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Preface

The present edition differs from the first in several significant aspects. Typo-
graphical errors as well as several mathematical errors have been removed. In a number
of places the text has been revised to enhance clarity. Several additional algorithms have
been included as well as an entire new chapter on geometric image transformations. By
popular demand, and in order to provide a better understanding of image algebra, numerous
exercises have been added at the end of each chapter. Starred exercises at the end of a
chapter depend on knowledge of material from subsequent chapters.

As with the first edition, the principal aim of this book is to acquaint engineers,
scientists, and students with the basic concepts of image algebra and its use in the concise
representation of computer vision algorithms. In order to achieve this goal we provide a
brief survey of commonly used computer vision algorithms that we believe represents a
core of knowledge that all computer vision practitioners should have. This survey is not
meant to be an encyclopedic summary of computer vision techniques as it is impossible to
do justice to the scope and depth of the rapidly expanding field of computer vision.

The arrangement of the book is such that it can serve as a reference for computer
vision algorithm developers in general as well as for algorithm developers using the image
algebra C++ object libranyi, ac++.> The techniques and algorithms presented in a given
chapter follow a progression of increasing abstractness. Each technique is introduced
by way of a brief discussion of its purpose and methodology. Since the intent of this
text is to train the practitioner in formulating his algorithms and ideas in the succinct
mathematical language provided by image algebra, an effort has been made to provide the
precise mathematical formulation of each methodology. Thus, we suspect that practicing
engineers and scientists will find this presentation somewhat more practical and perhaps a
bit less esoteric than those found in research publications or various textbooks paraphrasing
these publications.

Chapter 1 provides a short introduction to the field of image algebra. Chapters
2-12 are devoted to particular techniques commonly used in computer vision algorithm
development, ranging from early processing techniques to such higher level topics as image
descriptors and artificial neural networks. Although the chapters on techniques are most
naturally studied in succession, they are not tightly interdependent and can be studied
according to the reader’s particular interest. In the Appendix we présant+ computer
programs of some of the techniques surveyed in this book. These programs reflect the
image algebra pseudocode presented in the chapters and serve as examples of how image
algebra pseudocode can be converted into efficient computer programs.

1 Thei ac++ library supports the use of image algebra in the C++ programming language and is available
via anonymous ftp fronft p: //ftp. ci se. ufl . edu/ pub/src/ial.
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Notation

The tables presented here provide a brief explantation of the notation used
throughout this document. The reader is referred to Ritter [1] for a comprehensive treatise
covering the mathematics of image algebra.

Sets Theoretic Notation and Operations

Symbol Explanation

X, Y, 7 Uppercase characters represent arbitrary sets.

z,Y, 2 Lowercase characters represent elements of an arbitrary set.
X, Y, Z Bold, uppercase characters are used to represent point sets.
X,y,% Bold, lowercase characters are used to represent points, i.e.,

elements of point sets.

N The setN = {0,1,2,3,...}.

7,7t 7~ The set of integers, positive integers, and negative integers,
respectively.

Z, The setZ,, = {0,1,...,n — 1}.

Zt The setZ} = {1,2,...,n}.

Lyp The setZy, = {-n+1,...,—1,0,1,...,n —1}.

R,R*,R—,R2° The set of real numbers, positive real numbers, negative real

numbers, and positive real numbers including 0, respectively.

C The set of complex numbers.

F An arbitrary set of values.

Feo The set unioned with{occ}.

F-ow The set unioned with{—oc}.

Fieo The setf unioned with{—o0, co}.

) The empty se(the set that has no elements).
9X The power sebf X (the set of all subsets of).
€ "is an element of."

"is not an element of."
- "is a subset of."
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Symbol Explanation

xXyy Union
XUY={z:ze€XorzeY}.
U X Let {Xx},ca be a family of sets indexed by an indexing set
AEA A, U X, ={z:z € X, for atleast one A € A}.
AEA
U X; X, =X;UXyU...UX,.
i=1 i=1
U X; UX;={z:ze€X,forsomeiecZt}.
i=1 i=1
XNY Intersection
XNY={z:zeXand z€ Y}.
N X Let {X},c be a family of sets indexed by an indexing set
AEA A N Xo={e:zeXyforallX € A}
AEA
N X X, =XiNXyN...NX,.
i=1 i=1
o0 o0
N X; NX;={z:zeX,foralli e ZT}.
i=1 i=1
XxY Cartesian product
XxY={(z,y):ze X,y Y}
I X: ITX: ={(z1,22,...,2,) : 2; € X;}.
i=1 i=1
IT X: [T Xi ={(z1, 22,23 ...): z; € X;}.
i=1 i=1
Fn n
The Cartesian product of copies ofF, i.e.,F* = ] F.
i=1
X\Y Set difference
Let X andY be subsets of some universal &t
X\Y={zeX:z¢gY}.
X’ Complement
X' = U\ X, whereU is the universal set that contaiiis.
card(X) The cardinality of the setX.
choice(X) A function that randomly selects an element from theJset

Point and Point Set Operations

Symbol Explanation
X+y If x,y e R?, thenx+y=(z14+uy1, -, Tn + Yn)-
X—-y If x,y e R”, thenx —y = (21— ¥1, ---, Tn — Yn)-
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Symbol Explanation

X'y If x,y e R?, thenx -y = (z1y1, .-, Znln).
x/y If x,y € R"”, thenx/y = (z1/y1, .-, n/yn)-
xVy If x,y e R”, thenxVy =(z1Vuy, ..., Zn Vyn).
XAy If x,y e R”, thenx Ay = (21 Ay1, ..., Zn AYn).
Xy In general, ifx,y € R*, andy : R x R — R, then
X7y = (Z1YY1, -+ s TnYYn)-
kyx If teR,xeR”, andy :R xR — R, then
kyx = (kyzy, ..., kyzy).
Xeoy If x,y € R?, thenxey = z1y1 + Z2ys + -+ + Znyn.
XXy If x,y € R?, then
X Xy = (Zay3 — T3y, T3Y1 — T1Y3, 1Yo — L2Y1).
Xy If x € R® andy € R™, then
Xy=(21, ..., Zn, Y1, -, Ym)-
—x If x eR"?, then—x= (-2, ..., —2,).
[x] If x € R", then[x]| = ([z1], ..., [Zn])-
[x] If x € R", then|x| = (|z41], ..., [Zn])-
[x] If x € R™, then[x] = ([z1], ..., [za])-
pi(x) If x = (z1,22,...,2,) € R?, thenp;(x) = ;.
¥x If xeR? then¥x=2; +22+ - +2,.
IIx If x e R?, thenllx = 2122 - - - x,.
VX If xeR"® thenvx =21 VayV -V z,.
AX If xeR" thenAx =2z, Azy A - A zy,.
Il If x € R, then||x||, = \/z7 + --- + 2.
Ixl, it x € R, then|[xl, = a1] + [za] + - + [z,
%] oo If x € R”?, then||x||, = |z1|V |z2|V -+ V |za].
dim(x) If x € R?, thendim(x) = n.
X+Y f X, YCR" thenX+Y ={x+y: xeXandyeY}.
X-Y If X,7YCR" thenX-Y={x-y:xeXandy e Y}
X+p If X CR"” andp € R*, thenX +p={x+p : x€X}.
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Symbol
X-p
XuY
X\Y

XAY

XxY

VX

in fK)

AX

choice(X)

cardX)

Morphology

Explanation
If X C R*andp € R, thenX —=p{xpx € X}.
If X, YCR” ,thenXUY ={z:zeXorzeY}.
f X, YCR® ,thenX\Y ={z: zecXandz ¢ Y}.

If X, YXCR” , then
XAY ={z:zeXUYandzgXNY}.

If X, YCR” ,thenX xY = {(x,y) : xeXandy € Y}.
If X CR", then—X={: x € X}.
If X CR?, thenX = {z : z€ R* and z ¢ X}.

If X C R”, thensup(X) = the supremum oX . If
X ={xy,%3,...,X,}, thensup(X) = x; Vxs V...V x,.

For a point seiX with total order<,
xo=VX & x<x0,Vxe X\ {xo}.

If X C R”, theninfX) = the infimum ofX . If
X ={x1,%x2,...,Xp} , theninfX) =x 1 Axa A... AXp.

For a point seiX with total order<,
xo = ANX&x9 =<2, VxeX)\ {x}.

If X C R"”, then
choice(X) € X (randomly chosen element).

If X C R”, thencardK) =1t he cardinalityXf . In
particular, ifX = {x;,--+,x,}, thencardk) =n .

In the following table,A, B, D, and E denote subsets dR".

Symbol
A*
AI
Ap

AxB

A/B

© 2001 by CRC PressLLC

Explanation
The reflection ofA across the origi® = (0,0,...,0) € R™.
The complement ofA; i.e., A’ = {x € R": x £ A}.
Ap={a+b:acA}.

Minkowski additionis defined as
AxB={a+b:ae A beB} (Section 7.2).

Minkowski subtractioris defined asA/B = (A’ x B*)’
(Section 7.2).



Symbol

AoB

AeB

A®C

Explanation

The opening ofA by B is denotedA o B and is defined by
A oB = (A/B) x B (Section 7.3).

The closing of A by B is denotedA e B and is defined by
A ¢B = (A x B)/B (Section 7.3).

Let C = (D,E) be an ordered pair of structuring elements.
The hit-and-miss transfornof the setA is given by
A®C={p:D, C Aand E, C A’} (Section 7.5).

Functions and Scalar Operations

Symbol
f: X—=Y
domain(f)

range(f)

f—l

YX

fla

fle

gof

f+g

£

© 2001 by CRC PressLLC

Explanation
f is afunctionfrom X into Y.
The domainof the functionf : X — Y is the setX.

The rangeof the functionf : X — Y is the set

{f(z):ze X}

The inverseof the functionf.

The set of all functions fronX into Y, i.e., if f € YX, then
f: X =Y.

Given a functionf : X — Y and a subseti C X, the
restriction of f to A, f|a : A — Y, is defined by
fla(a) = f(a) for a € A.

Givenf: A —Y andyg : B — Y, the extension off to g is

defined byf|¢(z) = {5((:;)) iiﬁ 2 g\A-

Given two functionsf : X — Y andg : Y — Z, the
compositiong o f : X — 7 is defined by
(go f)(z) = g(f(=)), for everyz € X.

Let f andg be real or complex-valued functions, then

(f +9)(z) = f(z) + g().

Let f andg be real or complex-valued functions, then

(f - g)(x) = f(=) g(x).

Let f be a real or complex-valued function, ahde a real
or complex number, thefi € F¥*, (k- f)(z) = k - (f(z)).

|f|(z) = |f(z)|, wheref is a real (or complex)-valued
function, and|f(z)| denotes the absolute value (or
magnitude) off(z).



Symbol

Ix
pj : H XZ' — X]'
i=1

card(X)

choice(X)

rVy

Ay

[]

x mod y

xs(z)

Explanation
The identity functionlx : X — X is given bylx(z) = z.

The projection functionp; onto thejth coordinateis defined
by pj(z1,...,2j,...,2n) = ;.

The cardinality of the setX.

A function which randomly selects an element from the set
X.

Forz,y € R, z vV y is the maximum ofc andy.
Forz,y € R, z A y is the minimun ofr andy.

For z € R the ceiling function[z]| returns the smallest
integer that is greater than or equalato

For z € R thefloor function|z] returns the largest integer
that is less than or equal ta

For 2z € R theround functionreturns the nearest integer to
If there are two such integers it yields the integer with
greater magnitude.

Forz,y € N, z mod y = r if there existsk, r € N with
r < y such thatr = yk + r.

The characteristic functiony s is defined by
vs(z) :{ 1 fzes
0

otherwise.

Images and Image Operations

Symbol

a,be

acFX

1eFX

0eF%

a|z

© 2001 by CRC PressLLC

Explanation

Bold, lowercase characters are used to represemyes
Image variables will usually be chosen from the beginning of
the alphabet.

The imagea is anF-valued imageon X. The sefF is called
the value setof a andX the spatial domainof a.

Let F be a set with unif. Thenl denotes an image, all of
whose pixel values aré.

Let F be a set with zerd. Then0 denotes an image, all of
whose pixel values are.

The domain restrictionof a € FX to a subse®Z of X is
defined byalz = an(Z x F). Thus,alz € FZ.



Symbol

al|s

a|(z,5)

b

(alb), (ai|as]---|an)

l'a

Explanation

The range restrictionof a € FX to the subset C F is
defined byal||s = anN (X x S). The double-bar notation is
used to focus attention on the fact that the restriction is
applied to the second coordinatef- X x F. Thus if

W = {x € X :a(x) € S}, thenal|s € SWV.

If ac FX, Z Cc X, andS C F, then therestriction ofa to Z
and S is defined an|z sy = an(Z x 5). Thus if
W ={zeZ:a(z)e S} a|zs €SW.

Let X andY be subsets of the same topological space. The
extension oh € FX tob € FY is defined by

by Jax) ifxeX
alP(x) = {b(x) ifxeY\X.
Row concatenation of imagesandb, respectively the row
concatenation of images,, as, ..., a,.

Column concatenation of imagasandb.

If acFX andf : F — G, then the image(a) € GX is
given by foa,ie.,

fa) = {(x,¢(x)) : e(x) = f(a(x)),x € X}.

If f:Y — X anda € FX, the induced imagao f ¢ FY is
defined byao f = {(y,a(f(y))) :y € Y}.

If v is a binary operation ofr, then an induced operation on
FX can be defined. Lei, b € F¥X; the induced operation is
given byayb = {(x,¢(x)) : ¢(z) = a(x) yb(x),x € X}.

Let k € F, a € FX, andy be a binary operation oR. An
induced scalar operation on images is defined by
kya={(x c(x)): c(x) = kya(x),x € X}.

Leta,b € RX; aP = {(x, c(x)) 1 e(x) = a(x)b(x), X € X}.

Leta,b € (RT)™;
logba = {(x, c(x)) : ¢(x) = logp(x)a(z),x € X}.

If a € FX andF has a conjugation operation *, then the
pointwise conjugate of image, a*(x) = (a(x))".

I'a denotes reduction by a generic reduce operation
I : FX — F (Section 1.4).

The following four items are specific examples of the global reduce operation. Each

assumea € R¥ andX = {x;,x», ..

© 2001 by CRC PressLLC
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Explanation

Dot productaeb = X(a-b) = > (a(x) - b(x)).
xeX

Complementation of a set-valued image

Complementation of a Boolean image

Transpose of imaga.

Templates and Template Operations

Symbol

s, t,u

» Y

te (FX)

Stoo (ty)

© 2001 by CRC PressLLC

Explanation

Bold, lowercase characters are used to represenplates
Usually characters from the middle of the alphabet are used
as template variables.

A template is an image whose pixel values are images. In
particular, anF-valued template fronY to X is a function
t:Y —FX. Thus,t € (FX)Y andt is anFX-valued

image onY.

Lett € ([FX)Y. For eachy € Y, ty, = t(y). The image
ty, € FX is given byt, = {(x,ty(x)) : x € X}.

If F e {R,C} andt € ([FX)Y, then thesupportof t is
denoted byS(t,) and is defined by

S(ty) = {x € X : ty(x) £ 0}.

If t € (RX)Y, thenS,, (ty) = {x € X : ty(x) # co}.

If t e (R)_COO)Y, thenS_(ty) = {x € X : ty(x) # —o0}.

If t € (RX,)Y, thenSie, (ty) = {x € X : ty(x) # o0},



Explanation

A parameterizedr-valued template fror’Y to X with
parameters inP is a function of the fornt : P — ([FX)Y.
Lett € (FX)¥. Thetransposet’ € (FY)™ is defined as
t(yFt y(x).

Image-Template Operations

In the table belowX is a finite subset oR".

Symbol
a@)t

tQa

t Pa

aMt

tMa

alt

© 2001 by CRC PressLLC

Explanation

Let (F,v, () be a semiring and € FX, t ¢ ([FX)Y, then
the generic right convolution product of with t is defined

asa@t :(,{ b(y)):y €Y, b(y)=I, a(x)O ty(x)}.

With the conditions above, except that nave (FY)™, the
generic left convolution product ef with t is defined as

t@a={ b)) :y €Y by)=Lax) O txly}-

LetY c R™, a € FX, andt € (FX)", whereF € {C,R}.

Theright linear convolution products defined as

a(—BtZ(% b(y):y €Y, b(y)= > a(x) ty(X)}-
xEXﬂS(ty)

With the conditions above, except thae ([FY)X, theleft
linear convolution products defined as
)

t Pa= {(y,b(y)) 'YEY,b(y)= > a(x) tx(Y)}~
x€XNS(t, )

Fora e R¥, andt e (Ri‘oo)Y, the right morphological
max convolution produds defined by

at:{(y, b(y)):y€Y,b(y)= V a(X)+ty(X)}-

XEXNS_oo(ty)

Fora € R¥_, andt e (RIOO)X, the left morphological max
convolution producis defined by

tMa:{(y,b(y)) yeY, b(y)=V a(X)+tx(y)}-

xexrws,m(t;)

Fora € RX,, andt € (RX.,)", theright morphological min
convolution producis defined by

a@t:{(y,b(y)) 'yeY,b(y)= A ax) +’ty(X)}-

x€XNSoo(ty)



Symbol Explanation

tla Fora € R¥_ andt ¢ (IRIOO)X, the left morphological min
convolution producis defined by

tMa=q (y,b(y)) :y€Y,b(y) = A ax)+'tx(y) o
X€XNSeo(t)
t Y
a© Fora e (R29)™ andt € ((RZ&)X> , the right
multiplicative max convolution produds$ defined by

a@tZ{(y,b(y)) 'yeY,b(y) =V ax) Xty(X)}~

xeXNS(ty)

tQa

X
Fora e (R2%)™ andt € ((R2%,Y) ", theleft multiplicative
max convolution produds defined by

t@a={ (v, b(y)) :y€Y,b(y) = V ax) xtx(y) o
x€XNS(t})
t Y
a0 Fora e (R29)™ andt e ((Rzggx) , theright
multiplicative min convolution produés defined by

a@®t=: (yv,b(y)) :y€Y,b(y) = A ax)x'ty(x)

X€XNS o (ty)

X
tQa Fora € (R22)™ andt e ((RZ(QY> , the left multiplicative
min convolution producis defined by

t@ﬁ—{(y, b(y)):y€Y,b(y)= A ax) X’tx(Y)}-

xexrwsw(t;,)

Neighborhoods and Neighborhood Operations

Symbol Explanation
M, N Italic uppercase characters are used to deneighborhoods
N e (QX)Y A neighborhood is an image whose pixel values are sets of

points. In particular, ameighborhood fronY to X is a
function N : Y — 2%,

N(p) A parameterized neighborhod®m Y to X with parameters
in P is a function of the formV : P — (QX)Y.

N’ Let N € (2X)Y, thetransposeN’ € (2¥)™ is defined as
N'(x)={y €Y :x€e N(y)}, that is,
x € N(y)iff y € N'(x).

N1 @Ns The dilation of Ny by N is defined by
Niy)= U M)+ -y)).
PEN2(y)
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Image-Neighborhood Operations

In the table belowX is a finite subset oR".

Symbol Explanation
FXlv If N € %)Y, thenF¥ y = {alyy):acFXy €Y},
a@®ON Givena € FX, N € (2%)Y, and reduce operation

I :F%¥ y — F, the generic right reduction oh with N is
defined as(a @N)(y) = I‘a|N(y) = FxEN(y) a(x). Thus,
a@®N = {(y,b(y)) : ¥y €Y, b(y) =Talnn)}

N ©@a With the conditions above, except that nawe (2X)*, the
generic left reduction ok with t is defined as

(N ©a) = (a©ON).

a(@ N Givena € RY, and theimage averagéunction
a : RY|y — R, the right reduction ok with N yields the
neighborhood averaging operation,

(2@ N)(y) = a(alny))-

a@N Givena € RY, and theimage mediarfunction
m : RY |y — R, the right reduction oh with N yields the
neighborhood median filtered image,

(a@N)(y) = m(alngy))-

Matrix and Vector Operations

In the table below,A and B represent matrices.

Symbol Explanation

A* The conjugateof matrix A.

A’ The transposeof matrix A.

Ax B, AB The matrixproductof matricesA and B.

A® B The tensor producof matricesA and B.

A®,B The p-productof matricesA and B.

A (—D;)B The dualp-productof matricesA and B, defined by

A@.B = (B'®,A").

References

[1] G. Ritter, “Image algebra.” Unpublished manuscript, available via anonymous ftp from
ftp://ftp.cise.ufl.edu/pub/src/ialdocunments, 1994.
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CHAPTER 1
IMAGE ALGEBRA

1.1. Intr oduction

Sincethe field of imagealgebrais a recentdevelopmentit will be instructiveto
providesomebackgroundnformation. In the broadsensejmagealgebrais a mathematical
theoryconcernedvith thetransformatiorandanalysisof images.Although muchemphasis
is focusedon the analysisand transformationof digital images, the main goal is the
establishmenbf a comprehensiveand unifying theory of image transformationsjmage
analysis,andimageunderstandingn the discreteaswell asthe continuousdomain[1].

The idea of establishinga unifying theory for the various conceptsand opera-
tions encounteredn imageandsignal processings not new. Over thirty yearsago,Unger
proposedthat many algorithmsfor image processingandimage analysiscould be imple-
mentedin parallelusingcellular array computerd2]. Thesecellulararraycomputersvere
inspiredby the work of von Neumannin the 1950s[3, 4]. Realizationof von Neumann’s
cellular array machineswvas madepossiblewith the adventof VLSI technology.NASA’s
massivelyparallelprocessoinr MPP andthe CLIP seriesof computersdevelopedoy Duff
andhis colleaguegepresenthe classicembodimenbf von Neumann’soriginal automaton
[5, 6, 7,8, 9]. A moregeneralclassof cellulararraycomputersare pyramidsand Thinking
MachinesCorporation’sConnectionMachines[10, 11, 12]. In an abstractsensethe vari-
ousversionsof ConnectionMachinesare universalcellular automatonavith an additional
mechanismaddedfor nonlocal communication.

Many operationgperformedby thesecellular array machinescan be expressedn
termsof simple elementaryoperations.Theseelementaryoperationsreatea mathematical
basisfor the theoreticalformalism capableof expressinga large number of algorithms
for imageprocessingand analysis. In fact, a commonthreadamongdesignersof parallel
image processingarchitecturess the belief that large classesof image transformations
can be describedby a small set of standardrules that induce thesearchitectures. This
belief led to the creationof mathematicaformalismsthat were usedto aid in the design
of special-purposeparallel architectures. Matheron and Serra’s Texture Analyzer [13],
ERIM'’s (EnvironmentaResearchnstituteof Michigan) Cytocomputef14, 15, 16], Martin
Marietta’s GAPP [17, 18, 19], and LockheedMartin’'s PAL processof20] are examples
of this approach.

