- ‘ -

1l GUmpPo i

IIIIIIII‘Y AND PRACIICE

Cloud Computing

This page is intentionally left blank

Cloud Computing

Theory and Practice

Dan C. Marinescu

AMSTERDAM ¢« BOSTON * HEIDELBERG *« LONDON

NEW YORK ¢ OXFORD ¢ PARIS ¢« SAN DIEGO
SAN FRANCISCO * SINGAPORE * SYDNEY « TOKYO

MORGAN KAUFMANN

ELSEVIER Morgan Kaufmann is an imprint of Elsevier

Acquiring Editor: Steve Elliot

Editorial Project Manager: Lindsay Lawrence
Project Manager: Anitha Kittusamy Ramasamy
Cover Designer: Russell Purdy

Morgan Kaufmann is an imprint of Elsevier
225 Wyman Street, Waltham, 02451, USA

Copyright © 2013 Elsevier Inc. All rights reserved.

No part of this publication may be reproduced or transmitted in any form or by any means, electronic or
mechanical, including photocopying, recording, or any information storage and retrieval system, without
permission in writing from the publisher. Details on how to seek permission, further information about the
Publisher’s permissions policies and our arrangements with organizations such as the Copyright Clearance
Center and the Copyright Licensing Agency, can be found at our website: www.elsevier.com/permissions.

This book and the individual contributions contained in it are protected under copyright by the Publisher (other
than as may be noted herein).

Notices
Knowledge and best practice in this field are constantly changing. As new research and experience broaden our
understanding, changes in research methods, or professional practices, or medical treatment may become necessary.

Practitioners and researchers must always rely on their own experience and knowledge in evaluating and using any
information, methods, compounds, or experiments described herein. In using such information or methods they
should be mindful of their own safety and the safety of others, including parties for whom they have a professional
responsibility.

To the fullest extent of the law, neither the Publisher nor the authors, contributors, or editors, assume any liability
for any injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or
from any use or operation of any methods, products, instructions, or ideas contained in the material herein.

Library of Congress Cataloging-in-Publication Data
Application submitted

British Library Cataloguing in Publication Data
A catalogue record for this book is available from the British Library

ISBN: 978-0-12404-627-6

For information on all MK publications
visit our website at www.mkp.com

Printed in the United States of America

1314151617 10987654321

aa Working together
—4AB8 (o grow libraries in
Pockfd developing countries

ELSEVIER

www.elsevier.com ¢ www.bookaid.org

To Vera Rae and Luke Bell

This page is intentionally left blank

Contents

PIEIACE. ...ttt ettt et st Xiii
FOTEWOI ...ttt ettt et e a et e st e bt e st e sbeentesbeebesbeenbesanens Xvii
CHAPTER 1 INtroductionccceceeemisemmnsmnnnssnss s s sssss s sssss s ssss s ssse e 1
1.1 Network-Centric Computing and Network-Centric Content.............cocecerveververeruerenses 3

1.2 PEer-t0-PEEr SYSIEIMS ...ouvcviiveeiieeieieiieteei ettt ettt saese st e e esessesessesessesessesessesesnas 7

1.3 Cloud Computing: An Old Idea Whose Time has COme.............oceeirireereeririeennennes 9

1.4 Cloud Computing Delivery Models and Servicesccevvevveieieieenenienrerieieneenns 11

1.5 Ethical Issues in Cloud COMPULNGcecvevvieviriiieierieeierierieeeeeereereeveese s ssessesessenns 14

1.6 Cloud VUINEIabIlitiescuevveeirieiiiieiieieieieieteiet ettt ettt et et aenens 15

1.7 Major Challenges Faced by Cloud COMPULING........cecvrveririeirreeirieieieiereiereseereienens 16

1.8 FUIther REAAINGc.oveviieeiieeieieiieieieteetet ettt sb et b e eb et sesesenens 17

1.9 HISEOTY NOLES ...cuveeiieiieteieieeie ettt ettt es st sa s sene e eseee 18

1.10 Exercises and PrODICIMSccceiiieiriiiriiieieieiesietesieteseete ettt 18
CHAPTER 2 Parallel and Distributed Systems..........cccoecemrrrrrcccsmmeerrssssssnnneenns 21
2.1 Paralle]l COMPULNGccvevevieieiietieiieieete ettt ettt esbessesaeseesaeseeseeseesessessessessessesseses 21

2.2 Parallel Computer ATCRItECTUTEceoviivieiiiieiiieieieieetere ettt ens 25

2.3 DiStrIDULEd SYSEIMS .veuvvieeeiieiieieiietet ettt ettt ettt etese et sseseese st seeeseeesesesens 27

2.4 Global State Of @ ProCess GIOUPccveveiereriererieririerinieeeeeeseeseesseseesessesesesensesessesens 28

2.5 Communication Protocols and Process Coordinationceeeveveeerenieresierenienens 32

2.6 LOZICAL CLOCKS . .uvtiiuiiieicicieeeieieeee ettt sttt bttt s e eses 34

2.7 Message Delivery Rules; Causal DELIVETY.........cocvevveieieieieieieieieeie e ereveieiesaenns 35

2.8 Runs and Cuts; Causal HiStOTYc.ccoeiiiriiriiriiiiieieieieiereeeee et 38

2.9 CONCUITENCY w..vtvntetieieteteteeteee ettt ettt tes e te st ete e et e sese s et e eseseesenesseseesensesensesensesansesens 41

2,10 ALOMIC ACHONS ..viviieiieteieteietesiete sttt ettt ettt et se et se st ae s s s esesseseesenenne 44

2,11 CONSENSUS PrOtOCOISvivivieietiietiieiisieie ettt ettt ettt ettt ss e ss e esese e 48

2.12 Modeling Concurrency with Petri Netsccccoeueiriririeiinieieieisiseeieeeeeeee e 51

2.13 Enforced Modularity: The Client-Server Paradigm.............cccceevrieenenenienienieiennene 57

2.14 Further REAAINGcveviivieiieiieiieiieieeteeteetete ettt ettt ettt sbesb b s s s ene 62

2,15 HiSLOIY NOLES ...ttt ettt sttt ettt ettt ettt ettt be bt ae st ene s eneeseneeseneee 62

2.16 Exercises and ProbIEmSccovueuirieirieirieieieieieieree ettt saese s ne 64
CHAPTER 3 Cloud Infrastructure.........ccccccmmmiismmminismnsnnsssnsssnssss s 67
3.1 Cloud Computing at AMAZONceeuiieriieriieteieteriereseeteetee et eteseereseesesesesesessesens 67

3.2 Cloud Computing: The GOOZle PErSPECIVEveuveveieriieeiieeieieieieeeeteeereeeveeeeeeeeens 77

viii Contents
3.3 Microsoft Windows Azure and Onling SEIVICesceovrvrueurerireeueiirieieeeeeeseeeeenens 79
3.4 Open-Source Software Platforms for Private Cloudscccoeverievievierieieiererennne. 80
3.5 Cloud Storage Diversity and Vendor LOCK-iN..........c.cccecvririeriniiniiniiieieieieeeveeeeene 84
3.6 Cloud Computing Interoperability: The Intercloud.........cccooerveirieineinicirieereen, 86
3.7 Energy Use and Ecological Impact of Large-Scale Data Centersc...ccerveneneen. 88
3.8 Service- and Compliance-Level AGreements.ceueirerueueenirieierenerieieeeeresieeesenenes 91
3.9 Responsibility Sharing Between User and Cloud Service Provider...............cceu...... 92
.10 USET EXPEIIEIICE ... eviviviiiieiesieieieieitest ettt ete ettt eteebessesbesbesse s essessessessesseseeseeseeseens 93
.11 SOftWare LICENSINGccvivviiiiiiiiieieieiee ettt ettt et ev bbb bbb essesseseeseessese e 95
3.12 FUrther REAINGevevenieiiieiiieiieiteeit ettt st 96
313 HISEOTY NOES ..ttt ettt es 97
3.14 Exercises and ProDIEIMSccocueirieirieirieiiiteiieieteteeetee ettt ssese s e enens 97
CHAPTER 4 Cloud Computing: Applications and Paradigms...........cccceeemmmeeenns 99
4.1 Challenges for Cloud COMPULINGc.ervevirieririeririeieieieteteieeeeet et eseseeseneenas 100
4.2 Existing Cloud Applications and New Application Opportunities.............cccoeveuvev.. 101
4.3 Architectural Styles for Cloud Applications...........ccceevrveirieeiereiereiereieresieeeseeeenes 102
4.4 Workflows: Coordination of Multiple ACHVItIESecvvverrreririirieirieirieereeseees 104
4.5 Coordination Based on a State Machine Model: The ZooKeeperccooueuene. 112
4.6 The MapReduce Programming MOdEL.............cc.ccvevieieieieiiierieieiecresieiesieieienens 115
4.7 A Case Study: The GrepTheWeb Application............cccceueveuirieenieinieinieinieeeeenas 118
4.8 Clouds for Science and ENGINEETing........ccevrveririeirieieieieieiereeeresiesessesesseseeseseenas 120
4.9 High-Performance Computing on @ Cloud............ccovveerveirieiereieiiieeieesiereseesenes 121
4.10 Cloud Computing for Biology Researchcoccceovvirieeeininieeieseeeeseeees 125
4.11 Social Computing, Digital Content, and Cloud Computing............ccceeevrververereenns 128
412 Further REAINGccveverieiieiieiieiieiietietieteete ettt se et eaeeveebesse bbb s essens 130
4.13 Exercises and ProbIEIMSc.eceiririeieiriniiieiininieieiniete sttt 130
CHAPTER 5 Cloud Resource Virtualizationcccvvmmriieemnnsnnnsnnnnsnssssnenas 131
5.1 VIItUAIZAONvevieiiieiiiieteie ettt esenens 132
5.2 Layering and VirtUaliZationccoeervirririerieieieieieeeeeeeieee e s eressessessessessesnas 133
5.3 Virtual Machine MONITOTS.cerieuirieirieirieitriee ettt 136
5.4 Virtual MaChiNeS.......c.evtriririeuiiriiteieiirinietctet sttt ettt ettt snesens 136
5.5 Performance and Security ISOIation.........c.ccevveuirieinieinieineinecececec e 139
5.6 Full Virtualization and ParavirtualiZationccceeeeeiererieerieesieesieeeseeeseseenens 140
5.7 Hardware Support for Virtualization.............ccceeereirieninieninenieeneeseeesee e 142
5.8 Case Study: Xen, a VMM Based on Paravirtualizationc.ccceceeeevervenieieniennnn 144
5.9 Optimization of Network Virtualization in Xen 2.0..........ccccoevveiiieieenrenienieieienes 149
5.10 vBlades: Paravirtualization Targeting an x86-64 Itanium Processor 152
5.11 A Performance Comparison of Virtual Machines.............ccoeveerievinieineinreirieiennes 154
5.12 The Darker Side of Virtualization............c.ccecerverirreirieieeieeieeieesee e 156

5.13 Software Fault ISOLAIONc..veeeeeeee et e e e e e eeeee e 158

5.14
5.15
5.16

CHAPTER 6
6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9

6.10
6.11
6.12
6.13
6.14
6.15
6.16

CHAPTER 7
7.1
7.2
7.3
1.4
1.5
7.6
1.1
1.8
7.9

7.10
7.1
7.12
7.13
7.14
7.15

CHAPTER 8
8.1
8.2

Contents ix

Further REAAINGcovevviiiiniiiiiiieicccccet e 159
HISTOTY NNOLES ..ttt ettt st ettt e b e s s beesbeesaaeeaee 159
Exercises and Problemscocccoiviiiiiiiniiiiniencec ettt 160
Cloud Resource Management and Scheduling........cccceevvveeeeeenee. 163
Policies and Mechanisms for Resource Managementc.ccocevevvenveeeieeecennnne. 164
Applications of Control Theory to Task Scheduling on a Cloud...........c..ccceueeunne 166
Stability of a Two-Level Resource Allocation Architecturecoecveecveerveeveenen. 169
Feedback Control Based on Dynamic Thresholds..........cccccoevveeiienienieenieiieenies 171
Coordination of Specialized Autonomic Performance Managersccccceeeeene 172
A Utility-Based Model for Cloud-Based Web Servicesccoceveeverienenveniennnene 174
Resource Bundling: Combinatorial Auctions for Cloud Resources.............c......... 178
Scheduling Algorithms for Computing Cloudscccoecveeieiiinieninienenieneeeee. 182
Fair QUEUINE ..ottt ettt ettt e e s et esabeenaeesane 184
Start-Time Fair QUEUINGcccuevuiriiriiiiiiiierectceetese ettt 185
Borrowed Virtual Timecc.coveiiiiiiiiiiiiieerceie et 190
Cloud Scheduling Subject to Deadlinescccceeeererinienenenenieieieeeieeeeeeenes 194
Scheduling MapReduce Applications Subject to Deadlines..........c.ccceeveeevevrcnen. 199
Resource Management and Dynamic Application Scalingcc.ceevveevvernieeneennne 201
Further REAINGcovuiiiiiiiiieiiecie ettt 202
Exercises and Problemscocuooiriiiiiiiniiiiiiincce et 203
Networking SUppOrt.........cccvcierrrsnmire e 205
Packet-Switched NetWOTKScc.ooiiiiiiiiiiiiiie e 205
The INTEINET.......oouiiiiiiiiiiiieieet ettt 207
Internet Migration t0 IPVOc...ooiiiiiiiiiiiiiiceccc et 210
The Transformation of the INternet..........ccceevveriiiirieiiiieneneeeeeeeee 211
Web Access and the TCP Congestion Control Windowccccccceevevieienienieennnne. 214
Network Resource Management..........c..ueeueerieriienieniieenieeieenieeieeste e 217
Interconnection Networks for Computer Clouds...........ccocveevieriiiinieniieinienieeneene 219
Storage ATea NEIWOTKS ...eeiiieiieiieiieeiee ettt ettt sttt e 222
Content-Delivery NEetWOTKScoiiiiriieriiiiieeieeiie ettt 226
Overlay Networks and Small-World Networksccceecevievinieniniienciieneneee, 228
Scale-Free NetWOrks.ooiiiiiiiie e 230
Epidemic AIOTItRIMSccuevviiiiiieieieicieceee et 236
Further ReadINGcoouviiiiiiiiiiieiieee ettt 238
HISTOTY NNOLES ..ottt ettt ettt ettt ettt e bt e sabe e b e sabeenanesane 238
Exercises and Problemscocueiuiriiriiiiniiiiniiincec sttt 239
Storage Systems.........ccooeiiiiieieccce e —————————— 241
The Evolution of Storage TeChNOlOYcoeoviiiiiiriiiiiiiiieiieeieeite e 242
Storage Models, File Systems, and Databases..........cccceeveerieenienciienienieenieeieeee. 243

X Contents

8.3 Distributed File Systems: The PreCursors.........ecveeveeiererieerieerieeneeesiee e 246
8.4 General Parallel File SYStEIM.....coceirieirieiiieeieieeeietetet ettt ee 252
8.5 G00ZIE File SYSLEM...cuiieuiieiiieiieieiieieieteeeteete ettt es e se e esens 255
8.6 APUCHE HAAOOP. ...ttt eaeeeen 258
8.7 Locks and Chubby.: A LOCKING SETVICEecverveieieieeieiieieieieee et 260
8.8 Transaction Processing and NoSQL Databasescccocveeeeeiienriereniesresieresiennas 264
8.9 BIGTUDIC ...ttt aen 266
810 MEGASTOTC.......eeeeeeeeeeeeeeeeeeeeeeee ettt ettt enee 268
8171 HiStOIY INOES ...vvieiiieteieieietet ettt ettt ettt ettt et seneeeeeenas 269
8.12 Further REAAINGoveveuiiieieiiieieiec ettt nens 270
8.13 Exercises and ProbIemScceivieirieirieirieiieieieetete et 271
CHAPTER 9 Cloud SECUNItY....ceumueeeerrrrerrrrrrrrrresseennnnnnssssssssssssesesessssnsnnnnnnnnns 273
9.1 Cloud SeCUIItY RISKS ...ovevirieeiieiiiteieiiieteieeieteteteete et se e esens 274
9.2 Security: The Top Concern for Cloud USETS..........ceverieueieiniririeeireeieieeseeieeeeens 277
9.3 Privacy and Privacy Impact ASSESSIMENTecveveieieiererierieieeereeressessessesessesnas 279
9.4 TIUSE ..tttk eas 281
9.5 Operating SYStem SECULTLYveirieririeirieirieieetee ettt ee 283
9.6 Virtual Machine SECUIILYc..cveuirueieiiieiiieieieteieteetee e 284
9.7 Security of VIrtUaliZationcceeeveuiriererieiieririeeisieeeieee et enens 286
9.8 Security Risks Posed by Shared IMages..........cccveveeirieieieinieieeesiseeeeseeeeeees 289
9.9 Security Risks Posed by a Management OS...........ccoovevereieieineeriereniesiesievesieneas 292
9.10 Xoar: Breaking the Monolithic Design of the TCBcccooeviverieerieinieeieeene 295
9.11 A Trusted Virtual Machine MONItOLc.cccueueiririeieirinirieieinriecereeecicsseeeieeas 298
9.12 Further REAAINGc.evviveueiiiieieieit ettt 299
9.13 EXercises and ProbIEmSccocveuirieririeinieieieiereiesetetes et ese st seesessesessesenes 299
CHAPTER 10 Complex Systems and Self-Organizationcccceeerevveeecennnees 301
10.T COMPIEX SYSTEIMS 1.vvrvinivinieteieteiete sttt sttt ettt ete e ete st te e seeeseseesesaesesaenessenenns 301
10.2 Abstraction and Physical REAlitYcceeruevirieirieirieieieieieeeee e 303
10.3 Quantifying COMPIEXILYevrveirreieriieriieteteesteresie et s e se s e ssesesseseesens 304
10.4 Emergence and Self-Organizationcccooveeeeeeririeieeeineriseeeeeseseeeseeeeeeeseseenas 306
10.5 Composability Bounds and Scalability............ccccovvevierievieiieieieieeeeeeeie e 308
10.6 Modularity, Layering, and Hierarchycccccovvevieiiieieieieieeeeeecieeeeeeeeeena 310
10.7 More on the Complexity of Computing and Communication Systems................... 312
10.8 Systems of Systems: Challenges and SOIUtIONS.........ccveveirverieerieerieirieeeee e, 314
10.9 FUrther REAAINGocveviiveviieiiiieieieieieietee ettt s e ese s enens 315
10.10 Exercises and ProbIEmSccccveivieuirieeiiiiiiieietiieretereseves et ese s s esens 315
CHAPTER 11 Cloud Application Development..........cceeeecreererrrrrrerrrereeeeennnnnnes 317
11.1 Amazon Web Services: EC2 INSEANCESeueereeueueriririeieiiirinieieeneseieseeeieieseeeeseenas 318

11.2 Connecting Clients to Cloud Instances Through Firewallsc.ccccoerreeireninenes 319

Contents

11.3 Security Rules for Application and Transport Layer Protocols

11.6 How to Manage SOS Services in CH#ccvoveiriiieieieiieieesee e

11.7 How to Install the Simple Notification Service on

UbBUNTu 10104 oottt sttt sttt

11.8 How to Create an EC2 Placement Group and Use MPI............ccccccecveveeennnnn.
11.9 How to Install Hadoop on Eclipse on a Windows System............cccccevveeereenenne.
11.10 Cloud-Based Simulation of a Distributed Trust Algorithmcccecveereennee.
11.11 A Trust Management SEIVICEcovvevirieririeuirieieieeieiee sttt
11.12 A Cloud Service for Adaptive Data Streamingcccceceeeeveieerieeriereneerennens
11.13 Cloud-Based Optimal FPGA Synthesis........cccootvirueueiririeieeiireeeeinesieieeeeeeeeens
11.14 Exercises and Problemsccceeriruerierinieienieisieicsiee et

(= 1

Xi

This page is intentionally left blank

Preface

The idea that computing may be organized as a public utility, like water and electricity, was formulated
in the 1960s by John McCarthy, a visionary computer scientist who championed mathematical logic in
artificial intelligence. Four decades later, utility computing was embraced by major IT companies such
as Amazon, Apple, Google, HP, IBM, Microsoft, and Oracle.

Cloud computing is a movement started sometime during the middle of the first decade of the new
millennium. The movement is motivated by the idea that information processing can be done more
efficiently on large farms of computing and storage systems accessible via the Internet. In this book
we attempt to sift through the large volume of information and dissect the main ideas related to cloud
computing.

Computer clouds support a paradigm shift from local to network-centric computing and network-
centric content, when computing and storage resources are provided by distant data centers. Scientific
and engineering applications, data mining, computational financing, gaming and social networking,
and many other computational and data-intensive activities can benefit from cloud computing. Storing
information “on the cloud” has significant advantages and was embraced by cloud service providers.
For example, in 2011 Apple announced the iCloud, a network-centric alternative for content such as
music, videos, movies, and personal information. Content previously confined to personal devices such
as workstations, laptops, tablets, and smart phones need no longer be stored locally, can be shared by
all these devices, and is accessible whenever a device is connected to the Internet.

The appeal of cloud computing is that it offers scalable and elastic computing and storage services.
The resources used for these services can be metered and the users can be charged only for the resources
they use. Cloud computing is a business reality today as increasing numbers of organizations are adopt-
ing this paradigm.

Cloud computing is cost effective because of the multiplexing of resources. Application data is stored
closer to the site where it is used in a manner that is device and location independent; potentially, this
data storage strategy increases reliability as well as security. The maintenance and security are ensured
by service providers; the service providers can operate more efficiently due to economy of scale.

Cloud computing is a technical and social reality today; at the same time, it is an emerging techno-
logy. At this time one can only speculate how the infrastructure for this new paradigm will evolve and
what applications will migrate to it. The economic, social, ethical, and legal implications of this shift
in technology, whereby users rely on services provided by large data centers and store private data and
software on systems they do not control, are likely to be significant.

Cloud computing represents a dramatic shift in the design of systems capable of providing vast
amounts of computing cycles and storage space. During the previous four decades, one-of-a-kind
systems were built with the most advanced components available at the time at a high cost; but today
clouds use off-the shelf, low-cost components. Gordon Bell argued in the early 1990s that one-of-a-
kind systems are not only expensive to build, but the cost of rewriting applications for them is prohibi-
tive [45].

Cloud computing reinforces the idea that computing and communication are deeply intertwined.
Advances in one field are critical for the other. Indeed, cloud computing could not emerge as a feasible

xiii

Xiv Preface

alternative to the traditional paradigms for data-intensive applications before the Internet was able
to support high-bandwidth, low-latency, reliable, low-cost communication; at the same time, modern
networks could not function without powerful computing systems to manage them. High-performance
switches are critical elements of both networks and computer clouds.

There are virtually no bounds on composition of digital systems controlled by software, so we are
tempted to build increasingly complex systems. The behavior and the properties of such systems are
not always well understood; thus, we should not be surprised that computing clouds will occasionally
exhibit an unexpected behavior and system failures.

The architecture, the coordination algorithms, the design methodology, and the analysis techniques
for large-scale complex systems like computing clouds will evolve in response to changes in technol-
ogy, the environment, and the social impact of cloud computing. Some of these changes will reflect the
changes in the Internet itself in terms of speed, reliability, security, capacity to accommodate a larger
addressing space by migration to IPv6, and so on. In December 2011, 32.7% of the world population,
of slightly less than 7 billion, were Internet users, according to www.internetworldstats.com/stats.htm.
The 528% growth rate of Internet users during the period 2000-2011 is expected to be replicated if not
exceeded in the next decade. Some of these new Internet users will discover the appeal of computing
clouds and use cloud services explicitly, whereas a very large segment of the population will benefit
from services supported by computing clouds without knowing the role the clouds play in their lives.

A recent posting on ZDNet reveals that EC2 was made up of 454,600 servers in January 2012; when
one adds the number of servers supporting other AWS services, the total number of Amazon systems
dedicated to cloud computing is much larger. An unofficial estimation puts the number of servers used
by Google in January 2012 close to 1.8 million; this number was expected to be close to 2.4 million
by early 2013.

The complexity of such systems is unquestionable and raises questions such as: How can we man-
age such systems? Do we have to consider radically new ideas, such as self-management and self-
repair, for future clouds consisting of millions of servers? Should we migrate from a strictly determin-
istic view of such complex systems to a nondeterministic one? Answers to these questions provide a
rich set of research topics for the computer science and engineering community.

The cloud movement is not without skeptics and critics. The critics argue that cloud computing is
just a marketing ploy, that users may become dependent on proprietary systems, that the failure of a
large system such as the cloud could have significant consequences for a very large group of users who
depend on the cloud for their computing and storage needs. Security and privacy are major concerns
for cloud computing users.

The skeptics question what a cloud actually is, what is new, how does it differ from other types of
large-scale distributed systems, and why cloud computing could be successful when grid computing had
only limited success. The CEO of Oracle said, “I think the Internet was the last big change. The Internet
is maturing. They don’t call it the Internet anymore. They call it cloud computing.”” In 2012, the Oracle
Cloud was announced; the website of the company acknowledges: “Cloud computing represents a
fantastic opportunity for technology companies to help customers simplify IT, that often-baffling and
always-changing sector of the corporate world that’s become increasingly valuable in today’s global
economy.”’

A very important question is whether, under pressure from the user community, the current stan-
dardization efforts spearheaded by the National Institute of Standards and Technology (NIST), will
succeed. The alternative, the continuing dominance of proprietary cloud computing environments, is

Preface XV

likely to have a negative impact on the field. The three cloud delivery models, Software as a Service
(SaaS), Platform as a Service (PaaS), and Infrastructure as a Service (IaaS), will continue to coexist for
the foreseeable future. Services based on SaaS will probably be increasingly popular because they are
more accessible to lay people, whereas services based on IaaS will be the domain of computer-savvy
individuals. If the standardization effort succeeds, we may see PaaS designed to migrate from one
infrastructure to another and overcome the concerns related to vendor lock-in.

This book attempts to provide a snapshot of the state of the art of a dynamic field likely to expe-
rience significant developments in the near future. The first chapter is an informal introduction to
network-centric computing and network-centric content, to the entities involved in cloud computing,
the paradigms and the services, and the ethical issues. Chapter 2 is a review of basic concepts in paral-
lel and distributed computing; the chapter covers a range of subjects, from the global state of a process
group to causal history, atomic actions, modeling concurrency with Petri nets, and consensus protocols.

The next two chapters address questions of interest for the users of cloud computing. The cloud
infrastructure is the subject of Chapter 3; we discuss the cloud services provided by Amazon, Google,
and Microsoft, then we analyze the open-source platforms for private clouds, service-level and
compliance-level agreements, and software licensing. Next we cover the energy use and the social
impact of large-scale data centers and the user experience. Chapter 4 discusses cloud applications; after
a brief review of workflows we analyze coordination using the Zookeeper and then the MapReduce
programming model. The applications of clouds in science and engineering, biology research, and
social computing are then discussed, followed by a presentations of benchmarks for high-performance
computing on a cloud.

Chapters 5 through 9 cover the architecture, algorithms, communication, storage, and cloud secu-
rity. Chapter 5 is dedicated to virtualization; we discuss virtual machines, virtual machine monitors,
architectural support for virtualization, and performance and security isolation and illustrate the con-
cepts with an in-depth analysis of Xen and vBlades and with a performance comparison of virtual
machines. Chapter 5 closes with a discussion of virtual machine security and software fault isolation.

Resource management and scheduling are the topics of Chapter 6. First, we present a utility model
for cloud-based Web services, then we discuss the applications of control theory to scheduling, two-
level resource allocation strategies, and coordination of multiple autonomic performance mangers.
We emphasize the concept of resource bundling and introduce combinatorial auctions for cloud
resources. Next, we analyze fair queuing, start-time fair queuing, and borrowed virtual time scheduling
algorithms and cloud scheduling subject to deadlines.

Chapter 7 presents several aspects of networking pertinent to cloud computing. After a brief discus-
sion of the evolution of the Internet we review basic ideas regarding network resource management
strategies, interconnects for warehouse-scale computers, and storage area networks. Then we overview
content delivery networks and analyze in some depth overlay networks and their potential applications
to cloud computing. Finally, we discuss epidemic algorithms.

In Chapter 8 we discuss storage systems. First, we review the early distributed file systems of the
early 1980s: the Network File System developed by Sun Microsystems, the Andrew File System devel-
oped at Carnegie Mellon University as part of the Andrew project, and the Sprite Network File System
developed at University of California Berkeley as a component of the Unix-like distributed operating
system called Sprite. Then we present the General Parallel File System developed at IBM in the early
2000s. The in-depth discussions of the Google File System, the Bigtable, and the Megastore illustrate
the new challenges posed to the design of datastores by network-centric computing and network-centric

Xvi Preface

content and the shift from traditional relational database systems to databases capable of supporting
online transaction-processing systems.

Cloud security is covered in Chapter 9. After a general discussion of cloud security risks, privacy,
and trust, the chapter analyzes the security of virtualization and the security risks posed by shared
images and by the management operating system. The implementation of a hypervisor based on
microkernel design principles and a trusted virtual machine monitor are then presented.

Chapter 10 presents topics related to complex systems and self-organization. The chapter starts
with an introduction to complex systems, followed by an analysis of the relationship between abstrac-
tions and the physical reality. A review of the possible means to quantify complexity is followed by
a discussion of emergence and self-organization. The discussion of the complexity of computing and
communication systems starts with presentation of composability bound and scalability, followed by
other means to cope with complexity, including modularity, layering, and hierarchy. Finally we discuss
the challenges posed by systems of systems.

The last chapter of the book, Chapter 11, is dedicated to practical aspects of application develop-
ment. Here we are only concerned with applications developed for the Amazon Web Services (AWS).
The chapter starts with a discussion of security-related issues and the practical means of clients to
connect to cloud instances through firewalls. The chapter provides recipes for using different AWS
services; two AWS applications, one related to trust management in a cognitive network and the other
to adaptive data streaming to and from a cloud are discussed in detail.

More than 385 references are cited in the text. Many references present recent research results in
several areas related to cloud computing; others are classical references on major topics in parallel and
distributed systems. A glossary covers terms grouped in several categories, from general to services,
virtualization, desirable attributes, and security.

The history notes at the end of many chapters present the milestones in a particular field; they serve
as reminders of how recently important concepts, now considered classical in the field, have been
developed. They also show the impact of technological developments that have challenged the com-
munity and motivated radical changes in our thinking.

The contents of this book reflect a series of lectures given to graduate classes on cloud computing.
The applications discussed in Chapter 11 were developed by several students as follows: Tim Preston
contributed to 11.3; Shameek Bhattacharjee to 11.4, 11.10, and 11.11; Charles Schneider to 11.5;
Michael Riera to 11.6 and to 11.13; Kumiki Ogawa to 11.7; Wei Dai to 11.8; Gettha Priya Balasubra-
manian to 11.9; and Ashkan Paya to 11.2.

The author is grateful to several students who contributed ideas, suggested ways to improve the
manuscript, and helped identify and correct errors: David Adams, Ragu N. Aula, Surbhi Bhardwaj,
Solmaz Gurkan, Brendan Lynch, Kyle Martin, Bart Miller, Ganesh Sundaresan, and Paul Szerlip.
Special thanks to Ramya Pradhan and William Strickland for their insightful comments and
suggestions. The author wants to express his appreciation for the constant guidance and help provided
by Steve Elliot and Lindsay Lawrence from the publisher, Morgan Kaufmann. We also acknowledge
Gabriela Marinescu’s effort during the final stages of manuscript preparation.

Supplemental Materials

Supplemental materials for instructors or students can be downloaded from Elsevier: http:/store.
elsevier.com/product.jsp?isbn=9780124046276

Foreword

This book is a timely, comprehensive introduction to cloud computing. The phrase cloud computing,
which was almost never used a decade ago, is now part of the standard vocabulary. Millions of people
around the world use cloud services, and the numbers are growing rapidly. Even education is being
transformed in radical ways by cloud computing in the form of massive open online courses (MOOC:sS).
This book is particularly valuable at this time because the phrase cloud computing covers so many dif-
ferent types of computing services, and the many people participating in conversations about clouds
need to be aware of the space that it spans. The introductory material in this book explains the key con-
cepts of cloud computing and is accessible to almost everybody; such basic, but valuable, information
should be required reading for the many people who use some form of cloud computing today.

The book provides a signal service by describing the wide range of applications of cloud comput-
ing. Most people are aware of cloud services such as email and social networks, but many are not famil-
iar with its applications in science and medicine. Teams of scientists, collaborating around the world,
find that cloud computing is efficient. This book will help people dealing with a variety of applications
evaluate the benefit of cloud computing for their specific needs.

This book describes the wide range of cloud services available today and gives examples of services
from multiple vendors. The examples are particularly helpful because they give readers an idea of how
applications work on different platforms. The market for cloud computing is dynamic, and as time goes
on new vendors and new platforms will become available. The examples provided in the book will help
readers develop a framework for understanding and evaluating new platforms as they become available.

Cloud computing is based on many decades of work on parallel and distributed computing systems.
This book describes some of the central ideas in this work as it applies to cloud computing. Relatively
few books integrate theory with applications and with practical examples from a variety of vendors; this
book is an excellent source for the increasing numbers of students interested in the area.

Server farms consume an increasing amount of the nation’s energy. Sustainability requires mecha-
nisms for server farms to provide the same quality of cloud services while reducing the amount of
energy required. This book discusses this important issue as well as other critical issues such as security
and privacy. Indeed, this is an excellent single source for the range of critical issues in cloud computing.
The wide span of material covered, from the introductory to the advanced; the integration of theory and
practice; the range of applications; and the number of examples the book includes make this an excel-
lent book for a variety of readers.

K. Mani Chandi

Simon Ramo Professor and Professor of Computer Science,
California Institute of Technology

Xvii

This page is intentionally left blank

CHAPTER

Introduction

The last decades have reinforced the idea that information processing can be done more efficiently
centrally, on large farms of computing and storage systems accessible via the Internet. When com-
puting resources in distant data centers are used rather than local computing systems, we talk about
network-centric computing and network-centric content. Advancements in networking and other areas
are responsible for the acceptance of the two new computing models and led to the grid computing
movement in the early 1990s and, since 2005, to utility computing and cloud computing.

In utility computing the hardware and software resources are concentrated in large data centers and
users can pay as they consume computing, storage, and communication resources. Utility computing
often requires a cloud-like infrastructure, but its focus is on the business model for providing the
computing services. Cloud computing is a path to utility computing embraced by major IT companies
such as Amazon, Apple, Google, HP, IBM, Microsoft, Oracle, and others.

Cloud computing delivery models, deployment models, defining attributes, resources, and organiza-
tion of the infrastructure discussed in this chapter are summarized in Figure 1.1. There are three cloud
delivery models: Software-as-a-Service (SaaS), Platform-as-a-Service (PaaS), and Infrastructure-as-a-
Service (I1aaS), deployed as public, private, community, and hybrid clouds.

The defining attributes of the new philosophy for delivering computing services are as follows:

e Cloud computing uses Internet technologies to offer elastic services. The term elastic computing
refers to the ability to dynamically acquire computing resources and support a variable workload. A
cloud service provider maintains a massive infrastructure to support elastic services.

* The resources used for these services can be metered and the users can be charged only for the
resources they use.

* Maintenance and security are ensured by service providers.

* Economy of scale allows service providers to operate more efficiently due to specialization and
centralization.

* Cloud computing is cost-effective due to resource multiplexing; lower costs for the service provider
are passed on to the cloud users.

» The application data is stored closer to the site where it is used in a device- and location-independent
manner; potentially, this data storage strategy increases reliability and security and, at the same time,
it lowers communication costs.

Cloud computing is a technical and social reality and an emerging technology. At this time, one
can only speculate how the infrastructure for this new paradigm will evolve and what applications will
migrate to it. The economical, social, ethical, and legal implications of this shift in technology, in which
users rely on services provided by large data centers and store private data and software on systems
they do not control, are likely to be significant.

Cloud Computing. http://dx.doi.org/10.1016/B978-0-12-404627-6.00001-4 1
© 2013 Elsevier Inc. All rights reserved.

2 CHAPTER 1 Introduction

Delivery models
Software-as-a-Service (SaaS)

Deployment models

Public cloud

Platform-as-a-Service (PaaS)

Infrastructure-as-a-Service (laaS) Private cloud

Community cloud
Hybrid cloud

Cloud computing

Infrastructure

Distributed infrastructure

Defining attributes

Massive infrastructure

Resource virtualization

Autonomous systems

Utility computing. Pay-per-usage

Resources

Accessible via the Internet

Compute & storage servers

Elasticity

Networks Services

Applications

FIGURE 1.1

Cloud computing: Delivery models, deployment models, defining attributes, resources, and organization of
the infrastructure.

Scientific and engineering applications, data mining, computational financing, gaming, and social
networking as well as many other computational and data-intensive activities can benefit from cloud
computing. A broad range of data, from the results of high-energy physics experiments to financial or
enterprise management data to personal data such as photos, videos, and movies, can be stored on the
cloud.

In early 2011 Apple announced the iCloud, a network-centric alternative for storing content such
as music, videos, movies, and personal information; this content was previously confined to personal
devices such as workstations, laptops, tablets, or smartphones. The obvious advantage of network-
centric content is the accessibility of information from any site where users can connect to the Internet.
Clearly, information stored on a cloud can be shared easily, but this approach raises major concerns: Is
the information safe and secure? Is it accessible when we need it? Do we still own it?

In the next few years, the focus of cloud computing is expected to shift from building the infras-
tructure, today’s main front of competition among the vendors, to the application domain. This shift in
focus is reflected by Google’s strategy to build a dedicated cloud for government organizations in the
United States. The company states: “We recognize that government agencies have unique regulatory
and compliance requirements for IT systems, and cloud computing is no exception. So we’ve invested
a lot of time in understanding government’s needs and how they relate to cloud computing.”

In a discussion of technology trends, noted computer scientist Jim Gray emphasized that in 2003 the
cost of communication in a wide area network had decreased dramatically and will continue to do so.
Thus, it makes economical sense to store the data near the application [144] — in other words, to store

1.1 Network-Centric Computing and Network-Centric Content 3

it in the cloud where the application runs. This insight leads us to believe that several new classes of
cloud computing applications could emerge in the next few years [25].

As always, a good idea has generated a high level of excitement that translated into a flurry of publi-
cations — some of a scholarly depth, others with little merit or even bursting with misinformation. In this
book we attempt to sift through the large volume of information and dissect the main ideas related to
cloud computing. We first discuss applications of cloud computing and then analyze the infrastructure
for the technology.

Several decades of research in parallel and distributed computing have paved the way for cloud
computing. Through the years we have discovered the challenges posed by the implementation, as well
as the algorithmic level, and the ways to address some of them and avoid the others. Thus, it is important
to look back at the lessons we learned from this experience through the years; for this reason we start
our discussion with an overview of parallel computing and distributed systems.

1.1 Network-centric computing and network-centric content

The concepts and technologies for network-centric computing and content evolved through the years
and led to several large-scale distributed system developments:

e The Web and the semantic Web are expected to support composition of services (not necessarily
computational services) available on the Web.!

* The Grid, initiated in the early 1990s by National Laboratories and Universities, is used primarily
for applications in the area of science and engineering.

e Computer clouds, promoted since 2005 as a form of service-oriented computing by large IT com-
panies, are used for enterprise computing, high-performance computing, Web hosting, and storage
for network-centric content.

The need to share data from high-energy physics experiments motivated Sir Tim Berners-Lee, who
worked at the European Organization for Nuclear Research (CERN) in the late 1980s, to put together
the two major components of the World Wide Web: HyperText Markup Language (HTML) for data
description and HyperText Transfer Protocol (HTTP) for data transfer. The Web opened a new era in
data sharing and ultimately led to the concept of network-centric content.

The semantic Web? is an effort to enable laypeople to more easily find, share, and combine infor-
mation available on the Web. In this vision, the information can be readily interpreted by machines,
so machines can perform more of the tedious work involved in finding, combining, and acting upon
information on the Web. Several technologies are necessary to provide a formal description of concepts,
terms, and relationships within a given knowledge domain; they include the Resource Description
Framework (RDF), a variety of data interchange formats, and notations such as RDF Schema (RDFS)
and the Web Ontology Language (OWL).

I'The Web is dominated by unstructured or semistructured data, whereas the semantic Web advocates inclusion of semantic
content in Web pages.

2The term semantic Web was coined by Tim Berners-Lee to describe “a web of data that can be processed directly and indirectly
by machines.” It is a framework for data sharing among applications based on the Resource Description Framework (RDF).
The semantic Web is “largely unrealized,” according to Berners-Lee.

4 CHAPTER 1 Introduction

Gradually, the need to make computing more affordable and to liberate users from the concerns
regarding system and software maintenance reinforced the idea of concentrating computing resources
in data centers. Initially, these centers were specialized, each running a limited palette of software
systems as well as applications developed by the users of these systems. In the early 1980s major
research organizations such as the National Laboratories and large companies had powerful computing
centers supporting large user populations scattered throughout wide geographic areas. Then the idea
to link such centers in an infrastructure resembling the power grid was born; the model known as
network-centric computing was taking shape.

A computing grid is a distributed system consisting of a large number of loosely coupled, heteroge-
neous, and geographically dispersed systems in different administrative domains. The term computing
grid is a metaphor for accessing computer power with similar ease as we access power provided by the
electric grid. Software libraries known as middleware have been furiously developed since the early
1990s to facilitate access to grid services.

The vision of the grid movement was to give a user the illusion of a very large virtual supercomputer.
The autonomy of the individual systems and the fact that these systems were connected by wide-area
networks with latency higher than the latency of the interconnection network of a supercomputer posed
serious challenges to this vision. Nevertheless, several “Grand Challenge” problems, such as protein
folding, financial modeling, earthquake simulation, and climate and weather modeling, run successfully
on specialized grids. The Enabling Grids for Escience project is arguably the largest computing grid;
along with the LHC Computing Grid (LCG), the Escience project aims to support the experiments using
the Large Hadron Collider (LHC) at CERN which generate several gigabytes of data per second, or
10 PB (petabytes) per year.

In retrospect, two basic assumptions about the infrastructure prevented the grid movement from
having the impact its supporters were hoping for. The first is the heterogeneity of the individual systems
interconnected by the grid; the second is that systems in different administrative domains are expected to
cooperate seamlessly. Indeed, the heterogeneity of the hardware and of system software poses significant
challenges for application development and for application mobility. At the same time, critical areas
of system management, including scheduling, optimization of resource allocation, load balancing, and
fault tolerance, are extremely difficult in a heterogeneous system. The fact that resources are in different
administrative domains further complicates many already difficult problems related to security and
resource management. Although very popular in the science and engineering communities, the grid
movement did not address the major concerns of the enterprise computing communities and did not
make a noticeable impact on the IT industry.

Cloud computing is a technology largely viewed as the next big step in the development and deploy-
ment of an increasing number of distributed applications. The companies promoting cloud computing
seem to have learned the most important lessons from the grid movement. Computer clouds are typically
homogeneous. An entire cloud shares the same security, resource management, cost and other policies,
and last but not least, it targets enterprise computing. These are some of the reasons that several agencies
of the US Government, including Health and Human Services (HHS), the Centers for Disease Con-
trol (CDC), the National Aeronautics and Space Administration (NASA), the Navy’s Next Generation
Enterprise Network (NGEN), and the Defense Information Systems Agency (DISA), have launched
cloud computing initiatives and conduct actual system development intended to improve the efficiency
and effectiveness of their information processing needs.

1.1 Network-Centric Computing and Network-Centric Content 5

The term content refers to any type or volume of media, be it static or dynamic, monolithic or
modular, live or stored, produced by aggregation, or mixed. Information is the result of functions
applied to content. The creation and consumption of audio and visual content are likely to transform
the Internet to support increased quality in terms of resolution, frame rate, color depth, and stereoscopic
information, and it seems reasonable to assume that the Future Internet> will be content-centric. The
content should be treated as having meaningful semantic connotations rather than a string of bytes;
the focus will be the information that can be extracted by content mining when users request named
data and content providers publish data objects. Content-centric routing will allow users to fetch the
desired data from the most suitable location in terms of network latency or download time. There are
also some challenges, such as providing secure services for content manipulation, ensuring global rights
management, control over unsuitable content, and reputation management.

Network-centric computing and network-centric content share a number of characteristics:

* Most applications are data-intensive. Computer simulation becomes a powerful tool for scientific
research in virtually all areas of science, from physics, biology, and chemistry to archeology. Sophisti-
cated tools for computer-aided design, such as Catia (Computer Aided Three-dimensional Interactive
Application), are widely used in the aerospace and automotive industries. The widespread use of sen-
sors contributes to increases in the volume of data. Multimedia applications are increasingly popular;
the ever-larger media increase the load placed on storage, networking, and processing systems.

» Virtually all applications are network-intensive. Indeed, transferring large volumes of data requires
high-bandwidth networks; parallel computing, computation steering,* and data streaming are exam-
ples of applications that can only run efficiently on low-latency networks.

e The systems are accessed using thin clients running on systems with limited resources. In June 2011
Google released Google Chrome OS, designed to run on primitive devices and based on the browser
with the same name.

¢ The infrastructure supports some form of workflow management. Indeed, complex computational
tasks require coordination of several applications; composition of services is a basic tenet of Web 2.0.

The advantages of network-centric computing and network-centric content paradigms are, at the
same time, sources for concern; we discuss some of them:

¢ Computing and communication resources (CPU cycles, storage, network bandwidth) are shared and
resources can be aggregated to support data-intensive applications. Multiplexing leads to a higher
resource utilization; indeed, when multiple applications share a system, their peak demands for
resources are not synchronized and the average system utilization increases. On the other hand,
the management of large pools of resources poses new challenges as complex systems are subject
to phase transitions. New resource management strategies, such as self-organization, and decisions
based on approximate knowledge of the state of the system must be considered. Ensuring quality-of-
service (QoS) guarantees is extremely challenging in such environments because total performance
isolation is elusive.

3The term Future Internet is a generic concept referring to all research and development activities involved in the development
of new architectures and protocols for the Internet.

4Computation steering in numerical simulation means to interactively guide a computational experiment toward a region of
interest.

6 CHAPTER 1 Introduction

» Data sharing facilitates collaborative activities. Indeed, many applications in science, engineering,
and industrial, financial, and governmental applications require multiple types of analysis of shared
data sets and multiple decisions carried out by groups scattered around the globe. Open software
development sites are another example of such collaborative activities. Data sharing poses not only
security and privacy challenges but also requires mechanisms for access control by authorized users
and for detailed logs of the history of data changes.

* Cost reduction. Concentration of resources creates the opportunity to pay as you go for computing
and thus eliminates the initial investment and reduces significantly the maintenance and operation
costs of the local computing infrastructure.

» User convenience and elasticity, that is the ability to accommodate workloads with very large peak-
to-average ratios.

It is very hard to point out a single technological or architectural development that triggered the
movement toward network-centric computing and network-centric content. This movement is the result
of a cumulative effect of developments in microprocessor, storage, and networking technologies coupled
with architectural advancements in all these areas and, last but not least, with advances in software
systems, tools, programming languages, and algorithms to support distributed and parallel computing.

Through the years we have witnessed the breathtaking evolution of solid-state technologies which
led to the development of multicore and many-core processors. Quad-core processors such as the AMD
Phenom II X4, the Intel i3, i5, and 17 and hexa-core processors such as the AMD Phenom II X6 and Intel
Core i7 Extreme Edition 980X are now used in the servers populating computer clouds. The proximity
of multiple cores on the same die allows the cache coherency circuitry to operate at a much higher clock
rate than would be possible if the signals were to travel off-chip.

Storage technology has also evolved dramatically. For example, solid-state disks such as RamSan-
440 allow systems to manage very high transaction volumes and larger numbers of concurrent users.
RamSan-440 uses DDR2 (double-data-rate) RAM to deliver 600,000 sustained random input/output
operations per second (IOPS) and over 4 GB/s of sustained random read or write bandwidth, with
latency of less than 15 microseconds, and it is available in 256 GB and 512 GB configurations. The
price of memory has dropped significantly; at the time of this writing the price of a 1 GB module for a
PC is approaching $10. Optical storage technologies and Flash memories are widely used nowadays.

The thinking in software engineering has also evolved and new models have emerged. The three-tier
model is a software architecture and a software design pattern. The presentation tier is the topmost
level of the application; typically, it runs on a desktop PC or workstation, uses a standard graphical user
interface (GUI) and displays information related to services such as browsing merchandise, purchasing
products, and managing shopping cart contents. The presentation tier communicates with other tiers by
sending the results to the browser/client tier and all other tiers in the network. The application/logic tier
controls the functionality of an application and may consist of one or more separate modules running
on a workstation or application server; it may be multitiered itself, in which case the architecture is
called an n-tier architecture. The data tier controls the servers where the information is stored; it runs
a relational database management system (RDBMS) on a database server or a mainframe and con-
tains the computer data storage logic. The data tier keeps data independent from application servers or
processing logic and improves scalability and performance. Any of the tiers can be replaced indepen-
dently; for example, a change of operating system in the presentation tier would only affect the user
interface code.

1.2 Peer-to-Peer Systems 7

1.2 Peer-to-peer systems

The distributed systems discussed in Chapter 2 allow access to resources in a tightly controlled envi-
ronment. System administrators enforce security rules and control the allocation of physical rather than
virtual resources. In all models of network-centric computing prior to utility computing, a user maintains
direct control of the software and the data residing on remote systems.

This user-centric model, in place since the early 1960s, was challenged in the 1990s by the peer-to-
peer (P2P) model. P2P systems can be regarded as one of the precursors of today’s clouds. This new
model for distributed computing promoted the idea of low-cost access to storage and central processing
unit (CPU) cycles provided by participant systems; in this case, the resources are located in different
administrative domains. Often the P2P systems are self-organizing and decentralized, whereas the
servers in a cloud are in a single administrative domain and have a central management.

P2P systems exploit the network infrastructure to provide access to distributed computing resources.
Decentralized applications developed in the 1980s, such as Simple Mail Transfer Protocol (SMTP), a
protocol for email distribution, and Network News Transfer Protocol (NNTP), an application protocol
for dissemination of news articles, are early examples of P2P systems. Systems developed in the late
1990s, such as the music-sharing system Napster, gave participants access to storage distributed over
the network, while the first volunteer-based scientific computing, SETI@home, used free cycles of
participating systems to carry out compute-intensive tasks.

The P2P model represents a significant departure from the client-server model, the cornerstone of
distributed applications for several decades. P2P systems have several desirable properties [306]:

» They require a minimally dedicated infrastructure, since resources are contributed by the participat-
ing systems.

e They are highly decentralized.

e They are scalable; the individual nodes are not required to be aware of the global state.

* They are resilient to faults and attacks, since few of their elements are critical for the delivery of
service and the abundance of resources can support a high degree of replication.

* Individual nodes do not require excessive network bandwidth the way servers used in case of the
client-server model do.

* Lastbutnotleast, the systems are shielded from censorship due to the dynamic and often unstructured
system architecture.

The undesirable properties of peer-to-peer systems are also notable: Decentralization raises the
question of whether P2P systems can be managed effectively and provide the security required by
various applications. The fact that they are shielded from censorship makes them a fertile ground for
illegal activities, including distribution of copyrighted content.

In spite of its problems, the new paradigm was embraced by applications other than file sharing. Since
1999 new P2P applications such as the ubiquitous Skype, a Voice-over-Internet Protocol (VoIP) tele-
phony service,” data-streaming applications such as Cool Streaming [386] and BBC’s online video

3Skype allows close to 700 million registered users from many countries around the globe to communicate using a proprietary
VoIP protocol. The system developed in 2003 by Niklas Zennstrom and Julius Friis was acquired by Microsoft in 2011 and
nowadays is a hybrid P2P and client-server system.

8 CHAPTER 1 Introduction

service, content distribution networks such as CoDeeN [368], and volunteer computing applica-
tions based on the Berkeley Open Infrastructure for Networking Computing (BOINC) platform [21]
have proved their appeal to users. For example, Skype reported in 2008 that 276 million regis-
tered Skype users have used more than 100 billion minutes for voice and video calls. The site
www . boinc.berkeley.edu reports that at the end of June 2012 volunteer computing involved
more than 275,000 individuals and more than 430,000 computers providing a monthly average of
almost 6.3 petaFLOPS. It is also reported that peer-to-peer traffic accounts for a very large fraction of
Internet traffic, with estimates ranging from 40% to more than 70%.

Many groups from industry and academia rushed to develop and test new ideas, taking advantage
of the fact that P2P applications do not require a dedicated infrastructure. Applications such as Chord
[334] and Credence [366] address issues critical to the effective operation of decentralized systems.
Chord is a distributed lookup protocol to identify the node where a particular data item is stored. The
routing tables are distributed and, whereas other algorithms for locating an object require the nodes to
be aware of most of the nodes of the network, Chord maps a key related to an object to a node of the
network using routing information about a few nodes only.

Credence is an object reputation and ranking scheme for large-scale P2P file-sharing systems. Repu-
tation is of paramount importance for systems that often include many unreliable and malicious nodes.
In the decentralized algorithm used by Credence, each client uses local information to evaluate the repu-
tation of other nodes and shares its own assessment with its neighbors. The credibility of a node depends
only on the votes it casts; each node computes the reputation of another node based solely on the degree
of matching with its own votes and relies on like-minded peers. Overcite [337] is a P2P application to
aggregate documents based on a three-tier design. The Web front-ends accept queries and display the
results while servers crawl through the Web to generate indexes and to perform keyword searches; the
Web back-ends store documents, meta-data, and coordination state on the participating systems.

The rapid acceptance of the new paradigm triggered the development of a new communication
protocol allowing hosts at the network periphery to cope with the limited network bandwidth available
to them. BitTorrent is a peer-to-peer file-sharing protocol that enables a node to download/upload large
files from/to several hosts simultaneously.

The P2P systems differ in their architecture. Some do not have any centralized infrastructure, whereas
others have a dedicated controller, but this controller is not involved in resource-intensive operations.
For example, Skype has a central site to maintain user accounts; users sign in and pay for specific
activities at this site. The controller for a BOINC platform maintains membership and is involved in
task distribution to participating systems. The nodes with abundant resources in systems without any
centralized infrastructure often act as supernodes and maintain information useful to increasing the
system efficiency, such as indexes of the available content.

Regardless of the architecture, P2P systems are built around an overlay network, a virtual network
superimposed over the real network. Methods to construct such an overlay, discussed in Section 7.10,
consider a graph G = (V, E), where V is the set of N vertices and E is the set of links between them.

Each node maintains a table of overlay links connecting it with other nodes of this virtual network,
each node being identified by its IP address. Two types of overlay networks, unstructured and structured,
are used by P2P systems. Random walks starting from a few bootstrap nodes are usually used by
systems desiring to join an unstructured overlay. Each node of a structured overlay has a unique key that
determines its position in the structure; the keys are selected to guarantee a uniform distribution in a

1.3 Cloud Computing: An Old Idea Whose Time Has Come 9

very large name space. Structured overlay networks use key-based routing (KBR); given a starting node
vo and a key k, the function K B R (vg, k) returns the path in the graph from v to the vertex with key k.
Epidemic algorithms discussed in Section 7.12 are often used by unstructured overlays to disseminate
network topology.

1.3 Cloud computing: an old idea whose time has come

Once the technological elements were in place, it was only a matter of time until the economical
advantages of cloud computing became apparent. Due to the economy of scale, large data centers —
centers with more than 50,000 systems — are more economical to operate than medium-sized centers
that have around 1,000 systems. Large data centers equipped with commodity computers experience
a five to seven times decrease of resource consumption, including energy, compared to medium-sized
centers [25]. The networking costs, in dollars per Mbit/s/month, are 95/13 = 7.1 times larger, and the
storage costs, in dollars per Gbyte/month, are 2.2/0.4 = 5.7 times larger for medium-sized centers.
Medium-sized centers have a larger administrative overhead — one system administrator for 140 systems
versus one for 1,000 systems for large centers.

Data centers are very large consumers of electric energy to keep servers and the networking infras-
tructure running and for cooling. For example, there are 6,000 data centers in the United States and in
2006 they reportedly consumed 61 billion KWh, 1.5% of all electric energy in the U.S., at a cost of
$4.5 billion. The power demanded by data centers was predicted to double from 2006 to 2011. Peak
instantaneous demand was predicted to increase from 7 GW in 2006 to 12 GW in 2011, requiring the
construction of 10 new power plants. In the United States the energy costs differ from state to state;
for example 1 KWh costs 3.6 cents in Idaho, 10 cents in California, and 18 cents in Hawaii. Thus, data
centers should be placed at sites with low energy cost.

The term computer cloud is overloaded, since it covers infrastructures of different sizes, with different
management and different user populations. Several types of cloud are envisioned:

* Private cloud. The infrastructure is operated solely for an organization. It may be managed by the
organization or a third party and may exist on or off the premises of the organization.

e Community cloud. The infrastructure is shared by several organizations and supports a specific
community that has shared concerns (e.g., mission, security requirements, policy, and compliance
considerations). It may be managed by the organizations or a third party and may exist on premises
or off premises.

e Public cloud. The infrastructure is made available to the general public or a large industry group
and is owned by an organization selling cloud services.

* Hpybrid cloud. The infrastructure is a composition of two or more clouds (private, community, or
public) that remain unique entities but are bound together by standardized or proprietary technology
that enables data and application portability (e.g., cloud bursting for load balancing between clouds).

A private cloud could provide the computing resources needed for a large organization, such as a
research institution, a university, or a corporation. The argument that a private cloud does not support
utility computing is based on the observation that an organization has to invest in the infrastructure and
a user of a private cloud pays as it consumes resources [25]. Nevertheless, a private cloud could use the

10

CHAPTER 1 Introduction

same hardware infrastructure as a public one; its security requirements will be different from those for

ap

ublic cloud and the software running on the cloud is likely to be restricted to a specific domain.
A natural question to ask is: Why could cloud computing be successful when other paradigms

have failed? The reasons that cloud computing could be successful can be grouped into several general
categories: technological advances, a realistic system model, user convenience, and financial advantages.
A nonexhaustive list of reasons for the success of cloud computing includes these points:

Cloud computing is in a better position to exploit recent advances in software, networking, storage,
and processor technologies. Cloud computing is promoted by large IT companies where these new
technological developments take place, and these companies have a vested interest in promoting the
new technologies.

A cloud consists of a homogeneous set of hardware and software resources in a single administrative
domain. In this setup, security, resource management, fault tolerance, and quality of service are less
challenging than in a heterogeneous environment with resources in multiple administrative domains.
Cloud computing is focused on enterprise computing; its adoption by industrial organizations, finan-
cial institutions, healthcare organizations, and so on has a potentially huge impact on the economy.
A cloud provides the illusion of infinite computing resources; its elasticity frees application designers
from the confinement of a single system.

A cloud eliminates the need for up-front financial commitment, and it is based on a pay-as-you-go
approach. This has the potential to attract new applications and new users for existing applications,
fomenting a new era of industrywide technological advancements.

In spite of the technological breakthroughs that have made cloud computing feasible, there are still

major obstacles for this new technology; these obstacles provide opportunity for research. We list a few
of the most obvious obstacles:

Availability of service. What happens when the service provider cannot deliver? Can a large company
such as General Motors move its IT to the cloud and have assurances that its activity will not be
negatively affected by cloud overload? A partial answer to this question is provided by service-level
agreements (SLAs).® A temporary fix with negative economical implications is overprovisioning,
that is, having enough resources to satisfy the largest projected demand.

Vendor lock-in. Once a customer is hooked to one provider, it is hard to move to another. The
standardization efforts at National Institute of Standards and Technology (NIST) attempt to address
this problem.

Data confidentiality and auditability. This is indeed a serious problem; we analyze it in Chapter 9.
Data transfer bottlenecks. Many applications are data-intensive. A very important strategy is to store
the data as close as possible to the site where it is needed. Transferring 1 TB of data on a 1 Mbps
network takes 8 million seconds, or about 10 days; it is faster and cheaper to use courier service
and send data recoded on some media than to send it over the network. Very high-speed networks
will alleviate this problem in the future; for example, a 1 Gbps network would reduce this time to
8,000 s, or slightly more than 2 h.

6SLAs are discussed in Section 3.8.

1.4 Cloud Computing Delivery Models and Services 11

* Performance unpredictability. This is one of the consequences of resource sharing. Strategies for
performance isolation are discussed in Section 5.5.

* Elasticity, the ability to scale up and down quickly. New algorithms for controlling resource allocation
and workload placement are necessary. Autonomic computing based on self-organization and self-
management seems to be a promising avenue.

There are other perennial problems with no clear solutions at this time, including software licensing
and system bugs.

1.4 Cloud computing delivery models and services

According to the NIST reference model in Figure 1.2 [260], the entities involved in cloud computing
are the service consumer, the entity that maintains a business relationship with and uses service from
service providers; the service provider, the entity responsible for making a service available to service
consumers; the carrier, the intermediary that provides connectivity and transport of cloud services
between providers and consumers; the broker, an entity that manages the use, performance, and delivery
of cloud services and negotiates relationships between providers and consumers; and the auditor, a party
that can conduct independent assessment of cloud services, information system operations, performance,
and security of the cloud implementation. An audit is a systematic evaluation of a cloud system that
measures how well it conforms to a set of established criteria. For example, a security audit evaluates

Carrier .

