implementation of EAs on both fine and coarse grained 
parallel machines. Clearly, such implementations hold promise of significant 
decreases in the execution time of EAs. 

More interestingly, though, for the topic of this paper, are the evolutionary 
effects that can be naturally implemented with parallel machines, namely, spe­
ciation, nicheing, and punctuated equilibria. For example, non-random mating 
may be easily implemented by enforcing parents to be neighbors with respect 
to the topology of the parallel architecture. Species emerge as local neighbor­
hoods within that topology. Subpopulations in equilibrium are “punctuated” 
by easily implemented migration patterns from neighboring subpopulations. 

However, each such change to an EA significantly changes its semantics 
and the resulting behavior. Our admittedly weak theory about traditional EAs 
needs to be strengthened and extended to help us in better understanding and 
designing these parallel implementations. In the case of finely grained, neigh­
borhood models some significant progress is being made along these lines (see, 
for example, (Sarma, 1998)). 

4.4	 SELF-ADAPTING SYSTEMS 

Another theme that has been arising with increasing frequency is the in­
clusion of self-adapting mechanisms with EAs to control parameters involving 
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the internal representation, mutation, recombination, and population size. This 
trend is due in part to the absence of strong predictive theories that specify such 
things a priori. It is also a reflection of the fact that EAs are being applied to 
more complex and time-varying fitness landscapes. 

Some important issues that need to be solved involve the self-adaptation 
mechanism itself. For example, do we use an EA or some other mechanism? 
If we use an EA, how do we use fitness as a performance feedback for self-
adaptation? 

On a positive note, the EC community has already empirically illustrated the 
viability of self-adaptation of mutation and recombination as noted earlier, as 
well as adaptive representations like Argot (Shaefer, 1987), messy GAs (Gold­
berg et al., 1991), dynamic parameter encoding schemes (Schraudolph and 
Belew, 1992), and Delta coding (Whitley et al., 1991). Thesis work of Turner 
(Turner, 1998) suggests that simple performance-based mechanisms can be ef­
fectively used to dynamically tune parent selection and operator usage. 

4.5	 COEVOLUTIONARY SYSTEMS 

Hillis’ work (Hillis, 1990) on the improvements achievable by co-evolving 
parasites along with the actual individuals of interest gives an exciting glimpse 
of the behavioral complexity and power of such techniques. Holland’s Echo 
system (Holland, 1992) reflects an even more complex ecological setting with 
renewable resources and predators. More recently, Rosin (Rosin and Belew, 
1995) and Potter (Potter, 1997) have shown the benefits of both “competitive” 
and “cooperative” co-evolutionary models. 

Each of these systems suggests an important future role for co-evolution in 
EAs, but they raise more questions than they answer concerning a principled 
method for designing such systems as well as the kinds of problems for which 
this additional level of complexity is both necessary and effective. One promis­
ing approach currently being explored is the use of evolutionary game theory 
(Ficici and Pollack, 2000; Wiegand et al., 2002). 

4.6	 INCLUSION OF LAMARCKIAN 
PROPERTIES 

Although EAs may be inspired by biological systems, many interesting 
properties arise when we include features not available to those systems. One 
common example is the inclusion of Lamarckian operators, which allow the 
inheritance of characteristics acquired during the lifetime of an individual. 

In the EC world this is beginning to show up in the form of hybrid systems 
in which individuals themselves go through a learning and/or adaptation phase 
as part of their fitness evaluation, and the results of that adaptation are passed 
on to their offspring (e.g., see (Turney et al., 1996)). Although initial empirical 
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results are encouraging, we presently have no good way of analyzing such 
systems at a more abstract level. 

4.7 MODELING EVOLUTIONARY SYSTEMS 

With few exceptions this entire discussion so far has been presented from a 
computer science and engineering perspective, namely, the use of EAs as com­
putational tools to solve difficult computer science and engineering problems. 
This is, to a great extent, a reflection of the individuals in the field and their 
interests. It should be clear, however, that an equally plausible direction is to 
use EAs as models of biological and other evolving systems. 

However, there is a problem here in that it is difficult to achieve both compu­
tational utility and biological plausibility in a single model. As a consequence, 
most of the computationally oriented EAs that have been developed over the 
past 40 years are quite inadequate as modeling tools. Rather, significant devel­
opment effort is usually required to rework an existing EA for systems model­
ing efforts (see, for example, (Burke et al., 1998)). What I have seen in the past 
few years is a significant growth of interest in these kinds of EA applications, 
and a growing sense of a need to fill the gap between currently developed EAs 
and the kinds of EAs needed for effective evolutionary systems modeling tools. 

5. SUMMARY AND CONCLUSIONS 
This is an exciting time for the EC field. The increased level of activity has 

resulted in an infusion of new ideas and applications that are challenging old 
tenets and requiring fundamental changes in the ways in which we model and 
use evolutionary algorithms. 

I have attempted to summarize this in the form of two grand challenges: 
unification and expansion. I believe that progress in these areas is critically 
important for the continued growth of the field. 
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Abstract	 Evolutionary Computation (EC) is now a few decades old. The impressive de­
velopment of the field since its initial conception has made it one of the most 
vigorous research areas, specifically from an applied viewpoint. This should 
not hide the existence of some major gaps in our understanding on these tech­
niques. In this essay we propose a number of challenging tasks that –according 
to our opinion– should be attacked in order to fill some of these gaps. They 
mainly refer to the theoretical basis of the paradigm; we believe that an effective 
cross-fertilization among different areas of Theoretical Computer Science and 
Artificial Intelligence (such as Parameterized Complexity and Modal Logic) is 
mandatory for developing a new corpus of knowledge about EC. 

1. INTRODUCTION 
On July 2, 2002, we made several queries using one of the most popular 

databases for retrieval of research publications, the Web of Science1 . Undoubt­
edly, one of the best jewels of the crown of Theoretical Computer Science is 
the theory of NP-completeness (Garey and Johnson, 1979), so we thought 
that it would be relevant to identify how many papers have been published 
and catalogued in this database that include either the terms ‘NP-hard’ or ‘NP-

http://www.isinet.com 1 
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complete’ in either the title or the abstract or even as a keyword. It has been 
reported elsewhere that “thousands” of problems have been already catalogued 
as NP-hard, so we thought that this search would at least help to indirectly 
quantify the presence of NP-completeness theory in the scientific and tech­
nological literature. Surprisingly for us, only 4,111 documents contained at 
least one of these terms. We expected this number to be larger provided the 
significance and widespread usefulness of this classification. 

This result is curious, we hoped to get a larger figure, since, for compari­
son purposes, the same database retrieved 1,361 documents containing either 
‘salesman problem’ or ‘salesperson problem’, in general referring to a partic­
ular problem member of the NP Optimization class (the traveling salesman 
problem, MIN TSP). 

Regarding the current use of “single-agent” metaheuristic optimization 
methods, two of them take the lead with “Simulated Annealing” (Kirkpatrick 
et al., 1983) (4,676) and “Tabu Search” (Glover and Laguna, 1997) (856). 
These metaheuristics have been introduced at least one decade after the the­
ory of NP-completeness and they are widely used in practice. Noting that 
any metaheuristic method turns into a heuristic when applied to a particular 
problem, it is also relevant to query for “heuristic” or “heuristics” giving an 
impressive number of 15,933 documents in the database, most of them on algo­
rithmic approaches to solve a problem modeled in formal mathematical terms. 

There are many possible interpretations for the results of these database 
queries, and each of these interpretations is the amalgamation of a number of 
factors and conjectures. The reader may agree with us in that the great success 
of metaheuristics in solving in practice many hard optimization problems is 
certainly one of the circumstances to take into account. In our opinion, a subtle 
shift in research focus is also a major factor in this result. More precisely, it 
may be that the relative weight of applied research (recall that most of the 
works dealing with metaheuristics are of applied nature) has increased with 
respect to fundamental research. The wide availability of computing resources 
is crucial in this sense: testing and comparing different approaches for solving 
a problem can be much more amenable than complex mathematical analysis. 
This philosophy could be summarized in “try to get probably good solutions to 
your problem, for provably good solutions are overwhelmingly hard to obtain ”. 
For most problem domains, we should take extreme care in order to define 
what can be a challenging instance, since it may be extremely easy to find 
optimal solutions (Krivelevich, 2002), biasing the chosen scenario favoring 
exact methods (see the discussion in (Berretta and Moscato, 1999)). 

While the lack of a proper mathematical analysis is not something to be 
inherently criticized from a scientific point of view, it is true that the lack of 
solid theoretical basis for most metaheuristics will jeopardize their successful 
utilization in the Century. Quoting Lewis and Papadimitriou (Lewis and 
Papadimitriou, 1998): 
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“Explaining and predicting the impressive empirical success of some of these 
algorithms is one of the most challenging frontiers of the theory of computation 
today.” 

Indeed, developing formal theories for grasping the optimization dynamics of 
these algorithms, and to devise appropriate metaheuristics for solving specific 
problems appear as the major challenges researchers have to face. This is 
specifically true in the field of evolutionary algorithms (Bäck et al., 1997) 
(EAs), one of the metaheuristics families with stronger impetus, yet whose 
foundation-knowledge corpus remains very incomplete. 

In this essay, we will try to identify some of the principal challenges whose 
solution we believe may constitute important milestones for EA development. 
Each of these challenges will be described in a different section. It must be 
noted that their numbering is not intended to represent any relevance order. On 
the contrary, the reader is invited to rank them according to his/her particular 
vision of the field. 

2.	 CHALLENGE #1: HARD PROBLEMS 
FOR THE PARADIGM – EPISTASIS AND 
PARAMETERIZED COMPLEXITY 

It is absolutely necessary to identify and understand the relative “hardness” 
of finding appropriate algorithms for specific problems, in particular with re­
spect to the computational complexity classes to which the problems belong. 
We believe that it would be a better attitude, particularly toward building a 
bridge with Theory of Computation, to try firstly to identify hard problems 
for EAs in relationship with known computational classes. At present, the 
approach of creating “toy problems” that are “hard” for the paradigm, while 
partly useful for identifying some particular issues that need consideration, 
does not lead to an articulated, systematic approach to understand for which 
problems, or problem instances, the EA approach is competitive or even supe­
rior, to exact approaches or other metaheuristics. We may ask: 

Is there any way to find efficient algorithms based on evolutionary search princi­
ples which always give good approximations to optimization problems to which 
it is hard to find the optimal solution ? 

From some perspective, the answer of this question is most probably “No”, 
since under the commonly believed assumption that we know that 
there are some problems that can not be approximated with efficient algorithms 
at all. On the other hand, this question can be relativized by answering: “It de­
pends on the problem” since we know that for some problems that are equally 
hard to be solved to optimality, some can be very well approximated with effi­
cient algorithms. This leaves some room for the possibility that some problems 
can be efficiently approximated using algorithms based on evolutionary tech­
niques while others do not. 
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To study the central question presented above, we identify three comple­
mentary research directions: 

Identify N P-Optimization problems for which the evolutionary search 
paradigm has proved not to be competitive against the best heuristic or 
approximation algorithm known for those problems. 

Identify which optimization problems can be approached using an evo­
lutionary search paradigm and identify the reasons. 

For the problems of the two groups mentioned above, it will be impor­
tant to find links with the theory of computational complexity and the 
complexity classes (regarding approximability and, in particular, param­
eterized complexity (Fellows, 2002)) that those problems belong to. 

Ideally, the outcome of the above research will also provide interesting clues 
in terms of relating computational complexity classes with the typical mea­
sures of “EA-hardness” such as epistasis (Davidor, 1991; Forrest and Mitchell, 
1991). This phenomenon –the non-additive fitness dependence among several 
genes– has a direct influence in the difficulty an EA faces for solving a certain 
problem (defined as the combination of a particular representation and fitness 
function). It is customary to quantify epistasis by means of a integer fixed pa­
rameter, say The existence of such a parameter in the context of the 
discussion about complexity classes mentioned above immediately suggest a 
possible connection with the paradigm of parameterized complexity (PC) (for 
an interesting introduction to the general topic see (Downey et al., 1999)). This 
paradigm extends the classical paradigm by analyzing the complexity of prob­
lems with respect to a certain parameter (or set of parameters). Recall that 
classical classifications such as the conspicuous P – N P dichotomy are based 
in a worst-case scenario. For instance, the paradigmatic SAT problem is known 
to be easily solvable in general (for a particular type or randomly-generated in­
stances) except for instances located at the phase transition between satisfiabil­
ity and non-satisfiability (Gent and Walsh, 1994). The existence of structural 
parameters upon which to base the complexity analysis can be very useful to 
isolate such scenarios. The PC paradigm establishes a hierarchy of parameter­
ized complexity classes 

that allows discriminating problems of different complexity according 
to the chosen parameter. For example, problems in the FPT (fixed-parameter 
tractable) class have algorithms whose worst-case complexity is 
where is the parameter, and arbitrary function of only, and is a con­
stant. In contrast, the complexity of solving problems in W[1] is 
substantially harder in general. 

A prototypical example of an NP-complete problem whose parameterized 
version is fixed-parameter tractable is VERTEX COVER. This problem can be 



57 EC: Challenges & Duties 

defined as follows: 

COVER 

Instance: An undirected graph  G(V, E), with an integer 

Question: Does there exist a set of vertices, such that for 
every it holds that or 

If the size of the set is taken as a parameter, this problem can be shown 

in
 FPTto be in  (Downey and Fellows, 1995), existing algorithms for solving it

 i.e., linear in for fixed and polynomial in for 
This surprising result can be achieved by combining the results of 

(Chen et al., 1999) and the speed-up method of (Niedermeier and Rossmanith, 
2000). Notice that while VERTEX  COVER would be dismissed as “probably 
intractable” according to its NP-hardness, it turns out to be perfectly solvable 
for a wide range of values for its structural parameter. 

A lesson can be extracted, since we may apply these algorithms for recombi­
nation operators. They appear to be greatly advantageous when the population 
has begun to converge to similar individuals. We will return to this issue in the 
next challenge. 

As mentioned above, the  W-hierarchy allows encapsulating problems of in­
creasing difficulty. The membership of a certain problem to a precise PC class 
is established by means of Boolean circuits. These are traditional networks of 
logical gates that take a potential solution as an input, and output a Boolean 
value indicating whether that is a solution for the problem considered. The 
structure of the circuit obviously depends on the problem, and its complexity 
determines the precise PC class to which membership is established. More pre­
cisely, an important parameter is the weft of the circuit. This is the maximum 
number of logical gates whose fan-in is unrestricted (depends on the problem 
data) in an input-output path. The higher the weft for a constant depth of the 
circuit, the higher the class the circuit belongs to. 

At this point, the resemblance between the weft of a Boolean circuit and the 
structural interdependence of genes in epistatic representations suggests that 
some deep connection may exist between PC and the yet informal notion of 
“EA-hardness”. Disentangling this connection (if it effectively exists) consti­
tutes a very attractive challenge both for Computer Science theoreticians and 
EA researchers. 
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3.	 CHALLENGE #2: SYSTEMATIC DESIGN 
OF PROVABLY GOOD RECOMBINATION 
OPERATORS 

Recombination is undoubtedly a major component of evolutionary algo­
rithms, at least in the case of genetic algorithms (GAs). While its intuitive role 
has been always clear (to combine the information present in a set of solutions 
to create new solutions), the guidelines for designing effective recombination 
operators have experienced a remarkable evolution. It is increasingly accepted 
that instead of directly manipulating the syntactic units used to encode solu­
tions, the operator must extract “relevant” information from these solutions 
and recombine it (with independence of whether solutions are encoded on the 
basis of these particular information pieces or not). Unfortunately, the concept 
of “relevance” is hardly defined in formal terms. For instance, solutions of the 
N P optimization problem MIN  TRAVELING  SALESMAN (MIN TSP) can be 
encoded as permutations or even as binary strings. However, operators work­
ing directly on these encodings such as cycle crossover (Oliver et al., 1987) 
or uniform crossover (Syswerda, 1989) will in general provide worse perfor­
mance than operators extracting the relevant information. For the symmetric 
instances of the MIN TSP it has been shown that the preservation of some 
features, in particular common edges is indeed a good strategy (Mathias and 
Whitley, 1992), and this lead to the proposal of several “edge recombination” 
methods (Moscato, 1999). 

We will refer to these relevant “pieces of information” as features. We note, 
however, that in most of the cases where the problem to be solved is intractable, 
these features generally correspond to predicates computable in polynomial-
time. Back to the symmetric instance of the MIN TSP example, when a re­
combination operator requires to “find all common edges of the par­
ents ” this can be understood as checking predicates (where 

denotes the number of cities). Each one of them corresponds to one edge 
between two cities, and we return the edges for which the associate predicate 
returns a ‘Yes’ for all parents. 

After having identified the relevant features (let us suppose we managed 
to find all features of a set of parent solutions in polynomial-time), the next 
and obviously important step is deciding how we can use this information. 
While blind recombination operators that randomly shuffle the set of features 
were more typical in the past, the addition of problem-domain knowledge to 
guide the process is becoming increasingly popular. The terms hybrid GAs 
and memetic algorithms (MAs) (Moscato, 1989) (Moscato, 1999) have been 
coined to denote these methods that use smarter reproductive operators and 
periods of single-agent optimization. 
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There exist a plethora of mechanisms to create these smart recombination 
operators, e.g., (Cotta and Troya, 1998; Radcliffe and Surry, 1994), but, up 
to the best of our knowledge, no complexity results for some of the decision 
problems involved have been reported. For instance, suppose we have a num­
ber of tours from a relatively large population of size Let us 
also suppose that of them have lengths values which are below the cur­
rent population’s average length value, but one has a value well above average. 
To strengthen the argument we can even suppose that it is actually the longest 
tour in the entire population. While the preservation of edges/features present 
in all parents can still make some sense, we notice that the preservation of 
edges/features present in the best parents and not present in the worst 
tour, seems also a valuable heuristic to create new solutions. Analogously, the 
avoidance of a feature present in the worst tour and not present in the other 

tours is certainly another appealing heuristic. 
It is clear that, while there might be other heuristics of interest for special 

cases, the previous example clearly depicts the existence of a more general 
problem: given a set of parents, find the optimal subset of features to avoid 
and to preserve. This problem already appears when we have parents that can 
be categorized in two different classes. A natural measure of optimality is the 
cardinality of the set, since we expect that is already a small number in 
comparison with the size of the instance, then we only expect to make a valid 
inference if the number of chosen features is also small. 

We think that the EC community may critique itself in having not yet de­
fined a systematic effort to understand how to extract useful features from pop­
ulations of solutions. Although some ad-hoc approaches work for particular 
problems, most recombination approaches are naive attempts to solve a more 
fundamental issue, that of extracting particular characteristics/features that the 
optimal solutions might have and, possibly more important, which features 
might not be present in them. 

Related with this latter point, it must be noted that we still lack a formal 
framework for recombination, similar for instance to that we have for Local 
Search (Johnson et al., 1988; Yannakakis, 1997). In this sense, an interest­
ing new direction for theoretical research arose after the introduction of two 
computational complexity classes, the PMA class (for Polynomial Merger Al­
gorithms problems) and its unconstrained analogue, the uPMA class. We will 
define the classes PMA and uPMA by referring to three analogous algorithms 
to the ones that define the class of Polynomial Local Search problems (PLS). 
These definitions (specially for PMA) are particularly dependent on an algo­
rithm called that will help to formalize the notion of recombination 
of a set of given solutions, as generally used by most MAs (as well as other 
population approaches). The input of a algorithm is a set of 

feasible solutions. They can be informally called “parent” solutions 
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and, if successful, the delivers as output at least one feasible solution 
(with some constraints). For the uPMA class the construction of the new solu­
tion is less restricted than for PMA. In general, recombination processes can be 
very complex with many side restrictions involving the detection, the preser­
vation or avoidance, and the feasible combination of features already present 
in the parent solutions. 

Definition (uPMA). Let be an instance of an optimization problem P. 
With we denote the set of all possible outputs (i.e., 
feasible solutions) that the algorithm can give if it receives as input 
the pair for problem P. 

time algorithms and (where and 
A recombination problem belongs to uPMA if there exist three poly-

are 
integer numbers such that that satisfy the following proper­
ties: 

Given an input (formally a string the determines 
whether is an instance of problem P and in this case produces a set of 

different feasible solutions 

Given an instance of P and an input (formally a string the 
determines whether this input represents a set of feasible so­

lutions, i.e. and in that case it computes the value of the 
objective function associated to each one of them, i.e. 

P
 optimum,

with 

Given an instance of  and a set of feasible solutions the 
determines whether the set is a  and, if 

it is not, it outputs at least one feasible solution 
strictly better value of 

for a minimization problem, and 
for a maximization problem). 

Analogously, the PMA class is more restricted since it embodies a particular 
type of recombination. For uPMA the type of recombination is implicit in the 
way the group neighborhood is defined. However, the definition for PMA 
is still general enough to encompasses most of the recombination procedures 
used in practical population-based approaches. 

Definition (PMA). A recombination problem belongs to PMA if 
there exist three polynomial-time algorithms and 

(where and are integer numbers such that 
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such that the and satisfy the same properties required by 
the uPMA class but the is constrained to be of a particular type, i.e.: 

Given an instance of  P and a set of feasible solutions the 
merger determines whether the set is a optimum, and, if 
it is not, it does the following: 

For each it solves polynomial-time decision problems 
Let D be a matrix of Boolean 

coefficients formed by the output of all these decision problems, 
i.e. 

It creates a set of constraints C, such that  C can be partitioned 
in two subsets, i.e. Each constraint is rep­
resented by a predicate such that its associated decision problem 

can be solved in polynomial-time for every feasible solution 
Any predicate is a polynomial-time computable function that 

has as input the Boolean matrix  D and the instance It is re­
quired that at least one predicate to be a non-constant function 
of at least two different elements of 

It outputs at least one offspring, i.e. another feasible solution 
with strictly better value of (i.e. 

max for a minimiza­
tion problem, and 

for a maximization problem) subject to 

where is an integer weight associated to constraint 

Conducting research to identify problems, and their associated recombination 
procedures, such that membership, in either PMA or uPMA, can be proved 
is a definitely important task. It is also hoped that after some initial attempts 
on challenging problems completeness and reductions for the classes can be 
properly defined. 

We should also note that the definition are such that they would naturally 
give several new interesting parameterized complexity problems. So, while 
proving NP-hardness is a good start, we hope that the research focus should 
be directed towards proving many problems to be fixed-parameter tractable. 
In essence, that would lead toward developing “optimal” recombination op­
erators, that while exponential on the parameters, can be polynomial on the 
instance size. 
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4.	 CHALLENGE #3: USING MODAL LOGIC 
AND LOGIC PROGRAMMING METHODS 
TO GUIDE THE SEARCH 

Looking ahead one of the possible directions that EC can take, after check­
ing the current trends, it is then reasonable to affirm that increasingly more 
complex schemes evolving solutions, agents, as well as representations, will 
soon be implemented. The way they would handle information (actually it is 
a “distributed” information for it is carried by a population of solutions, which 
can be transmitted, recombined, and analyzed) have some points in common 
with Blackboard Systems (Englemore and Morgan, 1988). This has been rec­
ognized in the past yet it is conspicuously hardly being mentioned in the cur­
rent metaheuristics literature. We are proposing to call these new methods as 
Belief Search and to show they can work in an EC setting, we will resort to two 
illustrative examples. We will assume that the formula has the following 
meaning “agent believes with strength (at least) that is true”, such that 
the strength values are restricted to be rational numbers in [0,1]. Let us also 
suppose we accept as an axiom that from being true we can deduce for 
all Now let us suppose that our agents are trying to solve a MIN TSP and 
that the particular instance being considered is Euclidean and two-dimensional. 
Let represent the proposition “edge is present in the optimum tour” and 
let be true if edges and cross each other, and false otherwise. It can 
be proved (a “folk theorem”) that for such particular type of TSP instances (a 
form of problem-domain, or better, instance-domain knowledge) “if edges 
and cross each other, then and can not both be present in the optimal 
tour”. Then we can assume that this is known by all agents, and by the previ­
ous axiom we can deduce that agent 2 now believes 
Now let us suppose that agent 1 believes, with strength 0.4, that “either edge 

We will not enter into the discussion of how that agent reached 
that belief and we take it as a fact. Now let us suppose that another agent be­
lieves, at a level 0.7 that 

or but not both, is present in the optimal tour”. We will represent this 
as 

then we write This 
is curious, since this kind of assumption confuses our common sense. In gen­
eral we do not see any relationship between the fact that two edges cross and 
that we can deduce that as a consequence one of them should be present in 
the optimum tour. We can take this as a fact, as if a “co-evolving” algorithm, 
is generating these predicates to guide the search. However, note that agent 3 
believes in this relationship (at a 0.7 level) for a particular pair of edges and 

Now, what can we say about the distributed belief of this group of three 
agents ? How can we recombine this information ? At this point we need to 
introduce a logic to recombine belief information. Discussions on which par­
ticular type of logic to guide heuristic search process is a much more elegant 
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and useful method than keeping on discussing values of parameters based on 
trial-and-error experimental tests. It may also lead to improved convergence 
in Estimation-of-Distributions (EDA) metaheuristics (Larrañaga and Lozano, 
2001). 

According to one possible selection for such a logic, just picked to exem­
plify the discussion, we can use a multi-agent epistemic logic recently 
introduced by Boldrin and Saffiotti, the opinions shared by a set of different 
agents can be recombined in a distributed belief. Using we can deduce 

The distributed belief about proposition is then stronger than 
any individual belief about it, and is even stronger than what you would get 
if any agent would believe the three facts. We offer now two examples on its 
application. 

4.1 EXAMPLE 1 
In we have the following axioms and inference rules, where and 
range over formulas of and over rational numbers in [0,1]; and 

The five axioms are: 

The three inference rules are : 

(MP) Modus Ponens from and deduce

(NEC) Necessitation from deduce

(US) Uniform substitutions


A formula is said to be a theorem of written if is obtained 
from A0-A4 by a finite number of applications of MP, NEC and uniform sub­
stitutions. Then, if we will write to mean 

Proposition: Given (see below) then 

Proof: 
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We can leave to the reader the task of checking this example following sec­
tion 3.3. of (Boldrin and Saffiotti, 1999). 

Another interesting exercise is the following: let be the predicate 
“edge (respectively, is present in the optimal tour”. The task is then to 
deduce according to what can be distributively believed about individual 
edges and if in addition to the three previous agents there are also two 
other agents, such that 

4.2 EXAMPLE 2 

The following are theorems of 

If the agents are trying to solve an Euclidean, 2-dimensional instance of the 
TSP, then we also have the instance-dependent axioms or IDAs. 

In addition, we also know that:


Proposition: Given (see below) then 
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Proof: 

analogously we can deduce: 

and now we will use one of the theorems: 

and now we combine the information using the other theorem:
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We note that, by computing the distributed belief of the set of solutions 
in an EA (or agents in an MA), it is possible to use this information to bias 
constructive algorithms. This said, a Belief-Search-based EA can also bene­
fit from constructive heuristics already available in the literature. In addition, 
exact search methods can prioritize some pending decisions based on the in­
formation that is distributively believed. This may also allow parallel search 
by a set of agents, allowing the agents to have many alternatives instead of the 
depth-first or best-first guiding procedures generally used. 

By no means we affirm that is the definitive logic that should be used to 
guide EAs with Belief Search. We mention this, since is related to multi-
modal logics of partial belief and it may be the case that some other forms 
for connectives are more appropriate than the T-norm proposed for merging 
information. However, already embodies very interesting features that 
we would like to highlight and we have not noticed in other logics of belief. 
First, it allows nested epistemic reasoning, i.e., an expression like can 
be interpreted as agent believes at level that is distributively believed at 
level B”. This is very interesting since some ad-hoc heuristics for generaliz­
ing recombination operators, like the rebel, conciliator, and obsequent behav­
iors (Berretta and Moscato, 1999), can be interpreted in terms of an underlying 
nested epistemic reasoning. Second, the negation is typically modal conveying 
the concept of absence of information. As remarked by Boldrin and Saffiotti, 
this contrast with the algebraic approach of other logics in which negation rep­
resents positive information on some “orthogonal” formula. Again, this is best 
illustrated with the MIN TSP as our favorite example. A strong belief on a 
subset of edges to be in the optimal solution does not necessary mean 
that the remaining edges might not be in the optimal solution. Modal 
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logic seems to have an interesting role in this respect. Finally, according to 
Boldrin and Saffiotti, can be extended to also include a set of epistemic 
operators with G being a subset of the agents. The intended meaning of 
this is that they will combine the distributed belief of subsets of the agents. 

5.	 CHALLENGE #4: LEARNING FROM

OTHER METAHEURISTICS AND OTHER

OPEN CHALLENGES


Evolutionary Computation metaheuristics are far from being the only method 
of choice to perform heuristic search. We have shown in the introduction how 
Simulated Annealing (SA) and Tabu Search (TS) are among the most popu­
lar ‘“single-agent” stochastic optimization methods. The key of the success is 
the simplicity of their implementation and the fact that for many optimization 
problems (and the problem instances under study) it is relatively easy to get 
very good solutions. One of the authors of this chapter, back in 1989, intro­
duced the denomination of ‘memetic algorithms’ (MAs) as a paradigm aimed 
to liberate population-search methods from the current biologically motivated 
metaphors at that time. Several ideas were introduced, the use of single-agent 
metaheuristics for individual search optimization steps, the use of different 
neighborhoods for the different agents, the study of correlation of local optima, 
etc. After more than a decade from that work, we see that several ideas have 
been upraised up to the point of constituting new metaheuristics, like variable 
neighborhood search (VNS) (Hansen and 2001). We can quote 
from (Moscato, 1989): 

Another advantage that can be exploited is that the most powerful computers in 
the network can be doing the most time-consuming heuristics, while others are 
using a different heuristics. The program to do local search in each individual 
can be different. This enriches the whole, since what is a local minima for one of 
the computers is not a local minima for another in the network. Different heuris­
tics may be working fine due to different reasons. The collective use of them 
would improve the final output. In a distributed implementation we can think in 
a division of jobs, dividing the kind of moves performed in each computing indi­
vidual. It leads to an interesting concept, where instead of dividing the physical 
problem (assignment of cities/cells to processors) we divide the set of possible 
moves. This set is selected among the most efficient moves for the problem. 

and also, 
Is this the ultimate solution for the problems that the search involves ? Is it 

wise to use a set of many different moves, to continue adding different moves 
ad infinitum ? Certainly not. Effective moves are those that, on the average, 
create a new configuration with similar values of the objective value, reflect­
ing the efficient use of the correlation between the configurations given by the 
representation. 

Despite the clear coincidences present in these early discussions, and contrar­
ily to what the reader might suspect, we are not interested in claiming that 
the VNS ideas were already contained in MAs. On the contrary, we view the 
systematic development of particular strategies as a healthy sign. If a simpler 
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metaheuristic (SA, TS, VNS, GRASP, etc.) performs the same as a more com­
plex method (GAs, MAs, Ant Colonies, etc.) we should either resort to the 
simpler method, or to the one that has less free parameters, or to the one that 
is easier to implement. On the other hand, such a fact challenges us to adapt 
the more complex methodology to beat a simpler heuristic, if that is possible at 
all. What we do not consider as a healthy sign, however, are the attempts to en­
capsulate some metaheuristics on stretched confinements. For instance, a MA 
is not just a “hybrid” GA, or a “parallel GA”, or a GA in which all solutions 
are local optima. Actually this latter strategy was not part of the proposed def­
initions, since already the MAs in 1988 and 1989 were using SA or stochastic 
methods and the solutions were far from being locally optimal at the time of 
recombination. Not every method that uses a population and a recombination 
operator is a GA, not every hybrid GA is a MA. An “ant colony” metaheuristic 
(Dorigo et al., 1996) is indeed a new idea, but when the “ants” use local search, 
the resulting algorithm exhibits a strong resemblance to an MA. 

We think that there are several “learned lessons” from work in other meta-
heuristics. For instance, TS decides to accept another new configuration 
(whether a feasible solution or not) without restriction to the relative objec­
tive function value of the two solutions. This has lead to good performance in 
some configuration spaces where evolutionary methods and Simulated Anneal­
ing perform poorly. A classical example of this situation is the MIN NUMBER 

PARTITIONING problem (Berretta and Moscato, 1999). In addition, we have 
also identified some problems with evolutionary search methods in instances 
of the TSP in which the entries of the distance matrix have a large number of 
decimal digits. We believe that there is an inherent problem to be solved, for 
evolutionary methods to deal with fitness functions that have so many decimal 
digits. Traditional rank-based or fitness-based selection schemes to keep new 
solutions in the current population fail. It would be then reasonable to investi­
gate whether some ideas from basic TS mechanisms could be adapted to allow 
less stringent selection approaches. 

Problems like STRIPS planning (Bylander, 1994) or the less known Sokoban 
(Culberson, 1999) can provide good test-beds for the performance of EC meth­
ods in problems of other complexity classes. Unfortunately, although there are 
exceptions (Westerberg and Levine, 2001) they are seldom addressed. Other 
related challenges have been described in (Selman et al., 1997). Multi-objective 
optimization is another interesting field full of new challenges where several 
metaheuristics are being evaluated (Coello, 1999). 

In (Selman et al., 1997) we can read in their second challenge: 

Minsky (1967) was foundational in establishing the theory of computation, but 
after Hartmanis (1971) there has been a fixation with asymptotic complexity. In 
reality lots of problems we face in building real AI systems do not get out of 
hand in terms of the size of problems for individual modules–in particular with 
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behavior-based systems most of the submodules need only deal with bounded 
size problems. 

We have recently initiated work in an area which we have tentatively called 
Evolutionary Analysis of Algorithms (Cotta and Moscato, 2003). This ap­
proach deals with the problem of finding, for a fixed-size, the worst-case in­
stance for a particular algorithm; there are problems that by their intrinsic na­
ture have been defined with a natural upper-bound on the instance size. Then 
the real challenging problem is to find new methods allowing “co-evolution” 
between the tasks of designing a better algorithm and the worst-case instance. 
This hopefully will lead to more robust methodology for algorithms develop­
ment. 

6. CONCLUSIONS 

By looking back at the development of Evolutionary Computation in the 
previous decades, we can say that it is a healthy field. The number of re­
searchers and published articles is steadily growing at a superlinear rate (Alan-
der, 1994). So is also the number of successful applications of these tech­
niques. Hence, the field is now well grounded and mature enough to endeavor 
the challenging task of understanding how, when and why these techniques 
work or should be deployed on an specific problem. 

We have proposed a number of challenges whose successful resolution will 
–in our opinion– provide major boosts for the vigorous development of the 
field. Obviously, these challenges are only a part of a bigger picture, as the 
reader will verify by reading other essays in this collection. They neverthe­
less reflect our view of the area, a view in which the lack of a solid theoretical 
corpus as well as insufficient connections with other areas of metaheuristic op­
timization (let alone with other areas of Theoretical Computer Science) consti­
tute a Damocles’ sword whose existence we have to face (and indeed solve). 

It is up to us, EC researchers, to determine whether future EC practitioners 
will regard the field as a collection of elaborate recipes to be adapted to one’s 
taste, or as a cooking book from which to learn how to cook the dish he/she 
likes. Admittedly, this is an ambitious objective. It is also true that some of the 
most optimistic perspectives about the capabilities of the paradigm a decade 
ago were dismissed by theoretical results such as Hart & Belew’s hardness 
results (Hart and Belew, 1991) and Wolpert  & Macready’s No Free Lunch 
Theorem (Wolpert and Macready, 1997), so in principle, this could be the case 
for some of these challenges. However, we have to consider that these past 
experiences did not compromise the future of EC; on the contrary, they allowed 
redirecting efforts in more fruitful ways. Theoretical results cannot thus be 
negative, for they represent the underlying truth about the paradigm. It is to 
this underlying ground upon which we have to settle and adapt. Whatever the 
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outcome of the challenges we have depicted in this essay, this should be the 
philosophy with which we have to react. 
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Abstract	 The dynamics of evolution can be completely characterized by the spectra of 
the operators that define the dynamics, under broad classes of selection and ge­
netic operators, in both infinite and finite populations. These classes include 
frequency-independent selection, uniparental inheritance, and generalized mu­
tation. Several open questions exist regarding these spectra: 

1	 For a given fitness function, what genetic operators and operator intensities are optimal 
for finding the fittest genotype? The concept of rapid first hitting time, and analog of 
Sinclair’s “rapidly mixing” Markov chains, is examined. 

2	 What is the relationship between the spectra of deterministic infinite population mod­
els, and the spectra of the Markov processes derived from them in the case of finite 
populations? 

3	 Karlin proved a fundamental relationship between selection, rates of transformation un­
der genetic operators, and the consequent asymptotic mean fitness o the population. 
Developed to analyze the stability of polymorphisms in subdivided populations, the the­
orem has been applied to unify the reduction principle for self-adaptation, and has other 
applications as well. Many other problems could be solved if it were generalized to ac­
count for the interaction of different genetic operators. Can Karlin’s theorem on operator 
intensity be extended to account for mixed genetic operators? 

INTRODUCTION 

A general theory for the performance and design of evolutionary algorithms 
has proven difficult to achieve. This difficulty sets in even before we delve 
into search spaces with great complexity, or algorithm operators with great 
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complexity. We find it in the simplest “canonical” models of evolutionary 
algorithms owing to their nonlinear structure and stochastic dynamics. 

Nonlinearity and stochasticity can be eliminated by making a variety of sim­
plifying assumptions—in essence, exploring a subspace on the boundaries of 
the general problem. Linearity is produced by assuming constant selection and 
uniparental transmission (i.e. where the offspring type is determined by the 

type of its one parent). Determinism is produced by assuming an infinite pop­
ulation. A model with these assumptions produces a linear dynamical system 
whose trajectory and attractors can be described in closed form, and decom­
posed in terms of its spectrum of eigenvalues and eigenvectors. 

Actual evolutionary algorithms depart from this boundary in two important 
ways: finite populations, and recombination between two (or more) parents. 

Recombination is the main innovation of genetic algorithms, aimed at allow­
ing combinations of partial solutions to be assembled. Recombination between 
two parents changes the dynamics of the infinite population model from linear 
to quadratic. In this case, we can no longer obtain a spectrum of eigenvalues 
and eigenvectors; the methods of nonlinear analysis must be employed, such as 
characterization of fixed points and their stability, domains of attraction, and 
Lyapunov functions. A great deal of work has been on the dynamics of re­
combination and selection for models at various points on the boundary of the 
general problem. A recent compendium can be found in (Christiansen, 2000). 
For more on quadratic dynamical systems see Rabinovich et al. (1992), Arora 
et al. (1994).  . Progress has been made in the dynamics of recombination 
in the absence of selection, in both infinite and finite population models, by 
Rabani et al. (1995) , and for simple selection, by Rabinovich et al. (1999). 
Numerous analyses for other models on the boundary of the general problem 
can be found in the evolutionary computation and population genetics litera­
ture. 

Evolutionary algorithms employ finite populations of a size considerably 
less than the cardinality of the search space, since a primary goal of the al­
gorithms is to locate desired elements of the search space without exhaustive 
search. 

Finite population algorithms typically use Bernoulli sampling to generate 
new samples of the search space. This changes the model of the algorithm 
from deterministic to stochastic, a Markov chain which has a linear state tran­
sition matrix, but whose dimensions are exponentially increased beyond the 
number of elements in the search space. The first model of finite population 
dynamics was developed based on Bernoulli sampling by Wright (1931) and 
Fisher (1930). In the Wright-Fisher model, the number of states in the Markov 
chain for the finite population model is compared to a dimension of 

for the infinite population model, where is the number of different geno­
types, and N is the population size. Hence, the dimensionality of the state space 
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is vastly increased in the finite population model over the infinite population 
model. 

This comparison can be made more concrete by describing the difference 
in terms of points in the dimensional simplex. In the infinite pop­
ulation model, the system state is represented as a single point in the sim­
plex which moves deterministically one generation to the next. In the finite 
population model, the state is represented as a probability distribution over a 
cloud points in the simplex, restricted to the lattice of coordinates 

The distribution of the cloud of points is what 
changes every generation. 

Because the uniparental, infinite population model has a complete solution, 
in terms of the spectrum of the linear operators, it presents the logical starting 
point to try to understand a number of unanswered questions in the design and 
dynamics of evolutionary algorithms. So it is the uniparental, infinite popula­
tion model that I begin with. There are three primary open questions I want to 
discuss: 

1 What is the optimal transmission matrix for finding global optima of a 
search space? 

2	 What is the relationship between the spectrum of the infinite population 
model and the spectrum of the finite population model? 

3	 Can a key theorem of Karlin on the effects of operator intensity be gen­
eralized? 

THE CANONICAL MODEL 
The ‘canonical’ model I shall be referring to throughout is the model of an 

infinite population evolving with discrete, non-overlapping generations, under 
constant fitness coefficients and generalized uniparental transmission. Let x be 
the vector of frequencies of different types in the population, so 

and which is to say that the 
simplex. Then the recursion on x is: 

where is the vector of frequencies in the next time step;  W is the diagonal 
matrix of fitness coefficients, 
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is the mean fitness of the population, used as a normalizer to maintain the 
system state as frequencies; and 

is the matrix of transmission probabilities, the probability that type 
produces an offspring of type so 

In vector form, these identities are: 

where 

The trajectory of the system is: 

where 	is the normalizer. 