The formalism associatedvith thesecellular architecturegs that of pixel neigh-
borhoodarithmeticand mathematicaimorphology. Mathematicaimorphologyis the part of
image processingconcernedwith imagefiltering and analysisby structuringelements. It
grew out of the earlywork of Minkowski andHadwiger[21, 22, 23], andenteredhe mod-
ern erathroughthe work of Matheronand Serraof the EcoledesMinesin Fontainebleau,
France[24, 25, 26, 27]. Matheronand Serranot only formulatedthe modernconcepts
of morphologicalimagetransformationsbut also designedand built the Texture Analyzer
System. Sincethoseearly days, morphologicaloperationshave beenapplied from low-
level, to intermediateto high-levelvision problems. Among somerecentresearctpapers
on morphologicalimageprocessingare CrimminsandBrown [28], Haralicket al. [29, 30],
Maragosand Schafer[31, 32, 33], Davidson[34, 35, 36], Dougherty[37, 38], Goutsias
[39, 40], Koskinenand Astola [41], and Sivakumarand Goutsias[42].
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Serraand Sternbeg were the first to unify morphologicalconceptsand methods
into a coherentalgebraictheory specifically designedfor image processingand image
analysis. Sternbeg was also the first to usethe term “image algebra”[43, 44]. In the
mid 1980s,Maragosintroduceda new theoryunifying a large classof linearandnonlinear
systemsunder the theory of mathematicalmorphology [45]. More recently, Davidson
completedthe mathematicalfoundation of mathematicalmorphology by formulating its
embeddinginto the lattice algebraknown as Mini-Max algebra [46, 47, 48]. However,
despitetheseprofound accomplishmentsmorphologicalmethodshave somewell-known
limitations. For example, such fairly commonimage processingtechniquesas feature
extraction basedon convolution, Fourier-like transformations,chain coding, histogram
equalizationtransformsjmagerotation,andimageregistrationandrectificationare— with
the exceptionof a few simplecases— eitherextremelydifficult or impossibleto expressn
termsof morphologicabperations.Thefailure of a morphologicallypasedmagealgebrato
expresaa fairly straightforwardJ.S. government-furnisheBLIR (forward-lookinginfrared)
algorithmwas demonstratedyy Miller of Perkin-Elmer[49].

The failure of an image algebrabasedsolely on morphologicaloperationsto
providea universalimageprocessingalgebrais dueto its set-theoretidormulation, which
restson the Minkowski addition and subtractionof sets[23]. Theseoperationsignore
thelineardomain,transformationdetweendifferentdomains(spaceof differentsizesand
dimensionality) andtransformationdetweerdifferentvaluesets(algebraicstructures)e.g.,
setsconsistingof real-, complex-,or vector-valuechumbers.The imagealgebradiscussed
in this text includestheseconceptsand extendsthe morphologicaloperationg1].

The developmentof image algebragrew out of a need,by the U.S. Air Force
SystemsCommand,for a commonimage-processindanguage. Defensecontractorsdo
not usea standardizedmathematicallyrigorous and efficient structurethat is specifically
designedfor image manipulation. Documentationby contractorsof algorithmsfor image
processingand rationale underlying algorithm design is often accomplishedvia word
descriptionor analogiesthat are extremelycumbersomeand often ambiguous.The result
of thesead hoc approache$iasbeena proliferationof nonstandarchotationandincreased
researchand developmentcost. In responseto this chaotic situation, the Air Force
ArmamentLaboratory (AFATL — now known as Wright LaboratoryMNGA) of the Air
Force SystemsCommand,in conjunctionwith the DefenseAdvanced ResearchProject
Agency (DARPA), supportedthe early developmenbf image algebrawith the intent that
the fully developedstructurewould subsequentlyform the basisof a commonimage-
processinganguage. The goal of AFATL was the developmentof a complete,unified
algebraicstructurethat providesa commonmathematicaénvironmenfor image-processing
algorithmdevelopmentpptimization,comparisongcoding,andperformancesvaluation.The
developmenbf this structureproved highly successfulcapableof fulfilling the tasksset
forth by the governmentandis now commonlyknown asimage algebra.

Becausef the goalssetby the governmentthe theory of imagealgebraprovides
for alanguagenhich, if properlyimplementedasa standardmageprocessingnvironment,
cangreatlyreduceresearclanddevelopmentosts. Sincethe foundationof this languagés
purely mathematicalhndindependenbf any future computerarchitectureor languagethe
longevityof animagealgebrastandards assured Furthermoresavingsdueto commonality
of languageand increasedproductivity could dwarf any reasonablénitial investmentfor
adaptingimagealgebraas a standardenvironmentfor image processing.

Although commonality of languageand cost savingsare two major reasons
for consideringimage algebraas a standardlanguagefor image processing there exists
a multitude of other reasonsfor desiring the broad acceptanceof image algebraas a
componentof all image processingdevelopmentsystems. Premieramongtheseis the
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predictableinfluenceof animagealgebrastandardon future imageprocessingechnology.
In this, it can be comparedto the influenceon scientific reasoningand the advancement
of sciencedueto the replacemenbf the myriad of differentnumbersystemge.g.,Roman,
Syrian, Hebrew, Egyptian, Chinese,etc.) by the now common Indo-Arabic notation.
Additional benefitsprovided by the use of imagealgebraare

* The elementalimage algebraoperationsare small in number,translucent,
simple, and provide a methodof transformingimagesthat is easily learnedand
used;

* Imagealgebraoperationsand operandgrovide the capability of expressing
all image-to-imagdransformations;

*  Theoremgyoverningimagealgebramakecomputemprogramsasednimage
algebranotationamenableo both machinedependenand machineindependent
optimization techniques;

»  Thealgebraicnotationprovidesa deepernderstandingf image manipula-
tion operationglueto concisenesandbrevity of codeandis capableof suggesting
new techniques;

*  Thenotationaladaptabilityto programmindanguagesllowsthe substitution
of extremelyshort and conciseimage algebraexpressiongor equivalentblocks
of code,and thereforeincreasegprogrammerproductivity;

* Imagealgebraprovidesa rich mathematicaktructurethat can be exploited
to relateimage processingproblemsto other mathematicabreas;

*  Without image algebra,a programmerwill never benefit from the bridge
thatexistsbetweenanimagealgebraprogrammindanguageandthe multitude of
mathematicastructurestheoremsandidentitiesthatarerelatedto imagealgebra;

»  Thereis no competingnotationthat adequatelyprovidesall thesebenefits.

The role of image algebrain computervision and image processingtasksand
theory should not be confusedwith the government’sAda programminglanguageeffort.
Thegoalof thedevelopmenof the Ada programmindanguagevasto provideasinglehigh-
orderlanguagein which to implementembeddedsystems.The specialarchitecturedeing
developednowadaysfor image processingapplicationsare not often capableof directly
executingAda languageprograms,often dueto supportof parallel processingnodelsnot
accommodatedy Ada’s taskingmechanism.Hence,most applicationsdesignedfor such
processorsre still written in specialassemblyor microcodelanguages.Image algebra,
on the other hand, providesa level of specificationdirectly derived from the underlying
mathematic®n which imageprocessings basedandthatis compatiblewith bothsequential
and parallel architectures.

Enthusiasmfor image algebramust be temperedby the knowledgethat image
algebra,like any other field of mathematicswill neverbe a finished productbut remain
a continuously evolving mathematicaltheory concernedwith the unification of image
processingand computervision tasks. Much of the mathematicsassociatedvith image
algebraandits implicationto computervision remainslargely uncharterederritory which
awaitsdiscovery. For example,very little work hasbeendonein relating image algebra
to computervision techniqueswvhich employ tools from suchdiverseareasas knowledge
representationgraphtheory, and surfacerepresentation.
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Severalimage algebra programminglanguageshave been developed. These
include image algebraFortran (IAF) [50], an image algebraAda (IAA) translator[51],
image algebraConnectionMachine *Lisp [52, 53], an image algebralanguage(lAL)
implementationon transputerg54, 55], and an imagealgebraC++ classlibrary (i ac++)
[56, 57]. Unfortunately,thereis often a tendencyamongengineergo confuseor equate
theselanguageswith image algebra. An image algebraprogramminglanguageis not
image algebra,which is a mathematicatheory. An image algebra-basegrogramming
languagdypically implementsa particularsubalgebraf thefull imagealgebra.ln addition,
simplisticimplementationganresultin poor computationaperformance Restrictionsand
limitationsin implementatiorareusuallydueto a combinationof factors,the mostpertinent
beingdevelopmentostsand hardwareand softwareenvironmentconstraints.They are not
limitations of imagealgebra,andthey shouldnot be confusedwith the capability of image
algebraas a mathematicatool for image manipulation.

Imagealgebrais a hetengeneousr many-valuealgebrain the senseof Birkhoff
andLipson [58, 1], with multiple setsof operandsand operators.Manipulationof images
for purposesf image enhancementanalysis,and understandingnvolves operationsnot
only on images,but also on differenttypesof valuesand quantitiesassociatedvith these
images.Thus,the basicoperand®f imagealgebraareimagesandthe valuesand quantities
associatedwvith theseimages. Roughly speaking,an image consistsof two things, a
collection of pointsand a setof valuesassociatedvith thesepoints. Imagesare therefore
endowedwith two typesof information, namelythe spatialrelationshipof the points,and
also sometype of numericor other descriptiveinformation associatedvith thesepoints.
Consequentlythe field of imagealgebrabridgestwo broadmathematicabreasthe theory
of point setsand the algebraof value sets,and investigategheir interrelationship.In the
sectionsthat follow we discusspoint and value setsas well as images,templates,and
neighborhoodghat characterizesomeof their interrelationships.

1.2. Point Sets

A point set is simply a topological space. Thus, a point set consistsof two
things,a collectionof objectscalled pointsanda topologywhich providesfor suchnotions
asnearnesf two points,the connectivityof a subsebf the point set,the neighbohood of
a point, boundarypoints and curvesand arcs Point setsaretypically denotedby capital
bold lettersfrom the end of the alphabet,.e., W, X, Y, andZ.

Points (elementsof point sets)are typically denotedby lower casebold letters
from the end of the alphabethamelyx, y, z € X. Note alsothatif x € R”, thenx is of
form x = (z1, 22, ..., z,), Wherefor eachi = 1, 2, ..., n, z; denotesa real number
called the ith coodinate of x.

The mostcommonpoint setsoccurringin imageprocessingrediscretesubsetof
n—dimensionaEuclideanspaceR” with n = 1, 2, or 3 togethemwith the discretetopology.
However, other topologiessuch as the von Neumanntopology and the odd-everproduct
topologyare also commonlyusedtopologiesin computervision [1].

There is no restriction on the shape of the discrete subsetsof R™ used
in applicationsof image algebrato solve vision problems. Point sets can assume
arbitrary shapes. In particular, shapescan be rectangular, circular, or snake-like.
Some of the more pertinent point sets are the set of integer points Z (here we view
Z c R!), the n-dimensionallattice Z* c R" (e, 7" = Z xZ x --- x I=
{xeR™: x=(21,...,2,), 2 €L fori=1,...,n}) withn = 2 orn = 3, and
rectangularsubsetsof Z2. Two of the most often encounteredectangularpoint setsare
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of form
X:meZn:{(xl,xz)EZ2 : nglgmfl,ogzmgnfl},

or
X:Z;’,’l><Z;'L':{(3v1,av2)EZ2 1<z <m, 1§x2§n}.

We follow standardpracticeandrepresentheserectangulapoint setsby listing the pointsin
matrix form. Figurel.2.1providesagraphicalrepresentationf the pointsetX = Z} x 7.

1 2 n
: > Yy
1__ . @  irr sus °
2__ . @  rrr sus °
m+ o o e .
\J
X

Figure 1.2.1. The rectangulamoint setX = 7} x Z;}.

Point Operations

As mentioned,someof the more pertinentpoint setsare discretesubsetof the
vector spaceR™. Thesepoint setsinherit the usual elementaryvector spaceoperations.
Thus, for examplejf X € Z” (or X C R*) andx = (21, ..., #,), y = (Y1, - -, Un) €
X, thenthe sum of the pointsx andy is definedas

x+y=(21+y, s Tn+Yn),
while the multiplicationandadditionof a scalark € Z (or £ € R) anda pointx is given by
k- x=(k-z1,...,k z,)
and
k+x=(k+z1,...,k+z,),

respectively. Point subtractionis also defined in the usualway.

In additionto thesestandardsectorspaceoperationsjmagealgebraalsoincorpo-
ratesthreebasictypesof point multiplication. Thesearethe Hadamad product the cross
product(or vectorproduc) for pointsin Z2 (or R®), andthe dot productwhich aredefinedby

X'y:(lfl'yl, ceey En yn),

XXy:(l’Z'ys—ZS'yz,$3'y1—$1'y3,231'92—132'91),

and
Xey =211 +Z2-Y2+ - +Zn - Yn,
respectively.
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Notethatthe sumof two points,the Hadamardoroduct,andthe crossproductare
binary operationghat take asinput two pointsandproduceanotherpoint. Therefore these
operationscan be viewed as mappingsX x X — X wheneverX is closedunderthese
operations.In contrastthebinaryoperationof dot productis a scalarandnot anothewector.
This providesan exampleof a mappingX x X — F, whereF denoteshe appropriatdield
of scalars. Another suchmapping,associatedvith metric spacesijs the distancefunction
X x X — R which assigngto eachpair of pointsx andy the distancefrom x to y. The
mostcommondistancefunctionsoccurringin imageprocessingrethe Euclideandistance,
the city block or diamonddistance andthe chessboat distancewhich are definedby

1

d(x,y) = [Z (2x — ykfl ,

k=1

n
pxy) = |or — wel
k=1

and
b(x,y) =maz{|lry —yg|: 1 <k <n},

respectively.

Distancescan be convenientlycomputedin termsof the norm of a point. The
threenormsof interesthere are derivedfrom the standardZ.”? norms

n 1/13’
%[, = (Z|$i|p) :

i=1

The L norm is given by
n
Ixllo = \/ il
i=1

n
where \/ |z;| = maz{|z1], ..., |zn|}. Specifically, the Euclideannorm is given by
i=1

||, = /2 4+ -+ +2%. Thus,d(x,y) = ||x — y||,. Similarly, the city block distance
can be computedusing the formulation p(x,y) = ||x — y||; andthe chessboardlistance
by using 6(x,y) = |Ix — ylle-

Note that the p-norm of a point x is a unary operation, namely a function
| l, : X — R. Anotherassemblagef functionsX — R which play a major role in
variousapplicationsarethe projectionfunctions. GivenX C R", thentheith projectionon
X, wherei € {1, ..., n}, is denotedby p; anddefinedby p;(x) = z;, wherez; denotes
the ith coordinateof x.

Characteristicfunctions and neighborhoodfunctions are two of the most fre-
guently occurring unary operationsin image processing. In orderto definetheseopera-
tions, we needto recall the notion of a power set of a set. The power setof a setSis
definedasthe setof all subsetsof S andis denotedoy 2°. Thus,if Z is a point set, then
22 = (X : X C Z}.

Given X € 2% (i.e., X C Z), then the characteristicfunction associatedwith
X is the function

XX:Z_}{O)I}
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defined by
1 difzeX
Xx(z)—{o ifz¢X.
Forapairof pointsetsX andZ, aneighbohoodsystenfor X in Z, or equivalently,
a neighbohood functionfrom X to Z, is a function
N:X — 2%,

It follows that for eachpointx € X, N(x) C Z. ThesetN(x) is called a neighbohood
for x.

Thereare two neighborhoodunctions on subsetsof Z? which are of particular
importancein imageprocessing.Thesearethe von Neumanmeighborhoodndthe Moore
neighborhood.The von NeumannneighborhoodV : X — 27 is definedby

Nx)={y : y=(z1£]j z2) ory = (21, 22 k), j, k€ {0, 1} },
wherex = (z1, z3) € X C 7?2, while the Moore neighborhoodV/ : X — 27" is defined by
Mx)={y :y=(z1%j 2z2%k), j k€{0 1} }.
Figure 1.2.2 providesa pictorial representatiorof thesetwo neighborhoodunctions;the
hashectenterarearepresentshe point x andthe adjacentellsrepresenthe adjacenpoints.
The von Neumannand Moore neighborhoodsre also called the four neighbohood and

eight neighbohood respectively. They are local neighbohoodssince they only include
the directly adjacentpoints of a given point.

N(x) = e ’ M(x) =

Figure 1.2.2. The von NeumannneighborhoodV (x)
and the Moore neighborhood} (x) of a point x.

There are many other point operationsthat are useful in expressingcomputer
vision algorithmsin succinctalgebraicform. For instancejn certaininterpolationschemes
it becomesnecessaryto switch from points with real-valuedcoordinates(floating point
coordinates}o correspondingnteger-valuedcoordinatepoints. One suchmethodusesthe
inducedfloor operation| | : R* — Z" definedby |x| = (|21], [z2], ..., [#r]), Where
x = (»1, 22, ..., zp) € R" and |z;| € Z denoteghe largestintegerlessthan or equalto
z; (i.e., |z;] < z; andif k € Z with k < z;, thenk < |z;]).

Summary of Point Operations

We summarizesomeof the more pertinentpoint operations.Someimagealgebra
implementationsuchasiac++ provide many additionalpoint operationg59].
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Binary operations. Let x = (z1, 22, ..., 25),y = (y1, Y2, --.,yn) € R?, and
z = (21, 22, ..., Zm) € R™.

addition x+y=(z14+y1, ..., %0+ Yn)

subtraction x—y=(@1—y1, ..., %n—Yn)

multiplication Xy = (Z1Y1, -+ TnlYn)

division x/y = (€1/y1, -, n/Yn)

supremum sup(x,y) = (1 VY1, -, Zn VYn)

infimum inf(x,y) = (x1Ay1, ..., n AYn)

dot product Xoy = Z1Y1 + Taya + - + ZpUyn
crossproduct (n = 3) x Xy = (Zays — T3Y2, T3Yy1 — T1Y3, T1Y2 — T2Y1)
concatenation Xz = (21, ..., Tn, 21, -+, Zm)

scalar operations kyx = (kyzq, ..., kyzy,),

wherey € {+, —, %, V, A}

Unary operations. In the following let x = (z1, #2, ..., z,) € R™.
negation —x = (-2, ..., —p)
ceiling [x] = (Jz1], ..., [za])
floor [x] = (lz1], ..., |za))
rounding x] = ([z1], -+ -, [zn])
projection pi(x) = z;
sum Yx =zx1+ 20+ - + xp,
product Ix = zy2y -+ 2,
maximum VX =z VeV -+ V z,
minimum AX =z ANx2 A+ N 2y
Euclidean norm Ixll, = V&i+ - + a2
L! norm Ixll, = |z1| + |z2] + - + |25
L% norm Xl = |21| V |22| V - - V |25]
dimension dim(x) = n
neighborhood N(x) C R?
characteristicfunction Xx(Z) = { (1) z; z ;§

It is importantto note that severalof the above unary operationsare special
instancef spatialtransformationsX — Y. Spatialtransformsplay a vital role in many
image processingand computervision tasks.

In the above summarywe only consideredpoints with real- or integer-valued
coordinates. Points of other spaceshave their own induced operations. For example,
typical operationson points of X = (Z;)" (i.e., Boolean-valuedpoints) are the usual
logical operationsof AND, OR, XOR, and complementation.

Point Set Operations

Point arithmeticleadsin a naturalway to the notion of setarithmetic. Given a
vectorspaceZ, thenfor X, Y € 2% (i.e., X, Y C Z) andan arbitrary pointp € Z we
define the following arithmetic operations:

addition X+Y={x+y:xeXandy €Y}
subtraction X-Y={x-y:xeXandyecY}
point addition X+p={x+p: xeX}
point subtraction X-p={x-p: xeX}
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Anothersetof operationon 2Z arethe usualsetoperationsf union, intersection
set difference (or relative complement symmetricdifference and Cartesian product as
defined below.

union XUY={z:zeXorzeY}
intersection XNY={z:zeXandze Y}
setdifference X\Y={z:zcXandz¢ Y}
symmetricdifference XAY ={z:zeXUYandz¢gXNY}
Cartesianproduct XxY={(x,y) : xeXandy €Y}

Note that with the exceptionof the Cartesianproduct, the set obtainedfor eachof the
aboveoperationsis againan elementof 2%.

Another commonset theoreticoperationis setcomplementation.For X € 2%,
the complemenbf X is denotedby X, and definedas X = {z : z € Z and z ¢ X}.
In contrastto the binary set operationsdefined above, set complementatioris a unary
operation. However,complementatiorcan be computedin terms of the binary operation
of setdifferenceby observingthat X = Z\X.

In additionto complementationherearevariousothercommonunaryoperations
which play a majorrole in algorithmdevelopmentisingimagealgebra.Amongtheseis the
cardinality of a setwhich, whenappliedto a finite point set,yields the numberof elements
in the set,andthe choicefunction which, whenappliedto a set, selectsa randomlychosen
point from the set. The cardinality of a setX will be denotedby card(X). Note that

card : 2% =N (for all finite elements of QZ),
while
choice : 2% — 7.

Thatis, card(X) € N andchoice(X) = x, wherex is somerandomlychoserelemenof X.

As was the casefor operationson points, algebraicoperationson point setsare
too numerousto discussat lengthin a short treatiseas this. Therefore,we again only
summarizesomeof the more frequently occurringunary operations.

Summary of Unary Point Set Operations
In the following X C R".

negation X ={=x:x€eX}

complementation X ={z:z€cR"andz ¢ X}

supremum sup(X) (for finite point set X)

infimum inf(X) (for finite point set X)

choice function choice(X) € X (randomly chosen element)

cardinality card(X) = the cardinality of X

The interpretationof sup(X) is as follows. SupposeX is finite, say X =
{x1, X3, ..., X3 }. Then sup(X) = sup(... sup(sup(sup(xi,X2),X3),Xq), ... ,Xz),
where sup(x;,x;) denotesthe binary operationof the supremumof two points de-
fined earlier. For example,if x; = (z;,y;) for ¢ = 1,... k, then sup(X) =

(ta Va2V - Vazr, y1 Vya V -+ Vyi). More generally,sup(X) is definedto be the
leastupperboundof X (if it exists). The infimum of X is interpretedin a similar fashion.

If X is finite andhasa total order,thenwe alsodefinethe maximumandminimum
of X, denotedby \/ X and A X, respectivelyasfollows. Suppos&X = {x1, X2, ..., X}
andx; < x» < -+ < X3, wherethe symbol < denotesthe particulartotal orderon X.
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Then\/ X = x; and A X = x;. The mostcommonlyusedorderfor a subsetX of 7>
is the row scanningorder. Note also that in contrastto the supremumor infimum, the
maximumand minimum of a (finite totally ordered)setis alwaysa memberof the set.

1.3. Value Sets

A hetengeneousalgebrais a collection of nhonemptysetsof possibly different
types of elementstogetherwith a set of finitary operationswhich provide the rules of
combiningvariouselementsn orderto form a new element.For a precisedefinition of a
heterogeneoualgebrawe refer the readerto Ritter [1]. Note that the collection of point
sets,points,andscalarstogethemwith the operationglescribedn the previoussectionform
a heterogeneouslgebra.

A homogeneouslgebrais a heterogeneoualgebrawith only onesetof operands.
In otherwords, a homogeneouslgebrais simply a settogetherwith a finite numberof
operations. Homogeneouslgebraswill be referredto as value setsand will be denoted
by capital blackboardfont letters, e.g.,E, F, and G. There are severalvalue setsthat
occurmoreoftenthanothersin digital imageprocessing Thesearethe setof integers real
numbergfloating point numbers)the complexnumbersbinary numbersof fixed lengthk,
the extendedeal numberg(which includethe symbols+co and/or—oc), andthe extended
non—negativeeal numbers.We denotethesesetsby Z, R, C, Z,x , Ry, = RU {+0},
Roso = RU{-00}, Rioo = RU {400, —o0}, andRZ? = R+ U {0, +o0}, respectively,
wherethe symbolR* denotesthe set of positive real numbers.

