

http://videogames.gigcities.com

http://videogames.gigcities.com

DATABASES DEMYSTIFIED

P:\010Comp\DeMYST\364-9\fm.vp
Tuesday, February 10, 2004 9:57:24 AM

Color profile: Generic CMYK printer profile
Composite Default screen

http://dx.doi.org/10.1036/0071469605

P:\010Comp\DeMYST\364-9\fm.vp
Tuesday, February 10, 2004 9:57:24 AM

Color profile: Generic CMYK printer profile
Composite Default screen

This page intentionally left blank.

DATABASES DEMYSTIFIED

ANDREW J. OPPEL

McGraw-Hill/Osborne

New York Chicago San Francisco Lisbon London

Madrid Mexico City Milan New Delhi San Juan

Seoul Singapore Sydney Toronto

P:\010Comp\DeMYST\364-9\fm.vp
Tuesday, February 10, 2004 9:57:24 AM

Color profile: Generic CMYK printer profile
Composite Default screen

http://dx.doi.org/10.1036/0071469605

P:\010Comp\DeMYST\364-9\fm.vp
Tuesday, February 10, 2004 9:57:24 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Copyright © 2004 by The McGraw-Hill Companies. All rights reserved. Manufactured in the United States of
America. Except as permitted under the United States Copyright Act of 1976, no part of this publication may be
reproduced or distributed in any form or by any means, or stored in a database or retrieval system, without the
prior written permission of the publisher.

0-07-146960-5

The material in this eBook also appears in the print version of this title: 0-07-225364-9.

All trademarks are trademarks of their respective owners. Rather than put a trademark symbol after every
occurrence of a trademarked name, we use names in an editorial fashion only, and to the benefit of the
trademark owner, with no intention of infringement of the trademark. Where such designations appear in this
book, they have been printed with initial caps. McGraw-Hill eBooks are available at special quantity discounts
to use as premiums and sales promotions, or for use in corporate training programs. For more information,
please contact George Hoare, Special Sales, at george_hoare@mcgraw-hill.com or (212) 904-4069.

TERMS OF USE

This is a copyrighted work and The McGraw-Hill Companies, Inc. (“McGraw-Hill”) and its licensors reserve all
rights in and to the work. Use of this work is subject to these terms. Except as permitted under the Copyright
Act of 1976 and the right to store and retrieve one copy of the work, you may not decompile, disassemble,
reverse engineer, reproduce, modify, create derivative works based upon, transmit, distribute, disseminate, sell,
publish or sublicense the work or any part of it without McGraw-Hill’s prior consent. You may use the work for
your own noncommercial and personal use; any other use of the work is strictly prohibited. Your right to use the
work may be terminated if you fail to comply with these terms.

THE WORK IS PROVIDED “AS IS.” McGRAW-HILL AND ITS LICENSORS MAKE NO GUARANTEES
OR WARRANTIES AS TO THE ACCURACY, ADEQUACY OR COMPLETENESS OF OR RESULTS TO
BE OBTAINED FROM USING THE WORK, INCLUDING ANY INFORMATION THAT CAN BE
ACCESSED THROUGH THE WORK VIA HYPERLINK OR OTHERWISE, AND EXPRESSLY DISCLAIM
ANY WARRANTY, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO IMPLIED
WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. McGraw-Hill
and its licensors do not warrant or guarantee that the functions contained in the work will meet your
requirements or that its operation will be uninterrupted or error free. Neither McGraw-Hill nor its licensors shall
be liable to you or anyone else for any inaccuracy, error or omission, regardless of cause, in the work or for any
damages resulting therefrom. McGraw-Hill has no responsibility for the content of any information accessed
through the work. Under no circumstances shall McGraw-Hill and/or its licensors be liable for any indirect,
incidental, special, punitive, consequential or similar damages that result from the use of or inability to use the
work, even if any of them has been advised of the possibility of such damages. This limitation of liability shall
apply to any claim or cause whatsoever whether such claim or cause arises in contract, tort or otherwise.

DOI: 10.1036/0071469605

http://dx.doi.org/10.1036/0071469605

To everyone from whom I have learned so
much about so many things, including the
many teachers, students, and co-workers
I have had the pleasure of knowing.

P:\010Comp\DeMYST\364-9\fm.vp
Tuesday, February 10, 2004 9:57:24 AM

Color profile: Generic CMYK printer profile
Composite Default screen

ABOUT THE AUTHOR

Andrew J. (Andy) Oppel is a proud graduate of The Boys’ Latin School of Mary-

land and of Transylvania University (Lexington, KY) where he earned a BA in com-

puter science in 1974. Since then he has been continuously employed in a wide

variety of information technology positions, including programmer, programmer/

analyst, systems architect, project manager, senior database administrator, database

group manager, consultant, database designer, and data architect. In addition, he has

been a part-time instructor with the University of California (Berkeley) Extension

for over 20 years, and received the Honored Instructor Award for the year 2000. His

teaching work has included developing two courses for UC Extension, “Concepts of

Database Management Systems” and “Introduction to Relational Database Man-

agement Systems.” He also earned his Oracle 9iDatabase Associate certification in

2003. He is currently employed as the principal data architect for Ceridian, a leading

provider of human resource solutions. Aside from computer systems, Andy enjoys

music (guitar and vocals), amateur radio (Pacific Division vice director, American

Radio Relay League), and soccer (referee instructor, U.S. Soccer).

Andy has designed and implemented hundreds of databases for a wide range of

applications, including medical research, banking, insurance, apparel manufactur-

ing, telecommunications, wireless communications, and human resources. His da-

tabase product experience includes IMS, DB2, Sybase, Microsoft SQL Server,

Microsoft Access, MySQL, and Oracle (versions 7, 8, 8i, and 9i).

P:\010Comp\DeMYST\364-9\fm.vp
Tuesday, February 10, 2004 9:57:24 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Copyright © 2004 by The McGraw-Hill Companies. Click here for terms of use.

CONTENTS AT A GLANCE

CHAPTER 1 Database Fundamentals 1

CHAPTER 2 Exploring Relational Database Components 25

CHAPTER 3 Forms-Based Database Queries 51

CHAPTER 4 Introduction to SQL 89

CHAPTER 5 The Database Life Cycle 129

CHAPTER 6 Logical Database Design Using
Normalization 145

CHAPTER 7 Data and Process Modeling 179

CHAPTER 8 Physical Database Design 203

CHAPTER 9 Connecting Databases to the Outside World 227

CHAPTER 10 Database Security 247

CHAPTER 11 Database Implementation 273

CHAPTER 12 Databases for Online Analytical Processing 293

Final Exam 307

Answers to Quizzes and Final Exam 325

Index 329

vii

P:\010Comp\DeMYST\364-9\fm.vp
Tuesday, February 10, 2004 9:57:24 AM

Color profile: Generic CMYK printer profile
Composite Default screen

P:\010Comp\DeMYST\364-9\fm.vp
Tuesday, February 10, 2004 9:57:24 AM

Color profile: Generic CMYK printer profile
Composite Default screen

This page intentionally left blank.

CONTENTS

Acknowledgments xvii
Introduction xix

CHAPTER 1 Database Fundamentals 1
Properties of a Database 1

The Database Management System (DBMS) 2
Layers of Data Abstraction 3
Physical Data Independence 5
Logical Data Independence 6

Prevalent Database Models 7
Flat Files 7
The Hierarchical Model 9
The Network Model 11
The Relational Model 13
The Object-Oriented Model 15
The Object-Relational Model 16

A Brief History of Databases 17
Why Focus on Relational? 19
Quiz 20

CHAPTER 2 Exploring Relational Database Components 25
Conceptual Database Design Components 26

Entities 27

ix

P:\010Comp\DeMYST\364-9\fm.vp
Tuesday, February 10, 2004 9:57:24 AM

Color profile: Generic CMYK printer profile
Composite Default screen

For more information about this title, click here

http://dx.doi.org/10.1036/0071469605

x Databases Demystified

Demystified / Databases Demystified / Oppel/ 225364-9 / FM

Attributes 27
Relationships 28
Business Rules 32

Logical/Physical Database Design Components 33
Tables 33
Columns and Data Types 34
Constraints 37
Integrity Constraints 42
Views 45

Quiz 46

CHAPTER 3 Forms-Based Database Queries 51
QBE: The Roots of Forms-Based Queries 52
Getting Started in Microsoft Access 52
The Microsoft Access Relationships Panel 55
The Microsoft Access Table Design View 57
Creating Queries in Microsoft Access 59

Example 3-1: List All Customers 62
Example 3-2: Choosing Columns to Display 63
Example 3-3: Sorting Results 64
Example 3-4: Advanced Sorting 66
Example 3-5: Choosing Rows to Display 66
Example 3-6: Compound Row Selection 68
Example 3-7: Using Not Equal 70
Example 3-8: Joining Tables 70
Example 3-9: Limiting Join Results 72
Example 3-10: Outer Joins 75
Example 3-11: Multiple Joins;

Calculated Columns 77
Example 3-12: Aggregate Functions 80
Example 3-13: Self-Joins 82

Quiz 85

P:\010Comp\DeMYST\364-9\fm.vp
Tuesday, February 10, 2004 9:57:24 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Demystified / Databases Demystified / Oppel/ 225364-9 / FM

CHAPTER 4 Introduction to SQL 89
The History of SQL 90
Getting Started with Oracle SQL 91
Where’s the Data? 96

Finding Database Objects Using Catalog Views 97
Viewing Database Objects Using

Oracle Enterprise Manager 98
Data Query Language (DQL):

The SELECT Statement 100
Example 4-1: Listing All Employees 100
Example 4-2: Limiting Columns to Display 100
Example 4-3: Sorting Results 102
Choosing Rows to Display 103
Joining Tables 108
Aggregate Functions 112

Data Manipulation Language (DML) 114
Transaction Support

(COMMIT and ROLLBACK) 114
The INSERT Statement 115
The UPDATE Statement 116
The DELETE Statement 117

Data Definition Language (DDL) Statements 118
The CREATE TABLE Statement 118
The ALTER TABLE Statement 119
The CREATE VIEW Statement 121
The CREATE INDEX Statement 121
The DROP Statement 122

Data Control Language (DCL) Statements 122
The GRANT Statement 123
The REVOKE Statement 123

Quiz 124

CONTENTS xi

P:\010Comp\DeMYST\364-9\fm.vp
Tuesday, February 10, 2004 9:57:24 AM

Color profile: Generic CMYK printer profile
Composite Default screen

xii Databases Demystified

Demystified / Databases Demystified / Oppel/ 225364-9 / FM

CHAPTER 5 The Database Life Cycle 129
The Traditional Method 130

Planning 130
Requirements Gathering 132
Conceptual Design 135
Logical Design 136
Physical Design 136
Construction 137
Implementation and Rollout 138
Ongoing Support 138

Nontraditional Methods 139
Prototyping 139
Rapid Application Development (RAD) 140

Quiz 141

CHAPTER 6 Logical Database Design Using
Normalization 145

The Need for Normalization 147
Insert Anomaly 148
Delete Anomaly 148
Update Anomaly 148

Applying the Normalization Process 148
Choosing a Primary Key 151
First Normal Form: Eliminating

Repeating Data 153
Second Normal Form: Eliminating

Partial Dependencies 156
Third Normal Form: Eliminating

Transitive Dependencies 158
Beyond Third Normal Form 160

Denormalization 163
Practice Problems 164

TLA University Academic Tracking 164

P:\010Comp\DeMYST\364-9\fm.vp
Tuesday, February 10, 2004 9:57:24 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Computer Books Company 170
Quiz 174

CHAPTER 7 Data and Process Modeling 179
Entity Relationship Modeling 180

ERD Formats 180
Super Types and Subtypes 184
Guidelines for Drawing ERDs 188

Process Models 189
The Flowchart 190
The Function Hierarchy Diagram 192
The Swim Lane Diagram 193
The Data Flow Diagram 194

Relating Entities and Processes 196
Quiz 198

CHAPTER 8 Physical Database Design 203
Designing Tables 204

Implementing Super Types and Subtypes 208
Naming Conventions 211

Integrating Business Rules and Data Integrity 214
NOT NULL Constraints 216
Primary Key Constraints 216
Referential (Foreign Key) Constraints 216
Unique Constraints 217
Check Constraints 218
Data Types, Precision, and Scale 218
Triggers 219

Designing Views 220
Adding Indexes for Performance 221
Quiz 222

CHAPTER 9 Connecting Databases to the Outside World 227
Deployment Models 228

Centralized Model 228

CONTENTS xiii

P:\010Comp\DeMYST\364-9\fm.vp
Tuesday, February 10, 2004 9:57:24 AM

Color profile: Generic CMYK printer profile
Composite Default screen

xiv Databases Demystified

Demystified / Databases Demystified / Oppel/ 225364-9 / FM

Distributed Model 229
Client/Server Model 231

Connecting Databases to the Web 235
Introduction to the Internet and the Web 236
Components of the Web “Technology Stack” 238
Invoking Transactions from Web Pages 239

Connecting Databases to Applications 240
Connecting Databases via ODBC 240
Connecting Databases to Java Applications 241

Quiz 242

CHAPTER 10 Database Security 247
Why Is Security Necessary? 247
Database Server Security 249

Physical Security 249
Network Security 250
System-Level Security 255

Database Client and Application Security 255
Login Credentials 256
Data Encryption 256
Other Client Considerations 257

Database Access Security 258
Database Security Architectures 259
Schema Owner Accounts 263
System Privileges 264
Object Privileges 265
Roles 265
Views 266

Security Monitoring and Auditing 267
Quiz 268

CHAPTER 11 Database Implementation 273
Cursor Processing 273

P:\010Comp\DeMYST\364-9\fm.vp
Tuesday, February 10, 2004 9:57:24 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Transaction Management 276
What Is a Transaction? 276
DBMS Support for Transactions 276
Locking and Transaction Deadlock 278

Performance Tuning 283
Tuning Database Queries 284
Tuning DML Statements 286

Change Control 287
Quiz 288

CHAPTER 12 Databases for Online Analytical Processing 293
Data Warehouses 294

OLTP Systems Compared
with Data Warehouse Systems 295

Data Warehouse Architecture 296
Data Marts 301
Data Mining 302
Quiz 303

Final Exam 307

Answers to Quizzes and Final Exam 325
Chapter 1 325
Chapter 2 325
Chapter 3 326
Chapter 4 326
Chapter 5 326
Chapter 6 326
Chapter 7 326
Chapter 8 327
Chapter 9 327
Chapter 10 327
Chapter 11 327
Chapter 12 327

Index 329

CONTENTS xv

P:\010Comp\DeMYST\364-9\fm.vp
Tuesday, February 10, 2004 9:57:24 AM

Color profile: Generic CMYK printer profile
Composite Default screen

P:\010Comp\DeMYST\364-9\fm.vp
Tuesday, February 10, 2004 9:57:24 AM

Color profile: Generic CMYK printer profile
Composite Default screen

This page intentionally left blank.

ACKNOWLEDGMENTS

I owe much to my parents for providing me with an excellent education and a love of

both learning and teaching. I credit The Boys’ Latin School of Maryland and the late

Jack H. Williams, headmaster, with teaching me to write effectively. And I credit

Transylvania University and Dr. James E. Miller for introducing me to the fascinating

world of information systems and providing me with the tools for continuous learning.

I’d like to thank the wonderful people at McGraw-Hill/Osborne for the opportunity to

write my first book and for their excellent support during the writing process. Finally,

my thanks to my wife Laurie and our sons Keith and Luke for their support, patience,

and understanding during the long hours it took to produce this book.

xvii

P:\010Comp\DeMYST\364-9\fm.vp
Tuesday, February 10, 2004 9:57:25 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Copyright © 2004 by The McGraw-Hill Companies. Click here for terms of use.

P:\010Comp\DeMYST\364-9\fm.vp
Tuesday, February 10, 2004 9:57:25 AM

Color profile: Generic CMYK printer profile
Composite Default screen

This page intentionally left blank.

INTRODUCTION

Thirty years ago, databases were found only in special research laboratories where

computer scientists struggled with ways to make them efficient and useful, and pub-

lished their findings in countless research papers. Today databases are a ubiquitous

part of the information technology (IT) industry and business in general. We directly

and indirectly use databases every day—banking transactions, travel reservations,

employment relationships, web site searches, purchases, and most other transac-

tions are recorded in and served by databases.

As with many fast-growing technologies, industry standards have lagged behind

the development of database technology, resulting in a myriad of commercial prod-

ucts, each following a particular software vendor’s vision. Moreover, a number of

different database models have emerged, with the relational model being the most

prevalent. Databases Demystified examines all of the major database models, in-

cluding hierarchical, network, relational, object-oriented, and object-relational.

However, Databases Demystified concentrates heavily upon the relational and ob-

ject-relational models because these are the mainstream of the IT industry and will

likely remain so in the foreseeable future.

The most significant challenge in implementing a database is designing the struc-

ture of the database correctly. Without a thorough understanding of the problem the

database is intended to solve, and without knowledge of the best practices for orga-

nizing the required data, the implemented database becomes an unwieldy beast that

requires constant attention.Databases Demystified focuses on transformation of re-

quirements into a working database model with special emphasis on a process called

normalization, which has proven to be an effective technique for designing rela-

tional databases. In fact, normalization can be applied successfully to other database

models. And, in keeping with the notion that you cannot design an automobile if you

xix

P:\010Comp\DeMYST\364-9\fm.vp
Tuesday, February 10, 2004 9:57:25 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Copyright © 2004 by The McGraw-Hill Companies. Click here for terms of use.

have never driven one, the SQL language is introduced so that the reader may

“drive” a database before delving into the details of designing one.

I’ve drawn on my extensive experience as a database designer, administrator, and

instructor to provide you with this self-help guide to the fascinating and complex

world of database technology. Examples are included using both Microsoft Access

and Oracle. Publicly available sample databases supplied by these vendors (the

Microsoft Access Northwind database and the Oracle Human Resources database

schema) are used in example figures whenever possible so that you may try the ex-

amples directly on your own computer system. A review quiz is provided at the end

of each chapter along with a comprehensive exam at the end of the book.

If you have any comments, I’d like to hear from you.

Andrew J. (Andy) Oppel

andy@andyoppel.com

Honored instructor, University of California Berkeley Extension

Principal data architect, Ceridian

Certified Oracle 9i Database Associate

xx Databases Demystified

P:\010Comp\DeMYST\364-9\fm.vp
Tuesday, February 10, 2004 9:57:25 AM

Color profile: Generic CMYK printer profile
Composite Default screen

CHAPTER
1

Database
Fundamentals

This chapter introduces fundamental concepts and definitions regarding databases,

including properties common to databases, prevalent database models, a brief his-

tory of databases, and the rationale for focusing on the relational model.

Properties of a Database
A database is a collection of interrelated data items that are managed as a single unit.

This definition is deliberately broad because there is so much variety across the vari-

ous software vendors that provide database systems. Microsoft Access places the

entire database in a single data file, so an Access database can be defined as the file

that contains the data items. Oracle Corporation defines their database as a collec-

tion of physical files that are managed by an instance of their database software

product. An instance is a copy of the database software running in memory.

1

P:\010Comp\DeMYST\364-9\ch01.vp
Monday, February 09, 2004 8:32:58 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Copyright © 2004 by The McGraw-Hill Companies. Click here for terms of use.

2 Databases Demystified

Demystified / Databases Demystified / Oppel/ 225364-9 / Chapter 1

Microsoft SQL Server and Sybase define a database as a collection of data items that

have a common owner, and multiple databases are typically managed by a single in-

stance of the database management software. This can be quite confusing if you

work with multiple products because, for example, a database as defined by Microsoft

SQL Server and Sybase is exactly what Oracle Corporation calls a schema.

A database object is a named data structure that is stored in a database. The spe-

cific types of database objects supported in a database vary from vendor to vendor

and from one database model to another. Database model refers to the way in which

a database organizes its data to pattern the real world. The most common database

models are presented in “Prevalent Database Models,” later in this chapter.

A file is a collection of related records that are stored as a single unit by an operat-

ing system. Given the unfortunately similar definitions of files and databases, how

can we make a distinction? A number of Unix operating system vendors call their

password file a “database,” yet database experts will quickly point out that, in fact, it

is not. Clearly, we need a bit more rigor in our definitions. The answer lies in an un-

derstanding of certain characteristics or properties that databases possess that ordi-

nary files do not, including the following:

• Management by a Database Management System (DBMS)

• Layers of data abstraction

• Physical data independence

• Logical data independence

These properties are discussed in the following subsections.

The Database Management System (DBMS)
The Database Management System (DBMS) is software provided by the database

vendor. Software products such as Microsoft Access, Oracle, Microsoft SQL

Server, Sybase, DB2, INGRES, and MySQL are all DBMSs. If it seems odd to you

that the acronym used is DBMS instead of merely DMS, keep in mind that the term

“database” was originally written as two words, and by convention has become a

single compound word.

The DBMS provides all the basic services required to organize and maintain the

database, including the following:

• Moving data to and from the physical data files as needed.

• Managing concurrent data access by multiple users, including provisions to

prevent simultaneous updates from conflicting with one another.

P:\010Comp\DeMYST\364-9\ch01.vp
Monday, February 09, 2004 8:32:59 AM

Color profile: Generic CMYK printer profile
Composite Default screen

• Managing transactions so that each transaction’s database changes are an

all-or-nothing unit of work. In other words, if the transaction succeeds, all

database changes made by it are recorded in the database; if the transaction

fails, none of the changes it made are recorded in the database.

• Support for a query language, which is a system of commands that a database

user employs to retrieve data from the database.

• Provisions for backing up the database and recovering from failures.

• Security mechanisms to prevent unauthorized data access and modification.

Layers of Data Abstraction
Databases have the unique capability of presenting multiple users of the data with

their own distinct views of that data while storing the underlying data only once.

These are collectively called user views. A user in this context is any person or appli-

cation that signs on to the database for the purpose of storing and/or retrieving data.

An application is a set of computer programs designed to solve a particular business

problem, such as an order-entry system, a payroll-processing system, or an account-

ing system.

When an electronic spreadsheet application such as Microsoft Excel is used, all

users must share a common view of the data, and that view must match the way the

data is physically stored in the underlying data file. If a user hides some columns in a

spreadsheet, reorders the rows, and saves the spreadsheet, the next user who opens it

will have the data presented in the manner in which the first user saved it. An alterna-

tive, of course, is for each user to save their own copy in separate physical files, but

then as one user applies updates, the other users’data becomes out of date. With da-

tabase systems, we can present each user a view of the same data, but the views can

be tailored to the needs of the individual users, even though they all come for one

commonly stored copy of the data. Because views store no actual data, they automat-

ically reflect any data changes made to the underlying database objects. This is all

possible through layers of abstraction, as shown in Figure 1-1.

The architecture shown in Figure 1-1 was first developed by ANSI/SPARC

(American National Standards Institute Standards Planning and Requirements

Committee) in the 1970s and quickly became a foundation for much of the database

research and development efforts that followed. Most modern DBMSs follow this

architecture, which is composed of three primary layers: the physical layer, the logi-

cal layer, and the external layer. The original architecture included a conceptual

layer, which has been omitted here because none of the modern database vendors

implemented it.

CHAPTER 1 Database Fundamentals 3

P:\010Comp\DeMYST\364-9\ch01.vp
Monday, February 09, 2004 8:32:59 AM

Color profile: Generic CMYK printer profile
Composite Default screen

The Physical Layer
The physical layer contains the data files that hold all the data for the database. Nearly

all modern DBMSs allow the database to be stored in multiple data files, which are

usually spread out over multiple physical disk drives. With this arrangement, the disk

drives can work in parallel for maximum performance. A notable exception is

Microsoft Access, which stores the entire database in a single physical file. This ar-

rangement limits the ability of the DBMS to scale to accommodate many concurrent

users of the database, making it inappropriate as a solution for large enterprise sys-

tems, while simplifying database use on a single-user personal computer system.

The user of the database does not need to have any knowledge of how the data is

actually stored within these files, or even which file contains the data item(s) of in-

terest. In most organizations, a technician known as a database administrator (DBA)

handles the details of installing and configuring the database software and data files

and making the database available to the database users. The DBMS works with the

computer’s operating system to automatically manage the data files, including all

file opening, closing, reading, and writing operations. The database user should not

be required to refer to physical data files when using a database, which is in sharp

contrast with spreadsheets and word processing, where the user must consciously

save the document(s) and choose file names and storage locations. Many of the per-

sonal computer–based DBMSs are exceptions to this tenet because the user is re-

quired to locate and open a physical file as part of the process of signing on to the

DBMS. In contrast, with server-based DBMSs (such as Oracle, Sybase, Microsoft

SQL Server, and so on), the physical files are managed automatically and the data-

base user never needs to refer to them when using the database.

4 Databases Demystified

Demystified / Databases Demystified / Oppel/ 225364-9 / Chapter 1

Figure 1-1 Database layers of abstraction

P:\010Comp\DeMYST\364-9\ch01.vp
Monday, February 09, 2004 8:32:59 AM

Color profile: Generic CMYK printer profile
Composite Default screen

The Logical Layer
The logical layer or logical model is the first of two layers of abstraction in the data-

base. We say this because the physical layer has a concrete existence in the operating

system files, whereas the logical layer exists only as abstract data structures assem-

bled from the physical layer as needed. The DBMS transforms the data in the data

files into a common structure. This layer is sometimes called the schema, a term used

for the collection of all the data items stored in a particular database. Depending on

the particular DBMS, this can be a set of two-dimensional tables, a hierarchical

structure similar to a company’s organization chart, or some other structure. The

“Prevalent Database Models” section later in this chapter describes the possible

structures in more detail.

The External Layer
The external layer or external model is the second layer of abstraction in the data-

base. This layer is composed of the user views discussed earlier, which are collec-

tively called the subschema. This is the layer where users and application programs

that access the database connect and issue queries against the database. Ideally, only

the DBA deals with the physical and logical layers. The DBMS handles the transfor-

mation of selected items from one or more data structures in the logical layer to form

each user view. The user views in this layer can be predefined and stored in the data-

base for reuse, or they can be temporary items that are built by the DBMS to hold the

results of a single ad hoc database query until no longer needed by the database user.

By ad hoc, we mean a query that was not preconceived and one that is not likely to be

reused. Views are discussed in more detail in Chapter 2.

Physical Data Independence
The ability to alter the physical file structure of a database without disrupting exist-

ing users and processes is known as physical data independence. As shown earlier in

Figure 1-1, it is the separation of the physical layer from the logical layer that pro-

vides physical data independence in a DBMS. It is essential to understand that phys-

ical data independence is not a “have or have not” property, but rather one where a

particular DBMS might have more or less data independence than another. The mea-

sure, sometimes called the degree of physical data independence, is how much

change can be made in the file system without impacting the logical layer. Prior to

systems that offered data independence, even the slightest change to the way data

was stored required the programming staff to make changes to every computer pro-

gram that used the data, an expensive and time-consuming process.

CHAPTER 1 Database Fundamentals 5

P:\010Comp\DeMYST\364-9\ch01.vp
Monday, February 09, 2004 8:32:59 AM

Color profile: Generic CMYK printer profile
Composite Default screen

All modern computer systems have some degree of physical data independence.

For example, a spreadsheet on a personal computer will continue to work properly if

copied from a hard disk to a floppy disk or if burned onto a CD. The fact that the per-

formance (speed) of these devices varies markedly is not the point, but rather that the

devices have entirely different physical construction and yet the operating system on

the personal computer will automatically handle the differences and present the data

in the file to the application (that is, the spreadsheet program, such as Microsoft Ex-

cel), and therefore to the user, in exactly the same way. However, on most personal

systems, the user must still remember where they placed the file so they can locate it

when they need it again.

DBMSs expand greatly on the physical data independence provided by the com-

puter system in that they allow database users to access database objects (for exam-

ple, tables in a relational DBMS) without having to reference the physical data files

in any way. The DBMS catalog keeps track of where the objects are physically

stored. Here are some examples of physical changes that may be made in a data-in-

dependent manner:

• Moving a database data file from one device to another or one directory

to another

• Splitting or combining database data files

• Renaming database files

• Moving a database object from one data file to another

• Adding new database objects or data files

Note that we have made no mention of deleting things. It should be obvious that

deleting a database object will cause anything that uses that object to fail. However,

everything else should be unaffected.

Logical Data Independence
The ability to make changes to the logical layer without disrupting existing users and

processes is called logical data independence. Figure 1-1, earlier in the chapter,

shows that it is the transformation between the logical layer and the external layer

that provides logical data independence. As with physical data independence, there

are degrees of logical data independence. It is important to understand that most log-

ical changes also involve a physical change. For example, you cannot add a new da-

tabase object (such as a table in a relational DBMS) without physically storing the

data somewhere; hence, there is a corresponding change in the physical layer. More-

over, deletion of objects in the logical layer will cause anything that uses those ob-

jects to fail but should not affect anything else.

6 Databases Demystified

P:\010Comp\DeMYST\364-9\ch01.vp
Monday, February 09, 2004 8:32:59 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Here are some examples of changes in the logical layer that can be safely made

thanks to logical data independence:

• Adding a new database object

• Adding data items to an existing object

• Any change where a view can be placed in the external model that replaces

(and processes the same as) the original object in the logical layer, such as

combining or splitting existing objects

Prevalent Database Models
A database model is essentially the architecture that the DBMS uses to store objects

within the database and relate them to one another. The most prevalent of these mod-

els are presented here in the order of their evolution. A brief history of relational da-

tabases appears in the next section to help put things in a chronological perspective.

Flat Files
Flat files are “ordinary” operating system files in that records in the file contain no

information to communicate the file structure or any relationship among the records

to the application that uses the file. Any information about the structure or meaning

of the data in the file must be included in each application that uses the file or must be

known to each human who reads the file. In essence, flat files are not databases at all

because they do not meet any of the criteria previously discussed. However, it is im-

portant to understand them for two reasons. First, flat files are often used to store da-

tabase information. In this case, the operating system is still unaware of the contents

and structure of the files, but the DBMS has metadata that allows it to translate be-

tween the flat files in the physical layer and the database structures in the logical

layer. Metadata, which literally means “data about data,” is the term used for the in-

formation that the database stores in its catalog to describe the data stored in the da-

tabase and the relationships among the data. The metadata for a customer, for

example, might include a list of all the data items collected about the customer, along

with the length, minimum and maximum data values, and a brief description of each

data item. Second, flat files existed before databases, and the earliest database sys-

tems evolved from flat file systems that preceded them.

Figure 1-2 shows a sample flat file system, a subset of the data in the Microsoft

Access Northwind sample database in this case. Northwind Traders is a supplier of

international food items. Keep in mind that the column titles (Customer ID, Company

Name, and so on) are included for illustration purposes only—only the data records

CHAPTER 1 Database Fundamentals 7

P:\010Comp\DeMYST\364-9\ch01.vp
Monday, February 09, 2004 8:32:59 AM

Color profile: Generic CMYK printer profile
Composite Default screen

would be stored in the actual files. Customer data is stored in a Customer file, with

each record representing a Northwind customer. Each employee of Northwind has a

record in the Employee file, and each product sold by Northwind has a record in the

Product file. Order data (orders placed with Northwind by its customers) is stored in

two other flat files. The Order file contains one record for each customer order with

data about the orders, such as the customer ID of the customer who placed the order

and the name of the employee who accepted the order from the customer. The Order

Detail file contains one record for each line item on an order (an order can contain

multiple line items, one for each product ordered), including data such as the unit

price and quantity.

An application program is a unit of computer program logic that performs a partic-

ular function within an application system. Northwind has an application program that

8 Databases Demystified

Figure 1-2 Flat file order system

Customer File

Employee File

Product File

Order File

Order Detail File

P:\010Comp\DeMYST\364-9\ch01.vp
Monday, February 09, 2004 8:33:00 AM

Color profile: Generic CMYK printer profile
Composite Default screen

CHAPTER 1 Database Fundamentals 9

Demystified / Databases Demystified / Oppel/ 225364-9 / Chapter 1

prints out a listing of all the orders. This application must correlate the data between

the five files by reading an order and performing the following steps:

1. Use the customer ID to find the name of the customer in the Customer file.

2. Use the employee ID to find the name of the related employee in the

Employee file.

3. Use the order ID to find the corresponding line items in the Order Detail file.

4. For each line item, use the product ID to find the corresponding product

name in the Product file.

This is rather complicated given that we are just trying to print a simple listing of all

the orders, yet this is the best possible data design for a flat file system.

One alternative design would be to combine all the information into a single data

file. Although this would greatly simplify data retrieval, consider the ramifications of

repeating all the customer data on every single order line item. You might not be able

to add a new customer until they have an order ready to place. Also, if someone deletes

the last order for a customer, you would lose all the information about the customer.

But the worst is when customer information changes because you have to find and up-

date every record where the customer data is repeated. We will explore these issues

much more deeply when we explore logical database design in Chapter 7.

Another alternative approach often used in flat file–based systems is to combine

closely related files, such as the Order file and Order Detail file, into a single file,

with the line items for each order following each order header record and a Record

Type data item added to help the application distinguish between the two types of re-

cords. Although this approach makes correlating the order data easier, it does so by

adding the complexity of mixing two different kinds of records into the same file, so

there is no net gain in either simplicity or faster application development.

Overall, the worst problem with the flat file approach is that the definition of the

contents of each file and the logic required to correlate the data from multiple flat

files have to be included in every application program that requires those files, thus

adding to the expense and complexity of the application programs. It was this very

problem that provided computer scientists of the day with the incentive to find a

better way to organize data.

The Hierarchical Model
The earliest databases followed the hierarchical model. The model evolved from the

file systems that the databases replaced, with records arranged in a hierarchy much

like an organization chart. Each file from the flat file system became a record type, or

P:\010Comp\DeMYST\364-9\ch01.vp
Monday, February 09, 2004 8:33:00 AM

Color profile: Generic CMYK printer profile
Composite Default screen

node in hierarchical terminology, but we will use the term record here for simplicity.

Records were connected using pointers that contained the address of the related re-

cord. Pointers told the computer system where the related record was physically lo-

cated, much as a street address directs us to a particular building in a city or a URL

directs us to a particular web page on the Internet. Each pointer establishes a parent-

child relationship, also called a one-to-many relationship, where one parent may

have many children, but each child may have only one parent. This is similar to the

situation in a traditional business organization where each manager may have many

employees as direct reports, but each employee may have only one manager. The ob-

vious problem with the hierarchical model is that there is data that does not exactly

fit this strict hierarchical structure, such as an order that must have the customer who

placed the order as one parent and the employee who accepted the order as another.

Data relationships are presented in more detail in Chapter 2. The most popular hier-

archical database was Information Management System (IMS) from IBM.

Figure 1-3 shows the hierarchical structure of the hierarchical model for the

Northwind database. You will recognize the Customer, Employee, Product, Order,

and Order Detail record types as they were introduced previously. Comparing the hi-

erarchical structure with the flat file system shown in Figure 1-2, note that the Em-

ployee and Product records are shown in the hierarchical structure with dotted lines

because they cannot be connected to the other records via pointers. These illustrate

the most severe limitation of the hierarchical model that was the main reason for its

early demise: No record may have more than one parent. Therefore, we cannot con-

nect the Employee records with the Order records because the Order records already

have the Customer record as their parent. Similarly, the Product records cannot be re-

lated to the Order Detail records because the Order Detail records already have the Or-

der record as their parent. Database technicians would have to work around this

shortcoming either by relating the “extra” parent records in application programs,

much as was done with flat file systems, or by repeating all the records under each par-

ent, which of course was very wasteful of then-precious disk space. Neither of these

was really an acceptable solution, so IBM modified IMS to allow for multiple parents

per record. The resultant database model was dubbed the “Extended Hierarchical”

10 Databases Demystified

Figure 1-3 Hierarchical model structure for Northwind

P:\010Comp\DeMYST\364-9\ch01.vp
Monday, February 09, 2004 8:33:00 AM

Color profile: Generic CMYK printer profile
Composite Default screen

model, which closely resembled the network database model in function, discussed

in the next section.

Figure 1-4 shows the contents of selected records within the hierarchical model

design for Northwind. Some data items were eliminated for simplicity, but a look

back at Figure 1-2 should make the entire contents of each record clear, if necessary.

The record for customer ALFKI has a pointer to its first order (ID 10643), and that

order has a pointer to the next order (ID 10692). We know that Order 10692 is the last

order for the customer because it does not have any pointers to additional orders.

Looking at the next layer in the hierarchy, Order 28 has a pointer to its first Order De-

tail record (for Product 39), and that record has a pointer to the next detail record, and

so forth. There is one additional important distinction between the flat file system

and the hierarchical—the key (identifier) of the parent record is removed from the

child records in the hierarchical model because the pointers handle the relationships

among the records. Therefore, the customer ID and employee ID are removed from

the Order record, and the product ID is removed from the Order Detail record.

Leaving them in is not a good idea because this could allow contradictory informa-

tion in the database, such as an order that is pointed to by one customer and yet con-

tains the ID of a different customer.

The Network Model
The network database model evolved at around the same time as the hierarchical da-

tabase model. A committee of industry representatives was formed to essentially

build a better mousetrap. A cynic would say that a camel is a horse that was designed

by a committee, and that may be accurate in this case. The most popular database

based on the network model was the Integrated Database Management System

(IDMS), originally developed by Cullinane (later renamed Cullinet). The product

was enhanced with relational extensions, named IDMS/R and eventually sold to

Computer Associates.

CHAPTER 1 Database Fundamentals 11

Figure 1-4 Hierarchical model record contents for Northwind

P:\010Comp\DeMYST\364-9\ch01.vp
Monday, February 09, 2004 8:33:01 AM

Color profile: Generic CMYK printer profile
Composite Default screen

As with the hierarchical model, record types (or simply “records”) depict what would

be separate files in a flat file system, and those records are related using one-to-many re-

lationships, called owner-member relationships or sets in network model terminology.

We’ll stick with the terms parent and child, again for simplicity. As with the hierarchical

model, physical address pointers are used to connect related records, and any identifica-

tion of the parent record(s) is removed from each child record to avoid possible inconsis-

tencies. In contrast with the hierarchical model, the relationships are named so the

programmer can direct the database to use a particular relationship to navigate from one

record to another in the database, thus allowing a record type to participate as the child in

multiple relationships. The network model provided greater flexibility, but as is often the

case with computer systems, at the expense of greater complexity.

The network model structure for Northwind, as shown in Figure 1-5, has all

the same records as the equivalent Hierarchical Model structure that appeared in

Figure 1-3. By convention, the arrowhead on the lines points from the parent to

child record. Note that the Customer and Employee records now have solid lines

in the structure diagram because they can be directly implemented.

In the network model contents example shown in Figure 1-6, each parent-child

relationship is depicted with a different type of line, illustrating that each has a dif-

ferent name. This difference is important because it points out the largest downside

of the network model, which is complexity. Instead of a single path that may be used

for processing the records, there are now many paths. For example, if we start with

the record for Employee 4 (Sales Representative Margaret Peacock) and use it to

find the first order (ID 10692), we land in the middle of the chain of orders that be-

long to Customer ALFKI (Alfreds Futterkiste). To find all the other orders for this

customer, there must be a way to work forward from where we are to the end of the

chain and then wrap around to the beginning and forward from there until we return

to the order from which we started. It is to satisfy this processing need that all pointer

chains in network model databases are circular. As you might imagine, these circular

pointer chains can easily result in an infinite loop (that is, a process that never ends)

should a database user not keep careful track of where they are in the database and

how they got there. The structure of the World Wide Web loosely parallels a network

12 Databases Demystified

Figure 1-5 Network model structure for Northwind

P:\010Comp\DeMYST\364-9\ch01.vp
Monday, February 09, 2004 8:33:01 AM

Color profile: Generic CMYK printer profile
Composite Default screen

database in that each web page has links to other related web pages, and circular refer-

ences are not uncommon.

The process of navigating through a network database was called “walking the

set” because it involved choosing paths through the database structure much like

choosing walking paths through a forest when there can be multiple ways to get to

the same destination. Without an up-to-date roadmap, it is easy to get lost, or worse

yet, find a dead end where you cannot get to the desired destination record. The com-

plexity of this model and the expense of the small army of technicians required to

maintain it were key factors in its eventual demise.

The Relational Model
In addition to complexity, the network and hierarchical database models share an-

other common problem—they are inflexible. One must follow the preconceived

paths through the data in order to process the data efficiently. Ad hoc queries, such as

finding all the orders shipped in a particular month, require scanning the entire data-

base to find them all. Computer scientists were still looking for a better way. There

have been few times in the history of computers when a development was truly revo-

lutionary, but the research work of Dr. E.F. Codd that led to the relational model was

clearly just that.

The relational model is based on the notion that any preconceived path through

a data structure is too restrictive a solution, especially in light of ever-increasing

demands to support ad hoc requests for information. Database users simply cannot

think of every possible use of the data before the database is created; therefore, im-

posing predefined paths through the data merely creates a “data jail.” The relational

CHAPTER 1 Database Fundamentals 13

Figure 1-6 Network model record contents for Northwind

P:\010Comp\DeMYST\364-9\ch01.vp
Monday, February 09, 2004 8:33:01 AM

Color profile: Generic CMYK printer profile
Composite Default screen

model therefore provides the ability to relate records as needed rather than prede-

fined when the records are first stored in the database. Moreover, the relational

model is constructed such that queries work with sets of data (for example, all the

customers who have an outstanding balance) rather than one record at a time, as with

the network and hierarchical models.

The relational model presents data in familiar two-dimensional tables, much like

a spreadsheet does. Unlike a spreadsheet, the data is not necessarily stored in tabular

form and the model also permits combining (joining in relational terminology) ta-

bles to form views, which are also presented as two-dimensional tables. In short, it

follows the ANSI/SPARC model and therefore provides healthy doses of physical

and logical data independence. Instead of linking related records together with phys-

ical address pointers, as is done in the hierarchical and network models, a common

data item is stored in each table, just as was done in flat file systems.

Figure 1-7 shows the relational model design for Northwind. A look back at

Figure 1-2 will confirm that each file in the flat file system has been mapped to a ta-

ble in the relational model. As you will learn in Chapter 6, this one-to-one corre-

spondence between flat files and relational tables will not always hold true, but it is

quite common. In Figure 1-7, lines are drawn between the tables to show the one-

to-many relationships, with the single line end denoting the “one” side and the line

end that splits into three parts (called a “crow’s foot”) denoting the “many” side.

For example, you can see that “one” customer is related to “many” orders and that

“one” order is related to “many” order details merely by inspecting the lines that

connect these tables. The diagramming technique shown here, called the entity-re-

lationship diagram (ERD), will be covered in more detail in Chapter 7.

In Figure 1-8, three of the five tables have been represented with sample data in se-

lected columns. In particular, note that the Customer ID column is stored in both the

Customer table and the Order table. When the customer ID of a row in the Order table

matches the customer ID of a row in the Customer table, you know that the order be-

longs to that particular customer. Similarly, the Employee ID column is stored in both

the Employee and Order tables to indicate the employee who accepted each order.

The elegant simplicity of the relational model and the ease with which people can

learn and understand it has been the main factor in its universal acceptance. The rela-

14 Databases Demystified

Figure 1-7 Relational model structure for Northwind

P:\010Comp\DeMYST\364-9\ch01.vp
Monday, February 09, 2004 8:33:02 AM

Color profile: Generic CMYK printer profile
Composite Default screen

tional model is the main focus of this book because it is ubiquitous in today’s infor-

mation technology systems and will likely remain so for many years to come.

The Object-Oriented Model
The object-oriented (OO) model actually had its beginnings in the 1970s, but it did

not see significant commercial use until the 1990s. This sudden emergence came

from the inability of then-existing RDBMSs (Relational Database Management

Systems) to deal with complex data types such as images, complex drawings, and

audio-video files. The sudden explosion of the Internet and the World Wide Web

created a sharp demand for mainstream delivery of complex data.

An object is a logical grouping of related data and program logic that represents a

real world thing, such as a customer, employee, order, or product. Individual data

items, such as customer ID and customer name, are called variables in the OO model

and are stored within each object. In OO terminology, a method is a piece of applica-

tion program logic that operates on a particular object and provides a finite function,

such as checking a customer’s credit limit or updating a customer’s address. Among

the many differences between the OO model and the models already presented, the

most significant is that variables may only be accessed through methods. This prop-

erty is called encapsulation.

The strict definition of object used here applies only to the OO model. The gen-

eral term database object, as used earlier in this chapter, refers to any named item

that might be stored in a non-OO database (for example, a table, index, or view). As

OO concepts have found their way into relational databases, so has the terminology,

although often with less precise definitions.

CHAPTER 1 Database Fundamentals 15

Figure 1-8 Relational table contents for Northwind

Customer Table

Order
Table

Employee
Table

P:\010Comp\DeMYST\364-9\ch01.vp
Monday, February 09, 2004 8:33:02 AM

Color profile: Generic CMYK printer profile
Composite Default screen

16 Databases Demystified

Demystified / Databases Demystified / Oppel/ 225364-9 / Chapter 1

Figure 1-9 shows the Customer object as an example of OO implementation. The

circle of methods around the central core of variables is to remind us of encapsula-

tion. In fact, you can think of an object much like an atom with an electron field of

methods and a nucleus of variables. Each customer for Northwind would have its

own copy of the object structure, called an object instance, much as each individual

customer has a copy of the customer record structure in the flat file system.

At a glance, the OO model looks horribly inefficient because it seems that each in-

stance requires that the methods and the definition of the variables be redundantly

stored. However, this is not at all the case. Objects are organized into a class hierar-

chy so that the common methods and variable definitions need only be defined once

and then inherited by other members of the same class.

OO concepts have such benefit that they have found their way into nearly every

aspect of modern computer systems. For example, the Microsoft Windows Registry

has a class hierarchy.

The Object-Relational Model
Although the OO model provided some significant benefits in encapsulating data to

minimize the effects of system modifications, the lack of ad hoc query capability has

relegated it to a niche market where complex data is required, but ad hoc query is not.

However, some of the vendors of relational databases noted the significant benefits

of the OO model and added object-like capability to their relational DBMS products

with the hopes of capitalizing on the best of both models. The original name given to

this type of database was universal database, and although the marketing folks

loved the term, it never caught on in technical circles, so the preferred name for the

model became object-relational (OR). Through evolution, the Oracle, DB2, and

Informix databases can all be said to be OR DBMSs to varying degrees.

Figure 1-9 The anatomy of an object

Variables

Methods

P:\010Comp\DeMYST\364-9\ch01.vp
Monday, February 09, 2004 8:33:03 AM

Color profile: Generic CMYK printer profile
Composite Default screen

To fully understand the OR model, a more detailed knowledge of the relational

and OO models is required.

A Brief History of Databases
Space exploration projects led to many significant developments in the science and

technology industries, including information technology. As part of the NASA

Apollo moon project, North American Aviation (NAA) built a hierarchical file sys-

tem named Generalized Update Access Method (GUAM) in 1964. IBM joined NAA

to develop GUAM into the first commercially available hierarchical model data-

base, called Information Management System (IMS), released in 1966.

Also in the mid 1960s, General Electric internally developed the first database

based on the network model, under the direction of prominent computer scientist

Charles W. Bachman, and named it Integrated Data Store (IDS). In 1967, the Con-

ference on Data Systems Languages (CODASYL), an industry group, formed the

Database Task Group (DBTG) and began work on a set of standards for the network

model. In response to criticism of the “single parent” restriction in the hierarchical

model, IBM introduced a version of IMS that circumvented the problem by allowing

records to have one “physical” parent and multiple “logical” parents.

In June 1970, Dr. E. F. (Ted) Codd, an IBM researcher (later an IBM fellow), pub-

lished a research paper titled “A Relational Model of Data for Large Shared Data

Banks” in Communications of the ACM, the Journal of the Association for Com-

puting Machinery, Inc. The publication can be easily found on the Internet. In 1971,

the CODASYL DBTG published their standards, which were over three years in the

making. This began five years of heated debate over which model was the best.

The CODASYL DBTG advocates argued the following:

• The relational model was too mathematical.

• An efficient implementation of the relational model could not be built.

• Application systems need to process data one record at a time.

The relational model advocates argued the following:

• Nothing as complicated as the DBTG proposal could possibly be the correct

way to manage data.

• Set-oriented queries were too difficult in the DBTG language.

• The network model had no formal underpinnings in mathematical theory.

The debate came to a head at the 1975 ACM SIGMOD (Special Interest Group on

Management of Data) conference. Ted Codd and two others debated against Charles

CHAPTER 1 Database Fundamentals 17

P:\010Comp\DeMYST\364-9\ch01.vp
Monday, February 09, 2004 8:33:03 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Bachman and two others over the merits of the two models. At the end, the audience

was more confused than beforehand. In retrospect, this happened because every ar-

gument proffered by the two sides was completely correct! However, interest in the

network model waned markedly in the late 1970s. It was the evolution of database

and computer technology that followed that proved the relational model was the

better choice, including these significant developments:

• Query languages such as SQL emerged that were not so mathematical.

• Experimental implementations of the relational model proved that reasonable

efficiency could be achieved, although never as efficient as an equivalent

network model database. Also, computer systems continued to drop in price,

and flexibility was considered more important than efficiency.

• Provisions were added to the SQL language to permit processing of a set

of data using a record-at-a-time approach.

• Advanced tools made the relational model even easier to use.

• Dr. Codd’s research led to the development of a new discipline in

mathematics known as relational calculus.

In the mid 1970s, database research and development was at full steam. A team of

15 IBM researchers in San Jose, California, under the direction of Frank King,

worked from 1974 to 1978 to develop a prototype relational database called System

R. System R was built commercially and became the basis for HP ALLBASE and

IDMS/SQL. Larry Ellison and a company that later became known as Oracle inde-

pendently implemented the external specifications of System R. It is now common

knowledge that Oracle’s first customer was the CIA. With some rewriting, IBM de-

veloped System R into SQL/DS and then into DB2, which remains their flagship da-

tabase to this day.

A pickup team of University of California, Berkeley students under the direction of

Michael Stonebraker and Eugene Wong worked from 1973 to 1977 to develop the

INGRES DBMS. INGRES also became a commercial product and was quite success-

ful. It is still available today as CA-INGRES, marketed by Computer Associates.

In 1976, Peter Chen presented the entity-relationship (ER) model. His work bol-

stered the modeling weaknesses in the relational model and became the foundation

of many modeling techniques that followed. If Ted Codd is considered the “father”

of the relational model, then we must consider Peter Chen the “father” of the ER dia-

gram. We explore ER diagrams in Chapter 7.

Sybase, which had a successful RDBMS deployed on Unix servers, entered into a

joint agreement with Microsoft to develop the next generation of Sybase (to be called

System 10) with a version available on Windows servers. For reasons not publicly

known, the relationship soured before the products were completed, but each party

walked away with all the work developed up to that point. Microsoft finished the

18 Databases Demystified

P:\010Comp\DeMYST\364-9\ch01.vp
Monday, February 09, 2004 8:33:03 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Windows version and marketed the product as Microsoft SQL Server, whereas Sybase

rushed to market with Sybase System 10. The products were so similar that instructors

for Microsoft were known to use the Sybase manuals in class rather than first-genera-

tion Microsoft documentation. The product lines have diverged considerably over the

years, but Microsoft SQL Server’s Sybase roots are still evident in the product.

Relational technology took the market by storm in the 1980s. Object-oriented da-

tabases, which first appeared in the 1970s, were also commercially successful dur-

ing the 1980s. In the 1990s, object-relational systems emerged, with Informix being

the first to market, followed relatively quickly by Oracle and IBM.

Not only did the relational technology of the day move around, but the people did

also. Michael Stonebraker left UC Berkeley to found Illustra, an object-relational

database vendor, and became chief science officer of Informix when it merged with

Illustra. Bob Epstein, who worked on the INGRES project with Stonebraker, moved

to the commercial company along with the INGRES product. From there he went to

Britton-Lee (now part of NCR) to work on early database machines (computer sys-

tems specialized to run only databases) and then to start up Sybase, where he was the

chief science officer for a number of years. Database machines, incidentally, died on

the vine because they were so expensive compared to the combination of an

RDBMS running on a general-purpose computer system. The San Francisco Bay

Area was an exciting place for database technologists in that era, because all the

great relational products started there, more or less in parallel, with the explosive

growth of “Silicon Valley.” Others have moved on, but DB2, Oracle, and Sybase are

still largely based in the Bay Area.

Why Focus on Relational?
The remainder of this book will focus on the relational model, with some coverage of

the object-oriented and object-relational models. Aside from it being the most preva-

lent of all the database models in modern business systems, there are other important

reasons for this focus, especially for those learning about databases for the first time:

• Definition, maintenance, and manipulation of data storage structures is easy.

• Data is retrieved through simple ad hoc queries.

• Data is well protected.

• Well-established ANSI (American National Standards Institute) and ISO

(International Organization for Standardization) standards exist.

• There are many vendors from which to choose.

• Conversion between vendor implementations is relatively easy.

• RDBMSs are mature and stable products.

CHAPTER 1 Database Fundamentals 19

P:\010Comp\DeMYST\364-9\ch01.vp
Monday, February 09, 2004 8:33:03 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Quiz
Choose the correct responses in each of the multiple-choice questions. Note that

there may be more than one correct response to each question.

1. Some of the properties of a database are

a. It provides layers of database abstraction.

b. Data items are stored exactly the way they are presented to the

database user.

c. It provides less logical data independence than the file systems it

replaced.

d. It provides both physical and logical data independence.

e. Databases are always managed by a Database Management System.

2. User views are important because:

a. Application programs reference them.

b. People querying the database reference them.

c. They provide physical data independence.

d. They can be tailored to the needs of the database user.

e. Data updates are shown in a delayed fashion.

3. The physical layer of the ANSI/SPARC model:

a. Provides physical data independence

b. Contains the physical files that comprise the database

c. Contains files that are read and written by the DBMS independent of the

computer’s operating system

d. Is normally invisible to the database user

e. Supplies data to the logical layer

4. The logical layer of the ANSI/SPARC model:

a. Contains database objects that are assembled by the DBMS from data in

the physical layer

b. Provides logical data independence

c. Contains the database schema

d. Is referenced by the external layer

e. Lies between the physical and external layers

5. The external layer of the ANSI/SPARC model:

a. Contains the database subschema

b. Lies between the physical and logical layers

c. Is directly referenced by database users

d. Contains all the user views for the database

e. Provides physical data independence

20 Databases Demystified

P:\010Comp\DeMYST\364-9\ch01.vp
Monday, February 09, 2004 8:33:03 AM

Color profile: Generic CMYK printer profile
Composite Default screen

6. Physical data independence:

a. Is something a database either has or does not have

b. Is a property that all computer systems have to some degree

c. Allows nondisruptive changes to be made to the physical layer in the

ANSI/SPARC model

d. Is achieved through the separation of the physical and logical layers of

the ANSI/SPARC model

e. Is achieved through the separation of the logical and external layers of

the ANSI/SPARC model

7. Logical data independence:

a. Is a property that all computer systems have to some degree

b. Is achieved through the separation of the physical and logical layers of

the ANSI/SPARC model

c. Is achieved through the separation of the logical and external layers of

the ANSI/SPARC model

d. Allows data to be freely deleted from the physical database files without

disrupting existing database users and processes

e. Allows database objects to be freely added to the physical database files

without disrupting existing database users and processes

8. Flat file systems:

a. Are not really databases by themselves, even though some vendors call

them that

b. Can be used to store the database objects for a database

c. Provide no logical data independence when used directly by

application programs

d. Require the user or application program to relate one file to another

e. Require the user or application to know the contents of each file

9. The hierarchical database model:

a. Was first developed by Peter Chen

b. Stores data and methods together in the database

c. Connects data in a hierarchical structure using physical address pointers

d. In its pure form, permits only one parent for any given record

e. Allows the processing of sets of database records

10. The network database model:

a. Was first proposed by Dr. E.F. Codd

b. Connects database records using physical address pointers

c. Allows the processing of sets of database records

d. Allows multiple parents for any given database record

e. Is known for its simplicity of use

CHAPTER 1 Database Fundamentals 21

P:\010Comp\DeMYST\364-9\ch01.vp
Monday, February 09, 2004 8:33:03 AM

Color profile: Generic CMYK printer profile
Composite Default screen

22 Databases Demystified

Demystified / Databases Demystified / Oppel/ 225364-9 / Chapter 1

11. The relational database model:

a. Was first proposed by Dr. E.F. Codd

b. Does not use physical pointers to connect database records

c. Provides superior flexibility for ad hoc queries

d. Is difficult to understand and use

e. Presents data as two-dimensional tables

12. The object-oriented model:

a. Stores data as variables along with application logic modules

called methods

b. Provides for free-form ad hoc query of variables

c. Was first invented in the 1980s

d. Provides better support for complex data types than the relational model

e. Restricts access to variables through encapsulation

13. The object-relational model:

a. Was first proposed by Charles Bachman

b. Combines concepts from the relational and object models in an attempt

to get the best from each

c. Is not supported by the mainstream (bestselling) DBMS products

d. Overcomes the ad hoc query restrictions found in the relational model

e. Overcomes the ad hoc query restrictions found in the object-oriented

model

14. According to advocates of the relational model, the problems with the

CODASYL model are

a. It is too mathematical.

b. It is too complicated.

c. It lacks generally accepted standards.

d. Set-oriented queries are too difficult.

e. An efficient implementation cannot be built.

15. According to the advocates of the network model, the problems with the

relational model are

a. Record-at-a-time processing is poorly supported.

b. It is too complicated.

c. It has no formal mathematical underpinnings.

d. An efficient implementation cannot be built.

e. It lacks generally accepted standards.

P:\010Comp\DeMYST\364-9\ch01.vp
Monday, February 09, 2004 8:33:03 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TE
AM
 F
LY

16. The main reasons that the relational model became so popular are

a. Computer systems became less expensive, so flexibility became more

important than efficiency.

b. Simple-to-use query languages such as SQL emerged.

c. The network model saw no commercial success.

d. Products were developed that proved reasonable efficiency could

be achieved.

e. Relational calculus was invented.

17. Important historic events in database development are

a. GUAM was the first commercially available database.

b. General Electric’s IDS was the first known network database.

c. Dr. E.F. Codd published his famous research paper in 1970.

d. Early relational databases were built by both IBM and UC Berkeley.

e. Nearly all the commercial relational databases are descendents of either

System R or INGRES.

18. Currently available relational databases include

a. Oracle

b. Microsoft SQL Server

c. System R

d. IDS

e. Sybase

19. Examples of physical changes that can be safely made in a system that has

a high degree of physical data independence are

a. Moving a file from one disk device to another

b. Adding new user views

c. Adding new data files

d. Splitting or combining database objects

e. Renaming a data file

20. Examples of logical changes that can be safely made in a system that has

a high degree of logical data independence are

a. Moving a database object from one physical file to another

b. Deleting database objects

c. Adding new database objects

d. Adding data items to existing database objects

e. Deleting data items from existing database objects

CHAPTER 1 Database Fundamentals 23

P:\010Comp\DeMYST\364-9\ch01.vp
Monday, February 09, 2004 8:33:03 AM

Color profile: Generic CMYK printer profile
Composite Default screen

P:\010Comp\DeMYST\364-9\ch01.vp
Monday, February 09, 2004 8:33:03 AM

Color profile: Generic CMYK printer profile
Composite Default screen

This page intentionally left blank.

CHAPTER
2

Exploring
Relational
Database

Components

In this chapter we explore the conceptual, logical and physical components that

comprise the relational model. Conceptual database design involves studying and

modeling the data in a technology-independent manner. The conceptual data model

that results can be theoretically implemented on any database, or even on a flat file

system. The person who performs conceptual database design is often called a data

modeler. Logical database design is the process of translating, or mapping, the con-

ceptual design into a logical design that fits the chosen database model (relational,

object-oriented, object-relational, and so on). A specialist who performs logical da-

tabase design is called a database designer, but often the database administrator

25

P:\010Comp\DeMYST\364-9\ch02.vp
Monday, February 09, 2004 8:36:12 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Copyright © 2004 by The McGraw-Hill Companies. Click here for terms of use.

(DBA) performs this design step. The final design step is physical database design,

which involves mapping the logical design to one or more physical designs—each

tailored to the particular DBMS that will manage the database and the particular

computer system on which the database will run. The person who performs physical

database design is usually the DBA. The processes involved in database design are

covered in Chapter 5.

In the sections that follow, we explore the components of a conceptual database

design, then the components of a logical and physical design.

Conceptual Database Design Components
Figure 2-1 shows the conceptual design for Northwind. This diagram is similar to Fig-

ure 1-7 in Chapter 1, but a few items have been added for the illustration of key points.

The labeled items (Entity, Attribute, Relationship, Business Rule, and Intersection

Data) are the basic components that make up a conceptual database design. Each is

presented in sections that follow, except for intersection data, which is presented in

“Many-to-Many Relationships.”

26 Databases Demystified

Figure 2-1 Conceptual database design for Northwind

Entity

Attribute

Relationship

Business
Rule

Intersection Data

P:\010Comp\DeMYST\364-9\ch02.vp
Monday, February 09, 2004 8:36:13 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Entities
An entity is a person, place, thing, event, or concept about which data is collected. In

other words, entities are the real world things in which we have sufficient interest to

capture and store data about them in a database. An entity is represented as a rectangle

on the diagram. Just about anything that can be named with a noun can be an entity.

However, to avoid designing everything on the planet into our database, we restrict

ourselves to entities of interest to the people who will use our database. Each entity

shown in the conceptual model represents the entire class for that entity. For example,

the Customer entity represents the collection of all Northwind customers. The indi-

vidual customers are called instances of the entity.

An external entity is an entity with which our database exchanges data (sending

data to, receiving data from, or both), but about which we collect no data. For example,

most businesses that set up credit accounts for customers purchase credit reports

from one or more credit bureaus. They send a customer’s identifying information to

the credit bureau and receive back a credit report, but all this data is about the customer

rather than the credit bureau itself. Assuming there is no compelling reason for the

database to store data about the credit bureau, such as the mailing address of their of-

fice, the credit bureau will not appear in the conceptual database design as an entity.

In fact, external entities are seldom shown in database designs, but they commonly

appear in data flow diagrams as a source or destination of data. These diagrams are

discussed in Chapter 7.

Attributes
An attribute is a unit fact that characterizes or describes an entity in some way. These

are represented on the conceptual design diagram shown in Figure 2-1 as names inside

the rectangle that represents the entity to which they belong. The attribute (or attrib-

utes) that appears at the top of the rectangle (above the horizontal line) is the unique

identifier for the entity. A unique identifier, as the name suggests, provides a unique

value for each instance of the entity. For example, the Customer_ID attribute is the

unique identifier for the Customer entity, so each customer must have a unique value

for that attribute. Keep in mind that a unique identifier can be composed of multiple

attributes, but when this happens, it is still considered just one unique identifier.

We say attributes are a unit fact because they should be atomic, meaning they cannot

be broken down into smaller units in any meaningful way. An attribute is therefore

the smallest named unit of data that appears in a database system. In this sense,

Address should be considered a suspect entity because it could easily be broken

down into Address Line 1 and Address Line 2, as is commonly done in business sys-

tems. This change would add meaning because it makes it easier to print address labels,

CHAPTER 2 Exploring Relational Database Components 27

P:\010Comp\DeMYST\364-9\ch02.vp
Monday, February 09, 2004 8:36:13 AM

Color profile: Generic CMYK printer profile
Composite Default screen

for example. On the other hand, database design is not an exact science, and judgment

calls must be made. Although it is possible to break the Contact Name attribute into

component attributes, such as First Name, Middle Initial, and Last Name, we must

ask ourselves whether such a change adds meaning or value. There is no right or

wrong answer here, so we must rely on the people who will be using the database,

or perhaps those who are funding the database project, to help us with such deci-

sions. Always remember that an attribute must describe or characterize the entity in

some way (for example, size, shape, color, quantity, location).

Relationships
Relationships are the associations among the entities. Because databases are all

about storing related data, the relationships become the glue that holds the database

together. Relationships are shown on the conceptual design diagram (refer to Figure 2-1)

as lines connecting one or more entities. Each end of a relationship line shows the

maximum cardinality of the relationship, which is the maximum number of in-

stances of one entity that can be associated with the entity on the opposite end of the

line. The maximum cardinality may be one (where the line has no special symbol on

its end) or many (where the line has a crow’s foot on the end). Just short of the end of

the line is another symbol that shows the minimum cardinality, which is the minimum

number of instances of one entity that can be associated with the entity on the oppo-

site end of the line. The minimum cardinality may be zero, denoted with a circle

drawn on the line, or one, denoted with a short vertical line or tick mark drawn across

the relationship line. Many data modelers use two vertical lines to mean “one and

only one.”

Learning to read relationships takes practice, and learning to define and draw

them correctly takes a lot of practice. The trick is to think about the association between

the entities in one direction, and then reverse your perspective to think about it in the

opposite direction. For the relationship between Customer and Order, for example,

we must ask two questions: “Each customer can have how many orders?” followed

by “Each order can have how many customers?” Relationships may thus be classi-

fied into three types: one-to-one, one-to-many, and many-to-many, as discussed in

the following sections. Some people will say many-to-one is also a relationship type,

but in reality, it is only a one-to-many relationship looked at with a reverse perspec-

tive. Relationship types are best learned by example. Getting the relationships right

is essential to a successful design.

One-to-One Relationships
A one-to-one relationship is an association where an instance of one entity can be as-

sociated with at most one instance of the other entity, and vice versa. In Figure 2-1,

28 Databases Demystified

P:\010Comp\DeMYST\364-9\ch02.vp
Monday, February 09, 2004 8:36:13 AM

Color profile: Generic CMYK printer profile
Composite Default screen

the relationship between the Customer and Account Receivable entities is one-to-

one. This means that a customer can have at most one associated account receivable,

and an account can have at most one associated customer. The relationship is also

mandatory in both directions, meaning that a customer must have at least one

account receivable associated with it, and an account receivable must have at least

one customer associated with it. Putting this all together, we can read the relationship

between the Customer and Account Receivable entities as “one customer has one

and only one associated account receivable, and one account receivable has one and

only one associated customer.”

One-to-one relationships are surprisingly rare among entities. In practice, one-to-one

relationships that are mandatory in both directions represent a design flaw that

should be corrected by combining the two entities. After all, isn’t an account receivable

merely more information about the customer? We’re not going to collect data about

an account receivable, but rather the information in the Account Receivable entity is

data we collect about the customer. On the other hand, if we buy our financial soft-

ware from an independent software vendor (a common practice), the software would

almost certainly come with a predefined database that it supports, so we may have no

choice but to live with this situation. We won’t be able to modify the vendor’s data-

base design to add additional customer data of interest to us, and at the same time, we

won’t be able to get the vendor’s software to recognize anything that we store in our

own database.