1.	 OPTIMAL EVOLUTIONARY DYNAMICS 
FOR OPTIMIZATION 

For an optimization problem, we assume that an objective function 
is defined on each element of the search space; here, I assume that the 

goal is to find the element with maximum objective function value. Exhaustive 
search or random search of such a space will require on the average sam­
ples to have sampled an optimum if it is unique (which will be by assumption 
throughout unless specified otherwise). If an algorithm can find the optimum 
in an average of samples, for some small constant then it is clearly 
doing better than “blind search”. 

However, evolutionary algorithms can perform much better than The 
canonical example for an “evolutionary algorithm-easy” problem is the ONE­
MAX problem, where the fitness increases with the number of loci that have 
1 as their allelic value (Ackley, 1987). The number of samples required by a 

MAX problem is where  L the number of loci, 
simple mutation-selection algorithm to find the global optimum in the ONE-
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is the size of the search space, is the set of alleles for each locus, the 
cardinality of for binary strings). 

So, as a performance goal, we would like the time complexity our evolu­
tionary search to be on the order of the ONEMAX problem, taking 
samples in order to find the global optimum. To be a little more lenient with 
the performance requirements, we can relax the condition for “EA-easy” to 
polylogarithmic time, meaning that it takes samples to find the 
optimum, where is a polynomial in 

So, we wish to know what conditions on an evolutionary algorithm will 
allow it to find the global optimum in samples. To be precise, 
we wish to know when the distribution of the first hitting times for producing 
the optimal individual has a median value (since expected hitting times are 
often be nonconvergent) of

Evolutionary algorithms often have multiple domains of attraction (at least
samples. 

in the metastable sense (van Nimwegen et al., 1999)), which imposes a sec­
ondary search problem: finding the initial conditions that are in the domain 
of attraction containing the global optimum. The multiple-attractor problem 
is usually described as “multimodality” of the fitness function, but it must be 
understood that the fitness function by itself does not determine whether the 
EA has multiple domains of attraction—it is only the relationship of the fitness 
function to the variation-producing operators that produces multiple-attractors 
(Altenberg, 1995). 

In order to preclude this secondary search problem, the algorithm must ex­
hibit a single, global attractor that contains the global optimum. 

So, I wish to find what spectral properties give rise to these characteristics 
of an evolutionary algorithm: 

1 Rapid First Hitting Time: It finds the global optimum using a num­
ber of samples that are where is the cardinality of the 
search space. I will call this the rapid first hitting time property. 

2	 Global Attraction: It finds the global optimum regardless of the initial 
samples taken, i.e. the simplex must have one global attractor containing 
the optimum. 

Search problem that present obstacles to 1. include long path problems, and 
the needle-in-a-haystack. Search problem that present obstacles to 2. include 
deception, rugged adaptive landscapes, and multimodal objective functions. 
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1.1	 SPECTRAL CONDITIONS FOR GLOBAL 
ATTRACTION 

For the canonical model Eq. (4.1), the global attraction condition, 2. above, 
can be stated precisely as: 

where we index the global optimum type as 1. 
Condition (4.3) is guaranteed if and only if T is primitive (irreducible and 

acyclic), i.e. there is some such that From the Perron-Frobenius 
theorem (Gantmacher, 1959), primitiveness guarantees that there be a strictly 
positive eigenvector TW. This 
eigenvector 

corresponding to the leading eigenvalue of
normalized so is the global attractor, 

since the composition of the population converges to it regardless of the initial 
composition x(0). 

Primitiveness in the transmission matrix corresponds to the property of er­
godicity. 

It should be noted that when some types have a fitness of 0, then their fre­
quency becomes irrelevant to the dynamics, so the transmission probabilities 

where are also irrelevant. Hence, primi­
tiveness is required only for the restriction 

For simplicity, I will henceforth assume all fitnesses are positive. 
It should be noted that ergodicity in the infinite population model gives us 

little guarantee that the system in the finite population model will exhibit a 
global attractor, due to the phenomenon of metastability or broken ergodicity 
(Palmer, 1982). While ergodicity in the infinite population model is necessary 
for ergodicity in the finite population model, it is not sufficient. The Markov 
chain for the finite population model must in addition be rapidly mixing (Sin­
clair, 1992) to avoid broken ergodicity, as will be discussed later. 

1.2	 SPECTRAL CONDITIONS FOR RAPID 
FIRST HITTING TIMES 

What properties of T and  W—which here completely define the canonical 
evolutionary algorithm—lead to rapid first hitting times?  W incorporates the 
map between the objective function and the fitness values, and we could 
certainly focus on the properties of this map. I can pose the following (without 
belaboring its precise details): 

Open Question: For a given transmission matrix,  T, what is the optimum 
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selection scheme to find the global optimum with a rapid first hitting time? 

Here, however, since the canonical model assumes that W is fixed, we wish 
to consider the problem for arbitrary  W. This leaves only T, the transmission 
matrix, to be explored. 

We can, without loss of generality, label the unique optimal point in the 
search space with so 

We can trivially guarantee a hitting time of 1 by simply constructing a trans­
mission matrix that produces the optimum by mutation: 

Transmission in this case is biased to find the optimum without any help from 
selection. Clearly, such a priori knowledge does not capture the nature of the 
implicit knowledge that an evolutionary algorithm must contain to have rapid 
first hitting times (Altenberg, 1995). The essence of evolutionary search is 
that transmission in the absence of selection is unable to produce adaptation 
or optimization. Only when selection and transmission are combined does 
adaptation occur. The translation of this principle into a condition on T would 
require that all types evolve to equal frequency in the absence of selection, i.e. 

Condition (4.4) for “fair” transmission implies that 

1 The transmission matrix is doubly stochastic, i.e.  T 1 = 1; 

2 The transmission matrix is primitive, i.e. irreducible and acyclic. 

So, our question about the optimal characteristics of T can be posed thus: 

Open Question: 

first hitting time? 
“fair” transmission matrix is optimal for finding the global optimum with rapid 

Given a fitness Junction on a points in a search space, what 

A rapid first hitting time refers to the number of samples that need to be 
taken before finding the global optimum. But in an infinite population, an 
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infinite number of samples are taken each generation. So clearly, to adapt the 
infinite population model to the problem of rapid first hitting time, we need a 
proper translation. 

In a finite population, with discrete, non-overlapping generations, the num­
ber of samples, until the optimum is found is: 

where  N is the population size, is the first hitting time (in generations), and 
is the fraction of the population each generation that comprise new samples. 

Hence, to achieve rapid first hitting times, the population size and the first 
hitting time itself must each be polylogarithmic in the size of the 
search space, since 

1.3	 RAPID MIXING AND RAPID FIRST 
HITTING TIMES 

Vitanyi (2000) has investigated the problem of rapid first hitting time in the 
finite population model, and proposes two criteria that will ensure rapid first 
hitting time: 

1	 the second-largest eigenvalue of the matrix representing the Markov pro­
cess is bounded away far enough from 1 so that the Markov chain is 
rapidly mixing, as defined by Sinclair (1992). 

2	 the stationary distribution gives probability greater than

to the set of states that contain the global optima, where 
 is a 
polynomial in the log of the size of the search space. 

The identification of the second-largest eigenvalue as a measure of the speed 
of convergence of the Markov chain in evolutionary dynamics goes all the 
way back to Wright (1931) and Fisher (1930), who solved the second-largest 
eigenvalue for the Markov process representing the finite population model. 

where  NThis eigenvalue is  is haplotype 
population size. It gives the rate of convergence to fixation on a single haplo­
type due to genetic drift, and is also the rate of decrease in the frequency of 
heterozygotes in the population. See Ewens (1997, pp. 17, 76, 79, 82, 85-90, 
105-107, and Appendix B). 

Other more recent work investigating the second-largest eigenvalue includes 
Suzuki (1995), (Rudolph, 1997), Schmitt et al. (2001a,2001b). . 

The condition defined by Sinclair (1992) to produce what he calls rapid 
mixing in a Markov chain is as follows. Sinclair lays out his concept of rapid 
mixing by first defining the relative pointwise distance (r.p.d.) on a Markov 
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process with transition matrix  P as: 

where 
defines 

is the cardinality of the state space for the chain. Additionally, one 

The Markov chain is said to be rapidly mixing if there exists a polynomial 
such that: 

(Sinclair, 1992, p. 56). 
The second-largest eigenvalue determines the rate at which the components 

of the probability distribution that are orthogonal to the limiting distribution 
die away. Rapid mixing concerns the rate of convergence of a Markov chain to 
its limiting probability distribution. The definition of fast optimization which 
depends on rapid mixing I call rapid first hitting time by analogy. 

I propose a slightly different set of criteria from Vitanyi (2000) to allow 
rapid first hitting time to be defined in the infinite population model. We can 
translate the above discussion into a condition for rapid first hitting time in the 
deterministic model thus: 

Definition: Rapid First Hitting Time. Consider a deterministic evolutionary 

for all Let 
algorithm with a unique global optimum, which we set to be type 1, so 

The evolutionary algorithm is said to possess a rapid first hitting time if there 
exist polynomials in and such that 

For the canonical evolutionary algorithm, this re­
quires that for all x(0) there exist polynomials and 
such that: 
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Of course, it must be emphasized that this ‘translation’ carries with it no 
presumption that the infinite population model adequately approximates the 
behavior the first hitting time in the finite population model. The first hitting 
time is a concept that properly belongs to stochastic processes; it is a random 
variable. The use of the infinite population model to approximate the first 
hitting time has been taken before in the “takeover time” models (Goldberg 
and Deb, 1991), where a deterministic, infinite population model is used to 
approximate the time to fixation of a genotype in a finite population. It is 
clear that this approximation will be inadequate and misleading under the very 
circumstances in which an evolutionary algorithm is of interest, namely, when 
it can find the fittest elements of the search space by sampling only a fraction 
of the search space. This circumstances will be discussed in Section 2.1.  I 
claim only that this use of the infinite population model may lead us to results 
that may be worth investigating more rigorously in the finite population model. 

1.4 SOME ANALYSIS 

We can assume without significant loss of generality that TW permits a 
Jordan canonical representation as 

Q  TW,where the matrix  consists of columns that are the eigenvectors of
and is the diagonal matrix of the eigenvalues 

of TW. This assumption will simplify the analysis.

The condition applies if we assume that transition probabilities are sym­


S
hence 

metric, i.e. which is typical of the mutation operators used on 
data structures in evolutionary computation. This is verified by noting that 
since any symmetric matrix  has Jordan form so we can take 

We must assume here that all fitnesses are non-zero, 
With this assumption we can then represent the trajectory of the population 

as: 

Then for 
We can arbitrarily permute the indices so that 
and so that follows the order of the 
fitnesses, while follows the order of the eigenvalues. In particular, 
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is the strictly positive leading eigenvector of TW, with (note that 
by definition Thus: 

The trajectory of the frequency of the optimal type is:


Further evaluation of yields: 

using So we obtain: 

Substituting the above into (4.6), setting and rearranging, we 
obtain the condition: 
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Since we substitute and 
to get: 

At this point, we take interest in the second-largest eigenvalue Let us 
define 

For any if is small enough, then 

In this case, condition (4.10) is met provided


or 

Hence, for small enough the only condition for rapid first hitting time is that 

We know that selection is required in order for
the frequency of the optimum at equilibrium be on the order of 

since the prin­

ciple eigenvector of T has by the fairness assumption. Thus: 

Theorem 1 If the system exhibits rapid first hitting 
time, then there exists a critical value such that the system 

no longer exhibits rapid first hitting time for all 

Characterizing the dependence of on  T and  W remains an open question. 
Now, it remains to be asked, what transmission matrices  T minimize 
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1.5 TRANSMISSION MATRICES 
MINIMIZING 

If we find a transmission matrix that gives then the only 
condition we require for rapid first hitting time is (4.12). The rank- 1 matrix

yields 

and 
selection: 

and 

We have When we include 

is also a rank-1 matrix, with eigenvalues

Thus, it would appear that the rank-1 matrix would be a candidate trans­
mission matrix to achieve rapid first hitting times. However, this hope is 
instantly dashed by noting that for UW, which is not greater 
than We might ask if we can find another rank-1 matrix where 

but the is precluded by the condition that T be ‘fair’, and 
thus doubly-stochastic, requiring that for all This result is not 
unexpected, when we consider that the rank-1 matrix corresponds to random 
search. 

So, we are left with the following: 

Open Question: For a given set of fitnesses, W, what classes of fair trans­
mission matrices maximize while minimizing so as to satisfy the 
conditions for rapid first hitting time ? 

One step we may take in defining the notion of classes of transmission ma­
trices is to note that the topology of transmission may be separated from the 
operator intensity by the following parameterization: 

where Pis the mutation rate, and  is a transmission matrix in which 
at least one value (Altenberg and Feldman, 1987). For those genetic 
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operators that can be represented as graphs, where a vertex represents a type, 
and an edge represents an operator transformation from one type to another, 
then P naturally corresponds to a normalized adjacency matrix for the graph. 

We can see immediately that if the matrix becomes re­
ducible, so if then for all For small the following 
should be readily shown: 

Conjecture  If the system exhibits rapid first hitting 
time, then the system 

will exhibit rapid first hitting time for for some polynomial 

in and will not exhibit rapid first hitting time for 

Let us return to the example of the ONEMAX problem as the paradigmatic 
EA-easy problem. The transmission matrix for the ONEMAX problem is sim­
ple bit-flip mutation, which produces an L-dimensional binary hypercube when 
represented as a graph between genotypes that mutate to one another. When 
fitnesses are permuted to the proper order (which Liepins et al. (1990) prove 
can always be done), the problem becomes the ONEMAX problem. Hence, 
one can conjecture that a transmission matrix representing the binary hyper­
cube would be a primary candidate for rapid first hitting time. However, it 
is clear that  W can be designed for which no rapid first hitting time can be 
achieved: 

Conjecture It is possible to choose small enough so that if 

then there exists no fair transmission matrix that can produce rapid first hitting 
time. 

With the proper constraints on W, however, we may find the following: 

Conjecture Consider a search space, with Let the fitness 
values be Consider a binary encoding of the indices, such 
that if and only if the Hamming distances, H[ , ], between the binary 
encodings satisfies Let 

where P is the normalized adjacency matrix for the L-dimensional 
binary hypercube under this encoding. Then for some if 
then there exists such that the system has rapid 
first hitting time. 
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Other examples of evolutionary systems that attain rapid first hitting times 
can be found in Vitanyi (2000). 

We may also consider a class of transmission matrices which can never 
achieve rapid first hitting time for any set of fitnesses, namely, the “long path?? 
(Horn et al., 1994) matrices: 

Conjecture Let where for 
otherwise. 

Then, there are no fitnesses W, nor values such that the system 

has rapid first hitting time. 

1.6	 RAPID FIRST HITTING TIME AND NO

FREE LUNCH THEOREMS


It should be noted that the concept of rapid first hitting times allows us to 
distinguish between transmission matrices in a way that the No Free Lunch 
Theorem (Wolpert and Macready, 1995; Wolpert and Macready, 1997) can. 

The No Free Lunch Theorem states, in the current context, that all transmis­
sion matrices have the same performance when averaged over all permutations 
of a set of fitnesses. However, Wolpert and Macready (1995) point out that 
minimax properties can be used to distinguish search algorithms. In this case, 
an example of a minimax property is the existence, or lack of existence, of a 
permutation of fitnesses for a given transmission matrix such that rapid first 
hitting time occurs, as discussed above. 

So, while a long path operator and a binary hypercube operator will have 
the same average performance in locating the global optimum over all permu­
tations of fitness, there will be some permutations that we expect will give the 
binary hypercube a rapid first hitting time, while none that will give the long 
path operator a rapid first hitting time. In this way, we can make a definite 
judgement that the binary hypercube is superior to the long path operator for 
optimization. 

At this juncture, I will refrain from pursuing the numerous possibilities that 
exist for investigating these open questions, and leave them for forthcoming 
work. 

2.	 SPECTRA FOR FINITE POPULATION 
DYNAMICS 

One of the important open questions in evolutionary computation is the rela­
tionship between the dynamics of the infinite and the finite population models. 



88	 FRONTIERS OF EVOLUTIONARY COMPUTATION 

The Wright-Fisher model of finite populations1 is derived from the canonical 
model of an infinite population by the addition of only one free parameter—the 
population size. It thus provides the ideal model in which pose this question. 

2.1	 WRIGHT-FISHER MODEL OF FINITE

POPULATIONS


In the Wright-Fisher model of a finite population, the action of selection 
and genetic operators on the current members of the population produces a 
probability distribution from which each member of the population in the next 
generation is drawn independently. It is as if an infinite zygote pool was created 
from which only finite many can survive with equal probability. 

The elements of the Wright-Fisher model are mostly the same as for the 
infinite population model. Let: 

N be the population size; 

x be the vector of frequencies of each type in the population, corresponding 
to individuals of type 

be the vector of the frequencies of each type in the population in the next 
generation, corresponding to individuals of type produced by 
taking  N independent samples from the distribution y(x); 

be the vector representing the probability distribution for 
drawing an individual of type to compose the population in the next 
generation.  T and  W again represent the transmission matrix and fit­
ness matrix, respectively. 

Since the population consists of discrete individuals, the frequency vectors are 
now restricted to a lattice of discrete points on the simplex namely 

The Wright-Fisher model forms a Markov chain, whose transition matrix on 
frequency vectors is: 

The Markov theory of Wright and Fisher is known in the genetic algorithms community as the “Nix 
and Vose model” (Nix and Vose, 1991) since this community developed largely without awareness of prior 
work in mathematical population genetics. Other work on Markov chains in genetic algorithms includes 
(Goldberg and Segrest, 1987), and (Davis and Principe, 1993). 

1
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with entries 

where has the 1 in the position.

If we make the assumption that T is primitive, and
 then we may 

employ the Jordan form (4.7): 

Wright and Fisher analyzed some simple cases for this Markov system and 
derived a number of their properties, including rates of convergence, probabil­
ities of fixation, time to fixation, and stationary distributions of allele frequen­
cies. 

In the special case of T = W = I, and the solution for all the eigen­
values of M was found by Feller (1951), and by Cannings (1974) through 
his method of “exchangeable processes” (see Ewens 1979, pp. 77-79). The 
solution is: 

where
Regrettably, the method of exchangeable processes can not be applied when

different individuals have different offspring probability distributions. We are
therefore left with the following:

 refers to the eigenvalues of  M, not of TW. 

Open Question: What is the relationship between the eigenvalues and eigen­
vectors of TW and those of  M? 

Since M is defined explicitly in terms of the eigenvalues and eigenvectors 
of TW in (4.14), establishing their relationship with the eigenvalues of M 
is simply a matter of algebra. The complexity of the algebra, however, ob­
scures the relationship. One may be able to simplify the sums in (4.14) by 
making assumptions that cause one term to dominate the sum, for example, 
if But the utility of such an approach has yet to be demon­
strated. 

One can nevertheless make the following observations. Because the state 
space of the system is restricted to the lattice and the situation 
of interest is when the vast majority of the entries of 
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any must be 0. Thus, has no points on the interior of 
and is in fact restricted to the low-dimensional boundaries of 

Thus, the indices of the non-zero components of x make up a sparse set. Let 
us define the sparse set: 

Then we may rewrite (4.14) as:


The trajectory of points in the finite population model will be radically dif­
ferent from the trajectory in the infinite population model. In the finite popula­
tion model, a probability distribution will move over the surface of while 
in the infinite population model, the system will immediately enter the interior 
of since TW  > 0. Evolution in the finite population model can be views 
as transitions between one edge of and another, 
with the probability of transition being highest for types where the terms 

are the largest. 
My earlier discussion of the transmission matrix representing the binary hy­

percube took place in the context of the infinite population model. I conjecture 
that it will exhibit rapid first hitting time properties in the infinite population 
dynamics. However, it seems apparent that the binary hypercube mutation will 
be especially advantageous in traversing the low-dimensional boundaries of 
the simplex in the finite population model. 

I suspect that methods which can analyze (4.14) as a flow along the low-
dimensional boundaries of the simplex may prove to be most helpful in under­
standing finite population dynamics. In the work of van Nimwegen (1999) we 
find this approach applied to specific models of mutation and selection, with 
a nice harvest of analytical results. Answers to the general spectral problem, 
however, await discovery. 

2.2	 RAPID FIRST HITTING TIME IN A 
FINITE POPULATION 

For a Wright-Fisher model, we can define the criteria for rapid first hitting 
time in terms of the actual first hitting time for the Markov chain. Here I depart 
only slightly from Vitanyi (2000). 

Let us refer to the set of populations that contain the global optimum as: 

and conversely, 
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Suppose that the population always begins fixed on one type other than the 
optimum, so 

Define to be the restriction of M to Then the probability that the 
global optimum first appears after generation is: 

We can define the criteria for rapid first hitting time in terms of the speed at 
which declines with


As a basis for comparison, we can consider how
 behaves for random 
search, i.e. where Then


for all
 So 

In order for to be reduced to to be specific, say we 
have: 

thus for large hence which is what we 
expect. The essential idea for rapid first hitting time is that we would like 

The the obvious candidate for a condition to define rapid 
first hitting time would be: 

Definition: Rapid First Hitting Time in a Finite Population. The evolution­
ary algorithm is said to possess a rapid first hitting time if there exist polyno­
mials in and such that and 

Clearly, the smaller the spectral radius of the more easily that rapid first 
hitting time is achieved. 

We are then ready to pose the main open question regarding the spectrum of 
evolutionary systems: 

Open Question: What conditions on the eigenvalues and eigenvectors of 
TW satisfy condition (4.17) for rapid first hitting time? 
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3.	 KARLIN’S SPECTRAL THEOREM FOR

GENETIC OPERATOR INTENSITY


Samuel Karlin derived a quite fundamental theorem for evolutionary dy­
namics in a paper that examines the role of population subdivision in maintain­
ing genetic diversity (Karlin, 1982). The problem at hand was to understand 
whether migration would enhance or inhibit the maintenance of genetic diver­
sity. Karlin took the approach of finding the conditions that would prevent an 
allele from becoming extinct, i.e. which would cause it to increase when rare. 
To this end, he proved a general theorem on the spectral radius of the stability 
matrix which solved his problem for the case of any number of demes, any 
migration pattern, and any selection regime—quite extraordinary in its gener­
ality. I present theorem below. The square matrix  P represents the migration 
pattern, represents the overall migration rate, and the diagonal matrix  W 
represents the average (or ‘marginal’) selection coefficients of an allele when 
rare. 

Theorem 2 (Karlin, 1982) 
Let 

where P is an irreducible Markov matrix, and let W be a diagonal matrix with 
strictly positive diagonal elements, where for any scalar Then the 
spectral radius is strictly decreasing in 

An allele goes extinct when rare if and is protected from 
extinction if Since decreases with the conse­
quence of this result is that more migration makes it more difficult to maintain 
genetic diversity. 

In the process of answering the question about migration, Karlin produced a 
result far more fundamental. Its first application outside of that specific ques­
tion was its use by Altenberg (Altenberg, 1984; Altenberg and Feldman, 1987) 
to unify the Reduction Principle result for the evolution of genetic systems. 
In several earlier studies that separately modeled the evolution of mutation, 
recombination, and migration rates, the same result kept arising: new alleles 
which reduced these rates could always invade a population. By applying Kar-
lin’s theorem, I showed that each of these results were in fact special cases of 
the same result: that when an allele that modifies rates of mutation, recom­
bination, migration, or any other transformation of type is introduced into a 
population near equilibrium, it will increase in frequency if it uniformly re­
duces the rates of transformation, and go extinct if it uniformly increases the 
rates of transformation. 
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Another immediate result from Karlin’s theorem regards the mean fitness 
under a mutation-selection balance. The mean fitness of haploid system de­
creases with increasing mutation rates: 

Corollary 1 Consider an evolutionary system consisting of 

constant selection, 

asexual genetic operators, and 

discrete, non-overlapping generations. 

The mean fitness of the population at an attractor is a decreasing function of 
the probability of the genetic operator acting. 

Proof. Let the asexual genetic operator be represented by the Markov 
matrix  M, and let is the probability of applying the operator. Then the 
transmission matrix for the algorithm is: 

and the recursion for discrete, non-overlapping generations is:


For the global attractor, which is the leading eigenvector of TW (whose 
existence and positive value are established by the Perron-Frobenius Theorem 
(Gantmacher, 1959), we have: 

Hence the mean fitness of the global attractor, 

is a decreasing function of the operator probability 

3.1	 KARLIN’S THEOREM ILLUSTRATED 
WITH THE DECEPTIVE TRAP 
FUNCTION 

Suppose a mutation operator is ergodic: i.e. repeated application of the 
operator can mutate any genotype into any other genotype. Then, under an 
algorithm of constant selection and mutation, the Perron-Frobenius Theorem 
shows that there is only one domain of attraction of the system—i.e. one 
‘fitness peak’, as discussed in Section 1.1. This may seem contradictory to 
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intuition about ‘multi-modal’ fitness landscapes, in which one would expect 
multiple domains of attraction. But multiple domains do not occur in haploid, 
infinite population models under ergodic mutation; finite populations are re­
quired to produce quasi-stability of multiple attractors. The global nature of 
the attractor for ergodic mutation under infinite population size is illustrated 
with the Deceptive Trap fitness landscape (Ackley, 1987), shown in Figure 
4.1. In terms of the hypercube topology, this is a bimodal fitness function. The 
frequency vector of the global attractor is shown as a function of the mutation 
rate, for a simple point mutation model, in Figure 4.2. The mean fitness of the 
attractor is seen to decrease as a function of the mutation rate, as the Karlin 
theorem proves. This is shown in Figure 4.3. 
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3.2	 APPLICATIONS FOR AN EXTENDED 
KARLIN THEOREM 

Several problems are encountered for which an extended Karlin theorem 
would allow solution, but which are currently unsolved. One of these is in 
modifier theory. This has been called ‘self-adaptation’ (Schwefel, 1987; Bäck, 
1996) in the Evolutionary Computation literature. In Altenberg (1984) and 
Altenberg et al. (1987) it is proven that the Reduction Principle for linear vari­
ation in transmission holds for modifiers that are tightly linked to haplotypes 
under viability selection (Altenberg and Feldman, 1987, Result 3, p. 565). It 
is conjectured that the result would also hold for looser linkage to the modifier 

where: 

with Q,  S, and 

locus. The analysis requires that we show for that the spectral radius of 
decreases in 

being Markov matrices (see (Altenberg and Feldman, 1987) 
for details). The proof awaits an extension of Karlin’s theorem for 

The other context of unsolved problems occurs when several transformation 
processes act on types in the population, such as the simultaneous action of 
mutation, recombination, and migration. This can result in recursions of the 
form: 

where A,  B, and C are Markov matrices representing different transformation 
processes, and and are the overall rates of those processes. We wish to 
know how the spectral radius of changes as a function of each 
parameter and Such a result would allow understanding of genetic 
recombination can evolve in the presence of mutation under certain circum­
stances (Altenberg, 1984; Kondrashov, 1988). It is clear that for certain cases 
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of  A,  B,  C, and  W, the spectral radius is not monotonically decreasing in 
each of and However, specifying the conditions that produce an in­
crease in the spectral radius with respect to etc. requires an extension 
of Karlin’s theorem. The existence of cases of increase led to the “Principle of 
Partial Control” for the evolution of genetic modifiers: 

Conjecture (Altenberg, 1984, p. 149) When a modifier gene has only partial 
control over the transformations occurring at selected loci, then it is possible 
for this part of the transformation to evolve an increase. 

3.3 EXTENDING KARLIN’S THEOREM 

We need to extend Karlin’s theorem on linear variation from products of the 
form 

to products of the more general form


Open Question: Let 

where  A and B are irreducible Markov matrices, and W is a diagonal matrix

with strictly positive diagonal elements. For what conditions on  A,  B, and W


B,W A for 
Explicit 

is the spectral radius strictly decreasing in 

Karlin proved that the spectral radius is decreasing 
in Clearly each matrix pair { } determines a class of matrices 
which the spectral radius is decreasing in 
characterization of this class is not immediately obvious. However, one can 
follow Karlin‘s proof to produce a condition which would provide the answer 
if it could be solved. 

Suppose that 

where  A and  B are Markov matrices.
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I retrace the analysis of Karlin (1982, pp. 195-196). Define 

Let be the vector for which the supremum is attained. The Donsker-
Varadhan (1975) variational formula for the spectral radius gives: 

where 1 is the vector of ones, stands for the vector 

of components 

and we set Let be the vector at which this supremum is 
attained. 

Since both and are unique critical points as implicitly de­
fined. 

for all Hence 

with fixed. Further evaluation paralleling Karlin (1982) yields the 
condition 

For Karlin uses Jensen’s inequality to give: 

By using the principal eigenvector 



98 FRONTIERS OF EVOLUTIONARY COMPUTATION 

the supremum definition of gives: 

Thus was it is proved that for The analysis of (4.20) for 
does not allow us to use (4.21), and is unsolved. This leaves us with: 

Open Question: What conditions on the matrices  A and  B, and scalars 
and produce 

where and are the vectors producing the suprema of expres­
sions (4.18) and (4,19)? 

Another direction to extend Karlin’s theorem, which would be quite relevant 
to the issue of rapidly mixing Markov chains and rapid first hitting times, is to 
say something about the second-largest eigenvalue. I would offer (without 
claiming undue certitude) the following: 

Conjecture 
Let 

where  P is an irreducible Markov matrix, and let  W be a diagonal matrix with 
strictly positive diagonal elements. Then the ratio of the second-largest eigen­
value to the spectral radius is strictly increasing 
in 

3.4 DISCUSSION 
Karlin’s theorem, because it holds for arbitrary Markov and fitness matri­

ces, captures a fundamental property of Darwinian dynamics, the interaction 
of selection and transformation caused by genetic operators. What is not gen­
erally understood is how multiple genetic operators interact with one another. 
The difficulty of analyzing Wright’s Shifting Balance Theory (Wright, 1931), 
which is about the interaction of recombination, mutation, migration, selection, 
and drift, exemplifies the mathematical difficulties. Attempting to understand 
the interaction of multiple genetic operators brings us to the need to extend 
Karlin’s theorem. 
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4. CONCLUSION 

I hope that the reader, having followed the lines of discussion through this 
essay, may come away with the conclusion that the spectra of evolutionary sys­
tems provide a useful means to pose, and occasionally to solve, problems in 
evolutionary dynamics. I have used the spectral representation of the general­
ized mutation-selection system to address the question of when an evolution­
ary algorithm is useful for function optimization. I have described an analog 
to “rapidly mixing Markov chains” (Sinclair, 1992) that is appropriate for opti­
mization, “rapid first hitting time”. The conditions needed for an evolutionary 
algorithm to exhibit rapid first hitting time can be described in terms of the 
spectra of the linear systems that represent them. 

I have also posed, questions on the dynamics of finite populations in terms 
of the spectra of the underlying operators. Tying together the spectra of infinite 
population models with the spectra of the finite population models into which 
they are embedded remains a major open question in the theory of evolutionary 
dynamics. Progress may result if flows over the low-dimensional boundaries 
of the simplex can be modeled. 

Lastly, I have reviewed an important theorem by Karlin (1982) on the spec­
tral properties of genetic operator intensity. Extensions of this theorem would 
find immediate application. 

Since these are spectral problems, there may indeed already be analytic tech­
niques that could be applied to their solution. It is hoped that this essay may 
bring attention to these problems and thus hasten their solution. 
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Abstract	 Metaheuristics - general search procedures whose principles allow them to es­
cape the trap of local optimality using heuristic designs - have been successfully 
employed to address a variety of important optimization problems over the past 
few years. Particular gains have been achieved in obtaining high quality solu­
tions to problems that classical exact methods (which guarantee convergence) 
have found too complex to handle effectively. Typically a metaheuristic method 
is crafted to suit the particular characteristics of the problem at hand, exploit­
ing to the extent possible the structure available to enable a fruitful and efficient 
search process. An alternative to this problem specific solution approach is a 
more general methodology that recasts a given problem into a common modeling 
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format, permitting solutions to be derived by a common, rather than tailor-made, 
heuristic method. 

The optimization folklore strongly emphasizes the unproductive consequences 
of converting problems from a specific class to a more general representation, 
since the “domain-specific structure” of the original setting then becomes invisi­
ble and can not be exploited by a method for the more general problem represen­
tation. Nevertheless, there is a strong motivation to attempt such a conversion in 
many applications to avoid the necessity to develop a new method for each new 
class. We demonstrate the existence of a general problem representation that fre­
quently overcomes the limitation commonly ascribed to such models. Contrary 
to expectation, when a specially structured problem is translated into this general 
form, it often does not become much harder to solve, and sometimes becomes 
even easier to solve provided the right type of solution approach is applied. The 
model with this appealing property is the Quadratic Unconstrained Integer Pro­
gramming (QUIP) problem in binary variables, accompanied by the device of 
introducing quadratic infeasibility penalty functions to handle constraints. Not 
only is the model capable of representing a wide range of “special case” problem 
classes, but it can be advantageously exploited by adaptive memory (tabu search) 
metaheuristics and associated evolutionary (scatter search) methods. Computa­
tional outcomes disclose the effectiveness of this combined modeling and so­
lution approach for problems from a diverse collection of challenging settings. 

1. INTRODUCTION 

The Quadratic Unconstrained Integer Program (QUIP1) can be written in 
the form: 

where Q is an by matrix of constants and x is an of zero-one 
variables. QUIP is notable for its ability to represent a significant variety of 
important problems. The applicability of this representation has been reported 
in diverse settings such as social psychology (Harary, 1954), financial analy­
sis (Laughunn, 1970), (McBride and Yormack, 1980), computer aided design 
(Krarup and Pruzan, 1978), traffic management (Gallo et al., 1980), (Witsgall, 
1975), machine scheduling (Alidaee et al., 1994), cellular radio channel al­
location (Chardaire and Sutler, 1994), and molecular conformation (Phillips 
and Rosen, 1994). Moreover, many combinatorial optimization problems 
pertaining to graphs such as determining maximum cliques, maximum cuts, 
maximum vertex packing, minimum coverings, maximum independent sets, 
and maximum independent weighted sets are known to be capable of being 

1 We are indebted to Anil Menon for suggesting this name and acronym. 
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formulated by the QUIP problem as documented in papers of (Pardalos and 
Rodgers, 1992), and (Pardalos and Xue, 1994). 

The application potential of QUIP is yet substantially greater than this, how­
ever, due to reformulation methods that enable certain constrained models to be 
re-cast in the form of QUIP. (Hammer and Rudeanu, 1968) and (Hansen, 1979) 
show that any quadratic (or linear) objective in bounded integer variables and 
constrained by linear equations can be reformulated as a QUIP model. Our 
purpose is to report results that disclose this wide array of potential reformu­
lations into the QUIP format is not merely a representational novelty, but is a 
source of practical consequences. The following material draws upon recent 
findings in by (Kochenberger et al., 1998) and in (Glover et al., 1999b). 

2. TRANSFORMATIONS 

We take as our starting point the constrained problem 

This model describes both the quadratic and linear case since the linear case 
results when Q is a diagonal matrix. Problems with inequality constraints can 
also be put into this form by representing their bounded slack variables by a 
binary expansion. These constrained quadratic optimization models are con­
verted into equivalent QUIP models by adding a quadratic infeasibility penalty 

D

function to the objective function in place of explicitly imposing the constraints 

where the matrix  and the additive constant result directly from the ma­
trix multiplication indicated. Dropping the additive constant, the equivalent 
unconstrained version of our constrained problem becomes, 

From a theoretical standpoint, a suitable choice of the penalty scalar  P can 
always be chosen such that the optimal solution to QUIP(PEN) is the optimal 
solution to the original constrained problem (Hammer and Rudeanu, 1968). 
Similar theoretical outcomes apply to many types of representations other than 
the QUIP model, of course, and the issue of interest is whether there is any 
practical merit in undertaking such a transformation in the QUIP case. The 
same question arises by reference to another transformation, which likewise 



106 FRONTIERS OF EVOLUTIONARY COMPUTATION 

falls within the context of the QUIP model. We refer to the preceding gen­
eral transformation as transformation # 1. A very important special class of 
constraints that arise in many applications can be handled by an alternative ap­
proach, given below, which we call transformation #2. Many problems have 
considerations that isolate two specific alternatives and prohibit both from be­
ing chosen. That is, for a given pair of alternatives, one or the other but not 
both may be chosen. If and are binary variables denoting whether or not 
alternatives and are chosen, the standard constraint that allows one choice 
but precludes both is: 

Then, for a positive scalar  P, adding the penalty function to the objec­
tive function is a simple alternative to imposing the constraint is a traditional 
manner. This penalty function has sometimes been used by to convert certain 
optimization problems on graphs (e.g., the maximum clique problem) into an 
equivalent QUIP model. Its potential application, however, goes far beyond 
graph problems as we demonstrate in later sections of this paper. 

3. EXAMPLES 

Before highlighting a variety of problem classes to which we have success­
fully applied the foregoing transformation approaches, we give two small ex­
amples from classical problem settings to provide concrete illustrations: 

Example 1 Set Partitioning: 

subject to: 

and x binary. Applying transformation #1 with P = 10 gives the equivalent 
QUIP model: 

where the additive constant is 40 and, 
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Solving QUIP(PEN) by the method2 of (Glover et al, 1999c) we obtain an 
optimal solution for which In the straightforward 
application of transformation #1 to this example, it is to be noted that the re­
placement of the original problem formulation by the QUIP(PEN) model did 
not involve the introduction of new variables. In many applications, transfor­
mation #1 and transformation #2 can be used in concert to produce an equiva­
lent QUIP model, as demonstrated next. 

Example 2 P-Median Problem:

The P-Median problem can be modeled as: : can be modeled as:


subject to:


where is the weighted distance from facility to demand node if 
a facility is located at location and if demand node is assigned to 
the facility at location 

The first two sets of constraints can clearly be accommodated by transfor­
mation #1. The last set of constraints can be handled by transformation #2 by a 
“trick” of replacing the y variables by their compliments. (This same approach 
can be employed to model many fixed charge problems.) 

To illustrate, consider the 12 variable example with 
and the C matrix: 

2Almost any method will work for this example. 
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For  P = 20, the additive constant is 80 and the matrix for the equivalent 
QUIP model is: 

Solving QUIP(PEN) gives for which 
which is optimal for the original problem. 

4. SOLUTION APPROACHES 

Due to its computational challenge and application potential, QUIP has been 
the focus of a considerable number of research studies in recent years, includ­
ing both exact and heuristic solution approaches. Notable recent studies ad­
dressing QUIP are those by (Williams, 1985), (Pardalos and Rodgers, 1990), 
(Boros et al., 1989), (Chardaire and Sutter, 1994), (Glover et al., 1998),(Glover 
et al., 1999a), (Alkhamis et al., 1998), (Beasley, 1999), (Lodi et al., 1997), 
(Amini et al., 1999), and (Glover et al., 1999a). Other promising work is re­
ported by (Katayama et al., 2000) and (Merz and Freisleben, 1999). These 
various studies approach the problem by branch and bound, decomposition, 
tabu search, simulated annealing, and evolutionary methods such as genetic al­
gorithms and scatter search. Each of these approaches exhibits some degree of 
success. However, the exact methods degrade rapidly with problem size, and 
have meaningful application to general QUIP problems with no more than 100 
variables. For larger problems, heuristic methods are required. Two methods 
we have found to be particularly successful for a wide variety of problems are 
based on tabu search and on the related evolutionary strategy scatter search 
(Amini et al., 1999). In the following we highlight our tabu search approach. 

4.1 TABU SEARCH OVERVIEW 

Our TS method for QUIP is centered around the use of strategic oscillation, 
which constitutes one of the primary strategies of tabu search. The variant of 
strategic oscillation we employ may be sketched in overview as follows. 
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The method alternates between constructive phases that progressively set 
variables to 1 (whose steps we call “add moves”) and destructive phases that 
progressively set variables to 0 (whose steps we call “drops moves”). To con­
trol the underlying search process, we use a memory structure that is updated 
at critical events, identified by conditions that generate a subclass of locally 
optimal solutions. Solutions corresponding to critical events are called critical 
solutions. A parameter span is used to indicate the amplitude of oscillation 
about a critical event. We begin with span equal to 1 and gradually increase it 
to some limiting value. For each value of span, a series of alternating construc­
tive and destructive phases is executed before progressing to the next value. At 
the limiting point, span is gradually decreased, allowing again for a series of 
alternating constructive and destructive phases. When span reaches a value of 
1, a complete span cycle has been completed and the next cycle is launched. 

Information stored at critical events is used to influence the search process 
by penalizing potentially attractive add moves (during a constructive phase) 
and inducing drop moves (during a destructive phase) associated with assign­
ments of values to variables in recent critical solutions. Cumulative critical 
event information is used to introduce a subtle long term bias into the search 
process by means of additional penalties and inducements similar to those dis­
cussed above. A complete description of the framework for the method is given 
in (Glover et al., 1999c). 