Operations on Value Sets

The operationson and betweenelementsof a given value setF are the usual
elementaryoperationsassociatedwith F. Thus, if F € {Z, R, Z,x}, then the binary
operationsare the usual arithmetic and logic operationsof addition, multiplication, and
maximum, and the complementaryoperationsof subtraction,division, and minimum. If
F = C, thenthe binary operationsare addition, subtraction,multiplication, and division.
Similarly, we allow the usualelementaryunary operationsassociatedvith thesesetssuch
as the absolutevalue, conjugation,as well as trigonometric,logarithmic and exponential
functionsastheseare availablein all higher-levelscientific programminglanguages.

For the setR.. ., we needto extendthe arithmeticand logic operationsof R as
follows:

a+(—00)=(-0)+a=-0 a€eR_
a+o00o=004+a=o0 a € Ry
(—00) + 00 = 00 + (—0) = —x

aV(-o0)=(-o0)Va=a a € Rino

Notethattheelement—oco actsasanull elemenin thesystem R+, V, +) if we
view the operationt+ asmultiplicationandthe operationv asaddition. The samecannotbe
saidabouttheelementx in thesystemR.. .., A, +) since(—oo)+o00 = co+(-—o0) = —oo.
In orderto remedythis situationwe definethedual structurg Ry oo, A, +') of (R1oo, V, +)
as follows:

a+'b=a+b a,beER
a+ (—00)=(-o0)+ a= - a€R_w
a4+ o0o=0c0+"a=00 a € Ry

(—00) +' 00 = 0o +' (—0) =

aNoo=0c0Aa=a a € Rino
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Now theelementtoo actsasanull elemenin thesystem(R. ., A, +’). Observehowever,
that the dual additions+ and +' introduce an asymmetrybetween—oco and +oco. The
resultantstructure(R+ .., V, A, 4+, +') is known as a boundedattice ordered group [1].

Dual structuresprovide for the notion of dual elements.For eachr € Ry, we
defineits dual or conjugater* by r* = —r, where—(—o0) = co. The following duality
laws are a direct consequencef this definition:

(1) () =
(2) (rAt)" =r*vie-and(rvi) =r* At-
Closelyrelatedto the additive boundediattice orderedgroup describedaboveis

the multiplicative boundediattice orderedgroup (R2?, v, A, x, x’). Herethe dual x’ of
ordinary multiplication is definedas

ax'b=axbVabeR2=RtuU{0}
with both multiplicative operationsextendedas follows:

aXo00=00Xa=00 a € RE,
ax'oo=00x"a=00 a € RY
Oxoo=00x0=0

Ox'co=00x'0=00

Hence,the element0 actsas a null elementin the system(R2°, v, ><) andthe element
400 actsasa null elementin the system(Rgoo, A, x’). The conjugater* of an element
r € RZP of this value setis definedby

f —

=950 if r=4o00.

{r‘l if r € RT
+oo ifr=0

Anotheralgebraicstructurewith duality whichis of interestin imagealgebrais the
valueset (Z3, v, A, +, -T-’), whereZ} = (Z5),,, = Z> U {00, —o0} = {0, 1, —o0, oo}.
Thelogical operationsy andA arethe usualbinary operationsof max (or) andmin (and),
respectivelywhile the dual additive operations+ and + are definedby the tablesshown
in Figure 1.3.1.

+ 0 1 |-o0]| i 0 1 | —oo|

0 1 0 0o | —oo 0 1 0 [ oo |-
1 0 1 oo | —oo 1 0 1 oo | —o0
ool o0 | o | oo | oo —ool oo | oo | o | —c0
oo | -0 | —| o | — 0o | =0 | —o | —oo|

Figure 1.3.1. The dual additive operationst and +'.

Note that the addition + (as well as +') restrictedto Z, = {0, 1} is the
complemenbf the exclusive-oroperation xor, and computeghe valuesfor the truth table
of the biconditionalstatemenip < ¢ (i.e., p if andonly if q).
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TheoperationonthevaluesetZ:, canbeeasilygeneralizedo its k-fold Cartesian

productZ}, = 73 x Z3 x --- x Z;. Specifically, if m = (my, ..., my) € Z,
andn = (ny, ..., ng) € Z3,, wherem;, n; € Z fori = 1,... k, thenm+n =
(ml—T—nl, ey mk—T—nk)

The addition + shouldnot be confusedwith the usualaddition mod2* on Z.x.
In fact, for m, n € Zyx m+n = ((my +n1)’, ..., (my + ng)'), where

) v J O if (mi 4 ni)mod2 =1
(mi + ni) _{1 if (mi+n;)mod2 =10.

Many point setsare also value sets. For example,the point setX = R” is a
metric spaceaswell asa vector spacewith the usualoperationof vector addition. Thus,
(R™, +), wherethe symbol“+" denotesrectoraddition,will atvarioustimesbe usedboth
asa point setandasa value set. Confusionasto usagewill not ariseasusageshouldbe
clear from the discussion.

Summary of Pertinent Numeric Value Sets

In orderto focus attentionon the value setsmost often usedin this treatisewe
provide a listing of their algebraicstructures:

@ (R, V,A, +,-)

(b) (C +, )

© (Z,V,A +,)

d) (Zox, V, A, +, )
€) (Riso, V, A, +, +)

M (R, V, A, x, x')

@ (z.v, A+ )

In contrastto structurec, the additionandmultiplicationin structured is addition
and multiplication mod2*.

Theselisted structuresrepresenthe pertinentglobal structures. In various ap-
plicationsonly certainsubalgebra®f thesealgebrasare used. For example,the subalge-
bras(R_, V, +) and (Ry«, A, +') of (R, V, A, +, +') play specialrolesin mor-
phological processing.Similarly, the subalgebraN, v, A, +) of (Z, v, A, +, -), where
N=1{0 1,2, ... n,...},is theonly pertinentapplicablealgebrain certaincases.

The complementarybinary operations wheneverthey exist, are assumedo be
partof the structures.Thus,for example,subtractionand division which canbe definedin
termsof additionandmultiplication,respectivelyareassumedo bepartof (R, v, A, +, ).

Value Set Operators

As for point sets,given a value setF, the operationson 2 are againthe usual
operationsof union, intersection,set difference,etc. If, in addition, F is a lattice, then
the operationsof infimum and supremumare alsoincluded. A brief summaryof value set
operatorsis given below.
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For the following operationsassumethat A, B € 2F for somevalue setF.

union AUB={c:ceAorce B}
intersection ANB={c: ceAandce B}
setdifference AB={c: cecAandc ¢ B}
symmetricdifference AAB={c: ce AUBandc¢ AN B}
Cartesianproduct Ax B ={(a,b): ac Aandb € B}
choicefunction choice(A) € A

cardinality card(A) = cardinality of A
supremum sup(A) = supremum of A

infimum inf(A) = infimum of A

1.4. Images

Theprimaryoperandsn imagealgebraareimagestemplatesandneighborhoods.
Of thesethreeclassef operandsjmagesare the most fundamentakincetemplatesand
neighborhoodsanbeviewedasspecialcase®f thegenerakoncepiof animage. In orderto
providea mathematicallyrigorousdefinition of animagethat coversthe plethoraof objects
called an “image” in signal processingand image understandingwe definean image in
generakerms,with a minimum of specification.In the following we usethe notationA? to
denotethe setof all functionsB — A (i.e., A® = {f : fis a function from B to A}).

Definition: LetF bea valuesetand X a point set. An F-valuedimage
on X is any elementof FX. Given an F-valuedimagea ¢ FX (i.e.,
a: X — F), thenF is calledthe setof possiblerange valuesof a and
X the spatial domain of a.

It is often conveniento let the graphof animagea € FX represent. Thegraph
of animageis alsoreferredto asthe data structue representationof the image. Given
the data structurerepresentatiom = {(x, a(x)) : x € X}, thenan element(x, a(x)) of
the datastructureis called a picture elementor pixel. The first coordinatex of a pixel is
calledthe pixel location or imagepoint, andthe secondcoordinatea(x) is calledthe pixel
value of a at location x.

The abovedefinition of animagecoversall mathematicalmageson topological
spaceswith rangein an algebraicsystem.RequiringX to be a topological spaceprovides
uswith the notion of nearnessf pixels. SinceX is not directly specifiedwe may substitute
anyspacerequiredfor the analysisof animageor imposedby a particularsensormandscene.
For example,X could be a subsetof 73 or R® with x € X of form x = (z,y,t), where
the first coordinate z, y) denotespatiallocationandt a time variable.

Similarly, replacingtheunspecifiedraluesetF with Zox orF = (Zyx , Zom , Zon)
providesus with digital integer-valuedand digital vector-valuedmages,respectively.An
implication of theseobservationds that our image definition also characterizegny type
of discreteor continuousphysicalimage

Induced Operations on Images

Operationson and betweenlF-valuedimagesare the naturalinducedoperations
of the algebraicsystemF. For example,if v is a binary operationon F, then~ inducesa
binary operation— againdenotedby v — on F* definedas follows:
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Let a,b € FX. Then
ayb = {(x,¢(x)) : ¢(x) = a(x)yb(x), x € X}.

For example,supposea, b € R¥ and our value setis the algebraicstructureof the real
numbers(R, +, -, V, A). Replacingy by the binary operationst+, -, v, and A we obtain
the basic binary operations

a+b={(x,¢x)) : c(x) =a(x)+ b(x), x € X},
a-b={(x,¢(x)) : e¢(x) =a(x)b(x), x € X},
aVb={(x,c(x)) : c¢(x) = a(x)Vb(x), x € X},

and
aAb={(x,¢c(x)) : ¢(x)=a(x)Ab(x), x e X}
on real-valuedimages.Obviously,all four operationsare commutativeand associative.

In additionto the binary operationbetweenimages the binary operationy on F
also inducesthe following scalaroperationson images:

Fork € F and a € FX,
Fya = {(x,c(x)) : o(x) = kya(x), x € X}

and
ark = {(x,¢(x)) : ¢(x) = a(x)7k, x € X}.
Thus,for k£ € R, we obtainthe following scalarmultiplication and addition of real-valued
images:
k-a={(x,c(x)): c(x)=Fk- a(x), xe X}
and
k+a={(x,¢c(x)) : c(x)=k+a(x), x X}

It follows from the commutativity of real numbersthat,
k-a=a-kand k+a=a+k.

Althoughmuchof imageprocessinds accomplishedisingreal-,integer-,binary-,
or complex-valuedmages,many higher-levelvision tasksrequire manipulationof vector-
andset-valuedmages. A set-valuedmageis of form a : X — 2F. Herethe underlying
valuesetis (2F, U, N, 7 ), wherethe tilde symbol denotescomplementation Hence,the
operationon set-valuedma%(esarethoseinducedby the Booleanalgebraof the value set.
For example,if a,b € (2F)™, then

aUb = {(x,¢c(x)) : c(x) = a(x)Ub(x), x € X},
anb = {(x,¢(x)) : e(x)=a(x)Nb(x), xe X},

d
o é:{(x,c(x)) : c(x):aﬂ(;), xEX},

wherea(x) = F\a(x).
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The operationof complementatioris, of course a unaryoperation.A particularly
useful unary operationon imageswhich is inducedby a binary operationon a value set
is known as the global reduceoperation More precisely, if vy is an associativeand
commutativebinary operationon F and X is finite, sayX = {x1,x2, ... ,x,}, theny
inducesa unary operation

r:F*—=F
calledthe global reduceoperationinducedby v, which is definedas

Fa=T a(x) :ki‘la(xk) = a(xy )ya(xz)y - va(x,).

xEX

Thus, for example,if F = R and~y is the operationof addition(y = +), thenI' = ¥ and

Za: Z a(x) = a(x;) + a(x2)+ - + a(xy,).

xeX

In all, thevalueset(R, +, -, V, A) providesfor four basicglobalreduceoperationsnamely

>-a, [[a, Va, and A a.

Induced Unary Operations and Functional Composition

In the previoussectionwe discussedinaryoperationson elementsof FX induced
by a binary operationy on F. Typically, however,unary image operationsare induced
directly by unary operationson F. Given a unaryoperationf : F — F, thenthe induced
unary operationF* — FX is againdenotedby f andis definedby

fla) = {(x,¢(x)) : ¢(x) = f(a(x)), x € X}.

Note that in this definition we view the compositionf o a as a unary operationon FX
with operanda. This subtledistinction hasthe importantconsequencéhatf is viewedas
a unary operation— namely a function from FX to FX — and a as an argumentof f.
For example,substitutingR for F andthe sinefunction sin : R — R for f, we obtainthe
inducedoperationsin : R* — RX, where

sin(a) = {(x,¢(x)) : c(x) = sin(a(x)), x € X}.
As anotherexample,considerthe characteristidunction

ey (L ik
2k 0 otherwise.

Thenfor anya € R¥, y >« () is the Boolean (two-valued)imageon X with value 1 at
locationx if a(x) > k andvalueO if a(x) < k. An obviousapplicationof this operation
is the thresholdingof animage. Given a floating point imagea andusingthe characteristic

function )
(r) = 1 af j<r<k
X" = ¢ otherwise,

thenthe imageb in the image algebraexpression

b:=a- x,, (a)
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is given by
b = {(x,b(x)) : b(x) = a(x) if j < a(x) < k, otherwise b(x) = 0}.

The unaryoperationson animagea € FX discussedhusfar haveresultedeither
in a scalar(an elementof F) by useof the global reductionoperation,or anotherf--valued
imageby useof thecompositionfoa = f(a). More generally givenafunctionf : F — G,
thenthe compositionf o a providesfor a unaryoperationwhich changesanF-valuedimage
into a G-valuedimage f(a). Taking the sameviewpoint, but usinga function f between
spatialdomainsinstead,providesa schemefor realizing naturally inducedoperationsfor
spatial manipulationof image data. In particular,if f : Y — X anda € FX, thenwe
definethe inducedimagea o f € FY by

aof={(y alf(y):yeY}.

Thus, the operationdefinedby the aboveequationtransformsan F-valuedimage defined
over the spaceX into an F-valuedimagedefinedover the spaceY .

Examplesof spatialbasedmagetransformationsareaffine andperspectivdrans-
forms. For instance,supposea € RX, where X C 72 is a rectangularm x n array. If
1<k < Fandf: X — X is definedas

_ @y if k<w
f(‘x’y)_{@kx,y) if o<k’

thenao f is aonesidedreflectionof a acrosgheline z = k. Furtherexamplesareprovided
by severalof the algorithmspresentedn this text.

Simpleshiftsof animagecanbe achievedy usingeithera spatialtransformation
or point addition In particular,givena € FX, X c 7?, andy € 7?, we definea shift
of a by y as

aty={(zb) b#)=a@E y), s yeX}

Notethata + y is animageon X 4+ y sincez —y € X < z € X 4y, which provides
for the equivalentformulation

a+y={(zb(z) : bz)=a(z—y),zeX+y}

Of course,one could just as well define a spatial transformationf : X +y — X by
f(z) = z — y in orderto obtainthe identical shiftedimagea +y = ao f.

Another simple unary image operationthat can be definedin termsof a spatial
mapis imagetransposition Givenanimagea € FZ»*Z» thenthe transposeof a, denoted
by a’, is definedasa’ = ao f, wheref : Z,, x Z,, — Z,, xZ, is givenby f(z,y) = (y, ).

Binary Operations Induced by Unary Operations

Various unary operationsimage operationsinduced by functions f : F — F
can be generalizedto binary operationson FX. As a simple illustration, considerthe
exponentiatiorfunction f : R2° — R defined by f(r) = r*, wherek denotessomenon-
negativereal number. Thenf inducesthe exponentiatioroperation

af = {(x,b(x)) : b(x) = [a(x)]k, X € X},
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wherea is anon-negativeeal-valuedmageon X. We may extendthis operationto a binary
image operationas follows: if a, b € (R2°)* then

aP = {(x, c(x)) : c(x) = a(x)b(x), X € X}.

The notion of exponentiatiorcanbe extendedo negativevaluedimagesaslong
as we follow the rules of arithmetic and restrict this binary operationto those pairs of
real-valuedimagesfor which a(x)b(x) € R vx € X. This avoids creationof complex,
undefined,and indeterminatepixel valuessuch as (—l)é, 2, and 0% respectively.
However, there is one exceptionto theserules of standardarithmetic. The algebraof
imagesprovidesfor the existenceof pseudainverses For a € RX, the pseudanverseof
a, which for reasonof simplicity is denotedby a~! is definedas

a~l = {(x,b(x)) : b(x) = % if a(x) # 0 otherwise b(x) = 0}.

Note thatif somepixel valuesof a arezero,thena -a~! # 1, wherel denotesunit image
all of whosepixel valuesare1. However,the equalitya-a~! - a = a alwaysholds. Hence
the name*“pseudoinverse.”
The inverseof exponentiatioris defined in the usualway by taking logarithms.
Specfically,
logba = {(x, c(x)) : c(x) = logpx)a(x), x € X}.

As for real numbers/ogpa is definedonly for positiveimages;i.e.,a, b € (R"‘)X .

Anothersetof examplesf binary operationdnducedby unaryoperationsarethe
characteristidunctionsfor comparingtwo images.For a, b € R¥ we define

X o (@) = {(x,¢(x)) : e(x) = 1if a(x) < b(x), otherwise ¢(x) = 0}
X (@) = {(x,¢(x)) : e(x) = Lif a(x) < b(x), otherwise ¢(x) = 0}
X - (a) = {(x,¢(x)) : ¢(x) = 1if a(x) = b(x), otherwise ¢(x) = 0}
X s (@) = {(x,¢(x)) : e(x) = 1if a(x) > b(x), otherwise ¢(x) = 0}
X s (a) = {(x,¢(x)) : c(x) = Lif a(x) > b(x), otherwise ¢(x) = 0}
X g (@) = {(x,¢(x)) : c(x) = 1if a(x) # b(x), otherwise c(x) = 0}.

Functional Specification of Image Operations

The basicconceptf elementaryfunction theory providethe underlyingfounda-
tion of a functional specificationof image processingechniques.This is a direct conse-
guenceof viewing imagesas functions. The mostelementaryconceptsof function theory
arethe notionsof domain,range,restriction,and extensionof a function.

Image restrictionsand extensionsare usedto restrictimagesto regionsof par-
ticular interestandto embedimagesinto largerimages, respectively.Employing standard
mathematicahotation, the restriction of a € FX to a subsetZ of X is denotedby alz,
and defined by

alz =an(Z xF)={(x,a(x)) : xe€Z}.

Thus,a|z € FZ. In practice,the usermay specify Z explicitly by providing boundsfor
the coordinatesof the points of Z.
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Thereis nothing magicalaboutrestrictinga to a subsetZ of its domainX. We
canjust aswell definerestrictionsof imagesto subset®of the rangevalues. Specifically,if
S c F anda € FX, thenthe restrictionof a to Sis denotedby a||s anddefinedas

alls =an (X xS).

In termsof the pixel representatiornf a||s we haveal|s = {(x,a(x)) : a(x) € S}. The
double-bamotationis usedto focus attentionon the fact that the restrictionis appliedto
the secondcoordinateof a C X x F.

Imagerestrictionsin termsof subsetof the value setF is an extremelyuseful
conceptin computervision asmanyimageprocessingasksarerestrictedto imagedomains
over which the image values satisfy certain properties. Of course, one can always
write this type of restrictionin terms of a first coordinaterestriction by settingZ =
{xeX : a(x) € S} sothata||s = a|z. However,writing a programstatementsuch
asb := alz is of little value since Z is implicitly specfied in termsof S i.e., Z
must be determinedin terms of the property “a(x) € S.” Thus, Z would have to be
precomputedaddingto the computationabverheadaswell asincreasedcode. In contrast,
directrestrictionof the secondcoordinatevaluesto anexplicitly specifiedsetS avoidsthese
problemsand providesfor easierimplementation.

As mentioned,restrictionsto the rangeset provide a useful tool for expressing
variousalgorithmic proceduresFor instancejf a € RX andSis theinterval (k, ) C R,
wherek denotessomegiven thresholdvalue, then all(k,oo) denotesthe imagea restricted
to all thosepoints of X wherea(x) exceedshe valuek. In orderto reducenotation,we
defineal|sr = al(x,00). Similarly,

all>r = all[k 00), all<k = all(—oo k), allx = alliry, and all<k = af|_co -

As in the caseof characteristidunctions,a moregenerafform of rangerestriction
is given when S correspondgo a set-valuedmage S € (QF)X; ie, S(x) CF vx € X.
In this casewe define

alls = {(x,a(x)) : a(x) € S(x)}.
For example,for a, b € RX we define
all<p = {(x,a(x)) : a(x) <b(x)}, all<n = {(x,a(x)) : a(x) <b(x)},
all>p = {(x,a(x)) : a(x) > b(x)}, allsp = {(x,a(x)) : a(x) >b(x)},
allp = {(x,a(x)) : a(x) =b(x)}, allzp ={(x,a(x)) : a(x) # b(x)}.

Combining the conceptsof first and second coordinate (domain and range)
restrictionsprovidesthe generaldefinition of animagerestriction.If a € F¥, Z C X, and
S C F, thenthe restrictionof a to Z and S is defined as

a|(z)5) =al (Z X S)

It follows that a|z sy = {(x,a(x)) : x €Z and a(x) € S}, aix,s) = alls, and
alizF) = alz.

The extensionof a € FX to b € FY on Y, whereX andY are subsetsof the
sametopological space,is denotedby a® and definedby

Jax) ifxeX
ol (x) = {b(x) if x € Y\X.

In actualpractice,the userwill haveto specify the function b.
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Two of the mostimportantconceptsassociatedvith a function are its domain
andrange. In the field of imageunderstandingit is convenientto view theseconceptsas
functionsthat map imagesto setsassociatedvith certainimage properties. Specifically,
we view the conceptof rangeas a function

range : FX — 2F

definedby range(a) = {r € F : r = a(x) for some x € X}.
Similarly, the conceptof domainis viewed as the function

domain : ":X|(2XX2F) — 2%

where
FX|(2XX2F) = {b : b:a|(zyg-), ac Fx, Z e 2X, S e QF}

and domainis defined by
domain(b) = {x € X : al(z 5)(x) = b(x) = r for some r € [F}.

Thesemappingscan be usedto extractpoint setsandvalue setsfrom regionsof
imagesof particularinterest. For example,the statement

s := domain(al|sr)

yields the set of all points (pixel locations) where a(x) exceedsk, namely s =
{x e X : a(x) > k}. The statement

s :=range(al|>r)

on the other hand, resultsin a subsetof R insteadof X.

Closelyrelatedto spatialtransformationgndfunctionalcompositionis the notion
of image concatenation Concatenatiorservesas a tool for simplifying algorithm code,
addingtranslucencyto code,andto providea link to the usualblock notion usedin matrix
algebra.Givena € FZ=»*Zx andb € FZ=*Z~ thenthe row-omder concatenatiorof a with
b is denotedby (a | b) andis definedas

(a|b) = alPt0k)

Note that (a | b) € FZm*Zatx,

Assumingthe correctdimensionalityin the first coordinate concatenatiomf any
numberof imagesis definedinductively usingthe formula(a | b |¢) = ((a | b)| ¢) so
that in generalwe have

(ar]as| - |a) = ((ar]az| - - Ja—1)[ar) .

Column-oder concatenatiorcanbe definedin a similar manneror by simpletransposition;
ie.,
a;

= (aifaz| - |ar)".
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Multi-V alued Image Operations

Although generalimage operationsdescribedin the previoussectionsapply to
both single and multi-valuedimagesas long as thereis no specificvalue type associated
with the genericvalue setF, thereexist a large numberof multi-valuedimage operations
thatare quite distinct from single-valuedmageoperations.As the generaltheoryof multi-
valuedimageoperationds beyondthe scopeof this treatise,we shall restrictour attention
to somespecificoperationson vector-valuedimageswhile referring the readerinterested
in moreintricate detailsto Ritter [1]. However,it is importantto realizethat vector-valued
imagesare a specialcaseof multi-valuedimages.