) @

~\

~\

Service . A
Consumer Service Provider Broker
Service Layer Service
Management Intermediation
~—
- Business
Auditor

laaS support

Security \
audit Resource L
abstraction and Provisioning
Privacy control layer
impact audit Physical resource
layer

g
] o

Aggregation

< 0 < == T

K + == C OO0 W

Arbitrage
Portability/

Performance Interoperability
audit Facility i
——

Carrier

FIGURE 1.2

The entities involved in service-oriented computing and, in particular, in cloud computing, according to NIST.
The carrier provides connectivity among service providers, service consumers, brokers, and auditors.

12 CHAPTER 1 Introduction

cloud security, a privacy-impact audit evaluates cloud privacy assurance, and a performance audit
evaluates cloud performance.

We start with the observation that it is difficult to distinguish the services associated with cloud
computing from those that any computer operations center would include [332]. Many of the services
discussed in this section could be provided by a cloud architecture, but note that they are available in
noncloud architectures as well.

Figure 1.3 presents the structure of the three delivery models, SaaS, PaaS, and laaS, according to
the Cloud Security Alliance [98].

Software-as-a-Service (SaaS) gives the capability to use applications supplied by the service provider
in a cloud infrastructure. The applications are accessible from various client devices through a thin-client

Infrastructure-as-a-Service

[Presentation]

a
|

Applications]

Platform-as-a-Service Data Metadata

] Integration and Integration and
Software-as-a-Service middleware middleware
API [API } [API]
z g z z
2 29 = 39 = 39
8 g 3 8 23 & 23
5 < o = < =
=1 < S < =] <
[Hardware] [Hardware } [Hardware]
E Facilities } [Facilities } { Facilities }

FIGURE 1.3

The structure of the three delivery models, SaaS, PaaS, and /aaS. SaaS gives users the capability to use
applications supplied by the service provider but allows no control of the platform or the infrastructure. PaaS
gives the capability to deploy consumer-created or acquired applications using programming languages and
tools supported by the provider. /aaS allows the user to deploy and run arbitrary software, which can include
operating systems and applications.

1.4 Cloud Computing Delivery Models and Services 13

interface such as a Web browser (e.g., Web-based email). The user does not manage or control the under-
lying cloud infrastructure, including network, servers, operating systems, storage, or even individual
application capabilities, with the possible exception of limited user-specific application configuration
settings. Services offered include:

* Enterprise services such as workflow management, groupware and collaborative, supply chain,
communications, digital signature, customer relationship management (CRM), desktop software,
financial management, geo-spatial, and search [32].

e Web 2.0 applications such as metadata management, social networking, blogs, wiki services, and
portal services.

The Saas is not suitable for applications that require real-time response or those for which data is
not allowed to be hosted externally. The most likely candidates for SaaS are applications for which:

¢ Many competitors use the same product, such as email.

* Periodically there is a significant peak in demand, such as billing and payroll.

* There is a need for Web or mobile access, such as mobile sales management software.
e There is only a short-term need, such as collaborative software for a project.

Platform-as-a-Service (PaaS) gives the capability to deploy consumer-created or acquired applica-
tions using programming languages and tools supported by the provider. The user does not manage
or control the underlying cloud infrastructure, including network, servers, operating systems, or stor-
age. The user has control over the deployed applications and, possibly, over the application hosting
environment configurations. Such services include session management, device integration, sandboxes,
instrumentation and testing, contents management, knowledge management, and Universal Description,
Discovery, and Integration (UDDI), a platform-independent Extensible Markup Language (XML)-based
registry providing a mechanism to register and locate Web service applications.

Paas is not particulary useful when the application must be portable, when proprietary programming
languages are used, or when the underlaying hardware and software must be customized to improve
the performance of the application. The major PaaS application areas are in software development
where multiple developers and users collaborate and the deployment and testing services should be
automated.

Infrastructure-as-a-Service (IaaS) is the capability to provision processing, storage, networks, and
other fundamental computing resources; the consumer is able to deploy and run arbitrary software,
which can include operating systems and applications. The consumer does not manage or control the
underlying cloud infrastructure but has control over operating systems, storage, deployed applications,
and possibly limited control of some networking components, such as host firewalls. Services offered
by this delivery model include: server hosting, Web servers, storage, computing hardware, operating
systems, virtual instances, load balancing, Internet access, and bandwidth provisioning.

The IaaS cloud computing delivery model has a number of characteristics, such as the fact that the
resources are distributed and support dynamic scaling, it is based on a utility pricing model and variable
cost, and the hardware is shared among multiple users. This cloud computing model is particulary useful
when the demand is volatile and a new business needs computing resources and does not want to invest
in a computing infrastructure or when an organization is expanding rapidly.

14 CHAPTER 1 Introduction

A number of activities are necessary to support the three delivery models; they include:

1. Service management and provisioning, including virtualization, service provisioning, call center,
operations management, systems management, QoS management, billing and accounting, asset
management, SLA management, technical support, and backups.

2. Security management, including ID and authentication, certification and accreditation, intrusion
prevention, intrusion detection, virus protection, cryptography, physical security, incident response,
access control, audit and trails, and firewalls.

3. Customer services such as customer assistance and online help, subscriptions, business intelligence,
reporting, customer preferences, and personalization.

4. Integration services, including data management and development.

This list shows that a service-oriented architecture involves multiple subsystems and complex inter-
actions among these subsystems. Individual subsystems can be layered; for example, in Figure 1.2 we
see that the service layer sits on top of a resource abstraction layer, which controls the physical resource
layer.

1.5 Ethical issues in cloud computing

Cloud computing is based on a paradigm shift with profound implications for computing ethics. The
main elements of this shift are: (i) the control is relinquished to third-party services; (ii) the data is
stored on multiple sites administered by several organizations; and (iii) multiple services interoperate
across the network.

Unauthorized access, data corruption, infrastructure failure, and service unavailability are some of
the risks related to relinquishing the control to third-party services; moreover, whenever a problem
occurs, it is difficult to identify the source and the entity causing it. Systems can span the boundaries
of multiple organizations and cross security borders, a process called deperimeterization. As a result of
deperimeterization, “not only the border of the organization’s IT infrastructure blurs, also the border of
the accountability becomes less clear” [350].

The complex structure of cloud services can make it difficult to determine who is responsible in
case something undesirable happens. In a complex chain of events or systems, many entities contribute
to an action, with undesirable consequences. Some of them have the opportunity to prevent these
consequences, and therefore no one can be held responsible — the so-called “problem of many hands.”

Ubiquitous and unlimited data sharing and storage among organizations test the self-determination
of information, the right or ability of individuals to exercise personal control over the collection, and
use and disclosure of their personal data by others; this tests the confidence and trust in today’s evolving
information society. Identity fraud and theft are made possible by the unauthorized access to personal
data in circulation and by new forms of dissemination through social networks, which could also pose
a danger to cloud computing.

Cloud service providers have already collected petabytes of sensitive personal information stored in
data centers around the world. The acceptance of cloud computing therefore will be determined by pri-
vacy issues addressed by these companies and the countries where the data centers are located. Privacy
is affected by cultural differences; though some cultures favor privacy, other cultures emphasize com-
munity, and this leads to an ambivalent attitude toward privacy on the Internet, which is a global system.

1.6 Cloud Vulnerabilities 15

The question of what can be done proactively about ethics of cloud computing does not have easy
answers; many undesirable phenomena in cloud computing will only appear in time. However, the need
for rules and regulations for the governance of cloud computing is obvious. The term governance means
the manner in which something is governed or regulated, the method of management, or the system of
regulations. Explicit attention to ethics must be paid by governmental organizations providing research
funding for cloud computing; private companies are less constrained by ethics oversight and governance
arrangements are more conducive to profit generation.

Accountability is a necessary ingredient of cloud computing; adequate information about how data
is handled within the cloud and about allocation of responsibility are key elements for enforcing ethics
rules in cloud computing. Recorded evidence allows us to assign responsibility; but there can be tension
between privacy and accountability, and it is important to establish what is being recorded and who
has access to the records.

Unwanted dependency on a cloud service provider, the so-called vendor lock-in, is a serious concern,
and the current standardization efforts at NIST attempt to address this problem. Another concern for users
is a future with only a handful of companies that dominate the market and dictate prices and policies.

1.6 Cloud vulnerabilities

Clouds are affected by malicious attacks and failures of the infrastructure (e.g., power failures). Such
events can affect Internet domain name servers and prevent access to a cloud or can directly affect
the clouds. For example, an attack at Akamai on June 15, 2004 caused a domain name outage and a
major blackout that affected Google, Yahoo!, and many other sites. In May 2009 Google was the target
of a serious denial-of-service (DoS) attack that took down services such Google News and Gmail for
several days.

Lightning caused a prolonged downtime at Amazon on June 29 and 30, 2012; the AWS cloud in the
Eastern region of the United States, which consists of 10 data centers across four availability zones,
was initially troubled by utility power fluctuations, probably caused by an electrical storm. A June 29,
2012 storm on the East Coast took down some Virginia-based Amazon facilities and affected companies
using systems exclusively in this region. Instagram, a photo-sharing service, was one of the victims of
this outage, according to http://mashable.com/2012/06/30/aws-instagram/.

The recovery from the failure took a very long time and exposed a range of problems. For example,
one of the 10 centers failed to switch to backup generators before exhausting the power that could be
supplied by uninterruptible power supply (UPS) units. AWS uses “control planes” to allow users to
switch to resources in a different region, and this software component also failed. The booting process
was faulty and extended the time to restart EC2 (Elastic Computing) and EBS (Elastic Block Store)
services. Another critical problem was a bug in the elastic load balancer (ELB), which is used to route
traffic to servers with available capacity. A similar bug affected the recovery process of the Relational
Database Service (RDS). This event brought to light “hidden” problems that occur only under special
circumstances.

A recent paper [126] identifies stability risks due to interacting services. A cloud application provider,
a cloud storage provider, and a network provider could implement different policies, and the unpre-
dictable interactions between load-balancing and other reactive mechanisms could lead to dynamic
instabilities. The unintended coupling of independent controllers that manage the load, the power

16 CHAPTER 1 Introduction

consumption, and the elements of the infrastructure could lead to undesirable feedback and instability
similar to the ones experienced by the policy-based routing in the Internet Border Gateway Protocol
(BGP). For example, the load balancer of an application provider could interact with the power optimizer
of the infrastructure provider. Some of these couplings may only manifest under extreme conditions and
be very hard to detect under normal operating conditions, but they could have disastrous consequences
when the system attempts to recover from a hard failure, as in the case of the AWS 2012 failure.

Clustering the resources in data centers located in different geographical areas is one of the means
used today to lower the probability of catastrophic failures. This geographic dispersion of resources could
have additional positive side effects; it can reduce communication traffic and energy costs by dispatching
the computations to sites where the electric energy is cheaper, and it can improve performance by an
intelligent and efficient load-balancing strategy. Sometimes a user has the option to decide where to
run an application; we shall see in Section 3.1 that an AWS user has the option to choose the regions
where the instances of his or her applications will run, as well as the regions of the storage sites. System
objectives (e.g., maximize throughput, resource utilization, and financial benefits) have to be carefully
balanced with user needs (e.g., low cost and response time and maximum availability).

The price to pay for any system optimization is increased system complexity, as we shall see in
Section 10.7. For example, the latency of communication over a wide area network (WAN) is con-
siderably larger than the one over a local area network (LAN) and requires the development of new
algorithms for global decision making.

1.7 Major challenges faced by cloud computing

Cloud computing inherits some of the challenges of parallel and distributed computing discussed in
Chapter 2; at the same time, it faces major challenges of its own. The specific challenges differ for
the three cloud delivery models, but in all cases the difficulties are created by the very nature of utility
computing, which is based on resource sharing and resource virtualization and requires a different trust
model than the ubiquitous user-centric model we have been accustomed to for a very long time.

The most significant challenge is security [19]; gaining the trust of a large user base is critical for
the future of cloud computing. It is unrealistic to expect that a public cloud will provide a suitable
environment for all applications. Highly sensitive applications related to the management of the critical
infrastructure, healthcare applications, and others will most likely be hosted by private clouds. Many
real-time applications will probably still be confined to private clouds. Some applications may be best
served by a hybrid cloud setup; such applications could keep sensitive data on a private cloud and use
a public cloud for some of the processing.

The SaaS model faces similar challenges as other online services required to protect private infor-
mation, such as financial or healthcare services. In this case a user interacts with cloud services through
a well-defined interface; thus, in principle it is less challenging for the service provider to close some of
the attack channels. Still, such services are vulnerable to DoS attack and the users are fearful of mali-
cious insiders. Data in storage is most vulnerable to attack, so special attention should be devoted to the
protection of storage servers. Data replication necessary to ensure continuity of service in case of storage
system failure increases vulnerability. Data encryption may protect data in storage, but eventually data
must be decrypted for processing, and then it is exposed to attack.

1.8 Further Reading 17

The IaaS model is by far the most challenging to defend against attacks. Indeed, an laaS user has
considerably more degrees of freedom than the other two cloud delivery models. An additional source
of concern is that the considerable resources of a cloud could be used to initiate attacks against the
network and the computing infrastructure.

Virtualization is a critical design option for this model, but it exposes the system to new sources of
attack. The trusted computing base (TCB) of a virtual environment includes not only the hardware and
the hypervisor but also the management operating system. As we shall see in Section 9.7, the entire
state of a virtual machine (VM) can be saved to a file to allow migration and recovery, both highly
desirable operations; yet this possibility challenges the strategies to bring the servers belonging to an
organization to a desirable and stable state. Indeed, an infected VM can be inactive when the systems
are cleaned up, and it can wake up later and infect other systems. This is another example of the deep
intertwining of desirable and undesirable effects of basic cloud computing technologies.

The next major challenge is related to resource management on a cloud. Any systematic rather than
ad hoc resource management strategy requires the existence of controllers tasked to implement several
classes of policies: admission control, capacity allocation, load balancing, energy optimization, and last
but not least, to provide QoS guarantees.

To implement these policies the controllers need accurate information about the global state of the
system. Determining the state of a complex system with 10° servers or more, distributed over a large
geographic area, is not feasible. Indeed, the external load, as well as the state of individual resources,
changes very rapidly. Thus, controllers must be able to function with incomplete or approximate knowl-
edge of the system state.

It seems reasonable to expect that such a complex system can only function based on self-management
principles. But self-management and self-organization raise the bar for the implementation of logging
and auditing procedures critical to the security and trust in a provider of cloud computing services.
Under self-management it becomes next to impossible to identify the reasons that a certain action that
resulted in a security breach was taken.

The last major challenge we want to address is related to interoperability and standardization. Vendor
lock-in, the fact that a user is tied to a particular cloud service provider, is a major concern for cloud
users (see Section 3.5). Standardization would support interoperability and thus alleviate some of the
fears that a service critical for a large organization may not be available for an extended period of time.
But imposing standards at a time when a technology is still evolving is not only challenging, it can be
counterproductive because it may stifle innovation.

From this brief discussion the reader should realize the complexity of the problems posed by cloud
computing and understand the wide range of technical and social problems cloud computing raises. If
successful, the effort to migrate the IT activities of many government agencies to public and private
clouds will have a lasting effect on cloud computing. Cloud computing can have a major impact on
education, but we have seen little effort in this area.

1.8 Further reading

A very good starting point for understanding the major issues in cloud computing is the 2009 paper
“Above the clouds: a Berkeley view of cloud computing” [25]. A comprehensive survey of peer-to-peer
systems was published in 2010 [306]. Content distribution systems are discussed in [368]. The BOINC

18 CHAPTER 1 Introduction

platform is presented in [21]. Chord [334] and Credence [366] are important references in the area of
peer-to-peer systems.

Ethical issues in cloud computing are discussed in [350]. A recent book covers topics in the area of
distributed systems, including grids, peer-to-peer systems, and clouds [173].

The standardization effort at NIST is described by a wealth of documents [259-267] on the Web site
http://collaborate.nist.gov.

1.9 History notes

John McCarthy was a visionary in computer science; in the early 1960s he formulated the idea that
computation may be organized as a public utility, like water and electricity. In 1992 Gordon Bell was
invited to and delivered an address at a conference on parallel computations with the provocative title
Massively parallel computers: why not parallel computers for the masses? [45]; he argued that one-of-a-
kind systems are not only expensive to build, but the cost of rewriting applications for them is prohibitive.
Google Inc. was founded by Page and Brin, two graduate students in computer science at Stanford
University; in 1998 the company was incorporated in California after receiving a contribution of
$100,000 from the co-founder and chief hardware designer of Sun Microsystems, Andy Bechtolsheim.
Amazon EC2 was initially released as a limited public beta cloud computing service on August 25,
2006. The system was developed by a team from Cape Town, South Africa. In October 2008 Microsoft
announced the Windows Azure platform; in June 2010 the platform became commercially available.
iCloud, a cloud storage and cloud computing service from Apple Inc., stores content such as music,
photos, calendars, and documents and allows users to access it from Apple devices. The system was
announced on June 6, 2011. In 2012 the Oracle Cloud was announced (see www.oracle.com/us/
corporate/features/oracle-cloud/index.html)

1.10 Exercises and problems

Problem 1. Mobile devices could benefit from cloud computing; explain the reasons you think that this
statement is true or provide arguments supporting the contrary. Discuss several cloud appli-
cations for mobile devices, then explain which one of the three cloud computing delivery
models, SaaS, PaaS, or laaS, would be used by each one of the applications and why.

Problem 2. Do you believe that the homogeneity of large-scale distributed systems is an advantage?
Discuss the reasons for your answer. What aspects of hardware homogeneity are the most
relevant in your view, and why? What aspects of software homogeneity do you believe
are the most relevant, and why?

Problem 3. Peer-to-peer systems and clouds share a few goals but not the means to accomplish them.
Compare the two classes of systems in terms of architecture, resource management,
scope, and security.

Problem 4. Compare the three cloud computing delivery models, SaaS, PaaS, and laaS, from the
point of view of application developers and users. Discuss the security and the reliability
of each model. Analyze the differences between PaaS and laaS.

1.10 Exercises and Problems 19

Problem 5. Overprovisioning is the reliance on extra capacity to satisfy the needs of a large community
of users when the average-to-peak resource demand ratio is very high. Give an example
of a large-scale system using overprovisioning and discuss whether overprovisioning
is sustainable in that case and what its limitations are. Is cloud elasticity based on
overprovisioning sustainable? Give arguments to support your answer.

Problem 6. Discuss the possible solution for stabilizing cloud services mentioned in [126] inspired
by BGP (Border Gateway Protocol) routing [145,359].

Problem 7. An organization debating whether to install a private cloud or to use a public cloud (e.g.,
the AWS) for its computational and storage needs asks for your advice. What information
will you require to come to your recommendation, and how will you use each one of the
following items? (a) The description of the algorithms and the type of the applications
the organization will run; (b) the system software used by these applications; (c) the
resources needed by each application; (d) the size of the user population; and (e) the
relative experience of the user population; and (f) the costs involved.

Problem 8. A university is debating the question in Problem 7. What will be your advice, and why?
Should software licensing be an important element of the decision?

Problem 9. An IT company decides to provide free access to a public cloud dedicated to higher
education. Which one of the three cloud computing delivery models, SaaS, PaaS, or
laas$, should it embrace, and why? What applications would be most beneficial for the
students? Will this solution have an impact on distance learning? Why or why not?

This page is intentionally left blank

CHAPTER

Parallel and Distributed Systems

Cloud computing is based on a large number of ideas and the experience accumulated since the first elec-
tronic computer was used to solve computationally challenging problems. In this chapter we overview
parallel and distributed systems concepts that are important to understanding the basic challenges in the
design and use of computer clouds.

Cloud computing is intimately tied to parallel and distributed computing. Cloud applications are
based on the client-server paradigm with relatively simple software, a thin client, running on the user’s
machine while the computations are carried out on the cloud. Many cloud applications are data-intensive
and use a number of instances that run concurrently. Transaction processing systems, such as Web-
based services, represent a large class of applications hosted by computing clouds; such applications
run multiple instances of the service and require reliable and in-order delivery of messages.

The concepts introduced in this section are very important in practice. Communication protocols
support coordination of distributed processes and transport information through noisy and unreliable
communication channels that may lose messages or deliver duplicate, distorted, or out-of-order mes-
sages. To ensure reliable and in-order delivery of messages, the protocols stamp each message with
a sequence number; in turn, a receiver sends an acknowledgment with its own sequence number to
confirm the receipt of a message. The clocks of a sender and a receiver may not be synchronized, so
these sequence numbers act as logical clocks. Timeouts are used to request the retransmission of lost
or delayed messages.

The concept of consistent cuts and distributed snapshots are at the heart of checkpoint-restart pro-
cedures for long-lasting computations. Indeed, many cloud computations are data-intensive and run for
extended periods of time on multiple computers in the cloud. Checkpoints are taken periodically in
anticipation of the need to restart a software process when one or more systems fail; when a failure
occurs, the computation is restarted from the last checkpoint rather than from the beginning.

Many functions of a computer cloud require information provided by monitors, system components
that collect state information from the individual systems. For example, controllers for cloud resource
management, discussed in Chapter 6, require accurate state information; security and reliability can
only be implemented using information provided by specialized monitors. Coordination of multiple
instances is a critical function of an application controller.

2.1 Parallel computing

As demonstrated by nature, the ability to work in parallel as a group represents a very efficient way
to reach a common target; human beings have learned to aggregate themselves and to assemble
man-made devices in organizations in which each entity may have modest ability, but a network of

Cloud Computing. http:/dx.doi.org/10.1016/B978-0-12-404627-6.00002-6 2 1
© 2013 Elsevier Inc. All rights reserved.

22 CHAPTER 2 Parallel and Distributed Systems

entities can organize themselves to accomplish goals that an individual entity cannot. Thus, we should
not be surprised that the thought that individual systems should work in concert to solve complex
applications was formulated early on in the computer age.

Parallel computing allows us to solve large problems by splitting them into smaller ones and solv-
ing them concurrently. Parallel computing was considered for many years the “holy grail” for solving
data-intensive problems encountered in many areas of science, engineering, and enterprise computing;
it required major advances in several areas, including algorithms, programming languages and envi-
ronments, performance monitoring, computer architecture, interconnection networks, and last but not
least, solid-state technologies.

Parallel hardware and software systems allow us to solve problems demanding more resources than
those provided by a single system and, at the same time, to reduce the time required to obtain a solution.
The speed-up measures the effectiveness of parallelization; in the general case the speed-up of the
parallel computation is defined as

T(1)
T(N)’

with T (1) the execution time of the sequential computation and 7' (N) the execution time when N parallel
computations are carried out. Amdahl’s Law! gives the potential speed-up of a parallel computation; it
states that the portion of the computation that cannot be parallelized determines the overall speed-up.
If « is the fraction of running time a sequential program spends on nonparallelizable segments of the
computation, then

S(N) = 2.1)

S=—. (2.2)
o

To prove this result, call o the sequential time and 7 the parallel time and start from the definitions
of T(1), T(N), and «:

T o
T(1) = T(N) = — d = . 2.3
(D)=o0+m, T(N) 0+N, and o= ——— (2.3)
Then 71 |
st _ o+x _ trjo (2.4)
T(N) o+n/N 1+ @/o)x (1/N)
But
l—«
/o = (2.5)
o
Thus, for large N
1 1-— 1 1
+(1—-a)/a 2.6)

“Txd-a/Wa) atd-ayN o

Amdahl’s law applies to a fixed problem size; in this case the amount of work assigned to each one of
the parallel processes decreases when the number of processes increases, and this affects the efficiency
of the parallel execution.

!Gene Amdahl is a theoretical physicist turned computer architect who contributed significantly to the development of
several IBM systems, including System/360, and then started his own company, Amdahl Corporation. His company produced
high-performance systems in the 1970s. Amdahl is best known for Amdahl’s Law, formulated in 1960.

2.1 Parallel Computing 23

When the problem size is allowed to change, Gustafson’s Law gives the scaled speed-up with N

parallel processes as
S(N)=N —a(N —1). 2.7)

As before, we call o the sequential time; now 7 is the fixed parallel time per process; « is given by
Equation 2.3. The sequential execution time, 7'(1), and the parallel execution time with N parallel
processes, T (N), are

T(l)=0+Nm and T(N)=o0 +m. 2.8)
Then the scaled speed-up is
T(1) o+ N o
T(N) o+n o+nxw +o+n
Amdahl’s Law expressed by Equation 2.2 and the scaled speed-up given by Equation 2.7 assume that
all processes are assigned the same amount of work. The scaled speed-up assumes that the amount
of work assigned to each process is the same, regardless of the problem size. Then, to maintain the
same execution time, the number of parallel processes must increase with the problem size. The scaled
speed-up captures the essence of efficiency, namely that the limitations of the sequential part of a code
can be balanced by increasing the problem size.

Coordination of concurrent computations could be quite challenging and involves overhead, which
ultimately reduces the speed-up of parallel computations. Often the parallel computation involves mul-
tiple stages, and all concurrent activities must finish one stage before starting the execution of the next
one; this barrier synchronization further reduces the speed-up.

The subtasks of a parallel program are called processes, whereas threads are lightweight subtasks.
Concurrent execution could be very challenging (e.g., it could lead to race conditions, an undesirable
effect in which the results of concurrent execution depend on the sequence of events). Often, shared
resources must be protected by locks to ensure serial access. Another potential problem for concurrent
execution of multiple processes or threads is the presence of deadlocks; a deadlock occurs when pro-
cesses or threads competing with one another for resources are forced to wait for additional resources
held by other processes or threads and none of the processes or threads can finish. The four Coffinan
conditions must hold simultaneously for a deadlock to occur:

S(N) = —a+N(1—a)=N—a(N—1). 2.9)

1. Mutual exclusion. At least one resource must be nonsharable, and only one process/thread may use
the resource at any given time.

2. Hold and wait. At least one process/thread must hold one or more resources and wait for others.

3. No preemption. The scheduler or a monitor should not be able to force a process/thread holding a
resource to relinquish it.

4. Circular wait. Given the set of n processes/threads {Py, P2, P3, ..., P,}, P should wait for a
resource held by P,, P> should wait for a resource held by Pz, and so on and P, should wait
for a resource held by P;.

There are other potential problems related to concurrency. When two or more processes or threads
continually change their state in response to changes in the other processes, we have a livelock condition;
the result is that none of the processes can complete its execution. Very often processes/threads running
concurrently are assigned priorities and scheduled based on these priorities. Priority inversion occurs
when a higher-priority process or task is indirectly preempted by a lower-priority one.

24 CHAPTER 2 Parallel and Distributed Systems

Concurrent processes/tasks can communicate using messages or shared memory. Multicore proces-
sors sometimes use shared memory, but the shared memory is seldom used in modern supercomputers
because shared-memory systems are not scalable. Message passing is the communication method used
exclusively in large-scale distributed systems, and our discussion is restricted to this communication
paradigm.

Shared memory is extensively used by the system software; the stack is an example of shared memory
used to save the state of a process or thread. The kernel of an operating system uses control structures
such as processor and core tables for multiprocessor and multicore system management, process and
thread tables for process/thread management, page tables for virtual memory management, and so
on. Multiple application threads running on a multicore processor often communicate via the shared
memory of the system. Debugging a message-passing application is considerably easier than debugging
a shared memory application.

We distinguish fine-grain from coarse-grain parallelism; in the former case relatively small blocks
of the code can be executed in parallel without the need to communicate or synchronize with other
threads or processes, while in the latter case large blocks of code can be executed in parallel. The speed-
up of applications displaying fine-grain parallelism is considerably lower than that of coarse-grained
applications; indeed, the processor speed is orders of magnitude higher than the communication speed,
even on systems with a fast interconnect.

In many cases, discovering parallelism is quite challenging, and the development of parallel algo-
rithms requires a considerable effort. For example, many numerical analysis problems, such as solving
large systems of linear equations or solving systems of partial differential equations (PDEs), requires
algorithms based on domain decomposition methods.

Data parallelism is based on partitioning the data into several blocks and running multiple copies of
the same program concurrently, each running on a different data block — thus the name of the paradigm,
Same Program Multiple Data (SPMD).

Decomposition of a large problem into a set of smaller problems that can be solved concurrently is
sometimes trivial. For example, assume that we want to manipulate the display of a three-dimensional
object represented as a 3D lattice of (n x n X n) points; to rotate the image we would apply the
same transformation to each one of the n> points. Such a transformation can be done by a geo-
metric engine, a hardware component that can carry out the transformation of a subset of 1> points
concurrently.

Suppose that we want to search for the occurrence of an object in a set of n images, or of a string
of characters in n records; such a search can be conducted in parallel. In all these instances the time
required to carry out the computational task using N processing elements is reduced by a factor of N.

A very appealing class of applications of cloud computing is numerical simulations of complex
systems that require an optimal design; in such instances multiple design alternatives must be compared
and optimal ones selected based on several optimization criteria. Consider for example the design of
a circuit using field programmable gate arrays (FPGAs). An FPGA is an integrated circuit designed
to be configured by the customer using a hardware description language (HDL), similar to that used
for an application-specific integrated circuit (ASIC). Because multiple choices for the placement of
components and for interconnecting them exist, the designer could run concurrently N versions of the
design choices and choose the one with the best performance, such as minimum power consumption.
Alternative optimization objectives could be to reduce cross-talk among the wires or to minimize the

2.2 Parallel Computer Architecture 25

overall noise. Each alternative configuration requires hours or maybe days of computing; hence, running
them concurrently reduces the design time considerably.

The list of companies that aimed to support parallel computing and ended up as casualties of this
effort is long and includes names such as Ardent, Convex, Encore, Floating Point Systems, Inmos,
Kendall Square Research, MasPar, nCube, Sequent, Tandem, and Thinking Machines. The difficulties
of developing new programming models and the effort to design programming environments for parallel
applications added to the challenges faced by all these companies.

From the very beginning it was clear that parallel computing requires specialized hardware and system
software. It was also clear that the interconnection fabric was critical for the performance of parallel
computing systems. We now take a closer look at parallelism at different levels and the means to exploit it.

2.2 Parallel computer architecture

Our discussion of parallel computer architectures starts with the recognition that parallelism at different
levels can be exploited. These levels are:

* Bit-level parallelism. The number of bits processed per clock cycle, often called a word size, has
increased gradually from 4-bit processors to 8-bit, 16-bit, 32-bit, and, since 2004, 64-bit. This has
reduced the number of instructions required to process larger operands and allowed a significant
performance improvement. During this evolutionary process the number of address bits has also
increased, allowing instructions to reference a larger address space.

o Instruction-level parallelism. Today’s computers use multi-stage processing pipelines to speed
up execution. Once an n-stage pipeline is full, an instruction is completed at every clock cycle.
A “classic” pipeline of a Reduced Instruction Set Computing (RISC) architecture consists of five
stages2: instruction fetch, instruction decode, instruction execution, memory access, and write
back. A Complex Instruction Set Computing (CISC) architecture could have a much large number
of pipelines stages; for example, an Intel Pentium 4 processor has a 35-stage pipeline.

* Data parallelism or loop parallelism. The program loops can be processed in parallel.

e Task parallelism. The problem can be decomposed into tasks that can be carried out concurrently.
A widely used type of task parallelism is the Same Program Multiple Data (SPMD) paradigm. As
the name suggests, individual processors run the same program but on different segments of the
input data. Data dependencies cause different flows of control in individual tasks.

In 1966 Michael Flynn proposed a classification of computer architectures based on the number
of concurrent control/instruction and data streams: Single Instruction, Single Data (SISD), Single
Instruction, Multiple Data (SIMD), and (Multiple Instructions, Multiple Data (MIMD).?

The SIMD architecture supports vector processing. When an SIMD instruction is issued, the oper-
ations on individual vector components are carried out concurrently. For example, to add two vectors

2The number of pipeline stages in different RISC processors varies. For example, ARM7 and earlier implementations of
ARM processors have a three-stage pipeline: fetch, decode, and execute. Higher performance designs, such as the ARM9,
have deeper pipelines: Cortex-A8 has 13 stages.

3 Another category, Multiple Instructions Single Data (MISD), is a fourth possible architecture, but it is very rarely used,
mostly for fault tolerance.

26 CHAPTER 2 Parallel and Distributed Systems

(a1, aa, ...,as0) and (b1, by, . .., bsp), all 50 pairs of vector elements are added concurrently and all
the sums (a; + b;), 1 <i < 50 are available at the same time.

The first use of SIMD instructions was in vector supercomputers such as the CDC Star-100 and the
Texas Instruments ASC in the early 1970s. Vector processing was especially popularized by Cray in
the 1970s and 1980s by attached vector processors such as those produced by the FPS (Floating Point
Systems), and by supercomputers such as the Thinking Machines CM-1 and CM-2. Sun Microsystems
introduced SIMD integer instructions in its VIS instruction set extensions in 1995 in its UltraSPARC
I microprocessor; the first widely deployed SIMD for gaming was Intel’s MMX extensions to the x86
architecture. IBM and Motorola then added AltiVec to the POWER architecture, and there have been
several extensions to the SIMD instruction sets for both architectures.

The desire to support real-time graphics with vectors of two, three, or four dimensions led to the
development of graphic processing units (GPUs). GPUs are very efficient at manipulating computer
graphics, and their highly parallel structures based on SIMD execution support parallel processing of
large blocks of data. GPUs produced by Intel, Nvidia, and AMD/ATT are used in embedded systems,
mobile phones, personal computers, workstations, and game consoles.

An MIMD architecture refers to a system with several processors that function asynchronously and
independently; at any time, different processors may be executing different instructions on different
data. The processors can share a common memory of an MIMD, and we distinguish several types of
systems: Uniform Memory Access (UMA), Cache Only Memory Access (COMA), and Non-Uniform
Memory Access (NUMA).

An MIMD system could have a distributed memory; in this case the processors and the memory
communicate with one another using an interconnection network, such as a hypercube, a 2D torus,
a 3D torus, an omega network, or another network topology. Today most supercomputers are MIMD
machines, and some use GPUs instead of traditional processors. Multicore processors with multiple
processing units are now ubiquitous.

Modern supercomputers derive their power from architecture and parallelism rather than the increase
of processor speed. The supercomputers of today consist of a very large number of processors and cores
communicating via very fast custom interconnects. In mid-2012 the most powerful supercomputer was
a Linux-based IBM Sequoia-BlueGene/Q system powered by Power BQC 16-core processors running at
1.6 GHz. The system, installed at Lawrence Livermore National Laboratory and called Jaguar, has a total
of 1,572,864 cores and 1,572,864 GB of memory, achieves a sustainable speed of 16.32 petaFLOPS,
and consumes 7.89 MW of power.

More recently, a Cray XK7 system called Titan, installed at the Oak Ridge National Laboratory
(ORNL) in Tennessee, was coronated as the fastest supercomputer in the world. Titan has 560,640
processors, including 261,632 Nvidia K20x accelerator cores; it achieved a speed of 17.59 petaFLOPS
on the Linpack benchmark. Several most powerful systems listed in the “Top 500 supercomputers” (see
www . top500 . org) are powered by the Nvidia 2050 GPU; three of the top 10 use an InfiniBand
interconnect.

The next natural step was triggered by advances in communication networks when low-latency and
high-bandwidth wide area networks (WANs) allowed individual systems, many of them multiprocessors,

“4InfiniBand is a switched fabric communications link used in high-performance computing and in datacenters.

2.3 Distributed Systems 27

to be geographically separated. Large-scale distributed systems were first used for scientific and engi-
neering applications and took advantage of the advancements in system software, programming models,
tools, and algorithms developed for parallel processing.

2.3 Distributed systems

A distributed system is a collection of autonomous computers that are connected through a network and
distribution software called middleware, which enables computers to coordinate their activities and to
share the resources of the system. A distributed system’s users perceive the system as a single integrated
computing facility.

A distributed system has several characteristics: Its components are autonomous, scheduling and
other resource management and security policies are implemented by each system, there are multiple
points of control and multiple points of failure, and the resources may not be accessible at all times.
Distributed systems can be scaled by adding additional resources and can be designed to maintain
availability even at low levels of hardware/software/network reliability.

Distributed systems have been around for several decades. For example, distributed file systems and
network file systems have been used for user convenience and to improve reliability and functionality of
file systems for many years. Modern operating systems allow a user to mount a remote file system and
access it the same way a local file system is accessed, yet with a performance penalty due to larger com-
munication costs. The remote procedure call (RPC) supports inter-process communication and allows a
procedure on a system to invoke a procedure running in a different address space, possibly on a remote
system. RPCs were introduced in the early 1970s by Bruce Nelson and used for the first time at Xerox;
the Network File System (NFS) introduced in 1984 was based on Sun’s RPC. Many programming lan-
guages support RPCs; for example, Java Remote Method Invocation (Java RMI) provides a functionality
similar to that of UNIX RPC methods, and XML-RPC uses XML to encode HTML-based calls.

The middleware should support a set of desirable properties of a distributed system:

e Access transparency. Local and remote information objects are accessed using identical operations.

e Location transparency. Information objects are accessed without knowledge of their location.

* Concurrency transparency. Several processes run concurrently using shared information objects
without interference among them.

* Replication transparency. Multiple instances of information objects are used to increase reliability
without the knowledge of users or applications.

e Failure transparency. The concealment of faults.

* Migration transparency. The information objects in the system are moved without affecting the
operation performed on them.

* Performance transparency. The system can be reconfigured based on the load and quality of service
requirements.

e Scaling transparency. The system and the applications can scale without a change in the system
structure and without affecting the applications.

28 CHAPTER 2 Parallel and Distributed Systems

2.4 Global state of a process group

To understand the important properties of distributed systems, we use a model, an abstraction based on
two critical components: processes and communication channels. A process is a program in execution,
and a thread is a lightweight process. A thread of execution is the smallest unit of processing that can
be scheduled by an operating system.

A process is characterized by its state; the state is the ensemble of information we need to restart
a process after it was suspended. An event is a change of state of a process. The events affecting the

state of process p; are numbered sequentially as eil, eiz, el-3, ..., as shown in the space-time diagram in

Figure 2.1(a). A process pj is in state al.] immediately after the occurrence of event eij and remains in
J+1

that state until the occurrence of the next event, e;

1 2 3 4 1
G e &G 4 4
r—o—o - ® *—o
(a)
5
el 66
s/
4 5
e, e
1
3
ell elz € el4 e15
| | | |
h ®
1 2 3 4
€, ﬁz €, fz
pZ 1 1
1 2 3 4
63 e3 e} e3
Py T T 1 1
(c)

FIGURE 2.1

Space-time diagrams display local and communication events during a process lifetime. Local events are
small black circles. Communication events in different processes are connected by lines originating at a
send event and terminated by an arrow at the receive event. (a) All events in the case of a single process p;
are local; the process is in state o1 immediately after the occurrence of event e% and remains in that state
until the occurrence of event ef. (b) Two processes p; and po; event ef is a communication event, p; sends
a message to py; event eg’ is a communication event, process p, receives the message sent by p;. (c) Three
processes interact by means of communication events.

2.4 Global State of a Process Group 29

A process group is a collection of cooperating processes; these processes work in concert and
communicate with one another to reach a common goal. For example, a parallel algorithm to solve
a system of partial differential equations (PDEs) over a domain D may partition the data in several
segments and assign each segment to one of the members of the process group. The processes in the
group must cooperate with one another and iterate until the common boundary values computed by one
process agree with the common boundary values computed by another.

A communication channel provides the means for processes or threads to communicate with one
another and coordinate their actions by exchanging messages. Without loss of generality, we assume that
communication among processes is done only by means of send (m) and receive (m) communication
events, where m is a message. We use the term message for a structured unit of information, which can
be interpreted only in a semantic context by the sender and the receiver. The state of a communication
channel is defined as follows: Given two processes p; and p;, the state of the channel, §; ;, from p; to
p;j consists of messages sent by p; but not yet received by p;.

These two abstractions allow us to concentrate on critical properties of distributed systems without
the need to discuss the detailed physical properties of the entities involved. The model presented is based
on the assumption that a channel is a unidirectional bit pipe of infinite bandwidth and zero latency, but
unreliable; messages sent through a channel may be lost or distorted or the channel may fail, losing its
ability to deliver messages. We also assume that the time a process needs to traverse a set of states is of
no concern and that processes may fail or be aborted.

A protocol is a finite set of messages exchanged among processes to help them coordinate their
actions. Figure 2.1(c) illustrates the case when communication events are dominant in the local history
of processes, p1, p2, and p3. In this case only ef is a local event; all others are communication events.
The particular protocol illustrated in Figure 2.1(c) requires processes py and p3 to send messages to
the other processes in response to a message from process pj.

The informal definition of the state of a single process can be extended to collections of communicat-
ing processes. The global state of a distributed system consisting of several processes and communication
channels is the union of the states of the individual processes and channels [34]. ,

Call ! the history of process p; up to and including its j-th event, e/, and call o/ the local state

of process p; following event el.j. Consider a system consisting of n processes, p1, P2, ..., Diy---s Pn
with crl.ji the local state of process p;; then the global state of the system is an n-tuple of local states

S Uzedn) — (olj],ozjz, colt o an") . (2.10)
The state of the channels does not appear explicitly in this definition of the global state because the
state of the channels is encoded as part of the local state of the processes communicating through the
channels.
The global states of a distributed computation with n processes form an n-dimensional lattice. The

elements of this lattice are global states X (/1+/2-+jn) (aii‘ , 02/2, o a,‘{”).
Figure 2.2(a) shows the lattice of global states of the distributed computation in Figure 2.2(b) This
is a two-dimensional lattice because we have two processes, p; and p;. The lattice of global states for

the distributed computation in Figure 2.1(c) is a three-dimensional lattice, and the computation consists
of three concurrent processes, pi, p2, and p3.

30 CHAPTER 2 Parallel and Distributed Systems

™M
)
=)

o

/ \ eie:
s 501 g; +
ere;
Vavay o
1.2/ \ / & e e
1

™M

™M
™M

N

I N

'
o
X

2 gk clei
zé \22,4 >:H/ \24,2 5; W
VaVaVa Vs
\ZK \24,4 XSZ " el:l ef
el e
\ / stx/ n o
Z\ / e e

S
g
[0}

Mul

—
Q
N
—
(=2
N d

FIGURE 2.2

(a) The lattice of the global states of two processes with the space-time diagrams in Figure 2.2(b). Only the
first two events for each thread are shown in Figure 2.2(b). (b) The six possible sequences of events leading
to the state =22,

The initial state of the system in Figure 2.2(b) is the state before the occurrence of any event and it is
denoted by £ ©9); the only global states reachable from £ 9 are -9 and £V The communication
events limit the global states the system may reach; in this example the system cannot reach the state
¥ 40 because process p; enters state o4 only after process p» has entered the state 0. Figure 2.2(b)
shows the six possible sequences of events to reach the global state X >2):

(chet.cbed) . (chebcted) . (chehocdiel) . (chedele}) . (choelched) . (choelcdoef).
(2.11)
An interesting question is how many paths does it take to reach a global state. The more paths exist,
the harder it is to identify the events leading to a state when we observe an undesirable behavior of the
system. A large number of paths increases the difficulty of debugging the system.
We conjecture that in the case of two threads in Figure 2.2(b) the number of paths from the global
state (00 to M jg
(m + n)!

N —
P m!n!

(2.12)

2.4 Global State of a Process Group 31

We have already seen that there are six paths leading to state ?); indeed,

yey _ @2

¢ S =3 =6 (2.13)

To prove Equation 2.12 we use a method resembling induction; we notice first that the global state
2D can only be reached from the states ©(1:?) and =D and that N,(,I’]) = (2)!/1!11! = 2. Thus, the
formula is true for m = n = 1. Then we show that if the formula is true for the (m — 1, n — 1) case it
will also be true for the (m, n) case. If our conjecture is true, then

(on-n.m _ Lom = D) & nlt

Mo (m—=Dn! (2.14)
and - .
m.(—1)] _ U+~ @ — D

Mo T omln—1! (2.15)

We observe that the global state >0 N(m,n) > 1can only be reached from two states, X (m—1.n)
and £ "=D (see Figure 2.3), thus:

N = Nim=hm g N (2.16)
It is easy to see that indeed,
—1 ! - D] 1 1
[n=D+nlt k=D .
(m — 1)n! m!(n —1)! (m—"Dn! m!(n—-1)! (2.17)
. (m + n)! '
 omnl

This shows that our conjecture is true; thus, Equation 2.12 gives the number of paths to reach the global
state £ from £ 9 when two threads are involved. This expression can be generalized for the case

of ¢ threads; using the same strategy, it is easy to see that the number of path from the state »(0.0.....0)
to the global state X 17219 jg
ny+ny+---+ng)!
N (n1 +ny o) (2.18)

nilna!. .. ng!

FIGURE 2.3

In the two-dimensional case, the global state =(™™ v(m,n) > 1 can only be reached from two states,
Z(m—l,n) and Z(m,n—l)_

32 CHAPTER 2 Parallel and Distributed Systems

Indeed, it is easy to see that

(n1,n2,....,ng—1)

(n1,n2,...,) (n1—1,n3,...,ny)
Ny R = T 4o+ NS . (2.19)

p

Equation 2.18 gives us an indication of how difficult it is to debug a system with a large number of
concurrent threads.

Many problems in distributed systems are instances of the global predicate evaluation problem
(GPE), where the goal is to evaluate a Boolean expression whose elements are functions of the global
state of the system.

2.5 Communication protocols and process coordination

A major concern in any parallel and distributed system is communication in the presence of channel
failures. There are multiple modes for a channel to fail, and some lead to messages being lost. In the
general case, it is impossible to guarantee that two processes will reach an agreement in case of channel
failures (see Figure 2.4.)

Given two processes p1 and py connected by a communication channel that can lose a message with
probability € > 0, no protocol capable of guaranteeing that two processes will reach agreement exists,
regardless of how small the probability € is.

The proof of this statement is by contradiction. Assume that such a protocol exists and it consists of
n messages; recall that a protocol is a finite sequence of messages. Since any message might be lost with
probability €, the protocol should be able to function when only n — 1 messages reach their destination,
the last one being lost. Induction on the number of messages proves that indeed no such protocol exists;
indeed, the same reasoning leads us to conclude that the protocol should function correctly with (n —2)
messages, and so on.

In practice, error detection and error correction allow processes to communicate reliably though
noisy digital channels. The redundancy of a message is increased by more bits and packaging a message
as a code word; the recipient of the message is then able to decide if the sequence of bits received is a
valid code word and, if the code satisfies some distance properties, then the recipient of the message is
able to extract the original message from a bit string in error.

A
N)
Yy

Process p, Process p,

A
Yy

FIGURE 2.4

Process coordination in the presence of errors; each message may be lost with probability €. If a protocol
consisting of n messages exists, then the protocol should be able to function properly with n — 1 messages
reaching their destination, one of them being lost.

2.5 Communication Protocols and Process Coordination 33

Communication protocols implement not only error control mechanisms, but also flow control and
congestion control. Flow control provides feedback from the receiver; it forces the sender to transmit
only the amount of data the receiver is able to buffer and then process. Congestion control ensures that
the offered load of the network does not exceed the network capacity. In store-and-forward networks,
individual routers may drop packets when the network is congested and the sender is forced to retransmit.
Based on the estimation of the round-trip-time (RTT), the sender can detect congestion and reduce the
transmission rate.

The implementation of these mechanisms requires the measurement of time intervals, the time elapsed
between two events; we also need a global concept of time shared by all entities that cooperate with one
another. For example, a computer chip has an internal clock, and a predefined set of actions occurs at
each clock tick. Each chip has an interval timer that helps enhance the system’s fault tolerance; when
the effects of an action are not sensed after a predefined interval, the action is repeated.

When the entities communicating with each other are networked computers, the precision of the
clock synchronization is critical [205]. The event rates are very high and each system goes through
state changes at a very fast pace; modern processors run at a 2—4 GHz clock rate. That explains why we
need to measure time very accurately; indeed, we have atomic clocks with an accuracy of about 10~°
seconds per year.

An isolated system can be characterized by its history, expressed as a sequence of events, each event
corresponding to a change of the state of the system. Local timers provide relative time measurements. A
more accurate description adds to the system’s history the time of occurrence of each event as measured
by the local timer.

Messages sent by processes may be lost or distorted during transmission. Without additional restric-
tions regarding message delays and errors, there are no means to ensure a perfect synchronization of
local clocks and there are no obvious methods to ensure a global ordering of events occurring in dif-
ferent processes. Determining the global state of a large-scale distributed system is a very challenging
problem.

The mechanisms described here are insufficient once we approach the problem of cooperating entities.
To coordinate their actions, two entities need a common perception of time. Timers are not enough.
Clocks provide the only way to measure distributed duration, that is, actions that start in one process
and terminate in another. Global agreement on time is necessary to trigger actions that should occur
concurrently (e.g., in a real-time control system of a power plant, several circuits must be switched
on at the same time). Agreement on the time when events occur is necessary for distributed recording
of events — for example, to determine a precedence relation through a temporal ordering of events.
To ensure that a system functions correctly, we need to determine that the event causing a change of
state occurred before the state change — for instance, the sensor triggering an alarm has to change its
value before the emergency procedure to handle the event is activated. Another example of the need for
agreement on the time of occurrence of events is in replicated actions. In this case several replicas of a
process must log the time of an event in a consistent manner.

Time stamps are often used for event ordering using a global time base constructed on local virtual
clocks [235]. The A-protocols [94] achieve total temporal order using a global time base. Assume that
local virtual clock readings do not differ by more than 7, called precision of the global time base. Call
g the granularity of physical clocks. First, observe that the granularity should not be smaller than the
precision; given two events a and b occurring in different processes, if 1, — #, < & + g we cannot tell

34 CHAPTER 2 Parallel and Distributed Systems

which one occurred first [361]. Based on these observations, it follows that the order discrimination of
clock-driven protocols cannot be better than twice the clock granularity.

System specification, design, and analysis require a clear understanding of cause-effect relationships.
During the system specification phase we view the system as a state machine and define the actions that
cause transitions from one state to another. During the system analysis phase we need to determine the
cause that brought the system to a certain state.

The activity of any process is modeled as a sequence of events; hence, the binary relation cause-effect
relationship should be expressed in terms of events and should express our intuition that the cause must
precede the effects. Again, we need to distinguish between local events and communication events.
The latter events affect more than one process and are essential for constructing a global history of an
ensemble of processes. Let /; denote the local history of process p; and let el].‘ denote the k-th event in
this history.

The binary cause-effect relationship between two events has the following properties:

1. Causality of local events can be derived from the process history:
if ell-‘, ef €h; and k <[then ef-‘ — ell-. (2.20)
2. Causality of communication events:

if el]-‘ = send(m) and ei. = receive(m) then ef — elj. (2.21)

3. Transitivity of the causal relationship:

if ef — ¢, and e — e}, then ef — e}, (2.22)

Two events in the global history may be unrelated. If so, neither one is the cause of the other; such
events are said to be concurrent events.

2.6 Logical clocks

A logical clock (LC) is an abstraction necessary to ensure the clock condition in the absence of a global
clock. Each process p; maps events to positive integers. Call LC (e) the local variable associated with
event e. Each process time stamps each message m sent with the value of the logical clock at the time of
sending, TS(m) = LC (send(m)). The rules to update the logical clock are specified by the following
relationship:

LC+1 if e is alocal event or a send(m) event

max (LC,TS(m)+ 1) if e =receive(m). (2.23)

LC(e) = {

The concept of logical clocks is illustrated in Figure 2.5 using a modified space-time diagram in

which the events are labeled with the logical clock value. Messages exchanged between processes are

shown as lines from the sender to the receiver; the communication events corresponding to sending and
receiving messages are marked on these diagrams.

Each process labels local events and sends events sequentially until it receives a message marked

with a logical clock value larger than the next local logical clock value, as shown in Equation 2.23.

2.7 Message Delivery Rules; Causal Delivery 35

1 2 3 4 5 12
n——@ ' '
ni n2 ms
1 2 6 7 8 9
n—F—8 —o—
m3 mq
1 2 3 10 11
2 ’ . 1 T T
FIGURE 2.5
Three processes and their logical clocks. The usual labeling of events as ell, e%, ef’, ... is omitted to avoid

overloading the figure; only the logical clock values for the local and communication events are marked. The
correspondence between the events and the logical clock values is obvious: ell, e%, e31 -1, ef — b, eg -7,
egf — 10, ef — 12, and so on. Global ordering of all events is not possible; there is no way to establish the

; 1 41 1
ordering of events e, e, and ;.

It follows that logical clocks do not allow a global ordering of all events. For example, there is no way to
establish the ordering of events e}, eé, and e_% in Figure 2.5. Nevertheless, communication events allow
different processes to coordinate their logical clocks; for example, process p» labels the event e% as 6
because of message my, which carries the information about the logical clock value as 5 at the time
message m; was sent. Recall that el./ is the j-th event in process p;.

Logical clocks lack an important property, gap detection; given two events e and ¢’ and their logical
clock values, LC(e) and LC(¢’), it is impossible to establish if an event ¢” exists such that

LC(e) < LC(e") < LC(€). (2.24)

For example, for process p; there is an event, e‘l‘, between the events e{’ and e? in Figure 2.5; indeed,
LC(ef) =3, LC(ef) =5, LC(e‘l‘) = 4, and LC(e%) < LC(e‘ll) < LC(ef). However, for process
p3, the events eg’ and 6‘3‘ are consecutive, though LC (eg) =3and LC (eg) = 10.

2.7 Message delivery rules; causal delivery

The communication channel abstraction makes no assumptions about the order of messages; a real-
life network might reorder messages. This fact has profound implications for a distributed application.
Consider for example a robot getting instructions to navigate from a monitoring facility with two
messages, “turn left” and “turn right,” being delivered out of order.

Message receiving and message delivery are two distinct operations; a delivery rule is an additional
assumption about the channel-process interface. This rule establishes when a message received is actu-
ally delivered to the destination process. The receiving of a message m and its delivery are two distinct

36 CHAPTER 2 Parallel and Distributed Systems

Process Process
2 PJ-
—_— deliver —_—
Channel/ Channel/
Process Process

receive
Interface / \ Interface

Channel I

FIGURE 2.6

Message receiving and message delivery are two distinct operations. The channel-process interface imple-
ments the delivery rules (e.g., FIFO delivery).

events in a causal relation with one another. A message can only be delivered after being received (see
Figure 2.6)
receive(m) — deliver(m). (2.25)

First In, First Out (FIFO) delivery implies that messages are delivered in the same order in which
they are sent. For each pair of source-destination processes (p;, p;), FIFO delivery requires that the
following relation should be satisfied:

send;(m) — send;(m") = deliver j(m) — deliver j(m’). (2.26)

Even if the communication channel does not guarantee FIFO delivery, FIFO delivery can be enforced
by attaching a sequence number to each message sent. The sequence numbers are also used to reassemble
messages out of individual packets.

Causal delivery is an extension of the FIFO delivery to the case when a process receives messages
from different sources. Assume a group of three processes, (p;, p;, px) and two messages m and m’.
Causal delivery requires that

send;(m) — send j(m') = deliveri(m) — delivery(m'). 2.27)
When more than two processes are involved in a message exchange, the message delivery may be
FIFO but not causal, as shown in Figure 2.7 where we see that

* deliver(m3) — deliver(my), according to the local history of process p;.
e deliver(my) — send(m3), according to the local history of process p;.
* send(my) — send(m>), according to the local history of process ps3.

2.7 Message Delivery Rules; Causal Delivery 37

Dy

ms3
m2

/%)

Ps3

FIGURE 2.7

Violation of causal delivery when more than two processes are involved. Message m; is delivered to process
po after message ms, though message m; was sent before m3. Indeed, message ms3 was sent by process p;
after receiving mo, which in turn was sent by process p3 after sending message m; .

e send(my) — deliver(my).
e send(m3) — deliver(ms).

The preceding transitivity property and the causality relations imply that send (m1) — deliver(m3z).

Call T S(m) the time stamp carried by message m. A message received by process p; is stable if no
future messages with a time stamp smaller than 7'S(m) can be received by process p;. When logical
clocks are used, a process p; can construct consistent observations of the system if it implements the
following delivery rule: Deliver all stable messages in increasing time-stamp order.

Let’s now examine the problem of consistent message delivery under several sets of assumptions.
First, assume that processes cooperating with each other in a distributed environment have access to a
global real-time clock, that the message delays are bounded by §, and that there is no clock drift. Call
RC (e) the time of occurrence of event e. A process includes RC (e) in every message it sends, where e
is the send-message event. The delivery rule in this case is: At time t deliver all received messages with
time stamps up to (t — §) in increasing time-stamp order. Indeed, this delivery rule guarantees that under
the bounded delay assumption the message delivery is consistent. All messages delivered at time ¢ are
in order and no future message with a time stamp lower than any of the messages delivered may arrive.

For any two events, e and ¢’, occurring in different processes, the so-called clock condition is satis-
fied if

e — ¢ = RC(e) < RC(e), Ve,¢. (2.28)

Often, we are interested in determining the set of events that caused an event knowing the time
stamps associated with all events; in other words, we are interested in deducing the causal precedence
relation between events from their time stamps. To do so we need to define the so-called strong clock
condition. The strong clock condition requires an equivalence between the causal precedence and the
ordering of the time stamps

Ve,e/, e— e =TS(e) <TS(). (2.29)

Causal delivery is very important because it allows processes to reason about the entire system using
only local information. This is only true in a closed system where all communication channels are

38 CHAPTER 2 Parallel and Distributed Systems

known; sometimes the system has hidden channels, and reasoning based on causal analysis may lead
to incorrect conclusions.

2.8 Runs and cuts; causal history

Knowledge of the state of several, and possibly all, processes in a distributed system is often needed.
For example, a supervisory process must be able to detect when a subset of processes is deadlocked; a
process might migrate from one location to another or be replicated only after an agreement with others.
In all these examples a process needs to evaluate a predicate function of the global state of the system.

We call the process responsible for constructing the global state of the system the monitor. A monitor
sends messages requesting information about the local state of every process and gathers the replies to
construct the global state. Intuitively, the construction of the global state is equivalent to taking snapshots
of individual processes and then combining these snapshots into a global view. Yet, combining snapshots
is straightforward if and only if all processes have access to a global clock and the snapshots are taken
at the same time; hence, the snapshots are consistent with one another.

A runis atotal ordering R of all the events in the global history of a distributed computation consistent
with the local history of each participant process; a run

R = (e{l,eéz,...,e£"> (2.30)

implies a sequence of events as well as a sequence of global states.

For example, consider the three processes in Figure 2.8. We can construct a three-dimensional lattice
of global states following a procedure similar to the one in Figure 2.2, starting from the initial state
5000 and proceeding to any reachable state £/ with i, j, k the events in processes pi, p2, P3,

respectively. The run Ry = (e}, e%, eé, e%) is consistent with both the local history of each process and

1 6
I /
A= 1
m, ' ms
1 2 :
e, e ;
P | | H
2 | | 1

1 2 4

Ts ‘T} €

Py 1 1 1

FIGURE 2.8

Inconsistent and consistent cuts. The cut C1 = (e, €3, €3) is inconsistent because it includes €3, the
event triggered by the arrival of the message ms at process p», but does not include eg, the event triggered
by process p3 sending ms. Thus, the cut Cy violates causality. On the other hand, C, = (€2, €5, €3) is a
consistent cut; there is no causal inconsistency because, it includes event eg, the sending of message mgy,
without the effect of it, the event eg' receiving the message by process ps3.

2.8 Runs and Cuts; Causal History 39

the global history; this run is valid, and the system has traversed the global states
5000 5100 52110 s111 52211 2.31)

On the other hand, the run R, = (e 1> el , eé, e?, 2) is invalid because it is inconsistent with the global
hlstory The system cannot ever reach the state 301 message m| must be sent before it is received, so
event e2 must occur in any run before event ¢3 i

A cut is a subset of the local history of all processes. If hj denotes the history of process p; up to

and including its j-th event, ei] , then a cut C is an n-tuple
= {hl.j} with i € {l1,n} and j € {1, n;}. (2.32)

The frontier of the cut is an n-tuple consisting of the last event of every process included in the cut.
Figure 2.8 illustrates a space-time diagram for a group of three processes, p1, p2, p3, and it shows two
cuts, Cq and C,. C1 has the frontier (4, 5, 2), frozen after the fourth event of process p1, the fifth event
of process p», and the second event of process p3, and C» has the frontier (5, 6, 3).

Cuts provide the necessary intuition to generate global states based on an exchange of messages
between a monitor and a group of processes. The cut represents the instance when requests to report
individual states are received by the members of the group. Clearly not all cuts are meaningful. For
example, the cut C with the frontier (4, 5, 2) in Figure 2.8 violates our intuition regarding causality, it
includes ez, the event triggered by the arrival of message m3 at process p» but does not 1nclude 6‘3, the
event triggered by process p3 sending m3. In this snapshot p3 was frozen after its second event, 63, before
it had the chance to send message m3. Causality is violated and the system cannot ever reach such a state.