Figure 2-2 shows a different “flavor” of one-to-one relationship, one that is op-

tional (some say conditional) in both directions. Suppose we are designing the database

for an automobile dealership. The dealership issues automobiles to some employees,

typically sales staff, for them to drive for a finite period of time. They obviously

don’t issue all the automobiles to employees (if they did, they would have none to

sell). We can read the relationship between the Employee and Automobile entities as

follows: “At any point in time, each employee can have zero or one automobiles is-

sued to him or her, and each automobile can be assigned to zero or one employee.”

Note the clause “At any point in time.” If an automobile is taken back from one em-

ployee and then reassigned to another, this would still be a one-to-one relationship.

This is because when we consider relationships, we are always thinking in terms of a

snapshot taken at an arbitrary point in time.

CHAPTER 2 Exploring Relational Database Components 29

Figure 2-2 Employee-to-automobile relationship

P:\010Comp\DeMYST\364-9\ch02.vp
Monday, February 09, 2004 8:36:13 AM

Color profile: Generic CMYK printer profile
Composite Default screen

One-to-Many Relationships
A one-to-many relationship is an association between two entities where any instance

of the first entity may be associated with one or more instances of the second, and any

instance of the second entity may be associated with at most one instance of the first.

Figure 2-1, shown earlier in this chapter, has two such relationships: the one between

the Customer and Order entities, and the one between the Employee and Order enti-

ties. The relationship between Customer and Order, which is mandatory in only one

direction, is read as follows: “At any point in time, each customer can have zero to

many orders, and each order must have one and only one owning customer.”

One-to-many relationships are quite common. In fact, they are the fundamental

building block of the relational database model in that all relationships in a relational

database are implemented as if they are one-to-many. It is rare for them to be op-

tional on the “one” side and even more rare for them to be mandatory on the “many”

side, but these situations do happen. Consider the examples shown in Figure 2-3.

When a customer account closes, we record the reason it was closed using an account

closure reason code. Because some accounts are open at any point in time, this is an

optional code. We read the relationship this way: “At any given point in time, each

account closure reason code value can have zero, one, or many customers assigned

to it, and each customer can have either zero or one account closure reason code as-

signed to them.” Let us next suppose that as a matter of company policy, no customer

account can be opened without first obtaining a credit report, and that all credit reports

are kept in the database, meaning that any customer may have more than one credit

report in the database. This makes the relationship between the Customer and Credit

Report entities one-to-many, and mandatory in both directions. We read the relationship

thus: “At any given point in time, each customer can have one or many credit reports,

and each credit report belongs to one and only one customer.”

30 Databases Demystified

Figure 2-3 One-to-many relationships

P:\010Comp\DeMYST\364-9\ch02.vp
Monday, February 09, 2004 8:36:14 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Many-to-Many Relationships
A many-to-many relationship is an association between two entities where any in-

stance of the first entity may be associated with zero, one, or more instances of the

second, and vice versa. Back in Figure 2-1, the relationship between Order and

Product is many-to-many. We read the relationship thus: “At any given point in time,

each order contains zero to many products, and each product appears on zero to

many orders.”

This particular relationship has data associated with it as shown in the diamond on

the diagram. Data that belongs to a many-to-many relationship is called intersection

data. The data doesn’t make sense unless you associate it with both entities at the

same time. For example, Quantity Ordered doesn’t make sense unless you know

who (which customer) ordered what (which product). If you look back in Chapter 1

at Figure 1-7, you will recognize this data as the Order Detail table from

Northwind’s relational model. So, why isn’t Order Detail just shown as an entity?

The answer is simple: It doesn’t fit the definition of an entity. We are not collecting

data about the line items on the order, but rather the line items on the order are merely

more data about the order.

Many-to-many relationships are quite common, and most of them will have inter-

section data. The bad news is that the relational model does not directly support

many-to-many relationships. There is no problem with having many-to-many rela-

tionships in a conceptual design because such a design is independent of any particular

technology. However, if the database is going to be relational, some changes have to

be made as we map the conceptual model to the corresponding logical model. The

solution is to map the intersection data to a separate table (an intersection table) and

the many-to-many relationship to two one-to-many relationships, with the intersection

table in the middle and on the “many” side of both relationships. Figure 1-7 shows

this outcome. The process for recognizing and dealing with the many-to-many problem

is covered in detail in Chapter 6.

Recursive Relationships
So far we have covered relationships between entities of two different types. However,

relationships can exist between entity instances of the same type. These are called

recursive relationships. Any one of the relationship types already presented (one-to-

one, one-to-many, or many-to-many) can be a recursive relationship. Figure 2-4 and

the following list show examples of each:

• One-to-one If we were to track which employees had other employees

as spouses, we would expect each to be married to either zero or one other

employee.

CHAPTER 2 Exploring Relational Database Components 31

P:\010Comp\DeMYST\364-9\ch02.vp
Monday, February 09, 2004 8:36:14 AM

Color profile: Generic CMYK printer profile
Composite Default screen

32 Databases Demystified

Demystified / Databases Demystified / Oppel/ 225364-9 / Chapter 2

• One-to-many It is very common to track the employment “food chain”

of who reports to whom. In most organizations, people have only one

supervisor or manager. Therefore, we normally expect to see each employee

reporting to zero or one other employee, and employees who are managers

or supervisors to have one or more direct reports.

• Many-to-many In manufacturing, a common relationship has to do with

parts that make up a finished product. If you think about the CD-ROM drive

in a personal computer, for example, you can easily imagine that it is made

of multiple parts, and yet, it is only one part of your personal computer. So,

any part can be made of many other parts, and at the same time, any part

can be a component of many other parts.

Business Rules
A business rule is a policy, procedure, or standard that an organization has adopted.

Business rules are very important in database design because they dictate controls

that must be placed upon the data. In Figure 2-1, we see a business rule that states that

orders will only be accepted from customers who do not have a past-due balance.

Most business rules can be enforced through manual procedures that employees are

directed to follow or logic placed in the application programs. However, each of

these can be circumvented—employees may forget or may choose not to follow a

manual procedure, and databases can be updated directly by authorized people, by-

passing the controls included in the application programs. The database can serve

nicely as the last line of defense. Business rules can be implemented in the database

as constraints, which are formally defined rules that restrict the data values in the

database in some way. More information on constraints can be found in the “Con-

straints” section later in this chapter. Note that business rules are not normally shown

on a conceptual data model diagram, as was done in Figure 2-1 for easy illustration.

It is far more common to include them in a text document that accompanies the diagram.

Figure 2-4 Recursive relationship examples

P:\010Comp\DeMYST\364-9\ch02.vp
Monday, February 09, 2004 8:36:14 AM

Color profile: Generic CMYK printer profile
Composite Default screen

CHAPTER 2 Exploring Relational Database Components 33

Demystified / Databases Demystified / Oppel/ 225364-9 / Chapter 2

Logical/Physical Database
Design Components

The logical database design is implemented in the logical layer of the ANSI/SPARC

model discussed in Chapter 1. The physical design is implanted in the ANSI/SPARC

physical layer. However, we work through the DBMS to implement the physical

layer, making it difficult to separate the two layers. For example, when we create a

table, we include a clause in the create table command that tells the DBMS where we

wish to place it. The DBMS then automatically allocates space for the table in the re-

quested operating system file(s). Because so much of the physical implementation is

buried in the DBMS definitions of the logical structures, we have elected not to try to

separate them here. During logical database design, physical storage properties (file

name, storage location, and sizing information) may be assigned to each database

object as we map them from the conceptual model, or they may be omitted at first

and added later in a physical design step that follows logical design. For time effi-

ciency, most DBAs perform the two design steps (logical and physical) in parallel.

Tables
The primary unit of storage in the relational model is the table, which is a two-dimen-

sional structure composed of rows and columns. Each row represents one occurrence

of the entity that the table represents, and each column represents one attribute for

that entity. The process of mapping the entities in the conceptual design to tables in

the logical design is called normalization and is covered in detail in Chapter 6. Often,

an entity in the conceptual model maps to exactly one table in the conceptual model,

but this is not always the case. For reasons you will learn with the normalization

process, entities are commonly split into multiple tables, and in rare cases, multiple

entities may be combined into one table. Figure 2-5 shows a listing of part of the

Northwind Orders table.

It is important to remember that a relational table is a logical storage structure and

usually does not exist in tabular form in the physical layer. When the DBA assigns a

table to operating system files in the physical layer (called tablespaces in most

RDBMSs), it is common for multiple tables to be placed in a single tablespace.

However, large tables may be placed in their own tablespace or split across multiple

tablespaces, which is called partitioning. This flexibility typically does not exist in

personal computer–based RDBMSs such as Microsoft Access.

Each table must be given a unique name by the DBA who creates it. The maximum

length for these names varies a lot among RDBMS products, from as little as 18

characters to as many as 255. Table names should be descriptive and should reflect

P:\010Comp\DeMYST\364-9\ch02.vp
Monday, February 09, 2004 8:36:14 AM

Color profile: Generic CMYK printer profile
Composite Default screen

the name of the real-world entity they represent. By convention, some DBAs always

name entities in the singular and tables in the plural, and you will see this convention

used in the Northwind database. This author happens to prefer that both be named in

the singular, but obviously there are other learned professionals with counter opinions.

The point here is to establish naming standards at the outset so that names are not as-

signed in a haphazard manner, which only leads to confusion later. As a case in

point, Microsoft Access permits embedded spaces in table and column names,

which is counter to industry standards. Moreover, Microsoft Access, Sybase, and

Microsoft SQL Server allow mixed-case names, such as OrderDetails, whereas Oracle,

DB2, and others force all names to uppercase letters. Because table names such as

ORDERDETAILS are not very readable, the use of an underscore to separate words

per industry standards is a much better choice. You may wish to set standards that

forbid the use of names with embedded spaces and names in mixed case because

such names are nonstandard and make any conversion between database vendors

that much more difficult.

Columns and Data Types
As already mentioned, each column in a relational table represents an attribute from

the conceptual model. The column is the smallest named unit of data that can be ref-

erenced in a relational database. Each column must be assigned a unique name

(within the table) and a data type. A data type is a category for the format of a particular

column. Data types provide several valuable benefits:

34 Databases Demystified

Figure 2-5 Northwind Orders table (partial listing)

P:\010Comp\DeMYST\364-9\ch02.vp
Monday, February 09, 2004 8:36:15 AM

Color profile: Generic CMYK printer profile
Composite Default screen

• Restricting the data in the column to characters that make sense for the data

type (for example, all numeric digits or only valid calendar dates).

• Providing a set of behaviors useful to the database user. For example, if you

subtract a number from another number, you get a number as a result; but

if you subtract a date from another date, you get a number representing the

elapsed days between the two dates as a result.

• Assisting the RDBMS in efficiently storing the column data. For example,

numbers can often be stored in an internal numeric format that saves space,

compared with merely storing the numeric digits as a string of characters.

Figure 2-6 shows the table definition of the Northwind Orders table from

Microsoft Access (the same table listed in Figure 2-5). The data type for each column

is listed in the second column from the left. The data type names are usually self-

evident, but if you find any of them confusing, you can find definitions of each in the

Microsoft Access help pages.

CHAPTER 2 Exploring Relational Database Components 35

Figure 2-6 Table definition of the Northwind Orders table (Microsoft Access)

P:\010Comp\DeMYST\364-9\ch02.vp
Monday, February 09, 2004 8:36:15 AM

Color profile: Generic CMYK printer profile
Composite Default screen

It is most unfortunate that industry standards lagged behind RDBMS development.

Most vendors did their own thing for many years before sitting down with other vendors

to develop standards, and this is no more evident than in the wide variation of data

type options across the major RDBMS products. Today there are ANSI standards for

relational data types, and the major vendors support all or most of the standard types.

However, each vendor has their own “extensions” to the standards, largely in support

of data types they developed before there were standards. One could say (in jest) that

the greatest thing about database standards is that each vendor has their own unique

set. In terms of industry standards for relational databases, Microsoft Access is

probably the least compliant of the most popular products. Given the many levels of

standards compliance and all the vendor extensions, the DBA must have a detailed

knowledge of the data types available on the particular DBMS that is in use in order

to successfully deploy the database. And, of course, great care must be taken when

converting logical designs from one vendor to another.

Table 2-1 shows data types from different RDBMS vendors that are roughly

equivalent. As always, the devil is in the details, meaning that these are not identical

data types, merely equivalent. For example, the VARCHAR type in Oracle can be up

to 4000 characters in length (2000 characters in versions prior to Oracle8i), but the

equivalent MEMO type in Microsoft Access can be up to 64,000 characters.

36 Databases Demystified

Demystified / Databases Demystified / Oppel/ 225364-9 / Chapter 2

Data Type Microsoft Access Microsoft SQL Server Oracle

Fixed-Length

Character

TEXT CHAR CHAR

Variable-Length

Character

MEMO VARCHAR VARCHAR

Long Text MEMO TEXT LONG

Integer INTEGER

or LONG INTEGER

INTEGER

or SMALLINT

or TINYINT

NUMBER

Decimal NUMBER DECIMAL

or NUMERIC

NUMBER

Currency CURRENCY MONEY or

SMALLMONEY

None, use NUMBER

Date/Time DATE/TIME DATETIME or

SMALLDATETIME

DATE or TIMESTAMP

Table 2-1 Equivalent Data Types in Major RDBMS Products

P:\010Comp\DeMYST\364-9\ch02.vp
Monday, February 09, 2004 8:36:15 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Constraints
A constraint is a rule placed on a database object (typically a table or column) that

restricts the allowable data values for that database object in some way. These are

most important in relational databases in that constraints are the way we implement

both the relationships and business rules specified in the logical design. Each con-

straint is assigned a unique name to permit it to be referenced in error messages and

subsequent database commands. It is a good habit for DBAs to supply the constraint

names because names generated automatically by the RDBMS are never very

descriptive.

Primary Key Constraints
A primary key is a column or a set of columns that uniquely identifies each row in a

table. A unique identifier in the conceptual design is thus implemented as a primary

key in the logical design. The small icon that looks like a door key to the left of the

Order ID field name in Figure 2-6 indicates that this column has been defined as

the primary key of the Orders table. When we define a primary key, the RDBMS

implements it as a primary key constraint to guarantee that no two rows in the table

will ever have duplicate values in the primary key column(s). Note that for primary

keys composed of multiple columns, each column by itself may have duplicate values

in the table, but the combination of the values for the primary key columns must be

unique among all rows in the table.

Primary key constraints are nearly always implemented by the RDBMS using an

index, which is a special type of database object that permits fast searches of column

values. As new rows are inserted into the table, the RDBMS automatically searches

the index to make sure the value for the primary key of the new row is not already in

use in the table, rejecting the insert request if it is. Indexes can be searched much

faster than tables; therefore, the index on the primary key is essential in tables of any

size so that the search for duplicate keys on every insert doesn’t create a performance

bottleneck.

Referential Constraints
To understand how the RDBMS enforces relationships using referential constraints,

we must first understand the concept of foreign keys. When one-to-many relationships

are implemented in tables, the column or set of columns that is stored in the child table

(the table on the “many” side of the relationship), to associate it with the parent table

(the table on the “one” side), is called a foreign key. It gets its name from the column(s)

copied from another (foreign) table. In the Orders table shown earlier in Figure 2-6,

CHAPTER 2 Exploring Relational Database Components 37

P:\010Comp\DeMYST\364-9\ch02.vp
Monday, February 09, 2004 8:36:15 AM

Color profile: Generic CMYK printer profile
Composite Default screen

the EmployeeID column is a foreign key to the Employees table, and the CustomerID

column is a foreign key to the Customers table.

In most relational databases, the foreign key must either be the primary key of the

parent table or a column or set of columns for which a unique index is defined. This

again is for efficiency. Most people prefer that the foreign key column(s) have names

identical to the corresponding primary key column(s), but again there are counter

opinions, especially because like-named columns are a little more difficult to use in

query languages. It is best to set some standards up front and stick with them

throughout your database project.

Each relationship between entities in the conceptual design becomes a referential

constraint in the logical design. A referential constraint (sometimes called a referential

integrity constraint) is a constraint that enforces a relationship among tables in a

relational database. By “enforces,” we mean that the RDBMS automatically checks

to ensure that each foreign key value in a child table always has a corresponding

primary key value in the parent table.

Microsoft Access provides a very nice feature for foreign key columns, but it

takes a bit of getting used to. When you define a referential constraint, you can define

an automatic lookup of the parent table rows, as was done throughout the Northwind

database. In Figure 2-6, the second column in the table is listed as CustomerID.

However, in Figure 2-5, you will notice that the second column of the Orders table

displays the customer name and is labeled “Customer.” If you click in the Customer

column for one of the rows, a pull-down menu appears to allow the selection of a

valid customer (from the Customers table) to be the parent (owner) of the selected

Orders table row. Similarly, the EmployeeID column of the table displays the em-

ployee name. This is a convenient and easy feature for the database user, and it prevents a

nonexistent customer or employee from being associated with an order. However, it

hides the foreign key in such a way that Figure 2-5 isn’t very useful for illustrating

how referential constraints work under the covers. Figure 2-7 lists the Orders table

with the lookups removed so you can see the actual foreign key values in the

EmployeeID and CustomerID columns.

When we update the Orders table, as shown in Figure 2-7, the RDBMS must en-

force the referential constraints we have defined on the table. The beauty of database

constraints is that they are automatic and therefore cannot be circumvented unless

the DBA disables or deletes them. Here are the particular events that the RDBMS

must handle when enforcing referential constraints:

• When we try to insert a new row into the child table, the insert request is

rejected if the corresponding parent table row does not exist. For example,

if we insert a row into the Orders table with an EmployeeID value of 12345,

the RDBMS must check the Employees table to see if a row for EmployeeID

12345 already exists. If it doesn’t exist, the insert request is rejected.

38 Databases Demystified

P:\010Comp\DeMYST\364-9\ch02.vp
Monday, February 09, 2004 8:36:15 AM

Color profile: Generic CMYK printer profile
Composite Default screen

• When we try to update a foreign key value in the child table, the update request

is rejected if the new value for the foreign key does not already exist in the

parent table. For example, if we attempt to change the EmployeeID for Order

10248 from 5 to 12345, the RDBMS must again check the Employees table

to see if a row for EmployeeID 12345 already exists. If it doesn’t exist, the

update request is rejected.

• When we try to delete a row from a parent table, and that parent row has

related rows in one or more child tables, either the child table rows must

be deleted along with the parent row, or the delete request must be rejected.

Most RDBMSs provide the option of automatically deleting the child rows,

called a cascading delete. At first, you probably wondered why anyone

would ever want automatic deletion of child rows. Consider the Orders and

Order Details tables. If an order is to be deleted, why not delete the order

and the line items that belong to it in one easy step? However, with the

Employee table, we clearly would not want that option. If we attempt to

delete Employee 5 from the Employee table (perhaps because they are

no longer an employee), the RDBMS must check for rows assigned to

EmployeeID 5 in the Orders table and reject the delete request if any

are found. It would make no business sense to have orders automatically

deleted when an employee left the company.

CHAPTER 2 Exploring Relational Database Components 39

Figure 2-7 Northwind Orders table (with foreign key values displayed)

P:\010Comp\DeMYST\364-9\ch02.vp
Monday, February 09, 2004 8:36:16 AM

Color profile: Generic CMYK printer profile
Composite Default screen

40 Databases Demystified

Demystified / Databases Demystified / Oppel/ 225364-9 / Chapter 2

In most relational databases, an SQL statement is used to define a referential

constraint. SQL is introduced in Chapter 4. SQL (Structured Query Language) is

the language used in relational databases to communicate with the database. Many

vendors also provide GUI (graphical user interface) panels for defining database

objects such as referential constraints. In Oracle and SQL Server, these GUI panels

are located within the Enterprise Manager tool. For Microsoft Access, Figure 2-8

shows the Relationships panel that is used for defining referential constraints.

For simplicity, only the Orders table and its two parent tables, Employees and

Customers, are shown in Figure 2-8. The referential constraints are shown as bold

lines with the numeric symbol “1” near the parent table (the “one” side) and the

mathematical symbol for “infinity” near the child table (the “many” side). These

constraints are defined by simply dragging the name of the primary key in the parent

table to the name of the foreign key in the child table. A pop-up window is then auto-

matically displayed to allow the definition of options for the referential constraint, as

shown in Figure 2-9.

At the top of the Edit Relationships panel, the two table names appear with the

parent table on the left and the child table on the right. If you forget which is which,

the Relationship Type field, near the bottom of the panel, should remind you. Under

each table name, there are rows for selection of the column names that comprise the

Figure 2-8 Microsoft Access Relationships panel

P:\010Comp\DeMYST\364-9\ch02.vp
Monday, February 09, 2004 8:36:16 AM

Color profile: Generic CMYK printer profile
Composite Default screen

primary key and foreign key. Figure 2-9 shows the primary key column CustomerID

in the Customers table and foreign key column. The check boxes provide some

options:

• Enforce Referential Integrity If the box is checked, the constraint

is enforced; unchecking the box turns off constraint enforcement.

• Cascade Update Related Fields If the box is checked, any update to the

primary key value in the parent table will cause automatic like updates to

the related foreign key values. An update of primary key values is a rare

situation.

• Cascade Delete Related Records If the box is checked, a delete of a

parent table row will cause the automatic cascading deletion of the related

child table rows. Think carefully here. There are times to use this, such as

the constraint between Orders and Order Details, and times when the option

can lead to the disastrous unwanted loss of data, such as deleting an employee

(perhaps accidentally) and having all the orders that employee handled

automatically deleted from the database.

Intersection Tables
The discussion of many-to-many relationships earlier in this chapter pointed out that

relational databases cannot implement these relationships directly and that an inter-

section table is formed to establish them. Figure 2-10 shows the implementation of

the Order Details intersection table in Microsoft Access.

The many-to-many relationship between orders and products in the conceptual

design becomes an intersection table (OrderDetails) in the logical design. The rela-

tionship is then implemented as two one-to-many relationships with the intersection

CHAPTER 2 Exploring Relational Database Components 41

Figure 2-9 Microsoft Access Edit Relationships panel

P:\010Comp\DeMYST\364-9\ch02.vp
Monday, February 09, 2004 8:36:16 AM

Color profile: Generic CMYK printer profile
Composite Default screen

table on the “many” side of each. The primary key of the OrderDetails table is the

combination of OrderID and ProductID, with OrderID being a foreign key to the Orders

table and ProductID being a foreign key to the Products table. Take a moment to

examine the contents of the intersection table and the two referential constraints.

Understanding this arrangement is fundamental to understanding how relational

databases work. Here are some points to consider:

• Each row in the OrderDetails intersection table belongs to the intersection

of one product and one order. It would not make sense to put ProductName

in this table because that name is the same every time the product appears

on an order. Also, it would not make sense to put CustomerID in OrderDetails

because all line items on the same order belong to the same customer.

• Each Products table row may have many related OrderDetails rows (one for

each order line item on which the product was ordered), but each OrderDetails

row belongs to one and only one Products table row.

• Each Orders table row may have many related OrderDetails rows (one for

each line item for that particular order), but each OrderDetails row belongs

to one and only one Orders table row.

Integrity Constraints
As already mentioned, business rules from the conceptual design become con-

straints in the logical design. An integrity constraint is a constraint (as defined earlier)

that promotes the accuracy of the data in the database. The key benefit is that these

42 Databases Demystified

Figure 2-10 Order Details intersection table (Microsoft Access)

P:\010Comp\DeMYST\364-9\ch02.vp
Monday, February 09, 2004 8:36:16 AM

Color profile: Generic CMYK printer profile
Composite Default screen

constraints are invoked automatically by the RDBMS and cannot be circumvented

(unless you are a DBA) no matter how you connect to the database. The major types

of integrity constraints are NOT NULL constraints, CHECK constraints, and con-

straints enforced with triggers.

NOT NULL Constraints
As we define columns in database tables, we have the option of specifying whether

null values are permitted for the column. A null value in a relational database is a

special code that can be placed in a column that indicates that the value for that column

in that row is unknown. A null value is not the same as a blank, an empty string, or a

zero—it is indeed a special code that has no other meaning in the database.

A uniform way to treat null values is an ANSI standard for relational databases.

However, there has been much debate over the usefulness of the option because the

database cannot tell you why the value is unknown. If we leave the value for Title null

in the Northwind Employees table, for example, we don’t know whether it is null

because it is truly unknown (we know employees must have a title, but we do not

know what it is), it doesn’t apply (perhaps some employees do not get titles), or it is

unassigned (they will get a title eventually, but their manager hasn’t figured out

which title to use just yet). The other dilemma is that null values are not equal to

anything, including other null values, which introduces three-valued logic into data-

base searches. With nulls in use, a search can return the condition true (the column

value matches), false (the column value does not match), or unknown (the column

value is null). The developers who write the application programs have to handle

null values as a special case. You’ll see more about nulls when SQL is introduced.

In Microsoft Access, the NOT NULL constraint is controlled by the Required option

on the table design panel. Figure 2-11 shows the definition of the BirthDate column

of the Employee table. Note that the column is not required because the Required op-

tion is set to No. In SQL definitions of tables, we simply include the keyword NULL

or NOT NULL with the column definition. Watch out for defaults! In Oracle, if you

skip the specification, the default is NULL, which means the column may contain

null values. But in Microsoft SQL Server and Sybase, it is just the opposite; if you

skip the specification, the default is NOT NULL, meaning the column may not con-

tain null values.

CHECK Constraints
A CHECK constraint uses a simple logic statement to validate a column value. The

outcome of the statement must be a logical true or false, with an outcome of true al-

lowing the column value to be placed in the table, and a value of false causing the

CHAPTER 2 Exploring Relational Database Components 43

P:\010Comp\DeMYST\364-9\ch02.vp
Monday, February 09, 2004 8:36:16 AM

Color profile: Generic CMYK printer profile
Composite Default screen

column value to be rejected with an appropriate error message. In Figure 2-11, notice

that “<Date()” appears in the Validation Rule option for the BirthDate column. This

rule prevents birth dates from being in the future (as the comment suggests) by making

sure that the value supplied for the column is less than the current date. Although the

syntax of the option will vary for other databases, the concept remains the same. In

Oracle SQL, it would be written this way:

CHECK (BIRTH_DATE < CURRENT_DATE)

Constraint Enforcement Using Triggers
Some constraints are too complicated to be enforced using the declarations. For ex-

ample, the business rule contained in Figure 2-1 (“Customers with overdue amounts

may not book new orders”) falls into this category because it involves more than one

44 Databases Demystified

Figure 2-11 Employee table definition panel, BirthDate column

P:\010Comp\DeMYST\364-9\ch02.vp
Monday, February 09, 2004 8:36:17 AM

Color profile: Generic CMYK printer profile
Composite Default screen

table. We need the database to prevent new rows from being added to the Orders ta-

ble if the Account Receivable row for the customer has an overdue amount that is

greater than zero. A trigger is a module of programming logic that “fires” (executes)

when a particular event in the database takes place. In this example, we want the trig-

ger to fire whenever a new row is inserted into the Orders table. The trigger obtains

the overdue amount for the customer from the Account Receivable table (or wherever

the column is physically stored). If this amount is greater than zero, the trigger will

raise a database error that stops the insert request and causes an appropriate error

message to be displayed.

In Microsoft Access, triggers may be written as macros using the Microsoft Visual

Basic for Applications language. Some RDBMSs provide a special language for

writing program modules such as triggers: PL/SQL in Oracle, and Transact SQL in

Microsoft SQL Server and Sybase. In other RDBMSs, such as DB2, a generic pro-

gramming language such as C may be used.

Views
A view is a stored database query that provides a database user with a customized

subset of the data from one or more tables in the database. Said another way, a view is

a virtual table because it looks like a table and for the most part behaves like a table,

yet it stores no data (only the defining query is stored). The user views form the ex-

ternal layer in the ANSI/SPARC model. During logical design, each view is created

using an appropriate method for the particular database. In many RDBMSs, a view

is defined using SQL. In Microsoft Access, views are called queries and are created

using the Query panel. Figure 2-12 shows the Microsoft Access definition of a simple

view that lists active products.

The view in Figure 2-12 displays only two columns from a table that contains ten

columns. Furthermore, rows for discontinued products are not displayed in the view

by virtue of the “No” in the criteria row for the Discontinued column. We explore the

Microsoft Access Query panel in detail in Chapter 3.

Views serve a number of useful functions:

• Hiding columns that the user does not need to see (or should not

be allowed to see)

• Hiding rows from tables that a user does not need to see (or should

not be allowed to see)

• Hiding complex database operations such as table joins

• Improving query performance (in some RDBMSs, such as

Microsoft SQL Server)

CHAPTER 2 Exploring Relational Database Components 45

P:\010Comp\DeMYST\364-9\ch02.vp
Monday, February 09, 2004 8:36:17 AM

Color profile: Generic CMYK printer profile
Composite Default screen

46 Databases Demystified

Demystified / Databases Demystified / Oppel/ 225364-9 / Chapter 2

Quiz
Choose the correct responses to each of the multiple-choice questions. Note that

there may be more than one correct response to each question.

1. Examples of an entity are

a. A customer

b. A alphabetical listing of products

c. A customer order

d. An employee’s paycheck

e. A customer’s name

2. Examples of an attribute are

a. An employee

b. An employee’s name

c. An employee’s paycheck

d. An alphabetical listing of employees

e. An employee’s birth date

Figure 2-12 Microsoft Access view, list of active products

P:\010Comp\DeMYST\364-9\ch02.vp
Monday, February 09, 2004 8:36:17 AM

Color profile: Generic CMYK printer profile
Composite Default screen

3. On a relationship line, the cardinality of “zero, one, or more” is denoted as:

a. A vertical tick mark near the end of the line and a crow’s foot at the line end

b. A circle near the end of the line and a crow’s foot at the end of the line

c. Two vertical tick marks near the end of the line

d. A circle and a vertical tick mark near the end of the line

e. The mathematical symbol for “infinity” above the end of the line

4. Valid types of relationships in a relational database are

a. One-to-many

b. None-to-many

c. Many-to-many

d. One-to-one

e. One-to-many-to-one

5. If a product can be manufactured in many plants, and a plant can manufacture

many products, this is an example of which type of relationship?

a. One-to-one

b. One-to-many

c. Many-to-one

d. Many-to-many

e. Recursive

6. Which of the following are examples of recursive relationships?

a. An organizational unit made up of other organizational units

b. An organizational unit made up of departments

c. An employee who manages other employees

d. An employee who manages a department

e. An employee who has many dependents

7. Examples of a business rule are

a. A referential constraint must refer to the primary key of the parent table.

b. An employee must be at least 18 years old.

c. A database query that eliminates columns an employee should not see.

d. Employees below pay grade 6 are not permitted to modify orders.

e. Every order may belong to only one customer, but each customer may

have many orders.

8. A relational table:

a. Is composed of rows and columns

b. Must be assigned a data type

c. Must be assigned a unique name

d. Appears in the conceptual database design

e. Is the primary unit of storage in the relational model

CHAPTER 2 Exploring Relational Database Components 47

P:\010Comp\DeMYST\364-9\ch02.vp
Monday, February 09, 2004 8:36:17 AM

Color profile: Generic CMYK printer profile
Composite Default screen

9. A column in a relational table:

a. Must be assigned a data type

b. Must be assigned a unique name within the table

c. Is derived from an entity in the conceptual design

d. May be composed of other columns

e. Is the smallest named unit of storage in a relational database

10. A data type:

a. Restricts the data that may be stored in a view

b. Assists the DBMS in storing data efficiently

c. Provides a set of behaviors for a column that assists the database user

d. May be selected based on business rules for an attribute

e. Restricts characters allowed in a database column

11. A primary key constraint:

a. Must reference one or more columns in a single table

b. Enforces referential integrity constraints

c. Must be defined for every database table

d. Is usually implemented using an index

e. Guarantees that no two rows in a table have duplicate primary

key values

12. A referential constraint:

a. Must have primary key and foreign key columns that have identical

names

b. Ensures that a primary key does not have duplicate values in a table

c. Defines a many-to-many relationship between two tables

d. Ensures that a foreign key value always refers to an existing primary

key value in the parent table

e. Is derived from a user view in the conceptual model

13. A referential constraint is defined:

a. Using the Relationships panel in Microsoft Access

b. Using SQL in most relational databases

c. In a view

d. Using the referential data type for the foreign key column(s)

e. Using a database trigger

14. Intersection tables:

a. Are used to provide users with a customized view of their data

b. Resolve a one-to-many relationship

c. May contain intersection data

d. Resolve a many-to-many relationship

e. Appear only in the conceptual database design

48 Databases Demystified

P:\010Comp\DeMYST\364-9\ch02.vp
Monday, February 09, 2004 8:36:17 AM

Color profile: Generic CMYK printer profile
Composite Default screen

CHAPTER 2 Exploring Relational Database Components 49

Demystified / Databases Demystified / Oppel/ 225364-9 / Chapter 2

15. Major types of integrity constraints are

a. CHECK constraints

b. One-to-one relationships

c. NOT NULL constraints

d. Constraints enforced with triggers

e. Data types

16. An entity in the conceptual design becomes which object in the logical design?

a. View

b. Table

c. Column

d. Referential constraint

e. Index

17. An attribute in the conceptual design becomes which object in the logical

design?

a. View

b. Table

c. Column

d. Referential constraint

e. Index

18. Items in the external level of the ANSI/SPARC model become which type

of database object in the logical model?

a. View

b. Table

c. Column

d. Referential constraint

e. Index

19. A relationship in the conceptual design becomes which object in the logical

design?

a. View

b. Table

c. Column

d. Referential constraint

e. Index

20. A primary key constraint is implemented using which type of object in the

logical design?

a. View

b. Table

c. Column

d. Referential constraint

e. Index

P:\010Comp\DeMYST\364-9\ch02.vp
Monday, February 09, 2004 8:36:17 AM

Color profile: Generic CMYK printer profile
Composite Default screen

P:\010Comp\DeMYST\364-9\ch02.vp
Monday, February 09, 2004 8:36:17 AM

Color profile: Generic CMYK printer profile
Composite Default screen

This page intentionally left blank.

CHAPTER
3

Forms-Based
Database

Queries

On the theory that you cannot design a car if you have never driven one, we will take

a brief tour of database queries before delving into the details of database design.

This chapter provides an overview of forming and running database queries using

the forms-based query tool in Microsoft Access. It is not at all my intent to provide

a comprehensive guide to Microsoft Access; I am merely using Microsoft Access

as a vehicle to present database query concepts that will provide a foundation for the

database design theory that follows later in this book. However, I will attempt to pro-

vide enough basic information about using Microsoft Access that you will be able to

follow along on your own computer as we explore forms-based queries in Microsoft

Access.

51

P:\010Comp\DeMYST\364-9\ch03.vp
Monday, February 09, 2004 8:42:39 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Copyright © 2004 by The McGraw-Hill Companies. Click here for terms of use.

QBE: The Roots of Forms-Based Queries
A forms-based query language uses a GUI (graphical user interface) panel for the

creation of a query. The database user defines queries by entering sample data values

directly into a query template to represent the result that the database is to achieve.

An alternative query method uses a command-based query language, where queries

are written as text commands. SQL (Structured Query Language) is the ubiquitous

command-based query language for relational databases, and it’s introduced in

Chapter 4. The emphasis with both forms-based and command-based query lan-

guages is on what the result should be rather than how to achieve the result. The dif-

ference between the two is only in the way the user describes the desired result, and

it’s similar to the difference between using Microsoft Windows Explorer to copy a

file versus using the MS-DOS copy command (in the DOS Command window) to do

the same thing.

The first well-known forms-based query tool was QBE (Query By Example),

which was developed by IBM in the 1970s. Personal computers, Microsoft Win-

dows, the mouse, and many other modern computing amenities were unheard of at

this time, but the interface was still graphical in nature. A form was displayed, and

database users typed sample data and simple commands in boxes, where today they

would click a button using a mouse. SQL, also initially developed by IBM, was also

new in the 1970s. IBM conducted a controlled study to determine whether QBE or

SQL was preferred by database users of the day. The conclusion was that whichever

one a database user learned first was the one they preferred. Human nature it seems.

Experience has shown us that both methods are useful to know. Forms-based que-

ries lend themselves well to casual use and database users who are more accustomed

to GUI environments than to touch-typing commands. However, database users fa-

miliar with command syntax and possessing reasonable typing skills can enter com-

mand-based queries more quickly than the GUI equivalents, and command-based

queries can be directly used within a programming language such as Java or C.

Getting Started in Microsoft Access
The queries shown in this chapter all use the Northwind sample database provided

with Microsoft Access. You will have the best learning experience if you try the que-

ries presented in this chapter as you read. Obviously, the sample database is re-

quired, but it is relatively simple to install from the Microsoft Office CD-ROM.

Please refer to Microsoft documentation if you need assistance with the installation.

52 Databases Demystified

P:\010Comp\DeMYST\364-9\ch03.vp
Monday, February 09, 2004 8:42:39 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Once Microsoft Access is installed, I highly recommend that you copy the

Northwind database file, Northwind.mdb, to another directory and use that copy as

you practice Microsoft Access queries. It is easy to accidentally update the database

when using Microsoft Access, and there is no simple “undo” function. If you work

with a copy of the database file, recovering from mistakes becomes a simple matter

of copying the original file again. On most Microsoft Windows systems, you will

find the Northwind.mdb file in the directory \Program Files\Microsoft Office\

Office\Samples or \Program Files\Microsoft Office\Office11\Samples, depending

on the version of Microsoft Access. Note that you may also wish to copy the three

files with names beginning with NWIND9 (or just the entire Samples directory, as

it’s not very large). These files are not needed to use the database, but if you decide

to run any parts of the sample application or the customized help information that

comes with the database, you will need them.

The simplest way to launch Microsoft Access and open the Northwind database is

merely to double-click the Northwind.mdb file in Windows Explorer. However, you

may also launch Microsoft Access from the Start menu and use the Open an Existing

File option to navigate to the directory where you placed the copy of Northwind.mdb

and double-click the filename to open the database. Figure 3-1 shows the window

that opens automatically when Microsoft Access is launched from the Start menu.

Note that the screen images in this chapter are from Microsoft Access 2000, but the

look and feel varies from one version to another, so your screens may not look ex-

actly like these. For instance, the Microsoft Access XP version starts with a Getting

Started side window instead of the pop-up windows shown in Figure 3-1.

CHAPTER 3 Forms-Based Database Queries 53

Figure 3-1 Microsoft Access startup window

P:\010Comp\DeMYST\364-9\ch03.vp
Monday, February 09, 2004 8:42:39 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Once you have used Microsoft Access to open one or more database files, a list of

the most recently used database files will appear in a list just below the Open an Ex-

isting File option in the startup window. You may reopen a previously used database

merely by clicking its filename in the list. After you have opened the database, you

will see a screen similar to the one shown in Figure 3-2.

This is the main panel in Microsoft Access. In a column along the left margin with

the heading Objects, you can switch the type of database objects listed in the center

of the panel. When you start Microsoft Access for the very first time, the default se-

lection is Tables. However, from that point forward, Microsoft Access will remem-

ber the last type you selected for the database and always return you to that type

when you subsequently reopen the database. Briefly, the types shown may be de-

fined as follows:

• Tables Relational tables. These hold the actual database data in rows and

columns.

54 Databases Demystified

Figure 3-2 Microsoft Access main panel

P:\010Comp\DeMYST\364-9\ch03.vp
Monday, February 09, 2004 8:42:39 AM

Color profile: Generic CMYK printer profile
Composite Default screen

• Queries Stored database queries. These are called views in nearly all

other relational databases.

• Forms GUI forms for data entry and/or display within Microsoft Access.

• Reports Reports based on database queries.

• Pages Web pages for data entry and/or display using a web browser.

• Macros Sets of actions that each perform a particular operation, such as

opening a form or printing a report.

• Modules Collections of Visual Basic programming language components

that are stored as a unit.

As with many personal computer–based databases, Microsoft Access is not only

a database, but also a complete development environment for building and running

applications. The database products that run on larger, shared computer systems

commonly called servers typically do not come with application-development envi-

ronments. Learning to build application programs is well outside the scope of this

book, so we will not deal with the Forms, Reports, Pages, Macros, and Modules

types at all. We will focus only on the Tables and Queries types in Microsoft Access.

Maintenance of the objects in the database can be performed from this panel, in-

cluding the following tasks:

• To add a new object of the type displayed, click the appropriate shortcut

near the top of the list. For example, the Tables object list includes a shortcut

called Create Table in Design View.

• To delete an existing object, click its name so it is selected and then

press DELETE.

• To display an object, double-click its name.

• To display the definition (design) of an object, click its name so that it is

selected and then click the Design View button on the toolbar (the one with

the ruler, pencil, and triangle on it).

The Microsoft Access Relationships Panel
Microsoft Access provides the Relationships panel, shown in Figure 3-3, for the def-

inition and maintenance of referential constraints between the relational tables. To

display this panel, either click the toolbar button (the icon with three tables and lines

drawn between them on it) or select Tools | Relationships from the menu bar.

CHAPTER 3 Forms-Based Database Queries 55

P:\010Comp\DeMYST\364-9\ch03.vp
Monday, February 09, 2004 8:42:40 AM

Color profile: Generic CMYK printer profile
Composite Default screen

56 Databases Demystified

Demystified / Databases Demystified / Oppel/ 225364-9 / Chapter 3

The Relationships panel graphically displays tables, shown as rectangles, and

one-to-many relationships, shown as lines between the rectangles. Technically,

these are referential constraints (relationships being only a conceptual term), but be-

cause Microsoft calls them relationships on this panel, I will also for consistency.

The symbol “1” shows the “one” side of each relationship, whereas the infinity sym-

bol (similar to the number 8 laying on its side) shows the “many” side of each rela-

tionship. The relationships may be maintained as follows:

• To add tables that are not displayed, click the Show Table button on the

toolbar (the one with a table and bold yellow plus sign on it), and select

the tables from the pop-up window.

• To remove a table from the display, click it so that it is selected and then

press DELETE. Note that this does not delete the table or any relationships

in which the table participates; it merely removes the table from the panel.

• To add a relationship, drag the primary key in one table to the matching

foreign key in another. For recursive relationships, the table must be added

to the display a second time, and the relationship must be created between

one displayed copy of the table and the other. This looks odd at first, but it

is only to facilitate the drag-and-drop method of creating the relationship.

A table shown multiple times on the panel still exists only one time in the

database.

• To delete a relationship, click the narrow part of its line and press DELETE.

Selecting relationships can be tricky in Microsoft Access because only the

Figure 3-3 The Microsoft Access Relationships panel

P:\010Comp\DeMYST\364-9\ch03.vp
Monday, February 09, 2004 8:42:40 AM

Color profile: Generic CMYK printer profile
Composite Default screen

narrow part of the line will work, and you may have to stretch short lines by

moving a table on the panel in order to even find the narrow part of the line.

• To edit a relationship, double-click the narrow part of its line. A pop-up

window may be used to change various options about the relationship,

including toggling enforcement of the relationship as a referential constraint

on and off (that is, enabling and disabling the constraint). When a constraint is

disabled, the DBMS will not prevent inserts, updates, and deletes from creating

“orphan” foreign key values (foreign key values that have no matching primary

key values in the parent table). The DBMS will, however, not permit a constraint

to be enabled if there are orphan foreign key values in the child table.

Closing or minimizing the window will make the main panel visible once again.

The Microsoft Access Table Design View
From the main panel, a table may be selected by double-clicking its name. The de-

fault display, called the Datasheet View, is shown in Figure 3-4. The data in the table

is displayed in the familiar tabular form, and the data may be updated if desired, in-

cluding the insertion and deletion of rows. Be careful. There is no “undo” feature—

once you move the cursor from one row to another, any changes you have made can-

not be easily reversed.

To see the definition of the table, click the Design View button on the toolbar (the

one with the ruler, pencil, and triangle on it). Figure 3-5 shows the Design View for

the Employees table.

CHAPTER 3 Forms-Based Database Queries 57

Figure 3-4 Datasheet View (Employees table)

Design View

P:\010Comp\DeMYST\364-9\ch03.vp
Monday, February 09, 2004 8:42:40 AM

Color profile: Generic CMYK printer profile
Composite Default screen

The Design View for a table in Microsoft Access displays information such as the

following:

• Field Name The name of the column.

• Data Type The data type for the column.

• Description A description of the column, typically provided by a DBA.

• Field Size A subtype within the data type. For example, Long Integer and

Short Integer apply to the more general Number data type.

• Required Indicates whether the column is optional (that is, whether it

may have null values).

• Indexed Indicates whether the column has an index.

• Primary Key Denoted with a small key icon next to the field name (or

names) that comprises the primary key.

58 Databases Demystified

Figure 3-5 Design View (Employees table)

P:\010Comp\DeMYST\364-9\ch03.vp
Monday, February 09, 2004 8:42:41 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Hopefully, you recognized that everything on this panel is metadata. There are

many more options than the ones noted here, and Microsoft Access is very clever

about hiding and exposing options so only the applicable ones are displayed. Notice

that help text in blue automatically displays in the lower-right part of the panel as

you move the cursor from one option to another.

Creating Queries in Microsoft Access
As mentioned earlier, stored queries are called views in most databases, but because

a view is defined as a stored database query, the Microsoft Access name is techni-

cally correct. Always keep in mind that queries do not store any data; instead, the

data is stored in the tables. On the main panel, clicking the Queries button (along the

left margin) lists all the queries stored in this database, as shown in Figure 3-6.

CHAPTER 3 Forms-Based Database Queries 59

Figure 3-6 Microsoft Access Queries window

P:\010Comp\DeMYST\364-9\ch03.vp
Monday, February 09, 2004 8:42:41 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Although Microsoft Access offers several ways to create a new query, for begin-

ners, the Create Query in Design View option is the easiest to understand. Figure 3-7

shows the Design View for a New Query panel (also called the Query Design View

panel) with the Show Table dialog box open.

For every new query, Microsoft Access opens the Show Table dialog box to allow

for the selection of the tables and/or queries on which the query will be based (that

is, the tables or queries that are to be the source of the data that will be displayed).

Once the tables are added, the Query Design View panel allows for the entry of the

specification for the desired query. Figure 3-8 shows the Query Design View panel

with the Customers table added.

The Query Design View panel has the following components:

• In the open area at the top of the panel (gray background), a graphical

representation of the source tables and/or views and the relationships for the

query are shown. Any relationships defined for the tables are automatically

inherited here.

60 Databases Demystified

Figure 3-7 Query Design View with the Show Table dialog box visible

P:\010Comp\DeMYST\364-9\ch03.vp
Monday, February 09, 2004 8:42:41 AM

Color profile: Generic CMYK printer profile
Composite Default screen

• In the grid area in the lower part of the panel, each column represents a

column of data that is to be returned in the result set when the query is

executed. Rows in the grid area define various options to be applied to the

corresponding columns (usage examples are provided in the sections that

follow):

• Field The specification for the source of the column. This is normally

a table or query column name, but it can also be a constant or an

expression similar to calculations used in spreadsheets.

• Table The source table or query name for the column.

• Sort The specification for any sort sequencing for the column

(Ascending, Descending, or None).

• Show A check box that controls display of the column. If the box

is not checked, the column may be used in forming the query, but does

not appear in the query results.

• Criteria The specification that determines which rows of data are to

appear in the query results. All conditions placed on the same line must

be met for a row of data to be displayed in the query results. Conditions

placed on subsequent lines (labeled “or” on the panel) are alternative sets

of conditions that will also cause a matching data row to be displayed in

the results. The usage of these will likely not make sense until you see

the examples that follow, but in short, conditions placed on one line

CHAPTER 3 Forms-Based Database Queries 61

Figure 3-8 Query Design View

P:\010Comp\DeMYST\364-9\ch03.vp
Monday, February 09, 2004 8:42:42 AM

Color profile: Generic CMYK printer profile
Composite Default screen

are connected with a logical AND operator, and each new line of criteria

is connected using a logical OR operator with all the other lines. Said

another way, any row that matches the specifications that appear on any

one of the criteria lines will be displayed in the query results.

Once the specification is complete, clicking the Run button (the one with the ex-

clamation point on it) runs the query and displays the results using the Datasheet

View, as already shown in Figure 3-4. To go back to the Query Design View panel,

simply click the Design View button (the one with the ruler, pencil, and triangle on

it). For most queries, data updates may be applied directly in the Datasheet View

table, and they are applied directly to the source tables for the query. If a column in

the query results cannot be mapped to a single table column—perhaps because it

was calculated in some way—then it cannot be updated in the query results.

The remainder of this section will use a series of examples to demonstrate the

powerful features of the Microsoft Access Queries tool. For each example, there is a

description of the result desired and the steps required to create the specification for

the query on the Query Design View panel. This is followed by a figure showing the

completed Design View panel, and another figure showing the results when the query

is executed.

Example 3-1: List All Customers
To list the entire Customers table (all rows and all columns), follow these steps:

1. From the main panel with Queries selected in the left margin, double-click

the link Create Query in Design View.

2. Perform the following actions in the Show Table dialog box:

• Click Customers to select the Customers table.

• Click the Add button.

• Click the Close button.

3. On the Design View panel, double-click the asterisk in the Customers table

template (near the top of the panel).

The completed panel is shown at the top of Figure 3-9 with the query results shown

below.

62 Databases Demystified

P:\010Comp\DeMYST\364-9\ch03.vp
Monday, February 09, 2004 8:42:42 AM

Color profile: Generic CMYK printer profile
Composite Default screen

CHAPTER 3 Forms-Based Database Queries 63

Demystified / Databases Demystified / Oppel/ 225364-9 / Chapter 3

Example 3-2: Choosing Columns to Display
Instead of displaying all columns, we now specify only the ones that we wish to see.

To list the CustomerID, CompanyName, City, Region, and Country columns for all

customers (all rows and all columns), follow the steps outlined in this section.

Using the Design View from Example 3-1 as a starting point, modify the query as

follows:

1. Remove the existing specification that displays all columns by clicking the

small gray rectangle above field name “Customers.*” (which changes the entire

column to a black background). Then press DELETE to remove the column.

Figure 3-9 Example 3-1, “List All Customers” (Query Design View) (top), and the

query results (bottom)

P:\010Comp\DeMYST\364-9\ch03.vp
Monday, February 09, 2004 8:42:42 AM

Color profile: Generic CMYK printer profile
Composite Default screen

64 Databases Demystified

2. For each desired column (CustomerID, CompanyName, City, Region, and

Country), double-click the column name in the table shown at the top of the

form. An alternative method is to drag and drop the column name from the

table shown at the top of the form to the grid in the lower part of the form.

The completed panel and query results are shown in Figure 3-10.

Example 3-3: Sorting Results
In any RDBMS, rows are returned in no particular order unless you request one.

Microsoft Access uses the Sort specification to determine the order in which rows

are returned in query results.

Figure 3-10 Example 3-2, “Choosing Columns to Display” (top), and the query results

(bottom)

P:\010Comp\DeMYST\364-9\ch03.vp
Monday, February 09, 2004 8:42:43 AM

Color profile: Generic CMYK printer profile
Composite Default screen

To modify Example 3-2 so that rows are sorted in ascending order by city, region,

and country, follow these steps:

1. On the line labeled Sort in the column for City, click in the blank space and

select Ascending from the pull-down list.

2. Do the same for the Region column. A simple alternative method is to type

A in the sort specification and press ENTER.

3. Do the same for the Country column.

The completed panel and query results are shown in Figure 3-11.

CHAPTER 3 Forms-Based Database Queries 65

Figure 3-11 Example 3-3, “Sorting Results” (top), and the query results (bottom)

P:\010Comp\DeMYST\364-9\ch03.vp
Monday, February 09, 2004 8:42:43 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Example 3-4: Advanced Sorting
Looking at the results of Example 3-3, you can see that all the cities are listed in as-

cending sequence and that sorting by region and then by country had little effect and

would matter only if two cities with the same name existed in different regions and

countries. Spoken language not always being logically precise, this is unlikely to be

what we meant when we said we wanted the data sorted by city, region, and country.

Instead, we likely wanted all the rows for a country to be together, and for each coun-

try, all the rows in a region to be together, and for each region, all the cities to be listed

in ascending sequence by name. If we had said sort by city within region within

country, our intent would have been clearer. Now we need a way to sort by country

first, region second, and city last, but city is displayed before region, and region be-

fore country. Microsoft Access sorting works on the columns in the query from left

to right. How can we accomplish our goal? We can place the Region and City col-

umns in the query a second time, use the second copies for sorting, but omit them

from the query results using the Show check box.

To modify Example 3-3 so that rows are sorted as discussed, follow these steps:

1. Remove the sort specifications on the existing City and Region columns.

2. Add the Region column again by double-clicking its name in the

Customers table.

3. Do the same for the City column.

4. Add the ascending sort specification to the Region and City columns

that you just added (the ones to the right of the Country column).

5. Remove the check mark for the Region and City columns that you just added.

The completed panel and query results are shown in Figure 3-12.

Note that most languages are read from left to right, so we naturally expect tabular

listings to be sorted moving from left to right, starting with the leftmost column. It is

unusual, and perhaps poor human engineering, to sort columns another way. But

should you ever need to, you now know how.

Example 3-5: Choosing Rows to Display
Thus far we have been displaying all 91 rows in the Customer table in every query. If

we do not wish to see all the rows, displaying all of them is wasteful of system re-

sources, especially if we are sorting them. Suppose we only wish to see rows for cus-

tomers in London, UK. We can do so using the Criteria line on the Query Design

View panel.

66 Databases Demystified

P:\010Comp\DeMYST\364-9\ch03.vp
Monday, February 09, 2004 8:42:43 AM

Color profile: Generic CMYK printer profile
Composite Default screen

To modify Example 3-4 to limit the rows displayed:

1. On the line labeled Criteria, type London in the leftmost City column. Note

that Microsoft Access pays no attention to case when selecting data in que-

ries, so you can also enter LONDON or london and achieve the same result.

2. On the same line, type UK in the Country column. It is important to enter

the City and Country criteria on the same line because we only want rows

returned where the City is “London” and the Country is “UK.”

CHAPTER 3 Forms-Based Database Queries 67

Figure 3-12 Example 3-4, “Advanced Sorting” (top), and the query results (bottom)

P:\010Comp\DeMYST\364-9\ch03.vp
Monday, February 09, 2004 8:42:44 AM

Color profile: Generic CMYK printer profile
Composite Default screen

68 Databases Demystified

Demystified / Databases Demystified / Oppel/ 225364-9 / Chapter 3

The completed panel and query results are shown in Figure 3-13. You may have no-

ticed that the criteria for Country is not enclosed in double-quotes in the panel at the

top of Figure 3-13. Microsoft Access knows that this is a character format column

and assumes the quotes to be there, even when you leave them out.

Example 3-6: Compound Row Selection
Suppose we now want to select all customers in the state of Washington in the U.S. in

addition to those in London. We must add the new criteria or a different line of the

Query View panel.

Figure 3-13 Example 3-5, “Choosing Rows to Display” (top), and the query results

(bottom)

P:\010Comp\DeMYST\364-9\ch03.vp
Monday, February 09, 2004 8:42:44 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Follow these steps to modify Example 3-5 to include the additional customers:

1. On a new line in the Criteria area of the panel, enter WA in the leftmost Re-

gion column.

2. On the same line, enter USA in the Country column. Note that the criteria

is interpreted this way: Select all rows where the City equals “London” and

the Country equals “UK”; in addition, select all rows where the Region equals

“WA” and the County equals “USA.”

The completed panel and query results are shown in Figure 3-14.

CHAPTER 3 Forms-Based Database Queries 69

Figure 3-14 Example 3-6, “Compound Row Selection” (top), and the query results

(bottom)

P:\010Comp\DeMYST\364-9\ch03.vp
Monday, February 09, 2004 8:42:45 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Example 3-7: Using Not Equal
Thus far we have looked at search criteria that assumes the “equal” (=) comparison

operator. However, several other comparison operators can be used, as shown in the

following table:

Operator Description

< Less than

<= Less than or equal

> Greater than

>= Greater than or equal

<> Not equal (ANSI standard form)

For example, suppose we need to find all the customers who are not from either

the USA or the UK. Note that we have run into another situation where spoken lan-

guage isn’t logically precise. If we use OR as the logical operator (that is, <>“USA”

OR <>“UK”), we will select all rows in the table, for no matter what data value is in

the row, it won’t be equal to one or the other of those two values. Therefore, we must

use AND as the relational operator because we want rows that are not equal to one

value and also not equal to the other value.

To modify Example 3-6 to find all the customers who are not in the USA and not

in the UK, do the following:

1. Remove all the criteria from the previous example.

2. In the Criteria line for the Country column, enter <>“USA” AND <>“UK”.

Figure 3-15 shows the completed panel and query results.

Example 3-8: Joining Tables
In relational databases, combinining data from more than one table is called joining.

In this example, we wish to display three columns from the Customers table along

with three columns from the Orders table for each order the customer has placed

with Northwind. Because the relationship between orders and customers is one-to-

many, whenever a customer has multiple orders, the same information about the cus-

tomer will be repeated in the query results for each row returned.

Understanding joins is essential to understanding relational databases. Just as

one-to-many relationships (implemented in the database as referential constraints)

70 Databases Demystified

P:\010Comp\DeMYST\364-9\ch03.vp
Monday, February 09, 2004 8:42:45 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TE
AM
 F
LY

are the fundamental building blocks for relational databases, joins are the funda-

mental building blocks for relational database queries.

It is best to start with a fresh query so that you can see, from the ground up, how

queries using joins are built. Close whatever query windows you may have open and

start on the Microsoft Access main panel with the Queries database object type se-

lected. Exercise 3-1 can be used as a guide for getting started. To build our query, fol-

low these steps:

1. Create a new query using the Create Query in Design View shortcut.

CHAPTER 3 Forms-Based Database Queries 71

Figure 3-15 Example 3-7, “Using Not Equal” (top), and the query results (bottom)

P:\010Comp\DeMYST\364-9\ch03.vp
Monday, February 09, 2004 8:42:45 AM

Color profile: Generic CMYK printer profile
Composite Default screen

72 Databases Demystified

Demystified / Databases Demystified / Oppel/ 225364-9 / Chapter 3

2. On the Show Table dialog box, add both the Customers and Orders tables

to the query. Because queries describe what is to be done instead of how it

is to be done, the order in which you add the tables is immaterial. Click the

Close button when you’re done.

3. On the Query Design View panel, notice that both tables are shown and

there is a line connecting them. Microsoft Access already knows how to

match the rows in the tables and will use the CustomerID for each row re-

turned from the Orders table to find the matching CustomerID in the Cus-

tomers table. The query inherited the relationship between the two tables

defined using the Relationships panel. Without this join specification in the

query, we would get a Cartesian product as a result, which would be every

row in one table combined with every row in the other (the product of mul-

tiplying the two tables together). We clearly do not want our query results to

look like every customer placed every single order, so Microsoft Access has

helped us do the right thing. Properties of the join specifications are explored

in some upcoming examples.

4. In the Customers table, double-click the CustomerID, CustomerName,

and Country columns to select them for display in the query results.

5. In the Orders table, double-click the columns OrderDate, ShippedDate,

and Freight.

The completed panel and query results are shown in Figure 3-16.

Example 3-9: Limiting Join Results
The row count in the query results at the bottom of Figure 3-16 shows 830 rows re-

turned. A look at the Orders table will confirm that there are indeed 830 rows in it.

Obviously, that is more information than a person would likely want to see, but from

the earlier examples we know that we can limit the rows returned using the Criteria

lines on the panel. Also, because we are joining rows from two tables, we can pro-

vide search criteria for the rows returned from either table or both tables. When the

criteria eliminates a customer, no orders for that customer will show in the results,

and when we eliminate orders from the results, we will see no customer information

for those orders either. This is because the join we are using is by default an inner

join (also known as an exclusive or standard join), which means that rows appear in

the query results only when matching rows are found in all the tables we are joining

together. In Example 3-10, you will see alternatives to this behavior.

P:\010Comp\DeMYST\364-9\ch03.vp
Monday, February 09, 2004 8:42:45 AM

Color profile: Generic CMYK printer profile
Composite Default screen

CHAPTER 3 Forms-Based Database Queries 73

Demystified / Databases Demystified / Oppel/ 225364-9 / Chapter 3

Let’s assume we only want to see rows for customers in Spain and orders dated

after January 1, 1998. To modify Example 3-8 to do this, follow these steps:

1. On the Criteria line in the Country column, enter Spain. Character strings

in relational databases should be enclosed in quotes (actually, double quotes

in Microsoft Access), but Microsoft Access knows the column is in charac-

ter format, so it will add the quotes for you automatically (or “automagically”

in IT slang).

Figure 3-16 Example 3-8, “Joining Tables” (top), and the query results (bottom)

P:\010Comp\DeMYST\364-9\ch03.vp
Monday, February 09, 2004 8:42:46 AM

Color profile: Generic CMYK printer profile
Composite Default screen

2. On the same criteria line, enter >1/1/1998 in the OrderDate column.

Microsoft Access encloses date strings with hash marks (#) and will do

this for you automatically. Note that we used the greater-than operator (>),

so any order with a date of exactly 1/1/1998 will not be returned in the re-

sults. We would use the greater-than-or-equal operator (>=) if we want to

include that date, but knowing that the 1st of January is always a holiday,

it does not matter for this query.

The completed panel and query results are shown in Figure 3-17.

74 Databases Demystified

Figure 3-17 Example 3-9, “Limiting Joined Rows” (top), and the query results

(bottom)

P:\010Comp\DeMYST\364-9\ch03.vp
Monday, February 09, 2004 8:42:46 AM

Color profile: Generic CMYK printer profile
Composite Default screen

CHAPTER 3 Forms-Based Database Queries 75

Demystified / Databases Demystified / Oppel/ 225364-9 / Chapter 3

Example 3-10: Outer Joins
As described in Example 3-9, the join technique we have used so far is the inner join.

Note that there is a customer in Spain who has no orders, so that customer’s data did

not appear in the Example 3-9 results. If we wish to include all customers in Spain in

the results, regardless of whether they have placed orders or not, we need to use an

outer join (also called an inclusive join). An outer join returns all rows from one (or

both) of the tables, regardless of whether matching rows are found in the joined tables.

Any data to be displayed from the table where no matching row is found is set to

NULL in the query results. For example, for the customer who has no orders, all the

columns from the Orders table would display as NULL in the results. Keep in mind

that the returned data rows are still filtered by other search criteria (for example, only

customers from Spain; only orders with dates greater than 1/1/98), but whether the

filtering occurs before, during, or after the join operation is immaterial, so long as

the unwanted rows are eliminated from the query results. Remember, we only de-

scribe the result we want, not how to achieve it. There are three types of outer joins,

and unfortunately, the industry has settled on potentially confusing names for them:

• Left Outer Join An outer join for which all rows are returned from the

left-hand table in the join, and data from any matching rows found in the

right-hand table is also returned.

• Right Outer Join An outer join for which all the rows are returned from

the right-hand table in the join, and data from any matching rows found in the

left-hand table is also returned.

• Full Outer Join An outer join for which all rows are returned from

both tables, regardless of whether matching data is found between them.

Microsoft Access does not currently support this type of join.

The confusion comes from the use of left and right in the names of the join types.

All you have to do is reverse the order of the tables in any existing query, and you are

essentially switching it from a left outer join to a right outer join, or vice versa. How-

ever, Microsoft Access does not make this distinction, so all its joins are simply

called outer joins.

To change Example 3-9 into an outer join, double-click the thin part of the line

between the two tables. This displays the Join Properties dialog box, shown in

Figure 3-18. As with the Relationships panel, it can be tricky getting the cursor in

exactly the right place on the line, but practice and a bit of patience always prevails.

Note that the look of this panel has changed in newer versions of Microsoft Access.

P:\010Comp\DeMYST\364-9\ch03.vp
Monday, February 09, 2004 8:42:46 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Here are the steps to follow to complete this example:

1. Because we want all the rows from Customers regardless of what is or is

not found in the Orders table, option 2 is the one we seek. Click it to select

it and then click the OK button.

2. In the criteria for the OrderDate column, add OR IS NULL to the entry. If

we fail to do so, we will not see rows in the results for any customers who

have no orders. This is because outer joins set unmatched data to NULL, and

because null values are not greater than 1/1/1998 (and in fact are not greater

than, less than, or equal to anything), the criteria as written in Example 3-9

would eliminate the row we worked so hard to include.

The completed panel and query results are shown in Figure 3-19.

Comparing the query results in Figure 3-19 with the query results in Figure 3-17,

note that there is one more row in Figure 3-19. This is customer FISSA, the one who

has no orders in the Orders table. For this row, the Order Date, Shipped Date, and

Freight columns are null.

An interesting feature of Microsoft Access is that it generates SQL statements for

all database queries. And although Microsoft Access SQL does not conform to

ANSI standards, the ability to try something on the Query Design View panel and

see how that action translates into SQL can be a great learning tool. SQL is carefully

presented in the next chapter; so don’t be intimidated by your first look at it here. To

see the SQL for the Example 3-10 query, click the small downward-pointing arrow

on the toolbar, next to the icon for View, and select the SQL View option from the

drop-down list, as shown in the panel at the top of Figure 3-20. Note that newer

76 Databases Demystified

Figure 3-18 Join Properties dialog box

P:\010Comp\DeMYST\364-9\ch03.vp
Monday, February 09, 2004 8:42:46 AM

Color profile: Generic CMYK printer profile
Composite Default screen

CHAPTER 3 Forms-Based Database Queries 77

Demystified / Databases Demystified / Oppel/ 225364-9 / Chapter 3

versions of Microsoft Access include additional options—PivotTable and

PivotChart—in the drop-down menu. The generated SQL, as shown at the bottom of

Figure 3-20, is displayed. You can even change the generated SQL and see the

changes “reverse engineered” back into the Query Design View panel. This is an

amazing product feature.

Example 3-11: Multiple Joins; Calculated Columns
When we need information from more than two tables in the same query result, we

can simply add more tables, and therefore more join operations, to the query. The

Figure 3-19 Example 3-10, “Outer Joins” (top) and the query results (bottom)

P:\010Comp\DeMYST\364-9\ch03.vp
Monday, February 09, 2004 8:42:47 AM

Color profile: Generic CMYK printer profile
Composite Default screen

78 Databases Demystified

Demystified / Databases Demystified / Oppel/ 225364-9 / Chapter 3

beauty of relational databases is that we need not be concerned with which join is

best processed first and other such implementation details. We can just trust the

RDBMS to make those decisions for us.

Let’s consider another scenario: We want to know the total value in dollars of

items ordered by our U.S. customers. Looking at the tables we have available, we re-

alize that we need the Customers table, so we can filter by the Country column, and

the Order Details table, because it contains the data we need to calculate the total

Figure 3-20 Selecting the SQL View (top), and the SQL view of Example 3-10

P:\010Comp\DeMYST\364-9\ch03.vp
Monday, February 09, 2004 8:42:47 AM

Color profile: Generic CMYK printer profile
Composite Default screen

value of each item ordered—namely, the quantity ordered and the unit price of each

item. However, there is no way to directly join these tables in a meaningful way. If

we look at the Relationships panel (refer to Figure 3-3), the solution becomes obvi-

ous: We need the Orders table. Then we can use the Customers table to find the U.S.

customers, join those rows to the Orders table using CustomerID to find the orders

for the U.S. customers, and finally join those rows to the Order Details table to find

the line items on those orders. (Of course, there is no guarantee the RDBMS will ac-

tually process the joins in this sequence, but the end result will be the same regard-

less). It should be clear from this example that an overall diagram of all our tables

and relationships is an essential document because it gives us the roadmap we need

when forming queries.