5. COMPUTATIONAL EXPERIENCE 

Our results of applying the tabu search and associated scatter search meta-
heuristics to combinatorial problems recast in QUIP form have uniformly at­
tractive in terms of both solution quality and computation times. As intimated 
earlier, although our methods are designed for the completely general form of 
QUIP, without any specialization to take advantage of particular types of prob­
lems reformulated in this general representation, our outcomes have typically 
proved competitive with or even superior to those of specialized methods de­
signed for the specific problem structure at hand. Our broad base of experience 
with QUIP as a modeling and solution framework includes a substantial range 
of problem classes including: 

Quadratic Assignment Problems 

Capital Budgeting Problems 

Multiple Knapsack Problems 

Task Allocation Problems (distributed computer systems) 

Maximum Diversity Problems 

P-Median Problems 
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Asymmetric Assignment Problems 

Symmetric Assignment Problems 

Side Constrained Assignment Problems 

Quadratic Knapsack Problems 

Constraint Satisfaction Problems (CSPs) 

Set Partitioning Problems 

Fixed Charge Warehouse Location Problems 

Maximum Clique Problems 

Maximum Independent Set Problems 

Maximum Cut Problems 

Graph Coloring Problems 

Graph Partitioning Problems 
Details of our experience with these and other problems are documented in 

the paper by (Kochenberger et al., 1998). We are currently solving problems 
via QUIP with more than 10,000 variables in the quadratic representation. The 
significance of this is underscored by that fact that the well-known transforma­
tion of the binary quadratic representation into a binary linear programming 
representation produces problems containing more than 50,000,000 zero-one 
variables. Currently we are working on enhancements that will permit larger 
instances to be solved. 

6. SUMMARY 

We have demonstrated how a variety of disparate combinatorial problems 
can be solved by first re-casting them into the common modeling framework 
of the unconstrained quadratic binary program. Once in this unified form, 
the problems can be solved effectively by adaptive memory tabu search meta-
heuristics and associated evolutionary (scatter search) procedures. 

Our findings challenge the conventional wisdom that places high priority on 
preserving linearity and exploiting specific structure. Although the merits of 
such a priority are well-founded in many cases, the QUIP domain appears to 
offer a partial exception. In forming QUIP(PEN), we destroy any linearity that 
the original problem may have exhibited. Moreover, any exploitable structure 
that may have existed originally is “folded” into the matrix, and the general 
solution procedure we apply takes no advantage of it. Nonetheless, our solu­
tion outcomes have been remarkably successful, yielding results that rival the 
effectiveness of the best specialized methods. 
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This combined modeling/solution approach provides a unifying theme that 
can be applied in principle to all linearly constrained quadratic and linear pro­
grams in bounded integer variables, and the computational findings for a broad 
spectrum of problem classes raises the possibility that similarly successful re­
sults may be obtained for even wider ranges of problems. As the research com­
munity continues to provide improved solution methodologies for the QUIP 
model, the unified framework that QUIP represents for modeling and solving 
combinatorial problems via reformulation will become an increasingly attrac­
tive alternative to traditional specialized representations. These developments, 
with their apparent promise, open up a new set of research challenges and op­
portunities for the optimization community. 
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Abstract A series of problems and challenges is posed to help guide future work in opti­
mization. 
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1. INTRODUCTION 
At the beginning of the last century, David Hilbert presented an invited pa­

per to the Second International Congress of Mathematicians, framing what he 
saw as the future of mathematics (Hilbert, David, 1902). In his paper, Hilbert 
posed 23 important and then unsolved mathematical problems. These prob­
lems formed the backbone of much of 20th century mathematics, and today 
most of these problems have been at least partially solved. 

Our scope here is more modest, though the problems are no less difficult. 
What are the problems and challenges that must be addressed in the next cen­
tury of work in optimization?1 Like mathematics in 1900, optimization has 
a solid foundation upon which to build, and it has no shortage of deep unan­
swered questions. Thus, I expect significant progress in both the short and long 
terms. 

Since there is no shortage of problems that researchers in optimization can 
address, it is important to enumerate desiderata to limit the selection of prob­
lems. Our most important criterion is that the problem should be rich enough 

1See (CONDOR, 1988) for an operations research perspective on a similar question. 



116 FRONTIERS OF EVOLUTIONARY COMPUTATION 

to lead to new problems and insights. As Hilbert himself said, “As long as a 
branch of science offers an abundance of problems, so long is it alive; a lack 
of problems foreshadows extinction...” (Hilbert, David, 1902). Indeed I expect 
that the answers to the questions posed here have answers with implications 
beyond optimization itself. A second requirement reflects on the utility of the 
question. Since optimization is preeminently a practical field, the solution to 
any problem should be of practical utility. Theory should ultimately support 
the development of algorithms. We should not, however, use this requirement 
to limit ourselves to purely immediate engineering concerns. Who could have 
foreseen that the theory of computational complexity in the 1960s would ul­
timately result in polynomial-time algorithms for linear programming in the 
1980s (Karmarkar, 1984), and general polynomial-time interior-point methods 
for convex problems in the 1990s (Nesterov, Yurii and Nemirovskii, Arkadii, 
1994)? Finally, we require problems that are difficult, and therefore interest­
ing, but will also allow for progress. Problems may in fact be very difficult so 
long as they suggest a course of action with tractable stepwise challenges. 

The problems posed here are divided into three categories: foundations, 
connections and applications. In 1900 Hilbert was interested in axiomatizing 
all of mathematics (and physics!). Though we now know through the work of 
Godel, Turing, and others, that Hilbert’s grand hopes cannot be fulfilled, it is 
essential to examine the theoretical foundations of optimization. It is exciting 
for present-day researchers that at the core of optimization there are mostly 
unanswered questions. Another category of questions focuses on the connec­
tions of optimization to other fields and the discovery of synergies between 
these fields. We focus on the relation between work in machine learning and 
optimization. Finally, we conclude with a series of future novel applications of 
optimization. 

2. FOUNDATIONS 

If there is any established principle in optimization (whether discrete and/or 
continuous, constrained or unconstrained, single- or multi-objective), it is the 
need to tradeoff between exploration and exploitation. For our purposes we ex­
press this principle as the problem of discovering and exploiting the structure 
inherent in any particular optimization task. Recent work has formalized the 
futility of optimization without assumptions about the structure of the problem 
at hand (Wolpert and Macready, 1997). The first problem concerns a formal­
ization of this most basic tenet. 

Problem 1: Investigate the essence of the optimization problem through a 
general formalization of: (1) the notions of problem structure, (2) a broadly ap­
plicable definition of a search algorithm, (3) measures of algorithm efficiency, 
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and (4) the means whereby the search algorithm exploits the problem structure 
efficiently. 

This formalization should be general enough to capture a broad range of 
real-world optimization tasks but not so abstract as to yield no concrete insight. 
Consequently, it is probably best to initially limit the scope to single-objective 
cost functions which map discrete and/or continuous configu­
rations to real cost values We make no explicit mention of 
constraints,
tion of the search space
focusing on a smaller class of possible algorithms 

2 
 since these can be incorporated through an appropriate defini-

Likewise it is probably best to begin this program 
A natural class of com­

monly applied algorithms is one which determines new populations of points 
from previously sampled populations.3 Generally then, we consider an 

optimization algorithm to be an iterated application of two basics steps: an 
infer step which makes inferences about the structure of a problem, and an act 
step which uses the inference to determine where next to sample. We represent 
these basic steps by 

where I indicates any prior information that may be available, indicates any 
is list 

of points, 
neighborhood structure imposed on the search space

and their fitnesses, sampled from the problem ordered ac­
cording to the time at which they were sampled, and indicates any associated 
constraints. Structure is represented by a probability distribution over the 
values at sampled and unsampled points and the action step uses this infer­
ence, the location of previously sampled points, the neighborhood structure, 
and constraints to sample at new configurations. To be general, we write this 
sample as coming from a probability distribution over unsampled


values.

What can we expect if this endeavor is carried out? Most importantly we


will better understand what it means for an algorithm to be well-suited to solv­
ing a particular class of problems. It would also be surprising if this pro­
gram did not suggest new types of algorithms which differ in the manner in 
which they represent and exploit problem structure. We would better under­
stand the differences between the myriad algorithms and heuristics currently 
in use. Hopefully, this would lead to insight into the construction of efficient 

2Of course, in a practical sense this solves nothing since may be sufficiently complex that even find­
ing a feasible may be NP complete. However, the present problem is concerned entirely with 
understanding the relationship a problem, it’s structure, and algorithms for exploiting that structure. 
3Populations may contain only a single point. 
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(according to some criteria) algorithms. This itself suggests the next funda­
mental problem. 

Problem 2: Given a characterization of an optimization task through its 
structure as defined in Problem 1, develop a procedure to programmatically 
generate an efficient algorithm. 

Both of these problems represent formidable challenges, yet I believe that 
they still satisfy our requirement of stepwise tractability. How might a pro­
gram of research begin to attack these problems? A first step is the realization 
that a characterization of structure will likely not completely describe the ob­
jective function or class of objective functions. Of necessity the formalization 
must operate without complete knowledge of all facets of the optimization task. 
Certainly we don’t know the maxima! Consequently, the formalization will 
be based on probability theory and structure will likely be represented (either 
explicitly or implicitly) through probability densities of the form 
Even these small steps towards recognizing what the formalization must ul-
timately look like suggest interesting avenues. The geometric structure that 
automatically accompanies the probabilistic setting (Amari, 2000) allows us 
to speak of nearby structures. It may not be unrealistic to expect a geometric 
interpretation of the coupling between problems, their structures, and efficient 
algorithms. 

Without doubt, these first two problems are the most important I shall de­
scribe, and their correct formulation and solution will require input from less 
ambitious programs. I describe two concrete problems, the first of which 
should provide insight into the characterization of structure, and the second 
of which should provide guidance into the construction of efficient algorithms 
from structure specification. 

Problem 3: Given a pair of search algorithms and construct opti­
mization tasks (either mappings or structure characterizations) 
for which is efficient and is inefficient. Then, construct optimization tasks 
for which is inefficient while is efficient. Characterize the differences be­
tween these optimization tasks and relate them back to differences in and 

The first part of this problem which asks for the optimization problems is 
straightforward (at least for small optimization problems). We expand the ob­
jective function in some convenient basis (e.g. a Fourier basis for continuous 
spaces or a Walsh basis for sequence spaces): 
may by undercomplete, complete, or overcomplete. The objective function is 
defined by the expansion coefficients 

The basis 

Note that we can limit the objective 
functions to a smaller class of objective functions, say for example symmetric 
travelling salesperson problems, through a suitable choice of an undercomplete 
basis. 
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4If is a measure of the efficiency of algorithm over  on 
objective f, then we can find for which performs well but does not by 
maximizing with respect to the expansion coefficients 
define

which 
 We label the set of such objectives Similarly, we can 

construct problems for which performs much more poorly than 
by maximizing

Given the problem sets
 and a characterization of the im­

portant differences between the sets of functions is difficult, but there are many 
machine learning algorithms that could be applied to the task. We might first 
explore simple clustering algorithms to see if the coefficients from each class 
tend to cluster near each other. Alternatively, classification algorithms could 
attempt to predict the class or based on the expansion coeffi­
cients. Whatever the form of the characterization of the two sets of objectives, 
we would then attempt to relate this back to characteristics of the two search 
algorithms and 

This procedure, if successfully carried out for many pairs of commonly used 
algorithms, should yield valuable insight into the differences between common 
algorithms. An interesting related question may follow from such studies: 

Problem 4: Develop a framework in which to describe existing optimization 
algorithms and which is general enough to encompass new algorithms. 

There are multiple tasks buried within this problem. For the infer step: 
Problem 5: Is there a broadly applicable manner in which to represent 

and exploit problem structure including structure specified a priori or inferred 
through sampling from the objective? 
For the act step: 

Problem 6: Is there a general way to structure and parameterize the manner 
in which new points are sampled based on the inferences of Problem 5? 

The proper framework in which to consider act mappings will be informed 
by many examples of the ways in which algorithms exploit problem structure. I 
pose an instance of this exploitation problem for a particular problem structure 
which may be exactly solvable and is easily generalizable to more complex 
objective function structures. 

Problem 7: Given that a one dimensional objective function was generated 
by a simple Brownian random walk, determine an algorithm which is efficient 
in quickly locating the maximum of the objective. 

This problem is appealing in its apparent simplicity and much is known 
about the distribution of peaks and valleys on such surfaces (Mansour, 2002). 
The solution to this problem should be of interest to the optimization practi­
tioner since the solution is likely to be generalizable to many more interesting 

4Examples of such measures can be found in (Macready and Wolpert, 1996). 
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problems. The surface generated by the random walk may be generalized to 
dimensions and/or biased in various ways. Such surfaces are easily generated 
(Massopust, 1995) so that extensive empirical tests may be performed. 

The solution to problem 7 may be applied to a more realistic (and accord­
ingly difficult) problem: 

Problem 8: Given a detailed knowledge of problem structure through a 
Gaussian process, construct an efficient algorithm tailored to this structure. 

Gaussian processes are simple ways to specify the relationships between 
objective values at different points in the search space (MacKay, 2003). They 
are adaptable to many different types of search spaces whether continuous or 
discrete. Any problem structure implicitly contains a relationship between the 
objective values at different values. For example, a very smooth objective 
function has very similar objective values for nearby values. Gaussian pro­
cesses build directly on this notion by specifying a probability distribution over 
objective values and at two different  values. To keep
things as simple as possible imagine that our objective function has been scaled 
and shifted so that it has an average value of 0 and a variance of 1. As the name 
implies, Gaussian processes describe the probability distribution with a Gaus­
sian: 

The elements in the covariance matrix are given by the expected value: 
If the search space is continuous and the objective function is 

relatively smooth, a common form for the covariance matrix elements is: 

This form expresses the property that the correlation in fitness at two different 
values decays exponentially with the distance between the points. As hinted 

at in this simple example, Gaussian processes can compactly describe a wide 
range of structure that may be present in the fitness function. In fact, a family 
of landscapes based on this idea can be formed, many of whose properties 
can be determined analytically. If we could design algorithms to exploit this 
structure we would be a long way towards having efficient and practical new 
search algorithms. 

3. CONNECTIONS 

In this section we move from questions concerning the foundations of op­
timization to ideas from other fields that optimization may draw upon. Given 
our perspective that optimization is an exercise in inferring and capitalizing 
on problem structure, it is not surprising that machine learning offers many 
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insights into better optimization. While the bulk of this section explores con­
nections with machine learning, we also pose questions seeking to integrate 
different approaches to optimization. 

The field of machine learning seeks to embody the learning process in com­
puters. A complete introduction to machine learning may be found in (Duda 
et al., 2001). Machine learning methods may usefully be categorized into three 
types of learning, all of which are applicable to optimization. 

Unsupervised learning seeks to uncover structure in unlabelled data. A pro­
totypical problem is density estimation, whereby given a set of data
try to determine the probability density that may have generated the data. As

 we 

a limiting case, clustering algorithms which group the data into like aggrega­
tions are a common tool. As alluded to in Problem 3, unsupervised learning 
algorithms may help us to uncover exploitable structure in problems. 

Supervised learning is another branch of machine learning which tries to 
learn relationships between factors. The prototypical problem here is to learn 
the mapping from to given a set of labelled data This is an im­
portant problem allowing for the prediction of output values at new input 

points. The output may either be continuous or discrete resulting in either 
regression or classification tasks. Supervised learning algorithms may be used 
to model the structure in a problem and to suggest means of exploiting the 
structure. 

A third branch of machine learning is called reinforcement learning. Re­
inforcement learning is concerned with maximizing a reward function in an 
unknown and potentially noisy environment. Dynamic programming is a well-
studied kind of reinforcement learning which is useful when the search space 
is small and discrete. Of these three tasks, reinforcement learning problems 
are generally the most difficult. Reinforcement learning problems share much 
in common with optimization through the need to balance exploration with 
exploitation. The bandit problem, which many researchers in evo­
lutionary optimization are familiar with, may be readily approached through 
reinforcement learning methods. 

The modern probabilistic approach to machine learning has provided re­
searchers a common language in which to describe a wide variety of learning 
algorithms. Graphical models (Jordan, M., 1999) allow for efficient proba­
bilistic inference by exploiting the dependency structure between variables. 
Perhaps this same machinery can also be exploited for optimization. 

Problem 9: Can new algorithms be developed by exploiting a probabilistic 
framework for optimization ? In particular, what novel insights are obtained by 
viewing optimization as an inverse problem? 

At present there is increasing interest in using graphical models to encode 
dependencies between optimization variables. See (Larrañaga et al., 1999; 
Mühlenbein et al., 1998) for a summary of recent work. This work is promis­
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ing in that it explicitly represents aspects of problem structure as computa­
tionally efficient probabilistic models. While this avenue of work is likely to 
continue to grow and yield important results, I will focus on another aspect of 
the application of probability theory to optimization. 

Admitting the possibility of noise contaminating an objective function, it 
is convenient to write the objective function as the probability distribution 

This gives the distribution of objective values at a given value.5 

We can view optimization as an inverse problem if we take the perspective that 
the goal of any optimization algorithm is to determine given the objec­
tive This is not a common view of optimization, but if we did have 
access to we could sample from this distribution at whatever value 
we wanted to obtain a solution for, and obtain an value likely to generate this 

In essence, determining the “inverse” distribution would solve our problem. 
6Of course, the above argument is merely suggestive and leaves much unsaid.

Nevertheless I believe it will be fruitful to look at optimization from this novel 
perspective. 

This view of optimization suggests that probabilistic inference should play 
an important role in optimization. In fact, we are already beginning to see this 
through the nascent unification of constraint programming and integer pro­
gramming. In (Hooker, 2000) it is shown that important improvements to opti­
mization algorithms can be gained through logical inference.7 Constraint pro­
gramming (Tsang, 1993) is concerned with inferring the values that variables 
may take on if they are required to satisfy constraints. For example, if binary 
variables and are related by the constraint and we know that 

then we can infer in any feasible solution that In such ways the 
search space can be trimmed dramatically. Such inferences are logical in that 
they determine the allowed values other variables may take precisely. These 

tribution over
efforts may be generalized to probabilistic inference where we refine the dis-

 as information obtained during the search becomes 
available. 

We leave probability theory and turn to an important theoretical develop­
ment in supervised learning that inspired a new class of successful algorithms 
– the bias-variance tradeoff. The bias-variance tradeoff decomposes the error 
of any supervised learning algorithm into two contributions - a bias contri­
bution which measures the match between an algorithm and the true target, 
and a variance contribution which measures the specificity of the match (Ge-
man et al., 1992). The two contributions are not independent, but the result is 

5If the objective is not noisy then where is Dirac’s delta function. 
6In fact the density is not even strictly defined since it is not normalizable for values outside the 
range of objective values. However, such problems are easily addressed. 
7There have been conferences on the integration of AI and OR techniques since 1999. See the website 
www.crt.umontreal.ca/cpaior/ for the 2003 installment. 
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important because it leads to new algorithms. Researchers realized that perfor­
mance could be improved by combining learning algorithms which drive the 
variance term down without significantly affecting the bias term. Many ways 
of combining learning algorithms have arisen in recent times (stacking, bag­
ging, boosting, etc.) based on understanding of the bias-variance tradeoff. If 
a similar procedure could be carried out for optimization algorithms, results 
would likely also be dramatic. Thus we are led to another important problem. 

Problem 10: Develop theory and algorithms which allow for the combining 
of different optimization algorithms into a single algorithm which has better 
performance than all of its constituents. 

Using existing work in machine learning, it is clear how to combine algo­
rithms for improved inference of the structure in a problem (the infer step). 
However, even given a common framework in which to represent problem 
structure (see Problem 4), it is not at all clear how to combine optimization 
procedures which exploit this structure (the act step). This should be an area 
of significant future effort. 

We close this section of connections between machine learning and opti­
mization by examining the application of reinforcement learning (RL) to a par­
ticular class of optimization tasks. Due to the similar nature of the tasks, there 
are many opportunities for cross-fertilization of optimization and RL includ­
ing the rewarding of valuable stage-setting activities (e.g. crossing a valley of 
low fitness) or through rewarding important components of any good solution. 
Some researchers are beginning to explore such connections either directly us­
ing RL (Boyan and Moore, 2003) or indirectly through heuristics (Dorigo, M. 
et al., 1999). While such activities are rife with new questions, I would like to 
propose another currently unstudied problem related to reinforcement learning. 

Accompanying the development of inexpensive computing power has been 
a rise in the application and sophistication of simulation models. From weather 
prediction and galaxy formation to consumer modelling and crowd dynamics, 
simulations are ubiquitous and will only become more prevalent with time. Of­
ten, however, the simulation itself is only a means to an end. Once a calibrated 
simulation model has been constructed, some of its input parameters need to 
be tuned in order to understand how to effect some desired outcome (e.g. what 
should the layout of a store be in order to maximize the time consumers spend 
in the store?). A common approach to this problem is to define an objective 
function and recast the problem as a minimization. For any given run of the 
simulation, the objective measures the distance of the obtained end state from 
the desired end state. By applying the minimization algorithm, the outer level 
optimization hopefully finds parameters which result in small differences from 
the desired simulation outcome. This approach, while conceptually straight­
forward, is horribly inefficient. In most cases the simulation itself is both 
computationally expensive and stochastic making this direct approach to the 
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problem infeasible. Since this is likely to become an increasingly common use 
of optimization, I have posed this as an important future problem. 

Problem 11: Many optimization problems require tuning the parameters of 
a simulation or dynamical system so that the system exhibits desired behav­
ior. Increase the efficiency of this process by using reinforcement-learning-like 
methods to exploit the information available in the dynamics of the simulation. 

The naive optimization approach outlined above is wasteful of the informa­
tion available to tune the simulation parameters. The dynamics of the sim­
ulation are not taken into account; only its final attractor which is compared 
with the desired result is considered. Surely, improved performance could be 
obtained by monitoring the behavior of the simulation before it attains its end 
state. There is reason to believe that ideas from reinforcement-learning could 
prove helpful, since there is a direct mapping of this problem onto the prob­
lem solved by reinforcement learning. The value of the objective function can 
serve as input into the reward function with valuable stage-setting dynamics 
being rewarded prior to the end of the algorithm. 

To close this section, I end with an important connection between optimiza­
tion and the scientific method itself. A disturbing cultural trend within the 
optimization community is the preponderance of head-to-head competitions 
of algorithms against one another. No paper which proposes a new algorithm 
is complete without a comparison against other algorithms on a tiny set of 
problems. Often these problems are not even benchmark problems, but rather 
problems the author has defined to show the strengths of the new algorithm. 
This is all the more distressing since we know that algorithms behave the same 
when averaged over all possible problems (Wolpert and Macready, 1997). A 
comparison of two algorithms merely showing which one is better is almost 
useless without understanding why it is better than the other. Some other less 
obvious but equally pernicious aspects of the current comparative culture are 
convincingly discussed in (Hooker, 1996). Thus, researchers need to seriously 
consider the following problem. 

Problem 12: Develop test problems and methodologies for a more “scien­
tific” establishment of the strengths and weakness of different algorithms. 

Algorithm comparison is not unimportant, but we desperately need new 
classes of test problems. The goal of these test problems is to provide insight 
as to why one algorithm performed better than the other on these problems. 
Ideally, these problems should have features that are deemed important in de­
termining the success of algorithms run on these problems, and these features 
should be easily tunable. The types of features and the form of the test func­
tions can be informed from the results of Problem 4 for a unified modelling 
and testing framework. 

However, to determine why an algorithm performed well or poorly requires 
a change in research emphasis. After an algorithm has been developed, more 
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time should be spent on hypotheses concerning its efficacy on different prob­
lems and less on comparing it with other algorithms. Empirical tests of these 
hypotheses should be performed and hypotheses adjusted accordingly. In short, 
we should apply the scientific method itself when it comes to the comparison 
of algorithms. 

4. APPLICATIONS 

In this final section, I pose problems in the applications of optimization 
rather than problems in optimization itself. The first two of these problems are 
driven by the growth of the internet. 

Problem 13: Design distributed, bottom-up optimizing agents which opti­
mize globally using predominantly local information. 

Interest in multi-agent systems has exploded in recent times. Researchers 
are trying to engineer distributed systems solving a wide variety of different 
problems including optimization (Wolpert et al., 2003). I expect that such 
efforts will become more important over time due to the practical value in 
solving this problem. As an example, one of the most important applications 
of optimization from a financial perspective is the optimization of the supply 
chains which link businesses together. With the internet and electronic com­
merce, businesses are now linked more closely than ever. Past supply chain 
gains made by operational researchers which optimized locally, improving a 
single step within a single business, have been exhausted. The future of addi­
tional efficiency improvements is in optimizing across an entire supply chain. 
Unfortunately, much of the global optimization must be accomplished using 
local information because companies are unwilling to divulge proprietary in­
formation. Moreover, even if the information is available, it rapidly becomes 
obsolete in the modern volatile business climate. 

The internet has also enabled the development of avatars or human surro­
gates which act to fulfill the requests of humans. There are two steps in ac­
complishing this: 1) eliciting the preferences from the human and 2) acting 
to maximize those preferences. Preferences can conveniently be captured in 
one or more utility functions.8 The second step is likely to be an important fu­
ture application for optimization methods. Despite significant previous effort 
(Keeney and Raiffa, 1993) elicitation of preferences remains problematic and 
no entirely satisfactory solution is available. 

Problem 14: Develop algorithms and procedures whereby qualitative ob­
jective functions (in particular utility functions) can be quantified or otherwise 
represented so that they may be optimized. 

8Though admittedly, not without some drawbacks. 
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As suggested in the problem statement, it may not be necessary to for­
mally represent the objective function as an algorithm. We have seen many 
interesting examples where evolutionary algorithms have been used to con­
struct aesthetically appealing designs utilizing user-defined fitness functions. 
Other iterative approaches might allow the human to guide the search as it pro­
gresses. If such techniques can be extended to easily capture human desires 
into computationally-convenient forms, new applications will abound. 

I close with an open-ended suggestion rather than a specific problem. The 
development of genetic programming (Koza, 1992) in the early 1990s was im­
portant because it brought attention to optimization on a much larger class of 
problems. Today, we are no longer confined to optimize over traditional search 
spaces like but can also consider problems defined over bizarre search 
spaces like fragments of computer code. In spite of these new applications 
I believe we have only begun to explore new applications of optimization.9 

Problem 15: Explore novel applications of optimization by considering 
more general notions of search spaces and constraints. As a concrete ex­
ample of new applications, we can look to mathematics. Formal systems in 
mathematics provide fertile opportunities for novel optimization applications. 
In most cases, the formal systems10 defined by mathematicians and computer 
scientists used to study particular problems can easily be encoded in an al­
gorithmically convenient manner. Defining an objective function over these 
formal systems will result in entirely new classes of optimization problems. 
We might, for example, want to build a formal system having certain char­
acteristics. If we can define an objective quantifying the difference between 
any formal system and one with the attributes we desire then we can optimize 
to find such structures. Of course, the optimization will only be successful if 
our representation of the problem results in a relatively smooth objective land­
scape. As a concrete example of the power of this approach, we might use 
some of the algebras that have been developed to model concurrency in com­
puter systems (Milner, 1999). There is no reason why, in principle, we cannot 
optimize over representations of mobile concurrent processes11 to construct 
processes that perform certain tasks in as parallel a manner as possible. 

New applications like these will surely bring new questions. How do we 
even begin to think theoretically of the properties of such spaces when the 
configurations represent complex formal systems? How do we combat the 

9 Interestingly, the field of machine learning is now exploding with new applications by using kernel methods

which map many different input spaces (e.g. text documents, bioinformatic sequences, phylogenetic trees,

rankings, etc.) to linear vector spaces where the learning algorithms operate. See www.kernel-machines.org

for more information.

10These formal systems may be either discrete (discrete groups, algebras, graphs, logics, calculi) or contin­

uous (continuous groups, algebras, vector spaces).

11 Mobile processes can change their patterns of interaction over time.
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entropic force resulting in ever larger configurations? Work in this direction 
has begun (a recent example of some theoretical properties of the search space 
of trees is found in (Bastert et al., 2001)), and will become more important. 

5. CONCLUSIONS 

Optimization has a bright and interesting future if the problems posed here, 
and the countless others not considered, are any indication. If, in a hundred 
years, researchers can look back on these problems as we do on David Hilbert’s 
problems seeing most of them solved, optimization will be a vastly more influ­
ential field than it is today. The answers to these questions will have spawned 
myriad new applications and perhaps will have shaped the way we view other 
disciplines and the natural world itself. 
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Abstract	 We present a personal overview of EC theory. In particular, we try to show 
that recent theoretical developments have pointed the way to a grand unifica­
tion of different branches of EC, such as Genetic Algorithms and Genetic Pro­
gramming, and also different theoretical models, such as the Vose model and 
Holland’s Schema theorem. We give a broad outline of this unification program 
showing how the different elements above are related to each other via changes 
of representation on the space of EC models. Based on our work we pose a series 
of challenges which if met, we believe, will lead to a much deeper understanding 
of EC and the various types of evolutionary algorithm. 

Keywords:	 Schema theory, Vose model, Unification, Genetic Algorithms, Genetic Program­
ming, Evolutionary strategies, Building Blocks 

INTRODUCTION 

Relatively speaking, Evolutionary Computation (EC) is a fairly immature 
subject. It exhibits many different facets without a high degree of intellectual 
consensus. It sometimes seems that it is all things to all people. It is a subject 
that is principally empirical and phenomenological. Moreover, it is empirical 
and phenomenological within a very ill defined framework, in distinction to the 
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world as seen through the eyes of physics and biology. This is because in EC 
the only real limit to what can be studied is the imagination. In its more “sci­
entific” guise it is related to an older, more mature field - population genetics 
- but without the constraints that nature imposes and without the same degree 
of intellectual coherence that comes with maturity. Mathematically speaking it 
is the study of certain classes of heuristic algorithms based on populations of 
objects (Vose, 1999), though as we shall see what these classes are is far from 
clear. Seen from the “engineering” point of view it is an area where the ana­
logical use of “natural selection” appears as a moulding force in the creation 
of more “competent” problem-solvers (Goldberg, 2002). 

One salient characteristic of EC theory is that it is difficult. It is also very 
exciting. It is relatively simple to write an evolutionary algorithm (EA). It is 
exceedingly difficult to understand its behavior other than at a superficial level. 
Even fairly simple EAs, such as a Genetic Algorithm (GA) with selection and 
mutation only, present formidable difficulties.1 This stark contrast between the 
ease with which an EA can be written and the complexity of understanding its 
behavior leads to a very large expectation gap between EC “practitioners”, who 
focus on the empirical aspects, and often seem capable of thinking of five new 
genetic operators before breakfast, and the theorists who, to the practitioners, 
seem fixated on no selection or “counting ones”. 

Unlike more mature areas of science there is not even a clear consensus on 
what should be the task of EC theory. Is it to provide recipes for practitioners, 
to provide exact computational models, to allow a deeper understanding of a 
complex system, all of these, none of these, or what? Having established what 
theory should do, it is then important to ask ourselves - “What has it done?” 
and “Where is it going?” A goal of this article is to give, albeit briefly, our 
personal view on this. 

Different approaches to EC theory have been proposed in the past. These in­
clude schema theories (Holland, 1975), the Vose model (Nix and Vose, 1992), 
the statistical mechanics approach (Prügel-Bennett and Shapiro, 1994) and 
more. Is there a model that is superior to all others? Often, models are judged 
by their clarity, simplicity, and ability to explain and predict. Is there a frame­
work that does this best? Once we have established what the task of EC theory 
should be, it will be easier to answer these questions. 

A theoretical model is also often judged by how well it unifies a range of 
phenomena. As there are many different flavors of EA - GAs, Genetic Pro­
gramming (GP), Evolution Strategies (ES) etc. - one may ask if there is a 

1These problems can, in fact, be mapped to problems familiar in very well established branches of science, 
such as statistical mechanics. Even there, however, where there is vast experience, they remain an enormous 
challenge. 
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theoretical framework that encompasses them all? If not, then which is the 
framework with the broadest applicability? 

The framework with the broadest applicability is inhomogeneous Markov 
chain theory. However, describing EC as a subset of such a theory means very 
little. So, what are the essential elements common to different EAs? These are: 
a choice of genotype-phenotype map, a choice of fitness function and a set of 
evolution operators. Here, our first objective is to present a unified theoreti­
cal framework applicable to virtually any type of fitness function, any type of 
genotype-phenotype map, any type of selection and any type of mutation and 
crossover.2 Our second objective is to demonstrate that all current and past 
theoretical models of EAs are in fact simply mathematical transformations of 
one another. 

In no way do we want to give the impression that we have totally achieved 
these objectives. Rather, we are indicating in which direction we believe EC 
theory should move and what we see as the principal challenges ahead. 

THE ROLE OF THEORY IN EC 
We begin by asking - what should be the task of EC theory? Is it reason­

able, for instance, to think that a theoretician should be able to deduce from 
first principles after exactly how many generations there’s a 95% chance that a 
better optimal individual will not be found in the following 50 generations for 
a particular 555-job job-shop scheduling problem with three point crossover 
with probability 0.9 and mutation probability 0.02? We would categorically 
deny that this is the principal task of the theory. In fact, we will probably never 
be able to answer questions such as this. Equally, we may ask if it is the ex­
clusive task of EC theory to consider only very general, global results such as 
the “No Free Lunch” theorem. Once again, we would say no, rather, theory is 
at its most powerful when between the very detailed and the very general - but 
just where? 

In the EC community there is a strong distinction between “scientific” the­
ory and “engineering” theory (Goldberg, 2002). These differ both in terms 
of methodology and motivation. The role of theory in science is to explain 
and understand phenomena (often results of controlled experiments) within a 
formal, well defined framework. The role of theory in engineering is to “build 
better bridges”. Sometimes the theory used is rooted in an underlying scientific 
theory, but often uses rules of thumb that are far removed from the scientific 
roots. We emphasize that it is not a question of which is the superior approach. 
They address very different concerns. Here, though, we will be very much 

2We believe a unified framework can be given for many other classes of EA, including new ones like ant 
systems, artificial immune systems, etc. but this is beyond the scope of this article. 
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more concerned with EC theory from the scientific perspective with, however, 
one eye always on the engineering point of view wherein we may also examine 
things from a practitioner’s standpoint. 

In many sciences a large part of theory is associated with taxonomy - clas­
sification with respect to natural relationships. In EC, various high-level tax­
onomic labels are at our disposal, such as GP, GAs, ES etc. Whether these 
labels are optimal, or even useful other than in an historic sense, however, is a 
debatable point, as we shall see. Taxonomy allows us to understand common­
ality between different things. Subsequently we must understand why such 
commonality exists. For instance, the periodic table was initially an empirical 
and phenomenological construct until the atomic theory gave it a firm “micro­
scopic” foundation. What is the “periodic table” for EC? Does such a construct 
exist? If nothing of this nature existed it would be deeply worrying as it would 
mean that a theoretical treatment of each and every EA and/or problem would 
be different. It is clear however that there is commonality. The question is 
more - can it be suitably formalized? At the other extreme one could claim 
a type of “hyperuniversality”, such as was present in the original version of 
the Building Block Hypothesis (Goldberg, 1989c; Grefenstette, 1993), which 
claimed that all GAs behaved in the same way in finding an optimum - via 
fit, short schemata. We now know that this, in its strict form, is wrong, being 
rather an engineering rule-of-thumb with only limited validity, and that such 
a degree of hyperuniversality does not exist. Nevertheless, a prime job of EC 
theory should be to tell us what EAs and problems, or classes of EAs and 
problems, are likely to lead to similar outcomes or behavior. It does not need 
to be elaborated on that a deeper understanding of this would be of great use 
to practitioners. 

Passing beyond the taxonomic component of EC theory we should also ask 
that the theory be able to predict, at least within some more or less approximate 
scheme, the dynamical evolution of an EA. To address this one needs to start 
with a framework that at least formally captures the behavior of an EA. This 
can be at the level of a theory or model which is exact or approximate from 
the outset. All else being equal an exact model is preferable. Great progress 
has been made in the last decade in exact formulations of EA dynamics. For 
instance, the work of Michael Vose and collaborators (Vose, 1999; Nix and 
Vose, 1992) in the context of the simple GA, where the transition probability 
matrix for the population evolution is iterated as for a Markov chain, and the 
work of Stephens, Poli and collaborators (Stephens and Waelbroeck, 1997; 
Stephens and Waelbroeck, 1999; Stephens, 2001; Poli and McPhee, 2001a; 
Poli, 2000a; Poli, 2001 a), where an exact dynamics is modelled in terms of 
schemata, thus leading to a generalized and exact form of Holland’s original 
Schema theorem (Holland, 1975), are two such approaches. 
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Beyond the mathematical representation of EC theory one should also re­
quire that the theory give some intuitive framework within which an EA, or 
class of EAs, can be understood. The concept of a fitness landscape from pop­
ulation biology (Wright, 1932; Wright, 1967; Reidys and Stadler, 2002) is a 
prime example of a construct that offers a framework to do just that. The origi­
nal Schema theorem of Holland and associated Building Block Hypothesis are 
another very important example. In the seventies and eighties, and to a lesser 
extent later, they, in fact, seemed to provide a perfectly valid and sufficient 
theoretical foundation for GAs. So much so that, in the early to late nineties, 
developing a schema theorem like Holland’s became the target for GP theorists 
too.3 

Finally, it would be useful to better understand the relationship of EC theory 
to other more well-established areas in computer science, mathematics, biol­
ogy and physics. This, for example, would allow us to know whether what 
has been done in EC is novel. More generally it would make it possible to 
remove barriers between disciplines and allow for an easier exchange of ideas 
and results. 

Having established some criteria by which we may judge a theory to be 
“good” or not we may ask: Out of the many possible approaches to EC theory 
and motivations to develop it, under what circumstances is one better than 
another, or is there one which is superior to all others under all these roles? We 
will provide our answer to this in the rest of the chapter. 

EC THEORY - THE “BARE NECESSITIES” 
In this section we wish to give a brief, non-rigorous exposition of the fun­

damentals of EC theory, as we see them, that essentially could be applied to 
any EA. Thus, we try to maintain as much generality as possible, in particular 
to show how a unified theoretical framework, encompassing most, if not all, 
standard EAs, can be developed. Formally, an EA is an algorithm that takes 

3It is worth pointing out that for many years there has been a hot debate in EC as to the strengths and 
weaknesses of the notion of schema and of Holland’s Schema theorem, their usefulness having been widely 
criticised (see for example (Chung and Perez, 1994; Altenberg, 1995; Fogel and Ghozeil, 1997; Fogel 
and Ghozeil, 1998)), as has the Building Block Hypothesis (Grefenstette, 1993; Stephens et al., 1999). 
While some criticisms are really not justified, as discussed in (Radcliffe, 1997; Poli, 2000b; Holland, 2000), 
others are reasonable. The debate has certainly led to some degree of confusion in the field, with most 
EC practitioners being divided into two different camps: those who still think Holland’s Schema theorem 
provides a satisfactory theoretical foundation for GAs, not having heard, or not caring, about the debate 
about its weaknesses, and those who believe there is nothing good, not just in Holland’s Schema theorem, 
but in the notion of schema itself and any theory built on it. Until very recently most EC theoreticians 
belonged to this second category (see for example (Vose, 1999, preface) and (Bäck and Fogel, 2000, Page 
xxxiv)). Many of them thought that only Vose’s model (Nix and Vose, 1992; Vose, 1999) could provide 
a serious and mathematically sound way of modelling GAs. Both types of practitioners and theorists are 
wrong. 
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as input a population of “objects” (strings, trees etc.4) and a fitness function, 
at a given time, and gives as output the population at a later time. Canonically 
the evolution is a Markov process generated by a set of genetic operators that 
act stochastically. The fact that an EA is a stochastic process has the important 
ramification that we may only expect to make statistical predictions in terms of 
the dynamics. The objects live on a configuration5 space X, of dimensionality 

with elements where the index As EAs are 
population based one needs to consider sets of elements, some of which may 
be repeated multiply. Thus, we denote a population by 
where represents the proportion of objects of type in the population. Each 
object is assigned a quality or fitness, via a fitness function 
This notion leads one to the important concept of a fitness landscape, where 
one thinks of a topography wherein represents a height function “above” 
the space X. The intuition behind the landscape concept is that populations 
will seek the peaks in the landscape and move away from the valleys. Often, 
always in the case of population biology, the fitness landscape possesses a de­
generacy, i.e. many genotypes have the same fitness (i.e. corresponding to the 
same phenotype). One can speak of a “symmetry”, strictly speaking an equiv­
alence relation, in this case and ask if this symmetry is preserved by genetic 
operators other than selection. A concrete example of this is the equivalence 
under selection of those genotypes that correspond to phenotypes of the same 
fitness. A dynamics is imposed via an evolution operator, such that in the 
infinite population limit, where is the probability distribution at time 

The specific form of depends on the specific set of ge­
netic operators used, which in their turn depend on families of parameters. We 
will generically focus on the standard ones: selection, mutation and recombi­
nation. Selection is an operator that depends on the fitness values of the objects. 
The number of parameters necessary depends on the type of fitness function 
and the amount of degeneracy of For instance, for a counting-ones GA 
problem only  N fitness values are needed, while for the Eigen model (Eigen 
et al., 1989) (“needle-in-a-haystack” fitness function) only two, in both cases 
the genotype-phenotype map being highly degenerate. Mutation, a one-body 
operator, usually only depends on one parameter - the mutation probability ­
that is applied uniformly to each locus, though more general operators can eas­
ily be considered. Two-parent recombination generically depends on the set 
of recombination distributions, that characterize the transferral of 
genetic material from parents to offspring, where is the probability to 
form an offspring object, given two parent objects, and and a crossover 

4We believe that this generality extends to even more complex objects such as Neural or Bayesian networks

etc.

