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Preface

Overview

This book is a collection of ideas about the nature of data and databases. Some of the
material has appeared in different forms in my regular columns in the computer trade and
academic press, on CompuServe forum groups, on the Internet, and over beers at
conferences for several years. Some of it is new to this volume.

This book is not a complete, formal text about any particular database theory and will not
be too mathematical to read easily. Its purpose is to provide foundations and philosophy
to the working programmer so that they can understand what they do for a living in
greater depth. The topic of each chapter could be a book in itself and usually has been.

This book is supposed to make you think and give you things to think about. Hopefully, it
succeeds.

Thanks to my magazine columns in DBMS, Database Programming & Design, Intelligent
Enterprise, and other publications over the years, | have become the apologist for
ANSI/ISO standard SQL. However, this is not an SQL book per se. It is more oriented
toward the philosophy and foundations of data and databases than toward programming
tips and techniques. However, | try to use the ANSI/ISO SQL-92 standard language for
examples whenever possible, occasionally extending it when | have to invent a notation
for some purpose.

If you need a book on the SQL-92 language, you should get a copy of Understanding the
New SQL, by Jim Melton and Alan Simon (Melton and Simon 1993). Jim’s other book,
Understanding SQL’s Stored Procedures (Melton 1998), covers the procedural language
that was added to the SQL-92 standard in 1996.

If you want to get SQL tips and techniques, buy a copy of my other book, SQL for Smarties
(Celko 1995), and then see if you learned to use them with a copy of SQL Puzzles &
Answers (Celko 1997).

Organization of the Book

The book is organized into nested, numbered sections arranged by topic. If you have a
problem and want to look up a possible solution now, you can go to the index or table of
contents and thumb to the right section. Feel free to highlight the parts you need and to
write notes in the margins.

| hope that the casual conversational style of the book will serve you well. | simply did not
have the time or temperament to do a formal text. If you want to explore the more formal
side of the issues | raise, | have tried to at least point you toward detailed references.



Corrections and Future Editions

| will be glad to receive corrections, comments, and other suggestions for future editions
of this book. Send your ideas to

Joe Celko

235 Carter Avenue

Atlanta, GA 30317-3303

email: 71062.1056@compuserve.com
website: www.celko.com

or contact me through the publisher. You could see your name in print!
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Chapter 1: The Nature of Data

Where is the wisdom?
Lost in the knowledge.
Where is the knowledge?
Lost in the information.

—T. S. Eliot

Where is the information?

Lost in the data.
Where is the data?

Lost in the #@%&! database!
— Joe Celko

Overview

So | am not the poet that T. S. Eliot is, but he probably never wrote a computer program
in his life. However, | agree with his point about wisdom and information. And if he knew
the distinction between data and information, | like to think that he would have agreed
with mine.

I would like to define “data,” without becoming too formal yet, as facts that can be
represented with measurements using scales or with formal symbol systems within the
context of a formal model. The model is supposed to represent something called “the real
world” in such a way that changes in the facts of “the real world” are reflected by changes
in the database. | will start referring to “the real world” as “the reality” for a model from
now on.

The reason that you have a model is that you simply cannot put the real world into a
computer or even into your own head. A model has to reflect the things that you think are
important in the real world and the entities and properties that you wish to manipulate and
predict.



I will argue that the first databases were the precursors to written language that were
found in the Middle East (see Jean 1992). Shepherds keeping community flocks needed
a way to manipulate ownership of the animals, so that everyone knew who owned how
many rams, ewes, lambs, and whatever else. Rather than branding the individual
animals, as Americans did in the West, each member of the tribe had a set of baked clay
tokens that represented ownership of one animal, but not of any animal in particular.

When you see the tokens, your first thought is that they are a primitive internal currency
system. This is true in part, because the tokens could be traded for other goods and
services. But their real function was as a record keeping system, not as a way to
measure and store economic value. That is, the trade happened first, then the tokens
were changed, and not vice versa.

The tokens had all the basic operations you would expect in a database. The tokens
were updated when a lamb grew to become a ram or ewe, deleted when an animal was
eaten or died, and new tokens were inserted when the new lambs were born in the
spring.

One nice feature of this system is that the mapping from the model to the real world is
one to one and could be done by a man who cannot count or read. He had to pass the
flock through a gate and match one token to one animal; we would call this a “table scan”
in SQL. He would hand the tokens over to someone with more math ability—the CPU for
the tribe—who would update everyone’s set of tokens. The rules for this sort of updating
can be fairly elaborate, based on dowry payments, oral traditions, familial relations,
shares owned last year, and so on.

The tokens were stored in soft clay bottles that were pinched shut to ensure that they were
not tampered with once accounts were settled; we would call that “record locking” in
database management systems.

1.1 Data versus Information

Information is what you get when you distill data. A collection of raw facts does not help
anyone to make a decision until it is reduced to a higher-level abstraction. My
sheepherders could count their tokens and get simple statistical summaries of their
holdings (“Abdul owns 15 ewes, 2 rams, and 13 lambs”), which is immediately useful, but
it is very low-level information.

If Abdul collected all his data and reduced it to information for several years, then he
could move up one more conceptual level and make more abstract statements like, “In
the years when the locusts come, the number of lambs born is less than the following two
years,” which are of a different nature than a simple count. There is both a long time
horizon into the past and an attempt to make predictions for the future. The information is
qualitative and not just quantitative.

Please do not think that qualitative information is to be preferred over quantitative
information. SQL and the relational database model are based on sets and logic. This
makes SQL very good at finding set relations, but very weak at finding statistical and other
relations. A set relation might be an answer to the query “Do we have people who smoke,
drink, and have high blood pressure?” that gives an existence result. A similar statistical
query would be “How are smoking and drinking correlated to high blood pressure?” that
gives a numeric result that is more predictive of future events.



1.2 Information versus Wisdom

Wisdom does not come out of the database or out of the information in a mechanical
fashion. It is the insight that a person has to make from information to handle totally new
situations. | teach data and information processing; | don’t teach wisdom. However, | can
say a few remarks about the improper use of data that comes from bad reasoning.

1.2.1 Innumeracy

Innumeracy is a term coined by John Allen Paulos in his 1990 best-seller of the same
title. It refers to the inability to do simple mathematical reasoning to detect bad data, or
bad reasoning. Having data in your database is not the same thing as knowing what to do
with it. In an article in Computerworld, Roger L. Kay does a very nice job of giving
examples of this problem in the computer field (Kay 1994).

1.2.2 Bad Math

Bruce Henstell (1994) stated in the Los Angeles Times: “When running a mile, a 132
pound woman will burn between 90 to 95 calories but a 175 pound man will drop 125
calories. The reason seems to be evolution. In the dim pre-history, food was hard to
come by and every calorie has to be conserved—particularly if a woman was to conceive
and bear a child; a successful pregnancy requires about 80,000 calories. So women
should keep exercising, but if they want to lose weight, calorie count is still the way to

go.

Calories are a measure of the energy produced by oxidizing food. In the case of a
person, calorie consumption depends on the amount of oxygen they breathe and the
body material available to be oxidized.

Let’s figure out how many calories per pound of human flesh the men and women in this
article were burning: (95 calories/132 pounds) = .71 calories per pound of woman and
(125 calories/175 pounds) = .71 calories per pound of man. Gee, there is no difference at
all! Based on these figures, human flesh consumes calories at a constant rate when it
exercises regardless of gender. This does not support the hypothesis that women have a
harder time losing fat through exercise than men, but just the opposite. If anything, this
shows that reporters cannot do simple math.

Another example is the work of Professor James P. Allen of Northridge University and
Professor David Heer of USC. In late 1991, they independently found out that the 1990
census for Los Angeles was wrong. The census showed a rise in Black Hispanics in
South Central Los Angeles from 17,000 in 1980 to almost 60,000 in 1990. But the total
number of Black citizens in Los Angeles has been dropping for years as they move out to
the suburbs (Stewart 1994).

Furthermore, the overwhelming source of the Latino population is Mexico and then
Central America, which have almost no Black population. In short, the apparent growth of
Black Hispanics did not match the known facts.

Professor Allen attempted to confirm this growth with field interviews but could not find
Black Hispanic children in the schools when he went to the bilingual coordinator for the
district’s schools.



Professor Heer did it with just the data. The census questionnaire asked for race as
White, Black, or Asian, but not Hispanic. Most Latinos would not answer the race
question—Hispanic is the root word of “spic,” an ethnic slander word in Southern
California. He found that the Census Bureau program would assign ethnic groups when it
was faced with missing data. The algorithm was to look at the makeup of the neighbors
and assume that missing data was the same ethnicity.

If only they had NULLs to handle the missing data, they might have been saved.

Speaker’s Idea File (published by Ragan Publications, Chicago) lost my business when
they sent me a sample issue of their newsletter that said, “On an average day,
approximately 140,000 people die in the United States.” Let's work that out using
365.2422 days per year times 140,000 deaths for a total of 51,133,908 deaths per year.
Since there are a little less than 300 million Americans as of the last census, we are
looking at about 17% of the entire population dying every year—one person in every five
or six. This seems a bit high. The actualfigure is about 250,000 deaths per year.

There have been a series of controversial reports and books using statistics as their
basis. Tainted Truth: The Manipulation of Facts in America, by Cynthia Crossen, a
reporter for the Wall Street Journal, is a study of how political pressure groups use “false
facts” for their agenda (Crossen 1996). So there are reporters who care about
mathematics, after all!

Who Stole Feminism?, by Christina Hoff Sommers, points out that feminist authors were
quoting a figure of 150,000 deaths per year from anorexia when the actual figure was no
higher than 53. Some of the more prominent feminist writers who used this figure were
Gloria Steinem (“In this country alone. . . about 150,000 females die of anorexia each
year,” in Revolution from Within) and Naomi Wolf (“When confronted by such a vast
number of emaciated bodies starved not by nature but by men, one must notice a certain
resemblance [to the Nazi Holocaust],” in The Beauty Myth). The same false statistic also
appears in Fasting Girls: The Emergence of Anorexia Nervosa as a Modern Disease, by
Joan Brumberg, former director of Women’s Studies at Cornell, and hundreds of
newspapers that carried Ann Landers’s column. But the press never questioned this in
spite of the figure being almost three times the number of dead in the entire 10 years of
the Vietnam War (approximately 58,000) or in one year of auto accidents (approximately
48,000).

You might be tempted to compare this to the Super Bowl Sunday scare that went around
in the early 1990s (the deliberate lie that more wives are beaten on Super Bowl Sunday
than any other time). The original study only covered a very small portion of a select
group—African Americans living in public housing in one particular part of one city. The
author also later said that her report stated nothing of the kind, remarking that she had
been trying to get the urban myth stopped for many months without success. She noted
that the increase was considered “statistically insignificant” and could just as easily have
been caused by bad weather that kept more people inside.

The broadcast and print media repeated it without even attempting to verify its accuracy,
and even broadcasted public warning messages about it. But at least the Super Bowl
scare was not obviously false on the face of it. And the press did do follow-up articles
showing which groups created and knowingly spread a lie for political reasons.

1.2.3 Causation and Correlation

People forget that correlation is not cause and effect. A necessary cause is one that must
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be present for an effect to happen—a car has to have gas to run. A sufficient cause will
bring about the effect by itself—dropping a hammer on your foot will make you scream in
pain, but so will having your hard drive crash. A contributory cause is one that helps the
effect along, but would not be necessary or sufficient by itself to create the effect. There
are also coincidences, where one thing happens at the same time as another, but without
a causal relationship.

A correlation between two measurements, say, X and Y, is basically a formula that allows
you to predict one measurement given the other, plus or minus some error range. For
example, if | shot a cannon locked at a certain angle, based on the amount of gunpowder
| used, | could expect to place the cannonball within a 5-foot radius of the target most of
the time. Once in awhile, the cannonball will be dead on target; other times it could be
several yards away.

The formula | use to make my prediction could be a linear equation or some other
function. The strength of the prediction is called the coefficient of correlation and is
denoted by the variable r where —1 = r = 1, in statistics. A coefficient of correlation of —1 is
absolute negative correlation—when X happens, then Y never happens. A coefficient of
correlation of +1 is absolute positive correlation—when X happens, then Y also happens.
A zero coefficient of correlation means that X and Y happen independently of each other.

The confidence level is related to the coefficient of correlation, but it is expressed as a
percentage. It says that x % of the time, the relationship you have would not happen by
chance.

The study of secondhand smoke (or environmental tobacco smoke, ETS) by the EPA,
which was released jointly with the Department of Health and Human Services, is a great
example of how not to do a correlation study. First they gathered 30 individual studies
and found that 24 of them would not support the premise that secondhand smoke is
linked to lung cancer. Next, they combined 11 handpicked studies that used completely
different methods into one sample—a technique known as metanalysis, or more
informally called the apples and oranges fallacy. Still no link. It is worth mentioning that
one of the rejected studies was recently sponsored by the National Cancer Institute—
hardly a friend of the tobacco lobby—and it also showed no statistical significance.

The EPA then lowered the confidence level from 98% to 95%, and finally to 90%, where
they got a relationship. No responsible clinical study has ever used less than 95% for its
confidence level. Remember that a confidence level of 95% says that 5% of the time, this
could just be a coincidence. A 90% confidence level doubles the chances of an error.

Alfred P. Wehner, president of Biomedical and Environmental Consultants Inc. in
Richland, Washington, said, “Frankly, | was embarrassed as a scientist with what they
came up with. The main problem was that statistical handling of the data.” Likewise, Yale
University epidemiologist Alvan Feinstein, who is known for his work in experimental
design, said in the Journal of Toxicological Pathology that he heard a prominent leader in
epidemiology admit, “Yes, it's [EPA’s ETS work] rotten science, but it's in a worthy cause.
It will help us get rid of cigarettes and to become a smoke-free society.” So much for
scientific truth versus a political agenda.

Another way to test a correlation is to look at the real world. For example, if ETS causes
lung cancer, then why do rats who are put into smoke-filled boxes for most of their lives
not have a higher cancer rate? Why aren’t half the people in Europe and Japan dead
from cancer?
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There are five ways two variables can be related to each other. The truth could be that X
causes Y. You can estimate the temperature in degrees Fahrenheit from the chirp rate of
a cricket: degrees = (chirps + 137.22)/3.777, with r = 0.9919 accuracy. However, nobody
believes that crickets cause temperature changes. The truth could be that Y causes X,
case two.

The third case is that X and Y interact with each other. Supply and demand curves are an
example, where as one goes up, the other goes down (negative feedback in computer
terms). A more horrible example is drug addiction, where the user requires larger and
larger doses to get the desired effect (positive feedback in computer terms), as opposed
to habituation, where the usage hits an upper level and stays there.

The fourth case is that any relationship is pure chance. Any two trends in the same
direction will have some correlation, so it should not surprise you that once in awhile, two
will match very closely.

The final case is where the two variables are effects of another variable that is outside
the study. The most common unseen variables are changes in a common environment.
For example, severe hay fever attacks go up when corn prices go down. They share a
common element—good weather. Good weather means a bigger corn crop and hence
lower prices, but it also means more ragweed and pollen and hence more hay fever
attacks. Likewise, spouses who live pretty much the same lifestyle will tend to have the
same medical problems from a common shared environment and set of habits.

1.2.4 Testing the Model against Reality

The March 1994 issue of Discovery magazine had a commentary column entitled
“Counting on Dyscalculia” by John Allen Paulos. His particular topic was health statistics
since those create a lot of “pop dread” when they get played in the media.

One of his examples in the article was a widely covered lawsuit in which a man alleged a
causal connection between his wife’s frequent use of a cellular phone and her
subsequent brain cancer. Brain cancer is a rare disease that strikes approximately 7 out
of 100,000 people per year. Given the large population of the United States, this is still
about 17,500 new cases per year—a number that has held pretty steady for years.

There are an estimated 10 million cellular phone users in the United States. If there were
a causal relationship, then there would be an increase in cases as cellular phone usage
increased. On the other hand, if we found that there were less than 70 cases among
cellular phone users we could use the same argument to “prove” that cellular phones
prevent brain cancer.

Perhaps the best example of testing a hypothesis against the real world was the bet
between the late Julian Simon and Paul Ehrlich (author of The Population Bomb and a
whole raft of other doomsday books) in 1980. They took an imaginary $1,000 and let
Ehrlich pick commodities. The bet was whether the real price would go up or down,
depending on the state of the world, in the next 10 years. If the real price (i.e., adjusted
for inflation) went down, then Simon would collect the adjusted real difference in current
dollars; if the real costs went up, then Ehrlich would collect the difference adjusted to
current dollars.

Ehrlich picked metals—copper, chrome, nickel, tin, and tungsten—and “invested” $200 in
each. In the fall of 1990, Ehrlich paid Simon $576.07 and did not call one of his press
conferences about it. What was even funnier is that if Ehrlich had paid off in current dollars,
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not adjusted for inflation, he would still have lost!
1.3 Models versus Reality

A model is not reality, but a reduced and simplified version of it. A model that was more
complex than the thing it attempts to model would be less than useless. The term “the
real world” means something a bit different than what you would intuitively think. Yes,
physical reality is one “real world,” but this term also includes a database of information
about the fictional worlds in Star Trek, the “what if” scenarios in a spreadsheet or discrete
simulation program, and other abstractions that have no physical forms. The main
characteristic of “the real world” is to provide an authority against which to check the
validity of the database model.

A good model reflects the important parts of its reality and has predictive value. A model
without predictive value is a formal game and not of interest to us.

The predictive value does not have to be absolutely accurate. Realistically, Chaos Theory
shows us that a model cannot ever be 100% predictive for any system with enough
structure to be interesting and has a feedback loop.

1.3.1 Errors in Models

Statisticians classify experimental errors as Type | and Type Il. A Type | error is
accepting as false something that is true. A Type Il error is accepting as true something
that is false. These are very handy concepts for database people, too.

The classic Type | database error is the installation in concrete of bad data, accompanied
by the inability or unwillingness of the system to correct the error in the face of the truth.
My favorite example of this is a classic science fiction short story written as a series of
letters between a book club member and the billing computer. The human has returned
an unordered copy of Kidnapped by Robert Louis Stevenson and wants it credited to his
account.