This example also requires a calculated column (also called a derived column),

which is formed by multiplying UnitPrice and Quantity. Just about any formula that

you can use in a spreadsheet can be used in a relational database query.

Follow these steps to form the Example 3-11 query:

1. Create a new query using the Query Design View.

2. Add the tables Customers, Orders, and Order Details to the query.

3. From the Customers table, select the columns CompanyName and Country.

4. From the Order Details table, select the columns UnitPrice and Quantity.

5. To add the calculated column, enter the following into the Field line of the

empty column to the right of the Quantity column: ExtPrice: UnitPrice *

Quantity. The first part of the entry is a label for the new column. Every

column in our results must have a unique name, and if we don’t name it,

Microsoft Access will. Default column names are usually not very mean-

ingful and sometimes are just plain ugly, so it is best to always supply a

column label (name) for calculated columns. Note that spaces in Field spec-

ifications do not matter, so we could have left them out. Chances are that

Microsoft Access will rewrite your column specification by removing the

spaces and placing square brackets around the column names, so don’t be

surprised if you see what you entered change on the panel after you move

the cursor to another location on the panel.

6. To limit the query to only U.S. customers, enter USA in the Criteria line for

the Country column.

7. Add an ascending sort to the CompanyName column.

The completed panel and query results are shown in Figure 3-21.

CHAPTER 3 Forms-Based Database Queries 79

P:\010Comp\DeMYST\364-9\ch03.vp
Monday, February 09, 2004 8:42:47 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Example 3-12: Aggregate Functions
In reviewing the Example 3-11 results, you probably noticed that a lot of rows were

returned—352 to be exact (you may get a different number of rows if you use a ver-

sion other than Microsoft Access 2000). Also, there are many rows for each cus-

tomer. Not only do customers have many orders, but also each order can have many

rows. All the details are here, but at a glance, it is difficult to easily get a sense of the

total amount that each customer has ordered from Northwind. What we really need

80 Databases Demystified

Figure 3-21 Example 3-11, “Multiple Joins; Calculated Columns” (top) and the query

results (bottom)

P:\010Comp\DeMYST\364-9\ch03.vp
Monday, February 09, 2004 8:42:48 AM

Color profile: Generic CMYK printer profile
Composite Default screen

CHAPTER 3 Forms-Based Database Queries 81

Demystified / Databases Demystified / Oppel/ 225364-9 / Chapter 3

to do is sum up the ExtPrice column for each customer. In relational databases, this is

done with the SUM function.

A function is a special type of program that returns a single value each time it is in-

voked, named for the mathematical concept of a function. Because we will use the

function to operate on a column, it will be invoked for each row and therefore return

a single value for each row the query handles. Sometimes the term column function

is used to remind us that the function is being applied to a table or view column. An

example of an ordinary column function is ROUND, which can be used to round

numbers in various ways. Special classes of functions that combine multiple rows

together into one row are called aggregate functions. The following table shows

aggregate functions that are commonly used in relational databases:

Function Name Description

AVG Calculates the average value for a column

COUNT Counts the number of values found in a column

MAX Finds the maximum value in a column

MIN Finds the minimum value in a column

SUM Sums (totals up) the values in a column

If we use an aggregate function by itself in a query, we get one row back for the en-

tire query. This makes sense because there is no way for the RDBMS to know what

other result we might want. So, if we want the aggregate result to be for groups of

rows in the query, we need to include a GROUP BY specification to tell the RDBMS

to group the rows by the values in one or more columns, and to apply the aggregate

function to each group. This is much like asking for subtotals instead of a grand total

for a list of numbers. For Example 3-12, we want the RDBMS to provide a total of

the calculated column ExtPrice for each customer. In other words, we want to group the

rows by customer, and for each group, display a single row containing the company

name, country, and total order dollar amount.

The country is actually unnecessary because only U.S. customers are included in

the query. However, it is left here to illustrate an important concept that most new-

comers to relational databases have a difficult time understanding: If we select the

CustomerName, Country, and calculated TotalOrders column, telling the RDBMS

the formula for calculating the total orders and asking it to group the rows in the re-

sult by CustomerName, there is a hidden logic problem that will cause an error to be

returned by the RDBMS. We have essentially asked it to return the value of Country

for every row in the query, but to, at the same time, aggregate rows by

CustomerName and provide the calculated total for each aggregate. It is illogical to

P:\010Comp\DeMYST\364-9\ch03.vp
Monday, February 09, 2004 8:42:48 AM

Color profile: Generic CMYK printer profile
Composite Default screen

82 Databases Demystified

Demystified / Databases Demystified / Oppel/ 225364-9 / Chapter 3

ask for some rows to be aggregated and others not. To make matters worse, the re-

sulting error message is rather cryptic. Small wonder that we often hear aggregate

functions called “aggravating” functions. Remember this rule: Whenever a query in-

cludes an aggregate function, then every column in the query results must either be

formed using an aggregate function or be named in the GROUP BY column list. In

Microsoft Access, the Totals button on the toolbar toggles (hides and exposes) a line

called Total on the Query View panel. It is the total line that permits us to specify

aggregate functions and groupings for our query.

To create the Example 3-12 query from the Example 3-11 query, follow these steps:

1. Remove the UnitPrice and Quantity columns by clicking in the small gray

rectangle above the field name and pressing DELETE.

2. Change the label on the ExtPrice column to TotalOrders. This column name

will make more sense in the results.

3. Click the toolbar’s Totals button (the one with the Greek letter Sigma on it)

to expose the Total line in the query specification. By default, each column

will initially have “Group By” specified on that line.

4. In the TotalOrders column, click in the Total line and use the pull-down

menu to select the Sum function.

The completed panel and query results are shown in Figure 3-22.

Example 3-13: Self-Joins
When tables have a recursive relationship built in to them, we must use a self-join

(joining a table to itself) in order to resolve the relationship. In the Employees table,

the ReportsTo column is a foreign key to EmployeeID in the same table and shows

the manager to whom each employee reports. We wish to list EmployeeID,

FirstName, and LastName along with their manager’s name. And, of course, there

must be at least one employee in the table who has no manager listed, so we need this

to be an outer join if all employees in the table are to appear in the results.

Follow these steps to create the query for Example 3-13:

1. Create a new query using the Create Query in Design View shortcut.

2. Using the Show Table dialog box, add the Employees table to the query twice.

Notice that the second “copy” of the table will be automatically given a differ-

ent name by Microsoft Access, usually Employees_1. Click Close when you

are ready to proceed.

P:\010Comp\DeMYST\364-9\ch03.vp
Monday, February 09, 2004 8:42:48 AM

Color profile: Generic CMYK printer profile
Composite Default screen

3. Microsoft Access is not going to know how to join this table to itself, so we

must tell it which foreign key column matches the primary key. Drag the

ReportsTo column from Employees and drop it on EmployeeID in the Em-

ployees_1 table. Microsoft Access will create a line, but it won’t look ex-

actly like the ones you have seen before because this one is a manual join

rather than an inherited relationship.

4. To make the join an outer join, click the join line somewhere in the middle

(on the thin and slanted part) and select option 2.

CHAPTER 3 Forms-Based Database Queries 83

Figure 3-22 Example 3-12, “Aggregate Functions” (top), and the query results

(bottom)

P:\010Comp\DeMYST\364-9\ch03.vp
Monday, February 09, 2004 8:42:48 AM

Color profile: Generic CMYK printer profile
Composite Default screen

5. Select the EmployeeID, FirstName, and LastName columns from the

Employees table.

6. Select the LastName column from the Employees_1 table. This is the

manager’s last name.

7. Give the manager’s last name column a label of “Manager.”

The completed panel and query results are shown in Figure 3-23.

84 Databases Demystified

Figure 3-23 Example 3-13, “Self-Joins” (top), and the query results (bottom)

P:\010Comp\DeMYST\364-9\ch03.vp
Monday, February 09, 2004 8:42:49 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Hopefully, you have enjoyed this introduction to Microsoft Access queries. We have

only scratched the surface in these examples, and there is much more to be learned from

experience and experimentation. For example, once a query is saved in the Microsoft

Access database, it can be included in other queries. There is no firm limit to how many

levels of abstraction you can build using this method, and you will find that breaking

queries into parts helps simplify the most complex ones you will encounter.

Quiz
Choose the correct responses to each of the multiple-choice questions. Note that

there may be more than one correct response to each question.

1. A forms-based query language:

a. Was first developed by IBM in the 1980s

b. Describes how a query should be processed rather than what the results

should be

c. Resembles SQL

d. Uses a GUI (graphical user interface)

e. Was shown to be clearly superior in controlled studies

2. The object types in Microsoft Access that relate strictly to database

management (as opposed to application development) are

a. Tables

b. Queries

c. Views

d. Forms

e. Pages

f. Macros

g. Modules

3. When a table is deleted from the Microsoft Access Relationships panel:

a. It is immediately deleted from the database.

b. It is marked for deletion in the database.

c. It remains in the database, but all data rows are deleted.

d. Relationships belonging to the table are also deleted.

e. It remains unchanged in the database and is merely removed from

the Relationships panel.

4. Relationships on the Microsoft Access Relationships panel:

a. Represent referential constraints in the database

b. Are defined between primary keys and alternate keys

CHAPTER 3 Forms-Based Database Queries 85

P:\010Comp\DeMYST\364-9\ch03.vp
Monday, February 09, 2004 8:42:49 AM

Color profile: Generic CMYK printer profile
Composite Default screen

86 Databases Demystified

Demystified / Databases Demystified / Oppel/ 225364-9 / Chapter 3

c. Can never be recursive relationships

d. Are inherited in queries as table joins

e. Can be one-to-many, one-to-one, or many-to-many

5. The Microsoft Access Show Table dialog box:

a. Lists all tables in the database and allows for the metadata about tables

to be added, changed, and deleted

b. Lists only tables stored in the database

c. Lists tables and/or queries stored in the database

d. Lists only queries stored the database

e. Provides the ability to show (display) or hide (not display) tables

6. A column in the results of a Microsoft Access query can be formed from:

a. A table column

b. A view column

c. A constant

d. A calculation

e. Anything for which a formula may be composed

7. When a query with no criteria included is executed, the result is

a. An error message

b. No rows being displayed

c. All the rows in the table being displayed

d. A Cartesian product

e. None of the above

8. When sequencing (sorting) of rows is not included in a database query, the

rows returned by the query are in:

a. No particular sequence

b. The order in which the rows were added to the table(s)

c. Primary key sequence

d. Ascending sequence by the first column in the results

e. Ascending sequence by the first index on the table(s)

9. In a query, the search criteria REGION NOT = “CA” OR REGION NOT =

“NV” will display

a. An error message

b. All the rows in the table

c. Only the rows where Region is equal to “CA” or “NV”

d. All the rows in the table except those where the Region is “CA”

or “NV”

e. No rows

P:\010Comp\DeMYST\364-9\ch03.vp
Monday, February 09, 2004 8:42:49 AM

Color profile: Generic CMYK printer profile
Composite Default screen

10. Criteria in a Microsoft Access query are

a. Connected with a logical AND if they are on the same line

b. Connected with a logical OR if they are on the same line

c. Connected with a logical AND if they are in the same field’s column

d. Connected with a logical OR if they are in the same field’s column

e. Connect by a logical AND within the same row and each line’s criteria

is connected with the other lines using a logical OR

11. The join connector between tables in a Microsoft Access query:

a. May be manually created by dragging a column from one table or view

to a column of another table or view

b. May be inherited from the metadata defined on the Relationships panel

c. May be altered to define left, right, and full outer joins

d. Can cause a Cartesian product if defined incorrectly

e. Will cause a Cartesian product if not defined between two tables or

views in the query

12. When an outer join is used, column data from tables (or views) where no

matching rows were found:

a. Displays as zero for numeric column types

b. Displays as blank for character column types

c. Displays in gray

d. Displays the text “NULL”

e. Is set to the NULL value

13. An aggregate function:

a. Combines data from multiple columns together

b. Combines data from multiple rows together

c. May be applied to table columns but not to calculated columns

d. Is a special type of database query function

e. Requires that every column in a query be either an aggregate function or

named in the GROUP BY list for the query

14. Common aggregate functions include

a. AVG

b. COUNT

c. ROUND

d. SUM

e. MIX

15. Self-joins:

a. Can never produce a Cartesian product because the two data sources

come from the same table

b. Always produce a Cartesian product

CHAPTER 3 Forms-Based Database Queries 87

P:\010Comp\DeMYST\364-9\ch03.vp
Monday, February 09, 2004 8:42:49 AM

Color profile: Generic CMYK printer profile
Composite Default screen

c. Are a method of resolving a recursive relationship

d. Is the name given to any join that is manually created in

Microsoft Access

e. Involve joining a table to itself

16. The column name of a calculated column in the query results:

a. Is NULL if not provided in the query definition

b. Is automatically assigned by Microsoft Access if not provided in

the query definition

c. Is the first column name used in the formula if not provided in the

query definition

d. May be supplied using a label that appears first in the field definition

e. May be supplied using a label that appears last in the field definition

17. Tables may be joined:

a. Using only the primary key in one table and a foreign key in another

b. Using any column in either table (theoretically)

c. Only to themselves

d. Only to other tables

e. Only using the Cartesian product formula

18. Microsoft Access queries:

a. Are called views in most other relational databases

b. Are called entities in most other relational databases

c. May be stored in the database for subsequent reuse

d. Are highly flexible commands for retrieval of database data

e. Provide a way to generate SQL statements

19. When a column is deleted from a Microsoft Access query:

a. The column is only removed from the current query.

b. The column is removed from all queries that reference it.

c. The column is removed from the table and all queries that reference it.

d. An error message is displayed if the column is used in any other queries.

e. The column remains in the query but is marked so the column data will

not be displayed in the query results.

20. A Cartesian product:

a. Results when a join between two tables in a query is not defined

b. Results when a join between two tables in a query is incorrectly defined

c. Results whenever a table is joined to itself

d. Results when each row in one table is joined to every row in another

e. Can never happen in a Microsoft Access query

88 Databases Demystified

P:\010Comp\DeMYST\364-9\ch03.vp
Monday, February 09, 2004 8:42:49 AM

Color profile: Generic CMYK printer profile
Composite Default screen

CHAPTER
4

Introduction
to SQL

This chapter introduces SQL, which has become the universal language for rela-

tional databases in that nearly every DBMS in modern use supports it. The reason for

this wide acceptance is clearly the time and effort that went into the development of

language features and standards, making SQL highly portable across different

RDBMS products.

Oracle and its sample HR (Human Resources) schema are used to demonstrate

SQL in this chapter. A free trial version of Oracle Personal Edition can be down-

loaded from http://otn.oracle.com, which includes the sample schemas. Except as

noted in the examples, every command and feature demonstrated meets current SQL

standards and therefore should work correctly in any DBMS that supports SQL.

However, without the Oracle HR sample schema, you will have to create sample ta-

bles like the ones Oracle provides in order to run the exact statements included in this

chapter. By convention, all the SQL statements are shown in uppercase. However,

Oracle is not case sensitive for either SQL commands or database object names, so

you may type the commands in upper-, lower-, or mixed case as you follow along on

89

P:\010Comp\DeMYST\364-9\ch04.vp
Monday, February 09, 2004 9:03:16 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Copyright © 2004 by The McGraw-Hill Companies. Click here for terms of use.

your own computer. But do keep in mind that data in Oracle is case sensitive, so

whenever you type a data value that is to be stored in the database or is to be used to

find data in the database, you must type it in the proper case.

As stated in the previous chapter, SQL is a command-based language. SQL state-

ments are formed in clauses using keywords and parameters. The keywords used are

usually reserved words for the DBMS, meaning they cannot be used for the names of

database objects. The clauses usually have to be in a prescribed sequence. SQL

statements must end with a semicolon (;). Although some RDBMSs are more forgiv-

ing, Oracle will not run an SQL statement unless it ends with a semicolon or a slash

(the slash being an Oracle extension to the standard). Beyond those restrictions, the

language is freeform, with one or more spaces separating language elements, and

line breaks permitted between any two elements (but not in the middle of elements).

SQL statements may be divided into the following categories:

• Data Query Language (DQL) Statements that query the database but do

not alter any data or database objects. This category contains the SELECT

statement. Not all vendors make a distinction here; many lump DQL into

DML, as defined next.

• Data Manipulation Language (DML) Statements that modify data

stored in database objects (that is, tables). This category contains the INSERT,

UPDATE, and DELETE statements.

• Data Definition Language (DDL) Statements that create and modify

database objects. Whereas DML and DQL work with the data in the database

objects, DDL works with the database objects themselves. Said another way,

DDL manages the data containers whereas DML manages the data inside

the containers. This category includes the CREATE, ALTER and DROP

statements.

• Data Control Language (DCL) Statements that manage privileges that

database users have regarding the database objects. This category includes

the GRANT and REVOKE statements.

Representative statements in each of these categories are presented in the sections

that follow. But first, we’ll cover a little bit of the history of the language.

The History of SQL
The forerunner of SQL, which was called QUEL, first emerged in the specifications

for System/R, IBM’s experimental relational database, in the late 1970s. However,

two other products, with various names for their query language, beat IBM to the

90 Databases Demystified

P:\010Comp\DeMYST\364-9\ch04.vp
Monday, February 09, 2004 9:03:16 AM

Color profile: Generic CMYK printer profile
Composite Default screen

CHAPTER 4 Introduction to SQL 91

Demystified / Databases Demystified / Oppel/ 225364-9 / Chapter 4

marketplace with the first commercial relational database products: Relational Soft-

ware’s Oracle and Relational Technology’s INGRES. IBM released SQL/DS in

1982, with the query language now named SQL (System Query Language). When

IBM released its next generation RDBMS, called DB2, the SQL acronym remained,

but the language name had morphed into Structured Query Language. The name

change was likely the result of marketing spin—structured programming was the

mantra of the day, and although SQL has nothing to do with programming, struc-

tured or otherwise, anything with the word structured in its title got more attention in

the marketplace.

SQL standards committees were formed by ANSI (American National Standards

Institute) in 1986 and ISO (International Organization for Standardization) in 1987.

Two years later, the first standard specification, known as SQL-89, was published. The

standard was expanded three years later into SQL-92, which weighed in at roughly

600 pages. The third generation was called SQL-99, or SQL3. Most RDBMS products

are built to the SQL-92 (now called SQL2) standard. SQL3 includes many of the ob-

ject features required for SQL to operate on an object-relational database, as well as

language extensions to make SQL computationally complete (adding looping,

branching, and case constructs). Only a few vendors have implemented significant

components of the SQL3 standard—Oracle being one of them.

Nearly every vendor has added extensions to SQL, partly because they wanted to

differentiate their products, and partly because market demands pressed them into

implementing features before there were standards for them. One case in point is

support for the DATE and TIMESTAMP data types. Dates are highly important in

business data processing, but the developers of the original RDBMS products were

computer scientists and academics, not business computing specialists, so such a

need was unanticipated. As a result, the early SQL dialects did not have any special

support for dates. As commercial products emerged, vendors responded to pressure

from their biggest customers by hurriedly adding support for dates. Unfortunately,

this led to each doing so in their own way. Whenever you migrate SQL statements

from one vendor to another, beware of the SQL dialect differences. SQL is highly

compatible and portable across vendor products, but complete database systems can

seldom be moved without some adjustments.

Getting Started with Oracle SQL
Oracle provides two different client tools for managing the formation and execution

of SQL statements and the presentation of results: SQL Plus and the SQL Plus

Worksheet. We call these client tools because they normally run on the database

user’s workstation and are capable of connecting remotely to databases that run on

P:\010Comp\DeMYST\364-9\ch04.vp
Monday, February 09, 2004 9:03:16 AM

Color profile: Generic CMYK printer profile
Composite Default screen

92 Databases Demystified

Demystified / Databases Demystified / Oppel/ 225364-9 / Chapter 4

other computer systems, which are often shared servers. It is not unusual for the cli-

ent tools to also be installed on the server alongside the database for easy administra-

tion, allowing the DBA logged in to the server to access the database without the

need for a client workstation. Also available are the Personal and Lite editions of

Oracle, where the database itself, along with the client tools, is installed on an

individual user’s workstation or handheld device.

The examples in this chapter focus on Oracle. However, if you are using a differ-

ent RDBMS, there will be client tools for it as well, usually provided by the RDBMS

vendor. For example, Sybase has a tool called iSQL, whereas Microsoft SQL Server

has the GUI tools Enterprise Manager and Query Analyzer as well as a similar im-

plementation of iSQL. Regardless of the RDBMS you are using, you may require

the assistance of a DBA or system administrator in properly setting up a database ac-

count so you may access a database and run the various SQL statements demon-

strated in this chapter. If you have no commercial RDBMS products available to

you, several notable freeware products, such as MySQL and PostgreSQL (a deriva-

tive of INGRES), are also available. These provide reasonable implementations of

many features of the SQL language.

Oracle’s SQL Plus has a GUI version, which runs on Windows platforms, and a

command-line version, which runs on all the platforms Oracle supports. You may

start the GUI version of SQL Plus from the Windows Start menu by choosing Start |

Programs | Oracle - OraHome92 | Application Development | SQL Plus. In this ex-

ample,OraHome92 is the name of the Oracle Home on the client workstation. This

value will vary from one workstation to another.

Once started, SQL Plus provides a Log On window that prompts for the

username, password, and host string to be used to connect to the database. For the

Oracle HR sample schema, enter HR into the Username field and then supply the

password and host string you obtained from your DBA. The host string helps SQL

Plus find the database if it is running on a remote computer system; it is normally not

needed if you are running SQL Plus on the same computer that is running the data-

base. After SQL Plus has connected to the database, a window similar to the one

shown here is displayed.

P:\010Comp\DeMYST\364-9\ch04.vp
Monday, February 09, 2004 9:03:16 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Note that if you installed Oracle yourself, the demonstration accounts, such as

HR, are usually locked during the installation as a security precaution. You will have

to connect to the database as the SYSTEM user and do the following:

1. Unlock the HR database user account with this SQL command:

ALTER USER HR ACCOUNT UNLOCK;

2. Change the HR database user password with this SQL command (the password

has been set to HRPASS here, but you may use any password you wish):

ALTER USER HR IDENTIFIED BY HRPASS;

SQL statements and SQL Plus commands may be entered at the SQL> prompt.

Results display after each command, and the screen scrolls as needed. SQL Plus

commands help configure SQL Plus, such as setting the width of lines on the screen

and the number of lines displayed per page of output. Other SQL Plus commands

control the format of the output of SQL statements, such as setting page titles, for-

matting columns, and adding subtotals to reports. SQL Plus commands are beyond

the scope of this book, but they may be found in the SQLPlusUser’s Guide and Ref-

erence manual available (along with most other Oracle manuals) on the Oracle

Technology Network website (http://otn.oracle.com).

One very useful SQL Plus command we will look at, however, is the DESCRIBE

command (abbreviated DESCR or DESC). This command lists all the columns in a

table or view along with the data type for each. Figure 4-1 shows the output of the

DESCRIBE command for the EMPLOYEES table.

One of the common difficulties database users have with SQL Plus is that lines

that are too long to display wrap to new lines. Another is that the SQL statements

scroll off the screen when the results are displayed. Figure 4-2 provides an example

of these issues.

SQL Plus may be run from the Windows Command Shell using the following

command:

C:\>sqlplus hr/hrpass

When run this way, SQL Plus has all the same capabilities as the Windows GUI

version of SQL Plus, but is perhaps not as visually pleasing. In fact, it is exactly the

same utility program with only the user interface changed. An example of a com-

mand run from the Windows Command Shell version of SQL Plus is shown in Fig-

ure 4-3. This screen is quite similar to the one used when SQL Plus is run on other

platforms such as VMS VAX, Unix, and Linux.

Recognizing the need for a better user interface, Oracle developed SQL Plus

Worksheet as part of Oracle Enterprise Manager and started shipping it with

CHAPTER 4 Introduction to SQL 93

P:\010Comp\DeMYST\364-9\ch04.vp
Monday, February 09, 2004 9:03:16 AM

Color profile: Generic CMYK printer profile
Composite Default screen

94 Databases Demystified

Figure 4-1 DESCRIBE command output for the EMPLOYEES table

Figure 4-2 SQL Plus window with wrapped lines

P:\010Comp\DeMYST\364-9\ch04.vp
Monday, February 09, 2004 9:03:17 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Oracle8i. When SQL Plus Worksheet is started from the Windows Start menu, the

login window appears, as shown here:

The Username and Password fields should be familiar from the SQL Plus discus-

sion, and the Connect String field from SQL Plus is now called Service instead. The

Connect As field is for use by DBAs who require a special role (a named set of privi-

leges) when they connect.

Once connected, the SQL Plus Worksheet panel appears, as shown in Figure 4-4.

SQL statements may be typed in the upper window, and the results are shown in the

lower window. The icons in the toolbar at the top of the left margin provide various

control functions, including disconnecting from the database, executing the current

SQL statement, scrolling back and forth through a history of recent statements, and

accessing the help facility.

CHAPTER 4 Introduction to SQL 95

Figure 4-3 SQL Plus window, command-line version

P:\010Comp\DeMYST\364-9\ch04.vp
Monday, February 09, 2004 9:03:17 AM

Color profile: Generic CMYK printer profile
Composite Default screen

The SQL Plus Worksheet panel is used for the presentation of the examples that

follow because of its superior formatting of query results.

Where’s the Data?
You probably noticed that although SQL Plus and SQL Plus Worksheet help you for-

mat and run SQL statements, they don’t provide an easy way for you to see the names

and definitions of the database objects available to you. This is a typical arrangement

for an RDBMS. If you are not familiar with the database schema you are using, you

can obtain some basic information in one of two ways: through catalog views or a tool

such as the Oracle Enterprise Manager. Catalog views are special views provided by

the RDBMS that present database metadata that documents the database contents.

96 Databases Demystified

Figure 4-4 SQL Plus Worksheet panel

P:\010Comp\DeMYST\364-9\ch04.vp
Monday, February 09, 2004 9:03:17 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Finding Database Objects Using Catalog Views
Oracle provides a comprehensive set of catalog views that may be queried to show

the names and definitions of all database objects available to a database user. Most

other RDBMSs have a similar capability, but of course the names of the views vary.

By issuing a SELECT statement against any of these views, you may display infor-

mation about your database objects. Consult the Oracle Server Reference manual

(available from Oracle Technology Network website) for complete information on

the available catalog views. Here are two of the most useful ones:

• USER_TABLES Contains one row of information for each table in the

user schema. This view contains a lot of columns, but the one of most interest,

TABLE_NAME, is the first column in the view. Once you know the table

names, the DESCRIBE command (already introduced) can be used on each

to show more information about the table definitions. Figure 4-5 shows an

example of selecting everything from the USER_TABLES view.

The SQL SELECT statement, shown in Figure 4-5, is described in more

detail a little further along in this chapter.

• USER_VIEWS Contains one row of information for each view in the

user schema, containing, among other things, the name of the view and

the text of the SQL statement that forms the view.

CHAPTER 4 Introduction to SQL 97

Figure 4-5 Selecting from the USER_TABLES view

P:\010Comp\DeMYST\364-9\ch04.vp
Monday, February 09, 2004 9:03:17 AM

Color profile: Generic CMYK printer profile
Composite Default screen

98 Databases Demystified

Demystified / Databases Demystified / Oppel/ 225364-9 / Chapter 4

Viewing Database Objects Using
Oracle Enterprise Manager
For those less inclined to type SQL commands, Oracle provides a GUI tool known as

Oracle Enterprise Manager (OEM). Other RDBMS vendors provide similar tools, such

as the Enterprise Manager tool that comes with Sybase and Microsoft SQL Server.

The Oracle Enterprise Manager Console can be started from the Windows Start

menu, by choosing Start | Programs | Oracle - OraHome92 | Enterprise Manager

Console.

Once started, OEM presents a window asking whether it should be launched in

standalone mode or if instead you wish to log in to the Oracle management server.

Unless directed otherwise by your DBA, you should always launch OEM in

standalone mode. Next, the Oracle Enterprise Manager login window will be dis-

played, as already shown in a previous illustration. For OEM to work perfectly, you

should connect to the database as the SYSTEM user. However, if you are working on

an employer’s database system, your DBA may not be very interested in handing

over the keys to the database to a beginner, so you may have to settle for signing in

with the Oracle database username provided by the DBA. If you do so, some error

messages related to privileges may appear, and some features may not work. Once

connected to OEM, you will see a panel similar to the one in Figure 4-6.

Here are the exact steps to follow to get to the EMPLOYEES table as shown in

Figure 4-6:

1. Start the OEM Console from the Start menu, as described earlier.

2. Select Launch Standalone on the Oracle Enterprise Manager Console login

window and then click OK.

3. Click the plus sign (+) next to Databases in the left column to expand the

list of databases.

4. Click the plus sign (+) next to the name of your Oracle database (ORA9I in

this example) to expand the list of database object types.

5. The Database Connect Information window will appear. In this window, type

SYSTEM in the Username field and type the password for the SYSTEM user

in the Password field. Click OK.

6. Click the plus sign (+) next to Schema to expand the list of schemas in the

database.

7. Click the plus sign (+) next to HR to expand the list of objects belonging to

the HR schema.

P:\010Comp\DeMYST\364-9\ch04.vp
Monday, February 09, 2004 9:03:18 AM

Color profile: Generic CMYK printer profile
Composite Default screen

8. Click the plus sign (+) next to Tables to expand the list of tables in the

HR schema.

9. Click the EMPLOYEES table to display its description in the right panel.

OEM is so full of features that describing them in detail would take an entire book

of at least this size. The feature you will be most interested in is the hierarchical tree

of databases and database objects that appears in the column along the left margin of

the panel. Expanding the Schema item shows all the schemas in the database (each

Oracle database user gets their own schema). Expanding any schema shows the ob-

ject types available in that schema. Expanding any object type (as we did with the

Tables type) shows a list of objects of that type in the selected schema, and clicking

or expanding any individual object shows more information about that object (as we

did by clicking the EMPLOYEES table object).

You’ve seen a little bit of the SQL SELECT statement so far. In the next section

we take a detailed look at SQL.

CHAPTER 4 Introduction to SQL 99

Figure 4-6 Oracle Enterprise Manager Console

P:\010Comp\DeMYST\364-9\ch04.vp
Monday, February 09, 2004 9:03:18 AM

Color profile: Generic CMYK printer profile
Composite Default screen

100 Databases Demystified

Demystified / Databases Demystified / Oppel/ 225364-9 / Chapter 4

Data Query Language (DQL):
The SELECT Statement

The SELECT statement retrieves data from the database. The clauses of the state-

ment, as demonstrated in the following sections, are as follows:

• SELECT Lists the columns that are to be returned in the results

• FROM Lists the tables or views from which data is to be selected

• WHERE Provides conditions for the selection of rows in the results

• ORDER BY Specifies the order in which rows are to be returned

• GROUP BY Groups rows for various aggregate functions

Although it is customary in SQL to write keywords in upper case, this is not nec-

essary in most implementations. The RDBMS SQL interpreter will usually recog-

nize keywords written in upper, lower or mixed case. In Oracle SQL, all database

object names (tables, views, synonyms, etc.) may be written in any case, but Oracle

automatically changes them to upper case during processing because all Oracle da-

tabase object names are stored in upper case in Oracle’s metadata. Be careful with

other versions of SQL, however. For example, both Sybase and MS SQL Server can

be set to a case-sensitive mode where object names written in different cases are

treated as different objects. In case-sensitive mode, the following names would be

considered different tables: EMPLOYEES, Employees, employees.

Example 4-1: Listing All Employees
The asterisk (*) symbol may be used in place of a column list in order to select all

columns in a table or view. This is a useful feature for quickly listing data, but it

should be avoided in statements that will be reused because it compromises logical

data independence because any new column will be automatically selected the next

time the statement is run. Note also that in SQL syntax, tables, views, and synonyms

(an alias for a table or view) are all referenced in the same way. It should follow that

the names of these come for the same namespace,meaning that a name of a table, for

example, must be unique among all tables, views, and synonyms defined in particu-

lar schema. Figure 4-7 shows the Example 4-1 SQL statement and its results.

Example 4-2: Limiting Columns to Display
To specify the columns to be selected, provide a comma-separated list following the

SELECT keyword. Keep in mind that the list actually provides expressions that

P:\010Comp\DeMYST\364-9\ch04.vp
Monday, February 09, 2004 9:03:18 AM

Color profile: Generic CMYK printer profile
Composite Default screen

describe the columns desired in the query results, and although many times these ex-

pressions are merely column names from tables or views, they may also be any con-

stant or formula that SQL can interpret and form into data values for the column. The

examples that follow show you how to use formulas and constants to form query col-

umns. Figure 4-8 shows the SQL for selecting the LAST_NAME, FIRST_NAME,

HIRE_DATE, and SALARY columns.

CHAPTER 4 Introduction to SQL 101

Figure 4-7 Example 4-1, “Listing All Employees”

Figure 4-8 Example 4-2, “Limiting Columns to Display”

P:\010Comp\DeMYST\364-9\ch04.vp
Monday, February 09, 2004 9:03:18 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Example 4-3: Sorting Results
Just as in Microsoft Access, in SQL there is no guarantee as to the sequence of the

rows in the query results unless the desired sequence is specified in the query. In

SQL, providing a comma-separated list following the ORDER BY keyword does

this. Figure 4-9 shows the SQL from Figure 4-8 with row sequencing added.

Also note the following points:

• Ascending sequence is the default for each column, but the keyword ASC

may be added after the column name for ascending sequence, and DESC may

be added for descending sequence.

• The column(s) named in the ORDER BY list do not have to be included in

the query results (that is, the SELECT list). However, this is not the best

human engineering.

• Instead of column names, the relative position of the columns in the results may

be listed. The number provided has no correlation with the column position in

the source table or view, however. This option is frowned upon in formal SQL

because someone changing the query at a later time might shuffle columns

around in the SELECT list and not realize that, in doing so, they are changing

the columns used for sorting results. In Example 4-3, the following ORDER

BY clause achieves the same query results: ORDER BY 1,2.

102 Databases Demystified

Figure 4-9 Example 4-3, “Sorting Results”

P:\010Comp\DeMYST\364-9\ch04.vp
Monday, February 09, 2004 9:03:19 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Choosing Rows to Display
SQL uses the WHERE clause for the selection of rows to display. Without a

WHERE clause, all rows found in the source tables and/or views are displayed.

When a WHERE clause is included, the rules of Boolean algebra, named for logi-

cian George Boole, are used to evaluate the WHERE clause for each row of data.

Only rows for which the WHERE clause evaluates to a logical “true” are displayed

in the query results.

As you will see in the examples that follow, individual tests of conditions must

evaluate to either “true” or “false.” The conditional operators supported are the same

ones shown in Chapter 3 in Example 3-7 (=, <, <=, >, >=, and <>). If multiple condi-

tions are tested in a single WHERE clause, the outcomes of these conditions can be

combined together using logical operators such as AND, OR, and NOT. Parentheses

may be (and should be) added to complex statements for clarity and to control the or-

der in which the conditions are evaluated. A rather complicated order of precedence

is used when multiple logical operators appear in one statement. However, it is far

simpler to remember that conditions inside a pair of parentheses are always evalu-

ated first, and to simply include enough sets of parentheses so there can be no doubt

as to the order in which the conditions are evaluated.

Example 4-4: A Simple WHERE Clause
Figure 4-10 shows a simple WHERE clause that selects only rows where SALARY

is equal to 11000.

CHAPTER 4 Introduction to SQL 103

Figure 4-10 Example 4-4, “A Simple WHERE Clause”

P:\010Comp\DeMYST\364-9\ch04.vp
Monday, February 09, 2004 9:03:19 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Example 4-5: The BETWEEN Operator
SQL provides the BETWEEN operator to assist in finding ranges of values. The end

points are included in the returned rows. Figure 4-11 shows the use of the

BETWEEN operator to find all rows where SALARY is greater than or equal to

10000 and SALARY is less than or equal to 11000. Here’s an alternative way to

write the equivalent WHERE clause:

WHERE SALARY >= 10000
AND SALARY <= 11000

Example 4-6: The LIKE Operator
For searching character columns, SQL provides the LIKE operator, which compares

the character string in the column to a pattern, returning a logical “true” if the col-

umn matches the pattern, and “false” if not. The underscore character (_) may be

used as a positional wildcard, meaning it matches any character in that position of

the character string being evaluated. The percent sign (%) may be used as a

nonpositional wildcard, meaning it matches any number of characters for any

length. Note that Microsoft Access has a similar feature, but the wildcard characters

are different (they match those in DOS and Visual Basic): The question mark (?) is

the positional wildcard, and the asterisk (*) is the nonpositional wildcard. The fol-

lowing table provides some examples:

104 Databases Demystified

Figure 4-11 Example 4-5, “The BETWEEN Operator”

P:\010Comp\DeMYST\364-9\ch04.vp
Monday, February 09, 2004 9:03:19 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Pattern Interpretation

%Now Matches any character string that ends with “Now”

Now% Matches any character string that begins with “Now”

%Now% Matches any character string that contains “Now” (whether at the beginning, the

end, or in the middle)

N_w Matches any string of exactly three characters, where the first character is “N” and

the third character is “w”

%N_w% Matches any string that contains the character “N” followed by any character,

which is in turn followed by the character “w” and continues with any number

of characters

Figure 4-12 shows the use of the LIKE operator to display only rows where the

FIRST_NAME column starts with the text “Pete”.

Example 4-7: Compound Conditions Using OR
As stated earlier, multiple conditions may be combined using the OR operator. Fig-

ure 4-13 shows a WHERE clause that selects rows having either a FIRST_NAME

column beginning with “Pete” or a SALARY column that is between 10000 and

20000 inclusive.

Figure 4-14 changes the OR operator from Example 4-6 to the AND operator.

Note that only one row is returned now because both conditions must be true for a row

to appear in the query results.

CHAPTER 4 Introduction to SQL 105

Figure 4-12 Example 4-6, “The LIKE Operator”

P:\010Comp\DeMYST\364-9\ch04.vp
Monday, February 09, 2004 9:03:19 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Example 4-8: The Subselect
A very powerful feature of SQL is the subselect (or subquery), which, as the name

implies, refers to a SELECT statement that contains a subordinate SELECT state-

ment. This can be a very flexible way of selecting data.

Let’s assume that we want to list all employees who work in sales. The dilemma is

that the DEPARTMENTS table in the sample HR schema contains several sales de-

partments, including Sales, Government Sales, and Retail Sales. We could place liter-

als for those three department names or their corresponding department IDs in the

WHERE clause of our SELECT statement. However, the problem we then face is

maintenance of the query if a sales-related department is subsequently added or elimi-

nated. A safer approach is to use an SQL query to find the applicable department IDs

106 Databases Demystified

Figure 4-13 Example 4-7, “Compound Conditions Using OR”

Figure 4-14 Example 4-7, “Compound Conditions Using AND”

P:\010Comp\DeMYST\364-9\ch04.vp
Monday, February 09, 2004 9:03:19 AM

Color profile: Generic CMYK printer profile
Composite Default screen

when the query is run and then use that list of IDs to find the employees. The query to

find the department IDs is simple enough:

SELECT DEPARTMENT_ID
FROM DEPARTMENTS

WHERE DEPARTMENT_NAME LIKE '%Sales%';

If we place the preceding SELECT statement in the WHERE clause of a query that

lists the employee information of interest, we arrive at the query shown in Figure 4-15.

Note that SQL syntax requires the subselect to be enclosed in a pair of parentheses.

The statement shown in Example 4-8 is known as a noncorrelated subselect be-

cause the inner SELECT (that is, the one inside the WHERE clause) can be run first

and the results used when the outer SELECT is run. There also is such a thing as a

correlated subselect (or subquery), where the outer query must be invoked multiple

times, once for each row found in the inner query. Consider this example:

SELECT LAST_NAME, FIRST_NAME, SALARY, DEPARTMENT_ID
FROM EMPLOYEES A

WHERE SALARY >
(SELECT AVG(SALARY)

FROM EMPLOYEES B
WHERE A.DEPARTMENT_ID = B.DEPARTMENT_ID);

This statement finds all employees whose salary is above the average salary for their

department. The inner SELECT finds the average salary for each department. The outer

SELECT is then executed for each row returned from the inner SELECT (that is, for

each department) to find all employees for that department where the salary is above the

CHAPTER 4 Introduction to SQL 107

Figure 4-15 Example 4-8, “The Subselect”

P:\010Comp\DeMYST\364-9\ch04.vp
Monday, February 09, 2004 9:03:20 AM

Color profile: Generic CMYK printer profile
Composite Default screen

average for that department. Hopefully, you recognized the AVG function, which was

introduced back in Chapter 3 in Example 3-12. We will review using aggregate func-

tions in an upcoming SQL example.

Joining Tables

Example 4-9: The Cartesian Product
As you learned previously in Example 3-8, we need to join tables (or views) whenever

we need data from more than one table in our query results. In SQL, you specify joins

by listing the tables or views to be joined in a comma-separated list in the FROM

clause of the SELECT statement. However, SQL is not going to remind you to tell the

RDBMS how to match rows in the tables (or views) being joined. If you forget, you

will get a Cartesian product, as shown in Figure 4-16.

Whenever you write a new query, you should apply a “reasonableness” test to the

results. Example 4-9 looks fine on the surface, but when you consider that there are

only 107 employees, you realize something is horribly wrong. How could we possibly

108 Databases Demystified

Figure 4-16 Example 4-9, “The Cartesian Product”

P:\010Comp\DeMYST\364-9\ch04.vp
Monday, February 09, 2004 9:03:20 AM

Color profile: Generic CMYK printer profile
Composite Default screen

get 2889 rows simply by joining employees and departments? The answer: We failed

to include a join specification in the WHERE clause, so the RDBMS created a Carte-

sian product for us, joining each employee with everydepartment, and 27 departments

times 107 employees yields 2889 (27 * 107) rows. Oops!

Example 4-10: The Inner Join of Two Tables
Figure 4-17 shows the correction, which involves adding a WHERE clause that tells

the DBMS to match the DEPARTMENT_ID column in the EMPLOYEES table (the

foreign key) to the DEPARTMENT_ID column in the DEPARTMENTS table (the pri-

mary key). Now we get a much more reasonable result with 106 rows.

However, if there are 107 employees, why did we only get 106 in Example 4-10?

The answer lies in the fact that we performed an inner (or standard) join. Rows were

returned only when a matching department row was found for an employee—and

there is one employee, the owner of the company, who does not work in a depart-

ment. We can correct this problem by changing our inner join to an outer join. In this

case, we want all rows from the EMPLOYEES table, even if no matching row is

found in the DEPARTMENTS table for some employees.

CHAPTER 4 Introduction to SQL 109

Figure 4-17 Example 4-10, “Inner Join of Two Tables”

P:\010Comp\DeMYST\364-9\ch04.vp
Monday, February 09, 2004 9:03:20 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Example 4-11: Outer Joins in Oracle
The Oracle syntax for outer joins is just plain strange. It involves placing a plus sign

enclosed in parentheses (+) in the WHERE clause on the side of the condition where

null values are to be returned. In this case, when there is no matching

DEPARTMENTS table row for an employee, we want the data from the

EMPLOYEES table to display anyway, with the DEPARTMENT_NAME from the

DEPARTMENTS table set to null. If you think of the symbol (+) as meaning “add

nulls here,” you might find it easier to remember. Here is the adjusted SQL statement:

SELECT EMPLOYEE_ID, LAST_NAME, FIRST_NAME, DEPARTMENT_NAME

FROM EMPLOYEES, DEPARTMENTS

WHERE EMPLOYEES.DEPARTMENT_ID = DEPARTMENTS.DEPARTMENT_ID(+);

The Oracle outer join syntax grew out of necessity, with customers demanding a

solution and no standards at the time to follow. Starting with Oracle9iRelease 2, the

ANSI Standard LEFT OUTER JOIN syntax is supported. So now the preceding

statement may be rewritten in a more understandable way:

SELECT EMPLOYEE_ID, LAST_NAME, FIRST_NAME, DEPARTMENT_NAME

FROM EMPLOYEES

LEFT OUTER JOIN DEPARTMENTS

ON EMPLOYEES.DEPARTMENT_ID = DEPARTMENTS.DEPARTMENT_ID;

Example 4-12: Limiting Join Results
Additional conditions can easily be added to the WHERE clause to limit rows re-

turned from a query that also involves joins. Figure 4-18 shows a modification to

110 Databases Demystified

Figure 4-18 Example 4-12, “Limiting Join Results”

P:\010Comp\DeMYST\364-9\ch04.vp
Monday, February 09, 2004 9:03:20 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Example 4-10, such that only employees who work in departments with “Sales” in

the department name are retuned.

Example 4-13: The Self-Join
When a table has a recursive relationship, we need to join the table to itself in order to

follow the relationship in our query results. The EMPLOYEES table has such a rela-

tionship in that the MANAGER_ID column contains the EMPLOYEE_ID value of

the employee to whom each employee reports. In our example, every employee has a

manager in the table except for the owner of the company, as shown in Figure 4-19.

Note that we added another wrinkle to this example by concatenating the first and

last names of the manager with a space in between to form the MANAGER_NAME

column in the results. The column name is assigned using the keyword AS followed

by the desired name. The query was coded as an inner join, so the one employee who

does not have a manager will not show up in the results. As with any join, we can re-

write this one into an outer join by changing the WHERE clause. In this example, it

would be written as follows:

WHERE A.MANAGER_ID = B.MANAGER_ID (+)

CHAPTER 4 Introduction to SQL 111

Figure 4-19 Example 4-13, “The Self-Join”

P:\010Comp\DeMYST\364-9\ch04.vp
Monday, February 09, 2004 9:03:21 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Aggregate Functions

Example 4-14: Simple Aggregate Functions
As you will recall from Example 3-12 in the previous chapter, aggregate functions

combine multiple rows together. In Figure 4-20, aggregate functions are used to find

the minimum, maximum, and average salaries for all employees along with a count

of the total number of employees. Because there is no GROUP BY clause to group

rows, the entire table is considered one group, so only one row is returned in the

result set.

Example 4-15: Mixed Aggregate and
Normal Columns (Error)

If we add DEPARTMENT_ID to the query without adding a GROUP BY clause,

the query returns an error message, as shown in Figure 4-21. The error message can

be confusing, but notice the placement of the asterisk under the SQL statement. Ora-

cle is attempting to show the particular part of the statement where the error was

found. In this case, it is telling you that DEPARTMENT_ID is not a group function.

Example 4-16: Aggregate Functions with GROUP BY
The request in Example 4-15 is illogical because it essentially asks the RDBMS to

display every value of DEPARTMENT_ID, but at the same time, display only one

row containing the values for the other columns (those columns being formed with

aggregate functions). To remedy the situation, we must tell the RDBMS that we

112 Databases Demystified

Figure 4-20 Example 4-14, “Simple Aggregate Functions”

P:\010Comp\DeMYST\364-9\ch04.vp
Monday, February 09, 2004 9:03:21 AM

Color profile: Generic CMYK printer profile
Composite Default screen

wish to group the rows by DEPARTMENT_ID, and for each group display the

DEPARTMENT_ID along with the aggregate column results (the minimum, maxi-

mum, and average salaries for the department and the count of the number of em-

ployees in the department). The corrected statement is shown in Figure 4-22. We add

a ROUND function to the AVG(SALARY) column to round the average to two deci-

mal places. Note that the ROUND function is not an aggregate function—it merely

rounds a single column value. It is perfectly acceptable to apply a function to the re-

sults of another function, which is known as nesting functions. There seems no limit

to the clever things we can do with SQL.

CHAPTER 4 Introduction to SQL 113

Figure 4-21 Example 4-15, “Mixed Aggregate and Normal Columns (Error)”

Figure 4-22 Example 4-16, “Aggregate Functions with GROUP BY”

P:\010Comp\DeMYST\364-9\ch04.vp
Monday, February 09, 2004 9:03:21 AM

Color profile: Generic CMYK printer profile
Composite Default screen

The GROUP BY clause causes returned rows to be automatically ordered by the col-

umns listed because the DBMS must perform a sort in order to group the rows. However,

an ORDER BY may also be included to return the rows in an alternate sequence. If the

ORDER BY clause must include calculated columns, just use the expression for the col-

umn—you cannot use any alias name for the column because the alias is assigned to the

column in the query results and therefore does not exist at the time the query runs.

Data Manipulation Language (DML)
The DML statement types in SQL are INSERT, UPDATE, and DELETE. These

commands allow you to add, change, and remove rows of data in the tables. Before

we look at each of these statement types, you first need to understand the concept of

transactions and how the RDBMS supports them.

Transaction Support (COMMIT and ROLLBACK)
In terms of the RDBMS, a transaction is a series of one or more SQL statements that

are treated as a single unit. A transaction must completely work or completely fail,

meaning that any database changes a transaction makes must be made permanent

when the transaction successfully completes. On the other hand, these changes must

be entirely removed from the database if the transaction fails before completion. For

example, we could start a transaction at the beginning of a process that creates a new

order and then, at the end of the process when all the order information has been en-

tered, completes the transaction. It is important that other database users not see frag-

ments of an incomplete order until it has been completely entered and confirmed.

SQL provides support for transactions with the COMMIT and ROLLBACK

statements. There is some variation in the syntax and handling of these commands

across different RDBMS vendors. Most vendors require no argument with the

COMMIT or ROLLBACK statement, so the statement is just the keyword followed

by the semicolon that ends every SQL statement.

In Oracle, a transaction is automatically started for each database user session as soon

as the user connects to the database. At any time, the database user can issue a

COMMIT, which makes all the database changes completed up to that point permanent

and therefore visible to any other database user. The user can also issue a ROLLBACK,

which reverses any changes made to the database. The COMMIT and ROLLBACK

statements not only end one transaction, but they also begin a new one. There is one

more wrinkle to remember: In Oracle, an automatic commit occurs before any DDL

statement. (DDL statements are covered later in this chapter.)

114 Databases Demystified

P:\010Comp\DeMYST\364-9\ch04.vp
Monday, February 09, 2004 9:03:21 AM

Color profile: Generic CMYK printer profile
Composite Default screen

By contrast, in Sybase and Microsoft SQL Server, transaction support is not as

automatic. The database user must issue a BEGIN TRANSACTION statement to

start a transaction. Once a transaction is started, changes made to the database can be

made permanent with a COMMIT TRANSACTION statement, or they can be re-

versed using a ROLLBACK TRANSACTION statement. Some RDBMSs, such as

Microsoft Access and MySQL, do not provide transaction support at all.

The INSERT Statement
The INSERT statement in SQL is used to add new rows of data to tables. An INSERT

statement may also insert rows via a view, provided the following conditions are met:

• If the view joins multiple tables, the columns referenced by the INSERT

statement must all be from the same table. Said another way, an INSERT can

only affect one table.

• The view must include all the mandatory table columns in the base table.

If there are columns with NOT NULL constraints that do not appear in the

view, it is impossible to provide values for those columns and therefore

impossible to use the view to perform an insert.

The INSERT statement takes two basic forms: one where column values are pro-

vided in the statement itself, and the other where values are selected from a table or

view using a subselect. Let’s have a look at those two forms.

Example 4-17: INSERT with VALUES Clause
The INSERT with VALUES clause form of the INSERT statement can only create

one row each time it is run because the values for that one row of data are provided in

the statement itself. Figure 4-23 shows an example.

CHAPTER 4 Introduction to SQL 115

Figure 4-23 Example 4-17, “INSERT with VALUES Clause”

P:\010Comp\DeMYST\364-9\ch04.vp
Monday, February 09, 2004 9:03:22 AM

Color profile: Generic CMYK printer profile
Composite Default screen

116 Databases Demystified

Demystified / Databases Demystified / Oppel/ 225364-9 / Chapter 4

Note the column list following the INSERT keyword. This comma-separated list is

optional, but if provided must always be enclosed in a pair of parentheses. If you omit

the list, the column values must be provided in the correct order (that is, the same as the

order in which the columns are physically ordered in the table), and you cannot skip

any column values. The statement may malfunction if anyone adds columns to the ta-

ble, even optional ones, so it is always a good idea to provide the column list, even

though it is more work to create one. Following the column list is the keyword

VALUES and then a list of the values for the columns. This comma-separated list must

also be enclosed in a pair of parentheses. The items in the VALUES list have a one-to-

one correspondence with the column list (if one was provided) or with the columns de-

fined in the table or view (if a column list was not provided). With Oracle, the keyword

NULL may be used to assign null values to columns in the list.

Example 4-18: INSERT with Subquery
The INSERT with subquery form of the INSERT statement creates one row in the

target table for each row retrieved from the source table or view. A subquery is used

to retrieve the information that will be inserted. In the example that follows, rows in

an imaginary table called EMPLOYEE_INPUT are used to insert data into the

EMPLOYEES table:

INSERT INTO EMPLOYEES

(EMPLOYEE_ID, FIRST_NAME, LAST_NAME, EMAIL, PHONE_NUMBER,

HIRE_DATE, JOB_ID)

SELECT EMPLOYEE_ID, FIRST_NAME, LAST_NAME, EMAIL, PHONE_NUMBER,

SYSDATE, JOB_ID)

FROM EMPLOYEE_INPUT;

If you wish to try this INSERT statement, you can find the statements used to cre-

ate the EMPLOYEE_INPUT table in the Data Definition Language (DDL) section

a bit further along in this chapter.

The UPDATE Statement

Example 4-19: The Update Statement
The UPDATE statement in SQL is used to update the data values for table (or view)

columns listed in the statement. A WHERE clause may be included to limit the

P:\010Comp\DeMYST\364-9\ch04.vp
Monday, February 09, 2004 9:03:22 AM

Color profile: Generic CMYK printer profile
Composite Default screen

scope of the statement to rows matching its conditions; otherwise, the statement at-

tempts to update every row in the table (or view) named in the statement. Figure 4-24

shows an example of the UPDATE statement.

For each column to be updated, a SET clause is used to name the column and the

new value for the column. The new value provided may be a constant, another col-

umn name, or any other expression that SQL can resolve to a column value. If the

SET clause references multiple columns, the column names and values must be in a

comma-separated list. The UPDATE statement may include a WHERE clause to

limit the rows affected by the statement. If the WHERE clause is omitted, the

UPDATE statement will attempt to update every row in the table (or view). If you

forget this key point, remember our friend the ROLLBACK statement, which can

back out the results of the update.

The DELETE Statement
The DELETE statement removes one or more rows from a table. The statement may

also reference a view, but only if the view is based on a single table (in other words,

views that join multiple tables cannot be referenced). A DELETE statement does not

reference columns because the statement automatically clears all column data for

any rows deleted. A WHERE clause may be included to limit the rows affected by

the DELETE statement; if the WHERE clause is omitted, the statement attempts to

delete all the rows in the referenced table. Figure 4-25 shows an example of a

DELETE statement.

CHAPTER 4 Introduction to SQL 117

Figure 4-24 Example 4-19, “The UPDATE Statement”

P:\010Comp\DeMYST\364-9\ch04.vp
Monday, February 09, 2004 9:03:22 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Data Definition Language (DDL) Statements
Data Definition Language (DDL) statements define the database objects but do not

insert or update any data stored within those objects (DML statements serve that

function). In SQL, there are three basic commands within DDL:

• CREATE Creates a new database object of the type named in the statement

• DROP Drops (destroys) an existing database object of the type named in

the statement

• ALTER Changes the definition of an existing database object of the type

named in the statement

In the sections that follow, we look at the most commonly used DDL statement

types. There is a lot of variety in DDL statements across RDBMS vendors, so con-

sult the vendor’s documentation for more details.

The CREATE TABLE Statement
TABLE statement adds a new table to the database. Here is an example using the

EMPLOYEES table:

CREATE TABLE EMPLOYEE_INPUT (
EMPLOYEE_ID NUMBER(6) NOT NULL,
FIRST_NAME VARCHAR2(20) NULL,
LAST_NAME VARCHAR2(25) NOT NULL,
EMAIL VARCHAR2(25) NOT NULL,
PHONE_NUMBER VARCHAR2(20) NULL,
HIRE_DATE DATE NOT NULL,

118 Databases Demystified

Figure 4-25 Example 4-20, “The DELETE Statement”

P:\010Comp\DeMYST\364-9\ch04.vp
Monday, February 09, 2004 9:03:22 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TE
AM
 F
LY

JOB_ID VARCHAR2(10) NOT NULL,
SALARY NUMBER(8,2) NULL,
COMMISSION_PCT NUMBER(2,2) NULL,
MANAGER_ID NUMBER(6) NULL,
DEPARTMENT_ID NUMBER(4) NULL)

;

Note that a comma-separated list of columns is provided, along with the data type

and NULL or NOT NULL specification for each. You may recall that data types were

discussed in Chapter 2 and that there is a wide variation in supported data types across

RDBMS vendors. The data types shown here apply to Oracle. Be careful with NULL

and NOT NULL specifications. In most RDBMSs, including Oracle, NULL is the de-

fault. However, in others, such as Sybase and Microsoft SQL Server, NOT NULL is

the default. It is therefore safer, but of course more work, to always specify either

NULL or NOT NULL. Incidentally, most RDBMSs require that primary key columns

be specified as NOT NULL. You’ll see how to create a primary key constraint on the

EMPLOYEE_ID column of this table in the “Primary Key Constraints” section a little

further along in this chapter.

This example shows the ANSI standard components of the CREATE TABLE

statement. There are many vendor extensions. For example, in Oracle, the

STORAGE clause may be included to specify the amount of physical space that is to

be allocated to the table, and a TABLESPACE clause may be included to specify the

tablespace that will hold the table’s data.

The ALTER TABLE Statement
The ALTER TABLE statement may be used to change many aspects of the definition

of a database table. Again, there is a wide variation in implementation across

RDBMS vendors, but generally speaking, the following types of changes may be

made using the ALTER TABLE statement:

• Adding columns to the table

• Removing columns from the table

• Altering the data type for existing table columns

• Changing physical storage attributes of the table

• Adding, removing, or altering constraints

Because the implementation of constraints is the way we enforce business rules in

the database, we will take a closer look at them here. In Oracle, it is important to

name the constraints because the names appear in any error messages generated

when constraint violations take place.

CHAPTER 4 Introduction to SQL 119

P:\010Comp\DeMYST\364-9\ch04.vp
Monday, February 09, 2004 9:03:22 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Referential Constraints
Here is an example of a referential constraint definition using the ALTER TABLE

statement:

ALTER TABLE EMPLOYEE_INPUT
ADD CONSTRAINT EMP_DEPT_FK
FOREIGN KEY (DEPARTMENT_ID)
REFERENCES DEPARTMENTS (DEPARTMENT_ID);

In this example, a referential constraint named EMP_DEPT_FK is added to the

EMPLOYEES table to define the DEPARTMENT_ID column as a foreign key to

the primary key column (DEPARTMENT_ID) of the DEPARTMENTS table. This

is the way we implement the relationships we’ve identified in the logical database

design.

Primary Key Constraints
Primary key constraints ensure that the column(s) designated as the primary key for

the table never have duplicate values. Most RDBMSs, Oracle included, create a

unique index to assist in enforcement of primary key constraints. An index is a spe-

cial database object containing the key value from one or more table columns and

pointers to the table rows that match the key value. Indexes can be used for fast

searching of a table based on the key value. Here is the definition of the primary key

constraint for the EMPLOYEES table:

ALTER TABLE EMPLOYEE_INPUT
ADD CONSTRAINT EMPLOYEES_PK
PRIMARY KEY (EMPLOYEE_ID)
USING INDEX;

Unique Constraints
In addition to primary keys, we can force uniqueness of other column(s) in a table

using a unique constraint. A table may have only one primary key constraint, but in

addition it may have as many unique constraints as necessary. Most RDBMSs, in-

cluding Oracle, use a unique index to assist with the enforcement of unique con-

straints. For example, we can use a unique constraint to ensure that no two

employees have the same e-mail address as follows:

ALTER TABLE EMPLOYEE_INPUT
ADD CONSTRAINT EMPLOYEES_UNQ_EMAIL
UNIQUE (EMAIL);

120 Databases Demystified

P:\010Comp\DeMYST\364-9\ch04.vp
Monday, February 09, 2004 9:03:22 AM

Color profile: Generic CMYK printer profile
Composite Default screen

CHAPTER 4 Introduction to SQL 121

Demystified / Databases Demystified / Oppel/ 225364-9 / Chapter 4

The same constraint may be removed using this statement:

ALTER TABLE EMPLOYEE_INPUT
DROP CONSTRAINT EMPLOYEES_UNQ_EMAIL;

Check Constraints
Check constraints can be used to enforce any business rule that can be applied to a

single column in a table. The condition included in the constraint must always be

true whenever the column data in the table is changed or else an error message is dis-

played. The following example implements a check constraint that ensures that the

SALARY column in the EMPLOYEES table is always greater than zero:

ALTER TABLE EMPLOYEES
ADD CONSTRAINT EMPLOYEES_CHK_SALARY_MIN
CHECK (SALARY > 0);

The same constraint may be removed with this statement:

ALTER TABLE EMPLOYEES
DROP CONSTRAINT EMPLOYEES_CHK_SALARY_MIN;

The CREATE VIEW Statement
Because a view is merely a stored query, any query that can be run using a SELECT

statement can be saved as a view in the database. View names must be unique among

all the tables, views, and synonyms in the database schema. In Oracle, the OR

REPLACE option may be included so that an existing view of the same name will be

replaced. The following example creates a view for the query shown in Figure 4-18:

CREATE OR REPLACE VIEW SALES_EMPLOYEES AS
SELECT EMPLOYEE_ID, LAST_NAME, FIRST_NAME, DEPARTMENT_NAME
FROM EMPLOYEES A, DEPARTMENTS B
WHERE A.DEPARTMENT_ID = B.DEPARTMENT_ID
AND B.DEPARTMENT_NAME LIKE '%Sales%';

Running the following SQL statement will select the data from the view, which

will yield the exact same results as those shown in Figure 4-18:

SELECT * FROM SALES_EMPLOYEES;

The CREATE INDEX Statement
The CREATE INDEX statement creates an index on one or more table columns. As

previously mentioned, indexes provide fast searching of a table based on one or

P:\010Comp\DeMYST\364-9\ch04.vp
Monday, February 09, 2004 9:03:22 AM

Color profile: Generic CMYK printer profile
Composite Default screen

more key columns. Indexes on foreign keys can also greatly improve the perfor-

mance of joins. The RDBMS automatically maintains the index when rows are

added to or deleted from the database or indexed column values are updated. How-

ever, indexes take storage space and their maintenance takes processing resources.

The following example creates an index on the DEPARTMENT_ID column in the

EMPLOYEE_INPUT table:

CREATE INDEX EMPLOYEE_INPUT_IX_DEPT_ID
ON EMPLOYEE_INPUT (DEPARTMENT_ID);

If the column values in the index will always be unique, the UNIQUE keyword may

be placed between the CREATE and INDEX keywords. As an alternative, a unique

constraint may be added to the table, which indirectly creates the unique index.

Unique indexes are usually more efficient than nonunique ones.

The DROP Statement
The DROP statement is used to remove database objects from the database when

they are no longer necessary. For table deletions, the CASCADE CONSTRAINTS

clause may be added to automatically remove any referential constraints in which

the table participates. When a table is dropped, most objects depending on the table

(indexes and constraints) are also dropped. In most RDBMSs, however, views de-

pendent on a dropped table remain but are marked invalid so they cannot be used un-

til the table is re-created. Here are the DROP statements that remove the objects

created in the preceding examples:

DROP VIEW SALES_EMPLOYEES;
DROP INDEX EMPLOYEE_INPUT_IX_DEPT_ID;
DROP TABLE EMPLOYEE_INPUT CASCADE CONSTRAINTS;

Data Control Language (DCL) Statements
A database privilege is the authorization to do something in the database. The data-

base user granting the privilege is called the grantor, and the database user receiving

the privilege is called the grantee. Privileges fall into two broad categories:

• System privileges Permit the grantee to perform a general database function,

such as creating new user accounts or connecting to the database

122 Databases Demystified

P:\010Comp\DeMYST\364-9\ch04.vp
Monday, February 09, 2004 9:03:23 AM

Color profile: Generic CMYK printer profile
Composite Default screen

• Object privileges Permit the grantee to perform specific actions on

specific objects, such as selecting from the EMPLOYEES table or updating

the DEPARTMENTS table

To reduce the tedium of managing privileges, most RDBMSs support storing a

group of privilege definitions as a single named object called a role. Roles may then

be granted to individual users, who then inherit all the privileges contained in the

role. RDBMSs that support roles also typically come with a number of predefined

roles. Oracle, for example, has a role called DBA that contains all the high-powered

system and object privileges a database user needs in administering a database.

The GRANT Statement
Privileges are given to users in SQL using the GRANT statement. The following ex-

amples show the syntax for granting a system privilege and an object privilege to da-

tabase users.

The following statement grants the CONNECT privilege to user OE (one of the

other Oracle sample schema users):

GRANT CONNECT TO OE;

The following statement grants the select, insert, and update privileges on the

EMPLOYEES table in the HR schema to user OE. Note that we must qualify the ta-

ble name with the schema name because we are logged in as the SYSTEM user. You

must always qualify objects that belong to another schema (user) when you refer-

ence them in SQL. Here’s the statement:

GRANT SELECT, INSERT, UPDATE ON HR.EMPLOYEES TO OE;

Most RDBMSs that support privileges also allow for giving the grantee permis-

sion to grant the privilege to others. In Oracle, the clause for doing so is WITH

ADMIN OPTION for system privileges and WITH GRANT OPTION for object

privileges. However, I strongly recommend against doing so. It is simply too easy to

lose control of privileges when you allow people who have a privilege to in turn grant

it to others.

The REVOKE Statement
Granted privileges can be withdrawn using the REVOKE statement. For object priv-

ileges, if WITH GRANT OPTION is exercised by the user, the revoke cascades and

everyone downstream loses the privilege as well. This is not necessarily true for sys-

tem privileges—consult your RDBMS manuals for details. Better yet, if you never

CHAPTER 4 Introduction to SQL 123

P:\010Comp\DeMYST\364-9\ch04.vp
Monday, February 09, 2004 9:03:23 AM

Color profile: Generic CMYK printer profile
Composite Default screen

124 Databases Demystified

Demystified / Databases Demystified / Oppel/ 225364-9 / Chapter 4

use WITH GRANT OPTION and WITH ADMIN OPTION, you will never have to

worry about this problem. The privileges shown in the previous section can be re-

voked with these commands:

REVOKE DBA FROM HELEN_WHEELS;
REVOKE SELECT, INSERT, UPDATE ON DEPARTMENTS FROM BOB_THE_BOSS;

Quiz
Choose the correct responses to each of the multiple-choice questions. Note that

there may be more than one correct response to each question.