5Configurations will most usually be thought of as genotypes.
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“mode”, i.e. a rule for redistributing genetic material between parent and 
offspring objects. The complexity inherent in this representation can be ap­
preciated by writing down the exact string evolution equation for the simple 
case of three-bit strings as in (Whitley, 1992). We mentioned previously that 
taxonomy is important without being specific as to what exactly should be clas­
sified. One may think that EAs themselves should be classified. An EA alone 
however, is in some sense a “black box” which takes a “problem” (usually a 
fitness landscape and an initial population) as input and then gives an output 
(the population at a later time). A given EA, though, may have very different 
characteristics with respect to a given measure on one problem versus another. 
Another way to see this is that an EA does not fully specify the dynamics of 
the system, whereas an EA and a problem together do. Hence, we are led to 
consider a taxonomy of EA/problem pairs. We will call an EA/problem pair a 
“model”. In this context we may characterize a particular model, by a set of 
parameters where represents the fitness landscape 
and selection mechanism, mutation and recombination. With these 
three in hand we can specify a very large class of models. We will denote this 
space of models, We believe that a better understanding of the taxonomy 
of EAs and fitness landscapes can be achieved by studying In principle one 
could put a metric on and talk about how close one model is to another. A 
less rigorous, but more pragmatic, approach is to think of two models as being 
“close” if they lead to “similar” behavior. Of course, to do this one must define 
“similarity measures”. At any rate, continuity on would lead one to believe 
that models with similar parameter values should behave similarly, except, of 
course, in the neighborhood of a singularity. 

As a simple example of this approach, consider a GA without mutation and 
selection but with crossover acting on N-bit strings. In this case we 
can think of as containing only distinct models. If we chose as similarity 
measure, the number of generations needed for the correlation function 

to decrease by a factor where denotes population average and 
and are the allele values at loci and then one would find, for example 
for that With the specific 
values one may determine, for example, that 2-point crossover is closer to 1­
point crossover than 15-point crossover. 

One can think of population flows as taking place on X, the configuration 
space, or on the fitness landscape. All the main branches of EC - GP, 
GAs, ES etc. - fall into this general framework. The chief differences lie 
more in what objects are being represented in  X and what specific operators 
constitute For instance, in GAs the represent fixed length strings. In GP 
they are program trees and in machine code GP (Nordin and Banzhaf, 1995a; 
Nordin, 1997) or Grammatical evolution (O’Neill and Ryan, 2001) they are 
variable length strings. We shall also see that “coarse grained” representations, 
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such as schemata, or particular sets of schemata - Building Block Schemata ­
also offer very useful basis representations. Interestingly, in nature, genotypes 
are variable length due to phenomena such as gene duplication and deletion. 
Additionally, a non-linear structure can also be more appropriate, when for 
instance modelling protein secondary or tertiary structure. 

Rather than considering one type of basis as being more “general” or fun­
damental than another it is useful to think of passing between different basis 
representations via coordinate transformations on  X, via embeddings of X in 
a larger or higher dimensional space, or, in the case of true coarse grainings, 
via projections. Probably the best known alternative coordinate system is the 
Walsh basis (Goldberg, 1989a; Goldberg, 1989b). Another example of a coor­
dinate transformation, whose importance and utility we will examine shortly, is 
the following: take fixed length binary strings of length N. In this case X is the 
N-dimensional Boolean hypercube, the  N string loci forming a complete or­
thonormal basis for the hypercube. Now change to an alternative basis, which 
we term the Building Block Basis (BBB) (Stephens, 2003), which consists of 
all schemata corresponding to a given string, where the choice of string is ar­
bitrary. Formally, where are strings, iff is a member 
of Building Block and is zero otherwise. The coordinate transformation en­
gendered by yields a basis which is not orthonormal. We will consider the 
BBB more extensively later. An example of an embedding transformation, 
at least in principle, would be that of passing from variable length strings of 
up to maximum size with binary alleles to a fixed length basis representa­
tion of size by including a third allele value that specifies that there was 
no corresponding bit in the variable length case. Of course, for these more 
general transformations development of the operators and the corresponding 
theory necessary to maintain syntactic correctness of the offspring is a totally 
open issue. In this case, one might be better off using the theory for variable 
length structures already developed in GP.6 Finally, a simple projective coarse 
graining would be that of passing between genotype and phenotype. 

The above types of map give us flexibility in terms of what particular repre­
sentation we may find most suitable for a problem and also give a more unified 
framework within which we may view different elements of EC, such as GP 
and GAs, in a more coherent light. In fact, our lack of understanding and con­
sideration of such transformations is one of the reasons why EC theory has 
been, and continues to be, fragmentary. 

An even more important reason for considering general classes of trans­
formation associated with  X is that it facilitates an understanding of the dy­

6Of course, using this basis representation and developing appropriate operators for it would just lead to a 
form of GP which is isomorphic to current forms, and therefore the theory for such a GA-type of GP would 
just be isomorphic to the theory already developed there. 
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namical equations associated with the true effective degrees of freedom of the 
model. These effective degrees of freedom will more often than not be ag­
gregations of the underlying “microscopic” degrees of freedom and may be 
made more manifest via a coordinate transformation, embedding or coarse-
graining/projection. Additionally, it may be the case that effective degrees of 
freedom most naturally emerge in an approximation to the dynamics rather 
than the exact dynamics. 

As the model dynamics moves a population composed of individual objects 
around in X an important precondition for understanding the dynamics is a 
notion, of neighborhood, nearness, distance, or accessibility on X. In some 
settings, such as binary GAs, a natural neighborhood relation is associated 
with the Hamming metric. In more complicated cases, such as GP, where one 
requires a metric on the space of trees of variable size and shape, this is a much 
more subtle question. Additionally, different genetic operators are often most 
naturally associated with different notions of nearness. For instance, mutation 
is very naturally associated with Hamming distance. This is not the case for 
recombination however. One may be led in this way to consider a different 
metric for every operator (Jones, 1995). However, given that the dynamics of 
the model is due to a single composition of different genetic operators, it is 
questionable as to what extent this picture is useful. 

GENERIC GENETIC DYNAMICS 

The space of models, is of very high dimensionality if one thinks of all 
possible genetic operators. Selection, mutation and recombination form a very 
important subset and we will now restrict attention to them. For transparency 
we will also consider the dynamics in the infinite population limit, writing 
evolution equations for the probability distribution of objects, where 

is the probability for finding object 
populations is relatively straightforward. 

at time The extension to finite 

Formally at least, the following also applies to GP as well as GAs: 

where is the probability to find objects of type after selection and 
crossover. The matrix elements of the mutation matrix, give the proba­
bility to mutate object to object In the simple case of fixed length GAs for 

instance, where is the Hamming distance 
between the two strings and N is the strings’ length. For mutation Hamming 
distance is clearly a very natural metric. Explicitly is given by 
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where  In the case of proportional selection is the probability to select
where is the average population fitness.  is an 

interaction term between objects, i.e. objects and are selected and crossed 
over (“interact”) to potentially form an object depends not only on 
the objects and but also on the particular recombination mode. In the case 
of homologous crossover the recombination modes are just crossover masks 
with being the sum over all possible recombination masks. In the case of 
non-homologous crossover the modes are more general than masks. 

Equations (7.1) and (7.2), as an exact representation of the dynamics in 
terms of incidence vectors for objects, in the case of fixed-length GAs, where 
a crossover mode is simply a mask, are equivalent to the Vose model or, in­
deed, to earlier formulations in population biology (see (Bürger, 2000) and 
references therein). It looks quite different because we are using a less con­
densed notation in order to bring the different roles that each operator play to 
the fore. These equations however are also valid for objects other than fixed-
length strings. A particular criticism of the Vose model has been that although 
elegant it looks all but hopeless to get other than very general information from 
the equations. Also, the equations are far removed from older elements of GA 
theory such as the Schema theorem and Building Block Hypothesis. This has 
led proponents of the Vose approach to question both the validity and the utility 
of the latter. As the above equations are equivalent to the Vose equations we 
may understand the enormity of the task of trying to obtain either quantitative 
or qualitative results from them. They represent coupled, simultaneous 
non-linear difference equations. At the level of mutation and selection the 
problem is linear hence, conceptually at least, the problem is easily addressed 
- one must find the eigenvalues and eigenvectors of the mutation/selection ma­
trix. The introduction of recombination at first sight leads to a degree of com­
plexity far beyond that of selection and mutation. 

To write the interaction constants more explicitly we would have to consider 
a more definite model. However, we may make some generic comments. First 
of all, unless the mode creates object from and Generi­
cally, this is very unlikely and hence the vast majority of interactions are zero. 
For instance, in GAs with binary alleles for a given and is a 

square matrix. However, only of the order of matrix elements 
are non-zero. Thus, the microscopic representation is very inefficient, there 
being very few ways of creating a given target by recombination of strings. 
The vast majority of string recombination events are neutral in that they lead 
to no non-trivial interaction. These comments also hold for more complicated 
types of object. 
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UNDERSTANDING GENETIC DYNAMICS: FIT­
NESS, IS IT “EFFECTIVE”? 

Having written down a generic dynamics how do we understand it? In pop­
ulation biology the concept of a fitness landscape has played an important role. 
Standard intuition views a fitness landscape as a rugged terrain where popu­
lations flow towards fitness peaks. Thus, natural selection can be viewed as a 
type of “hill climbing” on this topography. 

The classical fitness concept, and associated fitness landscape, however, do 
not take into account the important effect the mixing genetic operators may 
have in determining the complete reproductive success of an individual. In 
particular, the effect of these genetic operators can be such that population 
flows on the standard fitness landscape cannot be understood with any degree 
of intuition. In fact, the flows can be quite counterintuitive, leading to situa­
tions where populations flow against the fitness gradient. A simple concrete 
example is, once again, the Eigen model where the fitness landscape is just one 
isolated fitness peak in an otherwise flat landscape. In the absence of mutation 
the entire population will eventually climb to the top of the fitness peak. In 
the presence of mutation the proportion of the population associated with the 
peak is less than one. However, above a certain critical mutation rate (Eigen 
et al., 1989), the peak proportion is what it would be in a completely ran­
dom population on a flat fitness landscape. The landscape remains the same, 
i.e. with a single peak, yet selection does not act, in the sense that there is no 
preference for the peak. Clearly hill climbing is not a very useful analogy here. 

The mixing operators can also lead to directed flows on neutral networks 
due to an “induced” breaking of the genotype-phenotype symmetry (Stephens, 
1999a; Angeles et al., 1998; Stephens et al., 1998; Mora et al., 1999). Such 
phenomenon, unlike the case of population flow due to positive selection can­
not be naturally understood in terms of hill climbing on a standard fitness 
landscape either. However, all these phenomena can be intuitively understood 
within the framework of a different paradigm - effective fitness7 (Stephens and 
Waelbroeck, 1998; Stephens, 1999b; Stephens and Vargas, 2000; Stephens and 
Vargas, 2001; Poli, 2000a; Stadler and Stephens, 2003), albeit with the conse­
quence that effective fitness is not a constant quantity but rather depends on the 
state of the entire system and hence is intrinsically time dependent. We define 
the effective fitness in the case of objects as 

7Effective (or adjusted) fitness was first introduced in (Nordin and Banzhaf, 1995b; Goldberg, 1989a) in the 
context of accounting for the destructive effect of crossover in the framework of Holland’s Schema Theorem 
where a simple constant factor multiplies the landscape fitness. 
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One may think of the effective fitness as representing the effect of all genetic 
operators in a single reproductive selection factor. Here, we have assumed 
proportional selection. Effective fitness can easily be generalized for other 
selection mechanisms however. is the fitness value at time required to 
increase or decrease by pure reproductive selection by the same amount 
as all the genetic operators combined in the context of a reproductive fitness 

If the effect of the genetic operators other than selection is 
to enhance the reproductive success of object Obviously, the converse is true 
when 

The exact functional form of the effective fitness obviously depends on the 
set of genetic operators involved. For the fairly general case of equation (7.1) 
we have 

In the limit (or in more general circumstances when the 
strengths of operators other than reproductive selection 0) 

The key element behind effective fitness, irrespective of its mathematical 
definition, is that population flows in the presence of operators other than pure 
reproductive selection are much more readily understood in terms of it. In 
fact, to go further, even in the case of pure reproductive selection, if one per­
forms any sort of coarse graining and considers schemata rather than strings, 
then population flow is more readily understood in terms of an effective fitness 
landscape rather than the reproductive one. As an example, for the evolution of 
a particular order-1 schema in a population of  N-bit strings it is more natural 

schema than the collective dynamics of the
to consider the time dependent one-dimensional landscape associated with the

string types that go up to 
make the 1-schema. The job of evolution at the end of the day is to produce fit 
offspring which in their turn produce fit offspring which in their turn... It is no 
use having an individual with high reproductive fitness that is associated with 
a high probability to mutate to a very low fitness individual. 

In the case of the Eigen model the effective fitness of the master sequence 
or needle, under selection and mutation only, is 

where and are the fitnesses of the needle and the “hay” respec­
tively. In the limit and we see that the effective 
fitness landscape becomes flat thereby giving an intuitive explanation for the 
behavior in the vicinity of the critical mutation rate. We can thus think of evolu­
tion as a hill-climbing process on an effective fitness landscape (which is time 
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dependent). In this model mutation breaks the genotype-phenotype symmetry 
among the non-needle strings in such a way that those strings that are closer in 
Hamming distance to the needle have more reproductive success. Once again, 
this cannot be understood in terms of the fitness landscape as it is flat for the 
non-needle strings. The analog of equation (7.5) for non-needle strings shows 
us however that the effective fitness of strings that are close to the needle is 
higher than that of distant strings. Effective fitness in this sense is a direct 
measure of the strength of the breaking of the genotype-phenotype symmetry 
and hence offers both a qualitative and quantitative framework within which 
phenomena such as GP bloat and evolutionary robustness may be understood. 

UNDERSTANDING GENETIC DYNAMICS: 
WHAT ARE THE RIGHT EFFECTIVE DEGREES 
OF FREEDOM? 

All genetic operators affect what are the appropriate effective degrees of 
freedom8 for a particular model, although in potentially very different ways. 
For selection, almost by definition, the principal effective degree of freedom 
is the phenotype. For pure mutation they are the eigenvectors of the mutation 
matrix, the most relevant ones being those with the largest eigenvalues. When 
combining selection and mutation it becomes much more difficult to determine 

the needle-in-a-haystack landscape for  N-bit strings. In this case there are 
genotypes but only two phenotypes - the “needle” and the “hay”. For selection 
only, due to the strong genotype-phenotype symmetry the dynamics is much 
more simply considered in terms of fitness equivalence classes, as there are 
only two of them. However, as we pointed out in the previous section mutation 
breaks this symmetry. In this case the more appropriate effective degrees of 
freedom are the error classes (sets of strings a fixed Hamming distance from 
the needle.) 

the correct effective degrees of freedom. As a simple example, consider again 

Schemata offer another class of effective degree of freedom, where one 
coarse grains to a smaller number of fixed loci than in the original model. This 
has been familiar in population biology for a long time, where reduction to a 
small number of loci is ubiquitous. There, however, traditionally the coarse 
graining has been posited and a reduced model for the schemata dynamics di­
rectly written down rather than, more correctly, deriving the schemata dynam­
ics from the underlying microscopic dynamics. Interestingly, any schemata 
coarse graining, except in exceptional cases will lead to schema fitnesses that 

8By number of degrees of freedom we mean the number of variables needed to describe the state of an 
“object”. In many cases those variables can actually be dependent on one another. In these cases, it is often 
possible to identify a smaller set of independent variables to describe the system in an exact or approximate, 
but, sufficient way. We call these the effective degrees of freedom of the system. 
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are time dependent as they depend on the dynamics of the population. Thus, 
if one thinks of a fitness landscape for schemata, it will inevitably be time de­
pendent. It is obviously of great interest to then ask when and under what ap­
proximation can the time dependence be ignored? It is natural to imagine that 
if fitness is defined with respect to a certain phenotypic character that depends 
principally on a small number of genotypic loci then the resultant landscape 
should be approximately time independent. Although a particular schemata-
type coarse graining might suggest itself, the space of schemata-type coarse 
grainings has huge dimensionality (e.g. for  N-bit strings and a 
cardinality alphabet). Hence, the search for a set of schemata that capture 
the effective degrees of freedom is in an even larger space than the original 
problem! The question is under what circumstances does a particular set of 
schemata suggest itself? The chief cornerstones of early GA theory - Hol-
land’s Schema theorem and the Building Block Hypothesis - gave an apparent 
answer to this question - that it is fit, short schemata that are the effective de­
grees of freedom, the associated intuition being intimately linked to selection 
and the destructive effect of crossover. At that time no exact equations that 
took into account schema creation were known and the apparent contradiction 
between an hypothesis that posited the existence of building blocks and a the­
orem that did not take into account how building blocks formed higher order 
schemata was overlooked. 

Holland’s Schema theorem and the Building Block Hypothesis strongly as­
serted that crossover plays a privileged role in the utility of EAs. The fun­
damental dynamical equations (7.1) and (7.2), as in the Vose model, and as 
in older exact population biology models, both for the case of fixed-length 
strings, are written in terms of the microscopic degrees of freedom, i.e. the 
strings themselves. However, the simple structure hides the large scale redun­
dancy inherent in this representation (i.e. the vast majority of the are zero) 
and the complication associated with the sums over the and Recently, it 
has become possible to write these equations in a form that extends and gener­
alizes Holland’s Schema theorem, allows for a critical and rigorous analysis of 
the Building Block Hypothesis and is still intimately linked to a microscopic 
formulation that is equivalent to the Vose model. In its original formulation it 
encompassed fixed-length, linear genomes. Importantly, however, it has now 
also been extended to variable-length linear and tree-like representations (Poli, 
2000a; Poli and McPhee, 2001a; Poli, 2001a). 

In the fixed-length case9 one may understand the relationship between the 
two formulations in terms of a linear coordinate transformation 

9We conjecture that it is also true in the case of more general objects. The very fact that the exact schema 
equations for GP are so close to their GA counterparts in the BBB lend weight to this conjecture. Obviously, 
coordinate transformations on these more complex spaces need to be better understood. 
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to the BBB mentioned previously. A simple example is in the case of two 
bits where while The invertible 
matrix the inversion leading back to the original string basis, is such that 

where is any schema associated with the string 
Note that as the choice of vertex is arbitrary there are totally equivalent 
BBBs. 

The BBB is complete but clearly not orthonormal. By construction is a 
fixed point of this transformation. Apart from the vertex points in corre­
spond to higher dimensional objects in For instance, 1* and *1 are one-
planes in while ** is the whole space. Note that the BBs here are not neces­
sarily short or fit and are certainly not static when considered in the context of 
the evolution equation. Note as well that we are not working here in the space 
of all schemata. The BBB, in fact, forms a very small subset of the latter. Nev­
ertheless, these are what are being processed by recombination. In the BBB, 
in the case of homologous crossover, one finds 

where One may ask what is the advantage of 
going to this new basis? In the original string basis the properties and symme­
tries of are very hidden. However, this is not the case for 
which has the property that for a given mask only interactions between BBs 
that construct the target schema are non-zero, i.e. unless 
corresponds to a schema which is the complement of with respect to Fur­
thermore, unless is equivalent to where by equivalent we 
mean that for any 1 in the mask we have a 1 at the corresponding locus in 
and for any 0 we have a *.10 These two important properties mean that the two 
summations over and in (7.6) both disappear and we are left with only the 
sum over masks with an “interaction” constant which depends only on 
the mask. For example, for three bits, mask 100 and target string 111 recom­
bination of 011 with 110,100 or 101 all lead to the desired target. However, 
in the BBB the mask 100 specifies as first BB parent the schema 1**. The 
second BB parent *11 follows naturally by complementarity. 

In this has the interesting interpretation that for a target schema of 
dimensionality only geometric objects “dual” in the 
subspace of that corresponds to may interact. I.e. a ob­
ject recombines only with a object. Additionally, a 

object may only be formed by the interaction of higher 

10This happens because a particular mask projects out a particular element of the BBB, while the other 
building block is specified purely by complementarity. 
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dimensional objects. In this sense interaction is via the geometric intersection 
of higher dimensional objects. For example, the point 11 can be formed by the 
intersection of the two lines 1* and *1. Similarly, 1111 can be formed via 
intersection of the three-plane 1*** with the line *111, or via the intersection 
of the two two-planes 11** and **11. 

As mentioned, one of the primary advantages of the BBB representation is 
that the sums over and disappear. One obtains, for an arbitrary string 

where is the probability to select the BB (note 
that the mask uniquely specifies which element, of the BBB to choose) and 

the probability to select the BB which is uniquely specified as the 
complement of in Both and are elements of the BBB associated 
with The above equation clearly shows that recombination is most naturally 
considered in terms of the BBB. In the string basis there were of the order of 

elements of to be taken into account for a fixed In the BBB there is 
only one term. Of course, we must remember that the coarse grained averages 
of and contain terms, still, the reduction in complication is enormous. 
Thus, we see that recombination as an operator naturally introduces the idea 
of a coarse graining, the natural effective degrees of freedom associated with 
crossover being the BBs we have defined. 

Inserting (7.7) in (7.1) we can try to solve for the dynamics. However, in 
order to do that we must know the time dependence of and Although 
the number of BB basis elements is we may generalize and consider the 
evolution of an arbitrary schema, To do this we need to sum with 
on both sides of the equation (7.1). This can simply be done to obtain again 
the form (7.1), where this time the index runs only over the elements 

of the schema partition and where again In 
this case however is the Hamming distance between the two schemata. 
For instance, for three bit strings the schema partition associated with the first 
and third bits is {1 * 1, 1 * 0, 0 * 1, 0 * 0}. In this case and 

is the probability of finding the schema 
after selection and crossover. Note the form invariance of the equation after 

coarse graining. To complete the transformation to schema dynamics we need 
the schema analog of (7.7). This also can be obtained by acting with on 
both sides of the equation. One obtains 

where 
where 

represents the part of the schema inherited from the first parent and 
that part inherited from the second and 
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is the set of masks that affect Obviously, these quantities depend on the type 
of crossover implemented and on properties of the schema such as defining 
length. Note that the BBB naturally coarse grains here to the BBB appropriate 
for the schema as opposed to the string 

Thus, we see that the evolution equation for schemata has exactly the same 
form as (7.7), there being only a simple multiplicative renormalization (redef­
inition) of the crossover probability This form invariance, first 
shown in (Stephens and Waelbroeck, 1997; Stephens and Waelbroeck, 1998), 
demonstrates that BB schemata in general are a preferred set of coarse grained 
variables and more particularly the BBB is a preferred basis in the presence 
of recombination. It has also been shown (Vose, 1999) that schemata, more 
generally, are the only coarse graining that leads to invariance in the presence 
of mutation and recombination. Considering again the structure of (7.7) and 
(7.8) we see that variables associated with a certain degree of coarse graining 
are related to BB “precursors” at an earlier time, which in their turn ... etc. 
This hierarchical structure terminates at order-one BBs as these are unaffected 
by crossover. Thus, for example, the level-one BB combinations of 111, i.e. 
BBs that lead directly upon recombination to 111, are: 11*:**1, 1*1:*1* 
and 1**:*11. The level-two BBs are 1**, *1* and **1. Thus, a typical 
construction process is that BBs 1* * and *1* recombine at to form the 
BB 11* which at some later time recombines with the BB **1  to form the 
string 111. 

In this basis the validity of the Building Block Hypothesis can be examined. 
From the structure of (7.7) we see, in fact, that in a certain sense the Building 
Block Hypothesis emerges as a logical consequence of the equations. The 
hierarchical structure of the equation and its solution show unequivocally how 
fine grained schemata are built up from more coarse grained BBs. However, 
the supposition that BBs are fit and short is not generally true. The BBs that 
are important are those of high effective fitness. These may be short or long, 
fit or unfit depending on the particular characteristics of the fitness landscape 
and the other operators. Thus we can construct an Effective Building Block 
Hypothesis (but note that this is not a conjecture, but a mathematically provable 
consequence of the equations) which applies not only to GAs but to other EAs, 
such as GP, that fall within our unified framework: 
Effective BBH: an EA with crossover works by repeatedly combining low-

order schemata of above average effective fitness to form higher-order ones. 

In the above, simply to be more concrete, we have used the fixed-length rep­
resentation characteristic of GAs. However, it is important to emphasize that 
almost everything we have said has a natural generalization, with basically 
exactly the same intuition, at the level of variable-length or tree-like represen­
tations, a subject we will now consider further. 
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THE TWISTED ROAD TO UNIFICATION: GP 

To this point we have tried to present as unified a view as possible of EC 
theory. However, when we have passed from the abstract to the concrete we 
have up to now used standard GAs as a point of contact. It is important to 
emphasize however that much of what we have previously described has been 
rigorously generalized to the case of GP, which presents a host of very difficult 
and challenging problems not present in GAs. So, if developing a theory for 
GP and similar evolutionary paradigms is so difficult, why do it? That is, what 
do we gain from moving away from fixed-length representations into a world 
of variable size structures? 

The first obvious answer to this is that we will understand GP itself better, 
one motivation being to use theory in GP to achieve analogous things to those 
achieved using GA theory, such as explanations, predictions, engineering de­
sign principles, etc. In the wider context of EC theory in general, however, 
the first thing we gain is a better understanding of what we were doing before. 
Work on GP theory has shown us that the evolution of fixed-length strings is 
in fact a special case of a much broader space of algorithms which include the 
evolution of: non-binary strings, strings where different loci can have different 
numbers of alleles, strings whose alleles can take a countably or uncountably 
large number of different values (like in ESs), strings whose length can be 
changed by the operators, trees with fixed or variable shape and size, trees 
built with countably or uncountably large primitive sets (e.g. imagine an ES­
GP hybrid), graphs with and without labelled links, and so on. 

Secondly, because of the previous point, we have a unique opportunity to 
completely unify EC theory. In fact, any piece of theory one can produce 
which is applicable in general to this larger space of algorithms, automatically 
leads to corresponding results for all the subclasses, and, conversely, any spe­
cific result available in one of the subclasses will indicate the possibility that 
there could be a corresponding, undiscovered result for the general class. Natu­
rally, because ES and GA theory is more developed than GP theory, we should 
expect that, initially, GP theory will aim at extending pre-existing results, but 
eventually, as the unification progresses, the biggest rewards should come from 
working directly in the broader space. 

Thirdly, until now EC theory has only borrowed from theoretical popula­
tion genetics, it has never exported results. There are many reasons for this. 
Partly, there is a communication problem between computer scientists and ge­
neticists. This is not just due to the different languages we use to describe 
our evolutionary systems: mostly it is due to the different types of systems we 
study. Geneticists study diploid representations and consider recombination 
operators where homologous strands are aligned (by content) and may have 
variable lengths due to gene deletion and gene duplication events. EC theo­
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rists have almost always limited their studies only to haploid representations 
of fixed length undergoing position-preserving recombination operators. Mov­
ing away from fixed-length representations and position-preserving operators 
by embracing GP theory is a good step in the direction of being able to export 
our theoretical results to population genetics. 

For many years GP appeared to be completely unrelated to GAs, or other 
fixed-length representation EAs. The differences in the representation adopted 
and in the semantics of the structures being evolved have been two major ob­
stacles in bridging the gap between them. However, the characteristics of the 
operators adopted in GP w.r.t. those of other EAs have been one other major ob­
stacle. Mainstream GP used crossover operators that transfer genetic material 
without necessarily respecting its original position in the parents. Fixed-length 
EAs typically did the opposite, and most EA theory was based on this very 
assumption. So, although people felt that there had to be some way to extend 
GA theory to incorporate GP, in practice that was impossible until two stepping 
stones became available: the notion of one-point crossover in GP and a natural 
extension of the notion of GA schema to GP (Poli and Langdon, 1997). GP 
one-point crossover is an operator where the parents are first aligned starting 
from their root node and recursively traversing the two trees in parallel, stop­
ping the exploration of each branch when an arity mismatch occurs. Then a 
common crossover point is chosen among the matching nodes and the subtrees 
rooted in that node in the parents are swapped to produce the offspring. Despite 
the useful concepts of GP one-point crossover and GP schema, however, other 
notions like, for example, defining length, what constitutes a building block, 
and so on, required a good deal of trial and error to get right. (By “getting 
right” here we mean that those definitions represent proper generalizations of 
equivalent GA notions.) 

Indeed, after the GP-one-point-crossover breakthrough it has required around 
half a decade for homologous-GP theory to generalise some of the most fun­
damental results in GA theory, such as Stephens’ exact schema theory for 
crossover (Poli, 2000a; Poli and McPhee, 2001b; Langdon and Poli, 2002), 
Vose’s model for crossover (Poli et al., 2001) and Geiringer’s theorem (Poli 
et al., 2002b; Poli et al., 2002c; Poli et al., 2002a). Only last year, thanks to 
some of the tools developed in this endeavor and to some good luck, it has fi­
nally been possible to write an exact schema-based model for GP with its more 
standard forms of crossover (Poli, 2001b). 

EC THEORY: THE CHALLENGES AHEAD 

As mentioned in the introduction: EC theory is a very exciting field with a 
large number of challenging problems worthy of the attention of any energetic 
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scientist dedicated enough and with enough passion to attack them. Here we 
give our own personal view of some of the main ones. 
C1: How do we classify EC models so that we can answer the fundamental 
question: when do we expect the dynamics of two different models to be qual­
itatively (and maybe at some point quantitatively) similar? (This is also of vital 
importance for practitioners). We need to understand much better the space 
in which EC models live and the use of metrics and similarity measures. Obvi­
ously, to answer the above we need to have a formalism within which we can 
work - ours in just one possibility. 
C2: A deeper understanding of the various transformations - coordinate trans­
formations, embeddings, coarse-grainings/projections and others - that change 
basis is, we believe, crucial for obtaining a truly unified picture of different 
models. It is also crucial for identifying and manipulating the appropriate ef­
fective degrees of freedom of a model. We have discussed various basis rep­
resentations: the genotypic (in terms of the “microscopic” objects) and phe­
notypic representations, and the BB representation. Each has its advantages 
and disadvantages. The genotypic representation is fundamental but rarely, 
if ever, are the real effective degrees of freedom directly related to the geno­
type. The phenotypic representation would be most appropriate in a strong 
selection regime. BB schemata in GAs and their extension to GP appear to 
be perfect at capturing the regularities present in homologous crossover oper­
ators and are most obviously the appropriate effective degrees of freedom in 
the case of weak selection and strong crossover. The question remains though, 
which coarse graining and, more generally, which basis is most appropriate for 
a given model. We have answers only for a small set of special cases. However, 
the answer here is very much related to the question of model classification, i.e. 
find a good basis or coarse graining for a given member of a class and the same 
basis should be useful for other members of the class. To distinguish one basis 
or coarse graining from another a quality measure (which would, of course, be 
parametrized by the particular problem and search algorithm at hand), would 
be useful in order to rank them. 
C3: A more general understanding of the different bases themselves is we 
believe also of great importance. The BBB is, effectively, a very recent devel­
opment and much remains to be understood about it. The space of trees of vari­
able size and shape is also not well understood. Furthermore, a major challenge 
is to move beyond trees to a world of more general graphs. Graphs are maybe 
the most powerful representation available in computing. Anything from linear 
structures, to parallel systems, to neural networks, to organizations, etc. can be 
represented with graphs of one type or another. Extending the EC theory to 
this type of structures would give it an almost all-encompassing scope. Only a 
tiny amount of progress has been made here (Greene, 2000). 
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C4: How rugged or smooth is This is very important for being able to es­
timate the degree of validity of various exact models and approximations. Too 
often practitioners scoff at theoreticians working with simple model fitness 
landscapes, such as flat landscapes, counting ones or needle-in-a-haystack be­
lieving that they have no relevance to “real-world” problems. However, these 
simple models are representatives of classes of models. For example, if we 
consider dynamics on a linear landscape with 1-pt crossover and then add a 
small amount of epistasis do we expect to see big qualitative changes in the 
resulting model? Alternatively, starting with a genepool GA on a linear land-

we expect qualitatively different behavior? The structure of
scape and then adding weak epistasis and changing to three point crossover do

can be studied 
in this sense empirically. 
C5: Currently, exact schema-based models only exist for homologous type of 
crossover operators and subtree-swapping type of operators. However, these 
two classes of operators are two extremes of a continuum: one, the case in 
which perfect alignment of structure is imposed on the trees undergoing cross­
over, the other, the case in which alignment between the parent trees is not even 
attempted. However, this continuum is full of interesting alternatives. For ex­
ample, in nature, the alignment of DNA strands is based on a matching process 
between bases (and, consequently, between genes). It would be interesting to 
extend this notion to tree-like structures and be able to model theoretically this 
type of process. So, being able to categorize, characterize and model the op­
erators in this continuum is an important challenge ahead. The same kind of 
thing should be done for unary operators, where GP theory so far is limited to 
subtree-type of mutations. 
C6: Effective fitness seems to offer a generalization of fitness that preserves 
the “hill-climbing” intuition of the latter even in the presence of operators 
other than selection. How general is its utility in explaining phenomena, both 
qualitatively and quantitatively, that do not fit into the selection/hill-climbing 
paradigm such as bloat (Langdon and Poli, 1997), evolution on neutral net­
works (Reidys and Stadler, 2001), evolutionary robustness (van Nimwegen 
et al., 1999) etc.? 
C7: Although the development of exact evolution equations has been rapid 
there remains a disquieting lack of tools with which solutions to the equations 
may be found. In particular, we know of no systematic approximation schemes 
that have been studied, though several come to mind, such as an expansion 
around the strong selection limit, perturbing in the mutation or crossover rate. 
Alternatively, in the strong-crossover, weak-selection limit an expansion in 
principle should be possible in terms of the deviation away from flatness of 
the landscape. Often, expansions require an exact solution around which to ex­
pand. Hence, it is important to find as many exact solutions as possible which 
may serve as starting points of an expansion. All this remains to be done. 
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C8: All of the above we would classify as challenges primarily associated with 
the scientific point of view of EC. Lest we forget the engineering perspective: 
the developed theory should be tested to see if it can provide theoretically-valid 
recipes for practitioners: Which genotype-phenotype map, operators, fitness 
function, search algorithm, population size, number of generations, number of 
runs, crossover probability, anti-bloat method, etc. should one use for a given 
problem or a given class of problems? Perhaps a simple step in this direction is 
to find approximations a-la Goldberg (Goldberg, 2002) which can really help a 
designer, but are based on something better and more rigorous than Holland’s 
version of the schema theorem. Or maybe we need to find ways of charac­
terizing the sampling behavior of different operators and defining whether this 
behavior matches the shape of a particular fitness landscape and to which de­
gree? In all this we have just started scratching the surface (McPhee and Poli, 
2002). 

Of course, the above list is by no means exhaustive, though we believe there 
is enough there to keep very many EC theoreticians busy for many years to 
come. Hopefully, it may help to stimulate a new generation of theoreticians as 
it is currently stimulating both ourselves, our collaborators and our students. 
We strongly believe that EC benefits strongly from an interdisciplinary ap­
proach and we would hope that more talented researchers from other fields 
will enter the fray bringing with them their own points of view and toolboxes. 
In particular, EC was inspired by evolution in nature. It would be more than 
fitting if EC theory could offer something back to its “older, bigger brother” ­
population biology. 
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Abstract We present a self-contained theoretical framework for a scaled genetic algo­
rithm over the alphabet {0,1} which converges asymptotically to global optima 
as anticipated by Davis and Principe in analogy to the simulated annealing algo­
rithm. The algorithm employs multiple-bit mutation, single-cut-point crossover 
and power-law scaled proportional fitness selection based upon an arbitrary fit­
ness function. In order to achieve asymptotic convergence to global optima, 
the mutation and crossover rates have to be annealed to zero in proper fashion, 
and power-law scaling is used with logarithmic growth in the exponent. Our 
analysis shows that a large population size allows for a particularly slow an­
nealing schedule for crossover. For the foremost described setting, a detailed 
listing of theoretical aspects is presented including prerequisites on inhomoge­
neous Markov chains. In particular, we focus on: (i) The drive towards uniform 
populations in a genetic algorithm. (ii) Weak and strong ergodicity of the in­
homogeneous Markov chain describing the probabilistic model for the scaled 
algorithm. (iii) Convergence to globally optimal solutions. We discuss various 
generalizations and extensions of the core framework presented in this exposi­
tion such as larger alphabets or other versions of the mutation-crossover oper­
ator, in particular, the Vose-Liepins version of mutation-crossover. This refers 
to recent work by the author in [Theoretical Computer Science 259 (2001), 1– 
61] and [Technical Report 2002-2-002, Aizu University] where similar types of 
algorithms are considered over an arbitrary-size alphabet and convergence for 
arbitrary fitness function under more general conditions is shown. Finally, we 
present an outlook on further developments of the theory. 
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INDEX OF SYMBOLS AND KEYWORDS IN OR­
DER OF APPEARANCE 

< · >, vector in free vector 
sp(.), 1, P(·), 

Z, R, C, lim. N, 
space, ·)* , 1.2: 

f,
spot, 2.1: multiple-spot mutation

2.3:

1.1 : 
compact, ( fully positive, 

 operator norm 1.3: stochastic. 

single-cutpoint regular crossover  selector mask
unbounded power-law scaling logarithmic exponentiation

1.4: A, L, 
2.2:

 J, 
schedule B, proportional fitness 

selection operator 3.1: mutation flow inequality, 3.2:
trajectories, annealing schedule for mutation 3.3: annealing schedules 
for crossover  3.4: steady-state flow inequality (line  26). 3.5:  VLGA. 

INTRODUCTION 

Every endeavor such as the quest for new frontiers in theory of genetic algo­
rithms must have a port of embarkation established on firm ground. This work 
tries, conservatively, to describe a theoretical basis for research on scaled ge­
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netic algorithms that use unbounded power-law scaling for the fitness function 
and otherwise standard operations for mutation and crossover. However, at the 
end of the exposition, we shall reach a point where the reader is challenged to 
engage in research on a number of quite non-trivial, theoretical, open problems 
but with a solid foundation in mind. The target audience of this exposition are, 
in general, scholars interested in the field of evolutionary computation. The au­
thor has tailored the presentation in such a way that it should be conveniently 
accessible for advanced undergraduate or beginning graduate students in com­
puter science with a solid, standard mathematical background, or a lecturer 
who wants to include the topic of scaled genetic algorithms into a course and 
searches for a mostly self-contained framework. 

As primary goal of this work, we shall rigorously establish the Global Opti­
mization Theorem 3.4.1 which shows that a properly scaled genetic algorithm 
converges for arbitrary fitness function to a probability distribution over uni­
form populations containing only elements of maximal fitness. 

There are a number of excellent surveys on genetic algorithms: for exam­
ple, essays by Beyer, Schwefel & Wegener (Beyer et al., 2002), Mühlenbein 
(Mühlenbein, 1997), and the monographs by Goldberg (Goldberg, 1989), 
Mitchell (Mitchell, 1996), and Vose (Vose, 1999b). As Mühlenbein points 
out in the introduction to (Mühlenbein, 1997), evolutionary algorithms based 
upon “mutation, mating, and selection” were already introduced in the 1960’s 
as a tool for optimization. See the paper by Bremermann, Rogson & Salaff 
(Bremermann et al., 1966). Genetic algorithms, a particular case of evolution­
ary algorithms, were invented by Holland (Holland, 1975) and are by now a 
well-established tool for search and optimization. A given optimization task 
is encoded in such a way that candidate solutions are understood as elements 
in a finite collection of creatures in a model “world”, and a fitness function 

exists which has to be maximized. In the model for genetic 
algorithms presented in this exposition, creatures (candidate solutions) are 
identified with their genetic information which consists of an ordered string of 
letters selected from {0, 1}. The collection of creatures in the current, fixed­

tion which are applied cyclically and iteratively until a termination condition is
size population is subject to three operations: mutation, crossover, and selec­

satisfied. A genetic algorithm is called simple, if the three operations mutation, 
crossover, and selection stay constant over the course of the algorithm. 

In this work, we shall be interested in the asymptotic behavior of the ge­
netic algorithm, i.e., the probabilistic behavior of the algorithm if never halted. 
Asymptotic behavior of genetic algorithm has been investigated by many au­
thors: Agapie (Agapie, 2001), Aytug & Koehler (Aytug and Koehler, 1996), 
Cerf (Cerf, 1996; Cerf, 1998) Davis&Principe (Davis, 1991; Davis and Principe, 
1991; Davis and Principe, 1993), Fogel (Fogel, 1994), Goldberg (Goldberg, 
1990), He & Kang (He and Kang, 1999), Holland (Holland, 1975) Leung, 
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Chen, Xu & Leung (Leung et al., 1998), Liepins & Vose (Vose and Liepins, 
1991), Lozano, Larrañaga, Graña & Albizuri (Lozano et al., 1999), Mahfoud 
& Goldberg (Mahfoud, 1993; Mahfoud and Goldberg, 1992; Mahfoud and 
Goldberg, 1995), Nix & Vose (Nix and Vose, 1992), Poli & Langdon (Poli, 
2001; Poli and Langdon, 1998), Rodolph (Rudolph, 1994), Suzuki (Suzuki, 
1997; Suzuki, 1998), and Vose (Vose, 1999b). However, a proof of asymptotic 
convergence for a genetic algorithm of fixed, relatively small population size 
using scaled proportional fitness selection has only recently been obtained in 
(Schmitt, 2001, Thm. 8.6, Rem. 8.7). Other work that claims a result of con­
vergence to global optima such as (Rudolph, 1994; He and Kang, 1999; Green­
wood and Zhu, 2001; Agapie, 2001; Cerf, 1996; Cerf, 1998) or (Vose, 1999b, 
Ch. 3, p. 147) require usually some auxiliary, special condition, limit or set­
ting to achieve their goal such as the trivial elitist selection strategy or infinite 
population limit. The analysis presented here and in (Schmitt, 2001; Schmitt, 
2002) sets boundary conditions for proper design and implementation of ge­
netic algorithms that actually do stop after a finite but large number of cycles. 
Let denote the stochastic matrix describing the individual step of the scaled 
genetic algorithm at time and let be the steady-state probability 
distribution of Theorem 3.3.2 establishes strong ergodicity of the inho­
mogeneous Markov chain It shows that for large the probability 
distribution describing the state of the algorithm after steps is close to the 
limit of the This allows for development of a stopping-criterion for 
a genetic algorithm which is scaled as in the Global Optimization Theorem 
3.4.1. These aspects are discussed after the proof of Theorem 3.3.2. Compare 
work by Aytug & Koehler (Aytug and Koehler, 1996) and Leung, Chen, Xu& 
Leung (Leung et al., 1998) in this regard. 

