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Preface

This book presents an introduction to statistical pattern recogni-
tion. Pattern recognition in general covers a wide range of problems,
and it is hard to find a unified view or approach. It is applied to
engineering problems, such as character readers and waveform analy-
sis, as well as to brain modeling in biology and psychology. However,
statistical decision and estimation, which are the subjects of this book,
are regarded as fundamental to the study of pattern recognition. Statis-
tical decision and estimation are covered in various texts on mathemati-
cal statistics, statistical communication, control theory, and so on. But
obviously each field has a different need and view. So that workers in
pattern recognition need not look from one book to another, this book is
organized to provide the basics of these statistical concepts from the
viewpoint of pattern recognition.

The material of this book has been taught in a graduate course at
Purdue University and also in short courses offered in a number of
locations. Therefore, it is the author’s hope that this book will serve as a
text for introductory courses of pattern recognition as well as a refer-
ence book for the workers in the field.
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Chapter 1

INTRODUCTION

This book presents and discusses the fundamental mathematical tools for
statistical decision-making processes in pattern recognition. It is felt that the
decision-making processes of a human being are somewhat related to the
recognition of patterns; for example, the next move in a chess game is based
upon the present pattern on the board, and buying or selling stocks is decided
by a complex pattern of information. The goal of pattern recognition is to clar-
ify these complicated mechanisms of decision-making processes and to
automate these functions using computers. However, because of the complex
nature of the problem, most pattern recognition research has been concentrated
on more realistic problems, such as the recognition of Latin characters and the
classification of waveforms. The purpose of this book is to cover the
mathematical models of these practical problems and to provide the fundamen-
tal mathematical tools necessary for solving them. Although many approaches
have been proposed to formulate more complex decision-making processes,
these are outside the scope of this book.

1.1 Formulation of Pattern Recognition Problems

Many important applications of pattern recognition can be characterized
as either waveform classification or classification of geometric figures. For
example, consider the problem of testing a machine for normal or abnormal
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operation by observing the output voltage of a microphone over a period of
time. This problem reduces to discrimination of waveforms from good and
bad machines. On the other hand, recognition of printed English characters
corresponds to classification of geometric figures. In order to perform this type
of classification, we must first measure the observable characteristics of the
sample. The most primitive but assured way to extract all information con-
tained in the sample is to measure the time-sampled values for a waveform,
x(t), ..., x(@1,), and the grey levels of pixels for a figure, x(1), ..., x(n), as
shown in Fig. 1-1. These n measurements form a vector X. Even under the
normal machine condition, the observed waveforms are different each time the
observation is made. Therefore, x(r;) is a random variable and will be
expressed, using boldface, as x(¢;). Likewise, X is called a random vector if its
components are random variables and is expressed as X. Similar arguments
hold for characters: the observation, x(i), varies from one A to another and
therefore x(/) is a random variable, and X is a random vector.

Thus, each waveform or character is expressed by a vector (or a sample)
in an n-dimensional space, and many waveforms or characters form a distribu-
tion of X in the n-dimensional space. Figure 1-2 shows a simple two-
dimensional example of two distributions corresponding to normal and
abnormal machine conditions, where points depict the locations of samples and
solid lines are the contour lines of the probability density functions. If we
know these two distributions of X from past experience, we can set up a boun-
dary between these two distributions, g(x,. x;) =0, which divides the two-
dimensional space into two regions. Once the boundary is selected, we can
classify a sample without a class label to a normal or abnormal machine,
depending on g (x|, x;)< O or g(x,, x;) >0. We call g(x,, x,) a discriminant
function, and a network which detects the sign of g (x|, x,) is called a patrern
recognition network, a categorizer, or a classifier. Figure 1-3 shows a block
diagram of a classifier in a general n-dimensional space. Thus, in order to
design a classifier, we must study the characteristics of the distribution of X for
each category and find a proper discriminant function. This process is called
learning or training, and samples used to design a classifier are called learning
or iraining samples. The discussion can be easily extended to multi-category
cases.

Thus, pattern recognition, or decision-making in a broader sense, may be
considered as a problem of estimating density functions in a high-dimensional
space and dividing the space into the regions of categories or classes. Because
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Fig. 1-1 Two measurements of patterns: (a) waveform; (b) character.

of this view, mathematical statistics forms the foundation of the subject. Also,
since vectors and matrices are used to represent samples and linear operators,
respectively, a basic knowledge of linear algebra is required to read this book.
Chapter 2 presents a brief review of these two subjects.

The first question we ask is what is the theoretically best classifier,
assuming that the distributions of the random vectors are given. This problem
is statistical hypothesis testing, and the Bayes classifier is the best classifier
which minimizes the probability of classification error. Various hypothesis
tests are discussed in Chapter 3.

The probability of error is the key parameter in pattern recognition. The
error due to the Bayes classifier (the Bayes error) gives the smallest error we
can achieve from given distributions. In Chapter 3, we discuss how to calcu-
late the Bayes error. We also consider a simpler problem of finding an upper
bound of the Bayes error.
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Fig. 1-3 Block diagram of a classifier.

Although the Bayes classifier is optimal, its implementation is often
difficult in practice because of its complexity, particularly when the dimen-
sionality is high. Therefore, we are often led to consider a simpler, parametric
classifier. Parametric classifiers are based on assumed mathematical forms for
either the density functions or the discriminant functions. Linear, quadratic, or
piecewise classifiers are the simplest and most common choices. Various
design procedures for these classifiers are discussed in Chapter 4.

Even when the mathematical forms can be assumed, the values of the
parameters are not given in practice and must be estimated from available sam-
ples. With a finite number of samples, the estimates of the parameters and
subsequently of the classifiers based on these estimates become random vari-
ables. The resulting classification error also becomes a random variable and is
biased with a variance. Therefore, it is important to understand how the
number of samples affects classifier design and its performance. Chapter 5
discusses this subject.
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When no parametric structure can be assumed for the density functions,
we must use nonparametric techniques such as the Parzen and k-nearest neigh-
bor approaches for estimating density functions. In Chapter 6, we develop the
basic statistical properties of these estimates.

Then, in Chapter 7, the nonparametric density estimates are applied to
classification problems. The main topic in Chapter 7 is the estimation of the
Bayes error without assuming any mathematical form for the density functions.
In general, nonparametric techniques are very sensitive to the number of con-
trol parameters, and tend to give heavily biased results unless the values of
these parameters are carefully chosen. Chapter 7 presents an extensive discus-
ston of how to select these parameter values.

In Fig. 1-2, we presented decision-making as dividing a high-
dimensional space. An alternative view is to consider decision-making as a
dictionary search. That is, all past experiences (learning samples) are stored in
a memory (a dictionary), and a test sample is classified to the class of the
closest sample in the dictionary. This process is called the nearest neighbor
classification rule. This process is widely considered as a decision-making
process close to the one of a human being. Figure 1-4 shows an example of
the decision boundary due to this classifier. Again, the classifier divides the
space into two regions, but in a somewhat more complex and sample-
dependent way than the boundary of Fig. 1-2. This is a nonparametric
classifier discussed in Chapter 7.

From the very beginning of the computer age, researchers have been
interested in how a human being learns, for example, to read English charac-
ters. The study of newrons suggested that a single neuron operates like a linear
classifier, and that a combination of many neurons may produce a complex,
piecewise linear boundary. So, researchers came up with the idea of a learning
machine as shown in Fig. 1-5. The structure of the classifier is given along
with a number of unknown parameters wy,...,w.. The input vector, for
example an English character, is fed, one sample at a time, in sequence. A
teacher stands beside the machine, observing both the input and output. When
a discrepancy is observed between the input and output, the teacher notifies the
machine, and the machine changes the parameters according to a predesigned
algorithm. Chapter 8 discusses how to change these parameters and how the
parameters converge to the desired values. However, changing a large number
of parameters by observing one sample at a time turns oul to be a very
inefficient way of designing a classifier.
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We started our discussion by choosing time-sampled values of
waveforms or pixel values of geometric figures. Usually, the number of meas-
urements n becomes high in order to ensure that the measurements carry all of
the information contained in the original data. This high-dimensionality makes
many pattern recognition problems difficult. On the other hand, classification
by a human being is usually based on a small number of features such as the
peak value, fundamental frequency, etc. Each of these measurements carries
significant information for classification and is selected according to the physi-
cal meaning of the problem. Obviously, as the number of inputs to a classifier
becomes smaller, the design of the classifier becomes simpler. In order to
enjoy this advantage, we have to find some way to select or extract important
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features from the observed samples. This problem is called feature selection or
extraction and is another important subject of pattern recognition. However, it
should be noted that, as long as features are computed from the measurements,
the set of features cannot carry more classification information than the meas-
urements. As a result, the Bayes error in the feature space is always larger
than that in the measurement space.

Feature selection can be considered as a mapping from the n-dimensional
space to a lower-dimensional feature space. The mapping should be carried
out without severely reducing the class separability. Although most features
that a human being selects are nonlinear functions of the measurements, finding
the optimum nonlinear mapping functions is beyond our capability. So, the
discussion in this book is limited to linear mappings.

In Chapter 9, feature extraction for signal representation is discussed in
which the mapping is limited to orthonormal transformations and the mean-
square error is minimized. On the other hand, in feature extraction for classifi-
cation, mapping is not limited to any specific form and the class separability is
used as the criterion to be optimized. Feature extraction for classification is
discussed in Chapter 10.

It is sometimes important to decompose a given distribution into several
clusters. This operation is called clustering or unsupervised classification (or
learning). The subject is discussed in Chapter 11.

1.2 Process of Classifier Design

Figure 1-6 shows a flow chart of how a classifier is designed. After data
is gathered, samples are normalized and registered. Normalization and regis-
tration are very important processes for a successful classifier design. How-
ever, different data requires different normalization and registration, and it is
difficult to discuss these subjects in a generalized way. Therefore, these sub-
jects are not included in this book.

After normalization and registration, the class separability of the data is
measured. This is done by estimating the Bayes error in the measurement
space. Since it is not appropriate at this stage to assume a mathematical form
for the data structure, the estimation procedure must be nonparametric. [f the
Bayes error is larger than the final classifier error we wish to achieve (denoted
by €,), the data does not carry enough classification information to meet the
specification. Selecting features and designing a classifier in the later stages
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Fig. 1-6 A flow chart of the process of classifier design.

merely increase the classification error. Therefore, we must go back to data
gathering and seek better measurements.

Only when the estimate of the Bayes error is less than g;, may we
proceed to the next stage of data structure analysis in which we study the
characteristics of the data. All kinds of data analysis techniques are used here
which include feature extraction, clustering, statistical tests, modeling, and so
on. Note that, each time a feature set is chosen, the Bayes error in the feature
space is estimated and compared with the one in the measurement space. The
difference between them indicates how much classification information is lost
in the feature selection process.
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Once the structure of the data is thoroughly understood, the data dictates
which classifier must be adopted. Our choice is normally either a linear, qua-
dratic, or piecewise classifier, and rarely a nonparamectric classificr. Non-
parametric techniques are necessary in off-line analyses to carry out many
important operations such as the estimation of the Bayes error and data struc-
ture analysis. However, they are not so popular for any on-line operation,
because of their complexity.

After a classifier is designed, the classifier must be evaluated by the pro-
cedures discussed in Chapter 5. The resulting error is compared with the
Bayes error in the feature space. The difference between these two errors indi-
cates how much the error is increased by adopting the classifier. If the differ-
ence is unacceptably high, we must reevaluate the design of the classifier.

At last, the classifier is tested in the field. If the classifier does not
perform as was expected, the data base used for designing the classifier is dif-
ferent from the test data in the field. Therefore, we must expand the data base
and design a new classifier.

Notation

n Dimensionality

L Number of classes

N Number of total samples
N, Number of class i samples
o, Class i

P; A priori probability of o,
X=[v, v ...ox]" Vector

X=[x, x5 ...x,] Random vector

PiX)=pv.xa. .., v,) Conditional density function of ®,

pX)= Z.L_l Pipi(X) Mixture density function

g (X)=Pp;(X)p(X) A posteriori probability of o;
given X

M. =FE{Xl o)} Expected vector of o,
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M=E{X}=3" PM, Expected vector of the mixture
density
i=E{X-M)YX-M)T| o} Covariance matrix of o,

T=E{(X-M)X-M)T)

= Z,-L=| [P;Z; +P:M; = M)YM; - M)") Covariance matrix of the
mixture density
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Chapter 2

RANDOM VECTORS

AND THEIR PROPERTIES

In succeeding chapters, we often make use of the properties of random
vectors. We also freely employ standard results from linear algebra. This
chapter is a review of the basic properties of a random vector [1,2] and the
related techniques of linear algebra [3-5]. The reader who is familiar with
these topics may omit this chapter, except for a quick reading to become fami-
liar with the notation.

2.1 Random Vectors and their Distributions

Distribution and Density Functions

As we discussed in Chapter 1, the input to a pattern recognition network
Is a random vector with n variables as

X=[xX ...%,] . (2.1

where T denotes the transpose of the vector.

Distribution function: A random vector may be characterized by a pro-
bability distribution function, which is defined by

P(xy,....x)=Pri{x; <x,;....,x,Sx,}. (2.2)
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where Pr{A} is the probability of an event A. For convenience, we often write
(2.2) as

PX)=PriX<X}. (2.3)

Density function: Another expression for characterizing a random vector
is the density function, which is defined as

X i Prix, <x;€x;+Ax,,...,x, <x, <x, +Ax,}
P )_Arl,n—]»o Ax, .. Ax,
A\‘,,.—)O
=d"P(X)ox,...0x, . (2.4)

Inversely, the distribution function can be expressed in terms of the density
function as follows:

P(X)=J:ip(Y) dy =L . .E:p(y,,. )y dy, . (2.5)

X

where I {-}dY is a shorthand notation for an n-dimensional integral, as
shown. The density function p(X) is not a probability but must be multiplied
by a certain region Ax, ... Ax, (or AX ) to obtain a probability.

In pattern recognition, we deal with random vectors drawn from different
classes (or categories), each of which is characterized by its own density func-
tion. This density function is called the class i density or conditional density of
class i, and is expressed as

p(X! ;) or pi(X) (i=1,..., L), (2.6)

where o; indicates class i/ and L is the number of classes. The unconditional
density function of X, which is sometimes called the mixture density function,
is given by

L
pX) =Y Pipi(X), 2.7)

i=|

where P; is a priori probability of class i.

A posteriori probability: The a posteriori probability of w; given X,
P(w; 1 X) or g;(X), can be computed by using the Bayes theorem, as follows:
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Pipi(X)
(X)) = . 2.8
q,(X) > X) (2.8)

This relation between ¢;(X) and p;(X) provides a basic tool in hypothesis test-
ing which will be discussed in Chapter 3.

Parameters of Distributions

A random vector X is fully characterized by its distribution or density
function. Often, however, these functions cannot be easily determined or they
are mathematically too complex to be of practical use. Therefore, it is some-
times preferable to adopt a less complete, but more computable, characteriza-
tion.

Expected vector: One of the most important parameters is the expecred
vector or mean of a random vector X. The expected vector of a random vector
X is defined by

M =E{X) =] Xp(x)dx | (2.9)
where the integration is taken over the entire X-space unless otherwise
specified.

The ith component of M, m;, can be calculated by

mo=xp @ dx = xpon) dy, | (2.10)

where p (x;) is the marginal density of the ith component of X, given by
Foo +o0
. '[ p(X)dA| . .d,\','_| d..\','+1 e d.\'” . (21‘)

—o0

px)= ,[
n=1
Thus, each component of M is actually calculated as the expected value of an
individual variable with the marginal one-dimensional density.

The conditional expected vector of a random vector X for ; is the
integral

M, = E{XI ;) = | Xp,(X) dX . 2.12)

where p;(X) is used instead of p(X) in (2.9).

Covariance matrix: Another important set of parameters is that which
indicates the dispersion of the distribution. The covariance matrix of X is
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defined by
X| —my
T = E{X-MYX-M)"}) =E : [x; =m,...x,—m]
X, —m,
X —mpxg —my) o0 (X —m)x, —m,)
=F :
(xn - ”IH)(XI - ml) CE (X” - mn)(xn - mn)
E{(x; —mXx; —m )} ... E{(x; =—m)}x, —m,)}
E{(x, —m)x, —=m )} ... E{(x, —m,Xx, —m,)}
E'11 < Cap
= : 2.13)
Cpp » o v Can
The components ¢;; of this matrix are
(.',',' = E[(x,' it ”1,‘)(xi — nlj)’ (l,j = 1, - .‘") . (2]4)

Thus, the diagonal components of the covariance matrix are the variances of
individual random variables, and the off-diagonal components are the covari-
ances of two random variables, x;, and x;. Also, it should be noted that all
covariance matrices are symmetric. This property allows us to employ results
from the theory of symmetric matrices as an important analytical tool.

Equation (2.13) is often converted into the following form:
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T=E(XX"}-E{XIMT = ME{XT) +MMT =S - MMT | (2.15)
where
E{xix;} ... E{xx,}
S=E{XX") = : : . (2.16)
E{X”X|} EER E{X,,X,,]

Derivation of (2.15) is straightforward since M = E{X}. The matrix S of
(2.16) is called the autocorrelation matrix of X. Equation (2.15) gives the
relation between the covariance and autocorrelation matrices, and shows that
both essentially contain the same amount of information.

Sometimes it is convenient to express ¢;; by
2
Ci;i = 0O and G = p,','G,'GI' N (2'7)

where o7 is the variance of x;. Var(x,}, or G, is the standard deviation of x;.
SD{x;}, and pj; is the correlation coefficient between x; and x;. Then

X=TRT (2.18)
where
o, 0 ... 0]
0 o
=1\’ ' ’ (2.19)
_0 O |
and
1 P o Pu
Pz |
R=_ ' T dapl gy, (2.20)
pi S

Thus, X can be expressed as the combination of two types of matrices: one is
the diagonal matrix of standard deviations and the other is the matrix of the
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correlation coefficients. We will call R a correlation matrix. Since standard
deviations depend on the scales of the coordinate system, the correlation matrix
retains the essential information of the relation between random variables.

Normal Distributions
An explicit expression of p (X) for a normal distribution is

NyM, Z) = expl—% d* Xy}, (2.21)

1
(2,“)’1/2 1T 1/2
where Ny(M, ) is a shorthand notation for a normal distribution with the
expected vector M and covariance matrix X, and

X)) =X -MTZIX -M) =tr{Z "X - MYX - M)}

=3 3 hij(g —m)x; —mp), (2.22)

=1 j=I

where A;; is the i, j component of 7', The term trA is the trace of a matrix A
and is equal to the summation of the diagonal components of A. As shown in
(2.21), a normal distribution is a simple exponential function of a distance
function (2.22) that is a positive definite quadratic function of the x’s. The
coefficient (2)™""2 1£17"2 s selected to satisfy the probability condition

[potyax=1. 2.23)

Normal distributions are widely used because of their many important
properties. Some of these are listed below.

(1) Parameters that specify the distribution: The expected vector M and
covariance matrix X are sufficient to characterize a normal distribution
uniquely. All moments of a normal distribution can be calculated as functions
of these parameters.

(2) Uncorrelated-independent: 1If the x;’s are mutually uncorrelated, then
they are also independent.

(3) Normal marginal densities and normal conditional densities: The
marginal densities and the conditional densities of a normal distribution are all
normal.

(4) Normal characteristic functions: The characteristic function of a nor-
mal distribution. Ny(M, X), has a normal form as



2 Random Vectors and their Properties 17

WQ) = E{expljQX]} = exp{—%QT}:Q + QMY (2.24)

where Q= [@; ... w,]" and w, is the ith frequency component.

(5) Linear transformations: Under any nonsingular linear transformation,
the distance function of (2.22) keeps its quadratic form and also does not lose
its positive definiteness. Therefore, after a nonsingular linear transformation, a
normal distribution becomes another normal distribution with different parame-
ters.

Also, it is always possible to find a nonsingular linear transformation
which makes the new covariance matrix diagonal. Since a diagonal covariance
matrix means uncorrelated variables (independent variables for a normal distri-
bution), we can always find for a normal distribution a set of axes such that
random variables are independent in the new coordinate system. These sub-
jects will be discussed in detail in a later section.

(6) Physical justification: The assumption of normality is a reasonable
approximation for many real data sets. This is, in particular, true for processes
where random variables are sums of many variables and the central limit
theorem can be applied. However, normality should not be assumed without
good justification. More often than not this leads to meaningless conclusions.

2.2 Estimation of Parameters

Sample Estimates

Although the expected vector and autocorrelation matrix are important
parameters for characterizing a distribution, they are unknown in practice and
should be estimated from a set of available samples. This is normally done by
using the sample estimation technique [6,7]. In this section, we will discuss
the technique in a generalized form first, and later treat the estimations of the
expected vector and autocorrelation matrix as the special cases.

Sample estimates: Let y be a function of x;, .. ., x, as
y=/(.....x) (2.25)

with the expeccted value m, and variance ol
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my,=E{y} and o; = Var{y}. (2.26)
Note that all componems of M and § of X are special cases of m,. More
specifically, when y = x|' ... x,, with positive integer i;’s, the correspondmg
m, is called the (i} + ... +1,)th order moment. The components of M are the

first order moments, and the components of S are the second order moments.

In practice, the density function of y is unknown, or too complex for
computing these expectations. Therefore, it is common practice to replace the
expectation of (2.26) by the average over available samples as

N | N
m=—3Sy . (2.27)
' NkZ:l

where y, is computed by (2.25) from the kth sample X,;. This estimate is
called the sample estimate. Since all N samples X,,..., Xy are randomly
drawn from a distribution, it is reasonable to assume that the X, s are mutually
independent and identically distributed (iid). Therefore, y,, ..., yy are also
iid.

Moments of the estimates: Since the estimate m, is the summation of N
random variables, it is also a random variable and characterized by an expected
value and variance. The expected value of m, is

Elm =L ¥ Ety,)
Al N‘=
=L§: o= m, . (2.28)
N & ’ '

That is, the expected value of the estimate is the same as the expected value of
y. An estimate that satisfies this condition is called an wnhiased estimate.
Similarly, the variance of the estimate can be calculated as

N N

Var{m,} = E{(m, - m)?) = Nl, > YE{y —mNy. —my))
A=1.=1

N

E{(y; —m, )
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I
= Nc_\. . (2.29)

Since y,,...,yy are mutually independent, E{(y; —m,)(y, —m)}
=E{y, —my}E{y, —m,} =0 for k#/. The variance of the estimate is seen to
be I/N times the variance of y. Thus, Varll;l).} can be reduced to zero by let-
ting N go to co. An estimate that satisfies this condition is called a consistent
estimate. All sample estimates are unbiased and consistent regardless of the
functional form of f.

The above discussion can be extended to the covariance between two dif-
ferent estimates. Let us introduce another random variable z = g (x,, ..., X,,).
Subsequently, m. and Ill:l: are obtained by (2.26) and (2.27) respectively. The
covariance of l;l_‘. and 1;1: is

Covll;l_‘.,l;l:} = El(l;]_\. - m_‘.)(lﬁ: —m.)}
N N

LS SEI - mo - m))
N* 2 A

ll

N
-'—2 ZEWy = m)a =)

L Covly.z) . (2.30)

I

=z

Again, E{(y, —m)z —m.)} = E{y, —m.}E{z, —m_] =0 for k #7, because
y. and z are independent due to the independence between X, and X..
In most applications, our attention is focused on the first and second

order moments, the sample mean and sample autocorrelation matrix, respec-
tively. These are defined by

M=—YX, 2.31
sz‘, & ( )
and
~ 1 N .
S=—=YX X{. (2.32)
NA:I

Note that all components of (2.31) and (2.32) are special cases of (2.25).
Therefore, M and S are unbiased and consistent estimates of M and S respec-
tively.
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Example 1: For 1;1,-. the ith component of M, the corresponding y is X;.

If the moments of x; are given as E{x;} =m,;, Var{x;) =02, and

Cov{x;.x;} = p;j6,0;, then the moments of m; are computed by (2.28), (2.29),
and  (230), resulting in  E{m;}=m;, Var{m;} =c¥N, and
COV[l;l,-,l;lj} =p;;j0;0,/N. They may be rewritten in vector and matrix forms
as

EIM)=M, (2.33)

Cov[M]:E{(M—M)(M—M)T]=%Z, (2.34)

where Cov{M)} is the covariance matrix of M.

Example 2: For §,~_,-, the i, j component of é, the corresponding y is xx;.
Therefore,

E(s,)=s; , (2.35)
Var{§,-,; = -}lVVar{x,-xj] = %[E{x,-zx}] - EX{x;x;}] . (2.36)
Cov{g,-j,gk, } = %Cov[x,xj,x‘.x, }
[
= N[E[Xix}'x‘.x;] —E[xix}'}E!xkx,'}] . (237)

Central Moments

The situation is somewhat different when we discuss central moments
such as variances and covariance matrices. If we could define y for the i/, j
component of X as

y = (X — mp)(x; —m;) (2.38)
with the given expected values m; and m;, then
E{m,) = Ely) = p,0,0; . (2.39)

The sample estimate is unbiased. In practice, however, m; and m; are
unknown, and they should be estimated from available samples. When the
sample means are used, (2.38) must be changed to
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y =04 - m)x; - m)) (2.40)
Then
Elﬁl_\-l =Ely} #p;0,0; . (2.41)

That is, the expectation of the sample estimate is still the same as the expected
value of y given by (2.40). However, the expectation of (2.40) is not equal to
that of (2.38) which we want to estimate.

Sample covariance matrix: In order to study the expectation of (2.40)
in a matrix form, let us define the sample estimate of a covariance matrix as
1 N

£ =3 (X - M)(X; - M) (2.42)
Nk=l
Then
~ 1 N ~ ~
=5 2= M)~ M- MHX, -M)-M - M7
k=1
N ~ -~
S0 XL AT SR LG R TRV 6 P

h=1

Thus, taking the expectation of 3

E{Z) =% - E{(M - M)YM — M)

=3 - i): = uz ] (2.44)
N N

That is, (2.44) shows that 3 is a biased estimate of £. This bias can be elim-
inated by using a modified estimate for the covariance matrix as

N

3= N; 3 (X, - M)(X, — M) (2.45)
T =l

Both (2.42) and (2.45) are termed a sample covariance mairix. In this book,
we use (2.45) as the estimate of a covariance matrix unless otherwise stated.
because of its unbiasedness. When N is large. both are practically the same.
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Variances and covariances of é,-j: The variances and covariances of EU
(the i, j component of %) are hard to compute exactly. However, approxima-
tions may be obtained easily by using }: = (l/N) ZN X, - M)X, - M)r 1

place of T of (2. 42). The i, j component of ): as an approximation of c,j is
then given by

A~ 1 N
Cij = WZ - m)(xy —m;), (2.46)

where x;; is the ith component of the k&th sample X;. The right hand side of
(2.46) is the sample estimate of E{(x; — m;)(x; — m;)}. Therefore, the argu-
ments used to derive (2.28), (2.29), and (2.30) can be applied without
modification, resulting in

E{c J=2c, (2.47)
Var{é,-j} = %Var[(x, - m)(x; ~ m)), (2.48)
and
Aa 1
COV‘C,'.,'.CI(-, } ENCQV{ (x,~ - m,~)(xj —mj), (xk —mk)(x( —m,)l . (249)

Note that the approximations are due to the use of m; on the left side and m;
on the right side. Both sides are practically the same for a large N.

Normal case with approximation: Let us assume that samples are
drawn from a normal distribution, Nx(0,A), where A is a diagonal matrix with
components A, . ... A,. Since the covariance matrix is diagonal, x; and x; for
i#zj are mutually independent. Therefore. (2.48) and (2.49) are further
simplified to

A

A A
Var{¢;;} = #Varlx }Var(x;} = T s (2.50)

Var{e, ] = #Var[x,-zl = %[E{x?} — E2(x2)]

5

24
7:/—[37&,-3 -\ = —~ (2.51)
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and

A 1
Covic; ¢} = V[E{xix‘,xkx,.} - E{x;x; }E{xx, }]

=0 except {i=k and j=}. (2.52)

The reader may confirm (2.52) for all possible combinations of /, j, k, and 7. When
i=kand j=, Cov{c,;, ¢;;} becomes Var{c,; }, which is given in (2.50).

Also, the covariance between m; and ¢;, may be computed in approximation
as follows:

Covim,.c, | = # Covix;, XX )

%[E{x,‘xkx; ' bt Elx,' }E{xkx; ]]
=0, (2.53)

because £ {x;xx, } =0 and E { x; } = 0 for a zero-mean normal distribution.

Normal case without approximation: When sampies are drawn from a
normal distribution, the variances and covariances for é,,- of (2.45) are known
without approximation. In order to see the effects of the approximation on (2.50)-
(2.52), let us study the exact solutions here. Again, for simplicity, let us assume a
zero expected vector and a diagonal covariance matrix A.

[t is known that the sample variance é,-, =1/(N-1 )ZLI (Xt — l;1,~)2 for a nor-
mal x; has a gamma distribution as [2]

aft!
(2)= ———zPe ™™ u(2) (2.54)
Pt = T ‘
where
N-1 N-1
B+1 = 5 and o, = T (2.55)

and I'(-) is the gamma function and u (-) is a step function. The expected value and
variance of (2.54) are also known as
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Ele,) = %—' -, (2.56)

2A7

NoT (2.57)

~ 1
Var{c;} = — =
o

On the other hand, the moments of é,-j =1/(N~-1 )Zl::l (X,-k—r;l,-)(xjk—r;lj) for
i#j can be computed as follows:

~ N ~ ~
Elcijl=N—]_1‘ZE|Xik‘mi}E[Xjk—mjl=0, 2.58)
k=1
~ N N ~ ~
Varléy ) = s 3 5 )~ ) VE = ) =)
=1 =1
& )Zu L (2.59)
(N—l)2 z ey .

The expectations can be broken into the product of two expectations because x;
and x; are mutually independent. E {(x;~m;)(x;,—m;)} =X; &, (N-1)/N, because
X, and X; are independent. Similarly, the covariances are
Cov{é,-j,ék,} =0 except{i=k and j=I}, (2.60)

because some of the (x..— r;l.) terms are independent from the others and
E{x..—m.}=0.

Note that (2.59) and (2.60) are the same as (2.50) and (2.52) respectively.
Equation (2.51) may be obtained from (2.57) by using the approximation of
N—12=N. This confirms that the approximations are good for a large N.

2.3 Linear Transformation

Linear Transformation

When an n-dimensional vector X is transformed linearly to another n-
dimensional vector Y, Y is expressed as a function of X as
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Y=ATX, (2.61)

where A is an n x n matrix. Then, the expected vector and covariance matrix of Y
are

My =E|Y})=ATE{X} =AM, , (2.62)
Ty = E{(Y - MyXY - M)}
=ATE((X = M)(X - M) A
=ATEZ A, (2.63)

where the following rule of matrices (matrices need not be square) is used

(AB)' =BTAT . (2.64)
A similar rule, which holds for the inversion of matrices, is
(ABY' =B7'A7" . (2.65)

This time, the existence of (AB)™', A~ and B~ is required.

Example 3: The distance function of (2.22) for ¥ can be calculated as

dy(Y) = (Y = My) Z35(Y — My)
=(X -M)OTAAT'ZHADTATX - My)
=X - M) X - My)
=d3(X) . (2.66)

That is, the distance of (2.22) is invariant under any nonsingular (14 | = 0) linear
transformation.

Example 4: If X is normal with My and Zy, Y is also normal with My and
%y. Since the quadratic form in the exponential function is invariant, the density
functionof Y is
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p(Y) = eXPl—%di(Y)l . 2.67)

1
TA1QRmy"2 1z, 1172

where 1A | is the Jacobian of this linear transformation. Recalling (2.63) and a
determinant rule

Ty =ATZA 5 1y = IATHIZ 1A = 1Z411A 12, (2.68)
p (Y) becomes

]

Y)=—7—
P( (27'[)"/2 |Zy| 172

exp[—%d%(Y)} . (2.69)

Thus, Y is a normal distribution with the expected vector My and covariance
matrix y.

Orthonormal Transformation

Let us shift our coordinate system to bring the expected vector M to the ori-

gin. We use Z for the new coordinate system.
Z=X-M. (2.70)

Then the quadratic form of (2.22) becomes
FEVACYAD VAR .71

Let us find a vector Z which maximizes d%(Z) subject to the condition Z7z=1
(constant). This is obtained by

;Z[ZTZ"Z ~WZ'Z-1n)=2z"'Z2-2uz =0, (2.72)
where U is a Lagrange multiplier. The term d/0Z consists of » partial derivatives
[0/0z, 9/9z ... 9/dz,]". Theresultis

'Z=uZ or LZ=AZ (A=1l/). (2.73)

Z’7=1. (2.74)

In order that a nonnull Z may exist, A must be chosen to satisfy the determinant
equation

IZ~A/l=0. (2.75)

This is called the characteristic equation of the matrix X£. Any value of A that
satisfies this equation is called an eigenvalue, and the Z corresponding to a given A
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is called an eigenvector. When X is a symmetric n x n matrix, we have # real eigen-
values A,,..., A, and n real eigenvectors ¢,,...,¢,. The eigenvectors
corresponding to two different eigenvalues are orthogonal. This can be proved as
follows: ForA;,¢; and A}, &;(A; #)),

Multiplying the first equation by q),T, the second by ¢/, and subtracting the second
from the first gives

A = X))070; = 0] ~ 0/ Z¢; =0, 2.77)
since Z is a symmetric matrix. Since A; # A,
00, =0. (2.78)
Thus, (2.73), (2.74), and (2.78) can be rewritten as

S = OA, (2.79)
dd=17, (2.80)

where @ is an 7 x n matrix, consisting of 7 eigenvectors as

(I) = [¢| LR q)n] (28])

and A is a diagonal matrix of eigenvalues as

, (2.82)

and [ is the identity matrix. The matrices ® and A will be called the eigenvector
matrix and the eigenvalue matrix, respectively.

Let us use @ as the transformation matrix A of (2.61) as
Y=07X. (2.83)
Then, from (2.63),
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T, =D, d=A, (2.84)

where the following relationships are used:

@ =, (2.85)
o' =dT  [from (2.80)] (2.86)

Equation (2.84) leads to the following important conclusions:

(1) The transformation of (2.83) may be broken down to n separate equa-
tions y; =9/ X (i=1,...,n). Since ¢/ X is llo; Il x lcos® = ||X lcos® where 6 is the
angle between the two vectors ¢, and X, y; is the projected value of X on ¢;. Thus,
Y represents X in the new coordinate system spanned by ¢, ..., ¢,, and (2.83)
may be interpreted as a coordinate transformation.

(2) We can find a linear transformation to diagonalize a covariance matrix in
the new coordinate system. This means that we can obtain uncorrelated random
variables in general and independent random variables for normal distributions.

(3) The transformation matrix is the eigenvector matrix of £y. Since the
eigenvectors are the ones that maximize d%(Z), we are actually selecting the prin-
cipal components of the distribution as the new coordinate axes. A two-
dimensional example is given in Fig. 2-1.

(4) The eigenvalues are the variances of the transformed variables, y; ’s.

(5) This transformation is called an orthonormal transformation, because
(2.80) is satisfied. In orthonormal transformations, Euclidean distances are
preserved since

lYI2=yTy =xTod™x =Xx7x = |x]?. (2.87)

Whitening Transformation

After applying the orthonormal transformation of (2.83), we can add another
transformation A" that will make the covariance matrix equal to /.

Y=A"0TX = (@AHTX, (2.88)

T, = AT2DTE DA = AT2ANTVE = (2.89)

This transformation ®A™"2 is called the whitening transformation or the
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X2

Fig. 2-1 Eigenvalues and eigenvectors of a distribution.

whitening process. The purpose of the second transformation A™'"? is to change
the scales of the principal components in proportion to 1/VA,; . Figure 2-2 shows a
two-dimensional example.

A few properties of the whitening transformation are pointed out here as fol-
lows.

(1) Whitening transformations are not orthonormal transformations because
(PA YT (DAY = AT2DTOA 2 = A 21 . (2.90)
Therefore, Euclidean distances are not preserved:

IYII? = YTy =xToA'@"X = xT53'x = Ix1?. (2.91)

(2) After a whitening transformation, the covariance matrix is invariant
under any orthonormal transformation, because

Yy =ywTy =7 . (2.92)

This property will be used for simultaneous diagonalization of two matrices.
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Fig. 2-2 Whitening process.

Sample generation: In pattern recognition experiments, it is often neces-
sary to generate samples which are to be normally distributed according to a given
expected vector M and covariance matrix X. In general, the variables are corre-
lated and this makes the generation of samples complex. However, the generation
of normal samples with the expected vector O and covariance matrix / is easy.
Therefore, samples may be generated as follows:

(1) From the given Z, find the whitening transformation of ¥ = A™'2®7X.
In the transformed space, Xy =1.

(2) Generate N independent, normally distributed numbers for each
y; (i=1, ..., n) with zero expected value and unit variance. Then, form N vectors
Y,,....Yy.

(3) Transform back the generated samples to the X-space by
X, =PAMY, (k=1,...,N).

(4) Add M to the samples in the X-spaceas X, + M (k=1,..., N).
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Simultaneous Diagonalization

We can diagonalize two symmetric matrices X, and X, simultaneously by a
linear transformation. The process is as follows:

(1) First, we whiten Z, by
Y=0"'X, (2.93)
where © and ® are the eigenvalue and eigenvector matrices of Z; as
I b=00 and d'd=1. (2.94)
Then, X, and £, are transformed to

02Ty, 00 =1, (2.95)

0 "', 007" =K . (2.96)
In general, K is not a diagonal matrix.

(2) Second, we apply the orthonormal transformation to diagonalize K.
That is,

=YY, (297
where ‘¥ and A are the eigenvector and eigenvalue matrices of K as
K¥Y=¥A and ¥'¥=1I. (2.98)

As shown in (2.92), the first matrix / of (2.95) is invariant under this transforma-
tion. Thus,

Yy =wv =1, (2.99)
YIKY =A. (2.100)
Thus, both matrices are diagonalized. Figure 2-3 shows a two-dimensional

example of this process. The combination of steps (1) and (2) gives the overall
transformation matrix @2

Alternative approach: The matrices ®O™""2¥ and A can be calculated
directly from £, and X, without going through the two steps above. This is done
as follows:

Theorem We can diagonalize two symmetric matrices as
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Yz I
¥,
K
by,
(b)
Zz A
I EE
(c) >
Fig. 2-3 Simultaneous diagonalization.
ATZ A=1 and A'I, A=A, (2.101)
where A and A are the eigenvalue and eigenvector matrices of £7'X,.
I'T,A =AA . (2.102)
Proof Since A’s are the eigenvalues of K from (2.98),
IK-AIl =0. (2.103)
Replacing K and I by (2.95) and (2.96),
1071207 11Z, —AZ, 1 1DPOV2] =0. (2.104)

Since the transformation matrix ®@~ "2 is nonsingular, 107'?®" 120 and
1O 2| 0. Therefore,

IS, ~AZ,1=0 or IZ'E, ~MI=0. (2.105)
Thus, A’s are the eigenvalues of 27'Z,.

For the eigenvectors, inserting (2.96) into (2.98) yields
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0 'L, 0™y = WA | (2.106)
or
2,007 2Y = (@7 1207y WA . (2.107)
By (2.95),(©@"'2d7y! canbe replaced by £, ®O~""2.
(@O W) = 3, (dO?Y)A (2.108)
or
I E,(DOT?Y) = (OTPY)A | (2.109)

Thus, the transformation matrix A =®0™"2W¥ is calculated as the eigenvector
matrix of £7'%,.

One fact should be mentioned here. The eigenvectors ¢, of a symmetric
matrix are orthogonal and satisfy ¢,~T¢j =0 for i # j. However, ', is not sym-
metric in general, and subsequently the eigenvectors {; are not mutually orthogo-
nal. Instead, the {;'s are orthogonal with respect to X, : that is, {] £, ;=0 for i#j.
Furthermore, in order to make the {,’s orthonormal with respect 10 X, to satisfy

the first equation of (2.101), the scale of {; must be adjusted by V{/Z,¢; such that

C;f > Cf —
\/C,TZlCi | \/C:'TZICI

1. (2.110)

Simultaneous diagonalization of two matrices is a very powerful tool in pat-
tern recognition, because many problems of pattern recognition consider two dis-
tributions for classification purposes. Also, there are many possible modifications
of the above discussion. These depend on what kind of properties we are
interested in, what kind of matrices are used, etc. In this section we will show one
of the modifications that will be used in later chapters.

Modification:

Theorem Letamatrix Q be given by a linear combination of two symmetric
matrices @, and Q as

Q=a,Q +a0Q,, (2.111)

where @, and a, are positive constants. If we normalize the eigenvectors with
respect to Q as the first equation of (2.101), O, and @, will share the same
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eigenvectors, and their eigenvalues will be reversely ordered as

MU SAN s s A for Q) (2.112)

AMP <A <. < A® for Q,. (2.113)

Proof LetQand Q, be diagonalized simultaneously such that
ATQA =1 and ATQ A =AY, (2.114)
where

07'0a=4a A", (2.115)

Then Q, is also diagonalized because, from (2.111) and (2.114),

I-—a,A"Y
ATQ,A = ———— =A@ (2.116)
a
or
1 —a, AP
A= - 2.117)
a

Therefore, Q| and Q, share the same eigenvectors that are normmalized with
respect to Q because of the first equation of (2.114) and, if A{" >A!", then
AP <A from (2.117).

Example 5: Let S be the mixture autocorrelation matrix of two distributions
whose autocorrelation matrices are §| and §,. Then

S =E{XX"}
=P EIXXT1@,) + PL,E{XX"1w,} =P S, +P»S, .  (2.118)

Thus, by the above theorem, we can diagonalize S, and S, with the same set of
eigenvectors. Since the eigenvalues are ordered in reverse, the eigenvector with
the largest eigenvalue for the first distribution has the least eigenvalue for the
second, and vice versa. This property can be used to extract features important to
distinguish two distributions [8].
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2.4 Various Properties of Eigenvalues and Eigenvectors

As we saw in the diagonalization processes, the eigenvalues and eigenvec-
tors of symmetric matrices play an important role. In this section, we review vari-
ous properties of eigenvalues and eigenvectors, which will simplify discussions in
later chapters. Most of the matrices we will be dealing with are covariance and
autocorrelation matrices, which are symmetric. Therefore, unless specifically
stated, we assume that matrices are symmetric, with real eigenvalues and eigen-
vectors.

Orthonormal Transformations

Theorem Aneigenvalue matrix A is invariant under any orthonorma! linear
transformation.

Proof Let A be an orthonormal transformation matrix and let it satisfy
ATA=1 or AT=A"". (2.119)

By this transformation, Q is converted to A TQA [see (2.63)]. If the eigenvalue and
eigenvector matrices of A TQA are A and ®,

OTATQAYD = A, (2.120)

ADYQAD) =A . (2.121)

Thus, A and A® should be the eigenvalue and eigenvector matrices of Q. This
transformation matrix A ® satisfies the orthonormal condition as

ADY (AD) = D'ATAD =" D=1 . (2.122)
Positive Definiteness
Theorem If all eigenvalues are positive, Q is a positive definite matrix.
Proof Consider aquadratic form
d?*=XxT0x . (2.123)

We can rewrite X as @Y, where @ is the eigenvector matrix of Q. Then
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d?=(@Y)Q@Y)=Y"d"QdY =YTAY = T Ay}, (2.124)

i=i
where the ;s are the eigenvalues of Q. If these eigenvalues are all positive, then
d ? is positive, unless Y is a zero vector. From the relation between Y and X, we see
that 4 ? must be positive for all nonzero X as well. Therefore, Q is positive definite.

When Q is a covariance or autocorrelation matrix, the A;’s are the variances
or second order moments after the orthonormal transformation to diagonalize Q.
Therefore, all A;'s should be positive for both cases, and both covariance and auto-
correlation matrices are positive definite.

Trace

Theorem The trace of Q is the summation of all eigenvalues and is invariant
under any orthonormal transformation. That is,

rQ = ﬁ;x, . (2.125)

i=1
Proof First for general rectangular matrices A,,,,,, and B,,,,,

[r[Anm:Bmm] = [r[Bmannxm] > (2'126)

because

n n

i=l j=1

aih; =3, Y bja;, 2.127)
j=li=l

where a;; and b;; are the components of A,,,,, and B,,,,,,. Using (2.126),

n .
YA =trA=t(@ QD) =1(QPP)=trQ . (2.128)
i=1
As we proved before, the eigenvalues are invariant under any orthonormal
transformation. Therefore, any function of eigenvalues is also invariant.

When Q is a covariance or autocorrelation matrix, the above theorem states
that the summation of the variances or second order moments of individual vari-
ables is invariant under any orthonormal transformation.



2 Random Vectors and their Properties 37

Theorem [f A and @ are the eigenvalue and eigenvector matrices of Q, the
eigenvalue and eigenvector matrices of Q™ for any integer m are A™ and ® respec-
tively. Thatis,

Qb =0GA — Q"®=0OA". (2.129)

Proof Using Q® =®A,

0"P=0" '"PA=Q"2DA = .. = DA" . (2.130)

Theorem The trace of Q" is the summation of A{"’s, and invariant under
any orthonormal transformation. That is,

rQ” =tr A" = YA . (2.131)

i=1

Example 6: Let us consider n eigenvalues, A, ..., A, as the samples drawn
from the distribution of a random variable A. Then we can calculate all sample
moments of the distribution of A by

E".‘lm} _ 1 Z}\’m — l Qm , (2132)
n =1 n
whereél-} indicates the sample estimate of £{-}. Particularly, we may use
Ey=Lup= T (2.133)
n
Y ! 2 ! 2
Var{A}) = —trQ” - {—trQ}
n n

n

! Zq..

=3 34 -

lljl

(2.134)

Example 7: Equation (2.131) is used to find the largest eigenvalue because
A+ AT =AY for m>>1, (2.135)

where A, is assumed to be the largest eigenvalue. For example, if we select
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m = 16, we need to multiply matrices four times as 0 = Q02 -5 Q% -5 0% 5 Q'¢,
and take the trace of Q ' to estimate the largest eigenvalue.

Determinant and Rank

Theorem The determinant of Q is equal to the product of all eigenvalues
and is invariant under any orthonormal transformation. That s,

lQl=lAI=ﬁX,-. (2.136)

i=)

Proof Since the determinant of the product of matrices is the product of the
determinants of the matrices,

IAL=1DT1IQIIDI =1Q11DT 1D =101 . (2.137)

Theorem The rank of Q is equal to the number of nonzero eigenvalues.

Proof Q canbe expressed by
Q0 = DADT = TA.0,0/ , (2.138)
i=l

where the ¢;'s are linearly independent vectors with mutually orthonormal rela-
tions. Therefore, if we have (n —r) zero A;’s, we can express Q by r linearly
independent vectors, which is the definition of rank r.

Three applications of the above theorems are given as follows:

Relation between |S| and | ¥ |: We show the relation between the deter-
minants of the covariance and autocorrelation matrices [from (2.15)]:

ISl =1Z+MM"1. (2.139)
Applying the simultaneous diagonalization of (2.101) for £, =Z and , =MM T,
wehave AT(Z+MMT)A =1 + A. Therefore,

f[(l +A;)

IZ+MMTI=E'|AT={H(I+X,)]|Z|, (2.140)
i=1

where 1/1A 12 = | X1 is obtained from (2.101). On the other hand, since the rank of
MMT is one, the ;s should satisfy the following conditions
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AM#0, Apy=...=A,=0, (2.141)
A=A =w@ATMMTA) = (M AATM)=MTZ'M ,  (2.142)
where AAT =X7! is obtained from (2.101). and (M7 'M)=MTZ ' M because

MTE'Mis ascalar. Thus,
ISI=1Z1(1+M7Z'M) . (2.143)

Small sample size problem: When only m samples are available in an a-

dimensional vector space with m < n, the sample autocorrelation matrix S is calcu-
lated from the samples as
~ l T
S=— XX,- . (2.144)
m |

1M=

That is, .§ is a function of m or less linearly independent vectors. Therefore, the
rank of S should be 1 or less. The same conclusion can be obtained for a sample
covariance matrix. However, the (X -M )’s are not linearly independent, because
they are related by Z;”:l(X ; —A:I)=O. Therefore, the rank of a sample covariance
matrix is (m — 1) or less. This problem, which is called a small sample size prob-
lem, is often encountered in pattern recognition, particularly when » is very large.
For this type of problem, instead of calculating eigenvalues and eigenvectors from
an n x n matrix, the following procedure is more efficient [9].

LetX,,..., X, (m <n) be samples. The sample autocorrelation matrix of
these samples is

Z #(UU"),W. , (2.145)

where U, is called a sample matrix and defined by
U=[X, ... Xpu)m - (2.146)

Instead of using the 7 x n matrix S,,,,, of (2.145), let us calculate the eigenvalues
and eigenvectors of an m x m matrix (U TUY pym a8

1 .
—’_n_(U7 U)mxmd)mxm = (DmxmAmxm M (2' 147)

Multiplying U into (2.147) from the left side, we obtain



40 Introduction to Statistical Pattern Recognition

—’i_z—(UUT)”xH(UQ)"XHI = (UQ)HX’"A”D’JN N (2' 148)

Thus, (U®D),., and A,,, are the m eigenvectors and eigenvalues of
§ = (UUT),,X,,/m. The other (n —m) eigenvalues are all zero and their eigenvectors
are indefinite. The advantage of this calculation is that only an m xm matrix is
used for calculating m eigenvalues and eigenvectors. The matrix (U®),,,,
represents orthogonal vectors but not orthonormal ones. In order to obtain ortho-
normal vectors V;, we have to divide each column vector of (U ®),,,, by (m k,-)”z
as

Ue, or V,,m,=—]./—2(U¢A"’2)M,, (2.149)
m

because, from (2.147),

1

m

= AT2OTHADTDOA? = ATVZANT 2 =1 (2.150)

vTV — A—I/Z(I)TuTU(DA—l/'Z

Near-singular matrix: In many pattern recognition problems, » may be
very large, for example 100. However, only a few eigenvalues, such as 10, are
dominant, so that

 WEE S -7 W SRR S W P33 (2.151)

This means that in a practical sense we are handling X (or § ) with rank &, even
though the mathematical rank of X is still n. Therefore, it is very inefficient to use
an n x n matrix to find & eigenvalues and eigenvectors, even when we have a sam-
ple size greater than ». In addition to this inefficiency, we face some computa-
tional difficulty in handling a large, near-singular matrix. For example, let us con-
sider the calculation of £7! or I1X!. The determinant 1X1 is ]‘[;’:]}»,- and (n — k)
A;’s are very close to zero. If we have n =100,k =10,and A, + ... +X;=0.9 out
of Ay + ... +X0=1, I Z| becomes

H,!Slki X l—[jlgljlkj = ]_[l!gll,- X (0.1/90)90 = ]_[’lglk, X 10_270

forthe assumptionof A, =A;, = ... =X 0.
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Fortunately, in pattern recognition problems, |Z| is rarely computed
directly. Instead, InlXZ1| is commonly used, which can be computed from the
eigenvalues as

InlZ1 = YInA,; . (2.152)

i=1

For the above example, In 121 =Z/% In A, +901n (0.1/90) =X/, In A, ~612.2.

As far as the inverse is concerned, each element of 7' is given by the ratio
of a cofactor (the determinant of an (n —1)x(n—1) matrix B ) and 1 Z |. The cofactor
is the product of (n—1) eigenvalues of B, while 1Z1 is the product of n eigenvalues
of Z. Assuming that (n—1) eigenvalues of the denominator are, roughly speaking,
cancelled out with (n—1) eigenvalues of the numerator, | B 1/1Z 1 is proportional to
1/A, where A, is one of the eigenvalues of X. Therefore, although X1 becomes
extremely small as the above example indicates, each element of Z™' does not go
up to an extremely large number. Inorderto avoid 1B 1/1Z 1 =0/0 in computation,
it is suggested to use the following formula to compute the inverse matrix.

S (2.153)
i=l A
Again, the eigenvalues and eigenvectors of T are computed first, and then ™' is
obtained by (2.153). Recall from (2.129) that, if A and ® are the eigenvalue and
eigenvector matrices of £, A~' and ® are the eigenvalue and eigenvector matrices
of Z7'. Also, any matrix Q can be expressed by (2.138), using the eigenvalues and
eigenvectors.

Matrix Inversion

Diagonalization of matrices is particularly useful when we need the inverse
of matrices.

From (2.66), a distance function is expressed by
dZX)=X =M)Z'(X ~M)=(¥ -D)Y'A'(Y - D)
" ()'l. — d'_ )2

=y 2.154
T (2.154)

i=1

where D=[d, ... d,)" and A are the expected vector and diagonal covariance
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matrix of Y after the diagonizing transformation. For two distributions, the dis-
tance functions are, by simultaneous diagonalization,

BX)=X-M)I]'X-M)=-D)'I""(Y-D))
= S0 d), (2.155)
i=1

d3X) =X -M)Z' X -My))=(Y —=D))'A'(Y - D)
1 (y; —dy)*

_ § Tt (2.156)

When distance computations are heavily involved in practice, it is suggested to
transform the original data samples X, to Y, before processing the data. This saves
asignificant amount of computation time.

Relation between S! and Z™!: We show the inverse matrix of an auto-
correlation matrix in terms of the covariance matrix and expected vector. From
(2.15),

S'T=C+MMTY". (2.157)

Applying the simultaneous diagonalization of (2.101) for2, =X and £, = MM,
we have AT(Z+MMT)A=1+A, or T+MMT =(ATY"' (I+A)A™'. Taking the
inverse,

E+MMTY ' =Ad +A)T'AT, (2.158)

where A is givenin (2.141) and (2.142). Therefore,

-1 1
1+ A,

1+ A, 0

(1+A)_I = ’ =
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Ay
- 1+A,
! 1
= =]~ A 2.159
1+ A, ( )
0 1
Inserting (2.159) into (2.158),
-1 Tys-I
S_]=AAT— ! AMT=Z_]—M—Z—
1+ A, 1+ A,
-1 Ty-1
_yt o EMME (2.160)
1+M'z'M

where AAT=X71 and AAAT =3 'MMTE! are obtained from (2.101). If we
would like to calculate M7 S 'Minterms of MTE ™' M,

Fo-lng . agTenl MMy M'E'M
MISTM=M"2"'M - ——— = . (2.161)
1+M72'"M 1 +MTT M
Or,
To-t
MTE "M = % : (2.162)

Pseudoinverse: One way of calculating the pseudoinverse of a singular
square matrix is as follows. Let Q be a singular matrix with rank r, then Q can be
expressed by the eigenvalues and eigenvectors as

Q = PAD’ = )fx,-(p,-q),f . (2.163)

i=}

If we express Q” by
- l
- , 2.164
§ y ( )

then
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oM To oT — v al
Q0 = ZZT‘P:‘Q’:‘ 0;0; = 2.0:9;
i=lj=t i=t
1 0
1
0
=® |0 1 o7 . (2.165)
0
0
0
13 n-—r

Therefore, Q is the inverse matrix of Q in the subspace spanned by r eigenvec-
tors, and satisfies

Q00=0. (2.166)

Generalized inverse: Equation (2.1606) suggests a general way to define the
"inverse” of a rectangular (not square) singular matrix [10]. The generalized
inverse of an m x n matrix R of rank r is an n x m matrix R * satisfying

RR*R =R, (2.167)
of =07 (2.168)

The column vectors of R are seen to be eigenvectors of the m x m matrix (RR’ ),
among which the r’s are linearly independent with eigenvalues equal to 1. Also,
{m —r) eigenvalues of (RR#) must be zero. The matrix (RR#) has the properties
of a projection matrix and is useful in linear regression analysis [0].

A particular form of R* is most often used. Let B be an m x r matrix whose
columns are the linearly independent columns of R. Then R can be expressed by
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R'"X" = B"IXI'CI'XH N (2. 169)
Since BB is an r x r nonsingular matrix, C can be obtained by
C=B'B)y'B'R . (2.170)

From (2.170). C has rank r so that CC" is also an r x» nonsingular matrix. The
pseudoinverse R™ of R is defined by

R*=c™ccTy(B™BY'B" . (2.171)

It can be shown that R” satisfies (2.167) and is therefore a generalized inverse.
Further, R™ is unique. The pseudoinverse is the most often used generalized
inverse.

Standard Data and Experimental Procedure

Throughout this book the following data will be used:

Type of distribution: normal,

Dimension: n =8 unless specified otherwise,
Number of classes: L =2,

Distribution parameters:

M, =0=10...0]", My=M=[m,...mg]",

] 0 B&, 0_
X, =1= , Z,=A=
0 1 0 Asg
Data I-I:
my=m, my= =mg=10
A= =Ag =1

In this data, both £, and X, are /. The value of m controls the overlap
between the two distributions. Unless n7 (or VMM or ||M2 -M, I is specified
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otherwise, we use m =2.56, which gives the Bayes error of 10%. Also, unless
specified otherwise, we assume n = 8. Even when n changes, the Bayes error stays
the same for a fixed m.

Data I-41:

In this data, the two expected vectors are the same, but the covariance
matrices are different. The Bayes error varies depending on the value of the A;’s as
well as n, and becomes about 9% for A; = ... =Ag =4. Again, unless specified
otherwise, we use n =8 for this data.

Datal-A:

i | 2 3 4 5 6 7 8

m 386 310 084 084 164 108 026 0.01
A; 841 1206 0.12 022 149 177 035 273

In this data [11], both the expected vectors and the covariance matrices
differ, and the Bayes error is 1.9% as will be shown in Chapter 3. The dimen-
sionality of this data is fixed and cannot be changed.

Generally, parametric algorithms which work well for Data /-/ will not work
for Data /-4/, and vice versa. So, it is important to understand which algorithms fit
which data. Any reasonable nonparametric algorithm must work for all types of
data, since the algorithm should not depend on the structure of a particular data set.

Even though the covariance matrices for these three data sets are diagonal,
they still represent the general case, since any two non-diagonal covariances can
be simultaneously diagonalized by a linear transformation. Also, a coordinate
shift can bring M| to the origin of the coordinate system without any loss of gen-
erality.

The dimensionality of 8 was selected for the following reasons. When the
dimensionality is low (e.g., | or 2), all experimental results can be explained easily
using an engineer’s intuition. Unfortunately, this is no longer true when the
dimensionality becomes high (for example, 32 or 64). Often, experimental con-
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clusions obtained using low-dimensional data cannot be extended to high-
dimensional cases. However, running experiments with high-dimensional data
requires a large amount of memory and frequently consumes a lot of computer
time. The dimensionality of 8 is a compromise; high-dimensional phenomena can
be observed with relatively inexpensive data-handling costs.

Experimental procedure: When an experiment is called for, a number of
samples, N; (i =1,2), are generated according to the specified parameters. Nor-
mally N; =100 is selected for n=8, unless specified otherwise. Using these N,
samples per class, the planned experiment is conducted. This process is repeated 1
times. For each trial, N; samples per class must be generated independently. Nor-
mally 1=10 is used in this book, unless specified otherwise. Then, the T experi-
mental results are averaged and the standard deviation is computed.

Data RADAR: In addition to the three standard data sets mentioned above,
a set of millimeter-wave radar data is used in this book in order to test algorithms
on high-dimensional real data. Each sample is a range profile of a target observed
using a high resolution millimeter-wave radar. The samples were collected by
rotating a Chevrolet Camaro and a Dodge Van on a turntable, taking approxi-
mately 8,800 readings over a complete revolution. The magnitude of each range
profile was time-sampled at 66 positions (range bins), and the resulting 66-
dimensional vector was normalized by energy. Furthermore, each normalized
time-sampled value, x;, was transformed to y; by y; =x,fN (i=1,...,606). The
justification of this transformation will be discussed in Chapter 3. The vectors
were then selected at each half-degree of revolution to form 720 sample sets.
These sets (720 samples from each class) are referred to in this book as Data
RADAR. When a large number of samples is needed, 8,800 samples perclass will
be used.

Computer Projects

1. Generate samples from a normal distribution specified by

=2 N=100, M= g z=|"?
n=2, = , —2,an =14 9| -

2.  Plotthe generated samples.
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3.  Compute the sample mean, M, and sample covariance matrix._i
4. Repeat 1 and 3, 10 times. Compute the sample mean and sample variance
for each component of M and X over 10 trials.
5.  Repeat4 for N=10, 20, and 40, and examine the effect of the sample size.
6.  Simultaneously diagonalize £ and % and form a vector V=[A ;]
Compute the sample mean and sample covariance of V over 10 trials.
Problems
1.  Compute and plot g, (x)and g, (x) forp ,(x)=N_(0,1)and p,(x)=N,(1,2).
2.  Letp(X)beNy(M,Z)with
X m; oi P00,
X= , M= , and I = R
X2 m3 pc,0; O3
Show that
px))=N, (m, 61) (a marginal density),
pylxy) =N, (m +po,(xy — my)o, , 63(1 - p?))
(a conditional density) .
3. Forthe distribution of Problem 2, plot the contour lines for

d*(X)=1,4,and 9,
where the parameters are selected as
my=1, my,=2, 61=1, ¢6}=2,

p=-1, -0.5,0,05, 1.
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10.

A two-dimensional random vector becomes [a ], [-a-b )", [-cd])" or
[c —=d]" with probability of 1/4 for each.

(a)  Compute the expected vector and covariance matrix.
(b)  Find the condition fora, b, ¢, and d to satisfy in order to obtain p =0.

(¢)  Find the conditions for a, b, ¢ and d to satisfy in order to obtain p =+ 1
andp=-1.

Let l;] be the sample mean of N samples, X, ... , Xy, drawn from N (m. o).
Find the expected value and variance of (m—m)z, and confirm that
Var{(m—m)*} ~1/N?.

Let

1 05 1+v3/4 05
E] = i: :! and 22 = A — :! .
05 1 05 1-v3/4

Diagonalize these two matrices simultaneously.
Prove that S~ M and Z~' M are the same vector with different lengths.

Express a non-zero eigenvalue and the corresponding eigenvector of
T 'MM7 interms of £ and M. (Hint: The rank of ~'MM T is one.)

Let S be an nxn matrix, composed of two vectors M, and M, as
S=M M| +M,ML. The lengths of M, and M, are 1 and 2 respectively,
and their mutual angle is 60 °, Compute the eigenvalues of S.

After the mixture of two distributions is normalized by a shift and a linear
transformation, the expected vectors and covariance matrices satisfy the fol-
lowing equations.

PI(ZI +M|Ml{‘)+P2(22+M2M5_)=I~
P|M|+P2M2=0.

Calculate the followingsinterms of # . P>, and M|



50 Introductjon to Statistical Pattern Recognition
@ (P, +P,5,",
(b) (My-M\)(P\Z)+P,5,)" (My-M)),
(C) |P121+P222|.
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Chapter 3

HYPOTHESIS TESTING

The purpose of pattern recognition is to determine to which category or
class a given sample belongs. Through an observation or measurement pro-
cess, we obtain a set of numbers which make up the observation vector. The
observation vector serves as the input to a decision rule by which we assign the
sample to one of the given classes. Let us assume that the observation vector
is a random vector whose conditional density function depends on its class. If
the conditional density function for each class is known, then the pattern recog-
nition problem becomes a problem in statistical hypothesis testing.

3.1 Hypothesis Tests for Two Classes

In this section, we discuss two-class problems, which arise because each
sample belongs to one of two classes, ®; or ®,. The conditional density func-
tions and the a priori probabilities are assumed to be known.

The Bayes Decision Rule for Minimum Error

Bayes test: Let X be an observation vector, and let it be our purpose to
determine whether X belongs to w, or ®,. A decision rule based simply on
probabilities may be written as follows:

@

q.(X) “><)q2(X). 3.1
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where g;(X) is a posteriori probability of ®; given X. Equation (3.1) indicates
that, if the probability of ®; given X is larger than the probability of w,, X is
classified to m;, and vice versa. The a posteriori probability ¢;(X) may be cal-
culated from the a priori probability P; and the conditional density function
p;(X), using Bayes theorem, as

Pipi(X)
p(X)
where p (X) is the mixture density function. Since p (X) is positive and com-

mon to both sides of the inequality, the decision rule of (3.1) can be expressed
as

q,(X) =

3.2)

Pipi(X) 2 Popy(X) (3.3)
or
pi1X) ™ P,y
uX) = 2= 3.4
=0 &7, G4

The term #(X) is called the likelihood ratio and is the basic quantity in
hypothesis testing. We call P,/P, the threshold value of the likelihood ratio
for the decision. Sometimes it is more convenient to write the minus-log likeli-
hood ratio rather than writing the likelihood ratio itself. In that case, the deci-
sion rule of (3.4) becomes

@,
AX)==-IndX)=-Inp (X)+Inpy(X) 2 lni. (3.5)
w P
The direction of the inequality is reversed because we have used the negative
logarithm. The term A (X) is called the discriminant function. Throughout this
book, we assume P, = P,, and set the threshold In P /P, =0 for simplicity,
unless otherwise stated.

Equation (3.1), (3.4), or (3.5) is called the Bayes test for minimum error.

Bayes error: In general, the decision rule of (3.5), or any other decision
rule, does not lead to perfect classification. In order to evaluate the perfor-
mance of a decision rule, we must calculate the probability of error, that is, the
probability that a sample is assigned to the wrong class.

The conditional error given X, r(X), due to the decision rule of (3.1) is
either ¢ | (X) or g,(X) whichever smaller. That is,



3 Hypothesis Testing 53

r(X) = ming,(X).q2(X)] . (3.6)

The total error, which is called the Bayes error, is computed by E{r(X)}.
e=E(r(X)) =] rXp (X)dx
= [ minlP p (X).Pp2(X)1aX
=] p1C0aX + Pof pa00iax
=Pg + Py, 3.7
where

£, =JL1p,(X) dX and & =JL py(X) dX . (3.8)

Equation (3.7) shows several ways to express the Bayes error, €. The first line
is the definition of €. The second line is obtained by inserting (3.6) into the
first line and applying the Bayes theorem of (3.2). The integral regions L, and
L, of the third line are the regions where X is classified to ®, and o, by this
decision rule, and they are called the ®;— and w,—regions. In L,
Pip(X)>P,ypy(X), and therefore r(X)= P,p,(X)p(X). Likewise.
r(Xy=Pp (X)p(X)in L, because P p (X) < P,p,(X) in L,. In (3.8), we
distinguish two types of errors: one results from misclassifying samples from
®, and the other results from misclassifying samples from w,. The total error
is a weighted sum of these errors.

Figure 3-1 shows an example of this decision rule for a simple one-
dimensional case. The decision boundary is set at x=¢ where
Pip (x)=P,yp>(x), and x <t and x > are designated to L, and L, respec-
tively. The resulting errors are P&, =B +C, Pre; =A,and e=A + B + C,

where A, B, and C indicate the areas, for example, B = J’ P\p,(x)dx.
{

This decision rule gives the smallest probability of error. This may be
demonstrated easily from the one-dimensional example of Fig. 3-1. Suppose
that the boundary is moved from ¢ to ¢, setting up the new ®,- and w,—regions
as L and L5. Then, the resulting errors are P, = C, Pre; =A +B +D,and
€ =A + B + C + D, which is larger than € by D. The same is true when the
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Fig. 3-1 Bayes decision rule for minimum error.

boundary is shifted to the left. This argument can be extended to a general n-
dimensional case.

The computation of the Bayes error is a very complex problem except in
some special cases. This is due to the fact that € is obtained by integrating
high-dimensional density functions in complex regions as seen in (3.8). There-
fore, it is sometimes more convenient to integrate the density function of
h = h(X) of (3.5), which is one-dimensional:

=" i, (39)

In (P /P5)
e=]""""ph10dn . (3.10)

where p,(h1®;) is the conditional density of h for ;. However, in general,
the density function of h is not available, and very difficult to compute.

Example 1: When the p;(X)’s are normal with expected vectors M, and
covariance matrices X;, the decision rule of (3.5) becomes

h(X) = - In #X)
= i(x—M Y X-M ) - l(x—M Y E3HX-My) + 1 12,
2 | 1 i 5 2) &2 2 > Iz, |
w, PI
S In P_ i 3.1
h 2

Equation (3.11) shows that the decision boundary is given by a quadratic form
in X. When £, =%, =X, the boundary becomes a linear function of X as
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X2
A Pp4(X)
Popa(X)
>
)
— X4 X1
(a) (a)
Fig. 3-2 Decision boundaries for normal distributions:
(a) Z[ # 22: (b) Zl = 22.
h(X)=(M-M)TZX + %(M,TZ"M, ~-MIZ'My)
% 2 3.12
(l<’: n P2 . ( . )
Figure 3-2 shows two-dimensional examples for ,#X, and X,=X,.
Example 2: Let us study a special case of (3.11) where
i )
| T
pi 1 :
M,' :0 and Z,‘ = ) . (313)
: pi
P e 1

This type of covariance matrix is often seen, for example, when stationary ran-
dom processes are time-sampled to form random vectors. The explicit expres-
sions for £7' and 1Z;1 are known for this covariance matrix as
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1 -p; O 0
=i 14p} —p;
sle——l0 . . 0], (3.14)
1-p; : ' :
1+p; —Pi
0 0 -p; 1 J
1z =0 -pdy . (3.15)

Therefore, the quadratic equation of (3.11) becomes

I+p3  1+4p3 | » 2 2
- ZX?-[—"'Z————"Z (i +x)
I-pi  1-p3 ) /5 I-pt  1-p3
2p, 2py | n-! 1-p3 @& P,
- - Xooy + (n=1) In 2 In—~, 3.16
ll_p% l—p% IEXJ‘ w1 =) l—p% u<)1 n P, ( )

where the second term shows the edge effect of terminating the observation of
random processes within a finite length, and this effect diminishes as n gets
large. If we could ignore the second and fourth terms and make
In(P,/P,)=0 (P = P,), the decision rule becomes (inx,+1)/(2x;") 2t ; that
is, the decision is made by estimating the correlation coefficient and threshold-
ing the estimate. Since p,#=p, is the only difference between w, and ®, in this
case, this decision rule is reasonable.

Example 3: When x;’s are mutually independent and exponentially

distributed,

k=1 Qik

n 1
piX) = [T——exp {_“—*X"] u)  (i=1,2), (3.17)

where o is the parameter of the exponential distribution for x; and w;, and
u{(-) is the step function. Then, #(X) of (3.5) becomes
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n

hX)y=3

k=1

o Ot X+ Z In— . (3.18)

The Bayes decision rule becomes a linear function of x;’s.

The Bayes Decision Rule for Minimum Cost

Often in practice, minimizing the probability of error is not the best cri-
terion to design a decision rule because the misclassifications of ®,- and ®,-
samples may have different consequences. For example, the misclassification
of a cancer patient to normal may have a more damaging effect than the
misclassification of a normal patient to cancer. Therefore, it is appropriate to
assign a cost to each situation as

¢;; = cost of deciding X € ®; when X € ;. (3.19)
Then, the conditional cost of deciding X € o, given X, ri(X), is
",'(X) =(',-lq|(X) +(,','2q2(X) . (320)

The decision rule and the resulting conditional cost given X, r (X), are

W,

ri(X) 0><) ra(X) 3.21)

and
r(X)=min[r(X), ry(X)] . (3.22)
The total cost of this decision is

r = EL(X)) = [ min[r, 00, r0)]p (00 dX
= J minfc g ((X) + ¢ 122X, €219 (X)) + €29 ,(X)p (X) dX
= [ minfe ,P1p (0 + ¢ 12P2p 2, e P 1p(X) + P opa(X)) dX
2'[.[""P""(X) +¢pPap (X)) dX

+'[L~[('2,P,p,(X)+c22P2pz(X)] dx (3.23)

where L and L, are determined by the decision rule of (3.21).
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The boundary which minimizes r of (3.23) can be found as follows.
First, rewrite (3.23) as a function of L, alone. This is done by replacing
_[L pi(X)dX with 1 —_[L pi(X)dX, since L and L, do not overlap and cover the

A |

entire domain. Thus,
I'=(C21P|+C22P2)+L [(C”—CZI)PIpl(X)+((‘|2—C22)P2p2(X)]dX . (324)
|

Now our problem becomes one of choosing L, such that r is minimized. Sup-
pose, for a given value of X, that the integrand of (3.24) is negative. Then we
can decrease r by assigning X to L. If the integrand is positive, we can
decrease r by assigning X to L,. Thus the minimum cost decision rule is to
assign to L, those X’s and only those X's, for which the integrand of (3.24) is
negative. This decision rule can be stated by the following inequality:

w,

(C12=c22)P2p2(X) 2 (ca—c )P yp(X) (3.25)

(a2}

or

p1X) “<)' (¢12—€22)P>
p2X) @ (cy—c )P

(3.26)

This decision rule is called the Bayes test for minimum cost.

Comparing (3.26) with (3.4), we notice that the Bayes test for minimum
cost is a likelihood ratio test with a different threshold from (3.4), and that the
selection of the cost functions is equivalent to changing the a priori probabili-
ties P;,. Equation (3.26) is equal to (3.4) for the special selection of the cost
functions

) =€y =Cp—C - (3.27)

This is called a symmetrical cost function. For a symmetrical cost function, the
cost becomes the probability of error, and the test of (3.26) minimizes the pro-
bability of error.

Different cost functions are used when a wrong decision for one class is
more critical than one for the other class.
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The Neyman — Pearson Test

The Neyman-Pearson test follows from a third formulation of the
hypothesis test problem. Recall that we can commit two types of errors in a
two-class decision problem. Let the probabilities of these two errors again be
€, and €,. The Neyman-Pearson decision rule is the one which minimizes €,
subject to €, being equal to a constant, say €. To determine this decision rule,
we must find the minimum of

r=g€ +We — &), (3.28)

where | is a Lagrange multiplier. Inserting €, and €, of (3.8) into (3.28),
r =JL p1(X)dX +u{,[L p2X)dX - 80}
= (1= pe) + | {upaX) - 00} X | (3.29)

Using the same argument as in the derivation of (3.25) from (3.24), r can be
minimized by selecting L, and L, as

o]}
up Xy 2 p (X) (3.30)
(O}
or
p1(X) °<"
. 31
) ot (3D

Comparing (3.31) with (3.26), we can conclude that the Neyman-Pearson test
does not offer any new decision rule but relies on the likelihood ratio test, as
did the Bayes test. However, the preceding discussion shows that the likeli-
hood ratio test is the test which minimizes the error for one class, while main-
taining the error for the other class constant.

The threshold p is the solution, for a given gy, of the following equation:

£ =JL pX)dX = g . (3.32)

Or, using the density function of #(X) of (3.10),
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& =] puhionah =¢, . (3.33)

However, an analytical solution is not possible in general. So, we must find p
experimentally or numerically. Since p,(hlm,) 20, & of (3.33) is a mono-
tonic function of |, and increases as | increases. Therefore, after calculating
€,'s for several |1’s, we can find the p which gives a specified g as €,.

Example 4: Let us consider two-dimensional normal distributions with
M, =[-1,0", M, =(+1,0]", £,=2,=1/, and P, =P, =0.5. Then, from
(3.12) and (3.31), the decision boundary can be expressed by

h(X) = {{+1 0] = -1 0]} H

2

el

= 2x,

AV E

£

The decision boundaries for various p’s are lines parallel to the x,-axis, as
shown in Fig. 3-3, and the corresponding errors €,’s are given in Table 3-1.
For example, if we would like to maintain €, = 0.09, then u becomes 2 from
Table 3-1, and the decision boundary passes (—0.34) of x .

TABLE 3-1
RELATION BETWEEN u AND ¢,

TR 4 2 | 1 ik

€: 004 009 016 025 0.38
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Fig. 3-3 Neyman — Pearson boundaries.

The Minimax Test

In the Bayes test for minimum cost, we notice that the likelihood ratio is
compared with a threshold value which is a function of P;. Therefore, in order
to design a decision rule which minimizes the cost, we need to know the
values of P; beforehand. After the design is completed, the decision rule stays
optimum only if the P;’s stay the same. Unfortunately in practice, the P;’s
vary after the decision rule is fixed. The minimax test is designed to protect
the performance of the decision rule, even if the P;’s vary unexpectedly.

First, let us express the cost of (3.24) in terms of P,. Since
P,+ P, =1, P, is uniquely determined by P;. Inserting P, = 1-P, into
(3.24), and replacingJL p (X)X by 1 —JL P (X)dX,

r=cpt ((‘12—?22).[ p2X) dX + P [(c)—c2)
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+(en=e)f pr00aX = (crp=ca)] pa0x) ax1. (3.35)

Equation (3.35) shows that, once L | and L, are determined, r is a linear func-
tion of P,. In Fig. 3-4, the curved line represents an example of the Bayes

0 0.3 1.0 P1

Fig. 3-4 Bayes cost vs. P.

\

cost plotted against P, where L and L, are selected optimally for each P,.
If L, and L, are tixed for P, = 0.3, for example, and if P, varies later unex-
pectedly, then r changes according to (3.35), which is the equation for the
straight line passing through A, as shown in Fig. 3-4. As the result, r could
become much larger than we expected when we design the decision rule (for
example, r can go up to B when P| becomes 1). In order to prevent this
deterioration of performance, we choose L, and L, to make the coefficient of
P zero in (3.35) regardless of the predicted value for P,. Then, the straight
line becomes the tangent at the point C where the Bayes cost curve is max-
imum. This selection of L, and L, guarantees that the maximum Bayes cost is
minimized after the threshold value is fixed, regardless of the change of P,.
This decision rule is called the minimax test.

Thus, in the minimax test, the boundary is designed to satisfy

€=c) + en=c 1] piX0aX = (crp=e)f prIax =0, (3.36)
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If we select the special set of cost functions
Ci11 =Cx» and Cip =Cyy (337)

(3.36) becomes
'[Jp,(X)dX =IL po(X)dX . (3.38)

That is, the decision boundary is still determined by the likelihood ratio, but
the threshold is selected to satisfy €, = ¢€,.

Operating Characteristics

So far, we have found that the likclihood ratio test is commonly used for
various tests, and only the selection of the threshold varies depending on the
test. Extending this, it is a common practice to plot the relation between g,
and €, by changing the value of the threshold continuously. This curve is
called the operating characteristic [5]). Figure 5 shows an example of the
operating characteristics where €, and 1-¢, are used for the x- and y-axes in
log scale. Three curves in Fig. 3-5 show the performance of the likelihood
ratio test for 30, 20, and 9 features which are selected from the same data set.
They indicate that 30 and 20 features give almost identical performance for a
wide range of operating points, while 9 features give much poor performance.
From such curves, the designer of the decision rule can select a proper operat-
ing point and the corresponding threshold, depending on one’s need.

Burdick’s chart: Various combinations of log and linear scales are used
for operating characteristics. However, the following scale gives a straight line
when 4 (X) of (3.5) is normally distributed for both ®, and , [6].

Let ®(a) be a normal error function defined by

D) =] ——edx . (3.39)

— 21

If h is distributed as N, (m,,07) for w, and N,(m,,63) for w,, and 1 is the
value of the threshold as shown in Fig. 3-6, then

t—m»,

(3.40)

ml_t
£|=q)[ ] and £2=(D
(¢

| G,

Or, taking the inverse operation,
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Fig. 3-5 An example of operating characteristics.

ml—’
—— =®7'(¢;) and
g, (2]

_m2

=0 I(g,) .

3.41)

Eliminating ¢ from these two equations, we can obtain the relation between

®'(g)) and D! (g,) as
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m,—ni,

D', = —ﬁqr'(e )+
5) = | (3.42)
¢5]

G2

That is, if ®'(e,) and ®7'(e,) are used as the x- and y-axes, we have a

Fig. 3-6 Normal distributions of h.

straight line with -6/, as the slope and (m—-m,)/G, as the y-cross point.
Figure 3-7 shows the chart, where both ®~'(€) and ¢ scales are shown. Note
that ®~!(e) =~2, -1, 0, 1, 2 correspond to £ = 2.3, 15.9, 50.0, 84.1, 97.7 (%).

For Data /-1, h(X) becomes a linear function of X as shown in (3.12),
and therefore 4 (X) becomes normal if X is normal. The straight line operating
characteristic is shown in Fig. 3-7 with the corresponding threshold values.

The advantage of using this scale is that we may see whether the distri-
butions of 4 (X) for ®, and ®, are close to normal or not. Also, we can meas-
ure some of the parameters, —G,/G, and (m,—m,)/G,, from the line.

3.2 Other Hypothesis Tests

In this section, other hypothesis tests will be discussed. They are mul-
tihypothesis tests, single hypothesis tests, reject option, and composite
hypothesis tests.
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Fig. 3-7 The operating characteristic of Data /-/ on a special coordinate sys-
tem.

Multihypothesis Tests

When the samples are known to come from L classes, we can generalize
the binary hypothesis testing problem.

First, if our decision is simply based on probabilities, the decision rule is

g(X)=max ¢;(X) — X e w. (3.43)
Or, by the Bayes theorem,
PepiX)=max Pp(X) — Xe . (3.44)

Since X belongs to w; with the probability of ¢,(X), the decision rule of (3.43)
misclassifys X from ®; (j # k) to @, with the same probability. Summing up
these, the conditional probability of error given X, due to (3.43), becomes
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rX)=q X))+ ...+ G X))+ X))+ .+ g (X) =1 - q(X), and the
Bayes error is the expected value of r(X) over X. That is,

riX)=1-max g;(X) and e€=E{r(X)}. (3.45)

When cost functions are involved, the decision rule becomes

X)=min r;(X) = Xe w (3.46)
where r;(X) is a simple extension of (3.20) to L classes as

L

j=1
and ¢;; is the cost of deciding X € w; when X € w;. Substituting (3.47) into
(3.46) and using the Bayes theorem,

L L
!

j=! j=1

The resulting conditional cost given X and the total cost are

r(X)=min r(X) and r=E{r(X)}. (3.49)

Example 5: When ¢; =0 and ¢;; = 1 for iz}, r{(X) of (3.47) becomes

L
r(X)=Yq,X) - q;(X) =1 - ¢;(X) . (3.50)
j=1
Therefore, the decision rule of (3.46) and the resulting conditional cost of
(3.49) become (3.43) and (3.45), respectively.

Single Hypothesis Tests

So far, we have assumed that our task is to classify an unknown sample
to one of L classes. However, in practice, we often face the problem in which
one class is well defined while the others are not. For example, when we want
to distinguish targets from all other possible nontargets, the nontargets may
include trucks, automobiles, and all kinds of other vehicles as well as trees and
clutter discretes. Because of the wide variety, it is almost impossible to study
the distributions of all possible nontargets before a decision rule is designed.



68 Introduction to Statistical Pattern Recognition

Single hypothesis schemes have been proposed to solve this problem.
Typically, they involve measuring the distance of the object from the target
mean (normalized by the target covariance matrix), and applying a threshold to
determine if it is or is not a target. This technique works well when the dimen-
sionality of the data, n, is very low (such as 1 or 2). However, as n increases,
the error of this technique increases significantly. The mapping from the origi-
nal n-dimensional feature space to a one-dimensional distance space destroys
valuable classification information which existed in the original feature space.
In order to understand this phenomena, let us study here the statistics of the
distance.

Distribution of the distance: Let us consider a distribution of X with
the expected vector M and the covariance matrix X. Then, the normalized dis-
tance of X from M is

d>=X-M)'2'X-M)=Z"Z =Yz}, (3.51)

i=1
where Z = AT(X-M) and A is the whitening transformation. Since the
expected vector and covariance matrix of Z are 0 and / respectively, the z;’s

are uncorrelated, and E{z;} = 0 and Var(z;} = 1. Thus, the expected value and
variance of d* are

E{d*)=nE{z}}=n (3.52)

Var{d®} = E{(d*)*} - E*{d?}

=iE[z;‘}+iiE{z,?z}}—anz{z,?}. (3.53)
i=1 i=lj=1
izf

When the z;’s are uncorrelated (this is satisfied when the z;’s are independent),
and E{z}} is independent of /, the variance of d? can be further simplified to
Var{d’}=nvy, (3.54)

where
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Y=Elz}} - EXz}) =E(z}} - 1. (3.55)

For normal distributions, when the z;'s are uncorrelated, they are also indepen-
dent. Therefore, (3.55) can be used to compute Var{dz}, and y= 2. Figure
3-8 shows the distribution of d?> with the mean » and the standard deviation

V.

Example 6: Let the x;’s be mutually independent and identically distri-
buted with a gamma density function, which is characterized by two parameters
o and P as in (2.54). Using m = E{x;} and o= Var{x;}, (3.51) becomes

d2=L
G izl

(x;—m)? . (3.56)

M=

Then, v is

_E{(x-m)*) - o

(3.57)

where the second line is obtained by using the mth order moments of a gamma
density as

E{x"} = (B"'Lm(ﬁﬂl ) (3.58)
04

An exponential distribution is a special case of a gamma distribution with
8 = 0, for which vy becomes 8. On the other hand, y = 2 is obtained by letting
f be «. Recall from (3.55) that vy for a normal distribution is 2.

Example 7: In (3.52) and (3.54), only the first and second order
moments of d? are given. However, if the z;'s are normal, the density function
of d? is known as [7].

n-2
1 =
P® = SEr b 2 e, (3.59)

which is the gamma density with = n/2 — 1 and o = 1/2.
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Fig. 3-8 The distribution of d.

The expected value and variance of the gamma distribution are computed from
o and B as

E{d2}=p;—'=n. (3.60)
Var{d?} =p+—2'=2n, 3.61)
o

which are identical to (3.52) and (3.54). Since the z;’s are obtained by a linear
transformation from X, the z;’s are normal if X is normal.

Also, note that (3.59) becomes an exponential distribution for n =2. It is
known that coherent (complex) radar signatures have real and imaginary parts
that tend to be independent. Therefore, if both parts are normally distributed,
the magnitude-square of these two parts, (real)’ + (imaginary)?, will exhibit an
exponential distribution.

It is important to realize from Fig. 3-8 that, if samples are drawn from a
normal distribution in a high-dimensional space, most samples fall in a
doughnut-type ring and no samples fall in the center region where the value of
the density function is largest. Because of this phenomena, two distributions
could be classified with little error, even when they share the same expected
vectors, as long as the covariance matrices are different. In order to understand
why this happens, let us look at the example of Fig. 3-9. This figure shows the
contour lines of a normal distribution with covariance matrix /. The probabil-
ity mass of region A, an n-dimensional hypersphere with radius a, is
PriA} =ca"p(X,) where ¢ is a constant and X, is located somewhere in A.
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Fig. 3-9 Probability coverage.

On the other hand, for the outer ring, region B, with radius between a and 2a,
PriB}=cl(2a)" —a"] p(Xg) =c(2"-1)a"p (Xp), where Xy is located some-
where in B. Therefore, Pri{B}/Pr{A} = 2"-1)p(Xg)/p(X,). This becomes,
for example, 2 x 10'® for n=64 and p(X4)Yp(Xg) = 10. That is, the probability
of having a sample in region A is so much smaller than the probability for
region B, that we would never see samples in A by drawing a resonable
number (say 104) of samples.

Performance of a single hypothesis test: Suppose that two classes are
distributed with expected vectors M, = 0 and M, = M, and covariance matrices
X, =1and £, =A (a diagonal matrix with A;’s as the components), respec-
tively. Without loss of generality, any two covariance matrices can be simul-
taneously diagonalized to / and A, and a coordinate shift can bring the
expected vector of ®, to zero. As shown in (3.52) and (3.54), E{d?i o }=n
and Var{d?|®, } =yn, and y= 2 if the w,-distribution is normal. On the other
hand, the distance of an w,-sample from the ®,-expected vector, 0, is

AP=XX=X-M+MTX-M+M)
=X-M'X-M+2M"X-M)+M™M
=u[X-MX-MT1+2MTX-M)+M™M . (3.62)

Taking the expectation with respect to w,,
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E{d%1y} = tr [E{(X-M)YX-M)T 1w, }1+ M™M

=rA+MM=YA+MM. (3.63)

i=]
Likewise, the variance can be computed as

Var{d?1w,} = E{(d®)*lw,} — E2{d*|w,} . (3.64)

When the ,-distribution is normal,

E((d)?1@,} = E{(X-M)T(X-M)(X-M)T (X-M) 1w, }
+ A MTE{X-M)YX-M)T 1w, | M
+ (MM + 2 E((X-M)(X-M) 1o, }M™M
Z3SA7 + TIAA, + 4T Am
i=1 i=|

izj

F(EmP + 2ATANEMD) (3.65)

=1 i=| i=l

where m; is the ith component of M. Subtracting E2{d? lw,} of (3.63), we
obtain

Var{d? 1w, } =23 A7 + 43 Am} . (3.66)

i=l i=1

Example 8: For Data /- with n variables, A; = 1. Therefore,

E{d>l0,})=n and Var{d’l®,)=2n, (3.67)

E{d®1@,)=n+M™™ and Var{d®lw,} =2n+4M"M . (3.68)

If we assume normal distributions for d?, we can design the Bayes classifier
and compute the Bayes error in the d-space, £,. The normality assumption for
d? is reasonable for high-dimensional data because d? is the summation of n
terms as seen in (3.51), and the central limit theorem can be applied. The g, is
determined by n and MTM, while MTM specifies the Bayes error in the X-
space, €y. In order to show how much classification information is lost by
mapping the n-dimensional X into the one-dimensional d?, the relation between
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€d

0.1 MU | ORI E Y R S ST A T | WY | ST

8 16 32 64 128 256
Fig. 3-10 Performance of a single hypothesis test for Data /-/.

ey and €, for various values of n is plotted in Fig. 3-10. For example, when
n=64, ¢y =0.1% is increased to €, = 8.4%. This is the price we must pay
when we do not know where the second distribution is located relative to the
first distribution for a fixed ||M||

Ranking procedure: So far, we have pointed out that mapping the n-
dimensional X into the one-dimensional d? and classifying samples by thres-
holding d? produce a large increase in error. However, the error may be
reduced significantly by using different approaches for different applications.
For example, let our problem be to select one object for targeting out of many
objects detected in a field. Then, we may rank the objects according to their
distances from the selected target mean, and choose the closest one as the one
to target. This ranking, instead of thresholding, reduces the classification error
of the selected object. However, it must be noted that this problem is different
from the conventional one, in which all objects are classified and the number
of misclassified objects are counted as the error.

Assuming that k, ®,-samples and k, ,-samples are available for rank-
ing, the probability of acquiring one of the k; ®,-samples by this procedure
(the probability of correct classification) can be expressed as [8-9]
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Py =J k(=7 (1) (3.69)

where

wi(t) = Llpdz(c lo,)dL (3.70)

and p,2(§!®,) is the density function of § = d” for ;. As seen in (3.70), u,(t)
is the probability of a sample from @ falling in 0 £ < ¢. Thus, u,(¢) = 1-¢,
and u,(t) = €, in the d-space when the threshold is chosen at d = 1. In (3.69),
duy, (1=u)"'™", and (l—uz)k2 represent the probability of one of k| ;-
samples falling in r £{ <t +At, k\—1 of o,-samples falling in ¢+ At <
{ < o0, and all k, 0,-samples falling in 7 + At < < oo respectively. The pro-
duct of these three gives the probability of the combined event. Since the
acquisition of any one of the kX, w,-samples is a correct classification, the pro-
bability is multiplied by &,. The integration is taken with respect to t from 0
to oo, that is, with respect to u, from 0 to 1.

TABLE 3-2
EFFECT OF THE RANKING PROCEDURE

€y €4 1-P, (%)
(%) (%)
ky=ky=5 | ki =k,=20
1.0 | 10.0 0.9 0.6
50 | 240 8.9 44
10.0 | 32.0 17.6 14.9
20.0 | 42.0 342 32.0

Table 3-2 shows (1-P,)’s for Data /- and n =20. Specifying €x as I, 5,
10, and 20 %, we computed the corresponding [[M||’s, from which e;'s were
obtained assuming that both p,({l®|) and p,2(iw,) in (3.70) are normal.
Then, the integrations of (3.69) and (3.70) were carried out numerically for
normal p,2 ({1 ®;)’s. Table 3-2 indicates that the ranking procedure is effective,
particularly for small €4’s. Also, the errors are smaller for larger &, and £,’s.
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Test of normality: Despite its importance, it has been difficult to test
whether a given data set is normal or not. If the dimensionality of the data is
low, we could use a conventional chi-square test [10]. But obviously the
number of cells increases exponentially with the dimensionality and the test is
impractical for high-dimensional data sets. Measuring the variance of d’ pro-
vides an estimate of y in (3.54) which may be used to test for normality of a
high-dimensional distribution. Also, the parameter B could be determined for a
gamma density function according to (3.57). However, it must be cautioned
that this procedure tests only one marginal aspect of the distribution, however
important that aspect, and does not guarantee the overall normality of the dis-
tribution even if the samples pass the test.

When X is normal and M and X are given, the density function of
d? = (X-M) =" (X-M) is given in (3.59), which is a gamma distribution.
This may be extended to the case where the sample mean and sample covari-
ance matrix are used in place of M and X as

= ﬁ(X—M)Tf'(X—M) ) 3.71)

where

M=

- - N ~ ~
M=-1%X and $= iz(x,-—M)(x,-—M)T . (3.72)
NS N3

i

When X is normal, { has the beta-distribution given by [11]

N-1
r N-n-l

] (2 -y 2 0<g<1. (3.73)

pQ) =
N-n-1

r 2

n
—|T
2

The expected value and variance of { may be computed by using

Vb e qe = TO+DI(c+]) 4
Lx (1=x)‘dx —_—F(b+c+2) . (3.74)

The results are
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n
N-1"~

. __2n 1-(m+lyN __ 2n
V'““;}_(N-l)z +UN T (N=1)?

E{L} =

(3.75)

(3.76)

Because  of (3.71) is 1/(N—1) times the distance, (3.75) and the right-most
term of (3.76) correspond to (3.60) and (3.61) respectively.

Thus, the test of normality may be performed in the following two lev-
els.

(1) Compute the sample variance of { of (3.71), and check whether it is
close to (3.76) or not. When N >>n, 2n/(N—l)2 may be used to approxi-
mate (3.76).

(2) Plot the empirical distribution function of { by using {(X,),...,l(Xw)
and the theoretical distribution function from (3.73), and apply the
Kolmogorov-Smirnov test [10].

Variable transformation: When variables are causal (i.e. positive), the
distribution of each variable may be approximated by a gamma density. In this
case, it is advantageous to convert the distribution to a normal-like one by
applying a transformation such as

y=x" OD<v<l), 3.77)

which is called the power transformation. The normal-like is achieved by
making y of (3.54), E{(y=y)*} - E?{(y-y)?}, close to 2 under the condition
that E{(y-y)?) = 1, where y = E {y}.

Assuming a gamma density function of (2.54) for x, let us compute the
moments of y as

of!
T(B+1)

Ely") = _[)mx"’"xﬁe“‘"dx

_ | T(B+1+mv)
o™ TR+

(3.78)

Therefore,
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_ Elo-9') - E2{y-7)
E*{(y-y)*)

E{y*)4E{y*}E{y)|+6E |y?}E*{y)-3E*{y)
[E(y*} - E*{y}T* '

(3.79)

Note in (3.79) that the a’s of the numerator are cancelled out with the o’s of
the denominator, and vy is a function of B and v only. Figure 3-11 shows plots
of y as a function of v for various values of B. Figure 3-11 indicates that we

-Yl\

] ] ] 1 | | I | ] Ly
0 01 02 03 04 05 06 07 08 09 10

Fig. 3-11 Relation between y and o for various p.

can make Y close to 2 for a wide range of B by sclecting v=0.4. This transfor-
mation with v=0.4 was applied to obtain Data RADAR of Chapter 2.
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Reject Option

When r(X) of (3.6) is close to 0.5, the conditional error of making the
decision given X is high. So, we could postpone decision-making and call for
a further test. This option is called reject. Setting a threshold for r(X), we
may define the reject region, Ly(t), and reject probability, R (t), as

Le() = (X:r(X) 21}, (3.80)

R(t):Pr[r(X)Z!l=J.L([)p(X)dX. (3.81)
Then, the resulting error, (1), is
=] minlP 1P (X), Papy()] dX | (3.82)

where Ly is the complementary region of Ly. When the minus-log likelihood
test is used, (3.80) can be converted to

- P X
~In [g AR J 1)
t P, p2X)
cm |+ B (3.83)
< ’ o .

The left and right side inequalities are  obtained from
r(X)=Pop2(X)[P\py(X) + Popa(X)] 2t when P p(X)>P,p,(X), and
rX) =P p1(X)[P1p(X) + Papa(X)] 2t when Pp (X) < Pypy(X), respec-
tively. Thus, any sample X which satisfies (3.83) is rejected. On the other
hand, the ,-sample satisfying A (X) > In(1-t)/t +In P/P, and the w,-
sample satisfying h(X) < — In (1-t)/t + In P /P, are misclassified.

Figure 3-12 shows the relationship between &(¢) and R (¢) for a simple
one-dimensional example. As seen in Fig. 3-12, as ¢ increases from 0 to 0.5,
€(#) increases from O 10 the Bayes error, and R (¢) decreases from 1 to 0.

Error-reject curve: The relation between R (1) and €(¢) resembles the
operating characteristics in which €, and &, are related with decision threshold
as the parameter. Therefore, the error-reject curve, which plots €(¢) as the
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La®)
Fig. 3-12 Reject region and probability.

function of R (), could be used as another indicator of the system behavior
[12-13].