1. SQL may be divided into the following subsets:

a. Data Selection Language (DSL)

b. Data Control Language (DCL)

c. Data Purge Language (DPL)

d. Data Query Language (DQL)

e. Data Replication Language (DRL)

2. SQL was first developed:

a. By IBM

b. In 1982

c. Based on ANSI specifications

d. By ANSI

e. In the 1970s

3. SQL Plus is

a. Oracle’s SQL3-compliant language

b. Available in both GUI and command-line versions

c. Functionally equivalent to the SQL Plus Worksheet

d. Oracle’s client software for running SQL

e. A set of Oracle extensions to SQL

4. A SELECT without a WHERE clause:

a. Selects all rows in the source table or view

b. Selects all columns in the source table or view

c. Results in an error message

d. Always outputs results to a log file

e. Lists only the definition of the table or view

5. In SQL, row order in query results:

a. Is specified using the SORTED BY clause

b. Is unpredictable unless specified in the query

P:\010Comp\DeMYST\364-9\ch04.vp
Monday, February 09, 2004 9:03:23 AM

Color profile: Generic CMYK printer profile
Composite Default screen

CHAPTER 4 Introduction to SQL 125

Demystified / Databases Demystified / Oppel/ 225364-9 / Chapter 4

c. May be either descending or ascending for any column

d. Defaults to descending when sequence is not specified

e. May only be specified for columns in the query results

6. The BETWEEN operator:

a. Includes the end-point values

b. Selects rows added to a table during a time interval

c. Can be rewritten using the <= and NOT = operators

d. Can be rewritten using the <= and >= operators

e. Is an Oracle extension to SQL

7. The LIKE operator:

a. Uses underscores as nonpositional wildcards

b. Uses underscores as positional wildcards

c. Uses question marks as nonpositional wildcards

d. Uses percent signs as positional wildcards

e. Uses percent signs as nonpositional wildcards

8. A subselect:

a. May be corrugated or noncorrugated

b. Is a powerful way of calculating columns

c. Allows for the flexible selection of rows

d. Must not be enclosed in parentheses

e. May be used to select values to be applied to WHERE clause conditions

9. A join without a WHERE clause or JOIN clause:

a. Always performs an inner join

b. Results in an error message

c. Results in an outer join

d. Results in a Cartesian product

e. Returns no rows in the result set

10. An outer join:

a. May be written using a (+) symbol in the FROM clause

b. May be written using a (+) symbol in the WHERE clause

c. Results in a Cartesian product

d. Returns all rows in one of the two tables

e. Can be a left, right, or full outer join

11. A self-join:

a. Involves two different tables

b. Can be either an inner or outer join

c. Can never result in a Cartesian product

d. Resolves recursive relationships

e. May use a subselect to further limit returned rows

P:\010Comp\DeMYST\364-9\ch04.vp
Monday, February 09, 2004 9:03:23 AM

Color profile: Generic CMYK printer profile
Composite Default screen

126 Databases Demystified

Demystified / Databases Demystified / Oppel/ 225364-9 / Chapter 4

12. An SQL statement containing an aggregate function:

a. Must contain a GROUP BY clause

b. May also include ordinary columns

c. May not include both GROUP BY and ORDER BY clauses

d. May also include calculated columns

e. May not involve joining multiple tables

13. A COMMIT in Oracle:

a. Ends a transaction

b. Begins a new transaction

c. Makes changes effected by a transaction visible to all users

d. Causes changes made by a transaction to become permanent

e. Is automatic just before any DDL statement is run

14. An INSERT statement:

a. Must contain a column list

b. Must contain a VALUES list

c. May create multiple table rows

d. May contain a subquery

e. Creates a new table

15. An UPDATE statement without a WHERE clause:

a. Results in an error message

b. Updates no rows in a table

c. Updates every row in a table

d. Results in a Cartesian product

e. Updates every column in a table

16. A DELETE statement with a column list:

a. Results in an error message

b. Deletes every row in the table

c. Deletes every column in the table

d. Results in a Cartesian product

e. Can be used to delete from a view

17. A CREATE statement:

a. Is a form of DML

b. Creates new user privileges

c. Creates a database object

d. May be corrected later using an ALTER statement

e. May be reversed later using a DROP statement

P:\010Comp\DeMYST\364-9\ch04.vp
Monday, February 09, 2004 9:03:23 AM

Color profile: Generic CMYK printer profile
Composite Default screen

18. An ALTER statement:

a. May be used to add a constraint

b. May be used to drop a constraint

c. May be used to add a view

d. May be used to drop a view

e. May be used to drop a table column

19. A check constraint:

a. Enforces referential integrity

b. Enforces a business rule

c. Creates an index to assist with the constraint

d. Restricts a database user’s privileges

e. Validates data in an index

20. Database privileges:

a. May be changed with an ALTER PRIVILEGE statement

b. May be either system or object privileges

c. Must be granted using roles

d. Are best managed when assembled into groups using GROUP BY

e. Are managed using GRANT and REVOKE

CHAPTER 4 Introduction to SQL 127

P:\010Comp\DeMYST\364-9\ch04.vp
Monday, February 09, 2004 9:03:23 AM

Color profile: Generic CMYK printer profile
Composite Default screen

P:\010Comp\DeMYST\364-9\ch04.vp
Monday, February 09, 2004 9:03:23 AM

Color profile: Generic CMYK printer profile
Composite Default screen

This page intentionally left blank.

CHAPTER
5

The Database
Life Cycle

Before we delve into the particulars of database design, it is useful to understand the

framework in which the design takes place. The life cycle of a database (or computer

system) is the term we use for all the events that take place between the time we first

recognize a need for a database, continuing through its development and deploy-

ment, and finally ending with the day it is retired from service.

Most businesses that develop computer systems have a formal process they fol-

low. The process ensures that development runs smoothly, is cost effective, and that

the outcome is a complete computer system that meets expectations. Databases are

never designed and implemented in a vacuum—there are always other components

of the complete system, such as the user interface, application programs, and re-

ports, that are developed along with the database. All the work to be accomplished

over the long term is typically divided into projects, with each project having its own

finite list of goals (sometimes called deliverables), an expected timeframe for com-

pletion, and a project manager or leader who will be held accountable for delivery of

the project. In order to understand the database life cycle, you must also understand

129

P:\010Comp\DeMYST\364-9\ch05.vp
Monday, February 09, 2004 9:06:09 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Copyright © 2004 by The McGraw-Hill Companies. Click here for terms of use.

the life cycle of the entire systems-development effort and the way projects are orga-

nized and managed. In this chapter, we take a look at both traditional and nontradi-

tional systems-development processes.

Not all databases are built by businesses using formal projects and funding. How-

ever, the disciplines outlined in this chapter can assist you in thinking through your

database project, asking the tough questions, before you embark on an extended effort.

The Traditional Method
The traditional method for developing computer systems follows a process called the

system development life cycle (SDLC), which divides the work into the phases shown

in Figure 5-1. There are perhaps as many variations of the SDLC as there are authors,

project management software vendors, and companies that have elected to create their

own methodology. However, they all have the basic components, and in that sense, are

all cut from the same cloth. We could argue the merits of one variation versus another,

but that would merely confuse matters when all we need is a basic overview. A good

textbook on systems analysis can provide greater detail should you need it. Figure 5-1

shows the traditional SDLC steps in the left column, the basic project activities in the

middle column, and the database steps that support the project activities in the right

column. We will explore each step further in the sections that follow. Note that the pro-

cess is not always unidirectional—there are times when missing or incomplete infor-

mation is discovered that requires you to go back one phase and adjust the work done

there. The dotted lines pointing back to prior phases in Figure 5-1 serve as a reminder

that a certain amount of rework is normal and expected during a project following the

SDLC methodology.

Planning
During the planning phase, the organization must reach an understanding at a high

level of where they currently are, where they want to be, and a reasonable approach

or plan for getting from one place to the other. Planning is often done over a longer

time period than any one individual project, and the overall information systems

plan for the organization forms the basis from which projects should be launched to

achieve the overall objectives. For example, a long-range objective in the plan might

be “Increase profits by 15 percent.” In support of that objective, a project to develop an

application system and database to track customer profitability might be proposed.

Once a particular project is proposed, a feasibility study is usually launched to

determine if the project can be reasonably expected to achieve (or help achieve) the

130 Databases Demystified

P:\010Comp\DeMYST\364-9\ch05.vp
Monday, February 09, 2004 9:06:09 AM

Color profile: Generic CMYK printer profile
Composite Default screen

objective and if preliminary estimates of time, staff, and materials required for the

project fit within the required timeframe and available budget. Often a return on

CHAPTER 5 The Database Life Cycle 131

Figure 5-1 Traditional system development life cycle (SDLC)

P:\010Comp\DeMYST\364-9\ch05.vp
Monday, February 09, 2004 9:06:09 AM

Color profile: Generic CMYK printer profile
Composite Default screen

investment (ROI) or similar calculation is used to measure the expected value of the

proposed project to the organization. If the feasibility study meets management

approval, the project is placed on the overall schedule for the organization and the

project team is formed. The composition of the project team will change over the life

of the project, with people added and released as particular skill and staffing levels

are needed. The one consistent member of the project team will be the project man-

ager (or project leader), who is responsible for the overall management and execu-

tion of the project.

Many organizations assign a database specialist (database administrator or data

modeler) to projects at their inception, as shown in Figure 5-1. In a data-driven

approach, where the emphasis is on studying the data in order to discover the pro-

cessing that must take place to transform the data as required by the project, early as-

signment of someone skilled at analyzing the data is essential. In a process-driven

approach, where the emphasis is on studying the processes required in order to dis-

cover what the data should be, a database specialist is less essential during the earli-

est phases of the project. Industry experience suggests that the very best results are

obtained by applying both a process-driven and a data-driven approach. However,

there is seldom time and staff to do so, so the next-best results for a project involving

databases come from the data-driven approach. Processes still need to be designed,

but if we study the data first, the required processes become apparent. For example,

in designing our customer profitability system, if we have customer sales data and

know that customers who place fewer, larger orders are more profitable, then we can

conclude that we need a process to rank customers by order volume and size. On the

other hand, if all we know is that we need a process that ranks customers, it may take

considerably more work to arrive at the criteria we should use to rank them.

The database activities in this phase involve reviewing DBMS options and deter-

mining whether the technologies currently in use meet the overall needs of the pro-

ject. Most organizations settle on one, or perhaps two, standard DBMS products that

they use for all projects. At this point, the goals of the project should be compared

with the current technology to ensure that the project can reasonably be expected to

be successful using that technology. If a newer version of the DBMS is required, or if

a completely different DBMS is required, now is the time to find out so the acquisi-

tion and installation of the DBMS can be started.

Requirements Gathering
During the requirements-gathering phase, the project team must gather and document

a high-level, yet precise, description of what the project is to accomplish. The focus

must be on what rather than how; the “how” is developed during the subsequent design

phases. It is important for the requirements to include as much as can be known about

132 Databases Demystified

P:\010Comp\DeMYST\364-9\ch05.vp
Monday, February 09, 2004 9:06:10 AM

Color profile: Generic CMYK printer profile
Composite Default screen

the existing and expected business processes, business rules, and entities. The more

work that is done in the early stages of a project, the more smoothly the subsequent

stages will proceed. On the other hand, without some tolerance for the unknown (that

is, those gray areas that have no solid answers), analysis paralysis may occur, wherein

the entire project stalls while analysts spin their wheels looking for answers and clari-

fications that are not forthcoming.

From a database design perspective, the items of most interest during require-

ments gathering are user views. Recall that a user view is the method employed for

presenting a set of data to the database user in a manner tailored to the needs of that

person or application. At this phase of development, user views take the form of ex-

isting or proposed reports, forms, screens, Web pages, and the like.

Many techniques may be used in gathering requirements. The more commonly

used ones are compared and contrasted here: conduct interviews, conduct survey,

observation, and document review. No particular technique is clearly superior to an-

other, and it is best to find a blend of techniques that works well for the particular or-

ganization rather than rely on one over the others. For example, whether it is better to

conduct a survey and follow up with interviews with key people, or to start with in-

terviews and use the interview findings to formulate a survey, is often a question of

what works best given the organization’s culture and operating methods. With each

technique detailed in the following subsections, some advantages and disadvantages

are listed to assist in decision making.

Conduct Interviews
Interviewing key individuals who have information about what the project is expected

to accomplish is a popular approach. One of the common errors, however, is to inter-

view only management. If representatives of the people who are actually going to use

the new application(s) and database(s) are not included, the project may end up deliv-

ering something that is not practical, because management may not fully understand

the details of what is required to run the business of the organization.

The advantages of requirements gathering using interviews include

• The interviewer can receive answers to questions that were not asked. Side

topics often come up that provide additional useful information.

• The interviewer can learn a lot from the body language of the interviewee.

It is far easier to detect uncertainty and attempts at deception in person

rather than in written responses to questions.

The disadvantages include

• Interviews take considerably more time than other methods.

CHAPTER 5 The Database Life Cycle 133

P:\010Comp\DeMYST\364-9\ch05.vp
Monday, February 09, 2004 9:06:10 AM

Color profile: Generic CMYK printer profile
Composite Default screen

• Poorly skilled interviewers can “telegraph” the answers they are expecting

by the way they ask the questions or by their reaction to the answers received.

Conduct a Survey
Another popular approach is to write a survey seeking responses to key questions re-

garding the requirements for a project. The survey is sent to all the decision makers

and potential users of the application(s) and database(s) the project is expected to de-

liver, and responses are analyzed for items to be included in the requirements.

The advantages of requirements gathering using surveys include

• A lot of ground can be covered in a short time. Once the survey is written, it

takes little additional effort to distribute it to a wider audience if necessary.

• Questions are presented in the same manner to every participant.

The disadvantages include

• Surveys typically have very poor response rates. Consider yourself fortunate

if 10 percent respond without having to be prodding or threatened with

consequences.

• Unbiased survey questions are much more difficult to compose than one

would imagine.

• The project team does not get the benefit of the nonverbal clues that an

interview provides.

Observation
Observing the business operation and the people who will be using the new applica-

tion(s) and database(s) is another popular technique for gathering requirements.

The advantages of requirements gathering using observation include

• Assuming you watch in an unobtrusive manner, you get to see people

following normal processes in everyday use. Note that these may not be

the processes that management believes are being followed, or even the

ones in existing documentation. Instead, you may observe adaptations that

were made so that the processes actually work or so they are more efficient.

• You may observe events that people would not think (or dare) to mention in

response to questionnaires or interview questions.

The disadvantages include the following:

134 Databases Demystified

P:\010Comp\DeMYST\364-9\ch05.vp
Monday, February 09, 2004 9:06:10 AM

Color profile: Generic CMYK printer profile
Composite Default screen

• If the people know they are being watched, behavior changes, and you may

not get an accurate picture of their business processes. This is often termed

the Hawthorne effect after a phenomenon first noticed in the Hawthorne Plant

of Western Electric, where production improved not because of improvements

in working conditions but rather because management demonstrated interest

in such improvements.

• Unless enormous periods of time are dedicated to observation, you may

never see the exceptions that subvert existing business processes. To bend

an old analogy, you end up paving the cow path while cows are wandering

on the highway on the other side of the pasture due to a hole in the fence.

• Travel to various business locations can add to project expense.

Document Review
This technique involves locating and reviewing all available documents for the exist-

ing business units and processes that will be affected by the new program(s) and

database(s).

The advantages of requirements gathering using document review include

• Document review is typically less time consuming than any of the other

methods.

• Documents often provide an overview of the system that is better thought

out compared with the introductory information you receive in an interview.

• Pictures and diagrams really are worth a thousand words each.

The disadvantages are

• The documents may not reflect actual practices. Documents often deal with

what should happen rather than what really happens.

• Documentation is often out of date.

Conceptual Design
The conceptual design phase involves designing the externals of the application(s)

and database(s). In fact, many methodologies use the term external design for this

project phase. The layout of reports, screens, forms, web pages, and other data entry

and presentation vehicles are finalized during this phase. In addition, the flow of the

external application is documented in the form of a flow chart, storyboard, or screen

flow diagram. This helps the project team understand the logical flow of the system.

Process diagramming techniques are discussed further in Chapter 7.

CHAPTER 5 The Database Life Cycle 135

P:\010Comp\DeMYST\364-9\ch05.vp
Monday, February 09, 2004 9:06:10 AM

Color profile: Generic CMYK printer profile
Composite Default screen

During this phase, the database specialist (DBA or data modeler) assigned to the

project updates the enterprise conceptual data model, which is usually maintained in

the form of an entity-relationship diagram (ERD). New or changed entities discov-

ered are added to the ERD, and any additional or changed business rules are also

noted. The user views, entities, and business rules are essential for the successful

logical database design that follows in the next phase.

Logical Design
During logical design, the bulk of the technical design of the application(s) and data-

base(s) included in the project is carried out. Many methodologies call this phase in-

ternal design because it involves the design of the internals of the project that the

business users will never see.

The work to be accomplished by the application(s) is segmented into modules (in-

dividual units of application programming that will be written and tested together) and

a detailed specification is written for each unit. The specification should be complete

enough that any programmer with the proper programming skills can write the mod-

ule and test it with little or no additional information. Diagrams such as data flow dia-

grams or flow charts (an older technique) are often used to document the logic flow

between modules. Process modeling is covered in more detail in Chapter 7.

From the database perspective, the major effort in this phase is normalization, a

technique developed by Dr. E.F. Codd for designing relational database tables that

are best for transaction-based systems (that is, those that insert, update, and delete

data in the relational database tables). Normalization is covered in great detail in

Chapter 6. Normalization is the single most important topic in this entire book. Once

normalization is completed, the overall logical data model for the enterprise (assum-

ing one exists) is updated to reflect any newly discovered entities.

Physical Design
During the physical design phase, the logical design is mapped or converted to the

actual hardware and systems software that will be used to implement the applica-

tion(s) and database(s). From the process side, there may be little or nothing to do if

the application specifications were written in a manner that can be directly imple-

mented. However, there is much work to be done in specifying the hardware on

which the application(s) and database(s) will be installed, including capacity esti-

mates for the processors, disk devices, and network bandwidth on which the system

will run.

136 Databases Demystified

P:\010Comp\DeMYST\364-9\ch05.vp
Monday, February 09, 2004 9:06:10 AM

Color profile: Generic CMYK printer profile
Composite Default screen

On the database side, the normalized relations that were designed in the prior log-

ical design phase are implemented in the relational DBMS(s) to be used. In particu-

lar, DDL is coded or generated to define the database objects, including the SQL

clauses that define the physical storage of the tables and indexes. Preliminary analy-

sis of required database queries is conducted to identify any additional indexes that

may be necessary to achieve acceptable database performance. An essential out-

come of this phase is the DDL for creation of the development database objects that

the developers will need for testing the application programs during the construction

phase that follows. Physical database design is covered in more detail in Chapter 8.

Construction
During the construction phase, the application developers code and test the individ-

ual programming units. Tested program units are promoted to a system test environ-

ment where the entire application and database system is assembled and tested from

end to end. Figure 5-2 shows the environments that are typically used as an applica-

tion system is developed, tested, and implemented. Each environment is a complete

hardware and software environment that includes all the components necessary to

run the application system. Once system testing is completed, the system is pro-

moted to a quality assurance (QA) environment. Most medium and large size orga-

nizations have a separate QA department that tests the application system to ensure

that it conforms to the stated requirements. Some organizations also have business

users test the system to make sure it also meets their needs. The sooner errors are

found in a computer system, the less expensive they are to repair. After QA has

passed the application system, it is promoted to a staging environment. It is impor-

tant that the staging environment be as near a duplicate of the production environ-

ment as possible. In this environment, stress testing is conducted to ensure that the

application and database will perform reasonably when deployed into live produc-

tion use. Often final user training is conducted here as well because it will be most

like the live environment they will soon use.

CHAPTER 5 The Database Life Cycle 137

Figure 5-2 Development hardware/software environments

P:\010Comp\DeMYST\364-9\ch05.vp
Monday, February 09, 2004 9:06:10 AM

Color profile: Generic CMYK printer profile
Composite Default screen

The major work of the DBA is already complete by the time construction begins.

However, as each part of the application system is migrated from one environment to

the next, the database components needed by the application must also be migrated.

Hopefully, a script is written that deploys the database components to the develop-

ment environment, and that script is re-used in each subsequent environment. How-

ever, it is more complicated when an existing database is being enhanced or an older

data storage system is being replaced, because data must be converted from the old

storage structures to the new. Data transcends systems. Therefore, data conversion

between old and new versions of systems is quite commonplace, ranging from sim-

ply adding new tables and columns to complex conversions that require extensive

programming efforts in and of themselves.

Implementation and Rollout
Implementation is the process of installing the new application system’s compo-

nents (application programs, forms or web pages, reports, database objects, and so

on) into the live system and carrying out any required data conversions. Rollout is

the process of placing groups of business users on the new application. Sometimes a

new project is implemented cold turkey, meaning everyone is placed on the new ver-

sion at the same time. However, with more complicated applications or those involv-

ing large numbers of users, a phased implementation is often used to reduce risk.

The old and new versions of the application must run in parallel for a time while

groups of users—often partitioned by physical work location or by department—are

trained and migrated over to the new application. This method is often humorously

referred to as the chicken method (in contrast to the cold turkey method).

Ongoing Support
Once a new application system and database have been implemented in a production

environment, support of the application is often turned over to a production support

team. This team must be prepared to isolate and respond to any issues that may arise,

which could include performance issues, abnormal or unexpected results, complete

failures, or the inevitable requests for enhancements. With enhancements, it is best

to categorize and prioritize them and then fold them into future projects. However,

genuine errors found in the existing application or database (called bugs in IT slang)

must be fixed more immediately. Each bug fix becomes a mini-project, where all the

SDLC phases must be revisited. At the very least, documentation must be updated as

changes are made. As noted in Figure 5-2, the staging environment provides an ideal

place for the validation of errors and the fixes for them, and makes it possible to fix

138 Databases Demystified

P:\010Comp\DeMYST\364-9\ch05.vp
Monday, February 09, 2004 9:06:10 AM

Color profile: Generic CMYK printer profile
Composite Default screen

errors in parallel with the next major enhancement to the application system, which

may have already been started in the development environment.

Assuming no gross errors were made during database design, the database sup-

port required during this phase is usually minor. Here are some of the tasks that may

be required:

• Patches must be applied when the problems turn out to be bugs in the

vendor’s RDBMS software.

• Performance tuning, such as moving data files or adding indexes, may be

necessary to circumvent performance problems.

• Space must be monitored and storage added as the database grows.

• Some application bug fixes may require new table columns or alterations

to existing columns. If testing was done well, gross errors that require

extensive database changes simply do not occur. Some application changes

are required by statutory or regulatory changes beyond the control of the

organization, and those changes can lead to extensive modifications to

application(s) and database(s).

Nontraditional Methods
In response to the belief that SDLC projects take too much time and too many re-

sources, some nontraditional methods have come into routine use in some organiza-

tions. The two most prevalent of these are prototyping and Rapid Application

Development (RAD).

Prototyping
Prototyping involves rapid development of the application using iterative sets of de-

sign, development, and implementation steps as a method of determining user re-

quirements. Extensive business user involvement is required throughout the

development process. In its extreme form, a meeting is held during the business day

to review the latest iteration of the application, followed by a development team

working through the evening and often late into night. The next iteration is then re-

viewed during the following workday.

Some prototyping techniques carry all the way through to a production version of

the application and database. In this variation, iterations have increasing levels of de-

tail added to them until they become completely functional applications. If this path is

chosen, prototyping never ends, and even after implementation and rollout, any future

CHAPTER 5 The Database Life Cycle 139

P:\010Comp\DeMYST\364-9\ch05.vp
Monday, February 09, 2004 9:06:11 AM

Color profile: Generic CMYK printer profile
Composite Default screen

140 Databases Demystified

Demystified / Databases Demystified / Oppel/ 225364-9 / Chapter 5

enhancements fall right back into more prototyping. The most common downside to

this implementation technique is development team burnout.

Another variation of prototyping restricts the effort to only the definition of re-

quirements. Once requirements and the user-facing parts of the conceptual design

(that is, user views) are determined, a traditional SDLC methodology is used to com-

plete the project. IBM introduced a version of this methodology called Joint Appli-

cation Design (JAD), which was highly successful in situations where user

requirements could not be determined using more traditional techniques. The big-

gest exposure for this variant of prototyping is in not setting and maintaining expec-

tations with the business sponsors of the project. The prototype is more or less a

façade, much like a movie set where the buildings look real from the front, but have

no substance beyond that. Nontechnical audiences have no understanding of what it

takes to develop the logic and data storage structures that form the inner workings of

the application, and they become most disappointed when they realize that what

looked like a complete, functional application system was really just an empty shell.

However, when done correctly, this technique can be remarkably successful in de-

termining user requirements that describe precisely the application system the busi-

ness users want and need.

Rapid Application Development (RAD)
Rapid Application Development (RAD) is a software development process that

allows functioning application systems to be built in as little as 60–90 days. Com-

promises are often made using the 80/20 rule, which assumes that 80 percent of the

required work can be completed in 20 percent of the time. Complicated exception

handling, for example, can be omitted in the interest of delivering a working system

sooner. If the process is repeated on the same set of requirements, the system is ulti-

mately built out to meet 100 percent of the requirements in a manner similar to

prototyping.

RAD is not useful in controlling project schedules or budgets, and in fact requires

a project manager who is highly skilled at managing schedules and controlling costs.

It is most useful in situations where a rapid schedule is more important than product

quality (measured in terms of conforming to all known requirements).

P:\010Comp\DeMYST\364-9\ch05.vp
Monday, February 09, 2004 9:06:11 AM

Color profile: Generic CMYK printer profile
Composite Default screen

CHAPTER 5 The Database Life Cycle 141

Demystified / Databases Demystified / Oppel/ 225364-9 / Chapter 5

Quiz
Choose the correct responses to each of the multiple-choice questions. Note that

there may be more than one correct response to each question.

1. The phases of a systems development life cycle (SDLC) methodology

include

a. Physical design

b. Logical design

c. Prototyping

d. Requirements gathering

e. Ongoing support

2. During the planning phase of an SDLC project:

a. The database design is normalized.

b. A feasibility study is often conducted.

c. A database specialist may be assigned to the project.

d. Prototyping takes place.

e. Interviews are conducted.

3. During the requirements phase of an SDLC project:

a. User views are discovered.

b. The quality assurance (QA) environment is used.

c. Surveys may be conducted.

d. Interviews are often conducted.

e. Observation may be used.

4. The advantages of conducting interviews are

a. Interviews take less time than other methods.

b. Answers may be obtained for unasked questions.

c. A lot can be learned from nonverbal responses.

d. Questions are presented more objectively compared to survey

techniques.

e. Entities are more easily discovered.

5. The advantages of conducting surveys include

a. A lot of ground can be covered quickly.

b. Nonverbal responses are not included.

c. Most survey recipients respond.

d. Surveys are simple to develop.

e. Prototyping of requirements is unnecessary.

P:\010Comp\DeMYST\364-9\ch05.vp
Monday, February 09, 2004 9:06:11 AM

Color profile: Generic CMYK printer profile
Composite Default screen

142 Databases Demystified

Demystified / Databases Demystified / Oppel/ 225364-9 / Chapter 5

6. The advantages of observation are

a. You always see people acting normally.

b. You are likely to see lots of situations where exceptions are handled.

c. You may see the way things really are instead of the way management

and/or documentation presents them.

d. The Hawthorne effect enhances your results.

e. You may observe events that would not be described to you by anyone.

7. The advantages of document reviews are

a. Pictures and diagrams are valuable tools for understanding systems.

b. Document reviews can be done relatively quickly.

c. Documents will always be up to date.

d. Documents will always reflect current practices.

e. Documents often present overviews better than other techniques can.

8. During the conceptual design phase:

a. Normalization takes place.

b. New entities may be discovered.

c. The conceptual data model is updated.

d. Web pages may be designed.

e. Application program modules are specified.

9. During the logical design phase:

a. The internal components of the application are designed.

b. Normalization takes place.

c. System testing takes place.

d. Program modules are written.

e. Program specifications are written.

10. During the physical design phase:

a. Hardware capacity planning takes place.

b. Additional hardware is added as the database grows.

c. Additional database indexes may be added.

d. DDL is written to define database objects.

e. Application programs are written.

11. During the construction phase:

a. Application programs are tested.

b. Quality assurance testing takes place.

c. DBA work may be limited to merely running deployment scripts.

d. Data conversion for production deployment takes place.

e. New entities are discovered.

P:\010Comp\DeMYST\364-9\ch05.vp
Monday, February 09, 2004 9:06:11 AM

Color profile: Generic CMYK printer profile
Composite Default screen

CHAPTER 5 The Database Life Cycle 143

Demystified / Databases Demystified / Oppel/ 225364-9 / Chapter 5

12. During implementation and rollout:

a. Users are placed on the live system.

b. Enhancements are designed.

c. The old and new applications may be run in parallel.

d. Quality assurance testing takes place.

e. User training takes place.

13. During ongoing support:

a. Enhancements are immediately implemented.

b. Storage for the database may require expansion.

c. The staging environment is no longer required.

d. Bug fixes may take place.

e. Patches may be applied if needed.

14. Prototyping:

a. May be used to create complete systems

b. May be used only for gathering requirements

c. Is an integral part of most SDLC methodologies

d. Works well when requirements are sketchy

e. Helps in setting user expectations

15. Rapid Application Development:

a. Focuses on developing complete systems

b. Is useful for controlling costs and schedules

c. Incorporates complex error handling

d. Develops systems rapidly by skipping 20 percent of the requirements

e. Incorporates quality assurance testing

16. Normalization takes place during:

a. Logical design

b. Physical design

c. Construction

d. Implementation and rollout

e. Ongoing support

17. The database is initially constructed in the:

a. Production environment

b. Quality assurance environment

c. Staging environment

d. System test environment

e. Development environment

P:\010Comp\DeMYST\364-9\ch05.vp
Monday, February 09, 2004 9:06:11 AM

Color profile: Generic CMYK printer profile
Composite Default screen

18. Database conversion is tested during:

a. Logical design

b. Physical design

c. Construction

d. Implementation and rollout

e. Ongoing support

19. Dr. E.F. Codd invented:

a. The SDLC methodology

b. The relational database

c. Quality assurance testing

d. Normalization

e. Rapid Application Development (RAD)

20. User views are analyzed during:

a. Requirements gathering

b. Logical design

c. Physical design

d. Construction

e. Quality assurance testing

144 Databases Demystified

P:\010Comp\DeMYST\364-9\ch05.vp
Monday, February 09, 2004 9:06:11 AM

Color profile: Generic CMYK printer profile
Composite Default screen

CHAPTER
6

Logical Database
Design Using

Normalization

In this chapter, you will learn how to perform logical database design using a process

called normalization. In terms of understanding relational database technology, this

is the most important topic in this book, because it is normalization that teaches you

how to best organize your data into tables.

Normalization is a technique for producing a set of relations that possesses a cer-

tain set of properties. Dr. E.F. Codd, the father of the relational database, developed

the process in 1972, using three normal forms. The name was a bit of a political gag

at the time. President Nixon was “normalizing” relations with China, so Dr. Codd

figured if you could normalize relations with a country, you should be able to “nor-

malize” data relations as well. Additional normal forms were added later, as dis-

cussed toward the end of this chapter.

145

P:\010Comp\DeMYST\364-9\ch06.vp
Monday, February 09, 2004 9:09:04 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Copyright © 2004 by The McGraw-Hill Companies. Click here for terms of use.

The normalization process is shown in Figure 6-1. On the surface, it is quite simple

and straightforward to understand, but it takes considerable practice to execute the

process consistently and correctly. Briefly, we take any relation (data represented log-

ically in a two-dimensional format using rows and columns) and choose a unique

identifier for the entity that the relation represents. Then, through a series of steps that

apply various rules, we reorganize the relation into continuously more progressive

normal forms. The definitions of each of these normal forms and the process required

to arrive at each one are covered in the sections that follow.

Throughout the normalization process, we will use the logical terms for everything.

For beginners, it is often easier to think in terms of the physical objects that will eventu-

ally be created from our logical design. This is because learning to think of databases at

the conceptual and logical levels of abstraction instead of the physical level is, in fact, a

very difficult discipline for your mind to master. If you find yourself thinking of tables

instead of relations, and primary keys instead of unique identifiers, you need to break the

habit as soon as possible. Those who think only physically while attempting to normal-

ize tables run into difficulties later because there is not necessarily a one-to-one corre-

spondence between normalized relations and tables. In fact, it is physical database

design that transforms the normalized relations into relational tables, and there is some

latitude in mapping normalized relations to physical tables. The following table may

help you remember the correspondence between the logical and physical terms:

146 Databases Demystified

Figure 6-1 The normalization process

P:\010Comp\DeMYST\364-9\ch06.vp
Monday, February 09, 2004 9:09:05 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Logical Term Physical Term

Relation Table

Unique identifier Primary key

Attribute Column

Tuple Row

The Need for Normalization
In his early work with relational database theory, Dr. Codd discovered that

unnormalized relations presented certain problems when attempts were made to up-

date the data in them. He used the term anomalies for these problems. The reason we

normalize the relations is to remove these anomalies from the data. These anomalies

are essential to understand because they also tell us when it is acceptable to bend the

rules during physical design by “denormalizing” the relations. Denormalization is

covered in a section near the end of this chapter. It only makes sense that in order to

bend the rules, you have to understand why the rules exist in the first place.

Figure 6-2 shows an invoice from Acme Industries, a fictitious company. The invoice

contains attributes that are typical for a printed invoice from a supply company. Con-

ceptually, the invoice is a user view. We will use this invoice example throughout our

exploration of the normalization process.

CHAPTER 6 Logical Database Design Using Normalization 147

Figure 6-2 Invoice from Acme Industries

P:\010Comp\DeMYST\364-9\ch06.vp
Monday, February 09, 2004 9:09:05 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Insert Anomaly
The insert anomaly refers to a situation wherein one cannot insert a new tuple into a

relation because of an artificial dependency on another relation. The error that has

caused the anomaly is that attributes of two different entities are mixed into the same

relation. Referring to Figure 6-2, we see that the ID, name, and address of the cus-

tomer are included in the invoice view. Were we to merely make a relation from this

view as it is, and eventually a table from the relation, we would soon discover that we

could not insert a new customer into the database unless they had bought something.

This is because all the customer data is embedded in the invoice.

Delete Anomaly
The delete anomaly is just the opposite of the insert anomaly. It refers to a situation

wherein a deletion of data about one particular entity causes unintended loss of data

that characterizes another entity. In the case of the Acme Industries invoice, if we de-

lete the last invoice that belongs to a particular customer, we lose all the data related

to that customer. Again, this is because data from two entities (customers and in-

voices) would be incorrectly mixed into a single relation if we merely implemented

the invoice as a table without applying the normalization process to the relation.

Update Anomaly
The update anomaly refers to a situation where an update of a single data value re-

quires multiple tuples (rows) of data to be updated. In our invoice example, if we

wanted to change the customer’s address, we would have to change it on every single

invoice for the customer. This is because the customer address would be redundantly

stored in every invoice for the customer. To make matters worse, redundant data pro-

vides the golden opportunity to update many copies of the data, but miss a few of them,

which results in inconsistent data. The mantra of the skilled database designer is, For

each attribute, capture it once, store it once, and use that one copy everywhere.

Applying the Normalization Process
The normalization process is applied to each user view collected during earlier design

stages. Some people find it easier to apply the first step (choosing a primary key) to

each user view, then the next step (converting to first normal form), and so forth. Other

148 Databases Demystified

P:\010Comp\DeMYST\364-9\ch06.vp
Monday, February 09, 2004 9:09:05 AM

Color profile: Generic CMYK printer profile
Composite Default screen

people prefer to take the first user view and apply all the normalization steps to it, then

the next user view, and so forth. With practice, you’ll know which one works best for

you, but whichever you do, you must be very systematic in your approach, lest you

miss something. Our example has only one user view (the Acme Industries invoice),

so this may seem a moot point, but there are two practice problems toward the end of

the chapter containing several user views each, so you will be able to try this out soon

enough. Using dry-erase markers or chalk on a wall-mounted board is most helpful

because you can easily erase and rewrite relations as you go.

We start with each user view being a relation, which means we represent it as if it

is a two-dimensional table. As you work through the normalization process, you will

be rewriting existing relations and creating new ones. Some find it useful to draw the

relations with sample tuples (rows) of data in them to assist in visualizing the work.

If you take this approach, be certain that your data represents real-world situations.

For example, you might not think of two customers having exactly the same name in

our invoice example, so then your normalization results might be incorrect. There-

fore, always think of as many possibilities as you can when using this approach. Fig-

ure 6-3 shows the information from our invoice example (Figure 6-2) represented in

tabular form. Only one invoice is shown here, but many more could be filled in to

show examples of multiple invoices per customer, multiple customers, the same

product on multiple invoices, and so on.

You probably noticed that each invoice has many line items. This will be essential

information when we get to first normal form. In Figure 6-3, multiple values are

placed in the cells for the columns that hold data from the line items. We call these

CHAPTER 6 Logical Database Design Using Normalization 149

Figure 6-3 Acme Industries invoice represented in tabular form

P:\010Comp\DeMYST\364-9\ch06.vp
Monday, February 09, 2004 9:09:05 AM

Color profile: Generic CMYK printer profile
Composite Default screen

multivalued attributes because they have multiple values for at least some tuples

(rows) in the relation. If we were to construct an actual database table in this manner,

our ability to use a language such as SQL to query those columns would be very lim-

ited. For example, finding all orders that contained a particular product would re-

quire us to parse the column data with a LIKE operator. Updates would be equally

awkward because SQL was not designed to handle multivalued columns. Worst of

all, a delete of one product from an invoice would require an SQL UPDATE instead

of a DELETE because we would not want to delete the entire invoice. As we look at

first normal form later in this chapter, you will see how to work around this problem.

Figure 6-4 shows another way we could organize a relation using the invoice

shown in Figure 6-2. Here, the multivalued column data has been placed in separate

rows and the other columns’ data has been repeated to match. The obvious problem

here is all the repeated data. For example, the customer’s name and address are re-

peated for each line item on the invoice, which is not only wasteful of resources, but

also exposes us to inconsistencies whenever the data is not maintained in the same

way (for example, we update the city for one line item but not all the others).

Rewriting user views into tables with representative data is a tedious and time-

consuming process. For this reason, we’ll simply write the attributes as a list and

visualize them in our minds as two-dimensional tables. This takes some practice and

some training of the mind, but once mastered, speeds your ability to normalize rela-

tions several fold over writing out exhaustive examples. Here is the list for the in-

voice example from Figure 6-2:

150 Databases Demystified

Figure 6-4 Acme Invoice represented without multivalued attributes

P:\010Comp\DeMYST\364-9\ch06.vp
Monday, February 09, 2004 9:09:06 AM

Color profile: Generic CMYK printer profile
Composite Default screen

CHAPTER 6 Logical Database Design Using Normalization 151

Demystified / Databases Demystified / Oppel/ 225364-9 / Chapter 6

INVOICE: Customer Number, Customer Name, Customer Address,
Customer City, Customer State, Customer Zip Code,
Customer Phone, Terms, Ship Via, Order Date,
Product Number, Product Description, Quantity,
Unit Price, Extended Amount, Total Order Amount

For clarity, a name for the relation has been added, with the relation name in all

capital letters and separated from the attributes with a colon. This is the convention

we will use for the remainder of this chapter. However, if another technique works

better for you, by all means use it. The best news of all is that no matter which repre-

sentation we use (Figure 6-3, Figure 6-4, or the preceding list), if we properly apply

the normalization process and its rules, we will arrive at the same database design.

Choosing a Primary Key
As we normalize, we consider each user view as a relation. In other words, we con-

ceptualize each view as if it is already implemented in a two-dimensional table. The

first step in normalization is to choose a primary key from among the unique identifi-

ers we find in the relation.

Recall that a unique identifier is a collection of one or more attributes that

uniquely identifies each occurrence of a relation. In many cases, a single attribute

can be found. In our example, the customer number on the invoice uniquely identi-

fies the customer data within the invoice, but because a customer may have multiple

invoices, it is inadequate as an identifier for the entire invoice.

When no single attribute can be found to use for a unique identifier, we can con-

catenate several attributes to form the unique identifier. You will see this happen

with our invoice example when we split the line items from the invoice as we nor-

malize it. It is very important to understand that when a unique identifier is com-

posed of multiple attributes, the attributes themselves are not combined—they still

exist as independent attributes and will become individual columns in the table(s)

created from our normalized relations.

In a few cases, there is no reasonable set of attributes in a relation that can be used as

the unique identifier. When this occurs, we must invent a unique identifier, often with

values assigned sequentially or randomly as we add entity occurrences to the database.

This technique (some might say “act of desperation”) is the source of such unique

identifiers as social security numbers, employee IDs, and vehicle identification num-

bers. We call unique identifiers that have real-world meaning natural identifiers, and

those that do not (which of course includes the ones we must invent) surrogate or arti-

ficial identifiers. In our invoice example, there appears to be no natural unique identi-

fier for the relation. We could try using customer number combined with order date,

P:\010Comp\DeMYST\364-9\ch06.vp
Monday, February 09, 2004 9:09:06 AM

Color profile: Generic CMYK printer profile
Composite Default screen

but if a customer has two invoices on the same date, this would not be unique. There-

fore, it would be much better to invent one, such as an invoice number.

Whenever we choose a unique identifier for a relation, we must be certain that the

identifier will always be unique. If there is only one case where it is not unique, we

cannot use it. People’s names, for example, make lousy unique identifiers. You may

have never met someone with exactly your name, but there are people out there with

completely identical names. As an example of the harm poorly chosen unique iden-

tifiers cause, consider the case of the Brazilian government when it started register-

ing voters in 1994 to reduce election fraud. Father’s name, mother’s name, and date

of birth were chosen as the unique identifier. Unfortunately, this combination is only

unique for siblings born on different dates, so as a result, when siblings born on the

same date (twins, triplets, and so on) tried to register to vote, the first one that showed

up was allowed to register, and the rest were turned away. Sound impossible? It’s

not—this really happened. And to make matters worse, citizens are required to vote

in Brazil and sometimes have to prove they voted in order to get a job. Someone

should have spent more time thinking about the uniqueness of the chosen “unique”

identifier.

Sometimes a relation will have more than one possible unique identifier. When

this occurs, we call each possibility a candidate. Once we have identified all the pos-

sible candidates for a relation, we must choose one of them to be the primary key for

the relation. Choosing a primary key is essential to the normalization process be-

cause all the normalization rules reference the primary key. The criteria for choosing

the primary key from among the candidates is as follows (in order of precedence,

most important first):

• If there is only one candidate, choose it.

• Choose the candidate least likely to have its value change. Changing

primary key values once we store the data in tables is a complicated matter

because the primary key can appear as a foreign key in many other tables.

Incidentally, surrogate keys are almost always less likely to change compared

with natural keys.

• Choose the simplest candidate. The one that is composed of the fewest

number of attributes is considered the simplest.

• Choose the shortest candidate. This is purely an efficiency consideration.

However, when a primary key can appear in many tables as a foreign key,

it is often worth it to save some space with each one.

For our invoice example, we have elected to add a surrogate primary identifier

called Invoice Number. This gives us a simple primary key for the Acme Industries

invoices that is guaranteed unique because we can have the database automatically

assign sequential numbers to new invoices as they are generated. This will likely

152 Databases Demystified

P:\010Comp\DeMYST\364-9\ch06.vp
Monday, February 09, 2004 9:09:06 AM

Color profile: Generic CMYK printer profile
Composite Default screen

make Acme’s accountants happy at the same time, because it gives them a simple

tracking number for the invoices. There are many conventions for signifying the pri-

mary key as we write the contents of relations. Using capital letters causes confusion

because we tend to write acronyms such as DOB (date of birth) that way, and those

attributes are not always the primary key. Likewise, underlining and bolding the at-

tribute names can be troublesome because these may not always display in the same

way. Therefore, we’ll settle on the use of a hash mark (#) preceding the attribute

name(s) of the primary key. Rewriting our invoice relation in list form with the pri-

mary key added, we get the following:

INVOICE: # Invoice Number, Customer Number, Customer Name,
Customer Address, Customer City, Customer State,
Customer Zip Code, Customer Phone, Terms,
Ship Via, Order Date, Product Number,
Product Description, Quantity, Unit Price,
Extended Amount, Total Order Amount

First Normal Form: Eliminating Repeating Data
A relation is said to be in first normal form when it contains no multivalued attrib-

utes. That is, every intersection of a row and column in the relation must contain at

most one data value (saying “at most” allows for missing or null values). Sometimes,

we will find a group of attributes that repeat together, as with the line items on the in-

voice. Each attribute in the group is multivalued, but several attributes are so closely

related that their values repeat together. This is called a repeating group, but in real-

ity, it is just a special case of the multivalued attribute problem.

By convention, we enclose repeating groups and multivalued attributes in pairs of

parentheses. Rewriting our invoice in this way to show the line item data as a repeat-

ing group, we get this:

INVOICE: # Invoice Number, Customer Number, Customer Name,
Customer Address, Customer City, Customer State,
Customer Zip Code, Customer Phone, Terms,
Ship Via, Order Date, (Product Number,
Product Description, Quantity, Unit Price,
Extended Amount), Total Order Amount

It is essential to understand that although we know there are many customers of

Acme Industries, there is only one customer for any given invoice, so the customer

data on the invoice is not a repeating group. You may have noticed that the customer

data for a given customer is repeated on every invoice for that customer, but this is a

problem that we will address when we get to third normal form. Because there is

CHAPTER 6 Logical Database Design Using Normalization 153

P:\010Comp\DeMYST\364-9\ch06.vp
Monday, February 09, 2004 9:09:06 AM

Color profile: Generic CMYK printer profile
Composite Default screen

154 Databases Demystified

Demystified / Databases Demystified / Oppel/ 225364-9 / Chapter 6

only one customer per invoice, the problem is not addressed when we transform the

relation to first normal form.

To transform unnormalized relations into first normal form, we must move

multivalued attributes and repeating groups to new relations. Because a repeating

group is a set of attributes that repeat together, all attributes in a repeating group

should be moved to the same new relation. However, a multivalued attribute (indi-

vidual attributes that have multiple values) should be moved to its own new relation

rather than combined with other multivalued attributes in the new relation. As you

will see later, this technique avoids fourth normal form problems. The procedure for

moving a multivalued attribute or repeating group to a new relation is as follows:

1. Create a new relation with a meaningful name. Often, it makes sense to in-

clude all or part of the original relation’s name in the new relation’s name.

2. Copy the primary key from the original relation to the new one. The data

depended on this primary key in the original relation, so it must still depend

on this key in the new relation. This copied primary key now becomes a for-

eign key to the original relation. As you apply normalization to a database

design, always keep in mind that eventually you will have to write SQL to

reproduce the original user view from which you started. So, foreign keys

to join things back together are nothing less than essential.

3. Move the repeating group or multivalued attribute to the new relation. (The

word move is used because these attributes are removed from the original

relation.)

4. Make the primary key (as copied from the original relation) unique by add-

ing attributes from the repeating group to it. If you move a multivalued at-

tribute, which is basically a repeating group of only one attribute, it is that

attribute that is added to the primary key. This will seem odd at first, but the

primary key attribute(s) that you copied from the original table is a foreign

key in the new relation. It is quite normal for part of a primary key to also be

a foreign key. One additional point: It is perfectly acceptable to have a rela-

tion where all the attributes are part of the primary key (that is, there are no

“non-key” attributes). This is relatively common in intersection tables.

5. Optionally, you may choose to replace the primary key with a single surro-

gate key attribute. If you do so, you must keep the attributes that make up

the natural primary key formed in steps 2 and 4.

For our Acme Industries invoice example, here is the result of converting the orig-

inal relation to first normal form:

P:\010Comp\DeMYST\364-9\ch06.vp
Monday, February 09, 2004 9:09:06 AM

Color profile: Generic CMYK printer profile
Composite Default screen

INVOICE: # Invoice Number, Customer Number, Customer Name,
Customer Address, Customer City, Customer State,
Customer Zip Code, Customer Phone, Terms,
Ship Via, Order Date, Total Order Amount

INVOICE LINE ITEM: # Invoice Number, # Product Number,
Product Description, Quantity, Unit Price,
Extended Amount

Note the following:

• The Invoice Number attribute was copied from INVOICE to INVOICE

LINE ITEM and Product Number was added to it to form the primary key

of the INVOICE LINE ITEM relation.

• The entire repeating group (Product Number, Product Description, Quantity,

Unit Price, and Extended Amount) was removed from the INVOICE relation.

• Invoice Number is still the primary key in INVOICE, and it now also serves as

a foreign key in INVOICE LINE ITEM as well as being part of the primary key

of INVOICE LINE ITEM.

• There are no repeating groups or multivalued attributes in the relations, so

they are therefore in first normal form.

There is an interesting consequence of composing a natural primary key for the

INVOICE LINE ITEM relation: We cannot put the same product on a given invoice

more than one time. This might be desirable, but it could also restrict Acme Indus-

tries. We have to understand their business rules to know. If Acme Industries wants

the option of putting multiple line items on the same invoice for the same product

(perhaps with different prices), we should make up a surrogate key instead. More-

over, there are those who believe that primary keys composed of multiple attributes

are undesirable, along with software products that simply do not support them. The

alternative is to make up a surrogate primary key for the INVOICE LINE ITEM rela-

tion. If we choose to do so, the relation may be rewritten this way:

INVOICE LINE ITEM: # Invoice Line Item Number,
Invoice Number, Product Number,
Product Description, Quantity,
Unit Price, Extended Amount

We are going to use the previous form (the one with the compound primary key

made up of Invoice Number and Product Number, often called the natural key) as we

continue with normalization.

CHAPTER 6 Logical Database Design Using Normalization 155

P:\010Comp\DeMYST\364-9\ch06.vp
Monday, February 09, 2004 9:09:06 AM

Color profile: Generic CMYK printer profile
Composite Default screen

156 Databases Demystified

Demystified / Databases Demystified / Oppel/ 225364-9 / Chapter 6

Second Normal Form: Eliminating
Partial Dependencies
Before we explore second normal form, you must understand the concept of functional

dependence. For this definition, we’ll use two arbitrary attributes, cleverly named “A”

and “B.” Attribute B is functionally dependent on attribute A if at any moment in time,

there is no more than one value of attribute B associated with a given value of attribute

A. Lest you wonder what planet the author lived on before this one, let’s try to make the

definition more understandable. First, if we say that attribute B is functionally depend-

ent on attribute A, what we are also saying is that attribute A determines attribute B, or

that A is a determinant (unique identifier) of attribute B. Second, let’s look again at the

first normal form relations in our Acme Industries example:

INVOICE: # Invoice Number, Customer Number, Customer Name,
Customer Address, Customer City, Customer State,
Customer Zip Code, Customer Phone, Terms,
Ship Via, Order Date, Total Order Amount

INVOICE LINE ITEM: # Invoice Number, # Product Number,
Product Description, Quantity, Unit Price,
Extended Amount

In the INVOICE relation, we can easily see that Customer Number is functionally

dependent on Invoice Number because at any point in time, there can be only one

value of Customer Number associated with a given value of Invoice Number. The

very fact that the Invoice Number uniquely identifies the Customer Number in this

relation means that, in return, the Customer Number is functionally dependent on

the Invoice Number.

In the INVOICE LINE ITEM relation, we can also say that Product Description is

functionally dependent on Product Number because, at any point in time, there is

only one value of Product Description associated with the Product Number. How-

ever, the fact that the Product Number is only part of the key of the INVOICE LINE

ITEM is the very issue addressed by second normal form.

A relation is said to be in second normal form if it meets both the following criteria:

• The relation is in first normal form.

• All non-key attributes are functionally dependent on the entire primary key.

If we look again at Product Description, it should be easy to see that Product Num-

ber alone determines the value. Said another way, if the same product appears as a line

item on many different invoices, the Product Description is the same regardless of the

Invoice Number. Or we can say that Product Description is functionally dependent on

only part of the primary key, meaning it depends only on Product Number and not on

the combination of Invoice Number and Product Number.

P:\010Comp\DeMYST\364-9\ch06.vp
Monday, February 09, 2004 9:09:06 AM

Color profile: Generic CMYK printer profile
Composite Default screen

CHAPTER 6 Logical Database Design Using Normalization 157

Demystified / Databases Demystified / Oppel/ 225364-9 / Chapter 6

It should also be clear by now that second normal form only applies to relations

where we have concatenated primary keys (that is, those made up of multiple attrib-

utes). If we have a primary key composed of only a single attribute, as we do with the

first normal form version of the Invoice relation, and the primary key is atomic (that is,

has no subparts that make sense by themselves), as all attributes should be, then it is

simply not possible for anything to depend on part of the primary key. It follows, then,

that any first normal form relation that has only a single attribute for its primary key is

automatically in second normal form.

Looking at the INVOICE LINE ITEM relation, however, second normal form vio-

lations should be readily apparent: Product Description and Unit Price depend only on

the Product Number instead of the combination of Invoice Number and Product Num-

ber. But not so fast! What about price changes? If Acme decides to change their prices,

how could we possibly want that change to be retroactive for every invoice we have

ever created? After all, an invoice is an official record that we must maintain for seven

years, per current tax laws. This is a common dilemma with fast-changing attributes

such as prices. Either we must be able to recall the price at any point in time or we must

store the price with the invoice so we can reproduce the invoice as needed (that is,

when the friendly tax auditors come calling). For simplicity, we have elected to store

the price in two places, one being the current selling price and the other being the price

at the time the sale was made. Because the later is a snapshot at a point in time that is

not expected to change, there are no anomalies to this seemingly redundant storage.

An alternative would be to store a date-sensitive price history somewhere that we

could use to reconstruct the correct price for any invoice. That is a practical alternative

here, but you would never be able to do that with stock or commodities market transac-

tions, for example. The point is that while the sales price looks redundant, there are no

anomalies to the additional attribute, so it does no harm. Notice that we adjusted the at-

tribute names so their meaning is abundantly clear.

Once we find a second normal form violation, the solution is to move the attrib-

ute(s) that is (are) partially dependent to a new relation where it depends on the en-

tire key instead of part of the key. Here is our invoice example rewritten into second

normal form:

INVOICE: # Invoice Number, Customer Number, Customer Name,
Customer Address, Customer City, Customer State,
Customer Zip Code, Customer Phone, Terms,
Ship Via, Order Date, Total Order Amount

INVOICE LINE ITEM: # Invoice Number, # Product Number,
Quantity, Sale Unit Price, Extended Amount

PRODUCT: # Product Number, Product Description,
List Unit Price

The improvement from our first normal form solution is that maintenance of the

Product Description now has no anomalies. We can set up a new product independent

P:\010Comp\DeMYST\364-9\ch06.vp
Monday, February 09, 2004 9:09:07 AM

Color profile: Generic CMYK printer profile
Composite Default screen

of there being an invoice for the product. If we wish to change the Product Description,

we may do so by merely changing one value in one row of data. Also, should the last

invoice for a particular product be deleted from the database for whatever reason, we

won’t lose its description (it will still be in the row in the Product relation). Always re-

member that the reason we are normalizing is to eliminate these anomalies.

Third Normal Form: Eliminating
Transitive Dependencies
To understand third normal form, you must first understand transitive dependency. An

attribute that depends on another attribute that is not the primary key of the relation is

said to be transitively dependent. Looking at our INVOICE relation in second normal

form, one can clearly see that Customer Name is dependent on Invoice Number (each

Invoice Number has only one Customer Name value associated with it), but at the

same time, Customer Name is also dependent on Customer Number. The same can be

said of the rest of the customer attributes as well. The problem here is that attributes of

another entity (Customer) have been included in our INVOICE relation.

A relation is said to be in third normal form if it meets both the following criteria:

• The relation is in second normal form.

• There is no transitive dependence (that is, all the non-key attributes depend

only on the primary key).

To transform a second normal form relation into third normal form, simply move

any transitively dependent attributes to relations where they depend only on the pri-

mary key. Be careful to leave the attribute on which they depend in the original rela-

tion as a foreign key. You will need it to reconstruct the original user view via a join.

If you have been wondering about easily calculated attributes such as Extended

Amount in the INVOICE LINE ITEM relation, it is actually third normal form that

forbids them, but it takes a subtle interpretation of the rule. Because the Extended

Amount is calculated by multiplying Sale Unit Price by Quantity, it follows that Ex-

tended Amount is determined by the combination of Sale Unit Price and Quantity and

therefore is transitively dependent on those two attributes. Thus, it is third normal

form that tells us to remove easily calculated attributes. And in this case, they are sim-

ply removed. Using similar logic, we also removed the Total Order Amount from the

INVOICE relation because we can simply sum the INVOICE LINE ITEM relation to

reproduce the value. A good designer will make a note in the documentation specify-

ing the formula for the calculated attribute so that its value can be reproduced when

needed. Another effective alternative is to always write the SQL that reproduces the

original views when you complete a normalization process. It’s an excellent way to

158 Databases Demystified

P:\010Comp\DeMYST\364-9\ch06.vp
Monday, February 09, 2004 9:09:07 AM

Color profile: Generic CMYK printer profile
Composite Default screen

test your normalization because you can use the SQL to prove that the original user

views can be easily reproduced.

Here is the Acme Industries invoice data rewritten into third normal form:

INVOICE: # Invoice Number, Customer Number, Terms,
Ship Via, Order Date

INVOICE LINE ITEM: # Invoice Number, # Product Number,
Quantity, Sale Unit Price

PRODUCT: # Product Number, Product Description,
List Unit Price

CUSTOMER: # Customer Number, Customer Name,
Customer Address, Customer City, Customer State,
Customer Zip Code, Customer Phone

Did you notice one more possible third normal form violation? If we have the com-

plete nine-digit ZIP code for the customer, doesn’t that determine the Customer City

and State? Yes, but it must be the complete nine-digit ZIP code (called “zip plus 4” by

the U.S. Postal Service). In the past there have been five-digit ZIP codes in the United

States that actually cross state lines. Moreover, there are thousands of examples of dif-

ferent cities and towns sharing the same five-digit ZIP codes. So be careful when you

assume things. The U.S. Postal Service will be the first to tell you that they are not re-

sponsible for aligning their zoning system with political boundaries. By the way, ZIP

is actually an acronym for Zoning Improvement Program, introduced in 1963. But we

digress….

Should we then make a Zip Code relation and normalize the City and State out of

all our addresses? Or would that be considered overdesign? The question can be an-

swered by going back to the anomalies, because removal of the insert, update, and

delete anomalies is the entire reason we normalize data in the first place:

• If a new city is formed, do we need to add it to our database even if we have

no customers located there? (This is an insert anomaly.)

• If a city is dissolved, do we have a need to delete its information without

losing other data? (This is a delete anomaly.)

• If a city changes its name (this rarely occurs, but it has happened), is it a

burden to us to find all the customers in that city and change their address

accordingly?

If you answered yes to any of the above, then you should normalize the City and

State attributes into a table with a primary key of Zip Code. In fact, you can purchase

that data on a regular basis from the U.S. Postal Service or other sources. Further-

more, if you maintain other data by ZIP code, such as shipping rates, you have all the

more reason to normalize it. But if not, the Zip Code example is a valuable lesson in

CHAPTER 6 Logical Database Design Using Normalization 159

P:\010Comp\DeMYST\364-9\ch06.vp
Monday, February 09, 2004 9:09:07 AM

Color profile: Generic CMYK printer profile
Composite Default screen

why we normalize and when it may not be as important. Common sense must prevail

at all times.

Here is an easy way to remember the rules of first, second, and third normal form:

In a third normal form relation, every non-key attribute must depend on the key, the

whole key, and nothing but the key, so help me Codd.

Beyond Third Normal Form
Since the original introduction of normalization, various authors have offered ad-

vanced versions. Third normal form will cover well over 90 percent of the cases you

will see in business information systems, and it’s considered the “gold standard” in

business systems. Once you have mastered third normal form, additional normal

forms are worth knowing.

Boyce-Codd Normal Form
Boyce-Codd normal form (BCNF) is a stronger version of third normal form. It ad-

dresses anomalies that occur when a non-key attribute is a determinant of an attrib-

ute that is part of the primary key (that is, when an attribute that is part of the primary

key is functionally dependent on a non-key attribute).

As an example, let’s assume that Acme Industries assigns multiple product sup-

port specialists to each customer, and each support specialist handles only one par-

ticular product line. Following is a relation that assigns specialists to customers. In

reality, we would use Customer ID and Support Specialist (Employee) ID instead of

the customer and support specialist names, but their names are used here for better il-

lustration of the issue.

Customer Product Line Support Specialist

W. Coyote Springs R. E. Coil

W. Coyote Straps B. Brown

W. Coyote Helmets C. Bandecoot

W. Coyote Rockets R. Goddard

USAF Rockets R. Goddard

S. Gonzalez Springs R. E. Coil

S. Gonzalez Straps B. Brown

S. Gonzalez Rockets E. John

L. Armstrong Helmets S. D. Osborne

160 Databases Demystified

P:\010Comp\DeMYST\364-9\ch06.vp
Monday, February 09, 2004 9:09:07 AM

Color profile: Generic CMYK printer profile
Composite Default screen

In this example, we must concatenate the Customer and Product Line attributes to

form a primary key. However, because a given support specialist only supports one

product line, it is also true that the Support Specialist attribute determines the Prod-

uct Line attribute. If we had chosen a surrogate primary key instead of combining

Customer and Product Line for the primary key, the third normal form violation—a

non-key attribute determining another non-key attribute (Support Specialist deter-

mining Product Line in this case)—would be obvious. However, we masked the nor-

malization error by making Product Line part of the primary key. This is why BCNF

is considered a stronger version of third normal form.

The Boyce-Codd normal form has two requirements:

• The relation must be in third normal form.

• No determinants exist that are not either the primary key or a candidate key for

the table. That is, a non-key attribute may not uniquely identify (determine) any

other attribute, including one that participates in the primary key.

The solution is to split the unwanted determinant to a different table, just as you

would with a third normal form violation. The BCNF version of this relation is

shown here:

SUPPORT SPECIALIST ASSIGNMENT: # CUSTOMER ID,
SUPPORT SPECIALIST ID

SUPPORT SPECIALIST SPECIALTY: # SUPPORT SPECIALIST ID,
PRODUCT LINE

In tabular form, the relations and data look like this (again, names have been sub-

stituted for the IDs to make the data easier to visualize):

Customer Support Specialist

W. Coyote R. E. Coil

W. Coyote B. Brown

W. Coyote C. Bandecoot

W. Coyote R. Goddard

USAF R. Goddard

S. Gonzalez R. E. Coil

S. Gonzalez B. Brown

S. Gonzalez E. John

L. Armstrong S. D. Osborne

CHAPTER 6 Logical Database Design Using Normalization 161

P:\010Comp\DeMYST\364-9\ch06.vp
Monday, February 09, 2004 9:09:07 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Support Specialist Product Line

B. Brown Straps

C. Bandecoot Helmets

E. John Rockets

R. E. Coil Springs

R. Goddard Rockets

S. D. Osborne Helmets

Fourth Normal Form
An additional anomaly surfaces when two or more multivalued attributes are in-

cluded in the same relation. Suppose, for example, that we wish to track both office

skills and language skills for our employees. We might come up with a relation such

as this one:

Employee ID Office Skill Language Skill

1001 Typing, 40 wpm Spanish

1001 10 key French

1002 Spreadsheets Spanish

1002 10 key German

We can form a primary key for this relation by choosing the combination of either

Employee ID and Office Skill, or Employee ID and Language Skill. That leaves us

with either of these two alternatives for third normal form relations:

EMPLOYEE SKILL: # EMPLOYEE ID, # OFFICE SKILL,
LANGUAGE SKILL

EMPLOYEE SKILL: # EMPLOYEE ID, # LANGUAGE SKILL,
OFFICE SKILL

Both the alternatives shown are in third normal form, and in fact, both pass

Boyce-Codd normal form as well. The problem, of course, is that there is an implied

relationship between office skills and language skills. Does the first tuple for em-

ployee 1001 imply that he or she can only type in Spanish? And does the second

tuple imply he or she can only work a French 10 Key pad?

Relations such as these are rare in real life because when experienced designers re-

solve multivalued attribute problems to satisfy first normal form, they move each

multivalued attribute to its own relation rather than combining them as shown here.

162 Databases Demystified

P:\010Comp\DeMYST\364-9\ch06.vp
Monday, February 09, 2004 9:09:07 AM

Color profile: Generic CMYK printer profile
Composite Default screen

So, with some strict interpretation of first normal form procedures, this can be avoided

altogether. However, should you encounter a fourth normal form violation, the remedy

is simply to put each multivalued attribute in a separate relation, such as these:

EMPLOYEE OFFICE SKILL: # EMPLOYEE ID, # OFFICE SKILL
EMPLOYEE LANGUAGE SKILL: # EMPLOYEE ID, # LANGUAGE SKILL

Fifth Normal Form
Some authors and researchers have suggested the need for fifth normal form, which

deals with a special type of constraint known as a join dependency that requires

knowledge of relational calculus to understand. Others have described fifth normal

form exactly the way fourth normal form is described here. In short, there is no clear

standard definition of fifth normal form in the industry, and while join dependencies

may be of theoretical interest, there is no clear evidence that they have practical

value in business applications.

Domain-Key Normal Form (DKNF)
R. Fagin introduced domain-key normal form (DKNF) in a research paper published

in 1981. The theory is that a relation is in DKNF if and only if every constraint on the

relation is a result of the definitions of domains and keys. Although Fagin was able to

prove that relations in DKNF have no modification anomalies, he provided no pro-

cedure or step-by-step rules to achieve it. The dilemma then is that designers have no

solid indication of when DKNF has been achieved for a relation. This is likely why

DKNF is not in widespread use and is not generally expected in the design of data-

bases for business applications.

Denormalization
As you have seen, normalization leads to more relations, which translates to more ta-

bles and more joins. When database users suffer performance problems that cannot

be resolved by other means, such as tuning the database or upgrading the hardware

on which the RDBMS runs, then denormalization may be required. Most database

experts consider denormalization a last resort, if not an act of desperation. With con-

tinuous improvements in hardware and RDBMS efficiencies, denormalization has

become far less necessary than in the earlier days of relational databases. The most

essential point is that denormalization is not the same as not bothering to normalize

in the first place. Once a normalized database design has been achieved, adjustments

CHAPTER 6 Logical Database Design Using Normalization 163

P:\010Comp\DeMYST\364-9\ch06.vp
Monday, February 09, 2004 9:09:07 AM

Color profile: Generic CMYK printer profile
Composite Default screen

164 Databases Demystified

Demystified / Databases Demystified / Oppel/ 225364-9 / Chapter 6

can be made with the potential consequences (anomalies) in mind. Possible

denormalization steps include the following:

• Recombining relations that were split to satisfy normalization rules

• Storing redundant data in tables

• Storing summarized data in tables

Note also that normalization is intended to remove anomalies from databases that

are used for online transaction-processing systems. Databases that store historical

data used solely for analytical purposes are not as subject to insert, update, and de-

lete anomalies. Chapter 12 contains more information on databases that hold histori-

cal information.