The concept of ergodicity plays an important role in the behavior of the 
scaled genetic algorithm considered in the Global Optimization Theorem 3.4.1. 
Weak ergodicity as discussed in section 3.2 assures that the (probabilistic) tra­
jectories of the algorithm are independent from initial populations. If the algo­
rithm is started at population then the probability distribution describing the 
state of the algorithm after steps is given by 

Weak ergodicity essentially says that for any initial populations or the 
states and  i. e., probabilistic trajectories will be arbitrary close for 

The shrinking of the distance as is due 
to a shrinking property of scaled mutation which is established in Proposition 
1.3.1 combined with Proposition 2.1.2.2. 

Strong ergodicity as discussed in section 3.3essentially assures that

exists and is independent of the initial population
 Theorem 

3.3.2 actually determines that with as defined above. 
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As a consequence, we can discuss as limit of the via the steady-state 
flow inequality established in the proof of the Global Optimization Theorem 
3.4.1 (line 26) to obtain convergence to global optima. Strong ergodicity is 
in our case a somewhat immediate technical consequence of weak ergodicity 
due to the nature of the entries of the stochastic matrices describing the scaled 
genetic algorithm. See the proof of Theorem 3.3.2 for details. 

The mathematical model presented in this exposition uses an inhomoge­
neous Markov chain over a finite population space Thus, the state space 
of the genetic algorithm consists of probability distributions over populations. 
Most authors model populations as multi-sets following the work of Davis & 
Principe (Davis, 1991; Davis and Principe, 1991; Davis and Principe, 1993), 
Liepins&Vose (Vose and Liepins, 1991), and Nix & Vose (Nix and Vose, 1992). 
A more general Markovian framework for stochastic search methods using 
multi-sets is given by Vose’s theory of random heuristic search (Vose, 1999a; 
Vose, 1999b). As in (Schmitt et al., 1998; Schmitt and Nehaniv, 1999; Schmitt, 
2001; Schmitt, 2002), the model used in this exposition considers populations 
as strings of letters in the underlying alphabet and not as multi-sets. As out­
lined in (Schmitt, 2001, Sec. 2.9), the multi-set model can easily be embedded 
into the tensor-string model considered here. Rudolph (Rudolph, 1994) devel­
oped his Markov chain model for genetic algorithms in the tensor-string model 
approximately around the same time as (Schmitt et al., 1998). 

What makes our approach different is that we do not attempt to unite the 
genetic operators mutation, crossover and selection to one operator which is 
subsequently analyzed. We rather analyze the genetic operators separately to 
isolate key properties: Crossover plays a dual role enhancing mutation in the 
mixing phase of the algorithm (Schmitt, 2001, Thm. 6.1) as well as enhanc­
ing selection in the contraction-phase of the algorithm in some cases (Schmitt, 
2002, Sec. 2.5, Prop. 2.6.2). Mutation is responsible for weak ergodicity (see 
section 3.2) and the probabilistic flow away from uniform populations (Propo­
sition 3.1.1.2). Fitness-selection is responsible for contraction towards uni­
form populations (Proposition 2.3.2.4). Mutation-selection is responsible for 
convergence to uniform populations in the zero mutation-rate limit (Theorem 
3.1.2.3). All three genetic operators act together to obtain the steady-state flow 
inequality which shows convergence to global optima (proof of the Global Op­
timization Theorem 3.4.1, line 26). 

Research by Davis & Principe (Davis and Principe, 1993) advocates to es­
tablish a framework for scaled genetic algorithms in analogy to the simulated 
annealing algorithm (Aarts and van Laarhoven, 1989). The main result of this 
exposition, the Global Optimization Theorem 3.4.1, achieves the following 
goals: A general-purpose, scaled, genetic algorithm is described that converges 
to global optima. The setup is quite similar to that of the simulated annealing 
algorithm. There are no special requirements in regard to the fitness function or 
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the fitness-landscape. The number of creatures in populations can stay small 
and can be set as low as where is the length of the genome of crea­
tures (candidate solutions) as strings over {0,1}. Explicit cooling schedules for 
mutation and crossover, and exponentiation schedules for fitness-selection are 
given. The genetic algorithm presented in the Global Optimization Theorem 
3.4.1 consequently satisfies all goals formulated by Davis & Principe (Davis 
and Principe, 1993, p. 270). 

At the end of this exposition, we shall discuss future extensions of genetic 
algorithm theory as seen by this author. It is emphasized that the theory should 
focus on analysis of finite length algorithms on finite state machines follow­
ing, e.g., work by Catoni (Catoni, 1990; Catoni, 1991b; Catoni, 1991a; Catoni, 
1992) on the simulated annealing algorithm. Other interesting aspects of the 
theory of simulated annealing such as adding sampling noise following work 
by Kushner (Kushner, 1987) and considering sparse mutation matrices are also 
discussed. In addition, a case is made for a systematic analysis of custom-
designed genetic algorithms in regard to specific problem instances which in 
a way inverts the point of view put forward in this exhibition of genetic algo­
rithms as a black-box all-purpose method. 

1. NOTATION AND PRELIMINARIES 

Before we describe the proposed scaled genetic algorithm, investigate its 
components, and prove its asymptotic convergence, we need to collect a num­
ber of definitions and elementary facts in this section. The notation used here 
is essentially the same as in (Schmitt, 2001; Schmitt, 2002). We shall assume 
that the reader is fluent in linear algebra, calculus and basic probability theory. 
For a reference on linear algebra, see the introductory monographs by Lang 
(Lang, 1970) and Greub (Greub, 1975). For a reference on calculus and anal­
ysis including some Banach space theory, see the introductory monograph by 
Lang (Lang, 1970). In regard to probability theory, we first refer the reader 
to the treatise by Feller (Feller, 1968; Feller, 1971) as well as to the books by 
Chung (Chung, 1974), Isaacson & Madsen (Isaacson and Madsen, 1961) and 
Seneta (Seneta, 1981). 

1.1 SCALARS AND VECTORS 

Let Z,  R, and C denote the integers, the real numbers, the non-negative 
real numbers, and the complex numbers, respectively. Let denote limes 
superior, and lim denote limes inferior. For any subset of a vector space, 
let Set and For elements 
of a set, let if and let otherwise, i.e., is the 
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Kronecker delta. Let 
Let 

in Recall that for 
of 

denote the standard unit vectors1 in 
be the set of unit vectors 

the canonical inner product 
and and the usual Hamming-norm or -norm of are given by 

Note that we can express any uniquely in the form 
i.e., is expressed in the format of a vector in the free vector space over the 

(sum over coefficients times symbols Let 
and be the vectors of real resp. imaginary parts of 
entries of 

Let be the set of probability distributions 
over the set of “pure states” or equivalently, let be the set 
of all convex combinations of elements of 
(Lang, 1968, p. 111: Thm. VI.6) and bounded in

is closed (under limit-taking)
Hence, is compact, 

and any sequence of vectors in has a convergent subsequence (Lang, 1968, 
p. 140: Thm. VIII.5). is the relevant state space of our investigation.


We shall use the notation 
 to denote the adjoint of a vector or matrix 
Let The notation for differs by a factor 
from the notation introduced in (Schmitt et al., 1998, p. 104), but coincides 
with the notation used in (Schmitt and Nehaniv, 1999; Schmitt, 2001; Schmitt, 
2002). 

MATRICES AND OPERATOR NORMS 
Let denote the set of matrices with entries in a set 
A matrix in will be called fully positive. Let 

A matrix will operate by matrix multiplication from 
the left on column vectors in Note that a number of authors including 
Isaacson &Madsen (Isaacson and Madsen, 1961) and Seneta (Seneta, 1981) use 
row vectors and matrix multiplication from the right. Realizing that 

allows to express the coefficients of X in such a way that larger 
numbers of subscripts attached to a particular symbol are avoided. The set of 

X X).eigenvalues of X, i.e., the spectrum of  will be denoted as sp(
The matrix associated with the identity map will be denoted by 

1. For any let is a projection, 
i.e., but only for an orthogonal projection, i.e., 

and is a row vector, then we shall write for 

well as the canonical tensor product construction for the free vector space over populations which is 
discussed in (Schmitt. 2001, Sec. 2.6). 

1Coefficients of vectors or matrices are enumerated with indices starting from 0 since this establishes a 
natural correspondence of indices with the canonical order on populations as discussed in section 1.4 as 
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the matrix obtained from  X by replacing the first row of  X with Let the 
flip-matrix be defined as follows: 

We shall use the to denote products of possibly non-commuting 
matrices as follows 

The operator norm of with respect to the Hamming norm 
on is given by 

as in (Schaefer, 1974, p. 5: eq. (5)). The proofs of the following simple facts 
listed in lines (5–7) are given in section 5: 

Line (7)
 X, 

 is identical to (Schaefer, 1974, p. 5: eq. (7’))- It says that 
is the maximum over the -norms of the columns of and it shows that 
component-wise convergence of matrices is exactly the same as -wise 
convergence. As a direct consequence of line (7), we also obtain the following 
results: 

1.3 STOCHASTIC MATRICES 

In this section, we shall take advantage of the fact that the mutation oper­
ator contributes fully positive matrices to the inhomogeneous Markov chain 
describing the probabilistic model of the scaled genetic algorithm considered 
in this exposition (see Proposition 2.1.2.1). As a benefit, we can circumvent 
most of the more general theory of stochastic matrices and establish key in­
gredients of our mathematical framework for scaled genetic algorithms such 
as (1) “weak ergodicity of the inhomogeneous Markov chain describing the 
algorithm” and (2) “the existence of a uniquely determined steady state distri­
bution of a single step of the genetic algorithm” in a short, simple and mostly 
self-contained way. 

A matrix in is called column-stochastic or for short stochas­
tic, if each of its columns sums to 1. The next line lists several basic facts about 
stochastic matrices. The proof is given in section 5. 
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If we assume that a probabilistic algorithm such as a genetic algorithm acts 
on a state space then a single step at time of such an 
algorithm shall be described by a stochastic matrix In that case, 

equals the transition probability from state to state in step 
of the algorithm. If we consider the stochastic matrices and associated 
with two consecutive steps and ask for the transition probability from state 
to state under both steps combined, then we have to consider all possible 
paths and disjoint events For a particular 

we know that transition occurs with probability 
The portion of the latter probability is then 

the probability for passage Thus, the total probability for passage 
from state to state under steps and combined is given by 

Hence, transition probabilities for combined steps of a probabilistic algorithm 
are given by the combined matrix product of the associated stochastic matrices. 

See the first chapter of Schaefer’s book (Schaefer, 1974) for a good and 
short introduction to theoretical aspects of stochastic matrices. One may be 
inclined to develop a theory for stochastic matrices and genetic algorithms 
over real vector spaces. However, it is useful to develop such theory over 
complex vector spaces since certain aspects such as spectral calculus (Rudin, 
1973, p. 243: eq. (2)) and Frobenius’ Theorem (Schaefer, 1974, p. 22: Thm. 
6.5) are inherently complex theory. This is demonstrated in (Schaefer, 1974) 
and (Schmitt et al., 1998; Schmitt and Nehaniv, 1999; Schmitt, 2001; Schmitt, 
2002). In particular, see (Schmitt and Nehaniv, 1999, Lemma 7.1.3) for a 
connection between the steady-state distribution of a fully positive stochastic 
matrix and complex spectral calculus as well as (Schmitt, 2002, section 2.1) for 

operator acting on the free vector space over the underlying alphabet 
a discussion of the spectrum of mutation in relation to the unitary cyclic-shift 

Section 3.2 discusses weak ergodicity of the inhomogeneous Markov chain 
underlying the model for the scaled genetic algorithm considered in this ex­
position. The following result shortens the discussion of weak ergodicity con­
siderably compared to, e.g., (Isaacson and Madsen, 1961; Seneta, 1981). The 
proof of Proposition 1.3.1 is listed in section 5. 

Let such that1.3.1. Proposition.
Let and be stochastic matrices for Let 

Then we have 
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In many papers (e.g., (Davis and Principe, 1991; Davis and Principe, 1993; 
Schmitt et al., 1998; Schmitt and Nehaniv, 1999; Schmitt, 2001; Schmitt, 
2002; Suzuki, 1997; Suzuki, 1998; van Nimwegen et al., 1999)), the machin­
ery of Perron-Frobenius theory (Schaefer, 1974, p. 22: Thm. 6.5, p. 23: Cor. 
1) is invoked to obtain the uniquely determined steady-state distribution of the 
stochastic matrix describing a single step of a genetic algorithm. The proofs 
of Proposition 1.3.2, Corollary 1.3.3 and Corollary 1.3.4 which are listed in 
section 5 develop a simple framework based essentially on the compactness of 

to achieve the same objective. We start with listing the relevant result for 
fully positive, stochastic matrices. 

1.3.2. Proposition. Let be a fully positive, stochastic matrix. 
Then there exists such that i.e., is a fully positive, 
normalized right eigenvector of  X to eigenvalue 1. If is such that 

then for some i.e., the eigenspace pertaining to 
eigenvalue 1 of  X is one-dimensional. 

Perron-Frobenius theory, in particular, (Schaefer, 1974, p. 23: Cor. 2) shows 
that 1 is actually the only eigenvalue of absolute value 1 of a fully positive 
stochastic matrix X. A simple discussion of stretching the norm of eigen­
vectors under application of a stochastic matrix  X shows that there are no 
eigenvalues with absolute value strictly greater than 1 in view of line (10), i.e., 

1.3.3. Corollary. Let be a stochastic matrix. Then there ex­
ists such that i.e., is an right eigenvector of X to eigenvalue 
1 and a probability distribution. 

The proof of Corollary 1.3.3 listed in the appendix is simpler than (Schae­
fer, 1974, p. 7: Prop. 2.3). The following result will be used to show that the 
stochastic matrix associated with an individual step of a scaled genetic algo­
rithm has a positive, invariant right eigenvector which is uniquely determined 
up to scalar multiples. 

1.3.4. Corollary. Let and be stochastic ma­
trices. Then MX is fully positive and possesses an invariant right eigenvector 

which as such is uniquely determined up to scalar multiples. 
In addition, If M is invertible, then, is an invariant 
right eigenvector of XM which as such is uniquely determined up to scalar 
multiples. In addition, 
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1.4 CREATURES AND POPULATIONS 
In this introductory exposition, we shall only consider binary genetic al­

gorithms which use the underlying alphabet However, in 
applications where real parameters are optimized in a compact domain of 

it may be advantageous to consider a larger, discrete alphabet 
representing a finite, equidistant set of real numbers2. Such an approach is 
advocated and used, e.g., in work by Markus, Renner, & Vanza (Márkus et al., 
1997, p. 48), Kondoh & Schmitt (Schmitt and Kondoh, 2000), and Savchenko& 
Schmitt (Savchenko and Schmitt, 2001). See also work by Nomura & Shimo­
hara (Nomura and Shimohara, 2001). One task in future work is certainly to 
generalize the approach taken here and in (Márkus et al., 1997; Savchenko and 
Schmitt, 2001; Schmitt and Kondoh, 2000; Schmitt, 2001; Schmitt, 2002) to 
the case of a continuous alphabet. 

We shall consider (the genome of) creatures or candidate solutions in the 
model world to which the genetic algorithm is applied as strings of length 
over the alphabet where usually Let denote the set of 
creatures. 

The set of populations to which the genetic algorithm is applied, is the 
set of of creatures, We shall assume that is even, and

if not explicitly stated otherwise. Set
 Then every population is 
(canonically identified with) a string of length L over Let

If 
is a population, then we define 

and If then we shall write 
if A spot in the genome is, by definition, the position of 

one of the letters in a word over representing a creature or population. For 
we define the Hamming distance as the number of spots in 

the genome where and differ. 
The vector space underlying our model for genetic algorithms is the free 

complex vector space3 over Thus, becomes the basis of which is con­
sistent with the notation introduced in section 1.1. Every population can 
be identified canonically with an integer in i.e., the letters com­
prising are used as digits to define the integer in binary representation. This 
induces a natural order on Now, we identify with 

2If a regular programming language such as Fortran or C is employed for the Implementation of the genetic 
algorithm, then only a finite set of real numbers is used. In many cases, the search space can be 
restricted further by a rough analysis of the given optimization problem to a finite interval 

3(Schmitt, 2001, Sec. 2.6) discusses the identification of with the  L-fold tensor product of the free 
vector space over  . This can be used for analysis of mutation as in (Schmitt, 2001, Prop. 3.3, Prop. 3.6) 
and various crossover operators as in (Schmitt, 2002, Sec. 2.4–5). 
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and by linear extension, this defines an isomorphism Let 
By suppressing notation for the particular isomorphism just de­
fined, we can consistently denote the of where  X stands for 
a linear operator acting on and the corresponding matrix acting on as 

Let be the free vector space over all populations which are uniform, 
i.e., which consist of copies of a single creature. Consequently, shall 
denote the set of uniform populations. In addition, shall denote the orthog­
onal projection onto The following simple result whose proof is listed in 
section 5 allows for compact notation in some of the subsequent results and 
proofs. 

1.4.1. Proposition. Let be a linear map such that 
for every Then  X satisfies and 

2. THE GENETIC OPERATORS 

The genetic operators can be categorized into two groups: the mixing opera­
tors mutation and crossover which are used concurrently in a genetic algorithm, 
and the selection operators such as proportional fitness selection, tournament 
selection or simulated annealing type selection which provide alternatives for 
implementation of a genetic algorithm. However, crossover has some common 
features with selection such as leaving uniform populations invariant. 

Mutation-crossover has been investigated by many researchers. The most 
common and simple framework investigated is multiple-spot mutation com­
bined with single-cutpoint crossover in the multi-set model for populations 
over a binary alphabet. Earlier references include the work of Davis & Principe 
(Davis and Principe, 1991; Davis and Principe, 1993), Vose & Liepins (Vose 
and Liepins, 1991), and Nix & Vose (Nix and Vose, 1992). Other work which 
has significance to the present work are the papers by Suzuki (Suzuki, 1997; 
Suzuki, 1998) (compare (Schmitt, 2001, Sec. 8.3)). In (Vose and Wright, 
1998a; Vose and Wright, 1998b), Vose & Wright discuss the mutation-crossover 
matrix via the Walsh-transform. Note that the Vose-Liepins version of mutation-
crossover is different than the mutation-crossover operation discussed here. 
Section 3.5 discusses how to embed the Vose-Liepins version of mutation-
crossover into the model presented here. 

In contrast to popular belief, one must observe that mutation and not cross­
over is the main thriving force for mixing in a genetic algorithm. Mutation 
assures weak ergodicity, and as an immediate consequence strong ergodicity 
of the Markov chain describing the mathematical model for the genetic al­
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gorithm (see section 3.2 and Theorem 3.3.2). In the generic situation of a 
blind search with a fitness function of largely unknown behavior, it is muta­
tion and not crossover that drives the algorithm. In particular, mutation cre­
ates the noise that destroys uniform populations containing suboptimal solu­
tions which is something crossover cannot do. Note that Banzhaf, Francone & 
Nordin (Banzhaf et al., 1996) report experimental results that favor larger mu­
tation rates, i.e., strong mixing by mutation. There are quite natural situations 
where crossover asymptotically plays no role in the probabilistic outcome of a 
genetic algorithm ( cf . (Schmitt, 2001, Thm. 8.3.3, Thm. 8.5.2–3)). Crossover 
assists mutation in accelerating the mixing process towards the uniquely deter­
mined fix-point of the fully positive, symmetric mutation-crossover operator 

( cf. Proposition 2.2.3.4). This statement is made very precise 
in (Schmitt et al., 1998, Prop. 10) and (Schmitt, 2001, Thm. 6.1). However, 
there are “royal road cases” where by the design of the fitness landscape the 
acceleration by crossover is significant (cf. work by Jansen & Wegener (Jansen 
and Wegener, 2001)). In regard to the family of selection operators, we shall 
restrict us here to the case of proportional fitness selection which is discussed in 
detail in section 2.3. With respect to tournament selection, we refer the reader 
to work by Goldberg (Goldberg, 1990), (Goldberg, ) as well as Goldberg & 
Deb (Goldberg and Deb, 1991), and to the monographs by Mitchell (Mitchell, 
1996, p. 170) and Michalewicz (Michalewicz, 1994, p. 59). In regard to sim­
ulated annealing type selection, we refer the reader to the introductory paper 
by Aarts & Van Laarhoven (Aarts and van Laarhoven, 1989), work by Lozano, 
Larrañaga, Graña & Albizuri (Lozano et al., 1999) and Mahfoud & Goldberg 
(Mahfoud and Goldberg, 1992; Mahfoud and Goldberg, 1995), (Schmitt et al., 
1998, p. 124: Rem. on Simulated Annealing) and (Schmitt, 2001, Sec. 6.2). 

2.1 MULTIPLE-SPOT MUTATION 

Mutation models random change in the genetic information of creatures, 
and is inspired by random change of genetic information in living organisms, 
e.g., through the effects of radiation or chemical mismatch. Multiple-spot mu­
tation has been studied theoretically by many authors as discussed in the 
introductory paragraphs to section 2. See also (Schmitt et al., 1998, Sec. 2.1, 
p. 110 ff., “multiple-bit mutation”), (Schmitt, 2001, Sec. 3.3), (Schmitt, 2002, 
Sec. 2.2). In this section, we shall repeat some of the analysis in (Schmitt et al., 
1998). However, our discussion here will be limited to the absolute minimum. 
Multiple-spot mutation is the most commonly used procedure for mutation in 
implementations of genetic algorithms. 

2.1.1. Definition (multiple-spot mutation Let 
denote the mutation rate, and for execute the following two steps: 
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in the current population. The decision for change is made positively with 
probability 
the letter at spot

(STEP 2) If the decision has been made positively in step 1, then 

(STEP 1) Decide probabilistically whether or not to change the letter at spot 

 is altered, i.e., the bit at spot is flipped.

Let
 also denote the stochastic matrix associated with multiple-spot mu­

tation. acts on in the sense of line (12) and describes transition proba­
bilities for entire populations. 

If then mutation is the identity operation. If then the cur­
rent population is bit-wise complemented. In what follows, we shall usually 
exclude these two trivial cases, if we discuss mutation. 

2.1.2. Proposition. Let denote multiple-spot mutation as in Def­
inition 2.1.1 with mutation rate Suppose that Then we 
have: 

then 

1 The coefficients of are given as follows: 

In particular, is a fully positive and symmetric. 

2 If 

3 If then In addition, 

4 If is sufficiently small, then is an invertible matrix. 

5 is the uniquely determined invariant probability distribution of 

PROOF: In order to pass from to one has to make the decision to change 
one of bits times, and one has to retain bits at spots. 
Independently from the order of such steps, the combined probability for the 
required procedure is given by One has 

This shows statement (1). If 
then This combined with statement 
(1) shows statement (2).	 By statement (1), one has 

Observing that is stochastic then yields statement 
(3). The determinant is a continuous (polynomial) function in the 
coefficients of Statement (3) shows that as 

This implies that for sufficiently small Consequently, 
is invertible (Lang, 1970, p. 108: Thm. 8) for such This shows statement 
(4). Since is symmetric, it follows that is an invariant vector of 
Proposition 1.3.2 now shows the remainder of statement (5). Q.E.D. 
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Proposition 2.1.2.4 is contained in (Schmitt et al., 1998, Prop. 3.4) or the 
slightly stronger (Schmitt, 2001, Prop. 3.6.3) which show that is invertible4 

for 

2.2	 SINGLE-CUTPOINT REGULAR

CROSSOVER


Crossover models the exchange of genetic information of creatures and is 
inspired by exchange of genetic information in living organisms, e.g., during 
the process of sexual reproduction. The crossover operator is treated here only 
in a very short manner: the definition of regular single-cutpoint crossover is 
given and some basic consequences are derived. Nevertheless, the analysis 
presented here shall improve some of the results in (Schmitt et al., 1998, Sec. 
2.2, “simple crossover”). 

Recall that the size of populations is supposed to be an even inte­
ger. Regular crossover shall refer to a procedure where the creatures 
in the population are sequentially paired, and a specific crossover operation 
is then applied to each of the pairs with probability 
This follows, e.g., Goldberg’s approach (Goldberg, 1989, p. 16–17). Single­
cutpoint regular crossover has previously been studied in the tensor-string model 
for populations in (Schmitt et al., 1998, Sec. 2.2), (Schmitt, 2001, Sec. 5.2) and 
(Schmitt, 2002, Sec. 2.4). 

2.2.1. Definition (elementary single-cutpoint crossover). Let 
and is called the cutpoint5. Let 

be the current population, Then 
the elementary single-cutpoint crossover operation is defined by the 
following three steps: (STEP 1) Pick creatures and 

from where (STEP 

2) For do: (( If then switch letters by setting 
and If then copy letters by setting and 

)) (STEP 3) Replace by and replace by 
in 

4 Based upon the tensor product description of (Schmitt, 2001, Sec. 2.6), one represents as a cor­
responding tensor product of “spot mutation matrices” Then, one obtains 

equals the factor contributed by mutation to the spectrum of the 
combined mutation-crossover matrix in Koehler’s Theorem (Koehler, 1994, p. 419), i.e., the Vose-Liepins 
conjecture. A tensor-product description of mutation is known in Theoretical Biology. See, e.g., work by 
Griffiths &Taveré (Griffiths and Taveré, 1997). 
5The case is considered in (Schmitt et al., 1998, Sec. 2.2, p. 113: footnote) mainly for mathematical 
convenience. See also the discussion of Geiringer’s Theorem in (Schmitt, 2001, Sec. 5.4). Some readers 
may find the case a more natural setting. 
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We shall also denote the stochastic matrix associated with the elementary 
single-cutpoint crossover operation by acts on in the 
sense of line (12) and describes transition probabilities for entire populations. 

It is easy to see from Definition 2.2.1 that any two operators and 
commute. Clearly, one has 

is a map that is its own inverse. This shows that up to a 
rearrangement of the basis of is a block diagonal matrix con­
sisting of 1 of proper dimension corresponding to the populations invariant 
under Hence 

since 

 and flip matrices f as defined in equation (2). 
is symmetric, and 

commutes with moves letters around but does 
not alter them; and it does not matter whether the entire collection of letters in 
a population is mutated spot-wise before or after being rearranged. 

One then randomizes the choice of the cut-cutpoint giving every possi­
ble value for equal probability. This yields the averaged single-cutpoint 
crossover operation which is given by the following “averaged” stochas­
tic matrix: 

Simply observe that for the expression 
equals the combined probability for a transfer 

under disjoint events where the specific action determined by is 
chosen with probability is symmetric and commutes with as an 

that commute 
with
R-linear (convex) combination of symmetric matrices 

 Any two and commute since all commute, i.e., 
we have 

Line (13) shows that for 
If one decides with positive probability whether or not to apply 

averaged single-cutpoint crossover to a population, then the stochastic matrix 
associated with this operation is given by In fact, the 
probability to activate transition under equals and then 
is the probability for transition On the other hand 

is the probability for not invoking These considerations 
shall be useful in the proof of Proposition 2.2.3. 
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2.2.2.Definition (single-cutpoint regular crossover  Let 
be the crossover rate. For do the next two steps: 

(STEP 1) Decide probabilistically whether or not crossover takes place in the 
current population involving parent creatures and The decision for 
crossover to take place is made positively with probability (STEP 2) If 
the decision for crossover involving creatures and has been made 
positively in step 1, then execute i.e., chose a random cutpoint and 
switch letters in spots as determined by 

Let also denote the stochastic matrix associated with single-cutpoint reg­
ular crossover. acts on in the sense of line (12) and describes transition 
probabilities for entire populations. 

The case of a negative decision in step 1 above is referred to as cloning in 
(Vose, 1999b, p. 43). We summarize basic properties6 of in the next result. 

2.2.3. Proposition. Let denote multiple-spot mutation as in Def­
inition 2.1.1 with mutation rate Let denote single-cutpoint 
regular crossover as in Definition 2.2.2. Then we have: 

1 

2 is a symmetric matrix whose coefficients are polynomials in 

3 for every 

4 is symmetric with uniquely determined invariant prob­
ability distribution 

PROOF: Taking into account the discussion shortly before Definition 2.2.2, we 

processes/matrices
 (11),

see that is defined as the sequential application of stochastic 
 for As discussed in 

section 1.3, line  the action of the whole of then corresponds to the 
product of the matrices for the individual steps. Since all commute by 
line (15), the order in the matrix product can be reversed. This shows statement 
(1). Now, we have: 

6One has using line (14), the fact that all 
commute, (Rudin, 1973, Thm. 11.23), and This, Proposition 2.2.3.1 and (Rudin, 
1973, Thm. 11.23) imply for sufficiently small an estimate for the second largest modulus 
in This improves (Schmitt et al., 1998, Prop. 10) and (Schmitt, 2001, Thm. 6.1). The estimate 

corresponds to (but does not equal) the factor contributed by crossover in the third 
largest eigenvalue obtained in Koehler’s Theorem (Koehler, 1994, p. 419), i.e., the Vose-Liepins conjecture. 
The reason for the factor 2 above and a leading factor 1/2 in Koehler’s Theorem will become apparent in 
section 3.5. See (Schmitt, 2001, Thm. 6.2) for a related result where the spectrum of mutation-crossover (but 
not the Vose-Liepins version) is computed in the multi-set model as a projection of the mutation-crossover 
matrix in the tensor-string model. 
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Hence, is symmetric. The fact that has entries that are polynomials in 
follows directly from statement (1). This shows statement (2). Observe that 

is invariant under every as discussed above in consequence of 
line (13). This shows statement (3). The discussion of also shows that 
every and, consequently, their product commutes with 

Now, statement (2) and Proposition 2.1.2.1 show that 
This shows that is symmetric. Thus, is an 

invariant vector of The remainder of statement (4) now follows from 
Proposition 2.1.2.1 and Corollary 1.3.4. Q.E.D. 

Regular single-cutpoint crossover also commutes with population-wise 
single-spot mutation as discussed in (Schmitt, 2001, Sec. 5.2.1.2) but not with 
creature-wise single-spot mutation. 

There are other canonical crossover operators to chose from: (1) (Schmitt 
et al., 1998, p. 117) discusses unrestricted crossover where the positions of 
creatures to be mated are chosen at random in Unrestricted crossover 
also commutes with population-wise single/multiple-spot mutation, cf. (Schmitt, 
2001, Sec. 5.3.1.2). (2) (Schmitt, 2002, Sec. 2.4) discusses regular multiple­
cutpoint and uniform crossover which also commute with the latter two muta­
tion operators. (3) (Schmitt, 2002, Sec. 2.5) discusses gene-lottery crossover 
which does not commute with mutation. 

Observe that in every example for crossover discussed here, the given 
crossover operation may alter every creature in the population. Thus, the pop­
ulation before crossover and the population after crossover may be disjoint, if 
they are seen as sets of creatures. 

2.3	 THE FITNESS FUNCTION AND 
SELECTION 

Fitness selection models reproductive success of adapted organisms in their 
environment and, usually, includes a random rearrangement of the creatures 
(individuals) in a population. In this work, we shall restrict the analysis to 
scaled proportional fitness selection based upon a given fitness function 

(consult, e.g., Goldberg’s book (Goldberg, 1989, p. 16), (Schmitt 
et al., 1998, Sec. 2.3), or (Schmitt, 2001, Sec. 7.1)) which is used in standard 
applications of genetic algorithms to select the creatures in the future popula­
tion from the creatures in the present population after the crossover-mutation 
operation. is the set of all pairs such that Let 

have elements.  J will be called the selector mask. 
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Suppose that is non-trivial in that for every 
(to assure that the selection operator is well-defined). In addition, we 

shall assume that for any two creatures and for any two populations 
such that and one has: 

This induces a quasi order on (recall that We shall write

if 
Typical examples for fitness functions satisfying 
the above are a fitness function whose values are independent 
of the population and rank based upon a function The reader may 
give a suitable definition of rank or consult (Schmitt, 2001, Sec. 7.3). Using 
a selection method based upon rank induced by a given raw fitness function 

was proposed by Baker (Baker, 1987). Let 

be the set of maximal elements in in regard to the quasi order induced by the 
fitness function. The optimization algorithm is supposed to maximize in the 
sense of finding an element of Let 

measures the “strength” of second-to-best creatures 
containing elements where both creatures and 

in populations
are sitting on 

components/spots of corresponding to J. is easy to determine, if the 
fitness function is given by rank. We shall suppose that is non-trivial in 
that 

Next, we define power-law scaling of the fitness function in accordance 
with, e.g., (Goldberg, 1989, p. 124), (Schmitt et al., 1998, Sec. 2.3), (Schmitt, 
2001, Sec. 7.1), (Suzuki, 1997, p. 65), (Suzuki, 1998, p. 100). In fact, we set 
for 

In addition, define In this exposition, 
we shall only consider logarithmic scalings as listed above which are un­
bounded. It has been shown in (Schmitt, 2001, Thm. 8.5), that faster scalings 
with, e.g., linear growth in the exponent are of limited value, 
in particular, in regard to the use of a crossover operation. In fact, such algo­
rithms are asymptotically equivalent to a “take-the-best” algorithm (Schmitt, 
2001, Def. 8.4) where one cycle of the algorithm consists of the mutation-step 
and picking maximal creatures in the current population. Finally, scaled pro­
portional fitness selection is defined as follows: 
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2.3.1. Definition (scaled proportional fitness selection 
Let be the selector mask as defined above. Let and 

be as in line (19). Suppose that is the current 
population with For let denote the 
number of copies of in Now, the new population 
is assembled as follows: for execute the following step: (( Select 
creature probabilisticly among the creatures in such that a particu­
lar has relative probability 
for being selected as 

Let also denote the stochastic matrix associated with scaled proportional 
fitness selection. acts on in the sense of line (12) and describes transition 
probabilities for entire populations. 

Definition 2.3.1 generalizes (Schmitt, 2001, Sec. 7.1, eq. (23)). The follow­
ing Proposition collects basic properties of the scaled fitness selection operator 

2.3.2. Proposition. Let where is the size 
of the selector mask Let denote scaled proportional fitness 
selection as in Definition 2.3.1 with scaling as in line (19). Suppose that 

Then 
we have 

1 

2 If then


3


4 If
 then 

PROOF: If then one must have In 
this situation, is the proportional 
strength and selection probability for among the These 
probabilities for the independent selection-events are then multi­
plied together. If then one of the products 
must equal 0. This shows statement (1). If then only one creature is 
available for selection from which shall reproduce again. This shows 
statement (2). If a particular has maximal fitness-value in 
this set, then the probability to select in one step of the for-loop in Defi­
nition 2.3.1 is greater or equal Hence, the probability to generate 
the uniform population is greater or equal Consequently, 

This shows statement (3). Let us finally show statement 
(4). Using Proposition 1.4.1, statements (2) and (3), we obtain for 
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3.	 CONVERGENCE OF SCALED GENETIC

ALGORITHMS TO GLOBAL OPTIMA


3.1	 THE DRIVE TOWARDS UNIFORM

POPULATIONS


In this section, we shall investigate the convergence of a scaled genetic al­
gorithm towards uniform populations. This is a result of the tendency of the 
selection operator to produce uniform populations (cf. Proposition 2.3.2.3) 
and the fact that the mutation rate is scheduled to converge to zero. Results 
related to the present discussion have previously been obtained in (Schmitt 
et al., 1998, Thm. 15.4–5) (Schmitt, 2001, Thm. 8.1.3, Thm. 8.2.3–4) and 
(Schmitt, 2002, Thm. 3.1.1.3). 

The results (Schmitt et al., 1998, Thm. 17), (Schmitt, 2001, Thm. 8.1, Thm. 
8.2), and quite drastically (Schmitt, 2001, Thm. 8.3) show that a genetic algo­
rithm with strictly positive mutation rate limit cannot asymptotically converge 
to a probability distribution over populations containing only globally opti­
mal creatures. This includes the case of the simple genetic algorithm. Conse­
quently, in order to obtain asymptotic convergence to global optima, the muta­
tion rate has to be annealed to zero. Theorem 3.1.2 shows that in this situation 
the algorithm must converge to a probability distribution over uniform popu­
lations only. Thus, even though the goal of an optimization algorithm should 
be to find just one copy of an optimal creature, the fabric of the algorithm will 
asymptotically deliver a uniform population containing optimal creatures. We 
point out that a properly designed, scaled, asymptotically converging genetic 
algorithm as in the Global Optimization Theorem 3.4.1 allows for probabilistic 
estimates in regard to running the algorithm only a finite but larger number of 
cycles and approaching the limit probability distribution over uniform popula­
tions containing globally optimal creatures, cf. the discussion after the proof of 
Theorem 3.3.2 and (Isaacson and Madsen, 1961, p. 160: proof of Thm. V.4.3). 

The next result simplifies and generalizes the approach taken in (Schmitt 
et al., 1998, Prop. 2.4, Prop. 4.4), (Schmitt, 2001, Prop. 3.4.4, Prop. 3.7.4) 
and (Schmitt, 2002, Prop. 2.2.3) by showing a mutation flow inequality for the 
combined crossover-mutation operator without referring much to the particular 
action of mutation. 

3.1.1. Proposition (mutation flow inequality). Let denote 
multiple-spot mutation as in Definition 2.1.1 with mutation rate 
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Let denote single-cutpoint regular crossover as in Definition 2.2.2. Then 
we have: 

1 and 

for every 2 

PROOF: If then changing a single spot in the genome under 
multiple-spot mutation makes non-uniform. By Proposition 2.1.2.1 the prob­
ability for this to occur is strictly positive as well as the probability for retaining 

under multiple-spot mutation. Hence, the combined probability for obtaining 
a uniform population from under multiple-spot mutation, i.e., 
is an element of (0, 1). If then by Proposition 2.1.2.3 we have: 

Taking into account that is 
finite shows that and This shows statement (1). 

To show statement (2), observe first that applying 
lines (8) and (10). Using Proposition 2.2.3.3 and Proposition 1.4.1, we obtain: 

The constant in Proposition 3.1.1 has been explicitly computed in (Schmitt 
et al., 1998, Prop. 4.4) and the more general (Schmitt, 2001, Prop. 3.7.4). The 
mutation flow inequality shows how the mutation operation controls the bal­
ance between uniform and non-uniform populations in a genetic algorithm. If 
the mutation flow inequality is combined in a proper way with the contraction 
of the selection operator towards uniform populations established in Proposi­
tion 2.3.2.4, then this ensures that the combined probability over non-uniform 
populations in the steady-state distribution of a simple genetic algorithm be­
comes small for small mutation rates. This fact is shown in statement (3) of 
the next Theorem taking into account Proposition 3.1.1.1. 

3.1.2. Theorem. Let denote multiple-spot mutation as in Defini­
tion 2.1.1 with mutation rate Suppose that is given 
as in Proposition 3.1.1.1. Let denote single-cutpoint regular crossover as 
in Definition 2.2.2. Let where is the size of the 
selector mask Let denote scaled proportional fitness selec­
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tion as in Definition 2.3.1 with scaling as in line (19). Then we have for 

1 

2 

3 then 

for 

If is an invariant vector of 

PROOF: Using Proposition 2.3.2.2, Proposition 1.4.1, Proposition 2.3.2.4 and 
Proposition 3.1.1.2, one has 

This shows statement (1). Statement (1) shows statement (2) for since 
To complete the proof of statement (2), we proceed by 

induction: 

Statement (3) is now obtained as follows: 

3.2 WEAK ERGODICITY 
From now on, we shall set In accordance with the 

discussion in section 1.3, we see that describes the probabilistic passage 
in one cycle of the genetic algorithm. For 

define Let Weak ergodicity 
of the inhomogeneous Markov chain as discussed in the books by 
Isaacson & Madsen (Isaacson and Madsen, 1961, p. 142–151, p. 151: Thm. 

Thm. 4.9) refers to the phenomenon that the trajectories
141:V.3.2) or Seneta (Seneta, 1981, p. 85–86, p. 134–142, p. 137: Thm. 4.8, p. 

 and of 
sequential application of the to initial probability distributions and 
become arbitrary close as for any initial offset However, weak 
ergodicity does not imply that exists. 
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If we set then Proposition 2.1.2.2 shows that 
has entries that are bounded below by Proposition 

1.3.1.2 applied with then shows that

i.e., weak ergodicity.