For example, we can study, by using the error-reject curve, the effect of
the sample size used to design a decision rule as follows:

Experiment 1: The error-reject curve for Data I-/

Data: I-] (Normal, M"M =32, 4%)

Dimensionality: n =35, 20, 100

Classifier: Linear classifier of (3.84)

Sample size: N, =N,=kn, k=2,10,50 (Design)
N =N,=100n (Test)

No. of trials: t=10

Results: Fig. 3-13 [13]

In this experiment, the two covariance matrices are the same, and the
Bayes classifier becomes linear as in (3.12). In addition, since the effect of
design sample size on the error-reject curve is our concern in this expenment
the M, and X in (3.12) are replaced by their respective estimates M and T as
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125

L VMM=4

n=5, 20, 100: k=50
n=5, 20, 100: k=10
n=5
20

100

100

Error Probability ¢

k=2
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VMM=3

n=5, 20, 100: k=50
n=5, 20, 100: k=10
n=5

20

.050

k=2

.025

Reject Probability A

Fig. 3-13 Error-reject curves for Data I-1.

~ ~ ~ e AT Aol A AT A-] ~
hX) = (M,-M)TE X + ~2‘—(M, S -3 iy, (3.84)

where A:li is the sample mean and T is the sample covariance matrix estimated
from (N +N,) samples. The test sample, which was generated independently
of the design samples, was classified by using (3.83) and (3.84), and labeled
according to either "correct”, "error”, or "reject”. The numbers of error and
reject samples were counted and divided by (N ,+N;) to give é(/) and IA?(/),
respectively. A large number of test samples was used to minimize the varia-
tion of the result due to the finite number of test samples. Figure 3-13 shows
the error-reject curves, which are the averages of the 10-trial results. The mean
performance depends almost entirely on the ratio kK =N/n. As a rule of thumb,
it appears that & must be 10 or greater for the mean performance reasonably to
approximate the asymptotic one. This conclusion for the whole of the error-

reject curves is an extension of the same conclusion for the error without rejec-
tion.
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Experiment 2: The error-reject curve for Data I-A

Data:  Case I - /-A (Normal, n =8)
Case II - I-A except M| =M,
Classifier: Quadratic classifier of (3.11) with /I:I,-, i,-
Sample size: N =N,=kn, k= 2,4,8,50 (Design)
N|=N,=100n =800 (Test)
No. of trials: t=10
Results: Fig. 3-14 [13]

25
k=2
20 .
=4 Case |l (data I-A
k=8 with M,=M,)
v st
= k=2
?
S k=4 } Case | (data I-A)
10
g
i}
05
0

0 .2 4 .6 .8 1.0
Reject Probability R

Fig. 3-14 Error-reject curves for Data /-A.

In this experiment, the two covariance matrices are different, and the
Bayes classifier becomes quadratic as in (3.11). Again, M, and Z; in (3.11) are
replaced by their estimates A:I,- and X,. The resulting error-reject curves are
shown in Fig. 3-14. The general dependency on the ratio k=N /n is present,
but now a somewhat larger number of design samples is needed for good
results. The effect of the design sample size on the classification error will be
readdressed in Chapter 5 in more detail.

As the error-reject curve suggests, £(r) may be expressed explicitly in
terms of R(z). When ¢ is increased by Af, the reject region is reduced by
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ALg(1), resulting in a reduction of R(¢) and an increase of (). However, as
Fig. 3-12 suggests, the change of €(¢) occurs in two different ways, depending
on the right and left sides of Lg(s). That is, on the right side the ,-error
increases, while on the left side the m,-error increases. Therefore, defining
AL, and AL, as the change of the reject region in the right and left sides,

A€ = e(1+A1) — €(t) = '£L P.p,(X)dX + '£L P,pa(X) dX . (3.85)
On the other hand,
—AR=R(1)—R(1+A1)=_!;Lp(X) dx+J;L p(X)dX . (3.86)

Since t 2 P p(X)p(X) in AL, and t = P,p,(X)/p(X) in AL,, (3.86) can be

modified to

Pip(X)
pX)

Pyp,(X)

—t AR ;Ll e

p(X)dX + JAL p (X)dX

=_LLIPlp,(X) dX +.LLZP2p2(X)dX = Ae. (3.87)

Therefore, integrating (3.87) from O to ¢,

e) =-[ GR (). (3.88)
Thus, once we know R (1), €(¢) can be computed by (3.88) [12].

Model validity tests: In pattern recognition, we have a set of data, and
often assume a system model (the mathematical form of distributions) from
which the data were drawn. A typical example is the normality assumption.
Then, we need a procedure to test the model validity in order to assure a rea-
sonable fit of the model with the data. Since the description of the model is a
specification of probability distributions in # dimensions, it at first appears that
we face the difficult problem of multivariate goodness of fit tests. We avoid
this problem by using a transformation of the data to univariate statistics and
apply goodness of fit tests in one dimension. The reject probability is one of
the transformations.

The reject probability of (3.81) reveals that 1-R(¢) is the distribution
function of a random variable r (X), P,(1).

P()y=PrirX) <t} =1-R(1). (3.89)

Also, we know that €(¢) is determined from R(s) by (3.88). These facts
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suggest that appropriate statistics of »(X) can be used for model validity tests,
and that the error-reject curve is one option among many possible choices.
Three other possibilities are listed as follows [13].

(1) A test based on the mean of r(X): Since the Bayes error is E{r(X)}.
the sample mean of r(X) from the data can be compared with the Bayes error
obtained from the model. This tests only one moment of the distribution of
r(X). Therefore, although simple, this does not provide sufficient information
to compare two models.

(2) Chi-square goodness-of-fit test: The empirical distribution function,
f’,.(l), is obtained from r(X;),....r(Xy), and compared with 1-R(¢) of the
model by the chi-square test. This procedure divides the space into a finite
number of bins according to the reject threshold values. The test is conducted
to compare the empirical probability in each bin with the predicted one.

(3) Kolmogorov-Smirnov test for R(1): The empirical distribution func-
tion of r(X) is compared with 1-R(t) by measuring the maximum difference
between them,

For details regarding the use, definition, and critical values of these tests,
the reader is refered to [10].

Composite Hypothesis Tests

Sometimes p;(X) is not given directly, but is given by the combination of
p(X10,) and p(G;lw;), where p(X10;) is the conditional density function of
X assuming a set of parameters or a parameter vector ©;, and p (0, ®,) is the
conditional density function of ©; assuming class ®;. In this case, we can cal-
culate p;(X) by

p(X) = Jp(X10)p (0,10, d©, . (3.90)

Once p;(X) is obtained, the likelihood ratio test can be carried out for
p (X)) and p,(X), as described in the previous sections. That is,

piX) fp(XIG.)p(G,Imx)d&
PrX) X 10,)p(0,10:)d0, |

(391)

This is the composite hypothesis test.
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Example 9: Two distributions are known to be normal, with fixed
covariance matrices X; and X, for given expected vectors M, and M,. The
expected vectors M, and M, are also known to be normally distributed, with
the expected vectors M |y and M,, and covariance matrices K| and K,. Then
according to (3.90),

1
€
(27[)" |2' I 172 |K, | 172

pix) =] xp[- %(X - MYTE X - M)

- %(M,- — Myo) K7 (M, - Mo)dM, | (3.92)

This can be calculated by diagonalizing ¥; and K; simultaneously. The result
is

1
Qm)"?1Z4+K; 11

pi(X)=
x expl- é—(x — MY, + KX = M) (3.93)

Knowing that p;(X) is normal when p (X 1M;) and p (M, | ;) are normal,
we can simply calculate the expected vector and covariance matrix of X assum-
ing w;:

E(X 1oy} = [Xp,(0dX =[x (X 1M)p (M, 10X am,
= Jxpox 1Mpax1p M, 1 0,)am,
= JM,p(M, | (l),)dM,

=My, (3.94)

E{(X - M;o)X = M) 1w }
= JUx-Mo)X=M;0YTp X 1 M)aX o M, 1 @) M,
= [IZ) + M~M,0) MM, )T 1p (M, | ) aM,
=3, +K, . (3.95)

The result is the same as (3.93).
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3.3 Error Prebability in Hypothesis Testing

Associated with any decision rule is a probability of error. The proba-
bility of error is the most effective measure of a decision rule’s usefulness. In
general, the calculation of error probability is very difficult, although the con-
cept is quite simple. In order to evaluate (3.8), we must perform an n-
dimensional integration in a complicated region. A more promising procedure
is to determine the density function of the likelihood ratio, and integrate it in
the one-dimensional #4-space, as in (3.9) and (3.10). This is possible for nor-
mal distributions, and will be discussed in this section. However, if the distri-
butions are not normal, finding the density function of h is very difficult.
Thus, in many practical problems, we either employ experimental techniques
such as Monte Carlo simulation, or we seek bounds on the error probabilities.
We will discuss error bounds in the next section.

Linear Boundaries

When the distributions are normal with equal covariance matrices,
X, =X, =Z, the minus-log likelihood ratio becomes a linear function of X as
shown in (3.12). Since (3.12) is a linear transformation from an n-dimensional
space to one-dimension, & (X) is a normal random variable when X is a nor-
mally distributed random vector. The expected value and variance of & (X) can
be calculated as follows:

n = E{h(X)l o)
=M,-M)TZE{Xlw) + %(M,TZ"M, -MIZ'M,) . (3.96)
Since E{Xlw,;} = M;, (3.96) becomes
i :—‘;‘(Mz -MOIE WMy -M ) =1, (3.97)
nz=+%(M2-M1)TZ"(M2—M,):+1]. (3.98)

Also,
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ol =E[h(X) - n;) ]
=E[{(My ~M )X - M)} ;)
=My -M)ZTE(X - M)X -M) 10 )Z "M, - M)

=My -M)'Z' My -M)=2n. (3.99)

The above holds because E {(X - M;}X — M) lw;} is I; (=), as was shown
in (2.13).

Figure 3-15 shows the density functions of h(X) for ®, and ®,, and the

Ph(hfuw)

|
|
|
|
|
1
I
1

ﬂ=\/27]

|
[
|
|
|
l

- 0 +1

t=¢nPy /Pp
Fig. 3-15 Density functions of /(X) for normal distributions with equal co-
variances.

hatched parts correspond to the error probabilitics which are due to the Bayes
test for minimum error. Therefore,

& =[Pt 1opan=[ e Ra=1-0(" ) | (3.100)

e x/ﬁ

1

& =] puniopan=] " ——eat-o( ), @3.101)

where ®(-) is the normal error function of (3.39), and
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14 n y .

Thus, when the density function of the likelihood ratio is normal, the probabili-
ties of error can be obtained from the table of ®(.).

General Error Expression

Error expression: Before computing the error of the quadratic classifier
for normal distributions, let us express the error of a classifier in a general
form. Let a classifier be

w,
hX)z 0. (3.104)
wy
Then, the w;-error is

&= J;l(X)>()pl(X) dX = -L‘ (h(X)p 1 (X) dX

—L L Jwh(X)
= o Hlnﬁ(w) + I le p1(X)do dX

l ej(l)h(X)
— X)dw dX , 3.105
5] () do (3.105)

where u (-) is the step function. The second line is obtained by using the fact
that the Fourier transform of a step function, u (h), is [n&(w) + 1/jo]. Like-
wise, the (,-error is

e2= ] P20 dX = Jueh GO0 ax

-t _ b e
= 2R.U[7t5(0)) o le p2(X) dw dX

Jwh(X)
_2_11{.”6].(0 p2X)dowdX . (3.1006)

Then, the total error becomes



88 Introduction to Statistical Pattern Recognition

e=Pg + Py

Joh(X)
- % + ﬁﬁ" — P dodx (3.107)
where
P(X)=Pypy(X)—P3py(X). (3.108)

That is, the error is a function of A (X) and E(X), which specify the classifier
and the test distributions, respectively.

Another interpretation of (3.105) is given as follows. Let us define the
characteristic function of h(X) for w,, F | (®), as

Fr(0) = E(e/™10,) = [ ®p (X) dX

= Je/op, (k1)) dh . (3.109)

That is, F(®) may be obtained through an n-dimensional integration using
p1(X) or through a one-dimensional integration using p,(hl®;). Since F,(w)
is the Fourier transform of p,(h|®;), except for the sign of jw, the inverse
Fourier transform from F | (®) to p,(h l®,) is given by

prlh @) = E;—JF,(m)e—-"mhdm (3.110)
or
| jh
pu(=h o) = EJF,(co)ef do . (3.111)

Equation (3.111) indicates that F () is the Fourier transform of p,(-hlw;).
The multiplication by [n8(w) + 1/jw) in the Fourier domain corresponds to an
integration in the time domain from —ee to ¢. Therefore, from the second line
of (3.105) and the first line of (3.109)
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€ #Ilnﬁ(m) + ij]F,(m)da)

1 1 oh
2_‘”"].[”6((,0)"" j—w]Fl((D)(’jw’d(Dlh:o

0
[ pachon) dh

—oo

- f:p,,(h lo,) dh . (3.112)

Likewise, for ®,, multiplying by [md(w)— I/jo] in the Fourier domain
corresponds to an integration in the time domain from ¢ to +oo. Therefore,

o0 (4}
£, =L o (—h 1 @0p) dh =Lp,,(h \oy) dh . (3.113)

Procedure to compute the error: Thus, when a classifier and test distri-

butions are given, the error of the classifier can be computed as follows [14]:

(hH

Compute the characteristic function, F;(®w), by carrying out the n-
dimensional integration of (3.109). For quadratic classifiers with normal
test distributions, the explicit expression for F;(®w) can be obtained, as
will be discussed later.

Carry out the inverse operations of (3.105) and (3.106) as

oo F; w
go Ly LR
2 2nY—~ jo
oo Im[F, (l))
2 mo 0
L, 1= Fio)l
-2 —[ T Sin{/Fio)} do (3.114)
A (A
where + and — are used for i = | and 2, respectively. The real and ima-

ginary parts of F;(®w) are even and odd. Therefore, the real and ima-
ginary parts of F,(w)® are odd and even, which lead us to the second
line of (3.114). Note that this integration is one-dimensional. Therefore,
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we can carry out the integration numerically, even if F;(®w) is a compli-
cated function and not integrable explicitly.

Example 10: In order to confirm the above discussion, let us study a
simple case with two normal distributions: Ny(0,/) and Ny(M,I). From (3.12),
the Bayes classifier becomes

h(X)=MTX - %MTM , (3.115)
and the w,-density function Nx(0,/) is expressed by
I T

piX)= any 2 exp[——X X]. (3.116)

Therefore,

Fi(@) = [/ ®p, (x) dx
-[— 5 l)n/z exp [——(XTX 2joMX + ijTM)J

2
= [Ny(joM,Dexp [—"’TMTM - % ijTM] dx

2
= exp [——(;—MTM - %ijTM} . (3.117)

Equation (2.24) shows the characteristic function of a multivariate normal dis-

tribution, and (3.117) is a special case for one-dimension. Therefore, taking
the inversion,

ph(h 'ml) =

T 2
(h+ MM } A.118)

l
exp -
N2 NMTMm [ MM

That is, the ,-distribution of h has E{hlw,)=-M"M2 and
Var{hl®, } = M™M, which are identical to (3.97) and (3.99) for M ,=0, M,=M,
and Z|=Z2=l.
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Quadratic Classifiers

For a normal test distribution: When the quadratic classifier of (3.11)
is designed and tested on a normal distribution py(X), A(X) and p7(X) can be

given as
BOO= S XM )TE (XM )
1 Tl l IZ['

_?(X—Mz) 2% (X—M2)+?ln A -t (3.119)

and
[ [ _
pT(X) = Wexp |:—‘2—(X - MT)TZTI (X - MT) . (3'20)
T

where ¢ of (3.119) is a threshold. Applying simultaneous diagonalization and a
coordinate shift, Y = AT(X-M7),

ATZ;,A=1 and ATET'-Z3H'A=A. (3.121)
Then, M; and Z; are converted to
ATM;, -Mp)=D; and ATZA=K, (i=1,2). (3.122)

Thus, in the Y-space

h(Y)=%YTA"Y—VTY+(-, (3.123)
1 1o
pr(Y) = Wexp l—g)’ Y} , (3.124)
where
V=K{'D, -K3'D, . (3.125)
1K, |

¢ = %(DTK,“D, -DIK3'D,y) + L

. 126
2 "k ! (3.126)

The characteristic function Fr(®) can be computed now as
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Fr(®) = e/ Dp (V)dY

y

exp [_%yTu-ij")Y -~ jwVTY} expljoc ]dY

(21'[)"/2
= L Texp |-+ (1-jery) L
=y Hewp |- Umjok) iy

2.2
Vi

]
- fwe ldY
exP[ 2 l—jm/l,:‘eXpU :

" | oy} _
= E l~j—0)7x, exp ‘_2 l—_,(;)/?\,, CXPL](DC] , (3127)

where y;, v;, and A; are the components of Y, V, and A respectively. Depend-
ing on whether the error is generated by h(X) > 0 or h(X) < 0, the error must
be computed as

1 | Friw)
0= p, (h V 0p)dh = — + — do,
Joputhiopan = 5+ 5 J =
g = (3.128)
0 1 | Fr(w)
hlop)dh = — — — d
L puthtondn = 5 - 5= =

The integration of (3.128) must be carried out numerically. This integration is
not simple but is possible, because it is one-dimensional.

The result of (3.128) is quite general, because we may select the test dis-
tribution independently of the parameters used for design [15]. However, the
cases most frequently encountered in practice are My =M; and Z; =%,
(i=1,2). Therefore, let us find v;, A;, and ¢ for these cases.

My =M, and 21 = X;: In this case, we apply simultaneous diagonali-
zation and a coordinate shift such that
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ATZA=1, AT5A=H, and ATM,-M)=L. (3.129)
Then, (£7'-Z3')™" is also transformed to a diagonal matrix A by A as
A=ATE]-=23Y"'A=AT|A (/—u'I AT 'A
-1
=(-l . (3.130)

Since My =M, D, =0 and D, =A"(M,~M,)=L from (3.122). Also,
K, =Iand K, = }.l from (3.122) and (3.129). Therefore, inserting these into
(3.125) and (3.126), V and ¢ are

v=-l'L, (3.131)
1 T -1 1
C=—5L u L—?lnlul—t. (3.132)

That is. after computing H and L by (3.129), we replace A, and v; of (3.127)
by
1 ! L
— =]-— and Vi =, (3133)
)"1' L M

where ; and /; are the components of u and L. Then g; is computed by the
first equation of (3.128).

My =M, and Z;=2X,: After applying the transformation of
Y = AT(X-M,) where A is determined by (3.129), a further transformation of
-1i2
Z =L Y isapplied. Then, (3.129) is modified to

=12 =12 —-1/2

P s W = and

—~1/2

AT, My = UL (3.134)

Also, (Z7'-Z3"7! is diagonalized as

A=l PuU YT = e (3.135)

-1;2 -1
Since My =M this time, D, =-lL 'L, D, =0, K, =l , and K, =1 from
(3.122) and (3.134). Therefore, inserting them into (3.125) and (3.126), V and
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¢ are computed as

v=-Uu "L =-n"’L (3.136)

¢ = %LTM_UZMM_]/ZL - % In ILLI -1

L'L——=In Il -r. (3.137)

That is, after computing l.l and L by (3.129), we calculate A;, v;, and ¢ of
(3.127) by using (3.135), (3.136), and (3.137). Then €, is computed by the
second equation of (3.128).

Example 11: The technique was applied to Data I-A (n=8) in which
two normal distributions have significantly different covariance matrices. First,
the density functions of h for w, and ®, are numerically computed by using
(3.110) and plotted in Fig. 3-16 [14]. Note that these density functions are
skewed from a normal distribution. The Bayes error was computed using
(3.128), resulting in

€ =1.6%, € =22%, and €=19%, (3.138)

where P| = P, =0.5 and r = 0 are used.

Approximations

Since the quadratic equation of (3.11) represents the summation of many
terms, the central limit theorem suggests that the distribution of 4 (X) could be
close to normal. If that is true, we only need to compute E{#(X)!®;} and
Var{h(X)lw;}. Then, the error can be calculated from a normal error table.

Expected value of h(X): The expected values can be calculated easily
regardless of the distributions of X as follows:

ElhX)la, ) = % tr [ZV E{(X-M )X-M )" 1@, }]
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Fig. 3-16 Density functions of # (X) for Data I-A.

- % tr [£5'E{(X-M | )(X=M )’

— (MM Y X-M ) — (X-M )M ,-M )T

T ] 1z
+ (MZ_Ml)(MZ—MI) l(.l)ll] + E ln

1z,
1 _ | e

=Str (I-23'%,} - 5<M2—M.)’zz'<Mz—M|)
] | 121
— -1 .

T2 a5,

Likewise, for m,

(3.139)
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E{h(X)lm,} = —;— tr {Z7'Z,-1} + —;—(MI—MZ)ZT'(M,—MZ)

Iz, |
(2,

+ 2i In ~1. (3.140)

Or, after simultaneous diagonalization from Z, and X, to / and A by ¥ = A7X,

12 1 (dy—d ;) 1
EIh(Y)'(‘Dl}z-EZ[(l_}\_)——T_——+ In }\—]—1, (3141)
i=) i i i

n

E{h(Y)lo,) = -;—Z[(k,-—l) +(dy—d ;)2 + In %1 -1, (3.142)

i=]

where d,; is the ith component of D, = ATM,.

An interesting property emerges from (3.141) and (3.142). That is, if
t=0,

E(h(Y)lo,}) €0 and E{h(Y)l@,} >0 (3.143)

regardless of the distributions of X. These inequalities may be proved by using
Inx € x~1. From (3.141), (1-1/A;) + In (1/X;) € 0 and —(d;—d;;)*/A; < 0 yield
E{th(Y)lw;} £0 for t=0. Also, from (3.142), (A,~1)-In X, 20 and
(dy—d 1;)* 2 0 yield E{h(Y)lw,} 20 for t = 0.

Variance of h(X): The computation of the variance is more involved.
Therefore, only the results for normal distributions are presented here. The
reader is encouraged to confirm these results. It is suggested to work in the Y-
space where the two covariances are diagonalized to [ and A.
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2

dy—d ;)
+2————(2 )

Var{h(X) | w, } =%Z 2

i=1

|
—w

= % r {(/-25'2,)*}
+ (MM )TEFZ MM ) (3.144)

1 n
32[(%‘1 )2+ 2hi(dy—d ;)]
i1

Var{h (X))l w,}

Il

l _
S (ZT'E,-N?%)

+ (M -MHTETEZT MM M) . (3.145)

3.4 Upper Bounds on the Bayes Error

It is evident from the preceding discussion that the calculation of the
error probability is, in general, a difficult task. Even when observation vectors
have a normal distribution, we must resort to numerical techniques. However,
a closed-form expression for the error probability is the most desirable solution
for a number of reasons. Not only is the computational effort greatly reduced,
since we need only to evaluate a formula, but more importantly, the use of the
closed-form solution provides insight into the mechanisms causing the errors.
This information is useful later when we consider the problem of feature selec-
tion.

When we cannot obtain a closed-form expression for the error probabil-
ity, we may take some other approach. We may seek either an approximate
expression for the error probability, or an upper bound on the error probability.
In this section, we will discuss some upper bounds of error probability.

The Chernoff and Bhattacharyya Bounds

Chernoff bound: The Bayes error is given in (3.7) as
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£ = Jmin[P ,p, (X),P2p2(X)] dX . (3.146)

An upper bound of the integrand may be obtained by making use of the fact
that

minfa, b]<a’h"™ 0<s<1 (3.147)

for a, b>0. Equation (3.147) simply states that the geometric mean of two
positive numbers is larger than the smaller one. The statement can be proved
as follows. If a<b, the left side of (3.147) is a, and the right side can be
rewritten as ax(b/a)'™*. Since (b/a) > 1 and 1-s 20 for 0 < s < I, the right
side becomes larger than the left side. Likewise, if a>b, the left side of
(3.147) is b, and the right side is rewritten as bx(a/b)*, which is larger than b
because (a/b) > 1 and 5 20. Using the inequality of (3.147), € can be
bounded by

£, = PP [t COpss () dx for 0ss<1, (3.148)

where g, indicates an upper bound of €. This g, is called the Chernoff bound
[16]. The optimum s can be found by minimizing €,,.

When two density functions are normal as Ny(M ,Z|) and Ny(M,,%,),
the integration of (3.148) can be carried out to obtain a closed-form expression
for g,. That is,

[p3 1 (X)dxX = ) (3.149)
where
- .
Hes) = 1‘2—3’<M2—M1>’ [SZ) + (1=)5, ] (MM )
IsX 1=5)X5 |
LT A Gl (3.150)
2 I, 151, 11

This expression of (s) is called the Chernoff distance. For this case, the
optimum s can be easily obtained by plotting Li(s) for various s with given M,
and Z,. The optimum s is the one which gives the maximum value for pi(s).
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Bhattacharyya bound: If we do not insist on the optimum selection of
s, we may obtain a less complicated upper bound. One of the possibilities is to
select s = 1/2. Then, the upper bound is

&, =P P, Np, (X)po(X) dx =P P, e (3.151)
in general, and for normal distributions

2+
it (M,—M)

u(1/2) = %(MZ—M,)T

| i+, |

= I —=— (3.152)
2 NIZ HE,l

The term p(1/2) is called the Bhattacharyya distance, and will be used as an
important measure of the separability of two distributions [17].

When £, =%, = X, the Chernoff distance, (3.150), becomes

His) = #(Mz—MOTZ"(Mz—MI) . (3.153)

In this case, the optimum s can be obtained by solving

-2 :
aus) _ u(MZ—M,)7>:-‘(Mz—Ml) =0. (3.154)
ds 2
The solution is s=0.5. That is, the Bhattacharyya distance is the optimum
Chernoff distance when X, = Z,.

As seen in (3.151), ¢, = \JP,Pz expl—1(1/2)] or Ing, =-pu(1/2)
—InVP,P,. Figure 3-17 shows the relation between p(1/2) and ¢, for
P] = P2 =05

Throughout this book, we use the Bhattacharyya distance rather than the
Chernoff because of its simplicity. However, all discussions about the Bhatta-
charyya distance in this book could be extended to the Chernoff.

As seen in (3.152), the Bhattacharyya distance consists of two terms.
The first or second term disappears when M|, =M, or X, =Z,, respectively.
Therefore, the first term gives the class separability due to the mean-difference,
while the second term gives the class separability due to the covariance-
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Fig. 3-17 Relation between |(1/2) and g,,.

difference. It is important to know which term is dominant, because it deter-
mines what type of a classifier must be designed for given distributions.

Example 12: Figure 3-18 shows the Chernoff distance p(s) for DATA
I-A. Although the two covariance matrices are significantly different in this
case, the optimum s is sy = 0.58, which is close to 0.5. Also, the resulting
bound of g, = 0.5¢ ¢ = 0.046 (assuming P; = P, = 0.5) is very close to the



3 Hypothesis Testing 101

A : ,u(Sg)=2.39
! 1(8)
|
1 / b
- |
2.0 | 410
|
t
t
! 0.8
|
a I 4
— I
Tt ! HJos %
! e
1.0 ! ]
- : ~0.4
L s f _
1e %0091
3 | 0.2
I
|
i
L 1 1 | -
0.0 02 0.4 05 0.6 0.8 1.0 s
80=0.58

Fig. 3-18 Error bound vs. s.

Bhattacharyya bound of ¢, = 0.5 ¢™!"? = 0.048. The Bayes error for this data
is €= 0.019.

Example 13: Let us compute the Bhattacharyya distance between two
normal distributions, Ny (0./) and Ny(0,A), which share the same mean. Since
the first term of | disappears in this case,

12 1+A;
n(1/2y = EZ In 2\1)\— . (3.155)

=1

Since (1+k,-)/2‘/?\—,-2 1 regardless of the value of A; (A; is the variance and
positive), ln(l+k,-)/2‘/?\_,-20, where the equality holds only when A; = 1.
Therefore, as n goes to oo with A;=1, p(1/2) can go to . This example shows
that, even if M,=M,, the Bayes error in a high-dimensional space could
become very small with different covariance matrices.

Example 14: Let x; (i=1...., n) be independent and identically distri-
buted random variables. The density functions of x; for @, and ®, are uniform
in [0.4, 0.6] for ®, and {0, 1} for ,. The Bhattacharyya bound for these two
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distributions is
e = VP P, [Np 1 (Xp, () dX

n +oo

=NP,P, HJ Np 1 (X)p 2 (x;) dx;
i=1
n 0'6

=VP|P2HJO4 V5 dx;
ici O

= QPle 0.447" . (3.156)

Thus, €, becomes small as n increases. When n=1 and P, =P,=05, €, is
0.224 while the Bayes error is 0.1.

Other bounds: Many other bounds can be derived similarly. One of
them is the asymptotic nearest neighbor error, which is a tighter upper bound
of the Bayes error than the Bhattacharyya bound, as given by

£S2J'P|P|(X)P2P2(X)

5 dx < NP p ()P op(X) ax . (3.157)

The inequalities are verified by proving min[a,b] < 2ah/(a+b) < Vab for any
positive a and b. If a>b, the left inequality becomes b < 2b/(1+b/a). Since
b/a < 1, the inequality holds. The case for a<h can be proved similarly. The
right inequality holds, because a+b —2ab = (\/; + \/7)_)2 >0.

These measures of class separability have a common structure. In the
Bayes error, P p(X) and P,p,(X) are integrated in L, and L, respectively,
thus measuring the overlap of two distributions exactly. In both the nearest
neighbor error and the Bhattacharyya bound, this overlap was approximated by
integrating the product of P p,(X) and P,p,(X). However, in order to ensure
that the dimension of the integrand is one of a density function,
P\p(X)P,p,(X) is divided by the mixture density p(X) in the nearest neigh-
bor error while the product is square-rooted in the Bhattacharyya bound. The
properties of the nearest neighbor error will be discussed extensively in
Chapter 7.
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Validity of the Bhattacharyya Distance

The Bhattacharyya distance for normal distributions, (3.152). is a very
convenient equation to evaluate class separability. Even for non-normal cases,
(3.152) seems to be a reasonable equation, measuring in the first term the dis-
tance between M| and M, normalized by the average covariance matrix, and in
the second term the distance due to the covariance-difference. The question
here is how widely (3.152) can be used. Since we cannot examine all possible
non-normal distributions, we limit our discussion to a family of gamma distri-
butions. Also, in order to avoid complexity, we present only one-dimensional
cases. Note that, if two diagonalized covariance matrices are used, p(1/2) of
(3.152) is the summation of the Bhattacharyya distances of individual vari-
ables.

p for gamma densities: When two one-dimensional distributions are
gamma as shown in (2.54), j\lp 1(x)p,(x) dx can be computed as

B,+l Bo+1

2 B,+B: o)+ Y

2 ——
j Np (x)po(x)dx = ! v 2 e ? dx
\/r([31+1)r([32+|)

r BI+B2+2 B+l Pyt
o

2 2a22

) VL@, +D0B,+1) Brpor2

2

(3.158)
o+
2

where o, and B, are the parameters of the gamma distribution for ®,. Or, tak-
ing the minus-log of (3.158),

Ba+1 B +1
Bi+B,+2 B +Pa+2 —n?2

2 A

B +By+2 [a
=" 1In




104 Introduction to Statistical Pattern Recognition

r Bi+B,+2
1 2 (3.159)
—In . .
I+ DI (Bo+1)
On the other hand, when (3.152) is used to compute W,
Bitl B+l ’ 1| Bl N B+l
I o, o, | 2| of o}
Mo = 3 (3.160)

+ —=In
Bitl  Potl 2 , /[31+1 Br+1
af o3 af o}

2

This is based on E{xlw;} = (B;+1)/; and Var{x|a;} = (B;+1)/a? as in (2.56)
and (2.57).

In many applications, B, and 8, are equal or close to each other. There-
fore, in order to simplify the discussion of comparing (3.159) and (3.160), let
us assume P, =P, =P. Then,

3.161)

and

p=ﬂ{l~-2—]+ilni[ﬂ+gﬁ] a6
4 4 o /0y + o/ 2 210, o |- ’
Figure 3-19 shows the relation between Lig and p, for various values of B. For
a given P and g, (3.161) is solved to find the corresponding o, /ct;, which is
inserted to (3.162) to compute p,. The values for p, are selected between 0
and 2 which corresponds to €, between 0.5 and 0.068 from Fig. 3-17. Figure
3-19 indicates that [, could be significantly different from , particularly for
smaller B’s.

Variable transformation: The power transformation of (3.77) tends to
convert a gamma distribution to a normal-like one. Therefore, it must make [,
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—
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Fig. 3-19 Relation between L, and p, for gamma densities.

closer to g so that p, could be used for a wider range of distributions. The
mth order moments of the transformed variable, y, are given in (3.78). Thus,

I(B;+1+
E{ym)’_] - L_(B—V)z ;4_

& T S (3.163)

I TBADTBA+1+2v-T*B+1+v) B
a’_ZV r2(B/+l) = a’.zV .

Var{ylw;} = (3.164)

Then, using B, =B, =P for simplicity, L, in the y-space is
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1 1 B | ]
2|l — - — 5 +
1 A o) o | 2 {ad  od J
He = — + —In
Sl L, 1] 2 .[B B
2 o od a? ol
v v
A? 2 1, 1o ol
=— |- +—In—||— | +|— 3.165
4B { (oy/00)" +(0p/04)" } 2 2|, [011 ( )

Figure 3-20 shows the relation between py of (3.161) and p, of (3.165) for
v=1/2, 1/4 and = 0, —0.5. For larger B’s, the curves become very close to
the u, =y, line. These curves indicate that p, and p, are now much closer
than the ones of Fig. 3-19. Thus, p, of (3.165) may be used for a wider range
of B.

Once variables are transformed to normal-like distributions, we can
evaluate the class separability more easily. Also, the design of a classifier
becomes casier, because a standard quadratic classifier could be adopted, rather

than designing a complicated classifier depending on the underlying distribu-
tions.

Before leaving this subject, we would like to point out two important
properties of this variable transformation.

The first point is that the correlation coefficients are relatively unaffected
by the transformation of (3.77). In order to see this, let us expand y; = x}
around x; = E{x;} by a Taylor series up to the first order term.

V=X =X 4V (X-X). (3.166)
Then,
—V
Ely,} =x; , (3.167)
Varly;} = El(y,-—i,-v)2 = (vif_l)ZVar{xi} , (3.168)

and
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Fig. 3-20 Relation between L, and , after transformation.

- ElGi—%)0,7%))]
r \/Varly,-}Var{yj}

i,

W R, DExi-X)(x,-X,)]

,\/ —v-1 —v-1
(vx; )zVar{x,-}(vxj )2 Var(x;)
= Puy, - (3.169)

That is, by the first order approximation, p, . =p,.. Whether the first order

approximation is good enough or not depends on the distribution.

Example 15: Let us study an exponential distribution and v=1/4. In
the exponential distribution, $=0 and E?{x} = Var{x}. Therefore, the second
order approximation of (3.167) becomes
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Ely) =X + —V%liv_zg{(x—i)z}
=+ LZ—VL];“
= (1 - 0.004)% . (3.170)

s L

This is reasonably close to x  which is the first order approximation. Prob-
ably, the first order approximation in this case would be acceptable for qualita-
tive discussions.

The second point is that, by changing v of the transformation, the
weights of the first and second terms of the Bhattacharyya distance vary. The
smaller v is, the more the first term tends to dominate. That is, the class separ-
ability comes more from the mean-difference than the covariance-difference.
This means that we may have a better chance to design a linear classifier after
the transformation with a small v.

Furthermore, when two gamma density functions of x share the same [,
we can achieve Var{yl®,} = Var{ylw,} by using another popular log-
transformation 'y = In x [18]. Suppose that x has a gamma density of (2.54)
and we apply y = In x, then

A GO SR r'(B+1)
Ely} = r(B+1)jo (n x)xfedx =~ In oo L (3.171)
BH -
2 _ o 2 B-o g _ p2 1
Ely?) r(B+1)jo (In xY2xPe~ dx = E?{y) +,->=:1(B+l+i)2 , (3.172)

where I (B+1) = dT(x)/dx 1 4,,. Therefore,

i 1

Varly} =Y ———.
i ,§>(B+l+i)2

The integrations of (3.171) and (3.172) are obtained from an integral table [19].

Note from (3.173) that Var{y} is independent of ¢.. Therefore, if two classes

have different o’s but the same [P, the variance-difference between the two

classes disappears, and the class separability comes from the mean-difference

only. Thus, after the transformation, the Bhattacharyya distance in the y-space
becomes

(3.173)
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(Inoy —1n o)’
M, = l—*——' 2 (3.174)

8 oo
§<B+l+:>2

The relation between |, of (3.161) and Mo of (3.174) is plotted in Fig. 3-21.
Figure 3-21 shows that |, tends to be smaller than py. This could be accept-
able, because VPP, exp[—|,] still gives an upper bound of the Bayes error
although the bound is not as good as ;.

#gﬂ

1 2 Ho
Fig. 3-21 Relation between g and i, after log transformation.

The above advantage of the log-transformation is often cancelled by the
disadvantage that the distribution of y tends to have a long negative tail when x
is distributed in [0, 1]. The tail generates more error when a standard quadratic
or linear classifier is used.

Thus, when the application of a transformation is considered, a careful
study must be conducted, and a proper transformation suitable to the given dis-
tributions must be selected.
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3.5 Sequential Hypothesis Testing

In the problems considered so far, all of the information about the sam-
ple to be classified is presented at one instant. The classifier uses the single
observation vector to make a decision via Bayes rule since no further observa-
tions will be made, and, as a result, we essentially have no control over the
error, unless we can modify the observation process.

In many practical problems, however, the observations are sequential in
nature, and more and more information becomes available as time procedes.
For example, the vibration of a machine is observed to determine whether the
machine is in good or bad condition. In this case, a sequence of observed
waveforms should belong to the same category: either "good” or "bad” condi-
tion. Another popular example is a radar detection problem. Again the
sequence of return pulses over a certain period of time should be from the
same class: either existence or nonexistence of a target. A basic approach to
problems of this type is the averaging of the sequence of observation vectors.
This has the effect of filtering the noise and reducing the observed vectors
down to the expected vector. Thus, it is possible, at least theoretically, to
achieve zero error, provided that the expected vectors of the two classes are not
the same. However, since obtaining an infinite number of observation vectors
is obviously not feasible, it is necessary to have a condition, or rule, which
helps us decide when to terminate the observations. The sequential hypothesis
test, the subject of this section, is a mathematical tool for this type of problem.

The Sequential Test

Let X,,...,X,, be the random vectors observed in sequence. These are
assumed to be drawn from the same distribution and thus to be independent
and identically distributed. Using the joint density functions of these m vec-
tors, p(X;, . . . ,.X,;) (i = 1,2), the minus-log likelihood ratio becomes
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pl(le--‘va) mn pl(Xl)
=1 —_— = —In ——
T XL X Zl[ an(Xi)}

3

=Y hX,), 3.175)
1

!

where #(X) =-In p (X)/p,(X) is the likelihood ratio for an individual obser-
vation vector. The s of (3.175) is compared with a threshold such as InP /P,
for the Bayes classifier, and the group of the samples {X,,....X,} is
classified to w; or @,, depending on s < 0 or s > 0 (assuming InP,/P, =0).
The expected values and variances of s for ®, and ®, are

Jj=1

Var{slw;} = EVar{h(Xj)lw,] =m 0,-2 R 3.177)
j=1

since the 4 (X;)’s are also independent and identically distributed with mean n;
and variance G,.

When the Bayes classifier is used for #(X), it can be proved that 1, <0
and 1, 2 0 as follows:

X X
sz{_l pi( )le}:j{l 221 )}p,(X)dX

" paX) "0
(X)
SJ.{fnz(x) - 1}pl(X)dX =_[p2(x)dX —_[pl(X)dX =0, (3.178)
1

p1(X) p1(X)
=FEy-In — | =—jq1 17).¢
n: E{ " P “’2} J{ " P2 }”2(’”
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pi1(X)
2 — -1 X)dXx =0, 3.179
> f{pz(x) }Pz( ) (3.179)

where the inequalities are derived from In x < x — 1. The equalities in (3.178)
and (3.179) hold only when p,(X) = p»(X).

Thus, as m increases, £ {sl®, } decreases and E{sl®,} increases in pro-
portion to m, while the standard deviations increase in proportion to Nm. This
is true regardless of p | (X) and p,(X) as long as p | (X) # p,(X). Therefore, the
density functions of s for ®, and ®, become more separable as m increases.
Also, by the central limit theorem, the density function of s tends toward a nor-
mal distribution for large m.

Example 16: In order to see the effect of m easily, let us study a sim-
ple example in which 4 (X) is distributed as N,(-1,1) for ®, and N,(+n,1) for
;. Then, s is distributed as N,(—-mm,m) for ®, and N,(+mm,m) for w,.
Therefore, the Bayes error of the sequential classifier for P} =P, =0.5is

400

1 12 fr
—e dx=1-®dmim), (3.180
J:] m '\fzn n )

€
where ®(-) is the normal error function. Figure 3-22 shows the relation
between € and m for various 1.

In practice, the p;(X)'s are not known, and the Bayes classifier is hard to
design. Therefore, in place of the Bayes classifier, some classifiers such as the
quadratic classifier of (3.11) and the linear classifier of (3.12) are often used.
These two classifiers satisfy

E{h(X)l®w} <0 and E{h(X)lw;}20 (3.181)

regardless of the distributions of X as shown in (3.143), (3.97), and (3.98)
respectively. Note here that (3.97) and (3.98) can be derived from (3.96)
regardless of the selection of X, Therefore, by increasing m, we can make the
errors of these classifiers as small as we like. However, note from (3.97) and
(3.98) that E{h(X)lw;} =E{h(X)!w,} =0 for M, =M,. Therefore, when
M| =M,, we cannot use the linear classifier of (3.12) for sequential operation.



3 Hypothesis Testing 113

o) €%
oﬂ— 50
==
30 P h—t
T‘!I‘ \\ =
20 S \“ ))\\
10T N
i “ \‘\\ \\Qj‘—‘_‘ ~
e N
B A N S A
-2 \ \
A
1\ =% = S
TR N
D, \ AN
3k, A\ \ .

1 4 9 16 25 36 49 64 81 100 m
1 2 3 4 5 6 7 8 9 10 Vm
Fig. 3-22 Effect of the number of observations.

On the other hand, the E {#(X)|w;}’s for the quadratic classifier do not become
zero unless both means and covariance matrices are the same for o, and ®,, as
seen in (3.139) and (3.140).

The effectiveness of m for reducing the error is significantly diminished
when samples and subsequently h(X;)'s are correlated. This can be observed
by computing the variance of s for correlated h’s as

Var{s|w;) = §Var{h(x_,)tm,-1

J=1

mom

j=tk=l
ik

That is, the second term does not disappear and contributes to increase
Var{slw;}.

Example 17: Suppose that Var{a(X;)lw,} =62, and E{(h(X))
- X)n)le; ) =p/™'6?. Then, the second term of (3.182) becomes
2(5,2[p,»(m—l)+p,2(m—2) + ... +p" '], When p; =0.5 and m=10 are used,

it becomes 1662, Therefore, Var{sl®,} = 2667 instead of 106} for p; = 0.
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When p; =1, Var{slw;} = mo? + 20,7“[(m—1}|-. .. +1]=m?*c?. There-
fore, the error of the sequential classifier is the same as the one of a classifier
with a single observation, regardless of the value of m.

Multi-sensor fusion: The multi-sensor fusion problem may be handled
in a similar way as the sequential test. Suppose that m different sensors (such
as radar, infrared, and so on) are used to gather data, and the ith sensor gen-
erates a vector X; with k; measurements. Then, we form a vector with

(k; + ... +k,) components, concatinating X,,...,X,. However, often in
practice, X, ... ,X,, are mutually independent. Therefore, the Bayes classifier
becomes

pl(Xh“ "Xm)
n——omo—

hXy,....X,)=-1
‘ PaX 1. X
w px, (Xil®y) @ | P, (3,183
=Y |-In ———— n—, .
) MTATS Y )

where — In py (X; | @ )/py (X;10,) is the minus-log likelihood ratio for the ith
sensor outputs. The Bayes classifier for the multi-sensor system can be
designed by computing the minus-log likelihood ratio for each individual sen-
sor outputs, adding these ratios, and thresholding the summation. Note that
(3.183) is similar to (3.175). However, there is a difference between the
multi-sensor and sequential classifiers in that each likelihood function is dif-
ferent for the multi-sensor classifier, while it is the same for the sequential
classifier. When the outputs of different sensors are correlated, we need to
treat the problem in the (k +. . . +k,,)-dimensional space.

The Wald Sequential Test

Wald sequential test: Instead of fixing m, we may terminate the obser-
vations when s of (3.175) reaches a certain threshold value. That is

spm<a —>X'sew,
a <s, < b — take the (m+1)th sample , (3.184)

b<s, —Xsew,
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where s,, is used instead of s to indicate the number of observations, and @ and
b are thresholds to determine ®; and @, respectively. This decision rule is
called the Wald sequential test [20].

The error of the Wald sequential test is controlled by @ and b; that is, as
the absolute values of a and b increase, the error decreases, while the number
of observations required to reach the decision increases. The relation between
the threshold values and the error can be expressed by

& = ZL Wps,(s,v l@y)ds; , (3.185)
Jj=1

€ = ZIG ps,(sj1@)ds; . (3.186)
j=1

Theoretically, we should be able 1o find ¢ and » from (3.185) and (3.186) for
any given & and g;.

A simpler way to find the threshold vaiues was developed by Wald. The
procedure is as follows: At the mth observation, the likelihood ratio is tested as

X . X
e DX X)X e o
paX1.. . X
SB-oX'sew. (3.187)
Therefore,
E‘,I:mmp'(x"' D X)dX L dX,
ZAZJ, P2 X X)dX L dK (3.188)
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’"Z:l-’;msﬂpl(xlv - ~7Xm)dX| B dX,,,
SBZISBPz(Xl,-...X,,,)dxl...dx,,,. (3.189)
m=1"

The left side of (3.188) includes all X’s which belong to ®,; and are classified
correctly; hence, it should be 1—€;. On the other hand, the right side of (3.188)
includes all X’s which belong to w, and are misclassified as ;; hence, it
should be &,. By the same argument, the left and right sides of (3.189)
become €, and 1-¢€,, respectively. Therefore, (3.188) and (3.189) are rewritten
as

1-¢, 2 As, , (3.190)
€ <B(l -¢y), (3.191)
or
1-¢g
2A, (3.192)
€
B cp 3.193
1 —¢& - G )

Thus, for any given €, and €,, A and B are obtained by (3.192) and (3.193).
When the minus-log likelihood ratio is used, A and B should be converted to

1 —¢g
a=—-InA2-~1In , (3.199)
]

€

b=—InB <~1In .
1 -¢

(3.195)

When the increments # (X;) are small, the likelihood ratio will exceed the thres-
hold values A and B by only a small amount at the stage where ®; is chosen.
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Thus, the inequalities of the above equations can be replaced by equalities, and
A and B are approximately determined by (1 —€,)/e, and €,/(1 —¢€,). Or, €,
and €, can be expressed in terms of A and B as

B(A-1)

= - 196

g == (3.196)
_1-B

Qo (3.197)

A few remarks concerning the properties of the Wald sequential test are
in order.

(1) For the derivation of (3.192) and (3.193), X,,X,, ... do not need to
be independent and identically distributed.

(2) It can be proved that the Wald test terminates with probability 1
[20].

(3) The Wald test minimizes the average number of observations to
achieve a given set of errors, €, and &, [21].

Expected number of observations: In the Wald sequential test, the
average number of observations varies, depending on the distributions and the
error we would like to achieve. In order to discuss this subject, let m be the
number of observations needed to reach the upper or lower threshold value.
The term m is a random variable. Equation (3.175) is rewritten as

m
s=Yh(X)) (3.198)
J=1
Then s should be either a or b of (3.184), with
s=a (accept ®y) with probability 1 — ¢, when X's € w, ,
s=a (accept ) with probability €, when X's € o, ,
s =b (accept w,) with probability €, when X's € o, , (3.199)

s =h (accept ,) with probability | — €, when X's € o, .
Therefore,

E{S'(Dll=[l(l_€])+b€| , (3200)
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Elstw,} =ag, + b(1 — &) . (3.20D
On the other hand, since (3.198) is a random sum, it is known that
E{sla} =E{E{sim,0;}}) = E{mn;lo;}) = E{mlw;}n;, (3.202)

where E (h(X;)w;} is equal to n;, regardless of j. Thus, the average number
of observations needed to reach the decisions is
a (l - El) + bel

Emo )= —>W— "1 (3.203)
m

ag; + b(l - &)
N2 .

Eimiw; ) = (3.204)

Example 18: Let us consider an example with normal distributions.
Then, h(X;) becomes the quadratic equation of (3.11), and n; = E{h (X)) ;)
is given by (3.139) or (3.140). On the other hand, we can select ¢, and €, as
we like, and a, b, a (1 — €,) + bg,, and a€, + b (1 — €,) are subsequently deter-
mined, as shown in Table 3-3.

TABLE 3-3
AVERAGE NUMBER OF OBSERVATIONS

g, =€ 102 102 10* 105 10°
—-a=bh: 46 69 92 115 138
a(l-g)+be;: -46 -69 92 -11.5 -13.8
ag, +h(1-g). 46 69 92 I1.5 138

In order to get an idea how many observations are needed, let us con-

sider one-dimensional distributions with equal variances. In this case, (3.97)
and (3.98) become

(my —m,y) (my —m,)?
M= and My = (3.205)
20° 20
If we assume (m,; ~m,;))o=1, then we have heavy overlap with
€, =€, = 0.31 by the observation of one sample. However, we can achieve
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107% as €, and €, by observing an average of 27.6 samples. This indicates how
errors can be significantly reduced by using a relatively small number of obser-
vations.

Computer Projects

Two normal distributions are specified by the following parameters.

0 1 05 1 -05
My=My=lol» Zi=los5 1| 22|05 1 |

P,=P2=0.5.

1.  Generate 100 samples from each class.

2. Design the Bayes classifier for minimum error by using given M,, Z; and
P; (the theoretical classifier). Classify the generated samples by the
classifier, and count the number of misclassified samples.

3.  Plot the theoretical distribution function derived from (3.73) and the
empirical distribution functions of (3.71), and test the normality of the
generated samples.

4.  Plot the operating characteristics by classifying the generated samples
with the theoretical classifier.

5. Plot the error-reject curve by classifying the generated samples with the
theoretical classifier.

6.  Compute the theoretical Bayes error for the given normal distributions.

7.  Changing the threshold value ¢ in Project 6, plot the theoretical operating
characteristics and error-reject curve, and compare them with the results
of Projects 4 and 5.

8.  Plot the Chemoff bound as a function of s, and find the optimum s and
the minimum Chernoff bound.

9. Perform the sequential classification for m =9 and 25. Generate 100 m-
sample-groups-from each class and count the number of misclassified
m-sample-groups.
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Problems

1. Two one-dimensional distributions are uniform in {0, 2] for @, and {1, 4]
for w,,and P, = P, =0.5.

(a) Find the Bayes boundary for minimum error, and compute the
Bayes error.

(b)  Plot the operating characteristics.

(c) Find the Neyman-Pearson boundary with g, = 0.25.
(d) Find the minimax boundary.

(¢) Compute the Chernoff bound, and find the optimal s.
()  Compute the Bhattacharyya bound.

2.  Two normal distributions are characterized by

P, =P,=05,

+1 -1 1 0.5
Mi=1g|» Ma=|g|. Ti=Z2=|p5 |-

(a) Draw the Bayes decision boundary to minimize the probability of
error.

(b) Draw the Bayes decision boundary to minimize the cost with
C11 =Cx» =OilndC12 =2C2|.

3.  Repeat Problem 2 for

1 05 I 05
Li=los 1| ad L= 455 g |-

4.  Assuming that ¢, =¢5; =0 and ¢, =c,, in Problem 2, plot the rela-
tionship between the threshold values of the likelihood ratio and the pro-
babilities of errors.

(a) Plot the operating characteristics.

(b) Find the total error when the Neyman-Pearson test is performed
with €, = 0.05.

(c)  Find the threshold value and the total error for the minimax test.
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10.

(d) Plot the error-reject curve.

Two normal distributions are characterized by

P, =06, P,=04,

G I e

Compute the Bayes error for ¢} =¢y =0and ¢, = ¢

Show how to derive the variances of (3.144) and (3.145) for normal dis-
tributions.

Let x; (i=1,....n) be independent and identically distributed random
variables, whose distributions are exponential with the parameters &) for
®, and o, for w,. Find E{h(X)lw;} where h(X) is the quadratic equa-
tion of (3.11).

The equivocation is given by

dax .

-1 2 Pipi(X)
21n2j,§P"p"(x) =%

Prove that the equivocation is larger than the asymptotic nearest neighbor
error but smaller than the Bhattacharyya error bound.

When two distributions are normal with an equal covariance matrix, Z,
both the Bayes error, €, and the Bhattacharyya bound, g, are expressed
as functions of # = (M,~M ) 27! (M,-M). Plot e and g, vs. .

Three distributions are normal with

0 6t 0
My=My=M3=|ot, X;= e

0 o,
2 2 2
5. = c,+0; 0 g = c, 0
2= ) 3=
0 ol 0 ol+oc?

n

The cost matrix is
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011
10a
l1ao
where0<a < land P, =Py =p.
(a) Find the Bayes boundary and plot it in the X-coordinate system.

(b)  Write an expression for the probabilities of errors. (Do not evalu-
ate the integrals.)

11. Two distributions are normal with

0 1
P, =P,=05 M=, M,=|]|,

1 05
z,:zFL)S 1]

(a) Calculate the threshold values for the Wald sequential test for
g =€ =1073,107, and 107,
(b) Find the average number of observations required.

(c) Fixing the number of observations as obtained in (b), compute the
error of the sequential classifier with fixed m.
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Chapter 4

PARAMETRIC CLASSIFIERS

The Bayes likelihood ratio test has been shown to be optimal in the
sense that it minimizes the cost or the probability of error. However, in order
to construct the likelihood ratio, we must have the conditional probability den-
sity function for each class. In most applications, we must estimate these den-
sity functions using a finite number of sample observation vectors. Estimation
procedures are available, and will be discussed in Chapters 6 and 7. However,
they may be very complex or require a large number of samples to give accu-
rate results.

Even if we can obtain the densities, the likelihood ratio test may be
difficult to implement; time and storage requirements for the classification pro-
cess may be excessive. Therefore, we are often led to consider a simpler pro-
cedure for designing a pattern classifier. In particular, we may specify the
mathematical form of the classifier, leaving a finite set of parameters to be
determined. The most common choices are linear, quadratic, or piecewise
classifiers which we will discuss in this chapter.

First, we will consider under what conditions the Bayes classifier
becomes quadratic, linear, or piecewise. We will then develop alternative
methods for deriving "good" parametric classifiers even when these conditions
are not met.

The reader should be reminded, however, that the Bayes classifier is the

124
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best classifier in all cases. No parametric classifier will exceed the perfor-
mance of the likelihood ratio test.

4.1 The Bayes Linear Classifier

For two normal distributions, the Bayes decision rule can be expressed as
a quadratic function of the observation vector X as

%(x “MOTEP (X - M) - %(x —My)'E3 X~ M)y)

LT P wl
+— —. :
2 "z s, )

When both covariance matrices are equal, that is when X, =%, =X, (4.1)
reduces to a linear function of X as

Ty-1 [P Tl o P
(MQ—MI)Z X+_(M12 MI—Mzz Mz)zln . (42)
2 o, P:)_
Furthermore, if the covariance matrix is the identity matrix, /, then we can
view X as an observation corrupted by white noise. The components of X are
uncorrelated and have unit variance. The Bayes decision rule reduces to

T 1 T T o Py
(MZ—MI)X'F—(MlMl—MzMz)zlﬂ_. (43)
2 an P,

There have been a number of classifiers, such as the correlation classifier
and the matched filter, developed in the communication field for signal detec-
tion problems [1]. We will discuss here how these classifiers are related to the
Bayes classifier.

Correlation Classifier

The product M!X is called the correlation between M; and X. When X
consists of time-sampled values taken from a continuous random process, X(t),
we can write the correlation as

MIX = Y mi()x(;) . (4.4)
j=1

In the continuous case, the correlation becomes an integral, that is
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Observed
at t=T
x(t) + 11— x(tew
+ 1
f'm,(‘r) x(1) dr \-»-@—»J :F - -
° - + -1 — x(New,
m'“)
C
t
f m, (7) x(7) dr
0
mg(”
Fig. 4-1 Block diagram of a correlation classifier.
n T
S m()x() - JO m(OX(t) d . 4.5)

j=l
We can see that the classifier (4.3) compares the difference in the correlations
of X with M, and M, with a threshold to make a decision. Thus, we may call
it a correlation classifier. The structure of the correlation classifier is shown in
Fig. 4-1, and is written as

(O]

MTx — MIx f» c. (4.6)

If ¢ is selected as (MIM, — MIM,)2 —In P,/P,, (4.6) becomes identical to
(4.3). Thus, in order for the correlation classifier to be the Bayes classifier, the
distributions must be normal with the equal covariance matrix / for both ,
and W,.

Matched Filter

The correlation between M; and X can also be considered as the output
of a linear filter. Suppose we construct functions g;(¢) such that
(T = 1) =m(t) . 4.7

The relation between g;(¢) and m;(t) is illustrated in Fig. 4-2. Then, clearly,

T T
JO mAOX(t) di = JO (T = Ox() dr . 4.8)

Thus, the correlation is the output of a linear filter whose impulse response is
gi(¢). This filter is called a marched filter. The matched filter classifier, which
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m; (1) g(t)
t t
0 T 0 T o
(a) (b)
Fig. 4-2 Relation between m;(¢) and g;(¢).
Observed
at t=T
x(t) Fiter No. 1 + F +1— x(tlew,
B 9y(t) - + }_ -1 — x(ew,
c
Filter No. 2
g,(t)

Fig. 4-3 Block diagram of a matched filter classifier.

performs the same function as the correlation classifier, is shown in Fig. 4-3.
Again, the matched filter becomes the Bayes classifier with a proper threshold,
when the distributions are normal with the equal covariance /.

Distance Classifier

The correlation and matched filter classifiers are directly related to
another popular classifier called a distance classifier as follows.

Suppose we multiply (4.3) by 2, and then add and subtract X "X from the
left-hand side. The resulting decision rule is

XTX - 2MTX + MTM ) — (XTX - 2MIX + MIM )

22In—, 4.9)

or
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o,
I = My = I = Ml 2 21 2L (4.10)
o P
Now the decision rule has the geometrical interpretation of comparing the
Euclidean distances from X to M, and M, according to a threshold. When
P, =P, =0.5, the decision boundary is the perpendicular bisector of the line
Jjoining M, and M, as shown in Fig. 4-4.

Nonwhite Observation Noise

In the more general case when X, =X, # I, the observation noise is
correlated and is often called colored noise. The Bayes classifier of (4.2)
should be used in this case instead of (4.3). However, it is still useful to view
the decision rule of (4.2) as a correlation classifier or a distance classifier. To
see this, we introduce the "whitening" transformation, Y = A”X, where

ATZA=1. @.11)

It is important to note that as long as X is positive definite, A exists and is non-
singular. Thus, the whitening transformation is reversible, and the observation
Y can be classified as effectively as X.

The expected veclor of Y is
D;=E{(Ylw} =AM, (i=1,2) (4.12)

for class w;, and the covariance of Y is / for both classes. Hence, all of the
discussion of the preceding section applies to Y if we replace M; {or m;(1)]
with D; [or d;(1)].

In the continuous time case, the transformation becomes an integral as

T
Y=ATX — y(r):foa(:,x)x(r)dr. (4.13)

The kemnel, a (1,7), can be viewed as the impulse response of a whitening filter.
A possible structure for this classifier is shown in Fig. 4-5. We see that we
have the correlation classifier of Fig. 4-1 modified by the addition of whitening
filters.

Example 1: Figure 4-6 shows a two-dimensional example in which a
whitening transformation is effective. Although the two distributions of Fig.
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Fig. 4-4 A classifier by Euclidean distances.

4-6(a) are very much separable by the Bayes classifier of (4.2), the bisector
classifier or simple correlation gives a poor classification. The narrow distribu-
tions of Fig. 4-6(a) occur when X, and x, are highly correlated. Particularly,
when x;,X,,... are the time-sampled values of waveforms, adjacent x;’s are
usually highly correlated and show this type of distribution. The whitening
transformation changes these two distributions to the circular ones of Fig. 4-
6(b) such that the Bayes classifier becomes the bisector.

Other Bayes Linear Classifiers

The Bayes classifier becomes linear for some other distributions such as
independent exponential distributions and the distributions of independent
binary variables. We will discuss these cases in this section.

Independent exponential distributions: When the x;’s are mutually
independent and exponentially distributed for both ®, and ,, the Bayes
classifier becomes linear as shown in (3.18).

Independent binary variables: When the x;'s are binary, either +1 or
~1, the density function of x; for ®, is expressed by



130 Introduction to Statistical Pattern Recognition

y(t)
x(t) T A Correlation classifier
—_— f alt, Tix(T) dr for white noise L
0 (Fig. 1)
Whitening process
T
J, ot DImy(t) dr - fe—— mylt)
dy(t)
T
j;) alt, Tim, (1} dT e my(t)
d,(t)

Fig. 4-5 A correlation classifier for colored noise.

Poix; = x; 1) = PUP(1 < P12 (4.14)

where
P =P {x;=lloy} . 4.15)

Note that (4.14) becomes Py for x; =+1, and (1~ P;) for x; =—1. For

X2 ) *
\
\\
I Bisector =
Boyes
classifier
Q
\\/ Bisector 1
\_Bayes \
classifier
X) %

(a) (b)
Fig. 4-6 Effect of a whitening process.

independent x;'s, the density function of the binary random vector X is
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P,.{X=Xlw,-}=]l[P,(xj=lem,<}. (4.16)
J=1

Thus, the minus-log likelihood ratio of (4.16) becomes

PAX =Xl )
h(X) = —ln 1"
PAX =Xl
n[1+x, P, 1-x, 1-P,
=- Ln =L+ ~ In Y
j=1 L 2 sz 2 I_sz
1 n PIJ(I_PZJ) 7 PIJ(I—PU)
=—— In————|x;+%¥Y In ——— (4.17)
2 =l sz(l _Plj) / j§| P2j(l —PZj)

This is a linear function of ;.

4.2 Linear Classifier Design

Linear classifiers are the simplest ones as far as implementation is con-
cemed, and are directly related to many known techniques such as correlations
and Euclidean distances. However, in the Bayes sense, linear classifiers are
optimum only for normal distributions with equal covariance matrices. In
some applications such as signal detection in communication systems, the
assumption of equal covariance is reasonable because the properties of the
noise do not change very much from one signal to another. However, in many
other applications of pattern recognition, the assumption of equal covariance is
not appropriate.

Many attempts have been made to design the best linear classifiers for
normal distributions with unequal covariance matrices and non-normal distribu-
tions. Of course, these are not optimum, but in many cases the simplicity and
robustness of the linear classifier more than compensate for the loss in perfor-
mance. In this section, we will discuss how linear classifiers are designed for
these more complicated cases.

Since it is predetermined that we use a linear classifier regardless of the
given distributions, our decision rule should be
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[0}

hX)=V'X+v, 20. (4.18)
)

The term A (X) is a linear function of X and is called a linear discriminant
function. Our design work is to find the optimum coefficients V = [v, ... v,]"
and the threshold value v, for given distributions under various criteria. The
linear discriminant function becomes the minus-log likelihood ratio when the
given distributions are normal with equal covariance matrices.

However, the reader should be cautioned that no linear classifiers work
well for the distributions which are not separated by the mean-difference but
separated by the covariance-difference. In this case, we have no choice but to
adopt a more complex classifier such as a quadratic one. The first and second
terms of the Bhattacharyya distance, (3.152), will indicate where the class
separability comes from, namely mean- or covariance-difference.

Optimum Design Procedure

Equation (4.18) indicates that an n-dimensional vector X is projected
onto a vector V, and that the variable, y = V'X, in the projected one-
dimensional h-space is classified to either w, or w,, depending on whether
y < -y, or y > —v,. Figure 4-7 shows an example in which distributions are
projected onto two vectors, V and V'. On each mapped space, the threshold,
vy, is chosen to separate the ®,- and ®,-regions, resulting in the hatched error
probability. As seen in Fig. 4-7, the error on V is smaller than that on V.
Therefore, the optimum design procedure for a linear classifier is to select V
and v, which give the smallest error in the projected h-space.

When X is normally distributed, # (X) of (4.18) is also normal. There-
fore, the error in the h-space is determined by n, =E{h(X)l®;} and
o? = Var{h (X)1®;}, which are functions of V and v,. Thus, as will be dis-
cussed later, the error may be minimized with respect to V and v,. Even if X
is not normally distributed, 4 (X) could be close to normal for large n, because
h(X) is the summation of n terms and the central limit theorem may come into
effect. In this case, a function of 1, and 67 could be a reasonable criterion to
measure the class separability in the h-space.
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3

A—X
e

'-'ll'w”l

Fig. 4-7 An example of linear mapping.
The expected values and variances of 4 (X) are

n=EhX)e) =V EXlo)}+v,=VIM +v,,

6! = Varlh(X)lw;} = VIE{(X - M)(X - M) 1w, }V
= VTE,'V .
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(4.19)

(4.20)

Let £ (1},,M,.03.63%) be any criterion to be minimized or maximized for
determining the optimum V and v,. Then, the derivatives of f with respect to

Vand v, are

Of _9f 9o g 9d  gf I oy I
v 3ol IV Jok IV om, oV dn, oV '

of af30?+ af30%+ of i af o
o, dol v, do dv, dny dv, O, v,

On the other hand, from (4.19) and (4.20)

(4.21)

(4.22)
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oo} on;

v SEYV. Gy =M *.29
do? on;
v, =0, o, =1. (4.24)

Substituting (4.23) and (4.24) into (4.21) and (4.22), and equating (4.21) and
(4.22) to zero,

Of 5, O s |, |9 of

2[80’% 1+ ao_% 2V == an] Ml + anz M2 N (4.25)
of of
= 4+ 2 _9. 4.26
o, o, (*.26)

Substituting (4.26) into (4.25), and solving (4.25) for V, the optimum V can be
computed. Howebver, it should be noted that the error in the h-space depends
only on the direction of V, and not on the size of V. Therefore, for simplicity,
we eliminate any constant term (not a function of M; and X;) multiplying to V,
resulting in

V=[sZ +(-5)Z,]'"M, -M)), 4.27)
where

9f/903 48
57 df/dc? + df/dc3 (4-28)
Note that the optimum V has the form of (4.27) regardless of the selection of f.
The effect of f appears only in s of (4.28). In (4.2), the Bayes classifier for
normal distributions with the equal covariance matrix X has V = Z"'(M,-M ).
Replacing this £ by the averaged covariance matrix [sZ,+(1-s)X,], we can
obtain the optimum V of (4.27).

Once the functional form of f is selected, the optimum v, is obtained as
the solution of (4.26).

Example 2: Let us consider the Fisher criterion which is given by
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_ M —mp)?
6l +05

f (4.29)

This criterion measures the difference of two means normalized by the aver-
aged variance. The derivatives of f with respect to 67 and 63 are

of _ of _ —tm-m)

= = (4.30)
067 303 (0} + 03)?
Therefore, s = 0.5 and the optimum V is
1 o =
v=[52, +522] "My -M)). (4.31)

The A(X) with V of (4.31) and the resulting linear classifier are called the
Fisher discriminant function and Fisher linear classifier, respectively [2]. The
Fisher criterion does not depend on v,, because the subtraction of 1, from 1,
eliminates v, from (4.19). Therefore, we cannot determine the optimum v, by
maximizing this criterion.
Example 3: Another possible criterion is
P\n}+Pyn3
f=—F——7 5 (4.32)
P61+ P,05

This criterion measures the between-class scatter (around zero) normalized by
the wirhin-class scarrer, and will be discussed in Chapter 10. For this criterion,

3f _ —PiPmi+Pm3)

do?  (P,6l+P,03)? @39
Thus, s = P and the optimum V is
V=I[P\Z, + P51\ M, -M)). (4.34)
On the other hand,
of __ 2Pmi (4.35)
a; P07+ P,03
Substituting (4.35) into (4.26), and rewriting (4.26) by using (4.19)
VIIP\M, + P M) +v,=0, (4.36)

or
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v, ==VI[P\M, + P;M,] . 4.37)

Equation (4.37) indicates that, if V is multiplied by a constant «, v, is also
changed by a factor of a. The decision made by V'X + v, 2 0 is equivalent
to the decision of aV'X + v, 2 0 for any positive a. This confirms that the
scale of V is irrelevant in our discussion.

Optimum Design for Normal Distributions

Theoretical approach: When the distributions of 4 (X) are normal, we
can find the V and vy which minimize the Bayes error in the h-space. The
Bayes error in the h-space is expressed as a function of 1); and 67 as

teo 1 2 /6, | 2
e=P e S2dL+ P,) T ——=e%" dl. 4.38
l.[mlolm C 2L \/E C ( )

For this criterion, the derivatives of € are

-P, _ 2 P _ 20 | —Th
asz = 1 e Mi/oy) /2_1:]_; - 1 e Ny/6,) 12 > , (439)
30'1 \/E (o1 V2TCO'| O

P B 2 P 2 N,
382 - 2 e (N2/G,) /21?_ — 2 e—(nzloz) 2 — 1, (4.40)
do5  2m 63 \2no, o2

P >
Je _ o2 4.41)
oM \2no,
oe Py _nyienn
—_— = T e 4.42)
m:  2no,
Therefore, from (4.26)
P, e—m./al)z/z - P e-("lz/o'z)zﬂ (4.43)
\/EO'] \/EO'Z

That is, v, must be selected to make the two density functions of 4 (X) equal at
h(X) = 0. Substituting (4.43) into (4.39) and (4.40), and using (4.28)
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-n,/c}
gm—2 (4.44)
-1,/0% + Ny/03

and
[sZ), +(1=)X, | V=M, -M)), (4.45)

where s stays between 0 and | because 1, <0 and 1,>0. Thus, if we can find
V and v, which satisfy (4.43) and (4.45), these V and v, minimize the error of
(4.38) [3]. Unfortunately, since 1; and 67 are functions of V and v,, the expli-
cit solution of these equations has not been found. Thus, we must use an itera-
tive procedure to find the solution.

Before discussing the iterative process, we need to develop one more
equation to compute v, from s and V. This is done by substituting 1, and 1,
of (4.19) into (4.44), and by solving (4.44) for v,. The result is

s6iVIM, + (1-s)03VTM,
v, =~ > : . (4.46)
501 + (1-s5)035

The iterative operation is carried out by changing the parameter s with an
increment of As as follows [4]:

Procedure I to find s (the theoretical method):

(1) Calculatc V for a given s by
V=[sZ + (1= (M, - M)).

(2) Using the V obtained, compute 62 by (4.20), v, by (4.46), and n;
by (4.19) in that sequence.

(3) Calculate £ by (4.38).
(4) Change s from O to 1.
The s which minimizes € can be found from the € vs. s plot.

The advantage of this process is that we have only one parameter s (o
adjust. This makes the process very much simpler than solving (4.43) and
(4.45) with n + | variables.

Example 4: Data /-A is used, and € vs. s is plotted in Fig. 4-8. As
seen in Fig. 4-8, £ is not particularly sensitive to s around the optimum point.
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Fig. 4-8 Error vs. s.

The optimized error is 5% by the best linear discriminant function, while the
Bayes classifier with a quadratic form gives 1.9%, as shown in Example 3-11.

Sample-based approach: The iterative process mentioned above is
based on the closed-form expression of the error. Also, M; and X; are assumed
to be given. However, if only a set of samples is available without any prior
knowledge, M; and X; must be estimated. Furthermore, we could replace the
error calculation by an empirical error-counting based on available samples.
Assuming that N samples are available from each class, the procedure to find
the optimum linear classifier is as follows.
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Procedure 1 to find s (the resubstitution method):

~

(1) Compute the sample mean, A:l,, and sample covariance matrix, Z,.
(2) Caiculate V for a given s by V = [sZ, + (1-5),] (M2—M ).

(3) Using the V obtained, compute y{’=V7x{ (i=1.2;
j=1....N), where X" is the jth @;-sample.

(4) The y\" and y{'s, which do not satisfy y{" <-v, and
_y}Z) > ~v,, are counted as errors. Changing v, from —oo to oo,
find the v, which gives the smallest error.

(5) Change s from O to 1, and plot the error vs. s.

Note that in this process no assumption is made on the distributions of X.
Also, the criterion function, f, is never set up. Instead of using an equation for
f, the empirical error-count is used. The procedure is based solely on our
knowledge that the optimum V must have the form of
[SZ) + (1-9)Z ] (M,-M ).

In order to confirm the validity of the procedure, the following experi-
ment was conducted.

Experiment 1: Finding the optimum s (Procedure II)
Data: I-A (Normal, n =8, £ = 1.9%)
Sample size: N, =N, =50, 200
No. of trials: 1= 10
Results: Fig. 4-8

Samples were generated and the error was counted according to Procedure II.
The averaged error over 10 trials vs. s is plotted in Fig. 4-8. Note that the
error of Procedure I is smaller than the error of Procedure 1. This is due to the
fact that the same samples are used for both designing and testing the classifier.
This method of using available samples is called the resubstitution method, and
produces an optimistic bias. The bias is reduced by increasing the sample size
as seen in Fig. 4-8. In order to avoid this bias, we need to assure independence
between design and test samples, as follows:
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Procedure 111 to find s (the holdout method):

(1) Divide the available samples into two groups: one is called the
design sample set, and the other is called the test sample set.

(2) Using the design samples, follow steps (1)-(4) of Procedure II to
find the V and v, for a given s.

(3) Using V and v, found in step (2), classify the test samples by
(4.18), and count the number of misclassified samples.

(4) Change s from 0 to 1, and plot the error vs. s.

In order to confirm the validity of Procedure IlII, the following experi-
ment was conducted.

Experiment 2: Calculation of the error (Procedure III)
Data: [-A (Normal, n = 8, £ = 1.9%)
Sample size: N, =N, =50, 200 (Design)
N, =N, =50, 200 (Test)

No. of trials: 1= 10
Results: Fig. 4-8

Again, samples were generated and the error was counted according to Pro-
cedure III. The averaged error over 10 trials vs. s is plotted in Fig. 4-8. The
error of this procedure is larger than the error of Procedure 1 at the optimum s.
This method of using available samples is called the holdout method, and pro-
duces a pessimistic bias. As N goes to e, both the optimistic and pessimistic
biases are reduced to zero, and the errors of Procedures Il and III converge to
the error of Procedure [ at the optimum s. Also, Fig. 4-8 shows that Procedure
I does not give as good a performance as Procedures II and III when s is not
optimum. This is due to the use of (4.46) to determine v for the entire region
of s. Equation (4.46) is the condition for vy to satisfy at the optimum point.
When s is not optimum, (4.46) may not be an appropriate equation to obtain
the best vy, In Data I-A, the two covariance matrices are significantly dif-
ferent. Thus, the averaged covariance [sZ,+(1—s)3,] varies wildly with s.
Despite this variation, both Procedures II and III keep the error curves flat for a
wide range of s by adjusting the threshold vo. This indicates that the proper
selection of v is critical in classifier design.
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Since Procedures II and III produce different s’s, Vs, v,’s, and €’s, we
need to know which s, V, v,, and € to use. Once a classifier has been designed
by using N samples and implemented, the classifier is supposed to classify
samples which were never used in design. Therefore, the error of Procedure 111
is the one to indicate the performance of the classifier in operation. However,
the error of Procedure III alone does not tell how much the error can be
reduced if we use a larger number of design samples. The error of the ideal
classifier, which is designed with an infinite number of design samples, lies
somewhere between the errors of Procedures II and III. Therefore, in order to
predict the asymptotic error experimentally, it is common practice to run both
Procedures II and III. As far as the parameter selection of the classifier is con-
cerned, we can get better estimates of these parameters by using a larger
number of design samples. Therefore, if the available sample size is fixed, we
had better use all samples to design the classifier. Thus, the s, V, and v,
obtained by Procedure II are the ones which must be used in classifier design.

Before leaving this subject, the reader should be reminded that the cri-
teria discussed in this section can be used to evaluate the performance of a
linear classifier regardless of whether the classifier is optimum or not. For a
given linear classifier and given test distributions, 7, and 6?7 are computed
from (4.19) and (4.20), and they are inserted into a chosen criterion to evaluate
its performance. When the distributions of X are normal for both w, and ,,
h (X) becomes normal. Thus, we can use the error of (4.38).

Optimum Design of a Nonlinear Classifier

So far, we have limited our discussion to a linear classifier. However,
we can extend the previous discussion to a more general nonlinear classifier.

General nonlinear classifier: Let y(X) be a general discriminant func-
tion with X classified according to

W,

y(X)y=z 0. (4.47)

[0

Also, let f(1,,n,,5%,53) be the criterion to be optimized with respect to y (X),
where
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N = Ely(X)l o) = Jy@)pi(x) ax , (4.48)
s2=E(y (X)) = [y20pix) dX . (4.49)

Since s? =M? + 67, £ (1,.M.57,53) is a function of 1,, N,, 63, and 63 also.
The reason why s? is used instead of 67 is that the second order moments are
easier to handle than the central second order moments in which the means
must be subtracted. The variation of f, 8f, due to the variation of y (X), 8y(X),
is expressed by

9 g 9
&f = gafTsz + 5{%—&% + —fl8m + Wi&’lz , (4.50)

S

where &1); and 8s,2 are computed from (4.48) and (4.49) as

8n, = [oy(X)pi (%) ax @51)

852 = [25(X)8y(X)p;(X) dX . (4.52)

Substituting (4.51) and (4.52) into (4.50), &f becomes
) d
5 =] 2{8%;;)#) + épz(x)} y(X)
i
P’)
N {a—flp,m ¥ én—f’pzm} Sy(X) dX . 53

In order to make 8f = 0 regardless of 8y (X), the [-] term in the integrand must
be zero. Thus
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oo LY pi(X) i pa(X)
b0 =L (2L
2 |ony of of on, Jdf of
2 oo+ x 2, 0+2Lpx
aS%p.( )+as%pz( ) aS,_',p.( )+as§p2( )
sp(X) (1=s)p2(X)
= , 4.54
D0 + (ImpaX) 4255 X0 + (=s)paX) @9
where
Jfi0s? 2
5= fas| _ 8f/acl ’ (4.55)
of/0s? + df/ds5  Of 106? + of 1903
aflom; of /om;
.= fion,  9f lam (4.56)

C20f19st 20f130?

Note that 9df /967 = (of /0s>)(ds?/0G?) = df/ds? since s> =062 +n2. The
optimum solution, (4.54), may be interpreted as y(X)= a,q,(X)+a,q,(X) =
a+(a,;—az)q,(X), where ¢q,(X) is a posteriori probability function of ®, with
a priori probability of s. On the other hand, the Bayes classifier is
q1(X) $ g,(X), and subsequently the Bayes discriminant function is
h(X)=q2(X)q,(X)=1-29,(X) 2 0. Therefore, if we seek the discriminant
function by optimizing a criterion f(N;,M,,53.53), we obtain the Bayes
discriminant function as the solution, except that different constants are multi-
plied and added to ¢,(X). The difference in the added constants can be elim-
inated by adjusting the threshold, and the difference in the multiplied constants
does not affect the decision rule, as was discussed previously.

The above result further justifies the use of the criterion f (1n,,M,67,63).
The criterion not only provides a simple solution for linear classifier design,
but also guarantees the best solution in the Bayes sense for general nonlinear
classifier design. This guarantee enhances the validity of the criterion,
although the above analysis does not directly reveal the procedure for obtaining
the optimum nonlinear solution.

Linear classifier: When we limit the mathematical form of y(X) to
y = VTX, the variation of y(X) comes from the variation of V. Therefore,
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Sy(X)=8VTx . 4.57)
Inserting (4.57) into (4.53), and using y(X) = VIX = XTV,

of

os?

of

Xy -2L
P )+as%

5 =8vT| 2xx7v{ Pz(X)}

of of
—p (X )+5parX
+x{ampl( H o P )} dx

of . o f of
T -4 ¢ 49 S +—L M A
=6V 2{ as% | as% 2} V+{ 3 ] 1 B R 2 ’ ( .58)

where S; = E{XX"lw,} is the autocorrelation matrix of ;. Since §f =0
regardless of V7, [-] must be zero. Thus,

of of of of
—S5+—=S - _|== —4
2[80% l+ao% 2} 1% { 1 M+ ZMZ] , 4.59)

where 0f/ds? is replaced by df /062 in order to maintain the uniformity of
expressions. Note that (4.59) is the same as (4.25), except that S; is used in
(4.59) while X, is used in (4.25). This is duc to the difference in criteria we
used; f(M;,M2,5%,53) for (4.59) and f(n,.,n,.6,63) for (4.25). Since
s,-2 =T‘|,~2+6,-2, f(n,,nz,s%,s%) is also a function of 1, N>, G%, and 63. There-
fore, both (4.59) and (4.25) must give the same optimum V.

In order to confirm the above argument, let us prove that
V = [sS,+(1=5)S,]"  [@f/on,)M +(df/on,)M,] is the same vector as
V = [sZ+(1-5)Z,]17" [(9f /om, )M | +(f /0M;)M ;] except for its length. Since
the result must be independent of where the coordinate origin is, let us choose
M as the coordinate origin for simplicity. Then, M| and M, are replaced by
Oand M = M,-M . Ignoring the constant (df/on,), we start from

V=[sS +1=5)S,]"'M . (4.60)
Since S, =X, and S, = Z,+MMT,
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sS|+(1=-5)8; = [sZ) + (1=5)Z,] + (1-s)MM T . 4.61)
Using (2.160),
_ __ _ oy T-—l
T ) MM_-ZI ’ 4.62)
1+ (-sM'E M

where S = [sS,+(1-s5)S,] and I = [sZ,+(1-5)Z,]. Multiplying M from the
right side,
-
— -1 =1 - T ——1
L _UMIE M
I+ (I-sM'Z M

| =-!

——1
1+ (- M’ M

M. (4.63)

-1 =
Thatis, S Mand £ M are the same vector except for their lengths.

Minimum Mean-Square Error

The mean-square error is a popular criterion in optimization problems.
Therefore, in this section, we will study how the concept of the mean-square
error may be applied to linear classifier design.

Let y(X) be the desired output of the classifier which we would like to
design. The possible functional forms for y(X) will be presented later. Then,
the mean-square error between the actual and desired outputs is

-2 2
e =E{(h(X)—y(X))?)
=E{h?(X)} = 2 EYh(Xyv(X)) + ELYAX)) . (4.64)

We minimize this criterion with respect to V and v,. Since the third term of
(4.64) is not a function of V and v,, the minimization is carried out for the
summation of the first and second terms only.

Two different functional forms of y(X) are presented here as follows:

() y(X)y=—=1 for X € o, and +1 for X € »,: Since h(X) is supposed
to be either negative or positive, depending on X € ®, or X € w,, —! and +1
for y(X) are a reasonable choice. Then
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E{hX(X)) =Py E{hX)=Dio ) + Py E(hX)(+1) 1@}

=-P\m +Pm . (4.65)

On the other hand, the first term of (4.64), Elhz(X)}, is the second order
moment of #(X), and is expressed by

E{RAX)) =P (62 +n]) + Py(05 + 1)) . (4.66)

_2 _2
Therefore, € is a function of 1, N,. O3, and 63. Since de /do? = P;, the
optimum V according to (4.27) is

V=[P\Z, +P,5,]'"M,-M,). (4.67)

(2) Y(X)=q:(X)-q;(X): This is the Bayes discriminant function
(recalling ¢,(X) § ¢,(X) or (X)) =¢g,(X)—q,(X) 2 0). Therefore, if we can
match the designed discriminant function with the Bayes one, the result must
be desirable. For this y(X),

Pap2(X) = Pp (X)
E1h (XX} = [neo—222 . PR Xy ax

= PofnX)p2(X) dX = P R (p (%) dX

=P2‘]2 _Plnl > (468)

which is identical to (4.65). Also, note that £ {4?(X)} is not affected by y(X),
and is equal to (4.66).

Thus, for both cases, the mean-square error expressions become the same
except for the constant term E{y*(X)), and the resulting optimum classifiers
are the same. Also, note that the mean-square errors for these y(X)’s are a spe-
cial case of a general criterion function f (1},,1,,67,63). This is not surpris-
ing, since the mean-square error consists of the first and second order moments
of #(X). However, it is possible to make the mean-square error a different
type of criterion than f(n,,1>.067,03) by selecting y(X) in a different way.
This is the subject of the next section.
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Other Desired Outputs and Search Techniques

In pattern recognition, the classifier should be designed by using samples
near the decision boundary; samples far from the decision boundary are less
important to the design. However, if we fix the desired output y(X) and try to
minimize the mean-square error between 4 (X) and y(X), larger 4 (X)'s contri-
bute more to the mean-square error. This has long been recognized as a disad-
vantage of a mean-square error approach in pattern recognition. In this section,
we discuss a modification which reduces this effect.

New notation for the discriminant function: Before proceeding, let us
introduce new notations which will simplity the discussion later. Instead of
(4.18), we will write the linear discriminant function as

hX)==VX —v,>0 for X e o . (4.69)

hX)=VIX +v,>0 for Xe . (4.70)
Furthermore, if we introduce a new vector to express a sample as

Z=[-1-x, ... -x,)7 for Xe w , 4.71)

Z=[+lx, ... x,] for Xew, 4.72)
then, the discriminant function becomes simply
hZ)y=W'Z=Ywz >0, (4.73)
i=0
where -, is either +1 or =1, and w; = v; (i =0,1,...,n).
Thus, our design procedure is

(1) to generate a new set of vectors Z's from X's, and

(2) to find W' so as to satisfy (4.73) for as many Z’s as possible.

Desired outputs: Using the notation of (4.73), new desired outputs will
be introduced. Also, the expectation in (4.64) is replaced by the sample mean
1o obtain the following mean-square errors:
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N
(N g = %zthZ, - 1wz 1), 4.74)
Jj=1
-2 1 ¥ T 2
2) g = NZ‘S’S”(W Z)-1) 4.75)
j=
2 1 ¥ 2
3) € =NZ[W Z, -YzZ)H¥, (4.76)

j=1

YZ): a variable with constraint Y(Z;) > 0,

where N is the total number of samples, and sign (-) is either +1 or —1 depend-
ing on the sign of its argument. In (4.74), y(Z ;) is selected as IWTZ | so that,
only when WTZ <0, the contribution to e is made with (WTZ) weighting.
On the other hand, (4.75) counts the number of samples which give WTZJ<0.
In the third criterion, we adjust Y(Z;) as variables along with W. However, the
Y(Z;)'s are constrained to be positive.

These criteria perform well, but, because of the nonlinear functions such
as |1, sign(-), and Y(Z;)>0, the explicit solutions of W which minimize these
criteria are hard to obtain. Therefore, a search technique, such as the gradient
method, must be used to find the optimum W.

The gradient method for minimizing a criterion is given by

_2

. d
WeE+1)y=w - p—aewlw(;) ,

4.77)

where ¢ indicates the ¢th iterative step, and p is a positive constant.

Again, , we cannot calculate d¢ 2/oW because of the nonlinear functions
involved in € . However, in the linear case of (4.64), ¢ /BW can be obtained
as follows. Replacing the expectation of (4.64) by the sample mean,
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_2 1 N T 5
e =—YIW'Z -vZ))
N5
= %(UTW -D'Ww'w-1n, (4.78)
where
U=1[Zy.. Zykusiyow » (4.79)
F=Z)... 92" . (4.80)

The U and T are called the sample matrix and the desired output vector,
respectively. Taking the derivative of (4.78) with respect to W,

2
de 2 T
— ==UWU'wW-0). 4.81
W N ( ) (4.81)

By analogy to (4.81), the following correction terms have been suggested
for the criteria [5]:

(1 WeE+DhH=we - %)U[UTW(/Z) - 1utwe, (4.82)
) WE+1D)=Wwe) - 2T"U{signlUTW(Z)} ~Toll. (4.83)
- 5 2p T ; i
3) W@+ 1)=W() - —N—U[U W@ -TET, (4.84)
TG+ 1) =T¢) + i/—p[UTW(’i) -TOHI+ LG, (4.85)
where

(@) JUTWI is a vector whose components are the absolute values of the
corresponding components of UTW;

(b) sign(UTW) is a vector whose components are +1 or —1 depending
on the signs of the corresponding components of U7 W;

© To=01 ... 1%
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(d) L) is a penalty vector whose components are functions of the
corresponding components of ['(%).

A different approach is to treat the problem of finding a feasible solution
of (4.73) as a linear programming problem with an artificially created cost vec-
tor. For this approach, it is suggested that the reader refers to a text in linear
programming.

A word of caution is in order here. In addition to its complexity, all of
the above approaches have a more fundamental disadvantage. For examples of
(4.82) and (4.83), the classifier is designed, based only on the misclassified
samples in the boundary region. For a good classifier the number of the
misclassified samples tends to be small, and sometimes it is questionable
whether these samples represent the true statistics of the boundary structure.
As the result, the resubstitution error, using the same sample set for both
design and test, tends to be severely biased toward the optimistic side. There-
fore, it is advisable that independent samples always be used to test the perfor-
mance of the classifier,

An iterative process and its convergence: In order to see how the itera-
tive process works, let us consider the third criterion of (4.76), in which y(Z;)
are adjusted along with W under the constraint Y(Z;) > 0. Also, let us assume
that our coordinate system has already been transformed to whiten the sample
covariance matrix, such that

vuT =nNI . (4.86)

Since the result of the procedure should not depend on the coordinate system,
this transformation simplifies the discussion without loss of generality. Then
the mean-square error becomes

) 2

1 7 Ty T T 7 1
=—W'U-I -N=Ww -——W —I'Tr. .
N w'u WU W-I) w N UT+ N I 4.87)

_2
The gradients of ¢ with respect to W and T are

R

o 1

E_-ow-— .

S = 2W - UD), (4.88)
,

0t 2 -

L - Zr-u'w. 4.

=N -UW (4.89)

In order to satisfy the constraint y(Z;) > 0, a modification is made as follows:
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(1) Positiveness of the y’s can be guaranteed if we start with positive
numbers and never decrease their values.

This can be done by modifying " in proportion to
AT =C + ICI (4.90)
instead of C, where
C=U"wW-T. 4.91)

Thus, the components of the vector Al are positive or zero, depending on
whether the corresponding components of C are positive or negative. Thus,
¢+ 1)is

e+ DH=TO+p Al =T +p(C+1CI), (4.92)

where p is a properly selected positive constant. In this process, the y's are
always increased at each iterative step, and W is adjusted to reduce the error
between Y(Z;) and WTZj. However, one should be reminded that the scale of
Y’s and, subsequently, the scale of W does not change the essential structure of
the classifier. That is, WTZ, is the same classifier as aWTZj where « is a posi-
tive constant.

(2) On the other hand, there are no restrictions on W. Therefore, for a
given I', we can select W to satisfy aEz/aw =0 in (4.88).

w=Lour (4.93)
N
or,

WM+U=%URH%)=%HH@+pUARm

=ww+%UAmy (4.94)

2 .
W + 1) minimizes ¢ for a given I'( + 1) at each iterative step.

In order to see how W converges by this optimization process, let us
study the norm of C. The vector C makes the correction for both T" and W.
Also, from (4.91) and (4.87),
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lcl?=0 —» UTW=l — & =0. (4.95)

As ¢ increases, the change of [C ()|
and (4.94) into (4.91). The result is

% can be calculated by substituting (4.92)

lce+ iz - ke ol?

Uty
N

Uty
N

==2pCT@O -. JAT @) +p? AT (@)1 - JAT@) . (4.96)

On the other hand, from (4.91), (4.93), and (4.86),
CTU"U=wWTUu -THUTU =(NWT -TTUTWU =0 4.97)
and
WCTAT=(([C+1ICHT +(C - ICHHC +IC)
=(C+1CHIC+1C1)=ATT AT, (4.98)

Therefore, (4.96) can be simplified as

T
YU} (p-pdi1ATO)

lc e+ DI2 - lcel? = -aTT@)[p? N

I 2
= —[pzm&w—)—”— +(p-pHlaTelf <0
for 0O<p<l. (4.99)

The equality holds only when IATI?2 =0. Thus, as ¢ increases, |C®|?
decreases monotonically, until |ATl? equals zero. It means either [[C |2 = 0 or
C =—IC| from (490). When |ICl|*> =0, we can achieve Ez =0 [see (4.95)].
On the other hand, when C =-1C, all components of C become negative or
zero and the iteration stops with UTW < T satisfied from (4.91).



4 Parametric Classifiers 153

Linearly separable cases: When there exists a linear classifier to
separate two distributions without error, we call this /inearly separable. We
will prove here that C =—1{C | never happens in linearly separable cases. This
is done by establishing a contradiction as follows.

For a linearly separable case, there exists a W* for a given U which
satisfies

U'W">0. (4.100)
Therefore, if C =—1C| (or C <0) occurs at the /th iterative step,
cru™wh=Weyw” <o. (4.101)

On the other hand, using (4.91), (4.86), and (4.93), UC can be obtained as

UC =UWUTW () - T()
=NW() - UT()

=0. (4.102)

This contradict (4.101), and C =-1C | cannot happen.

Thus, the inequality of (4.99) holds only when [CH? =0. That is,
”C(‘E)”2 continues to decrease monatonically with 7 until Ilc|)? equals zero.

4.3 Quadratic Classifier Design

When the distributions of X are normal for both w, and ,, the Bayes
discriminant function becomes the quadratic equation of (4.1). Even for non-
normal X, the quadratic classifier is a popular one: it works well for many
applications. Conceptually, it is easy to accept that the classification be made
by comparing the normalized distances (X-M,)"Z;'(X-M,) with a proper
threshold.

However, very little is known about how to design a quadratic classifier,
except for estimating M; and X; and inserting these estimates into (4.1). Also,
quadratic classifiers may have a severe disadvantage in that they tend to have
significantly larger biases than linear classifiers particularly when the number
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of design samples are relatively small. This problem will be addressed in
Chapter 5.

Design Procedure of a Quadratic Classifier

The general quadratic classifier may be expressed as

®

1
hX)=X"0X +VIX+v, 20, (4.103)
0]

where (0, V, and v, are a matrix, vector, and scalar, respectively. Therefore,
we can optimize f (1,,1M,,67,6%) (M; = E{h(X)l®;} and 6?7 = Var{h(X)l;})
with respect to Q, V, and v, as was done in linear classifier design. Unfor-
tunately, the number of parameters, [n(n+1)/2]+n+1, is too large, and 0,-2 is the
function of the third and fourth order moments of X. Therefore, it is not prac-
tical to optimize f (M;.12,67,63).

Linearization: Another possibility is to interpret (4.103) as a linear
equation as

noon n

h (X) = qu,‘j.\'i.\'j + Z\’,‘.\',’ + vV,

i=1j=1 i=l

nn+l)

Il
M~

n
oGy; + Z\',‘,\',‘ + vV, ., (4 104)
i=l

izl
where g;; and v; are the components of Q and V. Each of the new variables, y;,
represents the product of two x’s, and a is the corresponding g. Since (4.104)
is a linear discriminant function, we can apply the optimum design procedure
for a linear classifier, resulting in

[al s O maeny2Vi e - Yy T= [S Kl + (l—S)KZ]_l(D2 - Dl) ’ (4'105)

where D; and K; are the expected vector and covariance matrix of Z = [Y7XT]"
with [n(n+1)/2]+n variables. Since the y’s are the product of two x’s, K;
includes the third and fourth order moments of X. Again, the number of vari-
ables is too large to compute (4.105) in practice.

Data display: A practical solution to improve the quadratic classifier of
(4.1) is to plot samples in a coordinate system, where a’% X)=
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(X-M )27 (X -M ) and d?(X) = (X -M,) 23" (X -M,) are used as the x- and
y-axes respectively, and to draw the classifier boundary by using human judge-
ment. Figure 4-9 shows an example where the data used for this plot was a
40-dimensional radar signature. If the density functions of X are normal for
both @, and ®,, the Bayes classifier is a 45 ° line with the y-cross point deter-
mined by In 1Z,1/1Z,1 (P, = P, = 0.5 in this data), as seen in (4.1). In Fig.
4-9, it is seen that the Bayes classifier for normal distributions is not the best

200 LA LA I L N By ERLIL L B B B I LIV L B B LLAL L LA L L A B A B B O

L CLASS 1 =0 |
CLASS 2 =«
K .
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5 for normal p,; (X) & p2(X) 1
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Fig. 4-9 d>-display of a radar data.

classifier for this data. Changing both the slope and y-cross point, we can set
up a better boundary. Or, we could even adopt a curve (not a straight line) for
the classifier. That is,
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di =od} +P (4.106)
or

di =g(d}). (4.107)

In a high-dimensional space, we cannot plot samples to see the distribution.
Therefore, we must rely on mathematical tools to guide us in finding a reason-
able boundary. Once samples are mapped down to a two-dimensional space as
in Fig. 4-9, we can see the distribution and use our own judgement to set up
the boundary. However, the structure of the boundary should not be too com-
plex, because the boundary must work not only for the current, existing sam-
ples but also for samples which will come in the future. We can always draw
a very complex boundary to classify the existing samples without error, but the
boundary may misclassify many of the future samples.