Next we introduce the concepts of consistent and inconsistent cuts and runs. A cut closed under the
causal precedence relationship is called a consistent cut. C is a consistent cut if and only if for all events

Ve, e/, (ec C)An (e = ¢e) =€ eC. (2.33)

A consistent cut establishes an “instance” of a distributed computation. Given a consistent cut we
can determine if an event e occurred before the cut.
A run R is said to be consistent if the total ordering of events imposed by the run is consistent with the
partial order imposed by the causal relation; for all events, e — ¢’ implies that e appears before ¢’ in R.
Consider a distributed computation consisting of a group of communicating processes
= {p1, P2, - - ., Pn}- The causal history of event e, y (e), is the smallest consistent cut of G including
event e
v(e) ={e € Gle' — e} U {e}. (2.34)

The causal history of event eg in Figure 2.9 is:

y (eg) = {e% e%, e?, e‘f, ef, e%, e%, eg, eg, eg, e%, e%, eg} . (2.35)

This is the smallest consistent cut including ez, indeed, if we omit e3, then the cut (5 5,2) would be
inconsistent; it Would include ez, the communication event for receiving m3, but not e3 , the sendmg of
m3. If we omit el , the cut (4, 5, 3) would also be inconsistent and it would include 62 but not el .

40 CHAPTER 2 Parallel and Distributed Systems

FIGURE 2.9

; 5 005y — ol 22 23 a8 25 ol 22 a3 a4 o5 ol a2 31
The causal history of event e3,y(e3) = {el,el, 67, €7, €7,6,,65,65,€65,63, €3, e3,ea} is the smallest
consistent cut including 3.

Causal histories can be used as clock values and satisfy the strong clock condition, provided that we
equate clock comparison with set inclusion. Indeed,

e— e =y Cy). (2.36)
The following algorithm can be used to construct causal histories:

e Each p; € G starts with 6 = @.
* Every time p; receives a message m from p; it constructs

y(ei) = y(ej) Uy(er) (2.37)
with e; the receive event, e; the previous local event of p;, e, the send event of process p;.

Unfortunately, this concatenation of histories is impractical because the causal histories grow very fast.

Now we present a protocol to construct consistent global states based on the monitoring concepts
discussed in this section. We assume a fully connected network; recall that given two processes p; and
D, the state &; ; of the channel from p; to p; consists of messages sent by p; but not yet received by
p;j. The snapshot protocol of Chandy and Lamport consists of three steps [72]:

1. Process pg sends to itself a “take snapshot” message.

2. Let py be the process from which p; receives the “take snapshot” message for the first time. Upon
receiving the message, the process p; records its local state, o;, and relays the “take snapshot” along
all its outgoing channels without executing any events on behalf of its underlying computation.
Channel state &7 ; is set to empty, and process p; starts recording messages received over each of
its incoming channels.

3. Let p; be the process from which p; receives the “take snapshot” message after the first time. Process
pi stops recording messages along the incoming channel from p; and declares channel state &; ; as
those messages that have been recorded.

Each “take snapshot” message crosses each channel exactly once, and every process p; has made its
contribution to the global state. A process records its state the first time it receives a “take snapshot”

P1

2.9 Concurrency 41

22
N e

2
2
2
2 P
2 2
2
A
Ps 5 > D3
FIGURE 2.10

Six processes executing the snapshot protocol.

Ps
2

Po =
11
2

message and then stops executing the underlying computation for some time. Thus, in a fully connected
network with n processes, the protocol requires n x (n — 1) messages, one on each channel.

For example, consider a set of six processes, each pair of processes being connected by two unidi-
rectional channels, as shown in Figure 2.10. Assume that all channels are empty, §; ; = 0,i € {0, 5},
j € {0, 5}, at the time when process pg issues the “take snapshot” message. The actual flow of mes-
sages is:

* Instep 0, po sends to itself the “take snapshot” message.

e Instep 1, process pg sends five “take snapshot” messages, labeled (1) in Figure 2.10.

* Instep 2, each of the five processes p1, p2, p3, P4, and ps sends a “take snapshot” message labeled
(2) to every other process.

A “take snapshot” message crosses each channel from process p; to p;, i, j € {0, 5} exactly once
and 6 x 5 = 30 messages are exchanged.

2.9 Concurrency

Concurrency means that several activities are executed simultaneously. Concurrency allows us to reduce
the execution time of a data-intensive problem, as discussed in Section 2.1. To exploit concurrency, often

42 CHAPTER 2 Parallel and Distributed Systems

we have to take a fresh look at the problem and design a parallel algorithm. In other instances we can
still use the sequential algorithm in the context of the SPMD paradigm.

Concurrency is a critical element of the design of system software. The kernel of an operating system
exploits concurrency for virtualization of system resources such as the processor and the memory.
Virtualization, covered in depth in Section 5.1, is a system design strategy with a broad range of
objectives, including:

* Hiding latency and performance enhancement (e.g., schedule a ready-to-run thread when the current
thread is waiting for the completion of an I/O operation).

* Avoiding limitations imposed by the physical resources (e.g., allow an application to run in a virtual
address space of a standard size rather than be restricted by the physical memory available on a
system).

* Enhancing reliability and performance, as in the case of RAID systems mentioned in Section 3.5.

Sometimes concurrency is used to describe activities that appear to be executed simultaneously,
though only one of them may be active at any given time, as in the case of processor virtualization,
when multiple threads appear to run concurrently on a single processor. A thread can be suspended
due to an external event and a context switch to a different thread takes place. The state of the first
thread is saved and the state of another thread ready to proceed is loaded and the thread is activated.
The suspended thread will be reactivated at a later point in time.

Dealing with some of the effects of concurrency can be very challenging. Context switching could
involve multiple components of an OS kernel, including the Virtual Memory Manager (VMM), the
Exception Handler (EH), the Scheduler (S), and the Multilevel Memory Manager (MLMM). When a
page fault occurs during the fetching of the next instruction, multiple context switches are necessary,
as shown in Figure 2.11.

Concurrency is often motivated by the desire to enhance system performance. For example, in a
pipelined computer architecture, multiple instructions are in different phases of execution at any given
time. Once the pipeline is full, a result is produced at every pipeline cycle; an n-stage pipeline could
potentially lead to a speed-up by a factor of n. There is always a price to pay for increased performance,
and in this example it is design complexity and cost. An n-stage pipeline requires n execution units, one
for each stage, as well as a coordination unit. It also requires careful timing analysis in order to achieve
the full speed-up.

This example shows that the management and coordination of the concurrent activities increase the
complexity of a system. The interaction between pipelining and virtual memory further complicates
the functions of the kernel; indeed, one of the instructions in the pipeline could be interrupted due to a
page fault, and the handling of this case requires special precautions, since the state of the processor is
difficult to define.

In the early days of computing, concurrency was analyzed mostly in the context of the system soft-
ware; nowadays concurrency is a ubiquitous feature of many applications. Embedded systems are a class
of concurrent systems used not only by the critical infrastructure but also by the most diverse systems,
from ignition in a car to oil processing in a refinery, from smart meters to coffee makers. Embedded con-
trollers for reactive real-time applications are implemented as mixed software/hardware systems [294].

Concurrency is exploited by application software to speed up a computation and to allow a number
of clients to access a service. Parallel applications partition the workload and distribute it to multiple

2.9 Concurrency 43

Application
thread 1

Virtual
Memory
Manager

Exception
Handler

Multi-Level
Memory
Manager

Application

Scheduler thread 2

IR -— PC

IR «+— PC

Translate (PC)
into (Page#,Displ)
Is (Page#) in
primary storage?
YES-compute the
physical address
of the instruction

—» SavePC

NO - page fault

AWAIT -

Handle page fault

Identify Page #

SEND(Pagé #) emjp. Find a block in

Issue AWAIT on
behalf of thread 1
-

PP U —

primary storage
Is “dirty” bit of
block ON?
YES-write block to

A

Thread 1 secongary storage
WAITING ?
Thread 2 v
RUNNING NO-fetch block
corresponding to
missin; page
Load PC >
of thread 2 IR «— PC
\
1/0 operation
complets
ADVANCE
Thread 1
RUNNING
Load PC
of thread 1

IR «— PC

FIGURE 2.11

Context switching when a page fault occurs during the instruction fetch phase. The VMM attempts to translate
the virtual address of a next instruction of thread 1 and encounters a page fault. Then thread 1 is suspended
waiting for an event when the page is brought into the physical memory from the disk. The Scheduler
dispatches thread 2. To handle the fault, the Exception Handler invokes the MLMM.

threads running concurrently. Distributed applications, including transaction management systems and
applications based on the client-server paradigm discussed in Section 2.13, use concurrency extensively
to improve the response time. For example, a Web server spawns a new thread when a new request
is received; thus, multiple server threads run concurrently. A main attraction for hosting Web-based

44 CHAPTER 2 Parallel and Distributed Systems

applications is the cloud elasticity — the ability of a service running on a cloud to acquire resources as
needed and to pay for these resources as they are consumed.

Communication channels allow concurrent activities to work in concert and to coordinate. Commu-
nication protocols allow us to transform noisy and unreliable channels into reliable ones that deliver
messages in order. As mentioned earlier, concurrent activities communicate with one another via shared
memory or via message passing. Multiple instances of a cloud application, a server and the clients of the
service it provides, and many other applications communicate via message passing. The Message Pass-
ing Interface (MPI) supports both synchronous and asynchronous communication, and it is often used
by parallel and distributed applications. Message passing enforces modularity, as we see in Section 2.13,
and prevents the communicating activities from sharing their fate; a server could fail without affecting
the clients that did not use the service during the period the server was unavailable.

The communication patterns in the case of a parallel application are more structured, whereas pat-
terns of communication for concurrent activities of a distributed application are more dynamic and
unstructured. Barrier synchronization requires the threads running concurrently to wait until all of them
have completed the current task before proceeding to the next. Sometimes one of the activities, a coor-
dinator, mediates communication among concurrent activities; in other instances individual threads
communicate directly with one another.

2.10 Atomic actions

Parallel and distributed applications must take special precautions for handling shared resources. For
example, consider a financial application in which the shared resource is an account record. A thread
running on behalf of a transaction first accesses the account to read the current balance, then updates
the balance, and finally, writes back the new balance. When a thread is interrupted before being able
to complete the three steps of the process, the results of the financial transactions are incorrect if
another thread operating on the same account is allowed to proceed. Another challenge is to deal with
a transaction involving the transfer from one account to another. A system crash after the completion
of the operation on the first account will again lead to an inconsistency — the amount debited from the
first account is not credited to the second.

In these cases, as in many other similar situations, a multistep operation should be allowed to proceed
to completion without any interruptions, and the operation should be atomic. An important observation
is that such atomic actions should not expose the state of the system until the action is completed. Hiding
the internal state of an atomic action reduces the number of states a system can be in; thus, it simplifies
the design and maintenance of the system. An atomic action is composed of several steps, each of which
may fail; therefore, we have to take additional precautions to avoid exposing the internal state of the
system in case of such a failure.

The discussion of the transaction system suggests that an analysis of atomicity should pay special
attention to the basic operation of updating the value of an object in storage. Even to modify the contents
of a memory location, several machine instructions must be executed: load the current value in a register,
modify the contents of the register, and store back the result.

Atomicity cannot be implemented without some hardware support; indeed, the instruction sets of
most processors support the test-and-set instruction, which writes to a memory location and returns

2.10 Atomic Actions 45

Commit

New action
—_—

FIGURE 2.12
The states of an all-or-nothing action.

the old content of that memory cell as noninterruptible operations. Other architectures support
compare-and-swap, an atomic instruction that compares the contents of a memory location to a given
value and, only if the two values are the same, modifies the contents of that memory location to a given
new value.

Two flavors of atomicity can be distinguished: all-or-nothing and before-or-after atomicity. All-
or-nothing means that either the entire atomic action is carried out, or the system is left in the same
state it was before the atomic action was attempted. In our examples a transaction is either carried out
successfully, or the record targeted by the transaction is returned to its original state. The states of an
all-or-nothing action are shown in Figure 2.12.

To guarantee the all-or-nothing property of an action we have to distinguish preparatory actions
that can be undone from irreversible ones, such as the alteration of the only copy of an object. Such
preparatory actions are as follows: allocation of a resource, fetching a page from secondary storage,
allocation of memory on the stack, and so on. One of the golden rules of data management is never to
change the only copy; maintaining the history of changes and a log of all activities allows us to deal
with system failures and to ensure consistency.

An all-or-nothing action consists of a pre-commit and a post-commit phase; during the former it
should be possible to back up from it without leaving any trace, whereas the latter phase should be
able to run to completion. The transition from the first to the second phase is called a commit point.
During the pre-commit phase all steps necessary to prepare the post-commit phase — for example, check
permissions, swap in main memory all pages that may be needed, mount removable media, and allocate
stack space — must be carried out; during this phase no results should be exposed and no irreversible
actions should be carried out. Shared resources allocated during the pre-commit phase cannot be released
until after the commit point. The commit step should be the last step of an all-or-nothing action.

A discussion of storage models illustrates the effort required to support all-or-nothing atomicity (see
Figure 2.13). The common storage model implemented by hardware is the so-called cell storage, a
collection of cells each capable of holding an object (e.g., the primary memory of a computer where
each cell is addressable). Cell storage does not support all-or-nothing actions. Once the content of a cell
is changed by an action, there is no way to abort the action and restore the original content of the cell.

To be able to restore a previous value we have to maintain a version history for each variable in the
cell storage. The storage model that supports all-or-nothing actions is called journal storage. Now the
cell storage is no longer accessible to the action because the access is mitigated by a storage manager.
In addition to the basic primitives to read an existing value and to write a new value in cell storage,
the storage manager uniquely identifies an action that changes the value in cell storage and, when the

46 CHAPTER 2 Parallel and Distributed Systems

Cell storage

JONENONEENON
e @] [)

Version history of a each variable in cell storage

e N
Cell storage
ACTION M g
a [Catalog]
n
READ Outcome records
a
WRITE
g
(& Version histories
COMMIT
T
ABORT
\ J

Journal storage

FIGURE 2.13

Storage models. Cell storage does not support all-or-nothing actions. When we maintain version histories, it is
possible to restore the original content, but we need to encapsulate the data access and provide mechanisms
to implement the two phases of an atomic all-or-nothing action. Journal storage does precisely that.

action is aborted, is able to retrieve the version of the variable before the action and restore it. When
the action is committed, then the new value should be written to the cell.

Figure 2.13 shows that for a journal storage, in addition to the version histories of all variables
affected by the action, we have to implement a catalog of variables and maintain a record to identify
each new action. A new action first invokes the Action primitive; at that time an outcome record uniquely
identifying the action is created. Then, every time the action accesses a variable, the version history is
modified. Finally, the action invokes either a Commit or an Abort primitive. In the journal storage model
the action is atomic and follows the state transition diagram in Figure 2.12.

Before-or-after atomicity means that, from the point of view of an external observer, the effect of
multiple actions is as though these actions have occurred one after another, in some order. A stronger
condition is to impose a sequential order among transitions. In our example the transaction acting on
two accounts should either debit the first account and then credit the second one or leave both accounts
unchanged. The order is important because the first account cannot be left with a negative balance.

Atomicity is a critical concept in our efforts to build reliable systems from unreliable components and,
at the same time, to support as much parallelism as possible for better performance. Atomicity allows
us to deal with unforseen events and to support coordination of concurrent activities. The unforseen
event could be a system crash, a request to share a control structure, the need to suspend an activity,

2.10 Atomic Actions 47

and so on; in all these cases we have to save the state of the process or of the entire system to be able
to restart it at a later time.

Because atomicity is required in many contexts, it is desirable to have a systematic approach rather
than an ad hoc one. A systematic approach to atomicity must address several delicate questions:

* How to guarantee that only one atomic action has access to a shared resource at any given time.
e How to return to the original state of the system when an atomic action fails to complete.
* How to ensure that the order of several atomic actions leads to consistent results.

Answers to these questions increase the complexity of the system and often generate additional
problems. For example, access to shared resources can be protected by locks, but when there are
multiple shared resources protected by locks, concurrent activities may deadlock. A lock is a construct
that enforces sequential access to a shared resource; such actions are packaged in the critical sections of
the code. If the lock is not set, a thread first locks the access, then enters the critical section, and finally
unlocks it; a thread that wants to enter the critical section finds the lock set and waits for the lock to be
reset. A lock can be implemented using the hardware instructions supporting atomicity.

Semaphores and monitors are more elaborate structures ensuring serial access. Semaphores force
processes to queue when the lock is set and are released from this queue and allowed to enter the critical
section one by one. Monitors provide special procedures to access the shared data (see Figure 2.14).

Queue of threads wailing to access shared data
using the procedures provided by the monitor

monitor name

/[shared variables - ~
procedure P1(...) { e
}
procedure P2(....){
}
Procedure Pn(....){
}
Initialization code (...) { Initialization code
} 9 J

FIGURE 2.14
A monitor provides special procedures to access the data in a critical section.

48 CHAPTER 2 Parallel and Distributed Systems

The mechanisms for the process coordination we described require the cooperation of all activities, the
same way traffic lights prevent accidents only as long as drivers follow the rules.

2.11 Consensus protocols

Consensus is a pervasive problem in many areas of human endeavor; consensus is the process of agreeing
to one of several alternatives proposed by a number of agents. We restrict our discussion to the case
of a distributed system when the agents are a set of processes expected to reach consensus on a single
proposed value.

No fault-tolerant consensus protocol can guarantee progress [123], but protocols that guarantee
freedom from inconsistencies (safety) have been developed. A family of protocols to reach consensus
based on a finite state machine approach is called Paxos.’

A fair number of contributions to the family of Paxos protocols are discussed in the literature. Leslie
Lamport has proposed several versions of the protocol, including Disk Paxos, Cheap Paxos, Fast Paxos,
Vertical Paxos, Stoppable Paxos, Byzantizing Paxos by Refinement, Generalized Consensus and Paxos,
and Leaderless Byzantine Paxos. He has also published a paper on the fictional part-time parliament in
Paxos [206] and a layman’s dissection of the protocol [207].

The consensus service consists of a set of n processes. Clients send requests to processes and propose a
value and wait for aresponse; the goal is to get the set of processes to reach consensus on a single proposed
value. The basic Paxos protocol is based on several assumptions about the processors and the network:

* The processes run on processors and communicate through a network; the processors and the network
may experience failures, but not Byzantine failures.®

» The processors: (i) operate at arbitrary speeds; (ii) have stable storage and may rejoin the protocol
after a failure; and (iii) can send messages to any other processor.

* The network: (i) may lose, reorder, or duplicate messages; (ii) sends messages are asynchronously
that may take arbitrarily long times to reach the destination.

The basic Paxos considers several types of entities: (a) client, an agent that issues a request and waits
for a response; (b) proposer, an agent with the mission to advocate a request from a client, convince
the acceptors to agree on the value proposed by a client, and act as a coordinator to move the protocol
forward in case of conflicts; (c) acceptor, an agent acting as the fault-tolerant “memory” of the protocol;
(d) learner, an agent acting as the replication factor of then protocol and taking action once a request
has been agreed upon; and finally, (e) the leader; a distinguished proposer.

SPaxos is a small Greek island in the TIonian Sea. A fictional consensus procedure is attributed to an
ancient Paxos legislative body. The island had a part-time parliament because its inhabitants were more inter-
ested in other activities than in civic work; “the problem of governing with a part-time parliament bears
a remarkable correspondence to the problem faced by today’s fault-tolerant distributed systems, where legis-
lators correspond to processes and leaving the Chamber corresponds to failing,” according to Leslie Lamport
[206]. (For additional papers see http://research.microsoft.com/en-us/um/people/lamport/pubs/
pubs.html.)

6 A Byzantine failure in a distributed system could be an omission failure, such as a crash failure or failure to receive a request
or to send a response. It could also be a commission failure, such as processing a request incorrectly, corrupting the local
state, and/or sending an incorrect or inconsistent response to a request.

2.11 Consensus Protocols 49

A quorum is a subset of all acceptors. A proposal has a proposal number pn and contains a value v.
Several types of requests flow through the system: prepare, accept.

In a typical deployment of an algorithm, an entity plays three roles: proposer, acceptor, and learner.
Then the flow of messages can be described as follows [207]: “Clients send messages to a leader; during
normal operations the leader receives the client’s command, assigns it anew command number i, and then
begins the i-th instance of the consensus algorithm by sending messages to a set of acceptor processes.”
By merging the roles, the protocol “collapses” into an efficient client/master/replica-style protocol.

A proposal consists of a pair, a unique proposal number and a proposed value, (pn, v); multiple
proposals may propose the same value v. A value is chosen if a simple majority of acceptors have
accepted it. We need to guarantee that at most one value can be chosen; otherwise there is no consensus.
The two phases of the algorithm are described here.

Phasel

1. Proposal preparation: A proposer (the leader) sends a proposal (pn = k, v). The proposer
chooses a proposal number pn = k and sends a prepare message to a majority of acceptors
requesting:

a. that a proposal with pn < k should not be accepted;
b. the pn < k of the highest number proposal already accepted by each acceptor.

2. Proposal promise: An acceptor must remember the highest proposal number it has ever
accepted as well as the highest proposal number it has ever responded to. The acceptor can
accept a proposal with pn = k if and only if it has not responded to a prepare request with
pn > k; if it has already replied to a prepare request for a proposal with pn > k, then it
should not reply. Lost messages are treated as an acceptor that chooses not to respond.

Phaselll

1. Accept request: If the majority of acceptors respond, the proposer chooses the value v of the
proposal as follows:

a. the value v of the highest proposal number selected from all the responses;
b. an arbitrary value if no proposal was issued by any of the proposers.

The proposer sends an accept request message to aquorum of acceptors including (pn = k, v).
2. Accept: If an acceptor receives an accept message for a proposal with the proposal number
pn = k, it must accept it if and only if it has not already promised to consider proposals with a
pn > k.If it accepts the proposal, it should register the value v and send an accept message to
the proposer and to every learner; if it does not accept the proposal, it should ignore the request.

The following properties of the algorithm are important to show its correctness: (1) A proposal number
is unique; (2) any two sets of acceptors have at least one acceptor in common; and (3) the value sent out
in Phase II of the algorithm is the value of the highest numbered proposal of all the responses in Phase 1.

Figure 2.15 illustrates the flow of messages for the consensus protocol. A detailed analysis of the mes-
sage flows for different failure scenarios and of the properties of the protocol can be found in [207]. We
only mention that the protocol defines three safety properties: (1) nontriviality, the only values that can be
learned are proposed values; (2) consistency, at most one value can be learned; and (3) liveness, if a value

50 CHAPTER 2 Parallel and Distributed Systems

Acceptor
A
3. Accept

2. Promise request

Accepted
proposal

4. Accept

1.P
repare\ Acceptor
Leader B
Accepted wpp-

proposal

Accepted
2. Promise proposal
3. Accept
request

5. The leader accepts a
proposal and informs
all acceptors that the

proposal has been 1. Prepare — .
accepted

Acceptor
C

Individual clients
request different values 1. Prepare — the leader chooses a proposal with proposal number pn=k.
ab.cdef.. 2. Promise — an acceptor promises to accept the proposal only if it has not

responded to a proposal with pn > k. (B does not respond)
3. Accept request — the leader chooses the value v of the highest proposal
number from all acceptors who have sent a promise and sends it to all of them.
4. Accept — an acceptor accepts a proposal with pn=k only if it has not promised
to accept a proposal with pn > k. Stores the accepted value in persistent memory.
5. The leader accepts a proposal if the quorum of acceptors send an accept
message for the proposal with pn=k. (C does not accept)

FIGURE 2.15

The flow of messages for the Paxos consensus algorithm. Individual clients propose different values to the
leader, who initiates the algorithm. Acceptor A accepts the value in the message with proposal number pn = k;
acceptor B does not respond with a promise, while acceptor C responds with a promise but ultimately does
not accept the proposal.

v has been proposed, eventually every learner will learn some value, provided that sufficient processors
remain non-faulty. Figure 2.16 shows the message exchange when there are three actors involved.

In Section 4.5 we present a consensus service, the ZooKeeper, based on the Paxos protocol. In
Section 8.7 we discuss Chubby, a locking service based on the algorithm.

2.12 Modeling Concurrency with Petri Nets 51

C P Al A2 A3 L1 L2

B — client request (v)
e
— > prepare request (V)
-
: I promise request (1, null)
_— . _ accept request (1, v)
§ accepted (1, v)

- client response (v)

(a)
C P Al A2 A3 L1 L2

R —— client request (v)
—»
_— > _ prepare request (v)

a A 2 fails

- .
B promise request (1, null)
—>' accept request (1, v)
§ accepted (1, v)

- client response (V)

(b)

FIGURE 2.16

The basic Paxos with three actors: proposer (P), three acceptors (A1, A2, A3), and two learners (L1, L2).
The client (C) sends a request to one of the actors playing the role of a proposer. The entities involved are (a)
successful first round when there are no failures and (b) successful first round of Paxos when an acceptor fails.

2.12 Modeling concurrency with Petri nets

In 1962 Carl Adam Petri introduced a family of graphs, the so-called Petri nets (PNs) [291]. PNs are
bipartite graphs populated with tokens that flow through the graph that are used to model the dynamic
rather than static behavior of systems (e.g., detecting synchronization anomalies).

A bipartite graph is one with two classes of nodes; arcs always connect a node in one class with
one or more nodes in the other class. In the case of Petri nets the two classes of nodes are places and
transitions; thus, the name place-transition (P/T) nets is often used for this class of bipartite graphs.
Arcs connect one place with one or more transitions or a transition with one or more places.

To model the dynamic behavior of systems, the places of a Petri net contain tokens. Firing of
transitions removes tokens from the input places of the transition and adds them to its output places
(see Figure 2.17).

Petri nets can model different activities in a distributed system. A transition may model the occur-
rence of an event, the execution of a computational task, the transmission of a packet, a logic state-
ment, and so on. The input places of a transition model the pre-conditions of an event, the input data

52 CHAPTER 2 Parallel and Distributed Systems

P1 P2 P1 P2 P1 P2

Ps3 Ps3 P3

(a) (b) (c)

FIGURE 2.17

Petri nets, firing rules. (a) An unmarked net with one transition ; with two input places, p; and pp, and
one output place, p3. (b) The marked net, the net with places populated by tokens; the net before firing the
enabled transition t;. (c) The marked net after firing transition #;. Two tokens from place p; and one from
place po are removed and transported to place ps.

P4
t;
‘m & m p1) _
t t t t t, 4 6
(a) (b) (c)

FIGURE 2.18

Petri nets modeling. (a) Choice: Only one of transitions t;, or t, may fire. (b) Symmetric confusion:
Transitions t; and t3 are concurrent and, at the same time, they are in conflict with &. If t, fires, then #;
and/or t3 are disabled. (c) Asymmetric confusion: Transition t; is concurrent with f3 and is in conflict with
t, if t3 fires before t;.

for the computational task, the presence of data in an input buffer, or the pre-conditions of a logic
statement. The output places of a transition model the post-conditions associated with an event, the
results of the computational task, the presence of data in an output buffer, or the conclusions of a logic
statement.

The distribution of a token in place of a PN at a given time is called the marking of the net and
reflects the state of the system being modeled. PNs are very powerful abstractions and can express both
concurrency and choice, as we can see in Figure 2.18.

Petri nets can model concurrent activities. For example, the net in Figure 2.18(a) models conflict
or choice; only one of the transitions #; and #, may fire, but not both. Two transitions are said to be
concurrent if they are causally independent. Concurrent transitions may fire before, after, or in parallel
with each other; examples of concurrent transitions are #; and #3 in Figure 2.18(b) and (c).

2.12 Modeling Concurrency with Petri Nets 53

When choice and concurrency are mixed, we end up with a situation called confusion. Symmetric
confusion means that two or more transitions are concurrent and, at the same time, they are in conflict
with another one. For example, transitions #; and #3 in Figure 2.18(b) are concurrent and, at the same
time, they are in conflict with 7. If #, fires, either one or both of them will be disabled. Asymmetric
confusion occurs when a transition #; is concurrent with another transition #3 and will be in conflict with
1, if 13 fires before #1, as shown in Figure 2.18(c).

The concurrent transitions #, and #3 in Figure 2.19(a) model concurrent execution of two processes.
A marked graph can model concurrency but not choice; transitions #, and #3 in Figure 2.19(b) are con-
current, so there is no causal relationship between them. Transition #4 and its input places p3 and p4 in
Figure 2.19(b) model synchronization; ¢4 can only fire if the conditions associated with p3 and p4 are
satisfied.

Petri nets can be used to model priorities. The net in Figure 2.19(c) models a system with two
processes modeled by transitions #; and #,; the process modeled by 7, has a higher priority than the
one modeled by #;. If both processes are ready to run, places p; and p> hold tokens. When the two
processes are ready, transition #, will fire first, modeling the activation of the second process. Only after
1, is activated will transition # fire, modeling the activation of the first process.

t

P2 t 2]
: P1 Ps3
P P4 t t
t:
t P t P2 3 Pa
(a) po (D)
P Q = @ b “
t L P3 / t; P2 t Pa

Q n

(c) (d)

FIGURE 2.19

(a) A state machine. There is the choice of firing f1, or tp; only one transition fires at any given time, so
concurrency is not possible. (b) A marked graph can model concurrency but not choice; transitions f, and t3
are concurrent, so there is no causal relationship between them. (c) An extended net used to model priorities;
the arc from py to t; is an inhibitor arc. The process modeled by transition t; is activated only after the
process modeled by transition t, is activated. (d) Modeling exclusion; transitions t; and f, model writing
and, respectively, reading, with n processes to a shared memory. At any given time only one process may
write, but any subset of the n processes may read at the same time, provided that no process writes.

54 CHAPTER 2 Parallel and Distributed Systems

Petri nets are able to model exclusion. For example, the net in Figure 2.19(d), models a group of n
concurrent processes in a shared-memory environment. At any given time only one process may write,
but any subset of the n processes may read at the same time, provided that no process writes. Place p3
models the process allowed to write, ps the ones allowed to read, p; the ones ready to access the
shared memory, and p; the running tasks. Transition #, models the initialization/selection of the process
allowed to write and #; of the processes allowed to read, whereas f3 models the completion of a
write and t4 the completion of a read. Indeed, p3 may have at most one token, whereas p4 may have
atmost n. If all n processes are ready to access the shared memory, all n tokens in p, are consumed when
transition #; fires. However, place p4 may contain n tokens obtained by successive firings of transition #,.

After this informal discussion of Petri nets we switch to a more formal presentation and give several
definitions.

Labeled Petri Net. A tuple N = (p, ¢, f,[) such that:

e p C U is afinite set of places,

e ¢t C U is a finite set of transitions,

e fC(pxt)U(rx p)isasetof directed arcs, called flow relations, and
e [:t— Lisalabeling or a weight function,

with U auniverse of identifiers and L a set of labels. The weight function describes the number of tokens
necessary to enable a transition. Labeled PNs describe a static structure; places may contain fokens,
and the distribution of tokens over places defines the state, or the markings of the PN. The dynamic
behavior of a PN is described by the structure together with the markings of the net.

Marked Petri Net. A pair (N, s) where N = (p.t, f,[) is a labeled PN and s is a bag7 over p
denoting the markings of the net.

Preset and Postset of Transitions and Places. The preset of transition #; denoted as ef; is the set of
input places of #;, and the postset denoted by 7; e is the set of the output places of #;. The preset of place
pj denoted as ep; is the set of input transitions of p;, and the postset denoted by p ;e is the set of the
output transitions of p;.

Figure 2.17(a) shows a PN with three places, p1, p», and p3, and one transition, ;. The weights of
the arcs from pj and p to t; are two and one, respectively; the weight of the arc from #; to p3 is three.

The preset of transition # in Figure 2.17(a) consists of two places, ot = {p1, p2}, and its postset
consist of only one place, ;e = {p3}. The preset of place p4 in Figure 2.19(a) consists of transitions #3
and t4, epg = {13, t4}, and the postset of p; is pre = {11, 12}.

Ordinary Net. A PN is ordinary if the weights of all arcs are 1.
The nets in Figure 2.19 are ordinary nets since, the weights of all arcs are 1.

Enabled Transition. A transition #; € ¢ of the ordinary PN (N, s), with s the initial marking of N,
is enabled if and only if each of its input places contain a token, (N, s)[t; ><> ef; € s. The notation
(N, s)[t; > means that ¢; is enabled.

7 A bag B(A) is a multiset of symbols from an alphabet, .A; it is a function from A to the set of natural numbers. For example,
[x3, y*, 22, w®| P(x, y, z, w)] is a bag consisting of three elements x, four elements y, five elements z, and six elements w
such that the P (x, y, z, w) holds. P is a predicate on symbols from the alphabet. x is an element of a bag A denoted as x € A
if x € Aandif A(x) > 0.

2.12 Modeling Concurrency with Petri Nets 55

The marking of a PN changes as aresult of transition firing; a transition must be enabled in order to fire.

Firing Rule. The firing of the transition #; of the ordinary net (N, s) means that a token is removed
from each of its input places and one token is added to each of its output places, so its marking changes
s > (s — eof; +t; ®). Thus, firing of transition #; changes a marked net (N, s) into another marked
net (N,s — et + 1t o).

Firing Sequence. A nonempty sequence of transitions o € t* of the marked net (N, so) with N =
(p,t, f,1) is called a firing sequence if and only if there exist markings s1, s2,...,s, € B(p) and
transitions 1,2, ...,t;, € t suchthato = t1,t,...,1, and fori € (0, n), (N, s;)tiy1 > and sj4+1] =
s; — ot; + t;e. All firing sequences that can be initiated from marking so are denoted as o (sp).

Reachability. The problem of finding whether marking s, is reachable from the initial marking so, s, €
o (s0)- Reachability is a fundamental concern for dynamic systems; the reachability problem is decidable,
but reachability algorithms require exponential time and space.

Liveness. A marked Petrinet (N, s¢) is said to be live if it is possible to fire any transition starting from
the initial marking, so. The absence of deadlock in a system is guaranteed by the liveness of its net model.

Incidence Matrix. Given a Petri net with n transitions and m places, the incidence matrix F' = [f; ;]is
an integer matrix with f; ; = w(i, j)—w(j, i). Here w(i, j) is the weight of the flow relation (arc) from
transition #; to its output place p;, and w(j, i) is the weight of the arc from the input place p; to transition
t;. In this expression w (7, j) represents the number of tokens added to the output place p; and w(j, i) the
ones removed from the input place p; when transition ¢; fires. F T is the transpose of the incidence matrix.

A marking s; can be written as an m x 1 column vector, and its j-th entry denotes the number of
tokens in place j after some transition firing. The necessary and sufficient condition for transition #; to
be enabled at a marking s is that w(j, i) < s(j) Vs; € of;, the weight of the arc from every input place
of the transition, be smaller or equal to the number of tokens in the corresponding input place.

Extended Nets. PNs with inhibitor arcs; an inhibitor arc prevents the enabling of a transition. For
example, the arc from p» to #; in the net in Figure 2.19(a) is an inhibitor arc; the process modeled by
transition ¢ can be activated only after the process modeled by transition #, is activated.

Modified Transition Enabling Rule for Extended Nets. A transition is not enabled if one of the

places in its preset is connected with the transition with an inhibitor arc and if the place holds a token.

For example, transition #; in the net in Figure 2.19 (c) is not enabled while place p; holds a token.
Based on their structural properties, Petri nets can be partitioned in several classes:

» State machines are used to model finite state machines and cannot model concurrency and synchro-
nization.

* Marked graphs cannot model choice and conflict.

* Free-choice nets cannot model confusion.

* Extended free-choice nets cannot model confusion but they do allow inhibitor arcs.

¢ Asymmetric choice nets can model asymmetric confusion but not symmetric ones.

This partitioning is based on the number of input and output flow relations from/to a transition or
a place and by the manner in which transitions share input places. The relationships between different
classes of Petri nets are illustrated in Figure 2.20.

56 CHAPTER 2 Parallel and Distributed Systems

Petri Nets

Asymmetric Free State Marked
Choice Choice Machines Graphs

FIGURE 2.20
Classes of Petri nets.

State Machine. A Petri net is a state machine if and only if V#; € tthen (e t;| = 1 A |t; o | = 1).
All transitions of a state machine have exactly one incoming and one outgoing arc. This topological
constraint limits the expressiveness of a state machine, so no concurrency is possible. For example, the
transitions t1, t», t3, and #4 of the state machine in Figure 2.19(a) have only one input and one output arc,
so the cardinality of their presets and postsets is one. No concurrency is possible; once a choice was made
by firing either #1, or #, the evolution of the system is entirely determined. This state machine has four
places p1, p2, p3, and p4 and the marking is a 4-tuple (p1, p2, p3, p4); the possible markings of this net
are (1,0,0,0), (0,1,0,0), (0,0, 1,0), (0,0, 0, 1), with atoken in places p1, p2, p3,or pa,respectively.

Marked Graph. A Petrinet is a marked graphif and only if Vp; € pthen (e p;| = 1 A|p;e| =1).In
a marked graph each place has only one incoming and one outgoing flow relation; thus, marked graphs
do no not allow modeling of choice.

Free Choice, Extended Free Choice, and Asymmetric Choice Petri Nets. The marked net, (IV, s9)
with N = (p, t, f,1) is a free-choice net if and only if

(ofi))N(otj)) =0 =|oti|=]|0t;| Vt,jet. (2.38)

N is an extended free-choice netif Vt;,t; € t then (e #;) N (o 1;) =0 = of; = of;.
Nis an asymmetric choice netif and only if (e7;)N(et;) #) = (ef; C o) or (ot; 2 t;), Vt;,1; € 1.
In an extended free-choice net, if two transitions share an input place they must share all places in
their presets. In an asymmetric choice net, two transitions may share only a subset of their input places.
Several extensions of Petri nets have been proposed. For example, colored Petri nets (CPSs) allow
tokens of different colors, thus increasing the expressivity of the PNs but not simplifying their analysis.
Several extensions of Petri nets to support performance analysis by associating a random time with each
transition have been proposed. In case of stochastic Petri nets (SPNs), a random time elapses between
the time a transition is enabled and the moment it fires. This random time allows the model to capture
the service time associated with the activity modeled by the transition.

2.13 Enforced Modularity: The Client-Server Paradigm 57

Applications of stochastic Petri nets to performance analysis of complex systems is generally limited
by the explosion of the state space of the models. Stochastic high-level Petri nets (SHLPNs) were
introduced in 1988 [219]; they allow easy identification of classes of equivalent markings even when the
corresponding aggregation of states in the Markov domain is not obvious. This aggregation could reduce
the size of the state space by one or more orders of magnitude, depending on the system being modeled.

2.13 Enforced modularity: the client-server paradigm

Modularity. Modularity is a basic concept in the design of man-made systems. A complex system is
made of components, or modules, with well-defined functions. Modularity supports the separation of
concerns, encourages specialization, improves maintainability, reduces costs, and decreases the devel-
opment time of a system. Hence, it is no surprise that the hardware as well as the software systems are
composed of modules that interact with one another through well-defined interfaces.

In this section we are only concerned with software modularity. We distinguish soft modularity from
enforced modularity. The former means to divide a program into modules that call each other and
communicate using shared memory or follow the procedure call convention. The steps involved in the
transfer of the flow of control between the caller and the callee are: (i) The caller saves its state, including
the registers, the arguments, and the return address, on the stack; (ii) the callee loads the arguments
from the stack, carries out the calculations, and then transfers control back to the caller; (iii) the caller
adjusts the stack, restores its registers, and continues its processing.

Soft modularity hides the details of the implementation of a module and has many advantages. Once
the interfaces of the modules are defined, the modules can be developed independently, and a module
can be replaced with a more elaborate or a more efficient one as long as its interfaces with the other
modules are not changed. The modules can be written using different programming languages and can
be tested independently.

Soft modularity presents a number of challenges. It increases the difficulty of debugging; for example,
a call to a module with an infinite loop will never return. There could be naming conflicts and wrong
context specifications. The caller and the callee are in the same address space and may misuse the stack
(e.g., the callee may use registers that the caller has not saved on the stack, and so on). A strongly typed
language may enforce soft modularity by ensuring type safety at compile or at run time, it may reject
operations or function classes that disregard the data types, or it may not allow class instances to have
their classes altered. Soft modularity may be affected by errors in the run-time system, errors in the
compiler, or by the fact that different modules are written in different programming languages.

The Client-Server Paradigm. The ubiquitous client-server paradigm is based on enforced modularity;
this means that the modules are forced to interact only by sending and receiving messages. This paradigm
leads to a more robust design where the clients and the servers are independent modules and may fail
separately. Moreover, the servers are stateless; they do not have to maintain state information. The server
may fail and then come up without the clients being affected or even noticing the failure of the server.
The system is more robust since it does not allow errors to propagate. Enforced modularity makes an
attack less likely because it is difficult for an intruder to guess the format of the messages or the sequence
numbers of segments when messages are transported by Transport Control Protocol (TCP).

Last but not least, resources can be managed more efficiently; for example, a server typically consists
of an ensemble of systems: a front-end system that dispatches the requests to multiple back-end systems

58 CHAPTER 2 Parallel and Distributed Systems

that process the requests. Such an architecture exploits the elasticity of a computer cloud infrastructure.
The larger the request rate, the larger the number of back-end systems activated.

The client-server paradigm allows systems with different processor architecture (e.g., 32-bit or
64-bit), different operating systems (e.g., multiple versions of operating systems such as Linux, Mac
OS, or Microsoft Windows), different libraries and other system software to cooperate. The client-server
paradigm increases flexibility and choice; the same service could be available from multiple providers,
or a server may use services provided by other servers, a client may use multiple servers, and so on.

System heterogeneity is a blessing in disguise. The problems it creates outweigh its appeal. It adds
to the complexity of the interactions between a client and a server because it may require conversion
from one data format to another (e.g., from little-endian to big-endian or vice versa), or it may require
conversion to a canonical data representation. There is also uncertainty in terms of response time because
some servers may be more performant than others or may have a lower workload.

A major difference between the basic models of grid and cloud computing is that the former do
not impose any restrictions regarding heterogeneity of the computing platforms. On the other hand, a
computer cloud is a collection of homogeneous systems, systems with similar architecture and running
under the same or very similar system software.

The clients and the servers communicate through a network that itself can be congested. Transferring
large volumes of data through the network can be time consuming; this is a major concern for data-
intensive applications in cloud computing. Communication through the network adds additional delay
to the response time. Security becomes a major concern because the traffic between a client and a server
can be intercepted.

Remote Procedure Call (RPC). RPC is often used for the implementation of client-server systems
interactions. The RPC standard is described in RFC 1831. To use an RPC, a process may use special
services PORTMAP or RPCBIND, available at port 111, to register and for service lookup. RPC messages
must be well structured; they identify the RPC and are addressed to an RPC demon listening at an RPC
port. XDP is a machine-independent representation standard for RPC.

RPCs reduce the so-called fate sharing between caller and callee but take longer than local calls due
to communication delays. Several RPC semantics are implemented:

* At least once. A message is resent several times and an answer is expected. The server may end
up executing a request more than once, but an answer may never be received. These semantics are
suitable for operations free of side effects.

¢ At most once. A message is acted on at most once. The sender sets up a time-out for receiving the
response; when the time-out expires, an error code is delivered to the caller. These semantics require
the sender to keep a history of the time stamps of all messages because messages may arrive out of
order. These semantics are suitable for operations that have side effects.

* Exactly once. It implements the at most once semantics and requests an acknowledgment from the
server.

Applications of the Client-Server Paradigm. The large spectrum of applications attests to the role
played by the client-server paradigm in the modern computing landscape. Examples of popular applica-
tions of the client-server paradigm are numerous and include the World Wide Web, the Domain Name
System (DNS), X-windows, electronic mail [see Figure 2.21(a)], event services [see Figure 2.21(b)],
and so on.

2.13 Enforced Modularity: The Client-Server Paradigm 59

Site B

Email Service
Site A

Email Service

Inbox of user a :
I

Thin Email Client

Inbox of user b

(a)

Event Service
Publish Queue of Subscribe to m(3
Event_x subscribers for Event x L
Event_x
Qccurrence of Delivery of
Event_x Event_x
Queue of
subscribers for
Evenl_a

(b)
FIGURE 2.21

(a) Email service. The sender and the receiver communicate asynchronously using inboxes and outboxes.
Mail demons run at each site. (b) An event service supports coordination in a distributed system environment.
The service is based on the publish/subscribe paradigm; an event producer publishes events and an event
consumer subscribes to events. The server maintains queues for each event and delivers notifications to
clients when an event occurs.

60 CHAPTER 2 Parallel and Distributed Systems

The World Wide Web illustrates the power of the client-server paradigm and its effects on society. As
of June 2011 there were close to 350 million Web sites. The Web allows users to access resources such as
text, images, digital music, and any imaginable type of information previously stored in a digital format.
A Web page is created using a description language called Hypertext Markup Language (HTML). The
information in each Web page is encoded and formatted according to some standard (e.g., GIF, JPEG
for images, MPEG for videos, MP3 or MP4 for audio, and so on).

The Web is based on a “pull” paradigm; the resources are stored at the server’s site and the client
pulls them from the server. Some Web pages are created “on the fly”’; others are fetched from disk. The
client, called a Web browser, and the server communicate using an application-level protocol HyperText
Transfer Protocol (HTTP) built on top of the Transport Control Protocol (TCP).

Browser Web Server
HTTP request
SYN
RTT
SYN TCP connection establishment
ACK + HTTP request
/ Server residence time.
ACK Web page created on the fly
< I Data transmission time
Data
la
HTTP request
ACK
Server residence time.
Image retrieved from disk
Image transmission time
= Image
Lk
time time

FIGURE 2.22

Client-server communication, on the World Wide Web. The three-way handshake involves the first three
messages exchanged between the client and the server. Once the TCP connection is established, the HTTP
server takes its time to construct the page to respond the first request. To satisfy the second request, the
HTTP server must retrieve an image from the disk. The response time includes the round-trip-time (RTT),
the server residence time, and the data transmission time.

2.13 Enforced Modularity: The Client-Server Paradigm 61

The Web server, also called an HTTP server, listens at a well-known port, port 80, for connections
from clients. Figure 2.22 shows the sequence of events when a client sends an HTTP request to a
server to retrieve some information and the server constructs the page on the fly; then it requests an
image stored on the disk. First a TCP connection between the client and the server is established using
a process called a three-way handshake; the client provides an arbitrary initial sequence number in a
special segment with the SYN control bit on. Then the server acknowledges the segment and adds its
own arbitrarily chosen initial sequence number. Finally the client sends its own acknowledgment ACK
as well as the HTTP request, and the connection is established. The time elapsed from the initial request
until the server’s acknowledgment reaches the client is the RTT.

The response time, defined as the time from the instance the first bit of the request is sent until the last
bit of the response is received, consists of several components: the RTT, the server residence time, the
time it takes the server to construct the response, and the data transmission time. RTT depends on the
network latency, the time it takes a packet to cross the network from the sender to the receiver; the data
transmission time is determined by the network bandwidth. In turn, the server residence time depends
on the server load.

Often the client and the server do not communicate directly but through a proxy server, as shown in
Figure 2.23. Proxy servers can provide multiple functions; for example, they may filter client requests

HTTP client request -
Web Tp(-f:
Browser 80
response

request to proxy

HTTP client
Web
Browser

request to server

Proxy ‘

HTTP
server

response to client

response to proxy

HTTP client [§ request request
W b | TCP
S Tunnel per
Browser | -
response response

FIGURE 2.23

A client can communicate directly with the server, it can communicate through a proxy, or it may use tunneling
to cross the network.

62 CHAPTER 2 Parallel and Distributed Systems

and decide whether or not to forward the request based on some filtering rules. The proxy server may
redirect the request to a server in close proximity to the client or to a less loaded server. A proxy can
also act as a cache and provide a local copy of a resource rather than forward the request to the server.

Another type of client-server communication is HTTP tunneling, used most often as a means for
communication from network locations with restricted connectivity. Tunneling means encapsulation of
a network protocol. In our case HTTP acts as a wrapper for the communication channel between the
client and the server (see Figure 2.23).

2.14 Further reading

Seminal papers in distributed systems have been authored by Mani Chandy and Leslie Lamport [72],
by Leslie Lamport [205-207], Hoare [168], and Milner [244]. The collection of contributions with the
title Distributed systems, edited by Sape Mullender, includes some of these papers.

Petri nets were introduced in [291]. An in-depth discussion of concurrency theory and system model-
ing with PNs can be found in [292]. The brief discussion of distributed systems leads to the observation
that the analysis of communicating processes requires a more formal framework. Hoare realized that a
language based on execution traces is insufficient to abstract the behavior of communicating processes
and developed communicating sequential processes (CSPs) [168]. More recently, Milner initiated an
axiomatic theory called the Calculus of Communicating Systems (CCS) [244]. Process algebra is the
study of concurrent communicating processes within an algebraic framework. The process behavior is
modeled as a set of equational axioms and a set of operators. This approach has its own limitations, the
real-time behavior of the processes, so true concurrency still escapes this axiomatization.

The text Computer networks: a top-down approach featuring the internet, by J. A. Kurose and K.
W. Ross is a good introduction to networking. A recent text of Saltzer and Kaashoek [312] covers basic
concepts in computer system design.

2.15 History notes

Two theoretical developments in the 1930s were critical in the development of modern computers. The
first was the publication of Alan Turing’s 1936 paper [354] that provided a definition of a universal
computer, called a Turing machine, which executes a program stored on tape. The paper also proved that
there were problems, such as the halting problem, that could not be solved by any sequential process.
The second major development was the publication in 1937 of Claude Shannon’s master’s thesis at MIT,
“A Symbolic Analysis of Relay and Switching Circuits,” in which he showed that any Boolean logic
expression can be implemented using logic gates.

The first Turing complete® computing device was the Z3, an electromechanical device built by Konrad
Zuse in Germany in May 1941. The Z3 used a binary floating-point representation of numbers and was
program-controlled by film stock. The first programmable electronic computer, the ENIAC, built at the
Moore School of Electrical Engineering at the University of Pennsylvania by a team led by John Prosper

8 A Turing complete computer is equivalent to a universal Turing machine except for memory limitations.

2.15 History Notes 63

Eckart and John Mauchly, became operational in July 1946 [239]. Unlike the Z3, the ENIAC used a
decimal number system and was program-controlled by patch cables and switches.

John von Neumann, the famous mathematician and theoretical physicist, contributed fundamental
ideas for modern computers [60,362,363]. His was one of the most brilliant minds of the 20t century,
with an uncanny ability to map fuzzy ideas and garbled thoughts to crystal-clear and scientifically
sound concepts. John von Neumann drew the insight for the stored-program computer from Alan
Turing’s work® and from his visit to University of Pennsylvania; he thought that the ENJAC was an
engineering marvel but was less impressed with the awkward manner of “programming” it by manually
connecting cables and setting switches. He introduced the so-called “von Neumann architecture” in a
report published in the 1940s; to this day he is faulted by some because he failed to mention in this
report the sources of his insight.

Von Neumann led the development at the Institute of Advanced Studies at Princeton of the MANIAC,
an acronym for Mathematical and Numerical Integrator and Computer. The MANIAC was closer to
modern computers than any of its predecessors; it was used for sophisticated calculations required by
the development of the hydrogen bomb, nicknamed “Ivy Mike” and secretly detonated on November 1,
1952, over an island that no longer exists in the South Pacific. In a recent book [110] science historian
George Dyson writes: “The history of digital computing can be divided into an Old Testament whose
prophets, led by Leibnitz, supplied the logic, and a New Testament whose prophets led by von Neumann
built the machines. Alan Turing arrived between them.”

Third-generation computers were built during the 1964—-1971 period; they made extensive use of
integrated circuits (ICs) and ran under the control of operating systems. MULTIX (Multiplexed Infor-
mation and Computing Service) was an early time-sharing operating system for the GE 645 mainframe,
developed jointly by MIT, GE, and Bell Labs [91]. It had numerous novel features and implemented
a fair number of interesting concepts, such as a hierarchical file system, access control lists for file
information sharing, dynamic linking, and online reconfiguration.

The development of the UNIX system was a consequence of the withdrawal of Bell Labs from the
MULTIX project in 1968. UNIX was developed in 1969 for a DEC PDP minicomputer by a group led
by Kenneth Thompson and Dennis Ritchie [304]. According to [303], “the most important job of UNIX
is to provide a file-system.” The same reference discusses another concept introduced by the system:
“For most users, communication with UNIX is carried on with the aid of a program called the Shell.
The Shell is a command line interpreter: it reads lines typed by the user and interprets them as requests
to execute other programs.”

The first microprocessor, the Intel 4004, announced in 1971, performed binary-coded decimal (BCD)
arithmetic using 4-bit words. It was followed in 1971 by the Intel 8080, the first 8-bit microprocessor,
and by its competitor, Motorola 6800, released in 1974. The first 16-bit multichip microprocessor, the
IMP-16, was announced in 1973 by National Semiconductor. The 32-bit microprocessors appeared in
1979; the widely used Motorola MC68000 had 32-bit registers and supported 24-bit addressing. Intel’s
80286 was introduced in 1982. The 64-bit processor era was inaugurated by the AMDG64, an archi-
tecture called x86-64, backward-compatible with Intel x86 architecture. Dual-core processors appeared
in 2005; multicore processors are ubiquitous in today’s servers, PCs, tablets, and even smartphones.

9 Alan Turing came to the Institute of Advanced Studies at Princeton in 1936 and got his Ph.D. there in 1938. John von
Neumann offered him a position at the Institute, but as war was approaching in Europe, Turing decided to go back to England.

64 CHAPTER 2 Parallel and Distributed Systems

2.16 Exercises and problems

Problem 1.

Problem 2.

Problem 3.

Problem 4.

Problem 5.

Nonlinear algorithms do not obey the rules of scaled speed-up. For example, it was shown

that when the concurrency of an O(N?) algorithm doubles, the problem size increases
only by slightly more than 25%. Read [326] and explain this result.

Given a system of four concurrent threads #1, 7, 3, and #4, we take a snapshot of the
consistent state of the system after 3, 2, 4, and 3 events in each thread, respectively; all but
the second event in each thread are local events. The only communication event in thread
11 is to send a message to #4 and the only communication event in thread #3 is to send a

message to t». Draw a space-time diagram showing the consistent cut; mark individual

events on the thread 1; as] .

How many messages are exchanged to obtain the snapshot in this case? The snapshot
protocol allows application developers to create a checkpoint. An examination of the
checkpoint data shows that an error has occurred, and it is decided to trace the execution.
How many potential execution paths must be examined to debug the system?

The run time of a data-intensive application could be days or possibly weeks, even on a
powerful supercomputer. Checkpoints are taken periodically for a long-running compu-
tation, and when a crash occurs, the computation is restarted from the latest checkpoint.
This strategy is also useful for program and model debugging; when one observes wrong
partial results, the computation can be restarted from a checkpoint where the partial results
seem to be right.

Express n, the slowdown due to checkpointing, for a computation when checkpoints
are taken after a run lasting t units of time and each checkpoint requires « units of time.
Discuss optimal choices for T and «.

The checkpoint data can be stored locally, on the secondary storage of each processor,
or on a dedicated storage server accessible via a high-speed network. Which solution is
optimal and why?

What is in your opinion the critical step in the development of a systematic approach to all-
or-nothing atomicity? What does a systematic approach mean? What are the advantages
of a systematic versus an ad hoc approach to atomicity?

The support for atomicity affects the complexity of a system. Explain how the support
for atomicity requires new functions or mechanisms and how these new functions increase
the system complexity. At the same time, atomicity could simplify the description of a
system; discuss how it accomplishes this task.

Support for atomicity is critical for system features that lead to increased performance
and functionality, such as virtual memory, processor virtualization, system calls, and user-
provided exception handlers. Analyze how atomicity is used in each one of these cases.

The Petri net in Figure 2.19(d) models a group of n concurrent processes in a shared-
memory environment. At any given time only one process may write, but any subset of
the n processes may read at the same time, provided that no process writes. Identify the

2.16 Exercises and Problems 65

firing sequences, the markings of the net, the postsets of all transitions, and the presets of
all places. Can you construct a state machine to model the same process?

Problem 6. Explain briefly how the publish/subscribe paradigm works and discuss its application to
services such as bulletin boards, mailing lists, and so on. Outline the design of an event
service based on this paradigm, as in Figure 2.21(b). Can you identify a cloud service that
emulates an event service?

Problem 7. Tuple spaces can be thought of as an implementation of a distributed shared memory.
Tuple spaces have been developed for many programming languages, including Java,
LISP, Python, Prolog, Smalltalk, and TCL. Explain briefly how tuple spaces work. How
secure and scalable are the tuple spaces you are familiar with, such as JavaSpaces?

Problem 8. Consider a computation consisting of n stages with a barrier synchronization among the
N threads at the end of each stage. Assuming that you know the distribution of the random
execution time of each thread for each stage, show how you could use order statistics [99]
to estimate the completion time of the computation.

Problem 9. In Section 3.7 we analyze cloud computing benchmarks and compare them with the results
of the same benchmarks performed on a supercomputer. This is not unexpected; discuss
the reasons that we should expect the poor performance of fine-grain parallel computations
on a cloud.

This page is intentionally left blank

CHAPTER

Cloud Infrastructure

In this chapter we give an overview of the cloud computing infrastructure at Amazon, Google, and
Microsoft as of mid-2012. These cloud service providers support one or more of the three cloud comput-
ing delivery models discussed in Section 1.4: Infrastructure-as-a-Service (1aaS), Platform-as-a-Service
(PaaS), and Software-as-a-Service (SaaS). Amazon is a pioneer in laaS, Google’s efforts are focused
on SaaS and PaasS delivery models, and Microsoft is involved in Paas.

Private clouds are an alternative to public clouds. Open-source cloud computing platforms such as
Eucalyptus [269], OpenNebula, Nimbus, and OpenStack can be used as a control infrastructure for
a private cloud. We continue our discussion of the cloud infrastructure with an overview of service
level agreements (SLAs) and the responsibility sharing between users and cloud service providers,
followed by a brief discussion of software licensing, energy consumption, and ecological impact of
cloud computing. We conclude with a section covering user experiences with current systems.

Several other IT companies are also involved in cloud computing. IBM offers a cloud computing plat-
form, IBMSmartCloud, which includes servers, storage, and virtualization components for building pri-
vate and hybrid cloud computing environments. In October 2012 it was announced that IBM had teamed
up with AT&T to give customers access to IBM’s cloud infrastructure over AT&T’s secure private lines.

In 2011 HP announced plans to enter the cloud computing club. Oracle announced its entry to enter-
prise computing in the early 2012. The Oracle Cloud is based on Java, SQL standards, and software
systems such as Exadata, Exalogic, WebLogic, and Oracle Database. Oracle plans to offer application
and platform services. Some of these services are Fusion HCM (Human Capital Management), Fusion
CRM (Customer Relation Management), and Oracle Social Network; the platform services are based
on Java and SQL.

3.1 Cloud computing at Amazon

Amazon introduced a computing platform that has changed the face of computing in the last decade.
First, it installed a powerful computing infrastructure to sustain its core business, e-commerce, selling
a variety of goods ranging from books and CDs to gourmet foods and home appliances. Then Amazon
discovered that this infrastructure could be further extended to provide affordable and easy-to-use
resources for enterprise computing as well as computing for the masses.

In mid-2000 Amazon introduced Amazon Web Services (AWS), based on the laaS delivery model.
In this model the cloud service provider offers an infrastructure consisting of compute and storage
servers interconnected by high-speed networks that support a set of services to access these resources.
An application developer is responsible for installing applications on a platform of his or her choice
and managing the resources provided by Amazon.

Cloud Computing. http:/dx.doi.org/10.1016/B978-0-12-404627-6.00003-8 67
© 2013 Elsevier Inc. All rights reserved.

68 CHAPTER 3 Cloud Infrastructure

It is reported that in 2012, businesses in 200 countries used the AWS, demonstrating the international
appeal of this computing paradigm. A significant number of large corporations as well as start-ups take
advantage of computing services supported by the AWS infrastructure. For example, one start-up reports
that its monthly computing bills at Amazon are in the range of $100,000, whereas it would spend more
than $2,000,000 to compute using its own infrastructure, without benefit of the speed and flexibility
offered by AWS. The start-up employs 10 engineers rather than the 60 it would need to support its own
computing infrastructure (“Active in cloud, Amazon reshapes computing,” New York Times, August
28, 2012).

Amazon Web Services. = Amazon was the first provider of cloud computing; it announced a limited
public beta release of its Elastic Computing platform called EC2 in August 2006. Figure 3.1 shows the
palette of AWS services accessible via the Management Console in late 2011 [13-18].

Elastic Compute Cloud (EC2)" is a Web service with a simple interface for launching instances of
an application under several operating systems, such as several Linux distributions, Microsoft Windows
Server 2003 and 2008, OpenSolaris, FreeBSD, and NetBSD.

An instance is created either from a predefined Amazon Machine Image (AMI) digitally signed
and stored in S3 or from a user-defined image. The image includes the operating system, the run-time
environment, the libraries, and the application desired by the user. AMI images create an exact copy of
the original image but without configuration-dependent information such as the hostname or the MAC
address. A user can: (i) Launch an instance from an existing AMI and terminate an instance; (ii) start and
stop an instance; (iii) create a new image; (iv) add tags to identify an image; and (v) reboot an instance.

EC2 is based on the Xen virtualization strategy discussed in detail in Section 5.8. In EC2 each virtual
machine or instance functions as a virtual private server. An instance specifies the maximum amount of
resources available to an application, the interface for that instance, and the cost per hour.

A user can interact with EC2 using a set of SOAP messages (see Section 4.3) and can list available
AMI images, boot an instance from an image, terminate an image, display the running instances of a
user, display console output, and so on. The user has root access to each instance in the elastic and
secure computing environment of EC2. The instances can be placed in multiple locations in different
regions and availability zones.