Note that where  A and  B are stochastic matrices 
acting on since each of the columns of A – B is a difference of elements 
of 

3.3 STRONG ERGODICITY 

Let and be as in section 3.2. Strong ergodicity as discussed 
in (Isaacson and Madsen, 1961, p. 157: Sec. V.4) or (Seneta, 1981, p. 92: 
Sec. 3.3, p. 149: Sec. 4.5) refers to the existence of 

Using that we see 
that
for any initial offset 

i.e., the asymptotic probabilistic outcome (limit) of 
applying the sequentially to is independent from the initial prob­
ability distribution or distribution sequence. This holds, in particular, if 

i.e., the algorithm starts at a user-selected population.


technical but rather powerful result:
To establish strong ergodicity of we need the following


3.3.1. Proposition. Let 
inition 2.1.1 with mutation rate
note single-cutpoint regular crossover as in Definition 2.2.2 with crossover 

denote multiple-spot mutation as in Def-
Let de-

rate fixed. Let denote scaled proportional fit­
ness selection as in Definition 2.3.1 with scaling as in line (19). Let 

By Corollary 1.3.3, has an invariant probability distri­
bution If is sufficiently large enough, then is uniquely determined. 
In addition, 

1. exists. 

The proof of Proposition 3.3.1 which is listed in section 5 runs along the lines 
are essentially something like 

rational functions in
of the following idea: The coefficients of the

which must take values in [0, 1] since 
Consequently, these functions cannot have a pole at and 

consequently must even be (almost) differentiable in This implies 
monotone behavior and summability. 

3.3.2. Theorem. Let denote multiple-spot mutation as in Definition 
2.1.1 with mutation rate Let denote single­
cutpoint regular crossover as in Definition 2.2.2 with crossover rate 
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fixed.  Let denote scaled proportional fitness selection as 
in Definition 2.3.1 with scaling as in line (19). Let


1 Then the inhomogeneous Markov chain
 is strongly ergodic. 

2 If is arbitrary and is as in Proposition 3.3.1, then 

PROOF: Let be as in Proposition 3.3.1. Let be fixed. For 

let Using the remark in the last paragraph of 
section 3.2, we know that In addition, 

since is an invariant vector of Now, 
using the triangle inequality repeatedly, using lines (9) and 
(10), we have: 

The last conclusion in the line (20) uses Proposition 3.3.1.1. Now, we have 
which shows the 

existence of Thus, 
for 

every and This completes the proof of both statements of the 
Theorem. Q.E.D. 

Theorem 3.3.2 is a short, simplified variant of (Isaacson and Madsen, 1961, 
p. 160: Thm. V.4.3). It is included here for the sake of completeness and the 
convenience of the reader. The proof of Theorem 3.3.2 illustrates the asymp­
totic behavior of ergodic, scaled genetic algorithms. The reader should realize 
in which manner the interplay of weak ergodicity and the convergence behav­
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ior of the in particular, in regard to the summability of

or coordinate-wise monotone behavior of
 contributes to the asymp­
totic behavior of the ergodic, scaled genetic algorithm established above. In 
principle, one can say that “The genetic algorithm follows the trajectory of the 

 since the 
quantity 
steady-state distributions of the individual steps of the algorithm.”

becomes small for large as established above. Using 
the explicit form of the mutation and crossover schedules, Proposition 1.3.1, 
the inequalities in the above proof and the steady-state flow inequality estab­
lished in the proof of the Global Optimization Theorem 3.4.1 (line 26), then 
allow to develop stopping criteria similar to results by Aytug & Koehler (Aytug 
and Koehler, 1996). 

3.4 CONVERGENCE TO GLOBAL OPTIMA. 
The following Theorem 3.4.1 is the main result of this exposition. It shows 

that a carefully scaled genetic algorithm converges for arbitrary fitness func­
tion to a probability distribution over uniform populations containing only el­
ements of (see definition (17)). Thus in the case of a binary alphabet, 
(Schmitt, 2001, Thm. 8.6, Rem. 8.7) are simplified and strengthened consid­
erably in regard to applicability and implementation. However, there is a 
price to pay in that we require the crossover-rate being annealed to 0 for the 
algorithm described below. Such a condition is not needed in (Schmitt, 2001, 
Thm. 8.6, Rem. 8.7). Note that our analysis in Theorem 3.4.1 superseeds the 
approach taken in Vose’s book (Vose, 1999b) where it is always assumed that 
the fitness function is injective (Vose, 1999b, p. 25: footnote). 

Let denote multiple-

fixed. 
Suppose Let 

(18). Let 

B satisfies: 

3.4.1. Theorem (Global Optimization). 
spot mutation as in Definition 2.1.1 with mutation rate 

Let denote single-cutpoint regular crossover as in Definition 2.2.2 
with crossover rate Let the selector mask 
satisfy either 

be given by definition denote scaled proportional fit-
ness selection as in Definition 2.3.1 with scaling 
Suppose that
Then we have: 

1 The inhomogeneous Markov chain describing the scaled ge­
netic algorithm is strongly ergodic, cf. Theorem 3.3.2.1. 

2 Let denote a steady-state distribution of an individual 
steps of the scaled genetic algorithm. For sufficiently large 

is uniquely determined up to scalar multiples as invariant right eigen­
vector of cf. Proposition 3.3.1. Let cf. Proposition 
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3.3.1.2. Then is strictly positive only over uniform populations gen­
erated by creatures in 

3 
population. Then, 

cf. Theorem 

Let be the probability distribution for the selection of the initial 
describes the state of the algo­

rithm after step and we have:
3.3.2.2. Consequently, the states of the scaled genetic algorithm con­
verge to (a probability distribution over) uniform populations generated 
by globally optimal creatures. 

PROOF: We only have to establish that is strictly positive only over uni­
form populations generated by creatures in All other claims in Theorem 
3.4.1 have already been established in previous results. 

Part 1: Convergence towards uniform populations. Let 
Theorem 3.1.2.3 implies: 

where is given as in Proposition 3.1.1.1. This shows that is non­
zero only over uniform populations. 

Part 2: Convergence towards populations containing maximal creatures. 
To complete the proof, we show that is strictly positive only over popula­
tions in i.e., populations that contain only globally optimal 
creatures. The idea for the following argument is to derive an estimate for 

as Let 

from
If 

quently,

 cf.,

the probabilistic flow between and if the homogeneous 
Markov chain defined by is in steady state. This is based upon the fact that 

Let be the orthogonal projection onto and let be 
the orthogonal projection onto Let 

Part 2a: The flow towards In order to make a transition under mutation 
 to a population one has to change at most the letters 

in the spots corresponding to a single creature in and, conse-
 then Proposition 2.2.3.1 shows that Thus, for 

sufficiently large for every A transition from 
to a population under fitness selection occurs with proba-

bility bounded below by  Proposition 2.3.2.3. Hence, we have for 
and summations over 
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Hence, we have for such that 

Inequality (22) is trivial, if Let 
Let denote the number of 

components in that are occupied by elements in The probability 
for selecting an arbitrary element in the process of the 
scaled proportional fitness selection operation is then given by 

The expression in line (23) is bounded below by 
Hence we have: 

Hence, there exists such that for sufficiently small 

Part 2b: The flow towards In order to estimate the probabilistic flow 
from to in application of to we distinguish two cases: 

CASE 1: Initial mutation-crossover step destroys all globally optimal crea­
tures with positions in J. In order to make a transition from to a pop­
ulation via mutation-crossover, one has to change every creature 
with position in  J to a creature in In that case, a subsequent selec­
tion operation cannot generate an element of Since crossover and mutation 
commute by Proposition 2.2.3.4, we may assume that crossover is applied first. 
Then the crossover operation alone may achieve changing every creature with 
position in  J to a creature in By Definition 2.2.2 or Proposition 
2.2.3.1 and the choices for  J, the combined probability for this to happen is 
bounded from above for small by 
Mutation may then keep the resulting 
Suppose that crossover only changed creatures with position in  J in 
If then the probability for this to happen is bounded from 
above by terms in the order of then the 
probability for this to happen is bounded from above by terms in the order of 

Then mutation has to alter at least one spot in the un­
changed creatures in 
the combined probability for the latter to happen is bounded by 

Jwith position in . By Proposition 2.1.2.1, 

which is then multiplied by terms in the order of to obtain an 
upper bound for the combined probability of the anticipated transition. The 
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(i.easymptotically largest estimate ., for sufficiently small obtained in this 
discussion is the term 

CASE 2: Initial crossover-mutation step retains globally optimal creatures 
with positions in J. An initial application of to yields 

elements with probability bounded from above by 
for small since at least one spot in a creature with position in  J 

in must be changed by mutation, or crossover must be applied. If selection is 
then applied to 
is bounded from above by

then the combined probability to generate elements of
as was shown in line (24). 

Hence, we have for and summations over 

Part 2c: The steady-state flow inequality. Combining inequalities (22) and 
(25) yields the steady-state flow inequality as follows: 

26

that Q.E.D. 

Inequality ( ) shows that 
This shows 

 and completes the proof. 

Theorem 3.3.2 is shown in more general versions in (Schmitt, 2002, Thm. 
3.3.2, Cor. 3.3.3, Cor. 3.3.4). In particular, other more general crossover op­
erators are allowed that need not commute with mutation. It shows the quite 
remarkable effect that with increasing population size, one is allowed to use a 
more relaxed cooling schedule for crossover. Thus for larger population size, 
the algorithm-design, i.e., definition of data-structures (creatures), which is ex­
ploited by crossover plays a more important role. Overall, crossover has more 
time and opportunity to perform its enhancement of the mixing phase of the ge­
netic algorithm. See (Schmitt et al., 1998, Prop. 10) and (Schmitt, 2001, Thm. 
6.1) where this statement is given a precise meaning in terms of contraction 
properties of the combined mutation-crossover operator. 
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3.5	 THE VOSE-LIEPINS VERSION OF 
MUTATION-CROSSOVER 

Vose (Vose, 1999b, Sec. 5.4: p. 44) describes one cycle of the (simple) ge­
netic algorithm as follows: (a) Obtain two parents by the selection function, 
(b) Mutate the parents by the mutation function. (c) Produce the mutated par-
ent’s child by the crossover function. (d) Put the child into the next generation. 
(e) If the next generation contains less than members, go to step (a). is the 
population size. Consult also the analysis by Vose&Liepins (Vose and Liepins, 
1991). In what follows, VLGA shall refer to a genetic algorithm whose cycle is 
described by steps (a)–(e) as above. 

The procedure of pairing creatures to produce offspring in the VLGA pro­
duces one child at a time while regular crossover as defined in Definition 2.2.2, 
in (Schmitt, 2001, Sec. 5.2.1), (Schmitt et al., 1998, Sec. 2.2) following, e.g., 
Goldberg’s book (Goldberg, 1989, p. 16–17) produces 2 offspring from 2 par­
ents in a single crossover-step. 

If denotes the population size of a VLGA, then we set and use 
the selector mask The reader will easily check that a cycle 

in the setting described in this exposition corresponds exactly to 
the VLGA as listed above. This embeds the VLGA into the model developed 
here and in (Schmitt et al., 1998; Schmitt and Nehaniv, 1999; Schmitt, 2001; 
Schmitt, 2002). After every cycle, the next selection step will disregard the 
offspring for obtained through mutation-crossover in the 
previous cycle and randomly arrange the chosen new parents. Thus, we do not 

43: line 25). We need not assume that the given fitness function 
have to perform a “selection-step from the two offspring” as in (Vose, 1999b, p. 

in the sense of (Vose, 1999b, p. 25) is injective as in all of (Vose, 1999b). 
Besides application of the Global Optimization Theorem 3.4.1 given above, 

the new model for the VLGA allows for application of the results in (Schmitt, 
2001), their extensions as discussed in (Schmitt, 2002, Sec. 4.1), and the main 
results (Schmitt, 2002, Thm. 3.3.2, Cor. 3.3.3, Cor. 3.3.4). In particular, 
(Schmitt, 2001, Thm. 8.2, Thm. 8.3) and their extension discussed in (Schmitt, 
2002, Sec. 4.1) show ergodicity but non-convergence to global optima for the 
VLGA with strictly positive mutation limit which includes the case of the sim­
ple VLGA. On the other hand, (Schmitt, 2001, Thm. 8.5, Thm. 8.6) and their 
extensions as well as (Schmitt, 2002, Thm. 3.3.2, Cor. 3.3.3, Cor. 3.3.4) show 
convergence to global optima of the scaled VLGA. 
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4. FUTURE EXTENSIONS OF THE THEORY 

4.1 TOWARDS FINITE-LENGTH ANALYSIS 
ON FINITE-STATE MACHINES 

In order to channel future development of theory of genetic algorithms, let 
us for a brief moment turn to the past. Theoretical description of genetic al­
gorithms can be roughly classified in two categories or —considering a time 
line— overlapping phases: The first phase is characterized by schema-theory 
following (Holland, 1975) (including the variant of building block hypothesis, 
cf. (Goldberg, 1989, p. 41–45)), the second phase is characterized by Markov-
chain analysis. Schema-theory has overall failed to produce any significant 
general convergence results (to global optima) be it for the genetic algorithm 
or the more elaborate setting of genetic programming. This does not say that 
schema-theory may not be useful to explain one-step behavior of a genetic al­
gorithm in an environment where the fitness function is changing over time. 
See work by Lux and Schornstein in that regard (Lux and Schornstein, 2002). 
In the personal opinion of this author, schema-theory is a pleasant heuristic tool 
but should be abandoned as means to analyze genetic algorithms as optimiza­
tion procedure. This admittedly blunt point of view is cautiously shared by 
Vose (Vose, 1999b, p. 211: lines 1–4). There are schema-theorems in existence 
where “mutation is ignored and the interplay crossover-selection man­
ages optimization.” Such work considers nothing but non-ergodic genetic drift 
as described and analyzed in (Schmitt and Nehaniv, 1999, Sec. 6) and (Schmitt, 
2001, Sec. 7.5). This setting implies that the probabilistic outcome of the zero-
mutation-rate genetic algorithm strongly depends upon the initial population 
or distribution of populations. This fact is rather obvious by considering the 
extreme case of an initial, suboptimal, uniform population. There are other 
schema-theorems in existence where “mutation is supposed to work constantly 
in the background and the interplay crossover-selection manages optimiza­
tion.” Such algorithms must essentially fail by virtue of (Schmitt et al., 1998, 
Thm. 17), (Schmitt, 2001, Thm. 8.1–3). See also Rudolph’s book (Rudolph, 
1997). 

Markov chain analysis of genetic algorithms is, in the opinion of this author, 
still in its infancy. Such analysis was initiated notably through work by Liepins 
& Vose (Vose and Liepins, 1991), Nix & Vose (Nix and Vose, 1992), and Davis 
&Principe (Davis, 1991; Davis and Principe, 1991; Davis and Principe, 1993). 
However, even though it is fairly simple (as shown in this exhibition) to set 
up a mathematical model for genetic algorithms based upon Markov chains, it 
has taken quite some time that non-elementary results with correct proof ap­
peared in the literature. In important contributions, Davis&Principe (Davis and 
Principe, 1991; Davis and Principe, 1993) found that annealing the mutation 
rate to zero alone does not imply convergence of the genetic algorithm to global 
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optima. (Schmitt et al., 1998, Thm. 17) and (Schmitt, 2001, Thm. 8.1–3) show 
that increasing the selection pressure alone must fail as well. Thus, annealing 
the mutation rate to zero and increasing the selection pressure properly are re­
quired to assure at least asymptotic convergence to global optima. A significant 
contribution is then Cerf’s work (Cerf, 1996; Cerf, 1998) which, however, as­
sumes the auxiliary condition of a larger population-size that strongly depends 
upon the problem instance. Cerf’s work seems to indicate that an “infinite 
population limit” may be a mathematical solution to achieve a comprehensive 
theoretical model for genetic algorithms. In the personal opinion of this author, 
such an approach is also of limited value mainly for the following reason: if 
optimization is performed with a computer, then we are dealing with some­
thing quite small and finite, i.e., a small number of candidate solutions with 
a small number of genes. Genetic optimization in computers does not deal 
with large ensembles in the sense of statistical physics (Landau and Lifschitz, 
1975) where an infinite number-of-particle limit may be appropriate. Genetic 
algorithms should be analyzed probabilisticly but in the spirit of Knuth (Knuth, 
1997b; Knuth, 1997c; Knuth, 1997a): an algorithm that runs on a finite-state 
machine for a finite period of time. This point of view forces one to rethink 
even any asymptotic result such as the Global Optimization Theorem 3.4.1 
which must be seen together with the discussion of stopping criteria after the 
proof of Theorem 3.3.2. See also section 4.2 in this regard. 

To summarize the discussion in this section, let it be stated that future the­
oretical research on genetic algorithms and genetic programming should pri­
marily deal with finite-length algorithms on finite-state machines and estimates 
in regard to approaching infinite-length asymptotics and global optima using a 
probabilistic framework. Thus, theory is at its beginning. 

4.2	 ESTIMATES FOR FINITE-LENGTH 
GENETIC ALGORITHMS À LA CATONI 

Similar to the work presented in this exhibition, the simulated annealing al­
gorithm was initially investigated in regard to its asymptotic behavior. See, 
e.g., the essay by Aarts, & van Laarhoven for an excellent introduction and 
overview in regard to the simulated annealing algorithm. Asymptotic analy­
sis of simulated annealing probably reached a peak in work by Hajek (Hajek, 
1988). 

At this point, let us mention that Lozano, Larrañaga, Graña & Albizuri 
(Lozano et al., 1999) have developed a genetic algorithm with a simulated-
annealing-type selection strategy which converges asymptotically to global op­
tima. This provides an alternative to the selection mechanism developed here. 
See also work by Mahfoud & Goldberg (Mahfoud and Goldberg, 1992; Mah­
foud and Goldberg, 1995). 
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Work by Catoni (Catoni, 1990; Catoni, 1991b; Catoni, 1991a; Catoni, 1992) 
based upon large deviation estimates took analysis of the simulated annealing 
algorithm to a higher level. It constitutes a major advance in regard to devel­
oping probabilistic estimates for finite-length simulated annealing algorithms, 
i.e., stopping criteria for these algorithms. 

Future theoretical research on genetic algorithms and genetic programming 
should apply Catoni’s work to the setting of scaled genetic algorithms with a 
simulated annealing type selection strategy or scaled proportional fitness se­
lection. 

4.3	 ADDING SAMPLING NOISE 

Kushner (Kushner, 1987) has extended the study of simulated annealing in 
yet another direction: it is assumed that the fitness function is sampled via 
Monte-Carlo simulation (see Binder’s book (Binder, 1978)) and therefore the 
setting of the optimization algorithm is perturbed by sampling noise. Kush­
ner presents an analysis of this setting via the theory of large deviations and 
discusses applications to global optimization via Monte Carlo methods. This 
study should be extended to the case of the genetic algorithm in all its standard 
incarnations. See also the discussion in (Beyer et al., 2002, Sec. 2). 

4.4	 FURTHER ANALOGY WITH 
SIMULATED ANNEALING: 
PARALLELISM AND SPARSE 
MUTATION 

There are many similarities between the genetic algorithm as presented here 
and the simulated annealing algorithm. However, there are also fundamental 
differences. Genetic algorithms have an inherent parallelism, simulated an­
nealing does not. Simulated annealing corresponds to population-size 
Consequently, if one searches for an enveloping concept for simulated anneal­
ing and genetic algorithms, then one has to consider parallel simulated anneal­
ing (see, e.g., (Azencott, 1992) for an overview). 

A more mathematical/thermodynamic distinction between the two types of 
probabilistic algorithms is that the genetic algorithm presented here is weakly 
ergodic because the fully positive, scaled stochastic matrices associated with 
the generator-phase of the algorithm assure weak ergodicity (see section 3.2). 
In the simulated annealing procedure, weak ergodicity is obtained through 
carefully scaling the selection operator such that repeated combination of a 

shrinking ability similar to the combined shrinking by operators
Proposition 1.3.1. In both cases, increasing selection pressure assures con­
vergence to global optima. If one considers the simulated annealing algorithm 

constant, non-fully-positive generator-matrix and selection retains enough 
 in 
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with a fully positive generator matrix, then for any cooling schedule a globally 
optimal solution must be found eventually. One could therefore argue that the 
Global Optimization Theorem 3.4.1 has a certain weakness in that fully pos­
itive mutation matrices are used (i.e., ergodicity is obtained too easily) even 
though the setting is standard in genetic algorithm applications. 

Population-wise single-spot mutation as discussed in (Schmitt et al., 1998, 
Sec. 2.1: “one-bit mutation”, Thm. 15) and (Schmitt, 2001, Sec. 3.2, Thm. 8.1) 
constitutes a non-fully-positive (sparse) mutation matrix which may implement 
a stronger analogue to the simulated-annealing type setting. The quoted The­
orems deal with the applications of population-wise single-spot mutation in 
genetic algorithms with strictly positive limit mutation rate which includes the 
case of the simple genetic algorithm. 

In order to strengthen the analogy between the genetic algorithm presented 
here and the simulated annealing algorithm in regard to a neighborhood-based 
search, future theoretical research should generalize (Schmitt, 2001, Thm. 8.5, 
Thm. 8.6) and their extensions discussed in (Schmitt, 2002, Sec. 4.1) as well 
as (Schmitt, 2002, Thm. 3.3.2, Cor. 3.3.3, Cor. 3.3.4), Theorem 3.4.1 and 
finite-length estimates to a setting where sparse mutation operators such as 
population-wise single-spot mutation are used. 

4.5	 ANALYSIS FROM INSIDE-OUT AND 
OUTSIDE-IN 

There are, in principle, two major ways to analyze genetic algorithms: from 
inside-out and outside-in. The approach taken in this exhibition is to analyze 
the genetic algorithm from outside-in. The algorithm is understood as an all-
purpose tool which is used in a black-box scenario, i.e., on a fitness function 
of largely unknown behavior and characteristics. Thus, this analysis could 
be characterized as “finding a least upper bound” for suitable implementation 
of genetic algorithms. They are seen here as an ergodic “cooling procedure” 
similar to the simulated annealing algorithm setting which is inspired by the 
real-world process that is used to generate large crystals such as rubies by 
carefully cooling heated material. 

The opposite way to analyze genetic algorithms is from inside-out, i.e., to 
systematically analyze the behavior of possibly different, specially designed 
genetic algorithms for specific classes of problem instances. Such a way of 
analysis is even more in the spirit of Knuth (Knuth, 1997b; Knuth, 1997c; 
Knuth, 1997a). It could be characterized as “finding greatest lower bounds” 
for specific classes of problem instances and corresponding suitable imple­
mentations of genetic algorithms. The survey by Beyer, Schwefel & Wegener 
(Beyer et al., 2002, Sec. 3) advocates and illustrates this approach to theoret­
ical analysis of genetic or evolutionary algorithms. It is pointed out that this 
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direction of research leads to a vast, unknown territory waiting for exploration. 
In regard to this point of view, consult, e.g., work by Droste, Jansen, Tinnefeld 
& Wegener (Droste et al., 2002; Droste et al., 2003; Jansen and Wegener, 2001). 

To summarize the discussion in this section, let it be stated that future the­
oretical research on genetic algorithms and genetic programming should also 
deal with detailed analysis of specific classes of problem instances and the 
behavior of corresponding suitable genetic algorithm implementations. 

4.6	 NON-MONOTONE AND 
SELF-ADAPTING ANNEALING 
SEQUENCES 

In practical applications of genetic algorithms, one may be interested in an­
nealing the mutation-rate (noise) in a rapid manner for a period of time in order 
to give the algorithm time to “thoroughly explore the neighborhood” of the cur­
rent population and/or let crossover dominate as mixing operator, and then to 
increase the mutation rate again if the algorithm has “settled,” i.e., the fitness 
values in the population have become close to uniform, or the population be­
came close to uniform itself. Concurrently with the mutation rate, the fitness 
selection scaling and the crossover rate may be altered in a non-monotone way 
as well. 

Such scheduling of the mutation-rate and other parameters may be steered 
by an external schedule where an estimate for the “settling-time” has been 
obtained through experiments, or may be self-adaptive. Anily & Federgruen 
(Anily and Federgruen, 1987, Thm. 2) have shown for the simulated annealing 
algorithm that one can use certain non-monotone sequences for the cooling 
parameter and still obtain an asymptotically converging simulated annealing 
algorithm. The reader may adapt Anily & Federgruen’s work to the situation 
of the Global Optimization Theorem 3.4.1 to obtain asymptotically converg­
ing genetic algorithms with more general annealing schedules for mutation, 
crossover and selection than presented in this work. 

The author conjectures that the Global Optimization Theorem 3.4.1 can be 
generalized to the following situation with self-adapting, random-nature an­
nealing schedules for mutation, crossover and selection: The mutation rate, 
the crossover rate and the exponentiation for the fitness-scaling are chosen at 
runtime depending upon the state of the algorithm. If the algorithm repeat­
edly returns to the same state (i.e., population), then the mutation rate and 
crossover rate are increased by a certain magnitude and the selection-pressure 
is decreased correspondingly. Overall, the parameters follow similar trajecto­
ries as proposed in the Global Optimization Theorem 3.4.1. See Agapie’s work 
(Agapie, 2001) in regard to this conjecture. 
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4.7 DISCRETE vs. CONTINUOUS 
ALPHABETS 

Many applications of genetic algorithms, in particular, in engineering are 
optimization problems where R-valued parameters are optimized in a bounded 
or unbounded domain. As discussed in section 1.4, one pragmatic approach to 
optimization of R-valued parameters is to accept that computer languages such 
as Fortran or C usually use only a finite subset of the real numbers. Another 
reason for “discrete” optimization of R-valued parameters is the following: a 
bit-string such as may on the one hand be understood as 
the binary number but can on the other hand be seen 
as the label of a leaf in a binary tree of depth 12. Thus (arguing here in a purely 
heuristic manner), discrete implementation allows a genetic algorithm to map 
a “floating compromise between real, fractal and purely discrete structures”. 

However, there exist a considerable amount of research in evolutionary op­
timization for R-valued parameters as outlined in (Beyer et al., 2002, Sec. 2). 
One may therefore also pursue the generalization of the approach presented 
here and in (Schmitt, 2001; Schmitt, 2002) to the case of a “continuous” al­
phabet such as [0, 1] or R. 

5.	 APPENDIX — PROOF OF SOME BASIC 
OR TECHNICAL RESULTS 

This appendix lists a collection of proofs of some of the more basic results 
used in this exposition for the convenience of the reader. 

PROOF 4

for every and 

and 

 of lines (5) and (6): The definition of in line ( ) via the supre­
mum shows that is the smallest constant such that 

then one has: 

Q.E.D. 

PROOF 7): Let 

This shows Conversely, 
for every since 

Q.E.D. 

PROOF 10): (7). If 
then 

 of line (
such that Then 

1. This shows that 

of line (  follows directly from line 
and

This shows Applying the latter 
to the columns of Y yields that XY is stochastic.	 Q.E.D. 
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PROOF of Proposition 1.3.1: We first note that 
Hence, Since 

Using line (7 Hence, 
every coefficient of is in one has with 

), we conclude that 
This shows statement (1) of 

Proposition 1.3.1. Using the statements in line (10), and applying statement 
(1) to inductively, we obtain 

One also has: 
as This shows Inequality (27) 

then shows statement (2) of Proposition 1.3.1. Q.E.D. 

PROOF

since

 of Proposition 1.3.2: We have for some 
Let Then there exists a subsequence 

that converges to  is compact. Now we have: 

where Proposition 1.3.1.1 was applied repeatedly in the second-to-last step.

Thus, X is 

X. 
If then 

and 
Then, 

This shows must be fully positive since
fully positive and, consequently, every component of is a convex combination 
of strictly positive entries of

 is such that 
Now, chose large enough such that 
let since both and are 
invariant vectors of X. Applying Proposition 1.3.1.1 again, we get 

since This shows Hence, is a 
scalar multiple of Similarly, one obtains that is a scalar multiple of 

This concludes the proof of Proposition 1.3.2. Q.E.D. 

PROOF of Corollary 1.3.3: The matrix is 
stochastic and fully positive for By Proposition 1.3.2, there exists 
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Sincesuch that is compact, there exists a subsequence 
that converges to Then, we have 

PROOF of Corollary 1.3.4: MX is fully positive since every column of MX 
is a convex combination of the strictly positive columns of M. Proposition 
1.3.2 shows that a right eigenvector with the desired properties exists.


Any possible invariant right eigenvector 
 of XM satisfies

Thus,
 for some Hence, if M is invertible, then 

is uniquely determined up to scalar multiples. Corollary 1.3.3 shows that 
XM has an invariant right eigenvector Then, since  M is 
stochastic. Hence, Q.E.D. 

PROOF  for 
Hence, 

of 
we have 

Q.E.D. 

 of Proposition 1.4.1: We have
and since the 

actions of the two linear operators coincide on the basis In addition, 

PROOF of Proposition 3.3.1: Proposition 2.1.2.4 shows that for 
is an invertible matrix, Corollary 1.3.4 applied with then 

Since 

shows that is uniquely determined for In order to show statement (1), 
we have to show that 

for fixed and every is finite, it is enough 
to show that for fixed and every 

Let then is up to scalar multiples the uniquely determined solution 
of i.e., generates the one-dimensional kernel of 
Adding the rows of to the first row (which is an admissible operation 
under the Gauss elimination algorithm (Greub, 1975, p. 97: 3.17)), we see 
that the kernel of is generated by as well. Since 

we see that has kernel {0},. Thus, 
is invertible, and the equation 

uniquely determines In this situation, 
can be computed using Cramer’s Rule (Lang, 1970, p. 182: Thm. 3) which 
amounts to computing quotients of determinants. 

Using Proposition 2.3.2.1 and 
we obtain for the coefficients of the selection operator 
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for 
Proposition 2.1.2.1 shows that the coefficients of are 

polynomials in Proposition 2.2.3.1 shows that the coefficients of are 
polynomials in Combining the latter two statements with line (28) and 

we obtain for computed via Cramer’s 
rule: 

distinct, 

W.L.O.G., that since 

distinct, 

We can assume  and is the 
component of a probability distribution and, consequently, stays bounded as


This shows that exists. This implies 
statement (2) of Proposition 3.3.1. 

We substitute for a constant in line (29) to obtain 

distinct, distinct. 

Hence, is bounded by some constant for 
By the Mean Value Theorem (Lang, 1968, p. 60: Thm. III.1), we have 

for such that and every 

This completes the proof of statement (1) of Proposition 3.3.1. Statement (2) 
follows from statement (1) but was already obtained above in passing. Q.E.D. 
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Abstract	 Human-competitive results include those equivalent to new scientific results 
published in peer-reviewed scientific journals, solutions to long-standing or in­
disputably difficult problems, patented inventions, and results that tie or beat hu­
man contestants in regulated competitions. We argue that the pursuit of human-
competitive results is not only a worthy goal in itself, but a useful compass for 
guiding the future growth of the field. We say this for reasons of utility, ob­
jectivity, complexity, and interminability. We believe that the continuing gen­
eration of evermore important human-competitive results relies on progress in 
three areas of research: multiobjective optimization, parallel computing, and the 
development and perfection of competent genetic and evolutionary search meth­
ods. Addressing the characteristics of human-competitive problems is one way 
to expand the theoretical underpinnings of the field of genetic and evolutionary 
computation. 

Keywords: Genetic programming, human-competitive results 
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1. TURING’S PREDICTION CONCERNING 
GENETIC AND EVOLUTIONARY 
COMPUTATION 

In his seminal 1948 paper “ Intelligent Machinery,” Turing identified three 
ways by which human-competitive machine intelligence might be achieved. In 
connection with one of those ways, Turing said: 

“There is the genetical or evolutionary search by which a combination of genes 
is looked for, the criterion being the survival value.” (Turing, 1948) 

Turing did not specify how to conduct the “genetical or evolutionary search” 
for machine intelligence. In particular, he did not mention the idea of a 
population-based parallel search in conjunction with sexual recombination 
(crossover) as described in John Holland’s 1975 book Adaptation in Natural 
and Artificial Systems. However, in his 1950 paper “Computing Machinery 
and Intelligence,” Turing did point out: 

“We cannot expect to find a good child-machine at the first attempt. One must 
experiment with teaching one such machine and see how well it learns. One can 
then try another and see if it is better or worse. There is an obvious connection 
between this process and evolution, by the identifications, 

Structure of the child machine = Hereditary material 

Changes of the child machine = Mutations 

Natural selection = Judgment of the experimenter” (Turing, 1950) 

That is, Turing correctly perceived that one possibly productive approach to 
machine intelligence would involve an evolutionary process in which a descrip­
tion of a computer program (the hereditary material) undergoes progressive 
modification (mutation) under the guidance of natural selection (i.e., selective 
pressure in the form of what we now call “fitness”). 

2. DEFINITION OF HUMAN-COMPETITIVE 

We contend that the pursuit of producing human-competitive results is a 
worthy compass for guiding the future growth of the field of genetic and evo­
lutionary computation. 

When we use the term “human-competitive” in connection with evaluating 
the results of an automated problem-solving method, we mean it in the sense 
used by machine learning pioneer Arthur Samuel (1983): 

“[T]he aim [is]...to get machines to exhibit behavior, which if done by humans, 
would be assumed to involve the use of intelligence.” (Samuel, 1983) 

To make the idea of human-competitiveness concrete, we say an automatically 
created solution to a problem is human-competitive if it satisfies one or more 
of the eight criteria in table 9.1. 
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3.	 DESIRABLE ATTRIBUTES OF THE 
PURSUIT OF 
HUMAN-COMPETITIVENESS 

The pursuit of producing human-competitive results by means of genetic 
and evolutionary computation is a worthy goal on the grounds of utility, objec­
tivity, complexity, and interminability. 

3.1 UTILITY 
Arthur Samuel’s vision for the field of machine learning matches that of the 

founders of the field of artificial intelligence, namely the automatic creation 
of computational techniques that are able to solve problems in a human-like 
way. The goal of both of these fields is to augment the capacity of humans to 
solve problems and to extend the range of complexity of problems that can be 
solved. 

The augmentation of human capacity is especially relevant in fields where 
massive amounts of primary data requiring examination, classification, and 
integration is accumulating in computer readable form. Examples include bi­
ological DNA and protein sequence data, astronomical observations, geolog­
ical and petroleum data, financial time series data, satellite observation data, 
weather data, marketing databases, and the universe of web pages, e-mail mes­
sages, news stories, and communication messages. 
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The extension of problem complexity includes examples where conven­
tional techniques of mathematical analysis are unable to solve evermore com­
plex real-world problems. The field of design provides numerous problems. 
Design is a major activity of practicing engineers. Engineers are often called 
upon to design complex structures (e.g., controllers, circuits, antennas, net­
works of chemical reactions) that satisfy certain prespecified high-level design 
goals. The design of a complex structure typically involves tradeoffs between 
a number of competing considerations. The end product of the design process 
is usually a satisfactory, as opposed to a perfect, design. 

3.2 OBJECTIVITY 

In attempting to evaluate an automated problem-solving method, the ques­
tion arises as to whether there is any real substance to the demonstrative prob­
lems that are published in connection with the method. Published demonstra­
tive problems are often contrived toy problems that circulate exclusively inside 
academic groups that study a particular methodology, but have no relevance to 
any actual work that is being done in any field of science or engineering. 

As will seen from table 9.1, the eight criteria for human-competitiveness 
have the desirable attribute of being at arms-length from the fields of artifi­
cial intelligence, machine learning, and genetic and evolutionary computation. 
That is, a result cannot acquire the rating of “human competitive” merely be­
cause it is endorsed by researchers inside the specialized fields that are attempt­
ing to automate the problem-solving process. Instead, a result produced by an 
automated method must earn the rating of “human competitive” independent 
of the fact that it was mechanically generated. The earning of this rating from 
the outside confers objectivity on the rating. 

Thus, for example, an automated method that produces a proof for a problem 
in algebraic topology would be considered “human-competitive” if algebraic 
topologists regard the theorem as a publishable result in their field. On the 
other hand, an automated method that solves a toy problem (e.g., the towers of 
Hanoi, block stacking, cannibals and missionaries, exclusive-or) would not be 
considered “human-competitive” because the solution is not publishable in its 
own right as a new scientific result (and is, in fact, only of interest because it 
was mechanically created). 

3.3 COMPLEXITY 

Pursuing producing human-competitive results necessarily leads one toward 
addressing complexity (and away from toy problems). 

To give one example, systems with which real world engineers and scientists 
work typically contain massive regularity, symmetry, homogeneity, and modu­
larity. For example, non-trivial analog electrical circuits almost always contain 
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multiple occurrences of certain subcircuits (e.g., Darlington emitter-follower 
sections, current mirrors, cascodes, voltage divider subcircuits). At a higher 
level, analog circuits often also contain multiple occurrences of various more 
complex entities, such as filters, op amps, oscillators, voltage-controlled cur­
rent sources, and phase-locked loops. Similarly, digital circuits almost always 
contain multiple occurrences of certain standard cells. And, digital circuits 
often also contain multiple occurrences of higher-level entities (e.g., counters, 
registers, multiplexers). The design of large circuits would be considerably 
more difficult (and perhaps even impractical) if the designer had to separately 
think through the design of each subcircuit from the first principles of elec­
tronic design on each occasion when it is needed. Reuse enables the designer 
to solve a particular problem once and, thereafter, simply reuse the already-
learned solution. 

However, in spite of the manifest importance of reuse in solving problems 
in many fields, problems exhibiting reuse are historically virtually absent in 
the in the literature of automated problem-solving methods. 

Recalling our own work on genetic programming, the pursuit of human-
competitive results forced us to focus very early on the importance of reuse 
in producing scalable automated problem-solving. This focus on producing 
human-competitive results led to the development of concepts such as automat­
ically defined functions (a way to implement subroutines in genetically evolved 
computer programs) as described in a paper entitled “Hierarchical Automatic 
Function Definition in Genetic Programming” at the 1992 Foundations of Ge­
netic Algorithms Workshop (Koza, John R., 1993). However, given the compu­
tational resources available in 1992, this paper merely contained a theoretical 
discussion about how to implement this mechanism accompanied by a solution 
to the “toy” even-parity problem. (See also (Koza, John R., 1992) and (Koza, 
John R., 1994)). Later work, such as the 1999 book Genetic Programming III: 
Darwinian Invention and Problem Solving (Koza, John R. et al., 1999) and the 
2003 book Genetic Programming IV. Routine Human-Competitive Machine In­
telligence (Koza, John R. et al., 2003) demonstrated that this automated mech­
anism for reuse could actually deliver human-competitive results in a variety 
of fields. 

The point is that, in 1992, it was the (distant) driving goal of producing 
human-competitive results that motivated our study of the regularity, symme­
try, homogeneity, and modularity inherent in many non-trivial problems. This 
study, in turn, led to the development of mechanisms for automated reuse. Ab­
sent the driving goal of producing human-competitive results, mechanisms for 
automated reuse might not have been pursued at all. Thus, we believe that the 
pursuit of the complexity inherent in human-competitive results can act as one 
(but, by no means, the only) compass for future extensions to the theoretical 
foundations of genetic and evolutionary computation. 
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3.4 INTERMINABILITY 

Pursuing producing human-competitive results is an inherently interminable 
process. 

It is unlikely, in the foreseeable future, that any automated method will ei­
ther match the subtlety of human-produced results or duplicate the breadth of 
areas where human intelligence is applied. 

Thus, as each human-competitive result is produced, additional evermore 
challenging human-competitive problems will appear on the horizon. 

4.	 HUMAN-COMPETITIVENESS AS A

COMPASS FOR THEORETICAL WORK


A small percentage of theoretical work arises solely from intellectual cu­
riosity. A larger percentage of theoretical work is done simply because a re­
searcher happens to be facile in a certain technique and “looks for the keys 
near the lamppost.” 

The significant theoretical work in a field arises from a shrewd assessment 
of which issues have the capability of advancing the field and which are mere 
academic curiosities. While it is sometimes fashionable to say that theoretical 
work requires no justification at all, all theoretical work is not, in fact, equal. 
The inequality becomes manifest if reviews some of the seminal examples of 
theoretical work in the field of genetic and evolutionary computation. 

For example, Holland shrewdly perceived in Adaptation in Natural and Ar­
tificial Systems that the genetic algorithm is a massive parallel competition 
among schemata (the “combination of genes” that Turing spotted in his 1950 
paper) and that the genetic algorithm searches for ever-better schemata in an ar­
guably near-optimal way (Holland, J. H., 1975). The emphasis of this entirely 
theoretical book is on explaining, arguing for the relevance of, and proving the­
orems supporting this central theme. The book mentions, in passing, dozens of 
other theoretical issues and curiosities relating to the genetic algorithm. How­
ever, instead of proving theorems or otherwise dwelling on these side issues, 
they are simply noted. 

As a more recent example, Goldberg’s The Design of Innovation: Lessons 
from and for Competent Genetic Algorithms (Goldberg, 2002) is guided by 
an overarching goal of making genetic and evolutionary search scalable, more 
efficient, and “competent.” It is a theoretical work (augmented by numerous 
well-chosen experiments), but it is theory that squarely addresses specific is­
sues that manifestly have the ability to advance the field. 
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5.	 RESEARCH AREAS SUPPORTIVE OF 
HUMAN-COMPETITIVE RESULTS 

The continuing generation of evermore important human-competitive re­
sults relies on progress in three areas of research: multiobjective optimization, 
parallel computing, and the development and perfection of competent genetic 
and evolutionary search methods. 