Stationary Processes

The quadratic classifier for stationary processes: When x; is the ith
time-sampled value of a stationary random process, x(t), the contribution of x;
in the discriminant function must be independent of i. The same is true for x?
and x;x;,; for fixed ;’s. Therefore, (4.104) may be simplified to

n—l1

h(X)=q,(Tx7) +2q (T xixisn) + ... +2g, 1 (x,x,)

=1 i=l

+ v()":x,-) +v,. (4.108)

i=]

This is a linear discriminant function of new variables, y, =Xx?,
Y1 = ZXiXigts e o5 Yuo] =X Xy, ¥, =2X;. However, now the number of vari-
ables is reduced to n+l, and we need to find only n+2 coefficients,
Gos- - - +qu-1, V. and vq.

Orthonormality of the Fourier transform: Stationary processes have
another desirable property, namely that the elements of the (discrete) Fourier
transform, F(k) and F(?), of the process are uncorrelated. In order to show this,
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let us define the discrete Fourier transform of the time-sampled values of a ran-
dom process, x(0), . .. ,x(n—1), as

n-1

Flky=Yx@OW*  (k=0,...,n-1), (4.109)
=0
where W is
A
W=e " 4.110)
and W satisfies
n—1 . f =0
ywr= @.111)
=0 0 for 7#0.

Then, the inverse Fourier transform becomes

n-1
x(é)=,l2F<k)w—"'? (¢=0,...,n=1). (4.112)

k=0

In a stationary process, the first and second order moments of x(k) must
satisfy

m = E{x(k)) (4.113)
R (k=) = E(x(k)x()} (4.114)

where m and R (-) are called the mean and autocorrelation function of the pro-
cess. We assume that the process is real. Note that m is independent of £, and
R (-) depends only on the difference between & and 7 and is independent of &
itself.

Using (4.113) and (4.114), the expected values and second order
moments of the F(k)'s can be computed as follows.
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n-lo nm for k=0
E(F(k)} = wk = 4.115
[Py} =m2, {0 for k%0, @11
. n—Iln-1 )
E{FKF () = T T EIX(rx(s)}W¥w™s
r=0s=0
n—In-1
=Y T R(r—s)WHrwh=s
r=1s=0
n—ln-1 i
= ZZR(H)Wkuw(k»a)s
u=0s=0)
n—1 n-1 )
= (TR W) (T W)
w=0 s=0
n-1
nYR@W* for k=1
=9 =0 4.116)

0 for k=7,

where R (r—s) = R(s—r) for a real x(¢) is used to derive the third line from the
second, and F™(?) is the complex conjugate of F (/). The variances and covari-
ances of the F(k)’s are

Var{F(k)} = E(FF (k)} — E{F(K)E(F (k)

n-1
nZR(u)—nzm2 for k=0
=" 4.117)

n Y R@WX  for k=0,

u=1

and
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Cov{F(k),F()) = E{F(F ()} — E{F(k)}E{F (1))

=0 for k#0. 4.118)

That is, F(k) and F(?) are uncorrelated. It means that the covariance matrices
of X for all classes are simultaneously diagonalized by the Fourier transform, if
the random processes are stationary.

The quadratic classifier in the Fourier domain: Thus, if the F(k)'s are
normally distributed, we can design a quadratic classifier in the Fourier domain
as

n ol nl

1
h= TVl FOREF(DIo )1 - Z‘z,'F(j) ~E{F(j)lon}1°
J‘O /0
+v,, (4.119)

where

]

" VarlF() ) (4.120)

L Var{F(j)lo)

3 VT 4121
2 VarlF )iy @.12h

1"
() 2

Note in (4.119) that, since the covariance matrices of the F(j)’s for both w,
and w, are diagonal, all cross terms between F(j) and F(k) disappear.

A modification of the quadratic classifier can be made by treating (4.119)
as a linear classifier and finding the optimum v ,;, v,;, and v, instead of using
(4.120) and (4.121). In this approach, we need to optimize only 2n+1 parame-
ters.v; (1 =12, j=0,..., n—1)and v,.
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Approximation of Covariance Matrices

Most of the difficulty in designing quadratic classifiers comes from the
covariance matrices. If we could impose some structure on the covariance
matrix, it would become much easier to design a quadratic classifier. Also, the
required design sample size would be reduced, and the classifier would become
more insensitive to variations in the test distributions. One possible structure is
the toeplitz form, based on the stationarity assumption. An example is seen in
(3.13). However, the stationarity assumption is too restrictive and is not well
suited to most applications in pattern recognition.

Toeplitz approximation of a correlation matrix: Another possibility is
to assume the toeplitz form only for the correlation matrices, allowing each

individual variable to have its own mean and variance. That is, departing from
(4.113) and (4.114)

my, = E{x(k)} , (4.122)
R (k=) = E{x(k)x()} = 6,0:p 4 + mym, , 4.123)

where 0% = Var{x(k)}, and pj;_, is the correlation coefficient between x(k)
and x(?) which depends only on 1k—/|. Expressing the covariance matrix as
Z =T'RT from (2.18), the inverse matrix and the determinant are

Il =rRIr!
_ o o -
1/01 0 1 P cs Pan l/0| 0
P 1 : i
= o : o o1 L , (4.124)
0 . 0
I/G"J Pr-1 - P 1 /o,
L L _ L J
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In 121 =In ITHIRIITI

=Y Inc? +In IRI . (4.125)

i=1

Thus, we can focus our attention on R~ and InlR|. A particular form of the
toeplitz matrix, (3.13), has the closed forms for the inverse and determinant as
seen in (3.14) and (3.15). Rewritting these.

I p . op!
p :
R = o |, (4.126)
pn—l p 1
T -p 0 ... 0]
-p  I+4p?
R =—_]o . . 0/, @.127)
1-p . .
I+ —p
L0 .0 -p 1]
IRI =(1 —p?"". (4.128)

Thus, using (4.126) as the form to approximate the correlation matrix,
the estimation process of an approximated covariance matrix is given as fol-

lows:

~2
(1) Estimate o,-2 by the sample variance, G; .

(2) Estimate ¢;,;,; =pi.+10;0;+ by the sample covariance, ¢;,,,, and
divide ¢, ;. by 6,0;,, to obtain the estimate of p, ;..
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(3) Averagep,;, overi=1,...,n—1,t0 getp.

@) Insert p into (4.126) to form R.

Note that only (n+1) parameters, o; (i = 1,...,n) and p, are used to approxi-
mate a covariance matrix.

Example 5: Figure 4-10 shows the correlation matrix for Camaro of
Data RADAR. The radar transmitted a left circular electro-magnetic wave, and
received left and right circular waves, depending on whether the wave bounced
an even or odd number of times off the target surface. With 33 time-sampled
values from each return, we form a vector with 66 variables. The first 33 are
from the left-left and the latter 33 are from the left-right. The two triangular
parts of Fig. 4-10 show the correlation matrices of the left-left and left-right.
In both matrices, adjacent time-sampled variables are seen to be highly corre-
lated, but the correlation disappears quickly as the intervals between two sam-
pling points increase. The ith sampling point of the left-left and the ith sam-
pling point of the left-right are the returns from the same target area. There-
fore, they are somewhat correlated, which is seen in the rectangular part of Fig.
4-10.

The toeplitz form of (4.126) cannot approximate the rectangular part of
Fig. 4-10 properly. Therefore, we need to modify the form of the approxima-
tion. The structure of Fig. 4-10 is often seen in practice, whenever several sig-
nals are observed from the same source. In the radar system of Example 5, we
have two returns. In infrared sensors, it is common to observe several wave-
length components. Furthermore, if we extend our discussion to two-
dimensional images, the need for the form of Fig. 4-10 becomes more evident
as follows.

Block toeplitz: Let x(i,j) be a variable sampled at the /,j position in a
two-dimensional random field as illustrated in Fig. 4-11. Also, let us assume
toeplitz forms for correlation coefficients as
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Fig. 4-10 Correlation coefficients of Data RADAR.
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PIX(, ). x( +k, )] = pi” (4.129)
pIxG.j).x(,j+)] = p” (4.130)
PIX(, ), X +k, j+5)] = pip{" . (4.131)

That is, the correlation coefficient between x(i,j) and x(i +k,j), which is called
the column correlation coefficient, p{’, depends only on k. The same is true
for the row correlation coefficient, p”’. The correlation coefficient between

x(1,1) | x(1,2) x(1,m)
x(2,1) | x(2,2) x(2,m)
n
x(n,1) | x(n,2) e x(n,m)
\_/—,—\/_\J
m

Fig. 4-11 Two-dimensional pixel array.

x(i,j) and x(i +k, j+{) is assumed to be the product of p}” and p!".

If we form a vector with nm variables by stacking columns of the
received image as

X=k,D...x(n)...x(1,m).. . x(nm)) (4.132)
the correlation matrix has the block toeplitz form

R. PR, ... pYLiR,
p{’R. R, ... pYLaR.

R, ®R, = ) (4.133)

pi:r.)—ch p;’;)—ZR(' Rc
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where

I L - A
pi” 1 :
R, = N
pf"
Lo L e
1 pf? L pl2
pi? 1
R = . v
f oot
Loty oo pf 1
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(4.134)

(4.135)

Many propenties of the block toeplitz matrix are known, and listed as fol-
lows without proof [6].

(D

(2)

3)

C))

)

(6)

(M

A®BzA ®B,

(A @B)C ®D)=AC ®BD ,
(A ®B)Y =A"T ®B7,
(A®B)y'=A" ®B,

(A ®B) = (tr A)(ir B) ,

(A ®B)® ®Y)= (D ®¥)A ® L)

where A® =® A and BY =¥ L
@, ‘¥: eigenvector matrices of A and B

A, LL: eigenvalue matrices of A and B,

1A @Bl = IAI"IL1" = 141" 1B 1"

where A and B are nxn and mxm matrices.

(4.136)
(4.137)
(4.138)
(4.139)

(4.140)

(4.141)

(4.142)
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When a quadratic classifier is designed, Properties (4) and (7) are particularly

useful.

Example 6: For Data RADAR, n =33 and m =2. Both R, and R,
matrices of (4.134) and (4.135) are formed based on the assumption that the
toeplitz form of (4.126) holds. Then, the correlation matrix for o; is

() (-1

| [0 RN o
Ry pRq P
= and R,=| _ o |- @143
p;’Ri R : . i
pS(*)n—l L. Pf‘(') l

The inverse matrix and determinant of R; are

-1 (ryp-1
1 Ry —P; R
_l _ -
Ri - l—pf’)z _p(,)R_'l R_’l * (414‘4)
1 —pl© 0... 0
_pS(') ]+pst')2
—i l N : .
3= o 0 . . . o |, (4.145)
Lplc? —pl
0o ... 0 -pl 1
and
IR 1 = (1 = pl%)2 =01 — pi2yr (4.146)

In order to verify the effectiveness of the above approximation, the fol-

lowing two experiments were conducted.
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Experiment 3: Computation of the Bhattacharyya distance

Data: RADAR

Dimension: n = 66
Sample size: N, = N, = 8800, 720, 360

Approximation: Toeplitz approximation for i,-

No. of trials: T=1
Results: Table 4-1

TABLE 4-1

EFFECT OF TOEPLITZ APPROXIMATION

N, =N, Without Approx. | Toeplitz Approx.
8,800 0.64 0.73
u(1/2) 720 1.57 0.77
360 2.52 0.81
4,400 (Design)
20.2 26.3
4,400 (Test)
£ 720 (Design)
259 26.6
(%) 4,400 (Test)
360 (Design)
30.1 26.8

4,400 (Test)

167

In this experiment, the sample mean M, and sample covariance matrix Z;

were estimated from N, samples, and the correlation matrix of X, was approxi-

mated by the toeplitz form of (4.143). Using A:I,- and the approximated ﬁ,-, the
Bhattacharyya distance was computed and was compared with the one com-

puted from M; and i,- (without the approximation). Both are fairly close for

N, = 8800, indicating the validity of the approximation. Furthermore, since the

approximated covariance matrices depend on a smaller number of parameters,
its estimates are less sensitive to the sample size. Without approximation, the

effect of the sample size is evident. That is, pu(1/2) increases as N, decreases.
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However, with approximation, the effect of the sample size is significantly
reduced.

Experiment 4: Error of the quadratic classifier
Data: RADAR
Dimension: n = 66
Sample size: N,; =N, = 4400, 720, 360 (Design)
N | =N, = 4400 (Test)

Approximation: Toeplitz approximation for }5,' (Design only)
No. of trials: 1= 1
Results: Table 4-1

In this experiment, A;l,- and the approximated )5,- were used to design the
quadratic classifier of (4.1), and independent 4400 samples per class were
tested. The results were compared with the error of the quadratic classifier
designed without the approximation. The error of the approximated case is
somewhat larger than the error without approximation. However, with approx-
imation, the effect of the sample size is virtually eliminated.

The performance evaluation of the toeplitz approximation can be carried
out experimentally as seen in Experiments 3 and 4. That is, the means and the
parameters of the covariance matrices are estimated from design samples, and
the quadratic classifier based on these estimated parameters is tested by
independent test samples.

However, when the distributions of X are normal with given M; and Z;,
the performance of the quadratic classifier with the toeplitz approximation can
be evaluated theoretically as follows.

(1) Average the first off-diagonal terms of R; from the given X; and
form the toeplitz approximation as in (4.143).

(2) Using the given M; and approximated X,, design the quadratic
classifier of (4.1).

(3) Compute the error by testing the original distributions of
Nx(M;,X;)’s. Since Z;’s used for design (the toeplitz approximations) are dif-
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ferent from the ones used for test (given Z;’s), the algorithm of (3.119)-(3.128)
must be used to calculate the theoretical error.

4.4 Other Classifiers

In this section, we will discuss subjects which were left out in the previ-
ous discussions. They are the piecewise classifiers and some of the properties
in binary inputs.

Piecewise Classifiers

If we limit our discussion to two-class problems, quadratic or linear
classifiers have wide applications. However, when we have to handle three or
more classes, a single quadratic or linear classifier cannot be adopted effec-
tively. Even in two-class problems, the same is true when each class consists
of several clusters. For these cases, a set of classifiers, which is called a piece-
wise classifier, gives increased flexibility.

Piecewise quadratic for multiclass problems: For multiclass problems,
the multihypothesis test in the Bayes sense gives the best classifier with regard
to minimizing the error. That is, from (3.44)

Pipy(X)=max Pp;(X) — X € wy. (4.147)
If the distributions of X for L classes are normal, (4.147) is replaced by
m‘in[%(x -M)TZTNX - M)+ % InlZ; 1 —InP;], (4.148)

where max is changed to min because of the minus-log operation. Note that
the normalized distance of X from each class mean, M;, must be adjusted by
two constant terms, (1/2)In1X; 1 and In P,. Equation (4.148) forms a piecewise
quadratic boundary.

Piecewise quadratic for multicluster problems: For multicluster prob-
lems, the boundary is somewhat more complex. Assuming that L =2, and that
each distribution consists of n; normal clusters with the cluster probability of
P,; for the jth cluster, the Bayes classifier becomes
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m

P\ 3

1
l_—(Zn)"’ZIZ e exp[—E(X—M )TZ H(X- MU)]
j=

0]

>zZ

1
—— — exp[-—(X-M,) T3 (X M, 4.149
@ = (Zn),,/o |Z ||/2 p[ 2( 2}) 2]( 2])] ( )
where M;; and X;; are the expected vector and covariance matrix of the jth
cluster in ;. Or, defining the distances as

(X)_—(X—M,,)Tz,, X- M,J)+ InIZ;l-InP;=InP; , (4.150)

the classifier becomes

m, £ Wy, m, 2
DRSS WAL (4.151)

®2 ;o)

Note that the decision of (4.151) is different from min d,zj(X), which is the
Bayes decision if we treat this problem as an (m +m;)-class problem. Also, it
should be realized that the distances are adjusted by InP;; as well as InP;.

Piecewise linear classifiers: When all covariance matrices are the same
in multiclass problems, X7Z7!'X and In 1Z; | of (4.148) are common among all
classes, and (4.148) is reduced to

1

max[MIZ7'X - EM,TZ"M, +InP], (4.152)
1

where X is the common covariance matrix, and min of (4.148) is changed to
max in (4.152) because of the change of sign. That is, X is classified to the
class with the highest correlation between X and £™'M;. Again, the correlation
must be adjusted by constant terms.

When covariance matrices are different among classes but close to each
other, we may replace L of (4.152) by the averaged covariance.

Another alternative, particularly when covariance matrices are not close
to each other, is to set a linear discriminant function for each pair of classes,
and to optimize the coefficients. Let each discriminant function be
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RyX)=ViX +vjo  (j=1,... Lt i#])). (4.153)

The signs of V,; are selected such that the distribution of w; is located on the
positive side of /;;(X) and w,; on the negative side. Therefore,

hii(X) = —h;(X) . (4.154)

Let us assume that the region for each class is convex, as shown in Fig.
4-12.

Fig. 4-12 A piecewise linear classifier.

Then, the region of class 7/ can be simply specified by
h(X)>0,.. ., hyX)>0 — Xew [h;(X) is excluded] . (4.155)

As evidenced by the hatched part of Fig. 4-12, the L regions given by (4.155)
do not necessarily cover the entire space. When a sample falls in this region,
the piecewise linear classifier cannot decide the class of this sample; we call
this a reject region. Implementation of (4.155) consists of (L — 1) linear
discriminant functions and a logical AND circuit with (L — 1) inputs of
sign{h;;(X)), as shown in Fig. 4-13. Since the network has two cascaded
circuits, the piecewise linear classifier is sometimes called a layered machine.
When the assumption of convexity does not hold, we have to replace the AND
gate by a more complex logic circuit. Consequently, the classifier becomes too
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x——-L w, Classifier J.-»-
_____ L ] L ]
L ] L ]
L ] L ]
_________________________ -
r sign{hy}

° [ d
x : : J
h i .
ViTL X+ViLO i —J-_ SIgnihlL*

w;i Classifier

|
|
i hiy
| Vix+vio f—— - AND [
' l
|
|
|
|
|

Lo J
[ ] [ ]
[ ] [ ]
[ ] [ ]
':
X —=— w,_ Classifier —
e .|

Fig. 4-13 Implementation of a piecewise linear classifier.

complicated to be practical. Therefore, we will limit our discussion to convex
regions here.

The probability of error for each class, €;, can be expressed in terms of
the (L — 1)-dimensional distribution function as

g = 1 —P"lh”(x) > 0,. . "hiL(X) >01X e (D,'}

=1- L'”. . .L“p(h,.,, kg \O)dR, . . dhy (4.156)
[#;(X) is excluded] .

The total error is

L
€= ZP,‘G,’ . (4.157)

i=l
Knowing the structure of piecewise linear classifiers, our problem is how
to design the V’s and vy’s for a given set of L distributions. Because of the

complexity involved, solutions for this problem are not as clear-cut as in a
linear classifier.

Three approaches are mentioned briefly:
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(1) We can adjust the V's and vy’s so as to minimize & of (4.157).
Since it is difficult to get an explicit mathematical expression for g, the error
should be calculated numerically each time when we adjust the V’s and vy’s.
When X is distributed normally for all classes, some simplification can be
achieved, since the h’s are also normally distributed and p(h;, ... h; l®;) is
given by an explicit mathematical expression. Even for this case, the integra-
tion of an (L — |)-dimensional normal distribution in the first quadrant must be
carried out in a numerical way, using techniques such as the Monte Carlo
method.

(2) Design a linear discriminant function between a pair of classes
according to one of the methods discussed previously for two-class problems.

(15) discriminant functions are calculated. Then, use them as a piecewise linear

discriminant function without further modification. When each class distribu-
tion is quite different from the others, further modification can result in less
error. However, in many applications, the decrease in error is found to be rela-
tively minor by the further adjustment of V's and v ’s.

(3) We can assign the desired output y(X) for a piecewise linear
discriminant function and minimize the mean-square error between the desired
and actual outputs in order to find the optimum V’s and v,’s. The desired out-
puts could be fixed or could be adjusted as variables with constraints. Unfor-
tunately, even for piecewise linearly separable data, there is no proof of con-
vergence.

Binary Inputs

In Section 4.1, we showed that for independent binary inputs the Bayes
classifier becomes linear. In this section, we will discuss other properties of
binary inputs.

When we have n binary inputs forming an input vector X, the number of
all possible inputs is 2", {Xy, ... ,X_,} [see Table 4-2 for example]. Then
the components of X;, x;(k = 1, ... ,n), satisfy
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1 2"-1
ZAU =0, (4.158)
1 2'-)
> z“, =1, (4.159)
2m_|
o ZXU 5=0 (k=0 (4.160)
where x;; is either +1 or —1. Thus, if we define the sample matrix as
11 1
T Xe Xi . X n+1°- (4.161)

2/[
then the row vectors of U are mutually orthonormal, that is

vut =21 . (4.162)

Example 7: Table 4-2 shows an example of three binary inputs. We
can easily see that (4.158)-(4.162) are all satisfied.

Let ¥(X) be the desired output of a pattern recognition network for the
input X. The y(X) is not necessarily a binary number. One of the design
procedures which may be used to realize this network by a linear discriminant
function is to minimize the mean-square error between Y(X) and vix + Vp.
The mean-square error can be expressed by

”
‘2—§z|(vTx +v,)— y(X)]*—F(W7U Iy U™w-T) (4.163)

where W and T arg the same as the ones used in (4.78). Therefore, the W
which minimizes €  is
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TABLE 4-2
ALL POSSIBLE BINARY INPUTS
Xo X, X, Xy Xi Xs X, X,
M Lo 11
wol-1 1 a1 a1 1 -1
S L T T T T T
R T e L T
XX 1 -1 -l 1 1 -1 -1 ]
¥\Xs I =1 1 =1 -1 1 -1
XaX3 | 1 -1 —1 -1 ~1 | 1
Xxaxsy | =1 ] ] -1 1 -1 -1 1
2
%LW=%U(UTW—F)=2(W—§UF)=O, (4.164)
W = %UF. (4.165)

Thus, the coefficients of the linear discriminant function are given by the corre-
lation between the desired output and the input X. The above discussion is
identical to that of the general linear discriminant function. However, it should
be noted that for binary inputs UUT = NI is automatically satisfied without
transformation.

As an example of y(X), let us use
YX) =pX)g(X) — ¢ (X)) = Papa(X) - P p(X) . (4.166)

The term Y(X) would be positive for P p (X) < P,p,(X) or q,(X) < g,(X),
and be negative otherwise. Also, the absolute valuc of y(X) depends on p(X)
and p>(X). When n is large but the number of observed samples N is far less
than 2", the correlation of (4.165) can be computed only by N multiplications
and additions, instead of 27 [7].

Table 4-2 suggests that we can extend our vector X = [x .. 0 to
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Y={1 x; ...x,(x,x3) ... (x1xp...x5)] . (4.167)
2"
Then, the sample matrix for this extended vector becomes a square matrix as
Uy=[Y0 Y|.. .Yzl'_1]}2" . (4.168)
o
The row vectors of Uy are also orthonormal, such that
UyUl =21 . (4.169)

A linear discriminant function for Y is

-1 n
SwWyi=wot Iwix; 3 IWxx + L F Wy XX, (4.170)
j=0 j=! i

In accordance with the reasoning applied to derive (4.165), we can determine
W of (4.170) by

W=—U,T. 4.171)

The following should be noted here:
(1) Any desired output is expressed by WY without error.

2
(2) Since y,’s are mutually orthonormal, ¢ due to the elimination of
w,y, from WTY is w?.

_2
(3) The € determined by the linear discriminant function of vTx + Vo

-2 2!
e =Y w. (4.172)

j=n+l
Computer Projects
1. Repeat Example 4, and obtain Fig. 4-8.

2. Repeat Experiment 1 for N; = 50, 100, 200, 400 and plot the error vs. s.
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3. Repeat Experiment 2 for N; = 50, 100, 200, 400 and plot the error vs. s.

4. Design the optimum linear classifier by minimizing the mean-square error
of (4.76). Use 100 generated samples per class from Data /-A for design,
and test independently generated 100 samples per class. Observe the
difference between this error (the error of the holdout method) and the one
of the resubstitution method.

5. Two 8-dimensional normal distributions are characterized by
P,=P,=05M,=M,=0,3%, =c?R; where R, is given in (4.126) with
ol =06%=1,p, =05, and p, =-0.5.

(a) Compute the Bayes error theoretically.

(b) Generate N; design samples per class, and compute the sample mean
M and sample covariance L

(¢) Approximate the correlation matrix of 5:,- by the toeplitz form of
(4.126).

(d) Design the quadratic classifier with A:l,- and the approximated }A:,.

(e) Generate 1000 test samples, and classify them by the quadratic
classifier designed in (d).

(f) Repeat (b)-(e) 10 times, and compute the average and standard devia-
tion of the error.

(g) Compare the error of (f) with the error of (a) for various N;. Sug-
gested N;’s are 10, 20, and 40.

Problems

I Letx; (y=1,..., n) be independent and identically distributed with an
exponential density function

pily;) = exp[— ]u(\ )y (=12

where u (-) is the step function.

(a) Find the density function of the Bayes discriminant function 4 (X).
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(b) Assuming that the density functions of 4 (X) for w, and ®, can be
approximated by normal densities, compute the approximated value
of the Bayes error forn =8, A,/A, =2.5,and P| =P, =0.5.

Two normal distributions are characterized by

1 +1
P1=P2=0.5, M|: 0, M2= 0,

4 3
21=22=34 .

Calculate the errors due to the Bayes classifier and the bisector.

Using the same data as in Problem 2 except

43 4 -3
Z]=34 and 22—_—_3 4,

find the linear discriminant function which maximizes the Fisher criterion,
and minimize the error by adjusting the threshold.

Using the same data as in Problem 3, find the optimum linear discriminant
function which minimizes the probability of error. Show that the error is
smaller than the one of Problem 3. (Check the errors for s = 0, 0.02 and
0.25.)

Design the optimum linear classifier by minimizing the mean-square error
of

£ = EN(VTX +vo - ¥(X))?)

where y(X)=+1 for X € ®, and -1 for X € ®,. Without using the pro-
cedure discussed in this chapter, take the derivative of Ez with respect to
V and vy, equate the derivative to zero, and solve the equation for V. Set-
ting the mixture mean, My =P M, + P,M,, as the coordinate origin,
confirm that the resulting optimum V' is



4 Parametric Classifiers 179

V=[P, Z, +P,5, "M, -M,).

6. Prove that E{F(jo)F (jw,)} = 0 for o, # ®, where F(jw) is the Fourier
transform of a stationary random process. x(¢), as

Foy =[xy e dr .

7. Two stationary normal distributions are characterized by P, =P, =0.5,
M, =0, M,=A[l...1]", and Z=X, =X, =c’R where R is given in
(4.126).

(a) Compute the Bayes error for n = 10, A = 2, o’ =1, and p=0.5.

(b) Using the same numbers as in (a), compute the error when
Ny(M |,6%I) and Ny(M,,6%1) are used to design the classifier and
Ny(M ,Z) and Ny(M,,X) are used to test the classifier.

8. Repeat Problem 7 for a two-dimensional random field of nxn. The verti-
cal and horizontal correlation matrices are the same and specified by
4.126).

9. Design a linear classifier by minimizing the mean-square error for the data
given in the following Table, assuming P, = P, = 0.5.

X;p o oxy  x3 piX) paXy

-1 -1 -l 1/3 0
+1 -1 -1 1/24 1/8
-1+l =1 1/24 1/8
+1 +1 =1 0 1/3
o T B 1/3 0

+1 -1 +1 1/24 1/8
-1 +1 +1 1/24 1/8
+1 +1 +1 0 1/3
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10. In the design of a piecewise linear classifier, propose a way to assign the
desired output so that we can apply the technique of minimizing the
mean-square €rror.
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Chapter 5

PARAMETER ESTIMATION

As discussed in the previous chapters, once we express the density func-
tions in terms of parameters such as expected vectors and covariance matrices,
we can design the likelihood ratio classifier to partition the space. Another
alternative is to express the discriminant function in terms of a number of
parameters, assuming a mathematical form such as a linear or quadratic func-
tion. Even in this case, the discriminant function often becomes a function of
expected vectors and covariance matrices, as seen in Chapter 4. In either case,
we call it the parametric approach. The parametric approach is generally con-
sidered less complicated than its counterpart, the nonparametric approach, in
which mathematical structures are not imposed on either the density functions
or the discriminant function.

In the previous chapters, we have assumed that the values of the parame-
ters are given and fixed. Unfortunately, in practice their true values are never
known, and must be estimated from a finite number of available samples. This
is done by using the sample estimation technique presented in Section 2.2.
However, the estimates are random variables and vary around the expected
values.

The statistical properties of sample estimates may be obtained easily as
discussed in Section 2.2. However, in pattern recognition, we deal with func-
tions of these estimates such as the discriminant function, the density function,

181
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the classification error, and so on. Therefore, we need to know how the out-
puts of these functions are affected by the random variations of parameters.
More specifically, we are interested in the biases and variances of these func-
tions. They depend on the functional form as well as the number of samples
used to estimate the parameters. We will discuss this subject in this chapter.
First, the problem will be addressed in a general form, and then the Bharta-
charyya distance will be studied.

A more important quantity in pattern recognition is the probability of
error, which is expressed as a complicated function of two sets of parameters:
one is the set of parameters which specify a classifier, and the other is the set
of parameters which specify the distributions to be tested. Because these two
sets are involved, the estimation of the error is complex and difficult to discuss.
In this chapter, we will show how the estimated error is affected by the design
and test samples. Also, the discussion is extended to include several error esti-
mation techniques such as the holdout, leave-one-out, and resubstitution
methods as well as the hootstrap method.

5.1. Effect of Sample Size in Estimation

General Formulation

Expected value and variance: Let us consider the problem of estimat-
ing f(y1,.-.,%) by f(¥1,....,¥,), where fis a given function, the y;’s are
the true parameter values, and the y;’s are their estimates. In this section, we

will derive expressions for the expected value and variance of f(y,...,y,).
and discuss a method to estimate f(y,, ... Vg

Assuming that the deviation of ;',- from y;, is small, f(?) can be
expanded by a Taylor series up to the second order terms as
1 4. 4

- . 4 of
fA F(Y)=f(Y I Ay, + =
A F(Y)=f( )+,§,8y,- yi + ZZa a Ay;Ay;

Iljl

a7

£ s AYAYT

= f(Y)+ =2 AY+—( 57 5.1

where Y =[y,...y,] ,§=[§l...§q]r.andAY=?—Y.
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If the estimates are unbiased,
E{AY} =0 (5.2)

and subsequently the expected value of fis

- o] *f T
E = — ——F{AYA
flzf+ 5 tr 31?2 { Y') (5.3)
Similarly, the variance of f can be derived as
A T 2 .
Var{f) 2 E Bf =AY+ —1r iiAYAY7
2 oy’
2
1 f
- E‘ tr {—E)FE{AYAYT]
of _ o T af
= E
Y —AY a7 E{AYAY ] . (5.4)

where the approximation from the first line to the second line is made by dis-
carding terms higher than second order.

Equation (5.3) shows that f' is a biased estimate in general and that the
bias depends on 9%f/0Y? and E{AYAYT}, where 9°f/9Y? is determined by the
functional form of f and E{AYAY"} is determined by the distribution of Y

p(Y) and the number of samples, N, used to compute Y. Likewise, the vari-
ance depends on 9f/dY and E {AYAY').

Estimation of f: For many estimates, the effects of p()A’) and N on
E{AYAY'") can be separated as

E{AYAYT} =g (N) K(p(Y)) (5.5)

where the scalar ¢ and the matrix K are functions determined by how Y is
computed. Substituting (5.5) into (5.3),
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Efy2f+veg®), (5.6)

where v = tr {%f/3Y? K(p(f’))}/2 is independent of N and treated as a con-
stant determined by the underlying problem. This leads to the following pro-
cedure to estimate f.

(1) Change the sample size N as N|,N,,...,N,. For each N;, compute Y
and subsequently f empirically. Repeat the experiment T times, and
approximate £ {f} by the sample mean of the T experimental results.

(2) Plot these empirical points £ [f'] vs. g(N). Then, find the line best fitted
to these points. The slope of this line is v and the y-cross point is the
improved estimate of f. There are many possible ways of selecting a
line. The standard procedure would be the minimum mean-square error
approach.

Parametric Formulation

Moments of parameters: In the parametric approach, most of the
expressions we would like to estimate are functions of expected vectors and
covariance matrices. In this section, we will show how the general discussion
of the previous section can be applied to this particular family of parameters.

Assume that N samples are drawn from each of two n-dimensional nor-
mal distributions with expected vectors and covariance matrices given by
M, =0, =1 (=Ap),
My=M , $,=A (=A,). 6.7
Without loss of generality, any two covariance matrices can be simultaneously
diagonalized to [ and A, and a coordinate shift can bring the expected vector of
one class to zero. Normality is assumed here for simplicity. However, the dis-
cussion can be extended to non-normal cases easily. The extension will be
presented at the end of this section. Also, Ny =N, =N is assumed here. For

N #N,. a similar discussion could be developed, although the results are a
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little more complex. In order to simplify the notation, A, (r = 1,2) are used to
indicate the diagonalized class covariances, where A, =7 and A, = A.

The parameters M; and Z; can be estimated without bias by the sample
mean and sample covariance matrix

~ | LA
M, = Wzlx; ), (5.8)
[:

- | AN B
E = ZO M- (5.9)
P

where X;-") is the jth sample vector from class . Thus, the parameter vector Y
of (1) consists of 2[n+n (n+1)/2] components

~ ~ ~ ~ ~ ~ PR ~ T
— (1) ) = (2) (2) “(h ) 22 (2)
Y= [m, L..my, my’ . m, €y .. .Cpy € ...c,,,,} , (5.10)

where m!” is the ith component of M,, and ¢ii’ (i 2j) is the ith row and jth

column component of X.,..

The random variables of (5.10) satisfy the following statistical properties;

- ~(r) . . ~(r) .
where Am{” =m; ' — m{” and Ac{} =¢;;’ ~ c{}:

(1)  The sample mean and covariance matrix are unbiased:

ElAm{’} =0 and E{Ac{’}=0. (5.11)

(2) Samples from different classes are independent:
E{am{"Am\?) = E{Am{"} E{am!?) =0 ,
E{AciPAci?) = E{Aci]'} E{Ac?} =0,

E{Am{Ac ) = EJAmM{?} E{Ac’} =0 forr=s . (5.12)

(3) The covariance matrices of the sample means are diagonal [see (2.34)]:
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E{M,~M,)(M,~M,)T} = %A,.
or
")

E{Am’Am!"} = —’N—6,.j (5.13)

where A" is the ith diagonal component of A,.

(4)  The third order central moments of a normal distribution are zero:

E{Am{’Ac{’} =0. (5.14)

(5) The fourth order central moments of a normal distribution are [see
(2.57), (2.59), and (2.60)]:

AYIAY L o,
N fori=j, i=k j=1
EfAcAcy) ¢ = , . 5.15
{ j 2 2)\51 )2 2)\;1)2 . . ( )
N1 = fori=j=k=¢
0 otherwise .

Note that, in the equal index case of (5.15), N—1 is replaced by N for simpli-
city.

Moments of f: Although we have not shown the higher order moments
of y;’s other than the second, it is not so difficult to generalize the discussion
to obtain

f=/f+Y0" (5.16)
i=i
and
E{0V) =E{0V}= ... =0,
E{0?) ~ UN, E{0¥) ~ UN?, .. S

where 0 is the ith order term of the Taylor expansion in (5.1) [see Problem
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2-5]. Since N is large in general, we terminate the expansion at the second
order throughout this book.

Substituting (5.10) through (5.15) into (5.3), the bias term of the esti-
mate, E{Af} = E{f} ~ f, becomes

2
0 {E{AYAYT}
Y~

14 3?2
—ggz L_g{ayay,)

I
E{Af) =2—1r
2 = 9y0y,

| 2 " 32 , no 52 ,
=5 Z. [Z amrf),ElAm‘ 2 +Z P E:f’z E{Ac}™}

—

n =l 2

+zza<r EjAc) }]

i=lj=1

R 1 2 n aZj , n aZf "2
_WZ [21 Im (:)2 )"H+Za”>7 M)

=1

noi—l 82
+ Ty 2Ly } (5.18)

i=lj= |a (2

Note that the effect of N is successfully separated, and that g(N) of (5.5)
becomes I/N. This is true for any functional form of f, provided fis a function
of the expected vectors and covariance matrices of two normal distributions.

Similarly, the variance can be computed from (5.4), resulting in

Var|f} :ié 3 A ] x“>+2 zzx“’z
NEIS | o 5.” ’
ni-l af 2
+2X [a ” ] AR (5.19)
iz1j=1 | 965

Note that, in order to calculate the bias and variance, we only need to compute

afiom’, of1oc'y’, 0% f1om{"?, and 8* f1dc')? for r = 1.2.

Non-normal cases: Even when the distributions of X are not normal,
(5.11), (5.12), and (5.13) are valid as the first and second order moments.



188 Introduction to Statistical Pattern Recognition

However, the third and fourth order moments, (5.14) and (5.15), must be
modified according to (2.53), (2.48), and (2.49), resulting in

E{Am{Ac{y} = #cOv{Ax?‘),Axif’Axg”} , (5.20)
%Var[Axﬁ")Axﬁ-")l for i), i=k j=1

E{Ac)Aci)) = W%Varmxf«"’z} for i=j=k=1 (5.21)
1—:/—Cov{Ax§’)Ax$-"), Ax{PAx{"} otherwise .

Subsequently, E{Af} of (5.18) and Var{Af} of (5.19) must be modified. How-
ever, it must be noted that both (5.20) and (5.21) are proportional to 1/N.
Thus, even for non-normal cases, we can isolate the effect of the sample size,
and g (N) of (5.5) becomes 1/N. This means that we can adopt the estimation
procedure of f of (5.6).

Bhattacharyya Distance

A popular measure of similarity between two distributions is the Bhatta-
charyya distance

5,42, |
L2 | (My-M)

1
n= E(MZ_MI)T

| Z]'Q'ZZ |
1 2

+ — In—/——. 5.22
2 "TEaVIL] 622

Since  is a function of M|, M, |, and Z,, it is a member of the family of
functions discussed previously.
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If two distributions are normal, the Bhattacharyya distance gives an
upper bound of the Bayes error, €, as discussed in Chapter 3. The first and
second terms of (5.22), i, and W,, measure the difference between the two dis-
tributions due to the mean and covariance shifts respectively.

When M,- and i,- of (5.8) and (5.9) are used to compute [, the resulting
].Al differs from its true value. The bias and variance of ﬁ can be obtained using
(5.18) and (5.19).

First term p,: From (5.22), the derivatives of u, with respect to M, are

ou 1
— =(-1y Z M,—M,), 5.23
M, =(-1) (M>—My) (5.23)
o’w, | &
— = —Z . 5.24
oM? 4 (5.24)
where T = (X, +X,)2. The derivatives of W, with respect to c{;’ can be
obtained from (A.31) and (A.32). That is,
a a a(—, 2—6," m;m;
T (525
a(u a(,j a( 16 A.,'A.j
2
— 2 2
82}‘11 _ azul a(‘,"" _ 2—6,']' m_: n m_j (5 26)
X I VYW ViR I VR ¥

where ¢;; = (¢} + ¢PV2, ki = AP +AP)2, and m; = mP — m}".

Substituting (5.23) through (5.26) into (5.18) and (5.19), and noting that
AL =1and AP =2,

I non o mi(1HAA) n o mi(1+A})
Etdp =0 [+ 2 X

. (5.27)

i=1 j=I (1+A. ) (1+A,) i=1 (1+A,,)
A " m? non mzmlz-(l+?»- ;) 593
Varlih ] =55 ;, 1+A, 2_: 2:: 2(14h, 2 (144 (>-28)
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Second term i,: Similarly, the derivatives of p, can be obtained from
(A.37) and (A.38). The results are

0 9>

8;142 =0 and a,;zz =0, (5.29)

oM & 1L L

al T a K A (5.30)
a %) 2-8,-,- | |
ST =T A : 5.31
acg;)z 4 )\E ))\j, ) ZX,-XJ- ( )

Substituting (5.29) through (5.31) into (5.18) and (5.19), and noting that
AY = 1and AP =2,

E{A I TR e 5.32)
. +1) - - '
{Ap, ) = n(n Zl jz; (IA)+A) 5 (14, (
2
| n | _ L 1 I A2 5.33
Var(p, ) = =N Z a2 Tl oo | M R

Discussions and experimental verification: Table 5-1 shows the depen-
dence of E{Ap,} and E{Ap,} on n and k (=N/n) for three different cases [4].
In the first case, two sets of samples are drawn from the same source Ny(O,/),
a normal distribution with zero mean and identity covariance matrix. The
second and third cases are Data /-] and Data /-4/ (with variable n), respec-
tively. As Table 5-1 indicates, for all three cases, E{Ap,} is proportional to
I/k while E{Apn,} is proportional to (n+1)/k. Also, note that E{Ap,} is the
same for the first and third cases because the sources have the same mean.
Similarly, E{Ap;} is the same for the first and second cases because the
sources share a covariance matrix.

Since the trend is the same for all three cases, let us study the first case
closely. Table 5-1 demonstrates that, in high-dimensional spaces (n >> 1),
E{Ap,} =0.125(n+1)/k dominates FE{Apn,}=0.25/k. Also, E{Am,}=
0.125(n+1)k indicates that an mcreasmgly large value of k is required to main-
tain a constant value of Elp.l (= Elp, ) + E{p.z }) as the dimensionality
increases. For example, Table 5-2 shows the value of % required 1o obtain
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TABLE 5-1

SAMPLE BIAS EXPRESSIONS FOR THE
BHATTACHARYYA DISTANCE

Same Source Data /-1 Data /-4/
Ny(0,1) Ny (0,1)  Ny(0,1) Ny(M,I) Ny (0,1) Ny (0,41
m, =2.56
m; m; =0 m=0(@1=1) m; =0
A A= Ai=1 Ai=4
L 0 0.82 0
M 0 0 0.1l n
£ 50% 10% Depends on n
Elap) 2 o 2
ElAp,) 01257 0.125”21 0.08 21!
TABLE §-2

VALUES OF £ AND N REQUIRED TO MAINTAIN Elﬁl <0.223

n 4 8 16 32 64 128

k 39 62 107 196 396 734
N=nk | 16 50 172 628 2407 9396

E{ﬁ} =0.223 [4]. In this example, two sets of samples are drawn from the
same source. Therefore, if an infinite number of samples is generated, the dis-
tributions of two sets are identical (the Bayes error of 50% or u = 0). How-
ever, with a finite number of samples, £ {pn} is no longer equal to zero, indicat-
ing that there exists a difference between two generated distributions. Accord-
ing to (3.151), E{pn} = 0.223 means that the overlap between them (the Bayes
error) is less than 40%. The larger E{p} is, the smaller the overlap becomes.
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Only 16 samples (3.9 times the dimensionality) are needed to achieve E{ﬁ] =
0.223 in a 4 dimensional space, while 9396 samples (73.4 times the dimen-
sionality) are needed in a 128 dimensional space. This result is sharply con-
trasted with the common belief that a fixed multiple of the dimensionality, such
as 10, could be used to determine the sample size.

Since the theoretical results of (5.27) and (5.32) for biases and (5.28) and
(5.33) for variances are approximations, we conducted three sets of experi-
ments to verify the closeness of the approximations.

Experiment 1: Computation of p, and L,
Data: /-1, I-41, I-A (Normal)
Dimensionality: n =4, 8, 16, 32, 64 (for /-1, I-4])
n =8 (for I-A)
Sample size: Ny =N, =kn, k =3, 5, 10, 20, 40
No. of trials: 1= 10
Results: Tables 5-3, 5-4, 5-5 {4]

Tables 5-3 and 5-4 present a comparison of the theoretical predictions (first
lines) and the means of the 10 trials (second lines) for Data /-/ and Data /-4/
respectively, These tables show that the theoretical predictions of the biases
match the experimental results very closely. The third lines of Tables 5-3 and
5-4 shows the theoretical predictions of the standard deviations from (5.28) and
(5.33). The fourth lines present the experimental standard derivations from the
10 trials. Again the theoretical predictions match the experimental results
closely. It should be noted that the variances for ﬁ.z of Data /-I and ﬁ., of Data
I-4] are zero theoretically. This suggests that the variances for these cases
come from the Taylor expansion terms higher than second order, and therefore
are expected to be smaller than the variances for the other cases. This is
confirmed by comparing the variances between ﬁ, and }12 in each Table. Also,
note that the variances of ﬁz for Data /-4/ are independent of n. The similar
results for Data /-A are presented in Table 5-5. The experimental results are
well predicted by the theoretical equations for a wide range of %.

Verification of the estimation procedure: The estimation procedure of
(5.6) was tested on Data RADAR as follows.
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TABLE 5-3

jt FOR DATA I-]

4 8 ] 32 64 4

3 L1101 1.0758 1.0587 1.0502 1.0459 3 0.2083
1.0730 09933 1.0502 1.0754 1.0825 0.2546
0.3531  0.2497 0.1765 0.1248 0.0883 0.0000
(.4688 0.3791 0.2221 0.1551 0.0955 0.0787

5 09946 09740 09638 0.9586 0.9561 5 0.1250
1.094]1 10702 1.0396 09659 0.9764 0.1133
0.2735 0.1934 0.1368 0.0967 0.0684 0.0000
0.3867 0.2745 0.1542 0.1091 0.0733 0.0266

k10 0.9080 0.8977 0.8926 0.8900 0.8387 %k 10 0.0625

09593 09277 0.8421 09128 08911 0.0803
0.1934  0.1368 0.0967 0.0684 0.0483 0.0000
0.2240 0.1424 0.1045 0.0720 0.0709 0.0339
20 0.8647 0.8595 0.8570 0.8557 0.8551 20 0.0313
0.8778 0.8891 0.8261 0.8685 0.8361 0.0389
0.1368 0.0967 0.0684 0.0483 0.0342 0.0000
0.1356  0.1060 0.0929 0.0455 0.0387 0.0101
40 0.8430 0.8405 0.8392 0.8385 0.8382 40 0.0156
0.7917 0.8251 0.8578 0.8343 0.8444 0.0170
0.0967 0.0684 0.0483 0.0342 0.0242 0.0000
0.0786 0.1118 0.0522 0.0283 0.027] 0.0072

@ E{L) G = 0.82)

0.3750
0.4106

0.0000
0.0653

0.2250
0.2791

0.0000
0.0785

0.1125
0.1179

0.0000
0.0191

0.0563
0.0566

0.0000
0.0140

0.0281
0.0282

0.0000
0.0084

by E{pal

16

0.7083
0.8930

0.0000
0.0588

0.4250
0.5244

0.0000
0.0581

0.2125
0.2280

0.0000
0.0218

0.1063
0.1079

0.0000
0.0132

0.0531
0.0561

0.0000
0.0086

32

1.3750
1.7150

0.0000
0.0776

0.8250
0.9252

0.0000
0.0302

04125
0.4365

0.0000
0.0279

0.2063
0.2099

0.0000
0.0154

0.1031
0.1034

0.0000
0.0046

Ha=0)

193

64

2.7083
3.2875

0.0000
0.1083

1.6250
1.8035

0.0000
0.0775

0.8125
0.8578

0.0000
0.0234

0.4063
0.4129

0.0000
0.0058

0.2031
0.2061

0.0000
0.0063
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TABLE 54

j FOR DATA [-4]

4 8 16 32 64 4 8 16 32 64
3 0.0833 00833 00833 0.0833 00833 3 05796 1.1326 2.2385 4.4503 8.8739
0.1435 01212 0.1051 0.1118 0.1061 0.7129 1.0732 24527 4.7841 9.3263
0.0000 0.0000 0.0000 0.0000 0.0000 0.1732  0.1732 0.1732 0.1732 0.1732
0.0971 0.0633 0.0415 0.0385 0.0160 0.1447 0.1653 0.2332 0.1893 0.1642
5 0.0500 0.0500 0.0500 0.0500 0.0500 5 0.5263 1.0366 2.0572 4.0983 8.1806
0.0489  0.0709 0.0579 0.0545 0.0605 0.5081 1.0063 2.1341 4.1041 8.4000
0.0000 0.0000 0.0000 0.0000 0.0000 0.1342  0.1342 0.1342 0.1342 0.1342
0.0284 0.0314 0.0141 0.0209 0.0071 01119 0.1546 0.1129 0.0868 0.1209

k 10 0.0250 00250 0.0250 0.0250 0.0250 % 10 04863 0.9646 1.9212 38343 7.6606

0.0192 00267 0.0266 0.0276 0.0262 0.4901 0.9463 1.9345 38014 7.6630
0.0000 0.0000 0.0000 0.0000 0.0000 0.0949 0.0949 0.0949 0.0949 0.0949
0.0i51 0.0124 0.0066 0.0079 0.0035 0.1016  0.0722 (.0759 0.0702 0.1206
20 00125 00125 00125 0.0125 0.0125 20 04663 09286 1.8532 3.7023 7.4006
0.0135 00156 0.0139 00120 0.0141 0.4708 09331 1.8277 3.7019 7.4049
0.0000 0.0000 0.0000 0.0000 0.0000 0.0671 0.0671 0.0671 0.0671 0.0671
0.0055 00071 0.0036 0.0038 0.0025 0.0658 0.0686 0.0966 0.0394 0.0672
40 0.0063 0.0063 0.0063 0.0063 0.0063 40 04473 09106 1.7886 3.5769 7.1536
0.0066 0.0082 0.0056 0.0062 0.0065 0.4713 0.8937 1.8058 3.6374 7.2596
0.0000  0.0000 0.0000 0.0000 0.0000 0.0474 0.0474 0.0474 0.0474 0.0474
0.0045 0.0050 0.002} 0.0014 0.0010 0.0444 0.0328 0(.0353 0.0563 0.0392

@ Elpl (=0 () Elfat (2= 0.11 1)
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TABLE 5-5

1t FOR DATA /-A

Mean Standard
deviation

k Theor. Expt. Theor. Expt.
3 | 1.6453 | 1.5056 | 0.3529 | 0.4995

5 | 1.4951 1.5104 | 0.2734 | 0.1650
10 | 1.3824 | 1.3864 | 0.1933 | 0.1997
20 | 1.3261 1.3266 | 0.1367 | 0.1712

40 | 1.2970 | 1.3104 | 0.0967 | 0.0658

(a) E“‘il} (W, =1.27)

Mean Standard
deviation

k Theor. Expt. Theor. Expt.

1.4431 1.5695 | 0.1746 | 0.2081
1.3002 | 1.2287 | 0.1352 | 0.1446
10 | 1.1929 | 1.1638 | 0.0956 | 0.0766
20 | 1.1393 | 1.1255 | 0.0676 | 0.0539
40 | 1.1125 | 1.1093 | 0.0478 | 0.0405

W

(b) E{pa}  (1p = 1.09)
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Experiment 2: Estimation of [
Data: RADAR (Real data, n = 66, € = unknown)
My: | estimated by using N| = N, = N samples

N No. of sets per class ;1,,,
8800 1 0.64
720 1 1.57
360 2 2.52%
Estimation procedure:
1.57 = +v/720
KV Sp= 062
2.52 =p+v/360

(*A set of 720 samples per class is divided to two sets of 360
samples. With two sets from each class, there are 4 possible
combinations of selecting one set from each class and forming a
two-class problem. ;1360 here is the average of the 4 cases.)

Although the radar data is not guaranteed to be normal, the above results
indicate that the prediction of the true | from a relatively small number of
samples (720 per class for the 66 dimensional space) seems possible. Also,
note that ],1;60, ;1720, and ;18800 are significantly different. Without the compen-
sation, ;1360 and ;1720 could not provide a useful upper bound of the Bayes
error.

5.2 Estimation of Classification Errors

An even more important measurement in pattern recognition is the
expected performance of a classifier. The discriminant functions for some
popular classifiers, including the lincar and quadratic classifiers, are functions
of M\, M,, Z,, and £,. Thus, they are the members of the family of functions
presented in the previous section. However, unlike the Bhattacharyya distance,
the degradation of the expected classifier performance due to a finite sample
size comes from two sources: the finite sample set used for design and the
finite number of test samples. Thus, we need to study both their effects.

For the two-class problem, a classifier can be expressed by
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o,

h(X) 20, (5.34)

where 7(X) is the discriminant function of an n-dimensional vector X. The
probabilities of error for this classifier from w; and ®, are from (3.105) and
(3.106)

[ piooax =1+ L M X)dadX 5.35
€, = = + s N
I h (X))Op I( ) 2 21[ j(D P I( )( ( )
1 1 ej(uh(X)
& = X)dX = — — — X)YdowdX , 5.36
2 I”XJ‘KOPZ( ) 5 211:“ o p2(X) (5.36)

where p;(X) represents the class i distribution to be tested. The rotal probabil-
ity of error is

EIP]€|+P2€2

1 1 (,]wll(X) ~
= — + — X s 5.37
>+ 2nﬁ PO (5.37)
where
pX)=Pp (X) = PypH(X) . (5.38)

Effect of Test Samples

Error expression: When a finite number of samples is available for test-
ing a given classifier, an error-counting procedure is the only feasible possibil-
ity in practice. That is, the samples are tested by the classifier, and the number
of misclassified samples is counted. The other alternative is to estimate the test
densities from the samples, and to integrate them in complicated regions. This
procedure is, as seen in Chapter 3, complex and difficult even for normal distri-
butions with known expected vectors and covariance matrices.

In the error-counting procedure, p;(X) of (5.38) may be replaced by
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NI .
Bi(X) = - T8 — X{"), (5.39)

ij=1

where X{?, ... X} are N; test samples drawn from p;(X), and &() is a unit
impulse function.

Thus, the estimate of the error probability is

A~ 1 o) X) Pl Ny P, N,
g=—+—J|F— 8(X - X!D) - L ¥ X - XP)]dodX
T N SO0 - XJP) - S B8 - XG)
1 P Ny N,
=5+ N—Z Za‘z’ (5.40)
where
jmh(x‘”)
al) = - J (5.41)

Since @}’ is the inverse Fourier transform of 1/jw, it becomes sign(h(X!)))2.
That is, @} is either +1/2 or —1/2, depending on 4 (X!") > 0 or A(X{") < 0.
For i =1, the &!"’s are +1/2 for misclassified X{"’s and —1/2 for correctly
classified X{"’s. Thus, summing up these a!"s

N

X/lTj:la}” = ——2N| [(# of w,-errors) — (¥ of w,-corrects)]

= NLI(# of W, -errors) — % R (5.42)

where (# of o, -corrects) = N - (# of w,-errors) is used to obtain the second
line from the first. Likewise, for i = 2,

l 1
L s a® = 1 (# of wy-errors) + ~ . 5.43
N2,§| y N (# of w,-errors) 5 (5.43)

Substituting (5.42) and (5.43) into (5.40),
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- (# of w,-errors) (# of w,-errors)
€= P] + P‘) .

44
N, B Ny (544)

That is, € of (5.40) is the error oblained by counting the number of
misclassified samples with a given classifier.

Moments of &: The expected value of @ with respect to X\ (w.r.t. the
test sample) is

e’

wh (X}
[0))

(_l,' =Ef‘(l§'i)l = EIEJ‘J‘ ]

E]—l for i=1
2
-1, (5.45)
——¢, for i=2.
3 2 for !

The second line of (5.45) can be obtained from (5.35) and (5.36) respectively.
The second order moments are also computed as

- 1 ejwh(X) , 1. 5
Efaf"} = E,ll—f ——dw?} = E,{[=sign(h(X)]?)
2n 2
]
=—, 5.46
7 ( )
Efa’a*' ) =a0  for izk or j#i. (5.47)

Equation (5.47) is obtained because @’ and a{*’ are independent due to the
independence between X' and X
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From (5.40) and (5.45)-(5.47),

E{e] 1 +P10c1—P20c2

1 1 1
-2-+P1(£1 —3)—P2(5—82)=e, (5.48)

~ P} P3
Var, (€} = —N—Var,{ag-”] + TVar,{aj-Z)}
1 2

2 P2
_o 1 __2 I S SRR
NI[ (€ Y1+ N2[4 (2 £)°]

g(1-¢)) & (1-¢;)
=p— " 4 p2 - = 49
: N, 2 N, (5.49)

That is, € is an unbiased and consistent estimate, no matter what 4 (X) is used.

Error counting approach: When the error counting procedure is used,
the effect of test samples can be analyzed in a more direct way. In order to
estimate €;, N; samples are drawn from ; and tested by a given classifier. Let
‘E,- be the number of misclassified samples. Then, the random variables ‘El and
%2 are independent, and each is binomially distributed as

- - 2 -
Priti =1, =0} =11Prit, =1}
i=l

N, _
. er(1—-g) ", (5.50)

:w

i=]

The o;-error, ¢;, is estimated by %,/N,- and, subsequently, the total probability
of error is estimated by

~ 2

£= Z (5.51)

2|-_-1>

The expected value and variance of the binomial distribution are known, and
thus
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E{e)=P.&, + P, =¢, (5.52)
A2, E(l-E)
Var{e} = ZP; T . (5.53)
i=1 i

These are the same as (5.48) and (5.49).

Effect of Design Samples

It is more difficult to discuss the effect of using a finite number of design
samples. Although we would like to keep the formula as general as possible,
in this section a specific family of discriminant functions is investigated to help
determine which approximations should be used.

Error expression: Assume that the discriminant function is a function of
two expected vectors, M| and M,, and two covariance matrices, £, and X,.
Typical examples are the quadratic and linear classifiers as

h(X) = %()(—M,)TZHX—M.)

Lx-M)s5' (X -M) + +in 2| (5.54)
- 5 (X=My My + = . .
2 2 2015,
hX) = (MoM TS X + 2mTs rs!
- 2 l) + Z(MIZ MI—MQZ MQ), (555)

where < = (£,+Z,)/2. When only a finite number of design samples is avail-
able and M; and X; are estimated from them, # becomes a random variable and

AR(X) = hX) - h(X) = T 0% | (5.56)
A=l

where h(X) = h (X.M, . M5.£,.%,). h(X) = h(X.M,.M,.Z,.%,). and 0’ is the
kth order term of the Taylor series expansion in terms of the variations of I\A'l,v
and fl,. If the design samples are drawn from normal distributions, and I\A/l,v and
f:, are unbiased estimates (e.g.. the sample mean and sample covariance).
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(5.16) and (5.17) show

E 0V} =0, E0P)~1/7,
E 0P} =0, E09)~1/72, . .. (5.57)

where E, indicates the expectation with respect to the design samples, and 71 is
the number of design samples (while N indicates the number of test samples).
Therefore, from (5.56) and (5.57),

E;{AhX)}) ~1/T, E | Ah*(X)}~1/7,
E AR (X)) ~1/72, EfJlAR OV ~172, .. (5.58)

Assuming that 7i is reasonably large, we can eliminate E {Ah™(X)} for m larger
than 2.

From (5.37), the error of a random classtfier for given test distributions is
expressed by

e’

wh(X) _
- pX)dwdX . (5.59)
jw

ol L

When Ah is small, we may use the following approximation

. N2

QFOMX) — o J0h () JOANX) 2 0 10X ] 4 i oA R(X )+ () AR2X)] . (5.60)
2

Then, Ag = € — & can be approximated by

Ae = i”{Ah(X) ; ijAhz(X)}e"”"‘X’;(X)d(odX . (5.61)

Bayes classifier: When #(X) is the Bayes classifier for the given test
distributions, /;(X) =0 at h(X)=0. In this case, the Bayes error, €, is the
minimum error and A€ of (5.61) must be always positive. In order to confirm
the validity of the error expression (5.59), let us prove A€ = 0 as an exercise.

The first step to prove Ag = 0 is to show that the first order variation of
(5.61) is zero regardless of Ah(X), as follows.
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El;t-ﬂAh(X)ef“”"x’;(X)d(odX JARCOSROP (X )dx

[ ancpooax <o, (5.62)
h(X)=0

I

where we used the fact that the inverse Fourier transform of 1 is 8(:). Equation
(5.62) becomes zero because ;(X) =0ath(X)=0

The second step involves showing that the second order variation of
(5.61) is positive regardless of Ah(X).

dS(h)

' HﬂAh X)e M5 (0 d o dX = 1jAh (X) PX)dx . (5.63)

The derivative of the unit impulse, d&(h)/dh, is zero except in the region very
close to h(X) =0, where dd(h)/dh > 0 for h < 0 and dd(h)/dh < 0 for h > 0.
On the other hand, ;(X) >0 for h <0 and ;(X) <0 for h > 0. Since
Ah?*(X) > 0 regardless of Ah(X), (5.63) is always positive.

Bias: The expected value of é €, with respect to the design samples is

R
=g+ A€. (5.64)
Then, the bias, Ae, may be approximated by
Aez HEd(Ah(X) + AhZ(X)}e’“’"(X’p(X)da)dX (5.65)
When £ is a function of ¢ parameters, y;, .. ., y4» Ah is, from (5.1)

< on 129 oh
Ah = —A
h= 25, A%t L5

i=ij=i

Ay;Ay; . (5.66)
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Thus, discarding terms of higher order than 2,
?

Eatah) 2535 S5 layy,) (5.61)
I 1j=1
E;|AN) _zzgh aah E4lAyiAy;) . (5.68)

i=lj=1

Note that £;{Ay;} = 0, assuming that unbiased estimates are used. Substitut-
ing (5.67) and (5.68) into (5.65),

= 1 L& & | Ph . 9k Ok
'U L)y,ay % ay,}

lljl

x E;{Ay;Ay;}e/" ¥ p (X )dwdX . (5.69)
d i

Furthermore, if the parameters come from M|, M,, £, and Z, of two normal
distributions, as in (5.10), Ag becomes

A =2—71_2?J‘J§ § Bmf'n JoO amy-) Ay
2

n aZh ] )

" Z ’ s }\’(/)
i=t a 5,)2 a i
il 9%h an_ |’ 1 ) | ek 0

t LX) g0 PO g | [ MY e TpdedX . (5.70)
i=1j=1 i gl

Equation (5.69) is a very general expression for the bias of the error, which is
valid regardless of the selection of A (X), P;, and p;(X). The term E{Ay,-ij}
gives the effect of the sample size, 71. Therefore, if (5.5) is satisfied, A€ can be
expressed by vg(7i) where v is determined by h(X), P;, and p;(X), and the
estimation procedure of (5.6) can be applied. Furthermore, if A(X) is a func-
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tion of M|, M,, X, and Z,, g(7}) becomes 1/7% as is seen in (5.70). The qua-
dratic and linear classifiers of (5.54) and (5.55) belong to this case. Therefore,
for these classifiers.

Ezg+7\i—. (5.71)

The v of (5.71) is determined by the underlying problem, and stays constant
for experiments with various sample sizes. Thus, we may choose various
values of > as 7.,...,”., and measure £ Computing € as the average of
several independent trials, we may solve (5.71) for € and v by a line fit tech-
nique.

Experiment 3: Estimation of the error for the quadratic classifier
Data: RADAR (Real data, n = 66, € = unknown)
Classifier: Quadratic classifier of (5.54)
Test samples: Ny = N, = 4400 (one set)
Design samples: 7., = 7i, = 4400, 720, 360
€. : The error of the quadratic classifier when 7. design samples
per class are used.

7, No. of sets per class €. (%)

4400 1 20.2
720 1 25.9
360 2 30.1%

(*average of 4 possible combinations of 2 sets
from each class - see Experiment 2.)
Estimation procedure:

259=¢e+v/720

= 2179
30.l=£+v/360}_)£ 217

The estimated error by line fitting, 21.7%, is reasonably close to 54400 =20.2%.
This confirms that we can predict the potential performance of the quadratic
classifier even if the available sample size is relatively small for a high-
dimensional space (7', = 75 =720 for n = 66.) Also, note that ém, =259%
and é;w = 30.1% are much higher than éuoo =20.2%. This suggests that nei-
ther ;:73(, nor é;m can be uscd as reasonable estimates of the true performance
of this quadratic classifier.
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Quadratic classifier: Although we do not need to know the value of v
to conduct Experiment 3 to estimate €, v can be computed by obtaining the
partial derivatives of h and carrying through the integration of (5.69) for a
specific classifier. When the quadratic classifier of (5.54) with the parameters
of (5.8) and (5.9) is adopted, the partial derivatives of /4 are, from (A.29)-
(A.32) and (A.36)-(A.38),

a%' =(=1YA'(X-M,) , (5.72)
aa,;:z =AY, (5.73)
oh Lo s (x=m)o=m) 8y ]

30 =(-1) 7 |(2-0;) AR R (5.74)
azh _ (—l)"H 2—6,'1‘ (.r,-—mf"))z + (xj—mﬁ-"))z B ] (5 75)
a(.gj)Z 2 )\f_r)ny') 7\,5")7\,}")2 7\,}"))\3") .

Substituting (5.72)-(5.75) into (5.70), and noting that AV =1, AP =2,

m!" =0 and m® = m;,, v of (5.71) becomes

v, = ﬁﬂf(,(x, e "X (X)dwdX | (5.76)

where

_ 1 1) i)
wa—z(mﬂ5¥i i

bjo el 35 12y Loy 5.77
! 2305 o Aik; . (5.77)

The integration of (5.76) can be carried out by using the procedure discussed in
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Section 3.3. First, we get the closed-form solution for the integration with
respect to X, and then take the one-dimensional integration with respect to ®
numerically.

For the simplest case of Data /-/, we can obtain the explicit expression
for the integration of (5.76). In Data /-/, p (X) and p,(X) are normal Ny(0,/)
and Ny(M.]) respectively. Then, e’“’"‘x’p,(é\’) may be rewritten as

ok (X) _ M7 M8 J 1 :
el pi(X)= e N (==, M Wy (JoM, 1), (5.78)

MM 2

!

2

(,jwh(X)pg(x) -
MM

mimsay J ] .
€ Nm(ZV—MTM Wy ((1+jo)M,T) , (5.79)

where N ,(a,h) and Nx(D,K) are normal density functions of @ and X with the
expected value a and variance b for N, and the expected vector D and covari-
ance matrix K for Ny.

Since f,(X,w) is a linear combination of .\',‘.\",- (k.7 <4) as seen in (5.77),
fo(X, 0Ny (-,)dX is the linear combination of the moments of Ny(-,-). The
resuit of the integration becomes a polynomial in ®

Yi(w) = Muw)ﬁwﬂmzum)h M ;M (n+5+3M M) jw)®

M ;M (n+5:2M7" M) w)?

N % [n (n47)+(5n +9)MTM+(MTM)2} (o) F ﬁ“')zMJ , (5.80)
where — and + of F are for /=1 and 2 respectively. Again, the

J.Y;((o)Na,(-.-)dm is a linear combination of the moments of Ny(-,-). Thus, v,
forP, =P,=051s
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1 Y
eMM/S

Norm™™

Vq=

n+{

2 M™™M M™M? MM
x’:n + (= ¥ 1 (5.81)

In order to verify (5.81), the following experiment was conducted.

Experiment 4: Error of the quadratic classifier
Data: /-I (Normal, M™M = 2.56%, £ = 10%)
Dimensionality: n = 4, §, 16, 32, 64
Classifier: Quadratic classifier of (5.54)
Design samples: 1) = 7, = kn, k =3, 5, 10, 20, 40
Test: Theoretical using (3.119)-(3.128)
No. of trials: = 10
Results: Table 5-6 [4]

In this experiment, kn samples are generated from each class, M; and Z; are
estimated by (5.8) and (5.9), and the quadratic classifier of (5.54) is designed.
Testing was conducted by integrating the true normal distributions,
p1(X) =Nx(0.]) and p,(X) = Ny(M,I), in the class 2 and | regions determined
by this quadratic classifier, respectively [see (3.119)-(3.128)]. The first line of
Table 5-6 shows the theoretical bias computed from (5.71) and (5.81), and the
second and third lines are the average and standard deviation of the bias from
the 10 trials of experiment. The theoretical prediction accurately reflects the
experimental trends. Notice that v is proportional to n> for n >>1. Also, note
that the standard deviations are very small.

In theory, the Bayes error decreases monotonously, as the number of
measurements, n, increases. However, in practice, when a fixed number of
samples is used to design a classifier, the error of the classifier tends to
increase as n gets large as shown in Fig. 5-1. This trend is called the Hughes
phenomena [5]. The difference between these two curves is the bias due to
finite design samples, which is roughly proportional to n2/70 for a quadratic
classifier.

Linear classifier: The analysis of the linear classifier, (5.55), proceeds in
a similar fashion. The partial derivatives of 2~ may be obtained by using (A.30)
and (A.33)-(A.35) as follows.
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TABLE 5-6
QUADRATIC CLASSIFIER DEGRADATION FOR DATA /-1 (%)

1450  16.89 21.15 30.67 48.94
3 1668 2041 22.04 26.73 31.31
3.51 2.35 2.89 1.95 1.33

1270 14.14 1691 22.40 33.36
5 14.03 16.40 17.34 20.81 25.54
2.1 1.86 091 0.57 0.74

11.35 12.07 13.45 16.20 21.68
kK10 11,52 1240 13.66 15.73 19.34
0.81 0.61 0.70 0.54 0.85

10.67 11.03 11.73 13.10 15.84
20 1077 11.05 11.90 13.93 15.13
0.21 0.23 0.51 0.22 0.32

1034 10.52 10.86 11.55 12.92
40 1037 1057 10.87 11.50 12.75
0.24 0.13 0.13 0.13 0.18

oh =t

— = (=1Y X-M). 5.82
M, =Dz ) ( )
Jd°h =(_1)"+1fI . (5.83)

oOM?
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€
A
Ciassifier designed by
A (fixed) samples
Bayes classifier
—» n
Fig. 5-1 An example of Hughes phenomena.
ac,
aﬁ_) = i_{?—‘ (:) = —‘%‘(QU + O(J-,- - 8,1(1,1) y (584)
dcij dc;j ocyj 20\,
2
2 2 oc;, 5 o oy oy
Th SIS )L 2 et (5.85)
dcyj ac;; dcij YWY A A A
where
o = (m® — m{V); + %(m,‘-”m(,-” - m,(z’m}z’) , (5.86)

and ¢;; = (¢} + ¢?y2 and X, = A" + L 2)2.

In particular, when A" =1, A2 =X,, m!" =0, and m'¥ = m, (5.84)-
(5.86) become

oh 2

B = iy (O k) (5.87)
*h 4 O 7 o

T T (k) | A, A, e, | (5.88)

where
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m;
o = mx; — %m,-mj = 7(2x/- -m;). (5.89)

Substituting (5.82)-(5.89) into (5.70). v of (5.71) becomes

v = #jjf X, )¢5 (X )dwdX | (5.90)
where
X " —A.,' 2 (1+A.,2)m, mi N 1+A.,)\4,
A '“’)‘,‘:\:I 14X, + (2 (144, " (140)? 5 1A,

2 2
jo |, & X7 (=),
— 14 +

5 Z’{(m\,)z (14+,)?

i=1

nen m,-(2.\'j—m,-)( 1+A.,A.j)

" z‘q,‘\:‘, (I+A)2(141))?

{m,(z.r,-—mj )+m,-(2.\',-—m,-)} . B9hH

Since f(X.m) is a linear combination of x¥ (k <2), v. can be theoretically
computed for Data /-/, resulting in

T
v = —'—e-"”'””‘[(l + M M)n—l].

22N2aM™™ 4

(5.92)

Equation (5.92) was experimentally verified in the same manner as
(5.81). The results are shown in Table 5-7.

Experiment 5; Error of the linear classifier
Data: /-/ (Normal, MM = 2.56%, £ = 10%)
Dimensionality: n = 4, 8, 16, 32, 64
Classifier: Linear classifier of (5.55)
Design samples: 7., = 7, =kn, k =3, 5, 10, 20, 40
Test: Theoretical using the normal error table
No. of trials: t= 10
Results: Table 5-7 [4]
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TABLE 5.7
LINEAR CLASSIFIER DEGRADATION FOR DATA [I-I (%)

1273 12.87 12.94 12.98 13.00
3 1437  14.36 13.36 13.02 13.19
3.65 1.74 1.35 81 40

11.64 11.72 11.77 11.79 11.80
5 1165 1223 12.07 11.99 12.07
1.28 1.53 1 48 41

1082  10.86 10.88 10.89 10.90
k10 1050 10.89 10.93 10.86 10.92
30 41 24 21 19

10.41 10.43 10.44 10.45 10.45
20 1039 10.39 10.58 10.40 10.45
21 18 .26 A1 .08

1020 10.22 10.22 10.22 10.22
40 1022 10.27 10.21 10.23 10.22
21 .14 .09 .05 04

Comparison of (5.81) and (5.92) reveals an important distinction between
quadratic and linear classifiers. For Data I-/, the two covariances are the same.
Thus, if the true underlying parameters are used, the quadratic classifier of
(5.54) becomes identical 1o the linear classifier of (5.55). However, when the
estimated covariances, il # iz, are used, the classifier of (5.54) differs from
that of (5.55). As a result, £{Ag} for the quadratic classifier is proportional to
n?i7 (= nik) while E{Ag) for the linear classifier is proportional 1o
n/7= 1/k) as in (5.81) and (5.92) when n >> 1. Although it depends on the
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values of n and M"M, we may generally conclude that v, is larger than v, for n
>> 1. This implies that many more samples are needed to properly design a
quadratic classifier than a linear classifier. It is believed in general that the
linear classifier is more robust (less sensitive to parameter estimation errors)
than the quadratic classifier, particularly in high-dimensional spaces. The
above results support this belief both theoretically and experimentally.

Also note that for large n, v./7 is proportional to 1/k. This indicates
that, as far as the design of a linear classifier is concerned, a fixed multiple
could be used to determine the sample size from the dimensionality. However,
(5.92) indicates that the value of the multiple depends on M’ M, which meas-
ures the separability between two distributions with a common covariance
matrix /. In particular, the less the separability between the two distributions,
the greater k must be for a fixed bias.

Variance: The variance ofé may be computed from (5.59) and (5.64) as

E le;m\h(X) ;m«h(Y) _
Vdrd{e} = —ﬂﬂ p(X)p(Y)dw, do,dXdY
2

_ oty
(€ 2) . (5.93)

Applying the same approximation as (5.60) and keeping up to the second order
terms of Ah,

i htX) joh(Y) i@ h(X) jwih(Y) jw,Ah(X) jwrAh(Y)
ell (,}_ :()}1 (’I' ell e.l_

e im,h(X)ejmzh(Y)“ + j(‘)IACI (X)

+j@ AL (Y) — @,0,Ah(X)AR(Y)] (5.94)
where

AC,(X)—Ah(X)+ 2 Ah*(X) . (5.95)

Thus, (5.93) can be expanded to
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Jlﬂ)h(X) e,m (Y
Vard{e;——ﬂ pX)de,dX - —JJ p(Y)dm,dY
jﬂ)v’l(Y)
' ”E(,[At;, X) e’ S (X d @, dX - —JJ 5(V)dw,dY
j(D,h(X)
Sl P deax. L JE 188,001 5 dar

+#””E‘,IAh(X)Ah(Y)] SO (0N S S (o, d ey, dXdY

IR
(€ 2) . (5.96)

The first line of (5.96) is (e=1/2)? from (5.37), and the second and third lines
are each (e—1/2)Ae from (5.65). Furthermore, the summation of the first,
second, third, and fifth lines is (e=1/2)> + 2(e~1/2)A€ — (e=1/2)% = —A_t-:2 where
g=¢e+Ace. Since Ae is proportional to b(,{Ah(X) + jwAh®(X)/2} (~1/7) from
(5.65) and (5.58), Ae is proportional to 1/72? and can be neglected for a large
7i. Thus, only the fourth line remains uncancelled. Thus,

Vary ()2 [[[[E, 1o an))

 pJOK) jeh (1) (X)p(y)d(,),d(odedY

= [[E,(ARCOAR(Y) 18(h (X))8(h (Y )P XOP (Y )dXdY (5.97)

= | | EdanGOARIPOOP(Y)aXaY |
hXI=0 h(Y)=0

Equation (5.97) indicates that the integration is carried out along the
classification boundary where #(X)=0. When h(X) is the Bayes classifier,
E(X) of (5.38) must be zero at the boundary. Thus, (5.97) becomes 0. Since
we neglected the higher order terms of Ah(X) in the derivation of (5.97), the
actual Vard[;-:} is not zero, but proportional to 1/7:% according to (5.58). When
h(X) is not the Bayes classifier, [~7(X) is no longer equal to zero at A (X) = 0.
Thus, we may observe a variance dominated by a term proportional to
E {Ah(X)Ah(Y)}. Since E,{Ah(X)Ah(Y)) is a second order term, it is propor-
tional to 1/7%.
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In order to confirm the above theoretical conclusion, we can look at the
third line of Table 5-6, which is the standard deviation of 10 trials in Experi-
ment 4. Also, Fig. 5-2 shows the relationship between 1/k(= n/%) and the

4 standard 3

deviation x 10~ ®
8 Xn=8
@ n=64

1K =n/a
1 1 [l L | | 1 1

3 4 5 6 7 8 9 10x102

Fig. 5-2 Quadratic classifier degradation for Data /-/.

standard deviation [6]. From these results, we may confirm that the standard
deviation is very small and roughly proportional to 1/, except the far right-
hand side where 7. is small and the approximation begins to break down.
Thus, the variance is proportional to 1/7.%.

An intuitive reason why the standard deviation due to a finite number of
design samples is proportional to 1/72 may be observed as follows. When the
Bayes classifier is implemented, Ag is always positive and thus generates a
positive bias. As (5.70) suggests, the bias is proportional to 1/7.. Since Ag
varies between 0 and some positive value with an expected value a /7! (where a
is a positive number), we can expect that the standard deviation is also propor-
tional to 1/7..

In addition, it should be noted that design samples affect the variance of
the error in a different way from test samples. When a classifier is fixed, the
variations of two test distributions are independent. Thus, Var,{;:l =
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P} Var, {é, } + P3 Var,{éz} as seen in (5.49). On the other hand, when test dis-
tributions are fixed and the classifier varies, é, and éz are strongly correlated
with a correlation coefficient close to ~1. That is, when é, increases, éz
decreases and vice versa. Thus, when P, = P,, Vdrd{;z] (0.5 Ed[Ael}
+(0.5°E, | A3} +2(0.5)° E (A€, Ag,) (0. 5)? [Ed{Ae,}+ E, |(-Ag)? )+
2EdlA£,(—A8|)lJ —0 The covariance of 81 and €, cancels the individual
variances of €, and 82

Effect of Independent Design and Test Samples

When both design and test sample sizes are finite, the error is expressed
as

§=%+—E y E (5.98)

where
A () joh(X{)
a; = L . (5.99)
2m jo

That is, the randomness comes from h due to the finite design samples as well
as from the test samples X"

The expected value and variance of ;z can be computed as follows:
e=Ele} =EE,l¢e) = +P.a, -Po (5.100)

where

-1 ff Edlefmﬁ‘x’}

P=— (X)dwdX
0% o pi(X)dwd

El——% for l=l

= ) (5.10D)
——¢, for i=2.
2 5 IOr ¢

Substituting (5.101) into (5.100),
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E=P g +PyE, . (5.102)

This average error is the same as the error of (5.64). That is, the bias of the
error due to finite design and test samples is identical to the bias due to finite
design samples alone. Finite test samples do not contribute to the bias.

The variance of € can be obtained from (5.98) as

Var{£}=P%[NLVar{ }+(1——)Co{ %, 2”}1

) ~A(2) ~(2)
+ P35 [—Var{a ]+(l——N—)Co [a, Lo}

A ~(2)

-2PP,Covia; ,o; }, (5.103)
where
Var(&)} = E{l 5 I"’mh(x’ dof| - € - 57
=4L—(E,'—%)2=Ei(l"‘gi); (5.104)
,h(X) h(Y)
Covia, &'} = ”” b {e’jm ; 0:2 P:OP (Y )d o, dendXdY
00y (5.105)

The second line of (5.104) can be derived from the first line as seen in (5.46).
From (5.105), a portion of (5.103) can be expressed as
5 Ay (D) A(2) A ) ~(2)
PiCovia; o }+P Covia; .o } - 2P, P, Cov{a aL }
jo, h(x) ;m:fn()’)}

””E il 0L, ;(X)I;(Y)dundmdedY—(E—%)z

= Var,|€) , (5.106)

where Vard{él is the same one as (5.97). On the other hand, (5.105) can be
approximated as
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covie; " 1= [[ffEs ancoanm)

N ejm,Ir(X)e/(Ulh(Y)p‘,(X)pk(Y)d(D[dedXdY

= || EjanCOARY) )P (Ope(X)dXaY
hX)=0 h(Y)=0

1
- (5.107)
Equation (5.107) can be derived by replacing E(X) in (5.97) with p;(X). Equa-
tion (5.107) is proportional to 1/71 because E£,{Ah(X)Ah(Y)} is proportional to
/7%,
Substituting (5.104)-(5.107) into (5.103), and ignoring the terms propor-
tional to 1/N,;71,

- £, (1-€)) £,(1-¢8)
Var(e} =P} + P}
arle} =Py N, 2N,

+ Var,{€) . (5.108)

As we discussed in the previous section, Var,,{é] is proportional to 1/72
when the Bayes classifier is used for normal distributions. Therefore, Var{gl
of (5.108) is dominated by the first two terms which are due to the finite test
set. A comparison of (5.108) and (5.49) shows that the effect of the finite

design set appears in g, and €, of (5.108) instead of €, and &, of (5.49). That
is, the bias due 1o the finite design set increases the variance proportionally.

However, since (g —g,)~1/7. this effect can be ignored. It should be noted
that Var,{€} could be proportional to 1/7". if the classifier is not the Bayes.

Thus, we can draw the following conclusions from (5.102) and (5.108).
When both design and test sets are finite,

1. the bias of the classification error comes entirely from the finite design
set, and

2. the variance comes predominantly from the finite test set.
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5.3 Holdout, Leave-One-Out, and Resubstitution Methods

Bounds of the Bayes Error

When a finite number of samples is given and the performance of a
specified classifier is to be estimated, we need to decide which samples are
used for designing the classifier and which samples arc for testing the
classifier.

Upper and lower bounds of the Bayes error: In general, the
classification error is a function of two sets of data, the design and test sets,
and may be expressed by

&gp. ), (5.109)
where, 7~ is a set of two densities as

= {p(X), p.(XO} . (5.110)

If the classifier is the Bayes for the given test distributions, the resulting error
is minimum. Therefore, we have the following inequality

&(Pr,007) S &(Fp.r) - (5.111)

The Bayes error for the true * is g(¢/”,0°). However, we never know the true
7. One way to overcome IhlS dlfﬁculty is to find upper and lower bounds of

(&,7°) based on its estimate 0’ = {pl(X) pz(X)} In order to accomplish this,
lel us introduce from (5.111) two inequalities as

&P, 07) < (P, F) , (5.112)

&(P.P) < e(F.P) . (5.113)

Equation (5 112) indicates that :* is the better design set thdn P for testing 7.
Likewise. & is the better design set than ¢ for testing P. Also, it is known
from (5.48) that, if an error counting procedure is adopted, the error estimate is
unbiased with respect to test samples. Therefore, the right-hand side of (5.112)
can be modified to

&P = Ex (PP} (5.114)

where ﬁ’T is another set generated from /° independently of P. Also, after tak-
ing the expectation of (5.113), the right-hand side may be replaced by
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E{e(®,P)) = &(, ) . (5.115)
Thus, combining (5.112)-(5.115),

Ele(®,P)) <e(°,/) < E, [e(P.(Pp)} . (5.116)

That is, the Bayes error, €(/°, (), is bounded by two sample-based estimates
[12].

The rightmost term &‘.(5D 531) is obtained by generating two independent
sample sets, # and 031, from (P, and using # for designing the Bayes classifier
and 031 for testing. The expectation of this error with respect to 0’1 gives the
upper bound of the Bayes error. Furthermore, taking the expectation of this
result with respect to # does not change this inequality. Therefore,
E‘E;T{e(ﬁ’ 5’1)} also can be used as the upper bound. This procedure is
called the holdout (H) method. On the other hand, e(ﬂ’ 0’) is obtained by
using P for designing the Bayes cla551ﬁer and the same @ for testing. The
expectation of this error with respect to P gives the lower bound of the Bayes
error. This procedure is called resubstitution (R) method.

The holdout method works well if the data sets are generated artificially
by a computer. However, in practice, if only one set of data is available, in
order to apply the holdout method, we need to divide the available sample set
into two independent groups. This reduces the number of samples available
for designing and testing. Also, how to divide samples is a serious and non-
trivial problem. We must implement a proper dividing algorithm to assure that
the distributions of design and test samples are very close. In addition, how to
allocate samples to design and test is another problem. Since we know the
effects of design and test sample sizes from the discussion of Section 5.2, we
may determine how samples should be allocated to design and test by balanc-
ing the resulting bias and variance. As seen in Section 5.2, the bias is deter-
mined by the size of the design samples, while the variance is primarily deter-
mined by the size of the test samples.

A procedure, called the leave-one-out (L) method, alleviates the above
difficulties of the H method [13]. In the L method, one sample is excluded, the
classifier is designed on the remaining N—1 samples, and the excluded sample
is tested by the classifier. This operation is repeated N times to test all N sam-
ples. Then, the number of misclassified samples is counted to obtain the esti-
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mate of the error. Since each test sample is excluded from the design sample
set, the independence between the design and test sets is maintained. Also, all
N samples are tested and N—1 samples are used for design. Thus, the available
samples are, in this method, more effectively utilized. Furthermore, we do not
need fo worry about dissimilarity between the design and test distributions.
One of the disadvantages of the L method is that N classifiers must be
designed, one classifier for testing each sample. However, this problem is
easily overcome by a procedure which will be discussed later.

The H and L methods are supposed to give very similar, if not identical,
estimates of the classification error, and both provide upper bounds of the
Bayes error. In order to confirm this, an experiment was conducted as follows.

Experiment 6: The H and L errors
Data: I-/ (Normal, M"M = 2.56%, £ = 10%)
Dimensionality: n = 4, 8, 16, 32, 64
Classifier: Quadratic classifier of (5.54)
Sample size: 71 = 71, = kn (Design)
N, =N, = kn (Test) for H
N, =N, =knforL
k=3,5, 10, 20, 40
No. of trials: T= 10
Results: Table 5-8

The first and second lines of Table 5-8 show the average and standard devia-
tion of the H error estimate, while the third and fourth lines are the average and
standard deviation of the L error estimate. Both results are very close.

Operation of the L method: In order to illustrate how the L method
works, let us examine the simplest case in which two covariances are equal and
known as /. Then, the Bayes classifier is

o)

(X=M ) (X-M ) = (X=M)T(X-M3) 2 1. (5.117)
o
Assume that two sample sets, S, = {X{", ..., Xy} from @, and S, = (X,

o Xﬁ’ } from w,, are given. In the R method, all of these samples are used
to design the classifier and also to test the classifier. With the given mathemat-
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TABLE 5-8
COMPARISON OF THE H AND L ERRORS FOR DATA /- (%)

4 8 16 32 64

3 2125 2000 2042 2635 30.55
7.97 4.73 5.32 2.25 2.53

1792 1750 2333 25.36 31.61
11.63 6.82 3.44 4.01 2.57

5 1325 16.50 17.63 21.37 24.58
5.66 4.56 347 271 1.89

1225 17.75 15.56 20.75 2591
3.43 7.40 3.03 2.72 1.70

kK 10 1075 10.63 14.13 16.61 19.55
2.30 2.55 1.98 1.17 1.28

9.88 11.50 13.63 15.45 19.05
3.79 3.13 2.51 2.09 1.52

200 11.25  10.19 11.75 13.17 14.98
2.28 1.20 1.41 .98 .67

11.13 12.47 12.55 12.75 15.25
1.97 1.69 1.57 1.08 1.07

40 10.78 10.14 11.44 12.01 12.59
1.39 1.02 .89 81 A48

10.41 10.05 10.22 11.53 12.81
2.11 1.22 .59 .54 .52
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ical form of (5.117) for the classifier, designing means to estimate the neces-
sary parameters - in this case two expected vectors by using the sample means,
M;, of (5.8). Using the error counting procedure, each sample is tested by

XO-M )T XP-M ) — XM )T XM ) f, ‘ (5.118)

G=12:k=1,..N).

If X{" does not satisfy <, the sample is labeled as an error. Likewise, X,
which does not satisfy >, is labeled as an error. The R error is the number of
errors divided by the total number of samples.

On the other hand, in the L method, X! must be excluded from the

~

design set when X{ is tested. The mean estimate without X{’, M,, may be
computed as

N
~ l ! . . ~ l i ~
My = ——[3TXV-X{ =M, - —(X{-M,) . 5.119
ik N,'—l [-,Ezll ] 5« ] i N,'—l ( 5‘ l) ( )

Or,
i

XM, = m(){if’—/&,) . (5.120)

Therefore, testing an ®,-sample, X}, can be carried out as follows.

XM )T XM 1) — X-M )T (XM )

N . . ~ "o
= (5 ‘l YD -M )T XM )-X-M ) (XM ) 2 1. (5.121)
1~ (0%

Note that, when X} is tested, only M, is changed and M, is not changed.
Likewise, when an o,-sample, X{?, is tested,

XP-M ) XP-M )~ XP-M )T (XM )
2_pg \Tov(2)_py N22(2)*T(7)‘w'
= (X{-M )T (X} MO~ — P XE-M) (XP-M>) 2 1. (5.122)
2= )
Equations (5.121) and (5.122) reveal that the modification from the R method

to the L method is simply to multiply a scalar [N;/(N;~DJ* with a distance.
Since the distance computation in a high-dimensional space needs much more
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computation time, the addition of a scalar multiplication is negligibly small.
Thus, we can perform both R and L methods simultaneously within the compu-
tation time needed to conduct the R method alone. In other words, (5.121) and
(5.122) give a simple perturbation equation of the L method from the R method
such that we do not need to design the classifier N times.

The perturbation factor of N,/(N;—1) is always larger than 1. This
increases (X{"-M )T(X{P-M ) for an ,-sample, X", and (X-M,)"
(X®P-M,) for an w,-sample, X{?. For ®,, X{" is misclassified if > is satisfied
in (5.121). Therefore, increasing the XM )T(X{"-M |) term by multiplying
[N,/(N—1)}*> means that X{" has more chance to be misclassified in the L
method than in the R method. The same is true for X{? in (5.122). Thus, the
L method gives a larger error than the R method. This is true even if the
classifier of (5.117) is no longer the Bayes. That is, when the distance
classifier of (5.117) is used, the L error is larger than the R error regardless of
the test distributions.

The above discussion may be illustrated in a one-dimensional example of
Fig. 5-3, where m | and m, are computed by the sample means of all available

1
X()

| |

T I

| i

| |

T R
[ |

Fig. 5-3 An example of the leave-one-out error estimation.

samples, and each sample is classified according to the nearest mean. For
example, x}" is correctly classified by the R method, because d z<d,z and
thus x}" is classified to ;. On the other hand, in the L method, x{" must be
excluded from estimating the ®w;-mean. The new sample mean, m 1% 18 shifted
to the left side, thus increasing the distance between x{’ and m ;. d,, On the
other hand, d,, is the same as d,z. Since d,; > d,;, x{" is misclassified to o,
in the L method.
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The R and L Methods for the Quadratic Classifier

Perturbation equation: The above discussion may be extended to the
more complex but more useful quadratic classifier [14]. In the quadratic
classifier of (5.54), we need a perturbation equation for the covariance matrix
in addition to the mean vector of (5.119) as follows.

3 L OOy T
% = ﬁ,};l(xj -M)X =M, (5.123)

~

N

] ~ oyt N_pp AT iy N_pp AT

Ty = N2 [Z(Xﬁ' )‘Mfk)(x§)_MiA-)l - (X§ )_Mik)(xi-)_Mik)il
=2 |j=1

~ N. ~ ~
T - (X -MHX-M)T
[, O P-M)X[-M,) }

R N;
i T pIE
N2 (Ni=1)(V;=2)

(XO-M)XP-M,)T . (5.124)

1l
™M>

The inverse matrix of )A:,-k can be obtained from (2.160)

N,-—2

N;—1

1

N YRV I P R
L N:Z; (Xi"-M)X{"'-M;) Z;
) S
(N,—1)* = Nid; (X{)

Al

Ty =

(5.125)

A2 IS | oA ~2 .
where d; (X)) = (X{"-M,)" T, (X{"-M,). The L distance, d;(X{"), is from
(5.120) and (5.125)

N I N
dig (X)) = (XP-M) 2 (X-Myp)

N; I A
= () KO-M) Ty (X-M)
~4 .
Nid; (X{)
~2 .
(N—1)*-N.d; (X{")

; N—=2 {2 .
i 2 ! (‘)
— () |d; Xy +

=

(N2=3N 4+ 1)y (XN~ 1N (XS

~2 .
=d; (X{)+ S —
(N,~1)’=N,d, (X{")

(5.126)

Also, using (2.143), the determinant of )A:,-‘ can be calculated as follows.
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50 = (s - Ny (5.127)
ik _(Ni—2) il TS i (Xi ] :

Or, taking the logarithm,

i

1%, 1 =1nl% ] +n In[l+ —
Ni—1)

]+ In[1~- My . (5.128)

N;-2

I

Let Ag(X") and A, (X{) be the R and L discriminant functions with M; and ;
replacing M; and Z; for hgz(X{’). and M; and X replacing M; and X, for
h, (X)), respectively. Then, substituting (5.126) and (5.128) into (5.54),

+g(N LA (X)) for o

hy (XP) = hp(X§)) = 2 (5.129)
—g(N2.dr (X)) for @,
where
o (VRSN XN~ DN, (X
g(N;,d;i (X{) = — S
2 (N,=1)?-N;d; (X{)
(5.130)
z l 1 Ni =20
+3 In[1 + N,-—2]+ 5 In[1 - YRS d; (X{M] .

When the R method is used to count the number of misclassified samples,
(},?(Xﬁ")) and hg(X{’) must be computed for k = 1,...,N, and i = 1,2. There-
fore, the additional computation of the scalar function of (5.130) for each k is a
negligible load for a computer in comparison with the computation of /(X
for each k, which includes vector-matrix operations in a high-dimensional
space. Thus, the computation time of both the R and L methods becomes
almost equivalent to the computation time of the R method alone. Remember
that, in the R method, we are required to design only one classifier. Since I;L
can be obtained from I;R by a trivial perturbation equation, we do not need to
design the classifier N times in the L method.
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Proof of g = 0: The perturbation term, g, of (5.130) is always positive
no matter what N;, d; (X{’), and n are. The proof is given as follows.
Assuming N; > 2, l)f.,kl of (5.127) should be positive because )i,-k is a
sample covariance matrix and should be a positive definite matrix. Therefore,
i

a2 .
|- ———d; X")>0. 5.131
(N'-— l)z ( k )> ( )

On the other hand, from (5.130)
A2
dg 1 I=3N+DIN=1)+2N;d;

—y =T
od, 2

(N=1? = N,d,

A2 ~4
1 [IN2=3N;+1)d; /((N;=1}+Nd; IN;
1 D
2 [(N~D? = Nid;

1 —NiIN-1
2 1N N- 1)1

~4 ~2
1 —N?d, +N,(2N?-3N,+2)d; —(N,~1)(2N,-1)

= = (5.132)
2 [(N=1)? = N;d; I
"2
The term dg/dd; is equal to zero when
FET 3N} —3N? + N, ..
di=-— or —————". (5.133)
Ni N,‘

The second svolutionzof (5.133) does not satisfy the condition of (5.131). Since

g and Jg/dd; for d; =0 are positive and negative, respectively, the first solu-

tion of (5.133) gives the minimum g, which is
(N?=3NADIN~1)+1 : N—1

L R W
2

1 |
2 N(N—=1Y-1) 2 N2

(N1

]

| 1 FM—DLler} n-l . Ni=1
+ n 1

1
INNSD 2 T N=1)E N2 2 "W
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L1 +lln al + n-l lnNi_1 >0 (5.134)

for N; > 2. The inequality of (5.134) holds since the numerators of the second
and third terms are larger than the corresponding denominators.

Comments: Since g of (5.130) is always positive, ﬁL >i;R for ;-
samples and EL < i;R for m,-samples. Since £ > 0 is the condition for ®,-
samples to be misclassified and # < O is the condition for w,-samples to be
misclassified, the L method always gives a larger error than the R method.
This is true for any test distributions, and is not necessarily limited to normal
distributions. Note that this conclusion is a stronger statement than the ine-
quality of (5.116), because the inequality of (5.116) holds only for the expecta-
tion of errors, while the above statement is for individual samples of individual
tests.

Since we have the exact perturbation equation of (5.130), the use of this
equation is recommended to conduct the R and L methods. However, for
further theoretical analysis, (5.130) is a little too complex An approximation
of (5.130) may be obtained by assuming N; >> d and N; >> 1I. When X is
distributed normally, it is know that dZ(X) has the chi-square distribution with
an expected value of n and standard deviation of V2n, where
d*(X)=(X-M)'Z7'(X-M) [see (3.59)-(3.61)]. Therefore, if N >> n, the
approximation based on N >> d? is justified. Also, In(1+8) 23 for a small § is
used to approximate the second and third terms of (5.130). The resulting
approximation is

g (N, d (x§y) = Ellvf[c??(xii))+rz] . (5.135)

In order to confirm that the L and R methods give the upper and lower
bounds of the Bayes error, the following experiment was conducted.