When he does not pay, the book club computer turns him over to the police computer,
which promptly charges him with kidnapping Robert Louis Stevenson. When he objects,
the police computer investigates, and the charge is amended to kidnapping and murder,
since Robert Louis Stevenson is dead. At the end of the story, he gets his refund credit
and letter of apology after his execution.

While exaggerated, the story hits all too close to home for anyone who has fought a false
billing in a system that has no provision for clearing out false data.

The following example of a Type Il error involves some speculation on my part. Several
years ago a major credit card company began to offer cards in a new designer color with
higher limits to their better customers. But if you wanted to keep your old card, you could
have two accounts. Not such a bad option, since you could use one card for business
and one for personal expenses.

They needed to create new account records in their database (file system?) for these
new cards. The solution was obvious and simple: copy the existing data from the old
account without the balances into the new account and add a field to flag the color of the
card to get a unique identifier on the new accounts.

The first batch of new card orders came in. Some orders were for replacement cards,
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some were for the new card without any prior history, and some were for the new “two
accounts” option.

One of the fields was the date of first membership. The company thinks that this date is
very important since they use it in their advertising. They also think that if you do not use
a card for a long period of time (one year), they should drop your membership. They have
a program that looks at each account and mails out a form letter to these unused
accounts as it removes them from the database.

The brand new accounts were fine. The replacement accounts were fine. But the
members who picked the “two card” option were a bit distressed. The only date that the
system had to use as “date of last card usage” was the date that the original account was
opened. This was almost always more than one year, since you needed a good credit
history with the company to get offered the new card.

Before the shiny new cards had been printed and mailed out, the customers were getting
drop letters on their new accounts. The switchboard in customer service looked like a
Christmas tree. This is a Type Il error—accepting as true the falsehood that the last
usage date was the same as the acquisition date of the credit card.

1.3.2 Assumptions about Reality

The purpose of separating the formal model and the reality it models is to first
acknowledge that we cannot capture everything about reality, so we pick a subset of the
reality and map it onto formal operations that we can handle.

This assumes that we can know our reality, fit it into a formal model, and appeal to it
when the formal model fails or needs to be changed.

This is an article of faith. In the case of physical reality, you can be sure that there are no
logical contradictions or the universe would not exist. However, that does not mean that
you have full access to all the information in it. In a constructed reality, there might well
be logical contradictions or vague information. Just look at any judicial system that has
been subjected to careful analysis for examples of absurd, inconsistent behavior.

But as any mathematician knows, you have to start somewhere and with some set of
primitive concepts to be able to build any model.

Chapter 2: Entities, Attributes, Values, and
Relationships

Perfection is finally attained not when there is no longer anything to add but when
there is no longer anything to take away.
—Antoine de Saint Exupery

Overview

What primitives should we use to build a database? The smaller the set of primitives, the
better a mathematician feels. A smaller set of things to do is also better for an
implementor who has to turn the primitives into a real computer system. We are lucky
because Dr. Codd and his relational model are about as simple as we want to get, and
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they are very well defined for us.

Entities, attributes, values, and relationships are the components of a relational model.
They are all represented as tables made of rows, which are made of columns in SQL and
the relational model, but their semantics are very different. As an aside, when | teach an
SQL class, | often have to stress that a table is made of rows, and not rows and columns;
rows are made of columns. Many businesspeople who are learning the relational model
think that it is a kind of spreadsheet, and this is not the case. A spreadsheet is made up of
rows and columns, which have equal status and meaning in that family of tools. The cells
of a spreadsheet can store data or programs; a table stores only data and constraints on
the data. The spreadsheet is active, and the relational table is passive.

2.1 Entities

An entity can be a concrete object in its reality, such as a person or thing, or it can be a
relationship among objects in its reality, such as a marriage, which can handled as if it
were an object. It is not obvious that some information should always be modeled as an
entity, an attribute, or a relationship. But at least in SQL you will have a table for each
class of entity, and each row will represent one instance of that class.

2.1.1 Entities as Objects

Broadly speaking, objects are passive and are acted upon in the model. Their attributes
are changed by processes outside of themselves. Properly speaking, each row in an
object table should correspond to a “thing” in the database’s reality, but not always
uniquely. It is more convenient to handle a bowl of rice as a single thing instead of giving
a part number to each grain.

Clearly, people are unique objects in physical reality. But if the same physical person is
modeled in a database that represents a company, they can have several roles. They
can be an employee, a stockholder, or a customer.

But this can be broken down further. As an employee, they can hold particular positions
that have different attributes and powers; the boss can fire the mail clerk, but the mail
clerk cannot fire the boss. As a stockholder, they can hold different classes of stock,
which have different attributes and powers. As a customer, they might get special
discounts from being a customer-employee.

The question is, Should the database model the reality of a single person or model the
roles they play? Most databases would model reality based on roles because they take
actions based on roles rather than based on individuals. For example, they send
paychecks to employees and dividend checks to stockholders. For legal reasons, they do
not want to send a single check that mixes both roles.

It might be nice to have a table of people with all their addresses in it, so that you would
be able to do a change of address operation only once for the people with multiple roles.
Lack of this table is a nuisance, but not a disaster. The worst you will do is create
redundant work and perhaps get the database out of synch with the reality. The real
problems can come when people with multiple roles have conflicting powers and actions
within the database. This means that the model was wrong.

2.1.2 Entities as Relationships
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A relationship is a way of tying objects together to get new information that exists apart
from the particular objects. The problem is that the relationship is often represented by a
token of some sort in the reality.

A marriage is a relationship between two people in a particular legal system, and its
token is the marriage license. A bearer bond is also a legal relationship where either
party is a lawful individual (i.e., people, corporations, or other legal creations with such
rights and powers).

If you burn a marriage license, you are still married; you have to burn your spouse
instead (generally frowned upon) or divorce them. The divorce is the legal procedure to
drop the marriage relationship. If you burn a bearer bond, you have destroyed the
relationship. A marriage license is a token that identifies and names the relationship. A
bearer bond is a token that contains or is itself the relationship.

You have serious problems when a table improperly models a relationship and its entities
at the same time. We will discuss this problem in section 2.5.1.

2.2 Attributes

Attributes belong to entities and define them. Leibniz even went so far as to say that an
entity is the sum of all its attributes. SQL agrees with this statement and models attributes
as columns in the rows of tables that can assume values.

You should assume that you cannot ever show in a table all the attributes that an entity has
in its reality. You simply want the important ones, where “important” is defined as those
attributes needed by the model to do its work.

2.3 Values

A value belongs to an attribute. The particular value for a particular attribute is drawn
from a domain or has a datatype. There are several schools of thought on domains,
datatypes, and values, but the two major schools are the following:

1. Datatypes and domains are both sets of values in the database. They are both finite
sets because all models are finite. The datatype differs by having operators in the
hardware or software so the database user does not have to do all that work. A
domain is built on a subset of a datatype, which inherits some or all of its operators
from the original datatype and restrictions, but now the database can have user-
defined operators on the domain.

2. A domain is a finite or infinite set of values with operators that exists in the database’s
reality. A datatype is a subset of a domain supported by the computer the database
resides on. The database approximates a domain with a subset of a datatype, which
inherits some or all of its operators from the original datatype and other restrictions
and operators given to it by the database designer.

Unfortunately, SQL-92 has a CREATE DOMATIN statement in its data declaration language
(DDL) that refers to the approximation, so | will refer to database domains and reality
domains.

In formal logic, the first approach is called an extensional definition, and the second is an
intentional definition. Extensional definitions give a list of all valid values; intentional
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definitions give a rule that determines if a value is in the domain or not. You have seen
both of these approaches in elementary set theory in the list and rule notations for
defining a set. For example, the finite set of positive even numbers less than 16 can be
defined by either

A=1{2 4,68, 10,12, 14}
or
B = {i: (MOD(j, 2) = 0) AND (i > 0) AND (i < 16)}

Defining the infinite set of all positive even numbers requires an ellipsis in the list
notation, but the rule set notation simply drops restrictions, thus:

C={2,4,6,810,12,14,..}
D = {i : MOD(j, 2) = 0}

While this distinction can be subtle, an intentional definition lets you move your model
from one database to another much more easily. For example, if you have a machine that

can handle integer datatypes that range up to (216) bits, then it is conceptually easy to

move the database to a machine that can handle integer datatypes that range up to (232)
bits because they are just two different approximations of the infinite domain of integers
in the reality. In an extensional approach, they would be seen as two different datatypes
without a reference to the reality.

For an abstract model of a DBMS, | accept a countably infinite set as complete if | can
define it with a membership test algorithm that returns TRUE or FALSE in a finite amount
of time for any element. For example, any integer can be tested for evenness in one step,
so | have no trouble here.

But this breaks down when | have a test that takes an infinite amount of time, or where |
cannot tell if something is an element of the set without generating all the previous
elements. You can look up examples of these and other such misbehaved sets in a good
math book (fractal sets, the (3 * n + 1) problem, generator functions without a closed
form, and so forth).

The (3 * n + 1) problem is known as Ulam’s conjecture, Syracuse’s problem, Kakutani’s
problem, and Hasse’s algorithm in the literature, and it can be shown by this procedure
(see Lagarias 1985 for details).

FUNCTION ThreeN (i INTEGER IN, j INTEGER IN) RETURNS INTEGER;
LANGUAGE SQL

BEGIN

DECLARE k INTEGER;
SET k = 0;

WHILE k <= j

LOOP

SET k = k + 1;

IF i IN (1, 2, 4)

THEN RETURN O -- answer is False, not a member
ELSE IF MOD (i, 2) =0
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THEN ThreeN((i / 2), k)
ELSE ThreeN((3 * i + 1), k);
END LOOP;
RETURN 1 -- answer is True
END WHILE;

We are trying to construct a subset of all the integers that test true according to the rules
defined in this procedure. If the number is even, then divide it by two and repeat the
procedure on that result. If the number is odd, then multiply it by three, add one, and
repeat the procedure on that result. You keep repeating the procedure until it is reduced
to one.

For example, if you start with 7, you get the sequence (7, 22, 11, 34, 17, 52, 26, 13, 40,
20,10, 5,16, 8,4, 2,1, ...), and seven is a member of the set. Bet that took longer than
you thought!

As a programming tip, observe that when a result becomes 1, 2, or 4, the procedure
hangs in a loop, endlessly repeating that sequence. This could be a nonterminating
program, if we are not careful!

An integer, i, is an element of the set K(j) when i fails to arrive at one on or before j
iterations. For example, 7 is a member of K(17). By simply picking larger and larger
values of j, you can set the range so high that any computer will break. If the j parameter
is dropped completely, it is not known if there are numbers that never arrive at one. Or to
put it another way, is this set really the set of all integers?

Well, nobody knows the last time | looked. | have to qualify that statement this way,
because in my lifetime | have seen solutions to the four-color map theorem and Fermat’s
Last theorem proven. But Gédel proved that there are always statements in logic that
cannot be proven to be TRUE or FALSE, regardless of the amount of time or the number of
axioms you are given.

2.4 Relationships

Relationships exist among entities. We have already talked about entities as relationships
and how the line is not clear when you create a model.

2.5 ER Modeling

In 1976 Peter Chen invented entity-relationship (ER) modeling as a database design
technique. The original diagrams used a box for an entity, a diamond for a relationship,
and lines to connect them. The simplicity of the diagrams used in this method have made
it the most popular database design technique in use today. The original method was
very minimal, so other people have added other details and symbols to the basic
diagram.

There are several problems with ER modeling:

1. ER does not spend much time on attributes. The names of the columns in a table are
usually just shown inside the entity box, without datatypes. Some products will
indicate which column(s) are the primary keys of the table. Even fewer will use
another notation on the column names to show the foreign keys.
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| feel that people should spend more time actually designing data elements, as you
can see from the number of chapters in this book devoted to data.

Although there can be more than one normalized schema from a single set of
constraints, entities, and relationships, ER tools generate only one diagram. Once
you have begun a diagram, you are committed to one schema design.

The diagram generated by ER tools tends to be a planar graph. That means that
there are no crossed lines required to connect the boxes and lines. The fact that a
graph has crossed lines does not make it nonplanar; it might be rearranged to avoid
the crossed lines without changes to the connections (see Fig. 2.1).
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A planar graph can also be subject to another graph theory result called the “four-
color map theorem,” which says that you only need four colors to color a planar map
so that no two regions with a common border have the same color.

ER diagrams cannot express certain constraints or relationships. For example, in the
versions that use only straight lines between entities for relationships, you cannot
easily express an n-ary relationship (n > 2).

Furthermore, you cannot show constraint among the attributes within a table. For
example, you cannot show the rule that “An employee must be at least 18 years of
age” with a constraint of the form CHECK ( (hiredate - birthdate) >= INTERVAL
18 YEARS).

As an example of the possibility of different schemas for the same problem, consider a
database of horse racing information. Horses are clearly physical objects, and we need
information about them if we are going to calculate a betting system. This modeling
decision could lead to a table that looks like this:

CREATE TABLE Horses
(horsename CHAR(30) NOT NULL,
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track CHAR(30) NOT NULL,
race INTEGER NOT NULL CHECK (race > 0),
racedate DATE NOT NULL,
position INTEGER NOT NULL CHECK (position > 0),
finish CHAR(10) NOT NULL
CHECK (finish IN ('win', 'place', 'show', 'ran', 'scratch')),
PRIMARY KEY (horsename, track, race, racedate));

The track column is the name of the track where the race was held, racedate is when it
was held, race is the number of each race, position is the starting position of the horse,
and finish is how well the animal did in the race. Finish is an attribute of the entity
“horses” in this model. If you do not bet on horse races (“play the ponies”), “win” means
first place; “place” is first or second place; “show” is first, second, or third place; “ran” is
having been in the race, but not in first, second, or third place; and “scratch” means the
horse was removed from the race in which it was scheduled to run. In this model, the
finish attribute should have the highest value obtained by the horse in each row of the
table.

Now look at the same reality from the viewpoint of the bookie who has to pay out and
collect wagers. The most important thing in his model is the outcome of races, and
detailed information on individual horses is of little interest. He might model the same
reality with a table like this:

CREATE TABLE Races

(track CHAR(30) NOT NULL,

racedate DATE NOT NULL,

race INTEGER NOT NULL CHECK (race > 0),

win CHAR(30) NOT NULL REFERENCES Horses (horsename),
place CHAR(30) NOT NULL REFERENCES Horses (horsename),
show CHAR(30) NOT NULL REFERENCES Horses (horsename),
PRIMARY KEY (track, date, race));

The columns have the same meaning as they did in the Horses table, but now there are
three columns with the names of the horse that won, placed, or showed for that race
(“finished in the money”). Horses are values of attributes of the entity “races” in this
model.

2.5.1 Mixed Models

We defined a mixed model as one in which a table improperly models both a relationship
and its entities in the same column(s). When a table has a mixed model, you probably
have serious problems. For example, consider the common adjacency list representation
of an organizational chart:

CREATE TABLE Personnel
(emp _name CHAR(20) NOT NULL PRIMARY KEY,
boss name CHAR(20) REFERENCES Personnel (emp name),
dept no CHAR(10) NOT NULL REFERENCES departments (dept no),
salary DECIMAL (10,2) NOT NULL,
);

in which the column boss_name is the emp_name of the boss of this employee in the
company hierarchy. This column has to allow a NULL because the hierarchy eventually
leads to the head of the company, and he or she has no boss.
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What is wrong with this table? First of all, this table is not normalized. Consider what
happens when a middle manager named 'Jerry Rivers' decides that he needs to
change his name to 'Geraldo Riviera' to get minority employment preferences. This
change will have to be done once in the emp_name column and n times in the
boss_name column of each of his immediate subordinates. One of the defining
characteristics of a normalized database is that one fact appears in one place, one time,
and one way in the database.

Next, when you see 'Jerry Rivers' in the emp_name column, it is a value for the
name attribute of a Personnel entity. When you see 'Jerry Rivers' in the boss_name
column, it is a relationship in the company hierarchy. In graph theory, you would say that
this table has information on both the nodes and the edges of the tree structure in it.

There should be a separate table for the employees (nodes), which contains only
employee data, and another table for the organizational chart (edges), which contains only
the organizational relationships among the personnel.

2.5 ER Modeling

In 1976 Peter Chen invented entity-relationship (ER) modeling as a database design
technique. The original diagrams used a box for an entity, a diamond for a relationship,
and lines to connect them. The simplicity of the diagrams used in this method have made
it the most popular database design technique in use today. The original method was
very minimal, so other people have added other details and symbols to the basic
diagram.

There are several problems with ER modeling:

1. ER does not spend much time on attributes. The names of the columns in a table are
usually just shown inside the entity box, without datatypes. Some products will
indicate which column(s) are the primary keys of the table. Even fewer will use
another notation on the column names to show the foreign keys.

| feel that people should spend more time actually designing data elements, as you
can see from the number of chapters in this book devoted to data.

2. Although there can be more than one normalized schema from a single set of
constraints, entities, and relationships, ER tools generate only one diagram. Once
you have begun a diagram, you are committed to one schema design.

3. The diagram generated by ER tools tends to be a planar graph. That means that
there are no crossed lines required to connect the boxes and lines. The fact that a
graph has crossed lines does not make it nonplanar; it might be rearranged to avoid
the crossed lines without changes to the connections (see Fig. 2.1).
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A planar graph can also be subject to another graph theory result called the “four-
color map theorem,” which says that you only need four colors to color a planar map
so that no two regions with a common border have the same color.

4. ER diagrams cannot express certain constraints or relationships. For example, in the
versions that use only straight lines between entities for relationships, you cannot
easily express an n-ary relationship (n > 2).

Furthermore, you cannot show constraint among the attributes within a table. For

example, you cannot show the rule that “An employee must be at least 18 years of
age” with a constraint of the form CHECK ( (hiredate - birthdate) >= INTERVAL
18 YEARS).