EC?2 allows the import of virtual machine images from the user environment to an instance through
a facility called VM import. It also automatically distributes the incoming application traffic among
multiple instances using the elastic load-balancing facility. EC2 associates an elastic IP address with
an account; this mechanism allows a user to mask the failure of an instance and remap a public IP
address to any instance of the account without the need to interact with the software support team.

Simple Storage System (S3) is a storage service designed to store large objects. It supports a minimal
set of functions: write, read, and delete.

S$3 allows an application to handle an unlimited number of objects ranging in size from one byte
to five terabytes. An object is stored in a bucket and retrieved via a unique developer-assigned key. A
bucket can be stored in a region selected by the user. S3 maintains the name, modification time, an
access control list, and up to four kilobytes of user-defined metadata for each object. The object names

! Amazon EC2 was developed by a team led by C. Pinkham, including C. Brown, Q. Hoole, R. Paterson-Jones, and W. Van
Biljon, all from Cape Town, South Africa.

3.1 Cloud Computing at Amazon 69

| CloudWatch I

EC2

Linux, Debian,
Fedora,OpenSolaris,
Open Suse, Red Hat,

Ubuntu, Windows, Suse
Linux

[

N

SQS -Simple Queue Service

EC2

Linux, Debian,
Fedora,OpenSolaris,
Open Suse, Red Hat,

Ubuntu, Windows, Suse
Linux

Virtual Private Cloud

Auto Scalin:

Y
O
N

AWS Management Console

FIGURE 3.1

Services offered by AWS are accessible from the AWS Management Console. Applications running under a
variety of operating systems can be launched using EC2. Multiple EC2 instances can communicate using
SQS. Several storage services are available: S3, Simple DB, and EBS. The Cloud Watch supports performance
monitoring; the Auto Scaling supports elastic resource management. The Virtual Private Cloud allows direct
migration of parallel applications.

are global. Authentication mechanisms ensure that data is kept secure; objects can be made public, and
rights can be granted to other users.

S3 supports PUT, GET, and DELETE primitives to manipulate objects but does not support primitives
to copy, rename, or move an object from one bucket to another. Appending to an object requires a read
followed by a write of the entire object.

70 CHAPTER 3 Cloud Infrastructure

$3 computes the MD5? of every object written and returns it in a field called ETag. A user is expected
to compute the MD5 of an object stored or written and compare this with the E7ag; if the two values
do not match, then the object was corrupted during transmission or storage.

The Amazon S3 SLA guarantees reliability. S3 uses standards-based REST and SOAP interfaces (see
Section 4.3); the default download protocol is HTTP, but BitTorrent® protocol interface is also provided
to lower costs for high-scale distribution.

Elastic Block Store (EBS) provides persistent block-level storage volumes for use with Amazon EC2
instances. A volume appears to an application as a raw, unformatted, and reliable physical disk; the size
of the storage volumes ranges from one gigabyte to one terabyte. The volumes are grouped together in
availability zones and are automatically replicated in each zone. An EC2 instance may mount multiple
volumes, but a volume cannot be shared among multiple instances. The EBS supports the creation of
snapshots of the volumes attached to an instance and then uses them to restart an instance. The storage
strategy provided by EBS is suitable for database applications, file systems, and applications using raw
data devices.

Simple DB is a nonrelational data store that allows developers to store and query data items via
Web services requests. It supports store-and-query functions traditionally provided only by relational
databases. Simple DB creates multiple geographically distributed copies of each data item and supports
high-performance Web applications; at the same time, it automatically manages infrastructure provision-
ing, hardware and software maintenance, replication and indexing of data items, and performance tuning.

Simple Queue Service (SQS) is a hosted message queue. SQOS is a system for supporting automated
workflows; it allows multiple Amazon EC2 instances to coordinate their activities by sending and
receiving SOS messages. Any computer connected to the Internet can add or read messages without
any installed software or special firewall configurations.

Applications using SQS can run independently and asynchronously and do not need to be developed
with the same technologies. A received message is “locked” during processing; if processing fails, the
lock expires and the message is available again. The time-out for locking can be changed dynamically
via the ChangeMessageVisibility operation. Developers can access SOS through standards-based SOAP
and Query interfaces. Queues can be shared with other AWS accounts and anonymously; queue sharing
can also be restricted by IP address and time-of-day. An example showing the use of message queues
is presented in Section 4.7.

CloudWatch is a monitoring infrastructure used by application developers, users, and system admin-
istrators to collect and track metrics important for optimizing the performance of applications and
for increasing the efficiency of resource utilization. Without installing any software, a user can monitor
approximately a dozen preselected metrics and then view graphs and statistics for these
metrics.

When launching an Amazon Machine Image (AMI), a user can start the CloudWatch and specify the
type of monitoring. Basic Monitoring is free of charge and collects data at five-minute intervals for up

2MD5 (Message-Digest Algorithm) is a widely used cryptographic hash function; it produces a 128-bit hash value. It is used
for checksums. SHA-i (Secure Hash Algorithm, 0 < i < 3) is a family of cryptographic hash functions; SHA-1 is a 160-bit
hash function that resembles MD5.

3BitTorrent is a peer-to-peer (P2P) communications protocol for file sharing.

3.1 Cloud Computing at Amazon 71

to 10 metrics; Detailed Monitoring is subject to a charge and collects data at one-minute intervals. This
service can also be used to monitor the latency of access to EBS volumes, the available storage space for
RDS DB instances, the number of messages in SOS, and other parameters of interest for applications.

Virtual Private Cloud (VPC) provides a bridge between the existing IT infrastructure of an organiza-
tion and the AWS cloud. The existing infrastructure is connected via a virtual private network (VPN) to
a set of isolated AWS compute resources. VPC allows existing management capabilities such as security
services, firewalls, and intrusion detection systems to operate seamlessly within the cloud.

Auto Scaling exploits cloud elasticity and provides automatic scaling of EC2 instances. The service
supports grouping of instances, monitoring of the instances in a group, and defining friggers and pairs of
CloudWatch alarms and policies, which allow the size of the group to be scaled up or down. Typically,
a maximum, a minimum, and a regular size for the group are specified.

An Auto Scaling group consists of a set of instances described in a static fashion by launch configura-
tions. When the group scales up, new instances are started using the parameters for the runInstances
EC2 call provided by the launch configuration. When the group scales down, the instances with older
launch configurations are terminated first. The monitoring function of the Auto Scaling service carries
out health checks to enforce the specified policies; for example, a user may specify a health check for
elastic load balancing and then Auto Scaling will terminate an instance exhibiting a low performance
and start a new one. Triggers use CloudWatch alarms to detect events and then initiate specific actions;
for example, a trigger could detect when the CPU utilization of the instances in the group goes above
90% and then scale up the group by starting new instances. Typically, triggers to scale up and down are
specified for a group.

Several new AWS services were introduced in 2012; some of them are in a beta stage at the time of
this writing. Among the new services we note: Route 53, a low-latency DNS service used to manage
user’s DNS public records; Elastic MapReduce (EMR), a service supporting processing of large amounts
of data using a hosted Hadoop running on EC2 and based on the MapReduce paradigm discussed in
Section 4.6; Simple Workflow Service (SWF), which supports workflow management (see Section 4.4)
and allows scheduling, management of dependencies, and coordination of multiple EC2 instances;
ElastiCache, a service enabling Web applications to retrieve data from a managed in-memory caching
system rather than a much slower disk-based database; DynamoDB, a scalable and low-latency fully
managed NoSQL database service; CloudFront, a Web service for content delivery; and Elastic Load
Balancer, a cloud service to automatically distribute the incoming requests across multiple instances of
the application. Two new services, the Elastic Beanstalk and the CloudFormation, are discussed next.

Elastic Beanstalk, a service that interacts with other AWS services, including EC2, S3, SNS, Elastic
Load Balance, and Auto Scaling, automatically handles the deployment, capacity provisioning, load
balancing, Auto Scaling, and application monitoring functions [356]. The service automatically scales
the resources as required by the application, either up, or down based on default Auto Scaling settings.
Some of the management functions provided by the service are: (i) deployment of a new application
version (or rollback to a previous version); (ii) access to the results reported by CloudWatch monitoring
service; (iii) email notifications when application status changes or application servers are added or
removed; and (iv) access to server login files without needing to login to the application servers.

The Elastic Beanstalk service is available to developers using a Java platform, the PHP server-side
description language, or .NET framework. For example, a Java developer can create the application

72 CHAPTER 3 Cloud Infrastructure

using any Integrated Development Environment (IDE) such as Eclipse and package the code into a Java
Web Application Archive (a file of type “.war”) file. The “.war” file should then be uploaded to the
Elastic Beanstalk using the Management Console and then deployed, and in a short time the application
will be accessible via a URL.

CloudFormation allows the creation of a stack describing the infrastructure for an application. The
user creates a template, a text file formatted as in Javascript Object Notation (JSON), describing the
resources, the configuration values, and the interconnection among these resources. The template can
be parameterized to allow customization at run time, (e.g., to specify the types of instances, database
port numbers, or RDS size). A template for the creation of an EC2 instance follows:

{

"Description" : "Create instance running Ubuntu Server 12.04 LTS
64 bit AMI
"Parameters" : {
"KeyPair" : {
"Description" : "Key Pair to allow SSH access to the instance",
"Type" : "String"
}
s
"Resources" : {
"Ec2Instance" : {
"Type" : "AWS::EC2::Instance",
"Properties" : {
"KeyName" : {"Ref" : "KeyPair"},
"ImageId" : "aki-004ec330"
}
}
I
"Outputs" : {
"InstanceId" : {
"Description" : "The InstanceId of the newly created
instance",
"Value" : { "Ref" : "Ec2InstDCM"}
}
s
"AWSTemplateFormatVersion" : "2012-03-09"

}

The Amazon Web Services Licensing Agreement (AWSLA) allows the cloud service provider to
terminate service to any customer at any time for any reason and contains a covenant not to sue Amazon
or its affiliates for any damages that might arise out of the use of AWS. As noted in [133], the AWSLA
prohibits the use of “other information obtained through AWS for the purpose of direct marketing,
spamming, contacting sellers or customers.” It prohibits AWS from being used to store any content

3.1 Cloud Computing at Amazon 73

Table 3.1 Amazon data centers are located in several regions; in each region there are multiple
availability zones. The billing rates differ from one region to another and can be roughly grouped
into four categories: low, medium, high, and very high.

Region Location Availability Zones Cost
US West Oregon us-west-2a/2b/2¢c Low

US West North California us-west-1a/1b/1c High

US East North Virginia us-east-1a/2a/3a/4a Low
Europe Ireland eu-west-1a/1b/1c Medium
South America Sao Paulo, Brazil sa-east-1a/1b Very high
Asia/Pacific Tokyo, Japan ap-northeast-1a/1b High
Asia/Pacific Singapore ap-southeast-1a/1b Medium

that is “obscene, libelous, defamatory or otherwise malicious or harmful to any person or entity.” It
also prohibits S3 from being used “in any way that is otherwise illegal or promotes illegal activities,
including without limitation in any manner that might be discriminatory based on race, sex, religion,
nationality, disability, sexual orientation, or age.”

Users have several choices for interacting with and managing AWS resources from either a Web
browser or from a system running Linux or Microsoft Windows:

1. The AWS Web Management Console, available at http: //aws.amazon.com/console/; this is the
easiest way to access all services, but not all options may be available in this mode.

2. Command-line tools; see http://aws.amazon.com/developertools.

3. AWS SDK libraries and toolkits provided for several programming languages, including Java, PHP,*
C#, and Obj C.

4. Raw REST requests (see Section 4.3 for a discussion of architectural styles for cloud applications).

Regions and Availability Zones. Today Amazon offers cloud services through a network of data
centers on several continents, (see Table 3.1°). In each region there are several availability zones
interconnected by high-speed networks; regions communicate through the Internet and do not share
resources.

An availability zone is a data center consisting of a large number of servers. A server may run multiple
virtual machines or instances, started by one or more users; an instance may use storage services, S3,
EBS), and Simple DB, as well as other services provided by AWS (see Figure 3.2). A cloud interconnect
allows all systems in an availability zone to communicate with one another and with systems in other
availability zones of the same region.

Storage is automatically replicated within a region; S3 buckets are replicated within an availability
zone and between the availability zones of a region, whereas EBS volumes are replicated only within the

4PHP evolved from a set of Perl scripts designed to produce dynamic Web pages called Personal Home Page Tools into a
general-purpose server-side scripting language. The code embedded into an HTML source document is interpreted by a Web
server with a PHP processor module, which generates the resulting Web page.

5In November 2012 Amazon announced a new region, Asia Pacific-Sydney.

74 CHAPTER 3 Cloud Infrastructure

EC2

instance J
Compislsener EC2 instance
EC2
instance

Compute server
Compute server

)

Cloud Watch

Cloud Front

Elastic cache

Cloud formation

I

Elastic Beanstalk

Elastic Load Balancer!

AWS Management
Console

Servers running AWS
services

AWS storage servers

FIGURE 3.2

The configuration of an availability zone supporting AWS services. A cloud interconnect supports high-speed
communication among compute and storage servers in the zone. It also supports communication with servers
in other availablity zones and with cloud users via a Network Address Translation (NAT). NAT maps external
IP addresses to internal ones. Multitenancy increases server utilization and lowers costs.

same availability zone. Critical applications are advised to replicate important information in multiple
regions to be able to function when the servers in one region are unavailable due to catastrophic events.

A user can request virtual servers and storage located in one of the regions. The user can also request
virtual servers in one of the availability zones of that region. The Elastic Compute Cloud (EC2) service
allows a user to interact and to manage the virtual servers.

The billing rates in each region are determined by the components of the operating costs, including
energy, communication, and maintenance costs. Thus, the choice of the region is motivated by the desire
to minimize costs, reduce communication latency, and increase reliability and security.

3.1 Cloud Computing at Amazon 75

An instance is a virtual server. The user chooses the region and the availability zone where this virtual
server should be placed and selects from a limited menu of instance types: the one that provides the
resources, CPU cycles, main memory, secondary storage, communication, and I/O bandwidth needed
by the application.

When launched, an instance is provided with a DNS name. This name maps to a private IP address
for internal communication within the internal EC2 communication network and a public IP address
for communication outside the internal Amazon network, (e.g., for communication with the user that
launched the instance). Network Address Translation (NAT) maps external IP addresses to internal ones.

The public IP address is assigned for the lifetime of an instance and it is returned to the pool of
available public IP addresses when the instance is either stopped or terminated. An instance can request
an elastic IP address, rather than a public IP address. The elastic IP address is a static public IP address
allocated to an instance from the available pool of the availability zone. An elastic IP address is not
released when the instance is stopped or terminated and must be released when no longer needed.

The Charges for Amazon Web Services. Amazon charges a fee for EC2 instances, EBS storage,
data transfer, and several other services. The charges differ from one region to another and depend on
the pricing model; see http://aws.amazon.com/ec2/pricing for the current pricing structure.

There are three pricing models for EC2 instances: on-demand, reserved, and spot. On-demand
instances use a flat hourly rate, and the user is charged for the time an instance is running; no reservation
is required for this most popular model. For reserved instances a user pays a one-time fee to lock in a
typically lower hourly rate. This model is advantageous when a user anticipates that the application will
require a substantial number of CPU cycles and this amount is known in advance. Additional capacity
is available at the larger standard rate. In case of spot instances, users bid on unused capacity and their
instances are launched when the market price reaches a threshold specified by the user.

The EC2 system offers several instance types:

* Standard instances. Micro (StdM), small (StdS), large (StdL), extra large (StdXL); small is the
default.

* High memory instances. High-memory extra-large (HmXL), high-memory double extra-large
(Hm2XL), and high-memory quadruple extra-large (Hm4XL).

* High CPU instances. High-CPU extra-large (HcpuXL).

e Cluster computing. Cluster computing quadruple extra-large (C14XL).

Table 3.2 summarizes the features and the amount of resources supported by each instance. The
resources supported by each configuration are main memory, virtual computers (VCs) with a 32- or 64-bit
architecture, instance memory (I-memory) on persistent storage, and I/O performance at two levels: mod-
erate (M) or high (H). The computing power of a virtual core is measured in EC2 compute units (CUs).

A main attraction of Amazon cloud computing is the low cost. The dollar amounts charged for one
hour of running Amazon’s services under Linux or Unix and Microsoft Windows in mid-2012 are sum-
marized in Table 3.3. There are no charges for data transfers from the user’s site to the Amazon network
or within the Amazon network; the charges for data transfer from the AWS network to the outside world
depend on the region. For example, the charges for the US West (Oregon) region are shown in Table 3.4.

An Evaluation of Amazon Web Services. In 2007 Garfinkel reported the results of an early eval-
uation of Amazon Web Services [133]. The paper reports that EC2 instances are fast, responsive, and

76 CHAPTER 3 Cloud Infrastructure

Instance
Name

StdM
StdS
StdL
StdXL
HmXL
Hm2XL
Hm4XL
HcpuXL
ClaxXL

Name

ml.

ml.

ml
m2
m2
m2
cl

ccl.4xlarge

small

large

.xlarge
.xlarge
.2xlarge
.4dxlarge

.xlarge

Platform
(32/64-bit)

32 and 64
32
64
64
64
64
64
64
64

Memory
(GB)
0.633
1.7
7.5
15
171
34.2
68.4
7

18

Max EC2
Compute Units

1VC;2CUs
1VC;1CU

2VCs; 2 x 2CUs
4VCs; 4 x 2 CUs

2 VCs; 2 x 3.25 CUs
4 VCs; 4 x 3.25 CUs
8 VCs; 8 x 3.25 CUs
8 VCs; 8 x 2.5 CUs
33.5 CUs

I-Memory
(GB)

160
85
1,690
420
850
1,690
1,690
1,690

Table 3.2 The nine instances supported by EC2. The cluster computing c14xn (quadruple extra-
large) instance uses two Intel Xeon X5570, Quad-Core Nehalem Architecture processors. The
instance memory (I-memory) refers to persistent storage; the 1/0 performance can be moderate
(M) or high (H).

API

I/0
(M/H)

IIIIZTITIZ

Instance

StdM
StdS
StdL
StdXL
HmXL
Hm2XL
Hm4XL
HepuXL
Cl4XL

0.007
0.03
0.124
0.249
0.175
0.4
0.799
0.246
0.544

Table 3.3 The charges in dollars for one hour of Amazon’s cloud services running under Linux
or Unix and under Microsoft Windows for several EC2 instances.

Linux/Unix

Windows

0.013
0.048
0.208
0.381
0.231
0.575
1.1
0.516
N/A

First 1 GB
Upto 10 TB
Next 40 TB
Next 100 TB
Next 350 TB

Amount of Data

Table 3.4 Monthly charges in dollars for data transfer out of the US West (Oregon) region.

Charge $

0.00
0.12
0.09
0.07
0.05

3.2 Cloud Computing: The Google Perspective 77

very reliable; a new instance could be started in less than two minutes. During the year of testing, one
unscheduled reboot and one instance freeze were experienced. No data was lost during the reboot, but
no data could be recovered from the virtual disks of the frozen instance.

To test the S3 service, a bucket was created and loaded with objects in sizes of 1 byte, 1 KB, 1 MB,
16 MB, and 100 MB. The measured throughput for the 1-byte objects reflected the transaction speed
of S3 because the testing program required that each transaction be successfully resolved before the
next was initiated. The measurements showed that a user could execute at most 50 non-overlapping
S3 transactions. The 100 MB probes measured the maximum data throughput that the S3 system could
deliver to a single client thread. From the measurements, the author concluded that the data throughput
for large objects was considerably larger than for small objects due to a high transaction overhead. The
write bandwidth for 1 MB data was roughly 5 MB/s, whereas the read bandwidth was five times lower
at 1 MB/s.

Another test was designed to see if concurrent requests could improve the throughput of S3. The
experiment involved two virtual machines running on two different clusters and accessing the same
bucket with repeated 100 MB GET and pUT operations. The virtual machines were coordinated, with
each one executing one to six threads for 10 min and then repeating the pattern for 11 h. As the number
of threads increased from one to six, the bandwidth received by each thread was roughly cut in half and
the aggregate bandwidth of the six threads was 30 MB/s, about three times the aggregate bandwidth of
one thread. In 107,556 tests of EC2, each one consisting of multiple read and write probes, only six
write retries, three write errors, and four read retries were encountered.

3.2 Cloud computing: the Google perspective

Google’s effort is concentrated in the area of Software-as-a-Service (SaaS). It is estimated that the
number of servers used by Google was close to 1.8 million in January 2012 and was expected to reach
close to 2.4 million in early 2013 [289].

Services such as Gmail, Google Drive, Google Calendar, Picasa, and Google Groups are free of
charge for individual users and available for a fee for organizations. These services are running on a cloud
and can be invoked from a broad spectrum of devices, including mobile ones such as iPhones, iPads,
Black-Berrys, and laptops and tablets. The data for these services is stored in data centers on the cloud.

The Gmail service hosts emails on Google servers and, provides a Web interface to access them and
tools for migrating from Lotus Notes and Microsoft Exchange. Google Docs is Web-based software
for building text documents, spreadsheets, and presentations. It supports features such as tables, bullet
points, basic fonts, and text size; it allows multiple users to edit and update the same document and view
the history of document changes; and it provides a spell checker. The service allows users to import and
export files in several formats, including Microsoft Office, PDF, text, and OpenOffice extensions.

Google Calendar is a browser-based scheduler; it supports multiple calendars for a user, the ability
to share a calendar with other users, the display of daily/weekly/monthly views, and the ability to search
events and synchronize with the Outlook Calendar. Google Calendar is accessible from mobile devices.
Event reminders can be received via SMS, desktop popups, or emails. It is also possible to share your
calendar with other Google Calendar users. Picasa is a tool to upload, share, and edit images; it provides
1 GB of disk space per user free of charge. Users can add tags to images and attach locations to photos

78 CHAPTER 3 Cloud Infrastructure

using Google Maps. Google Groups allows users to host discussion forums to create messages online
or via email.

Google is also a leader in the Platform-as-a-Service (PaaS) space. AppEngine is a developer platform
hosted on the cloud. Initially it supported only Python, but support for Java was added later and detailed
documentation for Java is available. The database for code development can be accessed with Google
Query Language (GQL) with a SQL-like syntax.

The concept of structured data is important to Google’s service strategy. The change of search
philosophy reflects the transition from unstructured Web content to structured data, data that contains
additional information, such as the place where a photograph was taken, information about the singer
of a digital recording of a song, the local services at a geographic location, and so on [227].

Search engine crawlers rely on hyperlinks to discover new content. The deep Web is content stored
in databases and served as pages created dynamically by querying HTML forms. Such content is
unavailable to crawlers that are unable to fill out such forms. Examples of deep Web sources are sites
with geographic-specific information, such as local stores, services, and businesses; sites that report
statistics and analysis produced by governmental and nongovernmental organizations; art collections;
photo galleries; bus, train, and airline schedules; and so on. Structured content is created by labeling;
Flickr and Google Co-op are examples of structures where labels and annotations are added to objects,
images, and pages stored on the Web.

Google Co-op allows users to create customized search engines based on a set of facets or cate-
gories. For example, the facets for a search engine for the database research community available at
http://data.cs.washington.edu/coop/dbresearch/index.html are professor, project,
publication, jobs.

Google Base is a service allowing users to load structured data from different sources to a cen-
tral repository that is a very large, self-describing, semi-structured, heterogeneous database. It is self-
describing because each item follows a simple schema: (item type, attribute names). Few users are
aware of this service. Google Base is accessed in response to keyword queries posed on Google.com,
provided that there is relevant data in the database. To fully integrate Google Base, the results should
be ranked across properties. In addition, the service needs to propose appropriate refinements with
candidate values in select menus; this is done by computing histograms on attributes and their values
during query time.

Google Drive is an online service for data storage that has been available since April 2012. It gives
users 5 GB of free storage and charges $4 per month for 20 GB. It is available for PCs, MacBooks,
iPhones, iPads, and Android devices and allows organizations to purchase up to 16 TB of storage.

Specialized structure-aware search engines for several interest areas, including travel, weather, and
local services, have already been implemented. However, the data available on the Web covers a wealth
of human knowledge; it is not feasible to define all the possible domains and it is nearly impossible to
decide where one domain ends and another begins.

Google has also redefined the laptop with the introduction of the Chromebook, a purely Web-centric
device running Chrome OS. Cloud-based applications, extreme portability, built-in 3G connectivity,
almost instant-on, and all-day battery life are the main attractions of this device with a keyboard.

Google adheres to a bottom-up, engineer-driven, liberal licensing and user application development
philosophy, whereas Apple, a recent entry in cloud computing, tightly controls the technology stack,

3.3 Microsoft Windows Azure and Online Services 79

builds its own hardware, and requires application developers to follow strict rules. Apple products,
including the iPhone, the i0S, the iTunes Store, Mac OS X, and iCloud, offer unparalleled polish and
effortless interoperability, but the flexibility of Google results in more cumbersome user interfaces for
the broad spectrum of devices running the Android OS.

Google as well as the other cloud service providers must manage vast amounts of data. In a world
where users would most likely desire to use multiple cloud services from independent providers, the
question of whether the traditional data base management services (DBMSs) are sufficient to ensure
interoperability comes to mind. A DBMS efficiently supports data manipulations and query processing
but operates in a single administrative domain and uses well-defined schema. The interoperability of data
management services requires semantic integration of services based on different schemas. An answer
to the limitations of traditional DBMS is the so-called dataspaces introduced in [127]; dataspaces do
not aim at data integration but rather at data coexistence.

3.3 Microsoft Windows Azure and online services

Azure and Online Services are, respectively, PaaS and SaaS cloud platforms from Microsoft. Windows
Azureis an operating system, SQL Azure is a cloud-based version of the SQL Server, and Azure AppFabric
(formerly .NET Services) is a collection of services for cloud applications.

Windows Azure has three core components (see Figure 3.3): Compute, which provides a computation
environment; Storage for scalable storage; and Fabric Controller, which deploys, manages, and mon-
itors applications; it interconnects nodes consisting of servers, high-speed connections, and switches.

Connect Applications and Data CDN)

Compute

]
oo (B L

Blobs Tables Queues

Fabric Controller

FIGURE 3.3

The components of Windows Azure: Compute, which runs cloud applications; Storage, which uses blobs,
tables, and queues to store data; Fabric Controller, which deploys, manages, and monitors applications;
CDN, which maintains cache copies of data; and Connect, which allows IP connections between the user
systems and applications running on Windows Azure.

80 CHAPTER 3 Cloud Infrastructure

The Content Delivery Network (CDN) maintains cache copies of data to speed up computations. The
Connect subsystem supports IP connections between the users and their applications running on Win-
dows Azure. The API interface to Windows Azure is built on REST, HTTP, and XML. The platform
includes five services: Live Services, SOL Azure, AppFabric, SharePoint, and Dynamics CRM. A client
library and tools are also provided for developing cloud applications in Visual Studio.

The computations carried out by an application are implemented as one or more roles; an application
typically runs multiple instances of a role. We can distinguish (i) Web role instances used to create Web
applications; (ii) Worker role instances used to run Windows-based code; and (iii) VM role instances
that run a user-provided Windows Server 2008 R2 image.

Scaling, load balancing, memory management, and reliability are ensured by a fabric controller,
a distributed application replicated across a group of machines that owns all of the resources in its
environment — computers, switches, load balancers —and it is aware of every Windows Azure application.
The fabric controller decides where new applications should run; it chooses the physical servers to
optimize utilization using configuration information uploaded with each Windows Azure application.
The configuration information is an XML-based description of how many Web role instances, how
many Worker role instances, and what other resources the application needs. The fabric controller uses
this configuration file to determine how many VMs to create.

Blobs, tables, queues, and drives are used as scalable storage. A blob contains binary data; a container
consists of one or more blobs. Blobs can be up to a terabyte and they may have associated metadata
(e.g., the information about where a JPEG photograph was taken). Blobs allow a Windows Azure role
instance to interact with persistent storage as though it were a local NTFS® file system. Queues enable
Web role instances to communicate asynchronously with Worker role instances.

The Microsoft Azure platform currently does not provide or support any distributed parallel com-
puting frameworks, such as MapReduce, Dryad, or MPI, other than the support for implementing basic
queue-based job scheduling [148].

3.4 Open-source software platforms for private clouds

Private clouds provide a cost-effective alternative for very large organizations. A private cloud has
essentially the same structural components as a commercial one: the servers, the network, virtual
machines monitors (VMMs) running on individual systems, an archive containing disk images of virtual
machines (VMs), a front end for communication with the user, and a cloud control infrastructure. Open-
source cloud computing platforms such as Eucalyptus [269], OpenNebula, and Nimbus can be used as
a control infrastructure for a private cloud.

Schematically, a cloud infrastructure carries out the following steps to run an application:

* Retrieves the user input from the front end.
¢ Retrieves the disk image of a VM from a repository.
* Locates a system and requests the VMM running on that system to set up a VM.

®New Technology File System (NTES) is the standard file system of the Microsoft Windows operating system starting with
Windows NT 3.1, Windows 2000, and Windows XP.

3.4 Open-Source Software Platforms for Private Clouds 81

EUCALYPTUS

LEARN EUCALYPTUS CLOUD PARTICIPATE SERVICES PARTNERS

DOWNLOAD EUCALYPTUS

First time using Eucalyptus? Try Eucalyptus FastStart
Documentation Engage (O8A) Consulting th Eucalyptus
Education Support

FIGURE 3.4

Eucalyptus supports several distributions and is well-documented software for private clouds.

 Invokes the DHCP’ and the IP bridging software to set up a MAC and IP address for the VM.
We discuss briefly the three open-source software systems, Eucalyptus, OpenNebula, and Nimbus.

Eucalyptus (www.eucalyptus.com) can be regarded as an open-source counterpart of Amazon’s EC2,
(see Figure 3.4). The systems supports several operating systems including CentOS 5 and 6, RHEL 5
and 6, Ubuntu 10.04 LTS, and 12.04 LTS.

The components of the system are:

"The Dynamic Host Configuration Protocol (DHCP) is an automatic configuration protocol; it assigns an IP address to a
client system. A DHCP server has three methods of allocating IP addresses. (1) Dynamic allocation: A network administrator
assigns a range of IP addresses to DHCP, and each client computer on the LAN is configured to request an IP address from
the DHCP server during network initialization. The request-and-grant process uses a lease concept with a controllable time
period, allowing the DHCP server to reclaim (and then reallocate) IP addresses that are not renewed. (2) Automatic allocation:
The DHCP server permanently assigns a free IP address to a client from the range defined by the administrator. (3) Static
allocation: The DHCP server allocates an IP address based on a table with MAC address/IP address pairs, which are manually
filled in; only clients with a MAC address listed in this table will be allocated an IP address.

82 CHAPTER 3 Cloud Infrastructure

* Virtual machine. Runs under several VMMs, including Xen, KVM, and Vmware.

e Node controller. Runs on every server or node designated to host a VM and controls the activities
of the node. Reports to a cluster controller.

* Cluster controller. Controls a number of servers. Interacts with the node controller on each server
to schedule requests on that node. Cluster controllers are managed by the cloud controller.

* Cloud controller. Provides the cloud access to end users, developers, and administrators. It is accessi-
ble through command-line tools compatible with EC2 and through a Web-based Dashboard. Manages
cloud resources, makes high-level scheduling decisions, and interacts with cluster controllers.

» Storage controller. Provides persistent virtual hard drives to applications. It is the correspondent
of EBS. Users can create snapshots from EBS volumes. Snapshots are stored in Walrus and made
available across availability zones.

» Storage service (Walrus). Provides persistent storage and, similarly to S3, allows users to store
objects in buckets.

The system supports a strong separation between the user space and the administrator space; users
access the system via a Web interface, whereas administrators need root access. The system supports
a decentralized resource management of multiple clusters with multiple cluster controllers, but a sin-
gle head node for handling user interfaces. It implements a distributed storage system, the analog of
Amazon’s S3 system, called Walrus. The procedure to construct a virtual machine is based on the generic
one described in [323]:

e The euca2ools front end is used to request a VM.

e The VM disk image is transferred to a compute node.

e This disk image is modified for use by the VMM on the compute node.

 The compute node sets up network bridging to provide a virtual network interface controller (NIC)®
with a virtual Media Access Control (MAC) address.’

* In the head node the DHCP is set up with the MAC/IP pair.

e VMM activates the VM.

* The user can now ssh'? directly into the VM.

The system can support a large number of users in a corporate enterprise environment. Users are
shielded from the complexity of disk configurations and can choose their VM from a set of five config-
urations for available processors, memory, and hard drive space set up by the system administrators.

Open-Nebula (www.opennebula.org) is a private cloud with users actually logging into the head node
to access cloud functions. The system is centralized and its default configuration uses NFS (Network
File System). The procedure to construct a virtual machine consists of several steps: (i) the user signs
into the head node using ssh; (ii) the system uses the onevm command to request a VM; (iii) the VM

8 An NIC is the hardware component connecting a computer to a LAN. It is also known as a network interface card, network
adapter, or LAN adapter.

9 A MAC address is a unique identifier permanently assigned to a network interface by the manufacturer.

10Secure Shell (ssh) is a network protocol that allows data to be exchanged using a secure channel between two networked
devices. ssh uses public-key cryptography to authenticate the remote computer and allow the remote computer to authenticate
the user. It also allows remote control of a device.

3.4 Open-Source Software Platforms for Private Clouds 83

Table 3.5 A side-by-side comparison of Eucalyptus, OpenNebula, and Nimbus.

Eucalyptus OpenNebula Nimbus
Design Emulate EC2 Customizable Based on Globus
Cloud type Private Private Public/Private
User population Large Small Large
Applications All All Scientific
Customizability Administrators and Administrators All but image

limited users and users storage and credentials
Internal security Strict Loose Strict
User access User credentials User credentials x509 credentials
Network access To cluster controller — To each compute node

template disk image is transformed to fit the correct size and configuration within the NFS directory
on the head node; (iv) the oned daemon on the head node uses ssh to log into a compute node; (v) the
compute node sets up network bridging to provide a virtual NIC with a virtual MAC; (vi) the files
needed by the VMM are transferred to the compute node via the NFS; (vii) the VMM on the compute
node starts the VM; and (viii) the user is able to ssh directly to the VM on the compute node.

According to the analysis in [323], the system is best suited for an operation involving a small-to
medium-sized group of trusted and knowledgeable users who are able to configure this versatile system
based on their needs.

Nimbus (www.nimbusproject.org) is a cloud solution for scientific applications based on the Globus
software. The system inherits from Globus the image storage, the credentials for user authentication,
and the requirement that a running Nimbus process can ssh into all compute nodes. Customization in
this system can only be done by the system administrators.

Table 3.5 summarizes the features of the three systems [323]. The conclusions of the comparative
analysis are as follows: Eucalyptus is best suited for a large corporation with its own private cloud
because it ensures a degree of protection from user malice and mistakes. OpenNebula is best suited
for a testing environment with a few servers. Nimbus is more adequate for a scientific community less
interested in the technical internals of the system than with broad customization requirements.

OpenStack is an open-source project started in 2009 at the National Aeronautics and Space Adminis-
tration (NASA) in collaboration with Rackspace (www.rackspace.com) to develop a scalable cloud
operating system for farms of servers using standard hardware. Though recently NASA has moved its
cloud infrastructure to AWS in addition to Rackspace, several other companies, including HP, Cisco,
IBM, and Red Hat, have an interest in OpenStack. The current version of the system supports a wide
range of features such as application programming interfaces (APIs) with rate limiting and authentica-
tion; live VM management to run, reboot, suspend, and terminate instances; role-based access control,;
and the ability to allocate, track, and limit resource utilization. The administrators and the users control
their resources using an extensible Web application called the Dashboard.

84 CHAPTER 3 Cloud Infrastructure

3.5 Cloud storage diversity and vendor lock-in

There are several risks involved when a large organization relies solely on a single cloud provider. As
the short history of cloud computing shows, cloud services may be unavailable for a short or even an
extended period of time. Such an interruption of service is likely to negatively impact the organization
and possibly diminish or cancel completely the benefits of utility computing for that organization.
The potential for permanent data loss in case of a catastrophic system failure poses an equally great
danger.

Last but not least, a Cloud Service Provider (CSP) may decide to increase the prices for service and
charge more for computing cycles, memory, storage space, and network bandwidth than other CSPs.
The alternative in this case is switching to another provider. Unfortunately, this solution could be very
costly due to the large volume of data to be transferred from the old to the new provider. Transferring
terabytes or possibly petabytes of data over the network takes a fairly long time and incurs substantial
charges for the network bandwidth.

This chapter discusses the storage models supported by the cloud infrastructure provided by Amazon,
Google, and Microsoft; Chapter 8 covers the architecture of storage systems in general. Reliability is
a major concern, and here we discuss a solution that addresses both avoidance of vendor lock-in and
storage reliability.

A solution to guarding against the problems posed by the vendor lock-in is to replicate the data to
multiple cloud service providers. Straightforward replication is very costly and, at the same time, poses
technical challenges. The overhead to maintain data consistency could drastically affect the performance
of the virtual storage system consisting of multiple full replicas of the organization’s data spread over
multiple vendors. Another solution could be based on an extension of the design principle of a RAID-5
system used for reliable data storage.

A RAID-5 system uses block-level stripping with distributed parity over a disk array, as shown in
Figure 3.5(a); the disk controller distributes the sequential blocks of data to the physical disks and
computes a parity block by bit-wise x0r-ing of the data blocks. The parity block is written on a different
disk for each file to avoid the bottleneck possible when all parity blocks are written to a dedicated disk,
as is done in the case of RAID-4 systems. This technique allows us to recover the data after a single
disk loss. For example, if Disk 2 in Figure 3.5 is lost, we still have all the blocks of the third file, c1,
c2, and 3, and we can recover the missing blocks for the others as follows:

a2 = (al) XOR (aP) XOR (a3)
b2 = (bl1) XOR (bP) XOR (b3) . (39)
dl = (dP)XOR (d2) XOR (d3)

Obviously, we can also detect and correct errors in a single block using the same procedure. The
RAID controller also allows parallel access to data (for example, the blocks al, a2, and a3 can be read
and written concurrently) and it can aggregate multiple write operations to improve performance.

The system in Figure 3.5(b) strips the data across four clusters. The access to data is controlled
by a proxy that carries out some of the functions of a RAID controller, as well as authentication and
other security-related functions. The proxy ensures before-and-after atomicity as well as all-or-nothing
atomicity for data access; the proxy buffers the data, possibly converts the data manipulation commands,

3.5 Cloud Storage Diversity and Vendor Lock-in 85

RAID-5 controller

- -
al a2
b1 b2
cl cP
o o
~—— ~—
Disk 1 Disk 2

Cloud 1

'

Cloud 4

FIGURE 3.5

a3

bP

c2

a2

aP

b3

c3

d3

Disk 3

Disk 4

Cloud 2

Cloud 3

(a) A (3, 4) RAID-5 configuration in which individual blocks are stripped over three disks and a parity block
is added; the parity block is constructed by XOr-ing the data blocks (e.g., aP = alXORa2XORa3). The parity
blocks are distributed among the four disks: aP is on disk 4, bP on disk 3, cP on disk 2, and dP on disk 1.
(b) A system that strips data across four clouds; the proxy provides transparent access to data.

86 CHAPTER 3 Cloud Infrastructure

optimizes the data access (e.g., aggregates multiple write operations), converts data to formats specific
to each cloud, and so on.

This elegant idea immediately raises several questions: How does the response time of such a scheme
compare with that of a single storage system? How much overhead is introduced by the proxy? How could
this scheme avoid a single point of failure, the proxy? Are there standards for data access implemented
by all vendors?

An experiment to answer some of these question is reported in [5]; the Redundant Array of Cloud
Storage (RACS) system uses the same data model and mimics the interface of the S3 provided by AWS.
The S3 system, discussed in Section 3.1, stores the data in buckets, each bucket being a flat namespace
with keys associated with objects of arbitrary size but less than 5 GB. The prototype implementation
discussed in [5] led the authors to conclude that the cost increases and the performance penalties of
the RACS systems are relatively minor. The paper also suggests an implementation to avoid the single
point of failure by using several proxies. Then the system is able to recover from the failure of a single
proxy; clients are connected to several proxies and can access the data stored on multiple clouds.

It remains to be seen whether such a solution is feasible in practice for organizations with a very
large volume of data, given the limited number of cloud storage providers and the lack of standards for
data storage. A basic question is whether it makes sense to trade basic tenets of cloud computing, such
as simplicity and homogeneous resources controlled by a single administrative authority, for increased
reliability and freedom from vendor lock-in [67].

This brief discussion hints at the need for standardization and for scalable solutions, two of the many
challenges faced by cloud computing in the near future. The pervasive nature of scalability dominates all
aspects of cloud management and cloud applications; solutions that perform well on small systems are
no longer feasible when the number of systems or the volume of the input data of an application increases
by one or more orders of magnitude. Experiments with small test-bed systems produce inconclusive
results. The only alternative is to conduct intensive simulations to prove (or disprove) the advantages of a
particular algorithm for resource management or the feasibility of a particular data-intensive application.

We can also conclude that cloud computing poses challenging problems to service providers and
to users. The service providers have to develop strategies for resource management subject to quality
of service and cost constraints, as discussed in Chapter 6. At the same time, the cloud application
developers have to be aware of the limitations of the cloud computing model.

3.6 Cloud computing interoperability: the Intercloud

Cloud interoperability could alleviate the concern that users could become hopelessly dependent on a
single cloud service provider, the so-called vendor lock-in discussed in Section 3.5. It seems natural to
ask the question whether an Intercloud — a “cloud of clouds,” a federation of clouds that cooperate to
provide a better user experience — is technically and economically feasible. The Internet is a network
of networks; hence, it appears that an Intercloud seems plausible [47-49].

Closer scrutiny shows that the extension of the concept of interoperability from networks to clouds
is far from trivial. A network offers one high-level service, the transport of digital information from
a source, a host outside a network, to a destination, another host, or another network that can deliver
the information to its final destination. This transport of information through a network of networks is

3.6 Cloud Computing Interoperability: The Intercloud 87

feasible because before the Internet was born, agreements on basic questions were reached: (a) how
to uniquely identify the source and the destination of the information; (b) how to navigate through a
maze of networks; and (c) how to actually transport the data between a source and a destination. The
three elements on which agreements were reached are, respectively, the IP address, the IP protocol, and
transport protocols such as TCP and UDP.

The situation is quite different in cloud computing. First, there are no standards for storage of
processing; second, the clouds we have seen so far are based on different delivery models: SaasS, PaasS,
and laaS. Moreover, the set of services supported by each of these delivery models is not only large, it
is open; new services are offered every few months. For example, in October 2012 Amazon announced
a new service, the AWS GovCloud (US).

The question of whether cloud service providers (CSPs) are willing to cooperate to build an Intercloud
is open. Some CSPs may think that they have a competitive advantage due to the uniqueness of the added
value of their services. Thus, exposing how they store and process information may adversely affect
their business. Moreover, no CSP will be willing to change its internal operation, so a first question is
whether an Intercloud could be built under these conditions.

Following the concepts borrowed from the Internet, a federation of clouds that does not dictate the
internal organization or the structure of a cloud but only the means to achieve cloud interoperability
is feasible. Nevertheless, building such an infrastructure seems a formidable task. First, we need a set
of standards for interoperability covering items such as naming, addressing, identity, trust, presence,
messaging, multicast, and time. Indeed, we need common standards for identifying all the objects
involved as well as the means to transfer, store, and process information, and we also need a common
clock to measure the time between two events.

An Intercloud would then require the development of an ontology'! for cloud computing. Then
each cloud service provider would have to create a description of all resources and services using this
ontology. Due to the very large number of systems and services, the volume of information provided by
individual cloud service providers would be so large that a distributed database not unlike the Domain
Name Service (DNS) would have to be created and maintained. According to [47] this vast amount of
information would be stored in Intercloud root nodes, analogous to the root nodes of the DNS.

Each cloud would then require an interface, a so-called Intercloud exchange, to translate the common
language describing all objects and actions included in a request originating from another cloud in terms
of its internal objects and actions. To be more precise, a request originated in one cloud would have to be
translated from the internal representation in that cloud to a common representation based on the shared
ontology and then, at the destination, it would be translated into an internal representation that can be
acted on by the destination cloud. This raises immediately the question of efficiency and performance.
This question cannot be fully answered now, since an Intercloud exists only on paper, but there is little
doubt that performance will be greatly affected.

Security is a major concern for cloud users, and an Intercloud could only create new threats. The
primary concern is that tasks will cross from one administrative domain to another and that sensitive
information about the tasks and users could be disclosed during this migration. A seamless migration
of tasks in an Intercloud requires a well-thought-out trust model.

1 An ontology provides the means for knowledge representation within a domain. It consists of a set of domain concepts and
the relationships among the concepts.

88 CHAPTER 3 Cloud Infrastructure

The Public Key Infrastructure (PKI),'? an all-or-nothing trust model, is not adequate for an Inter-
cloud, where the trust must be nuanced. A nuanced model for handling digital certificates means that
one cloud acting on behalf of a user may grant access to another cloud to read data in storage, but not
to start new instances.

The solution advocated in [48] for trust management is based on dynamic trust indexes that can
change in time. The Intercloud roots play the role of Certificate Authority, whereas the Intercloud
exchanges determine the trust indexes between clouds.

Encryption must be used to protect the data in storage and in transit in the Intercloud. The OASIS'3
Key Management Interoperability Protocol (KMIP)!# is proposed for key management.

In summary, the idea of an Intercloud opens up a wide range of interesting research topics. The practi-
cality of the concepts can only be discussed after the standardization efforts under way at NIST bear fruit.

3.7 Energy use and ecological impact of large-scale data centers

We start our discussion of energy use by data centers and its economic and ecological impact with a
brief analysis of the concept of energy-proportional systems. This is a very important concept because a
strategy for resource management in a computing cloud is to concentrate the load on a subset of servers
and switching the rest of the servers to a standby mode whenever possible [7]. This strategy aims to
reduce power consumption and, implicitly, the cost of providing computing and storage services; we
analyze this subject in depth in Chapter 6.

The operating efficiency of a system is captured by an expression of “performance per Watt of
power.” It is widely reported that, during the last two decades, the performance of computing systems
has increased much faster than their operating efficiency; for example, during the period 1998-2007,
the performance of supercomputers increased by 7,000% whereas their operating efficiency increased
by only 2,000%.

In an ideal world, the energy consumed by an idle system should be near zero and should grow
linearly with the system load. In real life, even machines whose power requirements scale linearly, use
more than half the power when idle than they use at full load (see Figure 3.6) [42].

Energy-proportional systems could lead to large savings in energy costs for computing clouds. An
energy-proportional system consumes no power when idle, very little power under a light load, and
gradually more power as the load increases. By definition, an ideal energy-proportional system is always
operating at 100% efficiency. Humans are a good approximation of an ideal energy proportional system;
human energy consumption is about 70 W at rest and 120 W on average on a daily basis and can go as
high as 1,000-2,000 W during a strenuous, short effort [42].

Different subsystems of a computing system behave differently in terms of energy efficiency. Many
processors have reasonably good energy-proportional profiles, but significant improvements in memory

12PK] is a model to create, distribute, revoke, use, and store digital certificates. It involves several components: (1) The
Certificate Authority (CA) binds public keys to user identities in a given domain. (2) The third-party Validation Authority
(VA) guarantees the uniqueness of the user identity. (3) The Registration Authority (RA) guarantees that the binding of the
public key to an individual cannot be challenged, the so-called nonrepudiation.

130ASIS stands for Organization for the Advancement of Structured Information Standards.

14The KMIP Specification version 1.0is availableat http: //docs.oasis-open.org/kmip/spec/v1l.0/kmip-
spec-1.0.html.

3.7 Energy Use and Ecological Impact of Large-Scale Data Centers 89

Percentage of
power usage
A

100 —

Typical operating
90 —+ region
Power

80 —+

70 —+
Energy

60 —— efficiency

50 - e
40 -
30 -
20 -

10 —

Percentage
0 ‘ ‘ ‘ | | | | | » of system
0 10 20 30 40 50 60 70 80 90 100 utilization

FIGURE 3.6

Even when power requirements scale linearly with the load, the energy efficiency of a computing system is
not a linear function of the load; even when idle, a system may use 50% of the power corresponding to the
full load. Data collected over a long period of time shows that the typical operating region for the servers at
a data center is from about 10% to 50% of the load.

and disk subsystems are necessary. The processors used in servers consume less than one-third of their
peak power at very low load and have a dynamic range'> of more than 70% of peak power; the processors
used in mobile and/or embedded applications are better in this respect. According to [42] the dynamic
power range of other components of a system is much narrower: less than 50% for dynamic random
access memory (DRAM), 25% for disk drives, and 15% for networking switches.

A number of proposals have emerged for energy-proportional networks; the energy consumed by
such networks is proportional to the communication load. For example, in [6] the authors argue that a
data center network based on a flattened butterfly topology is more energy and cost efficient than one
using a different type of interconnect.

High-speed channels typically consist of multiple serial lanes with the same data rate; a physical unit
is stripped across all the active lanes. Channels commonly operate plesiochronously'® and are always
on, regardless of the load, because they must still send idle packets to maintain byte and lane alignment

15The dynamic range in this context is the lower and the upper range of the power consumption of the device. A large dynamic
range means that the device is better; it is able to operate at a lower fraction of its peak power when its load is low.
1oDifferent parts of the system are almost but not quite perfectly synchronized; in this case, the core logic in the router operates
at a frequency different from that of the I/O channels.

90 CHAPTER 3 Cloud Infrastructure

across the multiple lanes. An example of an energy-proportional network is InfiniBand, discussed in
Section 3.1.

Energy saving in large-scale storage systems is also of concern. A strategy to reduce energy con-
sumption is to concentrate the workload on a small number of disks and allow the others to operate in
a low-power mode. One of the techniques to accomplish this task is based on replication. A replication
strategy based on a sliding window is reported in [364]; measurement results indicate that it performs
better than LRU, MRU, and LFU!7 policies for a range of file sizes, file availability, and number of
client nodes, and the power requirements are reduced by as much as 31%.

Another technique is based on data migration. The system in [158] uses data storage in virtual nodes
managed with a distributed hash table; the migration is controlled by two algorithms, a short-term opti-
mization algorithm, used for gathering or spreading virtual nodes according to the daily variation of the
workload so that the number of active physical nodes is reduced to a minimum, and a long-term optimiza-
tion algorithm, used for coping with changes in the popularity of data over a longer period (e.g., a week).

The energy consumption of large-scale data centers and their costs for energy and for cooling are
significant now and are expected to increase substantially in the future. In 2006, the 6,000 data centers
in the United States reportedly consumed 61 x 10 KWh of energy, 1.5% of all electricity consumption
in the country, at a cost of $4.5 billion [364].

The predictions have been dire: The energy consumed by the data centers was expected to double
from 2006 to 2011; peak instantaneous demand was expected to increase from 7 GW in 2006 to 12 GW
in 2011, requiring the construction of 10 new power plants. The energy consumption of data centers
and the network infrastructure is predicted to reach 10, 300 TWh/year18 in 2030, based on 2010 levels
of efficiency [295]. These increases are expected in spite of the extraordinary reduction in energy
requirements for computing activities; over the past 30 years the energy efficiency per transistor on a
chip has improved by six orders of magnitude.

The effort to reduce energy use is focused on the computing, networking, and storage activities of
a data center. A 2010 report shows that a typical Google cluster spends most of its time within the
10-50% CPU utilization range; there is a mismatch between server workload profile and server energy
efficiency [6]. A similar behavior is also seen in the data center networks; these networks operate in a
very narrow dynamic range, and the power consumed when the network is idle is significant compared
to the power consumed when the network is fully utilized.

Many proposals argue that dynamic resource provisioning is necessary to minimize power consump-
tion. Two main issues are critical for energy saving: the amount of resources allocated to each application
and the placement of individual workloads. For example, a resource management framework combining
a utility-based dynamic virtual machine provisioning manager with a dynamic VM placement manager
to minimize power consumption and reduce SLA violations is presented in [358].

The support for network-centric content consumes a very large fraction of the network bandwidth;
according to the CISCO VNI forecast, consumer traffic was responsible for around 80% of bandwidth
use in 2009 and is expected to grow at a faster rate than business traffic. Data intensity for various
activities ranges from 20 MB/minute for HDTV streaming to 10 MB/minute for standard TV streaming,

17Least recently used (LRU), most recently used (MRU), and least frequently used (LFU) are replacement policies used by
memory hierarchies for caching and paging.
180ne TWh (Tera Watt hour) is equal to 102 Wh.

3.8 Service- and Compliance-Level Agreements 91

1.3 MB/minute for music streaming, 0.96 MB/minute for Internet radio, 0.35 MB/minute for Internet
browsing, and 0.0025 MB/minute for ebook reading [295].

The same study reports that if the energy demand for bandwidth is 4 Watts-hour per MB!® and
if the demand for network bandwidth is 3.2 GB/day/person or 2,572 EB/year for the entire world
population, then the energy required for this activity will be 1, 175 GW. These estimates do not count
very high-bandwidth applications that may emerge in the future, such as 3D TV, personalized immersive
entertainment such as Second Life, or massively multiplayer online games.

The power consumption required by different types of human activities is partially responsible for
the world’s greenhouse gas emissions. According to a recent study [295], the greenhouse gas emissions
due to data centers are estimated to increase from 116 x 10° tons of C 0> in 2007 to 257 tons in 2020,
due primarily to increased consumer demand. Environmentally opportunistic computing is a macro-
scale computing idea that exploits the physical and temporal mobility of modern computer processes.
A prototype called a Green Cloud is described in [376].

3.8 Service- and compliance-level agreements

A service-level agreement (SLA) is a negotiated contract between two parties, the customer and the
service provider. The agreement can be legally binding or informal and specifies the services that
the customer receive rather than how the service provider delivers the services. The objectives of the
agreement are:

e Identify and define customers’ needs and constraints, including the level of resources, security,
timing, and quality of service.

* Provide a framework for understanding. A critical aspect of this framework is a clear definition of
classes of service and costs.

* Simplify complex issues; for example, clarify the boundaries between the responsibilities of the
clients and those of the provider of service in case of failures.

* Reduce areas of conflict.

¢ Encourage dialogue in the event of disputes.

* FEliminate unrealistic expectations.

An SLA records a common understanding in several areas: (i) services, (ii) priorities, (iii) respon-
sibilities, (iv) guarantees, and (v) warranties. An agreement usually covers: services to be delivered,
performance, tracking and reporting, problem management, legal compliance and resolution of disputes,
customer duties and responsibilities, security, handling of confidential information, and termination.

Each area of service in cloud computing should define a “target level of service” or a “minimum
level of service” and specify the levels of availability, serviceability, performance, operation, or other
attributes of the service, such as billing. Penalties may also be specified in the case of noncompliance with
the SLA. It is expected that any service-oriented architecture (SOA) will eventually include middleware
supporting SLA management. The Framework 7 project supported by the European Union is researching
this area (see http://sla-at-soi.eu/).

191n the United States, in 2006, the energy consumed to download data from a data center across the Internet was in the range
of 9 to 16 Watts hour per MB.

92 CHAPTER 3 Cloud Infrastructure

The common metrics specified by an SLA are service-specific. For example, the metrics used by a call
center usually are: (i) abandonment rate: percentage of calls abandoned while waiting to be answered;
(i1) average speed to answer: average time before the service desk answers a call; (iii) time service factor:
percentage of calls answered within a definite time frame; (iv) first-call resolution: percentage of incom-
ing calls that can be resolved without a callback; and (v) turnaround time: time to complete a certain task.

There are two well-differentiated phases in SLA management: the negotiation of the contract and
the monitoring of its fulfillment in real time. In turn, automated negotiation has three main components:
(1) the object of negotiation, which defines the attributes and constraints under negotiation; (ii) the
negotiation protocols, which describe the interaction between negotiating parties; and (iii) the decision
models responsible for processing proposals and generating counterproposals.

The concept of compliance in cloud computing is discussed in [55] in the context of the user’s
ability to select a provider of service. The selection process is subject to customizable compliance with
user requirements, such as security, deadlines, and costs. The authors propose an infrastructure called
Compliant Cloud Computing (C3) consisting of: (i) a language to express user requirements and the
compliance level agreements (CLAs) and (ii) the middleware for managing CLAs.

The Web Service Agreement Specification (WS-Agreement) [20] uses an XML-based language
to define a protocol for creating an agreement using a predefined template with some customizable
aspects. It only supports one-round negotiation without counterproposals. A policy-based framework
for automated SLA negotiation for a virtual computing environment is described in [379].

3.9 Responsibility sharing between user and cloud service provider

After reviewing cloud services provided by Amazon, Google, and Microsoft, we are in a better
position to understand the differences among SaaS$, laaS, and PaaS. There is no confusion about SaasS;
the service provider supplies both the hardware and the application software, and the user has direct
access to these services through a Web interface and has no control over cloud resources. Typical exam-
ples are Google with Gmail, Google Docs, Google Calendar, Google Groups, and Picasa and Microsoft
with the Online Services.

In the case of laaS, the service provider supplies the hardware (servers, storage, networks) and
system software (operating systems, databases); in addition, the provider ensures system attributes such
as security, fault tolerance, and load balancing. The representative of laaS is Amazon AWS.

PaaS provides only a platform, including the hardware and system software, such as operating systems
and databases; the service provider is responsible for system updates, patches, and software maintenance.
Paas$ does not allow any user control of the operating system, security features, or the ability to install
applications. Typical examples are Google App Engine, Microsoft Azure, and Force.com, provided by
Salesforce.com.

The level of user control over the system in laas$ is different form PaaS. laaS provides total control,
whereas PaasS typically provides no control. Consequently, laasS incurs administration costs similar to
a traditional computing infrastructure, whereas the administrative costs are virtually zero for Paas.

It is critical for a cloud user to carefully read the SLA and to understand the limitations of the
liability a cloud provider is willing to accept. In many instances the liabilities do not apply to damages
caused by a third party or to failures attributed either to the customer’s hardware and software or to
hardware and software from a third party.

3.10 User Experience 93

User responsibility‘

SaaS PaaS laaS

C

Interface Interface Interface L
(0]
U
D

Application Application Application

U
S
Operating system Operating system Operating system E
R
S
Hypervisor Hypervisor Hypervisor E
R
\Y

Computing service Computing service Computing service |
C
E
Storage service I Storage service I Storage service I =
R
O
Network Network Network Vv

|
D
Local infrastructure Local infrastructure Local infrastructure E
\] \] \] R

FIGURE 3.7
The limits of responsibility between a cloud user and the cloud service provider.

The limits of responsibility between the cloud user and the cloud service provider are different for
the three service-delivery models, as we can see in Figure 3.7. In the case of SaaS the user is partially
responsible for the interface; the user responsibility increases in the case of PaaS and includes the
interface and the application. In the case of laaS the user is responsible for all the events occurring in
the virtual machine running the application.

For example, if a distributed denial-of-service attack (DDoS) causes the entire laaS infrastructure to
fail, the cloud service provider is responsible for the consequences of the attack. The user is responsible
if the DDoS affects only several instances, including the ones running the user application. A recent
posting describes the limits of responsibility illustrated in Figure 3.7 and argues that security should be a
major concern for /aaS cloud users, (see www. sans.org/cloud/2012/07/19/can-i-outsource-my-
security-to-the-cloud).

3.10 User experience

There have been a few studies of user experience based on a large population of cloud computing
users. An empirical study of the experience of a small group of users of the Finish Cloud Computing

94 CHAPTER 3 Cloud Infrastructure

Consortium is reported in [279]. The main user concerns are security threats, the dependence on fast
Internet connections that forced version updates, data ownership, and user behavior monitoring. All users
reported that trust in the cloud services is important, two-thirds raised the point of fuzzy boundaries of
liability between cloud user and provider, about half did not fully comprehend the cloud functions and
its behavior, and about one-third were concerned about security threats.

The security threats perceived by this group of users are: (i) abuse and villainous use of the cloud;
(i1) APIs that are not fully secure; (iii) malicious insiders; (iv) account hijacking; (iv) data leaks; and
(v) issues related to shared resources. Identity theft and privacy were major concerns for about half of
the users questioned; availability, liability, and data ownership and copyright were raised by a third of
respondents.

The suggested solutions to these problems are as follows: SLAs and tools to monitor usage should
be deployed to prevent abuse of the cloud; data encryption and security testing should enhance the
API security; an independent security layer should be added to prevent threats caused by malicious
insiders; strong authentication and authorization should be enforced to prevent account hijacking; data
decryption in a secure environment should be implemented to prevent data leakage; and compart-
mentalization of components and firewalls should be deployed to limit the negative effect of resource
sharing.

A broad set of concerns identified by the NIST working group on cloud security includes:

* Potential loss of control/ownership of data.

* Data integration, privacy enforcement, data encryption.

¢ Data remanence after deprovisioning.

* Multitenant data isolation.

* Data location requirements within national borders.

* Hypervisor security.

* Audit data integrity protection.

e Verification of subscriber policies through provider controls.

* Certification/accreditation requirements for a given cloud service.

A 2010 study conducted by IBM [176] aims to identify barriers to public and private cloud adoption.
The study is based on interviews with more than 1,000 individuals responsible for IT decision making
around the world. Seventy-seven percent of the respondents cited cost savings as the key argument in
favor of public cloud adoption, though only 30% of them believed that public clouds are “very appealing
or appealing” for their line of business, versus 64% for private clouds and 34% for hybrid ones.