Experiment 7: Error of the quadratic classifier, L and R
Data: I-A (Normal, n = 8, € = 1.9%)
Classifier: Quadratic classifier of (5.54)
Sample size: N, = N, = 12, 50, 100, 200, 400
No. of trials: 7= 40
Results: Table 5-9 [14]

As expected, the L and R methods bound the Bayes error.
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TABLE 5-9
THE BOUNDS OF THE BAYES ERROR BY THE L AND R METHODS

No. Resubstitution method Leave-one-out method Bias

of samples between
per class Standard Standard two

N, =N, Mean (%) deviation (%) Mean (%) deviation (%) means (%)

12 0.21 1.3 18.54 7.6 18.33
50 1.22 0.9 2.97 1.7 1.75
100 1.44 0.8 2.15 1.0 0.71
200 1.56 0.7 2.00 0.7 0.44
400 1.83 0.5 1.97 0.5 0.14

Effect of removing one sample: Generalizing the above discussion, let
us study how the removal of one sample affects the estimate of f which is a
function of M and £. Let MR and ZR be the sample mean and sample covari-
ance computed from all available samples, and let ML and ZL be the
correspondmg estimates without a sample Y. From (5.119) and (5.124), we
may express ML and ZL in terms of MR, ZR and Y as

N s i - S I

My = My — (Y -My) = My ~ (Y ~Mg) | (5.136)
~ ~ i ~ N ~ ~ .
T =Zp + - Y-Mp)(Y -Mg)"
LR N T oy MR M)

”:’i,\, + %[ik - (Y_A:’R)(Y_A:,R)T] , (5.137)

where N >> 1 is assumed. The terms associated with 1/NV are small deviation
terms. Therefore, we may approximate Mz and X, by the true parameters M
and £ whenever they appear in [-]/N, resulting in
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A e

M, =My — (Y -M), (5.138)
$ =5, + %[}: (Y -MYY-MYT] . (5.139)

Now, let us consider the problem of estimating f(M,Z) by f(A:lZ,}A:Z),
where f is a given function and Z is either R or L, depending on which esti-

mates are used. The estimate f(Ml,il) may be expanded by a Taylor series
around f(M,X) as

Sy = off v o s
f(Mz.Z7) =f (M, Z) + aM(MZ M)+tr{ % (Z, 2)} (5.140)
where

o 19 |
dcy, 2 dcy;

of _

3 = . ) (5.141)
1.9f _of
_2 a(','j a(.',", J

Then, the difference between f(A:lL,fJL) and f(A:IR,}E.R) is

b= fM,5)— f(My,Zg)
of” of
E{M—(AML—AMR) + tr{?f;—(AzL_AZR)}

I I O s v atvy MT
= |- S M)+xr{ S AZ - M-y (5.142)

where AM; = My ~M and AZ, =%, —X (Z =R or ).
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Example 1: Let f be

SXM. %) = %(X—M)TZ“(X—M) + % In 1T . (5.143)
Then,
O _ sy
oy = &M, (5.144)
%fz: = %[2_'—2"0( -M)X-M)'E™'] [from (A.41)~(A.46)] . (5.145)

If a sample Y is excluded, b of (5.142) becomes
~ | .
h(X,Y) = N [{(X—M)TZ"'(Y—M)}Z +n+2X=-M' (Y -M)

- X-MTTNX-M) - (Y—M)TZ"(Y—M)] . (5.146)

Example 2: If fis evaluated at X =Y, }; of (5.146) becomes
~ 1
h(Y,Y)= —[d*(Y , 5.147
(¥,Y) 2N[ (Y) +nl ( )

where d?(Y) = (Y-M) 27" (Y-M). Equation (5.147) is the same as (5.135)
except that the true parameters M and Z are used this time instead of M; and X,
for (5.135).

Resubstitution Error for the Quadratic Classifier

Error expression: When the L method is used, design and test samples
are independent. Therefore, when the expectation is taken on the classification
error of (5.98), we can isolate two expectations: one with respect to design
samples and the other with respect to test samples. In (5.101), the randomness
of h comes from design samples, and X is the test sample, independent of the
design samples. Therefore, E,{e/®™*)} can be computed for a given X. The
expectation with respect to test samples is obtained by computing j[-]p,-(X) daX.
On the other hand, when the R method is used, design and test simples are no
longer independent. Thus, we cannot isolate two expectations. Since X is a
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design sample as well as a test sample, both contribute to the variation of h.
Thus, we can no longer use the same argument as in Section 5.2 to compute
E4{e/*M%)}. However, the relationship between h; and hy is given exactly by
(5.129) and (5.130) and approximately by (5.147). Therefore, using the
approximation of (5.147) for simp]icity,

hR(X“)) ”hL(X‘”)— [d X"y +nl for o, (5.148)

(xm) ~hL(x<2>)+ [d (XP)+n] forw,. (5.149)

Applying (5.148), (5.149) and another approximation, e¢/* = | + jwa/N
(valid for large N), the classification error by the R method, €, may be calcu-
lated from (5.98) as

;: B _l_ ﬁ.Nl Jel(l)hk(x " deo— _Pig JejmhR(X‘ )
e Nlll2n 2’ jo
:_l_+_P_lN'_l_ ejmﬁl_(x;“)[l_jmd?(x}”)-’-n
2N S o 2N,
P Jefmﬁuxsz” [l+,wd‘§<x§2’)+n
N2 j=1 2 j(l) J 2N2
~ Py N A ()
=g -[—=3XB + ZB I, (5.150)
Nzl j=l ! N; j=1 !
where
(i) 1 dj‘(Xj’))+n ja)ﬁ (X4
B, = f———e X0 e (5.151)

2

and ;:,_ is the classification error by the L method.

Moments of the bias: By converting ﬁR to ﬁ,_, design and test samples
are now independent, and the discussion of Section 5.2 can be directly applied.
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Therefore, the statistical properties of the bias, €, =€, —€g, can be studied.
The expected value of g, is

E =— -—08B, . 152
(€} N B+ N, B, (5.152)
where

dix oh
(= L[ e X (5.153)

And, the variance of g, is

P2 A(l) a(l)
Var{e, ) —X/—[—A‘/TV f{B] ]+(l__)COV{B_[ N J)

1

+ - (var(B)) + (-~ cov(B; 8] (5.154)
5 N N>

Ple A(l) a(2)
+
NIN [B] BA }

Example 3: The explicit expression for f§; of (5.153) can be obtained by
using the same technique used to compute (5.81), if two distributions are nor-
mal with M, =0, M, =M, and X, =%, =/, and the quadratic classifier of
(5.54) is used. ForN, =N, =N

/mhL(’()

Efe | Ze ,mh(x>[l+ngdmh(x)+ AhZ(X)I] =p /X (5.155)

The last approximation was made because E,{Ah + joAh?/2} is proportional
to 1/N. Then, ej‘”"‘x’p,(X) (i = 1,2) are given in (5.78) and (5.79). Thus, the
integration of (5.153) merely involves computing the moments of the normal
distributions of (5.78) and (5.79), resulting in

o ey MM M'M> M'M
B 2
+(1+ +
g 2om M SRR 2

Ill

_]}

(5.156)
Note that fB; of (5.156) is exactly twice v, of (5.81). That is, the bias between
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the L and R errors is twice the bias between the L and true errors.

In order to confirm (5.156), the following experiment was conducted.

Experiment 8: Bias between the L and R error
Data: /-I (Normal, MM =2.562, e = 10%)
Dimensionality: n =4, 8, 16, 32, 64
Classifier: Quadratic classifier of (5.54)
Sample size: N, =N, =kn, k =3, 5, 10, 20, 40
No. of trials: T= 10
Results: Table 5-10, Fig. 5-3 (6]

The first line of Table 5-10 indicates the theoretical biases from (5.152) and
(5.156), and the second and third lines are the average and standard deviation
of the 10 trial experiment. Despite a series of approximations, the first and
second lines are close except for small k’s and large n’s, confirming the vali-
dity of our discussion.

An important fact is that, from (5.152) and (5.156), E{g,,} is roughly
proportional to n%/N for large n. A simpler explanation for this fact can be
obtained by examining (5.153) more closely. Assuming (5.155) and carrying
through the integration of (5.153) with respect to ,

f d}X)+n

B

&(h (X))p;(X)dX

I

f d*X)+n

> pi(XHdX . (5.157)

h(X)=0

It is known that ¢?(X) is chi-square distributed with an expected value of n and
standard deviation of V2n, if X is normally distributed [see (3.59)-(3.61)].
This means that, when # is large, d>(X) is compactly distributed around the
expected value n (i.e. n >> \JZ.) Therefore, d#(X) on the classification boun-
dary should be close to n%. Thus, B; should be roughly proponional to n?.

The analysis of the variance (5.154) is more complex. Though the order
of magnitude may not be immediately clear from (5.154), the experimental
results, presented in Fig. 5-4 and the third line of Table 5-10, show that the
standard deviation is roughly proportional to 1/¥. The intuitive explanation
should be the same as that presented in Section 5.2.
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TABLE 5-10
BIAS BETWEEN L AND R ERRORS FOR DATA /-] (%)

n

3 9.00 1379 23.03 4134 7787
13.33 1542 19.69 2286 30.29
7.03 5.22 4.12 4.26 3.40

5 5.40 827 1382 2480 46.72
7.50 925 1075 1775 2447
4.56 3.24 2.28 2.69 1.53

k10 2.70 4.14 691 1240 23.36
2.25 4.63 6.34 9.58 16.01
1.84 2.02 1.59 1.61 1.24

20 1.35 2.07 3.45 6.20 11.68
1.38 2.09 3.14 5.05 9.56
1.05 1.00 0.64 0.53 0.45

40 0.67 1.03 1.73 3.10 5.84
0.44 1.08 1.55 2.96 5.21
0.30 0.39 0.30 0.30 0.36

Effect of Outliers

It is widely believed in the pattern recognition field that classifier perfor-
mance can be improved by removing outliers, points far from a class’s inferred
mean which seem to distort the distribution. The approach used in this section,
namely to analyze the difference between the R and L parameters, can be
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5 |- gviation x / x

1Nx1072
0 1 1 1 1 L,
0 1 2 3 4 5

Fig. 5-4 Biuas between L and R errors for Data I-/.
(Standard deviation vs. 1/N for n = 8.)

extended to handle the effect of a single point of the design set on classifier
performance.

In order 1o develop our discussion further, we need to specify the type of
the classifier. So, let us study the quadratic classifier of (5.54) here. In the
quadratic  classifier, we use the discriminant function of A(X)=
f(X MI,Z,) —f(X M,.Z,) where fis defined in (5.143). When the estimates
Ml, Mz, Z,, and 2‘.2 are used in the place of Ml, Mz, Z,, and 22, the result-
ing discriminant function becomes h(X) f (X, M,,Z,) - f(X MZ,ZZ) Furth-
ermore, removmg a sample (outlier), Y, from (T Ml and 2.1 must be replaced
by Mly and Zly, and, consequently, hy(X) —f(X M]y Z,y) - (X, MZ,Z'Q)

The perturbation from f (X, M,,E,) to f(X, M,y,)Z,y) is given in (5.146).
Therefore,
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hy(X) = f(X.My,2))) - [ (X.My,%)

-~ ~ ] 3 A~ A
2 (ML) + =g (GY) - f (X My, 5y)
= h(X) + (’L,gl(X,Y) for Yeo, | (5.158)

where

g (XY)= % [[(X—M,)T):T'(Y—M,)lz +n+2X-M )T (Y -M))

- X-M)TEV'(X-M,)) - (Y—M|)TZT'(Y—M|)J : (5.159)
Likewise, when Y comes from ®,,
hy(X) = h(X) - %gz(x,)') for Yeo, | (5.160)

where g, is the same as (5.159) except that M, and X, are used instead of M,
and X,.

When this modified classifier is used on an independent set of test sam-
ples, the resulting error is, using (5.59),

johy(X)

&= 5+ o[ pundwax

jo

1 1 ejmﬁ(x) jo ~
el ) || pu— ) R (X, V) p X))dwdX
> 2nﬂ o ( g (X, V) p(X)dox

g ¢

£+ ﬁﬂe'mﬁ(x’}g,(x,Y)ﬁ(X)dwzx
~ay i jency L ~
=2 £ 5 ffern 0 L .y pondedx (5.161)

where + and / = | are used for Yew, and — and /=2 are for Yew,. The
approximation in the last line involves replacing e/“"X’ by ¢/®"X) " Unlike the
case of the R error, (5.161) keeps F(X) in its integrand. This makes the
integral in (5.161) particularly easy to handle. If the quadratic classifier is the
Bayes classifier, the integration with respect to @ results in
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Mgy = [81 00) -8, (X V)5 (X) dX

-+ | Laxrpoax=o0. (5.162)
hx)=0 v

That is, as long as E(X) =0 at h(X) =0, the effect of an individual sample is
negligible. Even if the quadratic classifier is not optimal, Aéy is dominated by
a 1/ term. Thus, as one would expect, as the number of design samples
becomes larger, the effect of an individual sample diminishes.

In order to confirm the above results, the following experiment was con-
ducted.

Experiment 9: Effect of removing one sample
Data: I-1, I-41, I-A (Normal, n = 8)
Classifier: Quadratic classifier of (5.54)
Design samples: 71, = 71, = 24, 40, 80, 160, 320
Test: Theoretical using (3.119)-(3.128)
No. of trials: 1= 10
Results: Table 5-11 [6]

Table 5-11 shows that, even if the squared distance of ¥ (€,) from M, d?, is
much larger than n, the effect is still negligible. The expected value of d’ is n
when X is distributed normally.

5.4 Bootstrap Methods

Bootstrap Errors

Bootstrap method: So far, we have studied how to bound the Bayes
error based on available sample sets. That is, we draw T sample sets
Si,...,S¢, from the true distributions, /~, as seen in Fig. 5-5, where each
sample set contains N| w,-samples and N, ®,-samples. For each §;, we can
apply the L and R methods to obtain EL,- and ER,». The averages of these EL,-’s
and éRi‘s over T sets approximate the upper and lower bounds of the Bayes
error, E{EL} and E{ER }. The standard deviations of T;:L,-'s and z::R,-‘s indicate
how EL and ;:R vary. However, in many cases in practice, only one sample set
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TABLE 5-11
EFFECT OF REMOVING ONE SAMPLE

Bias between errors with
and without removing Y (%)
Error without
Case 7| removing Y (%) | d®>=n | d*=2n | d>=3n
24 20.18 0.689 0.769 0.762
I-] 40 15.61 0.211 0.279 0.274
(€ = 10%) 80 12.04 0.035 0.027 0.018
160 11.04 0.010 0.014 0.013
320 10.53 0.006 0.009 0.011
24 23.53 1.213 1.451 1.356
[-41 40 16.19 0.423 0.619 0.658
(€ =9%) 80 11.79 0.060 0.091 0.083
160 10.32 0.005 0.014 0.013
320 9.52 0.006 0.012 0.015
24 5.58 0.555 0.664 0.673
I-A 40 3.70 0.088 0.110 0.103
(£=1.9%) 80 2.54 0.007 0.008 0.003
160 2.25 0.000 0.001 0.001
320 2.08 0.000 0.001 0.001

is available, say S, from which we wish to learn as much about the statistical
properties as possible that these S;’s may have.

One possible way of doing this is to generate / artificial sample sets

Si,....8) from S,, and study the statistical properties of these S};’s
(/ = 1,...,7), hoping that these statistical properties are close to the ones of the
S;’s (i=1,...,71). This technique is called the bootstrap method, and the

artificial samples are called the hootstrap samples [15]. The bootstrap method
may be applied to many estimation problems. However, in this book, we dis-
cuss this technique only for the estimation of classification errors.
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Fig. 5-5 Bootstrap sample generation.

There could be many possible ways to generate artificial samples. One
is to generate samples normally around the existing samples. This leads to a
nonparametric technique called the Parzen approach with the normal kernel
Sfunction, which will be discussed extensively in Chapters 6 and 7. In this sec-
tion, we discuss the case in which samples are generated randomly at the
points where the existing samples in S, are located.

Bootstrap errors: Let us assume that S, consists of N, ®,-samples,
X, ... XY, and N, o,-samples, X9, ..., X{?. Then, we may express the
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density function of ®; by collection of N; impulses which are located at the
existing sample points, X{’, ... .X\). Thatis,
N,

i
N, &

j=

pi(X) = SX-X") i=1,2, (5.163)

where ~ indicates something related to the bootstrap operation. In the bootstrap
operation, the density function of (5.163) is treated as the true density from
which samples are generated. Therefore, in this section, Xﬁ") is considered a
given fixed vector and is not random as it was in the previous sections.

When samples are drawn from p; (X) randomly, we select only the exist-
ing sample points with random frequencies. Thus, the N, samples drawn from
pi (X) form a random density function

. N; _
p,(X)=Y wi dx-x\"y i=12. (5.164)
i=1

Within each class, the w!’s are identically distributed under the condition

N, i . . .
Y wi’ = 1. Their statistical properties are known as
j=

: |
E{w} = — | 5.165
{wi’} N ( )

. . 1 |

i iy -
E{AwW AW} = NE ok (5.166)
E{AWY'AWR ) =0 fori =k, (5.167)

where Aw''! = wl'—1/N;.

The H error in the bootstrap procedure, .;,,, is obtained by generating
samples. designing a classifier based on p; (X), and testing pi(X) of (5.163).
On the other hand, the R error, €, is computed by testing p; (X). The bias
between them can be expressed by
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1 o/ OR (X) Ny 1 .
=5 P W =X
o .U o lj=l N, j|ot i)
N
S 1 (2) 2
=Py Y | yT T W |8 -X}Y) [dwdX
j=t 72
N, N
=P Y -P XYY, (5.168)
j=l =
where
' Aw'h Jjoh (X0
W=-—L]% do . (5.169)

2n jo

Quadratic classifier: When a quadratic classifier is used, lAlw(X) in
(5.169) becomes
h (X)=fXMLE) - fX.M5.25) (5.170)

%

where f(-,-,-) is defined in (5.143). The bootstrap parameters, M,- , and )E, are

. N,
M= 3 WX (5170
j=1
A E N, . . A . A
L =3 W.‘/"(Xﬁ”*M,-)(X}"—M,-)’ : (5.172)
j=1

Note that M, = (Z2, X9yN; instead of M, is used to compute i, In the con-
ventional sample covariance matrix, the sample mean is used, because the true
expected vector is not available. However, the true expected vector, I\:l,-, is
available in the bootstrap operation, and the use of I\:I,- instead of M, simplifies

the discussion significantly. Their expectations are
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N, N,
- L N
EAM) =S E (W 1X() = = ZX = (5.173)
j=1

ij=l
N,
E%)) = zz{w“’}(x“’ —M XM

_Ni=l
=— %
N

i

3, (5.174)

IIZ

where E- indicates the expectation with respect to the w’s.

f(X,M,- ,)‘f., ) can be expanded around f(X,A;I,-,):".,-) by the Taylor series as

of o o L%
fX, M,,z)~f(XM,,Z)+-aVAM +tr a_}A:AZi , (5.175)

i t

where AM; = M, — M,, AS, = £ %, and 3f'/05, is defined in (5.141).
Since A(X) = fX.M1,E,) - f(X.M4,2,),

ARGX) = h (X) = AX)

T T of A of
;ijA—AM,— a{ AM,+tr _Af:Azl_ { (5.176)
aMl aM2 8}:1 82«2

The partial derivatives of (5.176) can be obtained by (5.144) and (5.145).

Bootstrap Expectation

Using the approximation of (5.60), (5.169) can be approximated as

AW(-“ /(nh(X‘ )
7= TT:_J.E—(D—‘[H](DAh(X“)HUw) AR’ (X')do (5.177)
j

The third term is a third order variation with the combination of Aw{’ and
Ah’", and can be ignored. Thus, our analysis will focus on the first and second

terms only. With this in mind, substituting (5.171), (5.172), and (5.176) into
(5.177) produces
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0 Joh(X'

2 ST [C

VW | ————do
2n jo

l J' j(uh(X“ 8} Z AW(')AWP)Xi

M(ll

Na
/i Y awl aw® X2

8M2L1

N ) ~ af"‘ ~

+ 3 awl? aw x-M )T =—X{V-M )

k=1 5

N> ) . ) af« R

-3 awl AwP(XP-M ) Z—(XP-M)ldw . (5.178)

k=1 2

Z

Using the expectations in (5.165)-(5.]67) E*[y‘-”] becomes

oI (—l)i _iwﬂ(X" _ (i)
i = ke o kz.( % N‘ v
T of
+ — XY= M, D ==X - M)]
k=i N2 N} o3

i

Il

(=1 1y ,mﬁ(x'”) afT B
(XM,
~ 2nN? [a % )

i

* s

~ 7

o, (5.179)

+ (XM, )”‘g—ff<x;”—M,-> —tr

i

i
where an approximation of N—1 = N is used to obtain the second line from the

first. Now, substituting the partial derivatives of (5.144) and (5.145) into
(5.179),

(Gl

Es I,Y(I)} - 5 N2

PRI : ~ ol j 9
J'ju)h(X, )[—(X}')—M,-)TZ,- (Xj-’)"M")

+ %(xj-”—/ﬂ,- YV (X0, — %{(xy’)—M,)Ti,-_'(x}”—/ﬂ,)}z
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| | i A ol i ~
—on+ 3(xj- -M)'Z (XY -M)ldw

~4 .
i (i) ~
=Dt d; (X" rtn Joh(xt
= | — dw, 5.180
NI 2m J 2 ¢ ® (-180)
~2 ~ A ~
where d; (X) = (X-M;)'Z; (X—M,). Thus, the expectation of the bootstrap bias
for a quadratic classifier given a sample set §, = (X{", ... . X{’ X, ... Xy
becomes
. Ny
Y P, *m Py a2
E<lg 1S} = 22 3 | (5.181)
Ny j2 7 j=t
where
4, (X
A (i) i & o { BEPEAT
;= LJ#H“’“X' ‘do (5.182)

Note that (5 151) and (5.182) are very 51mllar The differences are (}’2 vs. af,-2
and & vs. hL The discriminant function # of (5.182) is designed with A:l,- and
Z,, the sample mean and sample covariance of the sample set S,. The test
samples X|" are the members of the same set, S,. Therefore, h is the same as
the R discriminant function ;IR, while flL of (5.151) is the L discriminant func-
tion. For a given S, ﬁR is a fixed function. However, if a random set, S,
replaces the fixed set, S, the discriminant function becomes a random vari-
able, hR As shown in (5.148) and (5.149), the dlfference between hL and hR

L g

is proportional to I/N. Thus, the difference between ¢’ and ¢’ wh is propor-
tional to 1/N. Also, it can be shown that the difference between z},- and d? is
propomonal to I/N. Thus, ignoring terms with 1/N, é,, of (5.150) and
E. {a,, S} of (5.181) (note that S is now a random set) become equal and have
the same statistical properties. Practically, this means that estimating the
expected error rate using the L and bootstrap methods should yield the same

results.

These conclusions have been confirmed experimentally.
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Experiment 10: Bootstrap errors
Data: I-1, I-41, I-A (Normal, n = 8)
Classifier: Quadratic classifier of (5.54)
No. of bootstrap sets: { = 100
Sample size: N| = N, = 24, 40, 80, 160, 320
No. of trials: T= 10
Results: Table 5-12 [6]

In Table 5-12(a), the means and standard deviations of é,_ and é,, (= éL—éR) of
the 10 trials are presented for the conventional L and R methods Table 5-
12(b) shows the corresponding terms in the bootstrap method: ER + Ex le,, 15}
and EK{EhJS] respectively. E*Ie,,IS } is obtained by taking the average of
€41, . .-y [see Fig. 5-5]. This is the bootstrap estimation of the bias
between the /1 and R errors given §;, and varies with S The random vartdble
E*{E,, IS} with a random 8 should be compared with t-:,, of Table 5-12(a).
this bias estimate is close to the bias between €y; and | &g of S,, the bootstrap
bias could be added to £R, to estlmate £H, The term ER + Ex {s,, IS} of Table
5-12(b) shows this estimation of t-:H, and should be compared with sL of Table
5-12(a). The table shows that 8,_ of (a) and sR + Ex It-:,, IS} of (b) are close in
both mean and standard deviation for a reasonable size of N. The biases, 8,, of
(a) and E* {s,, IS} of (b), are also close in the mean, but the standard deviations
of Ex {8,, IS} are consistently smaller than the ones of t-:,,

Bootstrap Variance

The variance with respect to the bootstrap samples can be evaluated in a
fashion similar to (5.154)

NI N,
Var.le,,lS} = 1[2Var (Y} + 3 3 Covs (¥4 vV 1]
i=1 N ]I:k 1
N N, N,
+P3 [T Var. (v} + ¥ 3 Cov: (v, 7 1]
j=1 J=lk=1

Jzk
Ny Ny
~2P P, Y Y Cov{¥\" yiP} . (5.183)

j=lk=1
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TABLE 5-12

COMPARISON BETWEEN CONVENTIONAL AND
BOOTSTRAP METHODS

f—:L E—:,, = f—:L—éR Var[;-:,\, }
Data N
Mean Standard Mean Standard
(%) deviation (%) (%) deviation (%) (%)
24 | 17.08 4.89 13.54 3.14 0.11
40 | 13.38 6.04 7.63 3.88 0.07
I-1 80 | 11.19 2.47 4.06 1.29 0.04
160 | 11.28 2.35 2.16 1.09 0.03
320 | 10.67 0.80 0.89 0.37 0.01
24 | 18.33 4.79 14.79 3.86 0.12
40 | 13.75 3.23 8.88 2.97 0.06
1-41 80 | 11.19 2.72 4.00 1.56 0.08
160 9.88 1.58 2.28 0.68 0.01
320 | 10.09 0.83 0.98 0.40 0.01
24 5.00 3.43 4.38 3.02 0.01
40 3.63 1.99 1.75 1.21 0.02
I-A 80 2.31 1.10 0.88 0.94 0.01
160 2.34 0.90 041 0.36 0.00
320 2.17 0.48 0.17 0.14 0.00

(a) Conventional L and R error estimates.

Because the samples from each class are bootstrapped independently,
Covs {7\, 7?1} = 0.

Using a property of the inverse Fourier transform,

’_ Aw!? ejmﬁ'(x‘,”) | e .
Y = _TITdm = —ESIgn(h XONAw! (5.184)

The variance of ¥! is
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TABLE 5-12

BOOTSTRAP METHODS

ExtE-€,1S) E.(&,1S]) Var.{€,18)
Data N
Mean Standard Mean Standard Mean
(%) deviation (%) (%) deviation (%) (%)
24 1 1277 4.17 9.23 1.38 0.18
40 | 11.68 4.44 5.92 1.90 0.08
I-1 80 | 10.67 2.50 3.55 0.56 0.04
160 | 11.17 1.94 2.05 0.44 0.02
320 | 10.78 0.91 1.00 0.11 0.01
24 | 15.08 4.35 11.54 1.26 0.21
40 | 12.10 2.27 7.22 0.92 0.12
1-41 80 | 10.82 3.12 3.63 0.54 0.04
160 9.56 1.23 1.96 0.33 0.02
320 | 10.14 0.77 1.03 0.15 0.01
24 4.14 1.69 3.52 0.84 0.10
40 3.74 1.95 1.86 0.67 0.03
I-A 80 2.26 1.08 0.82 0.24 0.01
160 2.35 0.80 0.42 0.17 0.01
320 2.18 0.53 0.18 0.07 0.00
(b) Bootstrap error estimates.
Var. (YW} = E- {y{?} - E2{y{")
1 . .
- ZE[AW;'B} - E3{y)
o (5.185)
=79 N .

where EZ{y\’} is proportional to 1/N{ from (5.180) and therefore can be
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ignored. Cov«(YY’.¥{") may be approximated by using the first term only of

(5.178). Again, using (5.184),
Cove " i’} = YY) - By E- (1)

E%si‘en(fz(xy Msign(h(XPDE{AWD AW ) -E A VE- v}

= 4/:/3 sign(h(X))sign(h(X{)))  for j # k . (5.186)
where E{AwAw{'} =—UN; for j #k by (5.166), and E-{y\}E-{¥{'} is
proportional to [/N? by (5.180) and therefore can be ignored.

Thus. substituting (5.185) and (5.186) into (5.183) and using

Cov- {y\", ¥} =

~t 1 Ly :2 N sign(}Az(X‘f’)) N, SI'QN(/'AI(X(A.'.)))
\Y% =1 & |S = —_— ] ¢
ar. [ b } ‘ 2 N 1 2

i=) J=1 N; k=1 Ni
1 P - .
= 7 L 1-0-2e)(1-2¢)]
i=1
2 IR(l £IR)
= —_— 5.187
§ N (5.187)

i

Note that Zsign(/Az(X_‘,-”))/N,- = (1) [(# of correctly classified m,-samples by

W, W)

/; < 0)N;, — (# of misclassified w;-samples by h (> 0yN,] = (—I)’[(l—é,-R)
~t,R] = (1)1 2&,R) Since h is the R discriminant function for the original
sample set. the re%ultmg error is the R error. The last column of Table 5-12(a)
shows the variance of €g. which is computed by the 10 trials of the conven-
tional R method This should be compared with the last column of Table 5-
12(b), Var. {e,,lSl Bgth are close as (5.187) predicts. Var. {e,,lS } is the
variance of €. . ... t‘-;,.,,-, [see Fig. 5-5]. The last column is the average of
Varl;:,, IS;} overi.

Note that (5.187) is the variance expression of the R error estimate.
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Computer Projects

1.  Repeat Experiment I.

2. Repeat Experiment 4. Also, estimate the asymptotic error for each n by
using the line fitting procedure.

3. Repeat Experiment 5. Also, estimate the asymptotic error for each n by
using the line fitting procedure.

4.  Repeat Experiment 6.
5. Repeat Experiment 9.

6.  Repeat Experiment 10.

Problems

1. The Fisher criterion, f = (m,~m)*/(G3+G3), measures the class separa-
bility between two one-dimensional distributions. Compute the bias and
variance of f when these parameters are estimated by using N samples
from N (0,1) for w, and N samples from N (1,4) for w,.

2. Let f(m) be a function of m, where m is the expected value of a one-
dimensional normal distribution and is estimated by the sample mean m

using N samples. Expand f(l;l) around f (m) up to the fourth order
term, and confirm that £ {0} = 0 and E {0 }~1/N?.

3. Compute the bias and variance of ﬁ (not ﬁ., and ﬁz separately) for nor-
mal distributions.

W,
4. In order for a linear classifier h(X)=V7X + v, 2 0 to be optimum by
)

minimizing the error of (5.37), prove that V and vo_must satisfy
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P,jl(mpm X =P pa)ax

P j( Py ax =P jx Xp,(X) dX .

5. Derive v, of (5.92) for Data /-1.

6. A quadratic classifier for zero-mean distributions is given as

hX)=XT[Z7' = £3'1X 2 ¢

W
In the design phase, £, and Z, are estimated by

~ N .
I = #Zxx’ and %, = Y,-y,?,

an

L
N/
where X; and Y; are samples from ®, and o, respectively. For testing
X;, X, is excluded from design to get £,;. Prove
- o o didi-D)
h(xkvzlkvzfl) - h(xkvzlvzﬁ) = ——2_
N —d;

where

~-t
d} =XIZ, X, .

7. Modity the Procedure III of Section 3.2 to the leave-one-out method.

8. Assuming M, =0, My =M ={m0...0}, and £, =%, =1, compute
the integral of (5.153) along the Bayes boundary (x, = VMTM/2) to
obtain B,. Use h(X) MMy =MTM 2, dtX)=(Z"x})?. and
p1(X)=2m) ™" *expl- —Z L7 )

9. N boxes have equal probability of getting a sample. When N samples
are thrown, the jth box receives k; samples. Defining w; = k,/N, prove
that

(]) E[WI) = l/N.
(2)  El(w; = UNXw; ~ 1/N)] =8;;/N? = lIN?.
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10. Let the bootstrap sample covariance matrix be
N N A a
T=Ywi(X,-M )X, -M )"
j=l
instead of (5.172). Compute the expected value of x.
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Chapter 6

NONPARAMETRIC DENSITY ESTIMATION

So far we have been discussing the estimation of parameters. Thus, if
we can assume we have a density function that can be characterized by a set of
parameters, we can design a classifier using estimates of the parameters.
Unfortunately, we often cannot assume a parametric form for the density func-
tion, and in order to apply the likelihood ratio test we somehow have to esti-
mate the density functions using an unstructured approach. This type of
approach is called nonparametric estimation, while the former is called
parametric estimation. Since, in nonparametric approaches, the density func-
tion is estimated locally by a small number of neighboring samples, the esti-
mate is far less reliable with larger bias and variance than the parametric coun-
terpart.

There are two kinds of nonparametric estimation techniques available:
one is called the Parzen density estimate and the other is the k-nearest neigh-
bor densiry estimate. They are fundamentally very similar, but exhibit some
different statistical properties. Both are discussed in this chapter.

It is extremely difficult to obtain an accurate density estimate non-
parametrically, particularly in high-dimensional spaces. However, our goal
here is not to get an accurate estimate. Our goal is, by using these estimates,
to design a classifier and evaluate its performance. For this reason, the accu-
racy of the estimate is not necessarily a crucial issue. Classification and
performance evaluation will be discussed in Chapter 7. The intention of this

254
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chapter is to make the reader familiar with the fundamental mathematical pro-
perties related to nonparametric density estimation in preparation for the
material presented in Chapter 7.

6.1 Parzen Density Estimate

Parzen Density Estimate

In order to estimate the value of a density function at a point X, we may
set up a small local region around X, L (X). Then, the probability coverage (or
probability mass) of L(X) may be approximated by p(X)v where v is the
volume of L(X). This probability may be estimated by drawing a large
number of samples, N, from p(X), counting the number of samples, &, falling
in L (X), and computing k/N. Equating these two probabilities, we may obtain
an estimate of the density function as

~ _ kX) k(X)
pX)v = _N or (X) =Ny 6.1)

Note that, with a fixed v, k is a random variable and is dependent on X. A
fixed v does not imply the same v throughout the entire space, and v could still
vary with X. However, v is a preset value and is not a random variable.

Kernel expression: The estimate of (6.1) has another interpretation.
Suppose that 3 samples, X3, X4, and X5, are found in L (X) as shown in Fig.
6-1. With v and N given, ;;(X) becomes 3/Nv. On the other hand, if we set up
a uniform kernel function, x(-), with volume v and height 1/v around all exist-
ing samples, the average of the values of these kernel functions at X is also
3/Nv. That is, [1-4]

. N
pUO = - 3 =X 6.2)

As seen in Fig. 6-1, only the kemel functions around the 3 samples,
X3. X4. and X5, contribute to the summation of (6.2).

Once (6.2) is adopted, the shape of the kemnel function could be selected
more freely, under the condition IK(X) dX = 1. For one-dimensional cases,
we may seek optimality and select a complex shape. However, in a high-
dimensional space, because of its complexity, the practical selection of the ker-
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Fig. 6-1 Parzen kemnel density estimate.

nel function is very limited to either a normal or uniform kernel. In this book,
we will use the following kermel which includes both normal and uniform ker-
nels as special cases:

mI(Lyr2 A2
2 2m 1
K(X) = n x n |A | 112
n/2yni2+1 r
1" —_
(n) (Zm)
F(—";nz)
xexp |- 1 ——X"(r2A)"'X , (6.3)
(=)
2m

where I(-) is the gamma function, and m is a parameter determining the shape
of the kernel. It may be verified that, for any value of m, the covariance matrix
of the kernel density (6.3) is r’A. The parameter m determines the rate at
which the kernel function drops off. For m = 1, (6.3) reduces to a simple nor-
mal kemel. As m becomes large, (6.3) approaches a uniform (hyperelliptical)
kernel, always with a smooth roll-off. The matrix A determines the shape of
the hyperellipsoid, and r controls the size or volume of the kemel. Other
coefficients are selected to satisfy the two conditions mentioned previously:
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jK(X)dX =1 and I, = r2A where £, is the covariance matrix of k(X).

Convolution expression: Equation (6.2) can be rewritten in convolution
form as

PXX) = pX)+k(X) A [p (V)x(X—Y)aY , (6.4)

where p, is an impulsive density function with impulses at the locations of
existing N samples.

R N
p.() = - Z30X,) (6.5)
i=1

That is, the estimated density ;A)(X) is obtained by feeding ;A)S(X) through a
linear (noncausal) filter whose impulse response is given by x(X). Therefore,
p(X) is a smoothed version of p,(X).

Moments of f)(X ): The first and second order moments of (6.4) can be

easily computed. First, let us compute the expected value of [A)S(X) as

- N N
EIp.(X)) = - ZJoX-2)p 202 = - Tp(X) = p(X) 6.6)

i=l i=1

That is, [A)S(X) is an unbiased estimate of p(X). Then, the expected value of
p(X) of (6.4) may be computed as

Ep0)) = JE(p, () Ix(x ~Y)a¥

= .[I7 V)X -Y)dY = p(X)*K(X) . (6.7)

Also,

~2 1 NJ 20y _
Ef{p (X))} =7 DI (X=Z)p(Z)dZ
i=1

N N
+ 3 3 [fxx -vixex -2)p (V)p 2)dvaz
i=lj=1
izf
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= LX) + (1=0lp (s (6.8)
Therefore, the variance of f)(X ) is
Var pO0)) = 301p (000 = [p(X)w 00T (6.9)

Approximations of moments: In order to approximate the moments of

f)(X), let us expand p(Y) around X by a Taylor series up to the second order
terms as

p(Y)=pX)+Vp )Y -X) + %tr{vzp(X)(Y—X)(Y—X)T] . (6.10)
Then, p (X)*x(X) may be approximated by

pOwx(X) = Jp (¥ -X)ay

=p (X)Jx(¥ —X)dY

+ %tr{Vzp (X)_[(Y—X)(Y—X)TK(Y—X)dY} , (6.11)

where the first order term disappears because x(-) is a symmetric function.
Since [k(Y=X)dY = 1 and [(¥ =X)(Y=X)T(Y=X)dY = r?A for x(-) of (6.3),
(6.11) can be expressed by

pX)*xX) = p (X[ + %a(X)rz] , (6.12)
where
V3 (x) }
X)=tr{———=A . 13
o(X) r{ > (X) 6.13)
Similarly,

p X2 (X) =p X2 (Y -X)dY

+ —;—tr{ V2p ()| (¥ XYY =X )Y -X)dY } . (6.14)

Although «(-) is a density function, k*(-) is not. Therefore, _[KZ(Y)dY has a
value not equal to 1. Let
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w = [y . (6.15)

Then, Kz(-)/w becomes a density function. Thercfore, (6.14) becomes

P 0% 3 X) Zwp (X) + %lr{vzp (X)I(Y—X)(Y-X)T@dy}
= wp CO[ + B0 (6.16)
where
B(X) = lr{%B} 6.17)

and r2B is the covariance matrix of k¥2(X }/w.

Substituting (6.12) and (6.16) into (6.7) and (6.9), the moments of [;(X)
are approximated by

El[;(X)] =pX)H[1+ %a(X)rz] 2nd order approximation

= pX) 15t order approximation , (6.18)

Var(pOO)Z 2 bp COF 1+ 2BOF2] = p2001 1+ SoX0r? )

2nd order approximation

= #[wp (X) - p*(X)] st order approximation . (6.19)
Note that the variance is proportional to /N and thus can be reduced by
increasing the sample size. On the other hand, the bias is independent of N,
and is determined by V2p (X), A, and r2.

Normal kernel: When the kernel function is normal with zero expected
vector and covariance matrix r2A, NX(O,;'ZA), x*(X) becomes normal as
cNx(0,r2A/2) where ¢ = 272(2r)™""21A I7V2r" . Therefore,
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\
W= 211/2(210'1/2 1A | Il2'_n

, (6.20)
B(X) = %am . 6.21)

Uniform kernel: For a uniform kernel with the covariance matrix >4,

K(Y) = {l/v inside L(X)

6.22
0 outside L(X) . ( )
where
LX)={Y:d(¥.X)<rVn+2}, (6.23)
A X)=Y-X)’"A""(Y-X), (6.24)
and
ni2
v =J; dY = — 4 12Vne2y | (6.25)
X) F( n+ )
2
Then, k2(X) is also uniform in L (X) with the height 1/v2. Therefore,
" =J; QY)Y =L (6.26)
(X) Vv

Also, since the covariance matrix of K(X) is r2A, the covariance matrix of
K2 (X)/w is also %A as

1[ (¥ =X)Y =X Lay = 24 . 6.27)
x) v
Therefore, for the uniform distribution of (6.22),

B=A and BX)=aX). (6.28)

Note that w’s for both normal and uniform kernels are proportional to

or v~'. In particular, w = 1/v for the uniform kernel from (6.26). Using

this relation, the first order approximation of the variance can be simplified
further as follows:

r =-n
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it

Var|p(X)) = ;7 {&VX’ —pz(X)]

2 LSRN B IFURE- D B R
p(X){va(X) N}—p(X)[k N}

piX)
=

(6.29)

where p = k/Nv and N >>k are used. This suggests that the second term of
(6.19) is much smaller than the first term, and can be ignored. Also, (6.29)
indicates that k—eo is required along with N —ecc for the Parzen density esti-
mate to be consistent. These are the known conditions for asymptotic unbias-
ness and consistency [2].

Convolution of normal distributions: If p (X) is assumed to be normal
and a normal kemel is selected for x(X), (6.7) and (6.9) become trivial to
evaluate. When two normal densities Ny(0,A) and Ny (0,B) are convolved, the
result is also a normal density of Ny(0,K), where

K—l =B—I _B—I(B—l +A—l)—lB—l

=A7' A lAa + B HYAT (6.30)

In particular, if A =X and B = 2z

K=(+r)x. (6.31)

Optimal Kernel Size

Mean-square error criterion: In order to apply the density estimate of
(6.1) (or (6.2) with the kernel function of (6.3)), we need to select a value tor r
[5-11]. The optimal value of r may be determined by minimizing the mean-
square error between f)(X) and p (X) with respect to r.

MSE{p(X)} = E{[p(X) = p(X)12) . (6.32)

This criterion is a function of X, and thus the optimal » also must be a function
of X. In order 1o make the optimal r independent of X, we may use the
integral mean-square error
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IMSE = [MSE{p(X))aXx . (6.33)

Another possible criterion to obtain the globally optimal r s
E¢{MSE(p(X))} = [MSE{p(X)}p (X)dX. The optimization of this criterion
can be carried out in a similar way as the /MSE, and produces a similar but a
slightly smaller r than the /MSE. This criterion places more weight on the
MSE in high density areas, where the locally optimal r’s tend to be smaller.

Since we have computed the bias and variance of f)(X) in (6.18) and
(6.19), MSE {p(X)} may be expressed as

MSE{p(X)} = [E{p(X)} — p(X)]? + Var{p(X)} . (6.34)

In this section, only the uniform kernel function is considered. This is
because the Parzen density estimate with the uniform kernel is more directly
related to the & nearest neighbor density estimate, and the comparison of these
two is easier. Since both normal and uniform kemnels share similar first and
second order moments of f)(X ), the normal kernel function may be treated in
the same way as the uniform kernel, and both produce similar results.

When the first order approximation is used, f)(X) is unbiased as in (6.18),
and therefore MSE = Var = p/Nv — p%/N as in (6.29). This criterion value is
minimized by selecting v = for a given N and p. That is, as long as the den-
sity function is linear in L (X), the variance dominates the MSE of the density
estimate, and can be reduced by selecting larger v. However, as soon as L (X)
is expanded and picks up the second order term of (6.10), the bias starts to
appear in the MSE and it grows with r? (or v¥") as in (6.18). Therefore, in
minimizing the MSE, we select the best compromise between the bias and the
variance. In order to include the effect of the bias in our discussion, we have
no choice but to select the second order approximation in (6.18). Otherwise,
the MSE criterion does not depend on the bias term. On the other hand, the
variance term is included in the MSE no matter which approximation of (6.19)
is used, the first or second order. If the second order approximation is used,
the accuracy of the variance may be improved. However, the degree of
improvement may not warrant the extra complexity which the second order
approximation brings in. Furthermore, it should be remembered that the
optimal r will be a function of p(X). Since we never know the true value of
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p(X) accurately, it is futile to seek the more accurate but more complex
expression for the variance. After all, what we can hope for is to get a rough
estimate of r to be used.

Therefore, using the second order approximation of (6.18) and the first
order approximation of (6.29) for simplicity,

MSE (p(X)) = %’v{) + %otz(X)pz(X)r“ . (6.35)

Note that the first and second terms correspond to the variance and squared
bias of p(X), respectively.

Minimization of MSE: Solving oMSE /dr = 0 [5], the resulting optimal
ror, s

r 1

—_— |
- n+4 -
rX)y= C(:Zp <N n+4
B |
n+2 |
nC ) n+4 _
- 3 AN (6.36)
_T[]/Z(n +2)H/2p IA |112a2

where v = ¢r" and
ni2 ni2 1/2
= e (n+2)Y" 1A . 6.37)

2
1,,n+
(2)

The resulting mean-square error is obtained by substituting (6.36) into (6.35).

2 _n_ 4
oA r4/n n+ 2+4/na2 n+4 _
MSE*(poryy = 24 | TP N (6.38)

n(n+22m 1A 1%

When the integral mean-square error of (6.33) is computed, v and r are
supposed to be constant, being independent of X. Therefore, from (6.35)

IMSE = ﬁjp (X)dX + %r“j(xz(X)pz(X)dX
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S N Y o IR
=t fa200p20)dx . (6.39)

Again, by solving dIMSE /dr = 0 [5],

r 1

* + -+ _nl+4
"= Jeooprooa | N
B 1
"r(ﬂ+2) n+4 1
= 2 x N "4 (6.40)
7242y 1A 12 o2 (0p

The resulting criterion value is obtained by substituting (6.40) into (6.39),

n

s - nrt [T EES er00p20ax (77

4
x N " 6.41)

n(n+2)2m? 1A 13"

Optimal Metric

Another important question in obtaining a good density estimate is how
to select the metric, A of (6.3). The discussion of the optimal A is very com-
plex unless the matrix is diagonalized. Therefore, we first need to study the
effect of linear transformations on the various functions used in the previous
sections.

Linear transformation: Let ® be a non-singular matrix used to define a
linear transformation. This transformation consists of a rotation and a scale
change of the coordinate system. Under the transformation, a vector and
metric become

Z=0'X, (6.42)
A, =PTAD . (6.43)

The distance of (6.24) is invariant since
(Y=-X)A(Y -X)=(W=-2)TAZ' (W-2) , (6.44)

where W = ®7Y. The following is the list of effects of this transformation on
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various functions. Proofs are not given but can be easily obtained by the
reader.

(1) pAZ) = 1D 1" py(X) [Jacobian] , (6.45)

Q) Vp,(2) = 1®17' ' Vip(X)dT

[from (6.10),(6.42), and (6.45)] , (6.46)
3) r(Z)y=r(X) [from (6.44)] . (6.47)
@ v(Z)=1d1v(X) [from (6.25),(6.43), and (6.47)] , (6.48)

(5) MSE(p,(Z)) = |®172MSE {px(X)) [from (6.32) and (6.45)],  (6.49)

(6) IMSE, = |®|"'IMSEy |from (6.33) and (6.42)] . (6.50)

Note that both MSE and /MSE depend on ®. The mean-square error is a coor-
dinate dependent criterion.

Minimization of IMSE: We will now use the above results to optimize
the integral mean-square error criterion with respect to the matrix A. However,
it is impossible to discuss the optimization for a general p(X). We need to
limit the functional form of p(X). Here, we choose the following form for
p(X):

pX)=1B1""g((X-M)B~ " (X-M)) , (6.51)

where g(-) does not involve B or M. The p(X) of (6.51) covers a large family
of density functions including the ones in (6.3). The expected vector, M, can
be assumed to be zero, since all results should be independent of a mean shift.
Now, we still have the freedom to choose the matrix A in some optimum
manner. We will manipulate the two matrices B and A to simultaneously diag-
onalize each, thus making the analysis easier. That is,

O'BO =/ and OTAD=A (6.52)
and

[ IAEN IVAVAR (6.53)

where A is a diagonal matrix with components Ay, . . ., Ay
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In the transformed Z-space, IMSE} of (6.41) becomes

IMSES =¢, [Czjlrz[v PO }dz} S (6.54)

where ¢ and ¢, are positive constants. IMSES can be minimized by minimiz-
ing tr{-} with respect to A. Since A is normalized by | A1'" such that

A
'All/n

=1, (6.55)

the scale of the matrix has no effect. Thus, we will minimize tr2|~] with
respect to A;’s with the constraint

Al = 'ﬂl)\,- =1. (6.56)
Now, tr{-} can be evaluated as
tr{V2pz(Z)A} = ):x =0YA;, (6.57)

where

Ppi2) 3 {dg(zv) az'2) } _,d2(272)

6= Wl ol B a2 (6.58)
Thus, the criterion to be optimized is
7 =W V@] - (TR, - 1)
= Z)E)EAA —p(nx -1, (6.59)

i=lj=1

where { is a Lagrange multiplier. Taking the derivative of J with respect to A,
and setting the result equal to zero,
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a.l n u
_=92k+ A,'—_=O 6.60
an, - XM - (6.60)
or
x£+xk(§k,-)=§ G=1,....n). (6.61)
In order to satisfy (6.61), all A;'s must be equal. Since JA| = I, the solution
of (6.61) must be
A=1. (6.62)

That is, in the transformed Z-space, the optimal matrix A, is / for B, =1.
Therefore, the optimal matrix A to use in the original X-space is identical to B
of (6.51) [5]. The neighborhoods should take the same ellipsoidal shape as the
underlying distribution. For the normal distribution we see that the covariance
matrix B = X is indeed optimal for A.

It is important to notice that (6.62) is the locally optimal metric regard-
less of the location, because IMSE™ of (6.54) is minimized not after but before
taking the integration. The same result can be obtained by minimizing MSE”
of (6.38).

Normal Case

In order to get an idea of what kind of numbers should be used for r, in
this section let us compute the optimal » for a normal distribution. The partial
derivatives Vp (X) and V2p (X) for Ny(M,X) are

Vp(X)=-pX)Z(X-M) , (6.63)
Vip(X)=pX)E (X-M)X-M)'Z™' -] (6.64)

For the simplest case in which M =0 and £ =1,
W1V (X)) = p (XTX — 1) = pX)(Ex? = n) (6.65)

i=l

Note that the optimal A is also / in this case. It is easy to show that, if
p(X) = Ny(0,1), then p?(X) = 2772(2m)y™"2Ny(0,1/2). Therefore,
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2 _ | nn+2)
Ji?192p () 1ax = T (6.66)
Accordingly, from (6.40)
|
2 |\ 1
. 2"+2r _n+ n+4 -~
rt = =) xN " (6.67)
(” +2)n/2+l
TABLE 6-1

OPTIMAL r OF THE UNIFORM KERNEL FUNCTION
FOR NORMAL DISTRIBUTIONS

" 4 8 16 32 64 128
rt 094N 089N 12 [0.86 N0 |0.85N ¢ |0.85 N8 [0.85 NI
rNn+2 220N V812 8IN 1121366 N 120 [4.98 N1 6,92 v 108 9,70 N 112

Table 6-1 shows these r"'s for various values of n. Remember that the above
discussion is_for the uniform kernel, and that the radius of the hyperellipsoidal
region is r‘fnT2 according to (6.23). Therefore, r*m's are also presented
to demonstrate how large the local regions are.

6.2 k Nearest Neighbor Density Estimate

Statistical Properties

kNN density estimate: In the Parzen density estimate of (6.1), we fix v
and let k be a random variable. Another possibility is to fix & and let v be a
random variable [12-16]. That is, we extend the local region around X until
the kth nearest neighbor is found. The local region, then, becomes random,
L(X), and the volume becomes random, v(X). Also, both are now functions of
X. This approach is called the k nearest neighbor (kNN) density estimate. The
kNN approach can be interpreted as the Parzen approach with a uniform kernel
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function whose size is adjusted automatically, depending on the location. That
is, with & fixed throughout the entire space, v becomes larger in low density
areas and smaller in high density areas. The ANN density estimate may be
rewritten from (6.1) as [12-14]

k—1
Nv(X)

px) = (6.68)

The reason why (k—1) is used instead of £ will be discussed later.

Density of coverage: Although the density function of v is not available,
the density function of the coverage (the probability mass in the local region).
u, may be obtained as follows [17].

Let L (X) and AL (X) be defined by
LX)={Y:d(Y,X)<i}and AL(X) = {Y i<d(Y,X) < i+A’} (6.69)
and
1{ = d = 7
u Lx)p(Y)dY and  Au J;L(X)p(Y)dY , (6.70)
where d>(Y.X) = (Y=-X)TAT(Y-X). Also, let two events G and H be defined
as
G = {(k—1) samples in L(X)} ., (6.71)
H = {1 sample in AL(X)} . (6.72)

Then, the probability of the kth NN in AL (X) is

PriG and H) = Pr{G\PriHIGY , (6.73)
where
N
PriGi) = [k | W=V A (6.74)
N—k+1 au M
PrHHIG) = Au -2k (6.75)
| 1—u 1—u

Note that the coverage of AL(X) in the complementary domain of L(X) is
Au/(1-u).  Substituting (6.74) and (6.75) into (6.73) and using
{1-Awu/(1=1)} — 1 as Au — 0, the probability of (6.73) becomes the product
of Au and a function of u, p,(u). Therefore, p,(u«) should be the density
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function of u, where u is the coverage of L(X) whose boundary is determined
by the kth NN.
p.(u) = —ﬂ—u"-'(l—u)'v-“ 0<uc<l. (6.76)
“ k=DUN ~k)!
That is, p,(u) is a Beta distribution Be (k,N—k+1). Also, note that the distribu-
tion of u is independent of the underlying distribution, p (X).

More generally, the joint density function of u,, ... ,u; may be obtained
as [17]
- Nk
plUy, ..., u)= m(l —u)" T, 6.77)

where u; is the coverage of L;(X), the region extended until the ith NN is
found. Note that the joint density depends on u; only. The marginal density

of u; can be obtained by integrating (6.77) with respect to u, ... ,u;_, as
_L"‘ _L“Z (u w,)du du;_, = ——]l!——*uk"(l—u VA (6.78)
pluy, . ..U 1. AUy (k—l)’(N—k)' k L . .

Equation (6.78) is the same as (6.76).

The relationship between # and v may be obtained by integrating (6.10)
over L (X) with respect to Y. That is,

u(X) = p(X)v (X) + -;—tr[Vzp (X)LX)(Y—X)(Y—X)TdY}

=pX)vX)[l + —21—(1(X)1‘2(X)] , (6.79)

where o is given in (6.13). Note that J(¥=X)(Y=X)"dY = vr*A from (6.27).
The term [l+or2/2] of (6.79) appeared in (6.18) in the Parzen case. Again,
u = pv gives the first order approximation, and (6.79) is the second order
approximation of u in terms of v,

Moments of |;(X): When the first order approximation of u = pv is used,
from (6.68) and (6.76)

Etpe0) = [, i =p ), (6:80)

where the following formula is used
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L (=) dy = I'th+DI'(c+1)

I'(b+c+2) (6.81)

Equation (6.80) indicates that |;=(k—l)/Nv is unbiased as long as u =pv
holds. If k/Nv is used instead, the estimate becomes biased. This is the reason
why (k—1) is used in (6.68) instead of k. The variance of f)(X) also can be
computed under the approximation of u = pv as

s s [ k=D
Varlpoo) ) = [ EM Py oa - p?
2 1 1 J0.9)
= p2(X0)[——(1-—) = . .
POl (- J = (6.82)

Comparison of (6.29) and (6.82) shows that the variance of the ANN density
estimate is larger than the one for the Parzen density estimate. Also, (6.82)
indicates that, in the kVN density estimate, & must be selected larger than 2.
Otherwise, a large variance may result,

Second order approximation: When the second order approximation is
needed, (6.79) must be used to relate # and v. However, since r2 and v are
related by v = ¢r", it is difficult to solve (6.79) for v and a series of approxima-
tions is necessary. Since f) = (k—1)/Nv, the computation of the first and second
order moments of p(X) requires E{v"'} and E{v'2}. We start to derive v"'

from (6.79) as

- I _
| + iw 2/nv2/nu l]

=plu + %a(cp)_z" 2n-y (6.83)

where the approximation of « = pv is applied to the second term to obtain the
second line from the first. Note that the second term was ignored in the first
order approximation and therefore is supposed to be much smaller than the first

term. Thus, using u = pv to approximate the second term is justified. From
(6.83)

2

v EPZ[U—Z + (X(('p)_zl"UZ/'Hz

+ %az(cp)_‘””u‘””_zl ) (6.84)

On the other hand, from (6.76) and (6.81),
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Tk —m)[(N +1)

E{u™] = c — 0.
W= Ty o k>
Therefore,
a9, _ N 2, NWIN-D
Ef{u }——k_l and Ef{u }_—_(k—l)(k—2)
and

E{u&.]_r(k—1+5)r<N+1)_ N Tk-1+8) T(N)
T TKININ+8) k=1 T(k-1) T(N+8) '
Elu&zl_r(k-2+5)r(N+1)_ N(N-1) T(k-2+8) T(N-1)
T O TROTIN=148) — (k=1)(k=2) T(k=2) T(N-1+J)

where I'(x+1) = xI'(x) is used. It is known that

F(,\'+8) ~ “5
) ~°

(6.85)

(6.86)

(6.87)

(6.88)

(6.89)

is a good approximation for large x and small 8. Therefore, applying this

approximation,

k-1 N k=2
E 8-1 ~ 51 E &2 ~ &1
{u”) (N) and {u”} k—l(N—Z)

Combining (6.83), (6.84), (6.86), and (6.90),

- _k;l -1y ~ l —2n k;l 2n
E{pX)}) = N Elv }_p(X)[l+20t(X)(rp(X)) (N) ]

~ l —2/n LZ/H
= p O[5 0P EOT (0],
Ep ()= CHE?)

1 1.1 k=1, k=2
22 |4 l4——(1——)—— o\ 20 2n -}
=p { v A=) N}+a(cp) SvanlS vy

(6.90)

(6.91)
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l 2 N—d/n k-1 k=2 Ain-1
+ ) )

~__'pz (l+_ll‘_) + a((.p)fz/n(%)ﬂn + %al(cp)ﬂ!/n(%)d!u:\ . (692)

where N >> k>>1 is assumed. Therefore, the variance and mean-square error
of p(X) are

R 2
Var{px)) =222 (6.93)

X)
.

~ ~nl L i 20 a3 thln
MSE{p(X)) =p? | + pelepy ™ (™" | (6.94)

Again, in (6.94) the first and second terms are the variance and the squared
bias respectively. It must be pointed out that the series of approximations used
to obtain (6.91)-(6.94) is valid only for large k. For small k, different and more
complex approximations for EIf)(X)} and Var{f)(X)} must be derived by using
(6.87) and (6.88) rather than (6.90). As in the Parzen case, the second order
approximation for the bias and the first order approximation for the variance
may be used for simplicity. Also, note that the MSE of (6.94) becomes zero as
k—o0 and k/N—0. These are the conditions for the ANN density estimate to be
asymptotically unbiased and consistent [14].

Optimal Number of Neighbors

Optimal k: In order to apply the kNN density estimate of (6.68). we
need to know what value to select for k. The optimal & under the approxima-
tion of u =pv is e, by minimizing (6.82) with respect to k. That is, when
L(X) is small and u = pv holds, the variance dominates the MSE and can be
reduced by selecting larger k& or larger L(X). As L (X) becomes larger, the
second order term produces the bias and the bias increases with L(X). The
optimal k is determined by the rate of the variance decrease and the rate of bias
increasc.
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The optimal &, k", may be found by minimizing the mean-square error of
(6.94). That is, solving dMSE /ok = 0 for k yields [5]

II(CP)M" }m

K'(x)= |—&5— x N 1+

(12

n

n2tmptmia i |-
= P n+2 o2 x N+ (6.95)
2

As in the Parzen case, the optimal % is a function of X. Equation (6.95) indi-
cates that k” is invariant under any non-singular transformation. That is,

k*(Z)=k™(X) . (6.96)
Also, & and r” of (6.36) are related by

k(X)

X)= .
pX) Ner ' (X)

(6.97)

This indicates that both the Parzen and 4NN density estimates become optimal
in the same local range of L (X). The resulting mean-square error is obtained
by substituting (6.95) into (6.94).

2 ) L 4
L. r4/n n+ 2+4/na2 4+ _
Mse* (pooyy = 2 TP N (6.98)

n(n+2)°m 1A 12"

Note that (6.98) and (6.38) are identical. That is, both the Parzen (with the
uniform kernel) and kNN density estimates produce the same optimal MSE.

The globally optimal & may be obtained by minimizing the integral
mean-square error criterion. From (6.94), with a fixed &,

IMSE = /‘i [p2()ax + —4'—c*"’"(%)4"' [o200)p 7 (x)ax . (6.99)
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Solving dIMSE/dk = 0 generates [5]

. ne 4’"jp2(x X |wa
k = x N "+
jaZ(X)p2—4/II(X)dX
[ o
n(n+22m2 [p?(X)dx n+a 4
= x N (6.100)
l—\ﬂ/n( n'z"z )jaZ(X)p 2_"/"(X)dX

The resulting IMSE is

n

s 1 | TSR 0ax 1 forop>nax | e

n(n+2>*m21A 12"

3

xN "4 (6.101)

It should be pointed out that EXlMSE{f)(X)}l can be minimized by a similar
procedure to obtain the globally optimal k. The resulting &~ is similar but
slightly smaller than £~ of (6.100).

Optimal metric: The optimal metric also can be computed as in the Par-
zen case. Again, a family of density functions with the form of (6.51) is stu-
died with the metric of (6.24). In order to diagonalize both B and A to / and A
respectively, X is linearly transformed to Z. In the transformed Z-space,
IMSE, becomes, from (6.101) and (6.13),

"

. A n+4
IMSE, = ¢, cszi‘””(z)lrz {VZPZ(Z)I—/\—I‘7"_ }dZ . (6.102)

where ¢, and ¢, are positive constants. /MSE can be minimized with respect
to A by minimizing

J =12V (Z)A) - p(ﬁlx,—l) , (6.103)

which is identical to (6.59).

Therefore, the optimal metric A for the kNN density estimate is identical
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to B. Also, note that the same optimal metric is obtained by minimizing MSE”
of (6.98), and thus the metric is optimal locally as well as globally.

Normal example: The optimal & for a normal distribution can be com-

puted easily. For a normal distribution with zero expected vector and identity
covariance matrix,

]
2 R
[p2¢0)ax = e (6.104)
2-nj2  2+n/2 2_
[pm o (V2p () jax = T =bn+16) (6.105)

2:1(" _2)2+u/2

Substituting (6.104) and (6.105) into (6.100), and noting that the optimal
metric A is / in this case,

. (n +2)2(” _2)2+H/2 T"+4— 4

= n+4
k = l—-4/"( ”‘2"2 )n l+”/2(”2—6n+l6) x N . (6. 106)

TABLE 6-2
OPTIMAL k FOR NORMAL DISTRIBUTIONS

n 4 8 16 32 64 128
o] 075N | 094N | 0.62NY5 | 034N | 017NV | 0.09N

for 4.4x10 1.5x10% 3.4x10% 3.2x10"" | 9.2x10% 3.8x10%7

k=5

Table 6-2 shows k" for various values of n [5]. Also, Table 6-2 shows how
many samples are needed for &~ to be 5. Note that N becomes very large after
n =16. This suggests how difficull it is to estimate a density function in a

high-dimensional space, unless an extremely large number of samples is avail-
able.
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Distance to Neighbors

Distance to kNN: From (6.25), the distance to the kth nearest neighbor
may be expressed in terms of the corresponding volume as

2
rl/n n+
(——2 )

diy (X) = vy . (6.107)

n|/2 1A | 120
The distance is a random variable due to v. Using the first order approxima-
tion of # = pv and knowing the density function of u as (6.76), the mth order
moments of d;yy(X) can be obtained as [18]

1
E{dn (X)) =L Al (X)p, ()i = vp " (X) (6.108)
where

l—vr//n( n+2)
v 2 I'tk+m/n) 'N+1) 6.109)
nmxz |Z|m/2n r(k) r(N+1+m/n) . .

Note that A =% is used as the optimal matrix. The overall average of this dis-
tance in the entire space is

ExE{d{yw X)) = vEx{p™""(X)} . (6.110)

—nmin

Exip (X)) for normal and uniform distributions can be expressed as

(a) Normal:

EX {p—mln(x)l — (21.[)1"/2 I3 m/Zn( l_ﬂ)—n/Z ) (6l 1 l)

n

(b) Uniform [see (6.22)]:

n+2 X n+2 )",,2

EX lp—m/n(x)l — (21.[)":/2 s mi2n r—m/n( 5 5 .

(6.112)

where both the normal and uniform distributions have zero expected vector and
covariance matrix X. Substituting (6.109), (6.111), and (6.112) into (6.110),

-nif2
2m/2 | - ﬂ
n

(a) Normal:

ExE (X)) 21"

n+2
2
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I'tk+m/n) I'(N+1)
I'ky TWN+l14+min) '

(6.113)

(b) Uniform:

Tk+m/n) T(N+1)

c ELd™ = + mi2 .
ExE{diyw(X)} = (n+2) (k) TWN+14+m/n)
The reader may check that T" 22 (1-1/n)™""? for normal and (n+2)"? for

uniform with m =1 are close for a large n (10.3 and 10.1 respectively for
n = 100).

(6.114)

Effect of parameters: Let us examine (6.108) and (6.109) with m = 1.
These equations reveal how E {dyy(X)} is affected by such parameters as n, &,
N, and p(X). The effect of k appears only in the second term of (6.109).
When m = | and n is large, I'(k+1/n)/T(k) = k' is close to 1 regardless of the
value of k. This means that the average distance to the first NN is almost the
same as the average distance to the second NN, and so on. The effect of N,
which appears in the third term of (6.109), is also minimal, since
TIN+D)/T(N+1+1/n) =N = | for large n. The effect of the location is
observed as p~""(X) in (6.108). When n is large, p7'"(X) = | regardless of
the value of p(X) unless p(X) is either extremely large or small. Thus,
E{diyy (X)) is highly influenced only by n and IZ1. On the other hand, in the
global kNN distance ExE{dyn(X)}, the 1Z] term in v cancels with the |Z1 of
Exlp"’"(X)}, and only n determines the averaged kNN distance. This is true
because the distances are normalized by X as in (6.24). Table 6-3 shows
ExE{d;ny(X)]} for various n, k, and N for normal and uniform distributions
with covariance matrix / [18]. The parameter values are n = 10, k = 1, and
N =100, unless otherwise indicated. It can be observed from Table 6-3 that
the effects of k and N are not significant for n = 10. This behavior is even
more apparent for higher-dimensions.

Although the above results are contrary to our intuition, they could be
better understood by observing the volume to the kth NN, v,uy, instead of the
distance. For example, dyn/dyy = 2.551/2.319 =1.1 and is close to | for a
10-dimensional normal distribution from Table 6-3. However, the ratio of the
corresponding volumes is vonn/vay = (davn/dyy)'® =2.6, which is not close to
1. That is, the effect of k on v,y is significant. The same is true for the
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TABLE 6-3
THE AVERAGE DISTANCE TO THE kth NEAREST NEIGHBOR

Normal  Uniform

n=>5 1.147 0.966
10 2.319 2.078
20 3.886 3.626

N =50 2.484 2.226
100 2.319 2.078

200 2.164 1.940
400 2.020 1.810
k=1 2.319 2.078
2 2.551 2.286

3 2.679 2.400

effects of N and p (X) on viyy. Since we estimate a density function by (6.68),
if & or N is changed, v must be changed accordingly. Because of the nth
power, a reasonable change of the volume is translated to a very small change
of the distance for a large n.

In order to show the effect of the location on E {d;xy(X)}, the following
experiment was conducted.

Experiment 1: NN distance
Data: N(0,/), n =10
ANN: k=1
Sample size: N = 100
No. of trials: t= 10
Results: Fig. 6-2 [18]

Figure 6-2 shows the averaged NN distances and the standard deviations of 10
trails vs. the distance from the center, /. Also, theoretical curves computed
from (6.108) are plotted by dotted lines. The theoretical and experimental
curves match closely until ¢ =4, where most samples are located. Also, note
that the standard deviation is very small. This is predicted theoretically,
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experimental result

- mm——— 1st order approx.
dan p)
Oyn P Q)
i0 051
7 )
8 041
&E{dNN(x»
6 03
J
4 02
2 01}
’/
}SD {dp (X))

A
1 2 3 4 5 6

Fig. 6-2 Effect of location on the NN distance.

because Var{d)} = EXE[dz(X)} - [Ex E{d(X))]? =0 if T(x+8)/T(x) = x% can
be used as an approximation. So, all dyy(X) are close to the expected value.
As is expected from (6.108), £ {dyy(X)} does not change much from small { to
large 7. The marginal density, p (?), is also plotted in Fig. 6-2.

Intrinsic Dimensionality

Whenever we are confronted with high-dimensional data sets, it is usu-
ally advantageous for us to discover or impose some structure on the data.
Therefore, we might assume that the generation of the data is governed by a
certain number of underlying parameters. The minimum number of parameters
required to account for the observed properties of the data, n,, is called the
intrinsic or effective dimensionality of the data set, or, equivalently, the data
generating process. That is, when »# random variables are functions of n, vari-
ables such as x; = gi(y,,...,y, ) (i =1,...,n), the intrinsic dimensionality of
the X-space is n,. The geometric interpretation is that the entire data set lies
on a topological hypersurface of n,-dimension.
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The conventional technique used to measure the dimensionality is to
compute the eigenvalues and eigenvectors of the covariance matrix and count
the number of dominant eigenvalues. The corresponding eigenvectors form the
effective subspace. Although this technique is powerful, it is limited because it
i1s based on a linear transformation. For example, in Fig. 6-3, a one-

X2
A

VX1

Fig. 6-3 Intrinsic dimensionality and linear mapping.

dimensional distribution is shown by a solid line. The eigenvalues and eigen-
vectors of this distribution are the same as the ones of the two-dimensional
normal distribution of the dotted line. Thus, the conventional technique fails to
demonstrate the intrinsic dimensionality, which is one for this example.

The intrinsic dimensionality is, in essence, a local characteristic of the
distribution, as shown in Fig. 6-4. If we establish small local regions around
X1, X5, X;. etc., the dimensionality within the local region must be close to |
[19],[20]. Because of this, the intrinsic dimensionality is sometimes called the
local dimensionality. This approach is similar to the local linearization of a
nonlinear function.

When k& nearest neighbors are used to estimate dimensionality, the esti-
mate relies on the local properties of the distribution and is not related to the
global properties. Thus, the estimated dimensionality must be the intrinsic
dimensionality. Keeping this in mind, let us compute the ratio of two NN dis-
tances from (6.108)-(6.110)

Edd (X)) :EXE|d(A+I)NN(X)] - 1

= =1+ —, (6.115)
Efdipn (X))} ExE{dinn (X)) kn
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where use has been made of I'(x+1) = xI"(x). Measuring the left-hand side
from the given data set and solving (6.115) for n, we can obtain the local
dimensionality [18],[21].

In succeeding chapters, we will discuss the effect of dimensionality in
various nonparametric operations. The dimensionality is the most important
parameter in determining nonparametric properties as was already seen in
E{din(X)} of (6.108). However, note that the dimensionality in non-
parametric operations automatically means the intrinsic or local dimensionality.
Without realizing this fact, readers may often find a discrepancy between
theoretical and experimental results.

Experiment 2: The Gaussian pulse is a popular waveform which reason-
ably approximates many signals encountered in practice. The waveform is
characterized by three parameters, a, m, and G, as

2o (6.116)

—m)2
x(t)=aexp{—(’ m) }

When these three parameters are random, the resulting random process x(¢) has
an intrinsic dimensionality of 3. In order to verify this, 250 waveforms were
generated with uniform distributions for a, m, and ¢ in the following ranges.

0.7<a<13,
03<m<0.7, (6.117)
02<0<04.

The waveforms were time-sampled at 8 points in 0 < < 1.05 with increment
0.15, forming eight-dimensional random vectors. These vectors lie on a three-
dimensional warped surface in the eight-dimensional space. The kNN distances
of each sample for £ =1, 2, 3, and 4 were computed, and averaged over 250
samples. These averages were used to compute the intrinsic dimensionality of
the data by (6.115). Table 6-4 shows the results. The procedure estimated the
intrinsic dimensionality accurately.
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TABLE 6-4

ESTIMATION OF INTRINSIC DIMENSIONALITY

Gaussian Double
pulse exponential

Averaged INN 0.74 0.77

kNN 2NN 0.99 1.02

distance 3NN 1.14 1.19

4NN 1.26 1.31

Intrinsic INN & 2NN 3.02 3.13

dimension | 2NN & 3NN 3.19 2.97

estimated 3NN & 4NN 3.13 3.14
by

Average 3.11 3.08
X2
A

X1
Xy
X
3 -

Fig. 6-4 Local subsets of data.
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Experiment 3: A similar experiment was conducted for a double
exponential waveform as

l1—m|
x(1) = a exp {— T"' } (6.118)
where three parameters are uniformly distributed in
07<a<13,
03<m<0.7, (6.119)
03<1t<06.

Using eight sampling points and 250 waveforms, the intrinsic dimensionality
of the data was estimated, and the results are shown in Table 6-4. Again,
fairly accurate estimates of the intrinsic dimensionality (which is 3) were
obtained.

Experiment 4: The intrinsic dimensionalities of Data RADAR were
estimated by (6.115). They were found to be 19.8 for Chevrolet Camaro and
17.7 for Dodge Van, down from the original dimensionality of 66. This indi-
cates that the number of features could be reduced significantly. Although this
technique does not suggest how to reduce the number of features, the above

numbers could serve as a guide to know how small the number of features
should be.

Very Large Number of Classes

Another application in which the ANN distance is useful is a
classification scenario where the number of classes is very large, perhaps in the
hundreds. For simplicity, let us assume that we have N classes whose expected
vectors M; (i = 1,...,N) are distributed uniformly with a covariance matrix /,
and each class is distributed normally with the covariance matrix o/.

When only a pair of classes, ®; and w;, is considered, the Bayes
classifier becomes a bisector between M; and M;, and the resulting error is

T | v . .
£, = J T— e “dx (pairwise error) , 6.120)
g’ dMMp2s V2T
where d(M;,M;) is the Euclidean distance between M, and M;. Equation
(6.120) indicates that €, depends only on the signal-to-noise ratio, d(M,,M;)/c.
When the number of classes is increased, M; is surrounded by many neighbor-
ing classes as seen in Fig. 6-5, where M;yy is the center of the kth nearest
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circular classifier

ManN x % Mann
’
/
1}
/
- /
T~o
M x I/ \\\
NN ~<
/ M\( / X Mgnn
2NN

Pairwise classifier

Fig. 6-5 Distribution of class centers and classifiers.

neighbor class. If the distance to the closest neighbor, d(M;,Myy), is much
smaller than the distances to the other neighbors, the pairwise error between @,
and myy dominates the total error. However, (6.108) and (6.109) suggest that
d(M,M;yy) 1s almost the same, regardless of k. The number of classes, N, and
the distribution of the M;’s (uniform, normal and so on) have very little effect.
Only the dimensionality, n, has a significant effect on d (M,Myy). Since all
neighboring M;’s are equally distanced from M;, the error from each pair, €,,
can be added up to produce a large total error, €,. Figure 6-6 shows experi-
mental results indicating the relationship between €, and 6/ExE {dnn(X)} for
various values of n. Note that n is the intrinsic dimension of the distribution of
the M;’s.

Experiment 5: Error for N-class problem

Data:  M; — uniform with mean 0 and covariance /
X —-NWM,;,06l) i=1,..,.N

Dimensionality: n =35, 10, 20

Sample size: N = 10n (10n classes)
10n samples/class

No. of trials: T= 10
Classifier: Bisectors between the generated M, ’s.
Results: Fig. 6-6 [18]

Although the results are not shown here, the experiment confirmed that these
curves are almost invariant for various values of N and distributions of M,’s.
The theoretical saturation error for G—e is (1-1/N)=1 (100%) for N-class
problem.
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€% A

w0l 7,7 A0 -

n=20

80

60

20

O/E E {d pp (X0}

1

0 ] 1
0.0 0.2 0.4 0.6 0.8 1.0 1.2

Fig. 6-6 Errors for a large number of classes.

Figure 6-6 indicates that, when o/ExE {dny(X)]} is larger than 0.2 for a
large number of classes, it may not be feasible to identify individual classes.
Therefore, before trying to design any classifier, it is advisable to confirm that
the classes are well separated pairwise. One way to evade this difficulty is to
assemble the classes into a smaller number (L) of groups, and to treat it as an
L-class problem. The errors, which occur among classes within the same
group, are considered as correct classification. Only the error from a class of
one group to a class of another group is treated as the error between groups.

Thus, the error between groups is normally much smaller than the error
between classes.

It has been found experimentally that €, and €, are very roughly related
by & (2 + 0.2n)e, for small 6. That is, € is about equivalent to the errors
due to 4 and 6 neighbors for n = 10 and 20 respectively, assuming all distances
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to these neighbors are equal and the pairwise errors are added without mutual
interation. For large o, €, tends to saturate at 50% while €, does at 100%.
Thus, the above empirical equation does not hold.

When one class is surrounded by many other classes, we may design a
circular, one-class classifier. That is, X is classified to w; if d(X.M;)<
d(M;,Muyn)2 [see Fig. 6-5]. Then, the error from w;, €., is

n _ 2 .
€ = J ——— "L e 2qp  (circular error) , 6.121)

d(M, My)i26 2n/2 I( ﬁ)

2

where the integrand is the marginal density function of the distance from the
center and is derived from N4(O,l). Note that the density function of the
squared-distance, {, is given in (3.59) for Ny(O,I). Therefore, the inteﬁland of
(6.121) may be obtained from (3.59) by applying a transformation? = V{. The
€. computed from (6.121) is plotted (dotted lines) in Fig. 6-6. As is seen in
Figs. 6-5 and 6-6, the circular classifier is worse than the pairwise bisector
classifier.

6.3 Expansion by Basis Functions

Expansion of Density Functions

Basis functions: Another approach to approximating a density function
is to find an expansion in a set of basis functions ¢;(X) as

pX) = Yi0,X) . (6.122)
i=l

If the basis functions satisfy
Jx00,0007 00ax = 10,8, . (6.123)

we say that the ¢;(X)’s are orthogonal with respect to the kernel x(X). The
term 0; (X) is the complex conjugate of ¢,(X), and equals ¢;(X) when ¢;(X) is a
real function. If the basis functions are orthogonal with respect to x(X), the
coefficients of (6.122) are computed by

hat; = k(P X0 (X)dX . (6.124)

When x(X) is a density function, (6.123) and (6.124) may be expressed by
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E{¢i(x)¢;(x)] = 7»:'8,‘,' ) (6.125)
E{p(X)o; (X))} =Nic; . (6.126)

When we terminate the expansion of (6.122) for i = m, the squared error
is given by

£ = [kOIp X) = Se0,00)p ) = S 0,01 dX

i=l i=1

=IOl T a3 o)) dX

j=m+1 i=ni+)

= )E Al 12 (6.127)

i=m+l|

Thus, A; l¢; 12 represents the error due to the elimination of the ith term in the
expansion. This means that, if we can find a set of basis functions such that
Ailc; 1% decreases quickly as i increases, the set of basis functions forms an
economical representation of the density function.

There is no known procedure for choosing a set of basis functions in the
general multivariate case. Therefore, we will only consider special cases where
the basis functions are well defined.

Both the Fourier series and the Fourier transform are examples of
expanding a function in a set of basis functions. The characteristic function of
a density function is a Fourier transform and is thus one kind of expansion of a
density function. Here we seek a simpler kind of expansion.

One-dimensional case: When a density function is one-dimensional, we
may try many well-known basis functions, such as Fourier series, Legendre,
Gegenbauer, Jacobi, Hermite, and Leguerre polynomials, etc. [22]. Most of
them have been developed for approximating a waveform, but obviously we
can look at a one-dimensional density function as a waveform.

As a typical example of the expansion, let us study the Hermite polyno-
mial which is used to approximate a density function distorted from a normal
distribution. That is,
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1 X2z
X) = exp(— VHES ]I 6.128
pl s p( Py )[E) ¢; ()] ( )
K(x) = ! exp(— - ) (6.129)
o emo 202" ’
2 i 2 2
; X d'exp(=x</(267))
)= —0)ex -
9;(x) = (-0) p[zcz ~
i . i=2 . i—4
X L Y i Y
== - — +1.3 — - ... 6.130
(4] ‘2 o 4| | 0 ¢ )
The orthogonal condition is given by
,
oo X~ .
B—TE exp(— Py )0 () (x)dx =iy, . 6.131)
The coefficients ¢; can be obtained by
. +eo p )
ile; = K(x) ;(X)dx
L ( 2n)y o exp(-x?1(26°%)) i)
= ] p oo
m; i mis il miy
=— - — +1-3 —_ .. 6.132
o 2| & -2 4| g -4 ( )
where m; is the ith moment of p(x) as
m; = JM.\"[) (x)dx . (6.133)
For example, if p (v) has zero-mean and has o? as the variance. then
ny
Cpy = _0 =1 N (6134)
o
m,
¢1=—=0, (6.135)
c
n- 21 m
Ney=— - |T|— =0, (6.136)
o’ 2) o
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nsj 3jm  my
en = — — —_—= 6.137
C3 o 2l 7s o ( )
my 41 m, 4| my my
leg = — —+1-3 —=—-3. 6.138
4C4 64 2] ) 4 0_0 0_4 ( )

Therefore, terminating at / = 4, we have an approximation of a density function
p(x) in terms of ¢;(X) and the moments of p (x) as

X2

(x) = - —exp |-
P = a2 P 26

+ 3‘63 ¢3(.X)+ 4' 64 - ¢4 ))

2 3
S S “END N EN I ER S
T oene | 260 6% | | o 2| o
| [m (4 ? 4
4 X X
— =332 - L . (6.139
* 4! [04 o [2 o 3 ‘4‘ ( )

Because of the complexity involved in the multivariate case, it is not as
easy to find general basis functions or to calculate the coefficients.

Density Function of Binary Inputs

Basis functions for binary inputs: When the n inputs are binary
numbers +1 or —1, it is known that a linear combination of 2" independent
basis functions can yield any density function without error.

M.

pX) =3 ¢;6;(X) . (6.140)

i=0

Table 6-5 shows the truth table that specifies p(X). Again, it is hard to say
how we should select the 2” basis functions. However, a typical set of basis
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TABLE 6-5

SPECIFICATION OF A DENSITY FUNCTION
OF BINARY VARIABLES

X X Xo ... X, rX)

Xo | -1 =1 ... -1| pXy

X, |+ -1 ... -1] p&x)
XZ"»I +1 +1 . +l p(X2"_|)

functions is given as follows [23]:

(X)) =1,
0,(X) = ——1
T a-ah
X, —a,
0= T (6.141)
X —a X9 —Qj
Onr1 (X) = U—ah)? (-ah)? "’
.\'l _al "\.ﬂ _a"
by (X)) = Q) Uea)?

which is a complete orthonormal set with the kernel

K(X) = %l‘[(l +a) " gy (6.142)
i=1

That is,
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2"-1

T KX )0:(X )0, (X)) =5 . (6.143)

=0
The a;’s are control parameters and must be in the range 0 < a; < 1. The ¢;’s
can be calculated by

2"—-1

¢ = Y KX )pX)9(X.) . (6.144)
;":0

Two special cases of the above expansion are well known.

The Walsh function: Selecting a; =0 (i = 1, ... ,n), the basis functions
become

¢0(X)= 1’ ¢I(X)=xl’ e 7¢H(X)='\.n v .
Gpr (X)=01X2, ... Qx| =X Xy X, (6.145)

with the kernel

K(X) = —21— . (6.146)

This set of basis functions is known as the Walsh functions and is used often
for the expansions of binary functions.

The Bahadur expansion: Let us introduce the following transformation:

(x,' + l)
y;, = 5 or x;=2y,-1. (6.147)

That is, x; =+1 and —1 correspond to y; = | and 0. Also, let P; be the margi-
nal probability of y; = 1,

P;=Priy,=+1} . (6.148)

Then the expected value and variance of y; are given by
Ely;}=1xP+0x(1-P)=P,, (6.149)
Varly,} =(1 = P)’P; + (0 = PY*(1 =P)=Pi(1 - P) . (6.150)

If we select a; as
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a; + 1
a=2P, -1 or P;= T (6.151)
then the basis function of (6.141) becomes
¢0(y)=lv q)l(y)zsl» ,¢n(y)=5n~
¢"+|(Y)=SISZ, ,¢2/1_|(Y)=S|52...S", (6152)
where
yi — P yi — Ely;}
si = = 0 (6.153)
(Pi(1 = P)} (Var{y: 1
which is the normalized y,.
On the other hand, the kemel of (6.142) becomes
k(Y) = [TPY (1 - P (6.154)
i=l
If the y;’s are mutually independent, p (Y) becomes equal to k(Y).
Thus, we can find the ¢xpansion of p (Y) as
2-1
p)=x(Y)| Y oY), (6.155)
i=0

where the first term k(Y) equals p (Y) under the independence assumption, and
all other terms of [-] are the correction terms. The ¢;’s are calculated by
2'-1 p(Y) 2'-

i = YR ) ———0;(Y.)= Y pY ):(Y)=E{9;(Y)} . (6.156)
=() K‘(Y) =)

Thus, (6.155) becomes

p(y): {ll[P_;',(l_Pi)l—\', } I:l+ZJZ‘Yi,.sis‘i+ZZZ‘Y"jA.Sisjsk+‘ . :I ' (6]57)
i=l -

i<j<k
where Y’s are the correlation coefficients of the associated variables.

] 1 yi-Elyt y -Ely)
YU _E‘Sisj} =FE [(va',{yil)llz (va'_ly/_])llz :‘ 5

(6.158)
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vi—Elyi} y; - Ely;} yi—Elywl
Var{y, D" Var{y;N"* (Var{y,H"* |

Yiw = Els;s;8) = E[ (6.159)

This expansion is called the Bahadur expansion [24). In this expansion, we
can see the effects of the correlations on the approximation of a density func-
tion. In general, since the higher-order correlations are usually smaller than
lower-order correlations, we may terminate the expansion with a reasonable
number of terms and reasonable accuracy.

Example 1: Let us calculate the Bahadur expansions for two density
functions, p (Y) and p,(Y), given in Fig. 6-7. We obtain the same basis func-
tions and the same kernels for both p(Y) and p,(Y) as

1 1
Pl = 5 and P2 = E . (6160)
YmVZ o =12 6.161
ST T, AT (i=12), (6.161)
l Vv 1 [—v l Vo l I—vs l
(Y)=(=Y'"(=) (=Y (=) == 6.162
(Y) (2) (2) (2) (2) 1 ( )
Y2
yi | v2 | pav) | patv) A
Yo 0 0 1/4 1/6 Y2 X X Y3
Y, 1 0 1/4 1/3
Y, 0 1 1/4 1/3
*— K>y
Ya 1 1 1/4 1/6 Yo Y

(a) (b

Fig. 6-7 An example for the Bahadur expansion.

The correlation coefficients of y, and y, for p,(Y) and p,(Y), ¥{% and y{3, are
different and are calculated by
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Y = %|(2x0— 12x0 — 1) + (2x] = 1(2x0 — 1)
+(2x0 = D2x1 — D+ 2x1 = D2x1 = D} =0, (6.163)

Y = 120 - )20~ 1) + %(2x1 —1)x0 - 1)

1
6
+ %(2xo— DE2xI - 1) + %(2Xl - H(2x1 - 1)=—% . (6.164)

Therefore, substituting these results into (6.157), we obtain

1
pY)= e (6.165)
1 1
pat¥)= Z[l - ?(2)’1 - D@2y, - D] . (6.166)
Computer Projects
1. Estimate the mean and variance of the Parzen density estimate, |A)(X), as

follows:

Data: Ny(0,/),n =8

Design samples: N = 100

Test points:  [£0...0]",...,[0...0¢
7=1,2,3,4,5

Procedure: Parzen

Kernel: Uniform

Kemel size: Optimal r

No. of trials: 1= 10

Results: Mean and variance vs. /.

2.  Repeat Project 1 for a normal kemel.

3. Repeat Project | for the kNN density estimate with the optimal k.
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4.  Repeat Projects 1 and 3 for various values of r and k. Plot IMSE vs. r
for the Parzen and IMSE vs. k for the kNN. Determine the optimal r and
k experimentally.

5.  Repeat Experiment 1.

6.  Repeat Experiments 2 and 3.

Problems

1. Prove that
(1) Equation (6.3) is a density function, and
(2) the covariance matrix of (6.3) is r2A.

2. Find w of (6.15) for the kernel function of (6.3). Inserting m = 1 and
into the w obtained above, confirm that the w’s for normal and uniform
kernels are obtained.

[Hint: I'(e) — 1/ as € goes to zero.]

3. Using a normal kernel, find the optimal r* and MSE”. Compare them
with the optimal r* and MSE” for a uniform kernel.

4. Using EXIMSE[f)(X)}] instead of jMSE{f)(X)}dX, find the optimal r
and criterion value. Use p (X) = Nx(0,/) and the uniform kernel.

5. Derive the joint density function of coverages, u,, ... ,u;. Compute the
marginal density function of uy.

6. Using EXIMSE{f)(X)}} instead of IMSE{&(X)}dX, find the optimal %
and criterion value. Use p (X) = Nx(0,).

7. Derive ExE{dyn(X)) for the density function of (6.3). Inserting m =1
and o to the above result, confirm that the averaged distances for normal
and uniform distributions are obtained.

8. Compute EyE{d;yn(X)}, using the second order approximation

u = pv(l +ar?/2).
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9. A density function is given in the figure. Find the Hermite expansion up
to the fourth term and show how closely the expansion approximates the
density function.

p(x)

-1 0] 1

10. A density function of three binary inputs is given in the table.
(a) Show the Walsh expansion. (b) Show the Bahadur expansion.

X, X x3 | pX)
-1 -1 =11 14
+1 =1 =11 140
-1 +1 =1 1/40
+1 41 =1 {155
-1 =1 +1 ] s
+1 =1 41§ 140
-1 +1 41| 140
A N L. B N
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Chapter 7

NONPARAMETRIC CLASSIFICATION

AND ERROR ESTIMATION

After studying the nonparametric density estimates in Chapter 6, we are
now ready to discuss the problem of how to design nonparametric classifiers
and estimate their classification errors.

A nonparametric classifier does not rely on any assumption concerning
the structure of the underlying density function. Therefore, the classifier
becomes the Bayes classifier if the density estimates converge to the true den-
sities when an infinite number of samples are used. The resulting error is the
Bayes error, the smallest achievable error given the underlying distributions.
As was pointed out in Chapter 1, the Bayes error is a very important parameter
in pattern recognition, assessing the classifiability of the data and measuring
the discrimination capabilities of the features even before considering what
type of classifier should be designed. The selection of features always results
in a loss of classifiability. The amount of this loss may be measured by com-
paring the Bayes error in the feature space with the Bayes error in the original
data space. The same is true for a classifier. The performance of the classifier
may be compared with the Bayes error in the original data space. However, in
practice, we never have an infinite number of samples, and, due to the finite
sample size, the density estimates and, subsequently, the estimate of the Bayes
error have large biases and variances, particularly in a high-dimensional space.

300
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A similar trend was observed in the parametric cases of Chapter 5, but the
trend is more severe with a nonparametric approach. These problems are
addressed extensively in this chapter.

Both Parzen and kNN approaches will be discussed. These two
approaches offer similar algorithms for classification and error estimation, and
give similar results. Also, the voting kNN procedure is included in this
chapter, because the procedure is very popular, although this approach is
slightly different from the kNN density estimation approach.

7.1 General Discussion

Parzen Approach

Classifier; As we discussed in Chapter 3, the likelihood ratio classifier
is given by —Inp (X)/p,(X) 2t, where the threshold ¢ is determined in various
ways depending on the type of classifier to be designed (e.g. Bayes, Neyman-
Pearson, minimax, etc.). In this chapter, the true density functions are replaced
by their estimates discussed in Chapter 6. When the Parzen density estimate
with a kernel function x,(-) is used, the likelihood ratio classifier becomes

N
P ,
) T XXM
| pi(X) | N5 ' 2
—In— = —In | N 0<)f. (7.
p2(x) _ZKZ(X_XEZ))
2 j=)
where § = {X{". ... X{).X{¥, ... X} is the given data set. Equation (7.1)

classifies a test sample X into either ®, or ®,, depending on whether the left-
hand side is smaller or larger than a threshold .

Error estimation: In order to estimate the error of this classifier from
the given data sel, S, we may use the resubstitution (R) and leave-one-out (L)
methods to obtain the lower and upper bounds for the Bayes error. In the R
method, all available samples are used to design the classifier, and the same
sample set is tested. Therefore, when a sample X! from ®, is tested, the fol-
lowing equation is used.
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1 Ny

— T (X=X
Nlj;_] l( 5\ j )

N>
_I_ZKZ(XS\'”_X‘(,‘Z))
N, &

~In (R method) . (7.2)

EAV E
-~

If < is satisfied, X}" is correctly classified, and if > is satisfied, X{! is
misclassified. The R estimate of the ,-error, €, is obtained by testing
X{",....X}\, counting the number of misclassified samples, and dividing the
number by N ;. Similarly, £, is estimated by testing X!?, . . . Xﬁ)

On the other hand, when the L method is applied to test X{", X{" must
be excluded from the design set. Therefore, the numerator of (7.2) must be
replaced by

Nl
prX) = ﬁ [):wxi-”—xﬁ") -k X=X 1. (1.3)
1= i=1

Again, Xﬁ.” (k=1,...,N|) are tested and the misclassified samples are
counted. Note that the amount subtracted in (7.3), k;(0), does not depend on &.
When an 0,-sample is tested, the denominator of (7.2) is modified in the same
way.

Typical kernel functions, such as (6.3), generally satisfy x;(0) 2 x;(Y)
(and subsequently x;(0) > f’,-(Y)). Then,

I;IL(X(L'I)) = I;I(Xi-”) +

(B X(") - O] < py (XL (7.4)
—

That is, the L density estimate is always smaller than the R density estimate.
Therefore, the left-hand side of (7.2) is larger in the L method than in the R
method, and consequently X{" has more of a chance to be misclassified. Also,
note that the L density estimate can be obtained from the R density estimate by
simple scalar operations - subtracting K,(0) and dividing by (N,;—1). There-
fore, the computation time needed to obtain both the L and R density estimates
is almost the same as that needed for the R density estimate alone.
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kNN Approach

Classifier: Using the kNN density estimate of Chapter 6, the likelihood
ratio classifier becomes

PiX)  (Ki=DNyvy(X)

p2(X) - (k=N v (X)

—=in

dy(XPw-X) (k= 1DN, 12,1172 o
In——r ~In—— — 21, (1.5)
di (X X)  k=DN, 1,172 o,

where v, ="?T ' n/2+D)1Z1"2d"  from (B.1), and d}(Y.X)=
(Y-X)'Z7"(Y=X). In order to classify a test sample X, the k,th NN from o,
and the k,th NN from ®, are found, the distances from X to these neighbors
are measured, and these distances are inserted into (7.5) to test whether the
left-hand side is smaller or larger than ¢. In order to avoid unnecessary com-
plexity, k| = k, is assumed in this chapter.

Error estimation: The classification error based on a given data set S
can be estimated by using the L and R methods. When X{" from w; is tested
by the R method, X!" must be included as a member of the design set. There-
fore, when the kNN’s of X{" are found from the ®, design set, X\ itself is
included among these kNN's. Figure 7-1 shows how the kNN’s are selected
and how the distances to the kth NN’s are measured for k = 2. Note in Fig. 7-1
that the locus of points equidistant from X{"’ becomes ellipsoidal because the
distance is normalized by X;,. Also, since X; # X, in general, two different
ellipsoids are used for ®, and ®,. In the R method, X{" and X{} are the
nearest and second nearest neighbors of X{!" from ®,. while X% and X%y are
the nearest and second nearest neighbors of X{" from w,. Thus,

pe(X4D) dy(X@, X)) N, IE, 112 o
ik SO (L T “=77 20 (R method)
A%

= n —In
p2(X{") d (XML X)) NI,
(7.6)

On the other hand, in the L method, X{" is no longer considered a
member of the design set. Therefore, X{4 and XSy are selected as the nearest
and second nearest neighbors of X}’ from ®,. The selection of ®, neighbors

is the same as before. Thus,
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Fig. 7-1 Selection of neighbors.

b, (XD do(X@, X N, IZ, 112 o
Pi(X}7) 2(X5n XED) 2122 ~ 2t (L method) .
oy

~ =-nin —In
p(X{") di(X%n. X0y  NIZ 1

(7.7)

Obviously, d (X% X4 = d,(XU4.X{"), making the left-hand side of (7.7)
larger than the left-hand side of (7.6). Thus, Xﬁ.” is more likely to be
misclassified in the L method than in R method.

Also, note that, in order to find the NN sample, the distances to all sam-
ples must be computed and compared. Therefore, when d,(X{},X{") is
obtained, d,(Xv.X{") must also be available. This means that the computa-
tion time needed to get both the L and R results is practically the same as the
time needed for the R method alone.

Voting kNN Procedure

The kNN approach mentioned above can be modified as follows. Instead
of selecting the kth NN from each class separately and comparing the distances,
the ANN’s of a test sample are selected from the mixture of classes, and the
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number of neighbors from each class among the k selected samples is counted.

The test sample is then classified to the class represented by a majority of the
kNN’s. That is,

k,‘=max{kl,. . .,kL] e XE(D,‘ (78)
k]""'. . '+kL =/\ .
where k; is the number of neighbors from ®; (i = 1,...,L) among the kNN's.