Practice Problems
This section contains two practice problems with solutions so you can try normaliza-

tion for yourself. These are very narrow, scaled-down case problems that most readers

should be able to solve in about an hour each. As you work them, you will be more suc-

cessful if you focus just on the views presented and not worry about other business

processes and data that might be needed. For each case problem, the intent is for you to

produce third normal form relations that support the views presented and then draw an

ERD for the normalized relations. As you draw the ERDs, keep in mind that they are

quite easy to do once normalization is complete—you simply create a rectangle for

each normalized relation and then draw relationships everywhere a primary key in one

relation is used as a foreign key in another (or the same) relation. These should all be

one-to-many relationships, and the foreign key must always be on the many side of the

relationship. Each problem concludes with the author’s solution.

TLA University Academic Tracking
The University of Three Letter Acronyms (UTLA) is a small academic facility offering

undergraduate and continuing adult education. Most of the recordkeeping is either man-

ual or done by individuals using personal tools such as spreadsheets. A modernization

P:\010Comp\DeMYST\364-9\ch06.vp
Monday, February 09, 2004 9:09:07 AM

Color profile: Generic CMYK printer profile
Composite Default screen

CHAPTER 6 Logical Database Design Using Normalization 165

Demystified / Databases Demystified / Oppel/ 225364-9 / Chapter 6

effort is underway, which includes building integrated application and database systems

to perform basic business functions.

The User Views
UTLA wishes to construct a system to track their academic activities, including

course offerings, instructor qualifications for the courses, course enrollment, and

student grades. The following illustrations show the desired output reports with

sample data (these are the user views that should be normalized).

Student report:

Course report:

Instructor report:

P:\010Comp\DeMYST\364-9\ch06.vp
Monday, February 09, 2004 9:09:08 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Section report:

One cannot design a database without some knowledge of the business rules and

processes of an organization. Here are a few such items to keep in mind:

• Only one mailing address and one contact phone number are kept for

each student.

• Each course has a fixed number of credits (that is, there are no variable

credit courses).

• Each course may have one or more prerequisite courses. The list of all

prerequisite courses for each course is shown in the Course report.

• Only one mailing address, one home phone number, and one office phone

number are kept for each instructor.

• A qualifications committee must approve instructors before they are permitted

to teach a particular course. The qualifications (that is, the courses that the

committee has determined the instructor is qualified to teach) are then added to

the instructor’s records, as shown in the Instructor report. The list of qualified

courses does not imply that the instructor has ever actually taught the course but

only that he or she is qualified to do so.

• Based on demand, any course may be offered multiple times, even in the

same year and semester. Each offering is called a “section,” as shown in

the Section report.

• Students enroll in a particular section of a course and receive a grade for

their participation in that course offering. Should they take the course again

at a later time, they receive another grade, and both grades are part of their

permanent academic record.

166 Databases Demystified

P:\010Comp\DeMYST\364-9\ch06.vp
Monday, February 09, 2004 9:09:08 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TE
AM
 F
LYCHAPTER 6 Logical Database Design Using Normalization 167

Demystified / Databases Demystified / Oppel/ 225364-9 / Chapter 6

• Although the day, time, building, and room for each section is noted

in the Section report, this is done merely to facilitate registering students.

The scheduling of classrooms is out of scope for this project.

• The day(s) and time(s) attributes on the Section report are merely text

descriptions of the meeting schedule. The building of a meeting calendar

for sections is out of scope for this project.

As a convenience, here are the attributes rewritten using our relation listing

method, with repeating groups and multivalued attributes enclosed in parentheses:

STUDENT REPORT: # ID, NAME, STREET ADDRESS, CITY, STATE,
ZIP CODE, HOME PHONE

COURSE REPORT: # ID, TITLE, NUMBER OF CREDITS,
(PREREQUISITE COURSES), DESCRIPTION

INSTRUCTOR REPORT: # ID, NAME, STREET ADDRESS, CITY, STATE,
ZIP CODE,
HOME PHONE, OFFICE PHONE, (QUALIFIED COURSES)

SECTION REPORT: YEAR, SEMESTER, BUILDING, ROOM, DAYS,
TIMES, INSTRUCTOR ID, INSTRUCTOR NAME,
COURSE ID, NUMBER OF CREDITS,
(STUDENT ID, STUDENT NAME, GRADE)

Author’s Solution
Database design is not an exact science, so there is some latitude for alternative solu-

tions. However, all must meet the criteria for third normal form. Here are the normal-

ized relations, with the hash mark (#) denoting primary key attributes:

COURSE: # COURSE ID, TITLE, DESCRIPTION, NUMBER OF CREDITS
INSTRUCTOR: # INSTRUCTOR ID, NAME, HOME ADDRESS STREET,

HOME ADDRESS CITY, HOME ADDRESS STATE,
HOME ADDRESS ZIP CODE, HOME PHONE, OFFICE PHONE

COURSE SECTION: # SECTION ID, YEAR, SEMESTER, COURSE ID,
BUILDING, ROOM, MEETING DAY, MEETING TIME,
INSTRUCTOR ID

STUDENT: # STUDENT ID, NAME, HOME ADDRESS, CITY, STATE,
ZIP CODE, PHONE

STUDENT SECTION: # STUDENT ID, # SECTION ID, GRADE
COURSE PREREQUISITE: COURSE ID, PREREQUISITE COURSE ID
COURSE INSTRUCTOR QUALIFIED: INSTRUCTOR ID, COURSE ID

A few notes on this particular solution are in order:

• There was no simple natural key for the Course Section relation, so

a surrogate key was added.

P:\010Comp\DeMYST\364-9\ch06.vp
Monday, February 09, 2004 9:09:08 AM

Color profile: Generic CMYK printer profile
Composite Default screen

168 Databases Demystified

Demystified / Databases Demystified / Oppel/ 225364-9 / Chapter 6

• The Course Prerequisite relation can be quite confusing. This is the

intersection relation for a many-to-many recursive relationship. A course

can have many prerequisites, which may be found by joining COURSE ID

in the COURSE relation with COURSE ID in the COURSE PREREQUISITE

relation. At the same time, any course may be a prerequisite for many other

courses. These may be found by joining COURSE ID in the COURSE

relation with PREREQUISITE COURSE ID in the COURSE PREREQUISITE

relation. This means that there are two relationships between the COURSE

and COURSE PREREQUISITE: one where COURSE ID is the foreign

key and another where PREREQUISITE COURSE ID is the foreign key.

Comparing the upcoming illustrations for the COURSE and COURSE_

PREREQUISITE tables should help make this point clear.

To assist you in visualizing how all this works, the following illustrations show

each of the tables as implemented in a Microsoft Access database, each loaded with

the data from the original user view (report) examples. Figure 6-5 shows the ERD for

the solution, using the Microsoft Relationships panel as the presentation media.

COURSE table:

INSTRUCTOR table:

P:\010Comp\DeMYST\364-9\ch06.vp
Monday, February 09, 2004 9:09:08 AM

Color profile: Generic CMYK printer profile
Composite Default screen

CHAPTER 6 Logical Database Design Using Normalization 169

Demystified / Databases Demystified / Oppel/ 225364-9 / Chapter 6

COURSE_SECTION table:

STUDENT table:

STUDENT_SECTION table:

COURSE_PREREQUISITE table:

P:\010Comp\DeMYST\364-9\ch06.vp
Monday, February 09, 2004 9:09:09 AM

Color profile: Generic CMYK printer profile
Composite Default screen

COURSE_INSTRUCTOR_QUALIFIED table:

Computer Books Company
The Computer Books Company (CBC) buys books from publishers and sells them

to individuals via mail and telephone orders. They are looking to expand their ser-

vices by offering online ordering via the Internet, and in doing so, have a compelling

need to build a database to hold their business information.

170 Databases Demystified

Figure 6-5 ERD (Relationships panel)

P:\010Comp\DeMYST\364-9\ch06.vp
Monday, February 09, 2004 9:09:09 AM

Color profile: Generic CMYK printer profile
Composite Default screen

CHAPTER 6 Logical Database Design Using Normalization 171

Demystified / Databases Demystified / Oppel/ 225364-9 / Chapter 6

The User Views
Throughout these user views, “sale” and “price” are references to the retail sale of a

book to a CBC customer, whereas “purchase” and “cost” are references to the pur-

chase of books from a publisher (CBC supplier). Each user view is described briefly

with a list of the attributes in the view following each description. Per our conven-

tion, multivalued attributes and repeating groups are enclosed in parentheses.

The Book Catalog lists all the books that CBC has for sale. Each book is uniquely

identified by the International Standard Book Number (ISBN). Although an ISBN

uniquely identifies a book, it is essentially a surrogate key, so there is no way to tell

what edition a particular book is simply by looking at the ISBN. When new editions

come out, CBC typically has leftover stock of prior editions and offers them at a re-

duced price. The previous edition code in the Book Catalog is intended to help the

buyer find the prior edition, if there is one. Books are organized by subject, with each

book having only one subject. Any book may have multiple authors. (Although the

catalog shows only author names, keep in mind that people’s names are seldom

unique, and nothing would stop two people with the same name from both writing

books). Here is the information in the Book Catalog:

BOOK CATALOG: SUBJECT CODE, SUBJECT DESCRIPTION, BOOK TITLE,
BOOK ISBN, BOOK PRICE, PREVIOUS EDITION ISBN,
PREVIOUS EDITION PRICE, (BOOK AUTHORS),
PUBLISHER NAME

The Book Inventory Report helps the warehouse manager control the inventory in

the warehouse. The Recommended Quantity is the reorder point, meaning when on-

hand inventory falls below the recommended quantity, it is time to order more books

of that title.

INVENTORY REPORT: BOOK ISBN, BOOK EDITION CODE, COST,
SELLING PRICE, QUANTITY ON HAND,
QUANTITY ON ORDER, RECOMMENDED QUANTITY

The Customer Book Orders view shows orders placed by CBC customers for pur-

chases of books:

CUSTOMER BOOK ORDERS: CUSTOMER ID, CUSTOMER NAME,
STREET ADDRESS, CITY, STATE,
ZIP CODE (ISBN, BOOK EDITION CODE,
QUANTITY, PRICE), ORDER DATE,
TOTAL PRICE

P:\010Comp\DeMYST\364-9\ch06.vp
Monday, February 09, 2004 9:09:09 AM

Color profile: Generic CMYK printer profile
Composite Default screen

CBC bills customers as books are shipped. An invoice is created for each ship-

ment. (An order can have zero, one, or more invoices, but each invoice belongs to

only one order.) The Book Sales Invoice looks like this:

BOOK SALES INVOICE: SALES INVOICE NUMBER, CUSTOMER ID,
CUSTOMER NAME, CUSTOMER STREET ADDRESS,
CUSTOMER CITY, CUSTOMER STATE,
CUSTOMER ZIP CODE, (BOOK ISBN, TITLE,
EDITION CODE, (BOOK AUTHORS), QUANTITY,
PRICE, PUBLISHER NAME),
SHIPPING CHARGES, SALES TAX

The Master Billing Report helps the Collections and Customer Service Depart-

ments manage customer accounts. A system for recording customer payments

against invoices is out of scope for the current project, but the CBC project sponsors

do want to keep a running balance showing what each customer owes CBC. As in-

voices are generated, a database trigger will be used to add invoice totals to the Bal-

ance Due. As payments are received, the CBC staff will manually adjust the Balance

Due. The Master Billing Report attributes are as follows:

MASTER BILLING REPORT: CUSTOMER ID, NAME, STREET ADDRESS,
CITY, STATE, ZIP CODE, PHONE,
BALANCE DUE

Each time CBC buys books from a publisher, the publisher sends an invoice to

CBC. To assist in managing inventory cost, CBC wishes to store the Purchase In-

voice information and report it using this view:

PURCHASE INVOICE: PUBLISHER ID, PUBLISHER NAME,
STREET ADDRESS, CITY, STATE, ZIP CODE,
PURCHASE INVOICE NUMBER, INVOICE DATE,
(BOOK ISBN, EDITION CODE, TITLE,
QUANTITY, COST EACH, EXTENDED COST),
TOTAL COST

Note that Extended Cost is calculated as Cost Each times Quantity.

Author’s Solution
As before, there is some room for alternative solutions, provided all relations are in

third normal form. The normalized relations in this solution follow, with primary

keys noted with a hash mark (#):

BOOK: # ISBN, BOOK TITLE, SUBJECT CODE, PUBLISHER ID,
EDITION CODE, COST, SELLING PRICE, QUANTITY ON HAND,
QUANTITY ON ORDER, RECOMMENDED QUANTITY,

172 Databases Demystified

P:\010Comp\DeMYST\364-9\ch06.vp
Monday, February 09, 2004 9:09:09 AM

Color profile: Generic CMYK printer profile
Composite Default screen

PREVIOUS EDITION ISBN
CUSTOMER ORDER: # CUSTOMER ORDER NUMBER, CUSTOMER ID,

ORDER DATE, CANCEL DATE
CUSTOMER ORDER BOOK: # CUSTOMER ORDER NUMBER, # ISBN,

QUANTITY, BOOK PRICE
SUBJECT: # SUBJECT CODE, DESCRIPTION
AUTHOR: # AUTHOR ID, AUTHOR NAME
BOOK-AUTHOR: # AUTHOR ID, # ISBN
CUSTOMER: # CUSTOMER ID, NAME, STREET ADDRESS, CITY, STATE,

ZIP CODE, PHONE, BALANCE DUE
PUBLISHER: # PUBLISHER ID, NAME, STREET ADDRESS, CITY,

STATE, ZIP CODE, AMOUNT PAYABLE
RECEIVABLE (SHIPPED) ORDER: # SALES INVOICE NUMBER,

CUSTOMER ORDER NUMBER, SALES TAX, SHIPPING CHARGES
RECEIVABLE ORDER BOOK: # SALES INVOICE NUMBER, # ISBN,

QUANTITY
PAYABLE (PURCHASES): # PURCHASE INVOICE NUMBER,

PUBLISHER ID, INVOICE DATE, INVOICE AMOUNT
PAYABLE BOOK: # PURCHASE INVOICE NUMBER, # ISBN, QUANTITY,

COST EACH

Figure 6-6 shows the complete design, implemented in Microsoft Access.

CHAPTER 6 Logical Database Design Using Normalization 173

Figure 6-6 CBC ERD (Microsoft Access Relationships panel)

P:\010Comp\DeMYST\364-9\ch06.vp
Monday, February 09, 2004 9:09:10 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Quiz
Choose the correct responses to each of the multiple-choice questions. Note that

there may be more than one correct response to each question.

1. Normalization:

a. Was developed by Dr. Codd

b. Was first introduced with five normal forms

c. First appeared in 1972

d. Provides a set of rules for each normal form

e. Provides a procedure for converting relations to each normal form

2. The purpose of normalization is

a. To eliminate redundant data

b. To remove certain anomalies from the relations

c. To provide a reason to denormalize the database

d. To optimize data-retrieval performance

e. To optimize data for inserts, updates, and deletes

3. When implemented, a third normal form relation becomes

a. An index

b. A referential constraint

c. A table

d. A view

e. A database

4. The insert anomaly refers to a situation where:

a. Data must be inserted before it can be deleted.

b. Too many inserts cause the table to fill up.

c. Data must be deleted before it can be inserted.

d. A required insert cannot be done due to an artificial dependency.

e. A required insert cannot be done due to duplicate data.

5. The delete anomaly refers to a situation where:

a. Data must be deleted before it can be inserted.

b. Data must be inserted before it can be deleted.

c. Data deletion causes unintentional loss of another entity’s data.

d. A required delete cannot be done due to referential constraints.

e. A required delete cannot be done due to lack of privileges.

6. The update anomaly refers to a situation where:

a. A simple update requires updates to multiple rows of data.

b. Data cannot be updated because it does not exist in the database.

174 Databases Demystified

P:\010Comp\DeMYST\364-9\ch06.vp
Monday, February 09, 2004 9:09:10 AM

Color profile: Generic CMYK printer profile
Composite Default screen

c. Data cannot be updated due to lack of privileges.

d. Data cannot be updated due to an existing unique constraint.

e. Data cannot be updated due to an existing referential constraint.

7. The roles of unique identifiers in normalization are

a. They are unnecessary.

b. They are required once you reach third normal form.

c. All normalized forms require designation of a primary key.

d. You cannot normalize relations without first choosing a primary key.

e. You cannot choose a primary key until relations are normalized.

8. Writing sample user views with representative data in them is

a. The only way to successfully normalize the user views

b. A tedious and time-consuming process

c. An effective way to understand the data being normalized

d. Only as good as the examples shown in the sample data

e. A widely used normalization technique

9. Criteria useful in selecting a primary key from among several candidate

keys are

a. Choose the simplest candidate.

b. Choose the shortest candidate.

c. Choose the candidate most likely to have its value change.

d. Choose concatenated keys over single attribute keys.

e. Invent a surrogate key if that is the best possible key.

10. First normal form resolves anomalies caused by:

a. Transitive dependencies

b. Multivalued attributes

c. Partial dependency on the primary key

d. Repeating groups

e. Join dependencies

11. Second normal form resolves anomalies caused by:

a. Transitive dependencies

b. Multivalued attributes

c. Partial dependency on the primary key

d. Repeating groups

e. Join dependencies

12. Third normal form resolves anomalies caused by:

a. Transitive dependencies

b. Multivalued attributes

c. Partial dependency on the primary key

CHAPTER 6 Logical Database Design Using Normalization 175

P:\010Comp\DeMYST\364-9\ch06.vp
Monday, February 09, 2004 9:09:10 AM

Color profile: Generic CMYK printer profile
Composite Default screen

d. Repeating groups

e. Join dependencies

13. In general, violations of a normalization rule are resolved by:

a. Combining relations

b. Moving attributes or groups of attributes to a new relation

c. Combining attributes

d. Creating summary tables

e. Denormalization

14. A foreign key in a normalized relation may be

a. The entire primary key of the relation

b. Part of the primary key of the relation

c. A repeating group

d. A non-key attribute in the relation

e. A multivalued attribute

15. Boyce-Codd normal form deals with anomalies caused by:

a. Multivalued attributes

b. Transitive dependencies

c. Join dependencies

d. Determinants that are not primary or candidate keys

e. Constraints that are not the result of the definitions of domains and keys

16. Fourth normal form deals with anomalies caused by:

a. Multivalued attributes

b. Transitive dependencies

c. Join dependencies

d. Determinants that are not primary or candidate keys

e. Constraints that are not the result of the definitions of domains and keys

17. Fifth normal form deals with anomalies caused by:

a. Multivalued attributes

b. Transitive dependencies

c. Join dependencies

d. Determinants that are not primary or candidate keys

e. Constraints that are not the result of the definitions of domains and keys

18. Domain key normal form deals with anomalies caused by:

a. Multivalued attributes

b. Transitive dependencies

c. Join dependencies

d. Determinants that are not primary or candidate keys

e. Constraints that are not the result of the definitions of domains and keys

176 Databases Demystified

P:\010Comp\DeMYST\364-9\ch06.vp
Monday, February 09, 2004 9:09:10 AM

Color profile: Generic CMYK printer profile
Composite Default screen

19. Most business systems require that you normalize only as far as:

a. First normal form

b. Second normal form

c. Third normal form

d. Boyce-Codd normal form

e. Fourth normal form

20. Proper handling of multivalued attributes when converting relations to first

normal form usually prevents subsequent problems with:

a. First normal form

b. Second normal form

c. Third normal form

d. Boyce-Codd normal form

e. Fourth normal form

CHAPTER 6 Logical Database Design Using Normalization 177

P:\010Comp\DeMYST\364-9\ch06.vp
Monday, February 09, 2004 9:09:10 AM

Color profile: Generic CMYK printer profile
Composite Default screen

P:\010Comp\DeMYST\364-9\ch06.vp
Monday, February 09, 2004 9:09:10 AM

Color profile: Generic CMYK printer profile
Composite Default screen

This page intentionally left blank.

7

Data and Process
Modeling

As you saw in Chapter 5, data and process modeling are major undertakings that are

part of the logical design stage of an application system development project. You

have already seen the rudiments of data modeling when we used entity relationship

diagrams (ERDs) in prior chapters. In this chapter, we will look at ERDs and data

modeling in more detail. Process modeling, on the other hand, is less important to a

database designer because application processes are designed by application de

signers and seldom directly involve the database designer. However, because the

database designer must work closely with the application designer in gathering data

requirements and in supplying a database design that will support the processes

being designed, the database designer should be at least familiar with the basic con-

cepts. It is for this reason that the second part of this chapter includes a high-level

survey of process design concepts and diagramming techniques.

179

P:\010Comp\DeMYST\364-9\ch07.vp
Monday, February 09, 2004 12:59:13 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Copyright © 2004 by The McGraw-Hill Companies. Click here for terms of use.

Entity Relationship Modeling
Entity relationship modeling is the process of visually representing entities, attrib-

utes, and relationships, producing a diagram called an entity relationship diagram

(ERD). The process is iterative in nature because entities are discovered throughout

the design process. The chief advantage of ERDs is that they can be understood by

nontechnical people while still providing great value to technical people. Done cor-

rectly, ERDs are platform independent and can even be used for nonrelational data-

bases if desired.

ERD Formats
Peter Chen developed the original ERD format in 1976. Since then, vendors, com-

puter scientists, and academics have developed many variations, all of them concep-

tually the same. It is important to understand the most commonly used variations

because you are likely to encounter them in active use in IT organizations. Here are

the elements common to all ERD formats:

• Entities are represented as rectangles or boxes.

• Relationships are represented as lines.

• Line ends indicate the maximum cardinality of the relationship (that is,

one or many).

• Symbols near the line ends indicate the minimum cardinality of the

relationship (that is, whether participation in the relationship is mandatory

or optional).

• Attributes may be optionally included (the format for displaying attributes

varies quite a bit).

Chen’s Format
For simplicity, we’ll use the normalized solution for the Acme Industries invoice ap-

plication from Chapter 6 for the examples in this chapter. Figure 7-1 shows the ERD

using Chen’s format.

Here are the particulars of the Chen format:

• Relationship lines contain a diamond in which is written a word or short

phrase that describes the relationship. For example, the relationship

between Invoice and Product may be read as “An invoice contains many

products.”

180 Databases Demystified

P:\010Comp\DeMYST\364-9\ch07.vp
Monday, February 09, 2004 12:59:13 PM

Color profile: Generic CMYK printer profile
Composite Default screen

• For many-to-many relationships that require an intersection table in an

RDBMS, such as the one between Invoice and Product, a rectangle is

often drawn around the diamond.

• Maximum cardinality of each relationship is shown using the symbol “1”

for “one” or “M” for “many.”

• Minimum cardinality is not shown.

• Attributes, when shown, appear in ellipses, connected to the entity or

relationship to which they belong with a line.

In practice, Chen ERDs proved to be cumbersome for complicated data models.

The diamonds take a lot of space for the added value they provide. Also, any ERD

that includes many attributes becomes very difficult to read. Notwithstanding, we

owe Chen a lot for his pioneering work, which laid the foundation for the techniques

that followed.

The Relational Format
Over time, an ERD format known generically as the relational format evolved. It is

in use (or available as an option) by several of the better-known data modeling

software tools, including PowerDesigner from Sybase and ER/Studio from

Embarcadero Technologies, and in popular general drawing tools such as Visio from

Microsoft. Figure 7-2 shows the ERD from Figure 7-1, converted to the relational

format. In this example, the ERD is represented at a physical level, meaning that

physical table names are shown instead of logical entity names, and physical column

names are shown instead of logical attribute names. Also, intersection tables are

shown to resolve many-to-many relationships. As the logical data model is trans-

formed into a physical database design, it is essential to have a physical ERD that the

CHAPTER 7 Data and Process Modeling 181

Figure 7-1 Acme Industries logical ERD in Chen’s format

P:\010Comp\DeMYST\364-9\ch07.vp
Monday, February 09, 2004 12:59:13 PM

Color profile: Generic CMYK printer profile
Composite Default screen

project team can use in developing the application system. The beginnings of the

physical model are shown here to help make that point.

Here are the particulars of the relational ERD format:

• Relationship cardinality is shown with an arrowhead on the line end to signify

“one” and nothing on the line end to signify “many.” This will seem odd at

first, but it aligns nicely with object diagrams, so this format is favored by

object-oriented designers and developers.

• Attributes are shown inside the rectangle that represents each entity.

• Unique identifier attributes are shown above a horizontal line within the

rectangle and are usually also shown in bold with “PK” (signifying

“primary key”) in the margin to the left of the attribute name.

• Attributes that are foreign keys are shown with “FK” and a number in

the margin to the left of the attribute name.

The IDEF1X Format
The Computer Systems Laboratory of the National Institute of Standards and Tech-

nology released the IDEF1X standard for data modeling in FIPS Publication 184,

which was released in December 1993. The standard covers both a method for data

modeling as well as the format for the ERDs produced during the modeling effort. It

is widely used and understood across the information technology industry and is a

U.S. Federal Government standard. Thanks to its underlying standard, it has few

182 Databases Demystified

Figure 7-2 Acme Industries logical ERD, relational format

P:\010Comp\DeMYST\364-9\ch07.vp
Monday, February 09, 2004 12:59:13 PM

Color profile: Generic CMYK printer profile
Composite Default screen

variants. Figure 7-3 shows our sample ERD converted to the IDEF1X standard

format. You will note that it is strikingly similar to the relational format shown in

Figure 7-2, except for the relationship lines.

Because IDEF1X is so similar to the relational format already presented, let’s

focus on the differences between the two. In IDEF1X:

• Identifying relationships, which are those where the foreign key is part of

the child entity’s primary key, are shown with a solid line. Non-identifying

relationships, which are those where the foreign key is a non-key attribute

in the child entity, are shown with a dotted line. In Figure 7-3, the relationship

between Product and Invoice Line Item is identifying, but the one between

Customer and Invoice is non-identifying.

• Maximum relationship cardinality is shown with a short perpendicular line

across the relationship near its line end to signify “one,” and a “crow’s foot”

on the line end to signify “many.” This is best understood in combination

with minimum cardinality, described next.

• Minimum relationship cardinality is shown with a small circle near the end

of the line to signify “zero” (participation in the relationship is optional)

or a short perpendicular line across the relationship line to signify “one”

(participation in the relationship is mandatory). Figure 7-3 notes a few

combinations of minimum and maximum cardinality.

CHAPTER 7 Data and Process Modeling 183

Figure 7-3 Acme Industries logical ERD, IDEF1X standard

P:\010Comp\DeMYST\364-9\ch07.vp
Monday, February 09, 2004 12:59:14 PM

Color profile: Generic CMYK printer profile
Composite Default screen

• A Product may have zero to many associated Invoice Line Items (shown

as a circle and a crow’s foot); an Invoice Line Item must have one and

only one associated Product (shown as two vertical bars).

• An Invoice must have one or more associated Invoice Line Items (shown

as a vertical bar and a crow’s foot); an Invoice Line Item must have one

and only one associated Invoice (shown as two vertical bars).

• Dependent entities, which are those that have an existence dependency

on one or more other entities (that is, ones that cannot exist without the

existence of another), are shown with the corners of the rectangle rounded.

For example, the Invoice Line Item entity depends on both the Product and

Invoice entities. Therefore, we cannot delete either an invoice or a product

unless we somehow deal with any related invoice line items. This is valuable

information during physical database design because we must consider the

options for handling situations when the application attempts to delete table

rows when dependent entities exist.

Super Types and Subtypes
Some entities can be broken down into more specific categories or types. When this

occurs, we call the more detailed entities subtypes and the more general entity to

which they belong a super type. In object terminology, the super type is called a

super class and the subtypes are called subclasses of the super class. It is essential to

understand that subtypes break down entities by type rather than by state, meaning

their mode or condition. An easy way to distinguish the two is that existing entities

can change state, but they seldom, if ever, change type. For example, a motor vehicle

entity can logically be broken down by type into automobile, bus, truck, motorcycle,

and so on. However, the distinction between vehicles that are new or used, or be-

tween those that are operable or inoperable, is one of state rather than type because

new vehicles become used once they are sold, and vehicles change between operable

and inoperable states as they break down and are subsequently repaired.

The decisions involved in which entities should be broken down into subtypes

and how detailed the subtypes should be revolve around the tradeoff between spe-

cialization and generalization. Unfortunately, there are no firm rules for resolving

the tradeoff. Therefore, generalization versus specialization becomes one of the top-

ics that prevents database design from becoming an exact science. The general

guideline to follow (in addition to common sense) is that the more the various sub-

types share common attributes, the more the designer should be inclined to combine

the subtypes into the super type. The physical design tradeoffs involved are ad-

dressed in Chapter 8. Here we will focus on the logical design tradeoffs.

184 Databases Demystified

P:\010Comp\DeMYST\364-9\ch07.vp
Monday, February 09, 2004 12:59:14 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Let’s look at an example. Assume for a moment that the database design shown in

Figure 7-3 has been implemented, and now the Customer Service Department at

Acme Industries has requested database and application enhancements that will al-

low it to record and track more information about customers. In particular, there is

interest in knowing the type of customer (individual person, sole proprietorship,

partnership, corporation, and so on) so that correspondence can be addressed appro-

priately for each type. Figure 7-4 shows the logical data model that was developed

based on the new requirements.

In IDEF1X notation, the type or category is shown using a symbol that looks like

a circle with a line under it. Therefore, we know that Individual Customer and Com-

mercial Customer are subtypes of Customer because of the symbol that appears in

the line that connects them. Also note that they share the exact same primary key and

CHAPTER 7 Data and Process Modeling 185

Figure 7-4 Customer subclasses

P:\010Comp\DeMYST\364-9\ch07.vp
Monday, February 09, 2004 12:59:14 PM

Color profile: Generic CMYK printer profile
Composite Default screen

that in the subtypes, the primary key of the entity is also a foreign key to the super

type entity. This makes perfect sense when one considers the fact that an Individual

Customer entity is a Customer, meaning that any occurrence of the Individual Cus-

tomer entity would have a tuple in the Customer relation as well as a matching tuple

in the Individual Customer entity. Usually there is an attribute in the super type en-

tity that indicates which type is assigned to each entity occurrence (tuple). Once this

is implemented in tables, database users can use the type attribute to know where to

look for (that is, which subtype table contains) the remainder of the information

about each entity occurrence (each row). Such an attribute is called the type

discriminator and is named next to the type symbol on the ERD. Therefore, Cus-

tomer Type is the type discriminator that indicates whether a given Customer is an

Individual Customer or a Commercial Customer. Similarly, Company Type is the

type discriminator that indicates whether a given Commercial Customer is a Sole

Proprietorship, Partnership, or Corporation.

As you might imagine, this IDEF1X notation is not the only format used in ERDs

for super types and subtypes. However, it is the most commonly used. Another pop-

ular format is to draw the subtype entities within the super type entity (that is, sub-

type entity rectangles drawn inside the corresponding super type entity’s rectangle).

Although this format makes it visually clear that the subtypes really are just a part of

the super type, it has practical limitations when the entities are broken down into

many levels.

As mentioned earlier, finding the right level of specialization is a significant data-

base design challenge. In reviewing the logical design as proposed in Figure 7-4, the

database design team noticed something: The only difference among the Sole Pro-

prietorship, Partnership, and Corporation subtypes is in the way that the names of

key people in those types of companies appear as attributes. Moreover, the use of

two nearly identical attributes for the names of the co-owners in the Partnership sub-

type could be considered a repeating attribute, and therefore a first normal form vio-

lation. The design team elected to generalize these names into the Commercial

Customer entity, but in doing so, recognized the first normal form problems and de-

cided to place them into a separate relation called Commercial Customer Principal.

This led to the ERD shown in Figure 7-5.

Clearly this is a simpler design that will result in fewer tables when it is physically

implemented. There is a very big win here because not only is there no loss of func-

tion when we consolidate the subtypes into the super type, but we actually have more

function available because we can add as many names as we wish to any type of

commercial customer.

Further study by the design team caused them to notice the striking similarity be-

tween the name attributes now contained in the Commercial Customer Principal en-

tity and those contained in the Individual Customer entity. In discussing options

186 Databases Demystified

P:\010Comp\DeMYST\364-9\ch07.vp
Monday, February 09, 2004 12:59:15 PM

Color profile: Generic CMYK printer profile
Composite Default screen

further with the Customer Service Department, they uncovered a few cases where it

would be desirable for multiple contact names to be recorded for individual custom-

ers as well as for commercial customers. For example, customers who have legal

disputes often request that all contact go through their attorney. With that informa-

tion, the design team decided to generalize these names and move Commercial Cus-

tomer Principal up to be a child of Customer and name it Customer Contact so that it

could be used to hold the information about either a principal (owner, co-owner,

partner, officer) of the customer or any other contact person for the customer that the

Customer Service Department might find useful. The design team further realized

that contact names would be more useful if a phone number was included. The

Phone attribute was left in the Customer entity because it is intended to hold the

general phone number for the customer. The phone number in the Customer Contact

CHAPTER 7 Data and Process Modeling 187

Figure 7-5 Customer subtypes, version 2

P:\010Comp\DeMYST\364-9\ch07.vp
Monday, February 09, 2004 12:59:15 PM

Color profile: Generic CMYK printer profile
Composite Default screen

188 Databases Demystified

Demystified / Databases Demystified / Oppel/ 225364-9 / Chapter 7

entity is intended to hold the phone for an individual contact person. The resultant

logical design is shown in Figure 7-6.

The fact that all three of the designs presented (Figures 7-4, 7-5, and 7-6) are

workable should underscore the generalization versus specialization dilemma:

There is no one “right” answer. The art to database design then, is to arrive at the de-

sign that best fits what is known about the expected uses of the database. This is best

done by comparing the relative strengths and weaknesses of each alternative design.

And there is no better vehicle for communicating the alternatives than the ERD.

Guidelines for Drawing ERDs
Here are some general guidelines to follow when constructing ERDs:

• Do not try to relate every entity to every other entity. Entities should only be

related when the entire primary key in one entity appears as a foreign key in

another.

• Except for subtypes, avoid relationships involving more than two entities.

Although drawing fewer lines may seem simpler, it is far too easy to

misread relationships drawn from one parent entity to multiple child entities

using a single line.

Figure 7-6 Customer subtypes, version 3

P:\010Comp\DeMYST\364-9\ch07.vp
Monday, February 09, 2004 12:59:15 PM

Color profile: Generic CMYK printer profile
Composite Default screen

• Be consistent with entity and attribute names. Develop a naming convention

and stick with it.

• Use abbreviations in names only when absolutely necessary, and in those

cases, use a standard list of abbreviations.

• Name primary keys and foreign keys consistently. Most experts prefer the

foreign key to have exactly the same name as the primary key.

• When relationships are named, strive for action words, avoiding nondescriptive

terms such as “has,” “belongs to,” “is associated with,” and so on.

Process Models
As already mentioned, process design is seldom the responsibility of the database

designer or DBA, but understanding the basics helps the DBA communicate with

the process designers and ensure that the database design supports the process de-

sign. Therefore, this section presents a brief survey of common process model dia-

gram techniques. If you want more detail about these or other process model

techniques, a good book on systems analysis and design is the recommended source.

Throughout this section, the Acme Industries order-fulfillment process, a very

simple business process, will be used as an example. This process has the following

steps:

1. Find all unshipped orders in the database.

2. For each order:

• Check for available inventory. If sufficient inventory for the order is not

available, skip to the next order.

• Check the customer’s credit to make sure they are not over their credit

limit or have some other credit problem, such as overdue payments.

This would typically be done at the time the order is entered, but it

needs to be done again here because a customer’s credit status with

Acme Industries can change at any time. If there is a credit problem,

skip to the next order.

• Generate the documents required to pack and ship the order (packing

slip, shipping labels, and so on) and route them to the shipping department.

• When the shipping department has finished with the order, create the

invoice for the order and bill the customer accordingly.

Obviously, this process could be a lot more complicated in a large company, but

here it has been reduced to the basics so that it is easier to use for illustration of pro-

cess models.

CHAPTER 7 Data and Process Modeling 189

P:\010Comp\DeMYST\364-9\ch07.vp
Monday, February 09, 2004 12:59:16 PM

Color profile: Generic CMYK printer profile
Composite Default screen

The Flowchart
The flowchart (or structure chart) is probably the oldest form of computer systems

documentation. Some believe that flowcharts existed when dinosaurs still roamed

our planet, or that anyone who still uses flowcharts is a dinosaur. Levity aside,

flowcharts are often considered outmoded, but they still have much to offer in cer-

tain circumstances and are still widely used. Figure 7-7 shows the flowchart for our

sample order-fulfillment process.

Here are the basic components of the flowchart:

• Process steps are shown with rectangles.

190 Databases Demystified

Figure 7-7 Flowchart of Acme Industries order-fulfillment process

P:\010Comp\DeMYST\364-9\ch07.vp
Monday, February 09, 2004 12:59:16 PM

Color profile: Generic CMYK printer profile
Composite Default screen

CHAPTER 7 Data and Process Modeling 191

Demystified / Databases Demystified / Oppel/ 225364-9 / Chapter 7

• Decision points are shown with diamonds. At each decision point, the logic

branches are based on the outcome of the decision. For example, a decision

might be “Is today Friday?”, with a “Yes” outcome going in one direction

and a “No” outcome going in another.

• Lines with arrows show the flow of control through the diagram. When one

process completes, it hands over control to the next process or decision point.

• Start and end points are shown with ellipses (elongated circles). Flowcharts

can be used to show perpetual processes that have no start and no end, but

more often they are used to show finite processes where there is a specific

beginning and ending point.

• Connector symbols that look like home plate on a baseball diamond can be

used to connect lines to processes or decision points, on the same or another

page. Usually these are given a reference letter with a control flow line

assumed between any two connectors that have the same reference letter.

Figure 7-7 is a very straightforward loop process flow. We begin with a process

step that gets the next unshipped order from the database. We add a decision after it

to stop the loop (end the flow) if we don’t find an unshipped order. If we do find the

order, we continue with decision points that check for available inventory and ac-

ceptable customer credit, with a “No” outcome of either going back to the top of the

loop (the Get Next Unshipped Order process), which essentially skips the order and

moves on to find the next one. If we get a “Yes” outcome from all the decision points,

the process Pack and Ship Order is invoked next, followed by Create Invoice. After

the Create Invoice process completes, control goes back to Get Next Unshipped Order,

at the top of the loop. The loop continues until we find no more unshipped orders.

Flowcharts have the following strengths:

• Procedural language programmers find them naturally easy to learn and use.

A procedural language is a programming language where the programmer

must describe the process steps required to do something, as opposed to a

nonprocedural language, such as SQL, where the programmer merely

describes the desired results. The most commonly used procedural language

today is probably C and its variants (C++, C#, and so on), but others, such

as FORTRAN and COBOL, still see some use. Also, specialized procedural

languages for relational databases, including PL/SQL for Oracle and

Transact SQL for Sybase and Microsoft SQL Server, are heavily used.

• Flowcharts are applicable to procedures outside of a programming context.

For example, flowcharts are often used to walk repair technicians through

troubleshooting procedures for the equipment they service.

P:\010Comp\DeMYST\364-9\ch07.vp
Monday, February 09, 2004 12:59:16 PM

Color profile: Generic CMYK printer profile
Composite Default screen

192 Databases Demystified

Demystified / Databases Demystified / Oppel/ 225364-9 / Chapter 7

• Flowcharts are useful for spotting reusable (common) components. The

designer can easily find any process that appears multiple times in the

flowcharts for a particular application system.

• Flowcharts may be easily modified and can evolve as requirements change.

On the other hand, flowcharts present these weaknesses:

• They are not applicable to nonprocedural or object-oriented languages.

• They cannot easily model some situations, such as recursive processes

(processes that invoke themselves).

The Function Hierarchy Diagram
The function hierarchy diagram, as the name suggests, shows all the functions of a

particular application system or business process, organized into a hierarchical tree.

Figure 7-8 shows this type of process model diagram from our sample order-fulfill-

ment process.

Because the function hierarchy for a single process makes little sense out of con-

text, two other processes have been added to the hierarchy: Order Entry and History

Management. To be effective, a function hierarchy must contain all the processes re-

quired to carry out the function it describes. Figure 7-8 attempts to show all the pro-

cesses required for the Order Management function at Acme Industries. Order Entry

Figure 7-8 Function hierarchy of the Acme order-fulfillment process

P:\010Comp\DeMYST\364-9\ch07.vp
Monday, February 09, 2004 12:59:16 PM

Color profile: Generic CMYK printer profile
Composite Default screen

is intended to cover all the process steps involved in a customer placing an order and

having it recorded in Acme’s database. History Management is intended to cover all

the steps required to archive and purge old (historical) orders and any required

reporting on order history. Both of these processes need to be expanded by adding

process steps below them (as was done with Order Fulfillment) to make this a com-

plete diagram. Under Order Fulfillment, the four main process steps involved in ful-

filling orders have been added.

The strengths of function hierarchy diagrams are as follows:

• They are quick and easy to learn and use.

• They can quickly document the bulk of the function (they get to 80 percent

of the processes quickly).

• They provide a good overview at high and medium levels of detail.

And here are the weaknesses of function hierarchy diagrams:

• Checking quality is difficult and subjective.

• They cannot handle complex interactions between functions.

• They do not clearly show the sequence of process steps or dependencies

between steps.

• They are not an effective presentation tool for large hierarchies or at very

detailed levels.

The Swim Lane Diagram
The swim lane diagram gets it name from the vertical lanes in the diagram, which re-

semble the lanes in a swimming pool. Each lane represents an organizational unit such

as a department, with process steps placed in the lane for the unit that is responsible for

the step. Lines with arrows show the sequence or control flow of the process steps.

Figure 7-9 shows the swim lane diagram for our sample order-fulfillment process.

Strengths of the swim lane diagram include

• It has the unmatched ability to show who does what in the organization.

• It’s excellent for identifying inefficiencies of existing processes and lends

itself well to business process reengineering efforts.

Its weaknesses include

• It does not represent complicated processes (those with many steps or with

complex step dependencies) well.

• It does not show error and exception handling.

Demystified / Databases Demystified / Oppel/ 225364-9 / Chapter 7

CHAPTER 7 Data and Process Modeling 193

P:\010Comp\DeMYST\364-9\ch07.vp
Monday, February 09, 2004 12:59:16 PM

Color profile: Generic CMYK printer profile
Composite Default screen

194 Databases Demystified

Demystified / Databases Demystified / Oppel/ 225364-9 / Chapter 7

The Data Flow Diagram
The data flow diagram (DFD) is the most data centric of all the process diagrams. In-

stead of showing a control flow through a series of process steps, it focuses instead

on the data that flows through the process steps. By combining diagrams hierarchi-

cally, the DFD combines the best of the flowchart and the function diagram. DFDs

became immensely popular in the late 1970s and early 1980s, largely due to the

work of Chris Gane and Trish Sarson. Each process on a DFD may be broken down

using another complete page until the desired level of detail is reached. Figure 7-10

shows one page of the DFD for the Acme Industries order-fulfillment process.

The components of a DFD are simple:

• Processes are represented with rounded rectangles. Processes are typically

numbered hierarchically. The first page of a DFD might have processes

number 1, 2, 3, and 4. The next page might break down process number 1,

and would have processes numbered 1.1, 1.2, and so forth. If process 1.2

were broken down on yet another page, the processes on that page would

be numbered 1.2.1, 1.2.2, and so forth.

• Data stores are represented with an open-ended rectangle. A data store is a

generic representation of data that is made persistent through being stored

somewhere, such as a file, database, or even a printed page. The term was

Figure 7-9 Swim lane diagram for the Acme Industries order-fulfillment process

P:\010Comp\DeMYST\364-9\ch07.vp
Monday, February 09, 2004 12:59:17 PM

Color profile: Generic CMYK printer profile
Composite Default screen

chosen so that no particular type of storage is implied. Because we already

have an ERD for our example, the data stores should closely align with the

entities we have already identified.

• Sources and destinations of data (external entities in relational terminology)

are shown using squares. Figure 7-10 shows the customer as the destination

of the invoice data flow (in addition to a local data store that will hold the

invoice data). Try not to confuse data flows with material flows. Yes, the

invoice is printed and mailed to the customer, but the data flow is attempting

to show that the data is sent to the customer with no regard for the medium

used to send it.

CHAPTER 7 Data and Process Modeling 195

Figure 7-10 Data flow diagram page for the Acme Industries order-fulfillment process

P:\010Comp\DeMYST\364-9\ch07.vp
Monday, February 09, 2004 12:59:17 PM

Color profile: Generic CMYK printer profile
Composite Default screen

196 Databases Demystified

Demystified / Databases Demystified / Oppel/ 225364-9 / Chapter 7

• Flows of data are shown using lines with arrowheads indicating the

direction of flow. Above each flow, words are used to describe the content

of the data being sent. Bidirectional flows are permissible but are usually

shown as separate flows because the data is seldom exactly the same in

both directions.

The strengths of the data flow diagram are as follows:

• It easily shows the overall structure of the system without sacrificing

detail (details are shown on subsequent pages that expand on the higher

level processes).

• It’s good for top-down design work.

• It’s good for presentation of systems designs to management and

business users.

And here are the weaknesses of the data flow diagram:

• It’s time consuming and labor intensive to develop for complex systems.

• Top-down design has proved to be ineffective in situations where requirements

are sketchy and continuously evolving during the life of the project.

• It’s poor at showing complex logic, but the lowest-level diagrams may

easily be supplemented with other documents, such as narratives or

decision tables.

Relating Entities and Processes
Once the database designer has completed logical database design and an ERD for

the proposed database, and, in parallel, the process designers have completed their

process model, how can we have any confidence that the two will be able to work to-

gether in solving the business problem the new project is supposed to address? Part

of the answer lies in a charting technique intended to show how the entities and pro-

cesses interact, known as the CRUD matrix.

Fortunately, CRUD is not slang for a lousy design but rather an acronym formed

from the first letters for the words Create, Read, Update, and Delete, which are the let-

ters used in the body of the diagram. The concept of the CRUD matrix is very simple:

• One axis of the matrix represents the major processes of the application

system.

P:\010Comp\DeMYST\364-9\ch07.vp
Monday, February 09, 2004 12:59:17 PM

Color profile: Generic CMYK printer profile
Composite Default screen

CHAPTER 7 Data and Process Modeling 197

Demystified / Databases Demystified / Oppel/ 225364-9 / Chapter 7

• The other axis represents the major entities used by the application system.

• In each cell of the matrix, the appropriate combination of letters is written:

• C, if the process creates new occurrences of the entity

• R, if the process reads information about the entity from a data source

• U, if the process updates one or more attributes for the entity

• D, if the process deletes occurrences of the entity

Here is a sample CRUD matrix for the order management function at Acme In-

dustries, following the major processes shown in the function hierarchy diagram (re-

fer to Figure 7-8). To be effective, only high-level processes and super-type entities

should be shown in the matrix. Too much detail clouds the effect of the diagram.

ENTITY:

Product Order Customer Invoice

PROCESS:

Order Entry R CRU RU

Order

Fulfillment

RU RU R C

History

Management

RD R

The CRUD matrix is valuable for verifying the consistency of the process and

data (entity) designs. At a glance, one can find the following potential problems:

• Entities that have no Create process

• Entities that have no Delete process

• Entities that are never updated

• Entities that are never read

• Processes that delete or update entities without reading them

• Processes that only read (no Create, Delete, or Update processes)

Our example has multiple problems, which only proves that our process design is

incomplete (that is, we are probably missing some key processes for the application

system). At the conclusion of the logical design phase of a project, the CRUD matrix

is an excellent vehicle for a final review of the work completed. The next step in the

database life cycle is to complete the physical database design, which is discussed in

Chapter 8.

P:\010Comp\DeMYST\364-9\ch07.vp
Monday, February 09, 2004 12:59:17 PM

Color profile: Generic CMYK printer profile
Composite Default screen

198 Databases Demystified

Demystified / Databases Demystified / Oppel/ 225364-9 / Chapter 7

Quiz
Choose the correct responses to each of the multiple-choice questions. Note that

there may be more than one correct response to each question.

1. It is important for a database designer to understand process modeling

because:

a. Process design is a primary responsibility of the DBA.

b. The process model must be completed before the data model.

c. The data model must be completed before the process model.

d. The database designer must work closely with the process designer.

e. The database design must support the intend process model.

2. Peter Chen’s ERD format:

a. Was developed in 1976

b. Represents entities as rectangles or boxes

c. Uses a crow’s foot to represent “many”

d. May optionally include attributes

e. Shows minimum cardinality with vertical lines

3. The diamond in Chen’s ERD format:

a. Represents an entity

b. Represents an attribute

c. Contains a word or phrase that describes the relationship

d. Shows the cardinality of the relationship

e. Contains the name of an entity

4. In the relational ERD format:

a. Unique identifier attributes are marked with “PK” in the margin.

b. Foreign key attributes are marked with “FK” in the margin.

c. Attributes are shown in ellipses connected to the entity with a line.

d. Relationship lines have an arrowhead that points at the “child” entity.

e. A crow’s foot is used to signify “many.”

5. The IDEF1X ERD format:

a. Was first released in 1983

b. Follows a standard developed by the National Institute of Standards

and Technology

c. Has many variants

d. Has been adopted as a U.S. Federal Government standard

e. Covers both data and process models

P:\010Comp\DeMYST\364-9\ch07.vp
Monday, February 09, 2004 12:59:17 PM

Color profile: Generic CMYK printer profile
Composite Default screen

CHAPTER 7 Data and Process Modeling 199

Demystified / Databases Demystified / Oppel/ 225364-9 / Chapter 7

6. The IDEF1X ERD format shows

a. Identifying relationships with a solid line

b. Minimal cardinality using a combination of small circles and vertical

lines shown on the relationship line

c. Maximum cardinality using a combination of small vertical lines and

crow’s feet drawn on the relationship line

d. Dependent entities with squared corners on the rectangle

e. Independent entities with rounded corners on the rectangle

7. A subtype:

a. Is a subset of the super type

b. Has a one-to-many relationship with the super type

c. Has a conditional one-to-one relationship with the super type

d. Shows various states of the super type

e. Is a superset of the super type

8. Examples of possible subtypes for an Order entity super type include

a. Order line items

b. Shipped order, unshipped order, invoiced order

c. Office supplies order, professional services order

d. Approved order, pending order, canceled order

e. Auto parts order, aircraft parts order, truck parts order

9. In IDEF1X notation, subtypes:

a. May be shown with a type discriminator attribute name

b. May be connected to the super type via a symbol composed of a circle

with a line under it

c. Have the primary key of the subtype shown as a foreign key in the

super type

d. Usually have the same primary key as the super type

e. May be shown using a crow’s foot

10. When subtypes are being considered in a database design:

a. The more subtypes that can be found, the better.

b. They should be avoided as much as possible because they complicate

the design.

c. There is a tradeoff between generalization and specialization.

d. There is one correct design—the challenge is to find it.

e. There are multiple correct designs—the challenge is to find the one

that best fits the organization’s intended use of the database.

P:\010Comp\DeMYST\364-9\ch07.vp
Monday, February 09, 2004 12:59:17 PM

Color profile: Generic CMYK printer profile
Composite Default screen

200 Databases Demystified

Demystified / Databases Demystified / Oppel/ 225364-9 / Chapter 7

11. The basic components of a flowchart are

a. Process steps shown as diamonds

b. Lines with arrows showing the flow of control

c. Decision points shown as rectangles

d. Ellipses showing starting and ending points

e. Connector symbols for connecting lines on the same page or

across pages

12. The strengths of flowcharts are

a. They are natural and easy to use for procedural language programmers.

b. They are useful for spotting reusable components.

c. They are specific to application programming only.

d. They are equally useful for nonprocedural and object-oriented

languages.

e. They can be easily modified as requirements change.

13. The basic components of a function hierarchy diagram are

a. Ellipses to show attributes

b. Rectangles to show process functions

c. Lines connecting the processes in order of execution

d. A hierarchy to show which functions are subordinate to others

e. Diamonds to show decision points

14. The strengths of the function hierarchy diagram are

a. Checking quality is easy and straightforward.

b. Complex interactions between functions are easily modeled.

c. It is quick and easy to learn and use.

d. It clearly shows the sequence of process steps.

e. It provides a good overview at high and medium levels of detail.

15. The basic components of a swim lane diagram are

a. Lines with arrows to show the sequence of process steps

b. Diamonds to show decision points

c. Vertical lanes to show the organization units that carry out process steps

d. Ellipses to show process steps

e. Open-ended rectangles to show data stores

16. The data flow diagram (DFD):

a. Is the most data centric of all process models

b. Was first developed in the 1980s

c. Combines diagram pages together hierarchically

d. Was first developed by Dr. E.F. Codd

e. Combines the best of the flowchart and the function diagram

P:\010Comp\DeMYST\364-9\ch07.vp
Monday, February 09, 2004 12:59:18 PM

Color profile: Generic CMYK printer profile
Composite Default screen

17. The components of the DFD are

a. Squares to show data stores

b. Rounded rectangles to show processes

c. Diamonds to show sources and destinations of data

d. Lines with arrowheads to show flows of data

e. Dotted lines to show the flow of control

18. The strengths of the DFD are

a. It’s good for top-down design work.

b. It’s quick and easy to develop, even for complex systems.

c. It shows overall structure without sacrificing detail.

d. It shows complex logic easily.

e. It’s great for presentation to management.

19. The components of the CRUD matrix are

a. Ellipses to show attributes

b. Major processes shown on one axis

c. Major entities shown on the other axis

d. Reference numbers to show the hierarchy of processes

e. Letters to show the operations that processes carry out on entities

20. The CRUD matrix helps find the following problems:

a. Entities that are never read

b. Processes that are never deleted

c. Processes that only read

d. Entities that are never updated

e. Processes that have no create entity

CHAPTER 7 Data and Process Modeling 201

P:\010Comp\DeMYST\364-9\ch07.vp
Monday, February 09, 2004 12:59:18 PM

Color profile: Generic CMYK printer profile
Composite Default screen

P:\010Comp\DeMYST\364-9\ch07.vp
Monday, February 09, 2004 12:59:18 PM

Color profile: Generic CMYK printer profile
Composite Default screen

This page intentionally left blank.

CHAPTER
8

Physical
Database Design

As introduced in Chapter 5 in Figure 5-1, once the logical design phase of a project is

complete, it is time to move on to physical design. Other members of a typical pro-

ject team will define the hardware and system software required for the application

system. We will focus on the database designer’s physical design work, which is

transforming the logical database design into one or more physical database designs.

In situations where an application system is being developed for internal use, it is

normal to have only one physical database design for each logical design. However,

if the organization is a software vendor, for example, the application system must

run on all the various platform and RDBMS versions that the vendor’s customers

use, and that requires multiple physical designs. The sections that follow cover each

of the major steps involved in physical database design.

203

P:\010Comp\DeMYST\364-9\ch08.vp
Monday, February 09, 2004 1:05:00 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Copyright © 2004 by The McGraw-Hill Companies. Click here for terms of use.

Designing Tables
The first step in physical database design is to map the normalized relations shown in

the logical design to tables. The importance of this step should be obvious because

tables are the primary unit of storage in relational databases. However, if adequate

work was put into the logical design, then translation to a physical design is that

much easier. As you work through this chapter, keep in mind that Chapter 2 contains

an introduction to each component in the physical database model, and Chapter 4

contains the SQL syntax for the DML commands required to create the various

physical database components (tables, constraints, indexes, views, and so on).

Briefly, the process goes as follows:

1. Each normalized relation becomes a table. A common exception to this is

when super types and subtypes are involved, a situation we will look at in

more detail in the next section.

2. Each attribute within the normalized relation becomes a column in the

corresponding table. Keep in mind that the column is the smallest division

of meaningful data in the database, so columns should not have subcomponents

that make sense by themselves. For each column, the following must be

specified:

• A unique column name within the table. Generally, the attribute name

from the logical design should be adapted as closely as possible. However,

adjustments may be necessary to work around database reserved words and

to conform to naming conventions for the particular RDBMS being used.

You may notice some column name differences between the Customer

relation and the CUSTOMER table in the example that follows. The reason

for this change is discussed in the “Naming Conventions” section later in

this chapter.

• A data type, and for some data types, a length. Data types vary from one

RDBMS to another, so this is why different physical designs are needed

for each RDBMS to be used.

• Whether column values are required or not. This takes the form of a NULL

or NOT NULL clause for each column. Be careful with defaults—they can

fool you. For example, when this clause is not specified, Oracle assumes

NULL, but Sybase and Microsoft SQL Server assume NOT NULL. It’s

always better to specify such things and be certain of what you are getting.

• Check constraints. These may be added to columns to enforce simple

business rules. For example, a business rule requiring that the unit price on

an invoice must always be greater than or equal to zero can be implemented

204 Databases Demystified

P:\010Comp\DeMYST\364-9\ch08.vp
Monday, February 09, 2004 1:05:01 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Demystified / Databases Demystified / Oppel/ 225364-9 / Chapter 8

CHAPTER 8 Physical Database Design 205

with a check constraint, but a business rule requiring the unit price to be

lower in certain states cannot be. Generally, a check constraint is limited to

a comparison of a column value with a single value, with a range or list of

values, or with other column values in the same row of table data.

3. The unique identifier of the relation is defined as the primary key of the

table. Columns participating in the primary key must be specified as NOT

NULL, and in most RDBMSs, the definition of a primary key constraint

causes automatic definition of a unique index on the primary key column(s).

Foreign key columns should have a NOT NULL clause if the relationship is

mandatory; otherwise, they may have a NULL clause.

4. Any other sets of columns that must be unique within the table may have a

unique constraint defined. As with primary key constraints, unique constraints

in most RDBMSs cause automatic definition of a unique index on the unique

column(s). However, unlike primary key constraints, a table may have

multiple unique constraints, and the columns in a unique constraint may

contain null values (that is, they may be specified with the NULL clause).

5. Relationships among the normalized relations become referential constraints

in the physical design. For those rare situations where the logical model

contains a one-to-one relationship, you can implement it by placing the

primary key of one of the tables as a foreign key in the other (do this for

only one of the two tables) and placing a unique constraint on the foreign

key to prevent duplicate values. For example, Figure 2-2 in Chapter 2 shows

a one-to-one relationship between Employee and Automobile, and we chose

to place EMPLOYEE_ID as a foreign key in the AUTOMOBILE table.

We should also place a unique constraint on EMPLOYEE_ID in the

AUTOMOBILE table so that an employee may be assigned to only one

automobile at any point in time.

6. Large tables (that is, those that exceed several gigabytes in total size) should

be partitioned if the RDBMS being used supports it. Partitioning is a database

feature that permits a table to be broken into multiple physical components,

each stored in separate data files, in a manner that is transparent to the

database user. Typical methods of breaking tables into partitions use a range

or list of values for a particular table column (called the partitioning column)

or use a randomizing method known as hashing that evenly distributes table

rows across available partitions. The benefits of breaking large tables into

partitions are easier administration (particularly for backup and recovery

operations) and improved performance, achieved when the RDBMS can run

an SQL query in parallel against all (or some of the) partitions and then

P:\010Comp\DeMYST\364-9\ch08.vp
Monday, February 09, 2004 1:05:01 PM

Color profile: Generic CMYK printer profile
Composite Default screen

206 Databases Demystified

Demystified / Databases Demystified / Oppel/ 225364-9 / Chapter 8

combine the results. Partitioning is solely a physical design issue that is

never addressed in logical designs. After all, a partitioned table really is

still one table. There is wide variation in the way database vendors have

implemented partitioning in their products, so you need to consult your

RDBMS documentation for more details.

7. The logical model may be for a complete database system, whereas the

current project may be an implementation of a subset of that entire system.

When this occurs, the physical database designer will select and implement

only the subset of tables required to fulfill current needs.

Here is the logical design for Acme Industries from Chapter 6:

PRODUCT: # Product Number, Product Description,
List Unit Price

CUSTOMER: # Customer Number, Customer Name,
Customer Address, Customer City, Customer State,
Customer Zip Code, Customer Phone

INVOICE: # Invoice Number, Customer Number, Terms,
Ship Via, Order Date

INVOICE LINE ITEM: # Invoice Number, # Product Number,
Quantity, Sale Unit Price

And here is the physical table design we created from the logical design, shown

in the form of SQL DDL statements. These statements are written for Oracle and

require some modification, mostly of data types, to work on other RDBMSs:

CREATE TABLE PRODUCT
(PRODUCT_NUMBER VARCHAR(10) NOT NULL,
PRODUCT_DESCRIPTION VARCHAR(100) NOT NULL,
LIST_UNIT_PRICE NUMBER(7,2) NOT NULL);

ALTER TABLE PRODUCT
ADD CONSTRAINT PRODUCT_PK_PRODUCT_NUMBER

PRIMARY KEY (PRODUCT_NUMBER);

CREATE TABLE CUSTOMER
(CUSTOMER_NUMBER NUMBER(5) NOT NULL,
NAME VARCHAR(25) NOT NULL,
ADDRESS VARCHAR(255) NOT NULL,
CITY VARCHAR(50) NOT NULL,
STATE CHAR(2) NOT NULL,
ZIP_CODE VARCHAR(10));

P:\010Comp\DeMYST\364-9\ch08.vp
Monday, February 09, 2004 1:05:01 PM

Color profile: Generic CMYK printer profile
Composite Default screen

ALTER TABLE CUSTOMER
ADD CONSTRAINT CUSTOMER_PK_CUST_NUMBER

PRIMARY KEY (CUSTOMER_NUMBER);

CREATE TABLE INVOICE
(INVOICE_NUMBER NUMBER(7) NOT NULL,
CUSTOMER_NUMBER NUMBER(5) NOT NULL,
TERMS VARCHAR(20) NULL,
SHIP_VIA VARCHAR(30) NULL,
ORDER_DATE DATE NOT NULL);

ALTER TABLE INVOICE
ADD CONSTRAINT INVOICE_PK_INVOICE_NUMBER

PRIMARY KEY (INVOICE_NUMBER);

ALTER TABLE INVOICE
ADD CONSTRAINT INVOICE_FK_CUSTOMER_NUMBER

FOREIGN KEY (CUSTOMER_NUMBER)
REFERENCES CUSTOMER (CUSTOMER_NUMBER);

CREATE TABLE INVOICE_LINE_ITEM
(INVOICE_NUMBER NUMBER(7) NOT NULL,
PRODUCT_NUMBER VARCHAR(10) NOT NULL,
QUANTITY NUMBER(5) NOT NULL,
SALE_UNIT_PRICE NUMBER(7,2) NOT NULL);

ALTER TABLE INVOICE_LINE_ITEM
ADD CONSTRAINT INVOICE_LI_PK_INV_PROD_NOS

PRIMARY KEY (INVOICE_NUMBER, PRODUCT_NUMBER);

ALTER TABLE INVOICE_LINE_ITEM
ADD CONSTRAINT INVOICE_CK_SALE_UNIT_PRICE

CHECK (SALE_UNIT_PRICE >= 0);

ALTER TABLE INVOICE_LINE_ITEM
ADD CONSTRAINT INVOICE_LI_FK_INVOICE_NUMBER

FOREIGN KEY (INVOICE_NUMBER)
REFERENCES INVOICE (INVOICE_NUMBER);

ALTER TABLE INVOICE_LINE_ITEM
ADD CONSTRAINT INVOICE_LI_FK_PRODUCT_NUMBER

FOREIGN KEY (PRODUCT_NUMBER)
REFERENCES PRODUCT (PRODUCT_NUMBER);

CHAPTER 8 Physical Database Design 207

P:\010Comp\DeMYST\364-9\ch08.vp
Monday, February 09, 2004 1:05:01 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Implementing Super Types and Subtypes
Most data modelers tend to specify every conceivable subtype in the logical data

model. This is not really a problem because the logical design is supposed to encom-

pass not only where things currently stand, but also where things are likely to end up

in the future. The designer of the physical database therefore has some decisions to

make in choosing to implement or not implement the super types and subtypes de-

picted in the logical model. The driving motivators here should be reasonableness

and common sense. These, along with input from the application designers about

their intended uses of the database, will lead to the best decisions.

Looking back at Figure 7-6 in Chapter 7, you will recall that we ended up with two

subtypes for our Customer entity: Individual Customer and Commercial Customer.

There are basically three choices for physically implementing such a logical design,

and we will explore each in the subsections that follow.

Implementing Subtypes As Is
This is called the “three table” solution because it involves creating one table for the

super type and one table for each of the subtypes (two in this example). This design

is most appropriate when there are many attributes that are particular to individual

subtypes. In our example, only two attributes are particular to the Individual Cus-

tomer subtype (Date of Birth and Annual Household Income), and four are particu-

lar to the Commercial Customer subtype. Figure 8-1 shows the physical design for

this alternative.

This design alternative is favored when there are many common attributes (lo-

cated in the super type table) as well as many attributes particular to one subtype or

another (located in the subtype tables). In one sense, this design is simpler than the

other alternatives because no one has to remember which attributes apply to which

subtype. On the other hand, it is also more complicated to use because the database

user must join the CUSTOMER table to either the INDIVIDUAL_CUSTOMER

table or the COMMERCIAL_CUSTOMER table, depending on the value of

CUSTOMER_TYPE. The data-modeling purists on your project team are guaran-

teed to favor this approach, but the application programmers who must write the

SQL to access the tables may likely take a counter position.

Implementing Each Subtype as a Discrete Table
This is called the “two-table” solution because it involves creating one table for each

subtype and including all the columns from the super type table in each subtype.

At first, this may appear to involve redundant data, but in fact there is no redundant

208 Databases Demystified

P:\010Comp\DeMYST\364-9\ch08.vp
Monday, February 09, 2004 1:05:01 PM

Color profile: Generic CMYK printer profile
Composite Default screen

storage because a given customer can be only one of the two subtypes. However,

some columns are redundantly defined. Figure 8-2 shows the physical design for this

alternative.

This alternative is favored when very few attributes are common between the sub-

types (that is, when the super type table contains very few attributes). In our exam-

ple, the situation is further complicated because of the CUSTOMER_CONTACT

table, which is a child of the super type table (CUSTOMER). You cannot (or at least

should not) make a table the child of two different parents based on the same foreign

key. Therefore, if we eliminate the CUSTOMER table, we must create two versions

CHAPTER 8 Physical Database Design 209

Figure 8-1 Customer subclasses: three-table physical design

Figure 8-2 Customer subclasses: two-table physical design

P:\010Comp\DeMYST\364-9\ch08.vp
Monday, February 09, 2004 1:05:02 PM

Color profile: Generic CMYK printer profile
Composite Default screen

of the CUSTOMER_CONTACT table—one as a child of INDIVIDUAL_

CUSTOMER and the other as a child of COMMERCIAL_CUSTOMER. Although

this alternative may be a viable solution in some situations, the complication of the

CUSTOMER_CONTACT table makes it a poor choice in this case.