If F = R” anda € FX, thena(x) is avectorof forma(x) = (a;(x), ..., a,(x))
where for eachi = 1,...,n, a;(x) € R. Thus, animagea € (R")* is of form
a=(ay, ..., a,) andwith eachvectorvaluea(x) thereareassociatea realvaluesa; (x).

Real-valuedmageoperationgyeneralizeo the usualvectoroperationon (R”)X.
In particular,if a,b € (R*)*, then

a+b=(a;+by,...,a,+by,)
a-b=(a; by, ...,a, by,)

aVb=(a;Vby, ... ,a,Vby,)
aAb=(a; Aby, ... a, Aby,).
If v = (ry,...,r,) € R*, thenwe also have

r+a=(ri+ay,...,r+ay,),

r-a=(ry-ay,...,r, ag),

etc. In the specialcasewherer = (r,r, ..., r), we simply usethe scalarr € R anddefine
r+a=r+a, r-a=r-a, andsoon.

As before, binary operationson multi-valuedimagesare inducedby the corre-
spondingbinary operatiory : R* x R® — R on the valuesetR™. It turnsoutto be useful
to generalizethis conceptby replacingthe binary operationy by a sequenceof binary
operationsy; : R® x R* — R, wherej = 1, ..., n, anddefining

ayb = (ay;b,ayb, ... jay,b).

For example,if v; : R® x R® — R is definedby

(1, . 20)yi(y1, oo yyn) =maz{z; Vy; : 1 <1<}
thenfor a,b € ([R")X andc = ayb, the component®f ¢(x) = (ci(x), ..., cn(x)) have
values

¢;(x) = a(x)y;b(x) = max{a;(x) Va;(x) : 1 <i<j}
forj =1,..., n.

As anotherexample,supposey; and~y, aretwo binary operationd®®? x R? — R
defined by

(1, 22)71(y1, ¥2) = Z1y1 — T2y2

and
(z1,22)72(Y1, y2) = Z1Yy2 + Z2u1,
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respectively.Now if a,b € ([R2)X representwo complex-valuedmages.thenthe product
¢ = ayb representgpointwise complexmultiplication, namely

c(x) = (a1(x)by(x) — az(x)bz(x), a1(x)bz(x) + az(x)b1(x)) .
Basic operationson single and multi-valued imagescan be combinedto form
imageprocessingperationf arbitrarycomplexity. Two suchoperationghathaveproven
to be extremelyusefulin processingeal vector-valuedmagesarethe winner takeall jth-

coordinatemaximumand minimum of two images.Specfically, if a,b € (IR”)X, thenthe
jth-coordinate maximumof a and b is defined as

aV b= {(x,¢(x)) : c(x) = a(x) if a;(x) > b;j(x), otherwise ¢(x) = b(x)},
while the jth-coordinate minimumis definedas
aAjb={(x,¢c(x)) : e¢(x)=a(x) if aj(x) < bj(x), otherwise ¢(x) = b(x)}.
Unaryoperationon vector-valuedmagesaredefinedin a similar componentwise

fashion. Given a function f : R — R, thenf inducesa function R* — R”, againdenoted
by f, which is definedby

ey, 2o, ..oy zn) = (f(z1), f(m2), .., f(zr)).

Thesefunctions provide for one type of unary operationson vector-valuedimages. In
particular,if a = (ai, as, ..., a,) € (R*)¥, then

f(a) = foa=(f(ar), flaz), ..., f(an)).
Thus,if f = sin : R — R, then
sin(a) = (sin(ay), ... , sin(ap)).
Similarly, if f = x,, then

X>k(a) = (sz(al)l SR XZk(an))'

Any function f : R* — R" givesrise to a sequencef functionsf; = pj o f :
R® — R, wherej =1, ..., n. Converselygiven a sequencef functions f; : R* — R,
wherej = 1, ..., n, thenwe candefinea function f : R — R” by

f(x) = (fi(x), fo(x), ..., falx)),

wherex = (z1, ..., z,) € R*. Suchfunctionsprovidefor a more complextype of unary
image operationssince by definition

f(a) = (fi(a), ..., fm(a)) = {(x,b(x)) : b(x) = (fi(a(x)), ..., fm(a(x)))},
which meansthat the constructionof eachnew coordinatedependson all the original

coordinates.To provide a specificexample,define f; : R? — R by fi(z,y) = sin(z) +
cosh(y) and fo : R? — R by fa(z,y) = cos(z) + sinh(y). Then the inducedfunction
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f: (R2)X — (IRQ)X givenby f = (f1, f2). Applying f to animagea € (R2)X results
in the image

f(a) = {(x,b(x)) : b(x) = (sin(ai(x)) + cosh(az(x)), cos(a;(x))
+ sinh(as(x))), x € X }.

Thus, if we representcomplexnumbersas pointsin R? and a denotesa complex-valued
image,then f(a) is a pointwiseapplicationof the complexsine function.

Global reduce operationsare also applied componentwise. For example, if
a € (R)®, andk = card(X), then

Ya=(Xay, ..., Xa,)

k k
= (Zal(xj), ,Zan(xj)) eR".

n n
In contrast,the summationy_ a; = 3 p;(a) € R¥ sinceeacha; € R¥. Note thatthe
=1 i=1

1=
projectionfunction p; is a unary operation(lR”)X — RX.
Similarly,
Va=(vay, ..., Vay),

ANa = (Aag, ..., Aay),

and
a = (Ilay, ..., Ia,).

Summary of Image Operations

The lists below summarizesomeof the more significantimage operations.

Binary image operations.

It is assumedhat only appropriatelyvalued imagesare employedfor the op-
erationslisted below. Thus, the operationsof maximumand minimum apply to real- or
integer-valuedmagesbut not complex-valuedmages. Similarly, union and intersection
apply only to set-valuedimages.

generic ayb = {(x,c(x)) : ¢(x) = a(x)yb(x), x € X}
addition a+b={(x,¢cx)) : c(x)=a(x)+b(x), x € X}
multiplication a b= {(x,c(x)) : e(x)=a(x) b(x), x e X}
maximum aVb={(x,¢x)): e(x) =a(x)Vb(x), x € X}
minimum aAb={(x,¢(x)) : e(x) =a(x) Ab(x), x € X}
scalar addition k+a={(x,¢c(x)) : c(x)=k+a(x), x e X}
scalar multiplication koa={(x,e(x)): c(x)=Fk a(x), xeX}
point addition a+y={(zb(z): bz =az—-y),zecX+y}
union aUb = {(x,¢c(x)) : e¢(x) = a(x) Ub(x), x € X}
intersection anb = {(x,c(x)) : e(x) =a(x)Nb(x), x € X}
exponentiation ab = {(x,¢(x)) : e(x) = a(x)b(x), xeX
logarithm logha = {(x, ¢(x)) : ¢(x) = logpxya(x), x € X}
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concatenation

concatenation

characteristics

(a|b — a|b+(0,k)’ ac ":melk’ b c ":mezn

)

) = (alb

b
{(x,¢(x)) : ¢(x) = 1if a(x) < b(x), otherwise ¢(x) = 0}
{(x,¢(x)) : c(x) = Lif a(x) < b(x), otherwise ¢(x) = 0}
{(x,¢(x)) : e(x) = 1if a(x) = b(x), otherwise ¢(x) = 0}
{(x,¢(x)) : ¢(x) = 1if a(x) > b(x), otherwise ¢(x) = 0}
{(x,¢(x)) : ¢(x) = 1if a(x) > b(x), otherwise ¢(x) = 0}
{(x,¢(x)) : e(x) = lif a(x) # b(x), otherwise ¢(x) =0}

Wheneverb is a constantmage,sayb = k (i.e., b(x) = k Vx € X), thenwe
simply write a* for a® andlogr.a for logna. Similarly, we havek+a, x , (a), x ., (a), etc.

Unary image operations.

As in the caseof binary operations,we again assumethat only appropriately
valuedimagesare employedfor the operationdisted below.

value transform
spatial transform
domain restriction
range restriction

extension

domain

range
genericreduction
image sum

image product
image maximum
image minimum
image complement

pseudoinverse

imagetranspose

1.5. Templates

foa= f(a) ={(x,c(x)) : c(x) = f(a(x)), x € X}
aof={(ya(f(y)): yeY}

alz = {(x,a(x)) : x € Z}

alls = {(x,a(x)) : a(x) € 5}

_ ‘ _Ja(x) ifxeX
o= {0 = (3 13 ENx]
domain(a) = {x e X : Ir e Fst.a(x)=r}
range(a) = {reF : 3x e Xst. r = a(x)}
Fa = a(x1)ya(x2)y -+ ya(xn)

Sa= 3 alx) = ax) +alx) + - +alx)

[a= I a(x) = atxi) alxe) -+ ax)

Va= V\ a(x)=a(x;)Va(x:) V -+ Va(xy,)
xeX

Na= a(x) = a(xi) Aa(x2) A -+ Aa(xy)
xeX

a= {(x,c(x)) c(x) = a(x), x € X}

a'(z,y) = a(y, ), (y,z) € X}

o = {((z.v),2(x.1)) :

Templatesareimageswhosevaluesareimages. The notion of a template asused
in imagealgebra,unifiesand generalizeshe usualconceptf templatesmasks windows,
and neighborhoodunctionsinto one generalmathematicakentity. In addition, templates
generalizehe notion of structuringelementsasusedin mathematicamorphology[27, 60].
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Definition. A templateis an image whose pixel values are images
(functions). In particular,anF-valuedtemplatefrom Y to X is a function
t:Y — FX. Thus,t € (FX)Y andt is an FX-valuedimageon Y.

For notationalconvenienceve define ty = t(y) Vy € Y. Theimagety
has representation

ty = {(x,ty(x)) : x € X},
The pixel valuesty (x) of thisimagearecalledthe weightsof thetemplate
at point y.

If t is a real- or complex-valuedemplatefrom Y to X, thenthe supportof t,

is denotedby S(t,) andis definedas

S(ty)={xeX : ty(x)#0}.
More generally,if t € ([FX)Y andF is an algebraicstructurewith a zero element0, then
the supportof t, will be definedas S(ty) = {x € X : t,(x) # 0}.

For extendedreal-valuedtemplateswe also define the following supportsat
infinity:

Seo(ty) = {x € X : ty(x) # oo}
and
S_wo(ty) ={x€X : ty(x) # —o0}.

If X is a spacewith an operation+ suchthat (X, +) is a group,thena template
te (FX)X is saidto be translationinvariant (with respecto the operation+) if andonly
if for eachtriple x,y, z € X we havethatty(x) = ty4+.(x + z). Templatesthat are not
translationinvariant are called translation variant or, simply, variant templates. A large
classof translationinvarianttemplateswith finite supporthavethe nice propertythat they
canbe definedpictorially. For example let X = Z? andy = (x,y) be an arbitrary point of
X.Setx; = (z,y— 1), xe = (z+ 1,y), and x5 = (z + 1,y — 1). Definet € (IRX)X by
definingthe weightsty (y) = 1, ty(x1) = 3, ty(x2) = 2, ty(x3) =4, and ty(x) =0
wheneverx is not an elementof {y,x; ,x2,x3}. Note thatit follows from the definition
of t that S(t,) = {y,x1,x>,x3}. Thus,atany arbitrarypointy, the configurationof the
supportand weightsof t, is as shownin Figure 1.5.1. The shadedcell in the pictorial
representatiorf t, indicatesthe location of the point y.

y._l y > Y
X 3 1
\/
X

Figure 1.5.1. Pictorial representatiomf a translationinvarianttemplate.
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Thereare certaincollectionsof templatesthat can be definedexplicitly in terms
of parametersTheseparameterizedemplatesare of greatpracticalimportance.

Definition. A parameterized--valuedtemplatefromY to X with param-
etersin P is a functionof formt : P — ([FX)Y . The setP is calledthe
setof parametersandeachp € P is called a parameterof t.

Thus, a parameterizedr-valuedtemplatefrom Y to X givesrise to a family of
regularF-valuedtemplatesrom Y to X, namely{t(p) € ([FX)Y CpEe P}.

Image-Template Products

The definition of an image-templateproduct providesthe rules for combining
imageswith templatesandtemplateswith templates.The definition of this productincludes
the usual correlationand convolution productsusedin digital image processing.Suppose
F is a value setwith two binary operannsQ andy, where( distributesover v, and~y
is associativeand commutative. If t E , thenfor eachy € Y, ty, € FX. Thus, if
a € FX, whereX is finite, thena O t, € [FX andT (aQty) € F. It follows that the
binary operationsC) and~y inducea binary operation

@ FX x (FX)Y S FY

where
b=a®teFY
is defined by
b(y) =T'(a O ty) =L (a(x) O ty(x)).
Therefore,if X = {x, x5, ..., x,}, then

b(y) = (a(x1) O ty(x1))7(alx2) O ty(x2))7 - v(a(xs) O ty(xn)) .

Theexpressiora )t is calledtheright convolutionproductof a with t. Note that
while a is animageon X, the producta @t is animageon Y. Thus,templatesallow for the
transformatiorof animagefrom onetype of domainto an entirely differentdomaintype.

Replacing(F, v, O) by (R, +, -) changeh = a®t into

b =a®t,

the linear image-templatg@roduct or simply the convolutionof a with t, where

a € RX, andt € (RX)"

Every templates € (IFY)X has a transposes’ € (IFX)Y which is defined
sy (x) = sx(y). Obviously, (s')’ = s ands’ reverseshe mappingorderfrom X — FY
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to Y — FX. By definition, s}, O a € F¥ andT (s, Oa) € F, whenevera € F* and
s € ([FY)X. Hencethe binary operations) and~ induceanotherproductoperation

@ (FY)* xFX - FY,

where
b=s@®acFY

is defined by
b(y) =T (sy Oa) =L, (sy(x) Oa(x)).

The expressiors Q)a is called the left convolutionproductof a with s.
When computings @a, it is not necessaryo usethe transpose’ since

L (sy(x) Oax)) =T (sx(y) Oa(x)) .

This allows us to redefinethe transformationb = s ®a as

b(y) = L (sx(y) O a(x)) .

For the remainderof this section,we assumethat (F,~) is a monoid andlet 0
denotethe zero of F underthe operationy. Supposea € FX andt ¢ ([FZ)Y, where
X and Z are subsetsof the samespace. SinceF is a monoid, the operator &) can be
extendedto a mapping

@ FXx (FZ)Y - FY,
whereb = a®)t is definedby

_ (L (a(x) Oty(x)) if XNZ#£D
b(y) {xf) ifXNZ=0.

Theleft convolutionproducts §a is definedin a similar fashion. Subsequergxampleswill
demonstratehat the ability of replacingX with Z greatly simplifiesthe issueof template
implementationand the use of templatesin algorithm development.

Significantreductionin the numberof computationsnvolving theimage-template
productcanbe achievedf (F,y, ) is acommutativesemiring. Recallthatif t € ([FZ)Y,
then the supportof t at a pointy € Y with respectto the operation~ is definedas
S(ty) = {x€Z : ty(x)#0}. Sincety(x) = 0 wheneverx ¢ S(ty), we have that
a(x) O ty(x) = 0 wheneverx ¢ S(ty) and,therefore,

L @@ Ot x) =L (a(x) O ty(x).
It follows that the computationof the new pixel valueb(y) doesnot dependon the size of
X, but on the size of S(ty). Therefore|if & = card(X N S(ty)), thenthe computationof
b(y) requiresa total of 2k — 1 operationsof type~y and Q.

As pointedout earlier, substitutionof differentvalue setsand specificbinary op-
erationsfor v and() resultsin awide variety of differentimagetransforms.Our prime ex-
amplesarethering (R, +, ) andthevaluesets(R1, V, A, +, 4+') and (RZ?, V, A, x, x’).
The structure(R1 ., V, A, +, +') providesfor two lattice products:

b=aMt,
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where

by)= V&) +(x)],

x€XNS_oo(ty)

and
b=aRlAt,

where

by)= A [ax)+ ty(x)].

XEXNSoo(ty)

In orderto distinguishbetweerthesetwo typesof latticetransformswe call the operatori
the morphologicalmaxconvolutionoperatorand A the morphologicalmin convolution
operator. It follows from our earlierdiscussiorthatif X N S_(ty) = &, thenthe value
of b(y) is —oo, the zeo of R+, underthe operationof V. Similarly, if X NS, (ty) = &,
thenb(y) = oo.

The left morphologicalmax and min operationsare definedby

tmz{(y,b(y»:b(y): V [tx(yHa(x)]’yEY}

XEXNS_ oo (ty)
and
tNa= {(y,b(.V)) by)= N\ () +ax)], ye Y} :
XEXNS(ty)

respectively. The relationshipbetweenthe morphologicalmax and min is givenin terms
of lattice duality by

ath:(t*Ma*)*,

where the image a* is definedby a*(x) = [a(x)]", and the conjugate (or dual) of
t € (RX,)Y is the templatet* € (RY..)™ definedby ti(y) = [ty(x)]". It follows
that t;(y) = —t’y(x).

The value set (R2’, v, A, x, x’) also providesfor two lattice products. Specif-
ically, we have

b=a®t,
where
by)= \  [ax) x ty(x)],
xeXnNS(ty)
and
b=a@®t,
where
by)= A [a(x) x" ty(x)].
xEXr‘lSm(ty)
Here 0O is the zero of RZ? under the operationof Vv, so that b(y) = 0 whenever

X N S(ty) = 3. Similarly, b(y) = oo wheneverX N S (ty) = &.
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The lattice products @ and @® are called the multiplicative maximumand
multiplicative minimum respectively. The left multiplicative max and left multiplicative
min are defined as

t@a=<(v.b(y): bly)= \/ [x(y)xax)],yeY
xEXnSw(t;)
and
tPa={(y.b(y) : by)= A [tx(y)x'ax)], yeY,
xEXnSoo(t'y)

respectively.The duality relation betweenthe multiplicative max and min is given by
a®t = (t"@a")",

wherea*(x) = (a(x))" andt%(y) = [ty(x)]". Herer* denoteshe conjugateof r in RZ".

Summary of Image-Template Products
In the following list of pertinentimage-templateproductsa € FX andt ¢
([FX)Y. Again, for eachoperationwe assumethe appropriatevalue setF.

right genericconvolution product

aQt = {(y,b(y)) :b(y) = (a(x) O ty(x)), y € Y}

right linear convolution product

a@t = {(y, b(y)) : by) =Y _(a(x) - ty(x)), y € Y}
xeX
right morphological max convolution product

adt = {(y,b(y)) :b(y) =\ [a(x) +ty(x)], y €Y
xeX
right morphologicalmin convolution product

alt= {(y,b(y)) :b(y) = /\ [ax) +'ty(x)], y € Y}
xeX
right multiplicative max convolution product

a@Qt = {(y,b(Y)) :b(y) =\ [ax) x ty(x)], y €Y
xeX
right multiplicative min convolution product

a®t = {(y,b(y)) s b(y) = N\ [a(x) x"ty(x)], ¥ eY}
xeX
right xor max convolution product

aflt = {(y,b(y)) by) = \/ [ax)Ft,(x)], yeY
xeX
right xor min convolution product

aflt = {(y,b(y)> :b(y)= /\ [a(x)+'ty(x)], y€Y
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In the next set of operationst € (IFY)X

left genericconvolution product

x

t@a = {(y,b(y)) : b(y) =L (tx(y) Oa(x)), y € Y}

left linear convolution product

t Pa = {(y,b(y)) t by) = Z(tx(}') -a(x)), y € Y}

xeX

left morphologicalmax convolution product

ta— {(y,b(y)) tb(y) = \/ [tx(y) +a(x)], ¥ eY}

xeX

left morphologicalmin convolution product

ta:{(yb /\[t x)], er}

xeX

left multiplicative max convolution product

t@a:{(y,b \/[t yEY}

xeX

left multiplicative min convolution product

t®a = {(y,b(y)) :b(y) = N [tx(y) x"a(x)], ¥ eY}

left xor max convolution product
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Binary and Unary Template Operations

Since templatesare images, all unary and binary image operationsdiscussed
earlierapply to templatesaswell. Any binary operatiorny on F inducesa binary operation
(again denotedby v) on ([FX)Y as follows: for eachpair s, t € ([FX)Y the induced
operations+t is definedin termsof the inducedbinary image operationon FX, namely
(syt), = sy7t, ¥y € Y. Thus,if F = R, s,t € (RX)", andy = +, then
(s +t), = sy +ty, wheresy + ty denoteghe pointwisesumof the two imagessy, € R*
andt, € R*.

The unarytemplateoperationsof prime importanceare the global reduceopera-

tions. SupposeY is a finite point set,sayY = {yi, y2, ..., yn}, andt € ([FX)Y. Any
binary semigroupoperationy on F inducesa global reduceoperation

r:(FX)Y - FX

which is definedby

n

It :ygy ty = Lty =ty 1ty - 1ty

k=1 Yk

Thus, for example,if F = R and« is the operationof addition(y = +), thenI' = ¥ and

DoE= D by =ty by, oty

YEY

Therefore,  t is animage,namelythe sumof a finite numberof images.

In all, the valueset(R, +, -, v, A) providesfor four basicglobal reduceoper-
ations,namely> ¢, J]t, \/t, and A t.

If thevaluesetF hastwo binaryoperationgy and() sothat(F, v, O) isaring (or
semiring),thenunderthe inducedoperations((Fx)Y, v, is alsoaring (or semiring).
Analogousto theimage-templat@roduct,the binary operationg)) and~ induceatemplate
convolution product

©: (F5)™ x (F%)" — (F%)"

definedasfollows. Supposes € (FZ)™, ¢t € (FX)¥, andX a finite point set. Thenthe
templateproductr = s @t, wherer € (FZ)*, is definedas

ry(z) =L (5x(2) Oty(x)) Vy €Y and VaeZ.
Thus,if s € (RZ)™ andt € (RX)", thenr = s @t is given by the formula
ry(z) = ) sx(2)  ty(x).

xeX

The lattice productr = s M t is defined in a similar manner.For s € (Rioo)x

andt € (R’i(oo)Y, the producttemplater is given by

ry(z) = \/ [sx(2) + ty(x)].

xeX

The following exampleprovidesa specfic instanceof the aboveproductformu-
lation.
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2y 72 . .. .
Example: Supposes,t € (IRZ ) are the following translationinvariant
templates:

If s,t € (IIRLZ,EQCO)Z2 are defined as above with values —oo outside the
support,thenthe templateproductr = s t is the templatedefinedby

The templatet is not an RZ-valuedtemplate.To provide an exampleof
the templateproducts ()t, we redefinet as
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Thenr = st is given by

The utility of templateproductsstemsfrom the factthatin semiringsthe equation

aQ(sQt) = (aQs) Ot
holds [1]. This equationcan be utilized in order to reducethe computationalburden

2 ZZ
associatedvith typical convolutionproblems. For example,if r € (RZ ) is definedby
Yy € 72, then

a@r=a@(sDt) = (aDs) Dt

where

-2

The constructionof the new imageb := a @r requiresnine multiplicationsand
eightadditionsper pixel (if we ignoreboundarypixels). In contrastthe computationof the
imageb := (a @Ps) Pt requiresonly six multiplicationsand four additionsper pixel. For
large images(e.g.,size 1024 x 1024) this amountsto significantsavingsin computation.