As an example of the possibility of different schemas for the same problem, consider a
database of horse racing information. Horses are clearly physical objects, and we need
information about them if we are going to calculate a betting system. This modeling
decision could lead to a table that looks like this:

CREATE TABLE Horses
(horsename CHAR(30) NOT NULL,
track CHAR(30) NOT NULL,
race INTEGER NOT NULL CHECK (race > 0),
racedate DATE NOT NULL,
position INTEGER NOT NULL CHECK (position > 0),
finish CHAR(10) NOT NULL
CHECK (finish IN ('win', 'place', 'show', 'ran', 'scratch')),
PRIMARY KEY (horsename, track, race, racedate));

The track column is the name of the track where the race was held, racedate is when it
was held, race is the number of each race, position is the starting position of the horse,
and finish is how well the animal did in the race. Finish is an attribute of the entity

“horses” in this model. If you do not bet on horse races (“play the ponies”), “win” means
first place; “place” is first or second place; “show” is first, second, or third place; “ran” is
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having been in the race, but not in first, second, or third place; and “scratch” means the
horse was removed from the race in which it was scheduled to run. In this model, the
finish attribute should have the highest value obtained by the horse in each row of the
table.

Now look at the same reality from the viewpoint of the bookie who has to pay out and
collect wagers. The most important thing in his model is the outcome of races, and
detailed information on individual horses is of little interest. He might model the same
reality with a table like this:

CREATE TABLE Races

(track CHAR(30) NOT NULL,

racedate DATE NOT NULL,

race INTEGER NOT NULL CHECK (race > 0),

win CHAR(30) NOT NULL REFERENCES Horses (horsename),
place CHAR(30) NOT NULL REFERENCES Horses (horsename),
show CHAR(30) NOT NULL REFERENCES Horses (horsename),
PRIMARY KEY (track, date, race));

The columns have the same meaning as they did in the Horses table, but now there are
three columns with the names of the horse that won, placed, or showed for that race
(“finished in the money”). Horses are values of attributes of the entity “races” in this
model.

2.5.1 Mixed Models

We defined a mixed model as one in which a table improperly models both a relationship
and its entities in the same column(s). When a table has a mixed model, you probably
have serious problems. For example, consider the common adjacency list representation
of an organizational chart:

CREATE TABLE Personnel
(emp name CHAR (20) NOT NULL PRIMARY KEY,
boss name CHAR(20) REFERENCES Personnel (emp name),
dept no CHAR(10) NOT NULL REFERENCES departments (dept no),
salary DECIMAL (10,2) NOT NULL,
)5

in which the column boss_name is the emp_name of the boss of this employee in the
company hierarchy. This column has to allow a NULL because the hierarchy eventually
leads to the head of the company, and he or she has no boss.

What is wrong with this table? First of all, this table is not normalized. Consider what
happens when a middle manager named 'Jerry Rivers' decides that he needs to
change his name to 'Geraldo Riviera' to get minority employment preferences. This
change will have to be done once in the emp_name column and n times in the
boss_name column of each of his immediate subordinates. One of the defining
characteristics of a normalized database is that one fact appears in one place, one time,
and one way in the database.

Next, when you see 'Jerry Rivers' in the emp_name column, it is a value for the
name attribute of a Personnel entity. When you see ' Jerry Rivers' in the boss_name
column, it is a relationship in the company hierarchy. In graph theory, you would say that
this table has information on both the nodes and the edges of the tree structure in it.
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There should be a separate table for the employees (nodes), which contains only
employee data, and another table for the organizational chart (edges), which contains only
the organizational relationships among the personnel.

2.6 Semantic Methods

Another approach to database design that was invented in the 1970s is based on
semantics instead of graphs. There are several different versions of this basic approach,
such as NIAM (Natural-language Information Analysis Method), BRM (Binary
Relationship Modeling), ORM (Object-Role Modeling), and FORM (Formal Object-Role
Modeling). The main proponent of ORM is Terry Halpin, and | strongly recommend
getting his book (Halpin 1995) for details of the method. What | do not recommend is
using the diagrams in his method. In addition to diagrams, his method includes the use of
simplified English sentences to express relationships. These formal sentences can then
be processed and used to generate several schemas in a mechanical way.

Most of the sentences are structured as subject-verb-object, but the important thing is
that the objects are assigned a role in the sentence. For example, the fact that “Joe Celko
wrote Data and Databases for Morgan Kaufmann Publishers” can be amended to read
“AUTHOR: Joe Celko wrote BOOK: ‘Data and Databases’ for PUBLISHER: Morgan
Kaufmann,” which gives us the higher level, more abstract sentence that “Authors write
books for publishers” as a final result, with the implication that there are many authors,
books, and publishers involved. Broadly speaking, objects and entities become the
subjects and objects of the sentences, relationships become verbs, and the constraints
become prepositional phrases.

A major advantage of the semantic methods is that a client can check the simple
sentences for validity easily. An ER diagram, on the other hand, is not easily checked. One
diagram looks as valid as another, and it is hard for a user to focus on one fact in the
diagram.

Chapter 3: Data Structures

Overview

Data structures hold data without regard to what the data is. The difference between a
physical and an abstract model of a data structure is important, but often gets blurred
when discussing them.

Each data structure has certain properties and operations that can be done on it,
regardless of what is stored in it. Here are the basics, with informal definitions.

Data structures are important because they are the basis for many of the implementation
details of real databases, for data modeling, and for relational operations, since tables are
multisets.

3.1 Sets

A set is a collection of elements of the same kind of thing without duplicates in it. There is
no ordering of the elements in a set. There is a special set, called the empty or null set.
Since the term “null” sounds and looks like the NULL missing value token in SQL, | will
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use the term “empty set.”

The expression “same kind of thing” is a bit vague, but it is important. In a database, the
rows of a table have to be instances of the same entity; that is, a Personnel table is made
up of rows that represent individual employees. However, a grouped table built from the
Personnel table, say, by grouping of departments, is not the same kind of element. In the
grouped table, the rows are aggregates and not individuals. Departmental data is a
different level of abstraction and cannot be mixed with individual data.

The basic set operations are the following:

* Membership: This operation says how elements are related to a set. An element either
is or is not a member of a particular set. The symbol is <.

» Containment: One set A contains another set B if all the elements of B are also
elements of A. B is called a subset of A. This includes the case where A and B are the
same set, but if there are elements of A that are not in B, then the relationship is called
proper containment. The symbol is c; if you need to show “contains or equal to,” a
horizontal bar can be placed under the symbol (<).

It is important to note that the empty set is not a proper subset of every set. If Ais a
subset of B, the containment is proper if and only if there exists an element b in B such
that b is not in A. Since every set contains itself, the empty set is a subset of the empty
set. But this is not proper containment, so the empty set is not a proper subset of
every set.

* Union: The union of two sets is a single new set that contains all the elements in both
sets. The symbol is L. The formal mathematical definition is

Vx:xeAvxeB=>
xe (AuB)

 Intersection: The intersection of two sets is a single new set that contains all the
elements common to both sets. The symbol is n. The formal mathematical definition is

VxxeArxeB=
xeANnB

 Difference: The difference of two sets A and B is a single new set that contains
elements from A that are not in B. The symbol is a minus sign.

VxxeA
AT (xe)B=>

x e (A-B)

» Partition: The partition of a set A divides the set into subsets, A1, A2, ..., An, such
that

UA[]=A
ANA[] =0

3.2 Multisets
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A multiset (also called a bag) is a collection of elements of the same type with duplicates
of the elements in it. There is no ordering of the elements in a multiset, and we still have
the empty set. Multisets have the same operations as sets, but with extensions to allow
for handling the duplicates.

Multisets are the basis for SQL, while sets are the basis for Dr. Codd’s relational model.

The basic multiset operations are derived from set operations, but have extensions to
handle duplicates:

Membership: An element either is or is not a member of a particular set. The symbol is
e. In addition to a value, an element also has a degree of duplication, which tells you
the number of times it appears in the multiset.

Everyone agrees that the degree of duplication of an element can be greater than
zero. However, there is some debate as to whether the degree of duplication can be
zero, to show that an element is not a member of a multiset. Nobody has proposed
using a negative degree of duplication, but | do not know if there are any reasons not
to do so, other than the fact that it does not make any intuitive sense.

For the rest of this discussion, let me introduce a notation for finding the degree of
duplication of an element in a set:

dod(<multiset>, <element>) = <integer value>

Reduction: This operation removes redundant duplicates from the multiset and
converts it into a set. In SQL, this is the effect of using a SELECT DISTINCT clause.

For the rest of this discussion, let me introduce a notation for the reduction of a set:
red(<multiset>)

Containment: One multiset A contains another multiset B if

1. red(A) c red(B)

2.V x € B: dod(A, x) = dod(B, x)

This definition includes the case where A and B are the same multiset, but if there are
elements of A that are not in B, then the relationship is called proper containment.

Union: The union of two multisets is a single new multiset that contains all the
elements in both multisets. A more formal definition is

VxxeAvxeB=
xeAuB

N

dod(A U B, x) = dod(A, x) + dod(B, x)
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The degree of duplication in the union is the sum of the degree of duplication from
both tables.

» Intersection: The intersection of two multisets is a single new multiset that contains all
the elements common to both multisets.

VxxeArxeB=
xeANnB
VAN

dod(A N B, x) = ABS (dod(A, x) — dod(B B, x))

The degree of duplication in the intersection is based on the idea that you match pairs
from each set in the intersection.

+ Difference: The difference of two multisets A and B is a single new multiset that
contains elements from A that are not in B after pairs are matched from the two
multisets. More formally:

Vx:xeA

AT (xe)B=>

x e (A-B)

A dod((A - B), x) = (dod(A, x) —dod(B, x))

» Partition: The partition of a multiset A divides it into a collection of multisets, A1, A2, ..
., An, such that their multiset union is the original set and their multiset intersection is
empty.

Because sets are so important in the relational model, we will return to them in Chapter 4
and go into more details.

3.3 Simple Sequential Files

Simple files are a linear sequence of identically structured records. There is a unique first
record in the file. All the records have a unique successor except the unique last record.
Records with identical content are differentiated by their position in the file. All processing
is done with the current record.

In short, a simple sequential file is a multiset with an ordering added. In a computer
system, these data structures are punch cards or magnetic tape files; in SQL this is the
basis for CURSORSs. The basic operations are the following:

* QOpen the file: This makes the data available. In some systems, it also positions a read-
write head on the first record of the file. In others, such as CURSORs in SQL, the read-
write head is positioned just before the first record of the file. This makes a difference
in the logic for processing the file.

+ Fetch a record: This changes the current record and comes in several different flavors:
1. Fetch next: The successor of the current record becomes the new current record.

2. Fetch first: The first record becomes the new current record.
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3. Fetch last: The last record becomes the new current record.

4. Fetch previous: The predecessor of the current record becomes the new current
record.

5. Fetch absolute: The nth record becomes the new current record.

6. Fetch relative: The record n positions from the current record becomes the new
current record.

There is some debate as to how to handle a fetch absolute or a fetch relative
command that would position the read-write head before the first record or after the
last record. One argument is that the current record should become the first or last
record, respectively; another opinion is that an error condition should be raised.

In many older simple file systems and CURSOR implementations, only fetch next is
available. The reason was obvious with punch card systems; you cannot “rewind” a
punch card reader like a magnetic tape drive. The reason that early CURSOR
implementations had only fetch next is not so obvious, but had to do with the disposal
of records as they were fetched to save disk storage space.

» Close the file: This removes the file from the system.

* Insert a record: The new record becomes the current record, and the former current
record becomes its successor.

* Update a record: Values within the current record are changed. The read-write does
not change position.

* Delete a record: This removes a record from the file. The successor of the current record
becomes the current record. If the current record was the last record of the file, the read-
write head is positioned just past the end of the file.

3.4 Lists

A list is a sequence of elements, each of which can be either a scalar value called an
atom or another list; the definition is recursive. The way that a list is usually displayed is
as a comma-separated list within parentheses, as for example, ((Smith, John), (Jones,
Ed)).

A list has only a few basic operations from which all other functions are constructed. The
head () function returns the first element of a list, and the tail () function returns the
rest of it. A constructor function builds a new list from a pair of lists, one for the head and
one for the tail of the new list.

While the abstract data structure does not depend on any particular implementation, you
will see the phrase “linked list” used as a synonym for lists in computer literature. This
method uses pairs of pointers to represent lists in a computer, where the pair points to
the head and tail of a list. The pointers can link to either another pointer pair, to an atom,
or to a special pointer value called a NIL. The NIL pointer points to nothing and is used
as an end-of-list marker.

-27 -



Lists are important in their own right, and the LISP programming language is the most
common way to manipulate lists. However, we are interested in lists in databases
because they can represent complex structures in a fast and compact form and are the
basis for many indexing methods.

List programming languages also teach people to think recursively, since that is usually
the best way to write even simple list procedures. As an example of a list function,
consider Member (), which determines if a particular atom is in a list. It looks like this in
pseudocode:

BOOLEAN PROCEDURE Member (a ATOM IN, 1 LIST IN)
IF 1 IS ATOMIC
THEN RETURN (a = 1)
ELSE IF member (a, hd(l))
THEN RETURN TRUE
ELSE RETURN member (a, tl(l));

The predicate <1ist> IS ATOMIC returns TRUE if the list expression is an atom.

3.5 Arrays

Arrays are collections of elements accessed by using indexes. This terminology is
unfortunate because the “index” of an array is a simple integer list that locates a value
within the array, and not the index used on a file to speed up access. Another term taken
from mathematics for “index” is “subscript,” and that term should be favored to avoid
confusion.

Arrays appear in most procedural languages and are usually represented as a subscript list
after the name of the array. They are usually implemented as contiguous storage locations
in host languages, but linked lists can also be used. The elements of an array can be
records or scalars. This is useful in a database because it gives us a structure in the host
language into which we can put rows from a query and access them in a simple fashion.

3.6 Graphs

Graphs are made up of nodes connected by edges. They are the most general abstract
data structure and have many different types. We do not need any of the more
complicated types of graphs in a database and can simply define an edge as a
relationship between two nodes. The relationship is usually thought of in terms of a
traversal from one node to another along an edge.

The two types of graphs that are useful to us are directed and undirected graphs. An
edge in a directed graph can be traversed in only one direction; an edge in an undirected
graph can be traversed in both directions. If | were to use a graph to represent the traffic
patterns in a town, the one-way streets would be directed edges and the two-way streets
would be undirected edges. However, a graph is never shown with both types of edges—
instead, an undirected graph can be simulated in a directed graph by having all edges of
the form (a,b) and (b,a) in the graph.

Graph theory is a branch of mathematics in its own right. Since graphs are so general, they
are often used for high-level modeling of databases, computer networks, transportation
networks, and so forth. We need a way of representing different kinds of graphs in a
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database, so we can model all of those things, too.

3.7 Trees

A tree is a special case of a graph. There are several equivalent definitions, but the most
useful ones are the following:

« Atree is a graph with no cycles. The reason that this definition is useful to a database
user is that circular references can cause a lot of problems within a database.

+ A tree is made up of a node, called a parent, that points to zero or more other nodes,
its children, or to another tree. This definition is recursive and therefore very compact,
but another advantage is that this definition leads to a nested-sets model of
hierarchies.

Trees are the basis for indexing methods used in databases. The important operations on
a tree are locating subtrees and finding paths when we are using them as an index.
Searching is made easier by having rules to insert values into the tree. We will discuss
this when we get to indexes.

Relational Philosopher

The creator of the relational model talks about his never-ending crusade.

Interviewing Dr. Edgar F. Codd about databases is a bit like interviewing Einstein
about nuclear physics. Only no one has ever called the irascible Codd a saint. In
place of Einstein’s publications on the theory of relativity, you have Codd’s ground-
breaking 1970 paper on relational theory, which proposed a rigorous model for
database management that offered the beguiling simplicity of the rows and columns
of tables. But there was more to it than that. Codd’s work was firmly grounded in the
mathematical theory of relations of arbitrary degree and the predicate logic first
formulated by the ancient Greeks. Moreover, it was a complete package that
handled mapping the real world to data structures as well as manipulating that
data—that is, it included a specification for a normal form for database relations and
the concept of a universal data sublanguage.

Almost as important to its success, Codd’s relational theory had Codd backing it.
The former World War Il Royal Air Force pilot made sure word got out from his IBM
research lab to the world at large. In those early years he had to struggle against
the political forces aligned behind IBM'’s strategic database product, IMS, and came
to work each day “wondering who was going to stab me in the back next.” Codd
parried often and well, although observers say some of the blows Codd returned
over the years were imagined or had even been struck for Codd’s own relational
cause.

Codd won the great database debate and, with it, such laurels as the 1981 ACM
(Association for Computing Machinery) Turing Award “for fundamental and
continuing contributions to the theory and practice of database management
systems.”

Like Einstein, Codd has played a very public role in the days since his research and

-20 .



advocacy first let the genie out of the bottle. In place of Einstein’s political activism
on behalf of peaceful uses of nuclear energy, Codd has aggressively campaigned
to make sure “relational” is more than an advertising buzzword. Many a careless
user of the word (and even some rather careful experts in the field) found
themselves on the end of a scathing “Coddgram” for what Codd deemed their
public misstatements. Some say his ComputerWorld articles of 1985 brought two
major nonrelational database vendors to the verge of bankruptcy and then
takeover.

Whereas Einstein’s work lead [sic] to the nuclear age, Codd’s work has lead [sic] to
what might be called the relational age. Yet Codd is not resting or turning to new
pursuits. He says his goal of protecting users of large databases from knowing how
data is actually organized in the machine has been realized only in part. He says
errors in the implementation of DBMS engines and the dominant data sublanguage,
SQL, jeopardize data integrity and make it too hard to frame a very complex query
and get back a usable answer.

Codd’s new book, The Relational Model for Database Management: Version 2,
defines just how far he thinks we still have to go. It is highly recommended reading.

Whereas Code loves to elucidate the practical benefits of relational theory, things
get dicey when talk ventures onto nonrelational grounds.