In order to avoid confusion between these two kNN procedures, we will call
(7.8) the voting kNN procedure and (7.5) the volumetric kNN procedure.

For the voting kNN procedure, it is common practice to use the same
metric to measure the distances to samples from all classes, although each class
could use its own metric. Since the k;’s are integers and a ranking procedure is
used, it is hard to find a component of (7.8) analogous with the threshold of
(7.5).

It can be shown that the volumetric kNN and voting (2k—1)NN pro-
cedures give identical classification results for the two-class problem using the
same metric for both classes. For example, let k and (2k—1) be 3 and 5 respec-
tively. In the voting SNN procedure, a test sample is classified to o, if 3, 4,
or 5 of the SNN’s belong to ®,. This is equivalent to saying that the 3rd NN
from w, is closer to the test sample than the 3rd NN from ,.

7.2 Voting kNN Procedure—Asymptotic Analysis

In this section, let us study the expected performance of the voting kNN
procedure, first for the asymptotic case (N; = o) and later for the finite sample
case.

Two-Class kNN

NN: We start our discussion with the simplest case, setting & =1 and
L =2 in (7.8). That is, in order to classitfy a test sample, X, the NN sample
Xyv 1s found. Then, X is classified to either , or ®,, depending on the class
membership of Xyy. An error occurs when X € @, but Xyy € ®,, or when
X ew, but Xyy € ®,. Theretore, the conditional risk given X and Xyy is
expressed by
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rx(X,X-)=Pf{ {Xew, and Xyne®; } or { Xew, and Xyyew; }1X, Xyy }

=PI'[X8(D] and XNNE(DZ IX,XNN } +Pr(X8(1)2 and XNNE(’)I IXvXNN }
=q1(X)q2(Xnn) +q2(X)q 1 Xnw) (7.9

where
q;(X) = Pr{Xew;1X} : a posteriori probability . (7.10)

The 2nd line of (7.9) is obtained because the two events in the first line are
mutually exclusive. The 3rd line is obtained because X and Xy, are mutually
independent. When an infinite number of samples is available, Xyy is located
so close to X that ¢;(Xyy) can be replaced by ¢;(X). Thus, the asymptotic con-
ditional risk of the NN method is

riX) =24,(X)q2(X) = 26(X) (7.11)
where
EX) = q1(X)g2(X) . (7.12)
2NN: When k is even, k; =k, may occur and a decision cannot be
made. In this case, we may set a rule that X be rejected and not counted as an
error. In the simplest case of k =2, the rejection occurs when Xyy€®, and
Xonn€0,, or Xynvew; and X,ynvew;. On the other hand, X is misclassified,
when Xew, but Xyy,X vnvE®,, or Xew, but Xyy,Xyyew,. Therefore, the con-
ditional risk is

Fo(X, Xw X own) =1 (XDG 2(Xwn ) 2 (X awn ) + G 2(X)q 1 (X )g 1 (X oww) - (7.13)
For the asymptotic case with ¢;(X) = ¢;(Xyn) = ¢;(X 23n)s
ra(X) =q,(X)g2(X) = EX) (7.14)

where g (X) + g,(X) = 1 is used.

kNN: Extending the above discussion to larger values of k, the asymp-
totic conditional risks for odd & and even & are
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. | 2i-2 . 1 2k .
'mJﬂ=£7i4 EX)+ 5| 4 [0, (7.15)
. | 202
ruX) ==ty 15X (7.16)
i=1
On the other hand, the conditional Bayes risk given X is
F"(X) = minlg , (X).g,(X)] = % - %«/1—4{;(){)
= 1 (20=2] .
=2~ i (50, (7.17)
i=1

where the 2nd line is the MacLaurin series expansion of the first line. Using
(7.15)-(7.17), it is not difficult to prove that these conditional risks satisfy the
following inequalities, regardless of & [1].

1 -
—r <ry Sy

% % * = *

A S O S TR (7.18)

IN

The proof for r* < r) was given in (3.157). Figure 7-2 shows these risks as
functions of & The inequalities of (7.18) can also be seen in Fig. 7-2. In
addition, N/E is plotted in Fig. 7-2, because El\/<";(—X)] is the Bhattacharyya
bound of the Bayes error. Figure 7-2 shows that the kNN risks are better
bounds than the Bhattacharyya bound. Taking the expectation of these risks
with respect to X, the corresponding errors can be obtained. Therefore, these
errors also satisfy the inequalities of (7.18). Thus,

l = % * & % %
58 SE;NNSE4NNS ...S¢e < ... SE}NNSENNSZE . (719)

where
e = E‘;N(X)l and €ZI\’N = E"Z(X)’ . (7.20)

Equation (7.19) indicates that the error of the voting NN procedure is
less than twice the Bayes error. This is remarkable, considering that the pro-
cedure does not use any information about the underlying distributions and
only the class of the single nearest neighbor determines the outcome of the
decision.
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Fig. 7-2 Asymptotic risks vs. £.

Example 1: Figure 7-3 gives a simple example to demonstrate how the
voting NN procedure produces an error between the Bayes error and twice the
Bayes error. If the true Bayes classifier is known, samples 5 and 6 from ,
and samples 1 and 3 from @, are misclassified. By the voting NN procedure,
these four samples are indeed misclassified, because their NN's are from the
other classes. However, some of these misclassified samples (1 from w, and 5
from ,) become the NN’s of samples from the other classes (2 from w, and 4
from (),), and produce additional errors (2 and 4). This may (tfor 1 and 5) or
may not (for 3 and 6) occur, depending on the distribution of samples. There-
fore, roughly speaking, the NN error is somewhere between the Bayes error
and twice the Bayes error. Also, Fig. 7-3 shows that only 3 samples are
misclassified by the voting 2NN procedure. For samples 3, 4, and 5, the votes
are split and the samples are rejected.
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Pips(X) P2p2(X)

f f f f g 4N
tt ? ?? f Eyw = BN
? ? ? € 2NN

Fig. 7-3 Example of ANN classification.

3/N

Multiclass NN
The voting NN procedure can also be applied to general L-class prob-

lems, in which a test sample is classified to the class of the NN sample. The
asymptotic conditional risk is

. L L
X =g, Y q;0+. . 4. (X)) Y ¢;(X)

j=1 j=1
j#l jzL
L L
= 3q:X1-¢:(X)] =1 - ¥q7(X) . (7.21)
i=l i=l

On the other hand, the Bayes conditional risk is

r (X)) =1-max{q;X)}=1~-g.(X). (7.22)
I
Using the Schwartz's inequality,
L L
L-DY g X) 2 ¥ q;)F = [1-q.(00OP =r"2(X) . (7.23)
j=1 i=1

Adding (L—1)g* (X) to both sides,

L
L-DTgHX) 2 2X) + (L-DI1=" X (7.24)
j=1

Substituting (7.24) into (7.21) [1],
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L

rnX)<2r(X) - T

2(X) . (1.25)
Equation (7.25) indicates that the NN error is still less than twice the Bayes
error, but the upper bound becomes larger as L increases.

Estimation of kNN Errors

When samples are generated by a computer as in controlled experiments,
it is generally desirable to have independent design and test sets. First, design
samples are generated and stored. Then, test samples are independently gen-
erated, their kNN’s are found from the design set, and the number of
misclassified test samples is counted. This is the holdout (H) method for error
estimation.

However, with only one set of samples available in practice, we face the
problem of deciding whether the sample set should be divided into two groups
or used as one group for both design and test. In the parametric case, the latter
approach, the R method, produces an optimistic bias, as was seen in Chapter 5.
However, in the voting kNN procedure, we may get different results.

Table 7-1(a) shows how the 3NN error can be estimated from a single
sample set without dividing it into separate design and test sets. The data
column, which lists the samples and their true classes, is given. The 3NN’s of
each sample are found and listed with their classes in the Ist-NN, 2nd-NN, and
3rd-NN columns. Classification is the result of majority voting among the
classes of the 3¥N’s. Then, the classification column is compared with the
true class of the data column. If the classification result matches the true class,
the sample is labeled as correct. Otherwise, it is considered an error. The esti-
mate of the 3NN error is obtained by counting the number of errors and divid-
ing this by the total number of samples.

Let us examine the first row. When X is tested, X, is not included in
the design set from which the 3NN’s of X | are selected. Therefore, this opera-
tion utilizes the leave-one-out method. On the other hand, in the resubstitution
method, X; must be included in the design set. Since X is the closest neigh-
bor of X, itself, the Ist-NN column of Table 7-1(b) is identical to the data
column, and the Ist- and 2nd-NN columns of Table 7-1(a) are shifted to the
2nd- and 3rd-NN columns in Table 7-1(b). Now, applying the voting 3NN
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TABLE 7-1
3NN ERROR ESTIMATION PROCEDURES
Data Ist NN 2nd NN 3rd NN Classification  Correct
or
® (0] ® (0] Error
Xl 1 X3 1 X”) | X23 2 1 CO[TCC[
Xz 2 X iy 1 X25 2 X36 1 [ El'ror
XN 1 X35 2 X536 2 X366 2 2 Error
~ # of errors
g = ————
N
(a) 3NN (or 3NN leave-one-out)
Data 1st NN 2nd NN 3rd NN Classification  Correct
or
(0] (0] ® 0 Error
X] 1 X] l X3 l X 10 l l COITCCI
Xo | 2| Xy | 2] Xyg 1 X2s 2 2 Correct
XN 1 XN | X35 2 X536 2 2 Error
o = # or errors
K N

(b) 2NN (or 3NN resubstitution)

procedure to Table 7-1(b), an error occurs only if the classes of the 2nd-NNV
and 3rd-NVN agree and differ from the class of the 1st-NN (see Xy ), because the
Therefore, the number of

class of the Ist-NN is the same as the true class.
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errors counted in Table 7-1(b) is identical to that obtained from the voting 2NN
procedure using the 2nd-NN and 3rd-NN columns. In the voting 2NN pro-
cedure, a sample is rejected if the classes of the 2nd-NN and 3rd-NN columns
disagree (see X,), and the case is not considered an error. Adding the Ist-NN
column, this reject case (X,) becomes correct, but the error case (Xy) still
remains an error. Thus, the L method version of the voting 2NN procedure is
the same as the R method version of the voting 3NN procedure.

An experiment was conducted to compare the performances of two
approaches: one is to divide the available sample set into design and test (the H
method), and the other uses the procedure of Table 7-1(a) (the L method).

Experiment 1: NN error estimate, L and H
Data: /-A (Normal, n =8, € = 1.9%)
Sample size: N, =N, =50-400 (L)
50-400 for design, 50-400 for test (H)
No. of trials: 1= 10
Metric: A = (Euclidean)
Results: Fig. 7-4

Lo
8_
7" Hx\\
g o \0
g 5 X¥Q%9
B 4k *
o 2€
X 3l
2 e’
l-—
1 1 AL 1
50 100 200 400 Ny

Fig. 7-4 NN error estimates by the H and L methods.

The voting NN procedure was applied. N indicates the number of test sam-
ples per class. In the 4 method, Ny is half of the available sample size, N, and
Nr =N for the L method. Note that the results are fairly close for the same
value of N7. Although the performance of the L method is slightly worse, it is
better to use the L method and double N; than to divide the data into two
groups. Also, note that the experimental curves are above twice the Bayes
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error, and do not satisfy the inequality of (7.19). This is due to the large bias
of this estimation technique, which will be discussed in the next section.

7.3 Voting kNN Procedure—Finite Sample Analysis

So far, the asymptotic performance of the voting kNN procedure has
been studied. That is, the conditional risks and errors were derived based on
the assumption that ¢;(X;yv) = ¢,(X). However, in the real world, the number
of samples available is always finite. So, the question is how many samples
are needed so that the observed performance is similar to the asymptotic one
{2-7). In this section, finite sample analysis is presented for the voting NN and
2NN procedures.

Bias of the NV Error

We start our analysis with (7.9). With a finite number of samples, we
can no longer assume ¢,(Xyy) = ¢;(X). Therefore, we define 8 as the differ-
ence between ¢;(X) and g;(Xyn).

1 Xyw) =g, (X)+d and g,(Xpnv) =q2(X) - 9. (7.26)

Equation (7.26) holds since ¢ ,(X) + g,(X) =1 and ¢,(Xpn)+ q2(Xawn) = 1.
Substituting (7.26) into (7.9),

(X Xaw) =11 (X) + 1g2(X) — ¢, (X)]18 . (7.27)

Thus, the hias between the finite sample and asymptotic NN errors may be
computed by taking the expectation of the second term of (7.27) with respect
to both Xyy and X. In order to accomplish this, ¢,(Xyy) is expanded in a
Taylor series around a given X. Terms higher than second order are discarded
and ¢ ,(X) is subtracted to obtain

3=Vg,(X)(Xyn—X) + -;—trIVZq,(X)(XNN—X)(XNN—X)T} . (7.28)

The metric used to measure the NN distances is specified by
dz(Y,X) = (Y——X)TA‘I(Y—X). In the case that A is held fixed, this is a global
metric. However, in the more general case, A may be allowed to vary with X,
forming a local metric. The same metric is used for both w, and ®, in this
section. However, a similar analysis could be done, even when two different
metrics are adopted for ®; and o,.
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The expectation of (7.28) can be computed in three stages as
ExEEy,, (81p,X} where p is d (X, Xyy)-

The first expectation is taken with respect to Xyy given X =X and
p =p. That is, the bias is averaged over all Xyy on the hyperellipsoidal sur-
face, S(p) = {Y:p = d(¥,X)], specified by a constant p. Thus,

J_; dp (Xnw )Xy
(1))

i p Xnn)dXny
(p)

EXNN [8| p,X] =

P T -1 e
=nlr{A[Vp(X)V g1 X)p(X) + 2V g, (O, (7.29)

where p (X) is the mixture density function, P,p(X)+ P,p,(X). In order 1o
obtain the second line of (7.29), the following formulas are used, along with 9
of (7.28) [see (B.7)-(B.9)]

P Xan) 2 X)) + Vip (X)X w—X) (7.30)
ni2 172
s =] dy = PEIAVE ey (7.31)
S (p) I( n+2 )
2
L (Y =X)Y-X)TdY = /24 (1.32)
) n

Note that all odd order terms of (Xyy—X) disappear, since S(p) is symmetric
around X.

In order to take the expectation with respect to p, we can rewrite (7.29)
in terms of u, since the density function of u is known in (6.76). Using the
first order approximation of u = pv,

nn/Z

N 4
n+2
I'( > )

u=

CO1A1'2p" . (7.33)

Therefore,
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r2/n( 71;2)
E ‘ 2 E“—,—E,, u2/‘n
p p } npz’"(X)lA 'l/n I }
2
r2/n n+2
( 2 ) T'(14+2/mT(N +1)

- ¥ X)IAIY T(N+142/in) (7.34)

Finally, combining (7.27), (7.29), and (7.34), and taking the expectation
with respect to X [8],
Elew} Zepy +BiEx (1A 17"r(AB (X)) (7.35)

where

B\ (X) = p‘2”"(X>[qz(X)—ql(xmvp(xw'fq,(X>p—‘<X>+%V2ql(X>1 ,

(7.36)
rZ.’n( n+2 )
B, = 2 T(14+2/mT(N +1)
! nm I'(N+1+2/n)
rz’"("z;z)r(nz/n)
= N7 (7.37)

nn

The second line of (7.37) is obtained by approximating ['(x+a)/T(x) by x* for
a large integer x and a small q.

Effect of Parameters

Several observations may be made at this point. First, note that the
value of B, is completely independent of the underlying densities. It depends
only on the dimensionality of the data and the sample size, and does not
depend on the particular distributions involved. The term inside the expecta-
tion in (7.35), on the other hand, does not depend on the sample size. For any
given set of distributions this term remains fixed regardless of the number of
samples. This term does, however, depend heavily on the selection of the
metric, A. These equations, therefore, yield much information about how the
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bias is effected by each of the parameters of interest (n, N, A, and p (X)). Each
of these parameters will be discussed separately as follows.

Effect of sample size: Equation (7.37) gives an explicit expression
showing how the sample size affects the size of the bias of the NN error. Fig-
ure 7-5 shows B, vs. N for various values of n [8]. The bias tends to drop off

B
A
i M p=198
n=64
0.04—
0.03 n=32
0.02
n=18
0.01 |-
n=8
M AD=2 e 174y

10? 10° 104 10°
Fig. 7-5 B, vs. N.

rather slowly as the sample size increases, particularly when the dimensionality
of the data is high. This is not an encouraging result, since it tends to indicate
that increasing the sample size N is not an effective means of reducing the bias.
For example, with a dimensionality of 64, increasing the number of samples
from 1,000 to 10,000 results in only a 6.9% reduction in the bias (, from
0504 to .046%9). Further reduction by 6.9% would require increasing the
number of samples to over 100,000. Thus it does not appear that the asymp-
totic NN error may be estimated simply by "choosing a large enough N” as
generally believed, especially when the dimensionality of the data is high. The
required value of N would be prohibitively large.
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Effect of dimensionality: The dimensionality of the data appears to play
an important role in determining the relationship between the size of the bias
and the sample size. As is shown in Fig. 7-5, for small values of n (say, n <
4), changing the sample size is an effective means of reducing the bias. For
larger values of n, however, increasing the number of samples becomes a more
and more futile means of improving the estimate. It is in these higher dimen-
sional cases that improved techniques of accurately estimating the Bayes error
are needed. It should be pointed out that, in the expression for the bias of the
NN error, n represents the local or intrinsic dimensionality of the data as dis-
cussed in Chapter 6. In many applications, the intrinsic dimensionality is
much smaller than the dimensionality of the observation space. Therefore, in
order to calculate f3;, it is necessary that the intrinsic dimensionality be
estimated from the data using (6.115).

Effect of densities: The expectation term of (7.35) gives the effect of
densities on the size of the bias. In general, it is very hard to determine the
effect of this term because of its complexity. In order to investigate the gen-
eral trends, however, we can compute the term numerically for a normal case.

Experiment 2: Computation of Ex {-} of (7.35)
Data: /-I (Normal)
M adjusted to give € =2, 5, 10, 20, 30(%)
Dimensionality: #n = 2, 4, 8, 16
Sample size: N| =N, = 1600n
Metric: A =1 (Euclidean)
Results: Table 7-2 [8]

In the experiment, B, of (7.36) was evaluated at each generated sample point
where the mathematical formulas based on the normality assumption were used
to compute p(X) and ¢;(X). The expectation of (7.35) was replaced by the
sample mean taken over 1600n samples per class.

Table 7-2 reveals many properties of the expectation term. But, special
attention must be paid to the fact that, once n becomes large (n > 4), its value
has little effect on the size of the expectation. This implies that 8, of (7.37)
dominates the effect of n on the bias. That is, the bias is much larger for
high-dimensions. This coincides with the observation that, in practice, the NN
error comes down, contrary to theoretical expectation, by selecting a smaller
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TABLE 7-2

ESTIMATES OF THE EXPECTATION TERM
IN (7.35) FOR NORMAL DATA

Bayes

Error n=2 n=4 n=28 n=16

1% order term 3.4 1.2 1.2 1.1

30% | 2" order term 2.2 1.2 0.4 0.3

Sum 5.6 24 1.6 1.4

15 order term 22 1.3 0.9 0.8

20% | 2" order term 1.8 1.2 1.1 1.0

Sum 4.0 2.5 2.0 1.8

1* order term -1.3 -2 -0.2 -0.2

10% | 2™ order term 47 2.1 1.7 1.6

Sum 3.4 1.9 1.5 1.4

1% order term -1.9 -1.0 -0.8 -0.6

5% 2" order term 3.8 2.3 1.8 1.5

Sum 1.9 1.3 1.0 0.9

1 order term | -2.0 -1.5 -0.8 0.7

2% 2" order term 3.5 2.3 1.3 1.1

Sum 1.5 0.8 0.5 0.4

number of features. This happens, because the bias is reduced more than the
Bayes error is increased. In order to compare two sets of features in different
dimensions, this dependency of the bias on » must be carefully examined.
Also, note in Table 7-2 that the second order term due to Vg ,(X) is compar-
able to or even larger than the first order term due to Vg ,(X). It is for this rea-

son that the second order term is included in the Taylor series expansion of
(7.28).

Effect of metric: The expectation terms of (7.35) also indicates how the
matrix, A, affects the bias. Certainly, proper selection of a metric may reduce
the bias significantly. Unfortunately, B, is a very complex function of X and
very hard to estimate for any given set of data. As for optimization of A,
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(6.54) shows that an expression of the form |A I“””lr{AB, } is minimized by
setting A = BY', provided B, is a positive definite matrix. However, B, might
not be positive definite, because of the term [¢,—¢,] in (7.36). Thus, it is not
immediately clear how to choose A to minimize the bias. Nevertheless, selec-

tion of an appropriate metric remains an important topic in NN error estimation
[9-10].

Experimental Verification

In order to verify the results mentioned above, the following experiment
was run:

Experiment 3: Voting NN error estimation,
L method (Table 7-1(a))
Data: /- (Normal, n = 8)
M adjusted to give £ =2, 5, 10, 20, 30(%)
Sample size: Ny = N, =20n, 401, 80n, 160n
No. of trials: T= 20
Metric: A =7 (Euclidean)
Results: Fig. 7-6 [8]

In Fig. 7-6, the small circle indicates the average of the NN errors over 20
trials, and the vertical bar represents + one standard deviation. According to
(7.35), the bias of the NN error varies linearly with B, for any given set of dis-
tributions. Therefore, if we know €y and Ey{-}, we can predict the finite
sample NN errors as linear functions of B,. The dotted lines of Fig. 7-6 show
these predicted NN errors for various values of the Bayes error. The Ly{-}’s of
(7.35) are tabulated in Table 7-2. The theoretical asymptotic error, xyy, was
estimated by generating a large member (1600n) of samples, calculating the
risk at each sample point from (7.11) using the known mathematical expres-
sions for g;(X) in the normal case, and averaging the result. Note that the aver-
ages of these measured (::NN’S are reasonably close to the predicted values.

While it may not be practical to obtain the asymptotic NN errors simply
by increasing the sample size, it may be possible to use information concerning
how the bias changes with sample size to our advantage. We could measure
é/wv empirically for several sample sizes, and obtain B, using either (7.37) or
Fig. 7-5. These values could be used in conjunction with (7.35) to obtain an
estimate of the asymptotic NN error as follows:
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Fig. 7-6 NN errors for normal data.

(1) Change the sample size N as N\, N,,...,N;. For each N;, calculate J3,
(using the intrinsic dimensionality) and measure éNN empirically. It is
preferable to repeat the experiment several times independently and to
average the measured éNN’s.
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(2) Plot these 7 empirical points é/wv vs. B;. Then, find the line best fitted to
these 7 points. The slope of this line is Ey{-} and the y-intercept is £yy,
which we would like to estimate.

The reader must be aware that ;:NN varies widely (the standard deviation of ;:NN
for each (3, is large). and that B, = 0 is far away from the B-region where the
actual experiments are conducted. Therefore, a small variation in éNN tends to
be amplified and causes a large shift in the estimate of exy.

Biases for Other Cases

2NN: The bias of the 2NN error can be obtained from (7.13) in a similar
fashion, resulting in [8]

E(€av) Zeomy + Bobx 114 17r{AB(X) 1} (7.38)
where
- 1 - l
B?_(X) =p 2/"(X)[VP(X)quI(X)p I(X) + 3V2£] ) X)], (7.39)
n+2 :
B ~ I—Z/n(,_) 1+4/n r(l4—4/n)r(N+l)
2 = 142/n T(N+1+4/n)
nm
rz/ll _n—+£ )
~ ( ) [+4/n r(l+4/”)N—4/n i (740)
— 14+2/n

By comparing (7.40) with (7.37), it can be seen that 3, is roughly proportional
to N while B, is proportional to N™"". That is, as N increases. the 2NN
error converges to its asymptotic value more quickly than the NN error - as if
the dimensionality, n, were half as large. Also, note that 3, is significantly
smaller than B,. because I/nm (088 for n =8 and .068 for n =32) is
squared. Many experiments also have revealed that the 2NN error is less
biased than the NN error [11]. Since their asymptotic errors are related by
guy = 265y from (7.11) and (7.14), a better estimate of £yy could be obtained
by estimating €5y first and doubling it.
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Multiclass: The NN error for multiclass problems can also be obtained
in a similar way, starting from (7.21) [8]. The result is

Eleww) Zean + BiExl 1A 17 te{AB,(X)) } (7.41)

where

L
. B 1 _
BL(X) = Tp " (X)giX)-Yp X)WV g;(Xop™ (X) + Vg (X)) (7.42)
i=1

Note that B; of (7.41) is the same as 3, of (7.37). This means that the effect
of sample size on the bias does not depend on the number of classes.

7.4 Error Estimation

In this section, we return to nonparametric density estimates, and use
these cstimates to design a classifier and estimate the classification error. Both
the Parzen and volumetric kNN approaches will be discussed. However,
because the analysis of the Parzen approach is simpler than the kNN approach,
the Parzen approach will be presented first with detailed analysis, and then the
kNN approach will be discussed through comparison with the Parzen approach.

Classification and error estimation using the Parzen density estimate
were discussed in Section 7.1. However, in order to effectively apply this
technique to practical problems, we need to know how to determine the neces-
sary parameter values, such as the kernel size, kernel shape, sample size, and
threshold.

Effect of the Kernel Size in the Parzen Approach

As we discussed the optimal volume of the Parzen density estimate in
Chapter 6, let us consider the problem of selecting the kernel size here. How-
ever, density estimation and classification are different tasks, and the optimal
solution for one might not be optimal for the other. For example, in density
estimation, the mean-square error criterion was used to find the optimal
volume. This criterion tends to weight the high density area more heavily than
the low density area. On the other hand, in classification, the relationship
between the tails of two densities is important. In this case, the mean-square
error may not be an appropriate criterion. Despite significant efforts in the
past, it is still unclear how to optimize the size of the kernel function for
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classification. One of the ways to overcome this difficulty is to determine the
optimal kernel size experimentally. Assuming that the kernel function of (6.3)
is adopted with r as the size control parameter, we may repeat the estimation of
the classification error by both L and R methods for various values of r, and
plot the results vs. . The major drawback of this approach is that the estima-
tion procedure must be repeated completely for each value of r.

Experiment 4: Estimation of the Parzen errors, L and R
Data: /-1, I-41, I-A (Normal, n = 8)
Sample size: Ny =N, =100
No. of trials: T= 10
Kernel: Normal with A} =Z,, A, =%,
Kernel size: r = 0.6-3.0
Threshold: t =0
Results: Fig. 7-7 [12]

In Fig. 7-7, the upper and lower bounds of the Bayes error were obtained by
the L and R methods, respectively. As seen in Fig. 7-7, the error estimates are
very sensitive to r, except for the Data /-/ case. Unless a proper r is chosen,
the estimates are heavily biased and do not necessarily bound the Bayes error.

In order to understand why the error estimates behave as in Fig. 7-7 and
to provide intelligent guidelines for parameter selection, we need a more
detailed analysis of the Parzen error estimation procedure.

Effect of the density estimate: In general, the likelihood ratio classifier
is expressed by

X 0,
h(X)=—lnz|§X; -1 20, (7.43)
2 Al

where ¢ is the threshold. When the estimates of p,(X) and p»(X) are used,

~

1{X)
I;2(X)

where ; is the adjusted threshold. The discriminant function ﬁ(X) is a random
variable and deviates from h(X) by Ah(X). The effect of Ah(X) on the
classification error can be evaluated from (5.65) as

h(X) = —In 1 = h(X) + Ah(X) . (7.44)
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Fig. 7-7 Parzen error for various values of r.
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E{Ae) EEIEHEIAh(X) + %Ahz(X)}

x e/"®P b (X) = Pyp,(X))dwdX . (7.45)
From (7.44), Ah(X) and Ah%(X) are derived as follows.
Apy(X) Apy(X)
Ah(X) =1 I+ - +
G0 == 71X
ApX) 1 {Ap) )P apx) 1 [ap) |
= - - — —Atr, 7.46
Xy 2 | paX) X 2| o0 £ (740)
2 2
Ap>(X Api(X) |© Ap (X Ap,(X
AR(X) = p2(X) P& | Pi(X) p2(X) 2
p2(X) p1(X) P X) || paX)
o |2 1 (A P apen 1 [Ape0) |
paX) 2| paX) X)) 2| pX0
(7.47)

where Ap;(X) = f),-(X) - piX), At = ‘- ¢, and the expansions are terminated at
the second order terms. The bias of the error estimate may be obtained by tak-
ing the expectations of (7.46) and (7.47), inserting them into (7.45), and carry-
ing out the integration.

Parzen kernel: When the Parzen kernel approach is used, Elf),-(X)}
and Varlf),-(X)} are available in (6.18) and (6.19) respectively. Since
E{Ap(X)} = E(p,(X)) ~ pX) and  E{APXX)} =E(Ip(X) - p(X)F)
= MSEp;(X)} = Var{p,(X)} + E2{Ap;(X)],

JApiX) | 5
E{ o) } =2 o, (X, (7.48)
Ap;(X) ? s 1
’ = 02X, 7.49
[),(X) Np,(x)l"' + 4 o ( )l ( )

where w; of (6.15) is expressed by s;7™" and s; is given in (6.20) and (6.26) for
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normal and uniform kernels respectively. The reason why the first and second
order approximations are used for the variance and bias respectively was dis-
cussed in Chapter 6. If the second order approximation for the variancc is
adopted, we can obtain a more accurate but complex expression for (7.49).
Substituting (7.48) and (7.49) into (7.46) and (7.47),

r ~n

2N

i 1 4, 2 5
E{AhX)} 2=r-(0nb—0)+ —r (oj—o5) — At +
{ )) > (0p—0ty 3 1—0y 0

S—'—iz—l , (7.50)

E{AW*(X)} ;[%;-2(a2—a,)—A1]2—%r“(a%—aé)

(7.51)

P s (1=A) s, (14Ar
+ - .
N P P2

Note that from (6.18) and (6.19) the terms associated with r2q; are generated
by the bias of the density estimate, and the terms associated with r™/N come
from the variance. The threshold adjustment At is a constant selected indepen-
dently.

Now, substituting (7.50) and (7.51) into (7.45) and carrying out the
integration, the bias is expressed in terms of r and N as

E{A€) Za,r? + ayr® +ayrIN . (7.52)

Here, the constants a,, a,, and a5 are obtained by evaluating the indicated
integral expression in (7.45). Here, we assume, for simplicity, that the decision
threshold ¢ is set to zero. Because of the complexity of the expressions, expli-
cit evaluation is not possible. However, the constants are only functions of the
distributions and the kernel shapes, A;, and are completely independent of the
sample size and the smoothing parameter, . Hence, (7.52) shows how changes
in 7 and N affect the error performance of the classifier. The a,r2 and a,r*
terms indicate how biases in the density estimates influence the performance of
the classifier, while the ayr™'/N term reflects the role of the variance of the
density estimates. For small values of r, the variance term dominates (7.52).
and the observed error rates are significantly above the Bayes error. As r
grows, however, the variance term decreases while the a,r? and ar* terms
play an increasingly significant role. Thus, for a typical plot of the observed
eITor rate versus r, € decreases for small values of r until a minimum point is
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reached, and then increases as the bias terms of the density estimates become
more significant. This behavior is observed in Fig. 7-7 and is accurately
predicted in the expression for E{Ag}. It should be noted that although expli-
cit evaluation of a, through a5 is not possible in general, it is reasonable to
expect that these constants are positive. It is certainly true that £{Ag} must be
positive for any value of r, since the Bayes decision rule is optimal in terms of
error performance.

Effect of Other Parameters in the Parzen Approach

With the bias expression of the estimated error, (7.52), we can now dis-
cuss the effect of important parameters such as A, t, and the shape of the kernel
function.

Effect of sample size: The role of the sample size, N, in (7.52) is seen
as a means of reducing the term corresponding to the variance of the density
estimates. Hence the primary effcct of the sample size is seen at the smaller
values of r, where the a5 term of (7.52) dominates. As r grows, and the a,
and @, terms become dominant, changing the sample size has a decreasing
effect on the resulting error rate. These observations were verified experimen-
tally.

Experiment 5: Estimation of the Parzen error, H

Data: I-A (Normal, n = 8, ¢" = 1.9%)

Sample size: N, =N, =25, 50, 100, 200 (Design)
N, =N, = 1000 (Test)

No. of trial: 1= 10

Kemel: Nomal with A, =1, A, =A

Kernel size: r = 0.6-2.4

Threshold: t =0

Results: Fig. 7-8

Figure 7-8 shows that, for each value of N, the Parzen classifier behaves as
predicted by (7.52), decreasing to a minimum point, and then increasing as the
biases of the density estimates become significant for larger values of r. Also
note that the sample size plays its primary role for small values of r, where the
a3 term is most significant, and has ailmost no effect at the larger values of r.
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Fig. 7-8 Effect of sample size on Parzen classification.

In order to have E{Ag} — 0 as N — oo, the error expression implies that
r must be chosen as a function of N such that » — 0 and r™/N — 0. This is
the condition for the consistency of the Parzen density estimate [13], and vali-
dates the approximations which we used to obtain (7.52).

The optimal r may now be obtained from (7.52) by solving
JE {Ae}/dr = 0. However, 2a,r+4a,r® —na,r™"""/N =0 is not an easy equa-
tion to solve, and the a;’s are hard to obtain. Therefore, it seems better to find
the minimum point of the error curve experimentally.

Effect of the decision threshold: Increasing the sample size, N, is seen
as a means of improving the performance of the Parzen classifier at small
values of . As n becomes large, however, increasing the sample size becomes
more and more futile, and the designer is forced to resort to using larger values
of r. This results in a reduction of the variance of the density estimates, at the
cost of accepting a larger bias. On the other hand, (7.50) and (7.51) indicate
that E{Ag} of (7.45) could be reduced by selecting a proper threshold, As, and
the kernel covariance matrix, A;, which determines o; [see (6.13)]. Here, we
will study the effect of Ar, the adjustment of the decision threshold. Theoreti-
cally speaking, the optimal Ar can be found by minimizing E [Ag} with respect
to Atr. However, in practice, it may not be possible to carry out the integration
of (7.45) for such complicated functions of n variables.
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The threshold for normal distributions: However, if the p;(X)’s are
normal distributions, the effect of the threshold can be analyzed as follows.
Recall from (6.7) that the expected value of [A),-(X) in the Parzen density esti-
mate is given by p;(X)xx;(X). When both p;(X) and k;(X) are normal with
covariance matrices Z; and r2%; respectively, this convolution yields another
normal density with mean M; and covariance (I+r2)Z,-, as shown in (6.31).
For larger values of r, the variance of f),-(X) decreases, and the estimate
approaches its expected value. Substituting the expected values into the
estimated likelihood ratio, one obtains

p (X b
pl( )':'—I—(X—MI)T l2
1+r

I %3
(X-M)- ?(X—Mz)—*’—(X—Mz)
1+

2

_l_l |Zl| (|+I'2)"

+—In : 7.53
20 1E, 1 (142 (753

Except for the 1/(1+r?%) factors on the inverse covariance matrices, this expres-
sion is identical to the true likelihood ratio, —In p | (X)/p,(X). In fact. the two
may be related by

VG SN NP TC NN IR b1

— = - + = | 7.54
pa(X) 147 pz(X)l 2 l+r2)n|22| (7.54)

The true Bayes decision rule is given by — Inp (X)/p,(X) 2InP/P,. Using
(7.54), an equivalent test may be expressed in terms of the estimated densities:

p (X)
AL AP (7.55)
P2X)
where
—— (lnP')+i( r’ )lnIZII (7.56)
S P, 2 e, '

In all of our experiments, we assume P, = P, = 0.5, so the first term of (7.56)
may be neglected. Equation (7.56) gives the appropriate threshold to use when
the Parzen classifier with a normal kernel function is used on normal data.
This indicates that  can be kept at zero if £, = X5, but ¢ should be adjusted for
each value of r if X, # X,. Otherwise. the classifier based on the Parzen
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density estimate classifies samples from the original normal distributions with
an improper threshold. Figure 7-7 shows exactly that. In Fig. 7-7(a), with
X, =X, =1, good performance was obtained even for large values of r without
adjusting the threshold. When 1Z, | and 1Z;1 are different, as with Data I-4/
and /-A, the performance of the Parzen classifier degrades sharply for larger
values of » without adjusting the threshold, as evidenced in Fig. 7-7(b) and (c).
Figure 7-9 shows the behavior of the Parzen classifier for these three data sets
with ¢ given by (7.56) (Option 1). For low values of r, the classifiers give
similar performance to that shown in Fig. 7-7, since the appropriate value of ¢
given in (7.56) is close to zero. As r increases, good performance is obtained
for all values of r. Thus, by allowing the decision threshold to vary with r, we
are able to make the Parzen classifier much less sensitive to the value of r.

The threshold for non-normal distributions: The decision threshold as
used here is simply a means of compensating for the bias inherent in the den-
sity estimation procedure. When the data and the kernel functions are normal,
we have shown that the bias may be completely compensated for by choosing
the value of ¢ given in (7.56). In the non-normal case, we cannot hope to
obtain a decision rule equivalent to the Bayes classifier simply by varying .
However, by choosing an appropriate value of ¢, we can hope to compensate,
to some extent, for the bias of the density estimates in a region close to the
Bayes decision boundary, providing significant improvement in the perfor-
mance of the Parzen classifier. Therefore, procedures are needed for determin-
ing the best value of ¢ to use when non-normal data is encountered. We
present here four possible options. These options, and a brief discussion of
their motivation, are given below.

Option [: Use the threshold as calculated under the normality assumption
(7.56). Since for larger values of r the decision rule is dominated by the func-
tional form of the kernels, this procedure may give satisfactory results when
the kernels are normal, even if the data is not normal.

Option 2. For each value of r, find the value of ¢ which minimizes the leave-
one-out error, and find the optimal ¢ for the resubstitution error separately.
This option involves finding and sorting the L and R estimates of the likelihood
ratio, and incrementing the values of ¢ through these sorted lists. The error rate
used as the estimate is the minimum error rate obtained over all values of ¢.
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Fig. 7-9 Effect of threshold on Parzen classification.




332 Introduction to Statistical Pattern Recognition

This option makes no assumptions about the densities of the data or the shape
of the kernel function. However, since the value of the threshold is customized
to the data being tested, using this option will consistently bias the results low.
This is not objectionable in the case of R errors, since the R error is used as a
lower bound of the Bayes error. However, using this procedure can give
erroneous results for the L error. Options 3 and 4 are designed to alleviate this
problem.

Option 3: For each value of r, find the value of + which minimizes the R error,
and then use this value of / to find the L error. Since the selection of the thres-
hold has been isolated from the actual values of the L estimates of the likeli-
hood ratio, using this method does in fact help reduce the bias encountered in
Option 2. Experimental results will show that this method does give reliable
results as long as r is relatively large. When r is small, however, the L esti-
mates of the likelihood ratio are heavily biased as is seen in Fig. 7-9(b), and
use of these estimates to determine the threshold may give far from optimal
results. An advantage of this option is that it requires no more computation
time than Option 2.

Option 4: Under this option, the R error is found exactly as in Option 2, by
finding the value of ¢ which minimizes the R error, and using this error rate. In
order to find the L error, we use an L procedure to determine the value of ¢ to
use for each sample. Hence, under Option 4, we use a different threshold to
test each of the N,+N, samples, determining the threshold for each sample
from the other N,+N,—1 samples in the design set. The exact procedure is as
follows.

(1) Find the L density estimates at all samples,

y

~ r l Nl I r r ”
X)) = TR DX ~ K KP-X)]
k=i

~ X 1 N,
P = N

K XV-X0)  ier. (7.57)
r k=l

(2)  To test sample X§:
(a) Modify the density estimates by removing the effect of X{? from
all estimates
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o
p(X{)=

(b)

(©)

pr(X) r el
] N .
——= [N, =Dp, (X -k (XP=X]) r=1i=d
T (D X = XX = 5%
N p X R XX r=iies

Let us assume ¢ = | for example. The test sample, X{", was used
to compute ;;,(-) as in (7.57), but never used for ;;\2(-). Therefore,
the removal of X{ does not change p,(-) which is the case of the
first line of (7.58). The removal of XL'), however, affects ;;l(-) in
two different ways, depending on whether [;,(-) is evaluated at Xj-"
or X\¥. ;;,(Xﬂ-") is the summation of N ;-1 kernels excluding
k) (X{"=X!D) as is seen in the first line of (7.57). Therefore, the
further removal of i, (X!"-X{") can be computed by the second
line of (7.58). On the other hand, since ;;\I(XSZ)) is the summation
of N; kemnels as in the second line of (7.57), the removal of
K1 (X?-X{") can be computed by the third line of (7.58). The
case with / = 2 may be discussed similarly.

Calculate the likelihood ratio estimates at all samples X! = X}
based on the modified density estimates.

EI(XY))

(X =-Inz—
p2(XY)

X9 2 X (7.59)

Find the value of ¢+ which minimizes the error among the N |+N ,—1
samples (without including X{’), under the decision rule

o,

“axyy zr. (7.60)
>

This is best accomplished by first sorting the likelihood ratio esti-
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mates #(X'"), and then incrementing the value of ¢ through this list,
keeping track of the number of errors for each value of 1.

(d) Classify the sample X{’ using the original density estimates of
(7.57) and the value of 1 found in Step (c):

syt o
pi(Xy) S,

e(Xﬁ?’)=~lnﬁ 2
paXy) ©

(7.61)

Count an error if the decided class is not w..

(3) Repeat Step (2) for each sample, counting the resulting number of
classification errors.

Although this procedure is by far the most complex computationally, it is the
only true L procedure, and gives the most reliable results, particularly for small
values of r.

Figure 7-9 shows the results of applying Options 1, 3, and 4 to the three
test cases.

Experiment 6: Estimation of the Parzen error, L and R
Same as Experiment 4 except
Threshold: 7 - Options 1, 3, 4
Results: Fig. 7-9 [12]

In all of the experiments, using the threshold calculated under the normality
assumption (Option 1) gave the best performance. This was expected, since
both the data and the kernel function are, in fact, normal. It is notable, how-
ever, that the use of Option 4 gave performance nearly equal to that of Option
1. Option 3 gave good results also, but performance degraded sharply for
small r, particularly for Data [-4/, where the covariance determinants are
extremely different.

Non-normal example: It is of interest to examinc the behavior of the
Parzen classifier in a non-normal case where the quadratic classifier is no
longer the Bayes classifier. Toward this end, the following experiment was
conducted.
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Experiment 7: Estimation of the Parzen error, L and R

Data:  p(X) = 0.5Ny(M | ,[)+0.5Ny (M, .1)
P2(X) = 0.5Ny(M3,1)+0.5Ny (M 4.1)
M, =[00...0), M,=1[6.580...0]"
My =1(3290...0), M,;=(9.870...0]"
n=8,& =75%

Sample size: N, =N, = 100

No. of trials: 1= 10

Kemel: Normal with A| = A, =1/

Kernel size: 0.6-6.0

Threshold: Option 4

Results: Fig. 7-10 [12]
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Fig. 7-10 Parzen error for a non-normal test set.

Figure 7-10 shows the results for this experiment. With a moderate
value of r, the Bayes error of 7.5% is bounded properly, when the Parzen den-
sity estimate for each class represents the given two-modal distribution. On
the other hand, as r grows, the density estimate converges to the kemnel func-
tion itself. Thus, with normal kernels, the likelihood ratio of the estimated
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densities becomes a quadratic classifier, resulting in the error much higher than
the Bayes error. As the result, the curves of Fig. 7-10 is significantly different
from the ones of Fig. 7-9, indicating that the selection of a proper r for non-
normal cases could be more critical than the one for normmal cases. Neverthe-
less, the Parzen classification does provide usable bounds on the Bayes error.

Selection of the kernel shape: An alternative way of compensating for
the biases of the error estimate is the selection of the kernel shape. Equations
(7.50) and (7.51) suggest that, if the kernel covariances are selected such that
o (X) = a,(X), all terms which are independent of the sample size may be
eliminated from the bias expression. Hence, we must find positive definite
matrices A and A, such that, from (6.13),

V2p (X) VZp,(X)
LIS S AL LI S 7.62
"{ 7100 '} "{ P20 2} (7.62)

In general, Vzp,(X)/p,-(X)’s are hard to obtain. However, when p;(X) is nor-
mal,
V2pi(X)
pi(X)

Therefore, we may obtain a solution of (7.62) in terms of these expected vec-
tors and covariance matrices.

=X X-M)YX-M)TZ -2, (7.63)

Before going to the general solution of (7.62), let us look at the simplest
case, where £, =3, =X and A| = A, =X, Using (7.63), (7.62) becomes

X-M)TZHX-M )= (X-M)TZ'(X-M,) (7.64)

which is satisfied by the X’s located on the Bayes boundary. On the other
hand, since the integration of (7.45) with respect to  results in
J[E{Ah}&(h)+(1/2)ElAhzl dd(h)/dh] (P ,p,—P,p>)dX, the bias is generated
only by E{Ah(X)) and E{Ah*(X)} on the boundary. Therefore, the selection
of Ay =A, =% seems to be a reasonable choice. Indeed, the error curve of
Fig. 7-7(a) shows little bias for large r, without adjusting the threshold.

The general solution of (7.62) is very hard to obtain. However, since
(7.62) is a scaler equation, there are many possible solutions. Let us select a
solution of the form
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A = I+ (X -M)X-M)T (7.65)

where ¥, is a constant to be determined by solving (7.62). Substituting (7.63)
and (7.65) into (7.62) and simplifying give

[d? (XM ) -N{1+y,d3 (XM )] = [d3 XM )= 1Hy,d3 (XM )Y, (7.66)

where d*(X,M;) = (X -M) Z;"(X-M,). If we could select y,d*(X.M;)=—1,
(7.66) is satisfied.  However, since (X-M)A7'(X-M,)=d*(X,M,)!
[1+y:d*(X,M,)] for A, of (7.65) from (2.160), v;d*(X,M,)> -1 must be satisfied
for A; to be positive definite. A simple compromise to overcome this incon-
sistency is to select a number slightly larger than —1 for y,d?(X.M,). This
makes o (X) — a,(X) small, although not zero. This selection of the kernel
covariance was tested in the following experiment.

Experiment 8: Estimation of the Parzen error, H
Data: /-1, I-41, I-A (Normal, n = 8)
Sample size: N, =N, = 100 (Design)

N, =N, = 1000 (Test)
Kemel: Normal, A; of (7.65), y;d? =-0.8
Kernel size: r = 0.6-2.4
Threshold: + =0
Results: Fig. 7-11

The optimal kemels given in (7.65) were scaled to satisfy 14;1 = |Z, 1, allow-
ing direct comparison with the results obtained using the more conventional
kernel A; =%, (also shown in Fig. 7-11). The results for Data /-4/ and /-A
indicate that although the estimates seem less stable at smaller values of r, as r
grows the results using (7.65) remain close to the Bayes error while the results
using A, = X; degrade rapidly. This implies that the > and r* terms of (7.50)
and (7.51) have been effectively reduced. Note that for Data /-/ (Fig. 7-11(a)).
the distributions were chosen so that o;(X)=a-(X) on the Bayes decision
boundary. As a result the 7° and r* terms of (7.50) and (7.51) are already
zero, and no improvement is observed by changing the kernel. These experi-
mental results indicate the potential importance of the kemel covariance in
designing Parzen classifiers.
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Fig. 7-11 Effect of kernel functions on Parzen classification.
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Estimated kernel covariance: So far, we have assumed that the class
covariance matrices are known and given. However, is practice, these covari-
ance matrices are unknown and must be estimated from a finite number of
samples. This may lead to an optimistically biased error estimate. For exam-
ple. in Data RADAR, upper and lower bounds of the Bayes error are estimated
by the L and R methods. If 720 samples per class are used in this operation
with the class covariance matrices estimated from 8800 samples per class, the
resulting upper and lower bounds are 17.8% and 16.2% respectively. On the
other hand, if the same 720 samples are used to estimate the covariance
matrices, bounds of 8.4% and 7.1% result. These bounds are further lowered
1o 5.2% and 3.8%, when 360 samples per class are used in both the error esti-
mation procedure and the covariance estimation. These results demonstrate
that the upper bound of the Bayes error in the L method may be severely
biased. Thus. the estimate may no longer give the upper bound of the Bayes
error, if the class covariances are estimated from the same data used to form
the error estimates. If possible, then, to avoid this bias, one should estimate
the class covariances using a large number of independent samples. Once the
covariances are estimated accurately, we may use a relatively small sample size
for the nonparametric procedures to produce reliable results. However, if addi-
tional samples for estimation of the covariance matrices are not available, in
order to obtain reliable upper bounds on the Bayes error, one must use leave-
one-out type estimates of the kernel covariances when forming the L error esti-
mate. This implies the use of a different covariance matrix for each sample
being tested.

In order to show how the kernel covariance can be estimated by the L
method, let us study the kemel function of (6.3). In Parzen error estimation,
this kernel function is inserted into (7.2) and (7.3) to test a sample X} from
®, in the L method. Using A; =X,, which is a good choice in many applica-
tions, we need to compute |Z; 1 and d7(X{" . X\") = (x{"-x\")" Z71(X{V-x").
When the covariance matrix X; is not known and needs to be estimated from
X XRL E s replaced by its estimate, ¥,, and subsequently d? by
&f(x“’,xj.”) (X{P=x\" (x“’ -X'"). The L type estimate of the kernel
covariance means that, when XV is tested, X{" must be excluded from the
sample set used to estimate Zl Lellmg ZH be the resullmg estimate, ):l and
d, now must be replaced by ZM and dM, while 22 and d7 are kept unchanged.
When the sample covariance of (5.9) is used, IZ,LI and d“ can be easily
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computed from (5.127) and (5.125), resulting in

b3 |—(M)"|z | 1——1Y—'—~32(x1”1f4) (7.67)
! = N,—2 1 (N,—l)2 1AMy, .

| 5 ~ ~-1

. Ni=2 |~ NI (XM )xO-m)TE
[_( )z,'+ 2 (K ‘)(Azi DRI (7.68)

(N,=1)* =N, d, (X}".M))

Therefore,
XX YS! (x(O_p1 )2
‘(Xil) X“)) ( )d (Xil)X“))"' l[( i j ) Alz( 2 _ I)]
N =1 =Ndy (X M)
Ny- [ )y
(N.—-l)d Xi.x5"
oD o T vt Ky 2 (D w2
N ld, XM =d | (X M )—d) (XX (7.69)
2 ~2 ~ .
4[N =1)* =N dy (X1 .M )]
Equations (7.67) and (7. 69) mdlcate that, once d (X“) Ml) G=1, N,) are

computed and stored, 1Z, 1 and d“(Xﬁ” X" can be obtained from IZ | and
d X", X"y by scaler computations. This computatlon time is negligibly
small compared with the time needed to compute d, (X“) XD, Wthh includes

vector and matrix manipulations. The computation of |, | and dZ‘(Xﬁz) X
when testing X§? from o, is similar.

In order to confirm the validity of the use of the L type covariance for
the kernel function, the following experiments were conducted.

Experiment 9: Estimation of the Parzen error, L and R
Data: I-1, I-41, I-A (Normal, n = 8)
Sample size: Ny =N, = 100
No. of trials: T= 10
Kernel: A; =, (True), A, = £, (Estimated)
Kernel size: r = 1.5
Threshold: Option 4
Results: Table 7-3(a) [14]

Comparison of the performances when the true and estimated covariances are
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TABLE 7-3

EFFECT OF ESTIMATED COVARIANCE MATRICES

FOR THE PARZEN APPROACH

Data Bayes Covariance | Leave-one-out | G Resubstitution | o
Error (%) Used Error (%) (%) Error (%) (%)
Il 10 True 11.0 1.8 6.4 1.3
Estimated 12.6 2.6 58 1.3
1-4] 9 True 10.6 2.9 4.8 1.0
Estimated i1.0 32 4.5 1.3
I-A 1.9 True 2.0 1.2 1.1 09
Estimated 2.3 0.9 0.8 0.6
(a) Standard data sets
Case | Cov. Now N Leave-one-out | Resubstitution
used (%) (%)
1 3, | 8800 | 720 17.8 16.2
8800 | 360 19.5 15.6
2 | E.) [ 720 | 720 23.3 7.1
360 | 360 274 3.8
3 3, 720 | 720 8.4 7.1
B 360 | 360 5.2 38

used shows that the estimated covariance always gives a larger upper bound
and smaller lower bound than the true covariance, although the differences are
small. The standard deviations of 10 trials, 6, and Og, are also presented in

Table 7-3.

(b) Data RADAR
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Experiment 10: Estimation of the Parzen error, L and R
Data: RADAR (Real data, n = 66, £ = unknown)
Sample size: N| = N, =720, 360
No. of trials: T= 1
Kemel: A, =3, for N,,, = 8800 (Case 1)
A; =3, for N,,, =720, 360 (Case 2)
A, =3, for N,,, =720, 360 (Case 3)
N, - No. of samples to estimate X

Kemel size: r = 9.0

Threshold: Option 4

Results: Table 7-3(b) [14]

This experiment demonstrates more clearly the importance of the selection of
the kernel covariance. Note that even as the sample size used to estimate the
covariance matrices becomes small, the L error rates continue to provide rea-
sonable and consistent bounds in Case 2 of Table 7-3(b). This is in contrast to
the results given in Case 3 in which the estimated covariances are blindly used
without employing the L type covariance. As expected, the bounds become
worse as the sample sizes decrease.

Effect of m: Finally, in kernel selection, we need to decide which is
better, a normal or uniform kemnel. More generally, we may address the selec-
tion of m in (6.3). The results using normal kemels (m = 1) are shown in Fig.
7-12, in which the upper bounds of the Bayes error are observed to be excel-
lent, but the lower bounds seem much too conservative. This tends to indicate
that the normal kernel function places too much weight on the sample being
tested in the R error estimate. Hence, one possible approach to improving the
lower bound of the Parzen estimate is to use a non-normal kemel function
which places less weight on the test sample and more weight on the neighbor-
ing samples. The uniform kernel function, with constant value inside a
specified region, is one such kemnel function. However, if a uniform kernel
function is employed, one must decide which decision be made when the den-
sity estimates from the two classes are equal, making the Parzen procedure
even more complex. A smooth transition from a normal kernel to a uniform
kernel may be obtained by using the kernel function of (6.3) and changing m.
The parameter m determines the rate at which the kernel function drops off.
For m = 1, (6.3) reduces to a simple normal kernel. As m becomes large, (6.3)
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Fig. 7-12 Effect of kernel shape on Parzen classification.
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approaches a uniform (hyperelliptical) kernel, always with a smooth roll-off
(for finite m), and always with covariance r2A,-. Using this kernel allows us to
use kernel functions close to the uniform kernel, without having to worry about
the problem of equal density estimates.

Figure 7-12 shows the performance of the Parzen estimates with m =1
(normal kemel), 2, and 4.

Experiment 11: Estimation of the Parzen error, L and R
Same as Experiment 4 except
Kernel: (6.3), m=1,2, 4
Threshold: Option 4
Results: Fig. 7-12 [12]

In all cases, using higher values of m (more uniform-like kemnel functions) does
improve the lower bound while having little effect on the upper bounds of the
error.

Estimation of the Bayes Error in the Parzen Approach

So far, we have discussed how to obtain the upper and lower bounds of
the Bayes error. In this section, we address the estimation of the Bayes error
itself. From (7.52), we can write the expected error rate in terms of » and N as

E(e) 2" +a,r2 +a,rt +arIN . (7.70)

Here, the constants a,, a,, a;, and the desired value of € are unknown and
must be determined experimentally. An estimate of ¢* may be obtained by
observing the Parzen error rate, g, for a variety of values of r, and finding the
set of constants which best fit the experimental results. Any data fitting tech-
nique could be used. However, the linear least-square approach is straightfor-
ward and easy to implement. This approach has several intuitive advantages
over the procedure of accepting the lowest error rate over the various values of
r. First, it provides a direct estimate of ¢ rather than an upper bound on the
value. Another advantage is that this procedure provides a means of combin-
ing the observed error rates for a variety of values of ~. Hence, we may be
utilizing certain information concerning the higher order properties of the dis-
tributions which is ignored by the previous procedures.
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As mentioned earlier, it is reasonable to expect that all four of the con-
stants in (7.70) are positive, since the observed error must remain above g for
any value of r. In order to ensure stability in the estimate of ", it is advisable
to restrict the constants to positive values during the curve fit procedure.

The result of this procedure is illustrated in Fig. 7-13.

Experiment 12: Estimation of the Bayes error, L
Same as Experiment 4 except
Data: I-A (Normal, n = 8, " = 1.9%)
Results: Fig. 7-13

€(%)
A
8.0

7.0

6.0
Best Fit

T

5.0

4.0

T

3.0

A
20 _8_*_=_1 L

1.0

1.0 2.0
Fig. 7-13 Estimation of the Bayes error.

The best fit of the form given in (7.70) is drawn as a solid line. The resulting
estimate of the Bayes error was 1.96% which is extremely close to the true
Bayes error of 1.9%. Note the closeness of the fit, indicating that the observed
error rates are in fact following the trends predicted.

In order for (7.70) to be valid, the decision threshold ¢ should be selected
so that the estimated Bayes decision boundary is relatively close to the actual
Bayes decision boundary. As shown in the threshold adjustment section, the
optimal value of / may be highly dependent on the value of r, particularly if
the covariance determinants for the two classes are very different. Generally, it
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is advisable to evaluate the Parzen classifier for a variety of values of ¢, and
then apply the curve fit procedure for each value of . This results in a negligi-
ble increase of the computational burden, since the bulk of the time is spent
calculating the density estimates, and only a very small percentage comparing
the estimates to the thresholds.

Experiment 13: Estimation of the Bayes error, L
Same as Experiment 12 except
Data: I-1, I-4l, I-A (Normal, n = 8)
Threshold: ¢ of (7.56), r = 0.6—2.4 in steps of 0.2
Results: Table 7-4

TABLE 7-4
ESTIMATION OF THE BAYES ERROR FOR VARIOUS VALUES OF ¢

Date /-1 Data /-41 Data /I-A
€ = 10%) (€ =9%) € =1.9%)
t ot |t et | ot &
0 110 | -147 3.3 | -252 1.99

2.16 78 | -.373 1.93
2.77 89 | -477 1.93

-3.27 9.8 | -.563 1.99
-3.67 9.5 | -.632 2.05
-4.00 9.7 | -.686 2.05
-4.24 9.1 | -729 2.07
-4.43 11.5 | -.764 2.08
-4.59 10.0 | -.791 2.11
-4.72 9.1 | -.813 2.12

For Data /-1, ¢ =0 is the optimal choice for any value of r, and hence only one
error estimate (;: = 11.0%) is listed. Comparison of the estimated error rates
in Table 7-4 with the true error rates indicates that the procedure is providing
reasonable estimates of the Bayes error for a wide range of decision thresholds.
A particularly bad estimate is obtained for Data /-4/ with t > -2. Data I-4/ is
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the case in which the covariance determinants of the two classes are very dif-
ferent. Also, it is observed in Fig. 7-7(b) that the error curve increases very
quickly. With ¢ ranging from -3 to —5, the error curve becomes more like the
one of Fig. 7-7(c), having a down-slope, a minimum at a higher r, and a slower
up-slope. This means that smaller biases exist in a wider range of r and that
(7.70) fits the actual errors more accurately.

kNN Approach

So far, we have discussed error estimation based on the Parzen density
estimate. Similarly, we can develop the argument using the kNN density esti-
mation. These two approaches are closely related in all aspects of the error
estimation problem, and give similar results. In this section, the kNN approach
will be presented. However, in order to avoid lengthy duplication, our discus-
sion will be limited.

Bias of the kNN error: When the kNN density estimate
pi(X) = (k=1)YNv;(X) is used, E{p,(X)} and MSE{p;(X)} are available in
(6.91) and (6.94) respectively. Therefore, substituting E{Ap;(X)} = E{f),-(X)}
- p;(X), and E{Ap} (X)) = El[l;i(X) -piX)PP} = MSE lf)i(X)] into (7.46)
and (7.47),

E{ARX)) =(¥2 = 7)) (%)2’" s L

k
> - 3) () A (71.71)

E{AR* (X))} =2 4 A= 2Ar 2 =1 (L)Z’"
k N
o =1 = A R = ™ (1.72)
where
% () = 3 00 1 p ) (1.73)

Substituting (7.71) and (7.72) into (7.45) and carring out the integration
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I : k
Elae) 2b, o + b, (7’\‘,-)?” +by (30" (7.74)

where the b;’s are constant.

Several conclusions can be drawn from (7.74). In order to make
E{Ag} — 0, two conditions, ¥ — e and &/N — 0 as N —>co, must be
satisfied. These conditions are identical to the conditions required for asymp-
totic consistency of the kNN density estimate [15]. Since k/N =p;v;, k/N is
proportional to r”, and therefore (k/N)*" is proportional to r2. That is,
E{A€} =b\/k + by r? + by r* where by and b} are constants different from b,
and h;. We may compare this with (7.52), £ {Ag} of the Parzen approach. In
both cases, we have terms with r? and r* which are generated by the bias of
the density estimate. However, the bias of the kNN error does not have an
r™"/N term. This is due to the fact that (7.74) describes the behavior of the
kNN error only for large values of k. A series of approximations based on N
>> k >> | was applied to obtain E {p;(X)} and MSE {p;(X)). If the analysis of
the kNN error for small values of & is needed, more complicated expressions
must be used. In addition to the r2 and r* terms, the KNN bias has a constant
term b,/k, which the Parzen bias does not have. This may be related to the
fact that the voting kNN error with a finite & does not converge to the Bayes
error, even under asymptotic conditions. This term can be reduced only by
increasing k.

Effect of parameters: In the Parzen approach, the most effective way to
reduce the bias of the error estimate is to adjust the threshold properly. Also,
in order to assure that the L method gives an upper bound of the Bayes error,
the kernel covariance matrix must be estimated either from a large number of
independent samples or by an L type estimation technique.

In terms of threshold selection, the method developed for the Parzen
approach may be directly applied to the kNN approach. The kNN density esti-
mates are known to be biased when the size of the design set is limited, and,
by choosing an appropriate threshold, one might hope to reduce or eliminate
the effect of that bias when classification is performed. There are no usable
expressions for t even in the normal case. However, each of the non-normal
methods for threshold selection (Options 2, 3, and 4) are directly applicable 10
the kNN problem.
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One comment is in order regarding the application of Option 4 to kNN
estimation. In Step 2 of Option 4 of the Parzen case, it is fairly simple to
remove the effect of X}f) (the test sample) from the density estimates of all the
other samples using (7.58). There is no analogous simple modification in the
kNN case. In order to remove the effect of X{ from all other density esti-
mates, one must remove X§’ from the table of nearest neighbors, rearrange the
NN table, and recalculate all of the density estimates. This procedure would
have to be repeated to test each of the samples in the design set, resulting in a
fairly drastic increase in computation time. In practice, modifying each of the
density estimates to remove the effect of X{ is not nearly as important as
finding the threshold by minimizing the error among the remaining N| + N,—1
samples. That is, modifying the estimates of the likelihood ratios in Step 2 is
not necessary to get reliable results - we do it in the Parzen case primarily
because it is easy. Thus for kNN estimation, Step 2 of Option 4 involves
finding and sorting #X'") for all samples X\ # X{’, finding the value of ¢
which minimizes the error among these N ,+N,—1 samples, and using this
value of 1 to classify X{’.

Figure 7-14 shows the results of applying Option 4 to the kNN estima-
tion problem. For comparison, the results obtained using ¢ = 0 are also shown.

Experiment 14: Estimation of the kNN error, L and R
Same as Experiment 4, except
Metric: A| =X, and A, =Z, (Instead of kernel)
No. of neighbors: & = 1-30 (Instead of kernel size)
Threshold: Option 4 and ¢t =0
Results: Fig. 7-14 [12]

As in the Parzen case, the threshold plays its most significant role when the
covariances of the data are different, and particularly when the covariance
determinants are different. In Data /-/, the bias of the density estimates for w,
and o, are nearly equal near the Bayes decision boundary, and hence good
results are obtained without adjusting the threshold. However, for Data [-4/
and [-A, the kNN errors are heavily biased and unusable without adjusting the
threshold.
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As far as the L type estimation of the kernel covariance matrix is con-
cerned, the same procedure used in the Parzen approach can be applied to the
kNN approach.

Experiment 15: Estimation of the kNN error, L and R
Same as Experiment 9, except
No. of neighbors: & = 10
Results: Table 7-5(a) [ 14)

Experiment 16: Estimation of the kNN error, L and R
Same as Experiment 10, except
No. of neighbors: £ = 10
Results: Table 7-5(b) [14]

The conclusions from these experiments are similar to the ones from
Experiments 9 and 10.

7.5 Miscellaneous Topics in the kNN Approach

In this section, miscellaneous topics related to the kNN approach, which
were not discussed in the previous sections, will be studied. They are the error
control problem (the Neyman-Pearson and minimax tests), data display, pro-
cedures to save computational time, and the procedure to reduce the
classification error.

Two-Dimensional Data Display

Error control: So far, we have discussed the Bayes classifier for
minimum error by using the kNN approach. However, the discussion can be
easily extended to other hypothesis tests such as the Bayes classifier for
minimum cost, the Neyman—Pearson and minimax tests, as long as the
volumetric kNN is used. As (7.5) indicates, in the likelihood ratio test of the
kNN approach, two distances, d  (X{!lyy.X) and d,(X{*\y.X), are measured, and

their ratio is compared with a threshold as

A XX @ L ko= DN 1Z 12 |
dl(xt(('l,)NN’X) 31 (kl_l)N2|22|“2 ’

(7.75)

where 1 must be determined according to which test is performed. For exam-
ple, 1 is selected to achieve €, =€ (€y: a preassigned value) for the Neyman-
Pearson test, and €, = £, for the minimax test.
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TABLE 7-5

EFFECT OF ESTIMATED COVARIANCE MATRICES
FOR THE 10NN APPROACH

Data Bayes Covariance | Leave-one-out | G, Resubstitution | O
Error (%) Used Error (%) (%) Error (%) (%)

I 10 True 11.9 2.2 8.7 1.8
Estimated 13.6 3.2 8.2 1.8

1-41 9 True 13.6 2.8 9.2 2.6
Estimated 17.7 5.0 9.0 2.1

I-A 1.9 True 2.7 1.0 1.4 0.7
Estimated 3.2 1.3 1.3 0.6

(a) Standard data sets

Case Cov Ny N Leave-one-out | Resubstitution
used (%) (%)
1 %, | 8800 | 720 2.5 17.8
8800 | 360 22.1 18.6
2 | Zuw) | 720 | 720 24.3 10.0
360 | 360 29.5 6.3
3 3, 720 | 720 11.5 10.0
360 | 360 79 6.3

(b) Data RADAR

Equation (7.75) also shows how other parameters, &;, N;, and 1X; |, affect
the threshold. For example, when two sample sizes, Ny and N,, are different,
we cannot compare two distances simply as d, 2d, even if k, =k,,
IZ,1 =1Z,1, and r=0. Instead, we need either to set a threshold as
(da/d|) $(N/IN,)"™, or weight two distances differently as N3"d, SN|"d,.

The above argument suggests that thresholding the distance ratio is
equivalent to weighting two distances differently. Then, the concept could be
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applied to the voting kNN approach too. If we adopt 4;,A (a; #a,) as the
metric to measure the distance to ®;-neighbors in the voting ¥NN procedure,
we can control the decision threshold by adjusting the ratio of @, and a,.
Furthermore, using a;A; (@, #a,, A} #A,), we could make the voting kNN
virtually equivalent to the volumetric ANN. In this case, A; could be X; or a
more complex matrix like (7.65), and the ratio of 4, and a, still determines
the threshold.

Data display: Equation (7.5) also suggests that we may plot data using
¥y = nind (X) and y, = nlnd,(X) as the x- and y-axes, in the same way as we
selected y; = (X — M,)TZ71(X — M;) for the parametric case in Fig. 4-9 [16]. In
fact, nlnd;(X) is the nonparametric version of the normalized distance
(X-M)'EZ7' (X -M,), as the following comparison shows:

~Inp;(X) = %(X—M,-)TE,“(X—M,») + %m bEl + %ann]

for a normal distribution , (7.76)
- N,'('OIZ,‘I”Z
—Inp;(X) = nind(X) + ln—ﬁ
-
tor the kNN density estimate , (7.77)

where ¢, is the constant relating v; and d4; as in (B.]). Note that
pi(X) = (k,=1)Nicg1 Z;1'?d? is used in (7.77). Using two new variables,
y, = nind (X} and y, = nlnd,(X), the Bayes classifier becomes a 45 " line as

nind, (X s Ind | (X) - §l (k= DN, 12,1 + (7.78)
n re, .
2( ) (1)>3" I( ) (kz—l)Nl l2| | 12

where {-} gives the y-cross point.

In order to show what the display of data looks like, the following exper-
iment was conducted.

Experiment 17: Display of data
Data: /-A (Normal, n = 8.¢" = 1.9%)
Sample size: N =N, = 100 (L method)
No. of neighbors: k| =k, =5



354 Introduction to Statistical Pattern Recognition

T T T
0 5 10 15 20

X
Fig. 7-15 A nonparametric data display with five NN distances.

No. of trials: T=1
Result: Fig. 7-15

This experiment is the same as the one of Fig. 7-14(c) (Experiment 14), except
that the number of trial is one for this experiment while Fig. 7-14(c) shows the
average of 10 trials. The solid line shows the 45 ° line with the y-cross point of
(U2)In1 X 17112, 1 where X, is the given ®;-covariance matrix. From (7.78),
this is the threshold value for r =0. The performance of this classifier
(77200 = 3.5%) corresponds to the L-curve without threshold adjustment in Fig.
7-14(c), which is about 5.5% for k = 5. The dotted 45 ° line was selected by
using human judgement, minimizing the error among the existing samples.
The resulting error is 2/200 = 1%. Since the distance to the 5th NN for each
class is measured according to (7.7), this error is the L error. However, the
threshold is fine-tuned to the existing samples (Option 2). Thus, the error is
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expected to be much smaller than the L-curve of Fig. 7-14(c) (5.5% at k = 5),
but larger than the R-curve (1.3% at k = 5). Note again that the curves of Fig.
7-14(c) were obtained as the 10 trial average by using the threshold of Option
4, while the dotted line of Fig. 7-15 was determined by human judgement for
one trial.

In order to apply the Neyman-Pearson test with €, = 2% for example, we
maintain the 45 ° slope of the line, and shift it until we find 2 misclassified ,-
samples out of 100.

Constant risk contours: It is frequently desirable to have risk informa-
tion about a point in a data display. For the two-class case, the risk at X, r(X),
is given by
Pipi(X)

(X)) = for P X P X). 7.79
r(X) P 5 X) + Paps(X) or Pip(X) < P,yprX) ( )

Substituting p;(X) = (k,=1)IN;co 1 Z; | Y247(X), and taking logarithms,

(k=N 12,112 P }+l r(X)

Ind,(X)=nlnd,(X)- {1 +In— — .
nlnd,(X)=nlnd (X) {n(kz—l)Nllzll“z (TS

(7.80)

Thus, for a given r(X), a contour can be drawn on the display. The resulting
contour is a 45° line shifted by Inr(X)/[I1-r(X)] [16]. Similarly, for
P\p(X) > P,py(X), the numerator of (7.79) is replaced by P,p,(X), and
(7.80) is modified to

(k=N 1Z, 112 i}—l 0

"lndZ(X):nlnd'(X)_{ln G DN, 1z, 172 Ry [T

(7.81)

Comparison of (7.80) and (7.81) indicates that the constant risk lines are sym-
metric about the Bayes decision line where r(X) = 0.5. As r(X) is decreased,
the constant risk lines move farther from the Bayes decision line. This result
indicates that points mapped near the Bayes decision line on the display do in
fact have a high degree of risk associated with them, while points mapped far
from the Bayes decision line have a low degree of risk. This desirable pro-
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perty will be true regardless of the underlying distribution. Table 7-6 shows
the amounts of shift for various values of r(X). However, it must be noted
that these risk lines should not be drawn around the theoretical Bayes risk line
(the solid line of Fig. 7-15). The kNN density estimates and subsequently the
estimate of r(X) are heavily biased as discussed in the previous sections. In
order to compensate these biases, the threshold terms of (7.80) and (7.81) must
be adjusted and will differ from the theoretical values indicated in {-}. Further
shift due to Inr (X)/(1-r (X)) must start from the adjusted threshold.

TABLE 7-6
SHIFT OF THRESHOLD DUE TO r

r 0.5 04 0.3 0.2 0.1
Ar 0 0405 0.847 1.386 2.197

These constant risk lines allow the analyst to identify samples in a reject
region easily [17-18]. For a given reject threshold T, the reject region on the
display is the area between two 45 ° lines specified by r(X) =1, in which
r(X) > 1 is satisfied and accordingly samples are rejected.

Grouped error estimate: An obvious method of error estimation in
display is to count the number of w;- and w,-samples in the ®,- and ®,-

regions, respectively. Another possible method is to read r(X;) for each X,
and to compute the sample mean as

- 1 Na
€= —ﬁZr(X,-) , (7.82)

i=l

because the Bayes error is expressed by €" = E{r(X)}. This estimate is called
the grouped estimate [19-20]. The randomness of € comes from two sources:
one from the estimation of r, ; and the other from X;. When the conventional
error-counting process is used, we design a classifier by estimating the density
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functions using design samples (design phase), and count the number of
misclassified test samples (test phase). As discussed in Chapter 5, with a finite
number of samples, the estimated error is biased due to the design samples and
has a variance due to the test samples. In the grouped estimate, estimating r
corresponds to the design phase and computing the sample mean of IA‘(X,-)
corresponds to the test phase. The performance of the grouped estimate has
not been fully studied in comparison with the error-counting result. However,
if the risk function r (X) is given, the test phase of the grouped estimate has the
following advantages.

(1) We can use test samples without knowing their true class assign-
ments. This property could be useful, when a classifier is tested in the field.

(2) The variance due to this test process is less than a half of the vari-
ance due to error-counting.

In order to prove that the second property is true, let us compute the
variance of (7.82) with the assumption that r(X) is given and E{r(X)} =¢.
Since the X;’s are independent and identically distributed,

Var{f-:] %Var{r(X)}

_ #[8_82 —E{r&X)[ - r(X)])]

EIPTUN R R
N[E € 2E{1(X)}]

IA

= i(e —2¢%), (7.83)

where 1 (1-r) 2 r/2 for 0 <r £ 0.5 is used to obtain the inequality. Note from
(5.49) that the variance of error-counting is €(1—€)/N, which is larger than
twice (7.83). When the design phase is included, we must add the bias and
variance of r to evaluate the total performance of the grouped estimate. Also,
note that the bias of r should be removed by the threshold adjustment, as dis-
cussed in the previous section. That is, r(X) must be estimated by solving
(7.80) or (7.81) for 1 (X) with the adjusted {-} term.
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Edited Nearest Neighbor

Edited ANN: As seen in Fig. 7-3 for the voting kNN approach, the ;-
samples in the o;-region (i # j) could become close neighbors of some of the
®;-samples, and this produces extra errors. This is the reason why the kNN
error is larger than the Bayes error. These extra errors could be reduced by
removing ;-samples in the ®;-region (samples 1, 3, 5 and 6 of Fig. 7-3) from
the design sample set. In practice, since the exact location of the Bayes boun-
dary is never known, the above operation is replaced by removing the
misclassified samples (1, 2, 3, 4, 5 and 6 of Fig. 7-3) by the kNN classification
[21]. The resulting design set is called the edited set. Test samples are
classified by the ANN’s from the edited set. This algorithm is called the edited
kNN procedure. Tt should be noted, however, that some of w;-samples in the
w;-region are correctly classified and not removed, and some of w;-samples in
the w;-region are misclassitied and removed. Therefore, the resulting error is
not the same as the Bayes error.

Asymptotic analysis: In order to analyze the edited kNN procedure, let
us study the simplest case of the asymptotic NN. In the original sample set,
the populations of ®, and w, given X are represented by a posteriori probabili-
ties ¢ (X) and g,(X). Applying the voting NN classification to the w;-samples,
g2(X) (24,(X)q,(Xwy)) are correctly classified, and ¢,(X)q;(X) (Z¢,(X)q;(Xxn))
(j = i) are misclassified. Therefore, keeping only correctly classified samples,
a posteriori probabilities in the edited sef, g:(X), become

qi(X)

Xy s ——F— .
7 7 X) + g3 (X)

(7.84)

Samples from the original set are classified according to the class of the NN
from the edited set. The resulting error is

rX)= q,(X)g2Xnn) + 2X)q ) Xyw)

2g,(X)q2(X) + g,(X)q, (X)
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_ 91(X)q:X)
g1 (X) + q3(X)

(X)g2(X

_ 91 q 2 ) , (785)
1-2g 1 (X)q2(X)

where ¢;(Xyy) =¢;(X) is used for the asymptotic analysis. The last line of

(7.85) is the expression of r(X) in terms of ¢ (X)q,(X).

It is easy to show that (7.85) is bounded by the NN risk from the upper

side and the Bayes risk from the lower side in the range of 0 < g4, £ 0.25 as

q1(X)g2(X)
min[g,(X),qg,(X)] € ———————— < 2q,(X)g,(X) . 7.86
infg,(X),g2(X)] 1-2¢ . ()q,%) q1(X)g2(X) (7.86)
The proof is left for the rcader. Also, (7.85) can be generalized to the case
where the k| NN is used for removing samples and the k, NN for testing. When
both &k, and k, are odd, the resulting error becomes larger than the Bayes error.
When £, is even, the resulting error becomes smaller than the Bayes error.

Also, the edited NN procedure can be applied repeatedly to remove the
w;-samples in the w;-region. The asymptotic analysis also can be carried out
by applying (7.85) repeatedly [22]. Figure 7-16 shows the results of the
repeated edited NN procedure.

Reduction of Computation Time

One of the severe drawbacks of any nonparametric approach is that it
requires a large amount of computation time. For the kNN approach, this is
due to the fact that, in order to find the kNN’s, we must compute the distances
to all samples. The same is true for the Parzen approach. Because of this
computational burden, nonparametric approaches are not popular as a classifier
operated on-line. In the off-line operation of the Bayes error estimation, each
sample must be tested by computing the distances to other samples. This
means that all possible pairwise distances among samples must be computed.
This becomes a burden to a computer, slows down the turn-around time, and
limits the number of samples we can use even when more samples are
available.
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Fig. 7-16 Performance of repeated edited NN operations.

In this section, we touch briefly on some past efforts to overcome the
above difficulty as follows.

Condensed NN: As seen in Fig. 7-3 for the voting kNN approach, the
samples near the Bayes decision boundary are crucial to the kNN decision, but
the samples far from the boundary do not affect the decision. Therefore, a sys-
tematic removal of these ineffective samples helps to reduce both computation
time and storage requirements. This procedure is called the condensed kNN
decision rule [23].

The risk value, r(X), of each sample can be used as an indicator of how
close the sample is located to the boundary. Therefore, we may set a threshold
T, and remove samples with »(X) <7. In addition, we had better remove all
misclassified samples regardless of the value of r(X), in order to avoid extra
errors as was discussed in the edited kNN procedure. Since the effect of
removing samples on the kNN error is hard to predict, it is suggested to clas-
sify test samples based on the condensed design set and confirm that the result-
ing error is close to the one based on the original design set.

Branch and bound procedure: The ANN computation time could be
reduced significantly by applying the branch and bound technique, if design
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samples can be hierarchically decomposed to subsets, sub-subsets and so on
[24]. In order to describe the procedure, let us set up a tree structure as in Fig.
7-17 where each node represents a subset, §;. Each subset is decomposed into

S
()
level 1 S
O O o
s“ S, O O O O O O
level 2
xe X|3 XZS XIO XlS lel X255 X' XIZS XGG x5 X‘.Qc XSVS

Fig. 7-17 A solution tree in the branch and bound procedure.

several other subsets, and at the bottom of the tree each node represents an
individual sample. Each subset (or node) is characterized by the mean vector
of the samples in §;, M, and the furthest distance from M, to a sample in §.
dy.

When the NN sample of an unknown X is sought, the search begins from
the leftmost branch. After comparing the distances from X to Xg. X3, X 5.
and X 4. X»s is found as the closest one to X. The computer back-tracks the
tree from S, to §, and then moves to S;. However, before testing the
members of S5, it is tested whether or not the following inequality is satisfied.

d(X‘M3)>d(X.X'_)5)+d3 . (787)

If the inequality is satisfied, there is no possibility that the distance between X
and any member of S5 is smaller than d(X.X »s) |see Fig. 7-18]. Therefore. the
search moves to S without testing the members of S ;.

The procedure works well in a low-dimensional space. An experimental
resuit for a uniform distribution in a two-dimensional space shows that only 46
distance computations are needed to find the NN among 1000 samples. In this
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Sk

d(X, My X

Fig. 7-18 A criterion to eliminate a group of samples.

experiment, the tree consists of 3 levels with each node decomposed to 3
nodes. At the bottom of the tree, there are 27 subsets containing 1000 sam-
ples. However, for an 8-dimensional uniform distribution, 451 distance com-
putations are needed to find the NV from 3000 samples. The tree is formed
with 4 levels and 4 decomposition, which yields 256 subsets at the bottom
housing 3000 samples. As discussed in Chapter 6, all pairwise distances
among samples become close, as the dimensionality gets high. Therefore, the
effectiveness of (7.87) to eliminate subsets diminishes, and only a smaller
number of subsets are rejected by satisfying (7.87).

Another problem of this method is how to divide samples into subsets.
We will discuss this problem, which is called clustering, in Chapter 11. Again,
finding clusters becomes more difficult, as the dimensionality goes up.

Computer Projects

1. Repeat Experiment 3 for Data /-A. Use (a) / and (b) (/ + A)/2 as the
metric.

2.  Repeat Experiment 5.
3. Repeat Experiment 6.
4.  Repeat Experiment 8.
5. Repeat Experiment 9.

6.  Repeat Experiment 11.
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7.  Repeat Experiments 12 and 13.
8.  Repeat Experiment 14.

9. Repeat Experiment 17.
Problems

1. Derive the asymptotic 3NN and 4NN errors for the voting ANN pro-
cedure, and confirm that the results can also be obtained from (7.15) and
(7.16).

2. Two one-dimensional distributions are uniform in [0,2] for o, and [1,4]
for ®,. Assuming P, =P, =0.5, compute the asymptotic kNN errors
for k = 1. 2, 3. and 4 in the voting kNN procedure, and compare them
with the Bayes error.

3. In Problem 2, &(x) is either 6/25 or 0 with the probability of 5/12 or
7/12. With this much information, compute the asympotitic kNN errors
for k=1, 2, 3, and 4 and the Bayes error. The results must be identical
to the ones of Problem 2.

V1-4q,(X)q,(X).

4. Prove that min[q ;(X),q,(X)] =

| —

1
2
5. Assuming P, =P, and N, = N, = N, the Parzen classifier is expressed
by
| ¢ oy < s (2)
—¥Yx(X -X;") §s =X -X;).
N,E ( ) SzNE ( )

Prove that the leave-one-out error is larger than the resubstitution error.
Assume x(0) >x(X).

6. Express B, of (7.36) in terms of M | ,M, ,Z,, and X, for normal X.

7.  Derive the bias equation for the volumetric 2NN error for two-class prob-
lems.

8.  Derive the bias equation for the volumetric NN error for multiclass prob-
lems.
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The risk »(X) is assigned to either O or ¢, depending on whether the
classes of X and its NN agree or not. The NN error is computed by
E{r(X)}. Find o which makes this NN error equal to the Bayes error for
the uniform distribution of £(X) = ¢ ,(X)g(X).

The edited design samples are selected by using the NN voting pro-
cedure, and test samples are classified by the voting 2NN procedure.
Compute the asymptotic error of this operation. Prove that the resulting
error is between the Bayes error and the 2NN error without the editing
procedure.

References

1.

T. M. Cover and P. E. Hart, Nearest neighbor pattern classification,
Trans. IEEE Inform. Theory, IT-13, pp. 21-27, 1967.

T. M. Cover, Rates of convergence for nearest neighbor procedures,
Proc. Hawaii Int. Conf. on System Sciences, pp. 413-415, 1968.

T. J. Wagner, Convergence of the nearest neighbor rule, Trans. IEEE
Inform. Theory, IT-17, pp. 566-571, 1971.

J. Fritz, Distribution-free exponential error bounds for nearest neighbor
pattern classification, Trans. IEEE Inform. Theory, 1T-21, pp. 552-557,
1975.

C. J. Stone, Consistent nonparametric regression, Ann. Stat., 5, pp. 595-
645, 1977.

L. Devroye, On the almost everywhere convergence of nonparametric
regression function estimates, Ann. Stat., 9, pp. 1310-1319, 1981,

L. Devroye, On the inequality of Cover and Hart in nearest neighbor
discrimination, Trans. I[EEE Pattern Anal. and Machine Intell., PAMI-3,
pp- 75-78, 1981.

K. Fukunaga and D. M. Hummels, Bias of nearest neighbor estimates,
Trans. IEEE on Pattern Anal. and Machine Intell., PAMI-9, pp. 103-112,
1987.

R. D. Short and K. Fukunaga, The optimal distance measure for nearest
neighbor classification, Trans. IEEE Inform. Theory, IT-27, pp. 622-627,
1981.



7 Nonparametric Classification and Error Estimation 365

10.

16.

20.

21.

K. Fukunaga and T. E. Flick, An optimal global nearest neighbor metric,
Trans. IEEE Pattern Anal. and Machine Intell., PAMI-6, pp. 314-318,
1984.

K. Fukunaga and T. E. Flick, The 2-NN rule for more accurate NN risk
estimation, Trans. [EEE on Pattern Anal. and Machine Intell., PAMI-7,
pp. 107-112, 1985.

K. Fukunaga and D. H. Hummels, Bayes error estimation using Parzen
and k-NN procedures, Trans. IEEE Pattern Anal. and Machine Intell.,
PAMI-9, pp. 634-643, 1987.

E. Parzen, On the estimation of a probability density function and the
mode, Ann. Math. Stat., 33, pp. 1065-1076, 1962.

K. Fukunaga and D. H. Hummels, Leave-one-out procedures for non-
parametric error estimates, Trans. IEEE Pattern Anal. and Machine
Intell., PAMI-11, pp. 421-423, 1989.

D. O. Loftsgaarden and C. P. Quesenberry, A nonparametric estimate of
a multivariate density function, Ann. Math. Stat., 36, pp. 1049-1051,
1965.

K. Fukunaga and J. M. Mantock, A Nonparametric two-dimensional
display for classification, Trans. IEEE on Pattern Anal. and Machine
Intell., PAMI-4, pp. 427-436, 1982.

M. Hellman, The nearest neighbor classification rule with a reject option,
Trans. IEEE Systems Sci. Cybernet., SSC-6, pp. 179-185, 1970.

P. A. Devijver, New error bounds with the nearest neighbor rule, Trans.
IEEE Inform. Theory, 1T-25, pp. 749-753, 1979.

K. Fukunaga and D. L. Kessell, Nonparametric Bayes error estimation
using unclassified samples, Trans. IEEE on Inform. Theory, 1T-19, pp.
434-440, 1973.

K. Fukunaga and L. D. Hostetler, k-nearest neighbor Bayes-risk estima-
tion, Trans. IEEE on Inform. Theory, 1T-21, pp. 258-293, 1975.

D. L. Wilson, Asymptotic properties of nearest neighbor rules using
edited data, Trans. IEEE Systems Man Cybernet., SMC-2, pp. 408-420,
1972.



366 Introduction to Statistical Pattern Recognition

22.  P. A. Devijver and J. Kittler, On the edited nearest neighbor rule, Proc.

Fifth Internat. Conf. on Pattern Recognition, Miami Beach, FL, pp. 72-
80, 1980.

23. P. E. Hart, The condensed nearest neighbor rule, Trans. IEEE Inform.
Theory, IT-14, pp. 515-516, 1968.

24. K. Fukunaga and P. M. Narendra, A branch and bound algorithm for
computing k-nearest neighbors, Trans. IEEE Computers, C-24, pp. 750-
753, 1975.

25. J. H. Friedman, F. Baskett and L. J. Shustek, An algorithm for finding
nearest neighbors, Trans. IEEE Computers, C-24, pp. 1000-1006, 1975.

26. T.P. Yunck, A technique to identify nearest neighbors, Trans. IEEE Sys-
tems Man Cybernet., SMC-6, pp. 678-683, 1976.



Chapter 8

SUCCESSIVE PARAMETER ESTIMATION

In the approaches (o parameter estimation presented so far, estimates
have been determined from all of the observable data in a single calculation.
Sometimes, however, it is required to use a procedure which is based on a
sequence of observations. In this case, the parameters are first approximated
by an initial "guess.” Then each observation vector is used in turn to update
the estimate. Hopefully, as the number of observations increases, the estimate
will converge in some sense toward the true parameters. A major advantage of
this successive approach is the fact that an infinite number of observations can
be accounted for, using a finite amount of storage.

8.1 Successive Adjustment of a Linear Classifier

When each of the conditional density functions corresponding to the
classes to be separated belongs to a known parametric family, the classifier
design is fairly straightforward. After the estimates of the unknown parameters
have been obtained, the Bayes decision rule is determined. Quite often, how-
ever, even the functional form of the conditional densities cannot be assumed.
The densities could be approximated by the techniques described in Chapter 6,
but, on the other hand, it may be possible to avoid the calculation of the

367
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densities completely. Suppose it is decided a priori that the decision rule
belongs to a parametric family of decision rules. The problem then reduces to
that of estimating the parameters of the decision rule. By this approach we
sacrifice, perhaps, a certain amount of insight into the nature of the classifier
problem. However, this sacrifice is often more than justified by savings in
computation.

Suppose, for a two-class problem, we decide to use a linear classifier of

the form
L

VX + v, 0><) 0. 8.1)
Then, our problem is that of estimating the parameters V and v,. The linear
classifier is chosen because of its simplicity, but it should be recalled from
Chapter 4 that (8.1) can include a broad range of nonlinear functions. This is
the case if X is considered a vector in a functional space instead of being
thought of as the original variable space.

In Chapter 4, we discussed the design of V and v, from a given set of
observations, provided these are all simultaneously available. In the present
case, however, we would rather not store all of the observation vectors simul-
taneously. Instead, we store only the current parameter estimate and update
this estimate each time a single observation vector is presented to the estima-
tion system. This type of system was first developed as a simplified model of
learning and decision-making in early pattern recognition research, and has
since been called a perceptron [1],[2]. In this model, we have to have an algo-
rithm which modifies the parameters on the basis of the present observation
vector and the present values of these parameters.

Linear Classifier for Two-Class Problems
Let us rewrite (8.1) using new notations Z and W as in (4.73).
hZ)y=W'Z=3 w,z,>0, (8.2)
i=0
where zp =—1 or +1 and z; = —x; or +x; (i = 1,2,...,n) depending on X € m,

or X € ®;. Then, the current value of W is updated to the new value of W', as
follows [3].
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(y W =w if wWizso, (8.3)

Q) W =W+cZ if WIZ<0 (c>0). (8.4)

Since W of (8.3) correctly classifies the sample, we have no reason to change
W. In (8.4), W should be modified to increase W’Z. The updated W’ of (8.4)
satisfies this condition because

WiZ=W'Z+cZTZ>W7zZ. (8.5)

The reader may try to find a function, w’ = f(W,Z), which satisfies
fTW.2)Z 2W'Z for all Z's. Then, it will be realized that there are no other
simple, practical solutions than the procedure of (8.3) and (8.4). In (8.4), we
still have one control parameter, c, to determine.

There are three common ways to choose ¢. These are as follows:
(1) Fixed increment rule: ¢ = constant

(2) Absolute correction rule: Select ¢ large enough to obtain w7z >o0.
That is,

WIZ=W+cZ2)'Z>0 for W'Z<0. (8.6)
In order to satisfy (8.6), ¢ should satisfy

Wiz

, 8.7
z'z ®7

¢ >

(3) Gradient correction rule: When we maximize or minimize a cri-

terion such as the mean-square error between the desired and actual outputs,

¥Z) and WTZ, we can determined ¢ by the gradient of the criterion. For
example, by analogy with (4.84) we may select ¢ as

c=pl¥2)-Ww'Z]. (8.8)

Obviously. ¢ depends on the criterion we select, and p should be a positive
constant properly chosen.

Example 1: Let us design a classifier which separates the four samples
of Fig. 8-1. The samples are presented to the machine in the order
702,752, Zy ... . The fixed increment rule is used with ¢ =1. Thc
sequence of W in the training period is shown in Table 8-1. The term W
converges to
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Classifier

pd
X3
-
1
|
I

X
L A ey
1

Fig. 8-1 Linearly separable example.

TABLE 8-1
SEQUENCE OF W FOR A LINEARLY SEPARABLE CASE

Iteration Input zy z, z, wy w, w, W'Z  Adjustment

1 Z, -1 00 0 0 0 0 W+2,
Z, 110 -1 00 -1 W+Z
Z, -10-1 0 1 0 0 WwW+2,
Z, IS T TR B Q| -1 W+2Z,
2 Z, -100 0 2 0 0 W+2Z,
Z, 110 -1 2 0 i No
Z, -1 0-1 -1 2 0 1 No
Zs 111 -1 2 0 1 No
3 Zy, -1 00 -1 2 0 1 No
22,-1>0. (8.9)

Or, in the original X-space
wy
2xy—-120. (8.10)

Lo

As seen in Fig. 8-1, this classifier separates the given four samples correctly.
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Example 2: This is an example of a linearly nonseparable case, in which
there exists no linear classifier that separates samples without error. Six sam-
ples are given in Fig. 8-2, and they are fed into the machine in the order

X2

w02

Fig. 8-2 Linearly nonseparable example.

2y Z\,...\252y,.... 25,2, ... . The fixed increment rule is used again,
with ¢ = 1. The sequence of W in the training period is shown in Table 8-2.
We have a cyclic sequence of W withoul convergence, although the best linear
classifier {wy w; w,] =[02 2] is included in the sequence of W.

Whenever we have an iterative process like this, there is a question of
whether the convergence of the process is guaranteed. When two distributions
are linearly separable, the convergence of the above process for the fixed
increment rule with a proper range of p can be proved.

Convergence Proof for the Linearly Separable Case

The convergence proof of the fixed increment rule is as follows [3].

Let us eliminate, from a training sequence Z,Z,, . .., the Z’s which do
not change W, and call it the reduced training sequence ZTZ; ... . Since the
eliminated Z's do not affect W, they have no influence on the proof of conver-
gence.

Also, let us assume ¢ = 1. This assumption does not reduce the general-
ity of the proof, because a change of ¢ merely corresponds to a change of the
coordinate scale. The scale of the coordinate does not affect the structure of
the data and the linear classificr.
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TABLE 8-2
SEQUENCE OF W FOR A LINEARLY NONSEPARABLE CASE

Iteration Input zy z; z, wg w; w, wiz Adjustment

I Z, 1 02 0 0 0 0 W+2Z,
z,  -1-1-l 1 0 2 -3 W+Z,
Z, 120 0-1 1 2 W+2Z,
Z, -102 1 1 1 1 No
Z, 1 -1 -1 111 -1 W+2Z,
Zs -1 20 2 0 0 -2 @ W+Zs

2 Z, 1 02 1 20 1 No
zZ,  -l-1-l 1 2 0 -3 W+2z,
Z, 1 20 0 I -l 2 No
Z, -1 02 0 1-l 2 W+2Z,
Z, I-1-1 -1 1 1 -3 W+ 2Z,
Zs -1 20 0 0 0 0 W+2Zs

3 Zy 102 -1 20 -1 W+2Z,
Z, -l-1-1 0 2 2 -4 W+2Z,
Z, 1 20 -1 1 1 1 No
Z, -10 2 -1 1 1 3 No
Z, I-1=1 -1 1 1 -3 W+Z,
Zg -1 20 0 0 0 0 W+2Zs

A reduced sequence of samples generates the corresponding sequence of
W™ given by

Wi =Wip +Z;, (8.11)
where
W'z; <0 . (8.12)

Since we assume that the two distributions are linearly separable, we should be
able to find W, such that

Wiz, >0 forallk’s . (8.13)

Selecting
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a= mfix ZlZ, and bH>0, (8.14)

we can select the scale of W so that

a+b

wiz, > >0. (8.15)

The change of scale of W does not change the decision rule (8.2).

Now we calculate the distance between W, and W; as
Iw, - wil? = w2 + w2 - awiwy . (8.16)
Hence, using (8.11),
Iw, - wil> = lw, —wi, I? = w12 - w112

DWI(Wy — Wi ) ==2W.7Z, = 2,77, +2WTZ; (8.17)

Recalling W;'Z; <0 from (8.12) and the inequalities of (8.14) and (8.15),
(8.17) becomes

« x +b
st—wklll—llws-wh,llz>—a+2"T>o. (8.18)

Equation (8.18) shows that, whenever a new Z; is applied. |w, - W; |2
decreases by a finite amount (larger than b). Therefore, after a finite number of
samples, W should converge to W,.

The above convergence proof may be extended to the absolute correction
rule by converting it to an equivalent fixed increment rule. This is done by
generating artificially a sequence of samples Z, = Z;,, = ... =Z,,, whenever
WIZ, <0 occurs, and applying the fixed increment rule until W1, ., Z
becomes positive. That is, u+1 corresponds to the value of ¢ which realizes
(8.6).