Summary of Unary and Binary Template Operations

In the following s, t € (IFX)Y andF denoteshe appropriatevalue set.

genericbinary operation syt (s7t), = syvty
templatesum s+t:  (s+t), =sytity
max of two templates sVE:  (sVt), =sy Viy
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min of two templates
genericreduceoperation

sumreduce
productreduce
max reduce

min reduce

In the nextlist, s € ([FZ)X, te
the appropriatevalue set.

generictemplateproduct

linear templateproduct
additive max product
additive min product
multiplicative max product

multiplicative min product

1.6. Recursive Templates

sAt (sAt), =sy Aty

't Eygvty :k£1tYk _tY17ty27 "Ytyn

thzty:ty1+ty2+' +tYn
YEY

HtE H ty:ty1 ty; .tyn
yeY

Vt= V ty =ty Vity, V- Viy,
yeY

A= A bty =ty Aty Ao Ay,

YEY

([FX)Y, X is afinite point set,andF denotes

r=sOt:
r=s®t:
r=sMt:
r=sAt:
r=sWt:
r=s®t:

ry(z) =L (sx(2) O ty(x))
ry(z) = ), sx(2) - ty(x)

xeX

In this sectionwe introduce the notions of recursivetemplatesand recursive
template operations,which are direct extensionsof the notions of templatesand the
correspondingemplateoperationsdiscussedn the precedingsection.

A recursivetemplateis definedin termsof a regulartemplatefrom somepoint
setX to anotherpoint setY with somepartial orderimposedon Y.

Definition. A partially ordered set(P, <) (or pose} is a setP together
with abinaryrelation<, satisfyingthefollowing threeaxiomsfor arbitrary

x,y,z € P:
(i)
(ii)

z < z (reflexive)

r<yand y <2 = 2=y (antisymmetric)

(i) z < yand y < 2 = 2 < z (transitive)

Now supposethat X is a point set,Y is a partially orderedpoint setwith partial
order <, andF a monoid. An F-valuedrecursivetemplatet fromY to X is a function
t=(tg t5): Y — (FX FY), wherets : Y — F¥ andt< : Y — FY, suchthat

Ly ¢ S(t<(y

)) and

2. foreachz € S(t<(y)), z<y.
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Thus,for eachy € Y, t4(y) is anF-valuedimageon X andt(y) is anF-valuedimage
onYy.

In most applications,the relation X C Y or X = Y usually holds. Also,
for consistencyof notationand for notationalconveniencewe definety, = tx(y) and
tiy = t4(y) sothatty, = (tyy, t<y). The supportof t at a point y is definedas
S(ty) = (S(t4y), S(t<y)). Thesetof all F-valuedrecursivetemplatesrom Y to X will
be denotedby (FX, F¥)¥'*),

In analogyto our previousdefinition of translationinvariant templates,if X is
closed under the operation+, then a recursivetemplatet € (FX, [FX)(X’ﬂ is called
translationinvariant if for eachtriple x, y, z € X, we havety(x) = ty4,(x + z), or
equivalently,t ¢y (x) = t4y4+z(x +2) andt<y(x) = tiy4.(x +2z). An exampleof an
invariant recursivetemplateis shownin Figure 1.6.1.

t%: 1 t,<:

Figure1.6.1. An exampleof aninteger-valuednvariantrecursivetemplatefrom 72 to 72.

If t is aninvariantrecursivetemplateandhasonly one pixel definedon the target
point of its nonrecursivesupportS(t4y ), thent is called a simplified recursivetemplate.
Pictorially, a simplified recursivetemplatecan be drawn the sameway as a nonrecursive
templatesincethe recursivepart and the nonrecursivepart do not overlap. In particular,
the recursivetemplateshownin Figure 1.6.1 canbe redrawnasillustratedin Figure 1.6.2

-1 1

1 1

/

Figure 1.6.2. An exampleof an integer-valuedsimplified recursivetemplate.

The notionsof transposeanddual of a recursivetemplateare definedin termsof
thosefor nonrecursiveemplates.In particular,the transposea’ of a recursivetemplatet is

definedast’ = (t/, t.,). Similarly, if ¢ € (RX,,, R¥,,)™, thenthe additivedual of

t is definedby t* = (t’%, t:). The multiplicativedual for recursiveRZ°-valuedtemplates
is definedin a likewise fashion.

Operations betweenIimagesand Recursive Templates

In orderto facilitate the discussionon recursivetemplatesoperationswe begin
by extendingthe notionsof the linear convolutionproduct @, the morphologicalmax & ,
andthe multiplicative max §) to the correspondingecursiveoperations®_, M <, and
@<, respectively.
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Let X andY befinite subsetf R” with Y partially orderecby <. If a € R¥ and
t € (RX, RY)™¥" ¥ thenthe recursivelinear convolutionproducta @t is definedby

aPit = {(y,b(Y)) 'y €Y, by)= 2 (a(x) tgy(x))+

X€E S(t./(y)

2. (b(z) t-(y(z))}'

z€S(t<y)

The recursivetemplateoperation @ _, computesa new pixel value b(y) based
on both the pixel valuesa(x) of the sourceimage and some previously calculatednew
pixel valuesb(z) which are determinedby the partial order < and the region of support
of the participatingtemplate. By definition of a recursivetemplate,z < y for every
z € S(t<xy) andy & S(t<y). Thereforeb(y) is alwaysrecursivelycomputable.Some
partial ordersthat arecommonlyusedin two-dimensionalecursivetransformsare forward
and backwardrasterscanningand serpentinescanning.

It follows from the definitionof @ _ thatthecomputatiorof anewpixel b(y) can
bedoneonly afterall its predecessor®rderedby <) havebeencomputed.Thus,in contrast
to nonrecursivetemplateoperations recursivetemplateoperationsare not computedin a
globally parallel fashion.

Note that if the recursivetemplatet is definedsuchthat S(t<,) = & for all
y € Y, thenone obtainsthe usualnonrecursiveemplateoperation

a@® t=1<(y,bly) : bly)= > (a(x) tgy(x)), yeY

xES(t*y)

Hence,recursivetemplateoperationsare natural extensionsof nonrecursiveemplateop-
erations.

Recursivemorphologicalmax and multiplicative max are definedin a similar
fashion. Speciically, if a € RX., andt € (R, RX_)™, then

b=aM <t
is defined by
bly)= \/ [a(x)+tg(x)]V \/  [b(z) +ty(2)].

xES,w(t{y) ZES_oo(tgy)

Fora € (R2")™ andt € ((R3")™, (R
b=a@.t
is defined by
biy)= \/ [ax) xtgn]I Vv \/  [b(z)x tey(s)].

XES(t,ey) z€S5(t<y)

The operationsof the recursivemorphologicalmin andmultiplicative min (A < and @)
are definedin the samestraightforwardfashion.
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Recursivemorphologicalmax and min as well as recursivemultiplicative max
and min are nonlinear operations. However, the recursivelinear convolution remainsa
linear operation.

Thebasicrecursivetemplateoperationglescribechbovecanbe easilygeneralized
to the genericrecursiveimage-templateonvolution productby simple substitutionof the
specificoperationssuchasmultiplication andaddition, by the genericoperationg) and-~.
More precisely,given a semiring(F, v, () with identity, thenone candefinethe generic
recursive product

< FX x (FX, FY)Y ™ LY
by definingb = a@®_t by
b(y) =T [a(x) O t4y(x)]7 L

zES(I*y) z€5(tgy)

[b(2) O t<y(2)].

Again, in additionto thebasicrecursivetemplateoperationgliscussecarlier,awide variety
of recursivetemplateoperationscan be derived from the generalizedrecursiverule by
substitutingdifferentbinary operationsfor O andy. Additionally, parameterizedecursive
templatesaredefinedin the samemannerasparameterizedionrecursivaemplatesnamely
as functions

6: P — (FX Y)Y

)

whereP denoteshe setof parametersand t(p) = (t(p)%, t(p)<) with ¢(p) , € ([FX)Y
andt(p), € (FY)(Y’<).

Summary of Recursive Template Operations

In the following list of pertinentrecursiveimage-templatgroductsa € FX and
t € (FX, [FY)(Y"(). As before,for eachoperationwe assumehe appropriatevaluesetF.

recursivegeneric convolution product

(y,b(y)) : bly)=yeY, T ) [a(x) O txy (%)l

a®<t = ,ZES('-ﬁy
Lo, (@) Oty ()
recursivelinear convolution product
. _ 2. (alx) -ty (x))+
a@ t={ VPO B =y eY, )
S(Z )(b(Z)-tq(Z))
zZE€S (tgy
recursivemorphologicalmax convolution product
: _ Voo [ax) + gy (x)]V
Al ot = (y,b(y)) : b(y) =y €Y, x€5_ a(tsy)
. \/(t )[b(Z)+t<y(Z)]
ZES ooty
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recursivemorphologicalmin convolution product

v.bw) by =yey, S RO I

A [b(z) + tiy(2)]

2E€S(tgy)

am<t:

recursivemultiplicative max convolution product

(y,b(y)) : b(y)=y €Y, xES\(/t_ky) [a(x) X t%y(x)] V

V' [b(z) X tiy(2)]

z€S(t<y)

a@,t =

right multiplicative min convolution product

b)) by =yey, A R I

[b(z) x" t<y(2)]

ZESoo(tgy)

a@®,t =

The definition of the left recursiveconvolution productt @) a is also straight-
forward. However,for sakeof brevity andsincethe differentleft productsarenot required
for the remainderof this text, we dispensewith their formulation. Additional facts about
recursiveconvolutionproductstheir propertiesandapplicationscanbefoundin [1, 61, 62].

1.7. Neighborhoods

Thereare severaltypesof templateoperationghat are more easilyimplemented
in termsof neighborhoodperations.Typically, neighborhoodperationsreplacetemplate
operationsvhenevethevaluesin the supportof atemplateconsistonly of the unit elements
of the value set associatedwith the template. A templatet € ([FX)Y with the property

thatfor eachy € Y, thevaluesin the supportof t, consistonly of the unit of F is called
a unit template

ZZ
For example the invarianttemplatet (Rzz) shownin Figure1.7.1is a unit

templatewith respectto the valueset (R, +, -) sincethe value 1 is the unit with respect
to multiplication.

Figure 1.7.1. The unit Moore templatefor the valueset (R, +, -).
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5 z
Similarly, the templater € (IRZ;OO shownin Figure 1.7.2is a unit template

with respectto the value set (R_.., V, +) sincethe value 0 is the unit with respectto
the operation—+.

Figure 1.7.2. The unit von Neumanntemplatefor the valueset(R_.,, V, +).

ZZ
If X C 2% isanm x n arrayof points,a € RX, andt € RZ’ isthe3 x 3
unit Moore template,then the valuesof the m x n imageb obtainedfrom the statement
b := a @t are computedby using the equation

by)= Y. a®-t,x)= Y a@x)-L.

xeXNS(ty) xeXNS(ty)

We needto point out that the differencebetweenthe mathematicakqualityb = a @t and
the pseudocodstatemenb := a @t is thatin the latter the new imageis computedonly
for thosepointsy for which X N S(ty) # &. Observethat sincea(x) - 1 = a(x) and
M(y) = S(ty), where M(y) denotesthe Moore neighborhoodof y (seeFigure 1.2.2),
it follows that

biy)= > ax).

x€XNM(y)

This observationleads to the notion of neighbohood reduction In implementation,
neighborhoodeductionavoidsunnecessarynultiplication by the unit elementand, aswe
shall shortly demonstrate neighborhoodreduction also avoids some standardboundary
problemsassociatedvith image-templateproducts.

To preciselydefine the notion of neighborhoodeductionwe needa moregeneral
notion of the reduceoperationT : FX — F, which was definedin terms of a binary
operationy on F. The more generalform of T is a function

r:FX|y —F,

where N € (2X)Y andFX|y = {a|yq, : acFX yeY}.
For example,if FX = RX, whereX C Z? is anm x n array of points and
2
N € (QX)Z , then one suchfunction could be definedas

¥ RX|N — R,
where}” (aly(y)) = > a(x). Anotherexamplewould be to define
x€N(y)
T: RX|N —R
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asT (aln(y)) = Wd(lw >~ a(x), thenT implementsthe averagingunction, which
xEN(y)
we shall denoteby average Similarly, for integer-valuedmages,the medianreduction

median : N¥|y — N

is definedas median(aly(y)) = median{a(x;,), a(x;,), ..., a(x;,)}, where N(y) =
{xiu Xigy ++ -y Xig S+

Now supposeX C Z, t € (IFZ)Y is a unit templatewith respectto the
operation0) of the semiring(F,v, O), N : Y — 2% is a neighborhoodsystemdefinedby
N(y) = S(ty), anda € FX. It thenfollows thatb := a@t is given by

by) =L @@ Ot) =L, alx).

This observationleadsto the following definition of an image-neighbdrood

convolutionproduct Given X C Z, a € FX, a neighborhoodsystemN : Y — 2%

(i.,e., N € (QZ)Y), anda reductionfunctionT : FX|y — F, thenthe image-neighbdrood
convolutionproductb := a ©N is definedby

b(y)=T (a|XnN(y))

for eachy € Y. Note that the product @) is similar to the image templateproduct ¢)
in that @ is a function

®:F¥x (2%)Y - FY,

In particular,if a € RX, M : 7% — 27” is the Moore neighborhood,and

ZZ
t € (Rzz) is the 3 x 3 unit Moore templatedefined earlier, thena Gt = aP M.

Z2
Likewise,aMr = aM N, wherer € (szoo) denotesthe von Neumannunit template
(Figure 1.7.2) and N denotesthe von Neumannneighborhood1.2.2). The latter equality
stemsfrom the fact thatif b := aMr andc := aM N, thensincery(x) = 0 for all
x € XN S_o(ry) andS_s(ry) = N(y) for all pointsy € Z?, we havethat

by)= \/  am+nx=\/  ax) =cpy).

XEXNS_oo(ry) xeXNN(y)

Unit templatesactlike characteristicfunctionsin thatthey do not weigh a pixel,
but simply note which pixels arein their supportand which are not. When employedin
the image-templateoperationsof their semiring, they only serveto collect a numberof
valuesthat needto be reducedby the gammaoperation. For this reason,unit templates
are also referredto as characteristictemplates Now supposethat we wish to describea
translationinvariant unit templatewith a specificsupportsuchasthe 3 x 3 supportof the
Moore templatet shownin Figure1.7.1. Supposedurther thatwe would like this template
to be usedwith a variety of reductionoperationsfor instance summationand maximum.
In fact, we cannotdescribesuchan operandwithout regardof the image-templat®peration
@ by which it will be used.For usto derivethe expectedesults,the templatemust map
all pointsin its supportto the unitary value with respectto the combining operation().
Thus, for the reduceoperationof summationy , the unit valuesin the supportmust be
1, while for the maximumreduceoperation\/, the valuesin the supportmustall be 0.
Therefore,we cannotdefinea single templateoperandto characterizea neighborhoodor
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reductionwithout regardto the image-templateperationto be usedto reducethe values
within the neighborhood.However, we can captureexactly the information of interestin

unit templateswith the simple notion of neighborhoodfunction. Thus, for example,the
Moore neighborhoodV canbe usedto addthevaluesin every3 x 3 neighborhoodiswell as
to find the maximumor minimum in sucha neighborhoody usingthe statementa @ M,

aM M, andaA M, respectively.This is one advantagdor replacingunit templateswith

neighborhoods.

Anotheradvantageof using neighborhoodsnsteadof templatescan be seenby
consideringthe simple exampleof imagesmoothingby local averaging.Supposea € RX,
12
whereX cC Z?% isanm x n arrayof points,andt € (RZZ) is the3 x 3 unit Mooretemplate

with unit valuesl. Theimageb obtainedfrom the statemenb := é(a @t) representshe
imageobtainedfrom a by local averagingsincethe new pixel valueb(y) is given by

by)=g Y att=5 Y akx)

" xeXNS(ty) x€XNS(ty)
Of course, there will be a boundary effect. In particular, if X =
{(i,j) : 1<i<m, 1<j< n}, then
b(1,1) = %(a(l, 1)+a(1,2) +a(2,1) + a(2,2)),

which is not the averageof four points. One may eitherignore this boundaryeffect (the
mostcommonchoice),or one may useoneof severalschemedo preventit [1]. However,
eachof theseschemesaddsto the computationalburden. A simpler and more elegant
way is to usethe Moore neighborhoodunction M combinedwith the averagingreduction
a = average. Thesimplestatemenb := a (@) M providesfor thedesiredlocally averaged
image without boundaryeffect.

Neighborhoodcompositionplaysanimportantrole in algorithmoptimizationand
simplification of algebraicexpressionsGiventwo neighborhoodunctionsNy, Ny : R* —
2R" then the dilation of N, by N, denotedby N; @N,, is a neighborhoodfunction
N : R* — 2R" which is definedas

Ny)= U M@)+®e-y),

PEN2(y)

where N(y) + q = {x+q : x € N(y)}. Justas for templatecomposition,algorithm
optimizationcanbe achievedby useof the equationa @ (N1 @N2) = (a @N1) DN, for
appropriateneighborhoodunctionsand neighborhoodreductionfunctionsT. For k € N,
thekth iterate of aneighborhoodV : R* — 2R" is definedinductivelyasN* = N*~1 @ N,
where N%(y) = {y} Vy € R".

Most neighborhoodunctionsusedin image processingare translationinvariant
subsetf R” (in particular,subsetof Z> C R?). A neighborhoodunction N : R? — 28"
is said to be translationinvariantif N(y + p) = N(y) + p for every point p € R".
Given a translationinvariant neighborhood\, we defineits reflectionor conjugateN* by
N*(y) = N*(0) + y, whereN*(0) = {-x : x € N(0)} and0 = (0,0,...,0) € R?
denotesthe origin. Conjugateneighborhoodsplay an important role in morphological
image processing.

Note alsothatfor a translationinvariantneighborhoodN, the kth iterateof N can
be expressedn termsof the sum of sets

N*(y) = N*"!(y) + N(0).
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Furthermore, since N®~l(y) + N(0) = U (NMYy)+4q) and
qEN(0)
U (N=Yy)+q) = U (N**0)+p), we have the symmetric relation
q€EN(0) PEN(y)
N*(y) = N¥71(0) + N(y).

Summary of Image-NeighborhoodProducts

In the following list of pertinentimage-neigborhoogroductsa € FX, X C Z,
andN € (QZ)Y. Again, for eachoperationwe assumethe appropriatevalue setF.

genericneighborhoodreduction
a@®N = {(y,b(y)) : b(y) =T (alngy)), y €Y}
neigborhoodsum
a@N =< (yb(y) :bly)= > ax),yeY
xeXnNN(y)

neighborhoodmaximum

amN:{(y,b(Y)):b(.Y): V a(X),yGY}

neighborhoodminimum

awN:{(y,b(Y)):b(.Y): A a(X),er}

xeXNN(y)

Note that

a@N = {(y,b(y)) i by)= \/  ax), yEY}

xeXNN(y)

and, therefore,a@N = aM N. Similarly, a@N = a[@ N.

Although we did not addressthe issuesof parameterizecheighborhoodsand
recursiveneighborhoodoperations,it should be clear that theseare definedin the usual
way by simple substitutionof the appropriateneighborhoodunction for the corresponding
Booleantemplate. For example,a parameterizedheighborhoodvith parametersn the set
PisafunctionN : P — (QZ)X. Thus,for eachparametep € P, N(p) is aneighborhood
systemfor X in Z since N(p) : X — 2%. Similarly, a recursiveneighborhoodsystemfor
a partially orderedset (X, <) is afunction N = (N4, N<) : X — (2%, 2%) satisfyingthe
conditionsthat for eachx € X, x ¢ N4(x), andfor eachz € N4(x), z < x.
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1.8. The p-Product

It is well known that in the linear domain template convolution productsand
image-templateconvolution productsare equivalentto matrix productsand vector-matrix
productsrespectively{63, 1]. Thenotionof a generalizednatrix productwasdevelopedn
orderto providea generalmatrix theoryapproacho image-templat@roductsandtemplate
convolutionproductsin both the linear and nonlineardomains. This generalizednatrix or
p-productwasfirst defined in Ritter [64]. This new matrix operationincludesthe matrix
and vector productsof linear algebra,the matrix product of minimax algebra[65], as
well as generalizedconvolutionsas specialcases[64]. It providesfor a transformation
that combinesthe sameor different typesof values(or objects)into valuesof a possibly
differenttype from thoseinitially usedin the combiningoperation.It hasbeenshownthat
the p-productcanbe appliedto expressvariousimage processingransformsin computing
form [66, 67, 68]. In this documenthowever,we consideronly productsbetweemmatrices
havingthe sametype of values. In the subsequendliscussionF € {R, C} andthe setof
all m x n matriceswith entriesfrom F will bedenotedby F,,,x,. We will follow theusual
conventionof settingF™ = F, «,, andview F" asthe setof all n-dimensionakow vectors
with entriesfrom F. Similarly, the setof all m-dimensionalcolumn vectorswith entries
from F is given by (F™) = [Fixm] = Fmxi.

Let m, n, and p be positive integerswith p dividing both m and n. Define the
following correspondences:

cp:Z;' X Z;'L'/p —ZF

. n .

n
where 1 <j < — and 1 <k < p,

S|

and

rp:Z;;/p XZ;'—>Z;;

by r,(i,k)y=(i—1)p +k,

Wherelgkgp,andlgigﬁ.
p

Sincer,(i, k) < rp(i', k) & i < i or i = ¢ and k < k', r, linearizesthe array

Z;/p X Z;f using the row scanningorder as shown:
1 2 k 4 ]
- av wy e wm o ()
p+1 p+2 ptk 2p
(271) (212) (2vk) (va)
(i-1)p+1 (i-1)p+k ip
(i,1) (4,2) (i,k) (i,p)
| ((m/p)- 1 ; (m/p)p=m
(m/p,1) (m/p2) - (m[pk) - (m/p.p)
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It follows that the row-scanningorder on Zj,;/p X Z;f is given by
(i, k) < (' K) & (i k) < (i K)
or, equivalently, by
(k)< (' kYyeoi<i ori =7 andk < k.
We define the one-to-onecorrespondence

Fo T x I}, < Iy — If x I,

by fp : (x’y’z) and (a:,rp(y, Z))

The one-to-onecorrespondencallows us to re-indexthe entriesof a matrix A = (a; ;) €
Fixm in termsof a triple index a; (; ) by usingthe convention

Qs (i k) = Qs < T'p(i,k) =t,
where 1<i<m/p and 1 <k <p.

Example: Supposd =2, m =6 and p=2. Thenm/p=3, 1 <k <
p=2, and 1 <i<m/p=3. Hencefor A = (a,;) € Faxs, We have

The factor Z;+ of the Cartesianproduct Z} x Z} is decomposedn a similar
fashion. Here the row-scanningmap is given by

cp:Z;' X Z:/p -7t

where ¢,(k,j) = (k— 1)(n/p) +J,
1<j<n/p, and 1<k<p.

This allows us to re-indexthe entriesof a matrix B = (b ¢) € Mux,(F) in termsof a
triple index b ;). by using the convention

bk e =bse & cplk,j)=s,
where 1 <k<pand 1<j<n/p.
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Example: Supposer =4, ¢ =3 and p=2. Thenn/p=2, 1 <k <
p=2, and 1 < j <n/p=2. Hencefor B = (bs:) € F,.xq, We have

b12 bl3
b22 b23
b32 bS3
b42 b43

bz b
bz b
b1z b
b22)2 b

Now let A = (ayj/) € Fixm and B = (byr ;) € Fyxy. Using the mapsr, and
¢p, A and B can be rewritten as

A= (asv(ivk))lxm’ where 1 <s <1, 1<r,(i,k) =7 <m, and
B = (b(k=j)vt)nxq’ where 1 < ¢p(k,j) =4 <nand 1 <t<yq.