Einstein resisted new research done on quantum theory. Codd, in turn, resists
nonrelational rumblings from the research community and DBMS vendors. Codd
does not think much of work that extends the relational model (or skirts it) in order
to deal more efficiently with data that doesn’t look like the text and numeric data of
the SUPPLIER-PARTS-SUPPLY example popularized by Codd. His new book
dismisses practically all database research of the last ten years in a brief chapter.

For Einstein, the practical predictive value of quantum theory never overcame his
fundamental objection to it: “God doesn’t play dice with the universe.” Codd says
his objection to the new directions in database research has no such element of the
theological. The real problem, he says, is that the new work lacks a satisfactory
theoretical foundation. Worse, he says, it violates the principals [sic] laid down in
the theoretical foundations of the relational model.

If relational systems can’t deal effectively with the complex data found in
applications like CAD, CASE, and office automation, Codd says, it is because their
implementation of the relational model is lacking, not their underlying theory. The
point may be moot, however: Users and vendors are succumbing to the heady
performance improvements offered by nonrelational (or imperfectly relational)
alternatives.

What follows is an edited transcript of DBMS Editor in Chief Kevin Strehlo’s recent
discussion with Dr. Codd.

DBMS: What got you started down the road toward those first papers on relational
theory?

CODD: Well, a couple of things. Before | moved out to San Jose in 68, | attended a
talk in Poughkeepsie given by a small software firm from Los Angeles, and they
were describing the firm’s DBMS. Now, in predicate logic, the two main quantifiers
are the existential and the universal. | asked him to what extent the product
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supported the existential quantifier. He said, “Well | get some funny questions, but
this is the first time I've been asked about support for existential philosophy.” So
right there, | knew that he didn’t know a damn thing about predicate logic.

DBMS: | guess for him it wasn’t an an [sic] intuitive leap to connect predicate logic
to the management of data. But you made that leap somehow?

CODD: | felt that it was a natural thing to do. | did my studies in logic and
mathematics and it occurred to me as a natural thing for queries. Then it occurred
to me—and | can’t say why ideas occurred to me, but they keep doing so, and I'm
not short of them even now, | can tell you—why limit it to queries? Why not take it to
database management in general? Some work had already gone on in special-
purpose query systems that were software on top of and separate from a database
management system. It occurred to me that predicate logic could be applied to
maintaining the logical integrity of the data.

DBMS: Can you quickly try to give DBMS readers a grasp for existential quantifiers
in particular and predicate logic in general in case they don’t have one?

CODD: Sometimes | use this example: Statement A is strictly stronger in the logical
sense than statement B if A logically implies B, but B does not logically imply A.
Clearly, given a set of things and a property P that may or may not hold for each
member of the set, the statement “P holds for all members of the set” is stronger
than the statement “P holds for some members of the set.” In predicate logic the
former statement involves the universal quantifier, while the latter involves the
existential quantifier.

Mathematicians are looking for generality, for results that apply to all numbers of
some kind, like all integers, or all real numbers, or all complex numbers so that they
don’t have to keep making up theorems. That's the beauty of something like
Pythagoras’ theorem from ancient Greek times. It still applies to all right angle
triangles, whether you’re using it for surveying or for navigating a ship. How the
Greeks got on to the things they did—there was no need for surveying, or things of
that nature, at that time—is amazing to me.

Excerpt from DBMS interview with Edgar F. Codd, “Relational Philosopher.” DBMS, Dec.
1990, pgs. 34-36. Reprinted with permission from Intelligent Enterprise Magazine.
Copyright © 1990 by Miller Freeman, Inc. All rights reserved. This and related articles
can be found on www.intelligententerprise.com.

Chapter 4: Relational Tables

Overview

SQL is classified as a set-oriented language, but in truth it did not have a full collection of
classic set operations until the SQL-92 standard, and even then actual products were
slow to implement them.

We discussed the formal properties of multisets (or bags, to use a term | find less
attractive), which included

1. A multiset is a collection of things (elements) of the same kind.
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2. A multiset has no ordering to its elements.
3. A multiset may have duplicates in the collection.

A relational table has more properties than its simple data structure. It is far too easy for a
beginner SQL programmer to think that a table is a file, a row is a record, and a column is
a field. This is not true at all.

A table can exist only within a database schema, where it is related to the other tables
and schema objects. A file exists in its own right and has no relationship to another file as
far as the file system is concerned.

A file is passive storage whose structure is defined by the program that reads it. That is, |
can read the same file in, say, Fortran several different ways in different programs by
using different FORMAT statements. A file (particularly in Fortran, Cobol, and other older
3GL languages) is very concerned with the physical representation of the data in storage.

A table never exposes the physical representation of the data to the host program using
it. In fact, one part of the SQL-92 standard deals with how to convert the SQL datatypes
into host language datatypes, so the same table can be used by any of several standard
programming languages.

A table has constraints that control the values that it can hold, while a file must depend
on application programs to restrict its content. The structure of the table is part of the
schema.

The rows of a table are all identical in structure and can be referenced only by name. The
records in a file are referenced by position within the file and can have varying structure.
Examples of changing record structures include arrays of different sizes and dimensions
in Fortran, use of the 0CCURS clause in Cobol, the variant records in Pascal, and struct
declaration in C.

Perhaps more importantly, a row in a properly designed table models a member of a
collection of things of the same kind. The notion of “things of the same kind” is a bit
vague when you try to formalize it, but it means that the table is a set and whatever
property applies to one row should apply to all rows.

The notion of kind also applies to the level of aggregation and abstraction used. For
example, a Personnel table is a set of employees. A department is made up of
employees, but it is not an aggregation of the employees. You can talk about the salary
of an employee, but it makes no sense to talk about the salary of a department. A
department has a budget allocation that is related to the salaries. At another level, you
can talk about the average salary of an employee within a department.

This is not always true with files. For example, imagine a company with two types of
customers, wholesale and retail. A file might include fields for one type of customer that
do not apply to the other and inform the program about the differences with flags in the
records. In a proper database schema, you would need a table for each kind of customer,
although you might have a single table for the data common to each kind.

A field within a record is located by its position. That is why a statement like READ (x, v,
z) will not produce the same results in a 3GL program as READ (z, x, y). Columns can
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only be accessed by their name; the database system locates them physically.

A column can have constraints that restrict the values it can contain in addition to its
basic datatype; a field is limited only by the datatype that the host program is expecting.
This lack of constraints has led to such things as 'LATER' being used in a field that is
supposed to hold a date value.

A field can be complex and have its own internal structure, which is exposed to the
application program. The most common example of this is Cobol, where a field is made
up of subfields. For example, a date has year, month, and day as separate fields within it.
There is nothing in Cobol per se to prevent a program from changing the day of the
month to 99 at the subfield level, even though the result is an invalid date at the field
level.

A properly designed column is always a scalar value. The term “scalar” means that the
value is taken from a scale of some sort. It measures one attribute and only one attribute.
We will discuss scales and measurement theory later in the book. In SQL, a date is a
datatype in its own right, and that prevents you from constructing an invalid value.

4.1 Subsets

The name pretty much describes the concept—a subset is a set constructed from the
elements of another set. A proper subset is defined as not including all the elements of
the original set.

We already discussed the symbols used in set theory for proper and improper subsets.
The most important property of a subset is that it is still a set. SQL does not have an
explicit subset operator for its tables, but almost every single table query produces a
subset. The SELECT DISTINCT option in a query will remove the redundant duplicate
rows.

Standard SQL has never had an operator to compare tables against each other for equality
or containment. Several college textbooks on relational databases mention a CONTAINS
predicate, which does not exist in SQL-89 or SQL-92. This predicate existed in the original
System R, IBM’s first experimental SQL system, but it was dropped from later SQL
implementations because of the expense of running it.

4.2 Union

The union of two sets yields a new set whose elements are in one, the other, or both of
the original sets. This assumes that the elements in the original sets were of the same
kind, so that the result set makes sense. That is, | cannot union a set of numbers and a
set of vegetables and get a meaningful result.

SQL-86 introduced the UNION and the UNION ALL operators to handle the multiset
problems. The UNION is the classic set operator applied to two table expressions with the
same structure. It removes duplicate rows from the final result; the UNION ALL operator
leaves them in place.

The fact that two table expressions have the same structure does not mean that they
have the same kind of elements, and SQL-92 is not really able to check this. The classic
example is a table of x, y coordinates and a table of polar coordinates. Both have two
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columns of REAL numbers, and both give a location on a map. The UNION makes no
sense unless you convert one system of coordinates into the other.

In SQL-89, the columns of the result set did not have names, but you could reference
them by a position number. This position number could only be used in a few places
because the syntax would make it impossible to tell the difference between a column
number and an integer. For example, does 1 + 1 mean “double the value in column one,”
“‘increment column one,” or the value two?

In SQL-92, the use of position numbers is “deprecated,” a term in the standards business
that means that it is still in the language in this standard, but that the next version of the
standard will remove it. The columns of the result set do not have names unless you
explicitly give the columns names with an As clause.

(SELECT a, b, c¢c FROM Foo)
UNION [ALL]
(SELECT x, y, z FROM Bar) AS Foobar(cl, c2, c3)

In practice, actual SQL products have resolved the missing names problem several
different ways: use the names in the first table of the operation, use the names in the last
table of the operation, or make up system-generated names.

4.3 Intersection

The intersection of two sets yields a new set whose elements are in both of the original
sets. This assumes that the datatypes of the elements in the original sets were the same,
so that the result set makes sense.

If the intersection is empty, then the sets are called disjoint. If the intersection is not
empty, then the sets have what is called a proper overlap.

SQL-92 introduced the INTERSECT and the INTERSECT ALL operators to handle the
multiset problems. The INTERSECT is the classic set operator applied to two table
expressions with the same structure. It removes duplicate rows from the final result; the
INTERSECT ALL operator matches identical rows from one table to their duplicates in the
second table. To be more precise, if R is a row that appears in both tables T1 and T2, and
there are m duplicates of R in T1 and n duplicates of R in T2, where m > 0 and n > 0, then
the INTERSECT ALL result table of T1 and T2 contains the minimum of m and n duplicates
of R.

4.4 Set Difference

The set difference of two sets, shown with a minus sign in set theory, yields a subset of
the first set, whose elements exclude the elements of the second set—for example, the
set of all employees except those on the bowling team. Again, redundant duplicates are
removed if EXCEPT is specified.

If the EXCEPT ALL operator is specified, then the number of duplicates of row R that the
result table can contain is the maximum of (m - n) and 0.

4.5 Partitioning

-34 -



A partitioning of a set divides the set into subsets such that

1. No subset is empty.

2. The intersection of any combination of the subsets is empty.
3. The union of all the subsets is the original set.

In English, this is like slicing a pizza. You might have noticed, however, that there are
many ways to slice a pizza.

4.5.1 Groups

The GROUP BY operator in SQL is a bit hard to explain because it looks like a partition,
but it is not. The SQL engine goes to the GROUP BY clause and builds a partitioned
working table in which each partition has the same values in the grouping columns.
NULLs are grouped together, even though they cannot be equal to each other by
convention.

Each subset in the grouped table is then reduced to a single row that must have only
group characteristics. This result set is made up of a new kind of element, namely,
summary information, and it is not related to the original table anymore.

The working table is then passed to the HAVING clause, if any, and rows that do not meet
the criteria given in the HAVING clause are removed.

4.5.2 Relational Division

Relational division was one of the original eight relational operators defined by Dr. Codd.
It is different from the other seven because it is not a primitive operator, but can be
defined in terms of the other operators. The idea is that given one table with columns
(a,b), called the dividend, and a second table with column (a), called the divisor, we can
get a result table with column (b), called the quotient. The values of (b) that we are
seeking are those that have all the values of (a) in the divisor associated with them. To
make this more concrete, if you have a table of pilots and the planes they are certified to
fly called PilotSkills, and a table with the planes in our hangar, when you divide the
PilotSkills table by the hangar table, you get the names of the pilots who can fly every
plane in the hangar.

As an analog to integer division, there is the possibility of a remainder (i.e., pilots who
have certifications for planes that are not in the hangar leave those extra planes as a
remainder). But if you want to draw an analogy between dividing by an empty set and
division by zero, you have to be careful depending on the query you used. You can get all
the pilots, even if they do not fly any planes at all, or you can get an empty result set (see
my other book, SQL for Smarties, for more details).

The idea of Codd’s original division operator was that it would be an inverse of the CROSS
JOIN or Cartesian product. That is, if you did a CROSS JOIN on the divisor and the
quotient, you would get the rows found in the dividend table.

A relational division operator proposed by Stephen Todd is defined on two tables with
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common columns that are joined together, dropping the join column and retaining only
those nonjoin columns that meet a matching criteria.

Again, it is easier to explain with an example. Let’s use Chris Date’s classic tables and
assume we have JobParts(jobno, partno) and SupParts(supno, partno), which show us
suppliers, the parts that they provide, and the jobs that use those parts. We want to get the
(supplier, job) pairs such that the supplier supplies all of the parts needed for the job. This
is not quite the same thing as getting the supplier-and-job pairs such that job jn requires all
of the parts provided by supplier sn.

4.6 Duplicates

Entities are a state of mind. No two people agree on what the real world view is.—
Mexaxides

... an n-ary relation R has the following properties: . . . (3) All rows are distinct. . . —E.
F. Codd

The idea of a key on a table is central to the relational model. The purpose of a key is to
identify each row uniquely, and, from that property, you can build the rules for the normal
forms. The terminology has changed a bit since Codd’s first papers. All of the things that
Codd was calling primary keys now have more precise terms: All possible keys in a table
are called candidate keys; the chosen one is the primary key, and the unchosen ones are
the alternate keys. The ideas of duplication and uniqueness are central to the way that
people think and deal with the world, so your database model should handle these
concepts if it is going to reflect the real world.

In the real world, no two entities are exactly alike, but you ignore the differences in order
to construct classes and reason with abstractions. You can build the classes using some
criteria for matching entities against each other. There are several ways to do this:

+ Identity: “Clark Kent is Superman!” You have two or more names for exactly the same
entity. This is the strongest form of matching.

« Equality: “Five kilograms of rubber weigh the same as five kilograms of gold.” You
have an attribute in both entities that has the same value according to some test or
scale. However, the entities are separate and might not match on other attributes,
such as current market price or electrical conductivity.

» Equivalency: “One teaspoon of concentrate makes one cup of formula.” One entity can
be transformed into the other in some well-defined manner. This is not quite the same
as equality because some outside agency is needed for the transformation. In this
case, you must add water to the concentrate.

 Substitutability: “We don’t have beer. Would you like a glass of wine?” One entity can
replace the other in some operation, but it has a distinct identity of its own and is not
transformed and does not have to have an exact match on an attribute (i.e., beer and
wine do not taste alike, but both are in the superclass of potables).

Relational databases are built on the assumptions of identity or equality. How you treat
duplicates in a relational database depends on whether you use identity or equality. I'll
explain this statement by looking at the three methods used in relational database
models to handle duplication:
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1. Remove duplicates automatically.
2. Allow duplicates.

3. Reduce duplicates to a count of the members in the class.

4.6.1 Allow Duplicates

This is the SQL solution. The rationale for allowing duplicate rows was best defined by
David Beech in an internal paper for the ANSI X3H2 committee and again in a letter to
Datamation (Beech 1989). This is now referred to as the “cat food argument” in the
literature. The name is taken from the example of a cash register slip, where you find
several rows, each of which lists a can of cat food at the same price. To quote from the
original article:

For example, the row ‘cat food 0.39’ could appear three times [on a supermarket
checkout receipt] with a significance that would not escape many shoppers. . . . At the
level of abstraction at which it is useful to record the information, there are no value
components that distinguish the objects. What the relational model does is force
people to lower the level of abstraction, often inventing meaningless values to be
inserted in an extra column whose purpose is to show what we knew already, that the
cans of cat food are distinct.

All cans of cat food are interchangeable, so they have no natural unique identifier. The
alternative of tagging every single can of cat food in the database with a unique machine-
readable identifier preprinted on the can or keyed in at the register is not only expensive
and time-consuming, but it adds no real information to the data model. In the real world,
you collect the data as it comes in on the cash register slip, and consolidate it when you
debit the count of cans of cat food in the inventory table. The cans of cat food are
considered equivalent, but they are not identical.

You also encounter this situation when you do a projection on a table and the result is
made up of nonkey columns. Counting and grouping queries also implies that duplicate
rows exist in a “separate but equal” way; that is, you treat them as a class or a multiset.
Let’'s make this more concrete with the following two tables:

CREATE TABLE Personnel
(emp CHAR (30) NOT NULL PRIMARY KEY,
dept CHAR(8) NOT NULL) ;

CREATE TABLE Automobiles
(owner CHAR(30) NOT NULL,
tag CHAR(10) NOT NULL,
color CHAR(5) NOT NULL,
PRIMARY KEY (owner, tag));

You can use these tables to answer the question: “Do more employees in the accounting
department than in the advertising department drive red cars?” You can answer this
quickly with the following query:

SELECT dept, COUNT(*)
FROM Personnel, Automobiles
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WHERE owner = emp

AND color = 'red'

AND dept IN ('acct', 'advert')
GROUP BY dept;

Try to do this without knowing that people can own more than one car and that a
department has more than one employee! Duplicate values occur in both projections and
joins on these tables.

4.6.2 Disallow Duplicates

This is Chris Date’s relational model. Date has written several articles on the removal of
duplicates (e.g., Date 1990, 1994). Date’s model says that values are drawn from a
particular domain, which is a set of scalars. This means that when a column defined on
the color domain uses the value “red”, it is using “red” in the domain and it occurs once.
There might be many occurrences of references to “red” or “3” or “1996-12-25", but they
are pointing to the only red, the only integer three, and the only Christmas Day in 1996.
Domains are based on an identity concept and disallow duplicate values. This is the
same argument that mathematicians get into about pure numbers.