Collapsing Subtypes into the Super type Table
This is called the “one-table” solution because it involves creating a single table that

encompasses the super type and both subtypes. Figure 8-3 shows the physical design

for this alternative. Check constraints are required to enforce the optional columns.

For the CUSTOMER_TYPE value that signifies “Individual,” DATE_OF_BIRTH

and ANNUAL_HOUSEHOLD_INCOME would be allowed to (or required to)

contain values, and COMPANY_NAME, TAX_IDENTIFICATION_NUMBER,

ANNUAL_GROSS_INCOME, and COMPANY_TYPE would be required to be

null. For the CUSTOMER_TYPE value that signifies “Commercial,” the behavior

required would be just the opposite.

This alternative is favored when relatively few attributes are particular to any

given subtype. In terms of data access, it is clearly the simplest alternative because

no joins are required. However, it is perhaps more complicated in terms of logic be-

cause one must always keep in mind which attributes apply to which subtype (that is,

which value of CUSTOMER_TYPE in this example). With only two subtypes, and a

total of six subtype-determined attributes between them, this seems a very attractive

alternative for this example.

210 Databases Demystified

Figure 8-3 Customer subclasses: one-table physical design

P:\010Comp\DeMYST\364-9\ch08.vp
Monday, February 09, 2004 1:05:02 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Naming Conventions
Naming conventions are important because they help promote consistency in the

names of tables, columns, constraints, indexes, and other database objects. Every or-

ganization should develop a standard set of naming conventions (with variations as

needed when multiple RDBMSs are in use), publish it, and enforce its use. The con-

ventions offered here are only suggestions based on current industry best practices.

Table Naming Conventions
Here are some suggested naming conventions for database tables:

• Table names should be based on the name of the entity they represent. They

should be descriptive, yet concise.

• Table names should be unique across the entire organization (that is, across

all databases), except where the table really is an exact duplicate of another

(that is, a replicated copy).

• Some designers prefer singular words for table names whereas others prefer

plural names (for example, CUSTOMER versus CUSTOMERS). Oracle

Corporation recommends singular names for entities and plural names for

tables (a convention this author has never understood). It doesn’t matter

which convention you adopt as long as you are consistent across all your

tables, so do set one or the other as your standard.

• Do not include words such as “table” or “file” in table names.

• Use only uppercase letters, and use an underscore to separate words. Not

all RDBMSs have case-sensitive object names, so mixed-case names limit

applicability across multiple vendors.

• Use abbreviations when necessary to shorten names that are longer than the

RDBMS maximum (typically 30 characters or so). Actually, it is a good idea

to stay a few characters short of the RDBMS maximum to allow for suffixes

when necessary. All abbreviations should be placed on a standard list and

the use of nonstandard abbreviations discouraged.

• Avoid limiting names such as WEST_SALES. Some organizations add

a two- or three-character prefix to table names to denote the part of the

organization that owns the data in the table. However, this is not considered

a best practice because it can lead to a lack of data sharing. Moreover, placing

geographic or organizational unit names in table names plays havoc every

time the organization changes.

CHAPTER 8 Physical Database Design 211

P:\010Comp\DeMYST\364-9\ch08.vp
Monday, February 09, 2004 1:05:02 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Column Naming Conventions
Here are some suggested naming conventions for table columns:

• Column names should be based on the attribute name as shown in the

logical data model. They should be descriptive, yet concise.

• Column names must be unique within the table, but where possible, it is

best if they are unique across the entire organization. Some conventions

make exceptions for common attributes such as City, which might describe

several entities such as Customer, Employee, and Company Location.

• Use only uppercase letters, and use an underscore to separate words. Not

all RDBMSs have case-sensitive object names, so mixed-case names limit

applicability across multiple vendors.

• Prefixing column names with entity names is a controversial issue. Some

prefer prefixing names. For example, in the CUSTOMER table, they would

use column names such as CUSTOMER_NUMBER, CUSTOMER_NAME,

CUSTOMER_ADDRESS, CUSTOMER_CITY, and so forth. Others (this

author included) prefer to prefix only the primary key column name (for

example, CUSTOMER_NUMBER), which leads easily to primary key and

matching foreign key columns having exactly the same names. Still others

prefer no prefixes at all, and end up with a column name such as ID for the

primary key of every single table.

• Use abbreviations when necessary to shorten names that are longer than the

RDBMS maximum (typically 30 characters or so). All abbreviations should be

placed on a standard list and the use of nonstandard abbreviations discouraged.

• Regardless of any other convention, most experts prefer that foreign key

columns always have exactly the same name as their matching primary

key column. This helps other database users understand which columns

to use when coding joins in SQL.

Constraint Naming Conventions
In most RDBMSs, the error message generated when a constraint is violated contains

the constraint name. Unless you want to field questions from database users every time

one of these messages shows up, you should name the constraints in a standard way

that is easily understood by the database users. Most database designers prefer a con-

vention similar to the one presented here.

Constraint names should be in the format TNAME_TYPE_CNAME, where:

• TNAME is the name of the table on which the constraint is defined,

abbreviated if necessary.

212 Databases Demystified

P:\010Comp\DeMYST\364-9\ch08.vp
Monday, February 09, 2004 1:05:02 PM

Color profile: Generic CMYK printer profile
Composite Default screen

• TYPE is the type of constraint:

• “PK” for primary key constraints.

• “FK” for foreign key constraints.

• “UQ” for unique constraints.

• “CK” for check constraints.

• CNAME is the name of the column on which the constraint is defined,

abbreviated if necessary. For constraints defined across multiple columns,

another descriptive word or phrase may be substituted if the column names

are too long (even when abbreviated) to make sense.

Index Naming Conventions
Indexes that are automatically defined by the RDBMS to support primary key or

unique constraints are typically given the same name as the constraint name, so you

seldom have to worry about them. For other types of indexes, it is wise to have a

naming convention so that you know the table and column(s) on which they are de-

fined without having to look up anything. The following is a suggested convention.

Index names should be in the format TNAME_TYPE_CNAME, where:

• TNAME is the name of the table on which the index is defined, abbreviated

if necessary.

• TYPE is the type of index:

• “UX” for unique indexes.

• “IX” for nonunique indexes.

• CNAME is the name of the column on which the index is defined, abbreviated

if necessary. For indexes defined across multiple columns, another descriptive

word or phrase may be substituted if the column names are too long (even when

abbreviated) to make sense.

Also, any abbreviations used should be documented in the standard abbreviations list.

View Naming Conventions
View names present an interesting dilemma. The object names used in the FROM

clause of SQL statements can be for tables, views, or synonyms. A synonym is an

alias (nickname) for a table or view. So how does the DBMS know whether an object

name in the FROM clause is a table or view or synonym? Well, it doesn’t until it

looks up the name in a metadata table that catalogs all the objects in the database.

This means, of course, that the names of tables, views, and synonyms must come

from the same namespace, or list of possible names. Therefore, a view name must be

unique among all table, view, and synonym names.

CHAPTER 8 Physical Database Design 213

P:\010Comp\DeMYST\364-9\ch08.vp
Monday, February 09, 2004 1:05:02 PM

Color profile: Generic CMYK printer profile
Composite Default screen

214 Databases Demystified

Demystified / Databases Demystified / Oppel/ 225364-9 / Chapter 8

Because it is useful for at least some database users to know if they are referenc-

ing a table or a view, and as an easy way to ensure that names are unique, it is com-

mon practice to give views distinctive names by employing a standard that appends

“VW” to the beginning or end of each name, with a separating underscore. Again,

the exact convention chosen matters a lot less than picking one standard convention

and sticking to it for all your view names. Here is a suggested convention:

• All view names should end with “_VW” so they are easily distinguishable

from table names.

• View names should contain the name of the most significant base table

included in the view, abbreviated if necessary.

• View names should describe the purpose of the views or the kind of data

included in them. For example, CALIFORNIA_CUSTOMERS_VW and

CUSTOMERS_BY_ZIP_CODE_VW are both reasonably descriptive view

names, whereas CUSTOMER_LIST_VW and CUSTOMER_JOIN_VW

are much less meaningful.

• Any abbreviations used should be documented in the standard abbreviations list.

Integrating Business Rules
and Data Integrity

Business rules determine how an organization operates and utilizes its data. Busi-

ness rules exist as a reflection of an organization’s policies and operational proce-

dures and because they provide control. Data integrity is the process of ensuring that

data is protected and stays intact through defined constraints placed on the data. We

call these database constraints because they prevent changes to the data that would

violate one or more business rules. The principal benefit of enforcing business rules

using data integrity constraints in the database is that database constraints cannot be

circumvented. Unlike business rules enforced by application programs, database

constraints are enforced no matter how someone connects to the database. The only

way around database constraints is for the DBA to remove or disable them.

Business rules are implemented in the database as follows:

• NOT NULL constraints

• Primary key constraints

• Referential (foreign key) constraints

• Unique constraints

P:\010Comp\DeMYST\364-9\ch08.vp
Monday, February 09, 2004 1:05:02 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TE
AM
 F
LY

• Check constraints

• Data types, precision and scale

• Triggers

The subsections that follow discuss each of these implementation techniques and

the effect the constraints have on database processing. Throughout this topic, we

will use the following table definition as an example. A remark (REM statement) has

been placed above each component to help you identify it. Note that the INVOICE

table used here has a column difference—TERMS is replaced with CUSTOMER_

PO_NUMBER, which is needed to illustrate some key concepts. A DROP statement

is included to drop the INVOICE table in case you created it when following previ-

ous examples.

REM Drop Invoice Table (in case there already is one)
DROP TABLE INVOICE CASCADE CONSTRAINTS;
REM Create Invoice Table
CREATE TABLE INVOICE
(INVOICE_NUMBER NUMBER(7) NOT NULL,
CUSTOMER_NUMBER NUMBER(5) NOT NULL,
CUSTOMER_PO_NUMBER VARCHAR(10) NULL,
SHIP_VIA VARCHAR(30) NULL,
ORDER_DATE DATE NOT NULL);

REM Create Primary Key Constraint
ALTER TABLE INVOICE
ADD CONSTRAINT INVOICE_PK_INVOICE_NUMBER

PRIMARY KEY (INVOICE_NUMBER);

REM Create Referential Constraint
ALTER TABLE INVOICE
ADD CONSTRAINT INVOICE_FK_CUSTOMER_NUMBER

FOREIGN KEY (CUSTOMER_NUMBER)
REFERENCES CUSTOMER (CUSTOMER_NUMBER);

REM Create Unique Constraint
ALTER TABLE INVOICE
ADD CONSTRAINT INVOICE_UNQ_CUST_NUMB_PO

UNIQUE (CUSTOMER_NUMBER, CUSTOMER_PO_NUMBER);

REM Create CHECK Constraint
ALTER TABLE INVOICE
ADD CONSTRAINT INVOICE_CK_ORDER_DATE

CHECK (ORDER_DATE <= SYSDATE);

CHAPTER 8 Physical Database Design 215

P:\010Comp\DeMYST\364-9\ch08.vp
Monday, February 09, 2004 1:05:02 PM

Color profile: Generic CMYK printer profile
Composite Default screen

NOT NULL Constraints
As you have already seen, business rules that state which attributes are required

translate into NOT NULL clauses on the corresponding columns in the table design.

In fact, the NOT NULL clause is how we define a NOT NULL constraint on table

columns. Primary keys must always be specified as NOT NULL (Oracle will auto-

matically do this for you, but most other RDBMSs will not). And, as already men-

tioned, any foreign keys that participate in a mandatory relationship should also be

specified as NOT NULL.

In our example, if we attempt to insert a row in the INVOICE table and fail to pro-

vide a value for any of the columns that have NOT NULL constraints (that is, the

INVOICE_NUMBER, CUSTOMER_NUMBER, and ORDER_DATE columns),

the insert will fail with an error message indicating the constraint violation. Also, if

we attempt to update any existing row and set one of those columns to a NULL value,

the update statement will fail.

Primary Key Constraints
Primary key constraints require that the column(s) that make up the primary key

contain unique values for every row in the table. In addition, primary key columns

must be defined with NOT NULL constraints. A table may have only one primary

key constraint. The RDBMS will automatically create an index to assist in enforcing

the primary key constraint.

In our sample INVOICE table, if we attempt to insert a row without specifying a

value for the INVOICE_NUMBER column, the insert will fail because of the NOT

NULL constraint on the column. If we instead try to insert a row with a value for the

INVOICE_NUMBER column that already exists in the INVOICE table, the insert

will fail with an error message that indicates a violation of the primary key con-

straint. This message usually contains the constraint name, which is why it is such a

good idea to give constraints meaningful names. Finally, assuming the RDBMS in

use permits updates to primary key values (some do not), if we attempt to update the

INVOICE_NUMBER column for an existing row and we provide a value that is

already used by another row in the table, the update will fail.

Referential (Foreign Key) Constraints
The referential constraint on the INVOICE table defines CUSTOMER_NUMBER

as a foreign key to the CUSTOMER table. It takes some getting used to, but referen-

tial constraints are always defined on the child table (that is, the table on the “many”

216 Databases Demystified

P:\010Comp\DeMYST\364-9\ch08.vp
Monday, February 09, 2004 1:05:02 PM

Color profile: Generic CMYK printer profile
Composite Default screen

side of the relationship). The purpose of the referential constraint is to make sure that

foreign key values in the rows in the child table always have matching primary key

values in the parent table.

In our INVOICE table example, if we try to insert a row without providing a value

for CUSTOMER_NUMBER, the insert will fail due to the NOT NULL constraint on

the column. However, if we try to insert a row and provide a value for CUSTOMER_

NUMBER that does not match the primary key of a row in the CUSTOMER table, the

insert will fail due to the referential constraint. Also, if we attempt to update the value

of CUSTOMER_NUMBER for an existing row in the INVOICE table and the new

value does not have a matching row in the CUSTOMER table, the update will fail,

again due to the referential constraint.

Always keep in mind that referential constraints work in both directions, so they

can prevent a child table row from becoming an “orphan,” meaning it has a value that

does not match a primary key value in the parent table. Therefore, if we attempt to

delete a row in the CUSTOMER table that has INVOICE rows referring to it (or if

we attempt to update the primary key value of such a row), the statement will fail be-

cause it would cause child table rows to violate the constraint. However, many

RDBMSs provide a feature with referential constraints written as ON DELETE

CASCADE, which causes referencing child table rows to be automatically deleted

when the parent row is deleted. Of course, this option is not appropriate in all situa-

tions, but it is nice to have when you need it.

Unique Constraints
Like primary key constraints, unique constraints ensure that no two rows in the table

have duplicate values for the column(s) named in the constraint. However, there are

two important differences:

• Although a table may have only one primary key constraint, it may have as

many unique constraints as necessary

• Columns participating in a unique constraint do not have to have NOT NULL

constraints on them.

As with a primary key constraint, an index is automatically created to assist the

DBMS in efficiently enforcing the constraint.

In our example, a unique constraint is defined on the CUSTOMER_NUMBER

and CUSTOMER_PO_NUMBER columns, to enforce a business rule that states

that customers may only use a PO (purchase order) number once. It is important to

understand that it is the combination of the values in the two columns that must be

unique. There can be many invoices for any given CUSTOMER_NUMBER, and

CHAPTER 8 Physical Database Design 217

P:\010Comp\DeMYST\364-9\ch08.vp
Monday, February 09, 2004 1:05:03 PM

Color profile: Generic CMYK printer profile
Composite Default screen

there can be multiple rows in the INVOICE table with the same PO_NUMBER (we

cannot prevent two customers from using the same PO number, nor do we wish to).

However, no two rows for the same customer number may have the same PO number.

As with the primary key constraint, if we attempt to insert a row with values for

the CUSTOMER_NUMBER and PO_NUMBER columns that are already in use by

another row, the insert will fail. Similarly, we cannot update a row in the INVOICE

table if the update would result in the row having a duplicate combination of

CUSTOMER_NUMBER and PO_NUMBER.

Check Constraints
Check constraints are used to enforce business rules that restrict a column to a list or

range of values or to some condition that can be verified using a simple comparison

to a constant, calculation, or a value of another column in the same row. Check con-

straints may not be used to compare column values between different rows, whether

in the same table or not. Check constraints are written as conditional statements that

must always be true. The term comes from the fact that the database must always

“check” the condition to make sure it evaluates to true before allowing an insert or

update to a row in the table.

In our example, we have a check constraint that requires the ORDER_DATE to be

less than or equal to the current date. The expression used for the current date,

SYSDATE, is Oracle syntax; for Microsoft SQL Server and Sybase, we would use

TODAY() instead. This enforces a business rule that forbids putting dates in the fu-

ture on invoices. Keep in mind that the condition is only checked when we insert or

update a row in the INVOICE table, so it will not be applied to existing rows as the

system date changes. Therefore, the business rule could be circumvented by setting

the system clock forward, updating an invoice, and then setting the date back again

(assuming someone had the privileges to do all that). With the constraint in force, if

we attempt to insert or update a row with an INVOICE_DATE set to a future date, the

statement will fail.

Data Types, Precision, and Scale
The data type assigned to the table columns automatically constrains the data to val-

ues that match the data type. For example, anything placed in a column with a date

format must be a valid date. You cannot put nonnumeric characters in numeric col-

umns. However, you can put just about anything in a character column.

For data types that support the specification of the precision (maximum size) and

scale (positions to the right of the decimal point), these specifications also constrain

218 Databases Demystified

P:\010Comp\DeMYST\364-9\ch08.vp
Monday, February 09, 2004 1:05:03 PM

Color profile: Generic CMYK printer profile
Composite Default screen

CHAPTER 8 Physical Database Design 219

Demystified / Databases Demystified / Oppel/ 225364-9 / Chapter 8

the data. You simply cannot put a character string or number larger than the maxi-

mum size for the column into the database. Nor can you specify decimal positions

beyond those allowed for in the scale of a number.

In our example, CUSTOMER_NUMBER must contain only numeric digits and

cannot be larger than 99,999 (five digits) or smaller than –99,999 (again, five digits).

Also, because the scale is 0, it cannot have decimal digits (that is, it must be an inte-

ger). It may seem silly to allow negative values for CUSTOMER_NUMBER, but

there is no SQL data type that restricts a column to only positive integers. However,

if it is easy enough to restrict a column to only positive numbers using a check con-

straint if such a constraint is required.

Triggers
As you may recall, a trigger is a unit of program code that executes automatically

based on some event that takes place in the database, such as inserting, updating, or

deleting data in a particular table. Triggers must be written in a language supported

by the RDBMS. For Oracle, this is either a proprietary extension to SQL called PL/

SQL (Procedural Language/SQL) or Java (available in Oracle8i or later). For Sybase

and Microsoft SQL Server, the supported language is Transact-SQL. Some

RDBMSs have no support for triggers, whereas others support a more general pro-

gramming language such as C. Trigger code must either end normally, which allows

the SQL statement that caused the trigger to fire to end normally, or must raise a data-

base error, which in turn causes the SQL statement that caused the trigger to fire to

fail as well.

Triggers can enforce business rules that cannot be enforced via database con-

straints. Because they are written using a full-fledged programming language, they

can do just about anything that can be done with a database and a program (some

RDBMSs do place some restrictions on triggers). Whether a business rule should be

enforced in normal application code or through the use of a trigger is not always an

easy decision. The application developers typically want control of such things, but

on the other hand, the main benefit of triggers is that they run automatically and can-

not be circumvented (unless the DBA removes or disables them), even if someone

connects directly to the database, bypassing the application.

A common use of triggers in RDBMSs that do not support ON DELETE

CASCADE in referential constraints is to carry out the cascading delete. For exam-

ple, if we want invoice line items to be automatically removed from the INVOICE_

LINE_ITEM table when the corresponding invoice in the INVOICE table is deleted,

we could write a trigger that carries that out. The trigger would be set to fire when a

delete from the INVOICE table takes place. It would then issue a delete for all the

P:\010Comp\DeMYST\364-9\ch08.vp
Monday, February 09, 2004 1:05:03 PM

Color profile: Generic CMYK printer profile
Composite Default screen

child rows related to the parent invoice (those matching the primary key value of the

invoice being deleted) and then end normally, which would permit the original in-

voice delete to complete (because the referencing child rows will be done by this

time, the delete will not violate the referential constraint).

Designing Views
As covered in Chapter 2, views can be thought of as virtual tables. They are, however,

merely stored SQL statements that do not themselves contain any data. Data can be

selected from views just as it can from tables, and with some restrictions, data can be

inserted into, updated in, and deleted from views. Here are the restrictions:

• For views containing joins, any DML (that is, insert, update, or delete)

statement issued against the view must reference only one table.

• Inserts are not possible using views where any required (NOT NULL)

column has been omitted.

• Any update against a view may only reference columns that directly map

to base table columns. Calculated and derived columns may not be updated.

• Appropriate privileges are required (just as with base tables).

• There are various other product specific restrictions to view usage, so the

RDBMSs documentation should always be consulted.

Views can be designed to provide the following advantages:

• In some RDBMSs, views provide a performance advantage over ordinary SQL

statements. Views are precompiled, so the resources required to parse and bind

the statement are saved when views are repeatedly referenced. However, there

is no such advantage with RDBMSs that provide an automatic SQL statement

cache, as Oracle does. Moreover, poorly written SQL can be included in a view,

so putting SQL in a view is not a magic answer to performance issues.

• Views may be tailored to individual department needs, providing only

the rows and columns needed, and perhaps renaming columns using terms

more readily understood by the particular audience.

• Because views hide the real table and column names from their users,

they insulate users from changes to those names in the base tables.

• Data usage can be greatly simplified by hiding complicated joins and

calculations from the database users. For example, views can easily

calculate ages based on birth dates, and they can summarize data in

nearly any way imaginable.

220 Databases Demystified

P:\010Comp\DeMYST\364-9\ch08.vp
Monday, February 09, 2004 1:05:03 PM

Color profile: Generic CMYK printer profile
Composite Default screen

• Security needs can be met by filtering rows and columns that users are

not supposed to see. Some RDBMS products permit column-level security,

where users are granted privileges by column as well as by table, but using

views is far easier to implement and maintain. Moreover, a WHERE clause

in the view can filter rows easily.

Once created, views must be managed like any other database object. If many

members of a database project are creating and updating views, it is very easy to lose

control. Moreover, views can become invalid as maintenance is carried out on the

database, so their status must be reviewed periodically.

Adding Indexes for Performance
Indexes provide a fast and efficient means of finding data rows in tables, much like the

index at the back of a book helps you in quickly finding specific references. Although

the implementation in the database is more complicated than this, it’s easiest to visual-

ize an index as a table with one column containing the key value and another contain-

ing a pointer to where the row with that key value physically resides in the table, in the

form of a row ID or a relative block address (RBA). For nonunique indexes, the second

column contains a list of matching pointers.

Indexes provide faster searches than scanning tables for two reasons. First, index

entries are considerably shorter than typical table rows, so many more index entries

fit per physical file block than the corresponding table rows. Therefore, when the da-

tabase must scan the index sequentially looking for matching rows, it can get a lot

more index entries with a single read to the file on disk than a corresponding read to

the file holding the table. Second, index entries are always maintained in key se-

quence, which is not at all true of tables. The RDBMS software can take advantage

of this by using binary search techniques that remarkably reduce search times and

the resources required for searching.

There are no free lunches, however, and so there is a price—indexes take up space

and must be maintained. Storage space seems less of an issue with every passing day

because storage devices keep getting cheaper. However, they still cost something,

and they require maintenance and must be backed up. Most RDBMS vendors pro-

vide tools to help calculate the storage space required for indexes. These will assist

you in estimating storage requirements. The more important consideration is main-

tenance of the index. Whenever a row is inserted into a table, every index defined on

that table must have a new entry inserted as well. As rows are deleted, index entries

must also be removed. And when columns that have an index defined on them are

updated, the index must be updated as well. It’s easy to forget this point because the

CHAPTER 8 Physical Database Design 221

P:\010Comp\DeMYST\364-9\ch08.vp
Monday, February 09, 2004 1:05:03 PM

Color profile: Generic CMYK printer profile
Composite Default screen

RDBMS does this work automatically, but every index has a detrimental effect on

the performance of inserts, updates, and deletes to table data. In essence, this is a typ-

ical tradeoff, sacrificing a bit of DML statement performance for considerable gains

in SELECT statement performance.

Here are some general guidelines regarding the use of indexes:

• Keep in mind that primary key constraints and unique constraints

automatically create indexes on the key columns.

• Indexes on foreign keys can markedly improve the performance of joins.

• Consider using indexes on columns that are frequently referenced in

WHERE clauses.

• The larger the table, the less you want any database query to have to scan the

entire table (in other words, the more you want every query to use an index).

• The more a table is updated, the fewer the number of indexes you should

have on the table, particularly on the columns that are updated most often.

• For relatively small tables (less than 1,000 rows or so), sequential table scans

are probably more efficient than indexes. Most RDBMSs have optimizers that

decide when an index should be used, and typically they will choose a table

scan over an index until there are at least a few hundred rows in the table.

• For tables with relatively short rows that are most often accessed using the

primary key, consider the use of an index organized table (on RDBMSs that

support such a table), where all the table data is stored in the index. This can

be a highly efficient structure for lookup tables (tables containing little more

than code and description columns).

• Consider the performance consequences carefully before you define more

than two or three indexes on a single table.

Quiz
Choose the correct responses to each of the multiple-choice questions. Note that

there may be more than one correct response to each question.

1. Physical database design:

a. Includes the design of application programs

b. Immediately follows the requirements gathering stage

c. Immediately follows the logical design stage

d. Is done in parallel with the definition of the hardware and system

software required for the application system

e. Can be done without a corresponding logical design

222 Databases Demystified

P:\010Comp\DeMYST\364-9\ch08.vp
Monday, February 09, 2004 1:05:03 PM

Color profile: Generic CMYK printer profile
Composite Default screen

2. When you’re designing tables:

a. Each normalized relation becomes a table.

b. Each attribute in the relation becomes a table column.

c. Relationships become check constraints.

d. Unique identifiers become triggers.

e. Primary key columns must be defined as NOT NULL.

3. Relationships in the logical model:

a. Become check constraints in the physical model

b. Become referential constraints in the physical model

c. Require a NOT NULL constraint in the physical model

d. Become a primary key in the parent table and a foreign key in the

child table

e. Are enforced with triggers in the physical design

4. Super types and subtypes:

a. Must be implemented exactly as specified in the logical design

b. May be collapsed in the physical database design

c. May have the super-type columns folded into each subtype in the

physical design

d. Usually have the same primary key in the physical tables

e. Only apply to the logical design

5. Table names:

a. Should be based on the attribute names in the logical design

b. Should always include the word “table”

c. Should only use uppercase letters

d. Should include organization or location names

e. May contain abbreviations when necessary

6. Column names:

a. Must be unique within the database

b. Should be based on the corresponding attribute names in the

logical design

c. Must be prefixed with the table name

d. Must be unique within the table

e. Should use abbreviations whenever possible

7. Constraint names:

a. Are not important because no one except the DBA ever sees them

b. Should include the name of the table

c. Should include the name of the column

d. Should include the name of the parent table

e. Should include the type of constraint

CHAPTER 8 Physical Database Design 223

P:\010Comp\DeMYST\364-9\ch08.vp
Monday, February 09, 2004 1:05:03 PM

Color profile: Generic CMYK printer profile
Composite Default screen

224 Databases Demystified

Demystified / Databases Demystified / Oppel/ 225364-9 / Chapter 8

8. View names:

a. May be identical to one of the table names

b. Should contain something to denote that the name is for a view

c. Should communicate the purpose of the view

d. Should never contain abbreviations

e. Should contain the name of the corresponding parent table

9. Business rules are implemented in the database using:

a. Unique constraints

b. Primary key constraints

c. Abbreviations

d. Check constraints

e. Referential constraints

10. NOT NULL constraints:

a. Are required on primary key columns

b. Are required on unique identifier columns

c. Are required on foreign key columns

d. Prevent inserts from omitting mandatory columns

e. Allow columns to be set to null values

11. Primary key constraints:

a. Are required on foreign key columns

b. Require columns that have NOT NULL constraints

c. Require columns that have check constraints

d. Require column values to be unique within the table

e. Require column values to be unique within the database

12. Referential constraints:

a. Define relationships identified in the logical model

b. Are always defined on the parent table

c. Require that foreign keys be defined as NOT NULL

d. Should have descriptive names

e. Name the parent and child tables and the foreign key column

13. Unique constraints:

a. Require columns that have NOT NULL constraints

b. Force column values to be unique within the table

c. May only be defined once per table

d. Are identical to primary key constraints

e. Are usually implemented using an index

14. Check constraints:

a. May be used to force a column to match a list of values

b. May be used to force a column to match a range of values

P:\010Comp\DeMYST\364-9\ch08.vp
Monday, February 09, 2004 1:05:03 PM

Color profile: Generic CMYK printer profile
Composite Default screen

c. May be used to force a column to match another column in the same row

d. May be used to force a column to match a column in another table

e. May be used to enforce a foreign key constraint

15. Data types:

a. Prevent incorrect data from being inserted into a table

b. Can be used to prevent alphabetic characters from being stored in

numeric columns

c. Can be used to prevent numeric characters from being stored in

character format columns

d. Require that precision and scale be specified also

e. Can be used to prevent invalid dates from being stored in date columns

16. Precision and scale:

a. Can be used to prevent decimal digits in columns that should contain

only integers

b. Can be used to prevent negative numbers in numeric columns

c. Can be used to prevent numbers that are too large from being stored

in a column

d. Can be used to prevent numbers that are too small from being stored

in a column

e. Apply to all data types

17. View restrictions include

a. Views containing joins can never be updated.

b. Updates to calculated columns in views are prohibited.

c. Privileges are required in order to update data using views.

d. If a view omits a mandatory column, inserts to the view are not possible.

e. Any update involving a view may only reference columns from one table.

18. Some advantages of views are

a. Views may provide performance advantages.

b. Views may insulate database users from table and column name changes.

c. Views may be used to hide joins and complex calculations.

d. Views may filter columns or rows that users should not see.

e. Views may be tailored to the needs of individual departments.

19. Indexes:

a. May be used to assist with primary key constraints

b. May be used to improve query performance

c. May be used to improve insert, update, and delete performance

d. Are usually smaller than the tables they reference

e. Are slower to sequentially scan than corresponding tables

CHAPTER 8 Physical Database Design 225

P:\010Comp\DeMYST\364-9\ch08.vp
Monday, February 09, 2004 1:05:03 PM

Color profile: Generic CMYK printer profile
Composite Default screen

20. General rules to follow regarding indexes include

a. The larger the table, the more important indexes become.

b. Indexing foreign key columns often helps join performance.

c. Columns that are frequently updated should always be indexed.

d. The more a table is updated, the more indexes will help performance.

e. Indexes on very small tables tend not to be very useful.

226 Databases Demystified

P:\010Comp\DeMYST\364-9\ch08.vp
Monday, February 09, 2004 1:05:03 PM

Color profile: Generic CMYK printer profile
Composite Default screen

CHAPTER
9

Connecting
Databases to the

Outside World

In this chapter, we begin with a look at the evolution of database deployment mod-

els, meaning the ways that databases have been connected with the database users

and the other computer systems within the enterprise computing infrastructure (that

is, the internal structure that organizes all the computing resources of an enterprise,

including databases, applications, computer hardware, and the network). We then

explore the methods used to connect databases to applications that use a web

browser as the primary user interface, which is the way many modern application

systems are constructed. Finally, we look at current methods for connecting data-

bases to applications, namely using ODBC connections (for most programming

languages) and various methods for connecting databases to applications written in

Java (the most commonly used object-oriented language).

227

P:\010Comp\DeMYST\364-9\ch09.vp
Monday, February 09, 2004 1:06:26 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Copyright © 2004 by The McGraw-Hill Companies. Click here for terms of use.

Deployment Models
The history of the information technology (IT) industry is a very interesting study

because it clearly proves the old adage that history repeats itself. Nowhere is this

truer than in the ways that we have deployed databases, and computer systems in

general, on enterprise networks. The subsections that follow outline the major de-

ployment models that have been used. Most of these models are still in active use.

Centralized Model
The centralized model, shown in Figure 9-1, was the original method used to con-

nect databases to the enterprise computing infrastructure. Database users were

equipped with what are now called “dumb” terminals, meaning that there was very

little processing power or intelligent programming in the device. The only functions

the terminals had were to present screens of data that came across the network,

move the cursor about the screen, and capture user keystrokes, sending those back

across the network. On the other end of the network was a mainframe or other large

centralized server that housed all the other functions, including the business logic

(in application programs), the database, and any advanced presentation features,

such as composing graphs and charts and selecting colors to display (if color termi-

nals were connected).

Today people often scoff at this seemingly primitive arrangement. Keep in mind,

however, that personal computers had not been invented yet, and when they came on

the scene, some of their first uses were to replace the dumb terminals, thereby giving

228 Databases Demystified

Figure 9-1 The centralized deployment model

P:\010Comp\DeMYST\364-9\ch09.vp
Monday, February 09, 2004 1:06:26 PM

Color profile: Generic CMYK printer profile
Composite Default screen

computer users a desktop device that they could at least use for other purposes, such

as word processing (or perhaps playing those early computer games, which sure beat

working for a living). Programs on the early personal computers called terminal em-

ulators took care of the network connection in such a way that the mainframe still

thought it was connected to the original dumb terminal.

The benefits of the centralized model are as follows:

• Very easy administration. Upgrades and maintenance were straightforward

because all the application logic and the database were centralized.

• Lower development labor costs. Fewer specialists were required because

everything ran on one platform.

• Potentially higher data input productivity. Studies have shown that the fancy

GUI screens that appeared later actually slowed down experienced users who

were performing repetitive tasks. Many an experienced Windows user can

perform some tasks much more quickly using the command prompt (DOS

window) instead of the available GUI tools. Much of this is due to the time

required to move one hand between keys used for typing and the pointing

device (mouse, trackball, and so on). If we all had a third hand, or if we could

somehow use something else to control the pointing device (for example, our

feet or eye movements), perhaps this could be overcome.

Here are the drawbacks:

• The mainframe or centralized server is a single point of failure.

• Graphical displays were quite primitive, limiting the user interface.

• Until the advent of the personal computer, the dumb terminal took

a lot of desktop space for the purpose it served.

Distributed Model
As computer networks became more readily available in the late 1970s and early

1980s, the IT industry became enamored with the concept of distributed databases

and distributed applications. In this case, distributed means the partitioning (divid-

ing up) of the application and/or database into parts and the placement of different

parts on different computing devices, all connected by a network. Done correctly,

the distribution is transparent to the users, meaning that the system hides the distri-

bution details from the users, making everything appear to be from a single source.

Figure 9-2 shows a simple distributed model, using two centralized servers.

Unfortunately, the marketing hype attached to the initial appearance of the dis-

tributed model never played out due to high costs, along with performance and reli-

ability issues. Among other things, network technology was not mature enough to

CHAPTER 9 Connecting Databases to the Outside World 229

P:\010Comp\DeMYST\364-9\ch09.vp
Monday, February 09, 2004 1:06:26 PM

Color profile: Generic CMYK printer profile
Composite Default screen

handle the load. In many ways, the early versions were solutions in need of problems

to solve. Much like the Ford Edsel, the implementation of the new ideas was simply

ahead of its time. This architecture has reappeared since the advent of more advanced

networks, including the Internet, and is now successfully used for backup data cen-

ters, data warehouses, departmental computer systems, and much more. In some ob-

ject-oriented architectures, an agent known as an object request broker manages

objects distributed across a network so applications can access objects without re-

gard to their location. Moreover, the current trends in grid computing can be easily

seen as extensions to the original distributed model. History really does repeat itself.

The benefits of the distributed deployment model are as follows:

• Improved fault tolerance, because any component deployed on more than

one device is no longer a single point of failure

• Potential performance improvement by placing data and application logic

closer to the users that need them (that is, departmental computer systems)

Here are the drawbacks:

• Much more complicated

• Potential performance issues related to synchronizing data updates for

any redundantly stored data

• More expensive than the centralized model

• Lack of guidelines and best practices for how to partition data and

applications across the available computing devices

230 Databases Demystified

Figure 9-2 The distributed deployment model

P:\010Comp\DeMYST\364-9\ch09.vp
Monday, February 09, 2004 1:06:27 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Client/Server Model
The client/server model involves one or more shared computers, called servers, that

are connected by a network to the individual users’workstations, called clients. Cli-

ent/server computing arrived in the 1980s, riding a wave of marketing hype from

hardware and software vendors the likes of which had never before been seen in the

IT industry. The original model used is now called the two-tier client/sever model,

and later evolved into what we call the three-tier client/server model, and finally into

the N-tier client/server model, which is also known as the Internet computing model.

Each of these is discussed in the following subsections.

Two-Tier Client/Server Model
The two-tier client/server model, shown in Figure 9-3, is almost the opposite of the

centralized model in that all the business and presentation logic is placed on the cli-

ent workstation, which typically is a high-powered personal computer system. The

only thing remaining on a centralized server is the database.

The notion was to take advantage of the superior presentation and user interface

capabilities of the modern workstation. However, the marketing hype of the day

promised faster development of better application systems at a lower cost. It didn’t

pan out this way, nor is it ever possible to do so. Among the variables of delivery

time, number of defects, and cost, you can, in fact, only minimize two of the three. If

you think of the three as the legs of a triangle and the area inside the triangle as the

amount of work required to complete the system, it becomes clear that you cannot

shrink all three legs of the triangle and hold the area inside the triangle the same.

CHAPTER 9 Connecting Databases to the Outside World 231

Figure 9-3 The two-tier client/server deployment model

P:\010Comp\DeMYST\364-9\ch09.vp
Monday, February 09, 2004 1:06:27 PM

Color profile: Generic CMYK printer profile
Composite Default screen

However, the vendors were offering a “silver bullet” solution, and business manag-

ers of the day were far too willing to believe them.

The white lie of the day was in cost comparisons between mainframes and central

servers and workstations. The vendors typically showed cost comparisons in dollars per

millions of instructions per second (MIPS). The problem was that a given instruction on

the personal computers of the day did far less than a given instruction on a mainframe or

high-powered server. So it really was comparing apples and oranges. Cynics of the day

defined MIPS as “meaningless indicator of processor speed,” and they were not far

wrong. The other factor that was largely ignored was that personal computers of the day

did not read from and write to their disks at anywhere near the rates achieved by main-

frames and high-powered servers. So although moving all the application programs

(business logic) to the client workstations appeared to be a much less expensive solu-

tion, it was in fact, a false economy.

Nearly every two-tier client/server project finished late and well over budget.

Moreover, there were sobering failures. For example, the California Department of

Motor Vehicles spent $44 million on a vehicle-registration system that ended up be-

ing far slower and less functional than the centralized model system that it was sup-

posed to replace. It was eventually scrapped at a total loss—even the hardware was

so specialized that it could not be used for any other purpose, so it went on the junk

pile. There were some successes, however. For example, Peoplesoft built a two-tier

client/server human resources system that was successfully deployed by many large

enterprises. Today, incidentally, Peoplesoft has migrated to the N-tier client/server

model with no code running on the client workstations aside from a standard web

browser.

The benefits of the two-tier client/server model include the following:

• It greatly improved the user interface compared with systems using dumb

terminals.

• It offered the potential for improved performance because the workstation

processor did all the work and did not have to be shared with anyone else.

Here are the drawbacks:

• Very expensive client workstations were required because all the application

logic ran on the client. Client workstation costs in the $10,000–$20,000 range

were not unusual.

• Administrative nightmares mounted because the application was installed

on every client workstation, and all had to be updated with a new software

release at the same time.

232 Databases Demystified

P:\010Comp\DeMYST\364-9\ch09.vp
Monday, February 09, 2004 1:06:27 PM

Color profile: Generic CMYK printer profile
Composite Default screen

CHAPTER 9 Connecting Databases to the Outside World 233

Demystified / Databases Demystified / Oppel/ 225364-9 / Chapter 9

• Much more complicated (and often more expensive) development resulted

because the database server and the client workstation were almost always

completely different platforms that required a different set of skills.

Three-Tier Client/Server Model
The many failures of the two-tier client/server model led to some serious rethinking.

The result was the three-tier client/server model, which essentially moved the appli-

cation logic from the client workstation back to a centralized server, now dubbed the

application server. Figure 9-4 shows this architecture, which proved very workable.

The benefits of the three-tier client/server model include the following:

• It solved the administrative issues of the two-tier model by centralizing

application logic on the application server.

• It improved scalability because multiple application servers can be added

as needed. (The same can be done with database servers, but that requires

distributed database technology to synchronize any data updates across all

copies of the data.)

Figure 9-4 The three-tier client/server deployment model

P:\010Comp\DeMYST\364-9\ch09.vp
Monday, February 09, 2004 1:06:28 PM

Color profile: Generic CMYK printer profile
Composite Default screen

• It retained the user interface advantages of the two-tier model.

• The client workstations were far less expensive (standard personal

computers could easily do the job).

Here are the drawbacks:

• It was still more complicated compared with the centralized model.

• Custom presentation methods and logic added to expense and limited

portability across client platforms.

The N-Tier Client/Server (Internet Computing) Model
As web browsers became ubiquitous, business computer systems migrated to using

web pages as the primary presentation method. The N-tier client/server model

(which some call the Internet computing model) is shown in Figure 9-5.

234 Databases Demystified

Figure 9-5 The N-tier client/server (Internet computing) deployment model

P:\010Comp\DeMYST\364-9\ch09.vp
Monday, February 09, 2004 1:06:29 PM

Color profile: Generic CMYK printer profile
Composite Default screen

The evolution from three-tier to N-tier involved adding a web server to handle re-

sponding to client requests and the rendering (composing) of web pages, as well as

swapping proprietary display logic on the workstation to a standard web browser.

The interaction between the client and the web server goes something like this:

1. Using the web browser, the client submits a request in the form of a URL

(Uniform Resource Locator).

2. The web server processes the request, renders the requested web page, and

sends it to the client.

3. The user at the client workstation works with the web page, and eventually

submits a new request to the web server, and the cycle repeats.

This architecture has been wildly successful in deployment of modern business

systems. The benefits of the N-tier client/server model are as follows:

• It offers an industry-standard presentation method using web pages.

• The same architecture can be used for internal (intranet) and external

(Internet) applications.

• It retains all the benefits of the two-tier client/server model.

Client workstations can be even be scaled all the way down to so-called network

computing devices that do not even have a disk drive—a “smart” version of the origi-

nal “dumb” terminals, if you will. Is this evolution or history repeating itself?

Here are the drawbacks of the N-tier client/server model:

• Security challenges exist because the Internet and World Wide Web were

not designed with security in mind.

• Potentially necessitates larger development project teams because each

layer requires a specialist.

• Potentially requires more hardware. It is possible to combine some of the

servers onto common devices, but this is seldom a recommended approach

because separation by function improves security.

Connecting Databases to the Web
The “technology stack” required to deploy an application system and corresponding da-

tabase on the Internet is extensive. The basic components are shown in Figure 9-6. For

completeness, we’ll review each component. However, our focus is on the database, so

you may wish to consult other publications for more detail on other components.

CHAPTER 9 Connecting Databases to the Outside World 235

P:\010Comp\DeMYST\364-9\ch09.vp
Monday, February 09, 2004 1:06:29 PM

Color profile: Generic CMYK printer profile
Composite Default screen

236 Databases Demystified

Demystified / Databases Demystified / Oppel/ 225364-9 / Chapter 9

Introduction to the Internet and the Web
The Internet is a worldwide collection of interconnected computer networks. It be-

gan in the late 1960s and early 1970s as the U.S. Department of Defense (DoD)

Figure 9-6 Web-connected databases

P:\010Comp\DeMYST\364-9\ch09.vp
Monday, February 09, 2004 1:06:29 PM

Color profile: Generic CMYK printer profile
Composite Default screen

CHAPTER 9 Connecting Databases to the Outside World 237

Demystified / Databases Demystified / Oppel/ 225364-9 / Chapter 9

ARPANET, intended as a way of connecting DoD facilities with the colleges and

universities that had DoD research grants. TCP/IP (Transmission Control Protocol/

Internet Protocol) was adopted as a standard in 1982. Other protocols include FTP

(File Transfer Protocol), SMTP (Simple Mail Transfer Protocol), Telnet (remote

login protocol), DNS (Domain Name System), and POP (Post Office Protocol).

An intranet is a segment of a network, including a web site or group of web sites,

that is accessible only to members of an organization. An extranet is an intranet that

is accessible to authorized outsiders. Both are typically protected by a firewall,

which is a dedicated gateway that applies security precautions such that only net-

work traffic that meets certain criteria is allowed to pass through.

The World Wide Web is a hypermedia-based system that provides a simple “point

and click” means of browsing information on the Internet using hyperlinks.

Hyperlinks allow users to navigate pages in a nonsequential manner. Clients use a

web browser to present pages. The web server hosts (stores and renders) pages and

responds to client requests. Web pages may be static (always the same) or dynamic

(custom built for a particular request). Dynamic pages are of a special interest in the

database world because they are the vehicles for sending requested data from the da-

tabase to the business user. Typically, a dynamic page has a static portion (title, help

text, data field labels) and a dynamic portion in the form of placeholders where cur-

rent and applicable data content (customer number, customer name) will be placed

when serving a specific request from the client.

A URL (Uniform Resource Locator) is a string of alphanumeric characters that

represents the location or address of a resource on the Internet and how the resource

should be accessed. It ultimately must translate to an IP address, port, and a protocol

(for example, HTTP). The general format of a URL is

<protocol>://<host>[:<port>]/<absolute path> [?arguments]

In most browsers, the protocol is understood to be HTTP if omitted. The host can

be an IP address, but is more commonly a host name (for example,

www.Microsoft.com) that is resolved by looking up the corresponding IP address

for the host using the domain name system (DNS). The port generally defaults to 80

(the standard port for HTTP) if omitted. The absolute path identifies the specific

page (or other resource) requested, and the web server selects a default if it is omit-

ted. Arguments are variables passed to the web server and are considered optional.

HTTP (Hypertext Transfer Protocol) is the protocol used to transfer web pages

through the Internet. It uses a request-based paradigm that is “stateless,” meaning

that each request is treated as an independent transaction. Statelessness makes it dif-

ficult to support the concept of a session, which is essential to basic DBMS transac-

tions. Typically, data must be hidden in the web page or in arguments in the URL for

the page to assist the web and application servers in distinguishing between pages

from one user session versus another.

P:\010Comp\DeMYST\364-9\ch09.vp
Monday, February 09, 2004 1:06:30 PM

Color profile: Generic CMYK printer profile
Composite Default screen

HTML (Hypertext Markup Language) is the document formatting language used

to design most web pages. The HTML system for marking up or tagging a document

for publication on the Web was derived from the Standardized General Markup Lan-

guage (SGML), a 1986 ISO standard.

XML (Extensible Markup Language) is an extended version of HTML that not

only supports all the standard HTML tabs, but also allows developers to create their

own tags. Some refer to it as “HTML on steroids.” Among the features of XML is the

ability to define an XML schema, which allows data to be stored in a hierarchical

tree of XML tags within the XML document. Various RDBMS vendors now directly

support XML as a data type, and there are also several proprietary XML databases

on the market. However, businesses have been reluctant to abandon relational data-

bases and undergo a major paradigm shift in the way they organize and store data.

So, thus far, XML is most widely used for exchanging data between organizations in

industry-standard XML formats. There are standards committees working on stan-

dard XML vocabularies (that is, data tags, schema structures, and conventions for

using them) for specific data areas, such as HR-XML Consortium, Inc., which

works solely on human resources (HR) data.

Components of the Web “Technology Stack”
Here’s a list of the components shown in Figure 9-6 and what they do:

• The client workstation runs a web browser and communicates on the

Internet using HTTP over TCP/IP.

• The web site sits behind a router, which forwards packets between

networks, and a firewall. The router makes decisions on which packets

are transferred between the Internet and the subnetwork on which the

web server resides. Although some routers do rudimentary filtering, the

additional firewall protection is considered the best way to protect the

web server from intruders.

• The web server is responsible for hosting and rendering web pages.

• URLs handled by the web server may cause transactions to be run on the

application server. There is more on this in the next topic. The application

server typically resides between a pair of firewalls to isolate it from both

the web server and the intranet, where the database server typically resides.

This area is commonly called the “DMZ,” a term borrowed from buffer

zones between two countries in dispute.

• The application server submits SQL (or similar language) requests to the

database server when data from the database is required.

238 Databases Demystified

P:\010Comp\DeMYST\364-9\ch09.vp
Monday, February 09, 2004 1:06:30 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Invoking Transactions from Web Pages
There are several ways in which information in a web request received by the web

server can invoke a transaction on the application server. These methods are detailed

in the following subsections.

CGI (Common Gateway Interface)
CGI (Common Gateway Interface) is a specification for transferring information be-

tween a web server and a CGI program. The CGI script (sometimes called a CGI

program) runs on either the web server or application server. CGI defines how

scripts communicate with web servers. The URL points to the CGI script, and the

server launches it. The actual script can be written in a variety of languages, such as

Perl and Visual Basic. In essence, instead of the URL in the incoming request point-

ing directly to an HTML document, it points to a script. This script is run, and the

output from the script is an HTML document that is then returned to the client in re-

sponse to the request.

The advantages of CGI include the following:

• Simplicity

• Language and web server independence

• Wide acceptance

Here are the disadvantages:

• The web server is always between the client and the database.

• No transaction support (stateless).

• Not intended for long exchanges.

• Each CGI execution spawns a new process (or thread), which presents

resource issues.

• CGI is not inherently secure.

Server-Side Includes
Server-Side Includes (SSI) has commands embedded in the document that cause the

web server to execute a program (as with CGI) and incorporate the output into the doc-

ument. Essentially, SSI is in an HTML macro. The URL in the request points to an

HTML document, but the web server parses the document and handles any SSI com-

mands before returning the document to the requesting client. SSI solves some of the

CGI performance issues, but it offers few other advantages or disadvantages.

CHAPTER 9 Connecting Databases to the Outside World 239

P:\010Comp\DeMYST\364-9\ch09.vp
Monday, February 09, 2004 1:06:30 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Non-CGI Gateways
Non-CGI gateways work like CGI gateways, except that each is a proprietary exten-

sion to a specific vendor’s web server. The two most popular choices during the “dot-

com” era were the Netscape Server API and Active Server Pages (ASP), part of the

Microsoft Internet Information Server (IIS) API. The Netscape Server API was sub-

sequently acquired by Sun Microsystems and incorporated into their product line.

The advantages of non-CGI gateways include the following:

• Improved performance over CGI.

• Additional features and functions.

• They run in the server address space instead of as new processes or threads.

Here are the disadvantages:

• Proprietary solution that is not portable to another vendor’s web server

• Potential instability

• Much more complex compared with CGI

Connecting Databases to Applications
Now that you have seen how the web layer interacts with the application server layer,

you need to understand how applications on the application server connect to and in-

teract with the database. Most connections between the application server and re-

mote databases (that is, those running on another server) use a standard API.

An API (application programming interface) is a set of calling conventions by

which an application program accesses services. Such services can be provided by the

operating system or by other software products such as the DBMS. The API provides

a level of abstraction that allows the application to be portable across various operating

systems and vendors.

Connecting Databases via ODBC
ODBC (Open Database Connectivity) is a standard API for connecting application

programs to DBMSs. ODBC is based on a Call Level Interface (CLI, a convention that

defines the way calls to services are made), which was first defined by the SQL Access

Group and released in September 1992. Although Microsoft was the first company to

release a commercial product based on ODBC, it is not a Microsoft standard, and in

fact there are now versions available for Unix, Macintosh, and other platforms.

240 Databases Demystified

P:\010Comp\DeMYST\364-9\ch09.vp
Monday, February 09, 2004 1:06:30 PM

Color profile: Generic CMYK printer profile
Composite Default screen

ODBC is independent of any particular language, operating system, or database

system. An application written to the ODBC API can be ported to another database or

operating system merely by changing the ODBC driver. It is the ODBC driver that

binds the API to the particular database and platform, and a definition known as the

ODBC data source contains the information necessary for a particular application to

connect with a database service. On Windows systems, the most popular ODBC driv-

ers are shipped with the operating system, as is a utility program to define ODBC data

sources (found on the Control Panel or Administrative Tools Panel, depending on the

version of Windows).

Most commercial software products and most commercial databases support

ODBC, which makes it far easier for software vendors to market and support prod-

ucts across a wide variety of database systems. One notable exception is applications

written in Java. They use a different API known as JDBC, which is covered in the

next section.

A common dilemma is that relational database vendors do not handle advanced

functions in the same way. This problem can be circumvented using an escape clause

that tells the ODBC driver to pass the proprietary SQL statements through the

ODBC API untouched. The downside of this approach, of course, is that applica-

tions written this way are not portable to a different vendor’s database (and some-

times not even to a different version of the same vendor’s database).

Connecting Databases to Java Applications
Java started as a proprietary programming language (originally named Oak) that was

developed by Sun Microsystems. It rapidly became the de facto standard program-

ming language for web computing, at least in non-Microsoft environments. Java is a

type-safe, object-oriented programming language that can be used to build client com-

ponents (applets) as well as server components (servlets). It has a machine-independ-

ent architecture, making it highly portable across hardware and operating system

platforms.

You may also run across the terms JavaScript and JScript. These are scripting lan-

guages with a Java-like syntax that are intended to perform simple functions on client

systems, such as editing dates. They are not full-fledged implementations of Java and

are not designed to handle database interactions, but they can perform the same func-

tion as a CGI script if desired.

JDBC (Java Database Connectivity)
JDBC (Java Database Connectivity) is an API, modeled after ODBC, for connecting

Java applications to a wide variety of relational DBMS products. Some JDBC drivers

CHAPTER 9 Connecting Databases to the Outside World 241

P:\010Comp\DeMYST\364-9\ch09.vp
Monday, February 09, 2004 1:06:30 PM

Color profile: Generic CMYK printer profile
Composite Default screen

translate the JDBC API to corresponding ODBC calls, and thus connect to the data-

base via an ODBC data source. Other drivers translate directly to the proprietary client

API of the particular relational database, such as the Oracle Call Interface (OCI). As

with ODBC, an escape clause is available for passing proprietary SQL statements

through the interface. The JDBC API offers the following features:

• Embedded SQL for Java The Java programmer codes SQL statements

as string variables, the strings are passed to Java methods, and an embedded

SQL processor translates the Java SQL to JDBC calls.

• Direct mapping of RDBMS tables to Java classes The results of

SQL calls are automatically mapped to variables in Java classes. The Java

programmer may then operate on the returned data as native Java objects.

JSQL (Java SQL)
JSQL (Java SQL) is a method of embedding SQL statements in Java without having

to do special coding to put the statements into Java strings. It is an extension of the

ISO/ANSI standard for SQL embedded in other host languages, such as C. A special

program called a precompiler is run on the source program that automatically trans-

lates the SQL statements written by the Java programmer into pure Java. This

method can save a considerable amount of development effort.

Middleware Solutions
Middleware can be thought of as software that mediates the differences between an ap-

plication program and the services available on a network, or between two disparate ap-

plication programs. In the case of Java database connections, middleware products such

as JRB (Java Relational Binding) from O2 Technology can make the RDBMS look as if

it is an object-oriented database running on a remote server. The Java programmer then

accesses the database using standard Java methods, and the middleware product takes

care of the translation between objects and relational database components.

Quiz
Choose the correct responses to each of the multiple-choice questions. Note that

there may be more than one correct response to each question.

1. In the centralized deployment model:

a. A web server hosts all web pages.

242 Databases Demystified

P:\010Comp\DeMYST\364-9\ch09.vp
Monday, February 09, 2004 1:06:30 PM

Color profile: Generic CMYK printer profile
Composite Default screen

b. A “dumb” terminal is used as the client workstation.

c. Administration is quite easy because everything is centralized.

d. There are no single points of failure.

e. Develop costs are often very high.

2. In the distributed deployment model:

a. The database and/or application is partitioned and deployed on multiple

computer systems.

b. Initial deployments were highly successful.

c. Distribution can be transparent to the user.

d. Costs and complexity are reduced compared with the centralized model.

e. Fault tolerance is improved compared with the centralized model.

3. In the two-tier client/server model:

a. All application logic runs on an application server.

b. A web server hosts the web pages.

c. The client workstation handles all presentation logic.

d. The database is hosted on a centralized server.

e. Client workstations must be high-powered systems.

4. In the three-tier client/server model:

a. All application logic runs on an application server.

b. A web server hosts the web pages.

c. The client workstation handles all presentation logic.

d. The database is hosted on a centralized server.

e. Client workstations must be high-powered systems.

5. In the N-tier client/server model:

a. All application logic runs on an application server.

b. A web server hosts the web pages.

c. The client workstation handles all presentation logic.

d. The database is hosted on a centralized server.

e. Client workstations must be high-powered systems.

6. The Internet:

a. Began as the U.S. Department of Education’s ARPANET

b. Dates back to the late 1960s and early 1970s

c. Always used TCP/IP as a standard

d. Is a worldwide collection of interconnected computer networks

e. Supports multiple protocols, including HTTP, FTP and Telnet

7. An intranet is

a. Available to anyone on the Internet

b. Available to authorized (internal) members of an organization

CHAPTER 9 Connecting Databases to the Outside World 243

P:\010Comp\DeMYST\364-9\ch09.vp
Monday, February 09, 2004 1:06:30 PM

Color profile: Generic CMYK printer profile
Composite Default screen

244 Databases Demystified

Demystified / Databases Demystified / Oppel/ 225364-9 / Chapter 9

c. Available to authorized outsiders

d. Protected by a firewall

e. Typically connected to the Internet

8. An extranet is

a. Available to anyone on the Internet

b. Available to authorized (internal) members of an organization

c. Available to authorized outsiders

d. Protected by a firewall

e. Typically connected to the Internet

9. The World Wide Web:

a. Uses a web browser to present pages

b. Supports only static web pages

c. Uses hyperlinks to navigate pages

d. Uses the Telnet protocol

e. Is a hypermedia-based system

10. A URL may contain

a. A protocol

b. A host name or IP address

c. A port

d. The absolute path to a resource on the web server

e. Arguments

11. HTTP is

a. The Hypertext Transmission Protocol

b. A stateless protocol

c. A document formatting language

d. A protocol used to transfer web pages

e. Used for remote database connections

12. XML is

a. HTML on steroids

b. A document formatting language

c. A protocol used to transfer web pages

d. Used for remote database connections

e. Extensible because custom tags may be defined

13. The web “technology stack” includes

a. A client workstation running a web browser

b. A web server

c. An application server

P:\010Comp\DeMYST\364-9\ch09.vp
Monday, February 09, 2004 1:06:30 PM

Color profile: Generic CMYK printer profile
Composite Default screen

d. A database server

e. Network hardware (firewalls, routers, and so on)

14. The advantages of CGI are

a. Statelessness

b. Simplicity

c. Inherently secure

d. Widely accepted

e. Language and server independent

15. Server-Side Includes (SSI):

a. Are commands embedded in a web document

b. Are non-CGI gateways

c. Are HTML macros

d. Solve some of the CGI performance issues

e. Are inherently secure

16. The advantages of a non-CGI gateway are

a. Known for stability

b. Proprietary solution

c. Improved security over CGI solutions

d. Simpler than CGI

e. Runs in server address space

17. ODBC is

a. A standard API for connecting to DBMSs

b. Independent of any particular language, operating system, or DBMS

c. A Microsoft standard

d. Used by Java programs

e. Flexible in handling proprietary SQL

18. JDBC is

a. A standard API for connecting to DBMSs

b. Independent of any particular language, operating system, or DBMS

c. A Microsoft standard

d. Used by Java programs

e. Flexible in handling proprietary SQL

19. JSQL is

a. A Sun Microsystems standard

b. A method of embedding SQL statements in Java

c. An extension of an ISO/ANSI standard

d. A middleware solution

e. Independent of any particular language, operating system, or DBMS

CHAPTER 9 Connecting Databases to the Outside World 245

P:\010Comp\DeMYST\364-9\ch09.vp
Monday, February 09, 2004 1:06:30 PM

Color profile: Generic CMYK printer profile
Composite Default screen

20. Middleware solutions for Java connections:

a. Use standard Java methods for access to an RDBMS

b. Make the RDBMS look like an object-oriented database

c. Provide a method for embedding SQL statements in Java

d. Are independent of any particular language, operating system, or DBMS

e. Usually run on a remote server

246 Databases Demystified

P:\010Comp\DeMYST\364-9\ch09.vp
Monday, February 09, 2004 1:06:30 PM

Color profile: Generic CMYK printer profile
Composite Default screen

247

Demystified / Databases Demystified / Oppel/ 225364-9 / Chapter 10

10

Database Security

Security has become an essential consideration in modern systems. Nothing can be

more embarrassing to an organization than a media story regarding sensitive data or

trade secrets that were electronically stolen from their computer systems. In this

chapter we will discuss the need for security, the security considerations for deploy-

ing database servers and clients that access those servers, and methods for imple-

menting database access security. We’ll conclude with a discussion of security

monitoring and auditing.

Why Is Security Necessary?
Murphy’s Law states that anything that can go wrong will go wrong. Seasoned IT se-

curity professionals will tell you that Murphy was an optimist. Servers placed on the

Internet with default configurations and passwords have been compromised within

minutes. Default database passwords and common security vulnerabilities are

widely known. In early 2003, the Slammer worm infected tens of thousands of

P:\010Comp\DeMYST\364-9\ch10.vp
Monday, February 09, 2004 1:17:17 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Copyright © 2004 by The McGraw-Hill Companies. Click here for terms of use.

Microsoft SQL Server databases that had been set up with a default SA (System

Administrator) account that had no password. Oddly, the worst damage done by this

worm was in loss of service when infected computers sent out hundreds of thou-

sands of packets on the network in search of other computers on the network to in-

fect. If you think this cannot happen to you, think again. Here are some reasons why

security must be designed into your computer systems:

• Databases connected to the Internet, or any other network, are vulnerable to

hackers and other criminals who are determined to damage or steal the data.

These include the following:

• Spies from competitors who are after your secrets.

• Hackers interested in a sense of notoriety from penetrating your systems.

• Individuals interested in whatever they can obtain that has economic value.

• Disgruntled employees. It seems odd that we never hear of gruntled

employees (gruntle means “to make happy”), but only of disgruntled ones.

• Zealots interested in making a political statement at the expense of your

organization.

• The emotionally unbalanced, and just plain evil people.

• Fraud attempts. Any bank auditor will tell you that 80 percent of fraud is

committed by employees. So, don’t assume your system is immune just

because the database is not accessible from the Internet.

• Honest mistakes by authorized users can cause security exposures, loss of

data, and processing errors.

• Security controls keep people honest in the same way that locks on homes

and offices do.

Every organization should have a publication that prescribes the security policies

and procedures that must be followed. In particular, the publication should define

the specific rules, who is responsible for enforcing them, and what procedures

should be followed when requesting exceptions to policy or when reporting and re-

sponding to expected security breaches. Each potential exposure must be analyzed

and controls put in place that make practical sense and that are the most likely to be

effective. It must be understood that security precautions can never completely pre-

vent the most determined adversary from breaching a system. The only way to com-

pletely guarantee that a system cannot ever be penetrated is to power it down and

leave it that way. However, the right precautions can slow down even the most deter-

mined and talented adversary enough to allow for detection and intervention. Above

all, the use of layers of security at all system levels best protects valuable data re-

sources. We explore these layers in the sections that follow.

248 Databases Demystified

P:\010Comp\DeMYST\364-9\ch10.vp
Monday, February 09, 2004 1:17:17 PM

Color profile: Generic CMYK printer profile
Composite Default screen

CHAPTER 10 Database Security 249

Demystified / Databases Demystified / Oppel/ 225364-9 / Chapter 10

Database Server Security
This section focuses on the security considerations for the database server. When

you’re considering security, it is best to start at one end of the network or the other

(that is, at either the database user’s client workstation or at the database server) and

work systematically through all the components in the path. This is the only way you

can be sure you don’t miss something. In this case, we’ll start with the database

server and work out from there.

Physical Security
Physically securing the server is an essential ingredient. It should be in a locked

room where only authorized personnel have access. Nothing is more embarrassing

than having a database server or the disk drives that store the database information

stolen or vandalized. Once a thief has made off with the hardware, they have all the

time in the world and all the secrecy they need to hack away at the system until they

are finally able to access the data. Moreover, systems are easier to compromise using

the server console than remotely; therefore, “hands-on” access to servers must be

tightly controlled. Depending on the sensitivity of the data in the database, the fol-

lowing additional measures might be needed:

• Video surveillance system.

• “Token” security devices, where administrators must possess the device in

order to gain access. These range from cards or keys that must be inserted

into the server in order to gain access, to crypto devices where a pin must

be entered in order to obtain a password. Some of these devices are

synchronized with satellites and change the encryption key used for

generating passwords every minute or so.

• Biometric devices, where administrators must pass a fingerprint or retinal

scan in order to obtain access.

• Policy provisions that always require at least two employees in the room

whenever anyone is directly working on the server.

• Policy provisions regarding removal of hardware and software from the

workplace. This author once worked at a financial institution where

employees were searched whenever they left the premises. The removal

of any hardware or materials, such as computer listings, microfilmed

documents, or media such as tapes and disks was strictly prohibited.

However, there was a laughable loophole. One could put anything in

P:\010Comp\DeMYST\364-9\ch10.vp
Monday, February 09, 2004 1:17:17 PM

Color profile: Generic CMYK printer profile
Composite Default screen

an envelope addressed to their home (or anywhere else) and drop it in the

outbound mail bins. Not only would the envelope go out without inspection,

the firm would even pay the postage, no questions asked. Before you get the

wrong idea, the only time we saw this technique used was to send computer

games offsite, but the security exposure was enormous.

Network Security
It should be obvious that physical security is not enough when the database server is

accessible via a network. Intruders who manage to obtain a network connection to

the server can work from outside the server room or, for servers connected to the

Internet, from anywhere in the world. Moreover, because clients or other servers

(such as the application server) are able to connect to the database server, we must take

a holistic approach to network security and not only ensure that the network is secure

but also that every computer system attached to that network is equally secure.

Complete details in how to secure a network are well outside the scope of this

book. However, the sections that follow comprise a summary of the network secu-

rity issues that must be considered. Note that the term enterprise network is used to

mean the private network that connects the computing resources for the business

enterprise.