First, because the solution to the vast majority of human-competitive prob­
lems involve subtle and complex combinations of competing considerations, 
the techniques of multiobjective optimization indexOptimization!multiobjective 
(Zitzler, Eckart et al., 2001) are likely to be increasing important in the pursuit 
of human-competitive results. 

Second, because the solution to human-competitive problems often requires 
relatively large expenditures of computational resources, techniques for effi­
cient parallelization (Cantu-Paz, 2000) are likely to be increasing important in 
the pursuit of human-competitive results. 

Third, most importantly, the recognized deficiencies in current genetic and 
evolutionary search methods need to be addressed along the lines set forth in 
The Design of Innovation: Lessons from and for Competent Genetic Algo­
rithms (Goldberg, 2002). 

6.	 PROMISING APPLICATION AREAS FOR 
GENETIC AND EVOLUTIONARY 
COMPUTATION 

Since its early beginnings, the field of genetic and evolutionary computation 
has produced a cornucopia of results. 

Methods of genetic and evolutionary computation may be especially pro­
ductive in areas having some or all of the following characteristics: 

where the interrelationships among the relevant variables are unknown 
or poorly understood (or where it is suspected that the current under­
standing may possibly be wrong), 

where finding the size and shape of the ultimate solution to the problem 
is a major part of the problem, 

where large amounts of primary data requiring examination, classifica­
tion, and integration is accumulating in computer readable form, 

where conventional mathematical analysis does not, or cannot, provide 
analytic solutions, 

where an approximate solution is acceptable (or is the only result that is 
ever likely to be obtained), or 
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where small improvements in performance are routinely measured (or 
easily measurable) and highly prized. 
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Abstract	 Case-Based Reasoning (CBR) is the model of human problem solving using 
prior experiences (called cases). A case memory is a learning environment 
where new cases are being injected, existing cases getting purged and yet others 
adapted to fit situations in response to environmental pressures. As experience 
accumulates, case memories ideally progress incrementally towards expertise. 
At present however there is the lack of a framework to understand the nature 
of this progression and how various factors influence it. In this essay, using the 
analogy with natural selection, we cast case memories as evolutionary systems 
to see whether the perspective affords us any insights. We examine case mem­
ory processes in the light of their evolutionary role and enquire into the nature 
of search in evolutionary case memories (ECM). We show that while there are 
several unresolved questions, the perspective affords us interesting speculations 
and observations. As an extended application of the ECM perspective we exam­
ine whether the evolution of cases can lead to abstract knowledge levels. There 
is evidence that experiential knowledge may not suffice to achieve higher levels 
of task expertise but may require abstract knowledge structures such as schema. 
However, little is currently known about how schema come into existence. We 
explore the intriguing possibility that schema may evolve from cases as an evo­
lutionary operation. The essay also raises a number of research problems that 
can be attempted by both CBR and Evolutionary System communities. 

1. INTRODUCTION 
Case-Based Reasoning (CBR) is a computational model of instance based 

human problem solving. Derived from Schank’s theory of dynamic memory 
(Schank, 1982), CBR has been used with some success in a variety of appli­
cation areas such as call centre resolution (Nguyen et al., 1993), estimation 
(Bisio and Malabocchia, 1995), (Gonzalez and Laureano-Ortiz, 1992), experi­
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ence management (Bergmann et al., 1999a), (Khemani et al., 2002) and cog­
nitive information retrieval (Balaraman et al., 2003). Research has focused 
on improving the engineering of the technology by examining facets such as 
retrieval algorithms (Borner, 1998), (Chakraborti and Balaraman, 2003), orga­
nization (Burkhard and Lenz, 1996), maintenance (Leake, 1996), (Smyth and 
McKenna, 1999) and development methodologies (Bergmann et al., 1999b), 
(TRDDC, 2000). 

However, an area which needs to be better understood in a case memory 
is it’s temporal locus in terms of problem solving ability and how this locus 
comes to be as a combination of internal processes and external environmen­
tal effects. Change is a continual presence in case memories. New cases are 
injected as previously unencountered experiences, unfit cases get purged and 
existing cases are adapted to fit problem situations. Every problem solving in­
teraction may lead to changes in case memory. The changes may be a mere 
strengthening of a case’s success factor or weakening of another but over time, 
these changes lead at a case level to survival of some cases at the expense of 
others and globally to an improvement in the competence of the case memory. 
Each process in the case memory also biases the evolution of the case-base. 
Because these changes are incremental and the factors that lead to them im­
plicit in the case memory processes, their cumulative influence is not well un­
derstood. A framework is required to understand the nature of change in case 
memories and how this affects the behavior of the case memory over time. 
Such a framework can also be used to understand the biases and limitations of 
current processes and enable the creation of better problem solvers. 

In this essay we cast case memories as evolutionary systems to see if this 
perspective helps us understand the temporal behavior of a case memory. We 
explore the conventional model of case-based systems, recast it to an evolu­
tionary model (which we call Evolutionary Case Memory or ECM) and view 
it from this changed perspective. We discuss how this view can help us to un­
derstand the evolutionary role played by each case memory process and while 
there are several unresolved questions, yet lead us to interesting observations 
and speculations. We also examine the evolution of abstract knowledge struc­
tures (called schemas) from cases. There is evidence that experiential knowl­
edge alone is insufficient to lead to higher levels of expertise and that schemas 
are required. There is however little understanding of the process by which 
schemas come into existence. We explore schema creation as an evolutionary 
exercise over cases. The approach borrows ideas from the very different notion 
of schema in genetic algorithms. This discussion too leads to some interesting 
insights and open questions that can be taken up for further exploration. 

A small caveat. Given the complexity of case memory operation, it would 
be unrealistic to expect an exact mapping between the concepts and operators 
of evolutionary algorithms and case memories. The analogies are meant to be 
interpreted in the spirit of Bunge’s cautious optimism: 



213 Case Based Reasoning


“There is no question that analogy can be fruitful in the preliminary exploration 
of new scientific territory, by suggesting that the new and the unknown is, in 
some respects, like the old and the known. If B behaves like A in certain re­
gards, then it is worthwhile to hypothesize that it does so in other respects as 
well. Whether nor not the hypothesis succeeds, we shall have learned some­
thing, while nothing will have been learned if no hypothesis at all had been 
formulated…The question is to decide what to stress at a given stage of research: 
whether resemblance or difference should be emphasized.” (Bunge, 1968). 

Some Clarifications: a) While this essay samples existing work in the very 
large space of CBR and EA, it was not intended to be a comprehensive survey 
but merely indicative of the work underway. We apologize in advance for any 
omissions. b) Literature refers to CBR both as a cognitive principle and it’s 
computational implementation. In order to ground the discussion in this essay 
we view CBR as a computationally implementable model of a cognitive prin­
ciple. c) While most CBR systems share some characteristics, there are also 
several exceptions. As referring to exceptions at each point of the discussion 
would lead to the argument getting lost in a morass of conditionals, we omit 
such references. Thus, when we refer to CBR systems, it should be taken to 
mean typical CBR systems. 

2. CASE-BASED REASONING 

CBR (Schank and Riesbeck, 1987) is derived from a long sequence of work 
by Roger Schank’s group that began with the work on Conceptual Dependency 
(CD) (Schank, 1972), moved on to the world of scripts (Schank and Abelson, 
1977) and culminated in the theory of dynamic memory (Schank, 1982). The 
overall goal was to build automated systems that would be able to ‘understand’ 
and answer non-trivial queries about textual episodes such as newspaper re­
ports or stories. An interesting sidelight of this sequence is due the fact that 
unusually with AI theories, the progression to a new theory was dictated by 
experimental evidence that pointed to the cognitive incompleteness of the pre­
ceding theory. Thus deficiencies in CD1 (Schank and Abelson, 1977) prompted 
the scripts model, whose limitations in turn(Schank, 1982) led to the Dynamic 
Memory (DM) model. CBR may be considered a subset of the DM model fo­
cused on experiential problem solving. Problem solving is modeled as a search 
for and application of the best fitting prior instance. Such problem solving us­
ing cases is typical in ill structured domains such as legal reasoning, disaster 
management and help desk call resolution (Kolodner, 1993), (ICSR, 1995­
2002). However, while CBR may be most useful in such domains, it has also 
found wide applicability in classical AI domains such as estimation, design, 
planning and diagnosis (ICSR, 1995-2002). 

1The implicit knowledge problem, discussed in further detail in section 5.1. 
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The basic components of current case-based reasoning systems are, the 
case-base, a similarity computation engine that maps and aligns a new situ­
ation with the case- base to identify the set of matched cases, the adaptation 
engine to transform a retrieved case to fit it to the current problem requirements 
and a learning engine that maintains the case-base. 

The case-based process of problem solving works as follows (see Figure 
10.1). The new problem (called the input case) is compared to the cases in the 
case-base by the matching engine. This yields a set of closely matching cases. 
This is similar to the cognitive notions of Alignment & Mapping (Forbus et al., 
1991), (Holyoak and Koh, 1987) where the current situation is aligned with 
prior knowledge and the aligned features are then mapped to each other for 
correspondence. The adaptation engine adapts the retrieved case(s) to fit the 
requirements of the input case. The [adapted] cases are then applied to the 
problem. This is similar to the cognitive notion of Transfer (Forbus et al., 
1991) where the learning of the past is transferred to understand the current 
situation. The learning engine then decides whether the input case is worth 
adding to the case-base or whether an existing case is to be updated. The key 
engineering aspects of a case-based system are: 

1 Case knowledge acquisition: Often the biggest hurdle in developing 
knowledge based systems is acquiring the knowledge. While this prob­
lem is considered to be simpler than with more abstract structures such 
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as rules, it remains a vexing issue (TRDDC, 2000). Raw case knowledge 
exists in a variety of unstructured forms and is often incomplete or full 
of noise. Converting this to a form that can be reasoned over continues 
to be a big problem especially in multi-expert, multi-user scenarios. 

2	 Organization of the case-base: The structure of the case-base indicat­
ing how the cases are stored with respect to one another. Case-base 
organization has to solve conflicting requirements. From the point of 
speed of retrieval, the best organization is each case existing in a sepa­
rate compartment, which guarantees high Precision. However from the 
point of view of Recall2, the best organization is all the cases heaped in 
one container. Choosing an organization so that these conflicting goals 
are maximally satisfied is a challenge. 

3	 Representation and indexing of the cases: Representation is concerned 
with the structure and content of each case in the case-base. The key 
issues in representation are: structure wise it must include all significant 
aspects of the actual case and second, content wise the modeling must be 
adequate3. Failure in either lead to low precision and recall. Indexing is 
the selection of those features of the case that will be used to retrieve the 
case. Choice of wrong indexes would lead to the case not being retrieved 
when it should and being retrieved when it should not. Index selection 
to ensure high precision and recall is again a challenge. 

4	 Similarity measure: The similarity measure is the metric that computes 
the correspondence between the input case and the cases in the case-
base. The similarity measure is the primary way of assessing the qual­
ity of the case-based system. As with the other parameters, the choice 
of the wrong metric would have a direct effect on precision and recall. 
Most similarity measures provide an element of parameterization to en­
able tuning of the measure to obtain high precision and recall. The 
most common similarity measures are nearest neighbor/distance mea­
sures (Balaraman and Vattam, 1998). For such measures a lot of work 
has focused on optimal weight learning(Kolodner, 1993), (Kelly and 
Davis, 1991). 

5	 Adaptation: The process by which cases are adapted. Adaptation can be 
One-case in that a single case is adapted to fit the new situation or Many-
case where the case proposed is synthesized from elements drawn from 
several cases (Kolodner, 1993), (Leake, 1996). 

2 Precision and Recall are metrics borrowed from Information Retrieval. Precision measures the percentage 
of retrieved cases that are relevant while Recall measures the percentage of relevant cases that are retrieved. 
3This essentially means choosing the right type. 
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6	 Maintenance: The process by which new cases are added, old cases up­
dated or deleted. Reckless addition of new cases could lead to a large 
sized case- base with high redundancy and long retrieval times, while 
the other extreme of no addition would lead to a static system that can­
not solve newer problems. The challenge of maintenance therefore is to 
ensure that redundancy is reduced while ensuring maximal competence 
of the existent cases. 

This section has necessarily simplified the issues in case- based reasoning. 
Those wanting more information can refer to the introductory books by Schank 
and Riesbeck (Schank and Riesbeck, 1987), Kolodner (Kolodner, 1993), newer 
books on the subject by Leake (Leake, 1996) and Lenz (Lenz et al., 1998) as 
well as the numerous conference proceedings (ICSR, 1995-2002). 

3.	 CASE MEMORY AS AN EVOLUTIONARY 
SYSTEM 

Why should a case memory be viewed as an evolutionary system and what 
do we hope to gain from it? There are at systems least four reasons: 

Viewing learning as evolution: Case memories are learning, adaptive envi­
ronments which seek over time to maximize their problem solving capabilities 
which in experiential memories is usually a function of the case- base size. 
This maximization however has to take into account time response demands 
which act to limit the growth of the case-base. As a consequence of these 
opposing forces, cases in a case memory have to compete for inclusion and 
retention. Since the latter decision is based on task performance, cases are 
also in competition for retrieval and selection. Thus while case memories are 
learning systems, the learning of the new might be at the expense of the old. 
There thus appears to be a similarity to evolutionary processes. A reason there­
fore for viewing case memories as evolutionary systems is to model learning 
as evolution. This is by no means an isolated perspective. Earlier speculations 
such as GA classifiers, Genetic Machine Based Learning systems (Goldberg, 
2000) and the Copycat system of Hofstadter have adopted similar perspectives. 

To understand the processes of change: As said earlier, there is a lack of a 
framework to model or understand the nature of change in case memories and 
how this influences the performance of these systems over time. That there 
is change is indisputable. But there is no framework within which the rela­
tionship between the factors that drive change in the case-based system, the 
changes in the case- base and the performance of the case memory as a whole 
can be studied. Casting case memories as evolutionary systems will allow 
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change to be studied within a framework and with a robust set of formalisms. 

To understand biases and limitations: It should not be forgotten that CBR 
is still a very nascent technology. Proposed in 1987, CBR has seen intensive 
use only over the last decade. Perhaps naturally, the application domains have 
tended to be those with an immediate need for such problem solving. Since the 
technology has followed the need, current case-base processes may have biases 
built into their functioning that are suited for only a certain class of domains. 
These as well as limitations may get revealed by casting them in a model where 
the cumulative influence of each process on the performance of the whole can 
be studied. As an example, case selection strategy tends to be elitist in cur­
rent systems. The best seeming case is applied. But an elitist strategy may 
not be right in all domains. There is perhaps a need for studies on the lines of 
De Jong’s in function optimization to understand the relation between various 
case-base processes and their influence on case memory both at a snapshot in 
time and cumulatively over a period. 

To open up new possibilities: An improved understanding can lead to im­
provements in the technology which in turn may lead to opening up of new 
and interesting application domains. 

3.1 A SIMPLE MODEL OF ECM 

The model that will be presented below is the case memory process stripped 
to it’s bare essentials. We present each process and entity to understand the 
plain vanilla process. In the simplest model, there are 3 case memory pro­
cesses, an external environment and the case-base which contains the popula­
tion of cases. We view each interaction with the environment as a generation. 
The environment poses a problem to the ECM. GenerateSolution reacts by 
proposing a solution to the problem by retrieving similar cases and processing 
them to fit the problem. Evaluate gives a decision on whether the solution was 
acceptable both in terms of quality and time response and finally Reorganize 
modifies the case-base in the light of the decision. We now examine each entity 
in the model. 

3.1.1 Case-Base. The case-base is the set of cases. We assume 
where iseach case in the case-base is the pair is the problem and 

the solution. Let be the union of the problem parts of all cases in the case-
base at generation t and the union of all solutions. Then the case-base at 
generation t is given as 

3.1.2 Environment. The environment poses a set of problems 
to the case memory and evaluates the solutions suggested by the case 
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memory. We assume that at the end of each problem solving cycle, the en­

vironment gives it’s decision on two factors, whether the solution worked and 
whether the time response was within an assumed performance threshold 
The decision may be given as the tuple where is the decision on solu­
tion quality and is the decision on time performance. 

3.1.3 Generate Solution. GenerateSolution can be seen as  the 
sequence of processes Retrieve [Select] [Adapt]. The square parentheses 
indicates that the enclosed process is optional.

The Retrieve operator takes a case-base and compares it with the new 
problem to yield a set of relevant4 cases. Retrieve  : 

Relevance is computed in terms of similarity in problem space. A num­
ber of retrieve operators have been proposed among them the nearest neigh-
bor/distance measure, the MAC/FAC model of Forbus (Forbus et al., 1991), 
feature counting and template matching.

While Retrieve retrieves the top cases on the basis of problem space 
similarity, there could be other considerations to decide the cases that will 
actually be selected for application. 

Select : acts on the retrieved set and produces a re­
ordered set that gives the suggested order using one or more selection factors. 
Sample selection factors are TaskPer formance and SelectionStrategy. 

4What relevant means is dictated by the use environment. 



Case Based Reasoning 219 

Two cases with equivalent similarity scores could vary considerably in their ac­
tual solving ability. TaskPer formance measures the actual utility of a case 
in solving problems. A simple task performance measure may be a function 
over the number of successes and number of failures. TaskPer formance 
takes the cases passed on to it by retrieve and sorts them on problem solving 
ability. SelectionStrategy takes the list of cases passed on to it by the preced­
ing processes and decides the actual case(s) which will be passed on to Adapt 
or applied on the problem. There could be other selection factors. 

Adapt takes the set of selected cases, modifies one or more of them for 
applicability and generates the case(s) that will actually be applied to the prob­
lem. Adapt is usually driven by the differences between the input problem and 
the set of selected cases suggested by Select and works to modify the cases 

as a whole, GenerateSolution :

generates a candidate solution as a response to the problem posed by the envi­

ronment.


Adapt : 
i.e. GenerateSolution 

to bring them in line with the problem. So seen 

3.1.4 Evaluate. Evaluate applies the proposed solution to the 
problem posed by the environment. The environment decision tuple 
reveals whether the case is successful, not successful in solving the problem 
and whether the time performance was acceptable. 

3.2 REORGANIZE 

At the end of a problem solving cycle, Reorganize : decides 
the actions to be carried out on the case memory based on the performance in 
terms of success in problem solving and other criteria such as times taken by 
retrieval and adaptation. Reorganize translates the feedback from evaluation 
to an evolutionary action on the case- base. Some actions based on functions 
of current case memories are: add new case, add adapted case, delete case, 
modify case, replicate case and modify, purge case-base, restructure case-base, 
strengthen case task performance and weaken case task performance. Standard 
evolutionary operations like crossover and mutation have also been proposed 
(Soh and Tsatsoulis, 2001). 

3.3 DISCUSSION 
We presented a simple model of an evolutionary case memory. Some obser­

vations based on the model and current case memories. 

1 Retrieve applies selective pressure both by commission and omission. 
A case is retrieved only if the problem part of the case matches the prob­
lem presented by the environment. A poorly indexed or represented case 
will get retrieved when it should not and not retrieved when it should. 
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Secondly, over time, problem distribution might change. Problem distri­
bution is the relation between new problems and the existing problems 
in the case-base. Even a well indexed case might never get retrieved if 
no problems arise for which the case is relevant. And finally, if retrieval 
time is poor, it might signal a need to purge the case- base of unfit or un­
used cases ((Leake and Wilson, 1999) and (Portinale et al., 1999) may be 
referred for a discussion on problem-distribution metrics and forgetting 
strategies). 

2 TaskPer formance is similar to the notion of Strength discussed in 
GA classifiers which is based on the contribution of the classifier to suc­
cessful problem solving. Strength was based on factors like taxes, bid 
values and receipts. A minimal model of change in TaskPer formance 
would include the current TaskPer formance values of the contribut­
ing cases and the current decision on success or failure. Let be the 
performance values of the S cases selected for application in generation 

Then TaskPer formanceChange : 

3	 SelectionStrategy has some similarities to reproduction strategy in 
GAs. ReproductionStrategy decides the individuals that will pass on 
their genes to the next generation and biases the search process. Simi­
larly, SelectionStrategy decides the cases that will actually contribute 
to solving the current problem and thus biases the problem solving. Cur­
rent CBR systems use an elitist case selection strategy. The  N most 
similar cases are selected. Since CBR systems can be seen as single 
generation problem solvers, where a problem is presented in one part 
of the cycle and a solution proposed in another, using the best avail­
able choice may well be the right strategy. Recent work on diversity 
conscious retrieval (McSherry, 2002) where cases are selected based on 
solution diversity point to the fact that even in the current spectrum of 
application domains, different domains require different case selection 
strategies. There is a need to study what would be optimum case selec­
tion strategies in different domains and it’s biasing effect on case-base 
performance. 

4	 Present case-based systems use a number of adaptation techniques, rules, 
adaptation formulae, model based adaptation, adaptation cases and even 
genetic algorithms (Kolodner, 1993), (Leake, 1996), (Gomez et al., 1999). 

5	 Adapt extends the coverage of the case-base but at a cost. With pow­
erful adaptation techniques, even a small sized case-base can handle a 
large number of problems enabling minimal retrieval times. However, 
adaptation especially using model based techniques can be time con­
suming which might negate the time advantage gained by Retrieve. 
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Reorganize has to decide whether the adaptation effort is worth the 
retrieval time gains or it is better to add the adapted case to the case-base 
leading to an increase in retrieval time but reduced adaptation effort for 
a similar problem. 

6	 At each generation, the solution(s) proposed to Evaluate is a single case 
or a very small set of cases. Thus, only a very small subset of the case-
base is evaluated at each cycle. 

7 There are 2 processes that lead to change in existing cases, Adapt and 
Reorganize. While Reorganize has a direct influence, Adapt plays a 
secondary role. 

8	 Reorganize leads to incremental changes on the case-base. Unless trig­
gered by factors like need to purge cases, the fraction of cases affected 
at each generation are a very small subset of the cases in the case-base. 
However, since a case memory is used to solve a wide range of prob­
lems, the cases affected may be a significant percentage of the cases that 
are relevant in the current problem context. 

9	 Since only a percentage of the cases in the case-base are affected in each 
generation ECM may be viewed as evolutionary systems with overlap­
ping populations. 

10	 In the simplest scenarios, a case may be added without affecting other 
cases. However, workers such as Portinale (Portinale et al., 1999) pro­
pose schemes where for every case to be added, an existing case which 
is either of low task performance strength or unused is deleted. This 
appears to have some similarity to the niche crowding strategy sug­
gested by de Jong (Goldberg, 2000). Smyth and McKenna (Smyth and 
McKenna, 1999) propose coverage checks that will only add cases that 
have a different solution coverage as compared to existing cases. The in­
tention in both is to have compact yet maximally competent case- bases. 

11	 Reorganize may not just lead to addition, modification and deletion of 
cases but also to restructuring of the case-base. The case-base may not be 
a flat structure but have a complex organization. Cases may be clustered 
around prototypes, organized as a tree or a network. A case indexed 
under a wrong prototype would need to get correctly classified. A dense 
uncategorized case cluster may signal the need to evolve a higher level 
structure. Restructuring can affect both time performance and goodness 
of retrieval. Restructure is similar to graph transformation. 

12	 Optimizers can be viewed as evolutionary systems where the question 
asked by the environment is unchanged at each generation, with the se­
quence of answers leading incrementally to an optima or near optima. 
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On the other hand, in ECM, different generations lead to different ques­
tions being asked. Thus different segments of the population are evalu­
ated or affected in each generation. 

13	 While ECM may be evolutionary they are not called on to be optimizers. 
The solution proposed in each generation to a question is not an opti­
mal but a workable solution. Current use environments do not demand 
optimality but acceptable solutions within a timeframe. 

14	 If ECM are evolutionary systems as we assume, then it might be worth 
asking whether ECM can simulate optimizers. ECM may be viewed 
as optimizers where the same problem is posed repeatedly over succes­
sive generations until the solution is optimal or near optimal (see Fig­
ure 10.3). At each generation, Evaluate would indicate the goodness 
of the proposed solution(s).This however calls into question the nature 
of search in ECM. Since each generation leads to Adapt proposing an 
adapted case to Evaluate, exploration of the search space is depen­
dent upon If we assume that the cases proposed at each generation, 

are added to the case-base and the case-base reaches 
optima in generation  N , optima can be realized only if the sequence of 
processes applied successively for  N generations on an incrementally 
expanding case- base lead to it. It should be noted that Retrieve, Select 
and Adapt as implemented by current CBR systems are deterministic. 
It would be interesting to ask what form the four major processes should 
take to be able to prove that the process will finally lead to optima. 

15	 Conversely we can also perhaps understand the need for a memory for 
previous solutions if evolutionary systems are asked to produce a work­
able solution within a finite time and for a wide range of problem sit­
uations. While conventional ES may be capable of producing an opti­
mal solution, the time constraint might force them to do 2 things, cut 
short the number of generations and examine the seeding and or solu­
tion injection strategy. The memory can thus ‘kick start’ the solution 
determination process. 

16	 We assumed in the simple model that the processes themselves are static. 
I.e. Retrieve, Select, Adapt and Reorganize themselves don’t change 
over time. In general, this is not a valid assumption. Each of these pro­
cesses may also change over time. Adaptation knowledge may grow 
with time, retrieval parameters such as feature weights and indexes may 
change (see section 4.2 for a discussion on Type B systems which op­
timize such parameters) to provide better precision or recall and new 
selection strategies may be learnt. Evolution may thus not be restricted 
to the world of cases. 
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Questions and research areas: 

[Q1] How do the processes that lead to proposing a solution (Retrieve, Select 
and Adapt) individually influence selection pressure and bias the problem 
solving process? 

[Q2] Are there correlates in evolutionary algorithms to the kind of operations 
carried out by reorganize? 

[Q3] Conversely, if we restrict Reorganize operations to the set of evolution­
ary operations in EA, where could such an ECM be used? Section 4 suggests 
that candidates could be design, configuration and agent based reasoning do­
mains. 

[Q4] Current case-based systems use deterministic strategies in their func­
tioning. This may be largely due to the fact that current case-based systems 
are largely used as decision aids where the user is interested in the  N ‘best’ 
choices. There could however be domains where deterministic policies might 
be ineffective, indeed even counterproductive. There is a need to explore this 
possibility from two ends, both by developing non-deterministic correlates to 
these operators as well as exploring domains which might need more complex 
policies. An example of the latter could be autonomous systems such as agents 
which are required to satisfy multiple, possibly conflicting goals by taking a 
series of decisions in a possibly adversarial and information incomplete world. 
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[Q5] How would different combinations of Retrieve, Select, Adapt and Re­
organize operators influence effectiveness of problem solving and the growth 
in competence of the case-base? Each operation biases the process of problem 
solving and consequent change in the case-base in a certain way. If Retrieve* 
is the set of possible retrieve operations and similarly Select*, Adapt*, 
Evaluate* and Reorganize* are the set of select, adapt, evaluate and re­
organize operators, it would be interesting to study the performance of the 
case-base and it’s progress towards expertise with different combinations of 
operators. Indeed, probably the biggest gain in viewing case memories as evo­
lutionary systems is to see each process not in isolation but how their cumula­
tive effect over time biases the ECM in a certain direction. 

[Q6] How can ECM be made to simulate optimizers? Exploring this question 
will allow us to understand the different ways an ECM can explore a search 
space. We may also gain insight into how task competence grows in dense 
problem distribution spaces. Different choices of arriving at as well as dif­
ferent choice of reorganize operators might realize different search techniques. 
Which of them are cognitively valid and also computationally useful is a dif­
ferent problem which also needs study. 

This simple model of the ECM has provided a number of interesting obser­
vations as well as areas requiring further exploration. We now take a look at 
some previous work on intermingling case-based reasoning and evolutionary 
algorithms. 

4. HYBRID SYSTEMS 
There has already been a fair amount of work on hybrid systems that com­

bine case-based and evolutionary systems. These systems can be characterized 
as Loosely Coupled. In Loosely coupled systems, a case-based system oper­
ates on a case-base and carries out case retrieval and incremental maintenance. 
Coupled to this is an EA system that operates on an optimization space. Each 
system works on a space suited to it’s individual strengths but yet has a com­
plementary problem solver that remedies the weaknesses. We classify loosely 
coupled systems into two rough categories: Type A systems use the CBR sys­
tem primarily as a memory and use EA as the optimizer. Given a problem 
the CBR system retrieves a set of related cases which are used to seed the EA 
system or inject solutions at intermediate stages of evolution of the EA. Type 
B systems use the EA mechanism to optimize the parameter settings of a CBR 
system. We discuss each in turn. 
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4.1	 TYPE A - CBR AS A MEMORY, EA AS

THE OPTIMIZER


Evolutionary Algorithms are theoretically robust, i.e. convergence is not 
dependent on the distribution of the initial or intermediate populations. While 
there is no explicit theoretical dependence of the convergence quality or rate 
on the composition of the population, work such as by Louis on combina­
torial logic circuit design (Louis, 2002) show that in practice, choice of dis­
tribution can play a part in speed and quality of convergence. Studies by 
Bohm and Geyer-Schulz (Bohm and Geyer-Schulz, 1996) show that there are 
biases built into the generation of random populations (that is, random ini­
tialization may not achieve uniform initialization) that affect performance ad­
versely. One solution to improving performance may lie in coupling an EA 
system with a CBR system containing prior good solutions (see Figure 10.4). 

Louis has used a CBR system to provide 
not initial populations but to inject solu­
tions at intermediate stages of evolution. 
The resultant system CIGAR consider­
ably outperformed a system using ran­
dom population initialization and injec­
tion. Since the CBR system is also used 
to store solutions generated by the EA 
system, the CIGAR system as a whole 
is a learning system whose performance 
improves over time. As Louis puts it, 
“These performance gains imply that 
fewer evaluations are required to reach 
a certain design quality and the orga­
nization deploying this system builds a 
knowledge base of cases.” Perez (Perez 
et al., 2001) have also used a CBR cou­
pled to a GA for combinatorial logic de­

sign. This work’s interest lies in their combining CBR and GA in two ways: 
CBR is used to provide seed populations to the GA mechanism as in CIGAR. 
Additionally, cases are also mined to extract highly fit building blocks that oc­
cur across a set of cases. We will return to this latter aspect in section 5.3.1. 
Another interesting system is by Soh and Tsatsoulis (Son and Tsatsoulis, 2001) 
who use a GA to seed and maintain a case-base. The domain is agent based re­
source scheduling and goal satisfaction. Agents negotiate with one another for 
access to shared resources to best satisfy global or local goals. Cases are nego­
tiation strategies that an agent uses either for initiating a request or responding 
to a request. The GA component maintains a case evolution trace in the form of 
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a hierarchy. Cases evolve in the hierarchy based on intrinsic and environmental 
fitness. Unique and fit cases are promoted to the case memory. The GA acts 
like a case nursery and the CBR environment as the test bed to test the utility 
of cases so produced. Cases found to have low utility are removed from the 
case memory but retained in the hierarchy since under different environmental 
situations they might become useful again. 

From a CBR perspective, EA are seen as optimizers of solutions in a CBR 
system. Since CBR systems make no claim to optimality of solutions stored 
in the system, an EA system can be used to combine one or more sub-optimal 
cases to create optimal or near optimal solutions. Thus an EA system can also 
be considered to be a multi-case adaptation mechanism as the final solution 
could have elements from multiple cases. An illustrative example is the work 
by De Silva and Maher (Gomez et al., 1999) who use a Genetic Algorithm to 
optimally design an architecture that conforms to Feng Shui principles. The 
work can be seen either as a GA system using cases to provide initial popula­
tions or a rare case-based system that can use a GA as a multi-case adaptation 
mechanism. Viewed as the latter, parametric adaptation of cases is achieved 
through mutation and structural adaptation through crossover. 

4.2	 TYPE B - EA AS CBR SYSTEM

PARAMETER OPTIMIZERS


CBR systems are typically used in ill 
structured, ill bounded domains where 
finding any solution is considered good. 
Optimality of solution is not a criterion. 
A domain that illustrates these charac­
teristics is problem resolution in call 
centers and help-desks (Nguyen et al., 
1993). Metrics are often simply whether 
or not the problem was solved. Solu­
tions also tend to be textual making it 
difficult to assess goodness without ex­
tensive semantic analysis. 

EA on the other hand are applied in 
hard well bounded domains such as op­
timization in engineering or manufactur­
ing. Such domains have 2 important 
characteristics, viz., solutions or solu­

tion parameters are expressible in enumerated or quantitative terms and sec­
ond, solutions can be objectively measured for their goodness using formal 
functions (such as an objective or fitness function). These functions can a pri­
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ori accurately determine the effectiveness of a solution without actually trying 
it out. Such functions are difficult to specify in CBR application domains. The 
exception to this are CBR applications in domains like configuration or design, 
an example of which we examined earlier (Gomez et al., 1999). 

Thus, use of EA by the CBR community has been largely focused on im­
proving the Quantifiable aspects of case- based systems (see Figure 10.5). 
These are usually the weights or “importances” of case features and the se­
lection of the best indexes. The much referenced Kelly and Davis (Kelly and 
Davis, 1991) was the first to discuss how a GA could be used to decide on 
feature weights5 of a CBR system. Shin and Han (Shin and Han, 1999) use a 
GA to decide on the best indexing features for a case-based system for stock 
market prediction. An EA approach is feasible because the parameters to be 
optimized (presence or absence of a feature as an index, the feature weights for 
a KNN type similarity measure) can be expressed as an enumeration, a binary 
value or a numeric. 

4.3 DISCUSSION 
The following observations can be made: 

1 A significant difference between ECM and systems such as CIGAR is 
the fact that in ECM, the case memory itself is modeled as an evolution­
ary process while in most Type A systems, the CBR component serves 
merely as a store house of cases and the GA component does the bulk of 
the processing. While CIGAR’s GA component does store intermediate 
solutions in the case memory and similarly requests cases for injection, 
the interaction between the two components is intermittent and not cyclic 
as in ECM. The extreme situation may be where the CBR component 
provides merely the initial seed to the GA component and there is no 
further interaction until the latter has finished cranking out the optima. 

2 From an ECM perspective the system proposed by Soh can be viewed as 
Retrieve, Select, Adapt and Evaluate being carried out by the CBR 
component and Reorganize by the GA component. Classical evolu­
tionary operators like crossover and mutation are used to evolve new 
cases in contrast to most CBR systems. In a sense, the functionality of 
the ECM as proposed in the earlier section may be said to be realized in 
this implementation. The system as a whole evolves incrementally and 
grows in competence over time. 

3 The Soh system discusses a number of operations that change the case-
base in evolutionary terms such as Evolutionary Incompatibility that is 

5Good feature weights lead to good precision and recall. 
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in effect a case forgetting strategy based on case utility, Evolutionary 
Enhancement that seeks to compensate for changing problem distribu­
tion, Evolutionary Refinement that is a form of case replication with 
modification and Evolutionary Breakthrough that discusses how new 
cases are handled and propagated. It is interesting that many of the op­
erations briefly listed under Reorganize can be recast as evolutionary 
operations. 

4	 The system proposed by de Silva and Maher can be viewed as Retrieve 
being carried out by the CBR component and Adapt by the GA compo­
nent. However, Adapt is in effect an optimizer which bundles Evaluate 
within it’s cycle. There is no indication whether the system has a 
Reorganize component to learn new designs. 

5	 If the case-base stores the optimized or near optimized solutions gen­
erated by the EA solver in Type A systems, an issue may be lack of 
divergence in the stored cases for a class of problems. The cases may be 
clustered in a single region which used as seeds might lead to quick but 
sub-optimal convergence. While this problem has been recognized and 
handled by Louis (Louis, 2002) it may be beneficial to refer to CBR work 
on a similar theme. There has been a lot of recent attention on Diversity-
conscious retrieval(McSherry, 2002), (Bradley and Smyth, 2001). These 
approaches lead to the CBR system recommending cases that are max­
imally diverse but similarity preserving. Type A systems might benefit 
from experimenting with these approaches. Alternately, at the time of 
adding cases to the case-base for a given problem context, a diversity 
check among the solutions of the candidates for addition may be made. 
Only cases whose solutions have a minimum diversity may be added. 

Based on our discussion on ECM, some questions and areas requiring further 
exploration: 

[Q7] While we have given rough mappings between different Type A systems 
and ECM, it will be interesting to study how hybrid CBR and EA operations 
as seen in Type A systems can be equivalently realized within the framework 
of ECM. 

[Q8] What changes would need to be made to the ECM model to realize Type 
B operations? We assumed in the discussion on ECM that the processes them­
selves are static and don’t change over time. 
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5. EVOLVING HIGHER LEVELS 
The ECM model presented in section 3 only discussed experiential knowl­

edge or cases. But there is considerable evidence that human problem solving 
uses a number of non-instance knowledge structures such as rules or schema. 
But where do rules or schema originate? While there could well be hard coded 
schema templates for certain cognitive tasks like language acquisition, it is too 
much to expect such templates to exist for tasks like eating at a restaurant or 
opening a bank account. Occam’s Razor indicates that experiences being the 
most common knowledge currency, higher level structures could be abstrac­
tions over cases. In this section, we explore how higher level structures can be 
viewed as an evolution over cases. But before we delve into that, we take a 
look at what higher level structures are and the role they play in cognition and 
human problem solving. 

5.1 SCHEMAS 

How is human knowledge organized? Early workers such as Bartlett con­
jectured knowledge only as abstract prototypical structures called schema and 
disallowed instance based problem solving(Brewer, 2000). However, as re­
ported by Smith (Smith et al., 1992), a number of current cognitive theories 
organize their functioning purely on the basis of experiences with the hypoth­
esis that abstract structures are implicit in a collection of experiences and no 
explicit higher level structures are required. However, neither extreme of pure 
schema or pure instance appears tenable in the face of cognitive evidence. 

Medin and Ross (Medin and Ross, 1989) have surveyed and presented ev­
idence of instance based human problem solving. Similarly Smith, Langston 
and Nisbett (Smith et al., 1992) presented 8 criteria to decide whether abstract 
structures such as rules are used in human reasoning and showed that these 
criteria are met by cognitive evidence. Others such as Neisser (Neisser, 1976), 
Mero (Laszlo, 1990) have presented arguments to demonstrate that understand­
ing is closely related to having abstract cognitive structures which they have 
labeled schema. 

Correspondingly, in Artificial Intelligence, computational modes of prob­
lem solving consist in essence of case-based reasoning (Schank and Riesbeck, 
1987), (Kolodner, 1993), the ubiquitous rule based reasoning and script/frame 
based/model based reasoning (Schank and Abelson, 1977), (Minsky, 1981). 

There is thus support from direct cognitive evidence as well as support­
ing evidence in the form of computational intelligence theories that problem 
solving exists at multiple levels of reasoning and representation. So what are 
schema? A schema can be defined as an abstract structure that contains knowl­
edge of prototypical objects or processes encountered in common experience. 
The notion of schema was first discussed by Bartlett in his classic, Remem­
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bering (Bartlett, 1932). Bartlett hypothesized that understanding was based on 
existing knowledge structures possessed by humans which he labeled Schema. 
While the pure schema theory favored by Bartlett conjectured that knowledge 
existed only in the form of schema, more relaxed theories allow individual ex­
periences to be stored under a more general schema (Brewer, 2000). Example 
schemas are: Racing-Car-Schema, Fast-Food-Restaurant-Schema, Withdraw-
Money-From-ATM-Schema, Traveling-By-Bus-Schema. Each of these would 
describe the structure of the object or the process of which they are prototypes. 

The idea of schema has subsequently found support among numerous work­
ers in cognitive science and artificial intelligence. Though there are slight dif­
ferences Schema are also called cognitive schemata, scripts and frames (Min-
sky, 1981),(Carlos, 1997). It is interesting to note that Rich and Waters in 
their work on automating program development (Rich and Waters, 1990) con­
jecture template knowledge structures called Clichés. Given a problem, they 
hypothesized that experienced programmers do not code from first principles 
but instead compose the solution using ‘chunks’ of commonly used program 
fragments labeled Clichés. Clichés seem to be merely another form of schema. 

Schank’s work provides a good illustration both of the nature of episodic 
schema (called scripts) and the need for such structures. Schank’s earlier the­
ory of Conceptual Dependency (Schank, 1972) proved unable to handle the 
problem of implicit knowledge. Conceptual Dependency or CD was based on 
the idea of having a semantic representation of text removed from the syntax. 
CD modeled sentences using a core set of primitives called Actions. Each 
action was a graphical frame with slots. Understanding was viewed as a slot 
filling exercise with the unfilled slots of one sentence leading to expectations 
of the information to come. While CD was successful in certain classes of 
language to language translation, the main goal namely, understanding proved 
elusive. 

To explain the problem in CD, let us look at the following sentence: John 
got on a bus and alighted at his destination. 

A natural language understanding system must on the basis of this one sen­
tence be able to answer questions such as: What is a bus?, Why did John get 
into the bus?, What did John do in the bus? and Why did John get off the bus? 

These questions can be answered only by the use of knowledge outside the 
information communicated in the sentence. Since CD lacked such external 
knowledge, it was unable to simulate the understanding process. This lacu­
nae in the CD theory led Schank to conjecture about knowledge structures 
called scripts (Schank and Abelson, 1977). A script was a pattern describing a 
commonly occurring episode. Thus a script Traveling-by-bus might have the 
following ordered sub-events: Wait for the bus, Get on the bus, Calculate fare 
from entry point to destination, Pay fare, Sit if seats are available and Alight at 
destination. In addition to the sub-events in the script, the script also contained 
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information such as pre-conditions for script application, the roles of different 
entities in the script, the objects (called props) that figure in the script and the 
expected post-condition after script application. 