The reasons driving the decision to use public clouds and the percentage of responders who considered
each element critical are shown in Table 3.6. In view of the high energy costs for operating a data center
(discussed in Section 3.7), it seems strange that only 29% of the respondents seem to be concerned
about lower energy costs.

The top workloads mentioned by the users involved in this study are data mining and other analytics
(83%), application streaming (83%), help desk services (80%), industry-specific applications (80%),
and development environments (80%).

The study also identified workloads that are not good candidates for migration to a public cloud
environment:

3.11 Software Licensing 95

Table 3.6 The reasons driving the decision to use public clouds.
Reason Respondents Who Agree
Improved system reliability and availability 50%
Pay only for what you use 50%
Hardware savings 47%
Software license savings 46%
Lower labor costs 44%
Lower maintenance costs 42%
Reduced IT support needs 40%
Ability to take advantage of the latest functionality 40%
Less pressure on internal resources 39%
Solve problems related to updating/upgrading 39%
Rapid deployment 39%
Ability to scale up resources to meet needs 39%
Ability to focus on core competencies 38%
Take advantage of the improved economies of scale 37%
Reduced infrastructure management needs 37%
Lower energy costs 29%
Reduced space requirements 26%
Create new revenue streams 23%

* Sensitive data such as employee and health care records.

* Multiple codependent services (e.g., online transaction processing).
e Third-party software without cloud licensing.

* Workloads requiring auditability and accountability.

* Workloads requiring customization.

Such studies help identify the concerns of potential cloud users and the critical issues for cloud
research.

3.11 Software Licensing

Software licensing for cloud computing is an enduring problem without a universally accepted solution
at this time. The license management technology is based on the old model of computing centers with
licenses given on the basis of named users or as site licenses. This licensing technology, developed for
a centrally managed environment, cannot accommodate the distributed service infrastructure of cloud
computing or of grid computing.

Only very recently IBM reached an agreement allowing some of its software products to be used on
EC2. Furthermore, MathWorks developed a business model for the use of MATLAB in grid environments
[63]. The Software-as-a-Service (SaaS) deployment model is gaining acceptance because it allows users
to pay only for the services they use.

96 CHAPTER 3 Cloud Infrastructure

There is significant pressure to change the traditional software licensing model and find nonhard-
ware-based solutions for cloud computing. The increased negotiating power of users, coupled with
the increase in software piracy, has renewed interest in alternative schemes such as those proposed by
the SmartLM research project (www.smartlm.eu). SmartLM license management requires a complex
software infrastructure involving SLA, negotiation protocols, authentication, and other management
functions.

A commercial product based on the ideas developed by this research project is elasticLM, which
provides license and billing for Web-based services [63]. The architecture of the elasticLM license
service has several layers: coallocation, authentication, administration, management, business, and
persistency. The authentication layer authenticates communication between the license service and the
billing service as well as the individual applications; the persistence layer stores the usage records. The
main responsibility of the business layer is to provide the licensing service with the licenses prices, and
the management coordinates various components of the automated billing service.

When a user requests a license from the license service, the terms of the license usage are negotiated
and they are part of an SLA document. The negotiation is based on application-specific templates and
the license cost becomes part of the SLA. The SLA describes all aspects of resource usage, including
the ID of application, duration, number of processors, and guarantees, such as the maximum cost and
deadlines. When multiple negotiation steps are necessary, the WS-Agreement Negotiation protocol
is used.

To understand the complexity of the issues related to software licensing, we point out some of
the difficulties related to authorization. To verify the authorization to use a license, an application
must have the certificate of an authority. This certificate must be available locally to the applica-
tion because the application may be executed in an environment with restricted network access. This
opens up the possibility for an administrator to hijack the license mechanism by exchanging the local
certificate.

3.12 Further reading

Information about cloud computing at Amazon, Google, Microsoft, HP, and Oracle is available from
the following sites:

¢ Amazon: http://aws.amazon.com/ec2/

4 Google: http://code.google.com/appengine/
¢ Microsoft: www.microsoft.com/windowsazure/
e HP: www.hp.com/go/cloud

¢ Oracle: http://cloud.oracle.com

Several sites provide additional information about the open-source platforms Eucalyptus, Open-
Nebula, and Nimbus:

e FEucalyptus: www.eucalyptus.com
* Open-Nebula: www.opennebula.org
¢ Nimbus: www.nimbusproject.org

3.14 Exercises and Problems 97

A white paper on SLA specification can be found at www.itsm.info, a toolkit at
www.service-level-agreement.net, and a Web service-level agreement (WSLA) at
www.research.ibm.com/wsla/WSLASpecV1-20030128.pdf.

Energy use and ecological impact are discussed in [6,158,295,358,364].

Information about the OpenStack, an open-source cloud operating system, is available from the
project site www.openstack.org. The Intercloud is discussed in several papers, including [47-49].
Alternative architectures for cloud computing have been proposed [111].

Several other references including [221,278,283,302,310,378] cover important aspects of the cloud
infrastructure.

3.13 History notes

Amazon was one of the first providers of cloud computing. One year after the beta release of EC2 in 2006,
two new instance types (Large and Extra-Large) were added, followed in 2008 by two more types, High-
CPU Medium and High-CPU Extra-Large. New features include static IP addresses, availability zones,
and user-selectable kernels as well as the Block Store (EBS). Amazon EC2 has been in full production
mode since October 2008 and supports an SLA and the Microsoft Windows operating system as well as
the Microsoft SQL Server.

3.14 Exercises and problems

Problem 1. Several desirable properties of a large-scale distributed system were discussed in
Section 2.3. The list includes transparency of access, location, concurrency, replication,
failure, migration, performance, and scaling. Analyze how each one of these properties
applies to AWS.

Problem 2. Compare the Oracle Cloud offerings (see https://cloud.oracle.com) with the cloud
services provided by Amazon, Google, and Microsoft.

Problem 3. Read the IBM report [176] and discuss the workload preferences for private and public
clouds and the reasons for the preferences.

Problem 4. In Section 3.7 we introduced the concept of energy-proportional systems and we saw
that different system components have different dynamic ranges. Sketch a strategy to
reduce the power consumption in a lightly loaded cloud, and discuss the steps for placing
a computational server in standby mode and then for bringing it back up to active mode.

Problem 5. Read the paper that introduced the concept of dataspaces [127] and analyze the benefits
and the problems with this new idea. Research the literature for potential application of
dataspaces for scientific data management in a domain of your choice, be it the search
for the Higgs boson at CERN, structural biology, cancer research, or another important
research topic that involves data-intensive applications.

98 CHAPTER 3 Cloud Infrastructure

Problem 6.

Problem 7.

Problem 8.

Problem 9.

Problem 10.

In Section 3.7 it was mentioned that InfiniBand can be considered an energy-proportional
network. The network is used by supercomputers (see http://i.top500.o0rg/); the
InfiniBand fabric is also used to connect compute nodes, compute nodes with storage
servers, and Exadata and Exalogic systems at Oracle data centers. Analyze the features
of InfiniBand that are critical to reduction of energy consumption.

Many organizations operate one or more computer clusters and contemplate the migration
to private clouds. What are the arguments for and against such an effort?

Evaluate the SLA toolkit at www.service-level-agreement.net.lIs the interactive
guide useful? What does it miss? Does the SLA template include all the clauses that are
important in your view? If not, what is missing? Are the examples helpful?

Software licensing is a major problem in cloud computing. Discuss several ideas to
prevent an administrator from hijacking the authorization to use a software license.

Annotation schemes are widely used by popular services such as the Flickr photo-sharing
service, which supports annotation of photos. Sketch the organization of a cloud service
used for sharing medical X-ray, tomography, CAT scan, and other medical images and
discuss the main challenges for its implementation.

CHAPTER

Cloud Computing: Applications
and Paradigms

The efforts to support large-scale distributed computing have encountered major difficulties over the
years. The users of these systems discovered how difficult it was to locate the systems able to run an
application. They soon realized that it is equally difficult to scale up and down to accommodate a dynamic
load, to recover after a system failure, and to efficiently support checkpoint or restarting procedures.

At the same time, the providers of computing cycles and storage realized the difficulties in managing
a large number of systems and providing guarantees for the quality of service. Any economic advantage
offered by resource concentration was offset by the cost of management and the relatively low utilization
of costly resources.

Cloud computing is very attractive to users for several economic reasons: It requires a very low
infrastructure investment because there is no need to assemble and maintain a large-scale system and
it has low utility-based computing costs because customers are only billed for the infrastructure used.
At the same time, users benefit from the potential to reduce the execution time of compute-intensive
and data-intensive applications through parallelization. If an application can partition the workload in
n segments and spawn n instances of itself, the execution time could be reduced by a factor close to n.

Moreover, because application developers enjoy the advantages of a just-in-time infrastructure, they
are free to design an application without being concerned with the system where the application will
run. Often, an application becomes the victim of its own success, attracting a user population larger than
the system can support. Cloud elasticity allows such an application to absorb the additional workload
without any effort from application developers.

Cloud computing is also beneficial for the providers of computing cycles because it typically leads
to more efficient resource utilization. The future success of cloud computing rests on the ability of
companies promoting utility computing to convince an increasingly large segment of the user population
of the advantages of network-centric computing and content. This translates into the ability to provide
satisfactory solutions to critical aspects of security, scalability, reliability, quality of service, and the
requirements enforced by SLAs.

The appeal of cloud computing is its focus on enterprise applications. This clearly differentiates it
from the grid computing effort, which was largely focused on scientific and engineering applications.
Of course, the other major advantage of the cloud computing approach over grid computing is the
concentration of resources in large data centers in a single administrative domain.

It is expected that utility computing providers such as Amazon, Apple, Google, HP, IBM, Microsoft,
Oracle, and others will in the future develop application suites to attract customers. Microsoft seems
well positioned in the effort to attract customers to its Azure platform since it already has many applica-
tions for enterprise customers, while Red Hat and Amazon may choose to stay with their “infrastructure
only” approach [27].

Cloud Computing. http:/dx.doi.org/10.1016/B978-0-12-404627-6.00004-X 99
© 2013 Elsevier Inc. All rights reserved.

100 CHAPTER 4 Cloud Computing: Applications and Paradigms

The main attraction of cloud computing is the ability to use as many servers as necessary to optimally
respond to the cost and the timing constraints of an application. This is possible only if the workload
can be partitioned in segments of arbitrary size and can be processed in parallel by the servers available
in the cloud. In Section 4.6 we discuss arbitrarily divisible workloads that can be partitioned into an
arbitrarily large number of segments; the arbitrarily divisible load-sharing model is common to many
applications, and these are precisely the applications suitable for cloud computing.

Web services, database services, and transaction-based services are ideal applications for cloud
computing. The resource requirements of transaction-oriented services are dependent on the current
load, which itself is very dynamic; the cost/performance profile of such applications benefits from an
elastic environment in which resources are available when needed and users pay only for the resources
they consume.

Not all applications are suitable for cloud computing; applications for which the workload cannot be
arbitrarily partitioned or that require intensive communication among concurrent instances are unlikely
to perform well on a cloud. An application with a complex workflow and multiple dependencies, as
is often the case in high-performance computing, could require longer execution times and higher
costs on a cloud. The benchmarks for high-performance computing discussed in Section 4.9 show that
communication and memory-intensive applications may not exhibit the performance levels shown when
running on supercomputers with low latency and high-bandwidth interconnects.

4.1 Challenges for cloud computing

The development of efficient cloud applications inherits the challenges posed by the natural imbal-
ance among computing, I/O, and communication bandwidths of physical systems. These challenges
are greatly amplified due to the scale of the system, its distributed nature, and the fact that virtually
all applications are data-intensive. Though cloud computing infrastructures attempt to automatically
distribute and balance a load, the application developer is still left with the responsibility of placing the
data close to the processing site and identifying optimal storage for the data.

One of the main advantages of cloud computing, the shared infrastructure, could also have a negative
impact. Performance isolation' is nearly impossible to reach in a real system, especially when the system
is heavily loaded. The performance of virtual machines fluctuates based on the load, the infrastructure
services, and the environment, including the other users. Security isolation is also challenging on multi-
tenant systems.

Reliability is also a major concern; node failures are to be expected whenever a large number of
nodes cooperate for the computations. Choosing an optimal instance (in terms of performance isolation,
reliability, and security) from those offered by the cloud infrastructure is another critical factor to be
considered. Of course, cost considerations also play a role in the choice of the instance type.

Many applications consist of multiple stages; in turn, each stage may involve multiple instances
running in parallel on the systems of the cloud and communicating among them. Thus, efficiency,
consistency, and communication scalability are major concerns for an application developer. Indeed,

!Performance and security isolation of virtual machines are discussed in Section 5.5.

4.2 Existing Cloud Applications and New Application Opportunities 101

due to shared networks and unknown topology, cloud infrastructures exhibit internode latency and
bandwidth fluctuations that affect application performance.

Data storage plays a critical role in the performance of any data-intensive application; the organization
of the storage, the storage location, and the storage bandwidth must be carefully analyzed to lead to
optimal application performance. Clouds support many storage options to set up a file system similar
to the Hadoop file system discussed in Section 8.6; among them are off-instance cloud storage (e.g.,
S3), mountable off-instance block storage (e.g., EBS), and storage persistent for the lifetime of the
instance.

Many data-intensive applications use metadata associated with individual data records; for example,
the metadata for an MPEG audio file may include the name of the song, the singer, recording infor-
mation, and so on. Metadata should be stored for easy access, and the storage should be scalable and
reliable.

Another important consideration for the application developer is logging. Performance considera-
tions limit the amount of data logging, whereas the ability to identify the source of unexpected results
and errors is helped by frequent logging. Logging is typically done using instance storage preserved only
for the lifetime of the instance. Thus, measures to preserve the logs for a postmortem analysis must be
taken. Another challenge awaiting resolution is related to software licensing, discussed in Section 3.11.

4.2 Existing cloud applications and new application opportunities

Existing cloud applications can be divided into several broad categories: (i) processing pipelines;
(ii) batch processing systems; and (iii) Web applications [360].

Processing pipelines are data-intensive and sometimes compute-intensive applications and represent
a fairly large segment of applications currently running on the cloud. Several types of data processing
applications can be identified:

* Indexing. The processing pipeline supports indexing of large datasets created by Web crawler
engines.

* Data mining. The processing pipeline supports searching very large collections of records to locate
items of interests.

* Image processing. A number of companies allow users to store their images on the cloud (e.g., Flickr
(www . £1ickr.com)and Google (http://picasa.google.com/)). The image-processing
pipelines support image conversion (e.g., enlarging an image or creating thumbnails). They can also
be used to compress or encrypt images.

* Video transcoding. The processing pipeline transcodes from one video format to another (e.g., from
AVI to MPEG).

e Document processing. The processing pipeline converts very large collections of documents from
one format to another (e.g., from Word to PDF), or encrypts the documents. It could also use optical
character recognition (OCR) to produce digital images of documents.

Batch processing systems also cover a broad spectrum of data-intensive applications in enterprise
computing. Such applications typically have deadlines, and the failure to meet these deadlines could

102 CHAPTER 4 Cloud Computing: Applications and Paradigms

have serious economic consequences. Security is also a critical aspect for many applications of batch
processing. A nonexhaustive list of batch processing applications includes:

¢ Generation of daily, weekly, monthly, and annual activity reports for organizations in retail, manu-
facturing, and other economic sectors.

* Processing, aggregation, and summaries of daily transactions for financial institutions, insurance
companies, and healthcare organizations.

* Inventory management for large corporations.

* Processing billing and payroll records.

e Management of the software development (e.g., nightly updates of software repositories).

* Automatic testing and verification of software and hardware systems.

Finally, and of increasing importance, are cloud applications in the area of Web access. Several
categories of Web sites have a periodic or a temporary presence, such as the Web sites for conferences
or other events. There are also Web sites that are active during a particular season (e.g., the holiday
season) or that support a particular type of activity, such as income tax reporting with the April 15
deadline each year. Other limited-time Web sites used for promotional activities “sleep” during the
night and auto-scale during the day.

It makes economic sense to store the data in the cloud close to where the application runs; as we saw
in Section 3.1, the cost per GB is low and the processing is much more efficient when the data is stored
close to the computational servers. This leads us to believe that several new classes of cloud computing
applications could emerge in the years to come — for example, batch processing for decision support
systems and other aspects of business analytics. Another class of new applications could be parallel
batch processing based on programming abstractions, such as MapReduce, discussed in Section 4.6.
Mobile interactive applications that process large volumes of data from different types of sensors and
services that combine more than one data source (e.g., mashups?) are obvious candidates for cloud
computing.

Science and engineering could greatly benefit from cloud computing because many applications
in these areas are compute- and data-intensive. Similarly, a cloud dedicated to education would be
extremely useful. Mathematical software such as MATLAB and Mathematica could also run on the
cloud.

4.3 Architectural styles for cloud applications

Cloud computing is based on the client-server paradigm discussed in Section 2.13. The vast majority
of cloud applications take advantage of request/response communication between clients and stateless
servers. A stateless server does not require a client to first establish a connection to the server. Instead,
it views a client request as an independent transaction and responds to it.

The advantages of stateless servers are obvious. Recovering from a server failure requires consid-
erable overhead for a server that maintains the state of all its connections, whereas in the case of a

2 A mashup is an application that uses and combines data, presentation, or functionality from two or more sources to create
a service. The fast integration, frequently using open APIs and multiple data sources, produces results not envisioned by the
original services. Combination, visualization, and aggregation are the main attributes of mashups.

4.3 Architectural Styles for Cloud Applications 103

stateless server a client is not affected while a server goes down and then comes back up between two
consecutive requests. A stateless system is simpler, more robust, and scalable. A client does not have
to be concerned with the state of the server. If the client receives a response to a request, that means
that the server is up and running; if not, it should resend the request later. A connection-based service
must reserve spaces to maintain the state of each connection with a client; therefore, such a system is
not scalable, and the number of clients a server could interact with at any given time is limited by the
storage space available to the server.

For example, a basic Web server is stateless; it responds to an HTTP request without maintaining a
history of past interactions with the client. The client, a browser, is also stateless since it sends requests
and waits for responses. The Hypertext Transfer Protocol (HTTP) used by abrowser to communicate with
the Web server is a request/response application protocol. HTTP uses the Transport Control Protocol
(TCP), a connection-oriented and reliable transport protocol. The use of TCP ensures reliable delivery
of large objects but exposes the Web servers to denial-of-service attacks when malicious clients fake
attempts to establish a TCP connection and force the server to allocate space for the connection.

A critical aspect of the development of networked applications is how processes and threads running
on systems with different architectures and possibly compiled from different programming languages
can communicate structured information with one another. First, the internal representation of the two
structures at the two sites may be different. One system may use Big-Endian and the other Little-Endian
representation. The character representations may also be different. Second, a communication channel
transmits a sequence of bits and bytes; thus, the data structure must be serialized at the sending site and
reconstructed at the receiving site.

Several other considerations must be analyzed before deciding on the architectural style of an appli-
cation. The term neutrality refers to the ability of the application protocol to use different transport
protocols such as TCP or UDP and, in general, to run on top of a different protocol stack. For example,
we shall see that SOAP can use TCP but also UDP, SMTP,? or JMS* as transport vehicles. Extensibility
refers to the ability to incorporate additional functions, such as security. Independence refers to the
ability to accommodate different programming styles.

Very often the application clients and the servers running on the cloud communicate using RPCs,
discussed in Section 2.13, but other styles of communication are possible. RPC-based applications use
stubs to convert the parameters involved in an RPC call. A stub performs two functions: marshalling the
data structures and serialization. A more general concept is that of an Object Request Broker (ORB),
the middleware that facilitates communication of networked applications. The ORB at the sending site
transforms the data structures used internally by a sending process to a byte sequence and transmits
this byte sequence over the network. The ORB at the receiving site maps the byte sequence to the data
structures used internally by the receiving process.

The Common Object Request Broker Architecture (CORBA) was developed in the early 1990s to allow
networked applications developed in different programming languages and running on systems with
different architectures and system software to work with one another. At the heart of the system is the
Interface Definition Language (IDL), used to specify the interface of an object. The IDL representation

3Simple Mail Transfer Protocol (SMTP) is an application protocol defined in the early 1980s to support email services.
4Java Message Service (JMS) is a middleware of the Java Platform for sending messages between two or more clients.

104 CHAPTER 4 Cloud Computing: Applications and Paradigms

is then mapped to the set of programming languages, including C, C++, Java, Smalltalk, Ruby, LISP,
and Python. Networked applications pass CORBA by reference and pass data by value.

The Simple Object Access Protocol (SOAP) is an application protocol developed in 1998 for Web
applications; its message format is based on the Extensible Markup Language (XML). SOAP uses
TCP and, more recently, UDP transport protocols. It can also be stacked above other application layer
protocols such as HTTP, SMTP, or JMS. The processing model of SOAP is based on a network consisting
of senders, receivers, intermediaries, message originators, ultimate receivers, and message paths. SOAP
is an underlying layer of Web Services.

The Web Services Description Language (WSDL) (see www.w3 .org/TR/wsdl) was introduced
in 2001 as an XML-based grammar to describe communication between endpoints of a networked
application. The abstract definition of the elements involved include services, collections of endpoints
of communication; types, containers for data type definitions; operations, descriptions of actions sup-
ported by a service; port types, operations supported by endpoints; bindings, protocols and data formats
supported by a particular port type; and port, an endpoint as a combination of a binding and a network
address. These abstractions are mapped to concrete message formats and network protocols to define
endpoints and services.

Representational State Transfer (REST) is a style of software architecture for distributed hypermedia
systems. REST supports client communication with stateless servers. It is platform- and language-
independent, supports data caching, and can be used in the presence of firewalls.

REST almost always uses HTTP to support all four Create/Read/Update/Delete (CRUD) operations.
It uses GET, PUT, and DELETE to read, write, and delete the data, respectively. REST is a much
easier-to-use alternative to RPC, CORBA, or Web Services such as SOAP or WSDL. For example, to
retrieve the address of an individual from a database, a REST system sends a URL specifying the
network address of the database, the name of the individual, and the specific attribute in the record
the client application wants to retrieve — in this case, the address. The corresponding SOAP version
of such a request consists of 10 lines or more of XML. The REST server responds with the address of
the individual. This justifies the statement that REST is a lightweight protocol. As far as usability is
concerned, REST is easier to build from scratch and to debug, but SOAP is supported by tools that use
self-documentation (e.g., WSDL to generate the code to connect).

4.4 Workflows: Coordination of multiple activities

Many cloud applications require the completion of multiple interdependent tasks; the description of a
complex activity involving such an ensemble of tasks is known as a workflow. In this section we discuss
workflow models, the life cycle of a workflow, the desirable properties of a workflow description,
workflow patterns, reachability of the goal state of a workflow, and dynamic workflows and conclude
with a parallel between traditional transaction systems and cloud workflows [230].

Workflow models are abstractions revealing the most important properties of the entities participating
in a workflow management system. Task is the central concept in workflow modeling; a task is a unit
of work to be performed on the cloud, and it is characterized by several attributes, such as:

* Name. A string of characters uniquely identifying the task.
* Description. A natural language description of the task.

4.4 Workflows: Coordination of Multiple Activities 105

* Actions. Modifications of the environment caused by the execution of the task.

* Preconditions. Boolean expressions that must be true before the action(s) of the task can take place.

* Post-conditions. Boolean expressions that must be true after the action(s) of the task take place.

* Arntributes. Provide indications of the type and quantity of resources necessary for the execution of
the task, the actors in charge of the tasks, the security requirements, whether the task is reversible,
and other task characteristics.

e Exceptions. Provide information on how to handle abnormal events. The exceptions supported by a
task consist of a list of <event, action> pairs. The exceptions included in the task exception
list are called anticipated exceptions, as opposed to unanticipated exceptions. Events not included
in the exception list trigger replanning. Replanning means restructuring of a process or redefinition
of the relationship among various tasks.

A composite task is a structure describing a subset of tasks and the order of their execution. A primitive
task is one that cannot be decomposed into simpler tasks. A composite task inherits some properties
from workflows; it consists of tasks and has one start symbol and possibly several end symbols. At
the same time, a composite task inherits some properties from tasks; it has a name, preconditions, and
post-conditions.

A routing task is a special-purpose task connecting two tasks in a workflow description. The task
that has just completed execution is called the predecessor task; the one to be initiated next is called
the successor task. A routing task could trigger a sequential, concurrent, or iterative execution. Several
types of routing task exist:

* A fork routing task triggers execution of several successor tasks. Several semantics for this construct
are possible:

e All successor tasks are enabled.

e Each successor task is associated with a condition. The conditions for all tasks are evaluated,
and only the tasks with a true condition are enabled.

¢ Each successor task is associated with a condition. The conditions for all tasks are evaluated,
but the conditions are mutually exclusive and only one condition may be true. Thus, only one
task is enabled.

¢ Nondeterministic, k out of n > k successors are selected at random to be enabled.

* A join routing task waits for completion of its predecessor tasks. There are several semantics for the
join routing task:

* The successor is enabled after all predecessors end.
» The successor is enabled after k out of n > k predecessors end.
» Tterative: The tasks between the fork and the join are executed repeatedly.

A process description, also called a workflow schema, is a structure describing the tasks or activities
to be executed and the order of their execution. A process description contains one start symbol and
one end symbol. A process description can be provided in a workflow definition language (WFDL),
supporting constructs for choice, concurrent execution, the classical fork, join constructs, and iterative
execution. Clearly, a workflow description resembles a flowchart, a concept we are familiar with from
programming.

106 CHAPTER 4 Cloud Computing: Applications and Paradigms

Dynamic Workflows Static Workflows Static Programs Dynamic Programs
- Workflow . < ~
Description Programming M’e—— 1
Component L Language Component
Database anguage Libraries
‘ User User \I—/
Planning Automatic
Engine —) Programming
Workflow Computer
Description Program
Verification .
Engine Compiler
\ \
< N .
Workflow Desc::rri ::Jizvn cz:tgjz Program
Database P Libraries

‘ Case Activation Record ‘

Enactment Proces_sor
- Engine Running TG T —
Unanticipated Exception the Process un-Time Program

Handling —\ ——————| Modification Requests

(a) (b)
FIGURE 4.1

A parallel between workflows and programs. (a) The life cycle of a workflow. (b) The life cycle of a computer
program. The workflow definition is analogous to writing a program. Planning is analogous to automatic
program generation. Verification corresponds to syntactic verification of a program. Workflow enactment
mirrors the execution of a program. A static workflow corresponds to a static program and a dynamic workflow
to a dynamic program.

The phases in the life cycle of a workflow are creation, definition, verification, and enactment. There
is a striking similarity between the life cycle of a workflow and that of a traditional computer program,
namely, creation, compilation, and execution (see Figure 4.1). The workflow specification by means of
a workflow description language is analogous to writing a program. Planning is equivalent to automatic
program generation. Workflow verification corresponds to syntactic verification of a program, and
workflow enactment mirrors the execution of a compiled program.

A case is an instance of a process description. The start and stop symbols in the workflow description
enable the creation and the termination of a case, respectively. An enactment model describes the steps

4.4 Workflows: Coordination of Multiple Activities 107

taken to process a case. When a computer executes all tasks required by a workflow the enactment can
be performed by a program called an enactment engine.

The state of a case at time ¢ is defined in terms of tasks already completed at that time. Events cause
transitions between states. Identifying the states of a case consisting of concurrent activities is consider-
ably more difficult than identifying the states of a strictly sequential process. Indeed, when several activ-
ities could proceed concurrently, the state has to reflect the progress made on each independent activity.

An alternative description of a workflow can be provided by a transition system describing the possible
paths from the current state to a goal state. Sometimes, instead of providing a process description, we
may specify only the goal state and expect the system to generate a workflow description that could
lead to that state through a set of actions. In this case, the new workflow description is generated
automatically, knowing a set of tasks and the preconditions and post-conditions for each one of them.
In artificial intelligence (Al) this activity is known as planning.

The state space of a process includes one initial state and one goal state; a transition system identifies
all possible paths from the initial to the goal state. A case corresponds to a particular path in the transition
system. The state of a case tracks the progress made during the enactment of that case.

Among the most desirable properties of a process description are the safety and liveness of the
process. Informally, safety means that nothing “bad” ever happens, and liveness means that something
“good” will eventually take place should a case based on the process be enacted. Not all processes are
safe and live. For example, the process description in Figure 4.2(a) violates the liveness requirement.
As long as task C is chosen after completion of B, the process will terminate. However, if D is chosen,
then F will never be instantiated, because it requires the completion of both C and E. The process will
never terminate, because G requires completion of both D and F.

A process description language should be unambiguous and should allow a verification of the process
description before the enactment of a case. Itis entirely possible that a process description may be enacted
correctly in some cases but fail for others. Such enactment failures may be very costly and should be
prevented by a thorough verification at the process definition time. To avoid enactment errors, we need to
verify process description and check for desirable properties such as safety and liveness. Some process
description methods are more suitable for verification than others.

A note of caution: Although the original description of a process could be live, the actual enactment
of a case may be affected by deadlocks due to resource allocation. To illustrate this situation, consider
two tasks, A and B, running concurrently. Each of them needs exclusive access to resources r and g for
a period of time. Either of two scenarios is possible:

1. A or B acquires both resources and then releases them and allows the other task to do the same.

2. We face the undesirable situation in Figure 4.2(b) when, at time 71, task A acquires r and continues
its execution; then at time #, task B acquires g and continues to run. Then at time #3 task B attempts
to acquire r and it blocks because r is under the control of A. Task A continues to run and at time
14 attempts to acquire g and it blocks because ¢ is under the control of B.

The deadlock illustrated in Figure 4.2(b) can be avoided by requesting each task to acquire all
resources at the same time. The price to pay is underutilization of resources. Indeed, the idle time of
each resource increases under this scheme.

Workflow pattern refers to the temporal relationship among the tasks of a process. The workflow
description languages and the mechanisms to control the enactment of a case must have provisions

108 CHAPTER 4 Cloud Computing: Applications and Paradigms

task A task B
AL |
R E L]
Pl
A \
(3] [} 1, Nl
\\\ N L/ \
\\ F /(\
\\\\ e t3 , s
N i t4 4k/
Y time
(a) (b)

FIGURE 4.2

(a) A process description that violates the liveness requirement. If task C is chosen after completion of B,
the process will terminate after executing task G; if D is chosen, then F will never be instantiated, because
it requires the completion of both C and E. The process will never terminate, because G requires completion
of both D and F. (b) Tasks A and B need exclusive access to two resources r and g, and a deadlock may take
place if the following sequence of events occurs. At time t; task A acquires r, at time t, task B acquires
g and continues to run; then at time t3 task B attempts to acquire r and it blocks because r is under the
control of A. Task A continues to run and at time f; attempts to acquire g and it blocks because g is under
the control of B.

to support these temporal relationships. Workflow patterns are analyzed in [1,382]. These patterns
are classified in several categories: basic, advanced branching and synchronization, structural, state-
based, cancellation, and patterns involving multiple instances. The basic workflow patterns illustrated
in Figure 4.3 are:

* The sequence pattern occurs when several tasks have to be scheduled one after the completion of
the other [see Figure 4.3(a)].

* The AND split pattern requires several tasks to be executed concurrently. Both tasks B and C are
activated when task A terminates [see Figure 4.3(b)]. In case of an explicit AND split, the activity
graph has a routing node and all activities connected to the routing node are activated as soon as the
flow of control reaches the routing node. In the case of an implicit AND split, activities are connected
directly and conditions can be associated with branches linking an activity with the next ones. Only
when the conditions associated with a branch are true are the tasks activated.

» The synchronization pattern requires several concurrent activities to terminate before an activity can
start. In our example, task C can only start after both tasks A and B terminate [see Figure 4.3(c)].

* The XOR split requires a decision; after the completion of task A, either B or C can be activated
[see Figure 4.3(d)].

4.4 Workflows: Coordination of Multiple Activities 109

B A
Als B> C A* C
C B

B A B
A @R R A
+.<c BC c

(d) (e) (f)

(9) (h)

B B
AC>@'E ’ -Ec
D

(i) ()

FIGURE 4.3

Basic workflow patterns. (a) Sequence. (b) AND split. (c) Synchronization. (d) XOR split. (e) XOR merge. (f)
OR split. (g) Multiple merge. (h) Discriminator. (i) N out of M join. (j) Deferred choice.

* In the XOR join, several alternatives are merged into one. In our example, task C is enabled when
either A or B terminates [see Figure 4.3(e)].

* The OR split pattern is a construct to choose multiple alternatives out of a set. In our example, after
completion of task A, one could activate either B or C, or both [see Figure 4.3(f)].

e The multiple merge construct allows multiple activations of a task and does not require synchroniza-
tion after the execution of concurrent tasks. Once A terminates, tasks B and C execute concurrently

110 CHAPTER 4 Cloud Computing: Applications and Paradigms

[see Figure 4.3(g)]. When the first of them, say, B, terminates, task D is activated; then when C
terminates, D is activated again.

e The discriminator pattern waits for a number of incoming branches to complete before activating
the subsequent activity [see Figure 4.3(h)]; then it waits for the remaining branches to finish without
taking any action until all of them have terminated. Next, it resets itself.

e The N out of M join construct provides a barrier synchronization. Assuming that M > N tasks run
concurrently, N of them have to reach the barrier before the next task is enabled. In our example,
any two out of the three tasks A, B, and C have to finish before E is enabled [see Figure 4.3(1)].

» The deferred choice pattern is similar to the XOR split, but this time the choice is not made explicitly
and the run-time environment decides what branch to take [see Figure 4.3(j)].

Next we discuss the reachability of the goal state and we consider the following elements:

* Asystem X, an initial state of the system, 0;,isiq/, and a goal state, ogpq;.

* A process group P = {p1, p2, ..., pn}; €ach process p; in the process group is characterized by a
set of preconditions, pre(p;), post-conditions, post(p;), and attributes, atr(p;).

* A workflow described by a directed activity graph A or by a procedure IT capable of constructing
A given the tuple < P, 0jnisial, Ogoai >. The nodes of A are processes in P and the edges define
precedence relations among processes. P; — P; implies that pre(p;) C post(p;).

¢ A setof constraints C = {Cy, Ca, ..., Cp}.

The coordination problem for system X in state 0j;siq 1S to reach state ogoq; as a result of post-
conditions of some process Pfinq; € P subject to constraints C; € C. Here 0ji1i1 €nables the precon-
ditions of some process Pipiriq; € P. Informally, this means that a chain of processes exists such that
the post-conditions of one process are preconditions of the next process in the chain.

Generally, the preconditions of a process are either the conditions and/or the events that trigger the
execution of the process or the data the process expects as input; the post-conditions are the results
produced by the process. The attributes of a process describe special requirements or properties of the
process.

Some workflows are static. The activity graph does not change during the enactment of a case.
Dynamic workflows are those that allow the activity graph to be modified during the enactment of
a case. Some of the more difficult questions encountered in dynamic workflow management refer to
(i) how to integrate workflow and resource management and guarantee optimality or near optimality
of cost functions for individual cases; (ii) how to guarantee consistency after a change in a workflow;
and (iii) how to create a dynamic workflow. Static workflows can be described in WFDL (the workflow
definition language), but dynamic workflows need a more flexible approach.

We distinguish two basic models for the mechanics of workflow enactment:

1. Strong coordination models, whereby the process group P executes under the supervision of a
coordinator process or processes. A coordinator process acts as an enactment engine and ensures a
seamless transition from one process to another in the activity graph.

2. Weak coordination models, whereby there is no supervisory process.

4.4 Workflows: Coordination of Multiple Activities 111

In the first case, we may deploy a hierarchical coordination scheme with several levels of coordina-
tors. A supervisor at level i in a hierarchical scheme with i 4 1 levels coordinates a subset of processes
in the process group. A supervisor at level i — 1 coordinates a number of supervisors at level i and the
root provides global coordination. Such a hierarchical coordination scheme may be used to reduce the
communication overhead; a coordinator and the processes it supervises may be colocated.

The most important feature of this coordination model is the ability to support dynamic workflows.
The coordinator or the global coordinator may respond to a request to modify the workflow by first
stopping all the threads of control in a consistent state, then investigating the feasibility of the requested
changes, and finally, implementing feasible changes.

Weak coordination models are based on peer-to-peer communication between processes in the pro-
cess group by means of a societal service such as a fuple space. Once a process p; € P finishes, it
deposits a token, including possibly a subset of its post-conditions, post(p;), in a tuple space. The
consumer process p; is expected to visit the tuple space at some point in time, examine the tokens
left by its ancestors in the activity graph, and, if its preconditions pre(p;) are satisfied, commence the
execution. This approach requires individual processes to either have a copy of the activity graph or
some timetable to visit the tuple space. An alternative approach is using an active space, a tuple space
augmented with the ability to generate an event awakening the consumer of a token.

There are similarities and some differences between workflows of traditional transaction-oriented
systems and cloud workflows. The similarities are mostly at the modeling level, whereas the differences
affect the mechanisms used to implement workflow management systems. Some of the more subtle
differences between the two are:

* The emphasis in a transactional model is placed on the contractual aspect of a transaction; in a
workflow the enactment of a case is sometimes based on a “best-effort” model whereby the agents
involved will do their best to attain the goal state but there is no guarantee of success.

* A critical aspect of the transactional model in database applications is maintaining a consistent state
of the database; however, a cloud is an open system, and thus its state is considerably more difficult
to define.

* The database transactions are typically short-lived; the tasks of a cloud workflow could be long-
lasting.

* A database transaction consists of a set of well-defined actions that are unlikely to be altered during
the execution of the transaction. However, the process description of a cloud workflow may change
during the lifetime of a case.

e The individual tasks of a cloud workflow may not exhibit the traditional properties of database
transactions. For example, consider durability: At any instance of time, before reaching the goal
state, a workflow may roll back to some previously encountered state and continue from there on an
entirely different path. A task of a workflow could be either reversible or irreversible. Sometimes,
paying a penalty for reversing an action is more profitable in the long run than continuing on a wrong
path.

e Resource allocation is a critical aspect of the workflow enactment on a cloud without an immediate
correspondent for database transactions.

The relatively simple coordination model discussed next is often used in cloud computing.

112 CHAPTER 4 Cloud Computing: Applications and Paradigms

4.5 Coordination based on a state machine model: The ZooKeeper

Cloud computing elasticity requires the ability to distribute computations and data across multiple
systems. Coordination among these systems is one of the critical functions to be exercised in a distributed
environment. The coordination model depends on the specific task, such as coordination of data storage,
orchestration of multiple activities, blocking an activity until an event occurs, reaching consensus for
the next action, or recovery after an error.

The entities to be coordinated could be processes running on a set of cloud servers or even running
on multiple clouds. Servers running critical tasks are often replicated, so when one primary server fails,
a backup automatically continues the execution. This is only possible if the backup is in a hot standby
mode — in other words, the standby server shares the same state at all times with the primary.

For example, in the distributed data store model discussed in Section 3.5, the access to data is
mitigated by a proxy. This proxy is a single point of failure; thus, an architecture with multiple proxies
is desirable. These proxies should be in the same state so that, whenever one of them fails, the client
could seamlessly continue to access the data using another proxy.

Consider now an advertising service that involves a large number of servers in a cloud. The advertising
service runs on a number of servers specialized for tasks such as database access, monitoring, accounting,
event logging, installers, customer dashboards,? advertising campaign planners, scenario testing, and
so on. A solution to coordinate these activities is through configuration files shared by all systems.
When the service starts or after a system failure, all servers use the configuration file to coordinate their
actions. This solution is static. Any change requires an update and redistribution of the configuration
file. Moreover, in case of a system failure the configuration file does not allow recovery from the state
of each server prior to the system crash, which is a more desirable alternative.

A solution for the proxy coordination problem is to consider a proxy as a deterministic finite state
machine that performs the commands sent by clients in some sequence. The proxy has thus a definite
state and, when a command is received, it transitions to another state. When P proxies are involved,
all of them must be synchronized and must execute the same sequence of state machine commands;
this can be ensured if all proxies implement a version of the Paxos consensus algorithm described in
Section 2.11.

ZooKeeper is a distributed coordination service based on this model. The high-throughput and
low-latency service is used for coordination in large-scale distributed systems. The open-source soft-
ware is written in Java and has bindings for Java and C. Information about the project is available at
http://zookeeper.apache.org/.

The ZooKeeper software must first be downloaded and installed on several servers; then clients can
connect to any one of these servers and access the coordination service. The service is available as long
as the majority of servers in the pack are available.

The organization of the service is shown in Figure 4.4. The servers in the pack communicate with
one another and elect a leader. A database is replicated on each one of them and the consistency of the

5 A customer dashboard provides access to key customer information, such as contact name and account number, in an area
of the screen that remains persistent as the user navigates through multiple Web pages.

4.5 Coordination Based on a State Machine Model: The ZooKeeper 113

Y

A A v)\

Server ‘ Server D ‘ Server ‘ Server D ‘ Server D
T4 N 4 F 4N
\ / \

/ \

\
‘Clientu ‘CIientD ‘Clientu ‘Clientu ‘CIientD ‘Clientu ‘Clientu ‘Clientu
(a)
Follower }
4
Write
processor

Atomic broadcast

Replicated
database

Follower

_.
Follower

_.I

Follower

WRITE READ WRITE
(b) (c)
FIGURE 4.4

The ZooKeeper coordination service. (a) The service provides a single system image. Clients can connect to
any server in the pack. (b) Functional model of the ZooKeeper service. The replicated database is accessed
directly by read commands; write commands involve more intricate processing based on atomic broadcast.
(c) Processing a write command: (1) A server receiving the command from a client forwards the command
to the leader; (2) the leader uses atomic broadcast to reach consensus among all followers.

replicas is maintained. Figure 4.4(a) shows that the service provides a single system image. A client
can connect to any server of the pack.

A client uses TCP to connect to a single server. Through the TCP connection a client sends requests
and receives responses and watches events. A client synchronizes its clock with the server. If the server
fails, the TCP connections of all clients connected to it time out and the clients detect the failure of the
server and connect to other servers.

Figures 4.4(b) and (c) show that a read operation directed to any server in the pack returns the same
result, whereas the processing of a write operation is more involved; the servers elect a leader, and
any follower receiving a request from one of the clients connected to it forwards it to the leader. The
leader uses atomic broadcast to reach consensus. When the leader fails, the servers elect a new leader.

The system is organized as a shared hierarchical namespace similar to the organization of a file
system. A name is a sequence of path elements separated by a backslash. Every name in Zookeper’s
namespace is identified by a unique path (see Figure 4.5).

In ZooKeeper the znodes, the equivalent of the inodes of a file system, can have data associated with
them. Indeed, the system is designed to store state information. The data in each node includes version

114 CHAPTER 4 Cloud Computing: Applications and Paradigms

0
O OENO
@ @ @) @

ZooKeeper is organized as a shared hierarchical namespace in which a name is a sequence of path elements
separated by a backslash.

numbers for the data, changes of ACLs,® and time stamps. A client can set a watch on a znode and
receive a notification when the znode changes. This organization allows coordinated updates. The data
retrieved by a client also contains a version number. Each update is stamped with a number that reflects
the order of the transition.

The data stored in each node is read and written atomically. A read returns all the data stored in
a znode, whereas a write replaces all the data in the znode. Unlike in a file system, Zookeeper data,
the image of the state, is stored in the server memory. Updates are logged to disk for recoverability, and
writes are serialized to disk before they are applied to the in-memory database that contains the entire
tree. The ZooKeeper service guarantees:

—

. Atomicity. A transaction either completes or fails.

. Sequential consistency of updates. Updates are applied strictly in the order in which they are received.

3. Single system image for the clients. A client receives the same response regardless of the server it
connects to.

. Persistence of updates. Once applied, an update persists until it is overwritten by a client.

. Reliability. The system is guaranteed to function correctly as long as the majority of servers function
correctly.

N

o b

To reduce the response time, read requests are serviced from the local replica of the server that is
connected to the client. When the leader receives a write request, it determines the state of the system
where the write will be applied and then it transforms the state into a transaction that captures this
new state.

The messaging layer is responsible for the election of a new leader when the current leader fails. The
messaging protocol uses packets (sequences of bytes sent through a FIFO channel), proposals (units
of agreement), and messages (sequences of bytes atomically broadcast to all servers). A message is
included in a proposal and it is agreed on before it is delivered. Proposals are agreed on by exchanging
packets with a quorum of servers, as required by the Paxos algorithm.

6 An access control list (ACL) is a list of pairs (subject,value) that defines the list of access rights to an object; for example,
read, write, and execute permissions for a file.

4.6 The MapReduce Programming Model 115

An atomic messaging system keeps all the servers in a pack in synch. This system guarantees (a)
reliable delivery: if message m is delivered to one server, it will be eventually delivered to all servers;
(b) total order: if message m is delivered before message n to one server, m will be delivered before n
to all servers; and (c) causal order: if message n is sent after m has been delivered by the sender of #,
then m must be ordered before n.

The application programming interface (API) to the ZooKeeper service is very simple and consists
of seven operations:

e create — add a node at a given location on the tree.

* delete — delete a node.

e get data — read data from a node.

e setdata—write data to a node.

e get children — retrieve a list of the children of the node.
e synch — wait for the data to propagate.

The system also supports the creation of ephemeral nodes, which are nodes that are created when a
session starts and deleted when the session ends.

This brief description shows that the ZooKeeper service supports the finite state machine model of
coordination. In this case a znode stores the state. The ZooKeeper service can be used to implement
higher-level operations such as group membership, synchronization, and so on. The system is used by
Yahoo!’s Message Broker and by several other applications.

4.6 The MapReduce programming model

A main advantage of cloud computing is elasticity — the ability to use as many servers as necessary to
optimally respond to the cost and the timing constraints of an application. In the case of transaction
processing systems, typically a front-end system distributes the incoming transactions to a number
of back-end systems and attempts to balance the load among them. As the workload increases, new
back-end systems are added to the pool.

For data-intensive batch applications, partitioning the workload is not always trivial. Only in some
cases can the data be partitioned into blocks of arbitrary size and processed in parallel by servers in the
cloud. We distinguish two types of divisible workloads:

* Modularly divisible. The workload partitioning is defined a priori.
* Arbitrarily divisible. The workload can be partitioned into an arbitrarily large number of smaller
workloads of equal or very close size.

Many realistic applications in physics, biology, and other areas of computational science and engineering
obey the arbitrarily divisible load-sharing model. The Divisible Load Theory (DLT) is analyzed in the
literature (see Section 4.12).

MapReduce is based on a very simple idea for parallel processing of data-intensive applications
supporting arbitrarily divisible load sharing. First, split the data into blocks, assign each block to
an instance or process, and run these instances in parallel. Once all the instances have finished, the
computations assigned to them start the second phase: Merge the partial results produced by individual

116 CHAPTER 4 Cloud Computing: Applications and Paradigms

instances. The so-called same program, multiple data (SPMD) paradigm, used since the early days of
parallel computing, is based on the same idea but assumes that a master instance partitions the data and
gathers the partial results.

MapReduce is a programming model inspired by the Map and the Reduce primitives of the LISP
programming language. It was conceived for processing and generating large data sets on computing
clusters [100]. As a result of the computation, a set of input <key, value> pairs is transformed into a
set of output <key, value> pairs.

Numerous applications can be easily implemented using this model. For example, one can pro-
cess logs of Web page requests and count the URL access frequency. The Map function outputs the
pairs <URL, 1> and the Reduce function produces the pairs <URL, totalcount>. Another trivial
example is distributed sort when the map function extracts the key from each record and produces a
<key, record> pair and the Reduce function outputs these pairs unchanged. The following example
[100] shows the two user-defined functions for an application that counts the number of occurrences of
each word in a set of documents.

map (String key, String wvalue) :
//key: document name; value: document contents
for each word w in value:
EmitIntermediate (w, "1");

reduce (String key, Iterator values):
// key: a word; values: a list of counts
int result =0;
for each v in values:
result += Parselnt (v);
Emit (AsString (result));

Call M and R the number of Map and Reduce tasks, respectively, and N the number of systems used
by the MapReduce. When a user program invokes the MapReduce function, the following sequence of
actions take place (see Figure 4.6):

1. The run-time library splits the input files into M splits of 16 to 64 MB each, identifies a number N of
systems to run, and starts multiple copies of the program, one of the system being a master and the
others workers. The master assigns to each idle system either a Map or a Reduce task. The master
makes O(M + R) scheduling decisions and keeps O(M x R) worker state vectors in memory. These
considerations limit the size of M and R; at the same time, efficiency considerations require that
M,R> N.

2. A worker being assigned a Map task reads the corresponding input split, parses <key, value> pairs,
and passes each pair to a user-defined Map function. The intermediate <key, value> pairs produced
by the Map function are buffered in memory before being written to a local disk and partitioned into
R regions by the partitioning function.

3. Thelocations of these buffered pairs on the local disk are passed back to the master, who is responsible
for forwarding these locations to the Reduce workers. A Reduce worker uses remote procedure
calls to read the buffered data from the local disks of the Map workers; after reading all the

4.6 The MapReduce Programming Model 117

Application
1

Master instance

2
1 1 7
Map
Segment | instance 1 " (Wocal dis
Reduce
s) Map instance 1 [
egment instance 2 Local dis I Shared
| Map | Reduce |} S
Segment 3 instance 3 | | ~ (WLocal dis instance 2
Shared
storage
Reduce |
3 4 5 instance R 6
| Map -
Segment M instance M Local dis
Input data Map phase Reduce phase

FIGURE 4.6

The MapReduce philosophy. (1) An application starts a master instance and M worker instances for the Map
phase and, later, R worker instances for the Reduce phase. (2) The master partitions the input data in M
segments. (3) Each Map instance reads its input data segment and processes the data. (4) The results of
the processing are stored on the local disks of the servers where the Map instances run. (5) When all Map
instances have finished processing their data, the R Reduce instances read the results of the first phase
and merge the partial results. (6) The final results are written by the Reduce instances to a shared storage
server. (7) The master instance monitors the Reduce instances and, when all of them report task completion,
the application is terminated.

intermediate data, it sorts it by the intermediate keys. For each unique intermediate key, the key
and the corresponding set of intermediate values are passed to a user-defined Reduce function. The
output of the Reduce function is appended to a final output file.

4. When all Map and Reduce tasks have been completed, the master wakes up the user program.

The system is fault tolerant. For each Map and Reduce task, the master stores the state (idle, in-
progress, or completed) and the identity of the worker machine. The master pings every worker period-
ically and marks the worker as failed if it does not respond. A task in progress on a failed worker is reset
to idle and becomes eligible for rescheduling. The master writes periodic checkpoints of its control data

118 CHAPTER 4 Cloud Computing: Applications and Paradigms

structures and, if the task fails, it can be restarted from the last checkpoint. The data is stored using
GFS, the Google File System, discussed in Section 8.5.

An environment for experimenting with MapReduce is described in [100]: The computers are typ-
ically dual-processor x86 running Linux, with 2-4 GB of memory per machine and commodity net-
working hardware typically 100—1,000 Mbps. A cluster consists of hundreds or thousands of machines.
Data is stored on IDE’ disks attached directly to individual machines. The file system uses replication
to provide availability and reliability with unreliable hardware. To minimize network bandwidth, the
input data is stored on the local disks of each system.

4.7 A case study: The GrepTheWeb application

An application called GrepTheWeb, discussed in [360], is now in production at Amazon. We use it to
illustrate the power and appeal of cloud computing. The application allows a user to define a regular
expression and search the Web for records that match it. GrepTheWeb is analogous to the Unix grep
command used to search a file for a given regular expression.

This application performs a search of a very large set of records, attempting to identify records that
satisfy a regular expression. The source of this search is a collection of document URLs produced by
the Alexa Web Search, a software system that crawls the Web every night. The inputs to the applications
are a regular expression and the large data set produced by the Web-crawling software; the output is the
set of records that satisfy the expression. The user is able to interact with the application and get the
current status [see Figure 4.7(a)].

The application uses message passing to trigger the activities of multiple controller threads that launch
the application, initiate processing, shut down the system, and create billing records. GrepTheWeb uses
Hadoop MapReduce, an open-source software package that splits a large data set into chunks, distributes
them across multiple systems, launches the processing, and, when the processing is complete, aggregates
the outputs from different systems into a final result. Apache Hadoop is a software library for distributed
processing of large data sets across clusters of computers using a simple programming model.

The details of the workflow of GrepTheWeb are captured in Figure 4.7(b) and consist of the following
steps [360]:

1. The startup phase. Creates several queues — launch, monitor, billing, and shutdown queues. Starts
the corresponding controller threads. Each thread periodically polls its input queue and, when a
message is available, retrieves the message, parses it, and takes the required actions.

2. The processing phase. This phase is triggered by a StartGrep user request; then a launch message
is enqueued in the launch queue. The launch controller thread picks up the message and executes the
launch task; then, it updates the status and time stamps in the Amazon Simple DB domain. Finally,
it enqueues a message in the monitor queue and deletes the message from the launch queue. The
processing phase consists of the following steps:

7Integrated Drive Electronics (IDE) is an interface for connecting disk drives. The drive controller is integrated into the drive,
as opposed to a separate controller on or connected to the motherboard.

4.7 A Case Study: The GrepTheWeb Application

Input records

Regular
expression =
Controller
¥
EC2
Status e Cluster

Launch Monitor
queue queue

Output
S3 =TT

Billing
service
Controller
v/ v/ / X N Y
Launch Monitor Shutdown Billing
controller controller controller controller

Hadoop Cluster on
Amazon SE2

Amazon SimpleDB

FIGURE 4.7

(b)

HDHS [Get file Input

Amazon S3

119

The organization of the GrepTheWeb application. The application uses the Hadoop MapReduce software and
four Amazon services: EC2, Simple DB, S3, and SQS. (a) The simplified workflow showing the two inputs,
the regular expression and the input records generated by the Web crawler. A third type of input is the
user commands to report the current status and to terminate the processing. (b) The detailed workflow; the
system is based on message passing between several queues; four controller threads periodically poll their

associated input queues, retrieve messages, and carry out the required actions.

120 CHAPTER 4 Cloud Computing: Applications and Paradigms

a. The launch task starts Amazon EC2 instances. It uses a Java Runtime Environment preinstalled
Amazon Machine Image (AMI), deploys required Hadoop libraries, and starts a Hadoop Job
(run Map/Reduce tasks).

b. Hadoop runs map tasks on Amazon EC2 slave nodes in parallel. A map task takes files from
Amazon S3, runs a regular expression, and writes the match results locally, along with a descrip-
tion of up to five matches. Then the combine/reduce task combines and sorts the results and
consolidates the output.

¢. Final results are stored on Amazon S3 in the output bucket.

3. The monitoring phase. The monitor controller thread retrieves the message left at the beginning of
the processing phase, validates the status/error in Amazon Simple DB, and executes the monitor task.
It updates the status in the Amazon Simple DB domain and enqueues messages in the shutdown and
billing queues. The monitor task checks for the Hadoop status periodically and updates the Simple
DB items with status/error and the Amazon S3 output file. Finally, it deletes the message from the
monitor queue when the processing is completed.

4. The shutdown phase. The shutdown controller thread retrieves the message from the shutdown queue
and executes the shutdown task, which updates the status and time stamps in the Amazon Simple DB
domain. Finally, it deletes the message from the shutdown queue after processing. The shutdown
phase consists of the following steps:

a. The shutdown task kills the Hadoop processes, terminates the EC2 instances after getting EC2
topology information from Amazon Simple DB, and disposes of the infrastructure.

h. The billing task gets the EC2 topology information, Simple DB usage, and S3 file and query
input, calculates the charges, and passes the information to the billing service.

5. The cleanup phase. Archives the Simple DB data with user info.

6. User interactions with the system. Get the status and output results. The GetStatus is applied to the
service endpoint to get the status of the overall system (all controllers and Hadoop) and download
the filtered results from Amazon S3 after completion.

To optimize the end-to-end transfer rates in the S3 storage system, multiple files are bundled up and
stored as S3 objects. Another performance optimization is to run a script and sort the keys and the URL
pointers and upload them in sorted order to S3. In addition, multiple fetch threads are started in order
to fetch the objects.

This application illustrates the means to create an on-demand infrastructure and run it on a massively
distributed system in a manner that allows it to run in parallel and scale up and down based on the
number of users and the problem size.

4.8 Clouds for science and engineering

For more than two thousand years of human history, science was empirical. Several hundred years ago
theoretical methods based on models and generalization were introduced, allowing substantial progress
in human knowledge. In the last few decades, we have witnessed the explosion of computational science
based on the simulation of complex phenomena.

4.9 High-Performance Computing on a Cloud 121

In a talk delivered in 2007 and posted on his Web site just before he went missing in January
2007, computer scientist Jim Gray discussed eScience as a transformative scientific method [163].
Today, eScience unifies experiment, theory, and simulation; data captured from measuring instruments
or generated by simulations are processed by software systems, and data and knowledge are stored by
computer systems and analyzed using statistical packages.

The generic problems in virtually all areas of science are:

* Collecting experimental data.

e Managing very large volumes of data.

* Building and executing models.

* Integrating data and literature.

* Documenting experiments.

» Sharing the data with others; data preservation for long periods of time.

All these activities require powerful computing systems.

A typical example of a problem faced by agencies and research groups is data discovery in large
scientific data sets. Examples of such large collections are the biomedical and genomic data at NCBI,3
the astrophysics data at NASA,” or the atmospheric data at NOAA'? and NCAR.!!

The process of online data discovery can be viewed as an ensemble of several phases [282]: (i)
recognition of the information problem; (ii) generation of search queries using one or more search
engines; (iii) evaluation of the search results; (iv) evaluation of the Web documents; and (v) comparison
of information from different sources. The Web search technology allows scientists to discover text
documents related to such data, but the binary encoding of many of the documents poses serious
challenges.

Metadata is used to describe digital data and provides an invaluable aid for discovering useful
information in a scientific data set. A recent paper [282] describes a system for data discovery that
supports automated fine-grained metadata extraction and summarization schemes for browsing large
data sets and is extensible to different scientific domains. The system, called Glean, is designed to run
on a computer cluster or on a cloud; its run-time system supports two computational models, one based
on MapReduce and the other on graph-based orchestration.

4.9 High-performance computing on a cloud

A recent paper [179] describes the set of applications used at the National Energy Research Scientific
Computing Center (NERSC) and presents the results of a comparative benchmark of EC2 and three
supercomputers. NERSC is located at Lawrence Berkeley National Laboratory and serves a diverse
community of scientists; it has some 3,000 researchers and involves 400 projects based on some 600
codes. Some of the codes used are:

8NCBI is the National Center for Biotechnology Information; www.ncbi.nlm.nih.gov.
9NASA is the National Aeronautics and Space Administration; www.nasa .gov.
I0NOAA is the National Oceanic and Atmospheric Administration; www.noaa.gov.
IINCAR is the National Center for Atmospheric Research.

122

CHAPTER 4 Cloud Computing: Applications and Paradigms

Community Atmosphere Mode (CAM), the atmospheric component of Community Climate System
Model (CCSM), is used for weather and climate modeling.'? The code developed at NCAR uses
two two-dimensional domain decompositions — one for the dynamics and the other for remapping.
The first is decomposed over latitude and vertical level; the second is decomposed over longi-
tude/latitude. The program is communication-intensive; on-node/processor data movement and
relatively long MPI'3 messages that stress the interconnect point-to-point bandwidth are used to
move data between the two decompositions.

General Atomic and Molecular Electronic Structure System (GAMESS) is used for ab initio quan-
tum chemistry calculations. The code, developed by the Gordon Research Group at the U.S. Depart-
ment of Energy’s Ames Lab at Iowa State University, has its own communication library, the Dis-
tributed Data Interface (DDI), and is based on the same program multiple data (SPMD) execution
model. DDI presents the abstraction of a global shared memory with one-sided data transfers, even
on systems with physically distributed memory. On the cluster systems at NERSC the program uses
socket communication; on the Cray XT4 the DDI uses MPI and only one-half of the processors
compute, whereas the other half are data movers. The program is memory- and communication-
intensive.

Gyrokinetic'* (GTC) is a code for fusion research.'” It is a self-consistent, gyrokinetic tri-
dimensional particle-in-cell (PIC)'® code with a nonspectral Poisson solver. It uses a grid that
follows the field lines as they twist around a toroidal geometry representing a magnetically con-
fined toroidal fusion plasma. The version of GTC used at NERSC uses a fixed, one-dimensional
domain decomposition with 64 domains and 64 MPI tasks. Communication is dominated by nearest-
neighbor exchanges that are bandwidth-bound. The most computationally intensive parts of GTC
involve gather/deposition of charge on the grid and particle “push” steps. The code is memory-
intensive because the charge deposition uses indirect addressing.

Integrated Map and Particle Accelerator Tracking Time IMPACT-T) is a code for the prediction and
performance enhancement of accelerators. It models the arbitrary overlap of fields from beamline
elements and uses a parallel, relativistic PIC method with a spectral integrated Green function solver.
This object-oriented Fortran90 code uses a two-dimensional domain decomposition in the y—z
directions and dynamic load balancing based on the domains. Hockney’s Fast Fourier Transform
(FFT) algorithm is used to solve Poisson’s equation with open boundary conditions. The code is
sensitive to the memory bandwidth and MPI collective performance.