The p-product or generalizedmatrix product of A and B is denotedoy A @, B, andis

the matrix

defined by

C=A@,B €Finpyx(m/p)

y4
ity = 9 (s mbiegye) = (@b + -+ (@b,
k=1

wherec, ;y(; 1) denotesthe (s, j)th row and (¢, ¢)th columnentry of C. Here we usethe
lexicographicalorder (s,j) < (s',j') & s < s’ or if s = s’ j < j'. Thus,the matrix C
has the following form:

C(1,1)(1,1)

€(1,2)(1,1)

C(2,%>(1,1)

E(s,5)(1,1)

C(1,1)(1,1)

_C(z,%)(m)

“(1,1)(1,9)

€(1,2)(1,9)

C(L%)(lyq)

&(2,1)(1,9)
C

(2,%)(1&)

&(s,9)(1,9)

“L1)(1,9)

c(h%)(lyq)

&(1,1)(2,1)

€(1,2)(2,1)

C
LE)20)

C(2,1)(2,1)
C

(2, %)(2,1)

E(s,9)(2,1)

C(1,1)(2,1)

c(t,%)(m)

“(1,1)(2,9)

€(1,2)(2,9)

c(ly%)(ZQ)
€(2,1)(2,9)

6(2%)(24)
C(s,j).(lq)

“L1)(2,9)

C(ly%)(lq)

C(1,1)(1,t)

€(1,2)(4,t)

C(l,%)(i,t)
C(2,1)(4,t)

0(2,%)(1',0
C(s,j.)(iyt)

C(1,1)(i,t)

c(l,%)(i,t)

The entry c(, j):,¢) in the (s,))-row and (i,t)-columnis underlinedfor emphasis.
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To provide an example,supposehat! =2, m =6, n =4, and ¢ = 3. Then
for p = 2, oneobtainsm/p =3, n/p =2 and 1 <k < 2. Now let

a1 @12 @13 a4 aA15  A1s
A= € M2x6(R)
a21 @G22 G23 24 dA25 A28
and
bin b1z bis
bar b2z bas
B = € Raxs.

bs1 b3y bas x
by bas  ba3

Thenthe (2,1)-row and (2,3)-columnelemente( 1)z 3) 0f the matrix

C=A@yB €Rinsp)x(m/p)g = Raxo
is given by
2

€(2,1)(2,3) — Z A2.ry(2,k) bcz(k,l),B
k=1

= ary(2,1) * bey(1,1),3 T @2,r5(2,2) “bey(2,1),3
= as3 - b1z + azs - b33.

Thus,in orderto computec, 1)(2,3), the two underlinedelementsof A are combinedwith
the two underlinedelementsof B asillustrated:

bii b1 51_3
(au ajp a3 @4 as a16>@2 bar  bay  Dbos
@1 @2z A3 Qyq Qa5 (26 b3 b3z bs3
bsr bz Da3
:(al,rz(l,l) A1ra(1,2)  @1ra(2,1)  G1,r2(2,2)  @1,ra(3,1) al,r2(3,2)>®
A2 r5(1,1)  @2.r5(1,2)  42.r5(2,1)  @275(2,2) 42,r5(3,1) @2,r5(3.2) 2
bey1)1 bes(1)2 bea(11),3
bey(12)1 bey(1,2)2 ben(1,2)3
bey2 )1 bes(2,1)2 bea(z1)3
beyz2)1 bey(2,2)2 beg(z,2)3
C(1,1)(1,1)  €(1,1)(1,2) C(1,1)(2,3) €(1,1)(3,3)
_ | G211 €(1,2)(1,2) €(1,2)(2,3) €(1,2)(3,3)
N C2,1)(1,1)  €(2,1)(1,2) €(2,1)(2,3) €(2,1)(3,3)
C(2,2)(1,1)  €(2,2)(1,2) €(2,2)(2,3) €(2,2)(3,3)
ci1 €2 - Cis C19
_ | €21 C22 C26 C29
lest e3 €36 €39
C41  C42 C46 C49
In particular,
2 6 1 6 10 11 10 10 25 14 30 19
1 2 0 5 4 3 1 3 2} (7 3 10 15 0 20 13 12 20
(234106>®2225_10181710269121230
3 0 4 1 6 16 7 12 12 18 0 24
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then
(A@,B) =(4,2,2,1)# (4, -2, 6, =3) = B’ @,A".

This showsthat the transposeproperty, which holds for the regular matrix product, is
generallyfalse for the p-product. The reasonis that the p-productis not a dual operation
in the transposadomain. In orderto makethe transposeropertyhold we define the dual

operation @, of @, by

A®,B= (B @,4").
It follows that

A@,B = (B @,4)

andthe p-productis the dual operationof (—D;,. In particular,we now havethe transpose
property (A@®,B)" = B @, A".
Sincethe operation (—D;j is definedin termsof matrix transpositionJabeling of

matrix indices are reversed. Specifically, if A = (a;5:) is an ! x m matrix, then A gets
reindexedas A = (a, (x;)), using the convention

Uy (k) = Ast & cp(k,j) =1,
where 1 <j<m/pand 1<k <p.

Similarly, if B = (bs:) is ann x ¢ matrix, thenthe entriesof B arerelabeledasb; 1),
using the convention

by =bse & (i k) =s,
where 1 <k<pand 1<i<n/p.

The product A @;B = (' is then definedby the equation

P

ciyti) = 2 (@i e) = (@b + - F (Geibip).e).
k=1

Note that the dimensionof C is [ - % X % q.
/

To provide a specificexampleof the dual operation @,,, supposethat
bll bl2
b b
@11 Q12 a13 Q14 b
— _ b31 b32
A= az1 292 A23 (A24 and B =
b41 b42
as1 @32 a3z @34
651 b52
661 b62
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In this casewe havel = 3, m =4, n =6, and ¢ = 2. Thus,for p = 2 and usingthe
schemedescribedabove, the reindexedmatriceshave form

be1,1)1

bai.1),2

. . . b2y bz

ar,(1,1) Q1 (1,2) Qi (2,1) Qa1,2,2) b(z " b(2 1.2

A= @2,(1,1) G2,(1,2) a2,(2,1) a2,(22) and B = b e
3,(1,1) 3,(1,2) @3,(2,1) @3,2,2) b(s )1 b(3.1) )

b2y b3 2)2

Accordingto the dual productdefinition, the matrix A @5 B = C'is a9 x 4 matrix givenby

C1,1)(1,1)  C(1,1)(1,2)  C(1,1)(2,1)  €(1,1)(2,2)
C(1,2)(1,1)  C(1,2)(1,2) C(1,2)(2,1)  €(1,2)(2,2)

€11 €12 C13 Ci4
€21 C22 C23 C24

¢ = €61 Ce2 C63 Co4 - C(2,3)(1,1) ©€(2,3)(1,2) C€(2,3)(2,1) €(2,3)(2,2)
€or  Coz  Co3  Co4 €(3,3)(1,1) €(3,3)(1,2) €(3,3)(2,1) C€(3,3)(2,2)
The underlinedelementegs is obtainedby using the formula:
2
63 = C(2,3)(2,1) = Z as (k,1)0(2,k),2 = a3,1,1)0(2,1),2 + 3,2 1)b(2,2) 2 -
k=1

Thus, in orderto computecss, the two underlinedelementsof A are combinedwith the
two underlinedelementsof B asillustrated:

As afinal observationnotethat the matricesA, B, andC in this examplehavethe form of

bii b1o

bar  boo

a1 @13 @14 b b
' 31 32

a21 a23 A24 e _b
41 42

asi a3z @34 bs, _b52
bs1  bgo

the transposesf the matricesB, A, and C, respectivelyof the previousexample.

1.9. Exercises

1. a

multiplication of two pointsin R™.

Showthat the addition of a scalark € R anda pointx € R” is a specialcaseof
the addition of two pointsx, y € R".
b. Showthatscalarmultiplication of a pointx € R"” is a specialcaseof Hadamard

2. Showthat the operationsof point addition and scalarmultiplication satisfy:

a. k-(x+y)=%k-x+k- -y, wherek € R andx, y € R",
b. (k+h) x=%k -x+h- x,wherek,h € R andx € R".
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3. Let d bea distancefunction on R? andx a pointin R?. The neighbohood (or sphere
or ball) of radiusr of x is denotedby N, 4(x) anddefinedas

Nya(x) = {y eR? : d(x,y) < r}.
Give a graphicalrepresentatiomnf the neighborhoodf the origin x = (0, 0) of radius1 if

a. d is the Euclideandistance,
b. d is the chessboardlistance,
c. d is the city block distance.
4. Letx,y € R*. Forp = 2, showthat:

a [, >0,
b. |||, = 0 if andonly if x = (0,0),
c. |x—vyll, = lly—xl,

n
|55 ] < el v,
e

k=1

5. Let X, Y, andZ be any three setsin R*. Show that

a. XU(YNZ)=(XUY)N(XUZ),
b. XN(YUZ)=(XNY)U(YNZ),
c. XuY)=XnY,
d (XNY)=XU ?
e. Xx(YUZ)=(XxY)U(Xx1Z),
f. Xx(YNZ)=(XxY)Nn(Xx2Z).

6. Leta € RX. Showthata-a~!.-a = a andthata=! -a-a~! = a1,

7. Supposea,b € RX andc = (a—b) vV 0. Showthat

X>s(a) = clec

8. Define the Booleancomplementof a real-valuedimagea € RX by a®, wherea® =
1—a'.a If b e R* showthat

a. x<v(a) = [x>n(a)l’,
b. xzp(a) = [ b(a)]’,
c. a®-a=0.

9. Supposef : R — R denoteghe absolutevaluefunction f(r) = |r|, » € R. Showthat
foa=aV(-a)
whenevera € RX.

22

10. Supposes,t € (le) arethe following translationinvarianttemplates:

-1

a. Find (s+t),, (s-t),, and(sVt),.
b. Letr = s[@At. Give a graphicalrepresentatiorof r,.
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11. Supposet € (Ri‘m)Y. The dual of t is denotedby t* andis the templatet* &
(RY..)™ definedby t(y) = [ty(x)]". Showthat

sAt=(t"Ms*)"
wheres, t € (RIOO)X.

12. Suppose
3 1111
Sy = 2 ty =]1(2]1
1 1111

aretwo translationinvariantreal-valuedemplateon Z2. Providea graphicalrepresentation
of r, where

a. r=s®t, and
b. r=sMt.

13. A real- dual-valuedimageb is an elementof (R x R)™ or (RZ)X.
Constructthreereal dual-valuedl 0 x 10 rectangulaimagesa;, as, az. Computetheimage
a = (V|1)?=Oa,- = (a1 Vl az) Vl as.

14. Let a;, a,, a3 be asin Exercisel3. Find

a. b:a1+a2+a3, and

b. > b.
15. Let N, and N, be two neighborhoodsiefinedon Z2, a a rectangularm x n real-
valuedimageand ' = V. Show that

a@(Nl (—BNQ) = (a ®1V1) @1’\[2.

10. Let 1205 4 3
A:(z 34 1 0 6) and
2 6 1
1 3 2
b= 2 25
3 0 4
Computeeachof the following:
a. (A@,B),
b. (B'"@®,A"),
c. B @,A.
17. a, Supposed and B are! x m matricesand C' is a u x v matrix. Show that

(A+B)®,C = (A®,C) + (BD,C).

b. Supposed is anl x m matrixand B andC' are of dimensionu x v. Showthat
A®,(B+C) = (A®,C) + (B@,C).

c. Letthedimensionof A, B, andC beu x v, w x [, andm x n, respectively.
Supposep dividesbothv andw, and ¢ dividesboth! andm. Showthat

A®p(B ®qc) = (A ®pB) G')qc'

This is the associativdaw for the generalizedmatrix product.
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CHAPTER 2
IMAGE ENHANCEMENT TECHNIQUES

2.1. Intr oduction

The purposeof image enhancemenis to improve the visual appearancef an
image,or to transforman imageinto a form thatis bettersuitedfor humaninterpretation
or machineanalysis. Although thereexistsa multitude of imageenhancementechniques,
surprisingly,theredoesnot exist a correspondingunifying theory of image enhancement.
This is due to the absenceof a generalstandardof image quality that could serveas a
designcriterion for image enhancemenalgorithms. In this chapterwe considerseveral
techniqueghat have provedusefulin a wide variety of applications.

2.2. Averaging of Multiple Images

The purposeof averagingmultiple imagesis to obtain an enhancedmage by
averagingthe intensities of severalimagesof the samescene. A detailed discussion
concerningrationaleand methodologycan be found in Gonzalezand Wintz [1].

Image Algebra Formulation

For i=1,...,k, let a; € R¥ be a family of imagesof the samescene. The
enhancedmage,a € RX, is given by

1 k
a:= — a;.

For actualimplementatiorthe summationwill probablyinvolve the loop

a:=0
for i in 1..k loop
a.—a-+a;
end loop
1

a = a.

k
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Source Image

Noisy Images

Averaged Images

k =100

Figure2.2.1. Averagingof multiple imagesfor differentvalues
of k. Additional explanationsare given in the commentssection.

Comments and Observations

Averaging multiple imagesis applicablewhen severalnoise degradedimages,
ai,as,...,a;, of the samesceneexist. Eacha; is assumedo have pixel valuesof the
form

a;(z) = ag(x) + n;(x),

wherea, is thetrue (uncorruptedy noise)imageandr;(x) is arandomvariablerepresent-
ing the introductionof noise(seeFigure2.2.1). The averagingmultiple imagestechnique
assumedhat the noiseis uncorrelatedand hasmeanequalzero. Undertheseassumptions

© 2001 by CRC PressLLC



k
the law of large numbersguaranteeshat ask increasesa(x) = 1+ 5. a;(x) approaches

i=1
ap(x). Thus,by averagingmultiple images,it may be possibleto assuagelegradatiordue
to noise. Clearly, it is necessaryhat the noisy imagesbe registeredso that corresponding
pixels line up correctly.

2.3. Local Averaging

Local averagingsmoothsanimageby locally reducingthe variationin intensities.
This is doneby replacingthe intensity level at a point by the averageof the intensitiesin
a neighborhoodof the point.

Specfically, if a denoteshe sourceimageand N (y) a neighborhoodf y with
card(N(y)) = n Vy € Z?, thenthe enhancedmageb is given by

n
xEN(y)

Additional detailsaboutthe effects of this simpletechniquecanbe foundin Gonzalezand
Wintz [1].

Image Algebra Formulation

Leta € RX be the sourceimage,and N (y) C Z? a predefinedneighborhoocbf
y € Z°. Leta : RX|y — R denotethe averagingfunction (see Section1.7). The result
imageb € RX, derivedby local averagingfrom a € RX is given by:

b .= a(@ N.

Comments and Observations

Local averagingtraditionally imparts an artifact to the boundaryof its result
image. This is becauseghe numberof neighborsis smallerat the boundaryof an image,
so the averageshouldbe computedover fewer values. Simply dividing the sum of those
neighborsby a fixed constantwill not yield an accurateaverage. The image algebra
specificatiordoesnot yield suchan artifactbecausehe averageof pixelsis computedrom
the setof neighborsof eachimagepixel. No fixed divisor is specified.

2.4. Variable Local Averaging

Variablelocal averagingsmoothsanimageby reducingthe variationin intensities
locally. This is done by replacingthe intensity level at a point by the averageof the
intensitiesin a neighborhoodof the point. In contrastto local averaging,this technique
allowsthe size of the neighborhoodonfigurationto vary. This is desirablefor imagesthat
exhibit higher noise degradatiortoward the edgesof the image|2, 3].

The actual mathematicalformulation of this methodis as follows. Suppose
a € RX denotesthe sourceimageand N : X — 2% a neighborhoodfunction. If n,
denotesthe numberof pointsin N (y) C X, thenthe enhancedmageb is given by

by)= - 3 alx)
Y xeN(y)
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Image Algebra Formulation

Leta € RX denotethe sourceimageand N : X — 2% the specfic neighborhood
configurationfunction. The enhancedmageb is now given by

b = a@N.

Comments and Observations

Although this techniqueis computationallymore intensethanlocal averagingiit
may be more desirableif variationsin noise degradationin differentimage regionscan
be determinedbeforehandby statisticalor other methods. Note that if N is translation
invariant, then the techniguereducesto local averaging.

2.5. lIterative Conditional Local Averaging

The goal of iterative conditionallocal averagingis to reduceadditive noisein
approximatelypiecewiseconstanimageswithout blurring of edges.The methodpresented
here is a simplified version of one of severalmethodsproposedby Lev, Zucker, and
Rosenfeld4]. In this method,the value of theimagea at locationy, a(y), is replacedoy
the averageof the pixel valuesin a neighborhoof y whosevaluesareapproximatelythe
sameasa(y). The methodis iterated(usuallyfour to six times) until the imageassumes
the right visual fidelity asjudgedby a humanobserver.

For the preciseformulation, let a € R* and for y € X, let N(y) denotethe
desiredneighborhoof y. Usually, N(y) is a3 x 3 Moore neighborhood.Define

S(y) ={x € N(y) : |a(y) — a(x)| < T},

whereT' denotesa user-definedhreshold,andset n(y) = card(S(y)).
The conditionallocal averagingoperationhasthe form

ax(y) = 1) S ai(x),

MY) &5

whereay(y) is the value at the kth iterationanda, = a.

Image Algebra Formulation

Let a € RX denotethe sourceimageand N : X — 2% the desiredneighbor-
hood function. Selectan appropriatethreshold?” and definethe following parameterized
neighborhoodfunction:

[S(a)l(y) = {x € N(y) : la(y) — a(x)| < T}.
The iterative conditionallocal averagingalgorithm can now be written as

ag ‘= ak_l@ S(ak—l))

where ag = a.
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2.6. Gaussian Smoothing

Gaussiansmoothingis employedin numerousimage processingand computer
vision algorithms. As pointedout by Marr andHildreth [5], therearetwo considerationgn
choosinga smoothindfilter. First, it mustreducethe rangeof scalesover which intensity
change®ccur,thusit shouldbe smoothandrelativelyband-limitedin the frequencydomain.
Second,it shouldrepresentan averagingof nearbypoints, thus it should be smoothand
localizedin the spatialdomainas well. Simple spatialdomain smoothingfilters suchas
local averagingaddresghe secondconsideratiorbut fail to satisfy the first. In fact, these
arein mutual corflict. Leipnik [6] hasshownthat the filter that provideslocalizationbest
in both the spatialand frequencydomainsis the Gaussiannamely

g2

€ 202

G(z) =

3

o\ 27

2_,2

andin two dimensions G (z,y) = sye ™ 22
The Gaussiarsmoothingb of animagea is achievedby convolvingit with the
GaussianG:

b(z,y) = a(z,y) * G(z,y) = / / a(a, B)G(z — a,y — B)dadp.

Image Algebra Formulation

Let a € R¥ for some2-dimensionapoint setX be the sourceimage. If we
wereto imaginethe setX to have unboundedextent, then the Gaussiarsmoothingb of
image a would given by

b=a®s
wheres € (RX)™ is definedby

1 —(x—v)2—2<y—w>2
Sy (v, w) = gze”

In practice,we must smooth boundedimageswith a boundedtemplate. In such cases,
truncatingthe extentof the templatewill lead to introductionof a biasby the smoothing
evenat thosepointswherethe templatesupportis entirely containedwithin the imagepoint
set. This is dueto the integral of the truncatedGaussiarbeing lessthanone. To achieve
an unbiasedresult, the templatemust be constructedas follows:

1 ~(e=0)?—(y=w)?
St 0) = e
where k is given by
1 —z?—y?
k’ = Z me 202 |

(9«”:9)65(5(0,0))
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Comments and Observations

The Gaussianis a separablefunction, that is, G(z,y) = G(z)G(y). This
meansthat convolutionswith the 2—dimensionalGaussiancan be computedwith iterated
convolutionsof 1-dimensionalGaussiansnamely,

a(z,y)*xG(z,y) = a(z,y) * G(z) * G(y).
This can be computedwith two image-templatdinear productoperations:

b = (a@s1) Psa.

where | o
)
(@)} kldm ’
1 —(y—zv)2
e = g
1 —z2
he Y e

o2

(x,y)ES(sl(u,U))
and

1 -2
ko = Z ———e207
(x,y)ES(sz(g,g)) U\/ﬁ

Choice of the supportof the templates must be made wisely, balancingthe
template’ssizeagainstthe propertiesof the smoothindfilter. Too smallanextentwill yield
a filter that no longer providesgood locality in both spaceand frequency. Too large an
extentwill requireextraprocessingime for no measurabléenefit.

An appropriatechoice of size shouldbe driven by the standarddeviationof the
Gaussiang. More than 95% of the enegy in the Gaussianis containedwithin a radius
of 2¢ units from the origin and more than 99% of the areais containedwithin a radius
of 30 units. Either of theserepresenteasonablehoicesfor templateradiusfor a variety
of applications.

2.7. Max-Min Sharpening Transform

The max-min sharpeningtransformis an image enhancementechniquewhich
sharpenguzzy boundariesindbringsfuzzy gray level objectsinto focus. It alsosmoothens
isolatedpeaksor valleys. It is aniterativetechniquethatcomparesnaximumandminimum
valueswith respectto the centralpixel value in a small neighborhood.The central pixel
valueis replacedby whicheverof the extremain its neighborhoods closestto its value.

Thefollowing specificationof the max-minsharpeningransformwasformulated
in KramerandBruchner[7]. Leta € R¥ bethesourceémageand N (y) denotea symmetric
neighborhoodof y € X. Define

ap(y) = max{a(x) : x € N(y)}
an(y) = minfa(x) : x € N(y)},

The sharpeningransforms is definedas

s = (23] iyl S0 ety

The procedurecan be iteratedas

" (a(y)) = s(s"(a(y)))-
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Image Algebra Formulation

Let a€ RX be the sourceimage,and N (y) a desiredneighborhoodf y € 72.
The max-min sharpenedmages is given by the following algorithm:

ay = aMN
a, = a@A N
b:= ay+a,,—2-a

s:= x<o(b)-ay+x>o(b)-an.

The algorithm is usually iterateduntil s stabilizesor objectsin the image have
assumediesirablefidelity (asjudgedby a humanobserver).

Comments and Observations

Figure 2.7.1is a blurred image of four Chinesecharacters.Figure 2.7.2 show
theresults,after convegence of applyingthe max-minsharpeninglgorithmto the blurred
charactersConvegencerequired128 iterations. The neighborhoodV usedin this example
is the von Neumannneighborhood.

Figure 2.7.1. Blurred characters.
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Figure 2.7.2. Resultof applyingmax-min sharpeningo blurred characters.

2.8. Smoothing Binary Imagesby Association

The purposeof this smoothingmethodis to reducethe effects of noisein binary
pictures. The basicideais that the 1-elementdueto noiseare scattereduniformly while
the 1-elementsdue to messaganformation tend to be clusteredtogether. The original
imageis partitionedinto rectangularegions. If the numberof 1's in eachregionexceeds
a given threshold,then the regionis not changed;otherwise,the 1's are setto zero. The
regionsarethentreatedassinglecells,a cell beingassigned 1 if thereis atleastonel in
the correspondingegion and 0 otherwise. This new collection of cells can be viewed as
a lower resolutionimage. The pixelwise minimum of the lower resolutionimageandthe
original image providesfor the smoothedversionof the original image. The smoothened
versionof the original image can againbe partitionedby viewing the cells of the lower
resolutionimage as pixels and partitioning thesepixels into regionssubjectto the same
thresholdprocedure. The precisespecificationof this algorithm is given by the image
algebraformulation below.