Date’s example of the problems of duplicates uses the following two tables:

Parts SupParts
-]

pno pname supno pno

p1 screw s1 p1

p1 screw s1 p1

p1 screw s1 p2

p2 screw

and then attempts to write SQL to comply with the criterion “List the part numbers of
screws or parts that come from supplier s1 (or both).” He produces a dozen different
queries that are all different, and all produce a different number of answers. For example,
if you assume that a part must have one supplier, you can write

SELECT P.pno
FROM Parts AS P, SupParts AS SP

WHERE (SP.supno = 'sl'
AND SP.pno = P.pno)
OR P.pname = 'screw';
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which gives the result:

T
=]
| o |

p1
p1
p1
p1
p1
p1 9 duplicates
p1
p1

p1

p2
p2 3 duplicates

p2

However, the more direct query that translates an OR into a UNION would give

SELECT pno

FROM Parts

WHERE pname = 'screw'
UNION

SELECT pno

FROM SupParts

WHERE supno = 'sl';

with the desired results:
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The real problem is that you can assign no meaning to the duplicates of (p1, screw) and
(s1, p1) rows. If the Parts table models a list of shipments as they come in, then each row
would be a shipment (which is what you did with cat food). But if you assume that
SupParts is a similar shipment list, then each row in Parts would have to map to a row in
SupParts. They don’t match up, so the data is wrong. Even if they did match up, you
would have put one fact in two places, which is always an incorrect model.

To answer the question “Which supplier sent us the most screws?” you must have an
explicit quantity column in Date’s relational model. This is consistent with the idea that
any property of an entity should be shown as an explicit column in a table.

In SQL, you can get the effects of duplicate elimination with SELECT DISTINCT and
aggregate functions with the DISTINCT option, the UNION operator, and careful design
of queries around joins on UNIQUE and PRIMARY KEY columns. It is also possible for an
optimizer to eliminate duplicates in certain subquery predicates, such as the IN
predicate.

4.6.3 Consolidate Duplicates

Dr. Codd sent a paper to the ANSI X3H2 Database Standards Committee several years
ago in which he proposed a “degree of duplication” function, which | will show as

dod (*), in keeping with SQL syntax conventions. He wanted the function to return the
number of duplicates as part of the results when you execute a query that produces
duplicate rows, instead of dropping them. This function could produce the same results
as GROUP BY and COUNT (*) in SQL, but in a different manner. Let’s do the automobile
problem (“Do more employees in the accounting department than in the advertising
department drive red cars?”) in relational algebra, with a dod (*) function:

Ql:= PROJECT Automobiles (owner, color, dod(*))

WHERE color = 'red';
Q2:= PROJECT Personnel (emp, dept)
WHERE dept = 'acct' OR dept = 'advert';

Q3:= Q1 JOIN Q2 ON emp = owner;
Q4:= PROJECT Q3 (dept, dod(*));

Assume you have the following data:
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Automobiles Personnel

owner tag color emp dept

‘John’ 123 ‘red’ ‘John’ ‘advert’
‘John’ 122 ‘green’ ‘Sam’ ‘acct’
‘Sam’ 111 ‘red’ ‘Mary’ ‘acct’
‘Mary’ 345 ‘red’ ‘Mel’ ‘sales’
‘Mary’ 678 ‘red’

The intermediate steps look like this:

Q1—get the ‘red’ car owners

owner color dod(*)

‘John’ ‘red’ 1
‘Sam’ ‘red’ 1
‘Mary’ ‘red’ 2

Q2—get the employees

emp dept
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‘John’ ‘advert’
‘acct’

‘Mary’ ‘acct’

Q3—join them

owner color dod(*) emp dept

‘John’ ‘red’ 1 ‘John’ ‘advert’
‘Sam’ ‘red’ 1 ‘Sam’ ‘acct’
‘Mary’ ‘red’ 2 ‘Mary’ ‘acct’

Q4—retain departments and counts

dod(*) dept

1 ‘advert’
1 ‘acct’
2 ‘acct’

Oops, the dod (*) cannot operate like a regular function value in joins and projections!
You need a rule that says that rows differing by only a dod (*) column are replaced
automatically with a single row containing the sum of their dod (*) columns. In this case,
what you want is
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dod(*) dept
1 ‘advert’

3 ‘acct’

I am not going to try to figure out all the rules for those cases in which a JOIN produces
two or more dod (*) columns in intermediate result tables, or in which you try to join two
intermediate results on their respective dod (*) columns.

This approach recognizes that there are occurrences of values, but it puts them into a
single collection. That is, where SQL sees three separate but equivalent cans of cat food,
Date’s model sees a single class of canned cat food, and Codd’s model sees a collection
of three cans of cat food.

4.6.4 Uniqueness

There is a rule of thumb in SQL database design that says that all base tables should
have a primary key. This will avoid a lot of the problems involved with duplicates and will
make your SQL database look more like a pure relational database. However, there is a
little problem in that a primary key in relational database theory means one chosen from
several candidate keys. In SQL, the keywords PRIMARY KEY (I will capitalize the
keywords to differentiate the SQL from the relational theory term) imply other things.

In SQL, I might not want to have a PRIMARY KEY, but instead use multiple candidate
keys (shown by NOT NULL and UNIQUE constraints) because many systems will see the
keywords PRIMARY KEY and set up access based on those columns. The PRIMARY KEY
is the default target for the FOREIGN KEY. . .REFERENCES constraint clause, and many
SQL products will set up special index structures (clustering, hashing, inverted lists, and
so on) to favor joins and accesses on the PRIMARY KEY for the referencing table to those
columns. Consider a table for a school schedule:

CREATE TABLE Schedule

(period INTEGER NOT NULL,

teacher CHAR(15) NOT NULL,

room INTEGER NOT NULL,

CONSTRAINT tr UNIQUE (teacher, room), - candidate keys
CONSTRAINT pr UNIQUE (period, room),

CONSTRAINT pt UNIQUE (period, teacher),

CONSTRAINT ptr UNIQUE (period, teacher, room));

Yes, the rules imposed by the UNTIQUE constraints are a bit weird, but bear with me. The
following is one possible solution set that does not violate any of the four constraints:

Schedule
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period teacher room

1 ‘Curly’ 101
1 ‘Larry’ 102
1 ‘Moe’ 103
2 ‘Curly’ 102
2 ‘Larry’ 101
3 ‘Curly’ 103
3 ‘Moe’ 101

| constructed this table by attempting to insert all 27 possible rows (3 teachers, 3 rooms,
and 3 periods) into the table. This is a handy, if inelegant, testing trick for a table with
multiple constraints.

Which UNIQUE constraint should be made into the PRIMARY KEY? And how did you
decide? The relational model does not have to worry about performance, but you do. At
first glance, it looks like the ptr constraint implies the other three constraints, but it does
not. The ptr constraint by itself would allow all 27 possible rows to appear in the table.

Using the ptr constraint as a PRIMARY KEY violates another rule of thumb: a PRIMARY
KEY should not be a super key. A super key is defined as a set of columns that is a key
and also contains a subset that is a key (in other words, it's too fat). This rule of thumb
has the practical advantage of leading the designer toward shorter keys, which will
become smaller indexes, which will search faster. It sounds good so far.

If you follow this rule, which of the two column constraints do you use as the PRIMARY
KEY? Unless | have a good reason, | would assume that searches are equally likely to
use any pair or all three columns. That means | would use all four constraints, but not
declare any of them to be the PRIMARY KEY. Yes, updates and insertions would be slow,
but my searches would have the best average search time possible.

The usual next step is to try to break this table into smaller tables and then reconstruct
the original table from them. However, this does not work. Break the table into three two-
column tables, each of which uses a two-column constraint as its PRIMARY KEY, and
insert some legal rows into each of them.

CREATE TABLE period teacher
(period INTEGER NOT NULL,
teacher CHAR (15) NOT NULL,
PRIMARY KEY (period, teacher));
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INSERT INTO period teacher
VALUES (1, 'Curly'),

(1, 'Larry'),
(1, 'Moe'),

(2, 'Curly"),

(2, 'Larry'"),

(3, 'Larry'),

(3, 'Moe');

Now execute a query to join the three tables together, replacing the ptr constraint with a
SELECT DISTINCT. (I have used a GROUP BY instead to get the count of the duplicates

for each row.)

CREATE TABLE period room
(period INTEGER NOT NULL,
room INTEGER NOT NULL,
PRIMARY KEY (period, room)) ;
INSERT INTO period room
VALUES (1, 101),

CREATE TABLE teacher-room
(teacher CHART (15) NOT NULL,
room INTEGER NOT NULL,
PRIMARY KEY (teacher, room));
INSERT INTO teacher-room
VALUES ('Curly', 101),
'Curly', 102),

'Curly', 103),

'Larry', 101),

'Larry', 102),

Moe', 101),

Moe', 103);

The idea is to reconstruct the original table from these three derived tables. But your
query will not work, and you will get a lot of false data that did not exist in the original
table. In fact, you can try the other three possible table joins and you still will not avoid
false data.

As an aside, many first-time SQL database designers working with entity-relationship
modeling tools think that “if it is a table, then it is an entity.” Look at the Schedule table:
there is nothing that implies an entity in the possible keys; rather, it holds nothing but
relationships among three entities.

4.6.5 Levels of Aggregation

Chuck Reinke wrote to C. J. Date in response to his column in Database Programming &
Design magazine and argued against the cat food example with another example. He
was interested in lab rats and ratlets. Whenever there is a new litter, he wanted to create
an entry for each new ratlet. When just born, they are indistinguishable, but tattooing is
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out of the question. Yet, as they grow, he can distinguish certain ones by color or
behavior, and at that time, we need to assign them a unique key. This is usually done
with colored markers on their tails.

Mr. Reinke argued that Chris should not record the ratlets prior to the stage when they
become distinguishable from their litter mates. Assigning each ratlet an arbitrary unique
key implies nonexistent information that the ratlets are distinguishable (in the mind of
God, perhaps).

Chris Date responded with the following design for the ratlets problem:

CREATE TABLE Litters
(litter id INTEGER NOT NULL PRIMARY KEY,
ratlet tally INTEGER NOT NULL);

CREATE TABLE Ratlets
(ratlet_id CHAR (15) NOT NULL PRIMARY KEY,
litter_id INTEGER NOT NULL

REFERENCES Litters(litter id));

When there’s a new litter, we make the obvious entry in litters. When an individual ratlet
becomes “interesting” (unlike Reinke, Date did not like the word “distinguishable”
because distinguishability presupposes identity), we make the obvious entry in ratlets.

Let’s consider what we are actually doing in this case. One table is viewing a litter of
ratlets as a single entity to be modeled in a table, while the other table is breaking the
litter into its individual members. The Litter table is a set based on a collective noun, and
the Ratlet table is based on a singular noun, if you want to think of it in those terms.

You see this same model in the GROUP BY operator, which creates a set at a higher level of
aggregation from existing data. It is not a bad thing per se, but you need to be aware of it
and not mix levels of aggregation in a query or in the same table.

4.7 VIEWs

According to the SQL-92 standard, VIEWs are virtual tables that act as if they are
materialized when their name appears. In practice, however, we try to avoid materializing
VIEWS because this would require a temporary working table and would not allow the
optimizer to make certain decisions.

SQL-92 introduced the concept of a derived table that has the form
<table subquery> AS <table name>[<column list>]
that matches the VIEW definition syntax:

CREATE VIEW <table name>[<column list>] AS <select statement>

The difference is that the derived table is lost after the execution of the SELECT
statement in which it is used. VIEWs are persistent schema objects.
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VIEWS serve several purposes:

1. Security: Users can be given access to only those rows and columns for which they
have authorization.

2. Hiding complexity: Rather than have programmers write the same complex query
over and over, they can be given a VIEW that has the query in it. This has the added
advantage that everyone will do it the same way—something that was impossible to
guarantee if all programmers began their work from scratch each time.

3. Optimization: This is possible in certain SQL products where the optimizer looks for
common subexpressions across multiple queries and statements. By definition, a
VIEW that is used in several statements is a common subexpression and does not
need to be parsed any further.

4.7.1 Updatable VIEWs

The updatability of a given VIEW should be a semantic issue, not a syntactic one. This is
simply not true in SQL, however. For example, the following two VIEW definitions, taken
from Date and McGoveran (1994b), are semantically identical:

CREATE VIEW V1
AS SELECT *
FROM Personnel
WHERE dept nbr = 'DI1'
OR salary > 33000.00;

CREATE VIEW V2
AS SELECT *
FROM Personnel
WHERE dept nbr = 'DIl'
UNION
SELECT *
FROM Personnel
WHERE salary > 33000.00);

Obviously, both of these VIEWs should be updatable because they both create the same
table, and that table contains the primary key of the base table from which it is derived.
However, the SQL-92 standard, and most SQL products, will let you update Personnel
via VIEW V1, but not via VIEW V2.

The SQL-92 standard is actually very conservative about what VIEWs are updatable:

1. The VIEW must be derived from a SELECT statement on one and only one base
table; this can go through several layers of VIEWSs on top of VIEWS, however.

2. The VIEW must include all the columns of a key (i.e., a UNIQUE or PRIMARY KEY
constraint) in the base table.

3. All columns not shown in the VIEW must have default values or be NULLable (if you
think about it for a minute, this lets you construct and insert a complete row into the
base table).
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The whole idea is that an updatable VIEW looks and behaves pretty much like a base
table, but slightly restricted as to what you can see. One row in the VIEW maps to exactly
one row in the base table from which it is drawn.

However, other views are updatable, and some vendors support more than the basic
version given in the SQL-92 standard. The VIEW must have an INSERT, UPDATE, and
DELETE rule under the covers that maps its rows back to a single row in the base
table(s).

Nathan Goodman (1990) discusses the conditions required for updating the following
types of VIEWS:

1. Projection from a single table

2. Selection/projection from a single table
3. Unioned VIEWS

4. Set difference VIEWS

5. One-to-one joins

6. One-to-one outer joins

7. One-to-many outer joins

8. Many-to-many joins

9. Translated and coded fields

Another feature, which is not used enough, is the WITH CHECK OPTION clause on a
VIEW. This can be a bit tricky (I have a section in SQL for Smarties that discusses this
feature in detail).

In 25 words or less, WITH CHECK OPTION requires the VIEW to reevaluate the WHERE
clause in the defining query every time a row is changed. For example, let’s build a VIEW
of the salesmen in an imaginary company.

CREATE VIEW Salesmen
AS SELECT name, title, quota
FROM Personnel
WHERE title = 'salesman'
WITH CHECK OPTION;

and now let’s assume | am a salesman who wants to make myself the president of the
company by changing the database. The WITH CHECK OPTION prevents the following
attempts:

UPDATE Salesmen
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SET title = 'president'
WHERE name = 'Joe Celko';
INSERT INTO Salesmen
VALUES ('Joe Celko', 'president', NULL);

These fail because | can only work with salesmen. The new image of my row in the
Personnel table would have failed the test (title = 'salesman') ifit had been
allowed.

If | decide to eliminate the current president, | cannot do so because his job title is not in
my VIEW. This would hold true even without the WITH CHECK OPTION clause:

DELETE FROM Salesmen
WHERE title = 'president';

There is more to the feature than this, but that is more of a detailed programming issue.

Chapter 5: Access Structures

Overview

Data access methods are not part of the SQL standard, so each vendor is free to do
anything they want as a vendor extension. When the ANSI X3H2 Database Standards
Committee (now called NCITS H2) decided to exclude index creation from the SQL-86
standard, the reason given was that indexing and accessing data was too physical for a
standard that was trying to be as abstract as possible. There was also some debate in
the committee that introducing a CREATE INDEX command would also require us to
introduce a CREATE HASH command, a CREATE LINK command, and assorted
CREATE commands for an endless list of access methods.

However, in the real world, it is vital to have some method to improve access to the
data— simple sequential file access would be too slow to be practical. The X/Open
Consortium came up with this syntax, based on the most common vendor syntax in use
at the time, for handling indexing:

CREATE INDEX <index name> ON <table name> (<column list>);
DROP INDEX <index name>;

This basic syntax can then have additional product-specific clauses and keywords that
modify the index in some way. However, every product agrees that the user can only
CREATE and DROP an index. The SQL engine handles any references to the access
without requiring the user to code for them in SQL, though the product might provide
ways of forcing the use of a particular access path.

The important questions concerning access methods in a given SQL implementation are

» Do users have the ability to specify the type of access method used in their schema
declaration? Or does the system decide this?

+ How many kinds of access methods (hashing, B-trees, bit mapping, inverted lists, etc.)
are available?
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+ If there is a multicolumn access method, will the system use part of the column list
when only a subset of those columns appears in the query? Or do you have to declare
separate access structures for each subset to improve performance?

» Does the order of the columns in the access structure make a difference in the access
method’s performance?

+ Can the product detect and avoid identical access structures that have been given
different names? More generally speaking, does the database detect redundant
structures and operations so they can be removed?

5.1 Simple Indexes

The simplest thing you can do to search a table is to just use the CREATE TABLE
command and nothing else. In most SQL implementations, the rows will be stored in a file
structure with a sequential access method of some kind. This saves the storage that
would have been used for another access method, but will cost access time. SQL is not
assumed to order the rows in a table, so every query to the table will have to do a
complete linear search to be sure that it checked every row. While this is not really an
index at all, it is leading up to the idea of an index.

What if instead of reading the table sequentially, | put the search results in another,
smaller data structure that had the search value and the location of the matching row in
it? This will cost me some extra storage, but | will get better search times because my
little list will be so much smaller than the original table. That is the idea of an index!

The most basic form of index consists of a file made up of the key column value(s) from
all the base table’s rows and a pointer to the physical address where each row is located
in the table. If you need a physical analogy for this method, look at the doorbell board in a
large apartment building. The index is the list of names and apartment numbers (usually
sorted on apartment numbers) and the doorbell button is the pointer that fetches the data
(person) you sought.

Since this kind of index usually has the primary key in it and it is used to ensure
uniqueness, it is often called a primary index. However, you can use this method to
ensure other uniqueness constraints on other keys, too.