Linear Classifier for Multiclass Problems

The algorithm of designing a linear classifier for the two-class problem
can be extended to linear classifiers for the multiclass problem.

For L classes, we set up L linear discriminant functions W;. The deci-
sion rule then becomes
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Wiy >wly (i=1,....L: j#i) > Yeu, (8.19)
where Y and W are defined, in terms of X, V, and v, of (8.1), by

yo=1 and y,;=x;, (=1,...,n),

W, =V; (i=0,l,...,n). (8.20)

When all Y € w; (i = 1,...,L) satisfy (8.19), we call these L classes linearly
separable. An algorithm to adjust these W’s is given as follows:

M WY >WIY (j=1,...,L:j=i) for Y € w, then

W,=W, (k=1,...,L). (8.21)
(2 If WI'Y >W!Y and WY > WIY for Y € w, then

W, =W,—cY, Wi=W,+c¥, Wj=W, (j=i0. (8.22)

This multiclass problem can be reformulated as a two-class problem, if
we extend our dimension to n x L as

w=wl. . . wLwiwl, .  wiLywiwl,. . . wih’, (8.23)

Z=[0"...00 yTo'...0"-rT0"...0"", (8.24)

for the Y of (8.22). Then, for a reduced sequence of samples, Z'{,Z;, ..., we

can obtain a corresponding sequence of W, W],W5,... . These W;’s are
related by

Wip =Wi +c¢Z) . (8.25)

Equation (8.25) is equivalent to (8.22). Since (8.25) is the same as (8.11), the
convergence of (8.25) and, consequently, the convergence of (8.22) is
guaranteed by the proof presented in the previous subsection.

As discussed in Chapter 4, a piecewise linear classifier is often used for
separating many classes. Unfortunately, the convergence proof for a piecewise
linear classifier is not known. However, similar algorithms to adjust the W's
can be found in some references [3],[4].
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8.2 Stochastic Approximation

The successive estimation algorithm of the last section does not always
converge when the observation vectors are not linearly separable, as seen in
Example 2. This fact leads us to look for an estimation algorithm for which
convergence is guaranteed. Stochastic approximation is a technique that has
been developed to find the root or the optimum point of a regression function
in random environments [5],[6]. Stochastic approximation can be used for
parameter estimation in pattern recognition, and convergence is guaranteed
under very general circumstances. It is usually difficult, however, to discuss
the rate of convergence.

Before we begin a detailed discussion, let us examine a simple example.
Suppose we want to estimate the expected vector from a finite number of
observation vectors. Suppose, further, that we want to use a successive esti-
mate. Now the nonsuccessive estimate l\A'lN of the expected vector, based on N
observation vectors, X,, ..., Xy, is given by

R N
My = —3X, . (8.26)
N i=]

The equation can be modified to

- N-1)_1 1
My = — g7 =X + 5 Xu

N i=1
N-l » 1
= N MN—l + N‘XN . (827)

That is, My can be calculated with a new sample X, if we store only My_,
and N. Also, the effect of the new sample on the sample mean vector should
decrease, with an increase in N, as follows:

1 1 ]
X 5 Xo, 3 X500 X (8.28)

The sequence of coefficients 1, 1/2, 1/3, ..., 1/N, ... is known as a har-

monic sequence.

The above simple example suggests the following basic approach to suc-
cessive estimation.
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(1) When the mathematical expression for an estimate is available, we
may obtain the successive expression of the estimate by separating the estimate
calculated from (N — 1) samples and the contribution of the Nth sample.

(2) Even when we have to use a search process, in order to minimize or
maximize a certain criterion, we may diminish the effect of the Nth sample by
using a coefficient which is a decreasing function of N.

Root-Finding Problem

The simplest form of stochastic approximation is seen in finding a root
of a regression function. This process is also called the Robbins-Monro

x Regression function
x T 10)
Zy
x L
X%‘i Ong Oy
8o

Fig. 8-3 Root-finding problem.

method [7]. Let O and z be two random variables with some correlation, as
shown in Fig. 8-3. Our problem is to find the root of the regression function
f(8), which is defined by

f®)=E{zl6}. (8.29)

If we can collect all samples for a fixed 6 and estimate E{zl06}, then
finding the root of f(0) can be carried out by a root-finding technique for a
deterministic function such as the Newton method. However, when it is
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predetermined that only one sample is observed for a given 6 and we try to
change 0 accordingly, the observation of f () is very noisy and may introduce
an erroneous adjustment of 6, particularly around the root.

In the Robbins-Monro method, the new successive estimate 0, ,, based
on the present estimate @y and a new observation z, is given by

Oy =0y —ayzy (8.30)

where we assume, without losing any generality, that 6 approaches 6, the root
of (8.29), from the high side; that is, f(0) > 0 for 6 > 6, and f(6) < 0 for
0 < 0y, as shown in Fig. 8-3. Also, a, is assumed to be a sequence of positive
numbers which satisfy the following conditions:

(1) llm aN=Ov (831)
N5

(2 Y ay=-o0, (8.32)
N=]

3) i ap < oo . (8.33)

N=I

Although we will see later how these conditions for ay are used for the conver-
gence proof, the physical meaning of these equations can be described as fol-
lows. Equation (8.31) is similar to the I/N term discussed earlier and allows
the process to settle down in the limit. On the other hand, (8.32) insures that
there is enough corrective action to avoid stopping short of the root. Equation
(8.33) guarantees the variance of the accumulated noise to be finite so that we
can correct for the effect of noise.

With a sequence of ay satisfying (8.31) through (8.33), 0y of (8.30) con-
verges toward 6, in the mean-square sense and with probability 1, that is,

VlimEl(eN -6))%1 =0, (8.34)
Al/im Pri@Oy=06,)=1. (8.35)

The harmonic sequence of (8.28) is a suitable candidate for {ay}. More
generally, a sequence of the form
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1 1
ay = _NT 1 2k > 3 (8.36)

satisfies (8.31) through (8.33), although it is not the only possible sequence.

Before discussing the convergence of the Robbins-Monro method, let us
consider a feedback system analogous to this process.

)

o +

Delay 1(0) — Z(t)

a()

Fig. 8-4 Equivalent feedback circuit.

Figure 8-4 shows an equivalent feedback circuit, where y(r) is a noise
process. Instead of a fixed feedback gain, we have a time-decreasing feedback
gain a(t). From the conventional design concept of a feedback circuit, one can
notice that the decreasing a(t) could guarantee the stability of the circuit
without hunting but could also result in a slower response.

Convergence Proof of the Robbins-Monro Method

The convergence of the Robbins-Monro method is proved as follows.
First let us divide zy into two parts: the regression function f (8y) and noise
Y~. Then, (8.30) is rewritten as

Ov.t = Oy —anf (On) — avyn » 8.37)
where
T =2y~ f(By) . (8.38)

Then, from the definition of the regression function f (0) in (8.29), Yy is a ran-
dom variable with zero mean as
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E{yn10y) =Elzy 10y}~ f(By) = 0. (8.39)
Also, it is reasonable to assume that the variance of yy is bounded, that is,
E{Y}) <6’ (8.40)
and that yy and 0y are statistically independent.

Next, let us study the difference between 6, and 0,. From (8.37), we
have

(On+1 — 6p) =By — Bp) — anf (By) — avyw - (8.41)
Taking the expectation of the square of (8.41)

E{(@y,) —0p)*) — E{(By — 6p)*}

=alE{f2On)) + abE{Yh) — 2anE By — 05)f (By)) . (8.42)
Therefore, repeating (8.42), we obtain
E{(Oy - 6p)*) ~ E{(8, — 6y}

N-1 N-I
= Y a2 [E{f2 @)} + E(¥} )] -2 Y a,E{(0, - 6,)f (8))} . (8.43)

i= i=
We assume that the regression function is also bounded in the region of
interest as
E{f*®On) <b . (8.44)
Then, (8.43) is bounded by
E((8y —60)°) — E{(8, - 6))")

N-1 N-1
b +0Y) Y ai 23 a,E{(8; — 00)f (8)) . (8.45)

i=1 i=1

Let us examine (8.45) term by term. First, since £ {(8y — 6)7) is posi-
tive and assuming ©, is selected so that E{(8, —8,)} is finite, the left-hand
side of (8.45) is bounded from below. The first term on the right-hand side of
(8.45) 1s finite because of (8.33).

Recall from Fig. 8-3 that the regression function satisfies:
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f@® > 0if (6-65) >0,

f(8) =0 if (8-6y)=0, (8.46)
(@) < 0if @-6)<0.
Therefore,
(60— 6,)f (8) 20, (8.47)
and
E{(0 - 60)f (8)) 20 . (8.48)

Now consider the following proposition:

imE{(8; —80)f(8,)} =0. (8.49)

1=—yo0

If (8.49) does not hold, then, because of (8.32), the last term of (8.45) tends
toward —o. But this contradicts the fact that the left-hand side of (8.45) is
bounded from below. Hence, (8.49) must hold. Since (8.47) hoids for all 8’s,
(8.49) is equivalent to

limPr{0; =6¢)} =1. (8.50)
=00
Thus, the convergence with probability | is proved. The convergence in

mean-square sense has also been proved but this proof is omitted here.

Minimum-Point-Finding Problem

The Robbins-Monro method can be easily modified to seek the minimum
point of a regression function instead of the root. As is well known, the
minimum point or the optimum point of a function f () is a root of df (8)/d6.
Therefore, if we can measure df (0)/d0, we can apply the Robbins-Monro
method directly. Unfortunately, in most applications, the measurement of
df (6)/d0 is not available. Therefore, we measure the derivative experimentally
and modify Oy as

2(0y + cy) — 2(Oy — cy)

Oy, =0y —ay 2
N

(8.51)

This successive equation is called the Kiefer-Wolfowitz method [8]. Figure 8-5
illustrates the Kiefer-Wolfowitz method.
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ZA
Regression function

Z(0n+Cn)

xX X X! X X Z(8y-Cy)

B y
8o fen\

ON -CN ON +CN
Fig. 8-5 Minimum-point-finding problem.

Both ay and ¢y are sequences of positive numbers. They must vanish in
the limit, that is,

limay =0, (8.52)
N oo
limey =0, (8.53)
N o

so that the process eventually converges. In order to make sure that we have
enough corrective action to avoid stopping short of the minimum point, ay
should satisfy

Tay = (8.54)
N=1

Also, to cancel the accumulated noise effect we must have

< oo, (8.55)
With ay and ¢y satistying these conditions, it has been proven that 8y of
(8.51) converges to B, both in the mean-square sense and with probability I,
provided that we have a bounded variance for the noise and a bounded slope
for the regression function. The proof is similar to the one for root-finding but
is omitted here.

ay

Cy
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Multidimensional Extension

So far, we have discussed stochastic approximation for a single variable.
This has been done mainly for simplicity’s sake. The conclusions and the cri-
terion for the selection of ay are all valid for the multivariate case. The previ-
ous discussion, including the convergence proof, can be repeated simply by
replacing x? by Ix 12 (o).

Thus, for the Robbins-Monro method, (8.30) can be rewritten as
Oy, = Oy —ayZy, (8.56)

where both © and Z are random vectors with n components. With ay satisfy-
ing (8.31) through (8.33), the convergence in the mean-square sense and with
probability 1 is guaranteed, provided that both the noise variances and the
regression function are bounded.

For the Kiefer-Wolfowitz method, the partial derivatives should be
approximated by

az(G)N) N Z(@N + CNE,') - z(G)N)

8.57
30,» Cy ( )
or
a@) 9+(‘E,-—9—‘E,-
z (Oy EZ( v+ CnvE) — (O —cn )’ 8.58)
80,- 2CN
where E; is the ith unit coordinate vector [0 ... 010 ... 0)". Then (8.51)
can be extended to
aZ(eN)/ael
ONH = GN —day . (8.59)
aZ(eN)/ae,,

Figure 8-6 shows how the partial derivatives are measured; n + 1 observations
for (8.57) and 2n observations for (8.58) are needed. Again, the convergence
in the mean-square sense and with probability 1 is guaranteed, provided that
both the noise variances and the slope of the regression function are bounded.

Now we can relate stochastic approximation to the design of a classifier.
Let us design a classifier which minimizes the mean-square error between the
desired output Y(Z;) and the actual output WTZ_,- as in (4.78). Although we dis-
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| \

°':'\:‘~4\ez 1
v

6 X

Fig. 8-6 Minimum-point-finding problem for a multivariate case.

cuss only one criterion, the same discussion can be applied to other criteria.
The successive adjustment of W of (4.84) can be rewritten as
¥ 2p ¥
Wer) =W -pS =We) - LT W 0z, - ¥z)1Z; (8.60)

i=t
That is, W({) is modified by the sample mean vector of Wiz -Y)IZ.
Therefore, when we can use all N samples to calculate the sample mean vector
for a given W, the successive adjustment becomes a simple optimization pro-
cess for the regression function. When we can use only one sample at a time
to modify W (%), (8.60) is converted to

WE+ D =W -2ptWI(DZ, —YZ))Z; . 8.61)

This is identical to (8.56), the Robbins-Monro method for the multivariate
case, where 2{W'())Z, - r(Z,)}Z, corresponds to Zy of (8.56). Thus, although
this is a minimum-point-finding problem, we can calculate the partial deriva-
tives from W (¢) and Z,. Therefore, we can apply the simpler Robbins-Monro
method rather than the Kiefer-Wolfowitz method.
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Example 3: Let us apply the Robbins-Monro method to the six samples,
given in Example 2, which are not linearly separable and for which the method
of the previous section could not make the sequence of W converge. The result
is shown in Table 8-3, where the starting W is [000]7, Y(Z;)=3 for

TABLE 8-3

AN EXAMPLE OF CLASSIFIER DESIGN
BY USING INDIVIDUAL SAMPLES

Iteration Input zg - we w, wa Y-W'Z p 2p(yv-W72)Z

1 2
1 Zy 1 0 2 0 0 0 3.0 1/10 0.6 0 1.2
Z, -1 -1 -1 06 0 1.2 4.8 1/11 -09 -09 09
Z, 1 2 0 -03-0903 5.0 1/12 08 1.7 0
VA -1 0 2 0.6 08 03 2.9 /13 04 0 09
Zy I =1 -1 0.1 08 1.2 49 1/14 0.7 -0.7 -0.7
Zs -1 20 08 0.1 05 3.6 /15 05 1.0 0
2 Zy 1 0 2 03 L1 05 1.6 1/16 0.2 0 04
Zs -1 2 0 04 04 03 2.5 1721 0.2 05 0
3 Zy 1 0 2 0.1 09 03 2.2 1/22 0.2 0 04
Zs -1 20 02 05 03 2.3 127 02 03 0
4 Zy 1 0 2 0.1 08 03 2.3 1/28 0.2 0 03
Zs -1 2 0 02 05 04 2.2 /33 0.1 0.3 0
5 Zs -1 20 0.1 05 04 2.1 1739 0.1 0.2 0
10 Zs -1 2 0 0.1 05 04 2.1 1/69 0.1 0.1 0
15 Zs -1 20 0 05 05 2.0 1/99 0 0.1 0
j=0,1,...,5 and p is sequenced from 1/10 as 1/10, 1/11, ... . This

sequence is selected mainly because we felt that all six samples should contri-
bute to the design of the classifier equally, at least at the initial stage, and that
the sequence 1, 1/2, 1/3, ... places too much weight on Z,. The sequence
1/10, 1/11, ... does not violate the conditions (8.31) through (8.33). Table
8-3 shows that, after 15 iterations, the sequence of W converges to the
optimum classifier, which is W = [0 0.5 0.5]7 in this example.
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Example 4: For comparison, let us find the sequence of W by using
(8.60) instead of (8.61) for the same six samples. This time, W is changed
after six samples are received. Table 8-4 shows the result.

AN EXAMPLE OF CLASSIFIER DESIGN

TABLE 8-4

BY USING THE REGRESSION FUNCTION

Starting with

lteration  Input tp Ty oza owg wy owa y-WIZ o p 2p(y-W'2z2)2 %2-,1.,zp(y7w”z,)z,
1 Zn 102 o 0 0 3 1 6 0 12
Z, =1 =1 -1 a0 0 3 I -6 ~6 -6
Z3 20 o 0 0 3 1 6 12 4
4y -1 0 2 0o o0 0 ki 1 -6 0 o2
Zy T =1 -1 0o 0 0 3 1 6 ~6 -6
Zs -1 20 0 o0 0 3 1 —6© 12 0o 0 2 2
2 Zy 0 2 0o 2 2 -1 12 —r5 n -1
2, -1 = - 0o 2 2 7 12 =35 -35 =35
Z> 12 0 0 2 2 -1 12 0.5 -1 4]
7y -1 0 2 0o 2 2 -1 12 0.5 [U]
ra I -1-1 0 2 2 7 12 15 -3S5 35
Zs -1 20 0o 2 2 -1 12 0s 1 [ -1.5 -1.5
3 o a2 a0 0505 2 [TR [ a0 27
Z, =1 -1~ 0 05035 4 /3y =27 =27 =27
Z> P20 0 0.5 05 2 /3 1.3 27 0
Z -1 0 2 U 0508 2 /3 1.3 0 27
Z, I =1 =1 0 0.5 05 4 1/3 2.7 =27 =27
Zs -1 2 0 0 0508 2 1/3 -1.3 27 (4] 0 ] [§]
4 Zy 0 0505 14
; T .
W=1[000]", vZ)=3 (j=0,1,....,5), and the sequence of p=1,1/2,. ..,

the optimum classifier is obtained in two iterations. This is a much faster pro-
cess than the one of Example 3, in which 15 iterations were needed.

The Method of Potential Functions

In stochastic approximation, successive approximation is applied to esti-
mate a set of parameters which gives either the root or the extremal point of a
regression function.

The results can be extended to the estimation of the
regression function itself [10].

Let us express a regression function f (X) by an expansion of a given set
of basis functions as
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fX)=36&X), (8.62)
i=l

where {6;} should satisfy

367 < oo. (8.63)

i=
Assuming that the &;'s are know and given, the regression function f(X) is
characterized by a set of parameters ® = {0,,...,6..}. This is somewhat the
same as designing a linear classifier in which x; is used instead of &;(X). The
selection of the basis functions is very much problem-oriented and depends on
the functional form of f(X). In general, we have to look for &; so that ;
decreases quickly as i increases. Also, it is common practice to select an
orthonormal set of &; for theoretical convenience.

E{E(XIE (X)) = Je,008,00p (X)X =8, (8.64)
In a noisy environment, for a given X, our observation is a random variable
2(X) whose expected value is f(X). Therefore, if we want to determine the

6,’s to minimize the mean-square error between z(X) and X6,&,(X), then we
solve

%E {zm - ie,éAX)} Y {z(x> - ie,»;,m}é,-(x)
i i=l =l

=2{E{z(X)§(X)) — 6] =0, (8.65)

where the &;’s are assumed to be orthonormal. Therefore, 6; is determined by

6, = Ez00E X)) = [ = (080 (< 1X0p (X)d=dx

= [f &P (X)X = ELf (XEX)} . (8.66)

When a successive approximation is required, 0; can be estimated by the
sequence
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d
6,‘(',',+ l)ze,(f)—aa—el

=0;()-2a. {Zej(i)é,(X,)—z (X.) } EX) (i=1,2,...). (8.67)

Jj=1
Or, in vector form,
O+ 1)=0()-2a,|0"O=(X) - z(X)I1=X.), (8.68)

where ©=1[0,...6.)" and Z=[§,...E.]". This equation suggests the use
of the Robbins-Monro method with the sequence a, satisfying (8.31) through
(8.33).

A successive approximation of a functional form f (X), rather than ©, is
also obtained by multiplying (8.68) by Z(X). That is,

FaX) =07+ HEX)

=@ MHEX) - 2a 1OTOZ(X,) - z(X)H)IETX HEX)

= f:(X) - v x(X,X) , (8.69)

where
Y =2alf(X)-z(X)}, (8.70)
KX, X)==T(X)H)=X) . 8.71)

This k(Y,X) is called the potential function, and the successive approximation
of (8.69) is called the method of potential functions.

Although we have derived the method of the potential functions from a
stochastic approximation point of view, the method can be stated in a more

general form as follows.

A function f(X) which is either deterministic or stochastic can be suc-
cessively approximated by

faX)=f£)-1xX. .X), (8.72)

where f(X), its observation z(X), and x(Y,X) are all bounded. The potential
function satisfies
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k(Y. X) = x(X,Y) (8.73)
and
K(Y.X) = TAPE(NEX) . (8.74)
i=]
The basis functions are orthogonal as

5
Je, 08, 0Ok = . (8.75)

I

where k(X) is a general kernel function, and k(X) = p (X) for stochastic cases
as in (8.64). Selecting v, as

Y‘ =0,[f,(X,)—Z(X)} Al (8.76)

where a, satisfies (8.31) through (8.33), the successive approximation of (8.72)
converges in probability. The proof is omitted [10].

Although we may select a broad range of potential functions which
satisfy the above conditions, we can be a little more specific by using the fact
that the potential functions are symmetric with respect to two vectors X and Y.
It has been suggested that the distance between X and Y be used as a sym-
metric function, that is,

k(V.X) =gy - xiy. (8.77)
Two typical examples of g (-) are
K(Y,X) = exp({—cllY - x|I*} (8.78)
and

VX)) = +ly - x|IH". (8.79)

Acceleration of Convergence

As we stated previously, a stochastic approximation converges very
slowly. This is the price for guaranteed convergence. There have been many
proposals to improve this disadvantage. In this subsection, we discuss two of
them.
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(1) Flatter Sequence of ay: Since the primary cause of slow convergence is
the choice of the decreasing sequence ay, we can make the sequence decrease
more slowly and still guarantees convergence. One way to do this is to change
ay 1o the next value only when a sign change of zy is observed in root-finding.
As long as the sign of zy remains the same, we are not close to the root and
convergence speed is more important than guaranteed convergence. When a
sign change of zy is observed, we have to start worrying about convergence.
The same argument holds for the minimum-point-finding problem, where the
sign of slope should be observed instead of the sign of zy. Table 8-5 shows
this altered sequence ay. Note that the altered sequence satisfies (8.31)
through (8.33).

TABLE 8-5
ACCELERATED SEQUENCE OF ay

Trial: 1 2 3 4 5 6 7 &

Signof zy:  + + + - - + + -
Conventional ay: | 1/2 1/3 1/4 1/5 1/6 1/7 1/8
Accelerated ay: 1 1 1 12 12 13 1/3 1/4

(2) More Observations for a Given 8: If we can take many observations for a
given 0 and calculate the mean, we can obtain the regression function. There-
fore, the problem becomes that of the convergence of a deterministic function.
As a compromise between this deterministic approach and stochastic approxi-
mation, we may select a few observations for a given 6 rather than one, take
the average of these observations, and use it as zy. An analogy can be found
in a conventional feedback circuit where a filter is used to eliminate noise from
the observation signal. Determining how many observations should be aver-
aged to eliminate noise corresponds to the selection of the time constant in
filter design.

8.3 Successive Bayes Estimation

Since the estimates of parameters are random vectors, complete
knowledge of the statistical properties of the estimates is obtained from their
joint density, distribution, or characteristic functions. In this section, we show
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how the density function of the estimate can be calculated by a successive pro-
cess.

Supervised Estimation

Let X,;,...,Xy be N samples which are used to estimate the density
function of a parameter vector @. The samples X; are given successively one
by one. Thus, using the Bayes theorem, we can obtain a recursive expression

for the a posteriori density function of @, given X |, ... Xy, as
P(XN IX], A ,XN_l,@)p(G)IX,, .. ')XN—I)
pOIX,,.. . Xy)= (8.80)
: v PXNIX 1, XNo)
where the a priori density function of Xy, p(Xy 1 X, ... . Xy-,©), is assumed

to be known. If the numerator of (8.80) is available, the denominator can be
calculated by integrating the numerator as follows:

p(XN le’ .. YXN—I)=J‘p(XN |X|, e ,XN_],G)p(G‘)IX], e ,XN_l)de . (881)
Thus (8.80) shows that p(®IX,,...,Xy) may be calculated from
p@®IX,,...,Xy_). Repeating the same operation N times, we may start this

sequence of calculations from p (®). The term p (©) is called the initial density
function of ©, and reflects our initial knowledge about 6.

Estimation of an expected vector with a known covariance matrix:
Let us estimate the expected vector M of a normal distribution with a known
covariance matrix £. The initial density function p (M) is assumed to be nor-
mal with the expected vector My and covariance matrix X,. Then, after
observing the first sample X |,

p X\ 1Mp (M)
[px, 1myp (M)am

pMIX\)=

=c,exp[—-%(X =-MTZ X -M) - %(M-Mo)Tza' (M-M )]

= Czexp[—%(M—Ml)TZT'(M—MI)] : (8.82)

where
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M, =%y + )X, + 2, + )My, (8.83)

T =0+ X)X (8.84)

That is, p(M1X ) is also a normal distribution and its expected vector and
covariance matrix are given by (8.83) and (8.84). Since Jp X, IM)p(M)dM of
(8.82) is independent of M, ¢, and ¢, are independent of M and are constants
such that Jp (M 1X,)dM = 1.

We repeat the same process, replacing My and X, of p(M) by M, and
X, of p(M1X,). The resulting density p (M 1X,,X,) is also normal, and M,
and %, are calculated by (8.83) and (8.84) with M| and X, instead of M and
Xo. Thus, after N iterations,

pMIX,, .. Xy)=Ny(My,Zy), (8.85)

where Ny (My,Zy) denotes a normal distribution of M with expected vector
My and covariance matrix £y. They are given by

p3 N D N B I
My = 5% + 7] "My + Z4[Z0 + ! : [WEX,-] , (8.86)
DI
Iy=L[Z+ =1 —. 8.87
v =Zo[Zo N] N (8.87)
As N increases, the effect of the initial knowledge of M, M, and X, decreases
and finally
1 N
imMy = —=%VX, , 8.88
N NN ,E ' (8.88)
limXy =0. (8.89)
N o0

Thus, My for large N is estimated by the sample mean vector, and Zy is Z/N.

Throughout this process, we notice that both a priori and a posteriori
density functions are always normal. Because of this fact, we calculated only
M, and Xy recursively instead of calculating the density function. In general,
when the a posteriori density function after each iteration is a member of the
same family as the a priori density function and only the parameters of the
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density function change, we call the density functions a conjugate or reproduc-
ing pair.

In addition to its simplicity of computation, it has been shown that the
reproducing density function of ©® becomes more concentrated and converges
toward the true parameter vector ® in some appropriate sense as N —eo [11].

Many well-known density functions which are reproducing pairs are
listed in a reference [11].

Estimation of a covariance matrix with a given expected vector: The
successive estimation of a covariance matrix for a normally distributed random
vector X can be discussed in the same manner as that of the expected vector.
Here we assume that the expected vector is known and, without further loss of
generality, that it is equal to zero. As we assumed, the a priori density func-
tion of p(X1X) is normal. On the other hand, it is known that the sample
covariance matrix has a Wishart distribution. Therefore, we start from the dis-
tribution of a sample covariance matrix p(Z1Xy,Ng) with N as the number of
samples used to compute X,. The term Ny may be considered as a confidence
constant about the initial estimate of X,. Furthermore, instead of calculating
p(Z1Zy.Ny), let us compute p(K1Zq,Ny) where K =X7'. The reason for
doing this is that the covariance matrix is always used in the inverse form for a
normal distribution. Then, p(K1Xy,Ny) is given by

p(K1Z,Np) = c(n,No)! —;-NOZO | (MomD72 g Namr=202
< exp[—%tr(NOZOK)] , (8.90)
where
|
n N — 7
c(LNg) = nn(n—l)ml—[r __07*'] ] (8.91)
i=l
Using (8.90) as p(®) and applying (8.80) repeatedly, p(K1X,...,Xy) also

becomes the Wishart distribution and the parameters of the Wishart distribu-
tion, X, and Ny, are updated as follows |12]:



8 Successive Parameter Estimation 393

1 N NO

—vyx.xT _—

[NZ. ’ ’]+ N

Iy = s 8.92

N o N, ( )
N

NN =N0 +N . (893)

Thus, as N increases, Iy approaches the sample covariance matrix (I/N)ZX; X[
with zero-mean.

Estimation of an expected vector and a covariance matrix: When
both the expected vector and covariance matrix are to be estimated succes-
sively, we have to calculate the joint a posteriori density function
pMZIX,,.... Xv). When M and X are estimated by the sample mean vector
and sample covariance matrix and X is normally distributed,
pM.KIMy,Zo,15.Ng) (K =YY is known to be the Gauss-Wishart distribu-
tion as

p(M.K1My,Zo,10.No)
—ni 1
= 2m) " K ) “Zexp[——z—po(M — MK M - M)

| No=1)/2 No—n-2)2
X('("'N")IENOZOI“ 02| e | (Vo2

expl= N ZoK))

(8.94)
where ¢(n,Ny) is given in (8.91). The term U, is the confidence constant
about the initial estimate of M, as N, for X,. Again, using (8.94) as p (®) and
applying (8.80) repeatedly, p(M.K'1X,,....Xy) becomes the Gauss-Wishart
distribution and the parameters of the distribution, My, X, Ky, and Ny, are
updated as follows [12]:

My = . (8.95)
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PN | L 3V RPN P,
N — NO N,’:l [ N NIVEN
1+ —>
N
Ny Ho
+ (-7\]—-20 + TV-MOM;’)-)} , (8.96)
TNESTI Y (8.97)
Ny=No+N. (8.98)

Unsupervised Estimation

Suppose that we have two distributions characterized by ©, and ©,. In
successive unsupervised estimation, our task is to estimate @, and ©, succes-
sively, assuming that we do not know the true distributions from which the
incoming samples are taken. This is also termed learning without a teacher.
Because of the additional ambiguity we impose, the computation of unsuper-
vised estimation becomes more complex. However, the development of this
kind of technique is motivated by the hope that the machine may improve the
performance without any outside supervision after initial learning in a super-
vised mode.

Since we do not know the class of Xy, our guess is that X, may belong
to w; with probability P; (i = 1,2), provided that we know P;. Therefore, the a
priori density function of (8.80) becomes

,
P(XN ,X|, R ,XN_|,®|,®2)= ZP(XN IX,. e ,XN_|,®,',(D,')P,' . (899)
i=1
Hence, if we know the a priori density function of each class p(Xy !X,
oo . Xy_1,0©;,0,) and the a priori class probability P,.p (Xy1X,, ... . Xn_i.
©,.0,) can be computed by (8.99) and subsequently p (Xy1X,...,Xy_,) by
(8.81).
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Thus we obtain a recursive expression for the a posteriori density func-
tion as

p(®|,®2|X1, . 'vXN)

2

ZP(XN |X], C "X/V-—h@ivm,')P,'

i=1

B 51X Xe) . (8.
PO Xy P@& XKy @.100)

Therefore, as a concept, successive unsupervised estimation of (8.100) is the
same as successive supervised estimation of (8.80). However, because of the
summation involved in the calculation of a priori density function, the repro-
ducing property is lost for all density functions listed previously, including the
normal distribution. This means that updating parameters is no longer ade-
quate and we must deal with the recursive estimation of multivariate functions.

Using all available samples at a time, there are more practical techniques
available for unsupervised estimation and classification. The problem is stated
as the method of finding the clusters of given samples and finding the natural
boundaries of these clusters without knowing the classes of the samples. This
problem will be discussed in Chapter 11.

Computer Projects

1.  Generate samples one by one, according to Data /-A with P, =P, =0.5.
Find the linear classifier by using three successive adjustments: fixed
increment, absolute correction, and gradient correction rules. Find a way
to detect the oscillation of the classifier around the steady state and show
which samples cause this oscillation.

Repeat | by using the stochastic approximation of (8.61).

3. Repeat 2 by using the average of k samples in the second term of (8.61).
Choose k=2, 4, 8, and 16.

4.  Attach the acceleration program of Table 8-5 to Project 2.

5. Attach the acceleration program of Table 8-5 to Project 3.
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Problems

Repeat Examples 2 and 3 by using
(a) the absolute correction rule of (8.7), and
(b) the gradient correction rule of (8.8).

Suppose that we have six samples from three classes as (+1,0) and
(0,+1) for ®,, (-1,+1) and (—1,0) for ®,, and (0,—1) and (+1,—1) for ;.
Find a linear classifier to separate these three classes by a successive
method.

In Chapter 4, we discussed a piecewise linear classifier. Propose an
algorithm of successive adjustment for a piecewise linear classifier in a
multiclass problem.

A regression function is given by f =6>. Find the root of the regression
function by the Robbins-Monro method starting from €= 2. Assume
that the ‘th observation is z; = 6x + (=0.3), where (-0.3) is an additive
noise.

A regression function is given by f=-6?

. Find the maximum point of
the regression function by the Kiefer-Wolfowitz method. Assume that
the observation is z = —8% + 0.3a, where a is either +1 or —1 depending

on the face of a tossed coin.

Repeat the convergence proof of the Robbins-Monro method for the mul-
tivariate case.

Repeat Example 4 by using (4.82) so as to minimize (4.74). If the linear
classifier does not converge to a(x| +x;) =0 (a is a positive constant),
point out the problem of this procedure.

The term x is a random variable +1 or 0 with probability P or (1 — P),
respectively. Let y be the number of 1's out of N observations of x.
The a priori density function of y, given P and V, is given by

N
P"ly =y|P,N} =(y]P\(l ‘_P)N—»\. i

which is a binomial distribution. Find the successive Bayes estimate of
P. Also show that the binomial distribution is a reproducing pair. (Hint:
Start from
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10.

P."(V(l _ P)N(i—."(l .

Ny
p(Plyg.Ng)=
Yo

Let x be normally distributed with zero-mean and variance 6. Find the
successive Bayes estimate of 62, assuming 63 as the initial estimate of
o’ with the confidence constant N. (Hint: The sample variance with
zero mean has the chi-square distribution.)

Let x; be the ith sample from the mixture of two normal distributions
whose means and variances are 0 and 6> for @, and m and &° for ,.
Assuming P = P, = 0.5, find the successive unsupervised estimate of m
when the first sample x; is received. Is p(mlx,) normal? The mean of
®,, 0, and both variances 67 are assumed to be known. The initial den-
sity function p(m) is normal with the expected value m, and variance
c3.
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Chapter 9

FEATURE EXTRACTION AND LINEAR

MAPPING FOR SIGNAL REPRESENTATION

Up to now we have discussed how to design a classifier to separate sam-
ples into two or more classes, assuming that the variables of these samples are
already selected and given. Obviously, the selection of these variables is
important and strongly affects classifier design. That is, if the variables show
significant differences from one class to another, the classifier can be designed
more easily with better performance. Therefore, the selection of variables is a
key problem in pattern recognition and is termed feature selection or feature
extraction.

Feature selection is generally considered a process of mapping the origi-
nal measurements into more effective features. If the mapping is linear, the
mapping function is well defined and our task is simply to find the coefficients
of the linear function so as to maximize or minimize a criterion. Therefore, if
we have a proper criterion for evaluating the effectiveness of features, we can
use the well-developed techniques of linear algebra for simple criteria, or, in
the case of a complex criterion, we can apply iterative techniques to determine
these mapping coefficients. Unfortunately, in many applications of pattern
recognition, there are important features which are not linear functions of the
original measurements, but are highly nonlinear functions. Then, the basic
problem is to find a proper nonlinear mapping function for the given data.

399
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Since we do not have any general algorithm to generate nonlinear mapping
functions systematically, the selection of features becomes very much
problem-oriented.

In this and the next chapter, we will discuss criteria for measuring
feature effectiveness. Since linear mappings are based on these criteria, we
discuss linear mappings as well as the criteria. In this chapter, we deal with
features for signal representation. Since the evaluation of eigenvalues and
eigenvectors is a central problem for signal representation, we will discuss their
estimation in this chapter. In the next chapter we will extend the discussion to
classification, and features will be evaluated by their effectiveness on class
separability.

9.1 The Discrete Karhunen-Loéve Expansion

First, let us discuss feature selection for signal representation. That is,
we discuss how closely we can represent samples of a distribution with a set of
features. If a small set of features is found to represent the samples accurately,
we may say that these features are effective. Although this problem is not
directly related to pattern classification, knowledge of the characteristics of
individual distributions should help to separate one distribution from others.
Also, feature selection for signal representation has wide applications in other
areas such as data compression in communication systems.

Another limitation stems from the fact that we seek only features which
can be obtained by a linear transformation of the original variables. Figure 9-1
shows that a new feature y is very effective in representing the given samples,
but that y is a nonlinear function of x; and x;.

Minimum Mean-Square Error

Discrete Karhunen-Loéve expansion: Let X be an n-dimensional ran-
dom vector. Then, X can be represented without error by the summation of n
linearly independent vectors as

X=iyi¢i=¢Yv 9.1

i=1

where
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Fig. 9-1 Nonlinear mapping.

P = [¢l o an] (92)

and

Y=y ...y, (9.3)

The matrix @ is deterministic and 1s made up of » linearly independent column
vectors. Thus,

Pl 20. 9.4)

The columns of @ span the n-dimensional space containing X and are called
basis vectors. Furthermore, we may assume that the columns of ¢ form an
orthonormal set, that is,
I for i=j
-
To. = s 9.5)
AT 0 for i#j. ¢

If the orthonormality condition is satisfied, the components of Y can be calcu-
lated by

v=0'X (=1L1L....n). (9.6)

Therefore, Y is simply an orthonormal transformation of the random vector X,
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and is itself a random vector. We may call ¢, the ith feature or feature vector,
and y; the ith component of the sample in the feature (or mapped) space.

Suppose that we choose only m (<n) of ¢,’s and that we still want, at
least, to approximate X well. We can do this by replacing those components
of Y, which we do not calculate, with preselected constants and form the fol-
lowing approximation:

X(m)=Yyb; + 3 bty . 9.7)

i=1 i=m+I|

We lose no generality in assuming that only the first m y’s are calculated. The
resulting representation error is

- m n n
AX(m)=X-X(m)=X-3y;0,— 3 bio;= 3, (yi—=b)o; . 9.8)
i=l i=m+1 f=m+]
Note that both X and AX are random vectors. We will use the mean-square

magnitude of AX as a criterion to measure the effectiveness of the subset of m
features. We have

£ (m) = E{lAX(m)l?)

=E{ PIDY (yi_bi)(yj_bj)¢iT¢j}

f=m+1j=m+1

n

= 3 Ellyi - b)) . 9.9)

i=m+l
For every choice of basis vectors and constant terms, we obtain a value for
-2 . . . L =2
€ (m). We would like to make the choice which minimizes € (m).
_2
The optimum choice for b; is obtained by minimizing € (m) with respect

to b, as follows:

J . 2 _ o
aT)’_b{(.vi—bf) b==2[E{y;} =h]1=0. 9.10)

Solving (9.10) for b;
hi=Ely;} =0/E(X} . ©.11)

That is, we should replace those y,;'s, which we do not measure, by their
expected values.
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Now, the mean-square error can be written as

g my= 3 Elly, - Ely ]

i=m+l

Y 6/ EWX — E{X})XX - E{X}) 19,

i=m+l

T o/ Zxd; (9.12)

i=m+l

where Xy is, by definition, the covariance matrix of X. We shall show that the
optimum choice for the ¢,’s is those which satisfy

Zyoi = N0, (9.13)

that is, the eigenvectors of Zy. Thus, inserting (9.13) into (9.12), the minimum
mean-square error becomes

Ez(m),,,,, = 2 A (9.14)

i=m+l|

The expansion of a random vector in the eigenvectors of the covariance
matrix is called the discrete version of the Karhunen-Loeve (K-L) expansion.

Proof of (9.13): Since we minimize (9.12) under the constraint of ortho-
normality among the ¢;’s, let us rewrite the criterion as

J= T 0/Z0, - ¥ T wi(¢/0, -3

i=m+] f=m+] j=m+l

= [r[(l);’l.—mzxd)n—m_un —m(q)z-—mq)n—m - I)] i (9 15)

where the W;;’s are Langrange multipliers and ®,,_,, and I.l,,_,,, are nx(n—m)
and (n —m)x(n—m) matrices defined by

(Dn—m = [q)m+l ‘e -¢n]nx(n—m) » (9]6)



404 Introduction to Statistical Pattern Recognition

I P
K+t m+ ‘2‘Llij
un—m = . . (9 17)
|
_2_“1‘1‘ Haun
L i

The derivative of J with respect to ®,_,, can be calculated by using (A.13) and
(A.14), resulting in

aJ
aq)nw = 2[z)((bn—m - (Dn—mun—mj . (9.18)
Equating 4/ /0®,,_,, to zero,
z)((bn—m = (Dn—mun—m - 9.19)

Certainly, (9.19) is satisfied, if l,_, is the diagonal matrix with the (n-m)
eigenvalues of Zy, Ay,q,...,A,, and @, is the matrix of the corresponding
eigenvectors. Thus, the eigenvalues and eigenvectors give a particular solution
of (9.19). The minimization of € (m) can be achicved by selecting the smal-
lest (n—m) eigenvalues and the corresponding eigenvectors.

However, there exist many other ®,_,’s and Ll,,_,,,’s which satisfy
9.19). Therefore, we need to show why we choose the eigenvalue and eigen-
vector matrices as the solution of (9.19).

Multiplying DI, 10 (9.19) from the left side and using the orthonormal-
ity of the ¢;’s,

un~m = ¢Z~n:zx¢:1 -m - (920)
Therefore, H,,_,,, is the covariance matrix of the (n~m)-dimensional vector Y

after the transformation of Y =®7”__ X, and is not necessarily diagonal in gen-

eral. In the mapped space, Ll,,_,,, has its eigenvalue and eigenvector matrices
A,_, and ¥,_,,. Therefore, an additional transformation Z =¥!_ Y diago-

nalizes the covariance matrix H,,_,,, as
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ZZ = AII—I" = \y;’; mun-m\yn-m N (().21)

Note that both ¥, _,, and A,_,, are (n—m)x(n—m) matrices, and ¥}, exists
and is equal to T _, . Furthermore, substituting (9.20) into (9.21),

n —m ((Dn m\pn m)TZX((Dn nl\pn—m) (922)

That is, A,_, contains the (n—m) eigenvalues of Zy, and (®,_,, ¥, ) e0r-m)
consists of the corresponding (n—m) eigenvectors. Let us denote this eigenvec-
tor matrix by @, _,,. Then, from (9.22)

(Dn -m (Dn m\yn -m - (Dnﬁn - (Dn m\p;ll -m (923)

That is, any ®,_,,, which is the solution of (9.19), is obtained from ®_, by
an (n-m)x(n—m) orthonormal transformation. We call this &, _,, the member
of the ®,,_,, family.

The mean-square error is invariant among all members of the family as
follows:

2

E :[r((p;’r‘—mz/\’q)n—m)
ll'(\‘P,, ",(I)"_",ZX(I),,_,"‘PT_,”)
[l'((b,,_,,, (I) \p;ll- m\pn—m)

H—m

=w(®,, ZyP,_,) . (9.24)

That is, once X is mapped down to the (n—m)-dimensional subspace spanned
by (n—m) eigenvectors of Xy, further application of an (n—m)x(n—m) orthonor-
mal transformation would not change the mean-square error. Thus, although
any member of the @, _,, family is a legitimate solution of (9.19), we select
®; _,, as the representative of the family.

Properties of the K-L expansion: Figure 9-2 shows how the K-L expan-
sion works for a simple two-dimensional example. A distribution is shown by
a contour line of one standard deviation. The eigenvectors ¢, and ¢, of the
covariance matrix are the principal axes of the distribution, and the eigenvalues
A, and A, are the variances of the distribution along the ¢;- and ¢,-axes.
Since y, =¢; X, y, and y, are the projected values of X on the 0,- and ¢,-
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Fig. 9-2 A two-dimensional example of the Karhunen-Loéve expansion.

axes. If A, = E{(y,—b,)*} is small, y, stays close to b,. Thus, X can be
approximated by y; 0, + b,¢,, which is X in Fig. 9-2.

Conventionally, the expected vector M is subtracted from X before the
K-L expansion is applied. This simplifies the discussion. Therefore, from now
on in this chapter, we will assume that the expected vector of X is zero. Then,
the second term of (9.7) disappears, and the expansion is terminated at the mth
term. When X has a nonzero mean, the deviation of X from the mean is
approximated by a summation of m eigenvectors, and the mean is added to the
approximation to represent X.

In the context of pattern recognition, the coefficients y,,....y, in the
expansion are viewed as feature values representing the observed vector X in
the feature space. The feature space has several attractive properties which we
can list.

(1) The effectiveness of each feature, in terms of representing X, is
determined by its corresponding eigenvalue. If a feature, say ¢,, is deleted, the
mean-square error increases by A,. Therefore, the feature with the smailest
eigenvalue should be deleted first, and so on. If the eigenvalues are indexed as
Ay 2h, 2... 2A, 20, the features should be ordered in the same manner.
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(2) The feature values are mutually uncorrelated, that is, the covariance
matrix of Y is diagonal. This follows since

A, 0]

L, =0T, d = : =A. (9.25)

In the special case where X is normally distributed, the y,;’s are mutually
independent.

(3) The set of m eigenvectors of Ly, which correspond to the m largest
eigenvalues, minimizes Ez(m) over all choices of m orthonormal basis vectors.
Linear transformations which are not orthonormal are not considered in this
chapter. In the case of representing a signal distribution, we are concerned
only with transformations which preserve the structure of the distribution.

In order to show how the K-L expansion is applied, two simple examples
are given here.

Example 1: Let us examine two impulsive distributions as shown in Fig.
9-3(a) and (b), where each impulse carries the probability of 1/4. The expected

x x
2 2
o5 A o @, A 'y

(a) () (c)
Fig. 9-3 Examples of the Karhunen-Loéve expansion.

vectors are zero in both cases. First, we calculate the covariance matrix Zy.
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{mu 1+ [j[z 20+ E}H )
* b] (-2 —2]}
- [10/4 10/4

for Data (a) , (9.26)
10/4 10/4

LJ]-1 2
XIX;r=_ —_
| 4 {LJ[ 1 +1]1+ u[z 2]
+ 1 o [‘2 2 -2}
[_JH 1+ 5 [ ]

_ [1 04 6/4

N

Iy
™M=

Lyp =

for Data (b) . 9.27
6/4 10/4} ®) ( )

Secondly, we calculate the eigenvalues and eigenvectors of Xy.

O1p = —l/\E— Py, = (I/E} for Data (a) (9.28)
Tl T iz ’ '
}\-lh = 4. }\.2;, =1 .
(V2 | I \/_}
1/v2 1/v2
= , o = for Data (b) . 9.29
01 _l/‘/g_ d2p :1/6 or (9.29)

Thus, for both cases, the basis vectors become 45 °and —45 ° lines, as shown by
0, and ¢, of Fig. 9-3.

Finally, let us consider the effect of eliminating one of these basis vec-
tors. For Data (a), A,, = 0. Therefore, even if we eliminate ¢, in the K-L
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expansion, the mean-square error is zero. Figure 9-3(a) shows that all four
points can be expressed by the first basis vector ¢; without error. On the other
hand, for Data (b), A,, = 1. Therefore, we expect a mean-square error of 1 by
eliminating ¢, in the expansion. From Fig. 9-3(b), we see that only
X,=1[22]" and X, =[-2 -2]" can be expressed by ¢, without error, but
X, =[-1 117 and Xy =11 —1]7 have errors of V2. Therefore, the mean-
square error is (0° + 0% + (\6)2 + (\6)2 Y4 =1, which equals A,.

Example 2: In this example, we show why non-orthonormal transforma-
tions should not be allowed for signal representation. Suppose that we apply to
the distribution of Fig. 9-3(b) the transformation of

) {1/2 01 {1/\5 N2 J X~ {1/(2\/5) 1/(2\/5)1 X

(9.30)
0 2| in2 -2 O

That is, after applying the orthonormal transformation of (9.29), the scales of
the new axes are changed by factors of 1/2 and 2 to get the distribution of Fig.
9-3(c). Since the distributions of Fig. 9-3(b) and (c) are different, any conclu-
sion about the properties of (c) cannot be applied to (b) directly. For example,
if we conclude that the y,-axis (or ¢,) is important from (¢), it contradicts the
conclusion from (b) that the v,-axis (or ¢,) is important. Since feature extrac-
tion for signal representation finds a small number of effective features to
approximate a given distribution, any transformation which alters the structure
of the distribution should not be allowed.

Data compression: One of the popular applications of the K-L expan-
sion is data compression in communication. Suppose we want to send a ran-
dom process x(r). If we time-sample this waveform with n sampling points at
the transmitter, we need to send n numbers, x(¢), ..., x(t,). However, if we
study the properties of the distribution of X = [x(¢f}). .. x(r,,)]T and find out
that X can be approximated by a smaller number (m) of y;’s and ¢,'s, we can
compute these m y,’s at the transmitter and send them through the communica-
tion channel. At the receiving end, we can reconstruct X by X/L,y;0; as in Fig.
9-4. Thus, we need to send only m numbers instead of n. As seen in Fig. 9-4,
both the transmitter and receiver must have the information of ¢, . . ., 0,
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Fig. 9-4 Data compression in communication.

Normalization problems: In the K-L expansion, we decide whether or
not we select an eigenvector by observing the corresponding eigenvalue. How-
ever, the absolute value of the eigenvalue does not give adequate information
for selection. The ratio of the eigenvalue to the summation of all eigenvalues
expresses the percentage of the mean-square error introduced by eliminating
the corresponding eigenvector. Thus, we may use

o= ——=— 9.31)

as a criterion for retaining or deleting the ith cigenvector. Note that
JHi=1. (9.32)
i=l

Sometimes samples are normalized prior to application of the K-L expan-
sion. The magnitude-normalized vector Z is given by

Z= —"X—” (9.33)

so that

Izl =1. 9.34)

Let £, and X;'s be the covariance matrix of Z and its eigenvalues. Then the
summation of A;’s is

A =uX,=E{2'Z)=1, (9.35)
i=l

where E{Z} = 0 is assumed. That is, the A;'s are the normalized eigenvalues.
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However, it must be noted that the statistical properties of Z, including the
covariance matrix, are entirely different from those of X. Thus, application of
the K-L expansion to Z produces completely different eigenvectors and, there-
fore, completely different features, than for X.

A word of caution is in order for another normalization of

{9.36)

In this normalization, the z;’s are no longer linearly independent, because
T".,2; = . Therefore, the covariance matrix of Z ={z,...z,]’ becomes
singular.

Other Criteria for Signal Representation

In addition to the mean-square error of approximation, there are some
other criteria for evaluating features for signal representation. In this section,
we will discuss two typical criteria: scatter measure and entropy.

Scatter measure: One measure of scatter is the expected value of the
squared between-sample distance, which is given by

-2 .

d =E(X; - X, 1%y = EqXTX, + XTX,) - E{XTX; + X'X;) (9.37)
where X; and X; are mutually independent sample vectors taken from a single
distribution. By virtue of the independence property, (9.37) becomes

dy =2EIX"X) - 2E{XTJE{X) = 2u|E{XXT} - MMT)
=2t(S - MM") =211 Ly | (9.38)

where S and Zy are the autocorrelation and covariance matrices and M is the
expected vector of the distribution.

Let Y be an m-dimensional vector mapped from X by an orthonormal

transformation as
Y=0!X, (9.39)

where @, = [¢, . .. ,,],., consists of m column vectors ¢; s, and saltisfies
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Old, =1 or 0/¢;=9,. (9.40)

~2 .
Then, the scatter measure in the mapped Y-space, dy , is

-2
dy =2uZy =2t (®IZyd,)

m

=25 075x0 - 941

i=]

Now the feature selection problem may be stated in terms of choosing
orthonormal vectors ¢, .. .,9,, so as to maximize c7y2. Equation (9.41) is the
same as (9.12) except that in (9.41) the summation of chosen terms is maxim-
ized while in (9.12) the summation of discarded terms is minimized. There-
fore, the optimalization discussion of the K-L expansion can be directly applied
to this case, and ¢,,...,9, should be the eigenvectors of Xy, whose eigen-
values are m largest. Thus we can conclude:

(1) The eigenvectors of Zy, which correspond to the dominant eigen-
values, are the optimum features among all orthonormal transformations with
. . _2
respect to the scatter criteriond .

(2) From (9.41), the contribution of each feature to the total scatter is
twice the value of the corresponding eigenvalue.

Population entropy: The population entropy can be used as a measure
of diversity of a distribution, and is defined by

hy = —E(Inp(X)} . (9.42)

The entropy is a far more complex criterion than the previous two criteria
because the density function of X is involved.

Again, feature selection consists of finding features so as to maximize A
for a given m (m<n). As with the scatter measure, we should limit ourselves
to structure-preserving, orthonormal transformations.

When the distribution of X is normal, /4 of (9.42) becomes
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hy =Et%(x -MY X -M) + % niZyl + % In(2m))

n 1 n
=3 + > InlZy 1 + > In(2m) (9.43)

which is simply a function of [Zy .

When an orthonormal transformation Y = ® X of (9.39) is applied, the
entropy of (9.43) in the mapped Y-space becomes hy(m)=m/2+
(l/2)ln|d>,f,2xd>,,,l + (m/2)In(2r). Since the first and third terms of the
entropy are not a function of ®,,, we can maximize the entropy under the con-
straint of orthonormality for ®,, by maximizing

J=hn®]Zd, | —ullh, @], - D], (9.44)

where u,,, is a Lagrange multiplier matrix (mxm) as in (9.15). Using (A.27)
and (A.14), the derivative of J with respect to ®,, is

dJ
do,

= 2[2X(Dm(¢r7;tzxd)m)_l - q’ml"lm] , (945)

where ®I Z,®,, is the covariance matrix of Y, and generally can be assumed
to be nonsingular. Equating (9.45) to zero,

Zx®,, = q)mumz)’ . (9.46)

Multiplying ®, from the left side
(DITNZX(DIH = umz)’ . (947)

Thus, l.,l,,, must be equal to /. Furthermore, we can express £, by ¥,,A,,¥]
where ¥, and A, are the eigenvector and eigenvalue matrices of Zy. Then,
(9.46) can be rewritten as

q);flzxd)m = \PmAm\PZ;: (9.48)
or
(q)m\ym )TZX(q)m\Pm) = Am . (949)

That is, A,, contains the m eigenvalues of Xy, and (®,,'¥,,) consists of the m
corresponding eigenvectors. Note that
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Ini(®, ¥, Ex(®,¥,)| =InI¥Y(PLZ, D)V,
=In{ 1Y 1 1®LZ®, 11V, 1)
=Inl®Tz, D, |, (9.50)

where IWI 11w, | = IWIW, | =111 =1 is used. Therefore, as in the trace
criterion of (9.24), each m-dimensional subspace carries a different value of the
entropy. But, within a subspace, the entropy of (9.43) is invariant under any
orthonormal transformation. It is appropriate to select a subset of eigenvectors
of Xy as the basis vectors to specify the subspace.

When ®,, consists of m eigenvectors of Xy,

m

Ini®lZy®, | =IniA,l =3 Ind, . (9.51)

i=l
In order to maximize (9.51), we must select m largest eigenvalues.

So far, we have found the best linear mapping by maximizing the
entropy for a nommal distribution, (9.43). However, the optimization of (9.43)
may offer a wider implication [1]. Note that the second line of (9.43) can be
obtained by taking the expectation of the first line with respect to any distribu-
tion (not limited to a normal distribution) as long as the distribution has the
mean M and covariance matrix £. We call this family of density functions Gy.
That is,

Gy = pX): E{X) =M, CoviX} =X} . (9.52)

On the other hand, the following inequality holds for any two density
functions p,(X) and p,(X).

X X
j[mp‘( )]pz(xmx sj[”'( ) I}Pz(x)dx

p2(X) p2(X)

=Ip|(X)dX —fpz(x)dx =l-1=0, (9.53)

where Inx <v — | is used. The equality holds only when p,(X)=p,(X).

Replacing p,(X) and p,(X) by Ny(M,X) and p(X) € Gy respectively, (9.53)
can be rewritten as
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J1-1nN M, £)1p X)dX 2[[=tnp X))p X)dX . (9.54)

Since (9.43) is equal to the left side of (9.54), we may conclude that (9.43) is
the maximum entropy among all density functions in Gy. In other words, the
entropy for a normal distribution is the largest for given M and X.

When X is mapped onto Y by y; =¢!X (i = 1,...,m), the remaining
y; =0!X (/ =m+1,...,n) form the complementary (n—m)-dimensional space
of Y, which we will call the Y-space. Let the feature extraction problem be to
minimize the entropy in the Y-space, instead of maximizing the one in the Y-
space as previously discussed. Furthermore, let us assume that the true distri-
bution is not known. Then, often in practice, it is risky to assume a density
function and to find the best mapping based on that assumption. If the true
distribution is different from the assumed one, the mapping functions might not
give a good set of features. Therefore, as a safety precaution, we may find the
maximum entropy among all density functions in Gy, and select the best linear
mapping which minimizes the maximum entropy in the Y-space. This is the
minimax procedure applied to feature extraction. Thus, we may claim that the
selected features are most reliable, although they might not be the best.

Restating the above in a mathematical form,

min max hg(n-m) . (9.55)
Onete -0 p(VeGy

Using (9.43), max hyg(n—m) can be obtained. Thus, (9.55) becomes

n—m

. -m |
min + —Inld!_, Zyd, .| +

In(2 .
min | = > n2m) (9.56)

where ®,_,, = [0, ...0,]. Applying the same argument as before, the
optimum ¢; (i =m+1,...,n) are the eigenvectors of Xy corresponding to the
smallest (n —m) eigenvalues of Xy.

Thus, the discussion of (9.43) through (9.51) is not only for the optimi-
zation of the entropy for a normal distribution, but also for the selection of
most reliable linear features regardless of the true distribution.
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In addition, the inequality of (9.53) can be used to measure the closeness
of two distributions. That is, the closer (9.53) is to zero, the more similar two
distributions are. One of the applications of this similarity measurement is to
approximate a given density function p(X) (=p,(X) in (9.53)) by ;;(X)
(=p (X) in (9.53)). In this problem, we characterize ;;(X) by a number of
parameters. In order to make ;;(X) as close as possible to p(X), we may
minimize —I[ln;;(X)]p (X)dX by adjusting the control parameters of[;(X). This
procedure is called the entropy minimization. Often in practice, p(X) is not
known, but samples, X,...,Xy, from p(X) are available. Then, we may
approximate the expectation part of —I[In[;(X )p (X)dX by the sample mean as
(l/N)Zf-V:,[—lnp?(X,-)]. Note that the approximate criterion does no longer
include p (X).

Example 3: When the components of X are binary, +1 or -1, and
independent, iy of (9.42) becomes

hx =—)EIP,-lnP,- + (1= P)In(l - P}, 9.57)
i=l
where P; and (1—P;) are the probabilities of x; =+1 and —1 respectively. Thus,
individual variables x;’s are evaluated by —{P;InP; +(1 — P;) In(l — P})}.
When the inputs are not independent, we may use the Bahadur expansion of
Chapter 6 as the approximation of p(X) of (9.42). Obviously, hy becomes
much more complex.

General remarks: In the foregoing discussion, we have dealt
exclusively with orthonormal linear transformations. This is necessary in order
to maintain the structure of the distribution. As seen in Example 2, for a given
distribution, we can cause one eigenvalue to dominate the others by an arbi-
trary amount simply by changing the scales. However, unless we are given
some physical reason to introduce such distortion, we would only be selecting
the features that are created by the transformation and not related to the origi-
nal distribution.

Let us also consider the type of criteria we have used. Both the mean-
square error and scatter measure are the expected values of some quadratic
functions of variables. For this reason, our features are all given in terms of
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the second-order statistics of the distribution, the covariance or autocorrelation
matrix. The eigenvalues of these matrices are invariant under linear orthonor-
mal transformations.

In the statistical literature, the above is generally called factor analysis or
principle components analysis.

On the other hand, when we discuss feature selection for classifying two
or more distributions, we will allow a more general class of transformations.
This is because the class separability, for example the probability of error due
to the Bayes classifier, is invariant under any nonsingular transformations.
These transformations preserve the structure of these distributions as far as
classification is concerned.

In this section, we concluded that the optimum basis vectors of the K-L
expansion are the eigenvectors of the covariance matrix of a given distribution.
However, it should be pointed out that even if we select the eigenvectors of the
autocorrelation matrix as the basis vectors of the expansion for some reason,
the discussion is exactly the same as for the covariance matrix. The eigenvalue
of the autocorrelation matrix represents the mean-square error due to the elimi-
nation of the corresponding eigenvector from the expansion.

9.2 The Karhunen-Loéve Expansion for Random Processes

Continuous K-L expansion: Since the K-L expansion was originally
developed and discussed to represent a random process [2], in this section we
relate our previous discussion to the case of random processes, and also add
some specific properties of the expansion for random processes.

A random process x(¢), defined in a time domain [0,T], can be expressed
as a linear combination of basis functions.

x()=Yy&@) (0=t <T), (9.58)
i=0
where the basis functions E;(1r) are deterministic time functions and the
coefficients y, are random variables. An infinite number of &,(r) is required in
order to form a complete set. Therefore, the summation is taken to oo. The
orthonormal condition of &;(¢) is given by
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T %

L@Uﬁﬂ0m=su, (9.59)
where &} (1) is the complex conjugate of £;(¢). If £;(1) is a real function, &} ()
becomes §j(1). The inverse operation to calculate y; from x(7) is

T .
[ xog mar=y, . (9.60)

The expected value, autocorrelation and covariance functions of x(t) are
defined by

m(t)=E{x()}, 9.61)
R,V = E{x()X (D)}, (9.62)
C.v =E[x(t) —m®)}x(¥) ~m(®}']. (9.63)

For simplicity’s sake, let us assume m () = 0 for 0 <r <T. If the &;(+)’s are the
eigenfunctions of R (¢, T), they must satisfy the following integral equation:

.
Lkunmnm=kmn (i=12...), (9.64)
where the A,’s are the eigenvalues of R (1,7).

These equations are exactly the same as the ones for random vectors.
Suppose we take n time-sampled values of these time functions and convert
them to vectors as

X =[x(t))...x¢)]" ., (9.65)

q)i = [E.H(II) . 'E,yi(’n)]T ’ (966)

where each time-sampled value of x(r), x(7;), is a random variable. Then, for
example, (9.59) and (9.64) can be rewritten as follows:

TEE (1) = 070] = §; (9.67)
k=1

and
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SR .EW) =MEW) (=12, ..n). (9.68)
k=1

Equation (9.68) can be rewritten in a matrix form to define the eigenvalues and
eigenvectors as

SO, =N, (=1,2,....n), (9.69)
where S s
R(t.ty) ... R{t,.ty)
S = : :

R(’n"l) R R(’nv’u)
FE{x(!,)x*(!,)] o Ex()xT(,))

= : : . (9.70)
LE{X(!,,)x*(tl)l o E{x()XT(,)

Since § is an n x n matrix, we can obtain only » eigenvalues and eigenvectors
instead of an infinite number.

Minimum mean-square error: In order to minimize the mean-square
error in the continuous version, we can follow a procedure similar to the one
for the discrete case. For orthonormal £;(1)’s,

r

€ =F Lr{x(t) - Zy.-i,-(t)Hx(r) - nyif(t)} dt
i=0 i=0

(.

=E f{ i Yigi(’)}{ i )’iii(’)} dt

i=m+l i=m+]

oo

= ¥ Elyyi). ©.71)

i=m+l

From (9.60), E {y,y; } can be calculated by
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" T¢T « .
Elyy} = [ [ Elxox @18 08 i

T (T .
=L L R (1, E (D! (1)ddr . 9.72)
Therefore, if the £;(1)'s are the eigenfunctions of R (1, 1),
* T *
Elyy;) =L LEE (Dde =4, . (9.73)
Hence
£ =3 AL (9.74)

i=m+l

Recalling our assumption that E£{x(t)} = 0 and therefore E{y,;} = 0, the result
is the same as the one for the discrete version of the K-L expansion.

The difficulty in the continuous K-L expansion is that we have to solve
the integral equation of (9.64) in order to obtain eigenvalues and eigenfunc-
tions. Except in very special cases, explicit solutions are hard to obtain.
Therefore, in order to get the solution numerically, we have to go to the
discrete version; that is, take time-sampled values, calculate the autocorrelation
matrix, and find the eigenvalues and eigenvectors.

Stationary Process

K-L expansion for an infinite time duration: For simplicity, the sta-
tionary condition is often imposed in many cases when discussing random
processes. A random process is called stationary in the wide sense if the fol-
lowing two conditions are satisfied:

m(t) =m (constant) , (9.75)

R(it,T)=R(t -1). (9.76)

Equation (9.76) means that the autocorrelation function depends only on 7-T.
The functional form of R in the left side with two arguments is not the same as
that of R in the right side with one argument. Also, we will continue to
assume that m = 0. Since our discussion is quite specific, the reader should
consult more general texts on random processes for background [3].
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For stationary processes, the integral equation of (9.64) becomes

I_;ZiR t-DEMdr=NE(W) (<T/2<1 <T/2), (9.77)

where the time region is shifted from [0,T] to [-7/2,7/2). Let us extend T to
oo, Then (9.77) becomes

I:R (= DE(D AT = NE (1) (—o0 St o) (9.78)

Since (9.78) is the convolution integral of R (¢) and §,(¢), the Fourier transform
of this equation becomes

LJ0E (jo) = A Z(jw) , 9.79)

where £(jw) and Z;(jw) are the Fourier transforms of R (z) and &;(+). Particu-
larly, £(jw), the Fourier transform of the autocorrelation function of a random
process, 1s known as the power spectrum of the random process x(¢).

In order to solve (9.79) for Z;(jw) and A; given A(jw), we must find a
function of jw which becomes the same function, except its size, after it is
multiplied by S(jw). Assuming that A(jw) is nowhere flat, such a function
must be an impulsive function as

Z(jo) = 8o — ;) (9.80)
which corresponds to, in the time domain,
&)y=e"" 9.81)
Then, (9.79) becomes
Ajw) =4, . (9.82)

Since (9.80) with any value of ®; is the solution of (9.79), we may vary ,
from —eo to oo continuously (or with an extremely small increment). As a
result, we have an infinite number of eigenvalues and eigenfunctions. Also,
because ®; takes negative values as well as positive values, the K-L expansion
of (9.58) must be modified to

FUSY
x(t)= Y ye'™", (9.83)

where 0_;, = -w;. With w,; changing continuously form —eo to +ee, the summa-
tion of (9.83) is replaced with an integration as
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l +oo .
x(1) = —| “y@ede (9.84)
21—

where y; = y(w;)Aw/2n. Note that (9.84) is the inverse Fourier transform.
Thus, when a random process is stationary, the basis functions of the K-L
expansion become the complex exponential, e/, and the coefficient, y(w) (or
¥i), is the Fourier transform of x(¢).

Equation (9.83) may be modified to an expansion with real basis func-
tions and real coefficients as follows. Since the ith and —ith basis functions,
¢’ and e’ are mutually conjugate, their coefficients, y_; and y;, are also
conjugate for a real x(r) from (9.60). Therefore, combining these two terms,

(9.83) becomes

x(1) =y + i2ly,- lcos(w;r + 2y;), (9.85)

i=1

where ly; | and Zy; are the magnitude and angle of a complex variable y;.

As far as the eigenvalue is concerned, two eigenfunctions, ¢’ and
—jw,/ .
e 7", carry the same eigenvalue, because the power spectrum of a real random
process is an even and real function with A(jw,) = 4(—=jw;). Therefore, after
combining these two eigenfunctions, cos(®;f + Zy;) of (9.85) carries the eigen-

values of A(jwy;).

K-L expansion for a finite time duration: When the time domain is
limited to a finite duration, the above conclusion is no longer true but still
approximately true. When x(r) is time-sampled at n points, 0, As, .. . ,(n—1)Ar
for the duration of T = nAt, the autocorrelation function is obtained from
(9.62) and (9.76) at (2n—1) points in the time domain [-7,7 ] with the same
sampling rate, as shown in Fig. 9-5. Even if x(¢) is shifted along the time axis,
there is no effect on R(r). As known in the discrete Fourier transform, these
(2n—1) sampling points in the time domain induce (27—1) sampling points in
the frequency domain. Since the duration of R(r) is (2n—1)As, the sampling
rate in the frequency domain is
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x(t)

L —=

0 At 2at (n-1)at nat
T

T -(n-1)At -2At -At 0 At 24t (n-1)at T

. . . ©
-nwg  -(n-1)wo 200 wo 0 o, 2w (n-1)wo Ny

Fig. 9-5 Relationship between the sampling points of x(¢), R () and A(jm).

2n 2nm _ T
Wy = = - =—.
2n-1At 2n-1T T

(9.86)

Since two eigenfunctions ¢’ and ¢’ for i # 0 are combined to form
a real eigenfunction as in (9.85), only n real eigenfunctions and eigenvalues are

obtained as
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Ei(1) =cos(imgt +6;), (9.87)

A A(jioy) (9.88)

(i=0,1,...,.n-1).

Example 4: The autocorrelation matrix of a stationary process has a toe-
plitz form. A special toeplitz form has known eigenvalues and eigenvectors
expressible in closed form as follows [4].

r 1
o |
. IT . im
a | 01 [sin sin
n+l ) n+l
in
1 . : = [ + 2cos ]
. . n+l .
. inm . inm
1| Isin sin
n+l n+l
0 1 o]
i=12,...,n. (9.89)

In order to see how closely (9.87) and (9.88) approximate (9.89), let us
compute the eigenvalues and eigenvectors of the given toeplitz matrix by
(9.88) and (9.87). Since R (k) of (9.89) is o for k =0, | for k =—1 and +1,
and O for other £’s, the discrete Fourier transform of R (k) with Ar=1lorT =n
becomes, from (9.86) and (9.88)

L . in
2)([)=€ Jn—l/2 + o+ C’J n—1s2

in
n—1/2

=+ 2cos (9.90)

which is close to the eigenvalues of (9.89) particularly for a large n. Since we
see a difference between (9.89) and (9.90) in the denominators of the cosine
function, let us set up the eigenvalues and eigenfunctions from (9.90) and
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(9.87) as A, =a+ 2cosim/n” and Ei(k) =cos(ikn/n* +0,;), where n* is an
unspecified number closed to n. Then, it is easy to confirm that the left and
right sides of (9.89) for k = 2,...,n -1 are equal regardless of n* and , as

i (k—Dn kT i (k+1
S fe-Dn *) +0; | + acos 'T+9; + cos M+G,~J
n n n
] kT
=[(X.+2COS”:]COS[I — +0;1 (k=2,....n—-1). 9.91)
n n

However, at the edges of the matrix of (9.89), the first and nth rows, different
equations must be satisfied as

in 2im 1 in
ocos |— +6; | +cos |—— +6; =[0t+2cos”f]cos — +0

n n n n

for k=1, (9.92)
i(n—-Hn nm IT nm
cos | ————+6,| +acos|—— +6;| =[o+2cos—]cos | —— +6;
n n n 1

for k=n. (9.93)

Both (9.92) and (9.93) are satisfied by selecting n” = n+1 and 6, =-90°
Thus, the eigenvalues and eigenvectors become A; = o+ 2cosim/(n+1) and
E:(k) = sinikm/(n+1) as in (9.89).

9.3 Estimation of Eigenvalues and Eigenvectors

From the previous discussion, we realize that selecting features for signal
representation by linear transformations requires a considerable amount of
eigenvalue and eigenvector calculation. Theoretically, this is the end of this
subject. However, there are many problems to be solved in order to apply the
technique to real-life data. Some of the problems, which will be discussed in
this section, are the following.

(1) The number of sampling points for a random process: In some
applications of pattern recognition. the number of variables » is very much
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predetermined and cannot be controlled. However, in some other areas, partic-
ularly in waveform analysis, we have to determine the number of sampling
points n. Furthermore, in waveform analysis, n becomes fairly large, say in the
hundreds, and computer time grows rapidly with n. Therefore, proper pro-
cedures are needed to select the minimum possible number of sampling points
while maintaining sufficient accuracy for representing the random process.

(2) The number of samples: We always have to know how many sam-
ples (or waveforms) are needed to ensure the accuracy of estimation of eigen-
values and eigenvectors.

Determining the Dimensionality

In this subsection, we will develop a procedure for determining », the
number of time samples taken from a random process x(7). Before going into
the subject, we need to discuss the perturbation theory of eigenvalues and
eigenvectors.

Perturbation theory: Let us derive first-order approximations for the
eigenvectors and eigenvalues of a perturbed matrix in terms of those of the
unperturbed matrix.

Let Q¢ be a real, symmetric n x n matrix and let AQ be a real, sym-
metric perturbation matrix. Let ¢; and &;, i = 1, ... ,n, be the eigenvectors and
eigenvalues, respectively, of Qy. Assume that the A;’s are distinct. We wish
to obtain a first-order approximation of the eigenvectors and eigenvalues of Q
in terms of the ¢;’s and A;’s, where

0=0¢+A0Q . (9.94)

These may be obtained by retaining the terms of first order or lower of the
equation

(Qo +AQXY; + Ad) = (A; + AR N0, + Ady) (9.95)
where
Qo0 =10, . (9.96)
The resulting equation is

QoAd; + AQO; =X, A, + AN, 0; . (9.97)
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To calculate AX,, we premultiply (9.97) by ¢! and, since ¢/ Q, = A6/
and 0/ ¢; =3,;, we have

AL =0T AQY, . (9.98)

Since n ¢;’s form a complete set of basis vectors, we can write A¢; as a linear
combination of the ¢;’s as follows:

AG; = X bt (9.99)
=
where
b, = ¢}' Ad; . (9.100)
If we premultiply (9.97) by 4)17-' and rearrange, we have fori # j
_0;AQ0, .
b;j =tx—, (i #)). (9.101)

To determine b; we impose a first-order normalization condition on ¢; + A¢,,
that is, we require

lo; + A 112 = 1 =llo; 12 + 267 A, = 1 + 267 Ag, (9.102)
and it follows that

0] AY; = b;; =0 . (9.103)

Noting that ¢/Qy¢; =2, and ¢/ Qy0; =0 for i # j, we summarize this
section as follows:

A + AX; =] Q0; (9.104)
and
T
by = 2QY i (9105
i T
0 for i=j.

Effect of doubling sampling rate: Let us begin our discussion with a
simple example. Let x() be sampled at four instants, 1,,14,14, and g, as
shown by the solid vertical lines in Fig. 9-6(a). Then, the autocorrelation
matrix S has four eigenvalues whose magnitudes are indicated by the solid
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lines in Fig. 9-6(b). Let the number of sampling points be doubled to include
ty, t3, ts, and 7. Now § has eight eigenvalues, as shown by the dashed lines
in Fig. 9-6(b). The first four eigenvalues are close to the eigenvalues derived
in the four-sampling case. The remaining four eigenvalues are those which
result from doubling the sampling rate. If these four eigenvalues are small, the

x{t)

1
1
1
)
1
t

h i
! q oy
Loty fats et tg 12345678
"

{a) T (b)

Fig. 9-6 A typical (a) waveform and (b) its eigenvalues.

error committed by deleting the corresponding features is also small. If the
new features are unimportant, the features derived in the four-sampling case
adequately represent x(7).

In general, suppose the dimension is 2n. Then, we would have a 2n x 2n
autocorrelation matrix, $2”. If the summation of some n of the 2n eigenvalues
of §? is small compared to the summation of all 2n eigenvalues, n is
sufficiently large. However, the computation of eigenvalues is time-
consuming. Therefore, we introduce a simpler test for n by using the perturba-
tion result.

Let the elements of the 2x-dimensional vector X% be ordered so that
X2 = [x(12)X(14) . . X2,y X(P ) X(13) . . X( 2 )T =[XTT XA, (9.106)

where e stands for even and d for odd. Then, S? is given by

oo [EIXEXETH EAXEXET) TSt
Szn - E(XZHXZHI-} — o dT - l;. ,1,2 . (9107)
E{X2XMT) E(X5XT) ST Sn

For large n, S7,, S, and S3, are nearly equal. We write $* as
ST 0 12 = 8T

= + =8 + AS™ . (9.108)

SZn
n n nT n" n n
ST ST - S0 $% - ST

Now if
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Q" =[¢97...0,] (9.109)
is the eigenvector matrix of S7,, then
l n (DII
o' = o= 9.110
0 \[,2 { n _q)njl ( )

is the eigenvector matrix of S3". Since AS?" is small for large n, the eigen-
values of §?" are given approximately from (9.104) by the diagonal elements
of

G” = dfS* DY = G G : ©.111)
Gl G5
where
= S OT(ST + STy + ST + S ©.112)
b = OS] = Sty + ST - S3)0" ©.113)
and
5 = %(D"T(S’.’, - 51 ~ S 4+ S5,)d" (9.114)
We define a criterion J,, as [5]
Jy = __Wh 9.115)

w(G +Gh)
That is, J, is approximately the ratio of the sum of the n smaller eigenvalues of
52" to the sum of all 2n eigenvalues. If J, << I, n samples are sufficient, and

the assumption concerning the smallness of AS*" is reinforced. Using (9.112).
(9.114), and the orthonormality of ®", we can rewrite J, as

(S, =S - S+ §3)

(9.116)
2 [T(SI]’| + Sl_)’z)

n -

Or, recalling (9.106) and (9.107), we can write J, in terms of the autocorrela-
tion function, R (1, T), of x(t) as
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DAR it 2) =R Unil2i ) =R Ui 215 2) + R (U210t 2 2y))
i=1

o —

DAR Ui, t2)) +R(t2i—1512i1))

i=1
9.117)

The advantage of this procedure is that J, can be obtained from the autocorre-
lation matrix directly without computing the eigenvalues.

In stationary processes, R (£5;,2;)=R (t5;_1,12i-1)=R(0), and R (t9;_1,t2;)
=R (t5i—15i_1) = R(T/(2n)). Therefore,

T
R(O)_R(E)

an—W. (9.118)

Example 5: Let us calculate J, of (9.118) for R(t) =exp(—Itl) and
T = 1. In this example

9.119)

If 2n = 8, we have J,=0.06 which indicates that four eigenvalues of S are very
small compared to the other four. Thus, we would expect to gain little addi-
tional characterization of x(¢) by increasing n further.

Example 6: Let R(T) be a triangular function as

Itl

R(t) = {ROY1 - —T—) (1Tl €Ty) (9.120)
0
0 (It >Ty) .
If T <Ty, J, is given by
T
= . 12
J, Ty 9.121)

The result of this example is useful in problems where stationarity may be
assumed, but R (1) is unknown. We assume the triangular form and determine
the necessary n for a given T.
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Estimation of Eigenvalues and Eigenvectors

Moments of eigenvalues and eigenvectors: Having chosen », our next
task is to estimate the eigenvalues and eigenvectors A; and ¢; (j = 1,...,n) of
the autocorrelation matrix S. To do this, we calculate the sample autocorrela-
tion matrix S by

n 1 N
Szﬁg‘ (9.122)

and calculate the eigenvalues and eigenvectors A and i\)j G=1,....n)of S.

It is important to note that A; and :1\)]- are estimates of A; and ¢; and that
they are random variables and vectors. They are functions of X, ... ,Xy. In
this section, we shall show approximate formulas for the expected values and
variances of these estimates. Using these formulas, we can determine a value
of N such that the estimates are sufficiently accurate.

The statistics of the eigenvectors and eigenvalues of a matrix of random
variables have been studied previously [6-7]. The general approach is to calcu-
late the distribution of é, and from this find the distribution of the eigenvectors
and eigenvalues.

However, since S =S for N sufficiently large, we may use the approxima-
tions (9.104) and (9.105) to express :1\),- and A,;, that is,

~ ¢,
L ‘¢'+Zx —x- : (9.123)
Ji
and
A =078,  (=1,....n). (9.124)

First, we consider the expected value of the estimate. Since
§ = E{XXT}, the expected value of S of (9.122) becomes

A

E(S)

z E{XX") =5 . (9.125)

1
N;

Therefore,
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E(07S0;1 = 0TE{S)0, = 07S0; = 1,8, . (9.126)

It follows from (9.123) and (9.124) that

E{®;} =0, and E{A;} =\, . 9.127)

Thus, the estimates are unbiased when only the first order approximations are
used. This is due to the fact that the estimate of S is unbiased. However, as
seen in (5.3) and (5.4), the bias comes from the second order term of the
approximation, while the variance comes from the first order. Furthermore,
since the eigenvalues and eigenvectors are functions of S, (5.18) suggests that
the biases must be proportional to 1/N. Thus,

A1 za 4 Ly RN
E{¢;} =0, + VAL and E{A;} =A; + ek (9.128)

where y; are ; are the functions of §, although the functional forms are too
complex to determine. The asymptotic values can be obtained experimentally
by the procedure of (5.6).

From (5.19), the variances are also proportional to 1/N. Since the vari-
ances can be obtained from the first order approximation as in (5.4), their
approximated values may be computed as follows. The variance of A; and the
covariance matrix of :t‘o,- are given by

Var(d,} = E{QA; - A)?) = E(A ) ~ A2 =E{(07§0)7} - A2, (9.129)
Covid;} = E((@ — 6:)(®; — 6}

_r o a ELOTSo07Se)
= oy i
Jj=lk=1 i NI

jei ki

(9.130)

Or, as a simpler alternative of (9.130), we may look at the mean-square error
between ¢; and §; as
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Etlé; - ¢:17} = [Covi;}]

i E{(07S9,))
=y - (9.131)
]gl (}\'I - }\']')2

i#i

Note that both (9.129) and (9.131) are expressed in terms of E[(q>,7'§q>j)2 }.

Normal cases: When X is normally distributed, E{(¢,T§q>,-)2} can be
computed as follows.

Since é is given by (9.122),
TQ 12
0S¢, = ﬁzyikyjk ) (9.132)
k=1

where
Y =0 X, . (9.133)

If both sides of (9.132) are squared and the expectation is taken, the result is

N N

2 B |
E{(/So))"} = FZZE{Y:'L-X,‘L-Y:',)'/, }

k=h=]

1 N N 1 N
= —= Y SElyayulElyiy, ) + =5 SElyivi) . (9.134)
N° &S5 N® 2
k=

since the X,;’s are independent. Now
Elyayi} =0/ EIXX[10; =18,  (k=1,....N) (9.135)

and (9.134) may be rewritten as
Top 2y - M=o I 2.2
E{(¢,-S¢/-) b= N 7»,-5,-,-+NEIy,-y,-I. (9.136)

The second subscript on y is dropped since the X, 's are identically distributed.

When X is normally distributed with zero mean, the y,’s are also normal
with E{y;}) =0 from (9.133) and E{y;y;) =X;8;; from (9.135). This means
that the y,’s are mutually independent. Therefore,
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Elviy? 3\ for i=j 0137
{y'yj l - )\.,’)\.j for I¢_] . ( ) )
Inserting (9.137) into (9.136),

ENOT80,%) =238 + (A28, +A,) 9.138)

Substituting (9.138) into (9.129) and (9.131),

~ 2.0
Var{A,;} =—A7X,- , (9.139)
N 1 7\’,7\’ 87

E{le, -0} z2—y —Z— =" 9.140
tlé; - o NZ G - N (9.140)

=i

The variance of the eigenvalue, normalized by A7, is approximately 2/N
regardless of the value of A;. On the other hand, the variation of 6,- depends
on how close some of other eigenvalues are to A;. When A /A, =1, 7, of (9.140)
can become very large. This seems to be a serious problem. However, this
problem is not as critical as it appears to be. Let us consider a simple 3-
dimensional example in which A; =A, =1 and A; =0.1. Applying the K-L
expansion, we discard ¢, and map down X onto the two-dimensional subspace
spanned by ¢, and ¢,. The covariance matrix of y, =¢!X and y, =¢34 X is /,
and we cannot identify the principal axes of the distribution in the Y-space. In
fact, ¢, and ¢, are indefinite, and (9.140) indicates that the variations of &), and
$2 are infinite. However, in this case, we do not need to obtain the accurate
estimates of ¢, and ¢, individually, as long as the subspace spanned by ¢, and
$» is accurately estimated.

Example 7: We now present a numerical example that illustrates some
interesting points.
Let x(t) be a stationary, normal random process with
R(t)=exp(-altl). 9.141)

If x(1) is time-sampled at t = T/n (- =0,..., n~1). the autocorrelation matrix
S becomes a matrix whose element s ,, is
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S,=exp=ali—ml %) =p'™m (m=0,....n-1). (9.142)

where

p =exp(—aT) . (9.143)

The error coefficients of (9.140) are determined by the eigenvalues of S.
By varying p and n of (9.142), we have a family of S matrices. Let us then
examine the error coefficients of various matrices in the family.

(1) Fixed p: For each value of n, we have n error coefficients,
Yi.....Y,. Weordery, according to decreasing magnitude of X;.

Figure 9-7 is a plot of y; for p= 0.1 [5]. The variation of the eigenvec-
tor estimate tends to increase as the value of the corresponding eigenvalue
decreases. Therefore, a larger number of samples is needed to estimate these
eigenvectors with smaller eigenvalues. Fortunately, the eigenvectors with
smaller eigenvalues are less important for signal representation, and thus the
accuracy of the estimates is not as critical as the one for the eigenvectors with
larger eigenvalues. The range of the error coefficients is on the order of 100.

(2) Variation of the largest coefficient: Suppose we must measure all of
the eigenvectors with a certain accuracy. Then, when the dimension is n,
Ymax = Max(Y,,....Y,! is the constraining factor. Thus, the variation of Y,
with # indicates how the sample size must grow with # to maintain a fixed
accuracy.

Figure 9-8 shows the variation of v,,,, with n for various values of p.
We see that Y, grows roughly as n° [5].

Computer Projects

1. Generate 50, 100, and 200 samples from a normal distribution with zero
mean and the covariance matrix A of Data /-A. For each sample size,
calculate the sample covariance matrix and their eigenvalues. Repeat
this experiment 10 times and average the estimated eigenvalues. Using
the estimation technique of (5.6), find the asymptotic values for these
cigenvalues.

2. (a) Compute the eigenvalues and eigenvectors of (4.126) where n = 10
and p = exp(-0.1).
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(b) Compute the power spectrum of an autocorrelation function
R (1) =exp(-1r1). Assuming that the random process is time-
sampled in 0 < < 1 with increment of 0.1, determine the sampling
points in the power spectrum. Compare the eigenvalues and eigen-
vectors obtained in (b) with the ones obtained in (a).

Repeat Project 2 for R (1) = 2/(20¢° + 1).
Repeat Example 7 to obtain Figs. 9-7 and 9-8.

Problems

The density function of a two-dimensional random vector X consists of
four impulses at (0,3), (0,1), (1,0), and (3,0) with probability of 1/4 for
each.

(a) Find the K-L expansion. Compute the mean-square error when
one feature is eliminated. Compute the contribution of each
impulse point to the mean-square error.

(b) Repeat (a) without subtracting the mean vector. That is, express X
by the summation of two basis vectors, optimize the basis vectors
without subtracting the mean vector, and compute the mean-square
error when one vector is eliminated.

Let X" and X® be samples from @, and w, respectively. The
between-class scatter matrix is defined by

Sy = E{(X(l) _ X(l))(X(I) _ X(Z))T} )

Find S, in terms of the expected vectors and covariance matrices of two
classes.

Find the linear orthonormal transformation from an n-dimensional X
to an m-dimensional Y by maximizing trS,,.

Calculate E{-Inp (X} ®,} where p,(X) (: = 1,2) is a normal distribu-
tion with the expected vector M, and covariance matrix X,.

Assuming M| =M, and X, =/, find the linear orthonormal transfor-
mation from an n-dimensional X to an m-dimensional Y which maxim-
izes E{=Inp (X))l }.
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4. A stationary process x(t) is observed in 0 <t < 1. The mean and auto-
correlation function of x(f) are given by O and exp(—4171). Find the
necessary sampling points which assure approximately that the eigen-
values larger than 10% of the largest eigenvalue are retained.

5. The figure shows a block diagram of a linear filter problem, where s (¢) is
the original signal, x(7) 1s the observed signal with s(r) and noise n(r)
added, and ;(t) is the estimate of s(t). The impulse response /4 (1,7T) of
the optimum linear filter is found by minimizing

2
1 (7 ~ 17 7
E{?J; [S(f)—S(f)}zdf} =E ?L {s(t)—Lrh(t,T)x(t)dT} di

with respect to A(t,7). Find the optimum #(7,T) by using the vector-
matrix approach.

s(t) x (t) Linear filter s (1)
@ h(t,T)

6.  The autocorrelation function of a Poisson process is given by
At +A%tt for T2rand At+ A%t for 1 >t
Assuming 0 <t, T <T, find the sampling interval or the number of

sampling points to assure that, even if we double the sampling rate, the
summation of the newly generated eigenvalues is less than €% of the
summation of total eigenvalues. Find the necessary number of sampling
points to assure €= 0.1% forA=1and T = I.

7. A stationary process is normally distributed in [0, 1] with the covariance
function of exp(—171). Assuming that the process is time-sampled at 10
points, find the necessary number of samples (waveforms) to assure
E{léi - d10l2) <0.1.
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Chapter 10

FEATURE EXTRACTION AND LINEAR

MAPPING FOR CLASSIFICATION

When we have two or more classes, feature extraction consists of choos-
ing those features which are most effective for preserving class separability.
Class separability criteria are essentially independent of coordinate systems,
and are completely different from the criteria for signal representation. Furth-
ermore, class separability depends not only on the class distributions but also
on the classifier to be used. For example, the optimum feature set for a linear
classifier may not be the optimum set for other classifiers for the same distribu-
tions. In order to avoid this additional complexity, let us assume that we seek
the optimum feature set with reference to the Bayes classifier; this will result in
the minimum error for the given distributions. Then, class separability
becomes equivalent to the probability of error due to the Bayes classifier,
which is the best we can expect.

Therefore, theoretically speaking, the Bayes error is the optimum meas-
ure of feature effectiveness. Also, in practice, the Bayes error calculated exper-
imentally is one of the most popular criteria. That is, having selected a set of
features intuitively from given data, estimate the Bayes error in the feature
space by the procedures discussed in Chapter 7.

A major disadvantage of the Bayes error as a criterion is the fact that an
explicit mathematical expression is not available except for a very few special
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cases and, therefore, we cannot expect a great deal of theoretical development.
In Chapter 3, we showed that, even for normal distributions, the calculation of
the Bayes error requires a numerical integration, except for the equal covari-
ance case.

In this chapter, several criteria which have explicit mathematical expres-
sions will be discussed. These expressions are derived from some physical
notions. However, the reader should be reminded that, whenever a criterion is
proposed, the performance of the criterion has to be discussed in relation to the
Bayes error.

10.1 General Problem Formulation

Difference Between Signal Representation and Classification

Feature extraction for classification which will be discussed in this
chapter is different in many respects from feature extraction for signal
representation in Chapter 9, particularly in the criteria to be used and in the
transformations to be allowed.

Criteria: As an example, let us look at the distribution of height and
weight for males as in Fig. 10-1. Since these two variables are highly
correlated (a tatler person tends to be heavier and vice versa), the distribution
shows a football shape. As discussed in Chapter 9, the principal axis ¢, with a
larger eigenvalue is a better vector than ¢, to represent the vectors of this dis-
tribution. That is, the selection of ¢, produces a smaller mean-square error of
representation than the selection of ¢,. The same is true for the female distri-
bution, and even for the mixture of two distributions. However, as seen in Fig.
10-1, if the two distributions are mapped onto ¢,, the marginal density func-
tions are heavily overlapped. On the other hand, if they are mapped onto ¢,,
the marginal densities are well separated with little overlap. Therefore, for
classification purposes, ¢, is a better feature than ¢,, preserving more of the
classification information,

The same argument can be applied to the problem of classifying two dif-
ferent human races. In order to describe a human being, we may use such
characteristics as two eyes, one mouth, two hands, two legs and so on. How-
ever, none of these features are useful for classifying caucasians and orientals.
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4 X2+ weight

<
//Q‘\+

FEMALE

» X1+ height

Fig. 10-1 An example of feature extraction for classification.

Thus, feature extraction for classification cannot be discussed as a simple
extension of Chapter 9. In particular, the criteria to evaluate the effectiveness
of features must be a measure of the overlap or class separability among distri-
butions, and not a measure of fit such as the mean-square error.

Transformations: When feature extraction for signal representation was
discussed, we limited our discussion only to orthonormal transformations,
because the shape of the distribution had to be preserved. The mean-square
error is a coordinate-dependent criterion except for orthonormal transforma-
tions. On the other hand, the overlap or class separability among distributions
is invariant under any nonsingular transformation, including both linear and
nonlinear mappings. However, any singular transformation maps X onto a
lower-dimensional Y, losing some of the classification information. Therefore,
we can present feature extraction for classification as a search, among all possi-
ble singular transformations, for the best subspace which preserves class separ-
ability as much as possible in the lowest possible dimensional space.
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Ideal Features for Classification

It is always advantageous to know what are the best features for
classification, even though those features might be too complex to obtain in
practice. Since the Bayes classifier for the L-class problem compares a pos-
teriori probabilities, ¢(X),...,q.(X), and classifies X to the class whose a
posteriori probability is the largest, these L functions carry sufficient informa-
tion to set up the Bayes classifier. Furthermore, since fozlq,(X) =1, only
(L-1) of these L functions are linearly independent. Thus, these (L-1)
features are the smallest set needed to classify L classes. Also, the Bayes error
in this (L —1)-dimensional feature space is identical to the Bayes error in the
original X-space. That is, by the transformation of y; =¢;(X), i=1,
...,(L-1), from an n-dimensional space to an (L—1)-dimensional space, no
classification information is lost. Thus, we call {g;(X),...,q,_1(X)] the ideal
feature set for classification. Figure 10-2 shows the distributions of three
classes in the original X-space as well as in the ideal feature space. No matter

BAYES CLASSIFIER y3=q3(X)

BISECTOR

y1=04(X) y5=05(X)

Fig. 10-2 Mapping to the ideal feature space.

how the distributions are in the X-space, the three classes of the ideal features
are distributed in the two-dimensional plane to satisfy y, +y, + y3 = 1. Since
the Bayes classifier classifies X according to the largest ¢;(X), the Bayes
classifier in the feature space becomes a piecewise bisector classifier which is
the simplest form of a classifier for the three-class problem.

Figure 10-3 shows how the ideal features are translated to other forms,
depending on the conditions. The features of the second line, Inp;(X), are
obtained by taking the logarithm of the first line. Note that the term Inp (X) is
common for all classes and is irrelevant to classification. Also, in feature
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FEATURE 1 FEATURE 2 FEATURE 3
a,(X) 95(X) %(X)= 1- 9 (X)- q(X)
L 2

In: | Inp,(X) |+ InP, -Inp(X)

v

1 : .
Normal: 5| (X-M)T /' (X-M,) | +7in|Z]+Fin2n

\ 4
21 -1

% =3 MIZ'X [+3XT X+ IM[Z M,

Fig. 10-3 The ideal features.

extraction, additive and multiplicative constants do not alter the subspace onto
which distributions are mapped. Therefore, the term InP; is not included in the
feature function. If the distributions are normal, the quadratic equations of X in
the third line are the ideal features. Furthermore, if the covariance matrices of
all classes are the same, the linear functions of X in the fourth line become the
ideal features.

10.2 Discriminant Analysis

The Bayes error is the best criterion to evaluate feature sets, and a pos-
teriori probability functions are the ideal features. However, in practice, a pos-
teriori probability functions are hard to obtain, and their estimates, obtained
through nonparametric density estimation techniques of Chapter 6, normally
have severe biases and variances. As for the Bayes error, we can estimate it
and use it to evaluate given feature sets, as discussed in Chapter 7; however
this is time-consuming. Unfortunately, the Bayes error is just too complex and
useless as an analytical tool to extract features systematically. Therefore, we
need simpler criteria associated with systematic feature extraction algorithms.

There arc two types of critcria which arc frequently used in practice.
One is based on a family of functions of scatter matrices, which are conceptu-
ally simple and give systematic feature extraction algorithms. The criteria used
measure the class separability of L classcs, but do not relate to the Bayes error
directly. The other is a family of criteria which give upper bounds of the
Bayes error. The Bhattacharyya distance of (3.152) is one of these criteria.
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However, the criteria are only for two-class problems, and are based on nor-
mality assumption.

Scatter Matrices and Separability Criteria

In discriminant analysis of statistics, within-class, between-class, and
mixture scatter matrices are used to formulate criteria of class separability.

A within-class scatter matrix shows the scatter of samples around their
respective class expected vectors, and is expressed by

L L
SW = ZPIE{(X_M,)(X-M,)Tlm,‘ = ZP,‘Z, . (101)
i=1 i=1

On the other hand, a between-class scatter matrix is the scatter of the expected
vectors around the mixture mean as

L
Sy = LPM=M)M;=M )", (10.2)
i=l

where M, represents the expected vector of the mixture distribution and is
given by

L
My =E{X)= 3 PM, . (10.3)
=1

The mixture scarter matrix is the covariance matrix of all samples regardless of
their class assignments, and is defined by

Sp=E{(X-M)X-M)'} =S5, +5, . (10.4)
All these scatter matrices are designed to be invariant under coordinate shifts.

In order to formulate criteria for class separability, we need to convert
these matrices to a number. This number should be larger when the between-
class scatter is larger or the within-class scatter is smaller. There are several
ways to do this, and typical criteria are the following:

() J,=uS3's)), (10.5)

(2 Jy=IniS3'S,1=In1S, 1 —InlIS,!, (10.6)
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(3) Jy=uS, —prs, -c), (10.7)
4 J,= trs, 10.8
( ) 4 — trSZ + ( . )

where §, and S, are one of §,, S,., or S,,. The following remarks pertain to
these criteria:

(}) Many combinations of S, S, and S,, for S, and S, are possible.
Typical examples are {S,,S,.}, {S,,S,,}. and {S,.,S,,} for {§,,5,}.