With such a script, the understanding system could now answer some of 
the questions listed above. In essence, the schema, script theory and their 
derivations argue that understanding and task expertise is based on a wealth 
of knowledge structures at different levels. At the bottom are the individual 
experiences or episodes and at higher levels are schema like structures. 

5.2	 A BRIEF ASIDE ON LEVELS OF

HIGHER EXPERTISE


Studies of chess players (Charness, 1981), (Reynolds, 1982) and nursing 
professionals (Dreyfus and Dreyfus, 1986) show that there appear to be a well 
graded path to expertise. The accumulation of mere experience does not lead 
to expertise. While some argue that there are five levels of expertise and others 
four, there appears to be agreement that expertise acquisition is not a linear 
process but can be quantized into levels. Mero (Laszlo, 1990) for example, 
characterizes expertise into 4 levels: 

1 Beginner: Recently introduced to the task. Equivalent to a chess player 
who just knows the legal moves. 

2	 Advanced student: Has some task competence. Equivalent to 1 year of 
experience and learning in the task. 

3	 Candidate master: Has graduated to a level of excellence. Equivalent to 
anywhere between 3 to 5 years of experience and learning in the task. 
It also appears from studies of chess players that the level of candidate 
master is the maximum level to which knowledge explication is possible. 
Knowledge beyond this level has been difficult to extract and encode. 

4	 Grandmaster: The highest level and while competence at this level is not 
time dependent, might require around 10 years. 

The path from beginner to grandmaster also appears to involve two processes 
(Laszlo, 1990): 

1 Increase in the number of schemata: As expertise builds up, the number 
of schemata increase. Estimates indicate that a beginner has less than 
100 schemata, an advanced learner less than 1000, a candidate master 
about 5000 and a grandmaster about 50,000. 

2	 Evolution of very complex schemata: In addition to the increase in the 
schemata, the schemata possessed also appear to grow tremendously in 
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complexity. Thus a schema of a beginner in chess might have an in­
terpretation of a few positions. A schema at the level of a grandmas­
ter might involve numerous interpretations, reference hundreds of actual 
games (especially master and higher level games) and winning strate­
gies. Grandmaster schemata also appear to possess intriguing properties 
such as tangled hierarchies which Mero dramatically likens to the seem­
ing impossibility of Eicher’s pictures and Bach’s fugues. 

Thus not only do the number of abstract structures increase but so does their 
structural and content complexity. The point of this digression has been to 
show both the existence of quantized higher levels as well as their complexity. 
In this essay, we assume there is a single higher level that indexes or subsumes 
a set of experiences. 

5.3	 TOWARDS MEMORY BASED 
REASONING 

The most common knowledge currency are experiences, the events encoun­
tered in the course of navigating the world. CBR as we have seen is problem 
solving purely through use of this world. However, the preceding sections in­
dicate that expertise requires a combination of experiences and schema like 
structures (except possibly in chaotic domains where all knowledge is expe­
riential). The question is, “How do abstract knowledge levels come to be?.” 
While the computational world has solutions in the form of induction algo­
rithms such as ID3 (Quinlan, 1986) and C4.5 (Quinlan, 1993) which given a 
set of cases would churn out a corresponding set of rules, our concern is to 
remain true where possible to the cognitive continuum where cases might lead 
to schema and new cases are in turn indexed under existing schema with both 
processes leading to incremental modifications of each level (see Figure 10.6). 
In section 3 we explored the ECM model which discusses case memories as 

evolutionary systems. We saw how various processes act as selective pres­

sures and lead to incremental evolution in the case-base. There is however no

reason why evolution should be restricted to the world of cases. In the discus­
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sion on Restructure in section 3.3 we discussed the notion that a dense set of 
cases might require a higher level structure for better differentiability. But how 
will such a structure come into existence? In the next section we explore the 
idea that even schema creation can be viewed as an evolutionary exercise over 
cases. This approach borrows ideas from the very different notion of schemas 
in genetic algorithms. 

5.3.1 C-Schemas as Building Blocks. A schema in genetic 
algorithms is a very different beast from the schema discussed in the preceding 
sections. A schema as defined by Goldberg (Goldberg, 2000), is, “a similarity 
template describing a subset of strings with similarities at certain string po­
sitions.” To distinguish the two we henceforth call the Cognitive Schema as 
C- Schema and the Genetic algorithm schema as G-Schema. The notion of 
a G-Schema was introduced to explain why the seemingly random processes 
of genetic algorithms yet lead to effectiveness in problem solving. As Gold­
berg put it, “Just as a child creates magnificent fortresses through the arrange­
ment of simple blocks of wood, so does a genetic algorithm seek near optimal 
performance through the juxtaposition of short, low order, high performance 
schemata or building blocks.” The assumption in the Building Block Hypothe­
ses (BBH) as it has been labeled is that as the population moves towards higher 
and higher fitness levels, highly fit gene sequences emerge that can be found 
in increasing frequencies in the population. Genetic algorithms work, it was 
argued, because of this process of agglomeration of highly fit blocks. While 
there have been no unconditional proofs of the BBH, it yet gives a plausible 
and intuitively appealing reason for the effectiveness of the technique. 

We are interested in how C-Schemas emerge from experiences. C-Schemas 
as we discussed in the previous section are higher level knowledge structures. 
The direction we explore takes two ideas from Evolutionary Algorithms. The 
first is to define C-Schemas as abstract patterns operating over cases much as 
G-Schemas are abstractions over individual chromosomes. The second is to 
model generation of C-Schemas from cases as an evolutionary process. Let 

where, and 

In other words, we define each case as a bit string. Define the set of C-Schemas, 

where, and 

We assume that experiences are encoded as bit strings. Each C-Schema is a 
pattern based on the ternary alphabet of [0,1, *] that subsumes a set of experi­
ences much like G- Schemas are defined. However, while G-Schemas are im­
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plicit in the population, C-Schemas are assumed to be explicit structures. Thus 
the C-Schema 101 * *011 would subsume the cases {10111011, 10101011}. 

In this view, as cases accumulate, C-Schema emerge as highly fit patterns 
or building blocks that subsume and index a set of related cases. Unlike G-

NSchemas which in a population of  chromosome strings, exist in the order
of where is the string length, C-Schemas being highly recurrent 
abstract patterns are assumed to be far fewer than the number of cases. This is 
because cognitively, C-Schemas may assist in 2 ways, first by improving speed 
of top-down retrieval as search can begin at the level of C-Schemas which 
being fewer than experiences would be easier to process and secondly as a 
means of organization of memory, where abstract structures act as preliminary 
filters and index experiences which can provide the fine grain processing. An 
interesting perspective borrowed from G-Schemas is to consider C- Schemas 
as sampling the solution space. When a C- Schema is explored, it can be said 
to simultaneously explore a number of potential solutions. From this point of 
view too, C-Schemas can be seen as preventing exhaustive search among fine 
grained knowledge by acting as a preliminary filter. 

A C-Schema is a highly fit pattern. But what does fitness mean in this sce­
nario? We hypothesize that the fitness of a C-Schema is based on the following 
2 considerations: 

1 Genericity: A fit C-Schema should be able to maximally subsume ex­
isting cases. I.e. Fewer the schema the better. This is Genericity, or to 
use GA terminology, short order C-Schema. More the abstraction, better 
the C-Schema. 

2	 Utility: A general C-Schema is useless if the C- Schema is not useful in 
actual problem solving. Thus the second factor that makes a fit schema 
is Utility, being able to solve the problems it faces, in other words our 
old friend, TaskPer formance. The task performance of a C-Schema 
may be derived either using the same principles used to derive task per­
formances of an individual case or it can be based on the average task 
performance of the cases it subsumes. 

These are conflicting considerations. The Genericity factor would drive the 
evolution towards very general C-Schemas while the Utility factor would drive 
the evolution towards very specific schemas in the regions of maximal task 
performance. If the fitness function is chosen carefully, this would lead at the 
end to a set of C-Schemas that provide adequate coverage and are yet effective. 

Let be the set of cases in the case-base. Let 
be the set of C-Schemas. Associated with each 

C-schema is a set defined as the set of cases in the case-base subsumed 
by That is, 
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The utility of a C-Schema is defined as the average over the task perfor­
mances of the set of cases subsumed by the C-Schema. That is, 

The fitness of a C-Schema is a function over its generality and utility. That is,


Once the fitness is calculated for each C-schema the evolutionary selection 
operator is applied on the current to generate the next 

The evolutionary process begins with a set of cases, and uses operators 
to propose candidate C-Schema. fitness of these C-Schema are then evaluated 
and new populations generated using the operators which process continues 
until the set of C-Schemas realized have reached a threshold fitness level. We 
now give 2 hypotheses: 

Hypothesis A: In domains where a few general principles are operational over 
a wide number of experiences, we might expect that the evolutionary process 
would lead to a small number of short order C-Schema. 

Hypothesis B: In domains where the specific context of the problem solving 
affects the quality of solution, there are likely to be a number of high order 
C-Schema. 

We point to an interesting work by Perez, Coello Coello and Aguirre (Perez 
et al., 2001) on extracting design patterns from cases in combinatorial logic 
design. Part of this work has been discussed in section 4.1. However, besides 
using cases to inject solutions into the population, the cases are also used to 
deduce highly fit building blocks. Information was stored on each individual 
in a GA population and data collected over several generations. This set of in­
dividuals was treated as a case-base and a tree clustering algorithm generated a 
tree where each leaf node is a case. Higher level nodes obviously are abstrac­
tions over the leaf nodes under them. In terms of our model, each higher level 
node is a C-Schema that subsumes the set of cases beneath. Nodes close to the 
leaves will obviously be high order C-Schema and those higher up lower order. 
We had stated in Hypotheses A that domains where a few general principles 
can subsume all experiences should lead at the end of the evolutionary process 
to a small number of short order C-Schema. Perez’s work confirms this intu­
ition. The highly fit building blocks when analyzed were found to implicitly 
represent De Morgan’s laws, the commutative law and the distributive law. 

As far as we are aware, little is known about how schema or higher structures 
actually evolve from experiences. We feel the main use of using an evolution­



236 FRONTIERS OF EVOLUTIONARY COMPUTATION 

ary approach to C- Schema generation is to cast the problem in a different light, 
within a different framework and moreover a robust formal framework. From 
the CBR community perspective, viewing the dynamism of human memory 
as an evolutionary operation may enable questions to be framed in a problem 
solving universe with the potential to provide interesting insights as has hope­
fully been demonstrated here. While Perez’s work was not aimed at memory 
modeling, it showed that Hypotheses A and B might be testable and moreover 
that interesting and even non- intuitive higher level structures can be realized. 

The approach throws up several interesting problems, such as: 

[Q9] How should case knowledge and schema knowledge be encoded? While 
we have used bit strings to illustrate the approach, there is every likelihood that 
different encodings will be required. 

[Q10] The ECM framework views evolution in case memories as incremental. 
By the same token, the evolution of C-Schemas from cases should also be an 
incremental operation rather than occurring in a flurry. What evolutionary op­
erators ? should be used? 

[Q11] What form should the fitness function F take? 

[Q12] Can Hypotheses A and B be confirmed? 

[Q13] If the operation of evolving schemas from cases is to be added to the 
ECM model, how will operations like Reorganize and Retrieve change, one 
to create such higher level structures and the other to reason over them? 

[Q14] What case representations will enable similarity based reasoning as well 
as play their part in an evolution mechanism? 

[Q15] How can this approach be enriched to enable the generation of the levels 
of expertise discussed in section 5.2? The current approach merely discusses 
how a C-Schema can be an abstraction over cases. The preceding sections 
however pointed to a growth both in number and complexity of C-Schema as 
expertise increases. 

[Q16] How will C-Schema index cases? What should be the organization of 
a case-base that includes both C-Schema and cases? Since cases also evolve, 
how will the indexing change over time? 
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6. CONCLUSIONS 

Computational models of human memory while mere approximations of 
the original are also complex in their own right. Just as we become increas­
ingly competent at tasks over time, progressing from the level of beginner to 
increased levels of expertise, so do computational models seek to progress to­
wards increased expertise with time. But how do case memories progress to­
wards expertise and how do the various case memory processes guide it in it’s 
quest? We felt that this question needed to be better understood. To answer the 
question, we cast case memories as evolutionary systems to focus attention on 
the nature of change in case memories. The essay can be seen as a beginning 
attempt to get to grips with this difficult problem. It has led us to some inter­
esting observations and a number of questions which, if addressed may lead to 
better clarity. We further extended the field of enquiry to look not just at the 
case world but into the even mistier higher world of schema. Here again, an 
evolutionary approach to understand how schema can be created from cases 
lead us to some interesting insights and a number of open questions. 

Are case memories evolutionary systems? In his critique of the Sociobiol­
ogy program, Richard Lewontin warned against the urge to “Darwinize” phe­
nomena. 

“Darwin’s theory of evolution by means of natural selection is an extremely 
powerful explanatory device ... I shall call this practice of providing an ad hoc 
Darwinian explanation for any phenomenon, Darwinizing, by analogy with ‘har­
monizing’ in which facile harmonies are built spontaneously around a theme for 
the sake of a few moment’s enjoyment.” (Lewontin, 1976). 

Is this essay therefore an attempt to Darwinize case-based reasoning? We have 
argued why the analogy not only makes sense but is also useful. It may even be 
necessary. We believe that models such as the Evolutionary Case Memory are 
required not only to understand the process of incremental movement towards 
expertise but to provide a sound basis to progress to the next generation of case 
based problem solvers. 
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Abstract In this chapter we discuss the challenge provided by the problem of evolving 
large amounts of computer code via Genetic Programming. We argue that the 
problem is analogous to what Nature had to face when moving to multi-cellular 
life. We propose to look at developmental processes and there mechanisms to 
come up with solutions for this ”challenge of complexity” in Genetic Program­
ming. 

Keywords: Genetic Programming, Evolutionary Algorithm, Complexity, Scaling Problem, 
Development, Heterochrony 

INTRODUCTION 

The purpose of this chapter is to pose a challenge to the sub-area of Evolu­
tionary Computation (EC) dealing with algorithm evolution, Genetic Program­
ming (Koza, 1992). Genetic Programming (GP) has a fundamental mechanism 
which distinguishes it from other branches of EC, namely a means to adapt the 
complexity of its solutions (Banzhaf et al., 1998). Such a mechanism needs 
to be in place in GP since the resulting solutions are programs and algorithms, 
or, in other words, active entities which usually require input from somewhere 
that is subsequently transformed into output through the target program or al­
gorithm. 

It has been shown in recent years, that there are lower bounds on the com­
plexity of solutions to algorithmic problems in GP (Langdon, 1999b). Below 
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a certain threshold, no algorithm would be able to perform a predefined task. 
Above that threshold, however, numerous programs would be able to perform 
the task. Evolution in GP is thus expected to lead the programs it breeds past 
this threshold, to be able (only after passing) to home in on one or the other of 
the many solutions that exist there. One might expect that GP would be well 
equipped to handle tasks of varying complexity because of its basic ability to 
adapt complexity. 

As it turns out, however, GP is not able to handle complexity gracefully, it 
has a scaling problem. As is well known from other search algorithms, more 
complexity means larger search spaces. Larger search spaces in turn mean 
a combinatorial explosion in the number of possible solutions which need to 
be visited. Even a path-oriented algorithm like an evolutionary algorithm suf­
fers from the problem of scaling under such circumstances. Although GP is 
regularly able to evolve programs of length 50 to 100 lines of code, this is a 
far cry from what would be needed to provide a useful method for day-to-day 
assistance for programmers. 

Various remedies have been looked at over the years. Modularization of 
programs is one important method to improve scalability. The problem at hand 
is divided into sub-problems which are supposed to be less difficult (and thus 
would require less complex solutions). These sub-problems could be solved 
in a divide-and-conquer method, whereby the overall solution is put together 
from the various sub-solutions evolved independently. Koza (Koza, 1994) has 
done an entire series of well thought-out experiments in order to show, that 
GP is indeed able to proceed along those lines, provided it is equipped with 
appropriate means (ADFs in his approach). ADFs are good at structuring a 
global solution into parts, and by repeated use through calls from the main 
program with different arguments they provide reusability features for code in 
multiple sub-tasks. There have been other approaches toward modularization 
in the last decade (Angeline and Pollack, 1994; Banzhaf et al., 1999; Rosca 
and Ballard, 1994), all trying to develop methods for better scalability. 

However, all of these methods have failed to deliver on the fundamental 
challenge to GP which can be summarized in the following task: 

Using GP, evolve a program whose purpose is so complex that it requires 
100,000 or a million lines of hand-written code or 10,000 modules of average 
size 100 lines of code. 

Application examples coming to mind are the following tasks 

Direction and control of the processes in a production plant 

Safe operation of an aircraft under a variety of weather conditions 

Design of a convenient multi-functional desktop computer tool, such as 
an editor or a mailer 
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Maintaining a large network of computers as a self-repairing system 

Translation of one human language into another 

Recognition of pieces of art and music from visual or audio clues 

Evolution of a program playing Go with human-competitive performance 

A computer operating system based on self-regulation 

etc. 

In other words, the challenge is to radically dispose of the complexity limits 
for the evolution of computer code, and aim at complexities heretofore only 
achieved by large teams of human programmers. 

This chapter is therefore devoted to offering a possible solution to this chal­
lenge. This solution, however, can only be framed in very abstract, sometimes 
speculative words. Taken literally, it will not suffice to arrive at a workable 
mechanism. But the goal here is to set the mind of the reader into such a 
framework that she or he might come up with appropriate ideas to approach 
this challenge. 

The rest of the chapter is organized as follows. Sec 1 summarizes very 
shortly the fundamental idea behind GP, Sec 2 looks at an ostensibly similar 
scaling problem situation in the area of Biology. Sec. 3 discusses Nature’s way 
to deal with this problem, the introduction of a developmental process between 
the information storage in the genotype and the active entity, the phenotypic 
organism that results from its expression. Sec. 4 then tries to formulate a few 
principles of this solution to the problem that might be transferable into Genetic 
Programming. Sec. 5, finally goes one step further and proposes a possible 
scenario for the introduction of development into GP. Sec. 6 briefly discusses 
earlier experiences with the introduction of development, mostly treated under 
the heading genotype-phenotype-mapping. 

1. GP BASICS AND STATE OF THE ART 
Genetic Programming is part of the area of Evolutionary Algorithms which 

apply search principles analogous to those of natural evolution in a variety of 
different problem domains, notably parameter optimization. The major dis­
tinction between GP and these other areas of Evolutionary Algorithms is that 
GP controls active components like symbolic expressions or instructions as 
opposed to simple parameters, and that GP is able to develop its own represen­
tation of a problem by allowing variable complexity of its individuals. 

As other evolutionary algorithms GP follows Darwin’s principle of differ­
ential natural selection. This principle states the following preconditions for 
evolution to occur via (natural) selection: 
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A population of entities called individuals is formed which can repro­
duce or can be reproduced. 

There is heredity in reproduction, i.e. individuals produce similar off­
spring. 

In the course of reproduction variation occurs that affects the likelihood 
of survival and therefore of reproducibility of individuals. 

Due to excessive reproduction individuals are caused to compete for fi­
nite resources. Not all can survive the struggle for existence. Differential 
natural selection exerts pressure towards improved individuals. 

Thus a variation and selection loop is iterated which constantly tries to improve 
solutions (see Figure 11.1). 

The representation of programs, or generally structures, in GP has a strong 
influence on the behavior and efficiency of the resulting algorithm. As a conse­
quence, many different approaches toward choosing representations have been 
adopted in GP. The resulting principles have been applied even to other prob­
lem domains such as design of electronic circuits or art and musical composi­
tion. 

The mechanism behind GP works with a population of programs which are 
executed or interpreted in order to judge their behavior. Usually, a scoring 
operation called fitness measurement is applied to the outcome of the behavior. 
For instance, the deviation between the quantitative output of a program and 
its target value (defined through an error function) could be used to judge the 
behavior of the program. This is straight-forward if the function of the target 
program can be clearly defined. Results may also be defined as side-effects of 
a program, such as consequences of the physical behavior of a robot controlled 
by a genetically developed program. Sometimes, an explicit fitness measure is 
missing, for instance in a game situation, and the results of the game (winning 
or loosing) are taken to be sufficient scoring for the program’s strategy. The 
general approach is to test a variety of programs at the same problem and to 
compare their performance relative to each other. 

The outcome of fitness measurement are used to select programs. There are 
a number of different methods for selection, both deterministic and stochastic. 
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These selection schemes determines (i) which programs are allowed to survive 
(overproduction selection), and (ii) which programs are allowed to reproduce 
(mating selection). Once a set of programs has been selected for further repro­
duction, the following operators are applied: 

reproduction 

mutation 

crossover 

Reproduction simply copies an individual, mutation varies the structure of an 
individual under control of a random number generator, and crossover mixes 
the structure of two (or more) programs to generate one or more new programs 
(see Figure 11.2). Additional variation operators are applied in different ap­
plications. Most of these contain problem-specific knowledge in the form of 
heuristic search recipes adapted to the problem domain. 

In this way, fitness advantages of individual programs are exploited in a 
population to lead to better solutions. A key effort in Genetic Programming 
is the definition of the fitness measure. Sometimes the fitness measure has to 
be iteratively improved in order for the evolved solutions to actually perform 
the function they were intended for. The entire process can be seen in close 
analogy to breeding animals. The breeder has to select those individuals from 
the population which carry the targeted traits to a higher degree than others. 

In the meantime, many different representations for GP were studied, among 
them generic data structures such as sequences of instructions or directed graphs, 
as well as more exotic data structures such as stacks or neural networks. Today, 
many different approaches are considered as GP, from the evolution of parse 
trees to the evolution of arbitrary structures. The overarching principle is to 
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subject structures with variable complexity to forces of evolution by applying 
mutation, crossover and fitness-based selection. The results are not necessarily 
programs. 

When analyzing search spaces of programs it was realized that their size is 
many orders of magnitude larger than search spaces of combinatorial optimiza­
tion problems. A typical size for a program search space might be 
as opposed to a typical search space for a combinatorial optimization prob­
lem of the order of Although this might be interpreted as discouraging 
for search mechanisms, it was also realized that the solution density in pro­
gram spaces is, above a certain threshold, constant with changing complexity 
(Langdon, 1999a). In other words, there are proportionally many more valid 
solutions in program spaces than in the spaces of combinatorial optimization 
problems. 

2. THE SITUATION IN BIOLOGY 
The situation in biology is also complicated. Life needs many supporting 

structures. Even single-cell organisms are already very sophisticated. Let’s 
take the bacterium E.Coli as an example (Harold, 2001b). 

A bacterium is an autonomous living system and organizes molecules into 
a particular dynamic pattern that keeps it alive. Following Neidthardt et al, 
(Neidhardt, 1996) there are a total of molecules (excluding water 
with molecules) in appr. 3250 different varieties (proteins, m-,t-RNA, 
DNA, lipids, small metabolites and ions, peptidoglycan, etc.). The genome of 
E.Coli is a single, circular molecule of base pairs, which is to say it 
contains 6 Mbits of information (again accounting for redundancy in the code) 
Notably, E. Coli has approximately 4300 protein coding genes (88 % of the 
genome) 0.8 % stable RNAs, 0.7 % repeats. 11 % of the genome might con­
tain regulatory information (for a recent classification, see (Thomas, 1999)). 
Mushegian and Koonin (Mushegian and Koonin, 1996) identify a subset of 
256 shared genes between two very simple bacterial organisms (H. influenzae 
and M. genitalium) which seem to provide the essential functions of life for 
those creatures. So how can all this multitude be organized by such a little 
genome? 

Even more difficult is the situation in multicellular life. Take a human 
genome with its nucleotides. Each nucleotide carries 2 bits, hence 
for a rough estimate we arrive at 4 Gbit maximum information content of the 
genome (the number was reduced from a simple multiplication, since due to 
code redundancy the information content is about 1/3 smaller). 

On the other hand, take the number of cells of a human body as a rough 
estimate of the phenotype’s information content: According to various esti­
mates, the body amounts to approximately cells. The estimate is raw 
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and difficult to quantify more accurately because the number of cells changes 
dynamically. Cells are produced and die during the life of an individual. Now 
assuming that each cell has an information content of at least 1 Mbit, this re­
sults in the requirement for bits Gbit, or times the human 
genome! Note that the estimate of 1 Mbit per cell is unrealistically low, as 
we shall see when we consider free-living single-cell creatures. According to 
Calow (1976) (Calow, 1976), the cells of the human body have to be weighed 
in with a much larger information content, resulting in a total of bits 
for the body! 

We can see easily, that these numbers are completely out of proportion, 
which means that the information in the genome must be used in a sophisti­
cated way so as to produce a viable organism. We might call this the informa­
tion dilemma of the genotype-phenotype relation. 

3.	 NATURE’S WAY TO DEAL WITH

COMPLEXITY


In his now famous book ‘The way of the cell’ biologist Frank M. Harold 
explains: “Genes specify the cell’s building blocks; they supply raw materials, 
help regulate their availability and grant the cell independence of its environ­
ment. But the higher levels of order, form and function are not spelled out 
in the genome. They arise by the collective self-organization of genetically 
determined elements, effected by cellular mechanisms that remain poorly un­
derstood.” (Harold, 2001b), p.69. 

Thus, there are other aspects of natural biochemical systems, so far not fully 
understood, that structure interactions and determine the fate of molecules. 
These aspects constrain the possible directions that genes could affect their 
products. Self-organization and self-assembly are among them as are physical 
(and other) laws. In addition, the natural abundance of certain materials, en­
ergy, or even information plays an important role. These aspects are providing 
the environment in which a living system is supposed to survive. 

Nature’s self-organizing properties are beginning to be seen in all scien­
tific and technical disciplines (Banzhaf, 2002). But is self-assembly without 
a genome sufficient to explain the intricate organization of a cell? For exam­
ple, if all the necessary substructures and molecules were present in a medium, 
would they be able to form an E.Coli bacterium? Here we follow again the 
argument of Harold (Harold, 2001b) and Rosen (Rosen, 1994). The answer 
is “No”, because self-assembly can never be a fully autonomous process. In 
addition, some cell components cannot be formed by self-assembly since they 
need to be formed by, e.g., cutting and splicing. Further, membrane proteins 
catalyze directional reactions (uni-directional through the membrane) (Harold, 
2001a). The direction itself is, however, provided by the cell, not by the amino 
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acid sequence of the protein or its gene. More generally, a great deal of lo­
calized behavior takes place within a cell. Localization, however, cannot be 
provided by the genes, it is a feature of their environment, i.e. of the cell (see 
Figure 11.3). 

The conclusion is inevitable: Cells do not self-assemble. But how do they 
succeed instead? They grow! Rudolf Virchow (1858) was the first to formulate 
this realization1 in a now famous biological law: Omnis cellula e cellula (every 
cell originates from a cell). No cell has not come from another cell. 

In other words, there is a tight coupling between what the genome instructs 
and what natural laws and resources in the environment allow the cell to do. In 
a way the genome exploits all physical laws available (together with all sorts 
of material, energy and information fluxes) in order to organize a living being. 

The real trick of Nature was to hit upon a system of organizing characters 
(RNA, then DNA and protein) that allows open-ended evolution to proceed. 
That is to say that the system does not close down upon encountering enormous 

1One should be careful to include both (i) scaling up and (ii) diversification / specialization in one’s notion 
of growth. 
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complexity, both in the environment and in handling its inner mechanisms. 
Clearly, only a combinatorial system has enough power to grow to each level of 
complexity demanded (and also to shrink to a lower level if necessity dictates). 

“Biological forms are not fragile or contrived, quite the contrary, they are the 
’generic forms’ most likely to be found by self-organizing dynamic systems, 
and therefore both probable and robust. We may imagine systems ’exploring 
the space’ available to the particular dynamics of each kind, and see evolu­
tion as the process by which their morphologies are transformed one into the 
other.” (Harold, 2001b), p. 198. It may be added that natural evolution is an 
opportunistic process in the sense that whatever works is exploited as much as 
possible. Thus, the notion of a very limited exploration of the design space, as 
put forward by Gould (Gould, 1980; Gould, 2002) can be brought into agree­
ment with the above opinion. Going back to the question of how development 
could organize the massive amount of molecules into orchestrated multicellular 
organisms, it seems to us that the exploitation of the natural (physical) tenden­
cies to self-organize, i.e. to form self-maintaining networks of structures on 
which matter, energy and information flows, is the key recipe that genomes 
use. In other words, genomes are specifying or, better, influencing the interac­
tions that lead to these networks and take place in them. What was built on top 
of single-cell life, then, were elaborate mechanisms for cell communication 
and differentiation, based on the same principles as single-celled life was. The 
enormous number of genes added to single cell organisms can be put to use for 
the purpose of (a) adaptation of the cells to multicellular environments and (b) 
coordination between cells, a task that is obviously very complicated. 

A proper definition of biological development is in order here. At present, 
biological understanding might be summarized in the following statement: De­
velopment is a differential transcription (and translation) of genes in different 
cells and tissues at different times and rates, with each step ultimately initiated 
by the transcription and translation of the previous step. 

The operations of transcription and translation probably warrant some ex­
planation. Figure 11.4 shows the typical sequence of events from DNA to 
protein activity. After the mRNA copy is transcribed from DNA, it is pro­
cessed and transported out of the nucleus of the cell. It then is translated at a 
ribosome into a sequence of amino acids which fold into a native structure able 
to perform biochemical activity. 

The control and timing of transcription and translation in cells is called reg­
ulation and can be imagined as follows: The products of certain genes are 
not used in building the organism directly but rather are used to interact with 
other genes’ products, with environmental cues, or with the DNA of other 
genes (both expressed and non-expressed parts thereof). By interaction they 
change the course of events in a cell, depending on the presence of interac­
tion partners and the strength of their mutual effects. In this way, networks of 
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interaction are formed among genes, called regulatory networks. As already 
mentioned, however, genes do not restrict their interactions to other genes, but 
may also interact with environmental material. In this way, they can interfere 
with another network of biochemical reactions that is formed within a cell, the 
metabolic network. However: “Genes seem to be distant from the biochemi­
cal network, maintaining control only by carefully timed ‘injections’ of their 
products into crucial ‘branching points’ where small inputs have big effects.” 
(Harold, 2001b). Notably, most of the order of a cell is created by the underly­
ing network, with only occasional but decisive intervention by genes. 

In summary: The biochemical network of interactions between substances 
is the underlying substrate of a system of control built upon the effect of ad­
ditional substances (signalling substances), that are itself produced by genes. 
The system is highly combinatorial in that many of the biochemical (mainte­
nance) substances can interact with each other and with the signal substances. 
It is through a control of the expression of the where and when of the signals 
that genes exert their control on the underlying networks. One other key insight 
of developmental biology is the notion of heterochrony (Haeckel, 1866; Gould, 
1977; McKinney and McNamara, 1991) which seems to be able to explain a 
whole plethora of phenomena found in the developmental process (and in evo­
lution, for that matter) (McKinney, 1999). Heterochrony describes the fact that 
during differentiation, a large amount of control can be exerted on develop­
ment by controlling three variables only: (a) the onset, (b) the rate and (c) the 
offset of the expression of certain genes. As such, the phenomenon is not very 
much different from what must happen in single-celled organisms where, in 
response to changing growth and environmental conditions, certain genes alter 
their rate of expression. 

Though we don’t have much space to delve into this very interesting phe­
nomenon, one angle on heterochrony is worth looking at more closely: Its 
relation to the discovery of novelty in evolution. Citing McKinney and McNa­
mara, (McKinney and McNamara, 1991): “Heterochrony is the cause of most 
developmental variation and heterochrony can cause major novelties. The main 
reason for heterochrony to be able to cause major novelties, even new tissues 
is the fact that it can alter the regulative development of cells already early 
on in development which will give rise to major ‘jumps’ in morphospace.” 
And later, the authors write: “Heterochrony can be applied at different levels 
(molecular, cellular, tissue, organism). It is interesting to note that ‘small’ rate 
or timing changes at the lower levels will often translate into complex result at 
the higher levels. The nonlinearity of the system will amplify some changes 
(pos. feedback) and dampen others (neg. feedback) as they cascade upwards.” 
(McKinney and McNamara, 1991), p.48. 

May it suffice to add one more key insight of developmental biology that 
is just starting to surface in detailed studies of early embryonic development 
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of multicellular organisms: Interesting recent results suggest that the control 
of timing of developmental events, i.e. the actual mechanism by which het­
erochrony can be enacted, is due to an encoding of time and strength of ex­
pression of genes into the strength of interaction between (regulatory) genes 
(Arnone, 2002; Davidson, 2001; Gaudet and Mango, 2002). 

4. WHAT WE CAN LEARN FROM NATURE? 

In the previous discussion we have seen some similarity to the problems in 
Genetic Programming. So a natural question would be what we could learn 
from Nature. Here we list a few of the aspects of the developmental process 
in Nature which might provide hints to our efforts in artificial evolutionary 
systems. 

1 Nature stands before what we have called the information dilemma: 
How to instruct a body with so few genes? The size of a genome is very 
small for to provide the required information for a phenotypic organism. 
Nature’s recipes are: 

The channeling or canalizing of environmental complexity (infor­
mation, energy, matter, laws, interactions, dynamics, boundaries) 
into the developing phenotype. The complexity of the organism 
stems mainly from outside and has not to be provided by the geno­
type. The genotype mainly directs the assembly. 

The stability of an organism (whether mature or developing) is a 
steady state, not a static equilibrium. It is in a continual state of 
growing and dying to maintain itself. Nature is dealing with open 
systems (due to physical constraints) where energy and entropy 
considerations are important. Responsiveness to environment is 
much better this way. 

Development allows for open-ended evolution since it is a con­
structive process where layers of complexity are built onto each 
other (with the possibility of ever larger complexity). 

There is a built-in tendency of development to be recursive (see 
L-systems), which allows hierarchy-building in a very natural way. 

Development happens by way of communication between cells, i.e. 
it’s a social system of cells. More generally, there are many combi­
natorial subsystems interacting with each other, erecting networks 
of communication flow. 

Fitness tests for phenotypic organisms are always punctual, i.e. 
individuals are never tested completely and therefore considered 



255 The Challenge of Complexity 

ready. Instead, multi-functionality is important and punctual fit­
ness tests which would test for, e.g., metabolism efficiency today 
and for, e.g., adaptive capabilities tomorrow, allow for it to develop. 

2	 Time is the most important aspect of development. It results in the for­
mation of a 4D space in biological development. 

Time and dynamics is a key to survival in real-time environments. 
No wonder it plays the major role in development also. 

Different time-scales (usually required by the environment) are 
easy to achieve, since development is intrinsically hierarchical. 

The time dimension is a way to “mold” results of development, as 
can be seen by the notion of heterochrony. 

There is labor division (and gradually more so) in the course of 
development. 

Incremental fitness is an important concept, too, i.e. there is a re­
quirement of primitive functionality from the very beginning which 
is gradually refined until the organism is “mature.” 

In terms of fitness landscapes: The fitness landscape gradually 
sharpens (becomes more rugged) in the course of development. 

The developmental process has an enormous degree of fault toler­
ance. Repair mechanisms are abound, as well as adaptability, and 
the ability of regeneration. 

There is a chain of being - from the first living thing to the last cell 
in a multi- cellular individual. This would be interrupted without 
development. 

Sexuality requires a 1-cell stage for each living being (for the unique­
ness of information exchange in recombination). Thus Nature needs 
a mechanism for an organized transition from the one-cell stage to 
the multi-cell individual. 

3	 The mechanisms of development are constructive 

Starting from a single cell, whole bodies are constructed, consist­
ing of millions and billions of cells. 

Development erects networks (metabolic, signaling, regulatory) of 
increasing complexity, within and between cells. 

Development makes use of neutrality, i.e. there are some phases in 
development where nothing happens if looked at from the behavior 
of the phenotype. 
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Development allows the exploitation of side-effects, perhaps in a 
very efficient way. Side-effects are an important source of innova­
tion for evolution, since they are unintentional effects which turn 
out to be useful for other purposes. Producing side-effects is what 
development can do, discerning their usefulness is left to evolution. 

5.	 A POSSIBLE SCENARIO: TRANSFER 
INTO GENETIC PROGRAMMING 

A linear genetic program is a sequence of instructions that is followed one 
by one. This might be a good way to organize a genome, as the subsequent ex­
ecution of steps is a rather natural way of following this information. However, 
it is not a very natural way to look at program behavior, i.e. the phenotypes. 
We propose that, instead, complex programs of the type of interest here should 
be considered as networks of interacting objects which are to behave in com­
plicated ways depending on the flow of input and required output. Thus, if one 
were to set up a system of interacting objects, designating input and output ob­
jects and their communication means, one would have a natural analogue to a 
biochemical network. Note that this does not necessarily imply that we ought 
to consider non-sequential programs here. Rather, it is the more general case. 

Figure 11.5 shows a dataflow graph of a program phenotype. This is the 
graphical translation of the following program (line with ”!” are not contribut­
ing to fitness): 

void gp(r)

double r[4];


{

...


r[3] = r[1] - 3;

*
r[1] =	 r[2] r[1];


! r[3] = r[1] / r[0];

r[0] = r[1] - 1;

r[1] = r[2] * r[0];

r[1] = r[0] * r[1];


! r[0]	= r[2] + r[2];

r[2] = pow(r[1], r[0]);


! r[2] = r[0] + r[3];

! r[0] = r[3] - 1;

! r[1] = r[2] - r[0];

! r[3] = pow(r[0], 2);

! r[2] = r[2] + r[1];


r[0] = r[1] + 9;

r[0] = r[1] / r[3];


! r[0] = r[2] * r[2];

! r[2] = r[1] * r[3];

! r[0] = r[0] + r[2];
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}


In the language of object-oriented programming, objects possess attributes 
for receiving messages and methods for sending messages and performing 
other functions. Input driving the program system would be considered an 
information flow to be taken advantage of for a given purpose (output), and 
the right combination of interactions would be searched for by a genetic search 
method on the level of genes. Taking advantage would mean that those net­
works are differentially selected that perform, after development, the prescribed 
task better than others. 

As for the “reconfiguration” of the object network, this would not happen 
through a direct modification of objects but rather through additional layers of 
message producing objects, and through their corresponding messages. The 
messages would act like signaling substances and interfere with the object 
network in a constructive way, e.g. by inhibition or by excitation, and the 
objects producing these messages would be genes located in sequence on a 
genome. Thus each gene would specify an object, where such an object would 
be even allowed to interact with other objects’ specification of products. The 
most difficult part is presumably the latter, since it requires the ability for self-
modification. 

Perhaps one could even go down to the level of instructions (as equivalent 
to objects in the above sense). Instructions have an operation (through the op­
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code) and operands (input and output) to digest messages. The problem with 
instructions is that the desired behavior of a program needs to come about by 
side-effects of instructions only. Since there are flags to be set by instructions, 
in principle there could be a way. It would have to be decided, what the side 
effects are (1. one could select for the flags, or 2. one could select for values 
in registers and define a network of interactions between flags of instructions, 
although that might be more difficult). 

How could heterochrony come into play? The idea would be to influence the 
underlying information flow in the network of objects by means of variation in 
“timing” of expression. That would be a very smooth way of variation, even 
expressible directly as a simple parameter evolution. On the other hand, Na-
ture’s example teaches us how to translate timing signals into pattern matching. 
So there would be another way to control time-dependent development. 

Finally, the network of interacting objects could be built up by a develop­
mental process, perhaps starting from one object. In this case the object would 
act like a cell with its genome directing the expansion into a larger network of 
interacting objects, possibly using pre-defined objects that have been specified 
already and only need to be coopted into the network. 

Perhaps we have ventured too far now. However, we know that a simple 
division and diversification process of objects can reach any size of a network 
in logarithmic time. As such it is perfectly imaginable that the process envi­
sioned here will quickly reach the desired complexity for any prescribed task. 
Nevertheless we have to leave it to the reader and further considerations how 
such a scenario could be realized in a computer. 

6. CONCLUSION 

Some ideas related to the present contribution have been published in the 
past. Notable is Gruau’s (Gruau, 1993) system of cellular encoding which uses 
a grammar tree to produce programs in a simple developmental process for GP. 
This work has later been applied by Koza (Koza, 1994) and others to produce 
electric circuit designs. Cangelosi (Cangelosi, 1999) was the first to try to make 
use of heterochrony in the context of GAs. A number of people are working 
on regulation and evolutionary algorithms using regulation, like in the work of 
Kennedy et al. (Kennedy and Osborn, 2001). The genotype-phenotype map­
ping has been studied in different papers, see for example (Smith et al., 2001) 
and just recently has been the subject of a special journal issue (Kargupta, 
2002) under the heading “gene expression computing”. 

In the present contribution we have tried to provide a challenge to Genetic 
Programming which would be worth to meet in the long run. We have argued 
that Nature had to solve an analogous problem which it did by inventing the de­
velopmental process. We have discussed a number of aspects of development 
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that seemed to us relevant in the context of artificial evolutionary processes, 
and sketched one way to achieve a similar mechanism in GP. It remains to be 
seen whether GP can meet that challenge in the future. 
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