Isolate the Enterprise Network from the Internet
If the enterprise network is connected to the Internet, it must be isolated so that hack-

ers on the Internet cannot see the internals of the enterprise network or easily gain

access to it. Measures to consider include the following:

• The router that connects the enterprise network to the Internet must be properly

configured. Recall that a router is a device that forwards data packets between

networks using rules contained in a routing table. A packet is merely a piece

of a message that is transmitted over a network. Network devices divide

messages into uniformly sized packets for efficient handling. The router

must be configured so that only appropriate packets of data are routed from

the Internet to the local network. Some routers can do limited filtering of

packets, but typically they do not look at the contents of data packets beyond

the destination IP address, contained in the packet header, making decisions

on the best way to route the packet based on the destination address and the

routing table.

• Each layer in the enterprise network should be protected by a firewall, with

the security rules applied by the firewall getting progressively tighter with

250 Databases Demystified

P:\010Comp\DeMYST\364-9\ch10.vp
Monday, February 09, 2004 1:17:17 PM

Color profile: Generic CMYK printer profile
Composite Default screen

each layer. In Chapter 9, Figure 9-6 shows this arrangement. A firewall

can be implemented using software on a general-purpose computer or on a

specialized hardware device that comes with its own operating system and

filtering software. The purpose of the firewall is to prevent unauthorized

access to the network segment that it protects (that is, computer resources

connected to the part of the network that is inside the firewall). All data

packets passing from the network outside the firewall to the network

segment (often called a subnet) inside the firewall must pass the security

criteria imposed by the firewall or they are simply rejected. Here are

some of the methods the firewall may use:

• Packet filtering The contents of each packet entering or leaving the

network are inspected to make sure user-defined rules are met. Although

packet filtering is effective, it is subject to IP spoofing, where a hacker

masquerades as a legitimate user by planting a legitimate IP address

that is acceptable to the firewall in an otherwise illegitimate message.

To prevent your network from being used to launch so-called zombie

attacks, your firewall should always be configured to reject outbound

packets that have a return IP address that is not a legitimate address for

the enterprise network. A zombie attack occurs when an intruder plants

a rogue program on one of your servers, which at an appointed time,

wakes up and starts sending hundreds or thousands of packets per

minute at a target system, typically the web browser of an enterprise

that the attacker has some grudge against, in an attempt to clog their

system, rendering it useless. This type of attack (that is, flooding the

target with useless packets) is called a denial of service attack.

• Application gateway Different network applications (HTTP, FTP,

Telnet, and so on) use different default ports. For example, HTTP uses

port 80 as a default. Ports that are not needed should be shut down.

Always configure firewalls to open only the ports that are absolutely

required for your normal business.

• Circuit-level gateway For efficiency, this feature applies security

mechanisms when a connection is established; then, after the connection

is established, it allows packets to flow freely for that established

connection. A firewall should normally be configured so that connections

can only be established from inside the firewall—attempts made from

outside the firewall to establish connections with resources inside the

firewall should be rejected.

• Proxy server Firewalls can translate all the IP addresses used in the

protected network into different addresses as packets pass through,

typically assigning each a different port so that any responses to those

CHAPTER 10 Database Security 251

P:\010Comp\DeMYST\364-9\ch10.vp
Monday, February 09, 2004 1:17:17 PM

Color profile: Generic CMYK printer profile
Composite Default screen

252 Databases Demystified

Demystified / Databases Demystified / Oppel/ 225364-9 / Chapter 10

packets can be sorted out and passed back to the originator. This feature,

known as network address translation (NAT), hides the internal network

from the outside world.

• Employees working from home present a special risk. If they are connected

to a broadband Internet service such as DSL or cable, they essentially reside

on a local area network (LAN) with many other uses of that particular service.

Therefore, if these employees merely plug their personal computers directly

into the DSL or cable modem without other precautions, any shared devices

they may have (disk drives, printers, and so forth) are now automatically

shared by all their neighbors on the same LAN. All the intruder has to know

is how to click Network Neighborhood and then Entire Network, and all

the unprotected systems on the LAN will be there ripe for picking. Two

precautions can circumvent the problem:

• A security device, typically a combination router/hub/firewall, should be

placed between the DSL or cable modem and any computers used in the

home. A side benefit here is that the user can hook multiple computers

to the high-speed service while only paying for one IP address with their

ISP (some ISPs forbid this practice). The device automatically “NATs”

any IP address inside the home network to the single IP address

assigned by the ISP for the broadband connection, using different ports

to differentiate between different connections. This author has such a

device on his home Internet cable service and has seen first hand attempts

by hackers to scan ports and to ping resources inside the home network.

A port scan is a technique commonly used to by hackers where they

launch a special program that tries every conceivable port on an IP

address, recording which ones are active so they can try to use the active

ports to break into the target system. Intrusion attempts happen with

alarming frequency, sometimes several times in a single hour. If you

install an unprotected home network, your network will likely be

penetrated within hours of it being activated. Note that Microsoft

Windows XP comes with a built-in configurable software firewall.

However, most security experts prefer an external firewall on a

dedicated hardware device because it offers better protection.

• A secure network technique known as a virtual private network (VPN)

can be used when connecting from the Internet to the enterprise network.

This approach encrypts all data packets and applies other measures to

make sure that the packets are useless to any unauthorized party that

intercepts them, and that they cannot be altered and retransmitted by

hackers. Usually, this technique is implemented using special software

from a commercial software vendor in concert with a small device that the

remote user employs to generate a unique password each time they connect

P:\010Comp\DeMYST\364-9\ch10.vp
Monday, February 09, 2004 1:17:18 PM

Color profile: Generic CMYK printer profile
Composite Default screen

remotely to the enterprise network. Without the device in their possession

(and typically a PIN that goes with the device), the would-be hacker has

no chance of penetrating the enterprise network using the VPN.

Secure Any Wireless Network Access
Wireless access points are network devices that receive radio signals from computer

devices equipped with wireless network adapters, connecting them to the wired net-

work in the office. Most wireless networks adhere to a version of the network stan-

dard protocol known as 802.11. Wireless access points have become inexpensive

(less than $100) and therefore prolific because people like to be able to freely move

around their home or office without having to drag a network cable with them. How-

ever, wireless access points require special attention because an intruder can access

your network from outside your premises without going through the routers and fire-

walls that you have carefully set up to prevent such an intrusion. Horror stories

abound in IT trade publications about an unknowing user bringing an unauthorized

wireless access point into an office, plugging it into the nearest network jack, and

giving everyone within 75 to 150 feet open access to the network. These devices, by

default, have absolutely no encryption or other access controls enabled, thus provid-

ing access to anyone with a wireless-capable computer in a neighboring office, out

in the parking lot, or even in a building across the street. Worst of all is that once the

intruder connects, they are on the intranet, completely inside all the firewalls and

other controls you so carefully implemented to protect your network from intruders.

If you think this cannot happen to you, here are just a few real-life examples:

• On a recent trip to a medical office, this author’s laptop, which is equipped

with an 802.11g wireless network adapter, automatically connected to a

wireless network in an adjoining doctor’s office from the waiting room. I

didn’t look to see what I might have been able to get to in terms of computers,

shared disks, files, and the like, but the office staff in the office was totally

unaware that anyone could connect to their wireless network. They didn’t

understand that walls don’t stop wireless networks. Incidentally, a quick

look at the wireless adapter’s site survey showed two other vulnerable networks

accessible from the same waiting room. One of those even had the default

network name that comes with the wireless access point, so one can easily

guess that the password to the router would also be the factory default. An

intruder could reconfigure their entire network before they knew what

happened.

• On a recent drive down Market Street in San Francisco, the wireless adapter

in the same laptop detected an average of three wireless networks in every

CHAPTER 10 Database Security 253

P:\010Comp\DeMYST\364-9\ch10.vp
Monday, February 09, 2004 1:17:18 PM

Color profile: Generic CMYK printer profile
Composite Default screen

block, a surprising number of them wide open to anyone who would want

to connect.

• An IT manager reported to this author that after they discovered their

company’s network had been intruded from an unauthorized wireless access

point, they went hunting for it, failing to find it in several attempts. Finally,

they brought in a consultant who had a device to track down the rogue

signal. (Believe it or not, a potato chip tube covered with aluminum foil

makes an excellent directional antenna for “sniffing out” wireless access

points.) They found it hidden in the suspended ceiling of a conference

room. The person who installed it knew it was against the rules, but just

didn’t want to bother to cable-connect their laptop to a nearby outlet. Needless

to say, that person lost their job, but who knows what the intruders got

before the unauthorized access point was shut down.

In terms of wireless access points, here are some recommendations:

• Policy Your organization’s security policy should address wireless

connections, forbidding anyone other than trained network administrators

from installing them, and setting standards for their proper installation.

• Mandatory encryption Standards should mandate that encryption be

enabled on every wireless access point. All the access points on the market

have encryption capability built into them, and it only takes a few minutes

to enable the feature and to input a pass phrase that any device trying to

connect must supply in order to gain access to the network.

• MAC address list Every network device currently manufactured has

a unique MAC (Media Access Control) address assigned to it by the

manufacturer. Most wireless access points permit the entry of a MAC

address list that restricts network access to only the devices that appear

in the list. Alternatively, the MAC address list can list devices that are

not allowed to connect.

The configuration of the wireless access point is typically done using a web page

accessible from any computer on the network—all you need to know is the IP ad-

dress of the wireless access point and its administrative password. For a home net-

work, it really only takes a few minutes to get the MAC addresses from your wireless

network adapters, input them into the MAC address list on the wireless access point,

and then to activate encryption (typically using WEP, or Wireless Encryption Proto-

col) by entering a pass phrase. The pass phrase must then be entered into each device

that will connect to the access point. While you are in there, don’t forget to change

the administrative password on the wireless access point—the bad guys know the

default passwords for all the popular devices.

254 Databases Demystified

P:\010Comp\DeMYST\364-9\ch10.vp
Monday, February 09, 2004 1:17:18 PM

Color profile: Generic CMYK printer profile
Composite Default screen

System-Level Security
Once the network is as secure as we can make it, the next area of focus is the system

that will run the DBMS. A poorly secured database server can provide many un-

checked paths for intruders to use. Here are some measures worth considering:

• Installing minimal operating system software Particularly on a

production server, install only the minimal software components to get

the job done. Avoid default or “typical” installation options and use the

“custom” installation option to choose only the components needed. For

example, on production Unix servers, you should be in the habit of

removing the “make” utility and C language compilers after you complete

an installation. Hackers have a very difficult time installing things when the

tools needed to perform software installations do not exist on the server.

• Using minimal operating system services Shut down or remove operating

system services that are not required. In particular, communications services

such as FTP (File Transfer Protocol) should not be running unless they are

expressly required. On Windows systems, it’s a good idea to set Startup Type

to “Disabled” for services that are not required. This makes it impossible to

start these service unless you have Administrator privileges.

• Installing minimal DBMS software The fewer the features of the DBMS

that you have installed, the less exposure you’ll have to problems such as

buffer overflow vulnerabilities. The DBA should work with the application

developers to develop a consolidated list of the DBMS functions needed.

Once you have the list, use the custom installation option for the DBMS

and perform only minimal installations.

• Applying security patches in a timely manner Establish a program wherein

security alerts are reviewed as they are announced and countermeasures,

including patches and workarounds, are applied in a timely manner. Patches

should be shaken down in a development environment for a finite period of

time before application to a production environment.

• Changing all default passwords These should be changed to new ones

that are difficult to guess or discover via brute force, a method that

repeatedly tries possibilities until access is finally achieved.

Database Client and Application Security
A database client is any computer system that signs on directly to the database

server. Therefore, the application server is nearly always a database client, along

CHAPTER 10 Database Security 255

P:\010Comp\DeMYST\364-9\ch10.vp
Monday, February 09, 2004 1:17:18 PM

Color profile: Generic CMYK printer profile
Composite Default screen

with the client workstation of any person in the organization who has sign-on privi-

leges with the database. Typically, the DBMS requires installation of client software

on these systems to facilitate communication between the database client and the

DBMS using any specialized communications mechanisms required by the DBMS.

Login Credentials
Every database user who connects to the database must supply appropriate creden-

tials to establish the connection. Typically, this is in the form of a user ID (or login

ID) and a password. Care must be taken to establish credentials that are not easily

compromised. Here are some considerations:

• Credentials must not be shared by multiple database users.

• Passwords should be selected that are not easy to guess. A security policy

should establish minimum standards for password security, including

minimum length, the mixture of upper/lowercase letters, numbers and

special characters required, avoiding words that can be found in a

dictionary, and the like.

• Passwords should be changed on a regular basis, such as every 30 or 45 days.

• Any exposed password should be immediately changed.

• Passwords should never be written down and must be encrypted whenever

they are electronically stored.

Data Encryption
Encryption is the translation of data into a secret code that cannot be read with the

use of a password or secret key. Unencrypted data is called plain text, whereas

encrypted data is called cipher text.

Some encryption schemes use a symmetric key, which means that a single key is

used to both encrypt plain text and to decrypt cipher text. This form is considered

less secure compared with the use of asymmetric keys, where a pair of keys is used—

one called the public key and the other the private key. What the public key encrypts,

the private key can decrypt, and vice versa. The names come from the expected use

of the keys—the public key is given to anyone with whom an enterprise does busi-

ness, and the private key remains confidential and internal to the enterprise.

Here are some guidelines to follow regarding encryption:

• Encryption keys should be a minimum of 128 bits in length. The longer the

key, the more secure it is considered to be.

256 Databases Demystified

P:\010Comp\DeMYST\364-9\ch10.vp
Monday, February 09, 2004 1:17:18 PM

Color profile: Generic CMYK printer profile
Composite Default screen

• The loss of an encryption key should be treated with the same seriousness

as the loss of the data that it was used to encrypt.

• Sensitive data should be encrypted whenever permanently stored. Which

data is considered sensitive is a judgment call that should be made by the

business people who own the data, not by the DBA. In general, however,

any personal data (such as social security numbers) that can be used for

identity theft should be considered sensitive.

• All data not considered public knowledge should be encrypted whenever

transported electronically across network connections that are not otherwise

encrypted. For example, if a company sends a purchase order file to a trading

partner via FTP, the file should be encrypted. There is no guarantee that the

bad guys are not monitoring public networks.

• E-mail is not considered secure, so any sensitive information to be sent via

e-mail should be in an encrypted attachment instead of the main body of

the e-mail message.

Other Client Considerations
Database clients require special scrutiny in terms of security precautions because, if

compromised, they provide an easy pathway for the intruder to gain access to data in

the database. Here are some additional client considerations:

• Web browser security level Modern web browsers allow the setting of a

security level for the browser. For Microsoft Internet Explorer, the security

settings are controlled using the Security tab on the Internet Options panel,

which is accessible using the Tools option on the main toolbar. This security

level should be set to the highest possible level that still permits normal use

of the database applications. Here are two considerations related to the web

browser:

• Cookies provide the ability for the web browser to store textual

information on the client, which can be automatically retrieved later

by the web browser and sent to the web server that requested them.

Cookies are not very secure and can be used to spy on users of the

client system. Furthermore, there is no guarantee that unauthorized

persons and software will have no access to information in cookies. The

organization’s security policy should address this issue and set a clear

standard for cookie use, which is one of the facilities controlled by the

web browser’s security level. Also, it is not wise to design application

systems that require cookies because they are not supported by all web

browsers and not permitted by all users. In Microsoft Internet Explorer,

CHAPTER 10 Database Security 257

P:\010Comp\DeMYST\364-9\ch10.vp
Monday, February 09, 2004 1:17:18 PM

Color profile: Generic CMYK printer profile
Composite Default screen

options for cookies are controlled using the Privacy tab on the Internet

Options panel.

• Scripting languages such as VBScript, JavaScript, and JScript provide

nice features for assisting with a user’s interaction with a web page.

However, they can and have been used for injecting malicious code into

systems, so care should be taken when allowing such languages to be

used on the client. VBScript is especially notorious for its misuse and

has been used to transport viruses in e-mail attachments.

• Minimal use of other software Software that is not required for the

normal functioning of the client should not be installed. Security policy

should forbid employees from installing unauthorized software.

• Virus scanner All computer systems running operating systems that are

susceptible to computer viruses should have appropriate virus-scanning

software installed. Virus scanners that automatically update their virus profiles

on a regular basis offer the most effective protection.

• Test application exposures Web-based applications should be thoroughly

tested using a client configured just the way your real business users’ client

workstations will be configured. Hacker tricks such as the following should

be attempted to verify that the exposures do not exist:

• SQL Injection SQL statements are entered into web pages in such

a way that the application server or web server hands them off to the

database for processing.

• URL spoofing The URL in the web browser is manually overtyped

in such a way that unauthorized data is revealed. Designs where session

IDs are assigned sequentially by the application server and then passed

back to the web browser as an argument in the URL are especially

susceptible to this approach. If you can guess another user’s session ID,

you can hijack their session just by overtyping the session ID in the URL.

• Buffer overflows Published exposures such as buffer overflows

should be thoroughly tested once the vendor’s patch has been installed

to ensure that the problem really was corrected.

Database Access Security
With the confidence that our clients, servers, and network are now secure, we can fo-

cus on database access. The goal here is to determine precisely the data that each da-

tabase user needs to conduct their business, and what they are permitted to do with

the data (that is, select, insert, update, or delete). Each database user should be given

258 Databases Demystified

P:\010Comp\DeMYST\364-9\ch10.vp
Monday, February 09, 2004 1:17:18 PM

Color profile: Generic CMYK printer profile
Composite Default screen

exactly the privileges they need—nothing more and nothing less. Recall that an ap-

plication program with database access is a database user just as an employee who

directly queries the database is. In terms of database security, all database users

should be treated in the same way (that is, the same standards should be applied to

all), whether the database user is software or “liveware.” In this section, we will ex-

plore the options and challenges related to securing access to the database and its data.

Database Security Architectures
For DBAs who support databases from multiple vendors, one of the challenges is

that, with the exception of Microsoft SQL Server and Sybase, no two databases

have the same architecture for database security. And of course, this is a side effect

of the overall database architectures being different. The only reason that

Microsoft SQL Server and Sybase have such similar architectures is that the for-

mer was derived from the later. Because Microsoft SQL Server and Oracle are

among the most popular databases today, let’s have a quick look at how each im-

plements database security.

Database Security in Microsoft SQL Server and Sybase
With Microsoft SQL Server and Sybase, once the DBMS software is installed on the

server, a database server is created. This is a confusing term, of course, because we

call the hardware a “server.” In this case, the term server or SQL server is a copy of

the DBMS software running in memory as a set of processes (also called services in

Windows environments) with related control information that is stored in a special

database on the SQL server. We will use the term SQL server to mean the DBMS

software and the term database server to mean the hardware platform on which the

database is running. In this architecture, each SQL server manages many databases,

with each database representing a logical grouping of data as determined by the da-

tabase designer. Figure 10-1 shows a simplified view of the security architecture for

Microsoft SQL Server and Sybase.

Security in Microsoft SQL Server and Sybase may be administered using either

the GUI tools provided in Enterprise Manager or the vendor-provided stored proce-

dures invoked using SQL statements. Here’s a list of the components of the security

architecture:

• Login This is a user account on the SQL server, also called a user login.

This is not the same as any operating system account the user may have

on the database server. However, on database servers running Microsoft

Windows, the login can use Windows authentication, meaning the Windows

CHAPTER 10 Database Security 259

P:\010Comp\DeMYST\364-9\ch10.vp
Monday, February 09, 2004 1:17:18 PM

Color profile: Generic CMYK printer profile
Composite Default screen

operating system stores the credentials (login name and password) and

authenticates users when they connect to the SQL server. An obvious

advantage to Windows authentication is that user access to the various SQL

servers in the enterprise can be centrally managed through the Windows

account, rather than locally managed on each SQL server. Note that once a

login is defined in the SQL server, the database user may connect to the SQL

server, but a login alone does not give them access to any database information.

There is, however, a master login called “sa” (system administrator) that,

similar to root in Unix and Administrator in Microsoft Windows, has full

privileges to everything in the SQL Server environment. Figure 10-1 shows

only one user login, called Mgr125.

• Database A database is a logical collection of database objects (tables,

views, indexes, and so on) as defined by the database designer. Figure 10-1

shows two databases: Employees and Products. It is important to understand

that a login is allowed to connect to a database only after it has been granted

that privilege by an administrator. (See the “User” topic that follows.) In

addition to databases holding system data, some special databases are created

when the SQL server is created (not show in Figure 10-1) and are used

by the DBMS to manage the SQL server. Among these are the following

databases:

• master The master database contains system-level information,

initialization settings, configuration settings, login accounts, the list of

260 Databases Demystified

Figure 10-1 Security in Microsoft SQL Server and Sybase

P:\010Comp\DeMYST\364-9\ch10.vp
Monday, February 09, 2004 1:17:19 PM

Color profile: Generic CMYK printer profile
Composite Default screen

databases configured in the SQL server, and the location of primary

database data files.

• tempdb The tempdb database contains temporary tables and

temporary stored procedures.

• model The model database contains a template for all other databases

created on the system.

• msdb In Microsoft SQL Server databases only, the msdb database

contains information used for scheduling jobs and alerts.

• User Each database has a set of users assigned to it. Each database user

maps to a login, so each user is a pseudo-account that is an alias to an SQL

Server login account. User accounts do not necessarily have to have the

same user name as their corresponding login accounts. When an administrator

grants access to a database for a particular login account, the user account

corresponding to the login account is created by the DBMS. In Figure 10-1,

the Mgr125 login corresponds to user A in the Employees database and

to user D in the Products database. These privileges permit the login to

connect to the database(s), but do not give the user any privileges against

objects in those databases. We discuss how this happens in the next topic.

• Privileges Each user account in a database may be granted any number of

privileges (also called permissions). System privileges are general privileges

applied at the database level. Microsoft SQL Server divides these into server

privileges, which include such permissions as starting up, shutting down,

and backing up the SQL server, and statement privileges, which include

such permissions as creating a database and creating a table. Object privileges

allow specific actions on a specific object, such as allowing select and

update on table T1. Figure 10-1 contains arrows that show the granting of

object privileges on table T1 to user A in the Employees database, and on

Table T4 to user D in the Products database. These privileges work in much

the same way across all relational databases, thanks to ANSI standards, and

are therefore covered in the “System Privileges” and “Object Privileges”

sections that follow a little later in this chapter.

Database Security in Oracle
Oracle’s security architecture, shown in Figure 10-2, is markedly different com-

pared to that of SQL Server. The differences between the two are highlighted as each

component is introduced:

• Instance This is a copy of the Oracle DBMS software running in

memory. Each instance manages only one database.

CHAPTER 10 Database Security 261

P:\010Comp\DeMYST\364-9\ch10.vp
Monday, February 09, 2004 1:17:19 PM

Color profile: Generic CMYK printer profile
Composite Default screen

• Database This is the collection of files managed by a single Oracle

instance. Taken together, the Oracle instance and database comprise what

Microsoft SQL Server and Sybase call the SQL server. Figure 10-2 depicts

the Dev1 database.

• User Each database account is called a user. As with Microsoft SQL

Server and Sybase, the user account may be authenticated externally (that

is, by the operating system) or internally (by the DBMS). Each user is

automatically allocated a schema (defined next), and this user is the owner

of that schema, meaning it automatically has full privileges over any object

in the schema. The following predefined users are created automatically

when the database is created (not shown in Figure 10-2):

• The SYS user is the owner of the Oracle instance and contains objects

that Oracle uses to manage the instance. This user is equivalent to the

“sa” user in Microsoft SQL Server and Sybase.

• The SYSTEM user is the owner of the Oracle database and contains

objects that Oracle uses to manage the database. This user is similar

to the master database in Microsoft SQL Server and Sybase.

• Many Oracle database options create their own user accounts when

those options are installed.

• Schema This is the collection of database objects that belong to a specific

Oracle user. The Oracle schema is equivalent to what Microsoft SQL Server

and Sybase call a database. Figure 10-2 shows the Employees, Products,

262 Databases Demystified

Figure 10-2 Database security in Oracle

P:\010Comp\DeMYST\364-9\ch10.vp
Monday, February 09, 2004 1:17:19 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TE
AM
 F
LY

and Mgr125 schemas, which are owned by the Employees, Products, and

Mgr125 users, respectively. Schema and user names are always identical in

Oracle. Mgr125 is a workaround to a special challenge we face with Oracle’s

security architecture, as discussed in the “Schema Owner Accounts” section

that follows.

• Privileges As with Microsoft SQL Server and Sybase, privileges are

divided into system and object privileges. These are covered in the “System

Privileges” and “Object Privileges” sections that follow.

Schema Owner Accounts
With all databases, we want to avoid giving database users more privileges than they

need to do their job. This not only prevents errors made by humans (including those

contained in the application programs and database queries they write) from becom-

ing data disasters, but it also keeps people honest.

In Microsoft SQL Server and Sybase, we want to avoid having database users

connect as the “sa” user. We want to create database logins that have the minimal

privileges required. Sadly, this is often not done, and applications connect as “sa” or

to a database with a user account that has the DBO (database owner) or DBA (data-

base administrator) role. Roles are a collection of privileges and are discussed in

an upcoming section. Whether done out of lack of understanding or out of laziness,

this practice represents a huge security exposure that should be forbidden as a mat-

ter of policy.

In Figure 10-2, note that the Mgr125 user owns no tables but does have some priv-

ileges granted to it by the Employees and Products users. This is to work around a

fundamental challenge with Oracle’s security architecture. If we allowed a database

user to connect to the database using a user such as Employees or Products, the user

would automatically have full privileges to every object in the schema, including in-

sert, delete, and update against any table, and also the ability to create and alter tables

without restriction. This is fundamentally the same issue as allowing use of the “sa”

user or the DBO and DBA roles in Microsoft SQL Server and Sybase. The Mgr125

user mimics the behavior of the login with the same name as shown in Figure 10-1.

With the right system privileges, we can prevent the Mgr125 user in Oracle from be-

ing able to create any tables of its own.

You may have noticed the synonyms for user Mgr125 in Figure 10-2. A synonym

is merely an alias or nickname for a database object. The synonyms are for the con-

venience of the user so that names do not have to be qualified with their schema

name. To select from the T1 tables in the Employees schema directly, user Mgr125

would have to refer to the table name as Employees.T1 in the SQL statement. This is

not only inconvenient, but also can cause no end to problems if we ever decide to

CHAPTER 10 Database Security 263

P:\010Comp\DeMYST\364-9\ch10.vp
Monday, February 09, 2004 1:17:19 PM

Color profile: Generic CMYK printer profile
Composite Default screen

264 Databases Demystified

Demystified / Databases Demystified / Oppel/ 225364-9 / Chapter 10

change the name of the Employees user. By creating a synonym called T1 in the

Mgr125 schema that points to Employees.T1, the user may now refer to the table as

just T1. Incidentally, you may recall that all user and object names in Oracle are case

insensitive, so the use of mixed case here is only for illustration. The syntax for cre-

ating this synonym is as follows:

CREATE SYNONYM T1 FOR EMPLOYEES.T1;

System Privileges
As stated earlier, system privileges are general permissions to perform functions in

managing the server and the database(s). Hundreds of permissions are supported by

each database vendor, with most of those being system privileges. As with object

privileges, system privileges are granted using the SQL GRANT statement and re-

scinded using the SQL REVOKE statement. Some of the most commonly used ones

are listed in the sections that follow. Complete details may be found in vendor-sup-

plied documentation.

Microsoft SQL Server System
(Server and Statement) Privilege Examples

Here are some commonly used Microsoft SQL Server system privileges:

• SHUTDOWN Provides the ability to issue the server shutdown command

• CREATE DATABASE Provides the ability to create new databases on

the SQL server

• BACKUP DATABASE Provides the ability to run backups of the

databases on the SQL server

Oracle System Privilege Examples
Here are some commonly used Oracle system privileges:

• CREATE SESSION Provides the ability to connect to the database.

• CREATE TABLE Provides the ability to create tables in your own

schema. Similar privileges exist for other object types, such as indexes,

synonyms, procedures, and so on.

• CREATE ANY TABLE Provides the ability to create tables in any user’s

schema. Similar privileges are available for other object types, such as

indexes, synonyms, procedures, and so on.

P:\010Comp\DeMYST\364-9\ch10.vp
Monday, February 09, 2004 1:17:19 PM

Color profile: Generic CMYK printer profile
Composite Default screen

• CREATE USER Provides the ability to create new users in the database.

Oracle permits the WITH ADMIN OPTION clause to be included when granting

system permissions. When this option is included, the user(s) not only acquire the

privilege but also the ability to grant the permission to other users. I do not recom-

mend this practice because it opens up too many potential security exposures, espe-

cially because revocation of permissions granted in this way do not cascade.

Object Privileges
Object privileges are granted to users with the SQL GRANT statement and revoked

with the REVOKE statement. The database user (login) who receives the privileges

is called the grantee. These statements are also covered in Chapter 6. The GRANT

statement may include a WITH GRANT OPTION clause that allows the recipient to

then grant the privilege to others. If the privilege is subsequently revoked, a cascad-

ing revoke takes place if this user has, in turn, granted the permission to anyone else.

I do not recommend use of the WITH GRANT OPTION clause because it is far too

easy to lose control over who has which privileges.

The general syntax of the GRANT statement is shown here, along with some

examples:

GRANT <privilege list> ON <object> TO <grantee list>
[WITH GRANT OPTION];

GRANT SELECT, UPDATE, INSERT ON T1 TO Mgr125;
GRANT SELECT ON T2 TO User1, User2, User3;

The general syntax of the REVOKE statement is shown here, along with some

examples:

REVOKE <privilege list> ON <object> FROM <grantee list>;
REVOKE SELECT, UPDATE, INSERT ON T1 FROM Mgr125;
REVOKE SELECT ON T2 FROM User1, User2, User3;

Roles
A role is a named collection of privileges that can, in turn, be granted to one or more

users. Most RDBMS systems have predefined roles that come with the system, and

database users with the CREATE ROLE privilege may create their own. Roles have

the following advantages:

• Roles may exist before user accounts do. For example, we can create a role

that contains all the privileges required to work on a particular development

CHAPTER 10 Database Security 265

P:\010Comp\DeMYST\364-9\ch10.vp
Monday, February 09, 2004 1:17:19 PM

Color profile: Generic CMYK printer profile
Composite Default screen

266 Databases Demystified

Demystified / Databases Demystified / Oppel/ 225364-9 / Chapter 10

project. When a new hire joins the project team, one GRANT statement

gives their new user account all the permissions they need.

• Roles relieve the administrator of a lot of tedium. Many privileges may be

granted with a single command when a role is used.

• Roles survive when user accounts are dropped. In cases where the DBA

must drop and re-create a user account, it can be a lot of work to reinstate

all the privileges, which is simplified if all the privileges are assembled into

one role.

The only potential disadvantage of roles, especially predefined ones, is that they

can be granted without sufficient attention to all the privileges contained in them,

thereby giving a user more privileges than the minimum they need. For example, the

CONNECT role in Oracle includes CREATE SESSION and ALTER SESSION, as

you would expect, but it also includes CREATE CLUSTER, CREATE DATABASE

LINK, CREATE SEQUENCE, CREATE SYNONYM, CREATE TABLE, and

CREATE VIEW. This is probably a more powerful collection than you would want a

business user of the database to have, so it might be better to grant CREATE

SESSION instead.

For administrators, a common role is DBA, which conveys a lot of powerful privi-

leges (over 125 separate privileges in Oracle). Obviously, such a high-powered privilege

must be granted judiciously.

Views
One of the common security issues to be addressed is how to allow database users

access to some rows and columns in a table while preventing access to other rows

and columns. Views are an excellent way to accomplish this. Here are some of the

benefits of using views to accomplish security objectives:

• Columns that a database user does not require may be omitted from the

view. Assuming the user has been granted access to the view rather than

the underlying table, this method totally prevents them from seeing the

information in the columns that were omitted from the view.

• A WHERE clause may be included in the view to limit returned rows. Joins

may be included to match to other tables as a way of limiting rows. For

example, the view could limit Product table rows to only those products

for a Division ID that matches the division in which the employee works.

P:\010Comp\DeMYST\364-9\ch10.vp
Monday, February 09, 2004 1:17:19 PM

Color profile: Generic CMYK printer profile
Composite Default screen

CHAPTER 10 Database Security 267

Demystified / Databases Demystified / Oppel/ 225364-9 / Chapter 10

• Joins to “lookup” tables can be used to replace code values in a table with

their corresponding descriptions. A lookup table typically contains a list

of code values (for example, department codes, transaction codes, status

codes) and their descriptions, and it’s used to “look up” the descriptions

for the codes. Although this is a minor point, employees trying to hack

database records during fraud attempts have a much more difficult time if

they cannot see the codes used to categorize the transactions. Furthermore,

employees trying to do their best usually have a better time reading and

understanding code descriptions than the corresponding code values.

There are other ways to accomplish these objectives, however. Many modern

RDBMSs, including Oracle and Microsoft SQL Server, have provisions for column-

level security wherein a DBA may grant access by table column. For row-level

restrictions, a feature called Virtual Private Database, available in Oracle starting

with version 9i, can be used to accomplish the objective. Finally, some prefer to use

stored procedures for all database access and thus use custom programming to con-

trol all database access.

Security Monitoring and Auditing
Security policies and controls are typically not enough to ensure compliance. There

must be a monitoring system to detect security breaches so that corrective measures

may be taken. Multiple intrusion-detection tools are on the market that are capable

of monitoring a server and detecting unauthorized changes to files stored in the file

system. Also, all the major RDBMS products have provisions for setting up auditing

so that selected actions in the database are silently logged, typically into audit tables

that may subsequently be used for reporting. Consult your RDBMS documentation

for a full description of these auditing features.

It is also a good idea to have an independent auditor review your organization’s

security policies and procedures when they are initially written, and at periodic in-

tervals thereafter. Furthermore, it is wise to have your auditors, or a consultant who

specializes in information systems security, perform an onsite audit, including test-

ing the site for vulnerabilities that have not yet been addressed. System intrusions,

including fraud, can cost you many times more than a system audit, which may save

you any embarrassment before your employees and customers.

P:\010Comp\DeMYST\364-9\ch10.vp
Monday, February 09, 2004 1:17:19 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Quiz
Choose the correct responses to each of the multiple-choice questions. Note that

there may be more than one correct response to each question.

1. Security is necessary because:

a. Databases connected to the Internet are vulnerable to hackers.

b. 80 percent of fraud is committed by outside hackers.

c. Honest people make mistakes.

d. Security controls keep people honest.

e. Application security controls alone are inadequate.

2. Physical security of the database server:

a. Is unnecessary if the server is connected to the Internet

b. Should include a locked room to contain the server

c. Requires both physical devices and policies

d. May include biometric controls

e. May include surveillance equipment

3. Network security:

a. Can be handled by routers alone

b. Can be handled by firewalls alone

c. Is necessary only if the database server is connected to the Internet

d. Must include provisions for remotely located employees

e. Is mandatory for all computer systems connected to any network

4. Firewall protection may include

a. Packet filtering

b. Packet selection using a routing table

c. Network address translation

d. Limiting ports that may be used for access

e. IP spoofing

5. Employees connecting to the enterprise network from home, or another

remote work location:

a. Are best protected by a software firewall such as is available in

Microsoft Windows XP

b. Should have a firewall between their computer and a cable or DSL

modem

c. Should have IP spoofing implemented

d. Are better protected when a VPN is used

e. Should not use network address translation

268 Databases Demystified

P:\010Comp\DeMYST\364-9\ch10.vp
Monday, February 09, 2004 1:17:20 PM

Color profile: Generic CMYK printer profile
Composite Default screen

6. Wireless networks need to be secured because:

a. Inexpensive wireless access points are readily available.

b. Anyone with a wireless network adapter can connect to an unprotected

network.

c. Employees may use the wireless network to secretly communicate

with hackers.

d. Radio waves penetrate walls to adjoining offices.

e. Radio waves may carry to public roads outside the building.

7. Components of wireless access point security include

a. Network address translation

b. The organization’s security policy

c. Encryption

d. Virtual private networks

e. MAC address lists

8. System-level security precautions include

a. Installing the minimal software components necessary

b. Granting only table privileges that users require

c. Applying security patches in a timely manner

d. Changing all default passwords

e. Using simple passwords that are easy to remember

9. Login credentials:

a. May be shared by multiple users provided all of them are trustworthy

b. Should have passwords changed periodically

c. Need not be encrypted

d. Should be governed by security policy

e. Should be difficult to guess

10. Encryption:

a. Should be used for all sensitive data

b. Should use keys of at least 28 bits in length

c. Should be used for sensitive data sent over a network

d. Can use symmetric or asymmetric keys

e. Should never be used for login credentials

11. Client security considerations include

a. MAC address lists

b. Web browser security level

c. Granting only database table privileges that are absolutely necessary

d. Use of a virus scanner

e. Testing of application exposures

CHAPTER 10 Database Security 269

P:\010Comp\DeMYST\364-9\ch10.vp
Monday, February 09, 2004 1:17:20 PM

Color profile: Generic CMYK printer profile
Composite Default screen

270 Databases Demystified

Demystified / Databases Demystified / Oppel/ 225364-9 / Chapter 10

12. In Microsoft SQL Server, a login (user login):

a. Can connect to any number of databases

b. Automatically has database access privileges

c. Can use Windows authentication

d. Can be authenticated by Microsoft SQL Server

e. Owns a database schema

13. In Microsoft SQL Server, a database:

a. Is owned by a login

b. May have one or more users assigned to it

c. May contain system data (for example, master) or user (application) data

d. May be granted privileges

e. Is a logical collection of database objects

14. In Oracle, a user account:

a. Can connect (log in) to any number of databases

b. Automatically has database privileges

c. Can use operating system authentication

d. Can be authenticated by the Oracle DBMS

e. Owns a database schema

15. In Oracle, a database:

a. Is owned by a user

b. May have one or more user accounts defined in it

c. May contain system data (for example, system schema) and user

(application) data

d. Is the same as a schema

e. Is managed by an Oracle instance

16. System privileges:

a. Are granted in a similar way in Oracle, Sybase, and Microsoft SQL

Server

b. Are specific to a database object

c. Allow the grantee to perform certain administrative functions on the

server, such as shutting it down

d. Are rescinded using the SQL REMOVE statement

e. Vary across databases from different vendors

17. Object privileges:

a. Are granted in a similar way in Oracle, Sybase, and Microsoft SQL

Server

b. Are specific to a database object

P:\010Comp\DeMYST\364-9\ch10.vp
Monday, February 09, 2004 1:17:20 PM

Color profile: Generic CMYK printer profile
Composite Default screen

c. Allow the grantee to perform certain administrative functions on the

server, such as shutting it down

d. Are rescinded using the SQL REMOVE statement

e. Are granted using the SQL GRANT statement

18. Using the WITH GRANT OPTION when granting object privileges:

a. Allows the grantee to grant the privilege to others

b. Gives the grantee DBA privileges on the entire database

c. Can lead to security issues

d. Will cascade if the privilege is subsequently revoked

e. Is a highly recommended practice because it is so convenient to use

19. Roles:

a. May be assigned to only one user

b. May be shared by many users

c. May exist before users do

d. May contain any number of object privileges

e. May contain only one object privilege

20. Views may assist with security policy implementation by:

a. Restricting the table columns to which a user has access

b. Restricting the databases to which a user has access

c. Restricting table rows to which a user has access

d. Storing database audit results

e. Monitoring for database intruders

CHAPTER 10 Database Security 271

P:\010Comp\DeMYST\364-9\ch10.vp
Monday, February 09, 2004 1:17:20 PM

Color profile: Generic CMYK printer profile
Composite Default screen

P:\010Comp\DeMYST\364-9\ch10.vp
Monday, February 09, 2004 1:17:20 PM

Color profile: Generic CMYK printer profile
Composite Default screen

This page intentionally left blank.

CHAPTER
11

Database
Implementation

In this chapter, we cover some considerations regarding the implementation of a

database system. These include cursor processing, transaction management, perfor-

mance tuning, and change control.

Cursor Processing
Before we embark on transaction management, which includes a discussion of the

locking mechanisms required to support concurrent updates of the database, we

must explore the way application programs handle database queries. The collection

of rows returned by the execution of a database query is called the result set. When

you’re selecting data from the database, application programming languages such as

C and Java present a dilemma when the result set contains multiple rows of data.

These programming languages are designed to handle one record at a time (one

273

P:\010Comp\DeMYST\364-9\ch11.vp
Tuesday, February 10, 2004 9:56:42 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Copyright © 2004 by The McGraw-Hill Companies. Click here for terms of use.

274 Databases Demystified

Demystified / Databases Demystified / Oppel/ 225364-9 / Chapter 11

object instance at a time in the case of Java). So there is a mismatch that must be

addressed.

To overcome the mismatch, most relational databases support the concept of a

cursor, which is merely a pointer to a single row in the result set. In Oracle, cursor

support is included in a procedural language SQL extension called PL/SQL (Proce-

dural Language/SQL), and similarly is included in Transact-SQL in Sybase and

Microsoft SQL Server. The examples in this chapter use Oracle, so some of them

may require minor modification before they will work on other RDBMS products.

The use of a cursor parallels the use of a traditional flat file in that the cursor must be

defined and opened before it may be used, it may be read from by fetching rows in a

programming loop, and it should be closed when the program no longer needs it.

Following is an example of a cursor declaration. For clarity, all the keywords are

shown in uppercase and database object names in lowercase. In Oracle, this makes

no difference because all database object names are case insensitive. You may, how-

ever, have a different experience with other RDBMS products.

DECLARE CURSOR ny_customers AS
SELECT customer_number, name, address, city, zip_code
FROM customer

WHERE state = 'NY';

You may recognize the customer table from Chapter 8. If you ignore the first line,

the statement looks like any ordinary SQL query—it selects some columns from a

table and, in this case, has a WHERE clause to limit the rows returned to only those

from New York state. This is very nice because it means we can test the query using

any interactive SQL client tool before we paste it into a program and turn it into a

cursor declaration. The DECLARE CURSOR clause defines the cursor for us,

which we have named ny_customers. Cursor declarations are not executable state-

ments, meaning that when they are processed by the RDBMS, they do nothing but

set up a definition that may be subsequently referenced. The declaration is checked

for syntax and some other internal details, but the database does not need to access

any table rows until the cursor is opened.

The cursor must be opened before it can be used. In this example, the RDBMS

may not have to retrieve any rows when we open the cursor, but for efficiency, it

might decide to retrieve some number of rows and place them in a buffer for us. A

buffer is merely an area of computer memory used to temporarily hold data. It is far

more efficient to use a buffer to hold some number of prefetched rows rather than

going to the database files for every single row because computers can access mem-

ory so much faster than files in the file system. In some cases, however, the RDBMS

must fetch all the rows matching a query and sort them before the first row may be

P:\010Comp\DeMYST\364-9\ch11.vp
Tuesday, February 10, 2004 9:56:43 AM

Color profile: Generic CMYK printer profile
Composite Default screen

returned to the application program. You may have guessed that these are queries

containing an ORDER BY to sequence the returned rows for us. If there is no index

on the column(s) we use for sequencing, then the RDBMS must find and sort all of

them before it knows which one is the correct one to return as the first row (the one

that sorts first in the requested sequence). Although a lot goes on when we open a

cursor, the statement itself is quite simple. Here is the OPEN CURSOR statement

for our example:

OPEN CURSOR ny_customers;

Each time our program requires a new row from the result set, we simply issue a

FETCH command against the cursor. This is very much like reading the next record

from a file in an older flat file system. Remember that the cursor is merely a pointer

into the result set. Every time a fetch is issued, the row currently pointed to is re-

turned to the calling program (that is, the program that issued the FETCH), and the

cursor is advanced one row to point to the next row to be returned. If there are no

more rows in the result set, a code is returned to the calling program to indicate this.

Another detail handled by the fetch is mapping the columns returned to program-

ming language variables (called host language variables, or just host variables).

This is done with the INTO clause, and naturally the syntax of the variable names

will vary from one programming language to another. Our example uses very simple

names to stay away from programming language issues, but in real life you would

want the names to be as descriptive as possible. It’s also good programming practice

to use names that are not exactly the same as the database column names, so as to

avoid confusion when someone else reads the program. The variable names in this

example are prefixed with “v_” (for variable) for this reason. Here is the fetch of the

my_customers cursor:

FETCH ny_customers
INTO v_customer_number, v_name, v_address, v_city,

v_zip_code;

Notice that the FETCH statement refers only to the cursor name and the host vari-

ables. The cursor declaration ties the cursor to the table(s) and column(s) being ref-

erenced. As stated, we should always close the cursor when the program no longer

needs it because this frees up any resources the cursor has used, including memory

for buffers. The CLOSE statement is as simple as the OPEN statement:

CLOSE my_customers;

The topic of cursor processing has been introduced before the discussion of trans-

action management because cursors play a key role in some transaction events.

CHAPTER 11 Database Implementation 275

P:\010Comp\DeMYST\364-9\ch11.vp
Tuesday, February 10, 2004 9:56:43 AM

Color profile: Generic CMYK printer profile
Composite Default screen

276 Databases Demystified

Demystified / Databases Demystified / Oppel/ 225364-9 / Chapter 11

Transaction Management
In order to successfully support the database users, the DBMS must include provi-

sions to manage the transactions carried out by the application systems using the

database.

What Is a Transaction?
A transaction is a discrete series of actions that must be either completely processed or

not processed at all. Some call a transaction a unit of work as a way of further empha-

sizing its all-or-nothing nature. Transactions have properties that can be easily remem-

bered using the acronym ACID (Atomicity, Consistency, Isolation, Durability):

• Atomicity A transaction must remain whole. That is, it must completely

succeed or completely fail. When it succeeds, all changes that were made

by the transaction must be preserved by the system. Should a transaction

fail, all changes that were made by it must be completely undone. In database

systems, we use the term rollback for the process that backs out any changes

made by a failed transaction, and we use the term commit for the process

that makes transaction changes permanent.

• Consistency A transaction should transform the database from one

consistent state to another. For example, a transaction that creates an invoice

for an order transforms the order from a shipped order to an invoiced order,

including all the appropriate database changes.

• Isolation Each transaction should carry out its work independent of any

other transaction that might occur at the same time.

• Durability Changes made by completed transactions should remain

permanent, even after a subsequent shutdown or failure of the database or

other critical system component. In object terminology, the term persistence

is used for permanently stored data. The concept of permanent here can be

confusing, because nothing seems to ever stand still for long in an OLTP

(online transaction processing) database. Just keep in mind that permanent

means the change will not disappear when the database is shut down or

fails—it does not mean that the data is in a permanent state that can never

be changed again.

DBMS Support for Transactions
Aside from personal computer database systems, most DBMSs provide transaction

support. This includes provisions in SQL for identifying the beginning and end of

P:\010Comp\DeMYST\364-9\ch11.vp
Tuesday, February 10, 2004 9:56:43 AM

Color profile: Generic CMYK printer profile
Composite Default screen

CHAPTER 11 Database Implementation 277

Demystified / Databases Demystified / Oppel/ 225364-9 / Chapter 11

each transaction, along with a facility for logging all changes made by transactions

so that a rollback may be performed when necessary. As you might guess, standards

lagged behind the need for transaction support, so support for transactions varies

a bit across RDBMS vendors. As examples, let’s look at transaction support in

Microsoft SQL Server and Oracle, followed by discussion of transaction logs.

Transaction Support in Microsoft SQL Server
Microsoft SQL Server supports transactions in three modes: autocommit, explicit,

and implicit. All three modes are available when you’re connected directly to the da-

tabase using a client tool designed for this purpose. However, if you plan to use an

ODBC or JDBC driver, you should consult the driver’s documentation for informa-

tion on the transaction support it provides. Here’s a description of the three modes:

• Autocommit mode In autocommit mode, each SQL statement is

automatically committed as it completes. Essentially, this makes every

SQL statement a discrete transaction. Every connection to Microsoft SQL

Server uses autocommit until either an explicit transaction is started or the

implicit transaction mode is set. In other words, autocommit is the default

transaction mode for each SQL Server connection.

• Explicit mode In explicit mode, each transaction is started with a

BEGIN TRANSACTION statement and ended with either a COMMIT

TRANSACTION statement (for successful completion) or a

ROLLBACK TRANSACTION statement (for unsuccessful completion).

This mode is used most often in application programs, stored procedures,

triggers, and scripts. The general syntax of the three SQL statements follows:

BEGIN TRAN[SACTION] [tran_name | @tran_name_variable]
COMMIT [TRAN[SACTION] [tran_name | @tran_name_variable]]
ROLLBACK [TRAN[SACTION] [tran_name | @tran_name_variable |

savepoint_name | @savepoint_name_variable]]

• Implicit mode Implicit transaction mode is toggled on or off with the

command SET IMPLICIT_TRANSACTIONS {ON | OFF}. When implicit

mode is on, a new transaction is started whenever any of a list of specific

SQL statements is executed, including DELETE, INSERT SELECT, and

UPDATE, among others. Once a transaction is implicitly started, it continues

until the transaction is either committed or rolled back. If the database user

disconnects before submitting a transaction-ending statement, the

transaction is automatically rolled back.

Microsoft SQL Server records all transactions and the modifications made by them

in the transaction log. The before and after image of each database modification made

P:\010Comp\DeMYST\364-9\ch11.vp
Tuesday, February 10, 2004 9:56:43 AM

Color profile: Generic CMYK printer profile
Composite Default screen

278 Databases Demystified

Demystified / Databases Demystified / Oppel/ 225364-9 / Chapter 11

by a transaction is recorded in the transaction log. This facilitates any necessary roll-

back because the before images can be used to reverse the database changes made by

the transaction. A transaction commit is not complete until the commit record has

been written to the transaction log. Because database changes are not always written to

disk immediately, the transaction log is sometimes the only means of recovery when

there is a system failure.

Transaction Support in Oracle
Oracle supports only two transaction modes: autocommit and implicit. As with

Microsoft SQL Server, support varies when ODBC and JDBC drivers are used, so

the driver vendor’s documentation should be consulted in those cases. Here’s a de-

scription of these two modes in Oracle:

• Autocommit mode As with Microsoft SQL Server, each SQL statement

is automatically committed as it completes. Autocommit mode is toggled on

and off using the SET AUTOCOMMIT command, as shown here, and is off

by default:

SET AUTOCOMMIT ON
SET AUTOCOMMIT OFF

• Implicit mode A transaction is implicitly started when the database user

connects to the database (that is, when a new database session begins). This

is the default transaction mode in Oracle. When a transaction ends with a

commit or rollback, a new transaction is automatically started. Unlike in

Microsoft SQL Server, nested transactions (transactions within transactions)

are not permitted. A transaction ends with a commit when any of the

following occurs: 1) the database user issues the SQL COMMIT statement;

2) the database session ends normally (that is, the user issues an EXIT or

DISONNECT command); 3) the database user issues an SQL DDL

statement (that is, a CREATE, DROP, or ALTER statement). A transaction

ends with a rollback when either of the following occurs: 1) the database

user issues the SQL ROLLBACK statement; 2) the database sessions ends

abnormally (that is, the client connection is canceled or the database crashes

or is shut down using one of the shutdown options that aborts client

connections instead of waiting for them to complete).

Locking and Transaction Deadlock
Although the simultaneous sharing of data among many database users has significant

benefits, there also is a serious drawback that can cause updates to be lost. Fortunately,

P:\010Comp\DeMYST\364-9\ch11.vp
Tuesday, February 10, 2004 9:56:43 AM

Color profile: Generic CMYK printer profile
Composite Default screen

the database vendors have worked out solutions to the problem. This section presents

the concurrent update problem and various solutions.

The Concurrent Update Problem
Figure 11-1 illustrates the concurrent update problem that occurs when multiple da-

tabase sessions are allowed to concurrently update the same data. Recall that a ses-

sion is created every time a database user connects to the database, which includes

the same user connecting to the database multiple times. The concurrent update

problem happens most often between two different database users who are unaware

that they are making conflicting updates to the same data. However, database users

with multiple connections can trip themselves up if they apply updates using more

than one of their database sessions.

The scenario presented uses a fictitious company that sells products and creates

an invoice for each order shipped, similar to Acme Industries in the normalization

examples from earlier chapters. Figure 11-1 illustrates user A, a clerk in the shipping

department who is preparing an invoice for a customer, which requires updating the

customer’s data by adding to the customer’s balance due. At the same time, user B, a

clerk in the accounts receivable department, is processing a payment from the very

same customer, which requires updating the customer’s balance due by subtracting

the amount they paid. Here is the exact sequence of events, as illustrated in Figure 11-1:

1. User A queries the database and retrieves the customer’s balance due,

which is $200.

2. A few seconds later, user B queries the database and retrieves the same

customer’s balance, which is still $200.

3. In a few more seconds, user A applies her update, adding the $100 invoice

to the balance due, which makes the new balance $300 in the database.

CHAPTER 11 Database Implementation 279

Figure 11-1 The concurrent update problem

P:\010Comp\DeMYST\364-9\ch11.vp
Tuesday, February 10, 2004 9:56:43 AM

Color profile: Generic CMYK printer profile
Composite Default screen

4. Finally, user B applies his update, subtracting the $100 payment from the

balance due he retrieved from the database ($200), resulting in a new balance

due of $100. He is unaware of the update made by user A and thus sets the

balance due (incorrectly) to $100.

The balance due for this customer should be $200, but the update made by user A has

been overwritten by the update made by user B. The company is out $100 that either will

be lost revenue or will take significant staff time to uncover and correct. As you can see,

allowing concurrent updates to the database without some sort of control can cause up-

dates to be lost. Most database vendors implement a locking strategy to prevent concur-

rent updates to the exact same data.

Locking Mechanisms
A lock is a control placed in the database to reserve data so that only one database

session may update it. When data is locked, no other database session can update the

data until the lock is released, which is usually done with a COMMIT or

ROLLBACK SQL statement. Any other session that attempts to update locked data

will be placed in a lock wait state, and the session will stall until the lock is released.

Some database products, such as IBM’s DB2, will time out a session that waits too

long and return an error instead of completing the requested update. Others, such as

Oracle, will leave a session in a lock wait state for an indefinite period of time.

By now it should be no surprise that there is significant variation in how locks are

handled by different vendors’ database products. A general overview is presented

here with the recommendation that you consult your database vendor’s documenta-

tion for details on how locks are supported. Locks may be placed at various levels

(often called lock granularity), and some database products, including Sybase,

Microsoft SQL Server, and IBM’s DB2, support multiple levels with automatic lock

escalation, which raises locks to higher levels as a database session places more and

more locks on the same database objects. Locking and unlocking small amounts of

data requires significant overhead, so escalating locks to higher levels can substan-

tially improve performance. Typical lock levels are as follows:

• Database The entire database is locked so that only one database session

may apply updates. This is obviously an extreme situation that should not

happen very often, but it can be useful when significant maintenance is being

performed, such as upgrading to a new version of the database software. Oracle

supports this level indirectly when the database is opened in exclusive mode,

which restricts the database to only one user session.

280 Databases Demystified

P:\010Comp\DeMYST\364-9\ch11.vp
Tuesday, February 10, 2004 9:56:43 AM

Color profile: Generic CMYK printer profile
Composite Default screen

• File An entire database file is locked. Recall that a file can contain part of

a table, an entire table, or parts of many tables. This level is less favored in

modern databases because the data locked can be so diverse.

• Table An entire table is locked. This level is useful when you’re performing

a table-wide change such as reloading all the data in the table, updating every

row, or altering the table to add or remove columns. Oracle calls this level a

DDL lock, and it is used when DDL statements (CREATE, DROP, and ALTER)

are submitted against a table or other database object.

• Block or page A block or page within a database file is locked. A block

is the smallest unit of data that the operating system can read from or write

to a file. On most personal computers, the block size is called the sector size.

Some operating systems use pages instead of blocks. A page is a virtual block

of fixed size, typically 2K or 4K, which is used to simplify processing when

there are multiple storage devices that support different block sizes. The

operating system can read and write pages and let hardware drivers translate

the pages to appropriate blocks. As with file locking, block (page) locking

is less favored in modern database systems because of the diversity of the

data that may happen to be written to the same block in the file.

• Row A row in a table is locked. This is the most common locking level,

with virtually all modern database systems supporting it.

• Column Some columns within a row in the table are locked. This method

sounds terrific in theory, but it’s not very practical because of the resources

required to place and release locks at this level of granularity. Very sparse

support for it exists in modern commercial database systems.

Locks are always placed when data is updated or deleted. Most RDBMSs also

support the use of a FOR UPDATE OF clause on a SELECT statement to allow locks

to be placed when the database user declares their intent to update something. Some

locks may be considered read-exclusive, which prevents other sessions from even

reading the locked data. Many RDBMSs have session parameters that can be set to

help control locking behavior. One of the locking behaviors to consider is whether

all rows fetched using a cursor are locked until the next COMMIT or ROLLBACK,

or whether previously read rows are released when the next row is fetched. Consult

your database vendor documentation for more details.

The main problem with locking mechanisms is that locks cause contention,

meaning that the placement of locks to prevent loss of data from concurrent updates

has the side effect of causing concurrent sessions to compete for the right to apply

updates. At the least, lock contention slows user processes as sessions wait for locks.

At the worst, competing lock requests call stall sessions indefinitely, as you will see

in the next section.

CHAPTER 11 Database Implementation 281

P:\010Comp\DeMYST\364-9\ch11.vp
Tuesday, February 10, 2004 9:56:44 AM

Color profile: Generic CMYK printer profile
Composite Default screen

282 Databases Demystified

Demystified / Databases Demystified / Oppel/ 225364-9 / Chapter 11

Deadlocks
A deadlock is a situation where two or more database sessions have locked some

data and then each has requested a lock on data that another session has locked. Fig-

ure 11-2 illustrates this situation.

This example again uses two users from our fictitious company, cleverly named A

and B. User A is a customer representative in the customer service department and is

attempting to correct a payment that was credited to the wrong customer account. He

needs to subtract (debit) the payment from Customer 1 and add (credit) it to Cus-

tomer 2. User B is a database specialist in the IT department, and she has written an

SQL statement to update some of the customer phone numbers with one area code to

a new area code in response to a recent area code split by the phone company. The

statement has a WHERE clause that limits the update to only those customers having

a phone number with certain prefixes in area code 510 and updates those phone num-

bers to the new area code. User B submits her SQL UPDATE statement while user A

is working on his payment credit problem. Customers 1 and 2 both have phone num-

bers that need to be updated. The sequence of events (all happening within seconds

of each other), as illustrated in Figure 11-2, takes place as follows:

1. User A selects the data from Customer 1 and applies an update to debit

the balance due. No commit is issued yet because this is only part of the

transaction that must take place. The row for Customer 1 now has a lock

on it due to the update.

2. The statement submitted by user B updates the phone number for Customer 2.

The entire SQL statement must run as a single transaction, so there is no commit

at this point, and thus user B holds a lock on the row for Customer 2.

Figure 11-2 The deadlock

P:\010Comp\DeMYST\364-9\ch11.vp
Tuesday, February 10, 2004 9:56:44 AM

Color profile: Generic CMYK printer profile
Composite Default screen

3. User A selects the balance for Customer 2 and then submits an update to

credit the balance due (same amount as debited from Customer 1). The

request must wait because user B holds a lock on the row to be updated.

4. The statement submitted by user B now attempts to update the phone

number for Customer 1. The update must wait because user A holds a

lock on the row to be updated.

These two database sessions are now in deadlock. User A cannot continue due to

a lock held by user B, and vice versa. In theory, these two database sessions will be

stalled forever. Fortunately, modern DBMSs contain provisions to handle this situa-

tion. One method is to prevent deadlocks. Few DBMSs have this capability due to

the considerable overhead this approach requires and the virtual impossibility of

predicting what an interactive database user will do next. However, the theory is to

inspect each lock request for the potential to cause contention and not permit the

lock to take place if a deadlock is possible. The more common approach is deadlock

detection, which then aborts one of the requests that caused the deadlock. This can

be done either by timing lock waits and giving up after a preset time interval or by pe-

riodically inspecting all locks to find two sessions that have each other locked out. In

either case, one of the requests must be terminated and the transaction’s changes

rolled back in order to allow the other request to proceed.

Performance Tuning
Any seasoned DBA will tell you that database performance tuning is a never-ending

task. It seems there is always something that can be tweaked to make it run more

quickly and/or efficiently. The key to success is managing your time and the expec-

tations of the database users, and setting the performance requirements for an appli-

cation before it is even written. Simple statements such as “every database update

must complete within 4 seconds” are usually the best. With that done, performance

tuning becomes a simple matter of looking for things that do not conform to the per-

formance requirement and tuning them until they do. The law of diminishing returns

applies to database tuning, and you can put lots of effort into tuning a database pro-

cess for little or no gain. The beauty of having a standard performance requirement is

that you can stop when the process meets the requirement and then move on to the

next problem.

Although there are components other than SQL statements that can be tuned,

these other components are so specific to a particular DBMS that it is best not to

attempt to cover them here. Suffice it to say that memory usage, CPU utilization, and

CHAPTER 11 Database Implementation 283

P:\010Comp\DeMYST\364-9\ch11.vp
Tuesday, February 10, 2004 9:56:44 AM

Color profile: Generic CMYK printer profile
Composite Default screen

file system I/O all must be tuned along with the SQL statements that access the data-

base. The tuning of SQL statements is addressed in the sections that follow.

Tuning Database Queries
About 80 percent of database query performance problems can be solved by adjusting

the SQL statement. However, you must understand how the particular DBMS being

used processes SQL statements in order to know what to tweak. For example, placing

SQL statements inside stored procedures can yield remarkable performance improve-

ment in Microsoft SQL Server and Sybase, but the same is not true at in Oracle.

A query execution plan is a description of how an RDBMS will process a particular

query, including index usage, join logic, and estimated resource cost. It is important to

learn how to use the “explain plan” utility in your DBMS, if one is available, because it

will show you exactly how the DBMS will process the SQL statement you are attempt-

ing to tune. In Oracle, the SQL EXPLAIN PLAN statement analyzes an SQL statement

and posts analysis results to a special plan table. The plan table must be created exactly

as specified by Oracle, so it is best to use the script they provide for this purpose. After

running the EXPLAIN PLAN statement, you must then retrieve the results from the

plan table using a SELECT statement. Fortunately, Oracle’s Enterprise Manager has a

GUI version available that makes query tuning a lot easier. In Microsoft SQL Server

2000, the Query Analyzer tool has a button labeled Display Estimated Execution Plan

that graphically displays how the SQL statement will be executed. This feature is also

accessible from the Query menu item as the option Show Execution Plan. These items

may have different names in other versions of Microsoft SQL Server.

Following are some general tuning tips for SQL. You should consult a tuning

guide for the particular DBMS you are using because techniques, tips, and other

considerations vary by DBMS product.

• Avoid table scans of large tables. For tables over 1,000 rows or so, scanning

all the rows in the table instead of using an index can be expensive in terms

of resources required. And, of course, the larger the table, the more expensive

a table scan becomes. Full table scans occur in the following situations:

• The query does not contain a WHERE clause to limit rows.

• None of the columns referenced in the WHERE clause match the

leading column of an index on the table.

• Index and table statistics have not been updated. Most RDBMS query

optimizers use statistics to evaluate available indexes, and without statistics,

a table scan may be seen as more efficient than using an index.

284 Databases Demystified

P:\010Comp\DeMYST\364-9\ch11.vp
Tuesday, February 10, 2004 9:56:44 AM

Color profile: Generic CMYK printer profile
Composite Default screen

• At least one column in the WHERE clause does match the first column

of an available index, but the comparison used obviates the use of an

index. These cases include the following:

• Use of the NOT operator (for example, WHERE NOT CITY = ‘New

York’). In general, indexes can be used to find what is in a table, but

cannot be used to find what is not in a table.

• Use of the NOT EQUAL operator (for example, WHERE CITY <>

‘New York’).

• Use of a wildcard in the first position of a comparison string (for

example, WHERE CITY LIKE ‘%York%’).

• Use of an SQL function in the comparison (for example, WHERE

UPPER(CITY) = ‘NEW YORK’).

• Create indexes that are selective. Index selectivity is a ratio of the number of

distinct values a column has, divided by the number of rows in a table. For

example, if a table has 1,000 rows and a column has 800 distinct values, the

selectivity of the index is 0.8, which is considered good. However, a column

such as gender that only has two distinct values (M and F) has very poor

selectivity (.002 in this case). Unique indexes always have a selectivity ratio

of 1.0, which is the best possible. With some RDBMSs such as DB2, unique

indexes are so superior that DBAs often add otherwise unnecessary columns

to an index just to make the index unique. However, always keep in mind

that indexes take storage space and must be maintained, so they are never

a free lunch.

• Evaluate join techniques carefully. Most RDBMSs offer multiple methods

for joining tables, with the query optimizer in the RDBMS selecting the

one that appears best based on table statistics. In general, creating indexes

on foreign key columns gives the optimizer more options from which to

choose, which is always a good thing. Run an explain plan and consult

your RDBMS documentation when tuning joins.

• Pay attention to views. Because views are stored SQL queries, they can

present performance problems just like any other query.

• Tune subqueries in accordance with your RDBMS vendor’s recommendations.

• Limit use of remote tables. Tables connected to remotely via database links

never perform as well as local tables.

• Very large tables require special attention. When tables grow to millions of

rows in size, any query can be a performance nightmare. Evaluate every query

carefully, and consider partitioning the table to improve query performance.

Table partitioning is addressed in Chapter 8. Your RDBMS may offer other

special features for very large tables that will improve query performance.

CHAPTER 11 Database Implementation 285

P:\010Comp\DeMYST\364-9\ch11.vp
Tuesday, February 10, 2004 9:56:44 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Tuning DML Statements
DML (Data Manipulation Language) statements generally produce fewer perfor-

mance problems than query statements. However, there can be issues.

For INSERT statements, there are two main considerations:

• Ensuring that there is adequate free space in the tablespaces to hold new

rows. Tablespaces that are short on space present problems as the DBMS

searches for free space to hold rows being inserted. Moreover, inserts do

not usually put rows into the table in primary key sequence because there

usually isn’t free space in exactly the right places. Therefore, reorganizing

the table, which is essentially a process of unloading the rows to a flat file,

re-creating the table, and then reloading the table can improve both insert

and query performance.

• Index maintenance. Every time a row is inserted into a table, a corresponding

entry must be inserted into every index built on the table (except null values are

never indexed). The more indexes there are, the more overhead every insert will

require. Index free space can usually be tuned just as table free space can.

UPDATE statements have the following considerations:

• Index maintenance. If columns that are indexed are updated, the corresponding

index entries must also be updated. In general, updating primary key values has

particularly bad performance implications, so much so that some RDBMSs

prohibit it.

• Row expansion. When columns are updated in such a way that the row grows

significantly in size, the row may no longer fit in its original location, and there

may not be free space around the row for it to expand in place (other rows might

be right up against the one just updated). When this occurs, the row must either

be moved to another location in the data file where it will fit or be split with the

expanded part of the row placed in a new location, connected to the original

location by a pointer. Both of these situations are not only expensive when they

occur but are also detrimental to the performance of subsequent queries that

touch those rows. Table reorganizations can resolve the issue, but its better to

prevent the problem by designing the application so that rows tend not to grow

in size after they are inserted.