In the case of a multiple-column key in the table, the key column in the index is usually
constructed by concatenating the base table column values together. The search is then
done not on the values per se, but on a binary string. A variance of this is to replace
simple concatenation of the columns with a rearrangement of the bytes involved. The
idea is to increase the granularity of the index by getting more variation in the front of the
string.

This approach is based on the observation that words and encoding schemes tend to
vary more in the middle and the end than at their start. For example, let’s take a short list
of names, picked at random, that start with the letter A and average 5 to 6 characters in
length. Now we split the name at different positions, swap the pieces, and concatenate
them back to give a new string, thus:

CREATE TABLE Foobar (name VARCHAR (25) NOT NULL) ;
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INSERT INTO Foobar

VALUES ('Adrian'), ('Adrienne'),
('"Alpharetta'), ('Amanda'),
('Andrea'), ('Angeles'), ('Angie'),
('"Asya'), ('Atlanta'), ('Avery'),

SELECT name,

SUBSTRING (name FROM 4
| | SUBSTRING (name
SUBSTRING (name FROM 5
| | SUBSTRING (name
SUBSTRING (name FROM 6
| | SUBSTRING (name
SUBSTRING (name FROM 7
| | SUBSTRING (name

FROM Foobar;

name

pivotd4

pivot5

("Al'),
('"Amber'),
("Annette'),
("Avondale') ;

('Alan'"),
('Amy"),

FOR LENGTH (name) )
FROM 1 FOR 3)
FOR LENGTH (name) )
FROM 1 FOR 4)
FOR LENGTH (name) )
FROM 1 FOR 5)
FOR LENGTH (name) )
FROM 1 FOR 6)

pivot6

AS pivot7

('Alex"),

('Anya'),

AS pivot4,
AS pivot5,

AS pivote,

pivot7

Adrian
Adrienne
Al

Alan
Alex
Alpharetta
Amanda
Amber
Amy
Andrea
Angeles
Angie

Annette

ianAdr
ienneAdr
Al

nAla
xAle
harettaAlp
ndaAma
erAmb
Amy
reaAnd
elesAng
ieAng

etteAnn

anAdri
enneAdri
Al

Alan
Alex
arettaAlph
daAman
rAmbe
Amy
eaAndr
lesAnge
eAngi

tteAnne
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nneAdrie
Al

Alan
Alex
rettaAlpha
aAmand
Amber
Amy
aAndre
esAngel
Angie

teAnnet

Adrian
neAdrien
Al

Alan
Alex
ettaAlphar
Amanda
Amber
Amy
Andrea
sAngele
Angie

eAnnett



Anya aAny Anya Anya Anya

Asya aAsy Asya Asya Asya
Atlanta antaAtl ntaAtla taAtlan aAtlant
Avery ryAve yAver Avery Avery
Avondale  ndaleAvo daleAvon aleAvond leAvonda

Now look at the first two letters of each pivoted string. The reason for using two letters is
that this gives us two bytes, or 16 bits, which is a common word size in many machines.
We get the following granularities:

no pivot = 7 cases

pivot at position 4 = 15 cases
pivot at position 5 = 15 cases
pivot at position 6 = 13 cases
pivot at position 7 = 12 cases

Although not very scientific, it demonstrates the principle that words vary more toward the
middle and end than toward the beginning. And it also demonstrates that a pivot position
near the average length will usually be optimal or near-optimal.

You can also expect the database engine to have an upper length in bytes for an index
structure. The system will maintain the sorted order in a primary index, but the table itself
might be stored in any order.

To use the index to obtain a row in the indexed base table, the search engine finds the
key value(s) in the first field of the index that match the search value(s), then uses the

pointer in the second field to read the physical location where the corresponding row is
located.

Since the index is smaller than the original table and it is in sorted order, searching it is
fairly quick and easy compared to reading the entire table sequentially. The trade-off for
faster search time is slower update, insert, and delete times because when a row in the
base table changes, all the indexes also have to be changed. An old rule of thumb was
that more than five indexes will give you too large a performance hit for a database doing
heavy transaction processing, but you need to judge this for your particular situation.

Secondary indexes are made on nonunique columns in the base table and therefore
must allow duplicate values. If there is a record in the index for every row in the base
table, then the index is dense; if not, then the index is sparse. Using a secondary index is
almost exactly like using a primary index.
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A sparse index does not have a record for each row in the base table. Instead, the
physical storage for the base table is kept in sorted order, so that the sparse index needs
to only have the values(s) of the first (or last) row on each physical page of storage. For
example, if the first index entry is the name ‘Adams’ and the second entry is ‘Brown’, then
we know that ‘Adcock’ is on the first page of storage, if such a row exists at all. If you
need to think of a physical analog to this method, look at a large unabridged dictionary
with a notch or thumb index in its side.

The database engine can then fetch the page to which the index points, bring it into main
storage, and perform a search on it. Obviously, a table can have only one such index,
since it is impossible to sort a physical file more than one way.

However, you might want to ask if your particular implementation can split out the original
columns of a compound index. That is, if you had declared

CREATE INDEX Xfoo3 ON Foobar (a, b, c);

does the database engine know how to use this index to simulate other indexes based on
the front part of the concatenation, so that in effect you have “virtual indexes” like this:

CREATE INDEX Xfoo2 ON Foobar (a, b):;
CREATE INDEX Xfool ON Foobar (a);

5.1 Simple Indexes

The simplest thing you can do to search a table is to just use the CREATE TABLE
command and nothing else. In most SQL implementations, the rows will be stored in a file
structure with a sequential access method of some kind. This saves the storage that
would have been used for another access method, but will cost access time. SQL is not
assumed to order the rows in a table, so every query to the table will have to do a
complete linear search to be sure that it checked every row. While this is not really an
index at all, it is leading up to the idea of an index.

What if instead of reading the table sequentially, | put the search results in another,
smaller data structure that had the search value and the location of the matching row in
it? This will cost me some extra storage, but | will get better search times because my
little list will be so much smaller than the original table. That is the idea of an index!

The most basic form of index consists of a file made up of the key column value(s) from
all the base table’s rows and a pointer to the physical address where each row is located
in the table. If you need a physical analogy for this method, look at the doorbell board in a
large apartment building. The index is the list of names and apartment numbers (usually
sorted on apartment numbers) and the doorbell button is the pointer that fetches the data
(person) you sought.

Since this kind of index usually has the primary key in it and it is used to ensure
uniqueness, it is often called a primary index. However, you can use this method to
ensure other uniqueness constraints on other keys, too.

In the case of a multiple-column key in the table, the key column in the index is usually
constructed by concatenating the base table column values together. The search is then
done not on the values per se, but on a binary string. A variance of this is to replace
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simple concatenation of the columns with a rearrangement of the bytes involved. The
idea is to increase the granularity of the index by getting more variation in the front of the
string.

This approach is based on the observation that words and encoding schemes tend to
vary more in the middle and the end than at their start. For example, let’s take a short list
of names, picked at random, that start with the letter A and average 5 to 6 characters in
length. Now we split the name at different positions, swap the pieces, and concatenate
them back to give a new string, thus:

CREATE TABLE Foobar (name VARCHAR (25) NOT NULL) ;

INSERT INTO Foobar

VALUES ('Adrian'), ('Adrienne'), ('Al"), ('Alan'), ('Alex'),
("Alpharetta'), ('Amanda'), ('Amber'), ('Amy'),

('"Andrea'), ('Angeles'), ('Angie'), ('Annette'), ('Anya'),
('"Asya'), ('Atlanta'), ('Avery'), ('Avondale'):;

SELECT name,

SUBSTRING (name FROM 4 FOR LENGTH (name))

| | SUBSTRING (name FROM 1 FOR 3) AS pivot4,
SUBSTRING (name FROM 5 FOR LENGTH (name) )

| | SUBSTRING (name FROM 1 FOR 4) AS pivotbh,
SUBSTRING (name FROM 6 FOR LENGTH (name))

| | SUBSTRING (name FROM 1 FOR 5) AS pivoté6,
SUBSTRING (name FROM 7 FOR LENGTH (name))

| | SUBSTRING (name FROM 1 FOR 6) AS pivot7

FROM Foobar;

name pivot4 pivot5 pivot6 pivot7
]

Adrian ianAdr anAdri nAdria Adrian

Adrienne ienneAdr enneAdri nneAdrie neAdrien

Al Al Al Al Al

Alan nAla Alan Alan Alan

Alex xAle Alex Alex Alex

Alpharetta  harettaAlp arettaAlph rettaAlpha ettaAlphar

Amanda ndaAma daAman aAmand Amanda

Amber erAmb rAmbe Amber Amber
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Amy Amy Amy Amy Amy

Andrea reaAnd eaAndr aAndre Andrea
Angeles elesAng lesAnge esAngel sAngele
Angie ieAng eAngi Angie Angie
Annette etteAnn tteAnne teAnnet eAnnett
Anya aAny Anya Anya Anya
Asya aAsy Asya Asya Asya
Atlanta antaAtl ntaAtla taAtlan aAtlant
Avery ryAve yAver Avery Avery
Avondale  ndaleAvo daleAvon aleAvond leAvonda

Now look at the first two letters of each pivoted string. The reason for using two letters is
that this gives us two bytes, or 16 bits, which is a common word size in many machines.
We get the following granularities:

no pivot = 7 cases

pivot at position 4 = 15 cases
pivot at position 5 = 15 cases
pivot at position 6 = 13 cases
pivot at position 7 = 12 cases

Although not very scientific, it demonstrates the principle that words vary more toward the
middle and end than toward the beginning. And it also demonstrates that a pivot position
near the average length will usually be optimal or near-optimal.

You can also expect the database engine to have an upper length in bytes for an index
structure. The system will maintain the sorted order in a primary index, but the table itself
might be stored in any order.

To use the index to obtain a row in the indexed base table, the search engine finds the
key value(s) in the first field of the index that match the search value(s), then uses the

pointer in the second field to read the physical location where the corresponding row is
located.
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Since the index is smaller than the original table and it is in sorted order, searching it is
fairly quick and easy compared to reading the entire table sequentially. The trade-off for
faster search time is slower update, insert, and delete times because when a row in the
base table changes, all the indexes also have to be changed. An old rule of thumb was
that more than five indexes will give you too large a performance hit for a database doing
heavy transaction processing, but you need to judge this for your particular situation.

Secondary indexes are made on nonunique columns in the base table and therefore
must allow duplicate values. If there is a record in the index for every row in the base
table, then the index is dense; if not, then the index is sparse. Using a secondary index is
almost exactly like using a primary index.

A sparse index does not have a record for each row in the base table. Instead, the
physical storage for the base table is kept in sorted order, so that the sparse index needs
to only have the values(s) of the first (or last) row on each physical page of storage. For
example, if the first index entry is the name ‘Adams’ and the second entry is ‘Brown’, then
we know that ‘Adcock’ is on the first page of storage, if such a row exists at all. If you
need to think of a physical analog to this method, look at a large unabridged dictionary
with a notch or thumb index in its side.

The database engine can then fetch the page to which the index points, bring it into main
storage, and perform a search on it. Obviously, a table can have only one such index,
since it is impossible to sort a physical file more than one way.

However, you might want to ask if your particular implementation can split out the original
columns of a compound index. That is, if you had declared

CREATE INDEX Xfoo3 ON Foobar (a, b, c);

does the database engine know how to use this index to simulate other indexes based on
the front part of the concatenation, so that in effect you have “virtual indexes” like this:

CREATE INDEX Xfoo2 ON Foobar (a, b);
CREATE INDEX Xfool ON Foobar (a):;

5.2 Tree-Structured Indexes

Now, let’s go back to the original unindexed table for a minute. If the table is kept in
sorted order, then | use a binary search to locate a particular row or a subset of the rows
based on the columns used for sorting. If you have (n) rows in the table, then the binary
search will take at most log;(n) disk reads to locate a row. The trade-off will be in keeping
the tables in order when new rows are inserted. The only thing SQL-92 says about an
inherent sorting order is that all NULLs must sort together either before or after all values.

Just as we viewed the simple index as putting a linear search into a persistent data
structure, we can think of a tree-structured index as putting a binary (or n-ary) search into
a persistent data structure.

There are many different types of tree-structured indexes, but they all have the same
motivation. As a simple index gets bigger and bigger, it starts to require longer and longer
search times. The obvious solution is to build a sparse index on the original index, in
which the sparse index points to the pages of the original index. Then build another

-56 -



sparse index on the index to the original index, and so forth. When this process stops, we
have a tree structure that starts at a root node. In practice, all these layers of indexing are
kept in one file and not in separate files. Furthermore, the levels of the tree are arranged
so that they can be searched by reading the index file sequentially.

The most popular family of tree-structured indexes in database products is the B-trees.
They have the best average performance in most real situations and are well understood.
In most B-trees, each node of the tree has four or five pointers to other nodes.

Instead of going into the details for an actual B-tree, let me explain the concepts with the
much simpler binary search tree as an index. In a binary tree, each node has two points;
the left pointer points to the node for all the values that are less than the value of this
node, and the right pointer points to the node for all the values that are greater than or
equal to the value of this node (see Fig. 5.1).

Fig. 5.1

The worst-case search involves searching four levels of this tree, with an average of 2.3
reads. The original table had a worst case of 16 reads, with an average of 8 reads per
search.

Now if you add a node for 23, you would first look for it by going down the tree following the
path (21, 22, 30, 28, 23).

5.3 Covering Indexes

An index can answer an EXISTS () or NOT EXISTS () predicate for its base table
immediately if the column(s) upon which it is built are used in the query. The index will
contain at least one occurrence of a value of that attribute if and only if it is in the base
table. A dense index is also able to perform aggregate functions on its base table
column(s) quickly because all of the value(s) are physically contiguous in the index file.
The base table itself is never read.

A sparse index can sometimes answer an EXISTS () predicate for its base table value(s)
immediately, if you got lucky and asked for one of the indexed values. But most of the
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time, you have to read the base table itself.

A covering index is an index built on multiple columns that are all used in a query. A
common example is (last name, first name) in tables that deal with people. Queries might
be done on just the last name, but the display is almost always of both first and last name
together. In this case, you are depending on the indexing method to allow the first part of
the index, the last name, to be searched so that the first name will be brought along with
it.

5.4 Hashing Functions

Hashing functions take a very different approach to finding data. These functions take the
value of the column(s) used in the search and convert them into a number that maps into
an address in physical data storage. This mapping is handled with an internal data
structure called a hash table (not to be confused with a database table!), which has the
actual disk address in it.

The disk drive can then be positioned directly to that physical address and read the data.
Since doing calculations inside the main processor is many orders of magnitude faster
than reading a disk drive, hashing is the fastest possible access method for a single row
in a table. The trade-off is “speed for space,” as it often is in computing.

Unify’s Unify SQL and Centura’s (nee Gupta) SQLBase products both have a CREATE
HASH command. Teradata uses proprietary hashing algorithms to handle large sets of
data. But even outside the world of computers, hashing is not as exotic as you might
think. If you place a telephone order with Sears or J. C. Penney, they will ask you the last
two digits of your telephone number. That is their hashing function for converting your
name into a two-digit number (if you have no telephone, then they use 00).

The trick in a CREATE HASH command is how good the hashing algorithm is. A good
hashing algorithm will minimize collisions (also called “hash clash”)—where two different
input values hash to the same location in the hash table. A good algorithm also will
minimize the size of the hash table. The hash table is often bigger than an index, but it
will work faster because it can locate a tuple in fewer execution cycles on average.

While there are many exotic hashing functions, the major algorithms fall into four types:

1. Digit selection: Pick a subset of the bits, characters, or digits that make up the input
value. That is what the telephone number trick we just discussed does.

2. Division: The input is treated as a number that is divided by a second number, and
the remainder is used as the hash. That is, Hash(x) = MOD (x, m). It is important that
m be a prime number for reasons we will discuss later.

3. Multiplication: The input is treated as a number that is multiplied by a second number,
and then a subset of digits (usually in the middle of the result) is used as the hash.
The second number can be derived from the first number, such as by squaring it. If
you are going to use a constant, ¢, then it is important that ¢ be an irrational number
represented to a large number of decimal places.

4. Folding: The digits of the input value are broken into subsets and then added to each
other. This method is usually used with division or multiplication.
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5.4.1 Uniform Hashing Function

The reason that Sears and J. C. Penney use the last two digits of your telephone number
as their hashing function is that if they filed orders by the last names, they would get too
many collisions in the J and S pigeonholes and not fill up the Q and X pigeonholes.
Telephone numbers tend to be uniformly distributed, unlike last names, which favor
“Johnson” and “Smith” over “Quixby” and “Xavier” in English-speaking countries.

This property is called uniform distribution, or just uniformity for short. It will let us keep all
the buckets the same size, and let us expect that they will fill at approximately the same
rate. We will get to the problems with hash collisions shortly, but minimizing them is very
important if you are going to get any speed out of this access method.

5.4.2 Perfect Hashing Function

A perfect hashing function is one that takes n distinct input values and assigns them to n
+ k buckets, without any hash clash. Obviously, the input values cannot have duplicates.
Such functions are hard to find unless you know all the possible input values in advance.