12gee

www.nersc.gov/research-and-development /benchmarking-and-workload-

characterization.

13 Message Passing Interface (MPI) is a communication library based on a standard for a portable message-passing system.
4The trajectory of charged particles in a magnetic field is a helix that winds around the field line. It can be decomposed
into a relatively slow motion of the guiding center along the field line and a fast circular motion called cyclotronic motion.
Gyrokinetics describes the evolution of the particles without taking into account the circular motion.

15See

www.scidacreview.org/0601/html/news4 . html.

I6PIC is a technique to solve a certain class of partial differential equations. Individual particles (or fluid elements) in a
Lagrangian frame are tracked in continuous phase space, whereas moments of the distribution such as densities and currents
are computed simultaneously on Eulerian (stationary) mesh points.

4.9 High-Performance Computing on a Cloud 123

MAESTRO is a low Mach number hydrodynamics code for simulating astrophysical flows.!” Its
integration scheme is embedded in an adaptive mesh refinement algorithm based on a hierarchical
system of rectangular, nonoverlapping grid patches at multiple levels with different resolutions;
it uses a multigrid solver. Parallelization is via a tridimensional domain decomposition using a
coarse-grained distribution strategy to balance the load and minimize communication costs. The
communication topology tends to stress simple topology interconnects. The code has a very low
computational intensity, it stresses memory latency, and the implicit solver stresses global commu-
nications. The message sizes range from short to relatively moderate.

MIMD Lattice Computation (MILC) is a Quantum Chromo Dynamics (QCD) code used to study
“strong” interactions binding quarks into protons and neutrons and holding them together in the
nucleus.'® The algorithm discretizes the space and evaluates field variables on sites and links of a
regular hypercube lattice in four-dimensional space-time. The integration of an equation of motion
for hundreds or thousands of time steps requires inverting a large, sparse matrix. The Conjugate
Gradient (CG) method is used to solve a sparse, nearly singular matrix problem. Many CG iteration
steps are required for convergence; the inversion translates into tridimensional complex matrix-
vector multiplications. Each multiplication requires a dot product of three pairs of tridimensional
complex vectors; a dot product consists of five multiply/add operations and one multiply. The
MIMD computational model is based on a four-dimensional domain decomposition. Each task
exchanges data with its eight nearest neighbors and is involved in the all-reduce calls with very
small payload as part of the CG algorithm. The algorithm requires gather operations from widely
separated locations in memory. The code is highly memory- and computational-intensive and it is
heavily dependent on prefetching.

PARAllel Total Energy Code (PARATEC) is a quantum mechanics code that performs ab initio
total energy calculations using pseudo-potentials, a plane wave basis set, and an all-band (uncon-
strained) Conjugate Gradient (CG) approach. Parallel three-dimensional FFTs transform the wave
functions between real and Fourier space. The FFT dominates the run-time; the code uses MPI
and is communication-intensive. The code uses mostly point-to-point short messages. The code
parallelizes over grid points, thereby achieving a fine-grain level of parallelism. The BLAS3 and
one-dimensional FFT use optimized libraries (e.g., Intel’s MKL or AMD’s ACML), which results
in high cache reuse and a high percentage of per-processor peak performance.

The authors of [179] use the High-Performance Computing Challenge (HPCC) benchmark to com-
pare the performance of EC2 with the performance of three large systems at NERSC. HPCC! is a
suite of seven synthetic benchmarks: three targeted synthetic benchmarks that quantify basic system
parameters that characterize individually the computation and communication performance and four
complex synthetic benchmarks that combine computation and communication and can be considered
simple proxy applications. These benchmarks are:

17See www.astro.sunysb.edu/mzingale/Maestro/.
18See physics.indiana.edu/sg/milc.html.
19For more information see www.novellshareware.com/info/hpc-challenge.html.

124 CHAPTER 4 Cloud Computing: Applications and Paradigms

+ DGEMM.?° The benchmark measures the floating-point performance of a processor/core. The mem-
ory bandwidth does little to affect the results, since the code is cache-friendly. Thus, the results of
the benchmark are close to the theoretical peak performance of the processor.

» STREAM.?! The benchmark measures the memory bandwidth.

e The network latency benchmark.

* The network bandwidth benchmark.

« HPL.?? A software package that solves a (random) dense linear system in double precision arithmetic
on distributed-memory computers. It is a portable and freely available implementation of the High-
Performance Computing Linpack Benchmark.

* FFTE. Measures the floating-point rate of execution of double precision complex one-dimensional
Discrete Fourier Transform (DFT).

e PTRANS. Parallel matrix transpose exercises the communications whereby pairs of processors
communicate with each other simultaneously. It is a useful test of the total communications capacity
of the network.

¢ RandomAccess. Measures the rate of integer random updates of memory (GUPS).

The systems used for the comparison with cloud computing are:

Carver. A 400-node IBM iDataPlex cluster with quad-core Intel Nehalem processors running at
2.67 GHz and with 24 GB of RAM (3 GB/core). Each node has two sockets; a single Quad Data
Rate (QDR) IB link connects each node to a network that is locally a fat tree with a global two-
dimensional mesh. The codes were compiled with the Portland Group suite version 10.0 and Open
MPI version 1.4.1.

Franklin. A 9,660-node Cray XT4; each node has a single quad-core 2.3 GHz AMD Opteron
Budapest processor with 8 GB of RAM (2 GB/core). Each processor is connected through a
6.4 GB/s bidirectional HyperTransport interface to the interconnect via a Cray SeaStar-2 ASIC.
The SeaStar routing chips are interconnected in a tridimensional torus topology in which each
node has a direct link to its six nearest neighbors. Codes were compiled with the Pathscale or the
Portland Group suite version 9.0.4.

Lawrencium. A 198-node (1,584 core) Linux cluster; a compute node is a Dell Poweredge 1950
server with two Intel Xeon quad-core 64-bit, 2.66-GHz Harpertown processors with 16 GB of RAM
(2 GB/core). A compute node is connected to a Dual Data Rate InfiniBand network configured as a
fat tree with a 3:1 blocking factor. Codes were compiled using Intel 10.0.018 and Open MPI 1.3.3.

The virtual cluster at Amazon had four EC2 Compute Units (CUs), two virtual cores with two
CUs each, and 7.5 GB of memory (an m1. large instance in Amazon parlance). A Compute Unit
is approximately equivalent to a 1.0-1.2 GHz 2007 Opteron or 2007 Xeon processor. The nodes are
connected with gigabit Ethernet. The binaries were compiled on Lawrencium. The results reported in
[179] are summarized in Table 4.1.

20For more details see https://computecanada.org/?pageld=138.
2l For more details see www . streambench.org/.
22For more details see http://netlib.org/benchmark/hpl/.

4.10 Cloud Computing for Biology Research 125

Table 4.1 The results of the measurements reported in [179].

System DGEMM STREAM Latency Bndw HPL FFTE PTRANS RandAcc
Gflops GB/s ns GB/S Tflops Gflops GB/s GUP/s

Carver 10.2 4.4 2.1 3.4 0.56 21.99 9.35 0.044

Franklin 8.4 2.3 7.8 1.6 0.47 14.24 2.63 0.061

Lawrencium 9.6 0.7 41 1.2 0.46 9.12 1.34 0.013

EC2 4.6 1.7 145 0.06 0.07 1.09 0.29 0.004

The results in Table 4.1 give us some ideas about the characteristics of scientific applications likely
to run efficiently on the cloud. Communication-intensive applications will be affected by the increased
latency (more than 70 times larger then Carver) and lower bandwidth (more than 70 times smaller than
Carver).

4.10 Cloud computing for biology research

Biology, one of the scientific fields that needs vast amounts of computing power, was one of the first
to take advantage of cloud computing. Molecular dynamics computations are CPU-intensive, whereas
protein alignment is data-intensive.

An experiment carried out by a group from Microsoft Research illustrates the importance of cloud
computing for biology research [223]. The authors carried out an “all-by-all” comparison to identify
the interrelationship of the 10 million protein sequences (4.2 GB size) in the National Center for
Biotechnology Information (NCBI) nonredundant protein database using AzureBLAST, a version of the
BLAST?? program running on the Azure platform [223].

Azure offers VMs with four levels of computing power, depending on the number of cores: small
(1 core), medium (2 cores), large (8 cores), and extra large (>8 cores). The experiment used 8 core
CPUs with 14 GB RAM and a 2 TB local disk. It was estimated that the computation would take six to
seven CPU-years; thus, the experiment was allocated 3,700 weighted instances or 475 extra-large VMs
from three data centers. Each data center hosted three AzureBLAST deployments, each with 62 extra-
large instances. The 10 million sequences were divided into multiple segments, and each segment was
submitted for execution by one AzureBLAST deployment. With this vast amount of resources allocated,
ittook 14 days to complete the computations, which produced 260 GB of compressed data spread across
more than 400,000 output files.

A few observations and conclusions useful for many scientific applications running on Azure were
drawn after a post-experiment analysis. A first observation is that when a task runs for more than
two hours, a message will automatically reappear in the queue requesting the task to be scheduled,
thus leading to repeated computations; a simple solution is to check whether the result of a task has

23The Basic Local Alignment Search Tool (BLAST) finds regions of local similarity between sequences. It compares nucleotide
or protein sequences to sequence databases and calculates the statistical significance of matches. It can be used to infer func-
tional and evolutionary relationships between sequences as well as help identify members of gene families. More information
is available at http://blast.ncbi.nlm.nih.gov/Blast.cgi.

126 CHAPTER 4 Cloud Computing: Applications and Paradigms

been generated before launching it. Many applications, including BLAST, allow for the setting of some
parameters, but the computational effort to find optimal parameters is prohibitive. A user is also expected
to decide on an optimal balance between the cost and the number of instances to meet budget limitations.

A number of inefficiencies were observed: many VMs were idle for extended periods of time; when
a task finished execution, all worker instances waited for the next task; and when all jobs use the
same set of instances, resources are either under- or over-utilized. Load imbalance is another source
of inefficiency; some of the tasks of a job take considerably longer than others and delay the job’s
completion time.

The analysis of the logs shows unrecoverable instance failures. Some 50% of active instances lost
connection to the storage service but were automatically recovered by the fabric controller. System
updates caused several ensembles of instances to fail.

Another observation is that a computational science experiment requires the execution of several
binaries; thus the creation of workflows, a challenging task for many domain scientists. To address this
challenge, the authors of [215] developed a general platform for executing legacy Windows applications
on the cloud. In the Cirrus system a job has a description consisting of a prologue, a set of commands,
and a set of parameters. The prologue sets up the running environment; the commands are sequences of
shell scripts, including Azure-storage-related commands to transfer data between Azure blob storage
and the instance.

After the Windows Live ID service authenticates the user, it can submit and track a job through the
portal provided by the Web role (see Figure 4.8). The job is added to a table called job registry. The
execution of each job is controlled by a job manager instance that first scales the size of the worker
based on the job configuration; then the parametric engine starts exploring the parameter space. If this
is a test run, the parameter-sweeping result is sent to the sampling filter.

Each task is associated with a record in the task table, and this state record is updated periodically
by the worker instance running the task. The progress of the task is monitored by the manager. The

Web role Job manager role

Scaling
 engine

Worker

Worker

—_——

service Dispatch queue Worker

B

Sampling
filter

Y - Worker

Azure table Azure blob

Worker

Worker

FIGURE 4.8

Cirrus, a general platform for executing legacy Windows applications on the cloud.

4.10 Cloud Computing for Biology Research 127

dispatch queue feeds into a set of worker instances. A worker periodically updates the task state in the
task table and listens for any control signals from the manager.

We continue our discussion of biology applications of the Azure infrastructure applied to a loosely
coupled workload for an ensemble-based simulation reported in [224]. A role in Azure is an encapsula-
tion of an application; as noted earlier, there are two kinds of role: (i) the Web roles for Web applications
and front-end code and (ii) the worker roles for background processing. Scientific applications such as
AzureBLAST use worker roles for the compute tasks and to implement their APIs, that provide a run
method and an entry point for the application and the state or configuration change notifications. The
applications use the Blob Storage (ABS) for large raw data sets, the Table Storage (ATS) for semistruc-
tured data, and the Queue Storage (AQS) for message queues. These services provide strong consistency
guarantees, but the complexity is moved to the application space.

Figure 4.9 illustrates the use of a software system called BigJob to decouple resource allocation
from resource binding for the execution of loosely coupled workloads on an Azure platform [224]. This
software eliminates the need for the application to manage individual VMs. The results of measurements
show a noticeable overhead for starting VMs and for launching the execution of an application task
on a remote resource. Increasing the computing power of the VM decreases the completion time for
long-running tasks.

Client
BigJob Manager
start VM start replicas query state
A
Queues
Portal
Service
Management post results
API
______________________ query
Worker Role Worker Role
BigJob Agent BigJob Agent
task k tasl tasl
[

FIGURE 4.9

The execution of loosely coupled workloads using the Azure platform.

128 CHAPTER 4 Cloud Computing: Applications and Paradigms

4.11 Social computing, digital content, and cloud computing

Social networks play an increasingly important role in people’s lives. In recent years they have expanded
in terms of the size of the population involved and in terms of the functions performed. A promising
solution for analyzing large-scale social network data is to distribute the computation workload over a
large number of nodes of a cloud. Traditionally, determining the importance of a node or a relationship
in a network is done using sampling and surveying, but in a very large network structural properties
cannot be inferred by scaling up the results from small networks. It turns out that the evaluation of social
closeness is computationally intensive.

Social intelligence is another area where social and cloud computing intersect. Indeed, the process of
knowledge discovery and techniques based on pattern recognition demand high-performance computing
and resources that can be provided by computing clouds. Case-based reasoning (CBR), the process
of solving new problems based on the solutions of similar past problems, is used by context-aware
recommendation systems. It requires similarity-based retrieval. As the case base accumulates, such
applications must handle massive amounts of history data, which can be done by developing new
reasoning platforms running on the cloud. CBR is preferable to rule-based recommendation systems
for large-scale social intelligence applications. Indeed, the rules can be difficult to generalize or apply
to some domains. All triggering conditions must be strictly satisfied, scalability is a challenge as data
accumulate, and the systems are hard to maintain because new rules have to be added as the amount of
data increases.

A system based on CBR is described in [171]. The BetterLife 2.0 system consists of a cloud layer,
a case-based reasoning engine, and an APIL. The cloud layer uses the Hadoop Distributed File System
clusters to store application data represented by cases as well as social network information, such as
relationship topology and pairwise social closeness information. The CBR engine calculates similarity
measures between cases to retrieve the most similar ones and stores new cases back to the cloud layer.
The API connects to a master node, which is responsible for handling user queries, distributes the
queries to server machines, and receives results.

A case consists of a problem description, a solution, and optional annotations about the path to
derive the solution. The CBR uses MapReduce; all the cases are grouped by their userld, and then a
breadth first search (BFS) algorithm is applied to the graph, where each node corresponds to one user.
MapReduce is used to calculate the closeness according to pairwise relationship weight. A reasoning
cycle has four steps: (a) Retrieve the most relevant or similar cases from memory to solve the case; (b)
reuse: map the solution from the prior case to the new problem; (c) revise: test the new solution in the
real world or in a simulation and, if necessary, revise; and (d) retain: if the solution was adapted to the
target problem, store the result as a new case.

In the past, social networks have been constructed for a specific application domain (e.g., MyEx-
periment and nanoHub for biology and nanoscience, respectively). These networks enable researchers
to share data and provide a virtual environment supporting remote execution of workflows. Another
form of social computing is volunteer computing, when a large population of users donates resources
such as CPU cycles and storage space for a specific project — for example, the Mersenne Prime Search
initiated in 1996, followed in the late 1990s by SETI@Home, Folding@Home, and Storage @Home, a
project to back up and share huge data sets from scientific research. Information about these projects

4.11 Social Computing, Digital Content, and Cloud Computing 129

is available online at www . myExperiment .org, www.nanoHub.org, www.mersenne.orgd,
setiathome.berkeley.edu, and folding.stanford.edu.

Such platforms cannot be used in an environment where users require some level of accountability
because there are no SLAs. The PlanetLab project is a credit-based system in which users earn credits
by contributing resources and then spend those credits when using other resources. The Berkeley
Open Infrastructure for Network Computing (BOINC) aims to develop middleware for a distributed
infrastructure suitable for different applications.

An architecture designed as a Facebook application for a social cloud is presented in [76]. Methods
to get a range of data, including friends, events, groups, application users, profile information, and
photos, are available through a Facebook API. The Facebook Markup Language (FBML) is a subset
of HTML with proprietary extensions, and the Facebook JavaScript (FBJS) is a version of JavaScript
parsed, when a page is loaded, to create a virtual application scope. The prototype uses Web Services
to create a distributed and decentralized infrastructure.

There are numerous examples of cloud platforms for social networks. There are scalable cloud
applications hosted by commercial clouds (e.g., Facebook applications are hosted by Amazon Web
Services). Today some organizations use the Facebook credentials of an individual for authentication.

The new technologies supported by cloud computing favor the creation of digital content. Data
mashups or composite services combine data extracted by different sources; event-driven mashups, also
called Svc, interact through events rather than the request/response traditional method. A recent paper
[331] argues that “the mashup and the cloud computing worlds are strictly related because very often
the services combined to create new Mashups follow the SaaS model and more, in general, rely on
cloud systems.” The paper also argues that the Mashup platforms rely on cloud computing systems —
for example, the IBM Mashup Center and the JackBe Enterprise Mashup server.

There are numerous examples of monitoring, notification, presence, location, and map services based
on the Svc approach, including Monitor Mail, Monitor RSSFeed, Send SMS, Make Phone Call, GTalk,
FireEagle, and Google Maps. For example, consider a service to send a phone call when a specific email
is received; the Mail Monitor Svc uses input parameters such as User Id, Sender Address Filter, and
email Subject Filter to identify an email and generates an event that triggers the Make TTS Call action
of a Text To Speech Call Svc linked to it.

The system in [331] supports creation, deployment, activation, execution, and management of event-
driven mashups. It has a user interface, a graphics tool called Service Creation Environment that easily
supports the creation of new mashups, and a platform called Mashup Container that manages mashup
deployment and execution. The system consists of two subsystems: the service execution platform for
mashups execution and the deployer module that manages the installation of mashups and Svcs. A
new mashup is created using the graphical development tool and saved as an XML file. It can then be
deployed into a Mashup Container following the Platform-as-a-Service (PaaS) approach. The Mashup
Container supports a primitive SLA that allows the delivery of different levels of service.

The prototype uses the Java Message Service (JMS), which supports asynchronous communication.
Each component sends and receives messages, and the sender does not block while waiting for the
recipient to respond. The system’s fault tolerance was tested on a system based on the VMware vSphere.
In this environment, the fault tolerance is provided transparently by the VMM, and neither the VMs
nor the applications are aware of the fault-tolerance mechanism. Two VMs, a primary and a secondary
one, run on distinct hosts and execute the same set of instructions such that, when the primary fails, the
secondary continues the execution seamlessly.

130 CHAPTER 4 Cloud Computing: Applications and Paradigms

4.12 Further reading

There is a vast literature dedicated to Divisible Load Theory (DLT), including hundreds of papers (see
www.ece.sunysb.edu/~tom/dlt.html). MapReduce is discussed in [100]. The GrepTheWeb
application is analyzed in [360]. Metadata generation for large scientific databases is presented in [282].
Cloud applications in biology are analyzed in [223,224], and social applications of cloud computing
are presented in [76,171,331]. Benchmarking of cloud services is analyzed in [82,179,133]. High
performance computing on the cloud is discussed in [64] and service-level checking is analyzed in [78].
Cloud migration and open-source cloud computing tools are presented in [190] and [234], respectively,
while software testing and scientific applications are covered in [305] and [375]. Application and data
portability [300], folt-tolerant middleware [388], and a data debugger [330] are also topics of interest for
application developers. Workload migration is analyzed in [367], while cost and application performance
issues rediscussed in [196] and [381].

4.13 Exercises and Problems

Problem 1. Download and install Zookeeper from the site http: //zookeeper.apache.org/.
Use the API to create the basic workflow patterns shown in Figure 4.3.

Problem 2. Use the AWS Simple Workflow Service to create the basic workflow patterns shown in
Figure 4.3.

Problem 3. Use the AWS CloudFormation service to create the basic workflow patterns shown in
Figure 4.3.

Problem 4. Define a set of keywords that are ordered based on their relevance to the topic of cloud
security. Then search the Web using these keywords to locate 10-20 papers and store the
papers in an S3 bucket. Create a MapReduce application modeled after the one discussed
in Section 4.7 to rank the papers based on the incidence of the relevant keywords. Compare
your ranking with the rankings of the search engine you used to identify the papers.

Problem 5. Use the AWS MapReduce service to rank the papers in Problem 4.

Problem 6. The paper [63] describes the elasticLM, a commercial product that provides license and
billing Web-based services. Analyze the merits and shortcomings of the system.

Problem 7. Search the Web for reports of cloud system failures and discuss the causes of each incident.

Problem 8. Identify a set of requirements you would like to be included in a service-level agreement.
Attempt to express these requirements using the Web Service Agreement Specification
(WS-Agreement) [20] and determine whether it is flexible enough to express your options.

Problem 9. Research the power consumption of processors used in mobile devices and their energy
efficiency. Rank the components of a mobile device in terms of power consumption.
Establish a set of guidelines to minimize the power consumption of mobile applications.

CHAPTER

Cloud Resource Virtualization

Three classes of fundamental abstractions — interpreters, memory, and communications links — are nec-
essary to describe the operation of a computing system [312]. The physical realization of each one of
these abstractions, such as processors that transform information, primary and secondary memory for
storing information, and communication channels that allow different systems to communicate with one
another, can vary in terms of bandwidth,' latency,? reliability, and other physical characteristics. Soft-
ware systems such as operating systems are responsible for the management of the system resources —
the physical implementations of the three abstractions.

Resource management, discussed in depth in Chapter 6, grows increasingly complex as the scale
of a system as well as the number of users and the diversity of applications using the system increase.
Resource management for a community of users with a wide range of applications running under
different operating systems is a very difficult problem. Resource management becomes even more
complex when resources are oversubscribed and users are uncooperative. In addition to external factors,
resource management is affected by internal factors, such as the heterogeneity of the hardware and
software systems, the ability to approximate the global state of the system and to redistribute the load,
the failure rates of different components, and many other factors.

The traditional solution for a data center is to install standard operating systems on individual
systems and rely on conventional OS techniques to ensure resource sharing, application protection,
and performance isolation. System administration, accounting, security, and resource management are
very challenging for the providers of service in this setup; application development and performance
optimization are equally challenging for the users.

The alternative is resource virtualization, a technique analyzed in this chapter. Virtualization is a
basic tenet of cloud computing — that simplifies some of the resource management tasks. For example,
the state of a virtual machine (VM) running under a virtual machine monitor (VMM) can be saved
and migrated to another server to balance the load. At the same time, virtualization allows users to
operate in environments with which they are familiar rather than forcing them to work in idiosyncratic
environments.

Resource sharing in a virtual machine environment requires not only ample hardware support and, in
particular, powerful processors but also architectural support for multilevel control. Indeed, resources

'We use the term bandwidth in a broad sense to mean the number of operations per unit of time. For example, millions of
instructions per second (MIPS) or millions of floating-point instructions per second (MFLOPS) measure the CPU speed and
mega bits per second (Mbps) measures the speed of a communication channel.

2 Latency is defined as the time elapsed from the instant an operation is initiated until its effect is sensed. Latency is context-
dependent. For example, the latency of a communication channel is the time it takes a bit to traverse the communication
channel from its source to its destination; the memory latency is the time elapsed from the instant a memory read instruction
is issued until the time instant the data becomes available in a memory register.

Cloud Computing. http:/dx.doi.org/10.1016/B978-0-12-404627-6.00005-1 1 3 1
© 2013 Elsevier Inc. All rights reserved.

132 CHAPTER 5 Cloud Resource Virtualization

such as CPU cycles, memory, secondary storage, and I/O and communication bandwidth are shared
among several virtual machines; for each VM, resources must be shared among multiple instances of
an application.

We start our discussion with a look at virtualization principles and the motivation for virtual-
ization. Then we discuss the interfaces that define the properties of the system at different levels
of abstraction: the application programming interface (API), the application binary interface (ABI),
and instruction set architecture (ISA). We discuss alternatives for the implementation of virtualiza-
tion in Sections 5.3 and 5.4, then analyze their impact on performance and security isolation in
Section 5.5.

Two distinct approaches for virtualization, the full virtualization and the paravirtualization, are dis-
cussed in Section 5.6. Full virtualization is feasible when the hardware abstraction provided by the
VMM is an exact replica of the physical hardware. In this case any operating system running on the
hardware will run without modifications under the VMM. In contrast, paravirtualization requires some
modifications of the guest operating systems because the hardware abstraction provided by the VMM
does not support all the functions the hardware does.

Traditional processor architectures were conceived for one level of control because they support two
execution modes, the kernel and the user mode. In a virtualized environment all resources are under the
control of a VMM and a second level of control is exercised by the guest operating system. Although
two-level scheduling for sharing CPU cycles can be easily implemented, sharing of resources such as
cache, memory, and I/O bandwidth is more intricate. In 2005 and 2006 the x86 processor architecture
was extended to provide hardware support for virtualization, as discussed in Section 5.7.

We analyze the Xen VMM in Section 5.8 and discuss an optimization of its network performance
in Section 5.9. High-performance processors (e.g., Itanium) have multiple functional units but do not
provide explicit support for virtualization, as shown in Section 5.10.

The system functions critical for the performance of a VM environment are cache and memory
management, handling of privileged instructions, and input/output (I/O) handling. Important sources for
the performance degradation in a VM environment are the cache misses, as we shall see in Section 5.11.
We analyze the security advantages of virtualization in Section 9.6 and some of the potential risks in
Section 5.12. Finally, we discuss software fault isolation in Section 5.13.

5.1 Virtualization

Virtualization simulates the interface to a physical object by any one of four means:

1. Multiplexing. Create multiple virtual objects from one instance of a physical object. For example, a
processor is multiplexed among a number of processes or threads.

2. Aggregation. Create one virtual object from multiple physical objects. For example, a number of
physical disks are aggregated into a RAID disk.

3. Emulation. Construct a virtual object from a different type of physical object. For example, a physical
disk emulates a random access memory.

4. Multiplexing and emulation. Examples: Virtual memory with paging multiplexes real memory and
disk, and a Virtual address emulates a real address; TCP emulates a reliable bit pipe and multiplexes
a physical communication channel and a processor.

5.2 Layering and Virtualization 133

Virtualization abstracts the underlying resources and simplifies their use, isolates users from one
another, and supports replication, which, in turn, increases the elasticity of the system. Virtualization is
acritical aspect of cloud computing, equally important to the providers and consumers of cloud services,
and plays an important role in:

» System security because it allows isolation of services running on the same hardware.

¢ Performance and reliability because it allows applications to migrate from one platform to another.
* The development and management of services offered by a provider.

* Performance isolation.

Virtualization has been used successfully since the late 1950s. A virtual memory based on paging
was first implemented on the Atlas computer at the University of Manchester in the United Kingdom in
1959. In a cloud computing environment a VMM runs on the physical hardware and exports hardware-
level abstractions to one or more guest operating systems. A guest OS interacts with the virtual hardware
in the same way it would interact with the physical hardware, but under the watchful eye of the VMM
which traps all privileged operations and mediates the interactions of the guest OS with the hardware.
For example, a VMM can control I/O operations to two virtual disks implemented as two different sets
of tracks on a physical disk. New services can be added without the need to modify an operating system.

User convenience is a necessary condition for the success of the utility computing paradigms. One
of the multiple facets of user convenience is the ability to run remotely using the system software and
libraries required by the application. User convenience is a major advantage of a VM architecture over
a traditional operating system. For example, a user of the Amazon Web Services (AWS) could submit an
Amazon Machine Image (AMI) containing the applications, libraries, data, and associated configuration
settings. The user could choose the operating system for the application, then start, terminate, and
monitor as many instances of the AMI as needed, using the Web Service APIs and the performance
monitoring and management tools provided by the AWS.

There are side effects of virtualization, notably the performance penalty and the hardware costs. As
we shall see shortly, all privileged operations of a VM must be trapped and validated by the VMM, which
ultimately controls system behavior; the increased overhead has a negative impact on performance. The
cost of the hardware for a VM is higher than the cost for a system running a traditional operating system
because the physical hardware is shared among a set of guest operating systems and it is typically
configured with faster and/or multicore processors, more memory, larger disks, and additional network
interfaces compared with a system running a traditional operating system.

5.2 Layering and virtualization

A common approach to managing system complexity is to identify a set of layers with well-defined
interfaces among them. The interfaces separate different levels of abstraction. Layering minimizes the
interactions among the subsystems and simplifies the description of the subsystems. Each subsystem
is abstracted through its interfaces with the other subsystems. Thus, we are able to design, implement,
and modify the individual subsystems independently.

The instruction set architecture (ISA) defines a processor’s set of instructions. For example, the
Intel architecture is represented by the x86-32 and x86-64 instruction sets for systems supporting 32-bit

134 CHAPTER 5 Cloud Resource Virtualization

addressing and 64-bit addressing, respectively. The hardware supports two execution modes, a privi-
leged, or kernel, mode and a user mode. The instruction set consists of two sets of instructions, privileged
instructions that can only be executed in kernel mode and nonprivileged instructions that can be executed
in user mode. There are also sensitive instructions that can be executed in kernel and in user mode but
that behave differently (see Section 5.6).

Computer systems are fairly complex, and their operation is best understood when we consider a
model similar to the one in Figure 5.1, which shows the interfaces among the software components and
the hardware [325]. The hardware consists of one or more multicore processors, a system interconnect
(e.g., one or more buses), a memory translation unit, the main memory, and I/O devices, including one
or more networking interfaces. Applications written mostly in high-level languages (HLL) often call
library modules and are compiled into object code. Privileged operations, such as I/O requests, cannot
be executed in user mode; instead, application and library modules issue system calls and the operating
system determines whether the privileged operations required by the application do not violate system
security or integrity and, if they don’t, executes them on behalf of the user. The binaries resulting from
the translation of HLL programs are targeted to a specific hardware architecture.

The first interface we discuss is the instruction set architecture (ISA) at the boundary of the hardware
and the software. The next interface is the application binary interface (ABI), which allows the ensemble
consisting of the application and the library modules to access the hardware. The ABI does not include
privileged system instructions; instead it invokes system calls. Finally, the application program interface

Al ‘
API
Libraries W
ABI | 7
‘ System calls v
Operating System ‘ A3
ISA | s
‘ System ISA User ISA
Hardware

FIGURE 5.1

Layering and interfaces between layers in a computer system. The software components, including appli-
cations, libraries, and operating system, interact with the hardware via several interfaces: the application
programming interface (API), the application binary interface (ABI), and the instruction set architecture (ISA).
An application uses library functions (A1), makes system calls (A2), and executes machine instructions (A3).

5.2 Layering and Virtualization 135

(API) defines the set of instructions the hardware was designed to execute and gives the application
access to the ISA. It includes HLL library calls, which often invoke system calls. A process is the
abstraction for the code of an application at execution time; a thread is a lightweight process. The ABI
is the projection of the computer system seen by the process, and the API is the projection of the system
from the perspective of the HLL program.

Clearly, the binaries created by a compiler for a specific ISA and a specific operating system are
not portable. Such code cannot run on a computer with a different ISA or on computers with the
same ISA but different operating systems. However, it is possible to compile an HLL program for a
VM environment, as shown in Figure 5.2, where portable code is produced and distributed and then
converted by binary translators to the ISA of the host system. A dynamic binary translation converts
blocks of guest instructions from the portable code to the host instruction and leads to a significant
performance improvement as such blocks are cached and reused.

HLL code

Compiler front-end Compiler I

Intermediate Portable
code
Compiler back-end VM loader
..
interpreter
Memory Memory
image ISA-1 image ISA-2
FIGURE 5.2

High-level language (HLL) code can be translated for a specific architecture and operating system. HLL code
can also be compiled into portable code and then the portable code translated for systems with different
ISAs. The code that is shared/distributed is the object code in the first case and the portable code in the
second case.

Object code

VM compiler/

Loader .
interpreter

136 CHAPTER 5 Cloud Resource Virtualization

5.3 Virtual machine monitors

A virtual machine monitor (VMM), also called a hypervisor, is the software that securely partitions
the resources of a computer system into one or more virtual machines. A guest operating system is an
operating system that runs under the control of a VMM rather than directly on the hardware. The VMM
runs in kernel mode, whereas a guest OS runs in user mode. Sometimes the hardware supports a third
mode of execution for the guest OS.

VMMs allow several operating systems to run concurrently on a single hardware platform; at the
same time, VMMs enforce isolation among these systems, thus enhancing security. A VMM controls
how the guest operating system uses the hardware resources. The events occurring in one VM do not
affect any other VM running under the same VMM. At the same time, the VMM enables:

e Multiple services to share the same platform.
¢ The movement of a server from one platform to another, the so-called live migration.
* System modification while maintaining backward compatibility with the original system.

When a guest OS attempts to execute a privileged instruction, the VMM traps the operation and
enforces the correctness and safety of the operation. The VMM guarantees the isolation of the individual
VMs, and thus ensures security and encapsulation, a major concern in cloud computing. At the same time,
the VMM monitors system performance and takes corrective action to avoid performance degradation;
for example, the VMM may swap out a VM (copies all pages of that VM from real memory to disk and
makes the real memory frames available for paging by other VMs) to avoid thrashing.

A VMM virtualizes the CPU and memory. For example, the VMM traps interrupts and dispatches
them to the individual guest operating systems. If a guest OS disables interrupts, the VMM buffers such
interrupts until the guest OS enables them. The VMM maintains a shadow page table for each guest
OS and replicates any modification made by the guest OS in its own shadow page table. This shadow
page table points to the actual page frame and is used by the hardware component called the memory
management unit (MMU) for dynamic address translation.

Memory virtualization has important implications on performance. VMMs use a range of optimiza-
tion techniques; for example, VMware systems avoid page duplication among different virtual machines;
they maintain only one copy of a shared page and use copy-on-write policies whereas Xen imposes total
isolation of the VM and does not allow page sharing. VMMs control the virtual memory management
and decide what pages to swap out; for example, when the ESX VMware server wants to swap out
pages, it uses a balloon process inside a guest OS and requests it to allocate more pages to itself, thus
swapping out pages of some of the processes running under that VM. Then it forces the balloon process
to relinquish control of the free page frames.

5.4 Virtual machines

A virtual machine (VM) is an isolated environment that appears to be a whole computer but actually
only has access to a portion of the computer resources. Each VM appears to be running on the bare
hardware, giving the appearance of multiple instances of the same computer, though all are supported by
a single physical system. Virtual machines have been around since the early 1970s, when IBM released
its VM/370 operating system.

Process VMs | System VMs

Same ISA Different ISA
Multi Dynamic
program translators

Binary
optimizers | = HLLVMs

(a)

Same ISA

Traditional
VM

Hybrid VM

Hosted VM

Application
c c c
kel S 2
S118|1]E
a a a
AR ES Guest OS
L
Host OS I VMM

(c)

FIGURE 5.3

Different ISA

Whole

system VM

Codesigned
VM

Hardware I

5.4 Virtual Machines 137

-
Application Application
Guest Guest
08-1 0S-n

Virtual Machine Monitor

Hardware

(b)

il

(Application] (Application

Guest 0S-1 Guest OS-n
VM-1 VM-n

Virtual Machine Monitor I

Host OS

Hardware I

(d)

N—1

(a) A taxonomy of process and system VMs for the same and for different ISAs. Traditional, hybrid, and hosted
are three classes of VM for systems with the same ISA. (b) Traditional VMs. The VMM supports multiple VMs
and runs directly on the hardware. (c) A hybrid VM. The VMM shares the hardware with a host operating system
and supports multiple virtual machines. (d) A hosted VM. The VMM runs under a host operating system.

We distinguish two types of VM: process and system VMs [see Figure 5.3(a)]. A process VM is a
virtual platform created for an individual process and destroyed once the process terminates. Virtually
all operating systems provide a process VM for each one of the applications running, but the more
interesting process VMs are those that support binaries compiled on a different instruction set. A system
VM supports an operating system together with many user processes. When the VM runs under the
control of a normal OS and provides a platform-independent host for a single application, we have an
application virtual machine (e.g., Java Virtual Machine [JVM]).

|
CHAPTER 5 Cloud Resource Virtualization

138

Table 5.1 A nonexhaustive inventory of system virtual machines. The host ISA refers to the
instruction set of the hardware; the guest ISA refers to the instruction set supported by the
virtual machine. The VM could run under a host OS, directly on the hardware, or under a VMM.
The guest OS is the operating system running under the control of a VM, which in turn may run
under the control of the VMM.
Name Host ISA Guest ISA Host OS Guest OS Company
Integrity VM Xx86-64 x86-64 HP-Unix Linux, Windows HP
HP Unix
Power VM Power Power No host OS Linux, AlIX IBM
z/NM z-ISA z-ISA No host OS Linux on z-ISA IBM
Lynx Secure x86 x86 No host OS Linux, Windows LinuxWorks
Hyper-V Server x86-64 x86-64 Windows Windows Microsoft
Oracle VM X86, x86-64 Xx86, x86-64 No host OS Linux, Windows Oracle
RTS Hypervisor x86 x86 No host OS Linux, Windows Real Time
Systems
SUN xVM x86, SPARC same as host No host OS Linux, Windows SUN
VMware EX Xx86, x86-64 x86, x86-64 No host OS Linux, Windows, VMware
Server Solaris, FreeBSD
VMware Fusion Xx86, x86-64 x86, x86-64 Mac OS x86 Linux, Windows, VMware
Solaris, FreeBSD
VMware Server X86, x86-64 Xx86, x86-64 Linux, Linux, Windows, VMware
Windows Solaris, FreeBSD
VMware X86, x86-64 Xx86, x86-64 Linux, Linux, Windows, VMware
Workstation Windows Solaris, FreeBSD
VMware Player X86, x86-64 Xx86, x86-64 Linux, Linux, Windows, VMware
Windows Solaris, FreeBSD
Denali Xx86 Xx86 Denali ILVACO, NetBSD University of
Washington
Xen Xx86, x86-64 Xx86, x86-64 Linux Solaris Linux, Solaris University of
NetBSD Cambridge

A literature search reveals the existence of some 60 different virtual machines, many created by the
large software companies; Table 5.1 lists a subset of them.

A system virtual machine provides a complete system; each VM can run its own OS, which in turn can
run multiple applications. Systems such as Linux Vserver [214], OpenVZ (Open VirtualiZation) [274],
FreeBSD Jails [124], and Solaris Zones [296], based on Linux, FreeBSD, and Solaris, respectively,
implement operating system-level virtualization technologies.

Operating system-level virtualization allows a physical server to run multiple isolated operating
system instances, subject to several constraints; the instances are known as containers, virtual private
servers (VPSs), or virtual environments (VEs). For example, OpenVZ requires both the host and the
guest OS to be Linux distributions. These systems claim performance advantages over the systems based

5.5 Performance and Security Isolation 139

on a VMM such as Xen or VMware; according to [274], there is only a 1% to 3% performance penalty
for OpenVZ compared to a stand-alone Linux server. OpenVZ is licensed under the GPL version 2.

Recall that a VMM allows several virtual machines to share a system. Several organizations of the
software stack are possible:

* Traditional. VM also called a “bare metal” VMM. A thin software layer that runs directly on the
host machine hardware; its main advantage is performance [see Figure 5.3(b)]. Examples: VM Ware
ESX, ESXi Servers, Xen, OS370, and Denali.

e Hybrid. The VMM shares the hardware with the existing OS [see Figure 5.3(c)]. Example: VMWare
Workstation.

* Hosted. The VM runs on top of an existing OS [see Figure 5.3(d)]. The main advantage of this
approach is that the VM is easier to build and install. Another advantage of this solution is that the
VMM could use several components of the host OS, such as the scheduler, the pager, and the I/O
drivers, rather than providing its own. A price to pay for this simplicity is the increased overhead and
associated performance penalty; indeed, the I/O operations, page faults, and scheduling requests
from a guest OS are not handled directly by the VMM. Instead, they are passed to the host OS.
Performance as well as the challenges to support complete isolation of VMs make this solution less
attractive for servers in a cloud computing environment. Example: User-mode Linux.

A semantic gap exists between the added services and the virtual machine. As pointed out in [79],
services provided by the virtual machine “operate below the abstractions provided by the guest operating
system It is difficult to provide a service that checks file system integrity without the knowledge
of on-disk structure.”

The VMMs discussed next manage the resource sharing among the VMs sharing a physical system.

5.5 Performance and security isolation

Performance isolation is a critical condition for quality-of-service (QoS) guarantees in shared computing
environments. Indeed, if the run-time behavior of an application is affected by other applications running
concurrently and, thus, is competing for CPU cycles, cache, main memory, and disk and network
access, it is rather difficult to predict the completion time. Moreover, it is equally difficult to optimize
the application. Several operating systems, including Linux/RK [270], QLinux [343], and SILK [44],
support some performance isolation, but problems still exist because one has to account for all resources
used and to distribute the overhead for different system activities, including context switching and
paging, to individual users — a problem often described as QoS crosstalk [348].

Processor virtualization presents multiple copies of the same processor or core on multicore systems.
The code is executed directly by the hardware, whereas processor emulation presents a model of another
hardware system in which instructions are “emulated” in software more slowly than virtualization. An
example is Microsoft’s VirtualPC, which could run on chip sets other than the x86 family. It was used
on Mac hardware until Apple adopted Intel chips.

Traditional operating systems multiplex multiple processes or threads, whereas a virtualization sup-
ported by a VMM multiplexes full operating systems. Obviously, there is a performance penalty because
an OS is considerably more heavyweight than a process and the overhead of context switching is larger.
A VMM executes directly on the hardware a subset of frequently used machine instructions generated

140 CHAPTER 5 Cloud Resource Virtualization

by the application and emulates privileged instructions, including device 1/O requests. The subset of
the instructions executed directly by the hardware includes arithmetic instructions, memory access, and
branching instructions.

Operating systems use process abstraction not only for resource sharing but also to support isolation.
Unfortunately, this is not sufficient from a security perspective. Once a process is compromised, it is
rather easy for an attacker to penetrate the entire system. On the other hand, the software running on
a virtual machine has the constraints of its own dedicated hardware; it can only access virtual devices
emulated by the software. This layer of software has the potential to provide a level of isolation nearly
equivalent to the isolation presented by two different physical systems. Thus, the virtualization can be
used to improve security in a cloud computing environment.

A VMM is a much simpler and better specified system than a traditional operating system. For
example, the Xen VMM discussed in Section 5.8 has approximately 60,000 lines of code, whereas
the Denali VMM [372] has only about half that, or 30,000 lines of code. The security vulnerability
of VMM is considerably reduced because the systems expose a much smaller number of privileged
functions. For example, the Xen VMM can be accessed through 28 hypercalls, whereas a standard
Linux allows hundreds (e.g., Linux 2.6.11 allows 289 system calls). In addition to a plethora of system
calls, a traditional operating system supports special devices (e.g., /dev/kmem) and many privileged
programs from a third party (e.g., sendmail and sshd).

5.6 Full virtualization and paravirtualization

In 1974 Gerald J. Popek and Robert P. Goldberg gave a set of sufficient conditions for a computer
architecture to support virtualization and allow a VMM to operate efficiently [293]:

* A program running under the VMM should exhibit a behavior essentially identical to that demon-
strated when the program runs directly on an equivalent machine.

* The VMM should be in complete control of the virtualized resources.

e A statistically significant fraction of machine instructions must be executed without the intervention
of the VMM.

Another way to identify an architecture suitable for a virtual machine is to distinguish two classes
of machine instructions: sensitive instructions, which require special precautions at execution time, and
innocuous instructions, which are not sensitive. In turn, sensitive instructions can be:

* Control sensitive, which are instructions that attempt to change either the memory allocation or the
privileged mode.
e Mode sensitive, which are instructions whose behavior is different in the privileged mode.

An equivalent formulation of the conditions for efficient virtualization can be based on this classifi-
cation of machine instructions. A VMM for a third-generation (or later) computer can be constructed
if the set of sensitive instructions is a subset of the privileged instructions of that machine. To handle
nonvirtualizable instructions, one could resort to two strategies:

* Binary translation. The VMM monitors the execution of guest operating systems; nonvirtualizable
instructions executed by a guest operating system are replaced with other instructions.

5.6 Full Virtualization and Paravirtualization 141

* Paravirtualization. The guest operating system is modified to use only instructions that can be
virtualized.

There are two basic approaches to processor virtualization: full virtualization, in which each virtual
machine runs on an exact copy of the actual hardware, and paravirtualization, in which each virtual
machine runs on a slightly modified copy of the actual hardware (see Figure 5.4). The reasons that
paravirtualization is often adopted are (i) some aspects of the hardware cannot be virtualized; (ii)
to improve performance; and (iii) to present a simpler interface. VMware VMMs are examples of
full virtualization. Xen [41] and Denali [372] are based on paravirtualization; Section 5.8 covers the
strategies to overcome hardware limitations for paravirtualization in Xen.

Full virtualization requires a virtualizable architecture; the hardware is fully exposed to the guest
OS, which runs unchanged, and this ensures that this direct execution mode is efficient. On the other
hand, paravirtualization is done because some architectures such as x86 are not easily virtualizable.
Paravirtualization demands that the guest OS be modified to run under the VMM,; furthermore, the
guest OS code must be ported for individual hardware platforms.

Systems such as VMware EX Server support full virtualization on x86 architecture. The virtualization
of the memory management unit (MMU) and the fact that privileged instructions executed by a guest
OS fail silently pose some challenges; for example, to address the latter problem, one has to insert
traps whenever privileged instructions are issued by a guest OS. The system must also maintain shadow
copies of system control structures, such as page tables, and trap every event affecting the state of these
control structures; the overhead of many operations is substantial .

Application performance under a virtual machine is critical; generally, virtualization adds some level
of overhead that negatively affects the performance. In some cases an application running under a VM

Guest OS

Hardware
abstraction
layer

Hardware
abstraction
layer

Hypervisor Hypervisor

Hardware

Hardware

(a) (b)
FIGURE 5.4

(a) Full virtualization requires the hardware abstraction layer of the guest OS to have some knowledge about
the hardware. (b) Paravirtualization avoids this requirement and allows full compatibility at the application
binary interface (ABI).

142 CHAPTER 5 Cloud Resource Virtualization

performs better than one running under a classical OS. This is the case of a policy called cache isolation.
The cache is generally not partitioned equally among processes running under a classical OS, since one
process may use the cache space better than the other. For example, in the case of two processes, one
write-intensive and the other read-intensive, the cache may be aggressively filled by the first. Under
the cache isolation policy the cache is divided between the VMs and it is beneficial to run workloads
competing for cache in two different VMs [324]. The application I/O performance running under a VM
depends on factors such as the disk partition used by the VM, the CPU utilization, the I/O performance
of the competing VMs, and the I/O block size. On a Xen platform, discrepancies between the optimal
choice and the default are as high as 8% to 35% [324].

5.7 Hardware support for virtualization

In early 2000 it became obvious that hardware support for virtualization was necessary, and Intel and
AMD started work on the first-generation virtualization extensions of the x86 3 architecture. In 2005
Intel released two Pentium 4 models supporting V7-x, and in 2006 AMD announced Pacifica and then
several Athlon 64 models.

A 2006 paper [253] analyzes the challenges to virtualizing Intel architectures and then presents
VT-x and VT-i virtualization architectures for x86 and [tanium architectures, respectively. Software
solutions at that time addressed some of the challenges, but hardware solutions could improve not only
performance but also security and, at the same time, simplify the software systems. We first examine
the problems faced by virtualization of the x86 architecture:

* Ring deprivileging. This means that a VMM forces the guest software, the operating system, and
the applications to run at a privilege level greater than 0. Recall that the x86 architecture provides
four protection rings at levels 0-3. Two solutions are then possible: (a) The (0/1/3) mode, in which
the VMM, the OS, and the application run at privilege levels 0, 1, and 3, respectively; or (b) the
(0,3,3) mode, in which the VMM, a guest OS, and applications run at privilege levels 0, 3, and 3,
respectively. The first mode is not feasible for x86 processors in 64-bit mode, as we shall see shortly.

* Ring aliasing. Problems created when a guest OS is forced to run at a privilege level other than that
it was originally designed for. For example, when the CR register* is PUSHed, the current privilege
level is also stored on the stack [253].

» Address space compression. A VMM uses parts of the guest address space to store several system
data structures, such as the interrupt-descriptor table and the global-descriptor table. Such data
structures must be protected, but the guest software must have access to them.

* Nonfaulting access to privileged state. Several instructions, LGDT, SIDT, SLDT, and LTR that
load the registers GDTR, IDTR, LDTR, and TR, can only be executed by software running at
privilege level 0, because these instructions point to data structures that control the CPU operation.

3The names x86-32, i386, x86, and IA-32 all refer to the Intel CISC-based instruction architecture, now supplanted by x86-64,
which supports vastly larger physical and virtual address spaces. The x86-64 specification is distinct from the ltanium, initially
known as IA-64 architecture.

4The x86 architecture supports memory segmentation with a segment size of 64K. The code-segment register (CR) points
to the code segment. MOV, POP, and PUSH instructions serve to load and store segment registers, including CR.

5.7 Hardware Support for Virtualization 143

Virtual-machine control structure

- h
M host-state
w guest-state

VM exit

VM entry

(a) (b)
FIGURE 5.5

(a) The two modes of operation of VT-x, and the two operations to transit from one to another. (b) The VMCS
includes host-state and guest-state areas that control the VM entry and VM exit transitions.

Nevertheless, instructions that store from these registers fail silently when executed at a privilege
level other than 0. This implies that a guest OS executing one of these instructions does not realize
that the instruction has failed.

* Guest system calls. Two instructions, SYSENTER and SYSEXIT, support low-latency system calls.
The first causes a transition to privilege level 0, whereas the second causes a transition from privilege
level 0 and fails if executed at a level higher than 0. The VMM must then emulate every guest
execution of either of these instructions, which has a negative impact on performance.

e Interrupt virtualization. In response to a physical interrupt, the VMM generates a “virtual interrupt”
and delivers it later to the target guest OS. But every OS has the ability to mask interrupts>; thus the vir-
tual interrupt could only be delivered to the guest OS when the interrupt is not masked. Keeping track
of all guest OS attempts to mask interrupts greatly complicates the VMM and increases the overhead.

* Access to hidden state. Elements of the system state (e.g., descriptor caches for segment registers)
are hidden; there is no mechanism for saving and restoring the hidden components when there is a
context switch from one VM to another.

* Ring compression. Paging and segmentation are the two mechanisms to protect VMM code from
being overwritten by a guest OS and applications. Systems running in 64-bit mode can only use
paging, but paging does not distinguish among privilege levels 0, 1, and 2, so the guest OS must run
at privilege level 3, the so-called (0/3/3) mode. Privilege levels 1 and 2 cannot be used; thus the
name ring compression.

* Frequent access to privileged resources increases VMM overhead. The task-priority register (TPR)
is frequently used by a guest OS. The VMM must protect the access to this register and trap all
attempts to access it. This can cause a significant performance degradation.

Similar problems exist for the Itanium architecture discussed in Section 5.10.

A major architectural enhancement provided by the V7-x is the support for two modes of operations
and a new data structure called the virtual machine control structure (VMCS), including host-state and
guest-state areas (see Figure 5.5):

e VMX root. Intended for VMM operations and very close to the x86 without VT-x.

3The interrupt flag (IF) in the EFLAGS register is used to control interrupt masking.

144 CHAPTER 5 Cloud Resource Virtualization

* VMX nonroot. Intended to support a VM.

When executing a VM entry operation, the processor state is loaded from the guest-state of the VM
scheduled to run; then the control is transferred from the VMM to the VM. A VM exit saves the processor
state in the guest-state area of the running VM then it loads the processor state from the host-state area
and finally transfers control to the VMM. Note that all VM exit operations use a common entry point
to the VMM.

Each VM exit operation saves the reason for the exit and, eventually, some qualifications in VMCS.
Some of this information is stored as bitmaps. For example, the exception bitmap specifies which one
of 32 possible exceptions caused the exit. The /O bitmap contains one entry for each port in a 16-bit
1/O space.

The VMCS area is referenced with a physical address and its layout is not fixed by the architecture
but can be optimized by a particular implementation. The VMCS includes control bits that facilitate
the implementation of virtual interrupts. For example, external-interrupt exiting, when set, causes the
execution of a VM exit operation; moreover, the guest is not allowed to mask these interrupts. When the
interrupt window exiting is set, a VM exit operation is triggered if the guest is ready to receive interrupts.

Processors based on two new virtualization architectures, V7:d © and V7T-c, have been developed.
The first supports the I/O memory management unit (I/O MMU) virtualization and the second supports
network virtualization.

Also known as PCI pass-through, 1/O MMU virtualization gives VMs direct access to peripheral
devices. VI-d supports:

* DMA address remapping, which is address translation for device DMA transfers.

* Interrupt remapping, which is isolation of device interrupts and VM routing.

* I/Odevice assignment, in which an administrator can assign the devices toa VM in any configuration.

» Reliability features, which report and record DMA and interrupt errors that may otherwise corrupt
memory and impact VM isolation.

Next we discuss Xen, a widely used VMM or hypervisor.

5.8 Case study: Xen, a VMM based on paravirtualization

Xen is a VMM or hypervisor developed by the Computing Laboratory at the University of Cambridge,
United Kingdom, in 2003. Since 2010 Xen has been free software, developed by the community of users
and licensed under the GNU General Public License (GPLv2). Several operating systems, including
Linux, Minix, NetBSD, FreeBSD, NetWare, and OZONE, can operate as paravirtualized Xen guest
operating systems running on x86, x86-64, Itanium, and ARM architectures.

The goal of the Cambridge group, led by Ian Pratt, was to design a VMM capable of scaling to about
100 VMs running standard applications and services without any modifications to the application binary
interface (ABI). Fully aware that the x86 architecture does not support efficiently full virtualization, the
designers of Xen opted for paravirtualization.

Next we analyze the original implementation of Xen for the x86 architecture discussed in [41]. The
creators of Xen used the concept of domain (Dom) to refer to the ensemble of address spaces hosting a

The corresponding AMD architecture is called AMD-Vi.

5.8 Case Study: Xen, a VMM Based on Paravirtualization 145

Management
oS Applicati Applicati icati
pplication pplication Application
Guest OS Guest OS Guest OS
Xen-aware
device drivers
Xen-aware Xen-aware Xen-aware
device drivers device drivers device drivers
Xen
Domain0 control Virtual x86 Virtual physical NP Virtual block
interface CPU memory devices

x86 hardware

FIGURE 5.6

Xen for the x86 architecture. In the original Xen implementation [41] a guest OS could be XenoLinix,
XenoBSD, or XenoXP. The management OS dedicated to the execution of Xen control functions and privileged
instructions resides in DomO; guest operating systems and applications reside in DomU.

guest OS and address spaces for applications running under this guest OS. Each domain runs on a virtual
x86 CPU. Dom0 is dedicated to the execution of Xen control functions and privileged instructions, and
DomU is a user domain (see Figure 5.6) .

The most important aspects of the Xen paravirtualization for virtual memory management, CPU
multiplexing, and I/O device management are summarized in Table 5.2 [41]. Efficient management
of the translation look-aside buffer (TLB), a cache for page table entries, requires either the ability to
identify the OS and the address space of every entry or to allow software management of the TLB.
Unfortunately, the x86 architecture does not support either the tagging of TLB entries or the software
management of the TLB. As a result, address space switching, when the VMM activates a different OS,
requires a complete TLB flush. This has a negative impact on performance.

The solution that was adopted was to load Xen in a 64 MB segment at the top of each address space
and delegate the management of hardware page tables to the guest OS with minimal intervention from
Xen. The 64 MB region occupied by Xen at the top of every address space is not accessible or not
remappable by the guest OS. When a new address space is created, the guest OS allocates and initializes
a page from its own memory, registers it with Xen, and relinquishes control of the write operations to
the VMM. Thus, a guest OS could only map pages it owns. On the other hand, it has the ability to batch
multiple page-update requests to improve performance. A similar strategy is used for segmentation.

The x86 Intel architecture supports four protection rings or privilege levels; virtually all OS kernels
run at Level 0, the most privileged one, and applications at Level 3. In Xen the VMM runs at Level 0,
the guest OS at Level 1, and applications at Level 3.

146 CHAPTER 5 Cloud Resource Virtualization

Table 5.2 Paravirtualization strategies for virtual memory management, CPU multiplexing, and
I/0 devices for the original x86 Xen implementation.

Function Strategy

Paging A domain may be allocated discontinuous pages. A guest OS has direct access to page
tables and handles page faults directly for efficiency. Page table updates are batched
for performance and validated by Xen for safety.

Memory Memory is statically partitioned between domains to provide strong isolation.
XenoLinux implements a balloon driver to adjust domain memory.

Protection A guest OS runs at a lower priority level, in ring 1, while Xen runs in ring 0.

Exceptions A guest OS must register with Xen a description table with the addresses of exception

handlers previously validated. Exception handlers other than the page fault handler are
identical to x86 native exception handlers.

System calls To increase efficiency, a guest OS must install a “fast” handler to allow system calls from
an application to the guest OS and avoid indirection through Xen.

Interrupts A lightweight event system replaces hardware interrupts. Synchronous system calls from
a domain to Xen use hypercalls, and notifications are delivered using the
asynchronous event system.

Multiplexing A guest OS may run multiple applications.

Time Each guest OS has a timer interface and is aware of “real” and “virtual” time.

Network and Data is transferred using asynchronous 1/O rings. A ring is a circular queue of descriptors

I/O devices allocated by a domain and accessible within Xen.

Disk access ~ Only DomO has direct access to IDE and SCSI disks. All other domains access persistent

storage through the virtual block device (VBD) abstraction.

Applications make system calls using the so-called hypercalls processed by Xen. Privileged instruc-
tions issued by a guest OS are paravirtualized and must be validated by Xen. When a guest OS attempts
to execute a privileged instruction directly, the instruction fails silently.

Memory is statically partitioned between domains to provide strong isolation. To adjust domain
memory, XenoLinux implements a balloon driver, which passes pages between Xen and its own page
allocator. For the sake of efficiency, page faults are handled directly by the guest OS.

Xen schedules individual domains using the borrowed virtual time (BVT) scheduling algorithm
discussed in Section 6.11. BVT is a work conserving’ and low-latency wake-up scheduling algorithm.
BVT uses a virtual-time warping mechanism to support low-latency dispatch to ensure timely execution
when this is needed — for example, for timely delivery of TCP acknowledgments.

A guest OS must register with Xen a description table with the addresses of exception handlers for
validation. Exception handlers are identical to the native x86 handlers. The only one that does not follow
this rule is the page fault handler, which uses an extended stack frame to retrieve the faulty address
because the privileged register CR2, where this address is found, is not available to a guest OS. Each

7 A work-conserving scheduling algorithm does not allow the processor to be idle when there is work to be done.

5.8 Case Study: Xen, a VMM Based on Paravirtualization 147

guest OS can validate and then register a “fast” exception handler executed directly by the processor
without the interference of Xen. A lightweight event system replaces hardware interrupts. Notifications
are delivered using this asynchronous event system. Each guest OS has a timer interface and is aware
of “real” and “virtual” time.

XenStore is a Dom0 process that supports a system-wide registry and naming service. It is imple-
mented as a hierarchical key-value storage; a watch function of the process informs listeners of changes
to the key in storage to which they have subscribed. XenStore communicates with guest VMs via shared
memory using Dom0 privileges rather than grant tables.

The Toolstack is another Dom0 component responsible for creating, destroying, and managing the
resources and privileges of VMs. To create a new VM a user provides a configuration file describing
memory and CPU allocations as well as device configuration. Then the Toolstack parses this file and
writes this information in the XenStore. Toolstack takes advantage of Dom0 privileges to map guest
memory, to load a kernel and virtual BIOS, and to set up initial communication channels with the
XenStore and with the virtual console when a new VM is created.

Xen defines abstractions for networking and I/O devices. Split drivers have a front-end in the DomU
and a back-end in Dom0; the two communicate via a ring in shared memory. Xen enforces access control
for the shared memory and passes synchronization signals. Access control lists (ACLs) are stored in
the form of grant tables, with permissions set by the owner of the memory.

Data for I/O and network operations move vertically through the system very efficiently using a
set of I/O rings (see Figure 5.7). A ring is a circular queue of descriptors allocated by a domain and
accessible within Xen. Descriptors do not contain data; the data buffers are allocated off-band by the
guest OS. Memory committed for I/O and network operations is supplied in a manner designed to
avoid “cross-talk,” and the I/O buffers holding the data are protected by preventing page faults of the
corresponding page frames.

Each domain has one or more virtual network interfaces (VIFs) that support the functionality of
a network interface card. A VIF is attached to a virtual firewall-router (VFR). Two rings of buffer
descriptors, one for packet sending and one for packet receiving, are supported. To transmit a packet,
a guest OS enqueues a buffer descriptor to the send ring, then Xen copies the descriptor and checks
safety and finally copies only the packet header, not the payload, and executes the matching
rules.