Image Algebra Formulation

Let T denotea giventhresholdanda € {0, 1} bethesourcemagewith X c z2.
For a fixed integerk > 2, definea neighborhoodunction N (k) : X — 2% by

bl = e 7)< 2]}

Here | X| meansthatif x = (z,y), then |X] = (|£], |£]).
The smoothedmagea, € {0, 1}* is computedby usingthe statement

ap:=aAxyr(a@®N(k)).
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If recursionis desired,define
a; ‘= a A XZT(aZ'_l (—DN(]C + 1 — 1))

for : > 0, wherea; = a.

The recursionalgorithm may reintroducepixels with values 1 that had been
eliminated at a previous stage. The following alternativerecursionformulation avoids
this phenomenon:

a; ;—=a;_1 /\XZT(ai_l @N(k +17— 1))

Comments and Observations

Figures2.8.1through2.8.5 provide an exampleof this smoothingalgorithm for
k =2 andT = 2. Note that N(k) partitionsthe point set X into disjoint subsetssince
[N(K)l(y) = [N(k)l(z) < [¥]|=|Z]. Obviously,thelargerthe numberk, thelargerthe
sizeof thecells[N (k)](y). In theiteration,oneviewsthecells[N (k)](y) aspixelsforming

the next partition [NV (k + 1)](y). The effectsof the two differentiteration algorithmscan
be seenin Figures2.8.4and 2.8.5.

Figure 2.8.1. The binary sourceimage a.
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Figure 2.8.2. The lower-resolutionimagex>2(a @N(2)) is shownon the
left and the smoothenedrersiona A x>2(a @N(2)) of a on the right.

Figure 2.8.3. The lower-resolutionimage x »»(a; N (3)) of the first iteration.
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Figure 2.8.4. The smoothenedersiona, = a A x»2(a; @N(3)) of a.

Figure 2.8.5. Theimagea; = a; A x>2(a; @N(3)).

As canbe ascertainedrom Figs. 2.8.1through2.8.5, severalproblemscanarise
whenusingthis smoothingmethod. The techniqueasstatedwill notfill in holescausedy
noise. It could be modifiedso that it fills in the rectangularegionsif the numberof 1's
exceedshe threshold,but this would causedistortion of the objectsin the scene.Objects
that split acrosshoundarief adjacentegionsmay be eliminatedby this algorithm. Also,
if the image cannotbe brokeninto rectangularregionsof uniform size, other boundary-
sensitivetechniquesnay needto be employedto avoid inconsistentesultsnearthe image
boundary.

Additionally, the neighborhoodV () is a translationvariantneighborhoodunc-
tion that needsto be computedat eachpixel locationy, resultingin possibly excessive
computationabverhead.For thesereasonsmorphologicalmethodsproducingsimilar re-
sults may be preferablefor image smoothing.

2.9. Median Filter

The medianfilter is a smoothingtechniquethat causesminimal edge blurring.
However,it will removeisolatedspikesandmay destroyfine lines[1, 2, 8]. Thetechnique
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involves replacingthe pixel value at eachpoint in an image by the medianof the pixel
valuesin a neighborhoodaboutthe point.

The choiceof neighborhoodand medianselectionmethoddistinguishthe various
median filter algorithms. Neighborhoodselectionis dependenton the sourceimage.
The machine architecturewill determinethe best way to selectthe medianfrom the
neighborhood.

A samplingof two medianfilter algorithmsis presentedn this section. The first
is for anarbitraryneighborhoodlt showshow animage-templat®perationcanbe defined
thatfindsthe medianvalueby sortinglists. The secondormulationshowshow the familiar
bubble sort can be usedto selectthe medianover a 3 x 3 neighborhood.

Image Algebra Formulation

Let a € RX be the sourceimage, N : X — 2% a neighborhoodfunction. Let
m : RX|xy — R denotethe medianfunction describedn Sectionl1.7. The medianfiltered
image m is given by

m = a@N.

Alternate Image Algebra Formulation

The alternateformulationusesa bubblesortto computethe medianvalue over a
3 x 3 neighborhoodLet a € R* be the sourceimage. The imagesa; areobtainedby

a; :—ao f;, 1<i<8§,

wherethe functions f; are definedas follows:

fi(x) =x+(0,1)
fo(x) =x+(-11)
f3(x) =x+(-1,0)
fa(x)=x+(-1,-1)
f5(x) =x+(0,-1)
fo(x) =x+(1,-1)
fz(x) =x+(1,0)
fs(x) =x+4(1,1).

The medianimagem is calculatedwith the following imagealgebrapseudocode:

ag:=a
for ¢ in 0..4 loop
for jin¢+ 1..8 loop
b:=a; Va,
a; :=a; Aa;
a;:=b
end loop
end loop

m:=ay.
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Comments and Observations

The figuresbelow offer a comparisorbetweenthe resultsof applyingaveraging
filter and a medianfilters. Figure 2.9.1is the sourceimage of a noisy jet. Figures2.9.2
and?2.9.3showtheresultsof applyingaveragingandmedianfilter, respectivelypver3 x 3
neighborhoodof the noisy jet image.

Figure 2.9.1. Noisy jet image.

Figure2.9.2. Noisy jet imagesmoothedwith averagindfilter overa 3 x 3 neighborhood.
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Figure 2.9.3. Resultof applying medianfilter over
a 3 x 3 neighborhoodo the noisy jet image.

Coffield [9] describesa stack comparatorarchitecturewhich is particularly well
suitedfor imageprocessingasksthat involve order statisticfiltering. His methodologyis
similar to the alternativeimage algebraformulation given above.

2.10. Unsharp Masking

Unsharpmaskinginvolves blendingan image’shigh-frequencycomponentsand
low-frequencycomponentgo producean enhancedmage|[2, 10, 11, 12]. The blending
may sharperor blur the sourceimagedependingpn the proportionof eachcomponentn the
enhancedmage. Enhancementakesplacein the spatialdomain. The preciseformulation
of this procedureis given in the image algebraformulation below.

Image Algebra Formulation

Let a € RX be the sourceimageand let b be the image obtainedfrom a by
applying an averagingmask (Section2.3). The imageb is the low-frequencycomponent
of the sourceimageand the high-frequencycomponentis a — b. The enhancedmagec
producedby unsharpmaskingis given by

c:=v-(a—b)+b,
or, equivalently,
c:=y-a+(l—7v)-b.
A v € R between0 and 1 resultsin a smoothingof the sourceimage. A v greaterthan
1 emphasizeshe high-frequencycomponentf the sourceimage, which sharpengletail.
Figure2.10.1showstheresultof applyingthe unsharpmaskingtechniqueto a mammogram

for severalvaluesof y. A 3 x 3 averagingneighborhoodwvas usedto producethe low-
frequencycomponentimageb.
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A more generalformulation for unsharpmaskingis given by
ci=a-(a—b)+3 b,

wherea, 8 € R. Herea is the weighting of the high-frequencycomponentand 3 is the
weighting of the low-frequencycomponent.

Source y=0.0
y=05 y=5
y=10 y=20

Figure 2.10.1. Unsharpmaskingat various valuesof ~.
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Comments and Observations

Unsharpmaskingcan be accomplishedoy simply convolving the sourceimage
with the appropriatetemplate. For example,the unsharpmasking can be done for the
mammogramin Figure 2.10.1 using

c:.=a®t,

wheret is the templatedefinedin Figure 2.10.2. The valuesof v and w are “T” and
Bt respectively.

V| Vv | Vv
t= V| w \Y
V| Vv| Vv

Figure 2.10.2. The Moore configurationtemplate
for unsharpmaskingusing a simple convolution.

2.11. Local Area Contrast Enhancement

In this sectionwe presentwo methodf local contrastenhancemerftom Harris
[13] and Narendraand Fitch [14]. Eachis a form of unsharpmasking (Section2.10)
in which the weighting of the high-frequencycomponentis a function of local standard
deviation.

Image Algebra Formulation

Leta € RX, andN be a neighborhoodselectedor local averaging(Section2.3).
The von Neumannor Moore neighborhoodsare the most commonly usedneighborhoods
for this unsharpmasking technique. The local meanimage of a with respectto this
neighborhoodfunction is given by

m:=a(d N.

The local standarddeviationof a is given by the image

d:=p3v ((afm)Q@ N)E.

1
Theimage|( (a — m)2 @ N ’ actuallyrepresentshe local standardieviationwhile 5 > 0
is a lower boundappliedto d in orderto avoid problemswith division by zeroin the next
step of this technique.

The enhancementechniqueof [13] is a high-frequencyemphasisschemewhich
useslocal standarddeviationto control gain. The enhancedmageb is given by
b:= é (a —m).

As seenin Section2.10,a — m represents highpasdiltering of a in the spatialdomain.
The local gain factor 1/d is inversely proportionalto the local standarddeviation. Thus,
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a larger gainwill be appliedto regionswith low contrast. This enhancementechniqueis
usefulfor imageswhoseinformation of interestlies in the high-frequencycomponentand
whosecontrastlevels vary widely from region to region.

The local contrastenhancementechniqueof Narendraand Fitch [14] is similar
to the one above, exceptfor a slightly different gain factor and the addition of a low-
frequencycomponent. In this technique,let

1
"= card(a) Za

denotethe global meanof a. The enhancedmageb is given by

a-m

d

b=

(a—m)+m,

where0 < a < 1. The addition of the low-frequencycomponentm is usedto restorethe
averageintensity level within local regions.

We needto remarkthatin bothtechniquesaboveit maybe necessaryo putlimits
on the gain factor to preventexcessivegain variations.

2.12. Histogram Equalization

Histogramequalizatioris atechniquewhich rescaleshe rangeof animage’spixel
valuesto producean enhancedmage whosepixel valuesare more uniformly distributed
[15, 1, 16]. The enhancedmagetendsto have higher contrast.

Themathematicaformulationis asfollows. Leta € Z¥ denotethe sourceimage,
n = card(X), andn; bethe numberof timesthegraylevel j occursin theimagea. Recall
thatz, = {0,1,---,{— 1}. The enhancedmageb is given by

Image Algebra Formulation

Let a€ Z¥ be the sourceimage and let ¢ denotethe normalized cumulative
histogramof a as definedin Section10.11.

The enhancedmageb is given by

b:=(l—1) (coa).

Comments and Observations

Figure2.12.1is anillustration of the histogramequalizatiorprocess.The original
imageandits histogramsareon the left side of the figure. The original imageappearglark
(or underexposed)This darknessnanifeststself in a biastowardthe lower endof the gray
scalein the original image’shistogram.On the right side of Figure 2.12.1is the equalized
image and its histograms. The equalizedhistogramis distributedmore uniformly. This
more uniform distributionof pixel valueshasresultedin animagewith bettercontrast.
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Original Image Equalized Image

Histogram of Original Image Histogram of Equalized Image

Cumulative Histogram of Original Image

Cumulative Histogram of Equalized Image

Figure 2.12.1. Left: Original image and
histograms. Right: Equalizedimage and histograms.

2.13. Histogram Modification

The histogramequalizationtechniqueof Section2.12 is a specific exampleof
imageenhancementising histogrammaodification. The goal of the histogrammodification
techniqueis to adjustthe distribution of an image’s pixel valuesso as to producean
enhancedmagein which certaingray level rangesarehighlighted. In the caseof histogram
equalization,the goal is to enhancethe contrastof an image by producingan enhanced
imagein which the pixel valuesare evenlydistributed,i.e., the histogramof the enhanced
image is flat.

Histogrammodificationis accomplishedvia a transferfunction

g =T(z),
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wherethe variablez, z; < z < z,, represents gray level value of the sourceimageand
g, 91 < g9 < gm, is the variablethat represents gray level value of the enhancedmage.
The methodof deriving a transferfunctionto producean enhancedmagewith a prescribed
distribution of pixel valuescanbe foundin either Gonzalezand Wintz [1] or Pratt[2].
Table 2.13.1lists the transferfunctionsfor severalof the histogrammodification
exampledeaturedn Pratt[2]. In thetable P(z) is thecumulativeprobability distributionof
theinputimageand « is an empirically derivedconstant.The imagealgebraformulations
for histogrammodificationbasedn thetransferfunctionsin Table2.13.1arepresentedhext.

Table 2.13.1 Histogram Transfer Functions

Name of modification Transfer function T(z)

Uniform modification: 9=[gm—n1]P(2)+ 5

Exponentialmodification: | g=g;— 1 In[1—P(z)]

_ e 1/2
Rayleighmodification: | , _ , | [2a2 In (%)]

Hyperbolic cuberoot
o= (|

3
modification: gl 911/3] [P(2)] + 911/3)

Hyperboliclogarithmic
modification: g9=q [g—l

Image Algebra Formulation

Leta € Z¥ denotethe sourceimageand¢ the normalizedcumulativehistogram
of a asdefinedin Section10.11. Let ¢g; and g,, denotethe grey value boundsfor the
enhancedmage. Table2.13.2below describeshe imagealgebraformulationfor obtaining
the enhancedmageb usingthe histogramtransformfunctionsdefinedin Table2.13.1.

2.14. Lowpass Filtering

Lowpassfiltering is an image enhancemenprocessusedto attenuatethe high-
frequencycomponentsof an image’s Fourier transform[1]. Since high-frequencycom-
ponentsare associatedvith sharpedgesowpassfiltering hasthe effect of smoothingthe
image.

Supposea € CX whereX =Z,, x Z,,. Let 4 denotethe Fouriertransformof a,
andh denotethe lowpassfilter transferfunction. The enhancedmageg is given by

gz, y) = S_l{é(u, v) fl(u, v)},

whereh is thefilter which attenuatesigh frequenciesand ! denotegheinverseFourier
transform. Sections8.2 and 8.4 presentimage algebraimplementationsof the Fourier
transformand its inverse.

© 2001 by CRC PressLLC



Table 2.13.2 Image Algebra Formulationof HistogramTransferFunctions

Name of modification Image algebra formulation
Uniform modification: b = [gm —g1](Coa)+ ¢
Exponentialmodification: b := g~ Lln[l—(Coa)

. v 1/2
Rayleighmodiffication: b= g+ [2(12 ln(l—(lan))]
Hyperbolic cuberoot s 131 13\ 3

modification: b = ([gm/ — g ](Coa) +g,/ )
Hyperboliclogarithmic (Toa)
modification: b = g [i—T]

Let d(u, v) be the distancefrom the point (u, v) to the origin of the frequency
plane; that is,

El(u, v) = (u2 + 112)1/2.
The transferfunction of the ideal lowpassfilter is given by

Bu,v) = 1 if d(u,v) < d
NN 0 it A, v) > d,

whered is a specifiednonnegativequantity, which representshe cutoff frequency
The transferfunction of the Butterworthlowpassfilter of orderk is given by
fl(u, v) = ! ST
1+ c[a(u, v)/d

wherec is a scalingconstant. Typical valuesfor ¢ are1 andv/2 — 1.
The transferfunction of the exponentialowpassfilter is given by

h(u, v) = ezp [—a(a(u, v)/d)k].

Typical valuesfor a are 1 and in(v/2).

Theimageghatfollow illustratesomeof the propertiesof lowpasdiltering. When
filtering in the frequencydomain,the origin of the imageis assumedo be at the center
of the display. The Fourier transformimagehas beenshifted so that its origin appearsat
the centerof the display (see Section8.2).
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Figure 2.14.1is the original image of a noisy angiogram. The noiseis in the
form of a sinusoidalwave. Figure2.14.2representshe powerspectrumimageof the noisy
angiogram.The noisecomponenbf the original image showsup asisolatedspikesabove
and below the centerof the frequencyimage. The noise spikesin the frequencydomain
are easilyfiltered out by an ideal lowpassfilter whosecutoff frequencyd falls within the
distancefrom the centerof the imageto the spikes.

Figure 2.14.3showsthe result of applying an ideal lowpassfilter to 2.14.2and
then mappingbackto spatialcoordinatesvia the inverseFourier transform. Note how the
washboardeffect of the sinusoidalnoise hasbeenremoved.

One artifact of lowpassfiltering is the “ringing” which can be seenin Figure
2.14.2. Ringing is causedby the ideal filter’'s sharpcutof betweenthe low frequencies
it lets passandthe high frequenciest suppressesThe Butterworthfilter offers a smooth
discriminationbetweenfrequencieswhich resultsin lesssevereringing.

Figure 2.14.1. Noisy angiogram.

The lowpassfiltering usedabovewas successfuln removingthe noisefrom the
angiogram;however, the filtering blurred the true image. The image of the angiogram
before noise was addedis seenin Figure 2.14.4. The blurring introducedby filtering is
seenby comparingthis imagewith Figure 2.14.3.

Lowpassfiltering blurs an image becauseedgesand other sharptransitionsare
associatedvith the high frequencycontentof an image’s Fourier spectrum. The degree
of blurring is relatedto the proportion of the spectrum’ssignal power that remainsafter
filtering. The signal power P of b € CX is definedby

P(b) = " [Re(b(x) + Im?(b(x)))].

xeX

The percentagef power that remainsafter filtering a usingan ideal filter h; with cutoff
frequencyd is
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Figure 2.14.2. Fourier transformof noisy angiogram.

Figure 2.14.3. Filtered angiogramusing ideal filter.

As d increasesmore and higher frequenciesare encompassety the circular region that
makesup the supportof hy. Thus,asd increasesthe signal power of the filtered image
increasesand blurring decreases.The top two imagesof Figure 2.14.5 are those of an
original image(peppersyandits powerspectrum.The lower four imagesshowthe blurring
that results from filtering with ideal lowpassfilters whose cutoff frequenciespreserve
90,93,97, and99% of the original image’ssignal power.

The blurring causedby lowpassfiltering is not always undesirable. In fact,
lowpassfiltering may be usedas a smoothingtechnique.

Image Algebra Formulation

The image algebra formulation of the lowpassfilter is roughly that of the
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Figure 2.14.4. Angiogrambefore noise was introduced.

mathematicalformulation presentedearlier. However, there are a few subtletiesthat a
programmemeedsto be awareof when implementinglowpassfilters.

The transfer function

P 1t (u?+02)* <d
(u,v) = . 9, o\1/2
0 if (u —1—1)) >d

represents disk of radiusd of unit heightcenteredat the origin (0, 0). On the otherhand,
the Fourier transformof animagea € RX, whereX = 7,, x Z,, resultsin a complex-
valuedimagea € CX. In otherwords, the location of the origin with respectto a is not
the centerof X, which is the point (%, %), but the upperleft-handcornerof 4. Therefore,
the producta - h is undefined. Simply shifting the imagea so that the midpoint of X
movesto the origin, or shifting the disk image so that the disk’s centerwill be locatedat
the midpoint of X, will resultin properly alignedimagesthat can be multiplied, but will
not resultin a lowpassfilter sincethe high frequencieswhich are locatedat the corners
of &, would be eliminated.

There are various options for the correctimplementationof the lowpassfilter.
One suchoptionsis to centerthe spectrumof the Fourier transformat the midpoint of X
(Section8.3) and then multiplying the centeredransformby the shifted disk image. The
resultof this processieedso be uncenteregrior to applyingtheinverseFouriertransform.
The exactspecificationof the ideal lowpassfilter is given by the following algorithm.

Supposei € C* andX = Z,,, x Z,,, wherem andn are evenintegers. Define
the point set

and set
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Original Power spectrum

Filtered at 90% Filtered at 93%

Filtered at 97% Filtered at 99%

Figure 2.14.5. Lowpassfiltering with ideal filter at variouspower levels.

The algorithm now becomes

a = ao center(X)

g = F1 [(é . ﬁ) o center(X)].

In this algorithm, 1 and O denote the complexvalued unit and zero image,
respectively.

If U is definedasU = {(u, vy ¢ (w4 ?) P < d} instead,thenit becomes
necessaryo define h ash :=[1|y + (2, 2)]|°, wherethe extensionto 0 is on the array

X, prior to multiplying & by h. Figure 2.14.6 providesa graphicalinterpretationof this
algorithm.

Anothermethod which avoidscenteringhe Fouriertransform,s to specifytheset
U= {(u, v) : (u?+ v2)1/2 < d} andtranslatethe image 1|y directly to the cornersof
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uv l inverse F.T.

Figure 2.14.6. lllustration of the basicstepsinvolved in the ideal lowpassfilter.

X in orderto obtainthe desiredmultiplication result. Specifically,we obtainthe following

form of the lowpassfilter algorithm:

h = [y + (v + (m,0) + (v + (0,n) + (Llv + (m, n))] %

g = 5—1(5-}1).
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Here d|& meansrestricting the image d to the point set X and then extendingd on X
to the zero image whereverit is not definedon X. The basicstepsof this algorithm are
shownin Figure 2.14.7.

1
U

v
<

Y u
u .
multipl
\ Py Aiﬂ and extend

r;ﬁﬁﬂl T >V
7 g

it

it it

AL AT
% 7

Cret e e | i)
\/
u -

inverse F.T.

Figure 2.14.7. lllustration of the basic stepsas
specifiedby the alternateversionof the lowpassfilter.

As for the ideal lowpassfilter, there are severalway for implementingthe kth-
order Butterworth lowpassfilter. The transferfunction for this filter is definedover the
pointsetU = Zi= x Zy=, andis definedby

- 1
h(u,v) = )
( ) |:(U2+U2)1/2:|2k
d

1+c¢-

where ¢ denotesthe scaling constantand the value h(u, v) needsto be convertedto a
complexvalue. For correctmultiplication with the imagea, the transferfunctionh needs
to be shiftedto the cornersof X. The exactspecificationof the remainderof the algorithm
is given by the following two lines of pseudocode:

h = [ﬁ—}— (fl—}— (m,O)) + (ﬁ-i— (0,n)> + (ﬁ—i— (m,n))] |x

g = S_l(é-fl).
The transferfunction for exponentiallowpassfiltering is given by
k
N A /UZ + UZ
h(u,v) =exp|—a — ,
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where(u,v) € Zy» x Lixn andfl(u, v) needsto be a complexvalued. The remainderof
the algorithm is identical to the Butterworthfilter algorithm.

2.15. Highpass Filtering

Highpasdiltering enhanceshe edgeelementsf animagebasedon the fact that
edgesandabruptchangesn gray levelsareassociatedvith the high-frequencycomponents
of animage’sFouriertransform(Sections8.2 and 8.4). As before,supposex denoteshe
Fouriertransformof the sourceimagea. If h denotesa transferfunction which attenuates
low frequenciesand lets high frequenciespass,then the filtered enhancemensf a is the
inverse Fourier transformof the productof 4 andh. That s, the enhancedmageg is
given by

g(z,9) =5 {a(u,v) -B(u, v},

where g~ denotesthe inverse Fourier transform.

The formulation of the highpasstransferfunction is basically the complement
of the lowpasstransferfunction. Specifically, the transferfunction of the ideal highpass
filter is given by

. 0 ifd(u,v)<d
h(u,v) = o
1 if d(u,v) > d,

where d is a specifiednonnegativequantity which representghe cutoff frequencyand

~

d(u,v) = (u®+ v2)1/2.
The transferfunction of the Butterworthhighpasdilter of order% is given by

B(u,v) = { e ) #0.0
0 if (u,v) = (0,0),

wherec is a scalingconstant. Typical valuesfor ¢ arel andv/2 — 1.
The transferfunction of the exponentiahighpassfilter is given by

ﬁ(u, v) :{ exp [—a(d/fl(u, v)) k] if (u,v) #(0,0)
0 if (u,v) = (0,0).