In the real world, we use imperfect hashing functions that have the property that several
inputs map to the same result. This is called a “collision” or “hash clash,” and it has to be
resolved in some manner. To make this easier to understand, let’s use what has to be the
world’s worst hashing function. Going back to the list of names used in the indexing
examples, take the first three letters, assign each letter its position in the alphabet, and
multiply this triplet. Take that result modulus five and get an answer between 0 and 4 as
the hash:

Hash (‘Adrian’) = MOD ((1*4*18),5) =2
Hash (‘Adrienne’) = MOD ((1*4*18),5) =2
Hash (‘Al') = MOD ((1*12*0), 5) =0
Hash (‘Alan’) = MOD ((1*12*1),5) =2
Hash (‘Alex’) = MOD ((1 * 12 * 5), 5) =0
Hash (‘Alpharetta’) = MOD ((1*12* 16), 5) =2
Hash (‘Amanda’) = MOD ((1*13*1),5) =3
Hash (‘Amber’) = MOD ((1*13*2),5) =1
Hash (‘Amy’) = MOD ((1 * 13 * 25), 5) =0
Hash (‘Andrea’) = MOD ((1* 14 * 4), 5) =1
Hash (‘Angeles’) = MOD ((1*14*7),5) =3
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Hash (‘Angie’) = MOD ((1* 14 * 7), 5) =3

Hash (‘Annette’) = MOD ((1* 14 * 14), 5) =1
Hash (‘Anya’) = MOD ((1* 14 * 25), 5) =0
Hash (‘Asya’) = MOD ((1* 19 * 25), 5) =0
Hash (‘Atlanta’) = MOD ((1*20 * 12), 5) =0
Hash (‘Avery’) = MOD ((1* 22 * 5), 5) =0
Hash (‘Avondale’) = MOD ((1* 22 * 15), 5) =0

Each of the results, 0 through 4, identifies a numbered hash bucket. If we assume that
the original bucket size was five addresses, then we can see that bucket #4 is empty,
buckets #1 and #3 have three addresses apiece, and bucket #2 has four. The problem is
that bucket #0 is running over, with a total of eight addresses. How do we handle the
extra three addresses?

There are two basic approaches to handling overflow. The first is to set up an overflow
area that will catch the extra addresses from the buckets. There are many variations on
this basic approach, so | will not go into details.

The second method is to rehash the input value again, using a second hashing function.
If this second hashing also leads to a collision, then a third hashing is done and so forth
until a bucket is found or the system crashes. These hashing functions are usually related
to each other in some way so that the nth attempt is not likely to skew toward the
previous attempts. Perhaps they share a basic formula that is modified slightly each time
a rehashing is performed.

Notice that, in general, you have no idea that a probe (the term for using a hashing
function to locate data) has failed until you attempt it with a disk read. This is why it is
important to minimize hash clash.

5.4.3 Minimal Hashing Functions

You might have noticed that given five buckets of five addresses each, we have
preallocated 25 units of storage for 18 addresses. If the set of values being hashed is
exactly equal to the total size of the buckets allocated, this is called a minimal hashing
function. Just as a perfect hashing function is difficult to discover, so is a minimal hashing
function. In practice, most hashing schemes try to allow a “little extra room” so that they
do not have to worry about bucket overflow. The “little extra room” can actually be fairly
large as a percentage of the total storage allocation, perhaps as much as 50% over the
minimal amount needed. This is a classic trade-off of “speed for space” since a larger
bucket size costs you main storage, but avoids collisions.

Is it possible for an algorithm to be both minimal and perfect? That is, is it possible for a
hashing function to take the n values and put them into exactly n contiguous buckets,
without any hash clash? Yes, it is! R. J. Cichelli (1980) presented such a minimal perfect
hashing algorithm. His example used the reserved words in standard Pascal. But he
admitted that in some cases his algorithm could fail. Thomas J. Sager (1985) then
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developed an improved perfect hashing algorithm, based on Cichelli’s original work, that
covers the cases where that one fails.

5.4.4 Multicolumn Hashing Functions

Just as indexes usually handle multiple columns by concatenating the values together to
make bit patterns, so do hashing functions.

It would be nice if a hashing function had the same properties that an index on multiple
columns has, namely, that you could search for one of the columns in the set. This would
imply that there is an accumulation operator, ®, with the property that

Hash(ci || ca2 || - - - || eN) = Hash(cy) @ Hash(cy) @ . . . @ Hash(cy)

Unfortunately, that property is not enough for a good hashing function. For example, if the
accumulation operator is addition, and there is an additive relationship among the
columns involved (i.e., ¢ = ¢y + c3, or whatever), you will get a lot of collisions. A good
accumulation operator should also have these properties:

* Nonadditive: Hash(c;) @ Hash(c,) <> Hash(c;) + Hash(c;)
* Commutative: Hash(c|) ® Hash(c;) = Hash(c,) @ Hash(c;)
* Associative: (Hash(c1) @ Hash(c,)) @ Hash(c3) = Hash(c;) ® (Hash(c,) @ Hash(cs3))

These properties are possible, and in fact exist in Teradata’s proprietary hashing
algorithms.

5.5 Inverted Files

In the early days of relational databases, the consensus of ignorance was that an
implementation would have to use fully inverted files. In an inverted file, every column in
a table has an index on it. It is called an inverted file structure because the columns
become files. Imagine a file where each record starts with a value, followed by a list of
row numbers. This means that you could then throw away the tables, since they can be
reconstructed from the row numbers. NULL values have a natural representation by not
having a row number in the record for them.

Inserting, updating, and deleting on a fully indexed table is very slow, since many
different index files have to be searched to find and reconstruct each row. But searching
for groups of rows with a common value is very fast. Doing a GROUP BY operation is a
matter of merging the index files for the columns in the grouping and seeing what records
overlap.

The Model 204 database is based on the inverted file model. It is very good at picking a
small subset from a much larger set and has been favored by the U.S. government for
certain agencies, such as the CIA and NSA.

5.6 Bit Vector Indexes
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FoxPro and Nucleus are two examples of products that use different bitmap schemes,
but they have some basic features in common. Imagine an array with table row numbers
or pointers on its columns and values for that column on its rows.

If a table row has that value in that position, then the bit is set; if not, the bit is zeroed. A
search is done by doing bitwise ANDs, ORs, and NOTs on the bit vectors.

This might be easier to explain with an example of the technique. Assume we have Chris
Date’s Parts table, which has columns for the attributes “color” and “weight.”

U
Q
| :
(7]

pno pname color weight city

‘pt1’ ‘Nut’ ‘Red’ 12 ‘London’—Physical row #3
‘p2’ ‘Bolt’ ‘Green’ 17 ‘Paris’—Physical row #4
‘p3’ ‘Cam’ ‘Blue’ 12 ‘Paris’—Physical row #7
‘P4’ ‘Screw’ ‘Red’ 14 ‘London’—Physical row #9
‘PS5’ ‘Cam’ ‘Blue’ 12 ‘Paris’—Physical row #11
‘p6’ ‘Cog’ ‘Red’ 19 ‘London’—Physical row #10

The bit indexes are built by using the physical row and the values of the attributes in an
array, thus:

INDEX Parts (color)

Rows 1 2 3 4 5 6 7 8 9 10 11
Blue 0 0 0 0 0 0 1 0 0 0 1
Green 0 0 0 1 0 0 0 0 0 0 0
Red 0 0 1 0 0 0 0 0 1 1 0
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INDEX Parts (weight)

Rows 1 2 3 4 5 6 7 8 9 10 11
12 0 0 1 0 0 0 1 0 0 0 1
17 0 0 0 1 0 0 0 0 0 0 0
14 0 0 0 0 0 0 0 0 1 0 0
19 0 0 0 0 0 0 0 0 0 1 0

To find a part that weighs 12 units and is red, you would perform a bitwise AND to get a
new bit vector as the answer:

Red 0 0 1 0 0 0 0 0 1 1 0
AND

12 0 0 1 0 0 0 1 0 0 0 1
Answer 0 0 1 0 0 0 0 0 0 0 0

To find a part that weighs 12 units or is colored red, you would perform a bitwise OR and
get a new bit vector as the answer:

Red 0 0 1 0 0 0 0 0 1 1 0
OR
12 0 0 1 0 0 0 1 0 0 0 1
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Answer 0 0 1 0 0 0 1 0 1 1 0

Searches become a combination of bitwise operators on the indexes before any physical
access to the table is done.

The Nucleus database engine, which stores the database as bit vectors in dedicated
hardware, uses a sophisticated version of this approach. Imagine a spreadsheet that
represents an attribute with values represented by the columns and entities by the rows.
To show that a given entity has a particular value, just insert a bit into the spreadsheet at
the proper coordinate. If you look across the columns, you see the values for each entity.
If you look down the rows, you see the entities for each value of the attribute. You can
then represent each attribute as a vector by going to three dimensions, and so forth.

The final effect is automatic full indexing on all columns, and a database that is smaller
than the original flat files from which it was built. Since all relational operations are done
on long bit vectors with special hardware, the speed of a query can be several orders of
magnitude faster than a conventional system. It also lets you ask queries such as “What
kind of red things do we have in the database?” that cannot be easily asked in other
relational databases.

The trade-off is in reconstructing the data in a conventional format, since the engine returns
the query result a column at a time, instead of a row at a time. Certain statistical
distributions of values over attributes also perform better than others in the Nucleus engine.

5.7 Mixed Access Methods

No single access method will work best for all tables. Access depends too much on the
current data and the current queries made against it to generalize. The MARIS project at
Grady Hospital in Atlanta, Georgia, under Henry Camp used a unique self-adjusting
access method to get around this problem. This system was a medical research
statistical database used by doctors. It would track the queries being made against its
files and analyze them. Then during downtime, it would pick the best access method from
a set of about a dozen options and reorganize the files. Users never saw this, but they
would notice that response time was better after letting the system rest.

This is one of the great strengths of SQL: a change in the database access method does
not invalidate all the code that has already been written. But it is also a problem because
we become like the detached mathematician in that classic joke: we tend to shove the
mere details of performance onto our engineer and physicist, in the form of the database
administrator. We should worry about them, too, because that is where our next meal is
coming from.

5.8 Multiple Table Access Structures

Declarative referential integrity (DRI) in SQL-92 gives vendors the opportunity to add
structures that in effect “prejoin” the tables involved in a foreign key relationship. This
might be easier to see with a small example. Let’s create two tables and note where they
physically store their rows:

CREATE TABLE Foo
(fookey INTEGER NOT NULL PRIMARY KEY,
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description CHAR(25) NOT NULL) ;

INSERT INTO Foo

VALUES (1, 'This is one'), — goes to address 101
(2, 'This is two'); — goes to address 102

CREATE TABLE Bar
(barkey CHAR(2) NOT NULL PRIMARY KEY,
foo_stuff INTEGER NOT NULL
REFERENCES Foo (fookey),
);

INSERT INTO Bar

VALUES  ('al', 1), — goes to address 4001
('az', 1), — goes to address 4007
('"b1', 2), — goes to address 4011
('b2', 2); — goes to address 4003

In this case, Foo is the referenced table and bar is the referencing table. Those words are
easy to confuse when you just hear them, so | stressed the relationship.

The table Foo needs a primary index to enforce the uniqueness of its primary key,
fookey. Likewise, the table Bar needs a primary index to enforce the uniqueness of its
primary key, barkey.

However, | can also construct something like this, with pointers to the rows in both tables:

value referenced row address referencing row address

1 101 4001
1 101 4007
2 102 4003
2 102 4011

The join between Foo and Bar is already done! | can also check the uniqueness of the
key in the referenced table column by seeing that each value has one and only one
address in the referenced column of this table. Furthermore, | could add more
“referencing row” columns to the table and extend this structure easily. In a real database
engine, the system would probably not use a table, but would opt for a linked list of some
sort.

Sybase’s SQL Anywhere (nee WATCOM SQL) has an internal structure like the one we
have discussed. They allow the programmer to specify what they call a “key join” that will
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force the database engine to use the structure.

Oracle has used a method somewhat like this, which they call “clustering” (not to be
confused with an index type in Sybase products). They break multiple tables into subsets
and put pieces of the tables on the same page of physical storage. The usual method is
to keep rows from one table on the same page of physical storage. However, if two or
more tables are frequently joined together, having the related rows read into main
storage at the same time can increase performance greatly.

The other alternative to a multitable indexing structure is to keep a primary index on the
PRIMARY KEY in the referenced table and then decide if you wish to have an index on the
FOREIGN KEY in the referencing table.

Let’s first examine the approach where there is no index on the FOREIGN KEY. An
INSERT INTO or UPDATE of a referencing table will lock the referenced table’s PRIMARY
KEY index. This will prevent the reference from being changed by another user and will
give this user access to allowable values for the FOREIGN KEY.

Likewise, an UPDATE or DELETE FROM of a row in the referenced table will need to lock
the referencing table. This is not as obvious as the first case. The rules are that when a
transaction is rolled back, the database is returned to the state it was in before the
transaction began and that this state be consistent with all constraints. Assume that table
T1 references table T2 on column x:

CREATE TABLE T2
(x INTEGER NOT NULL PRIMARY KEY,
stuff CHAR(15) NOT NULL) ;

INSERT INTO T2 (x, stuff)

VALUES (1, 'this is one'),
(2, 'this is two'),
(3, 'this is three');

CREATE TABLE T1

(keycol 1 CHAR(2) NOT NULL PRIMARY KEY,

x INTEGER NOT NULL REFERENCES T2 (x),
2)

INSERT INTO T1 (keycol 1, x)

VALUES (ta', 1),
('b', 2),
('e¢', 3);

Now play this series of changes to the database without locking:

User A: INSERT INTO T1 VALUES (4, 'this is four');
User B: UPDATE T2 SET x = 4 WHERE keycol 1 ='a';
User B: COMMIT WORK;

User A: ROLLBACK WORK;
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User B got a phantom match that was never committed by user A, but user B did a
COMMIT on his work anyway. User A has to be able to do a ROLLBACK on her own work,
but if she does, then the database will have constraint violations. User A cannot do a
ROLLBACK on someone else’s work. DRI is now out of synch, and the database is
corrupted.

Now let’'s examine the approach where there is an index on the FOREIGN KEY. An
UPDATE to the PRIMARY KEY column(s) or a DELETE FROM on the referenced table will
both lock the referencing table’s FOREIGN KEY index. Again, the UPDATE or DELETE
FROM statement on the referenced table would have to wait until the transaction
accessing the referencing table and causing the locks on the referencing table’s
FOREIGN KEY index has committed.

In both cases, an INSERT INTO statement on the referencing table does not affect the
referenced table directly, but you have to ensure that you are not caught by changes to
the referenced table.

In the case of referential actions, you must assume that there will be an action in the
referencing table, so it is very handy to have established locks and gotten access to both
tables.

5.9 An Informal Survey of Database Products

| conducted an informal survey of the indexing methods used in actual database products
in 1998 on my CompuServe forum. Here is the simple list of questions | asked and the
answers | got back:

1. Do users have the ability to specify the type of indexing used in their declaration?
2. How many kinds of indexing are available?

3. Ifthere is a “CREATE INDEX Xfoo3 ON Foobar (a, b, ¢)”, will the system use the
part of the index when a subset of the columns appears in the query? Or do you have
to also declare “CREATE INDEX Xfoo2 ON Foobar (a,b)"?

4. |s there a difference between “CREATE INDEX XfooA ON Foobar (a,b)” and
“CREATE INDEX XfooB ON Foobar (b, a)’? If so, what?

5. Can the product detect and avoid redundant indexing? That is, given “CREATE INDEX
Xfool ON Foobar (a,b)” and “CREATE INDEX Xfoo2 ON Foobar (a,b)”, does it
know that xfoo2 is a waste of time and resources and warn you or refuse to do it ?

Oracle 7 and 8:
1. Yes.

2. Hashing (via clusters), B-trees, bitmapping, inverted lists, and other options including
index-organized tables (the table itself is a B-tree index).
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3. Can use the combinations (a,b) and (a), but not (b,c) or (c) from the index.
4. There is a difference. The columns are concatenated for index generation.
5. Yes. Thisis error “ORA -01408: such column list already indexed”.
R:Base v4.5+ through v6.1:

1. Indexes are built with B-trees. The user can specify what is indexed and whether to
use hashed data. The command syntax is

CREATE INDEX indexname ON <table> (<column list>) [UNIQUE] [ASC
| DESC] [SIZE <integer>] [CASE]

R:Base indexes can be built with data from up to eight columns.

UNIQUE constrains the column definition to unique values. CASE preserves case
sensitivity in text values. ASC | DESC specifies index order, default is ASCENDING.
SIZE n specifies how many text characters to preserve in the index data.

(Note: A PRIMARY KEY or a UNIQUE constraint in the table definition will automatically
generate an index. A FOREIGN KEY will generate an index by default, but the user
has the option not to index a FOREIGN KEY.)

2. Only B-trees. The data may be hashed as specified.

3. Can use the combinations (a,b) and (a), but not (b,c) or (c) from the index.
4. There is a difference. The columns are concatenated for index generation.
5. Yes. Refuses with message “Error duplicate indexes are not allowed’.
Centura’s SQLBase:

1. Specified by the user as CREATE INDEX or CREATE CLUSTERED HASHED.
2. Hashed and B-tree indexes.

3. Any subset of columns.

4. No.

5. No.

Oracle RDB, v7.0:

1. Yes.
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2. HASHED ORDERED, HASHED SCATTERED, SORTED RANKED, and SORTED. Sorted
indexes (whether ranked or not) are B-trees. In addition, it is possible to use one of
the indexes on a table so as to place the data in a nearly clustered fashion.

3. For hashed indexes, the answer is no; each query must use all the columns in the
index in order to benefit from the index.

For sorted indexes, the answer is yes; it will use the index provided that the query is
specifying the first key column.

In the case presented, both indexes have the same first column, so it is unnecessary
to declare xfoo2, provided that Xxfool is SORTED.

4. Yes, for B-trees. No, for hashed indexes.

5. No.

Chapter 6: Numeric Data

Overview

Numbers are even trickier than people think. Most people do not make a distinction
between a number and a numeral in everyday conversation. A number is the abstraction
represented by the numeral, which is a written symbol. Roman numerals, Chinese
numerals, Mayan numerals, and hundreds of other systems have existed to represent
numbers in a written form so that they could be recorded or manipulated.

The Hindu-Arabic numerals and place value notation have proven so useful that they have
replaced all other systems today. Because Hindu-Arabic numerals are on every computer
printer, are universally understood, and linguistically neutral, we use Hindu-Arabic
numerals for many different purposes, and we are not always clear about the distinctions.
The three uses for the numerals in a database are for cardinal numbers, ordinal numbers,
and tag numbers.

6.1 Tag Numbers or Absolute Scales

A tag number or absolute scale is simply a list of names for the elements of a set. The
advantage of using numbers instead of names is that a computer can store them more
compactly, they are linguistically neutral, and there are simple rules for generating an
unlimited number of such values. This is discussed in some detail in Chapter 12, so we will
not go into that concept here.