The rules of the form (< pattern>, <action>) require the action to be executed if the pattern is
matched by the information in the packet header. The rules can be added or removed by Dom0; they
ensure the demultiplexing of packets based on the destination IP address and port and, at the same time,
prevent spoofing of the source IP address. Dom0 is the only one allowed to directly access the physical
IDE (Integrated Drive Electronics) or SCSI (Small Computer System Interface) disks. All domains
other than Dom0 access persistent storage through a virtual block device (VBD) abstraction created and
managed under the control of Dom0.

Xen includes a device emulator, Qemu, to support unmodified commodity operating systems. Qemu
emulates a DMA® and can map any page of the memory in a DomU. Each VM has its own instance of
Qemu that can run either as a Dom0 process or as a process of the VM.

8Direct Memory Access (DMA) is a hardware feature that allows I/O devices and other hardware subsystems direct access
to system memory without CPU involvement.

148 CHAPTER 5 Cloud Resource Virtualization

1/0 channel

Driver domain Guest domain

Bridge

Back-end Front-end

.

Network [} A
interface

Event channel

I
I
|
: XEN

=== — |

NIC

(a)

Request queue

Consumer Request Producer Request
(private pointer in Xen) (shared pointer updated
by the guest OS)

/

Outstanding

descriptors Unused

descriptors

oot Resaonee _—' Consumer Response
u P (private pointer maintained by

(shared ponter updated
by Xen) Response queue the guest OS)

(b)

FIGURE 5.7

Xen zero-copy semantics for data transfer using 1/0 rings. (a) The communication between a guest domain

and the driver domain over an 1/0 and an event channel; NIC is the Network Interface Controller. (b) The
circular ring of buffers.

5.9 Optimization of Network Virtualization in Xen 2.0 149

Xen, initially released in 2003, underwent significant changes in 2005, when Intel released the VT-x
processors. In 2006 Xen was adopted by Amazon for its EC2 service, and in 2008 Xen running on Intel’s
VT-d passed the ACPI S3 ° test. Xen support for Dom0 and DomU was added to the Linux kernel in 2011.

In 2008 the PCI pass-through was incorporated for Xen running on V7-d architectures. The PCI'?
pass-through allows a PCI device, whether a disk controller, network interface card (NIC), graphic card,
or Universal Serial Bus (USB), to be assigned to a VM. This avoids the overhead of copying and allows
setting up of a driver domain to increase security and system reliability. A guest OS can exploit this
facility to access the 3D acceleration capability of a graphics card. To prepare a device for pass-through,
one must know its BDE.!!

An analysis of VM performance for I/O-bound applications under Xen is reported in [298]. Two
Apache Web servers, each under a different VM, share the same server running Xen. The workload
generator sends requests for files of fixed size ranging from 1 KB to 100 KB. When the file size increases
from 1 KB to 10 KB and to 100 KB, the CPU utilization, throughput, data rate, and response time are,
respectively: (97.5%; 70.44%; 44.4%), (1,900; 1,104; 112) requests/s, (2,018; 11,048; 11,208) KBps,
and (1.52; 2.36; 2.08) msec. From the first group of results we see that for files 10 KB or larger the
system is I/O bound; the second set of results shows that the throughput measured in requests/s decreases
by less than 50% when the system becomes I/O bound, but the data rate increases by a factor of five
over the same range. The variation of the response time is quite small; it increases about 10% when the
file size increases by two orders of magnitude.

The paravirtualization strategy in Xen is different from the one adopted by a group at the University
of Washington, the creators of the Denali system [372]. Denali was designed to support a number
of virtual machines running network services one or more orders of magnitude larger than Xen. The
design of the Denali system did not target existing ABI. It does not support some features of potential
guest operating systems — for example, it does not support segmentation. Denali does not support
application multiplexing, running multiple applications under a guest OS, whereas Xen does.

Finally, a few words regarding the complexity of porting commodity operating systems to Xen. It is
reported that a total of about 3,000 lines of Linux code, or 1.36%, had to be modified; for Windows XP
this figure is 4,620, or about 0.04% [41].

5.9 Optimization of network virtualization in Xen 2.0

A virtual machine monitor introduces a significant network communication overhead. For example, it
is reported that the CPU utilization of a VMware Workstation 2.0 system running Linux 2.2.17 was 5
to 6 times higher than that of the native system (Linux 2.2.17) in saturating a 100 Mbps network [338].

9The Advanced Configuration and Power Interface (ACPI) specification is an open standard for device configuration and
power management by the operating system. It defines four Global “Gx” states and six Sleep “Sx” states. “S3” is referred to
as Standby, Sleep, or Suspend to RAM.

10pCT stands for Peripheral Component Interconnect and describes a computer bus for attaching hardware devices to a
computer. The PCI bus supports the functions found on a processor bus, but in a standardized format independent of any
particular processor. At startup time the operating system queries all PCI buses to identify the devices connected to the system
and the memory space, I/O space, interrupt lines, and so on needed by each device present.
I'BDF stands for Bus:Device Function and is used to describe PCI devices.

150 CHAPTER 5 Cloud Resource Virtualization

Driver domain Guest domain Driver domain Guest domain
Bridge Bridge
Offload
1o Driver o
NIC Back d channel Virtual NIC Back d channel ngh Level
ack-en irtua ack-en Virtual

Driver | |Interface <:(> Interface Driver ||nterface <):(> Interface
Physical I Physical I

NIC Xen VMM NIC Xen VMM

(a) (b)

FIGURE 5.8

Xen network architecture. (a) The original architecture. (b) The optimized architecture.

In other words, handling the same amount of traffic as the native system to saturate the network, the
VMM executes a much larger number of instructions — 5 to 6 times larger.

Similar overheads are reported for other VMMs and, in particular, for Xen 2.0 [241,242]. To under-
stand the sources of the network overhead, we examine the basic network architecture of Xen [see
Figure 5.8(a)]. Recall that privileged operations, including I/O, are executed by Dom0 on behalf of
a guest operating system. In this context we shall refer to it as the driver domain called to execute
networking operations on behalf of the guest domain. The driver domain uses the native Linux driver
for the network interface controller, which in turn communicates with the physical NIC, also called the
network adapter. Recall from Section 5.8 that the guest domain communicates with the driver domain
through an I/O channel; more precisely, the guest OS in the guest domain uses a virtual interface to
send/receive data to/from the back-end interface in the driver domain.

Recall that a bridge in a LAN uses broadcast to identify the MAC address of a destination system.
Once this address is identified, it is added to a table. When the next packet for the same destination
arrives, the bridge uses the link layer protocol to send the packet to the proper MAC address rather than
broadcast it. The bridge in the driver domain performs a multiplexing/demultiplexing function; packets
received from the NIC have to be demultiplexed and sent to different VMs running under the VMM.
Similarly, packets arriving from multiple VMs have to be multiplexed into a single stream before being
transmitted to the network adaptor. In addition to bridging, Xen supports IP routing based on network
address translation (NAT).

Table 5.3 shows the ultimate effect of this longer processing chain for the Xen VMM as well as the
effect of optimizations [242]. The receiving and sending rates from a guest domain are roughly 30%
and 20%, respectively, of the corresponding rates of a native Linux application. Packet multiplexing/

5.9 Optimization of Network Virtualization in Xen 2.0 151

Table 5.3 A comparison of send and receive data rates for a native Linux system, the Xen driver
domain, an original Xen guest domain, and an optimized Xen guest domain.
System Receive Data Rate (Mbps) Send Data Rate (MBPS)
Linux 2,508 3,760
Xen driver 1,728 3,760
Xen guest 820 750
Optimized Xen guest 970 3,310

demultiplexing accounts for about 40% and 30% of the communication overhead for the incoming
traffic and for the outgoing traffic, respectively.

The Xen network optimization discussed in [242] covers optimization of (i) the virtual interface;
(ii) the I/O channel; and (iii) the virtual memory. The effects of these optimizations are significant for
the send data rate from the optimized Xen guest domain, an increase from 750 to 3, 310 Mbps, and
rather modest for the receive data rate, 970 versus 820 Mbps.

Next we examine briefly each optimization area, starting with the virtual interface. There is a tradeoff
between generality and flexibility on one hand and performance on the other hand. The original virtual
network interface provides the guest domain with the abstraction of a simple low-level network interface
supporting sending and receiving primitives. This design supports a wide range of physical devices
attached to the driver domain but does not take advantage of the capabilities of some physical NICs
such as checksum offload (e.g., TSO'?) and scatter-gather DMA support.'? These features are supported
by the high-level virtual interface of the optimized system [see Figure 5.8(b)].

The next target of the optimization effort is the communication between the guest domain and the
driver domain. Rather than copying a data buffer holding a packet, each packet is allocated in a new
page and then the physical page containing the packet is remapped into the target domain. For example,
when a packet is received, the physical page is remapped to the guest domain. The optimization is
based on the observation that there is no need to remap the entire packet; for example, when sending a
packet, the network bridge needs to know only the MAC header of the packet. As a result, the optimized
implementation is based on an “out-of-band” channel used by the guest domain to provide the bridge
with the packet MAC header. This strategy contributed to a better than four times increase in the send
data rate compared with the nonoptimized version.

The third optimization covers virtual memory. Virtual memory in Xen 2.0 takes advantage of the
superpage and global page-mapping hardware features available on Pentium and Pentium Pro proces-
sors. A superpage increases the granularity of the dynamic address translation; a superpage entry covers
1,024 pages of physical memory, and the address translation mechanism maps a set of contiguous
pages to a set of contiguous physical pages. This helps reduce the number of TLB misses. Obviously,

12TSO stands for TCP segmentation offload. This option enables the network adapter to compute the TCP checksum on
transmit and receive and save the host CPU the overhead for computing the checksum. Large packets have larger savings.
3Direct Memory Access (DMA) can also be used for memory-to-memory copying and can offload expensive memory
operations, such as scatter-gather operations, from the CPU to the dedicated DMA engine. Intel includes such engines on
high-end servers, called I/O Acceleration Technology (I/OAT).

152 CHAPTER 5 Cloud Resource Virtualization

all pages of a superpage belong to the same guest OS. When new processes are created, the guest OS
must allocate read-only pages for the page tables of the address spaces running under the guest OS, and
that forces the system to use traditional page mapping rather than superpage mapping. The optimized
version uses a special memory allocator to avoid this problem.

5.10 vBlades: paravirtualization targeting an x86-64 Itanium processor

To understand the impact of computer architecture on the ability to efficiently virtualize a given archi-
tecture, we discuss some of the findings of the vBlades project at HP-Laboratories [228]. The goal of
the vBlades project was to create a VMM for the Itanium family of IA64 Intel processors,'* capable of
supporting the execution of multiple operating systems in isolated protection domains with security and
privacy enforced by the hardware. The VMM was also expected to support optimal server utilization
and allow comprehensive measurement and monitoring for detailed performance analysis.

The discussion in Section 5.4 shows that to be fully virtualizable, the ISA of a processor must conform
to a set of requirements, but unfortunately the /A64 architecture does not meet these requirements,
and that fact made the vBlades project more challenging. We first review the features of the Iranium
processor that are important for virtualization, starting with the observation that the hardware supports
four privilege rings, PLO, PL1, PL2, and PL3. Privileged instructions can only be executed by the
kernel running at level PLO, whereas applications run at level PL3 and can only execute nonprivileged
instructions; PL2 and PL4 rings are generally not used. The VMM uses ring compression and runs itself
at PLO and PL1 while forcing a guest OS to run at PL2. A first problem, called privilege leaking, is that
several nonprivileged instructions allow an application to determine the current privilege level (CPL);
thus, a guest OS may not accept to boot or run or may itself attempt to make use of all four privilege
rings.

Itanium was selected because of its multiple functional units and multithreading support. The Itanium
processor has 30 functional units: six general-purpose ALUs, two integer units, one shift unit, four data
cache units, six multimedia units, two parallel shift units, one parallel multiply, one population count,
three branch units, two 82-bit floating-point multiply-accumulate units, and two SIMD floating-point
multiply-accumulate units. A 128-bit instruction word contains three instructions; the fetch mechanism
can read up to two instruction words per clock from the L1 cache into the pipeline. Each unit can
execute a particular subset of the instruction set.

The hardware supports 64-bit addressing; it has 32 64-bit general-purpose registers numbered from
ROtoR31 and 96 automatically renumbered registers, R32 through R127, used by procedure calls. When
a procedure is entered, the alloc instruction specifies the registers the procedure can access by setting
the bits of a 7-bit field that controls the register usage. Anillegal read operation from such a register out
of range returns a zero value, whereas an illegal wri t e operation to it is trapped as an illegal instruction.

The Itanium processor supports isolation of the address spaces of different processes with eight
privileged region registers. The Processor Abstraction Layer (PAL) firmware allows the caller to set the

14 Jtanium is a processor developed jointly by HP and Intel and based on a new architecture, explicitly parallel instruction
computing (EPIC), that allows the processor to execute multiple instructions in each clock cycle. EPIC implements a form of
very long instruction word (VLIW) architecture in which a single instruction word contains multiple instructions. For more
information see www.dig64.org/about/Itanium2_white_paper_public.pdf.

5.10 vBlades: Paravirtualization Targeting an x86-64 Itanium Processor 153

values in the region register. The VMM intercepts the privileged instruction issued by the guest OS to
its PAL and partitions the set of address spaces among the guest OSs to ensure isolation. Each guest is
limited to 2'8 address spaces.

The hardware has an IVA register to maintain the address of the interruption vector table. The
entries in this table control both the interrupt delivery and the interrupt state collection. Different types
of interrupts activate different interrupt handlers pointed from this table, provided that the particular
interrupt is not disabled. Each guest OS maintains its own version of this vector table and has its own
IVA register. The hypervisor uses the guest OS I'VA register to give control to the guest interrupt handler
when an interrupt occurs.

First, let’s discuss CPU virtualization. When a guest OS attempts to execute a privileged instruction,
the VMM traps and emulates the instruction. For example, when the guest OS uses the rsm psr.i
instruction to turn off delivery of a certain type of interrupt, the VMM does not disable the interrupt
but records the fact that interrupts of that type should not be delivered to the guest OS, and in this case
the interrupt should be masked. There is a slight complication related to the fact that the Iranium does
not have an instruction register (IR) and the VMM has to use state information to determine whether
an instruction is privileged. Another complication is caused by the register stack engine (RSE), which
operates concurrently with the processor and may attempt to access memory (load or store) and generate
a page fault. Normally, the problem is solved by setting up a bit indicating that the fault is due to RSE
and, at the same time, the RSE operations are disabled. The handling of this problem by the VMM is
more intricate.

A number of privileged-sensitive instructions behave differently as a function of the privilege level.
The VMM replaces each one of them with a privileged instruction during the dynamic transformation
of the instruction stream. Among the instructions in this category are:

* cover, which saves stack information into a privileged register. The VMM replaces it with a
break. b instruction.

* thash and ttag, which access data from privileged virtual memory control structures and have
two registers as arguments. The VMM takes advantage of the fact that an illegal read returns a zero
and an illegal write to aregister in the range 32 to 127 is trapped and translates these instructions
as:
thash Rx=Ry -> tpa Rx=R(y+64) and ttag Rx=Ry -> tak Rx=R(y+64), where
0<y <64

e Access to performance data from performance data registers is controlled by a bit in the processor
status register with the PSR . sp instruction.

Memory virtualization is guided by the realization that a VMM should not be involved in most
memory read and write operations to prevent a significant degradation of performance, but at the
same time the VMM should exercise tight control and prevent a guest OS from acting maliciously. The
vBlades VMM does not allow a guest OS to access the memory directly. It inserts an additional layer of
indirection called metaphysical addressing between virtual and real addressing. A guest OS is placed
in metaphysical addressing mode. If the address is virtual, the VMM first checks to see whether the
guest OS is allowed to access that address and, if it is, it provides the regular address translation. If
the address is physical the VMM is not involved. The hardware distinguishes between virtual and real
addresses using bits in the processor status register.

154 CHAPTER 5 Cloud Resource Virtualization

5.11 A performance comparison of virtual machines

We have seen that a VMM such as Xen introduces additional overhead and negatively affects performance
[41,241,242]. The topic of this section is a quantitative analysis of the performance of VMs. We compare
the performance of two virtualization techniques with a standard operating system: a plain-vanilla
Linux referred to as “the base” system. The two VM systems are Xen, based on paravirtualization, and
OpenVZ [281].

First we take a closer look at OpenVZ, a system based on OS-level virtualization. OpenVZ uses a
single patched Linux kernel. The guest operating systems in different containers!> may be different
distributions but must use the same Linux kernel version that the host uses. The lack of flexibility of the
approach for virtualization in OpenVZ is compensated by lower overhead.

The memory allocation in OpenVZ is more flexible than in the case of paravirtualization; memory
not used in one virtual environment can be used by others. The system uses a common file system. Each
virtual environment is a directory of files isolated using chroot. To start a new virtual machine, one
needs to copy the files from one directory to another, create a conf ig file for the virtual machine, and
launch the VM.

OpenVZ has a two-level scheduler: At the first level, the fair-share scheduler allocates CPU time
slices to containers based on cpuunits values; the second level is a standard Linux scheduler that
decides what process to run in that container. The I/O scheduler also has two levels; each container has
an I/O priority, and the scheduler distributes the available I/O bandwidth according to the priorities.

The discussion in [281] is focused on the user’s perspective, thus the performance measures ana-
lyzed are the throughput and the response time. The general question is whether consolidation of the
applications and servers is a good strategy for cloud computing. The specific questions examined are:

¢ How does the performance scale up with the load?
* What is the impact of a mix of applications?
e What are the implications of the load assignment on individual servers?

There is ample experimental evidence that the load placed on system resources by a single application
varies significantly in time. A time series displaying CPU consumption of a single application in time
clearly illustrates this fact. As we all know, this phenomenon justifies the need for CPU multiplexing
among threads/processes supported by an operating system. The concept of application and server
consolidation is an extension of the idea of creating an aggregate load consisting of several applications
and aggregating a set of servers to accommodate this load. Indeed, the peak resource requirements of
individual applications are very unlikely to be synchronized, and the aggregate load tends to lead to a
better average resource utilization.

The application used in [281] is a two-tier system consisting of an Apache Web server and a MySQL
database server. A client of this application starts a session as the user browses through different items in
the database, requests information about individual items, and buys or sells items. Each session requires
the creation of a new thread; thus, an increased load means an increased number of threads. To understand
the potential discrepancies in performance among the three systems, a performance-monitoring tool

I5A container in OpenVZ emulates a separate physical server. It has its own files, users, process tree, IP address, shared
memory, semaphores, and messages. Each container can have its own disk quotas.

5.11 A Performance Comparison of Virtual Machines

Web
server

Web
server

MySQL
server

MySQL
server

Web
server

Web
server

Web
server

Web
server

Linux OpenVZ Xen
Web MySQL Web MySQL Web MysQL
server server server server server server
Linux OpenVZ Xen
Web MySQL Web Web MySQL
server server server server server
Web MySQL Web Web MySQL
server server server server server

MySQL
server

MySQL
server

155

(c)

FIGURE 5.9

The setup for the performance comparison of a native Linux system with the OpenVZ and Xen systems. The
applications are a Web server and a MySQL database server. (a) In the first experiment, the Web and the
DB share a single system. (b) In the second experiment, the Web and the DB run on two different systems.
(c) In the third experiment, the Web and the DB run on two different systems and each has four instances.

reports the counters that allow the estimation of (i) the CPU time used by a binary; (ii) the number of
L2-cache misses; and (iii) the number of instructions executed by a binary.

The experimental setups for three different experiments are shown in Figure 5.9 . In the first group
of experiments the two tiers of the application, the Web and the DB, run on a single server for the
Linux, the OpenVZ, and the Xen systems. When the workload increases from 500 to 800 threads, the
throughput increases linearly with the workload. The response time increases only slightly for the base
system and for the OpenVZ system, whereas it increases 600% for the Xen system. For 800 threads the
response time of the Xen system is four times longer than the time for OpenVZ. The CPU consumption
grows linearly with the load in all three systems; the DB consumption represents only 1-4% of it.

156 CHAPTER 5 Cloud Resource Virtualization

For a given workload, the Web-tier CPU consumption for the OpenVZ system is close to that of the
base system and is about half of that for the Xen system. The performance analysis tool shows that the
OpenVZ execution has two times more L2-cache misses than the base system, whereas the Xen Dom0
has 2.5 times more and the Xen application domain has 9 times more. Recall that the base system and the
OpenVZ run a Linux OS and the sources of cache misses can be compared directly, whereas Xen runs a
modified Linux kernel. For the Xen-based system the procedure hypervisor_callback, invoked when
an event occurs, and the procedure evtchn_do_upcall, invoked to process an event, are responsible for
32% and 44%, respectively, of the L2-cache misses. The percentage of the instructions invoked by these
two procedures are 40% and 8%, respectively. Most of the L2-cache misses in OpenVZ and the base
system occur in (i) a procedure called do_anonymous_pages, used to allocate pages for a particular
application with the percentage of cache misses 32% and 25%, respectively; (ii) the procedures called
_copy_to_user_ll and _copy_ from_user_ll, used to copy data from user to system buffers and back
with the percentage of cache misses (12 + 7)% and (10 + 1) %, respectively. The first figure refers to the
copying from user to system buffers and the second to copying from system buffers to the user space.

The second group of experiments uses two servers, one for the Web and the other for the DB
application, for each one of the three systems. When the load increases from 500 to 800 threads the
throughput increases linearly with the workload. The response time of the Xen system increases only
114%, compared with 600% reported for the first experiments. The CPU time of the base system, the
OpenVZ system, the Xen Dom0, and the User Domain are similar for the Web application. For the DB
application, the CPU time of the OpenVZ system is twice as long as that of the base system, whereas
Dom0 and the User Domain require CPU times of 1.1 and 2.5 times longer than the base system. The
L2-cache misses for the Web application relative to the base system are the same for OpenVZ, 1.5 times
larger for Dom0 of Xen, and 3.5 times larger for the User Domain. The L2-cache misses for the DB
application relative to the base system are 2 times larger for the OpenVZ, 3.5 larger for Dom0 of Xen,
and 7 times larger for the User Domain.

The third group of experiments uses two servers, one for the Web and the other for the DB application,
for each one of the three systems but runs four instances of the Web and the DB application on the two
servers. The throughput increases linearly with the workload for the range used in the previous two
experiments, from 500 to 800 threads. The response time remains relatively constant for OpenVZ and
increases 5 times for Xen.

The main conclusion drawn from these experiments is that the virtualization overhead of Xen is con-
siderably higher than that of OpenVZ and that this is due primarily to L2-cache misses. The performance
degradation when the workload increases is also noticeable for Xen. Another important conclusion is
that hosting multiple tiers of the same application on the same server is not an optimal solution.

5.12 The darker side of virtualization

Can virtualization empower the creators of malware!® to carry out their mischievous activities with
impunity and with minimal danger of being detected? How difficult is it to implement such a system?

16Malware, an abbreviation of malicious software, is software designed specifically to circumvent authorization mechanisms
and gain access to a computer system, gather private information, block access to a system, or disrupt the normal operation
of a system. Computer viruses, worms, spyware, and Trojan horses are examples of malware.

5.12 The Darker Side of Virtualization 157

Application I
Application
Malicious Guest OS

oS
Py Operating
alicious
0s system (OS) Virtual machine monitor
Virtual machine-based rootkit Virtual machine-based rootkit

(a) (b)

FIGURE 5.10

The insertion of a virtual machine-based rootkit (VMBR) as the lowest layer of the software stack running on
the physical hardware. (a) Below an operating system; (b) Below a legitimate virtual machine monitor. The
VMBR enables a malicious OS to run surreptitiously and makes it invisible to the genuine or the guest 0OS
and to the application.

What are the means to prevent this type of malware to be put in place? The answers to these questions
are discussed in this section.

It is well understood that in a layered structure a defense mechanism at some layer can be disabled
by malware running a layer below it. Thus, the winner in the continuous struggle between the attackers
and the defenders of a computing system is the one in control of the lowest layer of the software stack
— the one that controls the hardware (see Figure 5.10).

Recall that a VMM allows a guest operating system to run on virtual hardware. The VMM offers to
the guest operating systems a hardware abstraction and mediates its access to the physical hardware. We
argued that a VMM is simpler and more compact than a traditional operating system; thus, it is more
secure. But what if the VMM itself is forced to run above another software layer so that it is prevented
from exercising direct control of the physical hardware?

A 2006 paper [194] argues that it is feasible to insert a “rogue VMM” between the physical hardware
and an operating system. Such a rogue VMM is called a virtual machine-based rootkit (VMBR). The
term rootkit refers to malware with privileged access to a system. The name comes from root, the most
privileged account on a Unix system, and kit, a set of software components.

It is also feasible to insert the VMBR between the physical hardware and a “legitimate VMM.” As
a virtual machine running under a legitimate VMM sees virtual hardware, the guest OS will not notice
any change of the environment; so the only trick is to present the legitimate VMM with a hardware
abstraction, rather than allow it to run on the physical hardware.

Before we address the question of how such an insertion is possible, we should point out that in this
approach the malware runs either inside a VMM or with the support of a VMM; but a VMM is a very

158 CHAPTER 5 Cloud Resource Virtualization

potent engine for the malware. It prevents the software of the guest operating system or the application
from detecting malicious activities. A VMBR can record key strokes, system state, data buffers sent to
or received from the network, and data to be written to or read from the disk with impunity; moreover,
it can change any data at will.

The only way for a VMBR to take control of a system is to modify the boot sequence and to first load
the malware and only then load the legitimate VMM or the operating system. This is only possible if
the attacker has root privileges. Once the VMBR is loaded it must also store its image on the persistent
storage.

The VMBR can enable a separate malicious OS to run surreptitiously and make this malicious
OS invisible to the guest OS and to the application running under it. Under the protection of the
VMBR, the malicious OS could (i) observe the data, the events, or the state of the target system;
(i1) run services such as spam relays or distributed denial-of-service attacks; or (iii) interfere with the
application.

Proof-of-concept VMBRSs to subvert Windows XP and Linux and several services based on this
platform are described in [194]. We should stress that modifying the boot sequence is by no means an
easy task, and once an attacker has root privileges he or she is in total control of a system.

5.13 Software fault isolation

Software fault isolation (SFI) offers a technical solution for sandboxing binary code of questionable
provenance that can affect security in cloud computing. Insecure and tampered VM images are one
of the security threats because binary codes of questionable provenance for native plug-ins to a Web
browser can pose a security threat when Web browsers are used to access cloud services.

A recent paper [322] discusses the application of the sandboxing technology for two modern CPU
architectures, ARM and 64-bit x86. ARM is a load/store architecture with 32-bit instruction and 16
general-purpose registers. It tends to avoid multicycle instructions, and it shares many RISC architecture
features, but (a) it supports a “thumb” mode with 16-bit instruction extensions; (b) it has complex
addressing modes and a complex barrel shifter; and (c) condition codes can be used to predicate most
instructions. In the x86-64 architecture, general-purpose registers are extended to 64 bits, with an r
replacing the e to identify the 64 versus 32-bit registers (e.g., rax instead of eax). There are eight new
general-purpose registers, named r8—r15. To allow legacy instructions to use these additional registers,
x86-64 defines a set of new prefix bytes to use for register selection.

This SFI implementation is based on the previous work of the same authors on Google Native
Client (NC) and assumes an execution model in which a trusted run-time shares a process with an
untrusted multithreaded plug-in. The rules for binary code generation of the untrusted plug-in are:
(i) the code section is read-only and is statically linked; (ii) the code is divided into 32-byte bundles,
and no instruction or pseudo-instruction crosses the bundle boundary; (iii) the disassembly starting at
the bundle boundary reaches all valid instructions; and (iv) all indirect flow-control instructions are
replaced by pseudo-instructions that ensure address alignment to bundle boundaries.

The features of the SFI for the Native Client on the x86-32, x86-64, and ARM are summarized in
Table 5.4 [322]. The control flow and store sandboxing for the ARM SFI incur less then 5% average
overhead, and those for x86-64 SFI incur less than 7% average overhead.

5.15 History Notes 159

Table 5.4 The features of the SFI for the native client on the x86-32, x86-64, and ARM. ILP
stands for instruction-level parallelism.

Feature/Architecture Xx86-32 Xx86-64 ARM
Addressable memory 1GB 4GB 1GB

Virtual base address Any 44 GB 0

Data model ILP 32 ILP 32 ILP 32

Reserved registers 0of8 10of 16 0of 16

Data address mask None Implicit in result width Explicit instruction
Control address mask Explicit instruction Explicit instruction Explicit instruction
Bundle size (bytes) 32 32 16

Data in text segment Forbidden Forbidden Allowed

Safe address registers All RSP, RBP SP
Out-of-sandbox store Trap Wraps mod 4 GB No effect
Out-of-sandbox jump Trap Wraps mod 4 GB Wraps mod 1 GB

5.14 Further reading

A good introduction to virtualization principles can be found in a recent text of Saltzer and Kaashoek
[312] and in [141]. Virtual machines are dissected in a paper by Smith and Nair [325]. An insightful dis-
cussion of virtual machine monitors is provided by the paper of Rosenblum and Garfinkel [308]. Several
papers [41,84,241,242] discuss in depth the Xen VMM and analyze its performance. The Denali sys-
tem is presented in [372]. Modern systems such as Linux Vserver [214], OpenVZ (Open VirtualiZation)
[274], FreeBSD Jails [124], and Solaris Zones [296] implement operating system-level virtualization
technologies.

A paper [281] compares the performance of two virtualization techniques with a standard operating
system. The vBlades project at HP-Laboratories is presented in [228].

A 2001 paper [79] argues that virtualization allows new services to be added without modifying the
operating system. Such services are added below the operating system level, but this process creates a
semantic gap between the virtual machine and these services. A survey of security issues in virtual sys-
tems is provided by [389]. Object-oriented VMM design is discussed [80]. Several references including
[165,199,271,301,342,371] discuss virtualization and system architecture.

5.15 History notes

Virtual memory was the first application of virtualization concepts to commercial computers. It allowed
multiprogramming and eliminated the need for users to tailor their applications to the physical memory
available on individual systems. Paging and segmentation are the two mechanisms supporting virtual
memory. Paging was developed for the Atlas Computer, built in 1959 at the University of Manchester.
Independently, the Burroughs Corporation developed the BS000, the first commercial computer with

160 CHAPTER 5 Cloud Resource Virtualization

virtual memory, and released it in 1961. The virtual memory of the B5000 used segmentation rather
than paging.

In 1967 IBM introduced the 360/67, the first IBM system with virtual memory, expected to run
on a new operating system called TSS. Before TSS was released, an operating system called CP-67
was created. CP-67 gave the illusion of several standard IBM 360 systems without virtual memory.
The first VMM supporting full virtualization was the CP-40 system, which ran on a S/360-40 that was
modified at the IBM Cambridge Scientific Center to support Dynamic Address Translation, a key feature
that allowed virtualization. In CP-40, the hardware’s supervisor state was virtualized as well, allowing
multiple operating systems to run concurrently in separate virtual machine contexts.

In this early age of computing, virtualization was driven by the need to share very expensive hardware
among a large population of users and applications. The VM/370 system, released in 1972 for large IBM
mainframes, was very successful. It was based on a reimplementation of CP/CMS. In the VM/370 a new
virtual machine was created for every user, and this virtual machine interacted with the applications.
The VMM managed hardware resources and enforced the multiplexing of resources. Modern-day IBM
mainframes, such as the zSeries line, retain backward compatibility with the 1960s-era IBM S/360 line.

The production of microprocessors, coupled with advancements in storage technology, contributed
to the rapid decrease of hardware costs and led to the introduction of personal computers at one end of
the spectrum and large mainframes and massively parallel systems at the other end. The hardware and
the operating systems of the 1980s and 1990s gradually limited virtualization and focused instead on
efficient multitasking, user interfaces, the support for networking, and security problems brought in by
interconnectivity.

The advancements in computer and communication hardware and the explosion of the Internet, par-
tially due to the success of the World Wide Web at the end of the 1990s, renewed interest in virtualization
to support server security and isolation of services. In their review paper, Rosenbloom and Grafinkel write
[308]: “VMMs give operating system developers another opportunity to develop functionality no longer
practical in today’s complex and ossified operating systems, where innovation moves at a geologic pace.”

5.16 Exercises and problems

Problem 1. Identify the milestones in the evolution of operating systems during the half century from
1960 to 2010 and comment on this statement from [308]: “VMMs give operating system
developers another opportunity to develop functionality no longer practical in today’s
complex and ossified operating systems, where innovation moves at a geologic pace.”

Problem 2. Virtualization simplifies the use of resources, isolates users from one another, and supports
replication and mobility, but exacts a price in terms of performance and cost. Analyze
each one of these aspects for (i) memory virtualization, (ii) processor virtualization, and
(ii1) virtualization of a communication channel.

Problem 3. Virtualization of the processor combined with virtual memory management poses multiple
challenges. Analyze the interaction of interrupt handling and paging.

Problem 4. 1In Section 5.5 we stated that a VMM is a much simpler and better-specified system than a
traditional operating system. The security vulnerability of VMMs is considerably reduced

5.16 Exercises and Problems 161

because the systems expose a much smaller number of privileged functions. Research the
literature to gather arguments in support of these affirmations. Compare the number of
lines of code and system calls for several operating systems, including Linux, Solaris,
FreeBSD, Ubuntu, AIX, and Windows, with the corresponding figures for several system
virtual machines in Table 5.1.

Problem 5. In Section 5.6 we state thata VMM for a processor can be constructed if the set of sensitive
instructions is a subset of the privileged instructions of that processor. Identify the set of
sensitive instructions for the x86 architecture and discuss the problem each one of these
instructions poses.

Problem 6. Table 5.3 summarizes the effects of Xen network performance optimization reported in
[242]. The send data rate of a guest domain is improved by a factor of more than 4, whereas
the improvement of the receive data rate is very modest. Identify several possible reasons
for this discrepancy.

Problem 7. In Section 5.8 we note that several operating systems, including Linux, Minix, NetBSD,
FreeBSD, NetWare, and OZONE, can operate as paravirtualized Xen guest operating
systems running on x86, x86-64, Itanium, and ARM architectures, whereas VMware EX
Server supports full virtualization of x86 architecture. Analyze how VMware provides the
functions discussed in Table 5.2 for Xen.

Problem 8. In2012 Intel and HP announced that the Itanium architecture will be discontinued. Review
the architecture, discussed in Section 5.10, and identify several possible reasons for this
decision.

Problem 9. Read [281] and analyze the results of the performance comparison discussed in
Section 5.11.

This page is intentionally left blank

CHAPTER

Cloud Resource Management
and Scheduling

Resource management is a core function of any man-made system. It affects the three basic criteria for
the evaluation of a system: performance, functionality, and cost. An inefficient resource management
has a direct negative effect on performance and cost and an indirect effect on the functionality of a
system. Indeed, some functions provided by the system may become too expensive or may be avoided
due to poor performance.

A cloud is a complex system with a very large number of shared resources subject to unpredictable
requests and affected by external events it cannot control. Cloud resource management requires com-
plex policies and decisions for multi-objective optimization. Cloud resource management is extremely
challenging because of the complexity of the system, which makes it impossible to have accurate global
state information, and because of the unpredictable interactions with the environment.

The strategies for resource management associated with the three cloud delivery models, laas$, PaasS,
and Saas, differ from one another. In all cases the cloud service providers are faced with large, fluctuating
loads that challenge the claim of cloud elasticity. In some cases, when a spike can be predicted, the
resources can be provisioned in advance, e.g., for Web services subject to seasonal spikes. For an
unplanned spike, the situation is slightly more complicated. Auto Scaling can be used for unplanned
spike loads, provided that (a) there is a pool of resources that can be released or allocated on demand
and (b) there is a monitoring system that allows a control loop to decide in real time to reallocate
resources. Auto Scaling is supported by PaaS services such as Google App Engine. Auto Scaling for
laas$, discussed in Section 6.14, is complicated due to the lack of standards.

It has been argued for some time that in a cloud, where changes are frequent and unpredictable,
centralized control is unlikely to provide continuous service and performance guarantees. Indeed, cen-
tralized control cannot provide adequate solutions to the host of cloud management policies that have
to be enforced. Autonomic policies are of great interest due to the scale of the system, the large number
of service requests, the large user population, and the unpredictability of the load. The ratio of the mean
to the peak resource needs can be very large.

We start our discussion with an overview of policies and mechanisms for cloud resource management
in Section 6.1. A control theoretic approach to resource allocation is discussed in Sections 6.2, 6.3, and
6.4. A machine learning algorithm for coordination of specialized autonomic performance managers
is presented in Section 6.5. In Section 6.6 we discuss a utility model for resource allocation for a Web
service. Next we present resource bundling and combinatorial auctions in Section 6.7. The fair queuing,
start-time fair queuing, and borrowed virtual time scheduling algorithms are analyzed in Sections 6.9,
6.10, and 6.11, respectively. Scheduling with deadlines and the impact of application scaling on resource
management are presented in Sections 6.12, 6.13, and 6.14, respectively.

Cloud Computing. http:/dx.doi.org/10.1016/B978-0-12-404627-6.00006-3 1 63
© 2013 Elsevier Inc. All rights reserved.

164 CHAPTER 6 Cloud Resource Management and Scheduling

6.1 Policies and mechanisms for resource management

A policy typically refers to the principal guiding decisions, whereas mechanisms represent the means to
implement policies. Separation of policies from mechanisms is a guiding principle in computer science.
Butler Lampson [208] and Per Brinch Hansen [154] offer solid arguments for this separation in the
context of operating system design.

Cloud resource management policies can be loosely grouped into five classes:

. Admission control.

. Capacity allocation.

. Load balancing.

. Energy optimization.

. Quality-of-service (QoS) guarantees.

G WN =

The explicit goal of an admission control policy is to prevent the system from accepting workloads in
violation of high-level system policies; for example, a system may not accept an additional workload that
would prevent it from completing work already in progress or contracted. Limiting the workload requires
some knowledge of the global state of the system. In a dynamic system such knowledge, when available,
is at best obsolete. Capacity allocation means to allocate resources for individual instances; an instance
is an activation of a service. Locating resources subject to multiple global optimization constraints
requires a search of a very large search space when the state of individual systems changes rapidly.

Load balancing and energy optimization can be done locally, but global load-balancing and energy
optimization policies encounter the same difficulties as the one we have already discussed. Load bal-
ancing and energy optimization are correlated and affect the cost of providing the services. Indeed, it
was predicted that by 2012 up to 40% of the budget for IT enterprise infrastructure would be spent on
energy [104].

The common meaning of the term load balancing is that of evenly distributing the load to a set of
servers. For example, consider the case of four identical servers, A, B, C, and D, whose relative loads
are 80%, 60%, 40%, and 20%, respectively, of their capacity. As a result of perfect load balancing,
all servers would end with the same load — 50% of each server’s capacity. In cloud computing a
critical goal is minimizing the cost of providing the service and, in particular, minimizing the energy
consumption. This leads to a different meaning of the term load balancing; instead of having the load
evenly distributed among all servers, we want to concentrate it and use the smallest number of servers
while switching the others to standby mode, a state in which a server uses less energy. In our example,
the load from D will migrate to A and the load from C will migrate to B; thus, A and B will be loaded
at full capacity, whereas C and D will be switched to standby mode. Quality of service is that aspect of
resource management that is probably the most difficult to address and, at the same time, possibly the
most critical to the future of cloud computing.

As we shall see in this section, often resource management strategies jointly target performance
and power consumption. Dynamic voltage and frequency scaling (DVFS)! techniques such as Intel’s

IDVFS is a power management technique to increase or decrease the operating voltage or frequency of a processor in order
to increase the instruction execution rate and, respectively, reduce the amount of heat generated and to conserve power.

6.1 Policies and Mechanisms for Resource Management 165

Table 6.1 The normalized performance and energy consumption function of the processor
speed. The performance decreases at a lower rate than does the energy when the clock rate
decreases.

CPU Speed (GHz) Normalized Energy (%) Normalized Performance (%)
0.6 0.44 0.61

0.8 0.48 0.70

1.0 0.52 0.79

1.2 0.58 0.81

1.4 0.62 0.88

1.6 0.70 0.90

1.8 0.82 0.95

2.0 0.90 0.99

2.2 1.00 1.00

SpeedStep and AMD’s PowerNow lower the voltage and the frequency to decrease power consumption.”
Motivated initially by the need to save power for mobile devices, these techniques have migrated to
virtually all processors, including the ones used for high-performance servers.

As a result of lower voltages and frequencies, the performance of processors decreases, but at a
substantially slower rate [213] than the energy consumption. Table 6.1 shows the dependence of the
normalized performance and the normalized energy consumption of a typical modern processor on
clock rate. As we can see, at 1.8 GHz we save 18% of the energy required for maximum performance,
whereas the performance is only 5% lower than the peak performance, achieved at 2.2 GHz. This seems
a reasonable energy-performance tradeoff!

Virtually all optimal — or near-optimal — mechanisms to address the five classes of policies do not
scale up and typically target a single aspect of resource management, e.g., admission control, but ignore
energy conservation. Many require complex computations that cannot be done effectively in the time
available to respond. The performance models are very complex, analytical solutions are intractable,
and the monitoring systems used to gather state information for these models can be too intrusive
and unable to provide accurate data. Many techniques are concentrated on system performance in
terms of throughput and time in system, but they rarely include energy tradeoffs or QoS guarantees.
Some techniques are based on unrealistic assumptions; for example, capacity allocation is viewed as
an optimization problem, but under the assumption that servers are protected from overload.

Allocation techniques in computer clouds must be based on a disciplined approach rather than ad
hoc methods. The four basic mechanisms for the implementation of resource management policies are:

* Control theory. Control theory uses the feedback to guarantee system stability and predict transient
behavior [185,202], but can be used only to predict local rather than global behavior. Kalman filters
have been used for unrealistically simplified models.

2The power consumption P of a CMOS-based circuitis P = « - Cep- V2. f, with o = the switching factor, C = the effective
capacitance, V = the operating voltage, and f = the operating frequency.

166 CHAPTER 6 Cloud Resource Management and Scheduling

* Machine learning. A major advantage of machine learning techniques is that they do not need a
performance model of the system [353]. This technique could be applied to coordination of several
autonomic system managers, as discussed in [187].

e Utility-based. Utility-based approaches require a performance model and a mechanism to correlate
user-level performance with cost, as discussed in [9].

* Market-oriented/economic mechanisms. Such mechanisms do not require a model of the system,
e.g., combinatorial auctions for bundles of resources discussed in [333].

A distinction should be made between interactive and noninteractive workloads. The management
techniques for interactive workloads, e.g., Web services, involve flow control and dynamic application
placement, whereas those for noninteractive workloads are focused on scheduling. A fair amount of
work reported in the literature is devoted to resource management of interactive workloads, some to
noninteractive, and only a few, e.g., [344], to heterogeneous workloads, a combination of the two.

6.2 Applications of control theory to task scheduling on a cloud

Control theory has been used to design adaptive resource management for many classes of applications,
including power management [187], task scheduling [222], QoS adaptation in Web servers [3], and
load balancing. The classical feedback control methods are used in all these cases to regulate the key
operating parameters of the system based on measurement of the system output; the feedback control in
these methods assumes a linear time-invariant system model and a closed-loop controller. This controller
is based on an open-loop system transfer function that satisfies stability and sensitivity constraints.

A technique to design self-managing systems based on concepts from control theory is discussed
in [369]. The technique allows multiple QoS objectives and operating constraints to be expressed
as a cost function and can be applied to stand-alone or distributed Web servers, database servers,
high-performance application servers, and even mobile/embedded systems. The following discussion
considers a single processor serving a stream of input requests. We attempt to minimize a cost function
that reflects the response time and the power consumption. Our goal is to illustrate the methodology for
optimal resource management based on control theory concepts. The analysis is intricate and cannot be
easily extended to a collection of servers.

Control Theory Principles. We start our discussion with a brief overview of control theory principles
one could use for optimal resource allocation. Optimal control generates a sequence of control inputs
over a look-ahead horizon while estimating changes in operating conditions. A convex cost function has
arguments x (k), the state at step k, and u(k), the control vector; this cost function is minimized, subject
to the constraints imposed by the system dynamics. The discrete-time optimal control problem is to

determine the sequence of control variables u (i), u(i + 1), ..., u(n — 1) to minimize the expression
n—1
J@) = CD(n,x(n))+ZLk(x(k),u(k)), 6.1)
k=i

where ©(n, x(n)) is the cost function of the final step, n, and Lk(x (k), u(k)) is a time-varying cost
function at the intermediate step k over the horizon [i, rn]. The minimization is subject to the constraints

x(k+1) = fAoek), uk)), (6.2)

6.2 Applications of Control Theory to Task Scheduling on a Cloud 167

disturbance

r is ' A(k)

_— . u* (k) .
- Pref_clitlctlve - Optlm”al - dQueumg
external ter forecast | conironer YHSIIES w(k)
traffic [y

state feedback q(k)
FIGURE 6.1

The structure of an optimal controller described in [369]. The controller uses the feedback regarding the
current state as well as the estimation of the future disturbance due to environment to compute the optimal
inputs over a finite horizon. The two parameters r and s are the weighting factors of the performance index.

where x (k + 1), the system state at time k + 1, is a function of x (k), the state at time k, and of u(k), the
input at time k; in general, the function f* is time-varying; thus, its superscript.

One of the techniques to solve this problem is based on the Lagrange multiplier method of finding
the extremes (minima or maxima) of a function subject to constrains. More precisely, if we want to
maximize the function g(x, y) subject to the constraint #(x, y) = k, we introduce a Lagrange multiplier
A. Then we study the function

A()ﬁy,)\):g(x,)’)‘f')»x[h(x,)’)_k] (63)

A necessary condition for the optimality is that (x, y, A) is a stationary point for A(x, y, A). In other
words,

6.4)

aA ’ 7)‘- aA , ,)\‘ aA s ,)\‘
Vx,y,xA(x,y,)L):Oor< o,y), (x,y)’ (x,y)>=0.

ox ay dA

The Lagrange multiplier at time step k is Ax and we solve Eq. (6.4) as an unconstrained optimization
problem. We define an adjoint cost function that includes the original state constraints as the Hamiltonian
function H, then we construct the adjoint system consisting of the original state equation and the costate
equation governing the Lagrange multiplier. Thus, we define a two-point boundary problem?; the state
xy develops forward in time whereas the costate occurs backward in time.

A Model Capturing Both QoS and Energy Consumption for a Single-Server System. Now we
turn our attention to the case of a single processor serving a stream of input requests. To compute the
optimal inputs over a finite horizon, the controller in Figure 6.1 uses feedback regarding the current
state, as well as an estimation of the future disturbance due to the environment. The control task is
solved as a state regulation problem updating the initial and final states of the control horizon.

We use a simple queuing model to estimate the response time. Requests for service at processor P are
processed on a first-come, first-served (FCFS) basis. We do not assume a priori distributions of the arrival

3 A boundary value problem has conditions specified at the extremes of the independent variable, whereas an initial value
problem has all the conditions specified at the same value of the independent variable in the equation.

168 CHAPTER 6 Cloud Resource Management and Scheduling

process and of the service process; instead, we use the estimate f\(k) of the arrival rate A (k) at time k.
We also assume that the processor can operate at frequencies u (k) in the range u (k) € [Umin, Umax] and
call ¢(k) the time to process a request at time k when the processor operates at the highest frequency
in the range, ;4. Then we define the scaling factor « (k) = u(k)/u;nqx and we express an estimate of
the processing rate N (k) as a(k)/c(k).

The behavior of a single processor is modeled as a nonlinear, time-varying, discrete-time state equa-
tion. If 7 is the sampling period, defined as the time difference between two consecutive observations of
the system, e.g., the one at time (k + 1) and the one at time k, then the size of the queue at time (k+ 1) is

gk +1) = max{[q(k) + ([\(k) — L@) x Ts] , 0} . (6.5)
c(k) X Umax
The first term, g (k), is the size of the input queue at time k, and the second one is the difference between
the number of requests arriving during the sampling period, 7§, and those processed during the same
interval.
The response time w (k) is the sum of the waiting time and the processing time of the requests

wk) = (1 4+ qk)) x (k). (6.6)

Indeed, the total number of requests in the system is (1 + g (k)) and the departure rate is 1/¢(k).

We want to capture both the QoS and the energy consumption, since both affect the cost of providing
the service. A utility function, such as the one depicted in Figure 6.4, captures the rewards as well as the
penalties specified by the service-level agreement for the response time. In our queuing model the utility
is a function of the size of the queue; it can be expressed as a quadratic function of the response time

S(q(k)) = 1/2(s x (w(k) — wp)?), (6.7)

with wp, the response time set point and ¢(0) = qo, the initial value of the queue length. The energy
consumption is a quadratic function of the frequency

R(uk)) =1/2(r x u(k)?). (6.8)

The two parameters s and r are weights for the two components of the cost, the one derived from the
utility function and the second from the energy consumption. We have to pay a penalty for the requests
left in the queue at the end of the control horizon, a quadratic function of the queue length

®(g(N) = 1/2(v x g()?). (6.9)
The performance measure of interest is a cost expressed as

N-1
J=®(gN) + > [S(q(k) + Ru(k))]. (6.10)
k=1

The problem is to find the optimal control u#* and the finite time horizon [0, N] such that the trajectory
of the system subject to optimal control is ¢*, and the cost J in Eq. (6.10) is minimized subject to the

6.3 Stability of a Two-Level Resource Allocation Architecture 169

following constraints

u (k)

CAj(k) X Umax

gk +1) = |:Q(k) + <A(k) -) X Tsi| , q(k) =0, and upip < ulk) < upax. (6.11)

When the state trajectory g (-) corresponding to the control u(-) satisfies the constraints
I'l:qtk) >0, T2:ulk)>umin, '3:ultk) <umax, (6.12)

then the pair [q(-), u(~)] is called a feasible state. If the pair minimizes Eq. (6.10), then the pair is
optimal.
The Hamiltonian H in our example is

H =5q@®) + R@®) + Al +1) [q(k) + <A(k) - ﬂ) Ts}

C X Umax

(6.13)
+ (k) x (—=qk)) + pa(k) x (—u(k) 4+ umin) + n3k) x (k) — tpmax).

According to Pontryagin’s minimum principle,* the necessary condition for a sequence of feasible
pairs to be optimal pairs is the existence of a sequence of costates A and a Lagrange multiplier
w = [p1(k), ua(k), u3(k)] such that

Hk,q" u*, A%, u*) < H(k,q,u*, A*, u*), Vg >0 (6.14)

where the Lagrange multipliers, w1 (k), ua(k), uz(k), reflect the sensitivity of the cost function to the
queue length at time k£ and the boundary constraints and satisfy several conditions

pik) =0, pi(k)(—q(k)) =0, (6.15)
pa(k) =20, wa(k)(—u(k) + umin) = 0, (6.16)
w3(k) =0, w3 (k) (k) — tmax) = 0. (6.17)

A detailed analysis of the methods to solve this problem and the analysis of the stability conditions is
beyond the scope of our discussion and can be found in [369].

The extension of the techniques for optimal resource management from a single system to a cloud
with a very large number of servers is a rather challenging area of research. The problem is even harder
when, instead of transaction-based processing, the cloud applications require the implementation of a
complex workflow.

6.3 Stability of a two-level resource allocation architecture

In Section 6.2 we saw that we can assimilate a server with a closed-loop control system and we can
apply control theory principles to resource allocation. In this section we discuss a two-level resource

“4Pontryagin’s principle is used in the optimal control theory to find the best possible control that leads a dynamic system
from one state to another, subject to a set of constraints.

|
CHAPTER 6 Cloud Resource Management and Scheduling

170

Application 1

(T Application n

| Application 1 HSLA1 ‘ ’ SLAn H Application n }4—-? w b [um ==
A ‘|' ‘|' A A
Application Application U
controller controller) .
Monitor

-

Decision

A 4 Y

Cloud Controller Actuator

T

A 4

Cloud Platform I

FIGURE 6.2

A two-level control architecture. Application controllers and cloud controllers work in concert.

allocation architecture based on control theory concepts for the entire cloud. The automatic resource
management is based on two levels of controllers, one for the service provider and one for the application,
see Figure 6.2.

The main components of a control system are the inputs, the control system components, and the
outputs. The inputs in such models are the offered workload and the policies for admission control, the
capacity allocation, the load balancing, the energy optimization, and the QoS guarantees in the cloud.
The system components are sensors used to estimate relevant measures of performance and controllers
that implement various policies; the output is the resource allocations to the individual applications .

The controllers use the feedback provided by sensors to stabilize the system; stability is related to
the change of the output. If the change is too large, the system may become unstable. In our context the
system could experience thrashing, the amount of useful time dedicated to the execution of applications
becomes increasingly small and most of the system resources are occupied by management functions.

There are three main sources of instability in any control system:

—

. The delay in getting the system reaction after a control action.

2. The granularity of the control, the fact that a small change enacted by the controllers leads to very
large changes of the output.

3. Oscillations, which occur when the changes of the input are too large and the control is too weak,

such that the changes of the input propagate directly to the output.

Two types of policies are used in autonomic systems: (i) threshold-based policies and (ii) sequential
decision policies based on Markovian decision models. In the first case, upper and lower bounds on
performance trigger adaptation through resource reallocation. Such policies are simple and intuitive but
require setting per-application thresholds.

Lessons learned from the experiments with two levels of controllers and the two types of policies are
discussed in [109]. A first observation is that the actions of the control system should be carried out in

6.4 Feedback Control Based on Dynamic Thresholds 171

a rhythm that does not lead to instability. Adjustments should be carried out only after the performance
of the system has stabilized. The controller should measure the time for an application to stabilize and
adapt to the manner in which the controlled system reacts.

If upper and lower thresholds are set, instability occurs when they are too close to one another if the
variations of the workload are large enough and the time required to adapt does not allow the system
to stabilize. The actions consist of allocation/deallocation of one or more virtual machines; sometimes
allocation/deallocation of a single VM required by one of the thresholds may cause crossing of the other
threshold and this may represent, another source of instability.

6.4 Feedback control based on dynamic thresholds

The elements involved in a control system are sensors, monitors, and actuators. The sensors measure the
parameter(s) of interest, then transmit the measured values to a monitor, which determines whether the
system behavior must be changed, and, if so, it requests that the actuators carry out the necessary actions.
Often the parameter used for admission control policy is the current system load; when a threshold,
e.g., 80%, is reached, the cloud stops accepting additional load.

In practice, the implementation of such a policy is challenging or outright infeasible. First, due to
the very large number of servers and to the fact that the load changes rapidly in time, the estimation
of the current system load is likely to be inaccurate. Second, the ratio of average to maximal resource
requirements of individual users specified in a service-level agreement is typically very high. Once an
agreement is in place, user demands must be satisfied; user requests for additional resources within the
SLA limits cannot be denied.

Thresholds. A threshold is the value of a parameter related to the state of a system that triggers a
change in the system behavior. Thresholds are used in control theory to keep critical parameters of a
system in a predefined range. The threshold could be static, defined once and for all, or it could be
dynamic. A dynamic threshold could be based on an average of measurements carried out over a time
interval, a so-called integral control. The dynamic threshold could also be a function of the values of
multiple parameters at a given time or a mix of the two.

To maintain the system parameters in a given range, a high and a low threshold are often defined.
The two thresholds determine different actions; for example, a high threshold could force the system to
limit its activities and a low threshold could encourage additional activities. Control granularity refers
to the level of detail of the information used to control the system. Fine control means that very detailed
information about the parameters controlling the system state is used, whereas coarse control means
that the accuracy of these parameters is traded for the efficiency of implementation.

Proportional Thresholding. Application of these ideas to cloud computing, in particular to the laaS
delivery model, and a strategy for resource management called proportional thresholding are discussed
in [217]. The questions addressed are:

e s it beneficial to have two types of controllers, (1) application controllers that determine whether
additional resources are needed and (2) cloud controllers that arbitrate requests for resources and
allocate the physical resources?

* Is it feasible to consider fine control? Is course control more adequate in a cloud computing
environment?

172 CHAPTER 6 Cloud Resource Management and Scheduling

* Are dynamic thresholds based on time averages better than static ones?
e Is it better to have a high and a low threshold, or it is sufficient to define only a high threshold?

The first two questions are related to one another. It seems more appropriate to have two controllers,
one with knowledge of the application and one that’s aware of the state of the cloud. In this case a coarse
control is more adequate for many reasons. As mentioned earlier, the cloud controller can only have a
very rough approximation of the cloud state. Moreover, to simplify its resource management policies,
the service provider may want to hide some of the information it has. For example, it may not allow a
VM to access information available to VMM-level sensors and actuators.

To answer the last two questions, we have to define a measure of “goodness.” In the experiments
reported in [217], the parameter measured is the average CPU utilization, and one strategy is better than
another if it reduces the number of requests made by the application controllers to add or remove virtual
machines to the pool of those available to the application.

Devising a control theoretical approach to address these questions is challenging. The authors of
[217] adopt a pragmatic approach and provide qualitative arguments; they also report simulation results
using a synthetic workload for a transaction-oriented application, a Web server.

The essence of the proportional thresholding is captured by the following algorithm:

1. Compute the integral value of the high and the low thresholds as averages of the maximum and,
respectively, the minimum of the processor utilization over the process history.

2. Request additional VMs when the average value of the CPU utilization over the current time slice
exceeds the high threshold.

3. Release a VM when the average value of the CPU utilization over the current time slice falls below
the low threshold.

The conclusions reached based on experiments with three VMs are as follows: (a) dynamic thresholds
perform better than static ones and (b) two thresholds are better than one. Though conforming to
our intuition, such results have to be justified by experiments in a realistic environment. Moreover,
convincing results cannot be based on empirical values for some of the parameters required by integral
control equations.

6.5 Coordination of specialized autonomic performance managers

Can specialized autonomic performance managers cooperate to optimize power consumption and, at
the same time, satisfy the requirements of SLAs? This is the question examined by a group from IBM
Research in a 2007 paper [187]. The paper reports on actual experiments carried out on a set of blades
mounted on a chassis (see Figure 6.3 for the experimental setup). Extending the techniques discussed
in this report to a large-scale farm of servers poses significant problems; computational complexity is
just one of them.

Virtually all modern processors support dynamic voltage scaling (DVS) as a mechanism for energy
saving. Indeed, the energy dissipation scales quadratically with the supply voltage. The power manage-
ment controls the CPU frequency and, thus, the rate of instruction execution. For some compute-intensive
workloads the performance decreases linearly with the CPU clock frequency, whereas for others the
effect of lower clock frequency is less noticeable or nonexistent. The clock frequency of individual

6.5 Coordination of Specialized Autonomic Performance Managers 173

Communication between
autonomous managers

Performance manager Power manager
— A A : :
Control policy ¢ parformance Power : Control policy
i data data 6

Blade

Blade

Workload Blade Power
distribution

Workload
generator

assignment
Blade

Blade

FIGURE 6.3

Autonomous performance and power managers cooperate to ensure SLA prescribed performance and energy
optimization. They are fed with performance and power data and implement the performance and power
management policies, respectively.

blades/servers is controlled by a power manager, typically implemented in the firmware; it adjusts the
clock frequency several times a second.
The approach to coordinating power and performance management in [187] is based on several ideas:

» Use ajoint utility function for power and performance. The joint performance-power utility function,

Upp(R, P), is a function of the response time, R, and the power, P, and it can be of the form
U(R)
Upp(R,P)=U(R) —e x P or Up,,(R,P)zT, (6.18)

with U (R) the utility function based on response time only and € a parameter to weight the influence
of the two factors, response time and power.

¢ Identify a minimal set of parameters to be exchanged between the two managers.

e Setup a power cap for individual systems based on the utility-optimized power management policy.

* Use a standard performance manager modified only to accept input from the power manager regard-
ing the frequency determined according to the power management policy. The power manager
consists of Tcl (Tool Command Language) and C programs to compute the per-server (per-blade)
power caps and send them via IPMI? to the firmware controlling the blade power. The power manager
and the performance manager interact, but no negotiation between the two agents is involved.

SIntelligent Platform Management Interface (IPMI) is a standardized computer system interface developed by Intel and used
by system administrators to manage a computer system and monitor its operation.

174 CHAPTER 6 Cloud Resource Management and Scheduling

» Use standard software systems. For example, use the WebSphere Extended Deployment (WXD),
middleware that supports setting performance targets for individual Web applications and for the
monitor response time, and periodically recompute the resource allocation parameters to meet the
targets set. Use the Wide-Spectrum Stress Tool from the IBM Web Services Toolkit as a workload
generator.

For practical reasons the utility function was expressed in terms of 7., the number of clients, and p,,
the powercap, as in

U/(pkv ne) = Upp(R(pK» ne)s P(pi,ne)). (6.19)

The optimal powercap p,’ " is a function of the workload intensity expressed by the number of
clients, n.,

poP (n.) = argmax U'(py, ne). (6.20)

The hardware devices used for these experiments were the Goldensbridge blades each with an Intel
Xeon processor running at 3 GHz with 1 GB of level 2 cache and 2 GB of DRAM and with hyperthreading
enabled. A blade could serve 30 to 40 clients with a response time at or better than a 1,000 msec limit.
When py, is lower than 80 Watts, the processor runs at its lowest frequency, 375 MHz, whereas for pi
at or larger than 110 Watts, the processor runs at its highest frequency, 3 GHz.

Three types of experiments were conducted: (i) with the power management turned off; (ii) when
the dependence of the power consumption and the response time were determined through a set of
exhaustive experiments; and (iii) when the dependency of the powercap p, on n. was derived via
reinforcement-learning models.