Typical valuesfor a are 1 and in (v/2).

Image Algebra Formulation

Let a € CX denotethe sourceimage,whereX = Z,, x Z,. Specifythe point
setU = Zym x Z1 =, anddefineh € CY by

X 0 if (u+v?)?<d
h(u,v) = . 9, 9y1/2
1 of (u + v ) >d.
Oncethetransferfunctionis specifiedthe remaindeiof thealgorithmis analogous
to the lowpassfilter algorithm. Thus, one specificationwould be

h = [ﬁ—{— (ﬁ—}— (m,O)) + (fl—i— (0,n)> + (fl—i— (m,n))] Ix
g = 3—1(5-11).
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This pseudocodspecificatiorcanalsobe usedfor the Butterworthandexponentiahighpass
filter transferfunctionswhich are describednext.

The Butterworthhighpasdilter transferfunction of orderk with scalingconstant
¢ is given by

. 1 = if (u, 0,0
h(u, v) = te[d/(w24v2)H/2]* i (u,v) #(0,0)
0 if (u,v) = (0,0),
where (u,v) € U = Lim X Lyn.
The transferfunction for exponentialhighpasdiltering is given by

h(u, v) :{ o [_a (d/(u2 + 1;2)1/2)’C

0 if (u,v) = (0,0

2.16. Exercises

1. Constructa syntheticimage and add random perturbationsto each pixel value. In
your constructionchoosea representatiotthat clarifiesthe effects of local averagingwhen
using the neighborhoodslescribedbelow.

a. Implementthe local averagingalgorithm usingthe Moore neighborhood.
b. Repeatl.a using the skew neighborhood

2. Constructa syntheticimageconsistingof vertical stripesof differentwidths.

a. Implementthe local averagingalgorithmsusingthe Moore neighborhood.
b. Repeat2.a usingthe template

2

and multiply the resultingimageby 1/16.
c. Explain the different effects of thesetwo smoothingoperations.

3. Considerthe following algorithm. At eachpixel location, calculatethe differencel’
betweerthe pixel valuesof the two vertical neighborsaboveandbelowthe pixel. Calculate
the difference H betweenthe pixel valuesof the two horizontalneighborsto the left and
right of the pixel. If V' exceeddd, thenthe valueof the pixel is replacedby the weighted
averageof the pixel and its two horizontal neighbors. Otherwise,it is replacedby the
averageof the pixel andits two vertical neighbors.

a. Write animage algebraformulation of this algorithm.

b. Implementthe algorithm.

c. Thealgorithmcanbeimplementedn termsof templatesith weights+1 and—1.
Investigatethe effectsof this algorithmfor differentcombinationsof weightsand
also for repeatedapplication.
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4. Provethatthe Max-Min Sharpeninglransformstabilizes,i.e., showthat there exists
a positive integern suchthat s”(a) = s*(a) for all integersk > n.

5. Showthat while (a+b)@ N = a(@ N + b(@ N, it is not true in generalthat
(a+b)@N = a@N + b@N. This showsthat local averagingis a linear operation
while medianfiltering is not.

6. A generalizationof unsharpmaskingthat is often usedfor object enhancemenand
backgroundsuppressionss given by the operation

b(i,j) = > _a(l k)= a(l, k)

Ny N

wherea denotesthe input image, N; is an n x n rectangulameighborhoodcenteredat
(7,7), N2 is anm x m rectangulameighborhooccenteredat (¢, j), andn > m.

a. Providean imagealgebraformulation of this algorithm.

b. Implementhisalgorithmon a synthetidmagewherethe objectintensityis greater
thanthe backgroundandthe objectsize can be coveredby Nj.

c. Repeat6.b exceptthat the objectintensityis lessthanthe background.

d. Repeat6.b exceptthatthe objectsizeis greaterthan N, but lessthan N,.

7. Implementthe Gaussiarsmoothingalgorithm on at leasttwo differentimagesusing
different templatesupport. Analyze your results.

8.* Implementthe five histogrammaodificationsdescribedin Table 2.13.2 and describe
their effects and differenceswhen appliedto an image.

9.* Developa programto displayhistogramplots of digital imagessimilar to thoseshown
in Figure 2.12.1. Testyour programon suitableimagesand provide an image algebra
formulation of your program.

10.* It follows from Sectionl.7 thatif N denotesann x n rectangulameighborhoodand
t atemplatewith N(y) = S(ty) for eachy, thentheimagea @t is equivalentto a (& N
aslong asoneignoresboundaryeffects andty (x) = 1/n* wheneverx € S(ty ).

a. Show that the Fourier transform of t, is given by h(u,v) =
n—1n-1

% Z Z n1_26(—27riuk)/1'7, . e(—2mivk)/n
k=0 (=0
b. Using10.a,establisha relationshipbetweersmoothingby averagingandlowpass
filtering.
11.* Implementthe three highpassfilters describedn Section2.15.

12.* Considerthe unsharpmaskingalgorithmgivenby b:=a @t, wheret denotesann x n
rectangulatemplatewith ty(y) = 1 andty(x) = — L+ whenevery # x € S(ty).

a. Find the Fourier transformof t, .
b. Using 12.a, establisha relationship betweenunsharp masking and highpass
filtering.
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CHAPTER 3
EDGE DETECTION AND
BOUNDARY FINDING TECHNIQUES

3.1. Intr oduction

Edgedetectionis an importantoperationin a large numberof image processing
applicationssuch as image segmentationcharacterrecognition,and sceneanalysis. An
edgein animageis a contouracrosswhich the brightnessof the image changesabruptly
in magnitudeor in the rate of changeof magnitude.

Generally,it is difficult to specify a priori which edgescorrespondo relevant
boundariedn animage. Imagetransformswhich enhanceand/ordetectedgesare usually
taskdomaindependentWe, therefore presenta wide variety of commonlyusedtransforms.
Most of thesetransformscan be categorizedas belongingto one of the following four
classes:(1) simple windowing techniquesto find the boundariesof Booleanobjects, (2)
transformsthat approximatethe gradient, (3) transformsthat use multiple templatesat
differentorientationsand(4) transformghatfit local intensity valueswith parametricedge
models.

The goal of boundaryfinding is somewhatifferentfrom that of edgedetection
methodswhich are generally basedon intensity information methodsclassfied in the
precedingparagraph. Gradient methodsfor edge detection, followed by thresholding,
typically producea numberof undesiredartifactssuchas missingedgepixels and parallel
edgepixels, resultingin thick edges.Edgethinning processeand thresholdingmay result
in disconnecteeédgeelements.Additional processings usuallyrequiredin orderto group
edgepixels into coherentboundarystructures.The goal of boundaryfinding is to provide
coherentone-dimensionaboundaryfeaturesfrom the individual local edgepixels.

3.2. Binary Image Boundaries

A boundarypoint of anobjectin a binaryimageis a point whose4-neighborhood
(or 8-neighborhooddependingon the boundaryclassification)intersectshe objectandits
complementBoundariedor binaryimagesareclassifiedby their connectivityandwhether
theylie within the objector its complement.The four classificationsill be expandedipon
in the discussioninvolving the mathematicaformulation.

Binary image boundarytransformsare thinning methods. They do not preserve
the homotopyof the original image. Boundarytransformscan be especiallyuseful when
usedinside of otheralgorithmsthat requirelocationof the boundaryto performtheir tasks.
Many of the otherthinning transformsin this chapterfall into this category.

The techniquesoutlined below work by using the appropriateneighborhoodto
either enlage or reducethe regionwith the & or A operation,respectively. After the
objecthasbeenenlagedor reducedit is intersectedvith its original complemento produce
the boundaryimage.
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Fora € {0,1}*, let A denotethe supportof a. Theboundaryimageb € {0, 1}*
of a is classifiedby its connectivityand whetherB C A or B C A’, where B denotes
the supportof b.

(a) Theimageb is an exterior8-boundaryimageif B is 8-connectedB C A’,
andB is the setof pointsin A’ whose4-neighborhoodintersectA. Thatis,

b(x):{l if N(x)NA#£D andxe A/
0 otherwise.

(b) Theimageb is aninterior 8-boundaryimageif B is 8-connectedB C A,
andB is thesetof pointsin A whose4-neighborhooditersectA’. Theinterior
8-boundaryb can be expresseds

b(x) = 1 if N(x)NA'£ D andx € A

0 otherwise.

(c) Theimageb is anexterior4-boundaryimageif B is 4-connectedB C A’,
and B is the setof pointsin A’ whose8-neighborhoodsntersectA. Thatis,
the imageb is definedby

{1 ifM(x)NA# andx € A/
0therw1se

(d) Theimageb is aninterior 4-boundaryimageif B is 4-connectedB C A,
andB is the setof pointsin A whose8-neighborhoodéntersectA’. Thus,

b(x) = 1 if M(x.)ﬂA’#(Z and x € A
0 otherwise.

Figure 3.2.1 below illustratesthe boundariegust described.The centerimageis
the original image. The 8-boundariesreto the left, andthe 4-boundariesareto the right.
Exterior boundariesare black. Interior boundariesare gray.

Figure 3.2.1. Interior and exterior 8-boundariegleft), original
image (center),and interior and exterior 4-boundarieqright).
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Image Algebra Formulation

The von Neumanmeighborhoodunction N is usedin theimagealgebraformu-
lation for detecting8-boundarieswhile the Moore neighborhoodunction A is usedfor
detectionof 4-boundaries.

Leta € {0, 1} bethe sourceimage. The boundaryimagewill be denotecby b.
(1) Exterior 8-boundary—
b:=(1—-a) - (a@N)
(2) Interior 8-boundary—
b:=(1-(a@N))-a
(3) Exterior 4-boundary—
b:=(1—a) - (aM M)
(4) Interior 4-boundary—
b:=(1-(a@M))-a

Comments and Observations

These transformsare designedfor binary imagesonly. More sophisticated
algorithmsmust be usedfor gray level images.

Noise aroundthe boundarymay adverselyaffect resultsof the algorithm. An
algorithm such asthe salt and peppernoiseremovaltransformmay be usefulin cleaning
up the boundarybefore the boundarytransformis applied.

3.3. Edge Enhancementby Discrete Differencing

Discretedifferencingis a local edgeenhancemertechnique.lt is usedto sharpen
edge elementsin an image by discretedifferencingin either the vertical or horizontal
direction, or in a combinedfashion[1, 2, 3, 4].

Let a € RX be the sourceimage. The edgeenhancedmageb € RX can be
obtainedby one of the following differencemethods:

(1) Horizontal differencing

b(i,j) = a(i,j) —a(¢,j + 1)
or

b(i,j) = 2a(i,j) —a(i,j — 1) —a(i,j + 1).

(2) Vertical differencing

b(i,j) = a(i,j) —a(i + 1, )
or
(3) Gradientapproximation

b(l’]) = |a(l,]) o a(l_i_ 1’-7)| + |a(l).7) - a(ilj + 1)|
or
b(i, j) = [a(i,j) —a(i + 1,j + )| + |a(i, j) —a(i — 1,7+ 1)|.
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Image Algebra Formulation

Given the sourceimagea € RX, the edgeenhancedmageb € RX is obtained
by the appropriateimage-templateconvolution below.

(1) Horizontal differencing

b :=a®r,
wherethe invariantenhancementemplater is definedby
1 ifx=(i7)
ri(x)=9 -1 ifx=(i,j+1)
0 otherwise
or
b :=a®s,
where

2 ifx=(i7)
s@.j(x) = { —1 ifxe{(i,j—1),(j+1)}

0 otherwise.
(2) Vertical differencing
b :=a®t

wherethe templatet is definedby

1 if x = (7,7)
ti(x) =9 -1 ifx=(i+1,)
0 otherwise
or
b :=a@u,
where

2 if x = (4, j)
ui(x) =9 -1 ifxe{(i—1,7),0+1,j)}
0 otherwise.

(3) Gradientapproximation

b = a@®t|+|a®r|

or
b:=la®v|+ |aDw],

wherethe templatest andr aredefinedasaboveandv, w are definedby
1 ifx=(s7)
vij(x) =9 -1 ifx=(G+1,j+1)
0 otherwise
and

1 ifx=(i,j)
Wan(x) =9 -1 ifx=(i—1j+1)
0 otherwise.
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The templatescan be describedpictorially as

1
r= 1] 1 s= | ‘1 [ 2] t=
-1
-1
1 -1
us= 2 V= W=
-1 1
-1

Comments and Observations

Figures3.3.2through3.3.4belowarethe edgeenhancedmagesof themotorcycle
imagein Figure 3.3.1.

Figure 3.3.1. Original image.

Figure 3.3.2. Horizontal differencing: left |a @r|, right |a Ps|
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Figure 3.3.3. Vertical differencing: left |a @t], right |a Dul|.

Figure 3.3.4. Gradientapproximation:left |a @t| + |a @Pr/|, right [aPv| + |aPw|.

3.4. Roberts Edge Detector

The Robertsedgedetectoris anotherexampleof an edgeenhancementechnique
thatusesdiscretedifferencing[5, 1]. Leta € R¥ bethe sourceimage. The edgeenhanced

imageb € RX that the Robertstechniqueproducess definedby
. . . ) . . . 1/2
b(i,j) = ((a(z,]) —a(i+ 1,5+ 1))2 + (a(z,j+1)—a(t+ l,]))2)

Image Algebra Formulation
Giventhe sourceimagea € RX, the edgeenhancedmageb € RX is given by

1/2

b= (@) +@at)’) "

wherethe templatess and t are definedby

1 if x = (4, j)
0 otherwise;
1 ifx=(7)
t(i,j)(X)Z{l fx=0+1,7-1)
0 otherwise.
The templatess andt can be representegbictorially as
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Comments and Observations

Figure 3.4.1showsthe resultof applyingthe Robertsedgedetectorto the image
of a motorcycle.

Figure 3.4.1. Motorcycle and its Robertsedgeenhancedmage.

3.5. Prewitt Edge Detector

The Prewitt edgedetectorcalculatesan edgegradientvector at eachpoint of the
sourceimage. An edgeenhancedmageis producedfrom the magnitudeof the gradient
vector. An edgeangle,which is equalto the anglethe gradientmakesto the horizontal
axis, canalso be assignedo eachpoint of the sourceimage[6, 7, 1, 8, 4].

Two masksare convolvedwith the sourceimageto approximatethe gradient
vector. One maskrepresentghe partial derivative with respectto z and the other the
partial derivative with respectto y.

Let a € RX be the sourceimage,and ag, a1, . . ., ay denotethe pixel valuesof
the eight neighborsof (¢, j) enumeratedn the counterclockwisalirectionas follows:

Let v = (as+as+ar) — (a1 +azy+az) and v = (ap+a; +a7) —
(a3 + a4 + as). The edgeenhancedmageb € RX is given by

b(i,j) = (u2 + v2)1/2

and the edgedirectionimaged € R* is given by

d(i,5) = arctan(%).
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Image Algebra Formulation

Let a € RX bethe sourceimageandlet s andt be definedas follows:

1 ifx=(i+1,j—1), (i+1,7), or (i+1,j+1)

1 ifx=(i—1,7-1), (i—1,7), or (i — 1,j+1)
si j)(X) =
otherwise;

L ifx=(i Lj+1), (i,5+1), or (i+1,j+1)

tij)(x) =
0 otherwise.

Pictorially we have:

-1 -1 -1 -1 1
S= t= -1 1
1 1 1 -1 1

The edgeenhancedmageb € RY is given by
1/2
b= <[(a @s)’+aa t)z] ) .

The edgedirectionimaged € RY is given by
d := arctan2 ((a (‘Bt)|domam(b||>g)) (a @S)ldomam(b||>g))-
Here we use the common programminglanguageconventionfor the arctangentof two

variableswhich definesarctan2(u,v) = arctan(%).

Comments and Observations

A variety of masksmay be usedto approximatethe partial derivatives.

Figure 3.5.1. Motorcycle and the imagethat represents
the magnitudecomponentof the Prewitt edgedetector.
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3.6. Sobel Edge Detector

The Sobeledgedetectoris a nonlinearedgeenhancemertechnique.lt is another
simplevariation of the discretedifferencingschemefor enhancingedges|9, 10, 1, 8, 4].

Let a € RX be the sourceimage,and ag, ay, . . ., a; denotethe pixel valuesof
the eight neighborsof (:, j) enumeratedn the counterclockwisalirectionas follows:

The Sobeledgemagnitudeimagem € RX is given by

m(z,]) — (U2 + U2)1/2

)

where
u= (a5 + 2as + a7) — (a1 + 2a5 + a3)

and
v = (2a9 + ay + a7) — (a3 + 2a4 + as).

The gradientdirectionimaged is given by

d(i,5) = arctan(%).

Image Algebra Formulation

Let a € RX be the sourceimage. The gradientmagnitudeimagem € R¥ is
given by

1/2
m = |(ads) +(adt)’| |

wherethe templatess and t are definedas follows:

—1 ifx=(i—1,j—1)or (i—1,j+1)
1 ifx=(i+l,j-1)or (i+1,j+1)
S(Z',]')(X) = -2 ifx= (Z - 1,])

2 if x = (i+1,7)
0 otherwise.

-1 ifx=(i—1,5—1)or (2+1,5-1)
1 if x =(i—1,j+1)or (i+1,j+1)
tap(x) =9 -2 ifx=(i,j—1)

2 if x =(i,j+1)
\ 0 otherwise.
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The gradientdirection imageis given by

d :=arctan2((a ®s)|m>o0, (a Dt)|m>o0),

wherearctan2(u,v) = arctan(%).

Comments and Observations

The Sobeledgedetectionemphasizeforizontaland vertical edgesover skewed
edges;it is relatively insensitiveto off-axis edges. Figure 3.6.1 showsthe Sobel edge
image of the motorcycletestimage.

Figure 3.6.1. Motorcycle and its Sobeledgeenhancedmage.

3.7. Wallis Logarithmic Edge Detection

Underthe Wallis edgedetectionschemea pixel is anedgeelementf thelogarithm
of its value exceedshe averageof the logarithmsof its 4-neighborsby a fixed threshold
[2, 1]. Supposea € (IR"‘)X denotesa sourceimage containingonly positive values,and
ap, a1, az, az denotethe valuesof the 4-neighborof (7, j) enumerateds follows:

The edgeenhancedmageb € R¥ is given by

bi(i,1) = logs(a(i. ) — § (Ioga(ao) + loga(ar) + logs (az) + logs(as)
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or

Qpaiaz2a3

.4
i = o 0)

Image Algebra Formulation

Letac (R+)x be the sourceimage. The edgeenhancedmageb € RX is given

by .
b:= Zlogb(a) @t,
wherethe invariantenhancementemplatet: X — RX is definedasfollows:

4 if x = (4,7)
tag(x) =4 =1 if x € {(i+1,5),(4,7-1), (i=1,5), (,j+1)}
0 otherwise.

Pictorially, t is given by

Comments and Observations
The Wallis edgedetectoris insensitiveto a global multiplicative changein image
values. The edgeimageof a will be the sameasthatof n - a for anyn € R*.

Note that if the edgeimageis to be thresholdedijt is not necessaryo compute
the logarithm of a. That is, if

b:= ilogb(a) @t
and
c = a®t,
then
b|>7- = C|>b4r.

Figure 3.7.1showsthe result of applyingthe Wallis edgedetectorto the motor-
cycle image. The logarithm usedfor the edgeimageis base2 (b = 2).

Figure 3.7.1. Motorcycle and its Wallis edgeenhancement.
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3.8. Frei-Chen Edge and Line Detection

A 3 x 3 subimageb of animagea may be thoughtof as a vectorin R?, For
example,the subimageshownin Figure 3.8.1 hasvector representation

bo
by
b=|.
bs
The mathematicabtructureof the vectorspaceR® carriesoverto the vectorspaceof 3 x 3
subimagesn the obvious way.

b, | by | b,
b= bs | by | by
bs | by | by

Figure 3.8.1. A 3 x 3 subimage.

Let V' denotethe vector spaceof 3 x 3 subimages.An orthogonalbasisfor V,
By, thatis usedfor the Frei-Chenmethodis the oneshownin Figure 3.8.2. The subspace
E of V thatis spannedy the subimages;, va, v3, andvy is calledthe edgesubspacef
V. The Frei-Chenedgedetectionmethodbasesdts determinatiorof edgepointson the size
of the anglebetweenthe subimageb andits projectionon the edgesubspacgl1, 12, 13].

The anglefr betweenb andits projectionon the edgesubspaces given by

4 3
5" (vi e b)?

0 = cos™! 2:917

S (vieb)?

i=1

Thee operatoiin the formulaaboveis the familiar dot (or scalar)productdefinedfor vector
spaces.The dot productof b,c € V is given by

8
b.C:sz‘C,‘.
=0

Small valuesof 0 imply a betterfit betweenb andthe edgesubspace.

For eachpoint (z,y) in the sourceimagea, the Frei-Chenalgorithm for edge
detectioncalculatesthe angle g betweenthe projectionof the 3 x 3 subimagecentered
at (z,y) andthe edgesubspacef V. The smallerthe valueof 6 at (z, y) is, the better
edgepoint (z, y) is deemedo be. After 6 is calculatedfor eachimagepoint, a threshold
T is appliedto selectpoints for which 0 < 7.

Figure3.8.3showstheresultsof applyingthe Frei-Chenedgedetectionalgorithm
to a sourceimageof variety of peppers.Thresholdsvere appliedfor anglesfg of 18, 19,
20, 21, and 22°.
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Figure 3.8.2. The basis®By usedfor Frei-Chenfeaturedetection.
Equivalentresultscan be obtainedby thresholdingbasedon the statistic
4 2
2. (v() e b)
i=1

beb '
which is easierto compute.In this case,a larger valueindicatesa strongeredgepoint.

The Frei-Chenmethodcan also be usedto detectlines. Subimagesvs, vg, v7,
and vg form the basisof the line subspaceof V. The Frei-Chenedgedetectionmethod
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Original LlSo

Figure 3.8.3. Edge detectionusing the Frei-Chenmethod.

basesits determinationof lines on the size of the angle betweenthe subimageb andits
projectionon the line subspaceThresholdingfor line detectionis doneusingthe statistic

,:is(v(z‘) ob)?

beb

Larger valuesindicate strongerline points.

Image Algebra Formulation

Leta € RX be the sourceimageandlet v (i), denotethe parameterizetemplate
whosevaluesare definedby the imagev; of Figure 3.8.2. The centercell of the image
v; is takento be the location of y for the template. For a given thresholdlevel 7, the
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Frei-Chenedgeimagee is given by

4 oy 2
_; (a®v(i))
CTer| T
The Frei-Chenline imagel is given by
8
;(a ®v(i)”
B T o)

3.9. Kirsch Edge Detector

The Kirsch edgedetector[14] applieseight masksat eachpoint of animagein
orderto determinean edgegradientdirection and magnitude. Let a € RX be the source
image. For each(:, j) we denoteay, a1, ..., a7 aspixel valuesof the eight neighborsof
(,7) enumeratedn the counterclockwisedirection as follows:

Theimagem € R* thatrepresentshe magnitudeof the edgegradientis givenby
m(7, j) = maz{l, maz{|bsy — 3tx| : k=0,...,7}},

wheresy, = ar + ar41 + ap42 andty = arss + agya + - - + apy7. The subscriptsare
evaluatedmodulo 8. Furtherdetails aboutthis methodof directionale