(2) The optimization of J, is equivalent to the optimization of
tr(ATS A) with respect to A under the constraint A7S,A =/ where A is an
nxm transformation matrix [see Problem 2]. The same is true for J,.

(3) For J,, §, cannot be used, because the rank of S, is (L—1) from
(10.2) and (10.3) and IS, | =0 for (L-1) < n.

(4) As we will discuss later, the optimization of J, and J, results in the
same linear features. Recall that the trace and determinant criteria produced
the same linear features for signal representation in Chapter 9. Furthermore,
these optimal features are the same no matter which combination of Sy, S, and
S, is used for §| and §,. Therefore, we may choose any combination for our
discussion without worrying about which combination is better.

(5) The logarithm of the determinant is used for J, in this book,
although many references cite 1S, 1/15,1. By using the logarithm, J, in an n-
dimensional space can be computed by adding the J, values of individual
features, if the features are independent. This property is called the additive
property of independent features.

(6) When J; is used, trS, is optimized, subject to the constraint
trS, = ¢ [see Problem 3]. That is, n is a Lagrange multiplier and ¢ is a con-

stant.

(7) As we will discuss later, J, and J, are invariant under any non-
singular linear transformation. while /3 and J, are dependent on the coordinate
system.
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In this book, we will discuss only the optimization of J; and J, in detail.
Similar discussions are found in [1] for J; and [2] for J 4.

Optimum Linear Transformation

Since it is very difficult, if not impossible, to discuss general nonlinear
transformations, our discussion will be limited to linear transformations. A
linear transformation from an n-dimensional X to an m-dimensional Y (m < n)
is expressed by

Y=4TX, (10.9)

where A is an nxm rectangular matrix and the column vectors are linearly
independent. However, contrary to the case for signal representation, these
column vectors do not need to be orthonormal. Since all three scatter matrices,
Sp, S,» and S,,, have the form of a covariance matrix, S| and S, in the Y-space
can be calculated from §, and S, in the X-space by

Sy=ATSxA  (i=12). (10.10)
Thus, the problem of feature extraction for classification is to find the A

which optimizes one of the J's in the Y-space.

Optimization of J,: Let J (m) be the value of J, in an m-dimensional
Y-space. Then,

J1(m) = 1S538 1y) = tr((ATS3xA) 1 (ATS xA)) (10.11)

Taking the derivative of (10.11) with respect to A, by using (A.16),

oJ | (m)
0A

= -28,xA S34S 1yS2h + 28 1xA oy . (10.12)
Equating (10.12) to zero, the optimum A must satisfy
(SHS 1A = ASTS1y) . (10.13)

Two matrices Sy and S,y can be simultaneously diagonalized to L, and /,,
by a linear transformation Z = B7Y such that

B'sSyB=W, ad B'SyB=I,, (10.14)

where B is an mxm nonsingular square matrix and B~ exists.
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It is easy to show that the criterion value is invariant under this non-
singular transformation from Y to Z.

tr(S328 12) = r{(BTS yBY ' (B'S |yB))
=t(B~'S7yB" 'B'S yB)
=SS 1yBB™)
=1r(S2yS 1y) - (10.15)

Using (10.14), (10.13) is rewritten as

(S3S 1A =ABU,B ") (10.16)

or
(S48 1x)(AB) = (AB)UL,, . (10.17)

Equation (10.17) shows that the components of u,,, and the column vectors of
(AB) are the m eigenvalues and eigenvectors of S71S,x. Although both Sy
and S,y are symmetric, S3xS,y is not necessarily symmetric. However, the
eigenvalues and eigenvectors of S31S y are obtained as the result of simultane-
ous diagonalization of S|y and S,y, as discussed in Chapter 2. As the result,
the eigenvalues are real and positive, and the eigenvectors are real and ortho-
normal with respect to S ,y.

Since the trace of a matrix is the summation of the eigenvalues,

Jim) =S Six) = Ay + ... + A, , (10.18)
Jum) =tw(SaySiy) =y + ...+ L, . (10.19)

where the A;’s and |1;’s are the eigenvalues of S74S y and S3ySy respectively.
Since the ;s are also the eigenvalues of $31Sy from (10.17), we can maxim-
ize (or minimize) J,(m) by selecting the largest (or smallest) m eigenvalues.
The corresponding m eigenvectors form the transformation matrix.

The above argument indicates that, by projecting X onto the m eigenvec-
tors of S3yS ¢, we can form an m-dimensional subspace which is spanned by
these m eigenvectors. Then, J,(m) is the summation of the corresponding m
eigenvalues. Further application of any »xm nonsingular linear transformation
would not change the value of J,(m). Therefore, we may conclude that the
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value of J,(m) is attached to the subspace and is invariant regardless of the
selection of the coordinate system in the subspace. Thus, it is appropriate to
represent the subspace by the set of m eigenvectors of S34S .

Comparing feature extraction for classification in this chapter with the
one for signal representation in Chapter 9, it should be noted that both algo-
rithms are identical, selecting the eigenvectors of a matrix as the optimum
linear features. However, different matrices are used for different purposes:
§3'S, for classification and the covariance matrix for signal representation.

Two-class problems: Let J, = 1r(S;'S,) be the criterion for two-class
problems. For two-class problems, S, becomes
Sp =Py (M =M)M =M )" + Py(M,—M )M ,—M )
=P Py(My=M YM>-M ), (10.20)
where P\M | + P,M, =M, is used to obtain the second line from the first.
Since S, of (10.20) is composed of one vector (M ,—M ), the rank of S, is one.

Since S, is the averaged covariance matrix, it generally has full rank and S;!
exists. Therefore, the rank of S;!S,, is also one. That is,

Ay 20 and A, =...=1,=0. (10.21)
On the other hand, tr(S;'S,) is the summation of these eigenvalues,
A =SS = P PaML-M )Y S (My-M ) . (10.22)

The corresponding eigenvector is

S M y—M )
oy = 2L (10.23)
IS5 M- D
where the denominator is a constant selected to satisfy ¢l = 1. The reader

can confirm that S;'S, ¢, =A,0, is satisfied by using ¢, of (10.23), A, of
(10.22), and S, of (10.20).

Equation (10.21) indicates that, for two-class problems, only one feature
is needed, and the others do not contribute to the value of J,. The mapping
function is

Y =01X=c(My-M ) S'X, (10.24)
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where ¢ is a constant. Note from (4.27) that (10.24) is the optimum linear
classifier without including the threshold term, when f (1,,1,,P 6} + P,03) is
optimized with respect to V. If we were to select one vector to project two dis-
tributions, the vector perpendicular to the optimum hyperplane should be the
one. The above argument suggests that, by projecting two distributions onto
V= S;.l (M,—M ), we can preserve all classification information, as long as the
class separability is measured by tr(S;'S;).

L-class problems: Two-class problems can be extended to L-class prob-
lems, still using J, =tr(S;,lS,,). Since the M;’s are related by (10.3), only
(L—1) of them are linearly independent. Therefore, S, of (10.2) has the rank
(L~1), and subsequently the rank of S;'S, is (L—1). This means that (L—-1)
eigenvalues of S!S, are nonzero and the others are zero. Thus, without losing
the criterion value, we can map X onto the (L-I)-dimensional subspace
spanned by the (L —1) eigenvectors corresponding to these nonzero eigenvalues.

Recall that the number of ideal features was (L —1). In order to classify
L distributions, we need at least (L —1) features. The optimization of tr(S;'S,)
also produces (L—1) features without losing classifiability, as long as the
classifiability is measured by tr(S;'S,).

It is commonly considered that a pattern recognition system consists of
two parts; a feature extractor and a classifier, as shown in Fig. 10-4. However,

classifier
r A Y
Xl > y) Z,
. Feature . Discriminant maximum
+

. . function . value >
. extractor ' elector . |

sele selector
xn ym y4

L

Fig. 10-4 Structure of a classifier.

when the classifier part is examined more closely, it is found to consist of a
discriminant function selector, which chooses a posteriori probability functions
for the Bayes classifier, and a maximum value selector, which decides the class
assignment of the test sample. When we apply an optimization technique to
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find the smallest possible number of features with the largest possible value for
a criterion, the mathematical procedure automatically combines the feature
extractor and the discriminant function selector, and selects (L —1) features as
the optimal solution. After all, the functions of these two blocks are the same,
namely to reduce the number of variables. There is no theoretical reason to
divide this operation into two stages. Particularly, when both blocks do linear
transformations, the combination of two linear transformations is just another
linear transformation. Generally, engineers like to see intermediate results
showing how variables are transformed down step by step, and gain some phy-
sical insights. However, we cannot expect an optimization procedure to divide
the process into several steps and produce intermediate results.

When an optimization procedure selects the (L—1) optimum features
without reducing the criterion value, one would intuitively wonder why the
number of classes alone should determine the number of features regardless of
the distributions. However, once the mathematical process of optimization is
understood, it may be recognized that the above conclusion is reasonable and
sound after all. Indeed, we can select (L —1) features for the combination of
the trace criterion, tr(S,,'S,), and linear transformation. Also, (L—1) a pos-
teriori probability functions (the ideal features for classification) may be
obtained by the nonlinear transformation, which minimizes the Bayes error.

Since neither compromise nor approximation were used in the optimiza-
tion process, the quality of the selected features depends solely on how accu-
rately the criterion, tr(S;'S,), measures the class separability. Generally speak-
ing, tr(S;'S,) is a good measure when the distributions are unimodal and
separated by the scatter of means. However, if the distributions are multimodal
and share the same mean as in Fig. 10-5(a), there is no scatter of M, and M,
around M. Subsequently, tr(S;'S,) is not a good measure of class separabil-
ity. For this case, we can find clusters, and treat this as a four-class problem
rather than a two-class one. Then tr(S;'S,) gives 3 good features. How to find
clusters will be discussed in Chapter 11. The same is true for the case of Fig.
10-5(b). This case is better handled as a six-class problem by finding three
clusters from each class. However, the clustering technique is not so effective
for the case of Fig. 10-5(c) in which unimodal distributions share the same
mean. This case will be studied later in relation to the optimization of the
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Fig. 10-5 Examples for which tr(S;,'S,) does not work.

Bhattacharyya distance. These examples suggest that, in order to utilize the
feature extraction algorithm of tr(S;'S,) effectively, we need to study the data
structure carefully and adapt our procedure accordingly.

Same features for different matrices: So far, we have studied feature
extraction by using the criterion of tr(53'S,) with S| =S and S, = S,.. In this
section we will show that other combinations of S, S,., and §,, for S| and S,
give the same optimum features as the ones for S| =S, and S, = §,,.

Let us consider, as an example,
J, =u(S;'S,) . (10.25)

Since this criterion measures the averaged covariance matrix normalized by the
mixture scatter matrix, the criterion must be minimized, contrary to the maxim-
ization of tr(S;'S,). According to (10.17), the minimization is achieved by
selecting the eigenvectors of S,'S.. corresponding to the m smallest eigen-
values. Let @ and A be the eigenvector and eigenvalue matrices of S;'S,.
Then

SIS, d=bA. (10.26)

Or
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S, D=5, DA . (10.27)

Using S,, = S, + S, from (10.4), (10.27) can be converted to

S, D =(S, +S,)PA, (10.28)
S,®A=S,DU-A), (10.29)
SIS =dA - 1) (10.30)

Equation (10.30) shows that ® is also the eigenvector matrix of S;'S,. and its
eigenvalue matrix is (A™' — 7). When the components of A, A;, are ordered
from the largest to the smallest as

Ay 2...2A,, (10.31)
the corresponding components of (A~ — I) are reversely ordered as
1 1
—-l<s.. . s—-1. 10.32
x, x (10-32)

n

That is, ¢, corresponds to the ith largest eigenvalue of S,!S,, as well as the ith
smallest eigenvalue of S;'S,. Therefore, the m eigenvectors of S,'S,
corresponding to the m smallest eigenvalues are the same as the m eigenvectors
of $;'S, corresponding to the m largest eigenvalues.

Similar derivations are obtained for other combinations of S, S,., and S,
for §| and S,.

Optimization of J,: The optimization of J, can be carried out in a simi-
lar way as that for J|. The criterion value in the m-dimensional Y-space is
.]z(m) = lnlSlyl - ]nlSZYI

=InlATS |yAl —InIATS A . (10.33)

Taking the derivative of (10.33) with respect A by using (A.28),

aJ (m)
0A

=28 ,yASTy — 2SxA S50 . (10.34)
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Equating (10.34) to zero, the optimal A must satisfy
(534S 1x)A = ASHS 1y) . (10.35)

Since (10.35) and (10.13) are identical, the feature extraction to optimize
(10.35) gives the same result as the one to optimize (10.13).

The value of J,(n) can be expressed in terms of the eigenvalues of
SxS iy as

Jomy=InA, + ... +In}, . (10.36)

Therefore, in order to maximize (or minimize) J,(m), the m largest (or smal-
lest) eigenvalues of S31S,x and the m corresponding eigenvectors are selected.

Optimization of the Bhattacharyya Distance

As discussed in Chapter 3, the Bhattacharyya distance of (3.152) is a
convenient measure of class separability, if the number of classes is two.
Furthermore, (3.152) gives an upper bound of the Bayes error, if the distribu-
tions are normal. However, the optimization of this criterion is not so easy,
because two different types of functions, trace and determinant, are combined
in the criterion. Therefore, in this book, we present the optimum solutions
only for special cases, and the suboptimum solutions for the general case.

Optimization of u;: When £, =X,, the second term of the Bhatta-
charyya distance disappears, and we need to maximize the first term only.
From (3.152), u, is

! ! 1 =1 _
“|=§(M2—M|)TZ (M2—M|)=§[r{z (MZ_MI)(Mz—M|)7], (10.37)

where £ =(Z, +Z,)2 and I is the same as S, if P, = P, =0.5. Equation
(10.37) is the same as tr(S;;'S,) with S, of (10.20), replacing S, with T and
ignoring the multiplicative constant. Therefore, from the previous discussion,
only one linear feature is needed to maximize this criterion, and the mapping
function is, from (10.24)
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y=My-M)'E X. (10.38)

Optimization of p,: When M| = M,, the first term of the Bhattacharyya
distance disappears, and we need to maximize the second term only. From
(3.152), u, is

I):,+):2|
2

|
_ln_.____
2 NIE NI,

IIZ7E, + )55 E, + Z,)! —nln 4)

Ha

N Y

{(IN1Z5'Z, + Z7'Z, + 211 —nlin 4} . (10.39)

Therefore, the optimum linear transformation is found by maximizing

J(m)=Inl(ATZ,AY (ATZ,A) + (ATZ,A) Y ATZ,A) + 21,1
(10.40)

where /,, is the m-dimensional identity matrix while [ of (10.39) is n-
dimensional. As seen in the derivation of the third line of (10.39) from the
second, / represents %7'Z;. Therefore, by the transformation, / is converted to
(ATZ,AY(ATZ,A) = I, which is independent of A.

Taking the derivative of (10.40) with respect A,

J - -
L) o I oA TRy E ~ Zid T}

+ {ZxAZHZyZly - ZxA Zy 1, (10.41)

where Z;y =Z,, Z;y = ATZ,xA, and [-] is the summation of three matrices in
(10.40). Although it seems very complex to solve dJ (m)/0A = 0 for A, the first
{-} and second {-} of (10.41) can be made zero separately as follows.
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(ZHZix)A =AE5E,y) for the first {-) , (10.42)
(Z1xZox)A = A(Z7yZsy) for the second {-} . (10.43)

In order to satisfy both (10.42) and (10.43) simultaneously, A must be the
eigenvectors of both 34X,y and Z14Z,y. Since these two matrices are related
by T34Zx = (Z1xZ2)"', they share the same eigenvector matrix and their
eigenvalue matrices are A for Z34X,yx and A™' for 74X,,. Thus, by selecting
m eigenvectors of Z5%X,y, we satisfy both (10.42) and (10.43) simultaneously,
and can make dJ(m)/9A of (10.41) zero. The value of J(n) in the original n-
dimensional space is

J(n)=Zln(7L,-+7:—+2), (10.44)
i=1 i

where the A;’s are the eigenvalues of Z31%,y. Therefore, in order to maximize
J(m), we must select the m eigenvectors of Z74Z,y corresponding to the m
largest (A; + 1/A; + 2) terms.

Each eigenvalue of 34X,y is the ratio of the »,- and w,-variances along
the corresponding eigenvector. If the w,-variance is larger or smaller than the
m,-variance along ¢;, A; becomes larger or smaller than one. In either case.
A; + 1/A; + 2 becomes larger than 4, because x + l/x 22 for x 20. On the
other hand, when two variances are the same, A; becomes one and
A; + /A, + 2 becomes 4 which is the smallest value for this term. Therefore,
this algorithm is very effective in picking the features along which the vari-
ances of two classes are different, as in Fig. 10-5(c).

For dominant p,: When M, # M, and £, # X,, there is no known pro-
cedure available to optimize | of (3.152). Therefore, we must seek either an
iterative process or a suboptimum solution to find A. When the first term [, is
dominant, we may use the following procedure to find the suboptimal solution.

(N Compute the eigenvalues and eigenvectors of
f_l(Mz—M,)(Mz—M,)T, \; and ¢;, where T =(X, + Z,)/2. Since the rank of
the matrix is one, only A, is nonzero and the other A;’s are zero. Use ¢, as the
first feature and transform X to y, = ¢ X. All information of class separability
due to mean-difference is preserved in this feature.
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(2) Byy, =6/X (i =2,...,n), map X onto the (n—1)-dimensional sub-
space which is orthogonal to ¢, with respect to Z. In this subspace, there is no
information of class separability due 10 mean-difference.

(3) In the (n-1)-dimensional Y-space, compute 7,y and its eigen-
values and eigenvectors, j;’s and ,;’s. Note that the y;’s are orthonormal
with respect to Z,y in the Y-space.

(4) Select the y;’s which correspond to the (m—1) largest (y; + l/y; + 2)
terms, and transform Yoz, =y/Y (i = 1,. .. m~1).

(5) Form an m-dimensional vector as [y,z, ...%,_;]’. If desired, find
the orthonormal basis vectors which are the eigenvectors of the covariance
matrix of [y,z; . .. Zn_1]".

For dominant p,: When the second term Y, is dominant, we may select
the eigenvectors of £74Z,y as seen in the optimization of p,, while checking
how much information of class separability due to the first term W, is distri-
buted in these eigenvectors. The eigenvalue and eigenvector matrices of
Z¢Zx. A and @, satisfy

®'Ty®=A and DT b=1]. (10.45)

Applying an nxn transformation Y = ®7X, the Bhattacharyya distance can be
rewritten as
A MM l
=V [ 4 —{In(A, + — +2)—Ind} |. 10.46
) Ry g Nt o+ 2 - Ind] (10:40)
The second term of (10.46) is the same as (10.44) except for a constant In4,
and shows how the variance-difference of y; contributes to the Bhattacharyya
distance. In addition, (10.46) includes the first term, the effect of the mean-
difference in y,. Thus, we can select the m eigenvectors of £7xZ1x which
correspond to the m largest [-] terms in (10.46).

Divergence: The divergence is another criterion of class separability
similar to the Bhattacharyya distance. Most properties of the divergence can
be discussed in terms similar to those used for the Bhattacharyya distance.

In pattern recognition, the key variable is the likelihood ratio or minus-
log-likelihood ratio of two density functions. Therefore, if we have some way
to evaluate the density functions of the likelihood ratio for ®; and ®,, it is
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almost equivalent to evaluating the Bayes error. Unfortunately, this is not an
easy lask. The simplest version of this type of approach might be to use the
expected values of the minus-log-likelihood ratio for @, and ®, and to evaluate
the class separability by the difference of the expected values of two classes.
Thus, the divergence is defined as [3]

LX) p1(X)
D=Eq{-1 | —Ey—In————1 . 10.4
{ "o X) mz} F{ "o X) ""} (10.47)

Since we consider only expected values in the divergence, we cannot expect a
close relationship between the divergence and the Bayes error. A closer rela-
tionship can be obtained by normalizing the means by the standard deviations,
but the expression might become very complicated.

When two density functions are normal, the divergence becomes

| ) | o 1Is
D =j[5<x_,w.fz.'<X—M.)—5<X—M2>722"X‘M2)+5‘" |>:;| }

1 1 Tyl
A expl-—(X M )T (X -M
{(2n)"’2|>:2|“2 exply X M2y 22 (X-Mo)]

1

1 -
- Wexp[—i(X‘MNZ]'(X—Ml)]}dx

- %n:(zr' VIS MM MM )T+ 3 (8, 435, - 21)
(10.48)

The form of (10.48) is close to that of the Bhattacharyya distance with first and
second terms indicating class separabilities due to mean- and covariance-
differences. The advantage of the divergence is that both the first and second
terms are expressed by the trace of a matrix, while the Bhattacharyya distance
is the combination of trace and determinant. Thus, it is sometimes easier to
use the divergence for theoretical discussions. However, the weaker link to the
Bayes error prevents the divergence from wider applications.
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10.3 Generalized Criteria

The discussion of the previous section suggests that extracting features
for classification is the same as finding the discriminant functions in classifier
design. As seen in Fig. 10-4, the discriminant functions are the final analog
outputs in a classifier before the decision-making logic is applied, and the
number of discriminant functions, (L —1), is the smallest number needed for L-
class classification problems. Furthermore, finding the optimum linear
transformation is the same as designing the optimum linear classifier. Thus,
the entire discussion of Chapter 4 can be directly applied to feature extraction.

Two-Class Problems
For two-class problems, we can map X onto a one-dimensional subspace
of y, =¢7X, in which the criterion tr(S;'S,) becomes

P (M) + P(,—Mp)?
P o} + P,0}

Ji(D) =Sy, Spye ) = . (10.49)
where M, = E{y,loy} =0{M;, no=Ely;} =0]M,, and o} = Varly, o)
=¢7Z,0,. The other criteria of scatter matrices also can be expressed as the
functions of N, N, 67, and 63. Therefore, as was already seen in Chapter 4,
we may introduce the generalized criteria, f (1,,N,,67,63), and treat the cri-
teria of scatter matrices as special cases. The optimization of f (1,,n;,67,63)
with respect to the mapping function was discussed extensively in Chapter 4,
resulting in

¥y =q(X) for nonlinear mapping. (10.50)
¥ = Mo-M D [sZ, + (1-5)Z,]7' X for linear mapping, (10.51)
where
of 1967

T 31002 + of 1003 (10-52)

When f is a function of S,, S,, and S,, £, and X, never appear
separately, but always appear in a combined form of S, = P, Z, + P,X,. Sub-
sequently, after mapping to one-dimension, 67 and o3 always appear in the
same form of P,6? + P,6?% (= ¢75,.,). Therefore, this particular family of
criteria is expressed by f(n,,1M2,P 67 + P,63), and s of (10.52) becomes P .
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Thus, y; of (10.51) becomes (MZ—M,)TS;,'X which is the same as (10.24).

L-Class Problems [4]

The above argument can be extended to more general L-class problems
{4-7}.

Class separability criteria: let f (M, ... M,,S,,) be a family of cri-
teria for class separability. For simplicity, we assume in this section that the
covariance matrices are always used in the combined form of Tt | P,Z; =§,.
This criterion includes functions of S, S, and S,, as special cases. The dis-
cussion of this section can be extended to a more general criterion of
My, ... .M 2, ... Z,), but with more complexity.

Feature extraction selects an (L—1)-dimensional Y(X) from an n-
dimensional X by maximizing (or minimizing) the criterion. Without losing
generality, we also assume for simplicity that the mixture means are zero vec-
tors in both the X- and Y-spaces.

Since our criterion of class separability is invariant under a coordinate
shift and nonsingular linear transformation, we whiten S,, such that

fMy, .. . .M.S,)=f(D,....D.,I), (10.53)
where
D; =AM, =5,1*M, (10.54)

and A and ® are the eigenvalue and eigenvector matrices of S,,. Further appli-
cation of any orthonormal transformation keeps the value of f the same as well
as keeps the mixture scatter matrix /. This means that the value of f does not
depend on the absolute position of each D, but depends only on the relative
positions of the D;’s. Since the relative positions of the D;’s may be specified
by a set of D/ D;’s for all possible combinations of i and j, the criterion can be
rewritten as a function of the DI D;’s as

SOy DD =gy ) (10.55)
where
rj=DID;=MIS)!M, iz (10.56)

Note that DD, = DTD; and only the DID;’s for i 2j are used. The criterion
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of (10.55) can be optimized by solving
L i a

6o = g

§=22% ar,

i=1j=1

81'!‘]‘ =0, (10.57)

ry=ry

where r,?- is the optimum value of r;;. The same result can be obtained by
optimizing another criterion J as

L i
J = ZZ ﬁlj l','j y (1058)
i=lj=1
where
0
By =5 . (10.59)

Y=

Rewriting this criterion in matrix form
J=1(BR)=u(B.55)
=tr(B 177 S, )

=tr{S; (1B 7Ty}

=1(S;,, ) s (10.60)
where
1
By 5[3,‘,‘
B = . , (10.61)
1
5[3:',' ﬁ/_l_
L A
n I
R=1}: , (10.62)
L"Ll s
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S=[D,...D,], (10.63)
=M. ..M, (10.64)
by =B (10.65)

Note from (10.60) that 2, is a generalized between-class scatter matrix, with B
determined by the functional form of the criterion.

15,) is used,

m

Example 1: When f = tr(S;,

L
F=1S8) = Y PMS,!M; . (10.66)
i=1
Therefore,
% =P5, (10.67)
¢
and
Ay =8 . (10.68)

Example 2: When f=1r(S,'S,) is used, we could find dg/dr;; after
replacing S, by S,—-S,. However, it is simpler to replace the criterion
fM,,....M.S,) by another one f (M ,...,M,,S,) and repeat the same dis-
cussion. The result becomes J = tr(S;' 4,) with the same 4, as (10.65).

Optimum nonlinear features: When X is mapped onto an (L-1)-
dimensional Y, the class separability in the Y-space is measured by
Jy =S,y opy). where S,y and 5, are the (L—1)x(L—1) mixture and general-
ized between-class scatter matrices in the Y-space. The optimization of the cri-
terion with respect to the mapping function Y (X') can be carried out by solving,
for Y (X),

Loy dJy
aSmY

— 85,y ] =0 (10.69)

where d/y/9S,,y is defined as in (A.40) for a symmetric matrix S,,y, and

My = Y Op,0dX . M,y = [8Y XOpi0ax (10.70)
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S = Y COYTOOP (X)X

88,y = J[Y X)8YT(X) + 8Y COYT(X)]p (X)X . (10.71)
Substituting (10.70) and (10.71) into (10.69),

*

afy
(X)+2

84y = [or700) Z =
mY

BM YX)pX)ldX =0. (10.72)

In order to satisfy (10.72) regardless of 8Y (X), the [-] term in the integrand
must be equal to zero. Therefore,

%

l L a'l)’ pI(X)
X)=-——
asm}’ Y( ) ZaMlY P(X)
L L1 oy
- ,Z,P aM,yq'( )
L Ay —P O 10.73
where
o, | oy 3y
Sy Ty My (10.74)
r A
P, 0
P= . , (10.75)
0 P,
QX)) =[g,(X) ... q.COT . (10.76)

Note that g;(X) = P;p;(X)/p(X) is the a posteriori probability function. The
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two derivatives 3/y/3S,,y and 8J,/077}, can be computed from (10.60) as

oJy . .
5= S, ydpySny  [from (A.45)] , (10.77)
mY
oy ]
= 28 VB (10.78)
¥

Substituting (10.77) and (10.78) into (10.73),
SpySayY (X) = TyB P Q(X) . (10.79)

Since the dimensionality of Y (X) is (L—1), the (L —1)x(L—1) matrix of &,y is
nonsingular in general and &) exists. Therefore, the y,(X)’s can be expressed
as linear functions of the ¢;(X)’s. That is, the ideal features are the solutions to
optimizing f (M ,.... ,M,..,S,), regardless of the functional form, f. This con-
clusion enhances the use of f(M,... ,M;,S,,) as the class separability cri-
terion. Even when 4,y is singular, we can solve (10.79) for linearly indepen-
dent y;(X)’s such that the y;(X)’s become linear functions of the ¢;(X)’s.

Optimum linear features: When (L —1) linear features are sought,
Y(X)=ATX where A is an nx(L—1) transformation matrix, and 8Y (X) =8A7X
since the variation of ¥ comes from the variation of the mapping function A.
Substituting this 8Y (X) into (10.72),

&y = XT84 f; Wy xy+ 20 47y (X)}dx
= pild) + p
! S oMy Sy
5 ¢« v MY 42 oy ATS 0 0.80
= . + =
trqy oA 'gl aM,'y iX aS,,,y mX . (l .80)

where My = E{XIw;} and S,,x = E{XX"}. In order to satisty (10.80) regard-
less of 8A, the [-] term must be zero. Thus,

aJy ATS = L dJy T (1081
aS,”Y mX — ,§ 8M,-y X - .

2

Substituting (10.77) and (10.78) into (10.81),
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Loy SmyAT Spx = iy B 1Ty . (10.82)
Furthermore, since 7 = AT77%, and 2,y = 7B 771, (10.82) is modified to
EySyAT = AT 2pxShi (10.83)

Or, taking the transpose,
(Sok2p)A = A(SHydpy) - (10.84)

Note that (10.84) is the same as (10.13) except that the generalized between-
class scatter matrix, Jp, is used in (10.84). Therefore, using the same argument
to solve (10.13), we can conclude that the optimum linear features are the
eigenvectors of S,x 5,y Which correspond to the largest (L—1) eigenvalues.

10.4 Nonparametric Discriminant Analysis [8]

So far we have stated repeatedly that only (L —1) features are needed for
the classification of L classes. However, unless a posteriori probability func-
tions are selected, (L —1) features are suboptimal in the Bayes sense, although
they are optimal with regard to a criterion used. Therefore, if the estimate of
the Bayes error in the feature space is much larger than the one in the original
variable space, some method must be devised to augment the feature extraction
process.

One possibility is to artificially increase the number of classes. In this
way we can increase the rank of S, and subsequently the number of features.
This could be accomplished by dividing each class into a number of clusters as
seen in Fig. 10-5(a) and (b). For those cases where multimodal behavior is
present and a clustering algorithm can be found that "properly” identifies the
clusters, this may work well. As a second possibility [9], after determining the
(L—-1) features, we could remove them leaving a subspace orthogonal to the
extracted features. If tr(S;'S,) is used as a criterion, the first (L-1)-
dimensional subspace contains all classification information due to the scatter
of mean vectors, while the second (n-L+1)-dimensional space contains the
information due to covariance-differences. Therefore. in order to select addi-
tional features from the (#—L+1)-dimensional subspace, tr(S;'S,) is no longer
an appropriate criterion to use. A different criterion such as the second term of
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the Bhattacharyya distance must be adopted. Unfortunately, such a criterion is
available only for two-class cases, and we do not know how to handle general
L-class problems, in which all means are the same [10].

A more fundamental problem is the parametric nature of the scatter
matrices. If the distributions are significantly non-normal, the use of such
parametric forms cannot be expected to accurately indicate which features
should be extracted to preserve complex structures needed for classification.

In this section, a nonparametric form of discriminant analysis is
presented which overcomes both of the previously mentioned problems. The
basis of the extension is a nonparametric between-class scatter matrix which
measures between-class scatter on a local basis, using k-nearest neighbor (ANN)
techniques. and is generally of full rank. As the result, neither artificial class
generation nor sequential methods are necessary. In addition, the non-
parametric nature of the scatter matrix inherently leads to extracted features
that preserve structure important for classification.

Nonparametric Scatter Matrix and Linear Mapping

In this section only the two-class problem will be discussed for simpli-
city, although an extension to the general L-class problem is possible.

Nonparametric between-class scatter matrix: We begin by defining a
nonparameltric between-class scatter matrix, denoted *,, as

Ly = PLELX"-XEDX =X oy |

+ PHE{(XP-X{HXP-X0) 1o, ) . (10.85)

where X'’ refers to samples from ®,, and X§ is the NN of X' from the ;-
samples (/ # j). Note that the NN is selected from the other class, and that the
vector. X{% — X (i # j), points to the other class locally at X'”. Equation
(10.85) is the scatter matrix of these vectors. Recall that the between-class
scatter matrix, S, for two-class was given in (10.20) as the scatter matrix of
one vector, M,—M |, which points from M| to M, (and also from M, to M| if
the sign is ignored). Therefore, 2, of (10.85) may be considered as a non-
parametric version of Sj,.

Instead of using only the NN, we might prefer to include information
about kNN's. A natural approach to accomplish this would be the replacement
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of X\y by (176)Z4_ X{n. We call the sample mean of the kNN’s the local
mean. For a given sample X,, the ®;-local mean is computed as

1 & o4
m(X,) = ;ZXWN , (10.86)
J=1

where X\ is the jth NN from ; to the sample X;. Observe that, as k
approaches N,, the total number of samples in ;, 7(-) approaches the ;-
mean vector, M;. Using (10.86), a more general form of (10.85) can be defined
as

bp = PLE{XO-M X)X P -my X)) 1o, |
+ PLE{(XP-m, X )XP-m, X)) 1w, ) . (10.87)

It is of interest to study the behavior of %, when k =N;. This
corresponds to replacing 77(-) with M;. We denote the resulting between-class
scatter matrix as S.

Sy =PIE{(X-M)X-M3) 10y} + PLE{(X-M )X-M ) | ;)
=P {Z, + (M \-M )M —-M)"} + Po{Z, + (M,—M )M M )T}
=(P\Z) + PaZy) + (My-M )M -M )T (10.88)

On the other hand, from (10.20),
2

Sp = in(M,-—Mo)(M,-—Mo)T =P Py(Mo—M YM,-M )T . (10.89)

i=1
Therefore, S;, and S, are related by

]

Sp=8, + S, . 10.90
b PP, ( )

Or, multiplying S;;! from the left side
S;S, =1+ S;'s, . (10.91)

112

That is, the features selected by maximizing tr(S;.'S},) must be the same as the
ones from tr(S,'S,). Thus, the parametric feature extraction obtained by max-
imizing tr(S;'S,) is a special case of feature extraction with the more general
nonparametric criterion tr(S;,' 55).
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Further understanding of %, is obtained by examining the vector
(X, = 7(X.)). Figure 10-6 shows an example of these vectors for k = 1.

Fig. 10-6 Nonparametric between-class scatter.

Pointing to the NN from the other class, each vector indicates the direction to
the other class locally. If we select these vectors only from the samples
located in the classification boundary (V,, V3, V4, Vs, etc.), the scatter matrix
of these vectors should specify the subspace in which the boundary region is
embedded. Samples which are far away from the boundary (V;, etc.) tend to
have larger magnitudes. These large magnitudes can exert a considerable
influence on the scatter matrix and distort the information of the boundary
structure. Therefore, some method of deemphasizing samples far from the
boundary seems appropriate. To accomplish this we can use a weighting func-
tion for each (X — 7(X.)). The value of the weighting function, denoted as
w , for X is defined as
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min{d®(X, . Xtn),d* (X, X13)
w = {d™(X, X iNn),d™( ENN)} ’ (10.92)
d%X, Xy + d* X XE)

where o is a control parameter between zero and infinity, and d(X,, X{iy) is
the distance from X, to its kNN from ;. Observe that if o is selected as n, w,
corresponds to the ANN risk estimate of Chapter 7.

This weighting function has the property that near the classification
boundary it takes on values close o 0.5 and drops off to zero as we move
away from the classification boundary. The control parameter, o, adjusts how
rapidly w. falls to zero as we move away.

The final discrete form for 4, is expressed by

I
w (X = 7 X DN~ )T
=1

Sy =

N,
" %Zw,(X,Q’ S KPP — T XPNT . (10.93)
=1

where N = N| + N>, and the expectations of (10.87) are replaced by the sam-
ple means and P, by N,/N.

Optimum linear mapping: We now turn to the problem of the choice
for S,. We could choose S, as either the parametric S, in (10.1), the
parametric S,, in (10.4), or we could define a nonparametric extension of S,
based on one of the parametric forms. In this section, §, is selected as S».
This choice is based on the observation that some form of global normalization
is appropriate. This is readily recognized when the Euclidean distance is used
to determine the ANN’s. Intuitively, it is appropriate to apply the Euclidean
metric to data whose covariance matrix is the identity matrix. However,
transforming two data sets simultaneously so that both have X; =1 is generally
not possible. As a compromise, we transform the data so that the averaged
covariance matrix, S, becomes the identity matrix. Then, %, is computed in
the transformed space. In addition, using S, as S,, the parametric scatter cri-
terion tr(S;'S,,) becomes a special case of the nonparametric scatter criterion
tr(Sy£,) as in (10.91), when the local means approach the class means.
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We now present the algorithm in its entirety.

(1)  Whiten the data with respect to S,. That is, transform X to Y by
Y =A"2®0"X where A and ® are the eigenvalue and eigenvector
matrices of S,,..

(2) Select k and «.
(3) In the Y-space, compute /, of (10.93) using w. of (10.92) for weighting.

(4) Select the m eigenvectors of 4, Yy, . ...V, which correspond to the m
largest eigenvalues.

(5) Then, Z=WTIA'"?®"X is the optimum linear mapping where

W, =I[y,...y,]. Note that this transformation matrix is orthonormal
with respect to S, as

WYIA QTS DAY, =1 . (10.94)
Experiment 1: In order to verify the algorithm, two groups of three-

dimensional data were generated. The first two variables were generated uni-
formly as shown in Fig. 10-7. The third variable, independent of other two,

o)
12.0
/]
w “
1o
+ + + Xl
-2.0 -1.0 1.0 2.0
—~ +-1.0
@) )
+-2.0

Fig. 10-7 An example of distributions.

was normally distributed with zero mean and unit variance for both classes.
Each class was comprised of 100 samples. After applying the nonparametric
feature extraction procedure with X =3 and o = 2, the following eigenvalues
and eigenvectors were obtained.
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A’l = 056 ) A’Z = 040 N A,} = 004 ,

059 0.28 0.03 (10.95)
0= |029| , 6,= |-058{ , &= |0.07]|,
~0.03 005 1.00

where the eigenvalues are normalized so that A} +A, + A3 = 1. The eigen-
values clearly indicate that only two features are needed. Furthermore, it is
observed that both ¢, and ¢, effectively exclude the third variable, which
possesses no structure that would assist in classification.

Experiment 2: As warped distributions, Gaussian pulses of (6.116) and
double exponential waveforms of (6.118) were used. These two random
processes were time-sampled at eight points, forming eight-dimensional ran-
dom vectors. Since both processes are controlled by three random variables, as
shown in Experiments 6-2 and 6-3, their intrinsic dimensionality is three, and
samples from each class lie on a three-dimensional warped surface in the
eight-dimensional space. The number of samples generated was 250 per class.

The nonparametric feature extraction procedure with £k =3 and o= 2
was applied for the classification of these two classes. The resulting normal-
ized eigenvalues were 0.45, 0.18, 0.11, 0.08, 0.06, 0.05, 0.04, and 0.03, indicat-
ing that most of the classification information is concentrated on the first
feature. Figure 10-8 shows the plot of samples in the subspace spanned by
y, =¢!X and y, = 61X, where ¢, and ¢, are the eigenvectors corresponding to
the eigenvalues A; = 0.45 and A, = 0.18 respectively (8]. Figure 10-8 clearly
shows that the first extracted feature embodies the majority of the classification
structure, as its 0.45 eigenvalue predicts. The second extracted feature, while
not effective if used alone (as its eigenvalue of 0.18 suggests), assists to show
how two distributions are separated.

For comparison, Fig. 10-9 shows the plot from the Karhunen-Loéve
expansion [8]. That is, the covariance matrix of the mixture of two classes was
computed, from which the eigenvalues and eigenvectors are obtained. The plot
is the distribution of samples in the subspace spanned by y, =¢|X and
¥> = 02X where ¢, and ¢, correspond to two largest eigenvalues. Figure 10-9
shows that the K-L expansion gives a poor selection of two features for
classification.
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Fig. 10-8 Plot by the nonparametric discriminant analysis.

Linear Classifier Design

Linear classifier design is a special case of feature extraction, involving
the selection of a linear mapping to reduce the dimensionality to one.
Classification is then performed by specifying a single threshold.

When L =2, parametric discriminant analysis always results in the
extraction of a single feature. Thus, parametric discriminant analysis for the
two-class case is essentially linear classifier design.

For linear classifier design using the nonparametric procedure, we select
the eigenvector corresponding to the largest eigenvalue as our linear transfor-
mation.
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Fig. 10-9 Plot by the Karhunen-Loéve expansion.

Experiment 3: Linear classifiers were designed to classify two normal
distributions with expected vectors and covariance matrices as

0 2 20
M‘ZO' X, =/, and M2:3, Zg=04. (10.96)

The theoretically optimal linear classifier was designed by Procedure 1 in Sec-
tion 4.2 (just after (4.46)). The error was 9.3%.

Then, both parametric and nonparametric discriminant analyses were
applied by maximizing ir(S;'S,) and tr(S;'5,). For these procedures, 100
samples per class were generated for design. After a linear transformation
y =0!1X was found, the means and variances of y for @, and ®, were com-
puted by ¢!M, and ®IZ;6, (i =1,2). Since y is normal for normal X, the
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minimum error in the y-space can be obtained by using a normal error table.
This test process eliminates the variation of the estimated error due to a finite
number of test samples. Also, Kk =3 and o =2 were used to determine the
weighting coefficients in the nonparametric procedure. The resulting errors
were 9.7% for parametric approach and 9.4% for nonparametric one. Thus, not
only was the performance of the nonparametric procedure close to the optimal
linear classifier, but it was in fact superior to the parametric procedure.

Experiment 4: In this experiment, samples were uniformly distributed in
the areas shown in Fig. 10-10. The true error of zero is achieved by selecting

Xo —
— 30 SAMPLES
////
w2 wy
| ] ] | ] ] ] | | ] | | ] J
X
1
50 SAMPLES r 50 SAMPLES
w2
-
50 SAMPLES
-
L

Fig. 10-10 An example of distributions.

the v, -axis as the only feature. For comparison, all three mappings were com-
puted as before. Since the data sets were not normally distributed, there is no
reason to assume that the procedure of Section 4.2 would necessarily be
optimal even if Procedures II and III are used. The average error of Procedures
11 and 1II was 5.4%. On the other hand, parametric and nonparametric discrim-
inant analyses resulted in the errors of 5.6% and 3.4%, respectively.
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The above two experiments provide additional justification for the non-
parametric feature extraction algorithm.

Distributional Testing

Another application of the nonparametric scatter matrices is in the testing
of structural similarity of two distributions. The ability to compare two distri-
butions has numerous applications. One can gather data sets at different times
or under different conditions and distributional testing can then be used to
determine whether they are similar or not. When only a single measurement is
taken, the problem can be solved in a fairly straightforward manner. However,
multiple measurements present a problem.

One method of testing the similarity of two distributions in a high-
dimensional space is to compare the mean vectors and covariance matrices of
the distributions. Two covariance matrices can be more easily compared by
simultaneously diagonalizing them and checking whether or not the diagonal
terms of the second matrix are close to one. Also, the Bhattacharyya distance
is used to measure the closeness of two distributions. Although these tests are
simple and adequate for most applications, more sophisticated tests are needed
for distributions severly distorted from normal.

A second alternative is to estimate the degree of overlap of the two dis-
tributions. The Bayes error could be estimated by nonparametric techniques
such as the Parzen and kNN approaches as discussed in Chapter 7. However,
this method fails to indicate the subspace in which the differences are most
prominent, or what type of differences exists.

The test of this section requires no distributional assumptions, and pro-
duces an eigenvalue and eigenvector decomposition that is ranked by distribu-
tional similarity.

To develop the test we first separate 2, into two parts

N,
Bpr = NLZwﬁr(Xf“—fo“))(x,‘"—‘mﬂx,‘”))" . (10.97)
L=l

lNa

S I KD T (XD X (10.98)
2 =1

v
>
N

I

We can interpret A, as a nonparametric berween-class scatter matrix computed
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with respect to ®;. In addition we will define two nonparametric within-class
scatter matrices, denoted by A, and 5,.,, as
1

Ny
By = 5 I =T XD DA =T (XD (10.99)
1

=1

N,
By = I—V'—Zw,(x@—mz(xg”))(X§2>-7712(x52’ ». (10.100)
2

/=1

The only difference between &,; and 2,; is the class of the local mean used in
the computation. If the two distributions are identical, it is expected that
A3h%,, should be close to /. To reduce the number of comparisons from 7
for each matrix product we can diagonalize 4.4, , and £;%%,,. The diago-

By) Ay, and b, =b,,. This suggests that the matrix products 534, and
5 2

nalization of 4}4,; may be achieved by simultaneously diagonalizing 4,; and
Zpi. The n diagonal elements of each matrix can then be compared.

Before presenting the experimental results we make a final note about
4,. For the sample X", when the local mean 77,(X%") is computed, we do not
consider X'") as its own NN.

Experiment 5: The first experiment consists of two parts. First, two
normal distributions with mean vectors equal to the zero vector and covariance
matrices equal to the identity matrix were compared. The distributions were
two-dimensional. One hundred samples per class were generated, & was
chosen as three, and & was chosen as zero, i.e. w, = | or no weighting. Two
matrices 5,5, and 4;%5,, were computed. The mean values and standard
deviations of the eigenvalues for four trials are summarized in Table 10-1 [8].
The fact that the eigenvalues are less than one is not particularly surprising.
Recall that when we computed %,; it was necessary to exclude the sample X,
from our kNN determination. As such, this tends to make the within-class dis-
tances larger than the between-class distances, resulting in eigenvalues smaller
than one.

To complete the experiment a second comparison was performed. A
normal distribution was compared with a uniform distribution, both two-
dimensional with mean vector equal to the zero vector and covariance matrix
equal to the identity matrix. As before, 100 samples per class were used, &
was chosen as three, and o was chosen as zero. The mean value and standard
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TABLE 10-1

EIGENVALUE RESULTS FOR FOUR TRIALS

w; - Normal ®; - Normal
), - Normal , - Uniform
Saidp bahdn S iahdnn
A's A Az A Ay A As Ay As
Mean 079 061 | 096 066 | 163 095 | 1.52 0.89
Standard Deviation | 0.06 0.13 | 0.17 0.06 | 0.22 0.21 | 020 0.16

deviation results of the eigenvalue calculations for four trials are presented in
Table 10-1 [8]. When compared to the normal vs. normal results, a distribu-
tional difference is evident.

Experiment 6: In the second experiment the time sampled-gaussian
pulse was compared with the time-sampled double exponential pulse. Refer to
Experiments 6-2 and 6-3 for additional information about these data sets.

To provide a reference, two eight-dimensional normal distributions (not
time-sampled gaussian pulses) were generated, both with mean vector equal to
the zero vector and covariance matrix equal to the identity matrix. The result-
ing eigenvalues were 1.36, 1.21, 1.11, 1.06, 0.89, 0.88, 0.79, and 0.57 for
5704, and 1.29, 1.19, 1.11, 1.08, 0.93, 0.81, 0.70, and 0.57 for 5;},4,, for a
single trial.

To assure that we would be testing for structural differences, both time-
sampled data sets were independently whitened, i.e., mean vector transformed
to the zero vector and covariance matrix transformed to the identity matrix.
When the whitened time-sampled data sets were compared, the eigenvalues
were 34.4, 17.3, 14.3, 10.6, 6.6, 3.9, 2.7, and 1.4 for ;) %,, and 0.87, 0.75,
0.67, 0.52, 0.41, 0.32, 0.23, and 0.14 for 5;%%,,. These results clearly indi-
cate that significant distributional differences exist. In addition they indicate
why the 4,15, should not be combined. It is possible that if they are com-
bined, the eigenvectors of the result may not exhibit the same level of discrimi-
nation. This is due to the fact that the eigenvalues are averaged in some
fashion.
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As well as having the ability to test distributional differences, if the

eigenvectors are computed, the axes of major difference can be plotted. This is
shown in Fig. 10-11 where we project the data down onto the two eigenvectors
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Fig. 10-11 Plot of structure difference.

of 57! 2, with corresponding eigenvalues, 34.4 and 17.3 [8]. The two distri-

butions of Fig. 10-11 seem to be very similar at a glance. This is due to the

fact that they share the same mean vector as well as the same covariance
matrix. Therefore, we must look for, in Fig. 10-11, the more detailed structural
difference beyond the first and second order statistics.



480 Introduction to Statistical Pattern Recognition

10.5 Sequential Selection of Quadratic Features [11]

So far, we have limited our discussion to linear transformations, because
general nonlinear transformations are hard to define and analyze. However, in
practical classification problems, we need to focus our attention on a particular
nonlinear function, which is the quadratic discriminant function. The quadratic
discriminant functions are the ideal features for normal distributions, and are
expected to be reasonably good features even for non-normal (but unimodal)
distributions. Thus, the quadratic equation of

1T, 0
13, |

h<X>=%(X—M1>TZr'(X—M1)— ';T(X—Mz)TZEI(X—Mz)+-;—In

(10.101)

must be the first candidate of the most effective feature for the classification of
two classes. If distributions are normal, A (X) is the sufficient statistic, and car-
ries all of the classification information. No extra features are needed. How-
ever, if the distributions are not normal, there exist other features carrying
some of classification information.

One systematic way of extracting quadratic features for non-normal cases
is to select A (X) of (10.101) as the first feature, and then find the subspace, Y,
orthogonal to # (X). In the next stage, the quadratic discriminant function 4 (Y)
in the Y-subspace is selected as the second feature. and the sub-subspace
orthogonal to #(Y) is found. This process is repeated until classification infor-
mation is exhausted in the subspace.

Orthogonal space to h(X): The orthogonal space to h(X) may be
defined as an (n-1)-dimensional hypersurface on which a certain (possibly
nonlinear) projection of two normal distributions are identical. It should be
noted that this definition of orthogonality is not conventional. Without losing
generality, let us assume that two covariance matrices are diagonal, / and A.
Given two means M, and M,, we can move the coordinate origin by C suct
that two mean vectors in the new coordinate system satisfy

My -C)=A"*"M,-C). (10.102
Such a C can be uniquely obtained by solving (10.102) for C as
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C=3-A"Y"M,-A?M), (10.103)

where none of the components of A, the A,’s, are assumed to be one. When
A; =1, C of (10.103) cannot be determined. This case will be discussed later.
Also, note that two covariance matrices / and A are related by

A=A A (10.104)
Equations (10.102) and (10.104) imply that, if two distributions are nor-

mal,
) USRS (N (10.105)

where X’ is X from ;. For non-normal distributions, (10.102) and (10.104)
do not necessarily imply (10.105).

The significance of (10.105) is the fact that it allows us to relate two nor-
mal distributions with £, =7 and £, = A to one another after performing a
simple mean shift using (10.103).

To proceed with the development we replace A2 in (10.105) with ¢72
where B is a matrix chosen to satisfy A'? = ¢™8. Rewriting (10.105) we get

X = e BXM . (10.106)
Using (10.106) it is possible to express the two random vectors in the follow-
ing form with ¢ and X, as parameters:

XD =78, , (10.107)

X2 = g BUrhY (10.108)

These equations suggest that corresponding samples of X" and X? are
located on a trajectory of the following differential equation

%X(I) =BX() with X(0) =X, . (10.109)

Given an X, on a trajectory of (10.109), for any X on that trajectory there is a ¢
such that
X =X(1) = e X(0) = A'*X(0) . (10.110)

Figure 10-12 shows an example.
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Possible Trajectories

X4

\<—-—->X(0) surface
Fig. 10-12 Possible trajectories in two-dimensional space.

The ith component of X(r), denoted by x;(r), satisfies

X,-(f) 812

= 0.111
o M (10.111)

Raising to the (ovInA;)th power, (10.111) can be converted to make the right-
hand side independent of i, as
[

InA,

it
x40 =e"? (G=1,....n), (10.112)

x;(0)

sign(x;(r))
sign(x;(0))

where sign(-) is the sign function and « is introduced to scale the exponential
term. Note that (10.112) holds for any value of ¢, and thus we can choose the
value of « freely. Generally, it is suggested to select an & so that o/InA; is as
close as possible to one for all i. This will minimize data distortion.

Example 3: Let two normal distributions be characterized by
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8 4 0.25 0
Mi=hl o Ei=1,and My= || L =] o . (10.113)

Substituting (10.113) into (10.103), C = [0 0]7. Also, from (10.112)

{,\'10) } In((:ZS {\'g(t) :IT,?Z
N = . (10.114)

X (0) x5(0)

Or,
X1 (Dx2(1) = X, (0)x,(0) . (10.115)

Figure 10-13 shows the three trajectories of (10.115) for x,(0)=8 and

X2 AXIS
H

X1 AXIS
Fig. 10-13 Three trajectories for a normal example.

x>(0=3,2, 1, denoted as T, T, and T, respectively.

Note that if X(0) is always selected on an (n—1)-dimensional surface
across which each trajectory passes through exactly once, then the n-
dimensional space of X could be transformed to another n-dimensional space
consisting of one variable ¢, or a function of 1, and the (n—1)-dimensional X(0)
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surface. Since all corresponding samples of the two normal distributions are
located on the same trajectories, the projection of the two normal distributions
onto the X(0) surface would be identical. Thus, the X(0) surface is the sub-
space orthogonal to #(X) of (10.101).

Selection of the orthogonal subspace: It is desirable to select, regard-
less of the distributions, the same (n—1)-dimensional surface to facilitate the
transformation to the new n-dimensional space. This can achieved by introduc-
ing the new variables y; as

(1) = sign(x; (N x ()1 ™ (10.116)
Then, (10.112) becomes
%=e“’/z (i=1,...,n). (10.117)

In the Y-coordinate system all of the trajectories are lines beginning at the ori-
gin. Since all the lines start at the origin, a natural selection of the Y(0) (form-
erly X(0)) surface is a unit sphere around the origin.

Example 4: Two normal distributions of Example 3 are transformed to
vy, and y,;. Selecting o.= In4, two means in the y-space, My and My, are
calculated from (10.116) as

In4
g In0.25 0.125

My=1 1w [=]| 2 | (10.118)
2In4

In4

4 In0.25 0.25
M,y = =14 ] (10.119)

in4

4 In4

Note that we can control the scales of the y;’s by . Figure 10-14 shows two
distributions as well as three trajectories in the Y-space. The T;’s in Fig. 10-14
correspond to the respective T,’s in Fig. 10-13.

This formulation standardizes the transformation to an (n-—1)-
dimensional Y(0) surface and the variable that is a function of r, regardless of

distributions. By converting to multidimensional spherical coordinates r,
0,,...,0,_, as
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Fig. 10-14 Y coordinate representation.

r = (Zy,Z)I/Z ,
i=
y2
0, = arctan(—) ,
B
2 2,112
oy )
0, = a/'(‘lan[—l—)}—] .
¥z

2,122
i)

n—1
0,_, =arctun Xy
i=

¥n

.50

(10.120)
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Note that the range of r is (0,0), the range of 8, is (0,2n), and the ranges of
92, e ,9,,_] are (O,n).

Feature extraction algorithm: We now detail the systematic feature
extraction procedure.

(1) Compute the sample mean vector and covariance matrix for each class.
(2) Compute A(X) in (10.101), and select this as a feature.

(3) If A(X) is an effective feature, retain it and continue. Otherwise, stop.
(4) Simultaneously diagonalize the data.

(5) Compute C in (10.163), and use it to translate the data sets. Select an oL
(6) For each sample X in the data set compute Y using (10.116).

(7) Convert Y to multidimensional spherical coordinates using (10.120). Do
not compute the radial component, r. The (n-1) components
8,,...,8,_, are orthogonal to & (X).

(8) Go to Step (2).

For two normal distributions, the algorithm will stop after testing the
second extracted feature. This will occur because in the mapped 6-coordinate
system, if we disregard r, the two distributions will have identical mean vectors
and covariance matrices. Hence, the second extracted feature, h in the (n-1)-
dimensional mapped space, will not have any capability of discrimination.

We now address the case when C does not exist. From (10.103), C does
not exist when any A; = 1. As an aid to the discussion, let us assume that there
are 7 instances of A; =1 and that the features are ordered so that A; = |
(G=1,...,n=), and A; =1 (i =n—+1,...,n). We can now deal with the
two cases separately. The first (n—) features are readily handled by the non-
linear mapping algorithm. For the remaining 7 features we need to reexamine
our process of finding the orthogonal space to /(X). Since the covariance
matrices are both / for these 7 features (A; = 1), the hypersurface and the pro-
jection technique are simple to determine. The hypersurface is chosen as the
hyperplane that bisects the mean-difference vector, and linear projection is
used. Refer to Fig. 10-15, which illustrates this. It is seen that the mapping
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Trajectories

= — X,
-7 \ X(0) surface

Fig. 10-15 Hypersurface and trajectories for features with A, = 1.

algorithm for the 7 features with A, = 1 is a linear transformation. Because of
this linearity, there is no possibility that there will be any mean vector or
covariance matrix differences in the (¢i—1)-dimensional subspace. This implies
that the # computed in the (/—1)-dimensional subspace will not exhibit any
discriminatory ability. Specifically, the mean vectors will be identical and the
covariance matrices will both be /. As a result, there is no need to map the ¢
features down to an (—1)-dimensional space. All of our discriminatory ability
is contained in the mean-difference, and this information is included in the
h(X) computed for all n features, i.e., prior to the mapping procedure. This
observation allows us to easily modify the nonlinear mapping algorithm. Add
Step (4’) after Step (4) and before Step (5) as follows: (4’) Discard ali features
with A; = 1.

One final topic deserves mention. In Step (7) we convert to a multidi-
mensional spherical coordinate system. The retained axes are the angular coor-
dinates. Since these angles have finite ranges, we should carefully consider
where these angles are measured from. For example, if the positive T, line of
Fig. 10-14 is chosen as the reference line, the distribution of the angle, 6, is
centered at 0 °as seen in Fig. 10-16(a). On the other hand. if the negative T,
line of Fig. 10-14 is used, the distribution of 8, is centered at n as in Fig. 10-
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(a) (b)
Fig. 10-16 Distributions of an angle.

16(b). Since we will be using 2 (X) in the 8 coordinate system, and h(X) is
essentially a normal classifier, it seems reasonable to try to avoid the situation
in Fig. 10-16(a). This can be accomplished by rotating the 8 coordinate system
so that the global mean vector is approximately in the midrange of 6.

To demonstrate the performance of the nonlinear mapping algorithm, the
results from two experiments follow. Note that for the experiments in these
examples o was computed using the following formula:

o= ln A, 1 . (10.121)

3 |-
M:

!

Experiment 7: In the first experiment both data sets were drawn from
normal distributions. Each class consisted of 100 three-dimensional samples.
The mean vectors and covariances matrices were

-1.00 0
M,=|-375|, Z; =1 and M, = (0|, Z,=177. (10.122)
-1.00 0

These values were chosen to provide a Bayes error of approximately 9%.
A nonparametric error estimate of the data indicated an error rate of 9%. The
first feature was computed using 4 (X). A nonparametric error estimate of the
single feature indicated an error rate of 9%. This result is consistent with the
fact that the original classes were actually jointly normal. The data set was
reduced to two-dimension using the nonlinear mapping algorithm. A
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nonparametric error estimate in the two-dimensional subspace indicated an
error rate of 49%, which implies the two distributions were essentially identi-
cal. When a second feature was extracted from this subspace and combined
with the first feature, there was no change in the nonparametric error estimate.

Experiment 8: In the second experiment the first distribution was 100
normal samples with M, = [-1 —4 —1]7 and %, = /. The second distribution
was formed using two normal distributions with parameters

2 0.1 0 0]
My=10, Z,=1]0 41 0],
0 10 0 4.1
) 01 0 o]
Mp=|0|. Zp=|0 41 0], (10.123)
0 0 0 4.1]

where the second subscript serves as an identifier for the two clusters. Fifty
samples from each cluster were combined to provide 100 samples. A non-
parametric error estimate of the data set indicated an error rate of 8%. The first
feature was extracted, and a nonparametric error estimate indicated an 11%
error rate. The data set was reduced to two-dimension using the nonlinear
mapping algorithm. A nonparametric error estimate in the two-dimensional
subspace produced an error rate of 40%, indicating improvement was possible.
A second feature was extracted in the two-dimensional subspace. The resulting
nonparametric error estimate of the two features was 8%. Since this was equal
to the error rate of the original data, the feature extraction process was ter-
minated.

10.5 Feature Subset Selection

Up to now. we have assumed that the features are functions of all the
original variables, thus preserving as much classification information as possi-
ble contained in the original variables. This assumption is reasonable in many
applications of pattern recognition, particularly for the classification of random
processes. A feature extractor for random processes may be interpreted as a
filter, with the output time-sampled values to be functions of all input time-
sampled values. However, in some other applications such as medical diag-
nosis, we need to evaluate the effectiveness of individual tests (variables) or
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their combinations for classification, and select only the effective ones. This
problem is called feature subset selection. The best subset of m variables out
of n may be found by evaluating a criterion of class separability for all possible
combinations of m variables. However, the number of all possible combina-

n
tions, (m), becomes prohibitive even for modest values of m and n. For exam-

ple, with n =24 and m = 12, the number becomes 2,704,156. Therefore, we
need some procedures to avoid the exhaustive search.

Backward and Forward Selections

In this section, we will discuss two stepwise search techniques which
avoid exhaustive enumeration [12-14]. Although the procedures are simple,
they do not guarantee the selection of the best subset.

Backward selection: Let us study a simple example in which two
features are chosen out of four as in Fig. 10-17(a). The subset of features a, b,

% 1/2K
(2,34) (}34(« (123)  (12) (2,3) (2:4)
3,4y (1,4) (1,3) (1,2,3) (2,3,4)
(a) Backward selection (b) Forward selection

Fig. 10-17 Stepwise feature subset selection.

and ¢ is denoted by (a,h.c). A criterion of class separability is selected, and its
value for (a,b,c) is expressed by J;(a,b,c) where the subscript indicates the
number of features in the subset. The backward selection procedure starts
from the full set (1,2,3,4). Then, eliminating one feature from four, all possi-
ble subsets of three features are obtained and their criterion values are
evaluated. If J5(1,3,4) is the largest among the four J3's, (1,3,4) is selected as
the best subset of three variables. Then, eliminating one more feature only
from (1,3.4), we can obtain the subsets of two features, among which the sub-
set with the largest J, is chosen as the best solution of the problem.
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Forward selection: The forward selection procedure starts from the
evaluation of individual features as shown in Fig. 10-17(b). Let the problem
be to select three featurcs out of four. If J,(2) is the largest among all J(-)’s,
one feature is added to feature 2 to form the subset of two features. If J5(2,3)
is the largest among all /,(2,-)’s, one more feature is added to (2,3) to form the
subset of three features. Among all possible (2,3,-)'s, the best subset is the one
which gives the largest J;(2,3,).

The reason why these stepwise searchs cannot necessarily select the
optimum subset may be better understood by observing the forward selection
procedure. Suppose that x; and x, of Fig. 10-1 are two features among n,
from which m features are to be selected. Since the m,- and ®,-marginal den-
sity functions of x; are heavily overlapped, x, drops out when individual
features are evaluated. The same is true for X,. Thus, one of the other
features, say Xs, is selected as the best single feature. At the next stage. only
combinations of xs and others are examined, and so on. As the result, the
combination of features including both x, and x, might not come up for
evaluation at the later stages. As seen in Fig. 10-1, although x, and x, are
poor features individually, their combination gives a good feature space in
which the ®,- and ®,-distributions are well separated. The forward selection
procedure could fail to pick that information. This phenomenon is observed
frequently when two features are highly correlated. In general, it is true for
signal representation that we can eliminate one feature when two features are
highly correlated. This is due to the fact that the second feature gives little
extra information for representing signals. For an example of Fig. 10-1, know-
ing one’s height (x;) we can well guess the weight (x,). On the other hand,
highly correlated features could enhance class separability significantly. as seen
in Fig. 10-1. Eliminating one, we might lose vital information for
classification.

Thus, both backward and forward selection procedures give simple
search techniques which avoid exhaustive enumeration. However, the selection
of the optimal subset is not guaranteed.

Branch and Bound Procedure [15]

Branch and bound methods have been developed to obtain optimal solu-
tions to combinatorial problems without involving exhaustive enumeration
[16-19]). In this section, we formulate the feature subset selection as a
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combinatorial optimization problem, and develop an efficient algorithm for
selecting feature subsets. The subset selected by this procedure is guaranteed
to be the best among all possible combinations of features.

Basic branch and bound procedure: Rather than enumerating the sub-
sets of m features, we will find it more convenient to enumerate the subsets of
m = n — m features discarded from the n feature set. Let (z|,...,z;) denote
the set of those m discarded features. Each variable z; can take on integer
values in {1,...,n}). However, since the order of the z;’s is immaterial, every
permutation of the sequence {z,...,z;} will yield the same value of the cri-
terion. Moreover, all the z;’s should be different. Hence, it is sufficient to
consider the sequences which satisfy

21 <25< ... <2Zy. (10.124)

We will discuss more gencral enumeration of the subsets later.

The feature selection criterion is a function of the m features obtained by
deleting the m features from the n feature set. However, for notational con-

venience, we write the criterion as J;(z,...,z;). Then the subset selection
. . * *
problem is to find the optimum sequence (zy, . . . ,z;) such that
Ja@h, .z = max Ja(zg,.zm) (10.125)

foll T4 =

If the criterion were to be minimized instead, all the inequalities in the follow-
ing discussion would be reversed.

Enumeration of the sequences (zi,...,z;) satisfying (10.124) can be
illustrated by a solution tree. Figure 10-18 is a solution tree corresponding to
n=6andm =2 (m =4). Anode at level / is labeled by the value of z;. Also,
each node can be identified by the sequence of discarded features; for example,
(1,4) for node A in Fig. 10-18. At level 1 of Fig. 10-18, z, can only assume
values 1, 2, or 3, because, with z, greater than 3, it would not be possible to
have sequences (z,, . . . ,z4) satisfying (10.124). Similar considerations govern
the enumeration at other levels of the tree, and the largest value for z; must be
(m+i) in general.

Let us assume that the criterion J satisfies monotonicity, which is defined
by
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z=0
z, 1 R2 R3 LEVEL 1
A
z, g2 R3 04 13 R4 b4 LEVEL 2
z, 43 b4 b5 b4 b5 b5 k4 &5 b5 L5 LEVEL3
z s ! b 4 b & ! § ! b & b b : b LEVEL4
4 4 5 65 66 5 6 6 65 6 6 6 6

n=6m=2(M=4)
Fig. 10-18 The solution tree for the basic algorithm.

Ji@p)2Sy(z 22 2050z, ) (10.126)

The monotonicity is not particularly restrictive, as it merely implies that a sub-
set of features should be no better than any larger set that contains the subset.
Indeed, a large variety of feature selection criteria do satisfy the monotonicity
relation. They are the Bayes error, asymptotic ANN error, distance measures
such as the Bhattacharyya distance, and the functions of the scatter matrices.

Let o be the best (maximum) value of J;(z, . ..,z;) found so far in the
search. If

Ji(zy. . ) <o for k<m, (10.127)
then by (10.126)
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J,;(Zl, N S Y SR R .,Z"_,) Slk(Zl. .. .,Zk) <q. (10128)

for all possible {z;,;,...,z5}.

This means that, whenever the criterion evaluated for any node is less than ¢,
all nodes that are successors of that node also have criterion values less than o,
and therefore cannot be optimal. This forms the basis for the branch and
bound algorithm.

The branch and bound algorithm successively generates portions of the
solution tree and computes the criterion for the nodes explored. Whenever a
suboptimal partial sequence of nodes is found to satisfy (10.128), the subtree
under the node is implicitly rejected, and enumeration begins on partial
sequences which have not yet been explored.

We shall give a simple procedure for enumerating the partial sequences
with z, <. .. <z as follows.
Basic algorithm:
(1) Initialization: Set 0. = —oo, the level i = 1, and z, = 0.

(2) Generate successors: Initialize LIST (i) which is the list of the featurc
values that z; can assume given the values of (z,,...,z;_;). Thatis,

LIST()=z;y+1, z;_,+2,. . .om+i} (i=1,....m). (10.129)

(3) Select new node:

If LIST (i) is empty, go to (5). Otherwise, set z; = k, where

J,’(Z[, N .,Z,‘_],k) = max J,'(Zl, .. .,Z,'_],j) . (10130)
JELIST (i)

Delete k from LIST (i).
(4) Check bound:

IfJ;(z,....z;) <, goto (5). If level i = m, go to (6). Otherwise, set
i =i+ 1 (advance to a new level) and go to (2).

(5) Backtrack to lower level:
Seti =i — 1. If i =0, terminate the algorithm. Otherwise go to (3).

(6) Last level:
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Set a=J5;(,,...,z5) and set (zT, . ,::—,) =(zy,...,25). Goto (5).

The functioning of the algorithm is as follows. Starting from the root of
the tree, the successors of the current node are enumerated in LIST (/). The
successor, for which the partial criterion J;(zy, .. .,z) is maximum (the most
promising node), is picked as the new current node, and the algorithm moves
on to the next higher level. The lists LIST (i) at each level / keep track of the
nodes that have not been explored. Whenever the partial criterion is found to
be less than «, the algorithm backtracks to the previous level and selects a
hitherto unexplored node for expansion. Whenever the algorithm reaches the
last level m, o is updated to be the current value of J5(z,,...,z5) and the
current sequence (2, ...,z5;) is saved as (zT, S ,z:—,). When all the nodes in
LIST (i) for a given i are exhausted, the algorithm backtracks to the previous
level. When the algorithm backtracks to level 0, it terminates. Upon termina-
tion. the current value of (z. . .., z=-) gives the complement of the optimum set
of m features, and the current value of @ gives the optimum value of the cri-
terion. The procedure guarantees that all sequences are either explicitly
evaluated or implicitly rejected, and thus the sequence (zj,...,z5) gives the
best subset of features among all possible subsets.

Alternate enumeration: The enumeration scheme of the basic algorithm
is direct and simple. The partial sequences enumerated (see for example, Fig.
10-18) satisfy (10.124). Relation (10.124) ensures that no two equivalent
sequences are enumerated. That is, a permutation of a previously enumerated
sequence will not be enumerated again.

On the other hand, we note that, with reference to Fig. 10-18, the nodes
at a given level do not all have the same number of terminal nodes. Node
(1.2) has 6 terminal successors, while node (1,4) has only one. As a result, if
the suboptimality test (10.128) is satisfied for node (1,2) (i.e., if J,(1,2) < o),
six sequences are rejected as being suboptimal, while for node (1,4) only the
single sequence (1.4,5,6) would be rejected. Therefore, we would like nodes
with more successors 10 have a greater probability of the suboptimality test
(10.128) being satisfied: i.e., those nodes should have smaller values of the cri-
terion J; than the ones with fewer successors.

One way to accomplish the above is to initially rank the features from
good to bad, and reorder them with 1 as the single feature whose removal from
the full set of n features yields the smallest value of the criterion, and n as the
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worst single feature. The basic algorithm is then applied to the ordered
features. Thus, at level 1, J(1) <J (2) <J(3).

This reordering will obviously be effective at the first level, but there is
no guarantee that, at successive levels, nodes with more successors will always
have smaller values of the criterion.

If we remove the restriction (10.124), we can order the features at each
level to realize maximum advantage of the suboptimality test (10.128). This
results in a slightly more involved enumeration procedure because we have to
ensure that the sequences enumerated would still be unique to a permutation.

The alternate enumeration scheme is based on the same tree structure as
before. But, the successors of each node are ordered at each level so that suc-
cessors with the smaller values of the partial criterion will be nodes which will
have larger number of successors in turn.

Following is the improved algorithm, the branch and bound algorithm
employing the new enumeration scheme.

Improved algorithm: The following notation will be used in the
improved algorithm.

LIST (i): an ordered list of the features enumerated at level /.

POINTER (i): The pointer to the element of LIST (i) being currently con-
sidered. For example, if the current element in LIST (i) is the kth, then
POINTER (i) = k.

SUCCESSOR (i,k): number of successors that the kth element in LIST (i) can
have.

AVAIL : a list of available feature values that LIST (/) can assume.

(1) [nitialization:

Set oo =~o0, AVAIL = {1,2,...,n}),i =1, LIST(0) = {0},
SUCCESSOR (0,1) =m + 1, POINTER (0) = 1.

(2) Initialize LIST{(i):
Set NODE = POINTER (i—1). Compute Ji(z,...,z;_,k) for all &k in
AVAIL. Rank the features in AVAIL in the increasing order of

Ji(zy, ... ,zj-1,k) and store the smallest 1 of these in LIST (i) in the increasing
order (with the first element in LIST (i) being the feature in AVAIL yielding the
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smallest J;), where r =SUCCESSOR (i—1, NODE). Set SUCCESSORi,j)
=r—-j+1forj=1.2,...,r. Remove LIST (i) from AVAIL.

(3) Select new mode:

If LIST (i) is empty, go to (5). Otherwise, set z; = k, where k is the last
element in LIST (i). Set POINTER (i) = j, where j is the current number of
elements in LIST (/). Delete k from LIST (i).

(4) Check Bound:
IfJ;(zy. ..., z;} < @, return z; to AVAIL and go to (5).

If level i = m, go to (6). Otherwise seti =/ + 1, and go to (2).

(5) Backtrack:

Set i =i — 1. If i =0, terminate the algorithm. Otherwise, return z; to
AVAIL and go to (3).

(6) Final level, Update bound:

Set o= J5;(zy....,z;) and save (z, ..., z7) as (z1.....zm). Return z;
to AVAIL. Go to (5).

At the conclusion of the algorithm, (i, ... ,zf,'—,) will give the comple-
ment of the best feature set as before. Figure 10-19 illustrates, for a random
example, the tree enumerated including the nodes which were rejected by the
suboptimality test (10.128). At level I, features 4, 3, and 6 were enumerated
because J,(4) <J(3) <J (6) <J (1), J,(2), J,(5). The SUCCESSOR vari-
ables determine the number of successor nodes the current node will have at
the next level. AVAIL keeps track of the feature values that can be enumerated
at any level. The algorithm is thus totally independent of the ordering of the
features. No sequence is enumerated more than once (even as a permutation)
and all possible sequences are considered either explicitly or implicitly, guaran-
teeing optimality of the subset sought. Moreover, the suboptimality test
(10.128) is always used to the best advantage, rendering the algorithm very
efficient. Also, the ordering of the nodes does not mean extra computation,
because the partial criteria would be evaluated for the successors of each node
anyway.
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z,=0
z, £ a R3 R6 LEVEL 1
z, {1 p3 R5 g5 R 1 5 LEVEL2
Zy 43 b2 b6 05 k2 b2 g2 &1 b6 b1 LEVEL3
24 O 4 b & b & L b 4 5 & b b X LEVEL 4
5 6 26 55 2 6 6 6 1 6 6 2

Fig. 10-19 The solution tree for the improved algorithm.

Recursive computation of criteria: We noted in the previous section
that the algorithms are implemented with the criterion evaluated for the partial
sequences (z,...,z). The nature of the enumeration schemes requires that
the value of the criterion be computed successively as features are deleted from
the full set. For a class of criteria, it is possible to evaluate the criterion recur-
sively, as a new feature is deleted from the present partial set. Recursive com-
putation results in substantial computational savings. We will derive recursive
equations for the class of quadratic criteria. The function of the scatter
matrices is a example of quadratic criteria. The criterion always takes the form
of

Jo = XIS X, (10.131)

where X, is a k-dimensional vector and S; is a kxk scatter matrix, when &
features are present. Also, the Bhattacharyya distance for the normal case has
the first term in the quadratic form (10.131). The determinant term of the
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Bhattacharyya distance can also be computed recursively as we will see later.

The inversion of S, is the major computational effort in evaluating
(10.131) as features are successively deleted from the full set of features.
When the ith feature is deleted, it is necessary to compute the inverse of S
with the /th row and column deleted. Without loss of generality, let the feature
being deleted correspond to the kth row and column of §,.

Se D
S, = [‘T' } . (10.132)
D" sy

A fundamental identity in matrix algebra gives S;' in terms of S7!, as

Seh o+ L5;.'_,1)1)7'5;.1l —%S;LD
a
S = L | , (10.133)
-—D'S;L, —
a a

where
a=sy-D'SLD . (10.134)

The reader can verify that the multiplication of (10.132) and (10.133) gives /.

If we write
» A C
Sy = cT bl (10.135)

then, by (10.133) and (10.135), it can be verified that
Sy =A - %CCT . (10.136)

Hence, S7!, can be computed from S;' with little computational effort. With
reference to branch and bound algorithms, the inverse matrices S;' are stored
for each level. The inverse at any level is computed from that at the previous
level using the recursive equation (10.136). Whenever the algorithm back-
tracks and proceeds down another branch, the inverse for the new S, can be
recomputed from the inverse at the level at which the branching occurred. For
example, in Fig. 10-18, after (2,4,5,6) is explored, the algorithm backtracks to
the node (2.3). The value of S[.' for the node (2,3) can be computed from the
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current value of S;' at level 1. The S;' for level 2 is updated to be this value
as feature 3 is now chosen to be z,.

It is also possible to recursively compute the quadratic X} St'X, for k-1
features given its value with k features and the S;' matrix from the previous
level. This is useful in Step (3) of branch and bound algorithms, where it is
necessary to compute the criterion after deleting one feature at a time from a
partial set. This avoids computation of S;', during this step. Once a node is
selected however (Step (4)), the S;' for the new level has to be updated using
(10.136).

Let the criterion with k features be denoted by J; = X1S:' Xy, and let us
assume that the kth feature is being deleted as before.

The criterion with k—1 features is now J,_; = X!_, St} X,_,, where
X, ={XI_x1", (10.137)
k=11
and S;_; is defined as in (10.132).
From (10.136),

X8I X = XE 14 - CCTIG
=Xi1A Xy - %(CT X (10.138)
Consider

- A C| X,
XZSZlXA = [X[_]X;\-] {CT bi] [ v }
Xg

=XI_AX,_ +2xC7X,_, +bx3 . (10.139)

Equations (10.138) and (10.139) together give
XESil X = XESP' X, = b F + 20 CTXy + - (CTX 1)

= XISi' X, - TAICT bIX)? (10.140)
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Note that [CT b] is a row of S;' corresponding to the feature being deleted.
Hence [CT 5]X, is merely the inner product of that row with X;. Thus, the
Ji(zy,...,gi_1,j) in the algorithms can be directly evaluated from
Jisi(z1, ... ,z;2)) by (10.140) without actually having to compute St!; for all
the variables j. Incidentally, (10.140) also furnishes proof that J is monotonic.

The determinant term in the Bhattacharyya distance for the normal case
can be computed recursively.

Let S, denote a matrix with & features. It is necessary to evaluate
[Si-1 |, when the kth feature is deleted from S;. Recalling that at every level
of the algorithm we have S;' available (used in the quadratic term). Thus,
IS; )1 can be directly computed from 15,1 of (10.132) as follows:

_ |Sey = —DDT 0
IS, = |21 S

DT Skk

=Sklek—l - LI)DT|
Skk
:Skk|S‘-A| |(1 - LDTS‘_I_ID)
Sik

= (s — DTSFLDYIS ) 1, (10.141)

where the third line is obtained from the second by (2.143). The ratio of two
determinants, s, — D7S;! D, is readily available from the (k.k) element of S;'
as seen in (10.133) and (10.134).

Experiment 9: The algorithms were tested on multispectral data
acquired from airborne remote sensing scanners at the Laboratory for Applica-
tions of Remote Sensing (LARS) at Purdue University.

The data comprised of 423 sample vectors each from two classes; Soy-
bean and Corn. There were 12 data channels, corresponding to 12 bands of the
spectrum in which the sensing was performed. Each channel is a feature, and
the problem was to select a subset of the channels which was best according to
a given criterion. The criterion used was J = tr(S,!S,,) with the estimated
means and covariance matrices.
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Table 10-2 shows the number of subsets evaluated for three algorithms:
two from the basic algorithm and one from the improved one.

TABLE 10-2
THE RESULTS OF THE BRANCH AND BOUND PROCEDURE

NUMBER OF SUBSETS ENUMERATED
Case | Exhaustive | Basic algo- Basic algo- Improved
search rithm rithm with algorithm
without ini- initial order-
tial ordering | ing
12
4 495 100 42 32
24
2,704,156
12 Did not ter- 13,369 6,256
minate after (249 sec. (140 sec.
600 sec. CPU time) CPU time)
CPU time
(CDC 6500)

In the first algorithm, features are ordered according to the wave-lengths of the
spectrum bands from the shortest to the longest, while in the second algorithm,
features are ordered according to the class separability of individual feature.
The basic algorithm was used for both cases. The third is the improved algo-
rithm. Table 10-2 shows significant saving achieved by the basic algorithm
with initial ordering and the improved algorithm [15].

Experiment 10: To evaluate the performance of the algorithms for a
larger problem, an additional set of 12 features was generated by taking the
square of 12 features of Experiment 9. The covariance matrices and the means
were computed for the 24 feature set. It is to be expected that the resulting 24
feature set is very correlated, and there may be several subsets that yield very
close values of the criterion.
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Again, significant saving was achieved by the basic algorithm with initial
ordering and the improved algorithm. The superiority of the improved algo-
rithm is to be expected, because in the large variable problem the initial order-
ing scheme for the basis algorithm will not be very effective at higher levels.
In fact, the basic algorithm without initial ordering did not even terminate after
600 seconds of computation (by CDC6500). Table 10-2 summarizes the
results [15]. Table 10-3 gives the number of nodes expanded (subsets

TABLE 10-3
SUMMARY OF BEHAVIOR OF ALGORITHMS

LEVEL |
Algorithm V2] 3] o4 s 6 7 8 9 0 | |2

Basic with | No. of nodes
cnumerated 13191 | 370 | 776 | 1376 | 2083 | 2961 3656 | 4185 | 2953 | 224% | 771

ordering No. of nodes

rejected 0 9 89 152 293 290 669 691 2325 1107 1718 | 746
No. of nodes

Improved enumeraled 13 ] 91 | 323 | 631 1091 1674 | 2024 1742 1242 910 347 188
No. of nodes

rejected 0 13 90 127 199 452 756 800 466 633 180 168

enumerated) at each level and the number of nodes for which the inequality
(10.128) was satisfied (subsets rejected) at each level [15]. Because of the
reordering of the features, every node that was rejected at each level of the
improved algorithm results in a large number of suboptimal sequences being
discovered. Hence, fewer nodes are enumerated overall in the improved algo-
rithm than in the basic algorithm. The additional complexity of the improved
algorithm appears justified in the light of its efficiency. Also, the improved
algorithm is independent of the initial ordering of the features.

Computer Projects

1. Find the suboptimal linear features from Data /-A by maximizing the
Bhattacharyya distance.

(a)  Use the algorithm for |, dominant.
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(b)  Use the algorithm for p, dominant.

2.  Repeat Experiment 2. Change the parameters N, n, «, and k to see the

effects.
3.  Repeat Experiment 3 for Data /-A.
4.  Repeat Experiment 6.
5. Repeat Experiment 8.
6. Repeat Experiment 10 for Data /-A.
Problems

1.  The density functions of three classes consist of three impulses for each
class as in the figure, each impulse carrying the probability of 1/3.

(a)  Select one linear feature which maximizes tr(S;.' Sp).
(b) Select one linear feature which maximizes tr(S;'S,) between ®,

and ®,.

X2
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10.

Find the optimum linear features to maximize tr(A TS,A) under a con-
straint ATS,A = I, where A is an nxm (m<n) transformation matrix.

Find the optimum linear features to maximize tr(A’S,A) under a con-

straint tr(A TSQA) = ¢, where A is an nxm (m<n) matrix, and ¢ is a con-

stant. Point out the difference between Problems 2 and 3.

Let A,,....A, be the eigenvalues of S3'S|, and W,,....u, be the

eigenvalues of (A75,A)'(ATS,4) where A is an nxm (m<n) transforma-

tion matrix. Prove A; 2u;.

Show how to find the suboptimum linear features to maximize the diver-

gence, when the second term is dominant. Is it possible to obtain the

explicit solutions to find linear features by optimizing the first term of

the divergence?

Let f(M,,....M;,S,) be a class separability criterion.

(a)  Prove that X, (9f /0M,,) = 0 must be satisfied in order for f to be
invariant under a coordinate shift Y (X) = Y*(X) +V where Y (X)

is the optimal solution. The mixture mean of Y (X) is assumed to
be zero.

(b)  Prove that & (3f /oM )M, = =2(0f"/9S,,y) S,y must be satisfied
in order for f to be invariant under nonsingular linear transforma-
tions ¥ (X) =BY"(X).

Let J = te( S, (M MT+M MT-M MT-M,MT)| be the class separability
criterion where

1 -1
M1:|:l‘|. M2=|:_1:|, Z]:ZZ=[. P|=P2:0.5.
Compute 4, and find one linear feature which maximizes tr(S;'/ ).

Let f (M, ... ,M,;,S,) be the class separability criterion. Find the value
of ftor the ideal features in terms of asymptotic NN errors.

Define the nonparametric within-class and mixture scatter matrices, and
prove that they are the same as the parametric ones, S, and §,,,, when the

local means approach the class means.

Two normal distributions are characterized by
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8 15 4 0
M1=I,Z|=l,and M2=2,Z2=09.

(a) Plot the trajectories passing through (15, 1), (15, 2), and (15, 3) in
the original X-space.

(b) Plot the trajectories in the Y-space, corresponding to the three tra-
jectories in the X-space. Use o= In2.
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Chapter 11

CLUSTERING

In the preceding chapters, we have presented a considerable body of
design theory for pattern recognition. Procedures for classifier design, parame-
ter estimation, and density estimation have been discussed in detail. We have
consistently assumed the existence of a training set of classified samples. In
this chapter, we will focus our attention on the classification of samples
without the aid of a training set. We will refer to this kind of classification as
clustering or unsupervised classification.

There are many instances where classification must and can be per-
formed without a priori knowledge. Consider, for example, the biological tax-
onomy problem. Over the years, all known living things have been classified
according to certain observable characteristics. Of course, plants and animals
have never borne labels indicating their kingdoms, phylae, and so on. Rather,
they have been categorized according to their observable characteristics without
outside supervision.

The clustering problem is not well defined unless the resulting classes of
samples are required to exhibit certain properties. The choice of properties or,
equivalently, the definition of a cluster, is the fundamental issue in the cluster-
ing problem. Given a suitable definition of a cluster, it is possible to distin-
guish between good and bad classifications of samples.

508
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In this chapter, two approaches to clustering will be addressed. One is
called the parametric approach and the other is the nonparametric approach.

In most parametric approaches, clustering criteria are defined, and given
samples are classified to a number of clusters so as to optimize the criteria.
The most commonly used criteria are the class separability measures which
were introduced in Chapter 10. That is, the class assignment which maximizes
the class separability measure is considered to be the best clustering result. In
this approach, the structure (parametric form) of the classification boundary is
determined by the criterion. The clustering algorithm, which determines
efficiently the best classification with respect to the criterion, is normally an
iterative algorithm. In another parametric approach, a mathematical form is
assumed to express the distribution of the given data. A typical example is the
summation of normal distributions. In this case, the clustering problem con-
sists of finding the parameter values for this distribution which best fit the data.

On the other hand, neither clustering criteria nor assumed mathematical
forms for the distribution are used in the nonparametric approach. Instead,
samples are separated according to the valley of the density function. The val-
ley may be considered as the natural boundary which separates the modes of
the distributions. This boundary could be complex and not expressible by any
parametric form.

In addition, clustering may be viewed as the selection of representatives.
In general, a density function may be approximated by the Parzen density esti-
mate around the representatives. Then, we may try to reduce the number of
representatives while maintaining the degree of approximation. An iterative
procedure to choose the representatives is discussed in this chapter.

11.1 Parametric Clustering

In this section, we will present, first, a general-purpose clustering algo-
rithm based on a generalized criterion. Then, the discussion for a specific cri-
terion follows.
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General Clustering Algorithm

The clustering algorithm developed in this section applies to a wide
range of criteria. However, it is necessary to specify the form of the criterion
as well as some other details of the clustering problem at the outset.

Clustering criterion: Assume that we want to classify N samples,
X4,...,Xy. These vectors are not denoted as random vectors because, in the
clustering problem, they are assumed to be fixed and known. Each sample is
to be placed into one of L classes, o, . .. ,®;, where L is assumed to be given.
The class to which the ith sample is assigned is denoted wy, (i =1,...,N).
For convenience, let the value of &; be an integer between | and L. A classifi-
cation € is a vector made up of the w,’s, and a configuration X * is a vector
made up of the X;’s, that is,

Q=[w, ... o1 (1.1
and
X =xT.. .x51". (11.2)
The clustering criterion J is a function of Q and X and can be written
J=J(en,, .. 05 Xy, LX) =JEXT) . (11.3)
By definition, the best classification €, satisfies either
J(QO;X*)=m§x or m{in J(E:X") (11.4)

depending on the criterion. For the remainder of this section, we will discuss
only the minimization problem, since the maximization is similar.

Example 1: Six vectors, X,,...,X4, of Fig. 11-1 are given. The
problem is to find class assignments of these vectors to one of two classes so
as to minimize a criterion. Let J = tr(S;!S,) be the criterion where S, and S,
are the within-class and mixture scatter matrices defined in (10.1) and (10.4).

For each classification, for example {X,,X,,Xs5}€ ®, and
{X3,X4,.X¢} € ®; as shown by dotted lines, or {X,,X,,X3} € o, and
{X4,X5.X6} € @, as shown by solid lines, the mean vectors and covariance
matrices for ; and ®, are estimated, and S,., S,,, and J can be computed.
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Fig. 11-1 An example of clustering.

Note that S, varies depending on the class assignment but S,, does not. The
class assignment by the solid lines would give the minimum J (the smallest
within-class scatter) among all possible combinations of class assignments.

Clustering algorithm: For a given clustering problem, the configuration
X" is fixed. The clustering algorithm varies only the classification Q. Ordi-
nary steepest descent search techniques cannot be applied because of the
discrete and unordered nature of €. Still, it is possible to define an iterative
search algorithm based on variations in J with respect to variations in Q.

Suppose, at the tth iteration, the classification is £2(%), where
Q) = oy, . - - 0] - (11.5)
If the ith sample is reclassified from its present class k;(¢) to class j, the cluster-
ing criterion varies by an amount AJ (i,/,{), which is given by
V(N R) =V (° VNN S VN - Y YRR T 4 BN A (S TO TS G ) (11.6)

If AJ(,j,{) is negative, reclassification of the ith sample to class j yields a
classification that is improved in terms of J. This fact is the basis of the fol-
lowing algorithm:
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(1) Choose an initial classification ©(0).

(2) Given the ({th classification (%), calculate AJ(,j,0) for
j=12,...,Landi=1,2,...,N.

(3) Fori=1,2,...,N, reclassify the ith sample to class ¢, where

AJ (i,1,%) = min AJ (i, 0) . (11.7)
J

Decide ties involving j = k;() in favor of the present classification. Decide
other ties arbitrarily. This step forms Q( + 1).

4 If Q@+ 1) = Q(), return to Step (2). Otherwise the algorithm is
complete.

The algorithm is simply the iterative application of a classification rule
based on the clustering criterion. Here, we adopted a procedure in which all of
the samples are reclassified simultaneously at each iteration. An alternative
approach is to reclassify each sample one at a time, resulting in similar but
slightly different clusters. In these iterative procedures, there is no guarantee
that the algorithm converges. Even if it does converge, we cannot be certain
that the absolute minimum of J has been obtained. Therefore, we must depend
on empirical evidence to justify the algorithm.

In contrast to these potential weaknesses, the algorithm described above
is very efficient. Like any good search algorithm, it surveys a small subset of
classifications in a systematic and adaptive manner. It is easily programmable
for any criterion of the form of (11.3).

Determining the number of clusters: So far, we have ignored the prob-
lem of determining the number of classes L, and have assumed that L is given.
However, in practice, L is rarely known. We not only need to determine L but
also the proper class assignment. For that purpose, we may run the clustering
procedure for the various values of L, and find the best classification for each
value of L. Let J; be the optimal criterion value for a given L after the cluster-
ing procedure has converged. If J] decreases as L increases, and either reaches
the minimum point at L or becomes flat after L, then we may use L as the
proper number of classes. Unfortunately, many of the popular criteria do not
have this favorable property. For example, consider J = tr(S},'S,.) of Example
1. As L increases, samples are divided into smaller groups, and consequently
the within-class scatter becomes smaller. This means that J might decrease
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monotonically with L. Finally, when L becomes N, the total number of sam-
ples, each class consists of one sample only, and there is no within-class scatter
(J =0). Although L =N minimizes this criterion, this is obviously not the
solution we want.

It appears, therefore, that some external method of controlling L is neces-
sary. Unfortunately, no unified theory for determining L has been fully
developed and accepted.

Merging and splitting: After a number of classes is obtained, we may
consider the merging of two classes into a single class or the splitting of a
class into a number of classes.

Basically, merging is desirable in two instances. The first is when two
classes are very similar. The similarity may be measured in a number of ways.
The Euclidean distance between two mean vectors is the simplest measure but
is not an accurate one. The Bhattacharyya distance of (3.152), based on the
normal assumption, could be a reasonable compromise between simplicity and
accuracy. The second instance in which merging may be appropriate is when
the population of a class is very small. In this case, the class may be merged
with the most similar class, even when the similarity is not very close.

Deciding whether or not a class is to be split is a more complex problem.
Too large a population suggests that the class is a candidate for a split. Mul-
timodal and nonsymmetric distributions as well as distributions with large vari-
ances along one direction are also candidates for splitting. In order to identify
these characteristics, various tests are necessary. Splitting a class may be car-
ried out by applying the clustering procedure to the samples in the class.

It goes without saying that this kind of merging and splitting is very
heuristic. Its merit lies in the fact that it is efficient and requires a minimum of
human interaction.

Multiple dichotomy: It is somewhat more satisfying to adopt an
approach which depends entirely on the clustering criterion J. One such
approach has been suggested [1] and is outlined as follows.

Suppose that for L =2 there are several distinct classifications which
yield a nearly minimal value of J. If these classifications differ only in the
classification of a few samples, there is no reason to suppose the existence of
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more than two classes. If the classifications are grossly different, however,
then it is evident that several classes are actually present.

2nd dichotomy

; ist dichotomy

Fig. 11-2 Multiple dichotomy of three classes of samples.

Figure 11-2 illustrates two possible dichotomies of a collection of sam-
ples apparently containing three classes A, A, and A;. One dichotomy
separates the samples into A; WA, and A;, while the other results in the two
classes A, and A, UA;. Thus, A3, A, and A, UA; = A, are seen to be dis-
tinct classes (A is the complement of the set A.)

Now let us consider the more general case where there are £ dichotomies
of a collection of samples containing L classes. Each dichotomy separates
these samples into two groups. Let §;; be the set of all samples assigned to
group j by the ith dichotomy for j = 1,2 andi = 1,...,k. Assume that the fol-
lowing two conditions hold.

(a) A dichotomy places each class into only one group, that is, classes
are not split by dichotomies.

(b) For each pair of classes, there is at least one dichotomy which does
not assign the two classes to the same group.

Select one group from each of the £ dichotomies and form a subset C as
the intersection of these k groups. By condition (a), if C contains one sample,
then it must contain all of the samples of that class. By condition (b), for any
other class, there is at least one of the k selected groups to which that class
does not belong. Therefore, if C is nonempty, then C contains one and only
one class. Hence, in order to construct all the L classes, we consider the 2*
subsets of the form.
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k
C(ilv---»jk):_qsij,~ (11.8)
where each j equals | or 2. Each nonempty C is a class. In our example, we
have
S”=A]UA2, S]2:A3, 52|=A|. SQZ=A2UA3, (11.9)
so that

C(l,D=85,nSy; =4,
C,2)=851NS»n=A,,
C2, DH=85:nS8y =0,

C(2,2)=85,n8,»n=A;3,

(11.10)

which is in agreement with our earlier argument.

The multiple dichotomy approach has a stronger theoretical basis than
the merging and splitting procedure. Further, it relies on no numerical criterion
other than J. However, implementation of the multiple dichotomy approach
can be difficult, especially when the true number of classes is large. In addi-
tion, the conditions (a) and (b) mentioned above are rarely satisfied in practice.
These difficulties may be overcome somewhat by imposing a hierarchical
structure on the classes. The samples are divided into a small number of
classes, each class is divided further, and so on. Under this strategy, we need
not find every possible dichotomy of the entire collection of samples.

At this point, we depart from general discussion of the clustering algo-
rithm. Obviously, the discussion is incomplete. We have a basis, however, to
develop and implement clustering procedures. Therefore, let us turn our atten-
tion to the detailed derivations of clustering procedures.

Nearest Mean Reclassification Algorithm [2-5]

In this section, we will discuss clustering procedures based on parame-
ters such as mean vectors and covariance matrices. We will show that the cri-
teria of class separability discussed in Chapter 10 play an important role, and
that the iterative algorithms of the previous section take on simple forms.
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Criteria: Clustering can be considered as a technique to group samples
0 as to maximize class separability. Then, all of the criteria which were dis-
cussed in Chapter 10 may be used as clustering criteria. In this section only
functions of scatter matrices are discussed due to the following reasons:

(1) The extension to multiclass problems is straightforward. In this
respect, the Bhattacharyya distance has a severe disadvantage, since it can be
applied only to two-class problems.