The second type of experiment led to the conclusion that both the response time and the power
consumed are nonlinear functions of the powercap, p,, and the number of clients, n.; more specifically,
the conclusions of these experiments are:

e Atalow load the response time is well below the target of 1,000 msec.

e At medium and high loads the response time decreases rapidly when pj increases from 80 to
110 watts.

* For a given value of the powercap, the consumed power increases rapidly as the load increases.

The machine learning algorithm used for the third type of experiment was based on the Hybrid
Reinforcement Learning algorithm described in [349]. In the experiments using the machine learning
model, the powercap required to achieve a response time lower than 1,000 msec for a given number of
clients was the lowest when € = 0.05 and the first utility function given by Eq. (6.18) was used. For
example, when n, = 50, then p, = 109 Watts when € = 0.05, whereas p, = 120 when ¢ = 0.01.

6.6 A utility-based model for cloud-based Web services

A utility function relates the “benefits” of an activity or service with the “cost” to provide the service.
For example, the benefit could be revenue and the cost could be the power consumption.

A service-level agreement (SLA) often specifies the rewards as well as the penalties associated with
specific performance metrics. Sometimes the quality of services translates into average response time;
this is the case of cloud-based Web services when the SLA often explicitly specifies this requirement.

6.6 A Utility-Based Model for Cloud-Based Web Services 175

4 Utility function U(R)

P A
e
n /
a /
Iy A
| /
t /
s
y //
7
7
.~
P
0 T = ' >
R Ro, Ri -7 Rz R - response time
e | _ - -
w —
a -
; -
dy
FIGURE 6.4

The utility function U(R) is a series of step functions with jumps corresponding to the response time,
R = Rg|R1|R2, when the reward and the penalty levels change according to the SLA. The dotted line shows
a quadratic approximation of the utility function.

For example, Figure 6.4 shows the case when the performance metrics is R, the response time. The
largest reward can be obtained when R < Ry; a slightly lower reward corresponds to Rg < R < Rj.
When Ry < R < R», instead of gaining a reward, the provider of service pays a small penalty; the
penalty increases when R > R;. A utility function, U (R), which captures this behavior, is a sequence
of step functions. The utility function is sometimes approximated by a quadratic curve, as we shall see
in Section 6.2.

In this section we discuss a utility-based approach for autonomic management. The goal is to max-
imize the total profit computed as the difference between the revenue guaranteed by an SLA and the
total cost to provide the services. Formulated as an optimization problem, the solution discussed in [9]
addresses multiple policies, including QoS. The cloud model for this optimization is quite complex and
requires a fair number of parameters.

We assume a cloud providing | K | different classes of service, each class k involving Ny applications.
For each class k € K call vy the revenue (or the penalty) associated with a response time r; and assume
a linear dependency for this utility function of the form vy = v}"® (1 — r/rj"®*), see Figure 6.5(a).
Call my = —v"** /r/"®* the slope of the utility function.

The system is modeled as a network of queues with multiqueues for each server and with a delay
center that models the think time of the user after the completion of service at one server and the
start of processing at the next server [see Figure 6.5(b)]. Upon completion, a class k request either
completes with probability (1—3) ",/ g 7 ¢’) or returns to the system as a class k" request with transition
probability 7y ;. Call Ax the external arrival rate of class k requests and Ay the aggregate rate for class
k,where Ay = Ak + Y preg Aimi i

176 CHAPTER 6 Cloud Resource Management and Scheduling

_1m
i
—_1m
_1m
1 i
Im _1m
Im
—Im _1m
_11m

V max
“ il
_11
_11
» Tk
rkmax
(a) (b)
FIGURE 6.5
(a) The utility function, v, the revenue (or the penalty) associated with a response time ry for a request of
class k € K. The slope of the utility function is my = —v,7® /7. (b) A network of multiqueues. At each

server S; there are |K| queues for each one of the k € K classes of requests. A tier consists of all requests
of class k € K at all servers S;; e /,1 </ <6.

Typically, CPU and memory are considered representative for resource allocation; for simplicity we
assume a single CPU that runs at a discrete set of clock frequencies and a discrete set of supply voltages
according to a Dynamic Voltage and Frequency Scaling (DVFS) model. The power consumption of
a server is a function of the clock frequency. The scheduling of a server is work-conserving® and is
modeled as a Generalized Processor Sharing (GPS) scheduling [385]. Analytical models [4,280] are
too complex for large systems.

The optimization problem formulated in [9] involves five terms: A and B reflect revenues; C the cost
of servers in a low-power, stand-by mode; D the cost of active servers, given their operating frequencys;
E, the cost of switching servers from low-power, stand-by mode to active state, and F, the cost of
migrating VMs from one server to another. There are nine constraints I'1, I'p, ..., I'g for this mixed-
integer, nonlinear programming problem. The decision variables for this optimization problem are listed
in Table 6.2 and the parameters used are shown in Table 6.3.

6 A scheduling policy is work-conserving if the server cannot be idle while there is work to be done.

6.6 A Utility-Based Model for Cloud-Based Web Services 177

Table 6.2 Decision variables for the optimization problem.

Name Description

X; Xx; = 1if server i e | is running, Xx; = 0 otherwise

Yih Yi.n = 1if server i is running at frequency h, y; p = 0 otherwise

Zj k.j z; i j = 1if application tier j of a class k request runs on server i, z; x ; = 0 otherwise
Wi k w; x = 1if at least one class k request is assigned to server i, w; x = 0 otherwise
Mik,j Rate of execution of applications tier j of class k requests on server i

Di k.| Fraction of capacity of server i assigned to tier j of class k requests

Table 6.3 The parameters used for the A, B, C, D, E, and F terms and the constraints I'; of the
optimization problem.

Name Description

/ The set of servers

K The set of classes

Ak The aggregate rate forclass k € K, Ay = Ak + Y prek ATk k!

a; The availability of server i € |

Ak Minimum level of availability for request class k € K specified by the SLA
my The slope of the utility function for a class k € K application

N Number of applications in class k € K

H; The range of frequencies of server j € /

Cin Capacity of server i € [running at frequency h € H;

Ci.h Cost for server i € | running at frequency h € H;

Cj Average cost of running server i

Kk, j Maximum service rate for a unit capacity server for tier j of a class k request
cm The cost of moving a virtual machine from one server to another

cs; The cost for switching server i from the stand-by mode to an active state
RAM ; The amount of main memory for tier j of class k request

RAM; The amount of memory available on server |

The expression to be maximized is:
(A+B)—(C+D+E+F) (6.21)

with

A = max Z —my Z Aik] ,

kek iel.jeN Soner: (Cin X Yin) tkj X Gikj — Mik.j

178 CHAPTER 6 Cloud Resource Management and Scheduling

B =) ux Ay, (6.22)
keK
C=>éG D= Y cnxyn E=) csimax(0 x —), (6.23)
iel i€l ,heH; iel
and
F = Z emmax (0, z; jk — Zi jk)- (6.24)
i€l ,keK,jeN;

The nine constraints are:

T'y) Zie[Aik,j = Mk, Vk € K, j € Np = the traffic assigned to all servers for class k requests
equals the predicted load for the class.

(T2) Y kek.jen, Pik.j < 1Vi € I = serveri cannot be allocated an workload more than its capacity.

(T'3) ZhEHi Yi.h = Xi, Vi € [= if serveri € [is active it runs at one frequency in the set H;, and
only one y; j is nonzero.

(T4) zik,j <x,Viel, ke K, je Ny = requests can only be assigned to active servers.

Ts) Aik,j < Apxzigj, Viel, keK, je Ny = requests may run on server i € I only if the
corresponding application tier has been assigned to server i.

Te) Aik,j < ZheH,- Cinx yi,h) Mk j X $ikj, Vi € I,k € K, j € Ny = resources cannot be
saturated.

(I'7) RAMy j x zjk,j < RAM;, Vi € I, k € K = the memory on server i is sufficient to support
all applications running on it.

(T's) Hi.vil (1—1M, (1 —a"*) > Ay, Yk € K = the availability of all servers assigned to class k
request should be at least equal to the minimum required by the SLA.

(T9) Z?’i] Zikj = Nexwix, Viel ke K
Ak @ijk =0, Viel keK, je N
Xiy YihsZik,j> Wik € {0,1}, Vi € I,k € K, j € Ny = constraints and relations among
decision variables.

Clearly, this approach is not scalable to clouds with a very large number of servers. Moreover, the
large number of decision variables and parameters of the model make this approach infeasible for a
realistic cloud computing resource management strategy.

6.7 Resource bundling: Combinatorial auctions for cloud resources

Resources in a cloud are allocated in bundles, allowing users get maximum benefit from a specific
combination of resources. Indeed, along with CPU cycles, an application needs specific amounts of main
memory, disk space, network bandwidth, and so on. Resource bundling complicates traditional resource
allocation models and has generated interest in economic models and, in particular, auction algorithms.
In the context of cloud computing, an auction is the allocation of resources to the highest bidder.

Combinatorial Auctions. Auctions in which participants can bid on combinations of items, or pack-
ages, are called combinatorial auctions [93]. Such auctions provide a relatively simple, scalable, and
tractable solution to cloud resource allocation. Two recent combinatorial auction algorithms are the

6.7 Resource Bundling: Combinatorial Auctions for Cloud Resources 179

simultaneous clock auction [29] and the clock proxy auction [30]. The algorithm discussed in this chap-
ter and introduced in [333] is called the ascending clock auction (ASCA). In all these algorithms the
current price for each resource is represented by a “clock” seen by all participants at the auction.

We consider a strategy in which prices and allocation are set as a result of an auction. In this auction,
users provide bids for desirable bundles and the price they are willing to pay. We assume a population
of Uusers,u = {1,2,...,U}, and R resources, r = {1,2, ..., R}. The bid of user u is B,, = {Q,,, .}
with Q; = (q,l, q,f, q,f, ...) an R-component vector; each element of this vector, q,i, represents a bundle
of resources user u would accept and, in return, pay the total price m,,. Each vector component q,i isa
positive quantity and encodes the quantity of a resource desired or, if negative, the quantity of the re-
source offered. A user expresses her desires as an indifference set T = (qj XOR qg XOR qu3 XOR...).

The final auction prices for individual resources are given by the vector p = (p!, p?, ..., p®) and
the amounts of resources allocated to user u are x,, = (x,l, x,%, A x,f). Thus, the expression [T pl

represents the total price paid by user « for the bundle of resources if the bid is successful at time 7.
The scalar [mingeg, (q" p)1is the final price established through the bidding process.

The bidding process aims to optimize an objective function f(x, p). This function could be tailored
to measure the net value of all resources traded, or it can measure the fotal surplus — the difference
between the maximum amount users are willing to pay minus the amount they pay. Other optimization
functions could be considered for a specific system, e.g., the minimization of energy consumption or
of security risks.

Pricing and Allocation Algorithms. A pricing and allocation algorithm partitions the set of users
into two disjoint sets, winners and losers, denoted as W and L, respectively. The algorithm should:

1. Be computationally tractable. Traditional combinatorial auction algorithms such as Vickey-Clarke-
Groves (VLG) fail this criteria, because they are not computationally tractable.

2. Scale well. Given the scale of the system and the number of requests for service, scalability is a
necessary condition.

3. Be objective. Partitioning in winners and losers should only be based on the price 7, of a user’s bid.
If the price exceeds the threshold, the user is a winner; otherwise the user is a loser.

4. Be fair. Make sure that the prices are uniform. All winners within a given resource pool pay the same

price.

Indicate clearly at the end of the auction the unit prices for each resource pool.

. Indicate clearly to all participants the relationship between the supply and the demand in the system.

o o

The function to be maximized is
max f(x, p). (6.25)
X,p

The constraints in Table 6.4 correspond to our intuition: (a) the first one states that a user either
gets one of the bundles it has opted for or nothing; no partial allocation is acceptable. (b) The second
constraint expresses the fact that the system awards only available resources; only offered resources
can be allocated. (c) The third constraint is that the bid of the winners exceeds the final price. (d) The
fourth constraint states that the winners get the least expensive bundles in their indifference set. (¢) The
fifth constraint states that losers bid below the final price. (f) The last constraint states that all prices are
positive numbers.

180 CHAPTER 6 Cloud Resource Management and Scheduling

Table 6.4 The constraints for a combinatorial auction algorithm.

Xy € {0UQu}, Yu A user gets all resources or nothing.

SuXu<O Final allocation leads to a net surplus of resources.
Ty = (xu)Tp, YueW Auction winners are willing to pay the final price.
(xu)Tp = mianQU (qu), YueWw Winners get the cheapest bundle in Z.

Ty < Mingeg, (qu), Yuel The bids of the losers are below the final price.
p=0 Prices must be nonnegative.

The ASCA Combinatorial Auction Algorithm. Informally, in the ASCA algorithm [333] the par-
ticipants at the auction specify the resource and the quantities of that resource offered or desired at the
price listed for that time slot. Then the excess vector

2(t) =) xu(0) (6.26)

is computed. If all its components are negative, the auction stops; negative components mean that the
demand does not exceed the offer. If the demand is larger than the offer, z(#) > 0, the auctioneer
increases the price for items with a positive excess demand and solicits bids at the new price. Note that
the algorithm satisfies conditions 1 through 6; from Table 6.3 all users discover the price at the same time
and pay or receive a “fair” payment relative to uniform resource prices, the computation is tractable, and
the execution time is linear in the number of participants at the auction and the number of resources. The
computation is robust and generates plausible results regardless of the initial parameters of the system.

There is a slight complication as the algorithm involves user bidding in multiple rounds. To address
this problem the user proxies automatically adjust their demands on behalf of the actual bidders, as
shown in Figure 6.6. These proxies can be modeled as functions that compute the “best bundle” from
each Q, set given the current price

0, = {c}u if équg m, with g, € argmin (qqu)'
0 otherwise

The input to the ASCA algorithm: U users, R resources, p the starting price, and the update increment
function, g : (x, p) — RR. The pseudocode of the algorithm is:

l:sett =0, p0)=p

2: loop

3: collect bids x,(t) = G, (p(t)), Yu
4: calculate excess demand z(¢) =), x,(¢)
5: if z(t) <O then
6 break
7 else

6.7 Resource Bundling: Combinatorial Auctions for Cloud Resources 181

X3 Auctioneer

inm»O

4 p(t+1)

FIGURE 6.6

The schematics of the ASCA algorithm. To allow for a single round, auction users are represented by proxies
that place the bids x,(f). The auctioneer determines whether there is an excess demand and, in that case,
raises the price of resources for which the demand exceeds the supply and requests new bids.

8: update prices p(t + 1) = p(t) + g(x(t), p(t))
9: t<—t+1

10: end if

11: end loop

In this algorithm g(x(#), p(¢)) is the function for setting the price increase. This function can be
correlated with the excess demand z(¢), asin g (x(t), p(t)) = az(t)" (the notation x* means max (x, 0))
with « a positive number. An alternative is to ensure that the price does not increase by an amount larger
than 8. In that case g(x(¢), p(¢)) = min (¢z(¢)*, e) withe = (1, 1, ..., 1) is an R-dimensional vector
and minimization is done componentwise.

The convergence of the optimization problem is guaranteed only if all participants at the auction are
either providers of resources or consumers of resources, but not both providers and consumers at the same
time. Nevertheless, the clock algorithm only finds a feasible solution; it does not guarantee its optimality.

The authors of [333] have implemented the algorithm and allowed internal use of it within Google.
Their preliminary experiments show that the system led to substantial improvements. One of the most
interesting side effects of the new resource allocation policy is that users were encouraged to make their
applications more flexible and mobile to take advantage of the flexibility of the system controlled by
the ASCA algorithm.

182 CHAPTER 6 Cloud Resource Management and Scheduling

An auctioning algorithm is very appealing because it supports resource bundling and does not require
a model of the system. At the same time, a practical implementation of such algorithms is challenging.
First, requests for service arrive at random times, whereas in an auction all participants must react
to a bid at the same time. Periodic auctions must then be organized, but this adds to the delay of
the response. Second, there is an incompatibility between cloud elasticity, which guarantees that the
demand for resources of an existing application will be satisfied immediately, and the idea of periodic
auctions.

6.8 Scheduling algorithms for computing clouds

Scheduling is a critical component of cloud resource management. Scheduling is responsible for resource
sharing/multiplexing at several levels. A server can be shared among several virtual machines, each vir-
tual machine could support several applications, and each application may consist of multiple threads.
CPU scheduling supports the virtualization of a processor, the individual threads acting as virtual proces-
sors; a communication link can be multiplexed among a number of virtual channels, one for each flow.

In addition to the requirement to meet its design objectives, a scheduling algorithm should be efficient,
fair, and starvation-free. The objectives of a scheduler for a batch system are to maximize the throughput
(the number of jobs completed in one unit of time, e.g., in one hour) and to minimize the turnaround
time (the time between job submission and its completion). For a real-time system the objectives are to
meet the deadlines and to be predictable. Schedulers for systems supporting a mix of tasks — some with
hard real-time constraints, others with soft, or no timing constraints — are often subject to contradictory
requirements. Some schedulers are preemptive, allowing a high-priority task to interrupt the execution
of a lower-priority one; others are nonpreemptive.

Two distinct dimensions of resource management must be addressed by a scheduling policy: (a) the
amount or quantity of resources allocated and (b) the timing when access to resources is granted.
Figure 6.7 identifies several broad classes of resource allocation requirements in the space defined by
these two dimensions: best-effort, soft requirements, and hard requirements. Hard-real time systems are
the most challenging because they require strict timing and precise amounts of resources.

There are multiple definitions of a fair scheduling algorithm. First, we discuss the max-min fairness
criterion [128]. Consider a resource with bandwidth B shared among n users who have equal rights.
Each user requests an amount b; and receives B;. Then, according to the max-min criterion, the following
conditions must be satisfied by a fair allocation:

C1. The amount received by any user is not larger than the amount requested, B; < b;.

C,. If the minimum allocation of any user is By,;, no allocation satisfying condition C; has a higher
B, than the current allocation.

C3. When we remove the user receiving the minimum allocation B,,;, and then reduce the total amount
of the resource available from B to (B — By,in), the condition C, remains recursively true.

A fairness criterion for CPU scheduling [142] requires that the amount of work in the time interval
from #; to t, of two runnable threads a and b, Q,(¢1, t2) and 2,(#1, 1), respectively, minimize the
expression

Qa(n1,) Qp(t1, 1)

Wqa Wp

) (6.27)

6.8 Scheduling Algorithms for Computing Clouds 183

A
Quality

strict L

Hard-requirements

Hard real-time

Soft-requirements

Best-effort

loose Timing

!

loose strict

FIGURE 6.7

Best-effort policies do not impose requirements regarding either the amount of resources allocated to an
application or the timing when an application is scheduled. Soft-requirements allocation policies require
statistically guaranteed amounts and timing constraints; hard-requirements allocation policies demand strict
timing and precise amounts of resources.

where w, and wy, are the weights of the threads a and b, respectively.

The quality-of-service (QoS) requirements differ for different classes of cloud applications and
demand different scheduling policies. Best-effort applications such as batch applications and analytics’
do not require QoS guarantees. Multimedia applications such as audio and video streaming have soft
real-time constraints and require statistically guaranteed maximum delay and throughput. Applications
with hard real-time constraints do not use a public cloud at this time but may do so in the future.

Round-robin, FCFS, shortest-job-first (SJF), and priority algorithms are among the most common
scheduling algorithms for best-effort applications. Each thread is given control of the CPU for a definite
period of time, called a time-slice, in a circular fashion in the case of round-robin scheduling. The
algorithm is fair and starvation-free. The threads are allowed to use the CPU in the order in which they
arrive in the case of the FCFS algorithms and in the order of their running time in the case of SJF
algorithms. Earliest deadline first (EDF) and rate monotonic algorithms (RMA) are used for real-time
applications. Integration of scheduling for the three classes of application is discussed in [56], and two

TThe term analytics is overloaded; sometimes it means discovery of patterns in the data, but it could also mean statistical
processing of the results of a commercial activity.

184 CHAPTER 6 Cloud Resource Management and Scheduling

new algorithms for integrated scheduling, resource allocation/dispatching (RAD) and rate-based earliest
deadline (RBED) are proposed.

Next we discuss several algorithms of special interest for computer clouds. These algorithms illustrate
the evolution in thinking regarding the fairness of scheduling and the need to accommodate multi-
objective scheduling — in particular, scheduling for multimedia applications.

6.9 Fair queuing

Computing and communication on a cloud are intimately related. Therefore, it should be no surprise
that the first algorithm we discuss can be used for scheduling packet transmission as well as threads.
Interconnection networks allow cloud servers to communicate with one another and with users. These
networks consist of communication links of limited bandwidth and switches/routers/gateways of limited
capacity. When the load exceeds its capacity, a switch starts dropping packets because it has limited
input buffers for the switching fabric and for the outgoing links, as well as limited CPU cycles.

A switch must handle multiple flows and pairs of source-destination endpoints of the traffic. Thus, a
scheduling algorithm has to manage several quantities at the same time: the bandwidth, the amount of
data each flow is allowed to transport; the timing when the packets of individual flows are transmitted;
and the buffer space allocated to each flow. A first strategy to avoid network congestion is to use a FCFS
scheduling algorithm. The advantage of the FCFS algorithm is a simple management of the three quanti-
ties: bandwidth, timing, and buffer space. Nevertheless, the FCFS algorithm does not guarantee fairness;
greedy flow sources can transmit at a higher rate and benefit from a larger share of the bandwidth.

To address this problem, a fair queuing algorithm proposed in [252] requires that separate queues, one
per flow, be maintained by a switch and that the queues be serviced in a round-robin manner. This algo-
rithm guarantees the fairness of buffer space management, but does not guarantee fairness of bandwidth
allocation. Indeed, a flow transporting large packets will benefit from a larger bandwidth (see Figure 6.8).

The fair queuing (FQ) algorithm in [102] proposes a solution to this problem. First, it introduces
a bit-by-bit round-robin (BR) strategy; as the name implies, in this rather impractical scheme a single
bit from each queue is transmitted and the queues are visited in a round-robin fashion. Let R(¢) be the
number of rounds of the BR algorithm up to time # and Ny;ye (f) be the number of active flows through
the switch. Call ¢ the time when the packet i of flow a, of size Pl.“ bits arrives, and call Si“ and F}' the
values of R(#) when the first and the last bit, respectively, of the packet i of flow a are transmitted. Then,

F'=8/+ P and S =max[F",, R({)]. (6.28)

1

The quantities R(t), Nacrive(t), Sf', and F}" depend only on the arrival time of the packets, ¢, and not

i
on their transmission time, provided that a flow a is active as long as

R(1) < F when i =max (jlrf! <t). (6.29)

The authors of [102] use for packet-by-packet transmission time the following nonpreemptive schedul-
ing rule, which emulates the BR strategy: The next packet to be transmitted is the one with the smallest
F{. A preemptive version of the algorithm requires that the transmission of the current packet be
interrupted as soon as one with a shorter finishing time, Fi“, arrives.

6.10 Start-Time Fair Queuing 185

RO R(t)

Fi(t") =8"(t")+P* —

Fi(t")=S"(t")+P"; —

St D=F".(t") 4=

SHAH=RY(Y)

F'ii(t') RY(t")

\j
\j

(a) (b)
FIGURE 6.8

Transmission of a packet / of flow a arriving at time 7 of size P7 bits. The transmission starts at time
S§7 = max[F7? ;, R(t?)] and ends at time F? = S7 + P7 with R(f) the number of rounds of the algorithm.
(a) The case F7 | < R(t7). (b) The case F7 ; > R(17).

A fair allocation of the bandwidth does not have an effect on the timing of the transmission. A possible
strategy is to allow less delay for the flows using less than their fair share of the bandwidth. The same
paper [102] proposes the introduction of a quantity called the bid, Bf, and scheduling the packet
transmission based on its value. The bid is defined as

Bf = P + max [F{",, (R (t7) — 8)]. (6.30)

with é a nonnegative parameter. The properties of the FQ algorithm, as well as the implementation of
a nonpreemptive version of the algorithms, are analyzed in [102].

6.10 Start-time fair queuing

A hierarchical CPU scheduler for multimedia operating systems was proposed in [142]. The basic idea
of the start-time fair queuing (SFQ) algorithm is to organize the consumers of the CPU bandwidth in a
tree structure; the root node is the processor and the leaves of this tree are the threads of each application.
A scheduler acts at each level of the hierarchy. The fraction of the processor bandwidth, B, allocated to
the intermediate node i is
B,’ wj
=t (6.31)
B Z?:l w;
withw;, 1 < j < n, the weight of the n children of node i; see the example in Figure 6.9.
When a virtual machine is not active, its bandwidth is reallocated to the other VMs active at the time.
When one of the applications of a virtual machine is not active, its allocation is transferred to the other

186 CHAPTER 6 Cloud Resource Management and Scheduling

FIGURE 6.9

The SFQ tree for scheduling when two virtual machines, VM; and VM,, run on a powerful server. VM; runs
two best-effort applications A1, with three threads f; 1, t1 2, and f; 3, and Ay with a single thread, . VM,
runs a video-streaming application, Az, with three threads vs;, vsy, and vs3. The weights of virtual machines,
applications, and individual threads are shown in parenthesis.

applications running on the same VM. Similarly, if one of the threads of an application is not runnable,
its allocation is transferred to the other threads of the applications.

Call v, () and vy (¢) the virtual time of threads a and b, respectively, at real time 7. The virtual time
of the scheduler at time ¢ is denoted by v(#). Call g the time quantum of the scheduler in milliseconds.
The threads a and b have their time quanta, g, and ¢, weighted by w, and wj, respectively; thus, in
our example, the time quanta of the two threads are ¢ /w, and g /wp, respectively. The i-th activation
of thread a will start at the virtual time S/, and will finish at virtual time F. We call 7/ the real time of
the j-th invocation of the scheduler.

An SFQ scheduler follows several rules:

R1. The threads are serviced in the order of their virtual start-up time; ties are broken arbitrarily.
R2. The virtual startup time of the i-th activation of thread x is

Si (1) = max [v (r-/) , F;"—“(t)] and S0 =0. (6.32)

The condition for thread i to be started is that thread (i — 1) has finished and that the scheduler is
active.

6.10 Start-Time Fair Queuing 187

R3. The virtual finish time of the i-th activation of thread x is

Fi()=58@)+ L. (6.33)

Wy

A thread is stopped when its time quantum has expired; its time quantum is the time quantum of
the scheduler divided by the weight of the thread.

R4. The virtual time of all threads is initially zero, v
computed as follows:

0:

p 0. The virtual time v(t) at real time 7 is

Virtual start time of the thread in service at time ¢, if CPU is busy

Maximum finish virtual time of any thread, if CPU is idle. (6.34)

v(t) = {

In this description of the algorithm we have included the real time ¢ to stress the dependence of all
events in virtual time on the real time. To simplify the notation we use in our examples the real time as
the index of the event. In other words, SS means the virtual start-up time of thread a at real time r = 6.

Example. The following example illustrates the application of the SFQ algorithm when there are two
threads with the weights w, = 1 and w; = 4 and the time quantum is ¢ = 12 (see Figure 6.10.)

Initially SO = 0, S) = 0, v,(0) = 0, and v5(0) = 0. Thread b blocks at time ¢ = 24 and wakes up
at time ¢ = 60.
The scheduling decisions are made as follows:

1. r = 0: We have a tie, Sg = Sg, and arbitrarily thread b is chosen to run first. The virtual finish time
of thread b is
F =80 +q/wp =0+ 12/4 =3. (6.35)

2. t = 3: Both threads are runnable and thread b was in service; thus, v(3) = S[? = 0; then
S} = max[v(3), F{] = max (0, 3) = 3. (6.36)
But S0 < S}, thus thread a is selected to run. Its virtual finish time is
FO=58%+q/w, =0+12/1 = 12. (6.37)
3. ¢ = 15: Both threads are runnable, and thread a was in service at this time; thus,
v(15)=582=0 (6.38)

and
S} = max[v(15), F%] = max[0, 12] = 12. (6.39)

As Sll =3 < 12, thread b is selected to run; the virtual finish time of thread b is now

Fl =S} +q/w,=3+12/4=6. (6.40)

188 CHAPTER 6 Cloud Resource Management and Scheduling

4, 1 = 18: Both threads are runnable, and thread b was in service at this time; thus,
v(18) =S} =3 (6.41)

and
Sz = max[v(18), F}/]1 = max[3, 6] = 6. (6.42)

As SZ < S; = 12, thread b is selected to run again; its virtual finish time is
F} =S8 +q/wp=6+12/4=09. (6.43)

5. r = 21: Both threads are runnable, and thread b was in service at this time; thus,

v2l) =S} =6 (6.44)
and
S; = max[v(21), F#] = max[6, 9] = 9. (6.45)
Thread a
T 0 12 24 36
I -t
12 24 36 48
thread b is suspended thread b is reactivated
Thread b
A\ v
To 3 6 9 12
I - 15 -
3 6 9 12
Virtual time
A
36
24
12
6 l_l—l Real time
0 3 15 18 2124 36 48 60
FIGURE 6.10

Top, the virtual start-up time S;(t) and Sp(t) and the virtual finish time F;(t) and Fp(t) function of the real time
t for each activation of threads a and b, respectively, are marked at the top and bottom of the box representing
arunning thread. The virtual time of the scheduler v(t) function of the real time is shown on the bottom graph.

6.10 Start-Time Fair Queuing 189

As S,f < Sa1 = 12, thread b is selected to run again; its virtual finish time is
F} =S} +q/w,=9+12/4 = 12. (6.46)

6. t+ = 24: Thread b was in service at this time; thus,

v(24) =S =9 (6.47)
S} = max[v(24), F7] = max[9, 12] = 12. (6.48)
Thread b is suspended till + = 60; thus, thread a is activated. Its virtual finish time is
Fl =8+ q/w, =12+ 12/1 = 24. (6.49)
7. t = 36: Thread a was in service and the only runnable thread at this time; thus,
v(36) =S =12 (6.50)
and
52 = max[v(36), F2] = max[12, 24] = 24. 6.51)
Then,
F2 =82+ q/w, =24+ 12/1 = 36. (6.52)
8. t = 48: Thread a was in service and is the only runnable thread at this time; thus,
v(48) = 52 =24 (6.53)
and
S3 = max[v(48), F2] = max[24, 36] = 36. (6.54)
Then,
F} =83+ q/w, =36+12/1 = 48. (6.55)
9. t = 60: Thread a was in service at this time; thus,
v(60) = 3 = 36 (6.56)
and
§% = max[v(60), F2] = max[36, 48] = 48. (6.57)

But now thread b is runnable and SZ‘ = 12.
Thus, thread b is activated and

F =S} +q/wp =124 12/4 = 15. (6.58)

Several properties of the SFQ algorithm are proved in [142]. The algorithm allocates CPU fairly
when the available bandwidth varies in time and provides throughput as well as delay guarantees. The
algorithm schedules the threads in the order of their virtual start-up time, the shortest one first; the length
of the time quantum is not required when a thread is scheduled but only after the thread has finished its
current allocation. The authors of [142] report that the overhead of the SFQ algorithms is comparable
to that of the Solaris scheduling algorithm.

190 CHAPTER 6 Cloud Resource Management and Scheduling

6.11 Borrowed virtual time

The objective of the borrowed virtual time (BVT) algorithm is to support low-latency dispatching of
real-time applications as well as a weighted sharing of the CPU among several classes of applications
[107]. Like SFQ, the BVT algorithm supports scheduling of a mix of applications, some with hard,
some with soft real-time constraints, and applications demanding only a best effort.

Thread i has an effective virtual time, E;, an actual virtual time, A;, and a virtual time warp, W;.
The scheduler thread maintains its own scheduler virtual time (SVT), defined as the minimum actual
virtual time A of any thread. The threads are dispatched in the order of their effective virtual time, E;,
a policy called the earliest virtual time (EVT).

The virtual time warp allows a thread to acquire an earlier effective virtual time — in other words, to
borrow virtual time from its future CPU allocation. The virtual warp time is enabled when the variable
warpBack is set. In this case a latency-sensitive thread gains dispatching preference as

A; if warpBack = OFF

A; — W; if warpBack = ON. (6.59)

El’ < {
The algorithm measures the time in minimum charging units (mcu) and uses a time quantum called
context switch allowance (C), which measures the real time a thread is allowed to run when com-
peting with other threads, measured in multiples of mcu. Typical values for the two quantities are
mcu = 100 pusec and C = 100 msec. A thread is charged an integer number of mcu.

Context switches are triggered by traditional events, the running thread is blocked waiting for an
event to occur, the time quantum expires, and an interrupt occurs. Context switching also occurs when a
thread becomes runnable after sleeping. When the thread t; becomes runnable after sleeping, its actual
virtual time is updated as follows:

A; < max[A;, SVT]. (6.60)

This policy prevents a thread sleeping for a long time to claim control of the CPU for a longer period
of time than it deserves.

If there are no interrupts, threads are allowed to run for the same amount of virtual time. Individual
threads have weights; a thread with a larger weight consumes its virtual time more slowly. In practice,
each thread 7; maintains a constant k; and uses its weight w; to compute the amount A used to advance
its actual virtual time upon completion of a run:

Ai < A+ A. 6.61)
Given two threads a and b,
k. kp
A= — = —, (6.62)
Wy wp

The EVT policy requires that every time the actual virtual time is updated, a context switch from the
current running thread 7; to a thread t; occurs if

Aj <A ——. (6.63)

6.11 Borrowed Virtual Time 191

Example 1. The following example illustrates the application of the BVT algorithm for scheduling
two threads a and b of best-effort applications. The first thread has a weight twice that of the second,
w, = 2wp; when k,; = 180 and k; = 90, then A = 90.

We consider periods of real-time allocation of C = 9 mcu. The two threads a and b are allowed to
run for 2C /3 = 6 mcu and C/3 = 3 mcu, respectively.
Threads a and b are activated at times

a:0,55+9=14,14+9=23,234+9=32,324+9=41,...

(6.64)
b:2,24+9=11,11+49=20,204+9=29,29+9 =238, ...
The context switches occur at real times:
2,5,11, 14, 20, 23, 29, 32, 38,41, ... (6.65)

The time is expressed in units of mcu. The initial run is a shorter one, consists of only 3 mcu; a context
switch occurs when a, which runs first, exceeds b by 2 mcu.

Table 6.5 shows the effective virtual time of the two threads at the time of each context switch. At
that moment, its actual virtual time is incremented by an amount equal to A if the thread was allowed

Table 6.5 The real time of the context switch and the effective virtual time E;(t) and Ep(f) at
the time of a context switch. There is no time warp, so the effective virtual time is the same as
the actual virtual time. At time t = 0, E;(0)= E,(0)=0 and we choose thread a to run.
Context Switch Real Time Running Thread Effective Virtual Time of the Running Thread
1 t=2 a Ea(2) = A3(2) = A3(0) + A/3 =30
b runs next as Ep(2) =0 < E5(2) = 30
2 t=5 b Ep(5) = Ap(5) = Ap(0) + A =90
a runs next as Ez(5) = 30 < Ep(5) = 90
3 t=11 a Ea(11) = Aa(11) = Aa(2) + A =120
b runs next as Ep(11) =90 < Eg(11) =120
4 t=14 b Ep(14) = Ap(14) = Ap(5) + A =180
a runs next as Ez(14) = 120 < Ep(14) = 180
5 t=20 a Ea(20) = Aa2(20) = Ag(11) + A =210
b runs next as Ep(20) = 180 < E5(20) = 210
6 t=23 b Ep(23) = Ap(23) = Ap(14) + A = 270
a runs next as E5(23) = 210 < E,(23) = 270
7 t =29 a Ea(29) = A3(29) = A3(20) + A = 300
b runs next as Ep(29) = 270 < E5(29) = 300
8 t=32 b Ep(32) = Ap(32) = Ap(23) + A = 360
a runs next as E5(32) = 300 < Ep(32) = 360.
9 t =38 a Ea(38) = A3(38) = A3(29) + A = 390
b runs next as Ep(11) = 360 < E5(11) = 390
10 t=41 b Ep(41) = Ap(41) = Ap(32) + A = 450
a runs next as E5(41) = 390 < Ep(41) = 450

192 CHAPTER 6 Cloud Resource Management and Scheduling

A Effective virtual time
450

390 '
360 e ;

300
270 e !

210 1
180 e /

120 '
90 e /

30 Real time (mcu)

2 5 9 1 14 18 30 23 o7 29 32 36 38 41 45

FIGURE 6.11

Example 1, the effective virtual time and the real time of threads a (solid line) and b (dotted line) with weights
w; = 2w, when the actual virtual time is incremented in steps of A = 90 mcu. The real time the two threads
are allowed to use the CPU is proportional to their weights. The virtual times are equal, but thread a consumes
it more slowly. There is no time warp. The threads are dispatched based on their actual virtual time.

to run for its time allocation. The scheduler compares the effective virtual time of the threads and first
runs the one with the minimum effective virtual time.

Figure 6.11 displays the effective virtual time and the real time of threads @ and b. When a thread
is running, its effective virtual time increases as the real time increases; a running thread appears as a
diagonal line. When a thread is runnable but not running, its effective virtual time is constant. A runnable
period is displayed as a horizontal line. We see that the two threads are allocated equal amounts of virtual
time, but thread a, with a larger weight, consumes its real time more slowly.

Example 2. Next we consider the previous example, but this time there is an additional thread, c, with
real-time constraints. Thread ¢ wakes up at time # = 9 and then periodically at times ¢t = 18, 27, 36, . ..
for 3 units of time.

Table 6.6 summarizes the evolution of the system when the real-time application thread ¢ competes
with the two best-effort threads a and b. Context switches occur now at real times

t=2,5,9,12,14, 18,21, 23, 27, 30, 32, 36, 39,41, . .. (6.66)

The context switches at times
t=29,18,27,36,... (6.67)

6.11 Borrowed Virtual Time 193

Table 6.6 A real-time thread ¢ with a time warp W, = —60 is waking up periodically at times
t =18, 27,36,...for 3 units of time and is competing with the two best-effort threads a and
b. The real time and the effective virtual time of the three threads of each context switch are
shown.

Context Real Running Effective Virtual Time of the Running Thread
Switch Time Thread
1 t=2 a Ea(2) = Aa(2) = A3(0)+ A/3=0+90/3 =30
2 t=5 b E} = Al =AY + A =0+90 =90 = a runs next
3 t=9 a ¢ wakes up

E} = AL +2A/3 =30+ (—60) = 90
[Ea(9), Ep(9), Ec(9)] = (90, 90, —60) = ¢ runs next

4 t=12 c SVT(12) = min (90, 90)
ES(12) = SVT(12) + W, = 90 + (—60) = 30
Ec(12) = ES(12) + A/3 = 30 + 30 = 60 = b runs next

5 t=14 b E2 = A2 = A} +2A/3 =90 + 60 = 150 = a runs next

6 t=18 a ¢ wakes up
E3 = A3 =A2+2A/3=90+60=150
[Ea(18), Ep(18), Ec(18)] = (150, 150, 60) = ¢ runs next

7 t =21 c SVT = min (150, 150)

ES@21) = SVT + W, = 150 + (—60) = 90

Ec(21) = ES(21) + A/3 =90 + 30 = 120 = b runs next
8 t=23 b E3 = A3 = A2 +2A/3 = 150 + 60 = 210 = a runs next
9 t=27 a ¢ wakes up

E4 = A% = A3 +2A/3 =150 +60 =210

[Ea(27), Ep(27), Ec(27)] = (210,210, 120) = ¢ runs next
10 t =30 c SVT = min (210, 210)

ES(30) = SVT + W, = 210 + (—60) = 150

Ec(30) = ES(30) + A/3 = 150 + 30 = 180 = b runs next

11 t=32 b Ep = A} = A3 +2A/3 =210+ 60 = 270 = a runs next

10 t=236 a ¢ wakes up
ES = A3 = A% +2A/3 =210+ 60 = 270
[Ea(36), Ep(36), Ec(36)] = (270, 270, 180) = ¢ runs next

12 t=39 c SVT = min (270, 270)
ES(39) = SVT + W, = 270 + (—60) = 210
Ec(39) = ES(39) + A/3 =210 + 30 = 240 = b runs next

13 t =41 b Ep = A® = A} +2A/3 =270+ 60 = 330 = a runs next

194 CHAPTER 6 Cloud Resource Management and Scheduling

Effective virtual time
(450

303+ Real time (mcu)

L 1 | L | | |
7T5 ToT1Z 1; VARPE] 27* 052 p” 39147 p

FIGURE 6.12

Example 2, the effective virtual time and the real time of threads a (thin solid line), b (dotted line), and ¢,
with real-time constraints (thick solid line). ¢ wakes up periodically at times t = 9, 18, 27, 36, ..., is active
for 3 units of time, and has a time warp of 60 mcu.

are triggered by the waking up of thread ¢, which preempts the currently running thread. At = 9 the
time warp W, = —60 gives priority to thread c. Indeed,

Ec(9) = Ac(9) — W, =0 — 60 = —60 (6.68)

compared with £,(9) = 90 and E,(9) = 90. The same conditions occur every time the real-time thread
¢ wakes up. The best-effort application threads have the same effective virtual time when the real-time
application thread finishes and the scheduler chooses b to be dispatched first. Note that the ratio of real
times used by a and b is the same, as w, = 2w,.

Figure 6.12 shows the effective virtual times for the three threads a, b, and c. Every time thread ¢
wakes up, it preempts the current running thread and is immediately scheduled to run.

6.12 Cloud scheduling subject to deadlines

Often, an SLA specifies the time when the results of computations done on the cloud should be available.
This motivates us to examine cloud scheduling subject to deadlines, a topic drawing on a vast body of
literature devoted to real-time applications.

6.12 Cloud Scheduling Subject to Deadlines 195

Task Characterization and Deadlines. Real-time applications involve periodic or aperiodic tasks
with deadlines. A task is characterized by a tuple (A;, o;, D;), where A; is the arrival time, o; > 0 is the
data size of the task, and D; is the relative deadline. Instances of a periodic task, H?, with period g are
identical, 1'[? = [19, and arrive at times Ag, Ay, ... A;, ..., with A;1| — A; = g. The deadlines satisfy
the constraint D; < A;41 and generally the data size is the same, 0; = o. The individual instances of
aperiodic tasks, I1;, are different. Their arrival times A; are generally uncorrelated, and the amount of
data o; is different for different instances. The absolute deadline for the aperiodic task IT; is (A; 4+ D;).

We distinguish hard deadlines from soft deadlines. In the first case, if the task is not completed by the
deadline, other tasks that depend on it may be affected and there are penalties; a hard deadline is strict
and expressed precisely as milliseconds or possibly seconds. Soft deadlines play more of a guideline
role and, in general, there are no penalties. Soft deadlines can be missed by fractions of the units used to
express them, e.g., minutes if the deadline is expressed in hours, or hours if the deadlines is expressed
in days. The scheduling of tasks on a cloud is generally subject to soft deadlines, though occasionally
applications with hard deadlines may be encountered.

System Model. Inour discussion we consider only aperiodic tasks with arbitrarily divisible workloads.
The application runs on a partition of a cloud, a virtual cloud with a head node called Sy and n worker
nodes S1, S2, ..., S,. The system is homogeneous, all workers are identical, and the communication
time from the head node to any worker node is the same. The head node distributes the workload to
worker nodes, and this distribution is done sequentially. In this context there are two important problems:

1. The order of execution of the tasks IT;.
2. The workload partitioning and the task mapping to worker nodes.

Scheduling Policies. The most common scheduling policies used to determine the order of execution
of the tasks are:

e First in, first out (FIFO). The tasks are scheduled for execution in the order of their arrival.
e Earliest deadline first (EDF). The task with the earliest deadline is scheduled first.
¢ Maximum workload derivative first (MWF).

The workload derivative DC;(n™™) of a task IT; when n™" nodes are assigned to the application,
is defined as _ _ _
DC; (n™") = W, (nm + 1) —W (nm) , (6.69)
with W; (n) the workload allocated to task IT; when n nodes of the cloud are available; if £(o;, n) is the
execution time of the task, then W;(n) = n x £(o;, n). The MWF policy requires that:

1. The tasks are scheduled in the order of their derivatives, the one with the highest derivative DC; first.
min

2. The number n of nodes assigned to the application is kept to a minimum, n}"".

We discuss two workload partitioning and task mappings to worker nodes, optimal and the equal
partitioning.

Optimal Partitioning Rule (OPR). The optimality in OPR refers to the execution time; in this case,
the workload is partitioned to ensure the earliest possible completion time, and all tasks are required to

196 CHAPTER 6 Cloud Resource Management and Scheduling

Table 6.7 The parameters used for scheduling with deadlines.
Name Description
I1; The aperiodic tasks with arbitrary divisible load of an application .A
A; Arrival time of task IT;
D; The relative deadline of task IT;
o} The workload allocated to task IT;
So Head node of the virtual cloud allocated to A
S; Worker nodes 1 < i < n of the virtual cloud allocated to A
o Total workload for application A
n Number of nodes of the virtual cloud allocated to application .A
pmin Minimum number of nodes of the virtual cloud allocated to application A
E(n, o) The execution time required by n worker nodes to process the workload o
T Cost of transferring a unit of workload from the head node Sy to worker S;
P Cost of processing a unit of workload
o The load distribution vector & =(q, o, ..., an)
aj X o The fraction of the workload allocated to worker node S;
I Time to transfer the data to worker S;,I'j =oj x o x 7,1 <i<n
Aj Time the worker S; needs to process a unitof data, Aj =aj x o x p,1<i<n
fo Start time of the application A
A Arrival time of the application A
D Deadline of application A
c(n Completion time of application .A

complete at the same time. EPR, as the name suggests, means that the workload is partitioned in equal
segments. In our discussion we use the derivations and some of the notations in [218]; these notations
are summarized in Table 6.7.

The timing diagram in Figure 6.13 allows us to determine the execution time £(n, o) for the OPR as

Em,o)=T1+ A

=M+ + A
=1+ +T3+ A3 (6.70)

=I++I3+--+T + A,
We substitute the expressions of I';, A;, 1 < i < n, and rewrite these equations as
Em,o) =01 X0 XT+a| X0 Xp
=0 XOXTH+oX0XT+a X0 Xp

=0 XOXTH+a X0 XTH+A3X0XTH+A3X0Xp (6.71)

= XOXTH+aX0OXTH+UZXOXTH+--+q;, XOXT+a; X0 XpP.

6.12 Cloud Scheduling Subject to Deadlines 197

S Aq ‘

S, Lz ‘

\J

Ss A3 ‘

\

S, An

FIGURE 6.13

The timing diagram for the optimal partitioning rule. The algorithm requires worker nodes to complete
execution at the same time. The head node, Sy, distributes sequentially the data to individual worker nodes.
The communication time isT'; = o; x 0 x 7, 1 </ < n. Worker node S; starts processing the data as soon
as the transfer is complete. The processing time is Aj =«a; xo x p, 1 <i<n.

\/

From the first two equations we find the relation between « and o as

o =2 with g=—2—,
B T+p

0<pB<L (6.72)

This implies that oy = 8 x «7. It is easy to see that in the general case
ai =B xai_1 =B xai. (6.73)

But ¢; are the components of the load distribution vector; thus,

n
dai=1 (6.74)
i=1
Next, we substitute the values of ¢; and obtain the expression for o;:
-1 1- :3

a1+ﬂxa1~|—,32xa1+,33xa1...ﬂ” xar=1 or o = (6.75)

1—pn’
‘We have now determined the load distribution vector and we can now determine the execution time as

- B
- ﬁno(r + p). (6.76)

Em,o)=a1 Xo XTH+a X0 Xp=

198 CHAPTER 6 Cloud Resource Management and Scheduling

Call CA(n) the completion time of an application A = (A, o, D), which starts processing at time o
and runs on n worker nodes; then

1 —
CA) =ty + E(n, 0) = 1o + — ;n o (T + p). 6.77)
The application meets its deadline if and only if
cA(n) < A+ D, (6.78)
or P
to+Em,0) =1y + 1_IBncf(r—l—p)gA—i-D. (6.79)
But0 < 8 < 1thus, 1 — 8" > 0, and it follows that
(I=PByo(r+p) <A - p"A+D—1). (6.80)
The application can meet its deadline only if (A + D — fy) > 0, and under this condition this inequality
becomes
"<y with y=1-——23% 6.81)
Y A+D—1y ’

If y < 0, there is not enough time even for data distribution and the application should be rejected.
When y > 0, thenn > }E—E Thus, the minimum number of nodes for the OPR strategy is

n™in = 1—11. (6.82)

Equal Partitioning Rule (EPR). EPR assigns an equal workload to individual worker nodes, «; = 1/n.
From the diagram in Figure 6.14 we see that

- o o o
5(n,o)=ZFi+An=nx;xr—i—;xp:oxtjt;xp. (6.83)

i=1

The condition for meeting the deadline, C A(n) < A+ D, leads to

tO+GXT+%X'0<A+D0rn>A+D(i>z<0p—oxr' (6.84)
Thus,
min _ [AJFD‘iZ'O_G XJ, (6.85)

The pseudocode for a general schedulability test for FIFO, EDF, and MWF scheduling policies, for
two-node allocation policies, MN (minimum number of nodes) and AN (all nodes), and for OPR and
EPR partitioning rules is given in reference [218]. The same paper reports on a simulation study for 10
algorithms. The generic format of the names of the algorithms is Sp-No-Pa, with Sp = FIFO/EDF/MWF,
No = MN/AN, and Pa = OPR/EPR. For example, MWF-MN-OPR uses MWF scheduling, minimum
number of nodes, and OPR partitioning. The relative performance of the algorithms depends on the
relations between the unit cost of communication T and the unit cost of computing p.

6.13 Scheduling MapReduce Applications Subject to Deadlines 199

S| & r,

S: | A |

S ‘ A; ‘

S; . ‘

Sh

. |

FIGURE 6.14

The timing diagram for the equal partitioning rule. The algorithm assigns an equal workload to individual
worker nodes, «; = 1/n. The head node, Sy, distributes sequentially the data to individual worker nodes.
The communication time is T'; = (o/n) x t, 1 < i < n. Worker node S; starts processing the data as soon as
the transfer is complete. The processing time is A; = (o/n) x p, 1 <i < n.

6.13 Scheduling MapReduce applications subject to deadlines

Now we turn our attention to applications of the analysis in Section 6.12 and discuss scheduling of
MapReduce applications on the cloud subject to deadlines. Several options for scheduling Apache
Hadoop, an open-source implementation of the MapReduce algorithm, are:

e The default FIFO schedule.

e The Fair Scheduler [383].

* The Capacity Scheduler.

* The Dynamic Proportional Scheduler [315].

A recent paper [186] applies the deadline scheduling framework analyzed to Hadoop tasks. Table 6.8
summarizes the notations used for the analysis of Hadoop; the term slots is equivalent with nodes and
means the number of instances.

We make two assumptions for our initial derivation:

* The system is homogeneous; this means that p,, and p,, the cost of processing a unit data by the
map and the reduce task, respectively, are the same for all servers.
* Load equipartition.

Under these conditions the duration of the job J with input of size o is

E(nm,nr,o)zo[p—m—i—qb(&—i—t)] (6.86)

N ny

200 CHAPTER 6 Cloud Resource Management and Scheduling

Table 6.8 The parameters used for scheduling with deadlines.
Name Description
Q The query Q = (A, 0, D)
A Arrival time of query Q
D Deadline of query Q
l'[ﬂ,, Amaptask, 1 <i<u
l‘[/, Areduce task, 1 <j < v
J The job to perform the query Q = (A, o, D), J = (1‘[,177 n2,....n4 nl,nz..., I'Iy)
T Cost for transferring a data unit
om Cost of processing a unit data in map task
or Cost of processing a unit data in reduce task
Nm Number of map slots
nr Number of reduce slots
nfmin Minimum number of slots for the map task
n Total number of slots, n = nm + nr
t,% Start time of the map task
tmax Maximum value for the start time of the reduce task
o Map distribution vector; the EPR strategy is used and, oj = 1/u
¢ Filter ratio, the fraction of the input produced as output by the map process

Thus, the condition that query Q = (A, o, D) with arrival time A meets the deadline D can be
expressed as

t,?1+o[p—m+¢(&+r)]<A+D. (6.87)
m r
It follows immediately that the maximum value for the start-up time of the reduce task is
("X — A+ D—og (& + 1:> . (6.88)
ny

We now plug the expression of the maximum value for the start-up time of the reduce task into the
condition to meet the deadline

10 4o lm gmax, (6.89)

m r
It follows immediately that n%i”, the minimum number of slots for the map task, satisfies the condition

O Om

pmin > Py, it = 2Py
tmax _ 40
r m

m. = ymax _ 40 m
r m

(6.90)

The assumption of homogeneity of the servers can be relaxed and we assume that individual servers

have different costs for processing a unit workload pfn # pi, and pt" # p]. In this case we can use the
minimum values p,, = min p;, and p, = min p;. in the expression we derived.

6.14 Resource Management and Dynamic Application Scaling 201

A Constraints Scheduler based on this analysis and an evaluation of the effectiveness of this scheduler
are presented in [186].

6.14 Resource management and dynamic application scaling

The demand for computing resources, such as CPU cycles, primary and secondary storage, and net-
work bandwidth, depends heavily on the volume of data processed by an application. The demand for
resources can be a function of the time of day, can monotonically increase or decrease in time, or can
experience predictable or unpredictable peaks. For example, a new Web service will experience a low
request rate when the service is first introduced and the load will exponentially increase if the service is
successful. A service for income tax processing will experience a peak around the tax filling deadline,
whereas access to a service provided by Federal Emergency Management Agency (FEMA) will increase
dramatically after a natural disaster.

The elasticity of a public cloud, the fact that it can supply to an application precisely the amount
of resources it needs and that users pay only for the resources they consume are serious incentives to
migrate to a public cloud. The question we address is: How scaling can actually be implemented in a
cloud when a very large number of applications exhibit this often unpredictable behavior [62,233,357].
To make matters worse, in addition to an unpredictable external load the cloud resource management
has to deal with resource reallocation due to server failures.

We distinguish two scaling modes: vertical and horizontal. Vertical scaling keeps the number of VMs
of an application constant, but increases the amount of resources allocated to each one of them. This
can be done either by migrating the VMs to more powerful servers or by keeping the VMs on the same
servers but increasing their share of the CPU time. The first alternative involves additional overhead;
the VM is stopped, a snapshot of it is taken, the file is transported to a more powerful server, and, finally,
the VM is restated at the new site.

Horizontal scaling is the most common mode of scaling on a cloud; it is done by increasing the
number of VMs as the load increases and reducing the number of VMs when the load decreases. Often,
this leads to an increase in communication bandwidth consumed by the application. Load balancing
among the running VMs is critical to this mode of operation. For a very large application, multiple load
balancers may need to cooperate with one another. In some instances the load balancing is done by a
front-end server that distributes incoming requests of a transaction-oriented system to back-end servers.

An application should be designed to support scaling. As we saw in Section 4.6 in the case of a
modularly divisible application, the workload partitioning is static, it is decided a priori, and cannot be
changed; thus, the only alternative is vertical scaling. In the case of an arbitrarily divisible application
the workload can be partitioned dynamically; as the load increases, the system can allocate additional
VMs to process the additional workload. Most cloud applications belong to this class, which justifies
our statement that horizontal scaling is the most common scaling mode.

Mapping a computation means to assign suitable physical servers to the application. A very important
first step in application processing is to identify the type of application and map it accordingly. For
example, a communication-intensive application should be mapped to a powerful server to minimize
the network traffic. This may increase the cost per unit of CPU usage, but it will decrease the computing
time and probably reduce the overall cost for the user. At the same time, it will reduce the network
traffic, a highly desirable effect from the perspective of the cloud service provider. To scale up and

202 CHAPTER 6 Cloud Resource Management and Scheduling

down a compute-intensive application, a good strategy is to increase or decrease the number of VMs or
instances. Because the load is relatively stable, the overhead of starting up or terminating an instance
does not increase significantly the computing time or the cost.

There are several strategies to support scaling. Automatic VM scaling uses predefined metrics, e.g.,
CPU utilization, to make scaling decisions. Automatic scaling requires sensors to monitor the state of
VM s and servers; controllers make decisions based on the information about the state of the cloud, often
using a state machine model for decision making. Amazon and Rightscale (www.rightscale.com)
offer automatic scaling. In the case of AWS the CloudWatch service supports applications monitoring
and allows a user to set up conditions for automatic migrations.

Nonscalable or single-load balancers are also used for horizontal scaling. The Elastic Load Balanc-
ing service from Amazon automatically distributes incoming application traffic across multiple £C2
instances. Another service, the Elastic Beanstalk, allows dynamic scaling between a low and a high
number of instances specified by the user (see Section 3.1). The cloud user usually has to pay for the
more sophisticated scaling services such as Elastic Beanstalk.

6.15 Further reading

Cloud resource management poses new and extremely challenging problems, so it should be no surprise
thatitis a very active area of research. A fair number of papers, including [22,65,75,77,113,114,115,120,
138,139,151,155,162,184,238,275,307,313] are dedicated to various resource management policies.
Several papers are concerned with SLA and QoS; e.g., [4] covers SLA-driven capacity management
and [23] covers SLA-based resource allocation policies. Dynamic request scheduling of applications
subject to SLA requirements is presented in [54]. The QoS in clouds is analyzed in [121].

Autonomic computing [130] is the subject of papers such as [24], which covers energy-aware resource
allocation in autonomic computing; [188], which analyzes policies for autonomic computing based on
utility functions; [187], which discusses coordination of multiple autonomic managers and power-
performance tradeoffs; and [9], which presents autonomic management of cloud services subject to
availability guarantees.

Auctions in which participants can bid on combinations of items or packages are called combinatorial
auctions [93]. Such auctions provide arelatively simple, scalable, and tractable solution to cloud resource
allocation. Two recent combinatorial auction algorithms are the simultaneous clock auction [29] and
the clock proxy auction [30]; the algorithm discussed in this chapter and introduced in [333] is called
the ascending clock auction (ASCA).

An authoritative reference on fault tolerance is [31]; applications of control theory to resource allo-
cation discussed in [70, 109] cover resource multiplexing in data centers. Admission control policies are
discussed in [150]. Power and performance management are the subject of [202], and performance man-
agement for cluster-based Web services is covered in [280]. Autonomic management of heterogeneous
workloads is discussed in [344], and application placement controllers are the topic of [346].

Scheduling and resource allocation are also covered by numerous papers: a batch queuing sys-
tem on clouds with Hadoop and HBase is presented in [387]; data flow-driven scheduling for busi-
ness applications is covered in [106]. Scalable thread scheduling is the topic of [374]. Scheduling of
real-time services in cloud computing is presented in [220]. The Open Grid Forum (OGF) Open Cloud

6.16 Exercises and Problems 203

Computing Interface (OCCI) is involved in the definition of virtualization formats and APIs for laaS
[175] presents a performance analyzer.

6.16 Exercises and problems

Problem 1. Analyze the benefits and the problems posed by the four approaches to the implementation
of resource management policies: control theory, machine learning, utility-based, and
market-oriented.

Problem 2. Can optimal strategies for the five classes of policy — admission control, capacity alloca-
tion, load balancing, energy optimization, and QoS guarantees — be actually implemented
in a cloud? The term optimal is used in the sense of control theory. Support your answer
with solid arguments. Optimal strategies for one could be in conflict with optimal strategies
for one or more of the other classes. Identify and analyze such cases.

Problem 3. Analyze the relationship between the scale of a system and the policies and the mechanisms
for resource management. In your arguments, consider also the geographic scale of the
system.

Problem 4. What are the limitations of the control theoretic approach discussed in Section 6.2? Do the
approaches discussed in Sections 6.3 and 6.4 remove or relax some of these limitations?
Justify your answers.

Problem 5. Multiple controllers are probably necessary due to the scale of a cloud. Is it beneficial
to have system and application controllers? Should the controllers be specialized — for
example, some to monitor performance, others to monitor power consumption? Should
all the functions we want to base the resource management policies on be integrated in
a single controller and one such controller be assigned to a given number of servers or a
geographic region? Justify your answers.

Problem 6. In a scale-free network, the nodes have an exponential degree distribution (see Section
7.11). A scale-free network could be used as a virtual network infrastructure for cloud com-
puting. Controllers represent a dedicated class of nodes tasked with resource management.
In a scale-free network, nodes with high connectivity can be designated as controllers.
Analyze the potential benefit of such a strategy.

Problem 7. Use the start-time fair queuing (SFQ) scheduling algorithm to compute the virtual start-up
and the virtual finish time for two threads a and b with weights w, = 1 and w, = 5 when
the time quantum is g = 15 and thread b blocks at time t = 24 and wakes up at time
t = 60. Plot the virtual time of the scheduler function of the real time.

Problem 8. Apply the borrowed virtual time (BVT) scheduling algorithm to the problem in Example 2
of Section 6.11 but with a time warp of W, = —30.

Problem 9. Consider the workflow for your favorite cloud application. Use XML to describe this
workflow, including the instances and the storage required for each task. Translate this
description into a file that can be used for the Elastic Beanstalk AWS.

This page is intentionally left blank

CHAPTER

Networking Support

Cloud computing and delivery of content stored on a cloud are feasible only due to the interconnectivity
supported by a continually evolving Internet and by the access to remote resources provided by the World
Wide Web. A cloud is built around a hig