6.2 Cardinal Numbers

The usual definition of a cardinal number is something that represents a quantity or
magnitude (0, 1, 2, 3, . . .), and it is what people mean most of the time when they think
of numbers. Or | should say that it is what they think they are thinking of when they think
of numbers. The truth is that people do not like to think of quantity as an abstraction; they
want to think of a quantity of something, even if the nature of the something is abstract.
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Children learn to count with sets of uniform objects—rods, plastic chips, or whatever.
Gradually, they learn to mentally remove attributes from the objects until all that is left is
the number of the set. For example, a child will tell you that he has five red plastic
squares, three plastic yellow circles, and two red plastic triangles. When you ask him,
“How many red things do you have?” it is a mental effort for him to remove the shape and
see only the color. When you ask for the number of plastic shapes, the child must
construct a still more abstract set, until eventually the child thinks of pure numbers not
attached to any objects.

Two sets have the same cardinality if you can do a one-to-one mapping from one set to
the other and vice versa. One set is less than another if there is a one-to-one mapping
from it onto a subset of the other set, but no one-to-one mapping in the other direction.

Mappings are the basis for counting in Stone Age cultures. For example, Hottentots have
only the words for “one,” “two,” “three,” and “many” in their language. To compare two
sets of things, say, beads and animal skins, they place one bead on one skin. When they
have finished doing this, they know if there are more beads, more skins, or if they are
equal in number. In fact, they will know to some extent how much greater one set is than
the other (e.g., “one more bead than skins” or “many more beads than skins”).

Natural numbers are integers greater than zero, while zero is a cardinal number because it
can represent the number of elements in a set, namely, the empty set.

6.3 Ordinal Numbers

An ordinal number represents a position (first, second, third, . . . ) in an ordering. An
ordinal number also implies a corresponding cardinal number (1, 2, 3, . . .), but knowing
the ordinal position does not tell you about the cardinality of the set; in English, knowing
that you are the third person in line for a promotion does not tell you how many
candidates there were for the job.

This question of position leads to another debate: Is there such a thing as the zeroth
ordinal number? Computer people like to have a zeroth position because it is handy in
implementing data structures with relative positioning. For example, in the C language
and many versions of BASIC, arrays start with element zero. This allows the compiler to
locate an array element with the displacement formula:

<base address> + (<element size> * <array index>)

The idea of a zeroth ordinal number is a mild mathematical heresy. To be in the zeroth
position in a queue is to have arrived in the serving line before the first person in the line.

6.4 Arithmetic with Ordinals, Cardinals, and Tags

Arithmetic differs with ordinals, cardinals, and tag numbers. Moreover, you often have to
convert from one type of number to another, and this is a source of errors.

Consider consecutively numbered theater tickets. If | buy the block of seats from two to
eight, | have 8 — 2 + 1 = 7 tickets, not 8 — 2 = 6 tickets. Arithmetic with tag numbers makes
no sense at all—you cannot add flight #123 to flight #456 to get flight #579.

6.5 Computer Representations
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The SQL standard has a very wide range of numeric types. The idea is that any host
language can find an SQL numeric type that matches one of its own.

You will also find some vendor extensions in the datatypes, the most common of which is
MONEY. This is really a DECIMAL or NUMERIC datatype, which also accepts and displays
currency symbols in input and output.

6.5.1 Exact Numeric Representations

An exact numeric value has a precision, P, and a scale, S. The precision is a positive
integer that determines the number of significant digits in a particular radix (formerly
called a base of a number system). The standard says the radix can be either binary or
decimal, so you need to know what your implementation does. The scale is a
nonnegative integer that tells you how many decimal places the number has. An integer
has a scale of zero. The datatypes NUMERIC, DECIMAL, INTEGER, and SMALLINT are
exact numeric types. DECIMAL (P, S) can also be written DEC (P, S), and INTEGER can
be abbreviated INT. For example, DECIMAL (8, 2) could be used to hold the number
123456.78, which has eight significant digits and two decimal places.

The difference between NUMERIC and DECIMAL is subtle. NUMERIC specifies the exact
precision and scale to be used. DECIMAL specifies the exact scale, but the precision is
implementation-defined to be equal to or greater than the specified value.

Mainframe Cobol programmers can think of NUMERIC as a Cobol picture numeric type,
whereas DECIMAL is like a BCD. Personal-computer programmers these days probably
have not seen anything like this. You may find that many small-machine SQLs do not
support NUMERIC or DECIMAL because the programmers do not want to have Cobol-
style math routines that operate on character strings or internal decimal representations.

6.5.2 Approximate Numeric Representations versus the
Continuum

A point is defined in mathematics as an indivisible position in some space. A continuum is
defined as being made up of parts that are always further divisible. If you look at a line in
geometry (or a number in analysis, an event in time, etc.), we speak about geometric
points on a geometric line (or a number on the number line, a duration in time, etc.), and
we regard the line (numbers, time) as being a continuum. Look at the number line:
clearly, given a segment on the number line, such as (1, 2), we can always further divide
the segment into smaller segments, such as (1.1, 1.5) and repeat this process forever.
The same thing applies to geometric lines and to time.

This leads to a paradox. If a continuum is infinitely divisible, how can an indivisible point
be a part of a continuum?

I will let you worry about this and tell you that we do not worry about it in real databases.
Instead, we have learned to live with approximate numeric values and a certain amount
of inherent error.

An approximate numeric value consists of a mantissa and an exponent. The mantissa is
a signed numeric value; the exponent is a signed integer that specifies the magnitude of
the mantissa. An approximate numeric value has a precision. The precision is a positive
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integer that specifies the number of significant binary digits in the mantissa. The value of
an approximate numeric value is the mantissa multiplied by 10 to the exponent.

FLOAT (P), REAL, and DOUBLE PRECISION are the approximate numeric types. There is
a subtle difference between FLOAT (P), which has a binary precision equal to or greater

than the value given, and REAL, which has an implementation-defined precision.

Most SQL implementations use the floating-point hardware in their machines rather than
trying to provide a special floating-point package for approximate numeric datatypes.

In recent years, IEEE has introduced a floating-point hardware standard that can work
quite well with SQL. As more vendors adopt it, query results will become more uniform
across platforms. Please note that uniform results are not the same thing as correct
results.

The IEEE floating-point standard also has certain bit configurations, called NaNs (Not a
Number), to represent overflow, underflow, errors, and missing values; these provide a way
to implement NULLs as well as to capture errors.

6.6 Zero, NULL, and Math

The NULL in SQL is only one way of handling missing values. The usual description of

NULLSs is that they represent currently unknown values that might be replaced later with
real values when we know something. This actually covers a lot of territory. The Interim
Report 75-02-08 to the ANSI X3 (SPARC Study Group 1975) showed 14 different kinds
of incomplete data that could appear as the results of operations or as attribute values.

They included such things as arithmetic underflow and overflow, division by zero, string
truncation, raising zero to the zeroth power, and other computational errors, as well as

missing or unknown values.

The NULL is a global creature, not belonging to any particular datatype but able to
replace any of their values. This makes arithmetic a bit easier to define. You have to
specifically forbid NULLs in a column by declaring the column with a NOT NULL constraint.
But in SQL-92 you can use the CAST function to declare a specific datatype for a NULL,
such as CAST (NULL AS INTEGER). The reason for this convention is practical: it lets
you pass information about how to create a column to the database engine.

6.6.1 Division

The basic rule for math with NULLs is that they propagate. An arithmetic operation with a
NULL will return a NULL. That makes sense; if a NULL is a missing value, then you
cannot determine the results of a calculation with it. However, the expression (NULL/0) is
not consistent in SQL implementations. The first thought is that a division by zero should
return an error; if NULL is a true missing value, there is no value to which it can resolve
and make that expression valid. However, almost all SQL implementations propagate the
NULL and do not even issue a warning about division by zero when it appears as a
constant in an expression. A non-NULL value divided by zero will cause a runtime error,
however.

| asked people on CompuServe to try a short series of SQL commands on different
products for me. The DDL was very simple:

CREATE TABLE GotNull (test INTEGER);
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INSERT INTO GotNull VALUES (NULL);

CREATE TABLE GotOne (test INTEGER);
INSERT INTO GotOne VALUES (1);

CREATE TABLE GotZero (test INTEGER) ;
INSERT INTO GotZero VALUES (0);

They sent me the results of three queries that had explicit divisions by zero in them. This
is as opposed to a runtime division by zero.

SELECT test / 0 FROM GotNull;
SELECT test / 0 FROM GotOne;
SELECT test / 0 FROM GotZero;

The results are shown below:

product

NULL/0

1/0

0/0

Ingres 6.4/03 NULL float point float point
error, no data error, no data
Oracle 6.0 NULL divide by 0 divide by 0
error, no data error, no data
Progress 6.2 NULL NULL NULL
R:Base 4.0a NULL divide by 0 divide by 0
error, no data error, no data
Rdb truncation truncation truncation
at runtime at runtime at runtime
divide by 0 divide by 0 divide by 0
SQL Server 4.2 NULL NULL & error NULL & error
SQLBase 5.1. NULL plus infinity plus infinity
Sybase 4.9 NULL NULL & error NULL & error
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WATCOM SQL  NULL NULL NULL
XDB 2.41 NULL divide by 0 divide by 0

error, no data error, no data

Everyone agrees that NULLs always propagate, but everyone has another opinion on
division by zero. Getting a floating-point error from integer math is a violation of the
standard, as is not giving a division-by-zero error. The positive infinity in SQLBase is also
a floating-point number that is all nines. Other products return NULLs for all three cases,
but with and without error messages.

Since host languages do not support NULLs, the programmer can elect either to replace
them with another value that is expressible in the host language or to use indicator
variables to signal the host program to take special actions for them.

SQL-92 specifies two functions, NULLIF () and the related COALESCE (), that can be
used to replace expressions with NULL and vice versa. These functions are not yet
present in most SQL implementations, but you will often find something like them.

6.6.2 Powers

While SQL-92 is weak on arithmetic functions, a common vendor extension is to add
powers to the usual four-function arithmetic, sometimes as a function call or as an infixed
operator.

This leaves us with another question: What does 0’ equal? The schools of thought are
that this expression is equal to one, that it is undefined, or that it is an “indeterminate
form,” meaning that in some cases it has one value, and in other cases it has another.

The discussion goes back to Euler, who argued for 0" = 1 since x’ = 1 for x <> 0, and this
convention would avoid making zero an exception. This is enforced by the fact that the

limit of x* as x — 0 is 1. The function f(x,y) = X’ cannot be assigned values for x and y
that will make it continuous at (0,0), since the limit along the line x = 0 is 0, and the limit
along the line y=0is 1.

However, you can argue that giving a value to a function with an essential discontinuity at
a point, such as x” at (0,0), should not be done.

Donald Knuth thought that we must define X =1 forall x, if the binomial theorem is to be
valid when x = 0, y = 0, and/or x = —y. This is an important theorem, but the function 0" is

quite unimportant.

6.7 Rounding and Truncating

Rounding and truncation have the effect of changing the granularity of an approximate
number. You have to state how many places in the higher magnitudes you are going to
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retain in the rounded or truncated number.

Truncation cuts off the lower magnitudes of the number. Truncation is usually defined as
truncation toward zero; this means that 1.5 would truncate to 1, and —1.5 would truncate
to —1. This is not true for all programming languages; everyone agrees on truncation
toward zero for the positive numbers, but you will find that negative numbers may
truncate away from zero (i.e., —1.5 would truncate to —2).

Rounding changes the lower magnitudes of the number to a higher magnitude. There are
two maijor types of rounding in computer programming.

6.7.1 Applied to Individual Values

The scientific method looks at the digit in the position to be removed. If this digitis 0, 1, 2,
3, or 4, you drop it and leave the higher-order digit to its left unchanged. If the digit is 5, 6,
7, 8, or 9, you drop it and increment the digit to its left.

This method works with single numbers and is popular with scientists because the results
will be only as precise as the worst measurement made in the set.

6.7.2 Applied to Sets of Values

The commercial method looks at the digit to be removed. If this digitis 0, 1, 2, 3, or 4, you
drop it and leave the digit to its left unchanged. If the digit is 6, 7, 8, or 9, you drop it and
increment the digit to its left. However, when the digit is 5, you want to have a rule that
will round up about half the time. One rule is to look at the digit to the left: if it is odd, then
leave it unchanged; if it is even, increment it. There are other versions of the decision
rule, but they all try to make the rounding error as small as possible.

This method works well with a large set of numbers and is popular with bankers because it
reduces the total rounding error in the entire set of numbers.

6.8 Addition and Summation Are Different

In SQL (and in other database languages before SQL), there has been a function for
doing a summation—the SUM () aggregate function in SQL. You would think that it would
be well understood. In June 1996 the DBMS forum on CompuServe had a lively thread
(aka “religious war”) on this topic. It seems that summation is not actually all that easy in
a relational database model or in mathematics.

Addition and summation are closely related, but not quite the same thing. This is weird at
first, but it is important. Addition is a binary operator shown by a plus sign (+) that has
some algebraic properties like associativity and commutativity that we learned in high
school algebra. You cannot add just one thing, and you cannot add an infinite set of
things; the operation is simply not defined for either situation.

Summation is an aggregate or set valued function that has an index set. The index set
can be finite or infinite, but it cannot be empty. Each term in the summation has a one-to-
one relationship with each element of the index set. If you are old enough, you might
remember the “big sigma” (?) notation from college math. The index is the subscript
variable, usually i, j, or k, which ranges from a starting value to an ending value. If you
wished the summation process to continue forever, you used the special symbol “infinity,”
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shown as 8.

The old figure-eight “infinity” notation is procedural and not functional in nature. That is,
you can think of it as hiding a small computer program that looks like this:

BEGIN
DECLARE <datatype> sum;
sum := 0;
WHILE <index> < = <finish>
DO BEGIN
<index> := <start>;
sum := sum + <terms> [<index>];
<index> := <index> + 1;
END;
RETURN sum;
END;

When the <finish> value is infinity, you can think of the program as equivalent to

BEGIN
DECLARE <datatype> sum;
sum := 0;
WHILE TRUE — the result of (<index> < = INFINITY)
DO BEGIN
<index> := <start>;
sum := sum + <terms> [<index>];
<index> := <index> + 1;
END;
RETURN sum;
END;

Every programmer knows that this has some problems because we have all written an
endless loop sometime in our careers. The answer in mathematics was to invent limits.
The idea of a limit is that there is a value that the sum never exceeds, no matter how
many iterations of the loop are executed.

What happens if the index set is empty? Let's modify the original program again:

BEGIN

DECLARE <datatype> sum;

sum := 0;

WHILE FALSE — the result of having no <index> values
DO BEGIN

<index> := <start>;
sum := sum + <terms> [<index>];
<index> := <index> + 1;
END;
RETURN sum;
END;

Thus, we might conclude that the summation of an empty set is zero, the identity element
of addition. | am going to make several arguments that this is not the case.

First, the zero we are getting back from this program is something we created that was
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never in the original set of terms. There is a philosophical principle ab nullo, ex nullo
(“from nothing, comes nothing”), which makes me feel uncomfortable about creating a
result, zero, from an empty set.

Second, look at another way to write the procedural code, given an array called <terms>
and the <start>and <finish> values:

BEGIN

DECLARE <datatype> sum;

sum := <terms> [<start>];

DO BEGIN
<index> := <index> + 1;
sum := sum + <terms> [<index>];
END;

UNTIL <index> < <finish>

RETURN sum;

END;

In this code, no values that were not in the original summation are created. The empty
set would result in a program failure on the first executable statement because the initial
term is not defined.

The third argument needs a little background about what has happened in mathematics
since 1820. The current preferred notation is to show the index set as a set; you can see
examples of this notation in Graham, Knuth, and Patashnik (1994). There is no ordering
as there was in the old notation.

A set is a completed, bound thing that can be treated as a unit of operation in itself. You
cannot do this with a process. Without going into the painful details, mathematical proofs
are completely different in those two cases. Since the relational model and SQL are both
set-oriented languages, | will argue that the set-oriented approach is better than a
procedural one.

It is much easier to specify a complicated set using logical predicates than it is to write a
complicated index expression inside a term. For example, | can simply define an index to
be the set of all prime numbers, but nobody knows how to write an expression that will
generate the series of all prime numbers.

Let’s create a simple Personnel table having just the employee’s name and their salary
and their lottery winnings in each row. The lottery tickets are the employee retirement
plan at this company; we knew it would come to this someday. We will model lottery
tickets that have not been checked against the winning numbers as a NULL. The value of
the lottery winnings will probably resolve to zero, but you don’t know that yet.

CREATE TABLE Personnel

(emp CHAR (5) NOT NULL PRIMARY KEY,

salary DECIMAL (8,2) NOT NULL,

lottery DECIMAL (8,2));

INSERT INTO Personnel VALUES ('Tom', 500.00, 200.00);
INSERT INTO Personnel VALUES ('Dick', 700.00, NULL);
INSERT INTO Personnel VALUES ('Harry', 800.00, NULL);

Now consider the straightforward statement to report the payroll:
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SELECT emp, (salary + lottery) AS total pay
FROM Personnel;

Result

emp total_pay

‘Tom’ 700.00
‘Dick’ NULL
‘Harry’ NULL

The total_pay will be a NULL for all employees who have not scratched their tickets yet
because NULLs propagate in addition in SQL. This is probably not what you wanted as a
result.

Now look at the SUM () aggregate function in the statement

SELECT emp, SUM(salary + lottery) AS total pay
FROM Personnel
GROUP BY emp;

Again, when | come to an employee, the addition in the parameter of the suM () function
will be NULL, but the SUM () in SQL is really the summation of all known values in its
parameter set, and the function will drop that computed NULL from the total. So | get the
same results, which feels right because we were grouping on the PRIMARY KEY for the
table. Grouping a table on a key will put one row into each group, so in effect this query is
like putting parentheses around the terms in a summation. We don’t want it to change the
results.

Now, look at this query:

SELECT emp