(2) Most clustering techniques are based on the scatter of mean vectors.
Finding clusters based on covariance-differences is extremely difficult, unless
some mathematical structure is imposed on the distribution. Therefore, the
functions of scatter matrices fit well to clustering problems.

(3) The simplicity of the criteria is a significant advantage, because in
clustering we have the additional complexity of unknown class assignment.

For feature extraction, we could choose any combination of S, S,,., and
S, as Sy and S, to form a criterion J = tr(S3'S ). However, for clustering it is
preferable to use S,, as S,, because S, is independent of class assignment. It
would be too complicated if we had to recompute the inverse of S, each time
the class assignment was altered in iteration. Therefore, our choice is limited
to either tr(S;!S,) or 1r(S;'S,.). These two criteria are the same, because
tr(S;'S,) =1r{S, (S,=S.)} =n—tr(S,;'S,). In this chapter, we will use
J =1r(S,'S,).

Another important consideration in selecting criteria for clustering is to
ensure that the clustering procedures give the same classification for a given set
of samples regardless of the coordinate system of these samples. The chosen
criterion, J = tr(S,!S,.), satisfies this condition, since the criterion is invariant
under any nonsingular linear transformation.

Clustering algorithm: Let us assume that My =0 and S,, =/ without
losing generality. If the given samples do not satisfy these conditions, we can
shift the coordinate origin and whiten the data with respect to S,,,. Then, using
(10.1) the criterion is rewritten as
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L N,
J=us, = }: }:(x‘” MHTXY - M,)

r=1 l J=1

=—ZZIIX(" M2 (11.11)

l 1j=I1
Changing the class assignment of X; from the current class &; to class j at the

/th iteration, we delete from (11.11) the term ||X,- -M; ('Z)||2 and insert a new
term [[X; — M;®lI%. Thus,

MG = %, = MO - X, - M ol7) (11.12)

Since the second term of (11.12) is independent of j, the reclassification of X;
at the “th iteration can be carried out by

IX; - MOl =min X, -M,O) - Xe o. (11.13)
I

In words, the algorithm becomes:

(1) Choose an initial classification, €Q(0), and calculate
M 0),..., M, (0).

(2) Having calculated sample mean vectors M ({), ... .M, () at the ‘th
iteration, reclassify each X, according to the nearest M (7).

(3) If the classification of any X; is changed, calculate the new sample
mean vectors M (' +1),... ,M,(+ 1) for the new class assignment, and
repeat from Step (2). Otherwise, stop.

This algorithm is called the nearest mean reclassification rule.

Figure 11-3 shows how the iterative process works. At the ith step,
samples are divided to three clusters, and their sample means, M;()’s, are com-
puted. All samples are now reclassified according to the nearest means. That
is, the new boundary is piecewise linear, bisecting each pair of M;({)’s. In Fig.
11-3, there are three clearly separated clusters. We can see that the boundary
is indeed improved by this operation.

From the above discussion, some propertics of the nearest mean
reclassification algorithm become evident. They are:

(1) Clusters are divided by piecewise linear bisectors. Only the means
contribute to determine the boundary and covariance matrices do not affect the
boundary.
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-th step

(2+1)-th step

Fig. 11-3 An example of the nearest mean reclassification algorithm.

(2) The number of clusters must be preassigned.

(3) The initial classification, €2(0), may be given randomly. No matter
how Q(0) is given, the M;(0)'s are computed and the reclassification of sam-
ples according to the nearest M;(0)’s results in a piecewise linear boundary.
This is equivalent to selecting the number of vectors, M;(0)’s, initially accord-
ing to the number of clusters. Random class assignment does not impose any
extra instability on the algorithm.

In order to verify the algorithm, the following experiment was con-
ducted.

Experiment 1: One hundred samples were generated from each of Data
I-A, and mixed together to form 200 samples. Then, these samples were
classified to two clusters. Table 11-1 shows the confusion matrix of this
experiment [5]. All 100 samples from ®; with 19 samples from ®, were
assigned to one cluster, and 81 samples from ®, are assigned to the other clus-
ter. The error rate is 19/200 = 0.095. Recall that we got 5% error for this data
by designing the optimum linear classifier in Chapter 4. Considering the fact
that any covariance information was not used in this clustering algorithm, the
error rate of 9.5% is reasonable. Furthermore, since all error samples came
from one class, we could improve the error rate simply by adjusting the deci-
sion threshold.

Convergence [5]: The nearest mean reclassification algorithm is not
guaranteed to converge. In this section, we will discuss the conditions under
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TABLE 11-1

CONFUSION MATRIX FOR THE NEAREST MEAN
RECLASSIFICATION ALGORITHM

Assigned class

1 2
Actual 1 100 0
class 2 19 81

which the separating hyperplane converges for two normal distributions with
equal covariance matrices.

Let us assume that two normal distributions are Nx(M,,Z,) and
Ny(M,,X,) after normalization and that X, =X, =Z. The normalization
makes S,, =/ and M, = 0. The Bayes classifier in this case becomes linear as

My-M)Z'X+c=0, (11.14)

where ¢ is a constant. Since S, =/=X+P M M! +P,M,M! and
MOZO:PIMI +P2M2,

P
2=1—PIMIM,T—P2M2M§=1-F2-M2MT, (11.15)
1

MZ—IW|=PL'M2. (11]6)
H

Using (2.160),
Sl — (11.17)

Substituting (11.16) and (11.17) into (11.14), the Bayes classifier is

— MIX+c=0. (11.18)
P -PMIM,

Thus, the optimum hyperplane for the equal covariance case is always in the
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direction of M, which is the same as the mean-difference vector M,~M .
This property, which the original coordinate system does not have, is a
significant advantage of the normalized coordinate system.

For the equal covariance case, we can show that the algorithm converges
to M,—M | from a wide range of initial classifications. After a given iteration,
samples are separated by a hyperplane whose direction is, say V dvli =1, as
shown in Fig. 11-4. Also, the position of the hyperplane is specified by ¢, and

P1tz1

Fig. 11-4 Separation of two distributions.

7, which are the distances of M, and M, from the hyperplane. Let D, and D,
be the centers of probability mass for the positive and negative sides of the
hyperplane. Then, following the nearest mean reclassification rule, the direc-
tion of the succeeding hyperplane will be D,-D,. So, our convergence proof
is to show that the angle between D,—D, and M ,—M | is smaller than the angle
between V and M,—-M .

Since the hyperplane separates each distribution into two parts, the posi-
tive and negative sides, we have four probability masses R;; (i = 1,2; j = p,n),
as shown in Fig. 11-4. Let D;; and g;; be the mean vectors and populations of
these probability masses. Then,
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a;
D,‘I7=M,'+_Z,'V, (1119)
O;b;
a;
Dy =M; - ———%V, (11.20)
o, (1-h;)
qp =Pibi , (11.21)
Gim = Pi(1-b)) (11.22)
where
. )2
1 oo 1., | 1 2
.= ——dl = —expl-— |— | |]. 11.23
= oo SRl CME = el || (1-23)
| e 1 P 8,‘
b = -5 =1-®|x— 11.24
ol =V'LVv. (11.25)

and @ is the normal error function. The sign + or — is selected, depending on
whether M; is located in R, or R,,. The details of the derivation of (11.19)
through (11.25) are left to the reader. However, the following information
could be helpful in deriving (11.19) through (11.25). Since X is normal,
y = V' X is also normal with the variance of (11.25). In the y-space, the proba-
bility of mass for the positive side, b;, can be computed by (11.24). The vector
D,;—M; bas the direction of X;V, and the projections of D, - M; on
V(j=p.n) are VT(D,-,, -M) =a0:/b; and VD, — M) =—a,c,/(1-b;).
These are obtained by computing the expected values of y for the positive and
negative sides. From D;; and ¢;;, D,, and D,, are obtained as

ql/)D Ip + QZ/JDZP

D, = , (11.26)
r qlp+(12p
;D a T IDI
D”: AT q 20002y . (1127)
Gt qoy

Substituting (11.19) through (11.22) into (11.26) and (11.27),
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D = Plpz(bl—bz)(Ml—Mz)“"{Pl(a1/61)21+P2(02/02)22}v

r (P16 +P2b ) 1-(P b +P,b5))
(11.28)
For the equal covariance case,
2, =2%,=2 and 0,=06;=0. (11.29)

Furthermore, under the normalization of S,, =/ and My =0, £ and M,—M | are
expressed as functions of M, as in (11.15) and (11.16). Therefore, (11.28)
becomes

D,-D,=c My +c,V, (11.30)
where
o = Pz(bz—bl)—(l/O')(Pz/Pl)(Pla|+P2a2)M§V
] (P b +P b)) 1~(P b +P b))} ’

_ (1/0)(P101+P2(12)
T (P b +P by 1=(P (b +P3bo))

(11.31)

The normal of the new hyperplane has a component in the direction of V
and another in the direction of M,. If the coefficient of M,, ¢, has the same
sign as M7V, the successive hyperplane becomes more nearly parallel to M.
Since ¢, and the denominator of ¢, are positive, we need to show that the
numerator of ¢; and M3V have the same sign. We examine only the case
where MIV > 0. The discussion for MIV < 0 is similar to the one for
MIV > 0. For MIV > 0, we see from Fig. 11-4 that

O+5h=M=M)V= PLMgv . (11.33)
|

Using (11.33), the condition for convergence becomes

7 13
o +4h
b, —b, >

(Pya, + Pya,) . (11.34)

It is easily seen that the inequality of (11.34) is not satisfied for certain
combinations of parameters. However, the region of parameters where (11.34)
is satisfied can be calculated numerically. The result is shown in Fig. 11-5.
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Fig. 11-5 Region of convergence.

Equations (11.23) and (11.24) with (11.34) show that we have three parameters
in (11.34),i,/0,%/c,and P, (P, =1—P)), or

k=2 y=—— . and P,. (11.35)
] 0+
In Fig. 11-5, the convergence regions of y and P, are plotted for various

values of k [5]. The figure shows that convergence is quite likely in practice,
except for either extreme P ’s or ¥’s.

Branch and bound procedure [6]: The nearest mean reclassification
algorithm works fine for many applications. However, there is no guarantee of
the convergence of the iterative process. Also, the process might stop at a
locally minimum point and fail to find the globally minimum point.

Since assigning a class to each sample is a combinatorial problem, the
branch and bound procedure discussed in Chapter 10 may be applied to find
the optimum class assignment.

Figure 11-6 shows a solution tree for the clustering problem with four
samples and three clusters. In general, there are LV different Q’s for classify-
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Fig. 11-6 A solution tree for clustering.

ing N sample vectors into L clusters. However, since the label of each cluster
may be chosen arbitrarily, each classification could have several different
expressions for €. For example, Q= [1122] and Q= [223 3] are the same
classification, both indicating that X, and X, are in one cluster and X, and X4
are in one of the other clusters. In order to eliminate this duplication, we
assign the first sample X, to cluster 1, the second sample X, to either cluster 1
or 2, and so on, as shown in Fig. 11-6.

In order for the branch and bound procedure to work effectively, we
need to have a criterion which satisfies the monotonicity condition. Let J,,(€2,,)
be the criterion to be minimized for €, = [wy, ... w1, where the subscript m
indicates the number of sample vectors involved. Then, the monotonicity con-
dition is stated as

‘Im+1 (Qm’wk,,,,, ) 2-],,,(9,,,) . (1 136)

That is, the J of a node is smaller than the J’s for all nodes which are succes-
sors of the node.

Let o be the value of Jy which is the current smallest among all cases
tested so far for the classification of N samples (for exampie, oo = J(A)). Then,
the branch and bound procedure checks at each node (for example, at B)
whether or not the following inequality is satisfied
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I (€2,,) 200 (11.37)

If yes, then from (11.36), all successors of this node have J’s larger than . It
means that the optimum classification does not exist in the subtree under the
node. Thus, the subtree is rejected without further tests, and the search back-
tracks to the next node (for ecxample, C). This climination of subtrees makes
the branch and bound procedure a very efficient tree search technique. When
(11.37) is not satisfied, the search moves down to a node in the next level. The
node selected for the next evaluation is determined by

‘InHl(var) = m‘in ‘InHl(erl’O . (l 138)

That is, X,, ., is assigned to cluster ¢, and the search goes on.

The criterion J = tr(S,, S,.) satisfies the monotonicity condition with a
minor modification. Again, assuming S,, =7, (l11.11) is the criterion to be
minimized. Since the number of samples is determined by the level of the
solution tree and is independent of €2, let us delete it from the criterion and

rewrite the criterion for m samples, X ;, .. . ,X,,, as
1om,
(2, =TT Ixy - M7 (11.39)
r=lj=l
where m, is the number of ®,-samples among X, ..., X,,. When X, 18

added into cluster £, M, must be modified to M, , including the effect of X,,.;.
and IIX,,,, — M. |I> must be added 10 the summation. Thus,

Jm+l (Qm*{) = J,”(Q",) +AJ ('/) i (1 140)
where
",
AT O=X, 0 =M P+ T IXO =M 12 = 1x - m 112y (11.41)

j=1
The new ‘-class mean, M., can be obtained as
B 1 m v
M = (ZX(,] +Xm+l)

m: + 1 i

=M + Xy — M), (11.42)

m. + |

or
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1
m,¢+l

X9 M, = (X9 - M,) - Ks1 M) . (1143)

Substituting (11.43) into (11.41) and using M, = (I/m)Z}Z, XV,

m
AJ(@) =

“x,., -M,I?20. (11.44)
m; + l

Since AJ (f) 20, from (11.40) the criterion has the monotonicity property.

Note that (11.40), (11.44), and (11.42) provide recursive equations for
computing J,,,1 (2,9 and M, from J,(Q,), M;, and X,,,;. Also, (11.38),
(11.40), and (11.44) indicate that the selection of the next node can be made by
minimizing AJ (%) with respect to .

For a large N, the number of nodes is huge. Thus, the initial selection of
o becomes critical. One way of selecting a reasonably low initial o is to apply
the iterative nearest mean reclassification algorithm to get a suboptimal solu-
tion and use the resulting criterion value as the initial . The branch and
bound procedure gives the final solution which is guaranteed to be optimum
globally.

Also, it is possible to make the procedure more efficient by reordering
the samples [6].

Normal Decomposition

Piecewise quadratic boundary: The nearest mean reclassification rule
can be extended to include more complex boundaries such as quadratic ones.
Following the same iterative process, the algorithm would be stated as follows:

(1) Choose an initial classification, £2(0), and calculate P;(0), M;(0) and
O G=1,...,L).

(2) Having calculated class probabilities, P,(¢), and sample means and
covariance matrices, M;({) and Z;(¢), at the Zth iteration, reclassify each X;
according to the smallest (1/2)(X;-M;)" Z;'(X;,~M,;}+(1/2) In1Z;1-InP,. The
class probability for ®; is estimated by the number of ®;-samples divided by
the total number of samples.

(3) If the classification of any X; is changed, calculate the P (/+1),
M,(%+1) and Z;({+1) for the new class assignment, and repeat from Step (2).
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Otherwise stop.

This process is identical to the nearest mean reclassification algorithm,
but results in a piecewise quadratic boundary. Also, since the estimation of the
covariance matrices is involved, the process is more computer-time consuming
and more sensitive to parameters such as sample size, dimensionality, distribu-
tions, and so on.

More fundamentally, the clustering techniques mentioned above may
have a serious shortcoming, particularly when a mixture distribution consists of
several overlapping distributions. An important goal of finding clusters is to
decompose a complex distribution into several normal-like distributions. If we
could approximate a complex distribution by the summation of several normal
distributions, it would be much easier to discuss all aspects of pattern recogni-
tion, including feature extraction, classifier design, and so on. However, the
clustering procedures discussed above decompose a mixture as in Fig. 11-7(b)
rather than as in Fig. 11-7(a). The hatched distribution of cluster 1 in Fig. 11-
7(b) includes the tail of the m,-distribution and does not include the tail of the
o, -distribution. As a result, the mean and covariance matrix of the hatched
distribution in Fig. 11-7(b) could be significantly different from the ones for
the hatched distribution of Fig. 11-7(a). Thus, the representation of a complex
distribution by the parameters obtained from the clustering procedures
described above could be very poor.

Decomposition of a distribution into a number of normal distributions
has been studied extensively [7]. The two most common approaches are the
method of moments and maximum likelihood estimation. In the former method,
the parameters of normal distributions are estimated from the higher order
moments of the mixture distribution (for example, the third and fourth order
moments [8]). This approach is complex and not very reliable for high-
dimensional cases. Therefore, in this chapter, only the latter approach is
presented in detail.

Maximum likelihood estimate [9-10]: In order to obtain the hatched
distribution of Fig. 11-7(a) from p (X), it is necessary to impose a mathematical
structure. Let us assume that p (X) consists of L normal distributions as
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Fig. 11-7 An example of the shortcoming of the clustering technique.

L
pX)= Y PipiX), (11.45)
i=l
where p;(X) is normal with the expected vector M; and covariance matrix X;.
Under this assumption, our problem is to estimate P;, M,, and X, from N avail-
able samples, X |, ..., Xy, drawn from p (X). One way of solving this problem
is to apply the maximum likelihood estimation technique. The maximum likeli-
hood estimates may be obtained by maximizing IT)_,p (X;) with respect to P;,
M;, and ; under a constraint £f_, P, = 1. Taking the logarithm of T, p (X)),
the criterion to be maximized is

N L
J=YInpX,)-wYP - 1), (11.46)
j=1 i=1

where it is a Lagrange multiplier.
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First, computing the derivative of J with respect to £;,

o] Y piXp) 1Y
L = — X)) - (11.47)
(—)P,- j=1 p(Xj) ’124[

where ¢;(X) = P;p,(X)/p(X) is the a posteriori probability of w;, and satisfies
g =1 Since EI{,P(dJ/OP) =ZV | (Zhiq:X;) - (ELP)u
=N-n=0,

u=N, (11.48)
and from (11.47)

Zq,(X ). (11.49)

1 |

Next, the derivative of J with respect to M, can be computed as

N Pl' al):(x,) N 0
Z pX) oM, =Yg XL (X;-M)=0. (11.50)

i=1

J

Using £%_,¢;(X;) =N P; = N; where N; is the number of ®,-samples, (11.50)
can be solved for M,, resulting in

l N
= — > aq: (X)X, . (11.51)

i =1

At last, the derivative of J with respect to X; is. from (A.9) and (A.23),

= Y GiXDIE] (X ~Mi)X;-M) E7' -

j=1

——dlag[Z "X MO -M)TE -E ) =0, (11.52)

where diag[A] is a diagonal matrix, keeping only the diagonal terms of A.
Equation (11.52) can be solved for Z, yielding
N
z = NLZq,(X WX ~MX~M;)T (11.53)

i=1
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By solving (11.49), (11.51), and (11.53), we can obtain the optimum
solution. However, since ¢;(X) is a function of P, M;,and Z, (k = 1,...,L),
it is very difficult to obtain the solution explicitly. Therefore, we must solve
these equations iteratively. The process can be described as follows.

(1) Choose an initial classification, £2(0), and calculate P;,, M;, and
S G=1,....L)

(2) Having calculated P{, M{°, and ¢{”(X,), compute P{*V, M*D and
=D by (11.49), (11.51), and (11.53), respectively. The new ¢{*"(X;) can be
calculated as

X PEH—I) (H—l)(X
(]5"+1)(Xj)= . Pi ) , (11.54)

2P25+l)p2‘r+l)(xj)
k=1

where the superscript indicates the (/+1)st iteration, and p{*"(X) is a normal
density function with mean M{*" and covariance matrix Z{*!, Note that each
sample X; carries L probability values ¢,(X;),...,q.(X;) instead of being
assigned to one of the L classes.

(3) When ¢/*V(X;) = ¢ (X;) forall i =1,...,L and j=1,...,N, then
stop. Otherwise, increase { by 1 and go to Step (2).

In the maximum likelihood estimation technique, the criterion (the first
term of (11.46)) may be used to determine the number of clusters. The max-
imized criterion value, J,, is obtained for a given L, and the procedure is
repeated for various values of L. The criterion J, tends to increase with
increasing L, and reach a flat plateau at L. This means that, even if we use
more normal distributions than L, the mixture distribution cannot be better
approximated. Therefore, L is the proper number of clusters to use in approx-
imating the mixture distribution.

In order to verify the procedure, the following two experiments were run.

Experiment 2: One hundred samples per class were generated from
two-dimensional normal distributions specified by

0 1 -07 1 07
Mi=My=|yl, Zi=| g7 | |+ and Z=|)5 || (11.55)

The sample means and covariance matrices of the generated samples were
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. ool . [oot -065
Mi=1021] Z1=|065 1.17]"

N 0.11 R 1.03 0.62
M2=lo19|- 2= |o62 081] (11.56)
These two hundred samples were mixed, and initially assigned to either ®, or

, depending on x, 20 or x, < O (x; is the second variable). After 10 itera-
tions, the parameters became

P, =061 . P,=039,
o foorl . Tos7 -047
Mi=loss|l - Z1=|047 104

. 004 . [112 066
Ma=1 o006l © Z2=l0.66 0.78|" (H1.57)

Note that the two distributions share the same mean and are heavily over-
lapped. This means that finding clusters must be very difficult. Despite the
expected difficulty, the procedure found two reasonable clusters successfully.
Without imposing the mathematical structure of (11.45), no other clustering
technique works properly for this example.

Experiment 3: One hundred samples per class were generated from 8-
dimensional normal distributions of Data /-A, and initially assigned to either
®, or w, depending on xg <0 or xg > O (xg is the eighth variable). After 20
iterations, samples were classified to either ®, or w,, depending on whether
g (X) > qgL(X) or ¢,(X) <qg>(X). Table 11-2 shows the resulting confusion
matrix. This error of 2.5% is very close to the Bayes error of 1.9%, and is
much better than the 9.5% error of the nearest mean reclassification algorithm
[see Table 11-1].

In order to confirm that the mixture distribution was properly decom-
posed into two normal distributions, a quadratic classifier was designed based
on P;, M;, and X, obtained from the two clusters. Independently, 100 samples
per class were generated according to Data /-A, and classified by the quadratic
classifier. The resulting error was 2.5%. Considering the fact that the holdout
method (design and test samples are selected independently) always produces
an error larger than the Bayes error, the designed classifier was very closed to
the Bayes.
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TABLE 11-2

CONFUSION MATRIX FOR THE MAXIMUM
LIKELIHOOD ESTIMATION ALGORITHM

Assigned class

1 2
Actual 1 98 2
class 2 3 97

In order to determine the proper number of clusters, the experiment was
repeated for various values of L. For a given L, P, and p;(X) (i =1,...L) of
(11.45) were estimated, and subsequently the first term of (11.46),
J =27=|1np(Xj), was computed. Figure 11-8 shows J/N vs. L. The curves
are flat for L 22 and N = 400, 800, indicating that two normal distributions are
adequate to represent this data. The number of samples assigned to each clus-
ter is N/L on the average. Therefore, when N/L becomes smaller (for example
N/L =50 for N =200 and L = 4), each cluster may not have an adequate sam-
ple size to estimate the covariance matrix properly. This is the reason that the
curve decreases as L increases for N = 200 in Fig. 11-8.

So far, we have presented the recursive equations to estimate a priori
probabilities, mean vectors, and covariance matrices. However, in some appli-
cations, we can assume some of the parameter values or the relationship among
the parameters as follows:

(1) all covariance matrices are equal [see Problem 2],
(2) all mean vectors are equal, or
(3) a priori probabilities are known [see Problem 3].
With the above conditions, the maximum likelihood estimation technique can

be applied to estimate the remaining parameters. Because of the additional
information, we can obtain a better estimate with faster convergence.
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Fig. 11-8 Criterion value vs. L for Data /-A.

11.2 Nonparametric Clustering

When a mixture density function has peaks and valleys as shown in Fig.
11-9, it is most natural to divide the samples into clusters according to the
valley. However, the valley may not have a parametric structure such as
hyperplanes. quadratic surfaces, and so on. As discussed in the previous sec-
tion, the parametric structure of the boundary comes from either the use of a
parametric criterion or from the underlying assumption that the distribution
consists of several normal distributions. For the distribution of Fig. 11-9, we
cannot expect to get reasonable clusters by a parametric boundary.

In order to find the valley of a density function in a high-dimensional
space, we need a nonparametric technique to characterize the local structure of
the valley. There are many nonparametric clustering procedures available.
However, most of them are implicitly or explicitly based on the estimate of the
density gradient. In Fig. 11-9, if we estimate the gradient of the density func-
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Fig. 11-9 Clusters separated by the valley.

tion at each existing sample point (as indicated by arrows) and move the sam-
ple toward the direction of the gradient, samples move away from the valley
area. Repeating this process, the valley becomes wider at each iteration, and
samples form compact clusters. This procedure is called the valley-seeking
procedure.

Thus, the valley-seeking procedure consists of two problems: one is how
to estimate the gradient of a density function, and the other is how to utilize
the estimate to form clusters.

Estimation of Density Gradient

In this section, we develop the estimation technique of the density gra-
dient, and discuss how to apply this technique to pattern rccognition problems.

Estimation of density gradient [11]: In order to estimate the gradient of
a density function at X, Jet us select an ellipsoidal local region T'(X) with radius
r, specified by

rX)y={Y:d¥,x)<r}, (11.58)

where
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d*(v,X) =¥ -X)'A"(Y-X) (11.59)

and A is the metric to measure the distance. The expected vector of Y in I'(X),
which is called the local mean, can be computed as

MX)=E{(Y-X)! r<x>}=1[m<y—X)%Y)dy , (11.60)
0

where
uo=[ par =p oo (11.61)

and v is the volume of I'(X). The term u, is the coverage of I'(X), and
p(YYuy of (11.60) gives the conditional density function of Y given I'(X).
Expanding p (Y) around X by a Taylor series

p(Y)=ZpX)+ ¥ -X)VpX). (11.62)
Substituting (11.61) and (11.62) into (11.60),

= rexyy—xy Ly YK _ rt Vp(X)
M(X)_LX)(Y XX dr =P = A (11.63)
or
Vp(X) _n+2
=2 A (x| 11.64
T =AM o) (11.64)

where the integration of (11.63) is obtained from (B.6). Equation (11.64) indi-
cates that, by measuring the local mean M (X) in I'(X), Vp(X)/p(X) can be
estimated. Particularly, the formula becomes simpler if the Euclidean metric
A =1 1is used.

The normalization of Vp(X) by p(X) has an advantage, particularly in
clustering. In clustering, it is desirable that samples around the valley area
have stronger signal as to which direction the gradients point. Since p(X) is
low at the valley, Vp (X) is amplified by being divided by p(X). On the other
hand, at the peak area, p (X) is high and Vp(X) is depressed by being divided
by p (X).

Figure 11-10 illustrates how the local mean is related to the gradient of a
density function. In I'(X), we tend to have more samples from the higher den-
sity side than from the lower density side. As a result, the sample mean of
local samples generally points in the direction of the higher density side.
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Fig. 11-10 Local mean as the gradient estimate.

The estimate of the density gradient can be applied to many pattern
recognition problems besides clustering. They are briefly discussed as follows.

Gradient of g;(X): The Bayes classifier is the hypersurface on which X
satisfies ¢ (X) = ¢g,(X) = 0.5 for two-class problems. The vector perpendicular
to this hypersurface at X is the gradient of ¢,(X), V¢ ,(X), which indicates the
local linear classifier, classifying local samples Y around X as

Vgl (XY -X) §IO . (11.65)
local linear
classifier
M4(X)
44(X)=0.5
M (X) - My (X)
MAX)
0O-0
F(X) O'(02

Fig. 11-11 The gradient of ¢, (X).

Figure 11-11 shows an example. Note that Vg,(X)=-Vq,(X), since
g1(X)+q2(X)=1.
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The gradient Vg, (X) can be estimated from the local means as
Pip(X)
Vg, (x)=v |20
pX)
Vpi(X)  VpaX)
= X)g2(X - >
711700 { P pa)
+2
= 5 X0 0IM ()~ Mo (). (11.66)

where the Euclidean metric A =1 is used. Since ¢,(X)g,(X) is a scalar, the
direction of the vector Vg ,(X) is determined by M (X)-M,(X), as shown in
Fig. 11-11.

Normality test [12]: When p (X) is normal with zero mean and covari-
ance matrix I, Vp(X)/ip(X) can be obtained by differentiating Inp(X) with
respect to X [see (B.11)], resulting in

Vp(X) _
pX)
Equation (11.67) suggests that, by adding the estimate of Vp (X)/p(X) 1o X, the
resulting vector should point toward the coordinate origin if X is normally dis-

-X . (11.67)

tributed. This property can be used to test the normality of a given set of sam-
ples. The procedure is described as follows.

(1) Whiten the samples. After the whitening process, the samples have
zero mean and covariance matrix /.

(2) Estimate Vp (X)/p (X) by the local mean M (X) of (11.60), and add it
toX. UseA =1

(3) The daia passes the normality test by satisfying

N
#zllx, P2 ol <o (11.68)
i=1 e

where ¢ is a threshold. Various propertics of this test as well as the sclection
procedures of related parameters, including , can be found in [12].

Data filter [11]: A data filter eliminates noise from a given set of sam-
ples and produces the skeleton hypersurface. The filter could be an effective
tool for determining the intrinsic dimensionality of samples. Figure 11-12
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Fig. 11-12 Noisy data set.

shows a distribution of samples which, judged subjectively, is intrinsically one-
or two-dimensional. Let us assume that the distribution is one-dimensional,
and that unwanted noise is responsible for the two-dimensional scatter. As dis-
cussed in Chapter 6, the intrinsic dimensionality is determined by observing
the local dimensionalities. Selecting a local region, as shown in Fig. 11-12, the
dimensionality in the local region is two, because the two-dimensional scatter
of noise has the same order of magnitude as the size of the local region. In
order to eliminate the noise, we can measure the density gradient at each sam-
ple point X;, and move X; toward the direction of the gradient. The amount of
the move could be controlled by another parameter, which is multiplied to the
local mean vector M(X;). Repeating this process, samples are merged to a
curve having little two-dimensional scatter. This curve is the skeleton of the
distribution. After obtaining the skeleton, the local dimensionality is measured,
which is one in the example of Fig. 11-12.

Clustering Algorithms

After estimating the gradient of a density function, we now need an algo-
rithm to find clusters. As discussed in data filter, one way of finding clusters is
to move samples toward the direction of the gradient by pM (X) where p is a
control parameter. The procedure must be repeated until all samples in each
cluster converge to one vector. This is conceptually simple, but computation-
ally cumbersome. So, if possible, we would like to change only class
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assignment without altering sample vectors. Also, it is preferable to avoid
iterative operations. There are many ways to accomplish this. However, in
this section we present only two: one is a non-iterative process, and the other is
an jterative one.

Graph theoretic approach [13]: One way to avoid an iterative opera-
tion is to form trees as shown in Fig. 11-13. In this figure a node representing

Valley

Fig. 11-13 Graph theoretic clustering.

X | initiates a branch (or an arrow) pointing another node X 5,, which is called
the predecessor of X |y. Then, X 5, initiates another branch to point to X,, and
so on. Thus, each sample becomes an initial node and leads into a final node
through a series of branches, each branch pointing from one node to its prede-
cessor. A series of branches is called a directed path. We will implement an
algorithm such that there is no directed path from a node to itself (i.e. no
cycle). At the top of a tree, the final node (such as X 3,) does not have a prede-
cessor and is called the root of a tree. Note that each node except the final
node has one and only one predecessor, but each could be the predecessor of a
number of nodes, including zero. This type of tree is called a directed tree.
Since the concept of this tree-formation comes from graph theory, we call this
the graph theoretic approach.

In order to form directed trees for the clustering problem, we need an
algorithm to select the predecessor of each sample. If we could select, as the
predecessor of X, a sample along the steepest ascent path starting from X, sam-
ples will be divided by the valley of the density function, and a tree is formed
for each cluster as shown in Fig. 11-13. The quality of the result depends
wholly on the quality of the estimation technique for the density gradient, par-
ticularly in the low density area of the valley.
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The density gradient at X can be estimated by the local mean M (X) as in
(11.64). Asymptotically, the sample at the local mean can be the predecessor
of X. However, in practice, with a finite number of samples, none of the exist-
ing local samples in T'(X) is located exactly at the local mean. Therefore, we
need a procedure to pick up an existing local sample which is closest to the
local mean.

When two samples are located close together, the steepness of the slope
from X; to X; can be measured by
p(X)-p(X,)

= (11.69)

S .
T - x 0

Then, the predecessor X, is the one which has the steepest slope from X;
among samples in I'(X)), satisfying

S = max s, . 11.70
b x,er(x,)s” ¢ )

Equation (11.69) has another interpretation. Expanding p (X,) around X;
by a Taylor series

p(X;) Zp (X)) + VpT (X )(X,-X))
() + X=X VT (X ) (11.71)
__P J A 1 P J "X,—Xj” . .
Thus
T X=X
5,2V p(Xj)m=||Vp (X)llcos6,; , (11.72)

where 6; is the angle between the two vectors, Vp(X;) and (X,-X;). Since
||Vp (Xj)" is independent of ¢, (11.70) and (11.72) suggest that X; is the sample
which gives the smallest angle between Vp (X;) and (X; — X;) among all local
samples in T'(X;). That is, X; is the closest sample to the steepest ascent line
from X;. Thus, the predecessor of X; can be determined by measuring the
angle between the local mean and (X; — X;).

In addition, when nodes approach the root of the tree and s;; of (11.70)
becomes either zero or negative, we need rules to identify the root as follows.

(1} ;<0 : X, is a root.
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(2) Skj =( : Consider the set n(Xj) ={X;1X, € F(Xj),skj =0}. Elim-
inate from n(X;) any X;, from which there exists a directed path to X;. If the
resulting m(X;) is empty, X; is a root. Otherwise, the predecessor of X; is X,
which satisfies

IX, - x;I = min lek Xl (11.73)

Xien(X;

The similar result may be obtained without computing local means. The
density values of (11.69) can be estimated by using any nonparametric tech-
nique such as the Parzen or kNN approach as discussed in Chapter 6. For
example if the Parzen approach with a uniform kernel function is used,
p(X )= 1:(X )/Nv, where ‘t(X ) is the number of samples in T'(X;), N is the total
number of samples, and v is the volume of I'(X;). Since N and v are indepen-
dent of j, we may ignore them and replace [;(X) by ‘E(X) For the kNN
approach, [;(Xj) = (k- l)/Nv(X ), where k is a preset number and v(X ) must be
measured. Since k and N are independent of j in this case, p(Xj) is replaced by
L/v(X;) in (11.69). Thus, using p() in the place of p() in (11.69), (11.70)
determines the predecessor of each sample.

The graph theoretic approach has a number of advantages. It is a non-
iterative process, and does not require an initial class assignment. Also, the
number of clusters needs not be preassigned. After the predecessor of each
sample is found, a computer keeps track of the connections of samples to iden-
tify the number of isolated trees automatically.

In the graph theoretic approach, a crucial parameter is the size of the
local region I'(X). A density function is not a smooth function with a few
peaks, but a noisy function with many local peaks and valleys. With a small
I'(X), the algorithm tends to pick up many clusters separated by the local val-
leys due to noise. On the other hand, if '(X) is too large, all peaks and valleys
are smoothed out and the algorithm produces only one cluster. In order to find
a proper size for I'(X), it is suggested to run the algorithm for various sizes of
I'(X), and observe the resulting number of clusters. Normally, as the size of
I'(X) is changed from a small value to a large one, the number of clusters starts
from a large value, drops down and stays at a certain level for a while, and
then starts to drop again. The plateau at the middle is a reasonable and stable
operating range, from which we can determine the size of I'(X') and the number
of clusters.
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Iterative valley-seeking: A nonparametric version of the nearest mean
reclassification algorithm can be developed by defining a nonparametric
within-class scatter matrix as

L Ni . . . .
= TP SEP-MEPHEP-IEONT (1174

i=l ij=1

where 7(X{") is the sample mean of kNN’s to X!’ from w; as
. k .
M) = %ZXIQN)N : (11.75)
=1

We will call 73(X$") the local w;-mean of X\, This is the kNN version of the
local mean. On the other hand, the local w;-mean for the Parzen approach is
the sample mean of w;-samples in the local region I'(X;) with a fixed radius.
Comparing (11.74) with (10.99) and (10.100), we note that the weighting
coefficients of (10.99) and (10.100) are not included in (11.74). Since w,
requires knowledge of the true class assignment of the samples, their use is
deemed inappropriate for clustering.

The criterion for class separability is set as J =tr(S; 5,) just as
J =1x(S;'S,.) is used for the parametric counterpart. When k approaches N;,
the local ®;-mean becomes the global w;-mean M;, and consequently (11.74)
becomes the parametric within-class scatter matrix S,.. Thus, the nearest mean
reclassification algorithm is a special case of the optimization of J = tr(S}, 2,.).
On the other hand, when k << N;, we can develop the nonparametric
reclassification algorithm by repeating the derivation of (11.13) with 77}(X;)
this time instead of M, then, resulting in

Ix, - mXpl = min Ix;, - m&pl - X c o, (11.76)
4

Note that (11.76) is applied only after the data is whitened with respect to S,,.
This procedure may be called the nearest local-mean reclassification algo-
rithm. In this algorithm, the local ®;-means must be updated each time the
class assignment is changed.

Another possible definition of the nonparametric within-class scatter
matrix is

1SM=

||M|~

N;
'NLZ(XY)_XE\)IN)(X XQT (11.77)

where X{{ is the kth NN of X\ from @;. This time, we use the kth NN itself
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instead of the sample mean of the ANN’s. Then, by a derivation similar to
before, X!/! is reclassified to ®, by

Ix; — X@wll = min IX; - X@ull > X, € o, (11.78)

after whitening the data with respect to §,,,.

Under the current class assignment, the density function of ®, at X; can
be estimated by using the kNN approach as
5 Ne k-1 k-1

PpX)=— — = - , 11.79
PX)) N N.v.(X;) Nellx =Xl ( )

where ¢ is a constant relating the radius o the volume. Sclecting the smallest
||X-—X ,{,N" means selecting the largest P, p (X)) Therefore the reclassification
algorithm of (11.78) suggests that we evaluate P p (X ) by (11.79) at each X
and classify X; to the class which has the largest P,p,(X ).

When the Parzen approach with a uniform kernel function is used,
P.p,(X;) is estimated by
A N, k(X)) k(X))
Pp(X)=——H - I 11.80
P N Ny Nv ( )
where v is a fixed volume of the local region around X;, and k,;(Xj) is the
number of ®;-samples in the local region. Then, (11.78) is converted to

k(X)) =max k(X)) — X, €. (11.81)

The formulas of (11.78) and (11.81) have a computational advantage
over the formula of (11.76). When (11.76) is used, we need to recompute the
local means at each iteration. This is not required for (11.78) and (11.81).

When (11.81) is used, we set the local region around each sample with a
fixed volume v, and tabulate samples in the local regions with their current
class assignments, as shown in Fig. 11-14. Then, finding the class with the
highest population, each sample is reclassified to that class. For example, in
Fig. 11-14, X, is reclassified to w, because the local region of X ; contains one
o,-sample and two m,-samples. After all samples are reclassified, the class
labels of samples in the table are revised, and the same operation is repeated.
In this iteration, only class labels are processed and no mean vector computa-
tion is involved. The same is true for (11.78). In the operation of (11.78),
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Fig. 11-14 Iterative class assignment.

after tabulating neighbors of each sample, the sample is classified to o, when
the kth NN from ®, appears first in the sequence of INN, 2NN, ... . For
example, in Fig. 11-14 with k=2, X, has a sequence of neighbors as
W,,0,,®,, ..., and the second NN from ®, appears first in the sequence.
Accordingly, X | is reclassified to w,. Again, no mean computation is involved
in each iteration.

Because of the above computational advantage, let us use (11.81) as the
updating scheme of class assignment, and study the properties of the valley-
seeking algorithm. The algorithm can be stated as follows [14-15].

(1) Whiten the data with respect to S,,,.

(2) Assign the number of clusters, L. Choose an initial classification,
Q(0).

(3) Set a local spherical region around each sample, I‘(X,-), with a fixed
radius, and list samples in T(Xj) with the current class assignment, as in Fig.
11-14.

(4) Reclassify X; according to the majority of classes among all neigh-
boring samples in I'(X j).

(5) If any change in class assignment occurs, revise the class labels of
all neighbors in the table and go to Step (4). Otherwise stop.

In order to understand how this procedure works, let us study the one-
dimensional example of Fig. 11-15. Suppose that, at the th iteration, samples
are divided into 7 clusters as shown. A sample X, is not reclassified from w,
because all neighboring samples of X | in I'(X,) belong to ®, currently. On
the other hand, X, on the boundary between ws and @ is most likely
reclassified to @4, because the number of neighbors from ¢ tends to be larger
than the number of ws-neighbors. This is due to the fact that the density func-
tion on the wg-side is higher than the one on the ws-side. Reclassifying X,
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Fig. 11-15 An example of the valley-seeking clustering.

into Wy results in a shift of the boundary toward the m5-side, as the arrow indi-
cates. This is equivalent to saying that the direction of the density gradient is
estimated by using the numbers of samples on both sides of the boundary, and
the boundary is moved toward the lower density side. Applying this process to
all boundaries repeatedly, the leftmost boundary of Fig. 11-15 moves out to
~oo, leaving the w,-cluster empty, the second and third leftmost boundaries
merge to one, making the wy-cluster empty, and so on. As a result, at the end
of iteration, only ®;. ®,, and ®, keep many samples and the others become
empty. The procedure works in the same way even in a high-dimensional
space.

A number of comments can be made about this iterative valley-seeking
procedure. The procedure is nonparametric, and divides samples according to
the valley of a density function. The density gradient is estimated, but in a
crude way. The number of clusters must be preassigned, but we can always
assign a larger number of clusters than we actually expect to have. Many of
initial clusters could become empty, and only true clusters separated by the
valleys will keep samples. As far as computation time is concerned, it takes a
lot of computer time to find neighbors for each sample and form the table of
Fig. 11-14. However, this operation is common for all nonparametric cluster-
ing procedures, including the graph theoretic approach. The iterative process
of this algorithm revises only the class assignment according to the majority of
classes in I'(X). This operation does not take much computation time.

The volume of T'(X) affects the performance of this algorithm, just as it
did in the graph theoretic approach. The optimum volume should be deter-
mined experimentally, as was done for the graph theoretic approach.
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Experiment 4: Seventy five samples per class were generated according

X, cos@ m n %2
X, =20 |inel * - + |’ (11.82)

where n; and n, are independent and normally distributed with zero mean and
unit variance for both ®; and ®,, [m, m,] is [0 0] for o, and [0 —20] for ,,
and @ is normally distributed with E{@lw;}=n, E{@lw,} =0, and
Var{@lw,} = Var(@lw,} = (w/4)*. After the data was whitened with respect
to the mixture covariance matrix, both graph theoretic and iterative valley-

to

seeking algorithms were applied, resulting in the same clustering result, as
shown in Fig. 11-16 [13-14].
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Fig. 11-16 Classification of a two-class example.

Table 11-3 shows the selected radius for I'(X), and the number of iterations

required to reach the final clusters in the iterative valley-seeking algorithm
[14].

Experiment 5: Fifty samples per class were generated from three
classes. Two of them were the same ones as Experiment 4 except
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TABLE 11-3

PERFORMANCE OF THE VALLEY-SEEKING ALGORITHM

Experiment Number Number Radius Number
of samples  of clusters of I'(X) of iterations
4 150 2 1.0 8
5 150 3 0.75 10

[m, m5] =[200] for @, instead of [0 —20]. The third distribution was normal
with the mean and covariance matrix

10 16 0
M_;:{O} and 23{0 11- (11.83)

Again, after the data was whitened with respect to the mixture covari-
ance matrix, both the graph theoretic and iterative valley-seeking algorithms
produced the same clustering result, as shown in Fig. 11-17 [13-14]. The
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Fig. 11-17 Classification of a three-class example.
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radius of I'(X) and the number of iterations in the latter algorithm are listed in
Table 11-3 [14].

General comments: We have discussed both parametric and non-
parametric clustering techniques. The question here is which technique is
better under what conditions. Generally speaking, nonparametric techniques do
not require the knowledge of the number of clusters beforehand. This is cer-
tainly true for the graph theoretic approach. Even for the iterative valley-
seeking procedure, we can preassign a larger number of clusters than what is
actually needed, and let the procedure select automatically the necessary
number of clusters. Therefore, if we do not have any a priori knowledge about
the data structure, it is most natural to adopt a nonparametric clustering tech-
nique and find out how the data is naturally divided into clusters.

However, nonparametric procedures are in general very sensitive to the
control parameters, especially the size of the local region. Therefore, it is
necessary to run experiments for a wide range of sizes, and the results must be
carefully examined. Also, nonparametric procedures are normally very compu-
tationally intensive.

Furthermore, nonparametric clustering techniques have two fundamental
flaws described as follows.

(1) We cannot divide a distribution into a number of clusters unless the
valley actually exists. For example, the ®;-distribution of Fig. 11-9 could be
obtained as the result of the valley-seeking procedure, but the distribution can-
not be divided into 2 or 3 clusters by any nonparametric method even if it is
desirable to do so. When a distribution is wrapped as the ®,-distribution of
Fig. 11-9, it is sometimes prefered to decompose the distribution into several
normal distributions for further analysis of data structure or designing a
classifier.

On the other hand, the parametric procedures do not depend on the
natural boundary of clusters, but depend only on the criterion. With a preas-
signed number of clusters, the procedures seek the boundary to optimize the
criterion value. Therefore, we can divide the o, -distribution of Fig. 11-9 into
2, 3, or 4 clusters as we like. After examining the clustering results for various
numbers of clusters, we may decide which number of clusters is most appropri-
ate for a particular application. Previously, we stated that it is a disadvantage
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of parametric clustering techniques to have to know the number of clusters
beforehand. But, that property may work sometimes as an advantage as dis-
cussed above.

(2) As seen in Fig. 11-7(b), the resulting clusters of nonparametric clus-
tering procedures contain the tails of other distributions and do not contain
their own tails. Thus, the mean and covariance matrix of each cluster do not
represent the true ones of the underlying distribution. In order to obtain proper
parameters of the underlying distributions, we need to impose a parametric
structure such as the summation of normal distributions.

11.3 Selection of Representatives

In the previous sections, we have discussed algorithms to find clusters
from a distribution. A similar but slightly different problem is to reduce the
number of samples while maintaining the structure of the distribution. This
may be viewed as selecting a small number of representatives from a distribu-
tion. Besides clustering, the reduction of sample size has a number of applica-
tions. A typical example is to divide a set of available samples into design and
test sets. In this case, we must assure that design and test distributions are
similar.

Nonparametric Data Reduction

Generally, it is not appropriate to assume a mathematical structure when
the sample size is reduced. Therefore, a nonparametric procedure must be
adopted to guide through the operation.

Data reduction algorithm [16-17]: Let us study the Parzen approach to
the problem of sample size reduction. Given N samples drawn from p (X), we
wish to select Q samples (Q < N) so that the Parzen density estimates for the N
sample set and the Q sample set are close.

Let I;N(X) be the density estimate based on N samples. Then
~ 1N
pn(X) = WZK(X - X)), (11.84)
=1

where () is the kernel function. Similarly, when ( representatives,
Y,....,Yp. are selected. the density function is estimated by
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1 @
sz(x -Y). (11.85)
i=1

In order to measure the similarity between ;;N(X ) and ;;Q(X ), the entropy cri-
terion of Chapter 9 is used. Replacing p(X) and p,(X) of (9.53) by pp(X)
and ;;N(X) respectively, we obtain the entropy inequality as

[-10po01pu(X)aX 2[{-Inpy(X))py(X)dX | (11.86)

po(X) =

where the equality holds only for ;;Q(X) = ;;N(X). Thus, the best I;Q(X) may be
found by minimizing the lefthand side of (11.86). The criterion may be
simplified by approximating the expectation with respect to py(X) in (11.86)

by the sample mean over the existing samples X, ... ,Xy, as
LS o Inpo(0l= 3~ In{ L 3 ey, 1.87
= — - == —_ — ) K(X;—Y; . 11.
NE[ npo(X] NE[ n{ QE! Xi-Y) ( )
In order to find the best O representatives from the existing samples
X),...,Xy, we would like to minimize J over all possible O element subsets
N

of the original N element set. Unfortunately, an exhaustive search of all (Q)

subsets is not computationally feasible. Instead, we will settle for the
minimum J for subsets formed by replacing one element of the representative
set by the best candidate not yet selected.

An iterative procedure is as follows:

(1) Select an initial assignment of Q samples from the N sample data
set. Call the O sample set STORE and the remaining N —Q samples TEST.

(2) For each element, X,, in TEST, compute the change in J that results
if the sample is transferred to STORE.

AJ](X,) = #

e
In {75 2. x(&—F;
" e !

j=l

+ i=1

Q
“In Q'l [ZK(X,-—YJ-)+K(X,-—X,):| : (11.88)
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(3) Pick the element, X,, corresponding to the smallest A/, (and call it
X)).

(4) For each element, X;, in STORE, compute the change in J that
results if the sample is transferred to TEST.

N
Mz(xj)__li?; Q_[zx(x —¥) + K(X;-X] )}

—In

Q
é{zx(x ~¥)) + KX—X]) - (XX, )1 . (11.89)

(5) Find the element, X|, corresponding to the smallest AJ, (and call it

®

X;).

(6) The change of J due to these two operations is
AJ =AJ (X])+AJy(X,). In order to minimize J, we would like to have
AJ < 0. If X; exists to satisfy AJ < 0, transfer X; to TEST, transfer X, to
STORE, and go to Step (2).

(7) Otherwise, find the element, X,, corresponding to the next smallest
AJ | (and call it X;).

(8) If Xf exists, go to Step (4).

(9) Otherwise, stop.

Generally, this kind of iterative process produces a result which depends
on the initial selection of Q representatives in STORE. However, Steps (7) and

(8) allow us to search more possible combinations of X, and X, and thus insure
that the final representative set is less dependent on the initial assignment.

The kNN approach also can be applied in a similar way as the Parzen
approach. The ANN density estimate is
k-1

(X)) = ———— 11.90
pnX) Nedi(X) ( )

where dy(X) is the distance from X to its kth NN among N samples. The same
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formula is used when Q samples are used to estimate the density function.
Thus, the entropy criterion of (11.87) becomes

1 X - 1Y cQ
=WZ[_l"pQ(Xi)]=ﬁZ[” lndQ(X,-)+Inm . (11.91)

i=| i=l

The same iterative procedure can be used to find the best Q samples by minim-
izing J of (11.91).

As in most iterative techniques, a good initial guess usually is of consid-
erable importance. The following is a method to perform the initial assignment
when Q = N/2.

An initial assignment procedure: We discuss a procedure to generate
an initial assignment for the case with @ =N/2. The basis of the procedure
lies in an intuitive observation. If a subset with size N/2, called STORE, is
optimally chosen, then we suspect that, on average, the NN of a sample, X, in
STORE might be the second NN of X using all N samples.

The procedure is best explained with the aid of Fig. 11-18. In Fig. 11-
18(a) the NN of X | is X3, the NN of X,3 is X |7, and X |7 and X4, are mutual
NN. Figures 11-18(b) and (c) represent two other possible NN progressions.

X, X4 Xag

Xaa Xi2
Xz3

X5 X30
X7

Xa7 Xas
X1

X3 X72

(a) (b) (c)

Fig. 11-18 Three examples of NN progressions.

We may form the initial assignment by simply assigning every other sample in
a NN progression to the initial assignment of STORE. Thus for Fig. 11-18(a)
the initial assignment for STORE would consist of either X, and X ;, or X3
and X 4.

We now state the procedure.

(1) Get the first sample, and follow the complete progression of its
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NN's, assigning alternate samples to STORE. Flag every sample in the pro-
gression.

(2) Find the next unflagged sample. Follow its NN progression, assign-
ing alternate samples to STORE. This is done until the progression ends or
leads to a previously flagged sample. Flag every sample in the progression.

(3) Repeat Step (2) until all samples are flagged.

If sufficient storage is available to store a table of k\¥N’s for each sample
(k =4 or 5), the entire process of initial assignment and criterion minimization
can be done very efficiently.

Reduced Parzen classifier [17]: In pattern recognition, the quadratic
classifier is very popular. However, in practice with non-normal distributions,
it i1s frequently observed that the error of a quadratic classifier is much larger
than the Bayes error estimated by a nonparametric technique. On the other
hand, nonparametric classifiers are too complex and time-consuming for on-
line operation. Thus, there is a need to fill the gap between these two kinds of
classifiers.

One possible solution is to divide each class into several clusters, and
design a piecewise quadratic classifier as in (4.149). This approach contains
both quadratic and nonparametric classifiers as special cases. If each class has
only one cluster, it becomes a quadratic classifier, while, if each sample is
viewed as a cluster, it becomes a Parzen classifier.

The most elaborate procedure to design a piecewise quadratic classifier
would be to decompose the distribution of each class into several normal distri-
butions as shown in (11.45). Note that only this method gives reasonable esti-
mates of a priori probabilities, means, and covariance matrices. The other clus-
tering procedures fail to do so, because they divide samples as in Fig. 11-7(b)
instead of Fig. 11-7(a). The entire clustering operation must be repeated by
preassigning various numbers of clusters. The resulting classification error for
each preassigned number of clusters is estimated and compared with the Bayes
error estimated by a nonparametric technique. The final number of clusters
must be as small as possible while maintaining an error close to the Bayes
error.

A somewhat simpler approach is to select Q representatives from each
class as discussed in this section, and 1o set a kernel function at each represen-
tative to form the Parzen density estimate as in (11.85). The classification can
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be carried out by comparing the density estimates for ®, and ®, as

piX)
—In= 2. (11.92)

paX) @
This classifier is called the reduced Parzen classifier. It is generally too com-
plex to select a different kernel function for each representative. So, we may
use a normal kernel function with the covariance matrix r2X,, where Z; is the

global covariance matrix of ®; and r is a parameter controlling the size of the
kemnel. This approach is simpler because a common kernel function is used
within the same class and is prespecified, instead of being estimated and vary-
ing locally, as in the approach of (11.45). As discussed in Chapter 7, the sensi-
tive parameters are the size of the kernel, r, the decision threshold,  of (11.92),
and the estimate of %;.

In order to verify the above argument, two experimental results are
presented.

Experiment 6: The reduced Parzen classifier for Data /-A was designed
and tested as follows:

(1) One hundred samples per class were generated from Data /-A, and
Experiment 7-6 was repeated. From Fig. 7-9, r = 2 was chosen as the kernel
size.

(2) The sample reduction algorithm in this section was applied to select
Q representatives from 100.

(3) Using the Parzen density estimates of (11.85) for @, and ®, with
r =2, the original 100 samples per class were classified as in (11.92). The
threshold ¢ was selected so as to minimize the classification error. The
optimum ¢ is different for each different value of Q.

(4) Independently, 100 samples per class were generated and tested by
the classifier designed above.

Figure 11-19 shows the plot of the error vs. Q [17]. The error curve is
the average of 10 trials, and the standard deviations are shown by vertical bars.
Note that the above error estimation is based on the holdout method, in which
design and test samples are independent so that the error becomes larger than
the Bayes error (1.9%). The error curve is almost flat up to one representative.
For normal distributions, selecting the expected vector as the one representative
from each class and the covariance matrix as the kernel covariance, the reduced
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N

Parzen classifier becomes quadratic, which is the Bayes classifier. So, the error
curve of Fig. 11-19 should be flat down to Q = 1. However, since we select
representatives from the existing design samples, they may or may not be close
to the expected vector. If not, we see that the error curve is flat upto Q =2 or
3 and starts to increase for smaller Q’s.

0 ] L 1 i 12 1 [} 1 1 1 .

1 3 6 8 10' 20 40 60 80 100
# of representatives

Fig. 11-19 The error of the reduced Parzen classifier for a normal case.

Experiment 7: In order to test a non-normal case, the data of Experi-
ment 7-7 was studied. The data is 8-dimensional, and each class consists of
two normal distributions. From Fig. 7-10, r = 1.5 was chosen. The procedure
of Experiment 6 was repeated for this data, and the result is shown in Fig.
11-20 [17]. Figure 11-20 shows that the error curve is flat for Q 26. We
found that, when Q = 6, three representatives are selected from each cluster.

These experiments suggest an interesting fact. It has been believed that a
nonparametric procedure needs a large number of samples for high-dimensional
data, in order to reliably estimate the Bayes error. Any nonparametric opera-
tion with a large number of samples requires a large amount of computer time.
The results of the experiments in this section contradict these common beliefs,
and suggest that we may need only a relatively small number of samples (or
representatives) after all. However, as Experiment 7-10 and Table 7-3(b) sug-
gest, we may still need a large number of samples to estimate the covariance
matrices, which are used to form the kernel functions.
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Fig. 11-20 The error of the reduced Parzen classifier for a non-normal case.

Parametric Data Reduction

In parametric approaches, our main concern is to maintain the expected
vector and autocorrelation (or covariance) matrix while reducing the number of
samples.

Representation of a sample matrix: Let us express N samples in a
matrix form as

which is an nxN rectangular matrix, called the sample matrix. Then, the sam-
ple autocorrelation matrix can be expressed by

- 1k 1
S=—YxxT=—uvuT. 11.94
NE i N ( )

i=1

Since S is an nxn matrix; S has the nxn eigenvalue and eigenvector matrices, A
and @, such that

S® = OA . (11.95)
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wn
w
~J

Or
(UUDHD = d(NA) = DL | (11.96)

where LL is the eigenvalue matrix of UUT and LL = NA. Multiplying U' from
the left side, we can convert (11.96) to

(UTU )y (UT DYy, = (UT(D)NX,,H,M , (11.97)
where UTU is an NxN matrix, U7 ® consists of n eigenvectors of U7U, and the
components of [l are the n eigenvalues of U'U. Since (UT®) (UT®)=
TUUTD = LL =1, we change the scales of the eigenvectors by multiplying

-1/2
H from the right side so that (11.97) can be rewritten as

w'ny =Yl , (11.98)

where
~172
v=v'oll . (11.99)
That is, ‘¥ consists of the n eigenvectors of UTU, and satisfies the orthonormal
condition as

=172

~1/2
Yiv=l oTvUv'Ooll =1. (11.100)

From (11.99), U can be expressed in terms of @, ¥, and A as
172
U=oll ¥ = VNOARYT (11.101)
This expression of a sample matrix is called singular value decomposition [18].
Singular value decomposition is an effective technique to represent a rectangu-
lar (non-square) matrix by eigenvalues and eigenvectors.

Data reduction: Now our problem is to reduce the number of samples
while maintaining the expected vector and autocorrelation matrix. Let us intro-
duce another sample matrix V which consists of Q sample vectors. In order
that both U and V share the same autocorrelation matrix

A |
S=—uU"=—vwvT. 11.102
N 0 ( )

Using (11.101), both U and V can be expressed by
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U=VNOAYT (11.103)

v =Yo®ARET (11.104)

where W (Nxn) and Z (Qxn) are the eigenvector matrices of U TU and VTV
respectively, and @ and A are the eigenvector and eigenvalue matrices of S.
Note that, although (UUT),,, and (VVT), , share the same eigenvector matrix,
&, UTU)yn and (VTV)QXQ have different eigenvector matrices, ¥ and Z.
Furthermore, since YW¥7 = A~2®TU from (11.103), INWT s the sample
matrix in the whitened space, where the sample autocorrelation matrix becomes
1. Similarly, \/EET is the reduced sample matrix in that space. Then, (11.104)
shows the transformation which converts ‘/—Q_ET back to the original space.

As in (11.100), the n column vectors of = are orthonormal to satisfy

T

i

Z=1. (11.105)

The second condition is that U and V must have the same mean vector.
Without losing generality, let us assume that the mean is zero. Then,

1 1
FUlv=5Vie=0, (11.106)

where 1, is a vector with all K components being equal 10 1 as 1, =[1...1]".
Or, substituting (11.103) and (11.104) into (11.106),

TI—N—‘PTIN=%QET1Q=O. (11.107)

When the sample matrix U is given, we can compute ®, ¥, and A.
Therefore, our problem is to find Z by solving (11.105) and (11.107). Then, V
can be computed by (11.104). Now Z consists of nxQ elements. To determine
those nxQ unknowns we have nxn equations from (11.105) and n equations
from (11.107). Therefore, in general when Q is smaller than n+1, there are
many possible solutions. But when Q =n+1, we have a unique solution as
follows:

iy = FruGual, (11.108)
F=Il-al,l, (11.109)

G=-6,1,, (11.110)
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where
a—T—"+l_l (1.111)
nVn+l '

1
0=\—[-=— . (11.112)
n+l1

The derivation of (11.108) through (11.112) has been omitted for brevity, but
the reader may easily verify that = of (11.108) satisfies both (11.105) and
(11.107).

Substituting (11.109) and (11.110) into (11.108),

l-o« -0 ... —-o -6
—a -« -0

== . R (11.113)
-a -—a l-a -6

Note that =" of (11.113) is data independent, because Vu+1 7 is the reduced
sample matrix of (n+1) samples for the mean O and the covariance matrix /.
This sample matrix is transformed by (11.104) into the space where the origi-
nal data and its sample covariance matrix are given.

Example 2: For n = 2, Vn+1 Z7 becomes

Gror | 1366 0366 I
32 =10366 1366 -1 (11.114)

Computer Projects

Repeat Experiment 1.

Repeat Experiments 2 and 3.

Apply the graph theoretic valley-seeking technique to Data [-A.
Apply the iterative valley-seeking technique to Data /-A.

A O

Repeat Experiments 6 and 7.
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Problems

1.

A random variable x is uniformly distributed 1n {a, b]. From N samples
X(,...,Xy drawn from the distribution, find the maximum likelihood
estimates of @ and b.

Assume that a distribution can be decomposed to L normal clusters and
all clusters share the same covariance matrix. Find the recursive equa-
tions to compute the a priori probabilities, the mean vectors, and the
common covariance matrix of L clusters by using the maximum likeli-
hood estimation technique. Point out the difference between this pro-
cedure and the nearest mean reclassification algorithm.

Assume that a distribution consists of L normal clusters and
P, = ... =P;. Find the recursive equations to compute the means and
covariance matrices of L clusters by using the maximum likelihood esti-
mation technique.

A kurtosis matrix is defined by
K=E{XTX)XXT} ~ (n+2)I .

When a density function consists of L normal clusters with the mean
vectors M; and the common covariance matrix Z, K can be rewritten as

L
K =Y PMMT[rE+MM]) - (n+2)] .
i=l
Since the rank of the above equation is (L —1), only (L —1) eigenvalues of
K are non-zero. Using this property, we can estimate the number of
modes when clusters are normal and share the same covariance matrix.
Prove that the second equation is equal to the first one for £ = /.

A density function of a random variable x can be estimated by the Par-
zen method with the kernel function

0 for y2 21

K =
) %(1—y2) for y2 < 1.

The derivative of the Parzen density estimate, dpA(,\‘)/dx, can be used as
an estimate of the density gradient. Confirm that this method of gradient
estimation coincides with (11.64).
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6.  The product of two normal distributions, N(M |, Z,) and N(M,.X,),
gives another normal distribution, N (M ,Z), multiplied by a constant, ¢.

(a) Derive the relations between the three means and covariance
matrices.

(b) Samples are drawn from N(M,Z,), and a normal window func-
tion N(X,X;) is set at X. Using these samples and the given win-
dow function, estimate the mean and covariance matrix of
NMg,Zy).

(¢) Using A:l() and %, and the given window function, estimate M| and
%,. This procedure could be used to estimate a local covariance
matrix even when the samples are drawn from a non-normal distri-
bution.

7.  Two density functions are estimated by the Parzen method. Find the
expression for the class separability criterion J-p 1 (X)p(X)HdX.

(a)  Use a normal kernel function with kemnel covariance 1'22,- for ;.
(b)  Use a hyperspherical uniform kemnel with radius r for both ®, and
0.
8. Let class separability be measured by
1 N
J = szlf(xisxj)g (SN
i=lj=

where

[1 for Ix—x,Il <r
f(X,‘,X/) = 10 fOl' ”X,—X’” >

{l when X; and X; belong to different classes,
(i) = '

0 when X; and X; belong to the same class.

That is, J counts the number of pairs whose members are close and yel
come from different classes. Prove that the minimization of J by an
iterative process leads to the iterative valley-seeking procedure of
(11.81).

9. Formulate the selection of representatives by a branch and bound pro-

cedure.
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10. By using the singular value decomposition technique, show how to
decompose an nxm (m<n) two-dimensional image to m basis images,
and how to evaluate the effectiveness of these basis images.
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Appendix A

DERIVATIVES OF MATRICES

In this appendix, the derivatives of matrices will be discussed for various
cases. The following notations are used throughout this appendix.
R = [r;;] : nonsymmetric matrix of nxn
§ = [s;] : symmetric matrix of nxn
A =[a;;] : rectangular matrix of nxm
B ={b;;] : specified differently for each formula.

Matrix Inversion

When #;; is a function of a scalar x, the derivative of R with respect to x
is defined as the matrix of each element r;; differentiated with respect to x.

dR a"ij
ax [Bx } *b

Applying this to the product RR™' =/ for a nonsingular R gives

-1
a’;r =—R"%R"’. (A.2)

564
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For x =y,

R

o =~R7'I;R7", (A.3)

y
where /;; is a matrix with an i,j component of 1 and all other components
equal to Q.

For a symmetric matrix S, Sij = Sji. Therefore,
oS
KY_=IU+I‘” —8,jl,j=l,j B (A4)
ij
where I,] for i=j is a matrix with 1’s as the i,j and j,i components and 0’'s as
the others. When i=j, I’; = I,;. Thus, from (A.2) and (A.4),

as™!

=-S7lrs7t . (A.S)
aS,'j J
Furthermore,
a’s™! | 1% onl 1 1% ol
=S 'rsTsTt v s sl s A6
Bs,-jas‘, IU ki ke ij ( )
Trace
Let f be a trace function as
f=u(S"'B). (A7)

From (A.5),

a—if— =—r(S™;ST'B) = —ur();;ST'BS ™) = -[6,, + 0, - §,0,,] ,
ij

(A.8)
where 6;; is the i, j component of © = S7'BS™'. Therefore,
% =-[@ + 07 - diag[O}]]
=—[S7"(B +BT)S"' - diag[S~'BS '], (A.9)

where diag[R] is a diagonal matrix, keeping only the diagonal terms of R.

Similar formula can be obtained for a nonsymmetric R, by using /;
instead of /;; in (A.8),
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i -lpy _ _p-1pTp-1
g TR'B)=-R"'BTR™ (A.10)

where tr(/;;0) = 8; is used.

The derivatives of other trace functions are listed as follows:

a _4d _pT .

(N A tr(AB) = m tr(BA) =B (B: mxn) , (A1)

(2) i:r(ATB) = —d—tr(BAT) =B (B:nxm) (A.12)
dA dA ’

3) iu(ATRA) =(R+RDA, (A.13)
dA

4) djT rATRAY=ATR +RT), (A.14)

4 Teay-l _i Toar-l
(5 dAlr{(A SA)Y 'R} = A tIr{fR(A"SA)'}

=-SAATSAY"(R + RT)(ATSA)! , (A.15)

a

© dA

{(ATS,AY (ATS,A)} = %tr{(ﬂslmm TS,AY)

d ~ _ .
Y tr{(A{S2A ) (ATS A} 4 _a

+ Llr{(A TS,AY N ALS A2} g ea
A,

=-285,A(ATS,AY ' (ATS |A)NATS,A)!

+25,A(A7S,A)7 . (A.16)
When (A.16) is set to be equal 1o zero,

315,14 =AATS,A)1(ATS,A) . (A.17)
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Determinant

The derivative of IR | with respect to r;; can be obtained as

/,‘j
where [R;;1 is the cofactor of r;;. Therefore,
IR | .
%E—=(ad]R)T= IRIR™ (A.19)

where (adj R) is the adjoint matrix of R, and R™'= (adj RY IR 1. Furthermore,

olnlRI 1 JIR! R
OR IRl OR '

(A.20)

When a matrix, S, is symmetric, the above equations are modified to

als|

Si
CIRI IS[28™" — diag[S~']], (A.22)
oS
a'La'SS'— =25"" - diag[§7'] . (A.23)
Furthermore, using (A.5),
*IniIS| el e eml e e
L ‘. — 24
3Sae [287 1S diag[S™' .. 1] (A.24)
or
?Inis|
8311_831 == = )Y + Y Yk — S YuYj) » (A.25)

where v;; is the /,j component of s,
The derivatives of other determinant functions are listed as follows:

(1 ﬁIATSAl — 21ATSAISAATSAY , (A.26)
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) %ln IATSA | = 2SA(ATSAY! , (A27)

3) %{m IATS Al —1In 1ATS,A 1}

=2(S A(ATS |AY"' - S,A(ATS,A)!} . (A.28)
When (A.28) is set to be equal to zero, (A.17) is satisfied.

Special Cases

Let us consider a special case in which § = A (a diagonal matrix with
components A;), and Sij = Cij- The derivatives of three functions,
fi= tr(A"MMT), fr= tr(A_'MXT), and f3 =1InlZ|, with respect to M and c;;
are of particular interest, where both M and X are column vectors. These
derivatives are listed here for the reader’s convenience, because they are fre-
quently used in Chapter 5.

The first function to be considered is a trace function of (A.7) with a
symmetric B or a squared distance as

fi=tt A" MMTy=MTA"'M . (A29)
The derivatives of f,| are computed as follows:

of\ of
— =2A"'"M and =277, A30
oM an oM? A (A-30)
of mim;
=8 NATTMMTA . = —(2 = &) — .
%, (2 -8 AT, (2 - 9;) 7wy from (A.8) ,

(A.31)

2
9f MTIAT AT ATIM =

2 - 8” m,2 m}
och A

+ — f .
7»,-7»,- N ) } rom (A.6) ,

(A.32)
where m; is the ith component of M, and [K];; is the i, j component of K.

The second function is a trace function of (A.7) with a nonsymmetric B
as
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fr=t(A"MXT) = XTA'"M =M"A'X . (A.33)

The derivatives of f, are

aL——L(m-\’-+m-\ﬂ—ZS--m-r-) from (A.8) (A.34)
a(‘-- - }\.,-}\.j it j 1jI A ro - » -
' f>
=2MT[A'T] 7. 1,jA 1X
ol
2 nm;Xx; mj./\j nm;x;
= + —;; from (A.6) . (A.35)

WV AV VRS

L)

The third function is a determinant function as

fr=InlAl . (A.36)
The derivatives of f5 are
afs §;
? = 7’- from (A23) N (A37)
Ih o o-s from (A.25 A38
52 —=( ”)kk rom (A.25) . (A.38)

i

Special Derivatives

Let f be a function of a mean vector M and covariance matrix £. When
their estimates M and 2, are used, f(M Z) can be expanded around f(M,Z) by
a Taylor series as

f(M,5) =f(M, %) + Z——(m - m)+ ZZ aa - ¢)

i=lj=1

T <
of {f (% - D} (A.39)

oM

= f

where
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o 1]
aC“ 2 a(,','j
of* _ ' L e | L
o . =5 az+dlag[
19 o
L2 aC,'j aCn" ]

f
ox

} . (A40)

That is, because of the symmetry of £, df*/dZ is not the same as df /dX whose

i,j component is of /dc;;.

Let us examine df*/9Z for two different types of f as

fi=u@E ' 'MMTY=M"Z"'M ,

f=IIzl.

Then, from (A.9) and (A.23)

)

szL =—[22"MMTE - diag{z'MMTZ™ ],
af? -1 . -1

-a—z =27 — dnag[Z ] .

Substituting (A.43) and (A .44) into (A.40),

ofi
L _z—lM Tz—l ,
)3 M

afr
53 =37

(A.41)

(A.42)

(A.43)

(A.44)

(A.45)

(A.46)

Comparing (A.45) and (A.46) with (A.10) and (A.20). we can conclude that, in
both cases, df; /0Z is obtained by differentiating f; with respect to I as thougt

% is a nonsymmetric matrix.
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Appendix B

MATHEMATICAL FORMULAS

For quick reference, a list of formulas frequently used in this book is
presented here as follows.

Volume and Surface Area

v =colAI2r" . volume with radius r (B.1)
co = W2 {"2;2] (B.2)
LX)={Y: d(Y.X)<r)} (B.3)
d2(¥,X) =¥ -X)TA"(Y-X) (B.4)

vo=cplAl Y2:Nn+2)": the volume of a region L (X) which satisfies

(B.5)
{ Y =X)Y =X ay = 124 (B.6)
0.6} VO
S =conlA1"2rm1 o surface area with radius » (B.7)
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So=colA1"2r"™" . the area of a surface S (X) which satisfies

i Y =X)Y-X)T gy = 124
S(X) SO

Properties Related to Normal Distributions

]

X)=NyM,2)y=——F+——
p( ) X( ) (Zn)nﬁ'z')/z

expl- (X M5 (X-1)]

Vp(X) = % =—p (X)X (X-M)

2
vipon = ZEE = p oozt or-m - - )

pm(X) — m—n/Z(zn)—n(m—l)IZ |Z|_(,"—”/2NX(M,Z;)

Properties Related to Gamma and Beta Densities

Gamma density:

N aBH B, —ow X

px)= l"(|3+l)x e 0<x
_ B+
E{xj = o

Var{xj} = %‘—

Beta density:

N Foa+B+2) o, 8 <x <1
p(x) _——__l"(a+l)l"([3+l)'\ (1=x) 0<x<
o+1

)

573

(B.8)

(B.9)

(B.10)

(B.11H)

(B.12)

(B.13)

(B.14)

(B.15)

(B.16)

(B.17)

(B.18)
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(o+1)(0+2)

2y o NSRS
Exy = (o+B+2)(o+p+3)

Gamma function:

C(B+1) = ot £wxﬁeﬂ"dr

Fe+DIB+HD) [ oy e
T(0+B+2) ‘x[)“ (1=x)"d

IM'x+1) = xT'(x)

IN'x+) =x! forx=0,1,2,...

ri=|="r

1
2

35 2x-D) -

I‘(x+—;-)= I n forx=123,...

2'
T(x+8) =x® for a large x and a small §
T'(x)

Moments of the Parzen and kNN Density Estimates

Parzen:

k(X)

p(X) = Nv

E(p(X)] Zp CO[1 + %Q(X)rzj (2nd order approx.)

_ V)
oX) = "{—_p(X) A}

Var{f)(X)} E%wp (X)  (Ist order approx.)

(B.19)

(B.20)

(B.21)

(B.22)

(B.23)

(B.24)

(B.25)

(B.26)

(B.27)

(B.28)

(B.29)

(B.30)
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w= J)ay (B.31)
= 272Qmy"2 1A 172 for normal (B.32)
= v (n+2)™""°T n+2 IA17Y2r7" for uniform (B.33)
KNN: p(X) = —— (B.34)

© P E NN '

L 2n
E{f)(X)} =p (X)[l+%(x(X)(cp (X)) 2 W ] (2nd order approx.)

(B.35)
¢ = colAI'? ¢y from (B.2)] (B.36)

. 2
Var{ p(X)} Ep—l((/ﬁ (1st order approx.) (B.37)
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NORMAL ERROR TABLE
I x
0 [4]

Each figure in the body of the table is preceded by a decimal point.

576
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Vo 0.00 0.04 0.02 | 003 | 004 | 005 { 006 | 007 | 008 | 0.09
0.0 | 00000 00399 | 00798 | 01197 | 01595 1 01994 | 02392 | 02790 | 03188 | 03586
0.1 103983 04380 | 04776 | 05172 | 05567 | 05962 | 06356 | 06749 | 07142 | 07535
0.2 1 07926 08317 | 08706 | 09095 | 09483 | 09871 | 10257 | 10642 | 11026 | 11409
0.3 ] 11791 12172 | 12552 | 12930 | 13307 | 13683 | 14058 | 14431 | 14803 | 15173
0.4 | 15554 15910 | 16276 | 16640 | 17003 | 17364 | 17724 | 18082 | 18439 | 18793
0.5 | 19146 19497 | 19847 | 20194 | 20450 | 20884 | 21226 | 21566 | 21904 | 22240
0.6 | 22575 22907 | 23237 | 23565 | 23891 | 23215 | 24537 | 24857 | 25175 | 25490
0.7 | 25804 26115 | 26424 | 26730 | 27035 | 27337 | 27637 | 27935 | 28230 | 28524
0.8 | 28814 29103 | 29389 | 29673 | 29955 { 30234 | 30511 | 30785 | 31057 | 31327
09 | 31594 31859 | 32121 | 32381 | 32639 | 32894 | 33147 | 33398 | 33646 | 33891
1.0 | 34134 34375 | 34614 | 34850 | 35083 | 35313 | 35543 | 35769 | 35993 | 36214
1.1 | 36433 36650 | 36864 | 37076 | 37286 | 37493 | 37698 | 37900 | 38100 | 38298
1.2 ] 38493 38686 | 38877 | 39065 | 39251 | 39435 | 39617 | 39796 | 319973 | 40147
1.3 | 40320 40490 | 40658 | 40824 | 40988 | 41149 | 41308 | 41466 | 41621 | 41774
1.4 | 41924 42073 | 42220 | 42364 | 42507 | 42647 | 42786 | 42922 | 43056 | 43189
1.5 | 43319 43448 | 43574 | 43699 | 43822 | 43943 | 44062 | 41179 | 44295 | 44408
1.6 | 44520 44630 | 44738 | 44845 | 44950 | 45053 | 45154 | 45254 | 45352 | 45449
1.7 | 45543 45637 | 45728 | 45818 | 45907 | 45994 | 46080 | 46164 | 46246 | 46327
1.8 | 46407 46485 | 46562 | 46638 | 46712 | 46784 | 46856 | 46926 | 46995 | 47062
1.9 | 47128 47193 | 47257 | 47320 | 47381 | 47441 | 47500 | 47558 | 47615 | 47670
2.0 | 47725 47778 | 47831 | 47882 | 47932 | 47982 | 48030 | 48077 | 48124 | 48169
2.1 | 48214 48257 | 48300 | 48341 | 48382 | 48422 | 48461 | 48500 | 48537 | 48574
2.2| 48610 48645 | 48679 | 48713 | 48745 | 48778 | 48809 | 48840 | 48870 | 48899
2.3 | 48928 48956 | 48983 | 49010 | 49036 | 49061 | 43086 | 49111 | 49134 | 49158
2.4 149180 49202 | 49224 | 49245 | 49266 | 49286 | 49305 | 49324 | 49343 | 49361
2.5 149379 49396 | 49413 | 49430 | 49446 | 49461 | 49477 | 49492 | 49506 | 49520
2.6 | 49534 49547 | 49560 | 49573 | 49585 | 49598 | 49609 | 49621 | 49632 | 49643
2.7 | 49653 49664 | 49674 | 49683 | 49693 | 49702 | 49711 | 49720 | 49728 | 49736
2.8 {49744 49752 1 49760 | 49767 | 49774 | 49781 | 49788 | 49795 | 49801 | 49807
29 | 49813 49819 | 49825 | 49831 | 49836 | 49841 | 49846 | 49851 | 49856 | 49861
3.0 | 49865
3.5 | 4997674
4.0 | 4999683
4.5 | 4999966
5.0 | 4999997133
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GAMMA FUNCTION TABLE

n 0 1 2 3 4 5 6 7 8 9
1O | 1.0000 9943 9888 9835 9784 | 9735 9687 9642 9597 9555
L1 | 9514 9474 9436 9399 9364 | .9330 .9298 9267 .9237  .9209
1.2 | 9182 9156 9131 9108 9085 | .9064 9044 9025 9007  .8990
1.3 | 8975 .8960 8946 .8934  .8922 | .8912 .8902 .8893 .8885 .8879
1.4 .8873  .8868 .8864 8860 .8858 | .8857 .8856 .8856 .8857  .8859
15| .8862 .8866 8870 8876 .8882 | .8889 .8896 .8905 .8914  .8924
1.6 | 8935 8947 8959 .8972  .8986 | 9001 9017 9033 .9050  .9068
17 | 9086 9106 9126 9147 9168 | 9191 9214 9238 9262 .9288
1.8 | 9314 9341 9368 9397 9426 | 9456 9487 9518 9551 9584
1.9 | .9618 9652 9688 9724 9761 | 9799 9837 9877 9917 9958

In order to compute the gamma function outside the above range, apply

I'(x+1) = xI'(x) for x > O recursively. For examples

1(3.38) = 2.387(2.38) = 2.38{1.381(1.38)} =2.918

I'(0.38) = I'(1.38)/0.38 = 2.338
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A

Absolute correction rule,
see Correction rule
Autocorrelation
function, 418
matrix, see Matrix
mixture, see Scatter matrix,
mixture

B

Bahadur expansion, see Expansion
Basis

complete set of, 417

function, 287, 385, 417

vector, 401
Bayes

classifier, see Classifier

conditionaf

cost, 57

error, 52
decision rule, see Decision rule
error, see Error
estimate, see Successive Bayes
estimation
linear classifier, see Linear
classifier
theorem, 12, 52
Beta distribution,
see Distribution
Bhattacharyya
bound, 99
distance, see Distance
estimate, see Estimate
Binary input, 173, 290
density function of, 290
discriminant function for, 131
orthonormality of, 174, 291
Binomial distribution,
see Distribution
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Bisector, 128, 444, 517
Block toeplitz matrix,
see Matrix
Bootstrap, 238
bias, 243
error, 240
method, 238
samples, 239
variance, 246
Branch and bound
clustering, 523
feature subset selection,
491
basic algorithm, 494
improved algorithm, 496
for nearest neighbor, 361
Burdick’s chart, 63

C

Central limit theorem, 17
Characteristic
equation, 26
function, 16, 88
of likelihood ratio, 88
of normal distribution,
16, 91
Chernoff
bound, 98
distance, see Distance
Chi-square
distribution, see
Density function, gamma
goodness-of-fit test, 83
Circular error, see Error
Class probability, see
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Probability
Class separability, see
Separability
Classification, 510
supervised, 51
unsupervised, 508
Classifier, see also
Decision rule
correlation, 125
design, 7
distance, 127
linear, see Linear
classifier
piecewise, see Piecewise
classifier
quadratic, see Quadratic
classifier
Clustering, 508
algorithm, 511
criterion, 510
graph theoretic approach, 539
nearest local-mean
reclassification rule, see
Nearest local-mean
reclassification rule
nearest mean reclassification
rule, see Nearest mean
reclassification rule
nonparametric approach, 533
normal decomposition, see
Normal decomposition
parametric aproach, 510
valley-seeking, 534, 542
Colored noise, 128
Column correlation coefficient,
164
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Condensed nearest neighbor,
see kNN
Configuration, 510
Confusion matrix, 518
Conjugate pair, see Density
function
Convergence
acceleration of, 388
for linearly separable case,
153, 371
in mean-square sense, 381
of nearest mean reclassification
rule, see Nearest mean
reclassification rule
with probability 1, 381
of stochastic approximation,
378
Correction rule
absolute, 369
fixed increment, 369
gradient, 369
Correlation, 125
classifier, see Classifier
coefficient, 15
matrix, see Matrix
Cost
conditional, 57
of decision, 57
symmetrical, 58
Covariance, 14
function, 418
matrix, see Matrix
Coverage, 255, 269

D
Data
compression, 409
display

nonparametric, 353
parametric, 154
risk contour, 355
filter, 537
reduction
nonparametric, 549
parametric, 556
Decision rule
Bayes
for minimum error, 51
for minimum risk, 57
likelihood ratio, 52
minimax, 61
Neyman-Pearson, 59
Density function, 12
a posteriori, 390
a priori, 390
of binary inputs, see
Binary input
class, 12
conditional, 12
conjugate pair, 392
of coverage, 269
estimate of
k nearest neighbor approach,
see kNN
Parzen approach, see Parzen
expansion of, 287
exponential, 56, 70
gamma, 23, 69, 573
gradient of, 534
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of likelihood ratio, 54
marginal, 13
mixture, 12
reproducing pair, 392
Design sample, see Sample
Desired output, 145, 147
vector, 149
Diagonal matrix, see Matrix
Diagonalization, 27
simultaneous, 31
Dimensionality, 426
intrinsic, 280, 537
local, see Dimensionality,
intrinsic
Directed
path, 539
tree, 539
Discriminant analysis, 445
nonparametric, 466
Discriminant function, 52
for binary inputs, see
Binary input
desired output of, see
Desired output
linear, see Linear classifier
piecewise, see Piecewise
classifier
quadratic, see Quadratic
classifier
Dispersion, 13
Distance
between-sample, 411
Bhattacharyya, 99, 188

for feature extraction, 455

Chernoff, 98
distribution of, see
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Distribution
normalized, 16
Distance classifier, see
Classifier
Distribution
beta, 75, 270, 573
binomial, 200
of distance, 68
function, 11
Gaussian-Wishart, 393
normal, 16, 573
characteristic function of,
16
conditional density, 48
entropy, 412
generation of, 30
likelihood ratio for, 54
marginal density, 48
probability of error for,
91
test of, see Normality
test
Wishart, 392
Distributional test, 476
Divergence, 458
Double exponential waveform,
284, 472

E

Edited k nearest neighbor,

see kNN
Effective dimensionality,

see Dimensionality, intrinsic
Eigenfunction, 418
Eigenvalues, 26
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of autocorrelation function, 418

estimation of, 431

matrix, see Matrix

normalization of, 410

perturbation of, 426
Eigenvectors, 27

estimation of, 431

matrix, see Matrix

perturbation of, 426
Entropy, 412, 550

for binary inputs, 416

maximization, 413

minimax, 415

minimization, 416, 550

for normal distributions,

see Distribution, normal

Error

Bayes, 53

circular, 287

conditional, 52

control, 351

counting, 197, 200

estimate, see Estimate

expression, 87, 197

function (normal), 63, 576

of linear classifier, 85

lower bound of, 220, 307

mean-square, 145, 402

pairwise, 284

probability of, 52, 85, 87, 197

of quadratic classifier, 91

reject curve, 79

upper bound of, 97, 220, 307
Estimate

Bayes (successive), see

Successive Bayes estimation
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of Bhattacharyya distance, 188
bias, 189, 190
variance, 189, 190

biased, 21, 183, 187, 259,
272, 313, 326, 347

consistent, 19, 261, 273

of density function, see
Density function

of density gradient, 534

of error, 196, 301, 303, 344

grouped error, 356

k nearest neighbor density,
see kNN

maximum likelihood, see
Normal decomposition

moment, see Moment

Parzen density, see Parzen

sample, see Sample

unbiased, 18

variance, 183, 187

Expansion

Bahadur, 292

by basis functions, see Basis
Karhunen-Loéve, 403, 417
kernel of, 287

square error of, 288

Walsh, 292

Expected

for random process, 418
value, 13
vector, 13
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F
Factor analysis, 417
Feature
extraction

for classification, 442
general critrion for, 460
sequential, 480

for signal representation, 400

ideal, 444
selection, see Feature
extraction
space, 402
subset selection, 489
backward selection, 490
branch and bound, see
Branch and bound
forward selection, 491
stepwise search technique,
490
vector, 402
Fisher
classifier, see Linear
classifier
criterion, 134
Fixed increment rule, see
Correction rule
Fourier transform
of likelihood ratio, 159
orthonormality of, 156
quadratic classifier of, 159
for stational process, 421
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G
Gamma
density, see Density
function

function, 23, 574, 578
Gaussian pulse, 282, 472
Gaussian-Wishart distribution,

see Distribution
Goodness-of-fit, see

Chi-square
Gradient

of density function, see

Density function

estimate of, see Estimate
Gradient correction rule, see

Correction rule
Graph theoretic clustering, see

Clustering
Grouped error estimate, see

Estimate

H

Harmonic sequence, see Sequence

Hermite polynomial, 288
Holdout method, 220, 310
Hughes phenomena, 208
Hyperellipsoid
surface area, 314, 573
volume, 260, 572
Hypothesis test
composite, 83
multi-, 66
sequential, see Sequential
(hypothesis) test
simple, 51
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single, 67

I

Intrinsic dimensionality, see
Dimensionality
Inverse matrix, see Matrix

K

k nearest neighbor
(NN) - volumetric, 305
classification, 303
likelihood ratio for, 303
density estimation, 268, 575
bias, 272
consistent, 273
metric, 275
momeats, 270
approximation of, 270
optimal &, 273
minimum /MSE, 275
minimum MSE, 274
unbias, 273
variance, 273
distance to ANN, 277
effect of parameters, 278
error estimation
bias, 347

L estimate of a covariance,

351
leave-one-out method, 303
metric, 303
resubstitution method, 303
progression, 552
k nearest neighbor (NN)
approach - voting, 305

asymptotic conditional risk
and error, 307
kNN, 306
multiclass, 309
NN, 305
2NN, 306
branch and bound, see
Branch and bound
condensed NN, 360
edited kNN, 358
finite sample analysis, 313
bias
multiclass, 322
NN, 313
2NN, 321
Karhunen-Loéve expansion,
see Expansion
Kiefer-Wolfowitz method, 380
Kolmogorov-Smirmnov test, 76,
83

L

Lagrange multiplier, 26, 59
Large number of classes, 284
Layered machine, 171
Learning, 368

machine, 5

without teacher, 394
Leave-one-out method, 220

for k nearest neighbor

approach, see kNN
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for Parzen approach, see Parzen

Likelihood ratio, 52
characteristic function of,
see Characteristic function



586 Introduction to Statistical Pattern Recognition

density function of, see
Density function
Fourier transform of, see
Fourier transform
for k nearest neighbor approach,
see kNN
minus-log, 52
for normal distribution, see
Distribution, normal
for Parzen approach, see Parzen
test (decision rule), see
Decision rule
threshold of, 52
Linear classifier
Bayes, 55, 57, 129
effect of design samples, 208
error of, see Error
Fisher, 135
iterative design, 150
for minimum error, 136
for minimum mean-square error,
145, 147
for multiclass, 373
by nonparametric scatter matrix,
473
successive adjustment, 367
Linearly separable, 153, 371
convergence for, see
Convergence
Local
dimensionality, see
Dimensionality, intrinsic
mean, 535, 542
Log transformation, see
Transformation

M
Mapped space, see Feature,
space
Mapping

linear, 399, 448, 465, 470
nonlinear, 463, 480
Matched filter, 126
Matrix
autocorrelation, 15
sample, see Sample
block toeplitz, 162
correlation, 15
covariance, 13
sample, see Sample
derivatives, 564
of determinant, 567
of distance, 568
of inverse, 564
of trace, 565
determinant, 38
diagonal, 27
eigenvalue, 27
eigenvector, 27
inversion of, 41
generalized, 44
pseudo-, 43
near-singular, 40
positive definite, 35
rank, 38
sample, 39, 149, 174, 556
singular, 38
toeplitz, 160
trace, 36
Mean, see Expected, value
or vector



Index

sample, see Sample
Merging, 513
Metric, 264, 275, 313
global, 313
local, 313
Minimax
for feature extraction,
see Feature, extraction
test, see Decision rule

Minimum point finding problem,

see Stochastic approximation
Minus-log-likelihood ratio,
see Likelihood ratio
Mixture
autocorrelation matrix,
see Scatter matrix, mixture
density function, see Density
function
normalization, 516, 519
scatter matrix of, see
Scatter matrix
Model validity test, 82
Moment, 18
central, 20
estimate, 18
sample, 18
Monotonicity, 492, 526
Multiclass, 66, 169, 373
Multicluster, 169
Multihypotheses test, see
Hypothesis test
Multiple dichotomy, 513
Multi-sensor fusion, 114
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N

Nearest local-mean reclassification
rule, 542
Nearest mean reclassification rule,
517
convergence of, 518
Nearest neighbor decision rule,
see kNN
Newton method, 376
Neyman-Pearson test, see
Decision rule
Nonparametric
clustering, see Clustering
data reduction, see Data,
reduction
density estimation
k nearest neighbor approach,
see kNN
Parzen approach, see Parzen
discriminant analysis, see
Discriminant analysis
scatter matrix, see Scatter
matrix
Normal decomposition, 526
maximum likelihood estimation,
527
method of moments, 527
piecewise quadratic boundary,
526
Normal distribution, see
Distribution, normal
Normality test, 75, 537
Normalization
of eigenvalues, see
Eigenvalues
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mixture, see Mixture
Notation, 9

0

Operating characteristics, 63
Orthogonal, 27, 287
Orthonormal, 27, 386, 401
for binary inputs, see
Binary input
of Fourier transform, see
Fourier transform
transformation, see
Transformation
Outlier, 235

P

Pairwise error, see Error
Parametric
clustering, see Clustering
data reduction, see Data,
reduction
estimation, 184
Parzen
classification, 301
likelihood ratio, 301
reduced, 553
density estimation, 255, 574
bias, 259
consistent, 261
convolution expression, 257
kernel, 255
metric, 264
minimum /MSE, 265
size, 261
minimum /MSE, 264
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minimum MSE, 263
moments, 257
approximation of, 258
for a normal kernel, 259
for a uniform kernel, 260
unbias, 261
variance, 259
error estimation
direct estimation of the
Bayes error, 344
kernel
L estimate of the kernel
covariance, 339
shape, 336, 342
size, 322
leave-one-out method, 301
lower bound of the Bayes error,
301
resubstitution method, 301
sample size, 327
threshold, 328
upper bound of the Bayes
error, 301
Perceptron, 368
Perturbation
of eigenvalues, see Eigenvalues
of eigenvectors, see
Eigenvectors
of a quadratic classifier, see
Quadratic classifier
Piecewise classifier
linear, 170
quadratic, 169
successive adjustment, 373
Positive definiteness, see Matrix
Potential function, 387
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Power spectrum, 421
Power transformation, see

Transformation
Principal component, 28

analysis, 417
Probability

a posteriori, 12

a priori, 12

class, 12

coverage, see Coverage

of error, see Error

reject, see Reject
Process

random, 417

stationary, see Stationary

process
whitening, 28

Q

Quadratic classifier
Bayes, 54
bootstrap error for, 242
design of, 153
error of, see Error
error of the resubstitution
method, 231
orthogonal subspace to, 480
perturbation of, 225
sequential selection, 480
Quadratic form (function), 16,
54, 125, 154
recursive computation of, 498

589

R

Radar Data, 47
Random process, see Process
Random variable, 11
Random vector, see Vector
Rank of determinant, see Matrix
Ranking procedure, 73
Reduced Parzen classifier,

see Parzen
Reduced training sequence,

see Sequence
Regression function, 376
Reject, 78

probability, 78

region, 78, 171

threshold, 78
Representative selection, 549
Reproducing pair, see

Density function
Resubstitution method, 220

error for a quadratic classifier,

231
for k nearest neighbor approach,
see kNN

for Parzen approach, see Parzen
Robbins-Monro method, 376
Root-finding problem, see

Stochastic approximation
Row correlation coefficient, 164

S

Sample
autocorrelation matrix, 19
covariance matrix, 21
design



590 Introduction to Statistical Pattern Recognition

bias due to, 203, 216 Solution tree, 492, 523
effect of, 201 Spherical coordinate, 434
variance due 1o, 213, 218 Splitting, 513
estimate, 17 Standard Data, 45
generation, 30 Standard deviation, 15
matrix, see Matrix Stationary process, 55, 156, 420
mean vector, 19 autocorrelation function, 157,
moment, see Moment 420
test mean, 157, 420
bias due to, 199, 216 Stochastic approximation, 375
effect of, 197 convergence, see Convergence
variance due to, 200, 218 minimum point finding problem,
Scatter matrix 380
between-class, 446 multidimensional extension, 382
generalized, 463 root-finding problem, 376
nonparametric, 467 Successive adjustment
of mixture, 446 of density function, see
within-class, 446 Successive Bayes estimation
nonparametric, 477, 542 linear classifier, see
Scatter measure, 411 Linear classifier
Schwarz inequality, 309 piecewise classifier, see
Separability criterion, 446 Piecewise classifier
Sequence potential function, 385
flatter, 389 Successive Bayes estimation, 389
harmonic, 375 of covariance matrix, 392, 393
reduced training, 371 of expected vector, 390, 393
Sequential (hypothesis) test, 110 supervised estimation, 390
Wald, 114 unsupervised estimation, 394
Simple hypothesis test, see Surface area, see Hyperellipsoid
Hypothesis test
Single hypothesis test, see T

H is test
. ypothesis tes .. Taylor series, 182, 258, 270, 313
Singular value decomposition,

557 Test sample, see Sample
Toeplitz matrix, see Matrix

Skeleton h rface, 537 .
eleton hypersurface Trace, see Matrix

Small sample size problem, 39
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Transformation
linear, 24, 401, 448, 465, 470
log, 108
orthonormal, 28, 35, 401, 417
power, 76, 104
variable, 47
whitening, 28, 128

Truth table, 290

Unbiased
asymptotic
k nearest neighbor density
estimate, see kNN
Parzen density estimate,
see Parzen
estimate, see Estimate
Unsupervised
classification, see
Classification
estimation, see Successive
Bayes estimation

A%

Valley-seeking technique,
see Clustering

Variable transformation,
see Transformation

Variance, 14

Vector
basis, see Basis
conditional expected, 13
desired output, see

Desired output

expected, see Expected

feature, see Feature
penalty, 150
random, 11
Volume, see Hyperellipsoid
Volumetric & nearest neighbor,
see kNN
Voting & nearest neighbor,
see kNN

A4

Wald sequential test, see
Sequential (hypothesis) test
Walsh function, see Expansion
Weighting function, 469
White noise, 125
Whitening
filter, 128
process, see Process
transformation, see
Transformation
Wishart distribution, see
Distribution
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