DELETE statements are the least likely to present performance issues. However, a

table that participates as a parent in a relationship that is defined with the ON DELETE

CASCADE option can perform poorly if there are many child rows to delete.

286 Databases Demystified

P:\010Comp\DeMYST\364-9\ch11.vp
Tuesday, February 10, 2004 9:56:44 AM

Color profile: Generic CMYK printer profile
Composite Default screen

CHAPTER 11 Database Implementation 287

Demystified / Databases Demystified / Oppel/ 225364-9 / Chapter 11

Change Control
Change control (also known as change management) is the process used to manage

the changes that occur after a system is implemented. A change control process has

the following benefits:

• It helps you understand when it is acceptable to make changes and

when it is not.

• It provides a log of all changes that have been made to assist with

troubleshooting when problems occur.

• It can manage versions of software components so that a defective

version can be smoothly backed out.

Change is inevitable. Not only do business requirements change, but also new

versions of database and operating system software and new hardware devices even-

tually must be incorporated. Technologists should devise a change control method

suitable to the organization, and management should approve it as a standard. Any-

thing less leads to chaos when changes are made without the proper coordination

and communication. Although terminology varies among standard methods, they

all have common features:

• Version numbering Components of an application system are assigned

version numbers, usually starting with 1 and advancing sequentially every

time the component is changed. Usually a revision date and the identifier

of the person making the change are carried with the version number.

• Release (build) numbering A release is a point in time at which all

components of an application system (including database components)

are promoted to the next environment (for example, from development to

system test) as a bundle that can be tested and deployed together. Some

organizations use the term build instead. Database environments are discussed

in Chapter 5. As releases are formed, it is important to label each component

included with the release (or build) number. This allows us to tell which

version of each component was included in a particular release.

• Prioritization Changes may be assigned priorities to allow them to be

scheduled accordingly.

• Change request tracking Change requests can be placed into the change

control system, routed through channels for approval, and marked with the

applicable release number when the change is completed.

P:\010Comp\DeMYST\364-9\ch11.vp
Tuesday, February 10, 2004 9:56:44 AM

Color profile: Generic CMYK printer profile
Composite Default screen

288 Databases Demystified

Demystified / Databases Demystified / Oppel/ 225364-9 / Chapter 11

• Check-out and Check-in When a developer or DBA is ready to apply

changes to a component, they should be able to check it out (reserve it),

which prevents others from making potentially conflicting changes to the

same component at the same time. When work is complete, the developer

or DBA checks the component back in, which essentially releases the

reservation.

A number of commercial and freeware software products can be deployed to as-

sist with change control. However, it is important to establish the process before

choosing tools. In this way, the organization can establish the best process for their

needs and find the tool that best fits that process rather than trying to retrofit a tool to

the process.

From the database perspective, the DBA should develop DDL statements to im-

plement all the database components of an application system and a script that can

be used to invoke all the changes, including any required conversions. This deploy-

ment script and all the DDL should be checked into the change control system and

managed just like all the other software components of the system.

Quiz
Choose the correct responses to each of the multiple-choice questions. Note that

there may be more than one correct response to each question.

1. A cursor is

a. The collection of rows returned by a database query

b. A pointer into a result set

c. The same as a result set

d. A buffer that holds rows retrieved from the database

e. A method to analyze the performance of SQL statements

2. A result set is

a. The collection of rows returned by a database query

b. A pointer into a cursor

c. The same as a cursor

d. A buffer that holds rows retrieved from the database

e. A method to analyze the performance of SQL statements

3. Before rows may be fetched from a cursor, the cursor must first be

a. Declared

b. Committed

c. Opened

P:\010Comp\DeMYST\364-9\ch11.vp
Tuesday, February 10, 2004 9:56:45 AM

Color profile: Generic CMYK printer profile
Composite Default screen

CHAPTER 11 Database Implementation 289

Demystified / Databases Demystified / Oppel/ 225364-9 / Chapter 11

d. Closed

e. Purged

4. A transaction:

a. May be partially processed and committed

b. May not be partially processed and committed

c. Changes the database from one consistent state to another

d. Is sometimes called a unit of work

e. Has properties described by the ACID acronym

5. The I in the ACID acronym stands for:

a. Integrated

b. Immediate

c. Iconic

d. Isolation

e. Informational

6. Microsoft SQL Server supports the following transaction modes:

a. Autocommit

b. Automatic

c. Durable

d. Explicit

e. Implicit

7. Oracle supports the following transaction modes:

a. Autocommit

b. Automatic

c. Durable

d. Explicit

e. Implicit

8. The SQL statements (commands) that end a transaction are

a. SET AUTOCOMMIT

b. BEGIN TRANSACTION (in SQL Server)

c. COMMIT

d. ROLLBACK

e. SAVEPOINT

9. The concurrent update problem:

a. Is a consequence of simultaneous data sharing

b. Cannot occur when AUTOCOMMIT is set to ON

c. Is the reason that transaction locking must be supported

d. Occurs when two database users submit conflicting SELECT statements

e. Occurs when two database users make conflicting updates to the same data

P:\010Comp\DeMYST\364-9\ch11.vp
Tuesday, February 10, 2004 9:56:45 AM

Color profile: Generic CMYK printer profile
Composite Default screen

10. A lock:

a. Is a control placed on data to reserve it so that the user may update it

b. Is usually released when a COMMIT or ROLLBACK takes place

c. Has a timeout set in DB2 and some other RDBMS products

d. May cause contention when other users attempt to update locked data

e. May have levels and an escalation protocol in some RDBMS products

11. A deadlock:

a. Is a lock that has timed out and is therefore no longer needed

b. Occurs when two database users each request a lock on data that is

locked by the other

c. Can theoretically put two or more users in an endless lock wait state

d. May be resolved by deadlock detection on some RDBMSs

e. May be resolved by lock timeouts on some RDBMSs

12. Performance tuning:

a. Is a never-ending process

b. Should be used on each query until no more improvement can be

realized

c. Should only be used on queries that fail to conform to performance

requirements

d. Involves not only SQL tuning but also CPU, file system I/O and

memory usage tuning

e. Should be requirements based

13. SQL query tuning:

a. Can be done in the same way for all relational database systems

b. Usually involves using an explain plan facility

c. Always involves placing SQL statements in a stored procedure

d. Only applies to SQL SELECT statements

e. Requires detailed knowledge of the RDBMS on which the query

is to be run

14. General SQL tuning tips include

a. Avoid table scans on large tables.

b. Use an index whenever possible.

c. Use an ORDER BY clause whenever possible.

d. Use a WHERE clause to filter rows whenever possible.

e. Use views whenever possible.

15. SQL practices that obviate the use of an index are

a. Use of a WHERE clause

b. Use of a NOT operator

c. Use of table joins

290 Databases Demystified

P:\010Comp\DeMYST\364-9\ch11.vp
Tuesday, February 10, 2004 9:56:45 AM

Color profile: Generic CMYK printer profile
Composite Default screen

d. Use of the NOT EQUAL operator

e. Use of wildcards in the first column of LIKE comparison strings

16. Indexes work well at filtering rows when:

a. They are very selective.

b. The selectivity ratio is very high.

c. The selectivity ratio is very low.

d. They are unique.

e. They are not unique.

17. The main performance considerations for INSERT statements are

a. Row expansion

b. Index maintenance

c. Free space usage

d. Subquery tuning

e. Any very large tables that are involved

18. The main performance considerations for UPDATE statements are

a. Row expansion

b. Index maintenance

c. Free space usage

d. Subquery tuning

e. Any very large tables that are involved

19. A change control process:

a. Can prevent programming errors from being placed into production

b. May also be called change management

c. Helps with understanding when changes may be installed

d. Provides a log of all changes made

e. Can allow defective software versions to be backed out

20. Common features of change control processes are

a. Transaction support

b. Version numbering

c. Deadlock prevention

d. Release numbering

e. Prioritization

CHAPTER 11 Database Implementation 291

P:\010Comp\DeMYST\364-9\ch11.vp
Tuesday, February 10, 2004 9:56:45 AM

Color profile: Generic CMYK printer profile
Composite Default screen

P:\010Comp\DeMYST\364-9\ch11.vp
Tuesday, February 10, 2004 9:56:45 AM

Color profile: Generic CMYK printer profile
Composite Default screen

This page intentionally left blank.

12

Databases for
Online Analytical

Processing

Starting in the 1980s, businesses recognized the need for keeping historical data and

using it for analysis to assist in decision making. It was soon apparent that data orga-

nized for use by day-to-day business transactions was not as useful for analysis. In

fact, storing significant amounts of history in an operational database (a database

designed to support the day-to-day transactions of an organization) could have seri-

ous detrimental effects on performance. William H. (Bill) Inmon participated in pio-

neering work in a concept known as data warehousing, where historical data is

periodically trimmed from the operational database and moved to a database specifi-

cally designed for analysis. It was Bill Inmon’s dedicated promotion of the concept

that earned him the title “father of data warehousing.”

293

P:\010Comp\DeMYST\364-9\ch12.vp
Monday, February 09, 2004 9:10:11 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Copyright © 2004 by The McGraw-Hill Companies. Click here for terms of use.

The popularity of the data warehouse approach grew with each success story.

In addition to Bill Inmon, others made significant contributions, notably Ralph

Kimball, who developed specialized database architectures for data warehouses

(covered in the “Data Warehouse Architecture” section, later in this chapter).

Dr. E.F. Codd added his endorsement to the data warehouse approach and coined

two important terms in 1993:

• Online transaction processing (OLTP) Systems designed to handle

high volumes of transactions that carry out the day-to-day activities of an

organization

• Online analytical processing (OLAP) Analysis of data (often historical)

to identify trends that assist in making strategic decisions regarding the

business

Up to this point, the chapters of this book have dealt almost exclusively with

OLTP databases. This chapter, on the other hand, is devoted exclusively to OLAP

database concepts.

Data Warehouses
A data warehouse (DW) is a subject-oriented, integrated, time-variant and nonvola-

tile collection of data intended to support management decision making. Here are

some important properties of a data warehouse:

• Organized around major subject areas of an organization, such as sales,

customers, suppliers, and products. OLTP systems, on the other hand, are

typically organized around major processes, such as payroll, order entry,

billing, and so forth.

• Integrated from multiple operational (OLTP) data sources.

• Not updated in real time, but periodically, based on an established schedule.

Data is pulled from operational sources as often as needed, such as daily,

weekly, monthly, and so forth.

The potential benefits of a well-constructed data warehouse are significant,

including the following:

• Competitive advantage

• Increased productivity of corporate decision makers

• Potential high return on investment as the organization finds the best ways

to improve efficiency and/or profitability

294 Databases Demystified

P:\010Comp\DeMYST\364-9\ch12.vp
Monday, February 09, 2004 9:10:11 AM

Color profile: Generic CMYK printer profile
Composite Default screen

However, there are significant challenges to creating an enterprise-wide data

warehouse, including the following:

• Underestimation of the resources required to load the data

• Hidden data integrity problems in the source data

• Omitting data, only to find out later that it is required

• Ever-increasing end user demands (each new feature spawns ideas for even

more features)

• Consolidating data from disparate data sources

• High resource demands (huge amounts of storage; queries that process

millions of rows)

• Ownership of the data

• Difficulty in determining what the business really wants or needs to analyze

• “Big bang” projects that seem never-ending

OLTP Systems Compared
with Data Warehouse Systems
It should be clear that data warehouse systems and OLTP systems are fundamentally

different. Here is a comparison:

OLTP Systems Data Warehouse Systems

Hold current data. Hold historic data.

Store detailed data only. Store detailed data along with lightly and

highly summarized data.

Data is dynamic. Data is static, except for periodic additions.

Database queries are short-running and access

relatively few rows of data.

Database queries are long-running and access

many rows of data.

High transaction volume. Medium to low transaction volume.

Repetitive processing; predictable usage

pattern.

Ad hoc and unstructured processing;

unpredictable usage pattern.

Transaction driven; support day-to-day

operations.

Analysis driven; support strategic decision

making.

Process oriented. Subject oriented.

Serve a large number of concurrent users. Serve a relatively low number of managerial

users (decision makers).

CHAPTER 12 Databases for Online Analytical Processing 295

P:\010Comp\DeMYST\364-9\ch12.vp
Monday, February 09, 2004 9:10:11 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Data Warehouse Architecture
There are two primary schools of thought as to the best way to organize OLTP data

into a data warehouse—the summary table approach and the star schema approach.

The following subsections take a look at each approach, along with the benefits and

drawbacks of each.

Summary Table Architecture
Bill Inmon originally developed the summary table data warehouse architecture.

This data warehouse approach involves storing data not only in detail form, but also

in summary tables so that analysis processes do not have to continually summarize

the same data. This is an obvious violation of the principles of normalization, but be-

cause the data is historical—and therefore is never changed after it is stored—the

data anomalies (insert, update, and delete) that drive the need for normalization sim-

ply don’t exist. Figure 12-1 shows the summary table data warehouse architecture.

296 Databases Demystified

Figure 12-1 Summary table data warehouse architecture

P:\010Comp\DeMYST\364-9\ch12.vp
Monday, February 09, 2004 9:10:12 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Data from one or more operational data sources (databases or flat file systems) is

periodically moved into the data warehouse database. A major key to success is de-

termining the right level of detail that must be carried in the database and anticipat-

ing the levels of summarization necessary. Using Acme Industries as an example, if

the subject of the data warehouse is sales, it may be necessary to keep every single in-

voice; or it may be necessary to only keep invoices that exceed a certain amount; or

perhaps only those that contain certain products. If requirements are not understood,

then it is unlikely that the data warehouse project will be successful. Failure rates of

data warehouse projects are higher than most other types of IT projects, and the most

common cause of failure is poorly defined requirements.

In terms of summarization, we might summarize the transactions by month in one

summary table and by product in another. At the next level of summarization, we

might summarize the months by quarter in one table and the products by department

in another. An end user (the person using the analysis tools to obtain results from the

OLAP database) might look at sales by quarter and notice that one particular quarter

doesn’t look quite right. The user can expand the quarter of concern and look at the

months within it. This process is known as “drilling down” to more detailed levels.

The user may then pick out a particular month of interest and drill down to the de-

tailed transactions for that month.

The metadata (data about data) shown in Figure 12-1 is very important, and un-

fortunately, often a missing link. Ideally, the metadata defines every data item in the

data warehouse, along with sufficient information so its source can be tracked all the

way back to the original source data in the operational database. The biggest chal-

lenge with metadata is that, lacking standards, each vendor of data warehouse tools

has stored metadata in their own way. When multiple analysis tools are in use,

metadata must usually be loaded into each one of them using proprietary formats.

For end user analysis tools (also called OLAP tools), there are literally dozens of

commercial products from which to choose, including Business Objects, BrioQuery,

Powerplay, and IQ/Vision.

Star Schema Data Warehouse Architecture
Ralph Kimball developed a specialized database structure known as the star schema

for storing data warehouse data. His contribution to OLAP data storage is signifi-

cant. Red Brick, the first DBMS devoted exclusively to OLAP data storage, used the

star schema. In addition, Red Brick offered SQL extensions specifically for data

analysis, including moving averages, this year vs. last year, market share, and rank-

ing. Informix acquired Red Brick’s technology, and later IBM acquired Informix, so

CHAPTER 12 Databases for Online Analytical Processing 297

P:\010Comp\DeMYST\364-9\ch12.vp
Monday, February 09, 2004 9:10:12 AM

Color profile: Generic CMYK printer profile
Composite Default screen

298 Databases Demystified

Demystified / Databases Demystified / Oppel/ 225364-9 / Chapter 12

IBM now markets the Red Brick technology as part of their data warehouse solution.

Figure 12-2 shows the basic architecture of a data warehouse using the star schema.

The star schema uses a single detailed data table, called a fact table, surrounded

by supporting reference data tables called dimension tables, forming a star-like pat-

tern. Compared with the summary table data warehouse architecture, the fact table

replaces the detailed data tables, and the dimension tables replace the summary

tables. A new star schema is constructed for each additional fact table. Dimension ta-

bles have a one-to-many relationship with the fact table, with the primary key of the

dimension table appearing as a foreign key in the fact table. However, dimension

tables are not necessarily normalized because they may have an entire hierarchy,

such as layers of an organization or different subcomponents of time, compressed

into a single table. The dimension tables may or may not contain summary informa-

tion, such as totals.

Figure 12-2 Star schema data warehouse architecture

P:\010Comp\DeMYST\364-9\ch12.vp
Monday, February 09, 2004 9:10:12 AM

Color profile: Generic CMYK printer profile
Composite Default screen

CHAPTER 12 Databases for Online Analytical Processing 299

Demystified / Databases Demystified / Oppel/ 225364-9 / Chapter 12

Using our prior Acme Industries sales example, the fact table would be the in-

voice table, and typical dimension tables would be time (months, quarters, and per-

haps years), products, and organizational units (departments, divisions, and so

forth). In fact, time and organizational units appear as dimensions in most star

schemas. As you might guess, the key to success in star schema OLAP databases is

getting the fact table right. Here’s a list of the considerations that influence the

design of the fact table:

• The required time period (how often data will be added and how long

history must remain in the OLAP database)

• Storing every transaction vs. statistical sampling

• Columns in the source data table(s) that are not necessary for OLAP

• Columns that can be reduced in size, such as taking only the first 25

characters of a 200-character product description

• The best uses of intelligent (natural) and surrogate (dumb) keys

• Partitioning of the fact table

Over time, some variations to the star schema emerged:

• Snowflake schema A variant where dimensions are allowed to have

dimensions of their own. The name comes from the ERD’s resemblance

to a snowflake. If you fully normalize the dimensions of a star schema,

you end up with a snowflake schema. For example, the time dimension at

the first level could track weeks, with a dimension table above it to track

months, and one above that one to track quarters. Similar arrangements

could be used to track the hierarchy of an organization (departments,

divisions, and so forth).

• Starflake schema A hybrid arrangement containing a mixture of

(denormalized) star and (normalized) snowflake dimensions.

Multidimensional Databases
Multidimensional databases evolved from star schemas. They are sometimes called

multidimensional OLAP (MOLAP) databases. A number of specialized multidimen-

sional database systems are on the market, including Oracle Express and Essbase.

MOLAP databases are best visualized as cubes, where each dimension forms a side

of the cube. To accommodate additional dimensions, the cube (or set of cubes) is

simply repeated for each one.

P:\010Comp\DeMYST\364-9\ch12.vp
Monday, February 09, 2004 9:10:12 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Figure 12-3 shows a four-column fact table for Acme Industries. Product Line,

Sales Department, and Quarter are dimensions, and they would be foreign keys to a

dimension table in a star schema. Quantity contains the number of units sold for each

combination of Product Line, Sales Department, and Quarter.

Figure 12-4 shows the multidimensional equivalent of the table shown in Fig-

ure 12-3. Note that Sales Department, Product Line, and Quarter all become edges

of the cube, with the single fact Quantity stored in each grid square. The dimensions

displayed may be changed by simply rotating the cube.

300 Databases Demystified

Figure 12-3 Four-column fact table for Acme Industries

P:\010Comp\DeMYST\364-9\ch12.vp
Monday, February 09, 2004 9:10:13 AM

Color profile: Generic CMYK printer profile
Composite Default screen

CHAPTER 12 Databases for Online Analytical Processing 301

Demystified / Databases Demystified / Oppel/ 225364-9 / Chapter 12

Data Marts
A data mart is a subset of a data warehouse that supports the requirements of a par-

ticular department or business function. In part, data marts evolved in response to

some highly visible multimillion-dollar data warehouse project failures. When an

organization has little experience building OLTP systems and databases, or when re-

quirements are very sketchy, a scaled-down project such as a data mart is a far less

risky approach. Here are a few characteristics of data marts:

• Focus on one department or business process

• Do not normally contain any operational data

• Contain much less information than a data warehouse

Figure 12-4 Three-dimension cube for Acme Industries

302 Databases Demystified

Demystified / Databases Demystified / Oppel/ 225364-9 / Chapter 12

Here are some reasons for creating a data mart:

• Data may be tailored to a particular department or business function.

• Lower overall cost than a full data warehouse.

• Lower-risk project than a full data warehouse project.

• Limited (usually only one) end user analysis tool, allowing data to be

tailored to the particular tool to be used.

• For departmental data marts, the database may be placed physically near

the department, reducing network delays.

There are three basic strategies for building data marts:

• Build the enterprise-wide data warehouse first, and use it to populate data

marts. The problem with this approach is that you will never get to build

the data marts if the data warehouse project ends up being cancelled or put

on indefinite hold.

• Build several data marts and build the data warehouse later, integrating the

data marts into the enterprise-wide data warehouse at that time. This is a

lower-risk strategy because it does not depend on completion of a major

data warehouse project. However, it may cost more because of the rework

required to integrate the data marts after the fact. Moreover, if several data

marts are built containing similar data without a common data warehouse to

integrate all the data, the same query may yield different results depending

on the data mart used. Imagine the finance department quoting one revenue

number and the sales department another, only to find they are both correctly

quoting their data sources.

• Build the data warehouse and data marts simultaneously. This sounds great

on paper, but when you consider that the already complex and large data

warehouse project now has the data marts added to its scope, you appreciate

the enormity of the project. In fact, this strategy practically guarantees that

the data warehouse project will be the never-ending project from hell.

Data Mining
Data mining is the process of extracting valid, previously unknown, comprehensi-

ble, and actionable information from large databases and using it to make crucial

business decisions. The biggest benefit is that it can uncover correlations in the data

that were never suspected. The caveat is that it normally requires very large data

volumes in order to produce accurate results. Most commercial OLAP tools include

some data-mining features.

P:\010Comp\DeMYST\364-9\ch12.vp
Monday, February 09, 2004 9:10:13 AM

Color profile: Generic CMYK printer profile
Composite Default screen

CHAPTER 12 Databases for Online Analytical Processing 303

Demystified / Databases Demystified / Oppel/ 225364-9 / Chapter 12

One of the commonly cited stories of an early success with data mining involves

an NCR Corporation employee who produced a study for American Stores’ Osco

Drugs in 1992. The study noted that there was a correlation between beer sales and

diaper sales between 5 P.M. and 7 P.M., meaning that the two items were found to-

gether in a single purchase more often than pure randomness would suggest. This

correlation was subsequently mentioned in a speech, and the “beer and diapers”

story quickly became a bit of an urban legend in data warehouse circles. Countless

conference speakers have related the story of young fathers sent out for diapers who

grab a six-pack at the same time, often embellished well beyond the facts. However,

the story remains an excellent example of how unexpected the results of data mining

can be.

Once you discover a correlation, the organization must decide what action to take

to best capitalize on the new information. In the “beer and diapers” example, the

company could either place a stack of beer next to the diapers display for that quick

impulse sale, or perhaps strategically locate beer and diapers at opposite corners of

the store in hopes of more impulse buys as the shopper picks up one item and heads

across the store for the other. For the newly found information to be of benefit, the or-

ganization must be agile enough to take some action, so data mining itself isn’t a sil-

ver bullet by any measure.

Quiz
Choose the correct responses to each of the multiple-choice questions. Note that

there may be more than one correct response to each question.

1. OLTP:

a. Was invented by Dr. E.F. Codd

b. Was invented by Ralph Kimball

c. Handles high volumes of transactions

d. May use data stored in an operational database

e. May use data stored in a data warehouse database

2. OLAP:

a. Was invented by Dr. E.F. Codd

b. Was invented by Ralph Kimball

c. Handles high volumes of transactions

d. May use data stored in an operational database

e. May use data stored in a data warehouse database

P:\010Comp\DeMYST\364-9\ch12.vp
Monday, February 09, 2004 9:10:14 AM

Color profile: Generic CMYK printer profile
Composite Default screen

304 Databases Demystified

Demystified / Databases Demystified / Oppel/ 225364-9 / Chapter 12

3. Data warehousing:

a. Involves storing data for day-to-day operations

b. Was pioneered by Bill Inmon

c. Involves storing historical data for analysis

d. May involve one or more data marts

e. Is a form of OLAP database

4. A data warehouse is

a. Subject oriented

b. Integrated from multiple data sources

c. Time variant

d. Updated in real time

e. Organized around one department or business function

5. Challenges with the data warehouse approach include

a. Updating operational data from the data warehouse

b. Underestimation of required resources

c. Diminishing user demands

d. Large, complex projects

e. High resource demands

6. Compared with OLTP systems, data warehouse systems:

a. Store data that is more static

b. Have higher transaction volumes

c. Have a relatively smaller number of users

d. Have data that is not normalized

e. Tend to have shorter running queries

7. The summary table architecture:

a. Was originally developed by Bill Inmon

b. Includes a fact table

c. Includes dimension tables

d. Includes lightly and highly summarized tables

e. Should include metadata

8. The process of moving from more summarized data to more detailed

data is known as:

a. Normalization

b. Denormalization

c. Drilling up

d. Drilling down

e. Data mining

P:\010Comp\DeMYST\364-9\ch12.vp
Monday, February 09, 2004 9:10:14 AM

Color profile: Generic CMYK printer profile
Composite Default screen

9. The star schema:

a. Was developed by Ralph Kimball

b. Includes a dimension table and one or more fact tables

c. Always has fully normalized dimension tables

d. Was a key feature of the Red Brick DBMS

e. Involves multiple levels of dimension tables

10. Factors to consider in designing the fact table include

a. Adding columns to the fact table

b. Reducing column sizes between the source and fact tables

c. Partitioning the fact table

d. How often it must be updated

e. How long history must remain in it

11. The snowflake schema:

a. Allows dimensions to have dimensions of their own

b. Is a hybrid containing both normalized and denormalized tables

c. Does not use a fact table

d. Can be designed by fully normalizing all the dimension tables

e. Was developed by Bill Inmon

12. The starflake schema:

a. Allows dimensions to have dimensions of their own

b. Is a hybrid containing both normalized and denormalized tables

c. Does not use a fact table

d. Can be designed by fully normalizing all the dimension tables

e. Was developed by Bill Inmon

13. Multidimensional databases:

a. Use a fully normalized fact table

b. Are best visualized as cubes

c. Have fully normalized dimension tables

d. Are sometimes called MOLAP databases

e. Accommodate dimensions beyond the third by repeating cubes for

each additional dimension

14. A data mart:

a. Is a subset of a data warehouse

b. Is a shop that sells data to individuals and businesses

c. Supports the requirements of a particular department or business function

d. Can be a good starting point for organizations with no data warehouse

experience

e. Can be a good starting point when requirements are sketchy

CHAPTER 12 Databases for Online Analytical Processing 305

P:\010Comp\DeMYST\364-9\ch12.vp
Monday, February 09, 2004 9:10:14 AM

Color profile: Generic CMYK printer profile
Composite Default screen

15. Reasons to create a data mart include

a. It is more comprehensive than a data warehouse.

b. It is a potentially lower-risk project.

c. Data may be tailored to a particular department or business function.

d. It contains more data than a data warehouse.

e. The project has a lower overall cost than a data warehouse project.

16. Building a data warehouse first, followed by data marts:

a. Will delay data mart deployment if the data warehouse project drags on

b. Has lower risk than trying to build them all together

c. Has the lowest risk of the three possible strategies

d. Has the highest risk of the three possible strategies

e. May require a great deal of rework

17. Building one or more data marts first, followed by the data warehouse:

a. May delay data warehouse delivery if the data mart projects drag on

b. Has the potential to deliver some OLAP functions more quickly

c. Has the lowest risk of the three possible strategies

d. Has the highest risk of the three possible strategies

e. May require a great deal of rework

18. Building the data warehouse and data marts simultaneously:

a. Creates the largest single project of all the possible strategies

b. Has the potential to take the longest to deliver any OLAP functions

c. Has the lowest risk of the three possible strategies

d. Has the highest risk of the three possible strategies

e. May require a great deal of rework

19. Data mining:

a. Is a scaled-down data warehouse

b. Extracts previously unknown data correlations from the data warehouse

c. Can be successful with small amounts of data

d. Is most useful when the organization is agile enough to take action

based on the information

e. Usually requires large data volumes in order to produce accurate results

20. Properties of data warehouse systems include

a. Holding historic rather than current information

b. Long-running queries that process many rows of data

c. Support for day-to-day operations

d. Process orientation

e. Medium to low transaction volume

306 Databases Demystified

P:\010Comp\DeMYST\364-9\ch12.vp
Monday, February 09, 2004 9:10:14 AM

Color profile: Generic CMYK printer profile
Composite Default screen

CHAPTE
R A

Final Exam

Choose the correct responses to each of the multiple-choice questions. Note that

there may be more than one correct response to each question.

1. Properties that differentiate a database from other forms of data storage

include

a. Data items are stored in the exact same format used to display them to

the database user.

b. It provides data independence through two layers of data independence.

c. It provides for both physical and external data independence.

d. It provides more data independence than the file systems it replaced.

e. It is always managed by a DBMS.

2. The benefits of user views include

a. They may be tailored to the needs of a user department or a particular

application.

b. They provide external data independence.

c. They always show the same current information that the base tables contain.

d. They can always be used to apply updates to the database.

e. They can be used to hide table rows and columns that the database user

does not need to see.

307

P:\010Comp\DeMYST\364-9\appa.vp
Monday, February 09, 2004 9:13:13 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Copyright © 2004 by The McGraw-Hill Companies. Click here for terms of use.

3. Logical data independence:

a. Is provided by the tables in the logical layer of the ANSI/SPARC model

b. Is provided by the user views in the external layer of the ANSI/SPARC

model

c. Is a property that all computer systems have to some degree

d. Allows table columns to be added without disrupting existing database

queries

e. Allows data updates applied by one user to only become visible to other

users when changes are committed

4. Physical data independence:

a. Is provided by the tables in the logical layer of the ANSI/SPARC model

b. Is provided by the user views in the external layer of the ANSI/SPARC

model

c. Is a property that all computer systems have to some degree

d. Allows table columns to be added without disrupting existing database

queries

e. Allows database objects to be moved from one data file (tablespace) to

another without disrupting existing queries

5. The hierarchical database model:

a. Was first proposed by Peter Chen

b. Stores data in the form of tables

c. Directly supports one-to-many relationships

d. Directly supports many-to-many relationships

e. Connects data records using physical address pointers

6. The network database model:

a. Was first proposed by Ralph Kimball

b. In its pure form, permits only one parent for any given record

c. Directly supports one-to-many relationships

d. Directly supports many-to-many relationships

e. Connects database records using physical address pointers

7. The relational database model:

a. Was first proposed by Dr. E.F. Codd

b. Provides superior flexibility for ad-hoc queries

c. Directly supports one-to-many relationships

d. Directly supports many-to-many relationships

e. Connects database records using physical address pointers

8. The object-oriented database model:

a. Is newer than the relational database model

b. Provides superior flexibility for ad-hoc queries

308 Databases Demystified

P:\010Comp\DeMYST\364-9\appa.vp
Monday, February 09, 2004 9:13:13 AM

Color profile: Generic CMYK printer profile
Composite Default screen

c. Provides better support for complex data types than the relational model

d. Allows access to data only through application logic modules called

methods

e. Combines concepts from the network and relational database models

in an attempt to get the best from each

9. A primary key constraint is implemented using which database object?

a. Column

b. Index

c. Referential constraint

d. View

e. Table

10. A relationship in the conceptual design is implemented using which

database object?

a. Column

b. Index

c. Referential constraint

d. View

e. Table

11. An attribute in the conceptual design is implemented using which database

object?

a. Column

b. Index

c. Referential constraint

d. View

e. Table

12. An entity in the conceptual design is implemented using which database

object?

a. Column

b. Index

c. Referential constraint

d. View

e. Table

13. Which database object appears in the external level of the ANSI/SPARC

model?

a. Column

b. Index

c. Referential constraint

d. View

e. Table

Final Exam 309

P:\010Comp\DeMYST\364-9\appa.vp
Monday, February 09, 2004 9:13:13 AM

Color profile: Generic CMYK printer profile
Composite Default screen

14. A referential constraint:

a. Defines a one-to-many relationship between two tables

b. Ensures that a primary key does not have duplicate values

c. Ensures that a foreign key value in a child table always refers to an

existing primary key value in the parent table

d. Prevents “orphaned” foreign key values in the parent table

e. Must have primary key and foreign key columns that are in different tables

15. A primary key constraint:

a. Must be defined for every database table

b. Prevents two rows in a table from having the same primary key value

c. Must reference one or more primary key columns as well as one or more

foreign key columns

d. Must reference one or more columns in a single table

e. Is usually implemented using an index

16. If an order may contain many products, and a product may appear on many

orders, this is an example of which type of relationship?

a. One-to-one

b. One-to-many

c. Many-to-one

d. Many-to-many

e. Recursive

17. Forms-based query languages are different from SQL because:

a. They use a GUI (graphical user interface).

b. They describe the desired query results rather than how to obtain the results.

c. Queries are formed graphically rather than through typed commands.

d. They can be used to form queries that are impossible in SQL.

e. They were developed long before SQL.

18. A column in a database query result set can be formed from:

a. A constant

b. A foreign key column

c. A calculation

d. A table column

e. A view column

19. The criteria line in Microsoft Access queries is used to:

a. Order rows in a particular sequence within the result set

b. Limit rows that will be returned in the result set

c. Apply aggregate functions to one or more columns

d. Form joins between multiple tables and/or views

e. Define the circumstances under which the query is to be run

310 Databases Demystified

P:\010Comp\DeMYST\364-9\appa.vp
Monday, February 09, 2004 9:13:13 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TE
AM
 F
LY

20. When sequencing is not included in a database query, the rows in the result

set will be in:

a. Primary key sequence

b. The order in which the rows were added to the table(s)

c. Ascending sequence by the first column in the query results

d. Ascending sequence by the first index defined on the table(s)

e. No particular sequence

21. In Microsoft Access:

a. Criteria written on the same line are connected with a logical AND.

b. Criteria written on the same line are connected with a logical OR.

c. Criteria written on different lines are connected with a logical AND.

d. Criteria written on different lines are connected with a logical OR.

e. Criteria written on different lines are connected with a logical NOT.

22. The join connector between tables in a Microsoft Access query:

a. Can cause a Cartesian product if defined incorrectly

b. Does not support full outer joins

c. Supports left and right outer joins in addition to standard joins

d. May be inherited from the metadata defined on the Relationships panel

e. Can be manually created using the Create Join dialog box

23. An aggregate function in a database query:

a. Combines data from multiple rows together

b. Combines data from multiple columns together

c. Specifies how joins are to be done

d. Requires that every column in the query be either named in the GROUP

BY list for the query or formed using an aggregate function

e. May not be applied to columns containing calculations

24. Commonly used aggregate query functions include

a. ORDER BY

b. AVG

c. MIN

d. MAX

e. ROUND

25. SQL DML statements include

a. INSERT

b. CREATE

c. UPDATE

d. PURGE

e. ALTER

Final Exam 311

P:\010Comp\DeMYST\364-9\appa.vp
Monday, February 09, 2004 9:13:13 AM

Color profile: Generic CMYK printer profile
Composite Default screen

312 Databases Demystified

Demystified / Databases Demystified / Oppel/ 225364-9 / Appendix A

26. An SQL DELETE statement without a WHERE clause results in:

a. An error message

b. Every row in the table being deleted

c. Every column in the table being deleted

d. The table being dropped

e. A Cartesian product

27. An SQL UPDATE statement that omits the table name results in:

a. An error message

b. All tables being updated

c. No tables being updated

d. A Cartesian product

e. Every row in a table being updated

28. The BETWEEN operator in SQL:

a. Can be rewritten using the < and > operators

b. Can be rewritten using the <= and >= operators

c. Includes the endpoint values

d. Results in an outer join

e. Is used when writing subselects

29. An SQL subselect:

a. Allows for flexible selection of rows

b. Must be enclosed in parentheses

c. May be used instead of a join to limit rows returned by a query

d. Is a powerful way of calculating column values

e. May be an inner subselect or an outer subselect

30. In SQL, a join without a WHERE clause results in:

a. An inner join

b. An outer join

c. A Cartesian product

d. An error message

e. An empty result set (no rows returned)

31. In SQL, a self-join:

a. Always results in a Cartesian product

b. Can never result in a Cartesian product

c. Resolves a recursive relationship

d. Involves two different tables

e. Can be a standard (inner) or outer join

P:\010Comp\DeMYST\364-9\appa.vp
Monday, February 09, 2004 9:13:13 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Final Exam 313

Demystified / Databases Demystified / Oppel/ 225364-9 / Appendix A

32. A COMMIT in Oracle:

a. Ends a transaction

b. Begins a new transaction

c. Is automatic just before any DDL statement is run

d. Is automatic just before any DML statement is run

e. Removes any locks held by the current transaction

33. During the conceptual design phase of the database life cycle:

a. Normalization takes place.

b. The conceptual data model is updated.

c. Reports are designed.

d. The development database is created.

e. New entities may be discovered.

34. During the logical design phase of the database life cycle:

a. Normalization takes place.

b. The development database is created.

c. Database queries are written.

d. Program specifications are written.

e. Database performance tuning takes place.

35. During the physical design phase of the database life cycle:

a. Normalization takes place.

b. The logical data model is converted to one or more physical models.

c. DDL is written to define database objects.

d. Application programs are written.

e. Database indexes may be added.

36. During the construction phase of the database life cycle:

a. Normalization takes place.

b. Any required data conversion is tested.

c. New entities are discovered.

d. Application programs are written.

e. Development and test databases are created.

37. During the implementation and rollout phase of the database life cycle:

a. User training takes place.

b. Users are placed on the live system.

c. Quality assurance testing takes place.

d. The old and new applications may be run in parallel.

e. Enhancements are designed.

P:\010Comp\DeMYST\364-9\appa.vp
Monday, February 09, 2004 9:13:13 AM

Color profile: Generic CMYK printer profile
Composite Default screen

314 Databases Demystified

Demystified / Databases Demystified / Oppel/ 225364-9 / Appendix A

38. During the ongoing support phase of the database life cycle:

a. Enhancements are designed and implemented.

b. Bug fixes take place.

c. Patches may be applied if needed.

d. The staging environment is no longer needed.

e. Schema changes are never required.

39. Dr. E.F. Codd invented

a. The star schema

b. Normalization

c. The ERD

d. The relational database

e. Data warehousing

40. The purpose of normalization is to:

a. Optimize data-retrieval performance

b. Optimize the database design for inserts, updates, and deletes

c. Eliminate redundant data

d. Minimize the number of relations (tables) in the database design

e. Remove certain anomalies from the relations

41. The insert anomaly refers to a situation where:

a. An insert statement fails due to a duplicate primary key error.

b. Data must be inserted before it can be deleted.

c. A required insert cannot be done due to an artificial dependency.

d. Too many inserts cause a performance bottleneck in the DBMS.

e. Data must be deleted before a new row may be inserted.

42. The delete anomaly refers to a situation where:

a. Data must be deleted before a new row may be inserted.

b. Data deletion causes unintentional loss of another entity’s data.

c. Data must be inserted before it can be deleted.

d. Data must be deleted before it can be inserted.

e. A delete operation fails due to data locked by another user.

43. The update anomaly refers to a situation where:

a. An update without a WHERE clause updates every row in a table.

b. Data cannot be updated due to lack of privileges.

c. A simple update requires updates to multiple rows of data.

d. Data cannot be updated by one user because of locks held by another user.

e. Data cannot be updated due to an existing referential constraint.

P:\010Comp\DeMYST\364-9\appa.vp
Monday, February 09, 2004 9:13:14 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Final Exam 315

Demystified / Databases Demystified / Oppel/ 225364-9 / Appendix A

44. To be in first normal form, a relation:

a. Must have a unique identifier

b. Must be in Boyce-Codd normal form

c. Must not have any repeating groups or multivalued attributes

d. Must not have any transitive dependencies

e. Must not have any partial key dependencies

45. To be in second normal form, a relation:

a. Must have a unique identifier

b. Must be in first normal form

c. Must not have any repeating groups or multivalued attributes

d. Must not have any transitive dependencies

e. Must not have any partial key dependencies

46. To be in third normal form, a relation:

a. Must be in first normal form

b. Must be in second normal form

c. Must not have any repeating groups or multivalued attributes

d. Must not have any transitive dependencies

e. Must not have any partial key dependencies

47. In general, violations of a normalization rule are resolved by:

a. Combining relations

b. Creating summary tables

c. Moving attributes or groups of attributes to a new relation

d. Denormalization

e. Eliminating attributes

48. The elements common to all ERD formats include

a. Rectangles or boxes representing entities

b. Optional inclusion of attributes

c. Ellipses representing views

d. Lines representing relationships

e. Line ends representing the minimum cardinality of the relationships

49. A subtype:

a. Is a superset of the super type

b. Is a subset of the super type

c. Has a many-to-one relationship with the super type

d. Has a one-to-one relationship with the super type

e. Shows various states of the super type

P:\010Comp\DeMYST\364-9\appa.vp
Monday, February 09, 2004 9:13:14 AM

Color profile: Generic CMYK printer profile
Composite Default screen

316 Databases Demystified

Demystified / Databases Demystified / Oppel/ 225364-9 / Appendix A

50. Examples of possible subtypes for a Customer entity super type include

a. Corporate customer

b. Individual customer

c. Preferred customer

d. Former customer

e. Commercial customer

51. The components of the CRUD matrix are

a. Rectangles to show entities

b. Ellipses to show attributes

c. Major processes shown on one axis

d. Major entities shown on the other axis

e. Numbers to show the operations that processes carry out on entities

52. The basic components of a function hierarchy diagram are

a. Rectangles to show process functions

b. Diamonds to show decision points

c. A hierarchy to show which functions are subordinate to others

d. Ellipses to show process steps

e. Lines connecting processes in order of execution

53. The basic components of a flowchart are

a. Lines to show the hierarchy of functions

b. Diamonds to show decision points

c. Open-ended rectangles to show data stores

d. Ellipses to show starting and ending points

e. Rectangles to show process steps

54. The basic components of a swim lane diagram are

a. Vertical lanes to show the organizational units that carry out process steps

b. Rectangles to show process steps

c. Open-ended rectangles to show data stores

d. Lines with arrows to show the sequence of process steps

e. Ellipses to show process steps

55. NOT NULL constraints:

a. Are required on unique identifier columns

b. Are required on primary key columns

c. Are required on foreign key columns

d. Prevent columns from being set to null values

e. Prevent inserts from omitting mandatory columns

P:\010Comp\DeMYST\364-9\appa.vp
Monday, February 09, 2004 9:13:14 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Final Exam 317

Demystified / Databases Demystified / Oppel/ 225364-9 / Appendix A

56. Primary key constraints:

a. Require columns that have NOT NULL constraints

b. Require columns that have check constraints

c. Require column values to be unique within the table

d. Require column values to be unique within the database

e. Require columns that are also used as foreign keys

57. Referential constraints:

a. Require that foreign key columns be defined as NOT NULL

b. Require that the columns in the parent table be defined as the primary key

c. Are always defined on the child table

d. Must use the names automatically assigned by the DBMS

e. Define a many-to-many relationship between two tables

58. Data types:

a. Can restrict the maximum size of column data

b. Can restrict the minimum size of column data

c. Can restrict the types of characters allowed in a column

d. Can prevent incorrect data from being inserted into a column

e. Can be used to format dates the way users want them displayed

59. Indexes:

a. Are often created automatically by the DBMS to assist with referential

constraints

b. May be used to improve select performance

c. Usually improve the performance of insert, update, and delete

statements

d. Are faster to scan sequentially than the tables they index

e. Must be refreshed manually when the tables they index are updated

60. General rules to follow regarding indexes include

a. The larger the table, the more likely indexes will assist query

performance.

b. Columns that are frequently updated should always be indexed.

c. Performance consequences should be evaluated carefully before more

than two or three indexes are defined on the same table.

d. Indexing foreign key columns can help with join performance.

e. The more a table is updated, the more indexes will help overall

performance.

P:\010Comp\DeMYST\364-9\appa.vp
Monday, February 09, 2004 9:13:14 AM

Color profile: Generic CMYK printer profile
Composite Default screen

318 Databases Demystified

Demystified / Databases Demystified / Oppel/ 225364-9 / Appendix A

61. Check constraints:

a. May be used to implement a one-to-many relationship

b. May be used to force a column to match a list of values

c. May be used to force a column to match another column in the same row

d. May be used to force a column to match another column in another table

e. May be used to force a numeric column to have only positive values

62. When converting normalized relations to tables:

a. Unique identifiers become primary key constraints.

b. Each normalized relation becomes a table.

c. Relationships become unique constraints.

d. Each attribute in a relation becomes a table column.

e. Primary key columns must be defined with check constraints.

63. JDBC:

a. Was developed by Microsoft

b. Can be used by C programs to connect to databases

c. Can be used by Java programs to connect to databases

d. Cannot handle proprietary SQL statements

e. Is a standard API for connecting web servers to application servers

64. XML:

a. Is a protocol used to transfer web pages

b. Is HTML on steroids

c. Is used for database replication

d. Is a document formatting language

e. Allows developers to code their own tags

65. A URL may contain

a. A host name or IP address

b. An SQL statement

c. A port

d. A web page

e. The absolute path to a resource on a web server

66. An intranet is

a. Usually protected by a firewall

b. Never connected to the Internet

c. Available to anyone on the Internet

d. Available to authorized (internal) members of an organization

e. A worldwide collection of interconnected computer networks

P:\010Comp\DeMYST\364-9\appa.vp
Monday, February 09, 2004 9:13:14 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Final Exam 319

Demystified / Databases Demystified / Oppel/ 225364-9 / Appendix A

67. An extranet is

a. A worldwide collection of interconnected computer networks

b. Available to anyone on the Internet

c. Available to authorized (internal) members of an organization

d. Available to authorized outsiders such as customers of an organization

e. Protected by a firewall

68. The N-tier client/server model:

a. Has a database hosted on a centralized server

b. Has all application logic running on the client workstation

c. Uses a web browser for presentation

d. Requires high-powered client workstations

e. Has the client workstation handle all presentation logic

69. The three-tier client/server model:

a. Has a database hosted on a centralized server

b. Has all application logic running on the client workstation

c. Uses a web browser for presentation

d. Requires high-powered client workstations

e. Has the client workstation handle all presentation logic

70. The two-tier client/server model:

a. Has a database hosted on a centralized server

b. Has all application logic running on the client workstation

c. Uses a web browser for presentation

d. Requires high-powered client workstations

e. Has the client workstation handle all presentation logic

71. Database roles:

a. May exist before users do

b. May contain no more than 16 system privileges

c. May contain any number of object privileges

d. May be assigned to any number of users

e. Are automatically dropped when users are dropped

72. Database system privileges:

a. Are rescinded using the SQL ALTER statement

b. Are granted using a standard SQL GRANT statement

c. Are specific to a database object

d. Vary considerably across different DBMS vendors and versions

e. Automatically allow the grantee to grant the privilege to other users

P:\010Comp\DeMYST\364-9\appa.vp
Monday, February 09, 2004 9:13:14 AM

Color profile: Generic CMYK printer profile
Composite Default screen

73. Database object privileges:

a. Are rescinded using the SQL DROP statement

b. Are granted using a standard SQL ALTER statement

c. Are specific to a database object

d. Are included in SQL standards, so there is little variation among vendors

e. Automatically allow the grantee to grant the privileges to other users

74. Security considerations for the client workstation include

a. Use of a virus scanner

b. The web browser security level

c. The MAC address lists

d. A properly configured firewall

e. Packet filtering

75. Security considerations for the database server include

a. Applying security patches in a timely manner

b. Writing down passwords so they are not forgotten

c. Changing all default passwords

d. Installing every available operating system and database feature

e. Assigning complex passwords that are difficult to guess

76. Security considerations for a wireless access point include

a. Network address translation

b. Encryption

c. MAC address lists

d. Setting a strictly enforced organization standard for its use

e. The use of a firewall between the wireless device and the access point

77. Security considerations for access to an enterprise network from a remote

work location include

a. A firewall between the remote client workstation and the cable or

DSL modem

b. The use of a VPN

c. Encrypting critical and sensitive data when transferred over the network

d. The use of IP spoofing

e. Network address translation

78. Security considerations for the enterprise network include

a. Special considerations for any remotely connected users

b. A firewall protecting each layer of the network

c. Packet filtering using the routing tables in the routers

d. Clearly written and strictly enforced standards

e. Network address translation

320 Databases Demystified

P:\010Comp\DeMYST\364-9\appa.vp
Monday, February 09, 2004 9:13:14 AM

Color profile: Generic CMYK printer profile
Composite Default screen

79. An SQL cursor is

a. A process that checks SQL for correct syntax

b. A buffer that holds rows retrieved from the database

c. A method used to determine which table columns need indexes

d. A pointer into a result set

e. The same as a result set

80. Properties of transactions include

a. Must be either completely processed or not processed at all

b. Isolation from other transactions

c. Prevention of deadlocks

d. Transforming the database from one consistent state to another

e. Those described by the ACID acronym

81. The letter A in the acronym ACID stands for:

a. Automated

b. Abbreviated

c. Atomicity

d. Autonomous

e. Analog

82. Database locks:

a. Are implemented in exactly the same way by all major database vendors

b. Are controls placed by the DBMS to reserve data so updates may be

safely applied

c. Are usually released when a COMMIT or ROLLBACK takes place

d. May have a timeout period set by the DBMS

e. May cause contention when other users attempt to update locked data

83. A deadlock:

a. May be resolved automatically by the DBMS

b. May not be resolved automatically by the DBMS

c. Occurs when locks time out and are no longer needed

d. Occurs when locks are deleted by the DBMS

e. Occurs when two database users each request a lock on data that is

locked by the other

84. Concurrent database updates:

a. Are prohibited by modern DBMSs

b. Can cause data loss when proper controls are not in place

c. Cannot occur when AUTOCOMMIT is set to ON

d. Can be done safely when transaction locking is supported by the DBMS

e. Can cause contention when locking mechanisms are in place

Final Exam 321

P:\010Comp\DeMYST\364-9\appa.vp
Monday, February 09, 2004 9:13:14 AM

Color profile: Generic CMYK printer profile
Composite Default screen

85. An index cannot be used for a WHERE clause predicate that:

a. Uses the LIKE operator

b. Uses the IN operator

c. Uses the NOT operator

d. Uses the NOT EQUAL operator

e. Uses an aggregate function

86. Benefits of a change control process are

a. It provides a log of all changes made.

b. It can allow defective software versions to be backed out.

c. It can prevent programming errors from being placed into production.

d. It helps to isolate performance bottlenecks.

e. It can help with understanding when changes may be installed.

87. Data warehousing:

a. Is a form of an OLTP database

b. Was pioneered by Bill Inmon

c. Involves storing historical data for analysis

d. May involve one or more data marts

e. Involves storing data required for day-to-day operations of the

organization

88. Data marts:

a. Support the requirements of a particular department or business function

b. Can be a good starting point when requirements are sketchy

c. Are supersets of a data warehouse

d. Are the systems from which the enterprise data warehouse loads its data

e. Can be a good starting point for organizations with limited data warehouse

experience

89. The summary table architecture:

a. Was originally developed by Ralph Kimball

b. Was originally developed by Bill Inmon

c. Includes a fact table

d. Includes dimension tables

e. Should include metadata

90. The star schema architecture:

a. Was originally developed by Ralph Kimball

b. Was originally developed by Bill Inmon

c. Includes a fact table

d. Includes dimension tables

e. Should include metadata

322 Databases Demystified

P:\010Comp\DeMYST\364-9\appa.vp
Monday, February 09, 2004 9:13:14 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Final Exam 323

Demystified / Databases Demystified / Oppel/ 225364-9 / Appendix A

91. A data warehouse is

a. Organized around one department or business function

b. Subject oriented

c. Updated periodically according to a prescribed schedule

d. Usually loaded from only one data source

e. Time variant

92. Data mining:

a. Is an analysis method that finds previously unknown data correlations

b. Is a subset of a data warehouse

c. Can be successful with small amounts of data

d. Can only be successful with large amounts of data

e. Is a scaled-down data warehouse

93. Compared with OLTP systems, data warehouse systems:

a. Have short-running queries that process limited amounts of data

b. Have a medium to low transaction volume

c. Hold current rather than historic data

d. Provide information for strategic decision makers

e. Have many more regular users

94. Normalization:

a. Was developed by Dr. Codd

b. Was first introduced with five normal forms

c. First appeared in 1972

d. Provides a set of rules for each normal form

e. Provides a procedure for converting relations to each normal form

95. When implemented, a third normal form relation becomes

a. An index

b. A referential constraint

c. A table

d. A view

e. A database

96. The roles of unique identifiers in normalization are

a. They are unnecessary.

b. They are required once you reach third normal form.

c. All normalized forms require designation of a primary key.

d. You cannot normalize relations without first choosing a primary key.

e. You cannot choose a primary key until relations are normalized.

P:\010Comp\DeMYST\364-9\appa.vp
Monday, February 09, 2004 9:13:14 AM

Color profile: Generic CMYK printer profile
Composite Default screen

97. Criteria useful in selecting a primary key from among several candidate

keys are

a. Choose the simplest candidate.

b. Choose the shortest candidate.

c. Choose the candidate most likely to have its value change.

d. Choose concatenated keys over single attribute keys.

e. Invent a surrogate key if that is the best possible key.

98. First normal form resolves anomalies caused by:

a. Transitive dependencies

b. Multivalued attributes

c. Partial dependency on the primary key

d. Repeating groups

e. Join dependencies

99. Second normal form resolves anomalies caused by:

a. Transitive dependencies

b. Multivalued attributes

c. Partial dependency on the primary key

d. Repeating groups

e. Join dependencies

100. Third normal form resolves anomalies caused by:

a. Transitive dependencies

b. Multivalued attributes

c. Partial dependency on the primary key

d. Repeating groups

e. Join dependencies

324 Databases Demystified

P:\010Comp\DeMYST\364-9\appa.vp
Monday, February 09, 2004 9:13:14 AM

Color profile: Generic CMYK printer profile
Composite Default screen

CHAPTE
R B

Answers to Quizzes
and Final Exam

Chapter 1
1. a, d, e 2. a, b, d 3. b, d, e 4. a, c, d, e 5. a, c ,d

6. b, c, d 7. c, e 8. a, b, c, d, e 9. c, d 10. b, d

11. a, b, c, e 12. a, d, e 13. b, e 14. b, d 15. a, d, e

16. a, b, d 17. b, c, d, e 18. a, b, e 19. a, c, e 20. c, d

Chapter 2
1. a, c 2. b, e 3. b 4. a, b, d 5. d

6. a, c 7. b, d, e 8. a, c, e 9. a, b, e 10. b, c, d, e

11. a, d, e 12. d 13. a, b 14. c, d 15. a, c, d

16. b 17. c 18. a 19. d 20. e

325

P:\010Comp\DeMYST\364-9\appb.vp
Monday, February 09, 2004 9:11:31 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Copyright © 2004 by The McGraw-Hill Companies. Click here for terms of use.

326 Databases Demystified

Demystified / Databases Demystified / Oppel/ 225364-9 / Appendix B

Chapter 3
1. d 2. a, b 3. e 4. a, d 5. c

6. a, b, c, d, e 7. c 8. a 9. b 10. a, e

11. a, b, e 12. e 13. b, d, e 14. b, d 15. c, e

16. b, d 17. b 18. a, c, d, e 19. a 20. a, d

Chapter 4
1. b, d 2. a, e 3. b, c, d 4. a 5. b, c

6. a, d 7. b, e 8. c, e 9. d 10. b, e

11. b, d, e 12. b, d 13. a, b, c, d, e 14. c, d 15. c

16. a 17. c, d, e 18. a, b, e 19. b 20. b, e

Chapter 5
1. a, b, d, e 2. b, c 3. a, c, d, e 4. b, c 5. a

6. c, e 7. a, b, e 8. b, c, d 9. a, b, e 10. a, c, d

11. a, b 12. a, c, e 13. b, d, e 14. a, b, d 15. d

16. a 17. e 18. c 19. b, d 20. a

Chapter 6
1. a, c, d, e 2. b, e 3. c 4. d 5. c

6. a 7. c, d 8. b, c, d 9. a, b, e 10. b, d

11. c 12. a 13. b 14. a, b, d 15. d

16. a 17. c 18. e 19. c 20. e

Chapter 7
1. d, e 2. a, b, d 3. c 4. a, b 5. b, d

6. a, b, c 7. a, c 8. c, e 9. a, b, d 10. c, e

11. b, d, e 12. a, b, e 13. b, d 14. c, e 15. a, c, d

16. a, c, e 17. b, d 18. a, c, e 19. b, c, e 20. a, c, d

P:\010Comp\DeMYST\364-9\appb.vp
Monday, February 09, 2004 9:11:32 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Answers to Quizzes and Final Exam 327

Demystified / Databases Demystified / Oppel/ 225364-9 / Appendix B

Chapter 8
1. c, d 2. a, b, e 3. b, d 4. b, c, d 5. c, e

6. b, d 7. b, c, e 8. b, c 9. a, b, d, e 10. a, d

11. b, d 12. a, d 13. b, e 14. a, b, c 15. b, e

16. a, c, d 17. b, c, d, e 18. a, b, c, d, e 19. a, b, d 20. a, b, e

Chapter 9
1. b, c 2. a, c, e 3. c, d, e 4. a, c, d 5. a, b, c, d

6. b, d, e 7. b, d, e 8. b, c, d, e 9. a, c, e 10. a, b, c, d, e

11. b, d 12. a, b, c, e 13. a, b, c, d, e 14. b, d, e 15. a, c, d

16. c, e 17. a, b, e 18. a, d, e 19. b, c 20. a, b, e

Chapter 10

1. a, c, d, e 2. b, c, d, e 3. d, e 4. a, c, d 5. b, d

6. a, b, d, e 7. b, c, e 8. a, c, d 9. b, d, e 10. a, c, d

11. b, d, e 12. a, c, d 13. b, c, e 14. b, c, d, e 15. b, c, e

16. a, c, e 17. a, b, e 18. a, c, d 19. b, c, d 20. a, c

Chapter 11
1. b 2. a 3. a, c 4. b, c, d, e 5. d

6. a, d, e 7. a, e 8. c, d 9. a, c, e 10. a, b, c, d, e

11. b, c, d, e 12. a, c, d, e 13. b, e 14. a, b, d 15. b, d, e

16. a, b, d 17. b, c 18. a, b 19. b, c, d, e 20. b, d, e

Chapter 12
1. c, d 2. e 3. b, c, d, e 4. a, b, c 5. b, d, e

6. a, c, d 7. a, d, e 8. d 9. a, d 10. b, c, d, e

11. a, d 12. a, b 13. b, d, e 14. a, c, d, e 15. b, c, e

16. a, b 17. b, c, e 18. a, b, d 19. b, d, e 20. a, b, e

P:\010Comp\DeMYST\364-9\appb.vp
Monday, February 09, 2004 9:11:32 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Answers to Final Exam
1. b, d, e 2. a, c, e 3. b, d 4. a, c, e 5. c, e

6. c, d, e 7. a, b, c 8. c, d 9. b 10. c

11. a 12. e 13. d 14. a, c 15. b, d, e

16. d 17. a, c 18. a, b, c, d, e 19. b 20. e

21. a, d 22. a, b, c, d 23. a, d 24. b, c, d 25. a, c

26. b 27. a, c 28. b, c 29. a, b, c 30. a, c

31. c, e 32. a, b, c, e 33. b, c, e 34. a, d 35. b, c, e

36. b, d, e 37. a, b, d 38. a, b, c 39. b, d 40. b, e

41. c 42. b 43. c 44. a, c 45. a, b, c, e

46. a, b, c, d, e 47. c 48. a, b, d 49. b, d 50. a, b, e

51. c, d 52. a, c 53. b, d, e 54. a, d, e 55. b, d, e

56. a, c 57. b, c 58. a, c 59. b, d 60. a, c, d

61. b, c, e 62. a, b, d 63. c 64. b, d, e 65. a, c, e

66. a, d 67. c, d, e 68. a, c, e 69. a, e 70. a, b, d, e

71. a, c, d 72. b, d 73. c, d 74. a, b 75. a, c, e

76. b, c, d 77. a, b, c, e 78. a, b, d, e 79. d 80. a, b, d, e

81. c 82. b, c, d, e 83. a, b, e 84. b, d, e 85. c, d, e

86. a, b, e 87. b, c, d 88. a, b, e 89. b, e 90. a, c, d, e

91. b, c, e 92. a, d 93. b, d 94. a, c, d, e 95. c

96. c, d 97. a, b, e 98. b, d 99. c 100. a

328 Databases Demystified

P:\010Comp\DeMYST\364-9\appb.vp
Monday, February 09, 2004 9:11:32 AM

Color profile: Generic CMYK printer profile
Composite Default screen

INDEX

References to figures and illustrations are in italics.

? (question mark), 104

% (percent sign), 104

* (asterisk), 104

_ (underscore character), 104

A
abstraction, layers of, 3–5

Access. See Microsoft Access

ACID, 276

aggregate functions, 80–82, 83

with GROUP BY, 112–114

mixed aggregate and normal columns

(error), 112, 113

simple, 112

ALTER TABLE statements, 119–121

analysis paralysis, 133

anomalies, 147

delete anomaly, 148

insert anomaly, 148

in second normal form, 157–158

update anomaly, 148

ANSI/SPARC, 3

answers

to final exam, 328

to quizzes, 325–327

applications, 3

connecting databases to, 240–242

data encryption, 256–257

flat file, 8–9

gateways, 251

login credentials, 256

ARPANET, 237

artificial identifiers, 151

asymmetric keys, 256

atomicity, 276

attributes, 27–28

multivalued, 150

autocommit mode, 277, 278

B
Bachman, Charles W., 17–18

BETWEEN operator, 104

Boyce-Codd normal form (BCNF), 160–162

buffers, 274

buffer overflows, 258

bugs, 138

build numbering, 287

business rules, 32

CHECK constraints, 218

data types, precision, and scale, 218–219

foreign key constraints, 216–217

integrating with data integrity, 214–215

NOT NULL constraints, 216

primary key constraints, 216

329

P:\010Comp\DeMYST\364-9\index.vp
Tuesday, February 10, 2004 11:12:36 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Copyright © 2004 by The McGraw-Hill Companies. Click here for terms of use.

referential constraints, 216–217

triggers, 219–220

unique constraints, 217–218

C
CA-INGRES, 18

Call Level Interface (CLI), 240

candidates, 152

Cartesian products, 108–109

cascading deletes, 39, 41

cascading updates, 41

catalog views, 96, 97

centralized deployment model, 228–229

CGI, 239

non-CGI gateways, 240

change control, 287–288

change request tracking, 287

CHECK constraints, 43–44, 121, 218

check-out/check-in, 288

Chen, Peter, 18, 180

Chen’s format, 180–181

chicken method, 138

cipher text, 256

circuit-level gateways, 251

class hierarchy, 16

client tools, 91–92

client/server deployment model

N-tier, 234–235

three-tier, 233–234

two-tier, 231–233

Codd, E.F., 13, 17–18, 136

and normalization, 145

columns, 34–36

calculated, 77–80

choosing to display, 63–64

functions, 81

limiting columns to display, 100–101

naming conventions, 212

COMMIT statements, 114–115

Common Gateway Interface, 239

non-CGI gateways, 240

comparison operators, 70, 71

Computer Books Company (CBC), 170–173

conceptual database design, 25, 26, 135–136

attributes, 27–28

business rules, 32

entities, 27

relationships, 28–32

concurrent update problem, 279–280

Conference on Data Systems Languages

(CODASYL), 17

consistency, 276

constraints, 32

CHECK, 43–44, 121, 218

defined, 37

enforcing using triggers, 44–45

foreign key, 37–41, 216–217

integrity, 42–45

naming conventions, 212–213

NOT NULL, 43, 216

primary key, 37, 120, 216

referential, 37–41, 120, 216–217

unique, 120–121, 217–218

contention, 281

cookies, 257–258

correlated subselects, 107

CREATE INDEX statements, 121–122

CREATE TABLE statements, 118–119

CREATE VIEW statements, 121

CRUD matrix, 196–197

cursor processing, 273–275

Customers table, listing entire, 62–63

D
Data Control Language (DCL), 90, 122–124

Data Definition Language (DDL), 90, 118–122

data encryption, 256–257

data flow diagram, 194–196

data integrity, 214

Data Manipulation Language (DML), 90,

114–118

tuning DML statements, 286

data marts, 301–302

data mining, 302–303

data modelers, 25

Data Query Language (DQL), 90

SELECT statements, 100–114

330 Databases Demystified

P:\010Comp\DeMYST\364-9\index.vp
Tuesday, February 10, 2004 11:12:36 AM

Color profile: Generic CMYK printer profile
Composite Default screen

data stores, 194–195

data types, 34–36, 218–219

data warehousing, 293–294

challenges to creating, 295

defined, 294

multidimensional databases, 299–301

snowflake schema, 299

star schema architecture, 297–299

starflake schema, 299

summary table architecture, 296–297

database administrators. See DBAs

database clients and application security, 255–258

database design

conceptual, 25, 26–32

logical, 25, 33–46

physical, 26, 33–46

database designers, 25–26

Database Management System, 2–3

catalog, 6

database models

defined, 2

flat files, 7–9

hierarchical model, 9–11

network model, 11–13

object-oriented model, 15–16

object-relational model, 16–17

relational model, 13–15

database objects

defined, 2, 15

finding using catalog views, 97

viewing using Oracle Enterprise Manager,

98–99

databases

connecting to applications, 240–242

connecting to the Web, 235–240

defined, 1–2

history of, 17–19

life cycle, 129–130

properties of, 1–7

security, 260

DB2, 18, 91

DBAs, 4

DBMS. See Database Management System

deadlocks, 282–283

See also locking mechanisms

delete anomaly, 148

DELETE statements, 117–118

tuning, 286

deliverables, 129

denial of service attacks, 251

denormalization, 163–164

See also normalization

dependent entities, 184

deployment models

centralized model, 228–229

client/server model, 231–235

distributed model, 229–230

DFD. See data flow diagram

dimension tables, 298

distributed deployment model, 229–230

document review, 135

domain-key normal form (DKNF), 163

DROP statements, 122

durability, 276

E
Ellison, Larry, 18

encapsulation, 15

encryption, 256–257

entities, 27

relating, 196–197

entity-relationship diagrams, 14, 18, 180

Chen’s format, 180–181

formats, 180–184

guidelines, 188–189

IDEF1X format, 182–184, 185–186

relational format, 181–182

entity-relationship modeling, 180

Epstein, Bob, 19

ERDs. See entity-relationship diagrams

exam, final, 307–324

explicit mode, 277

expressions, 100–101

Extensible Markup Language, 238

INDEX 331

P:\010Comp\DeMYST\364-9\index.vp
Tuesday, February 10, 2004 11:12:36 AM

Color profile: Generic CMYK printer profile
Composite Default screen

external design, 135

external entities, 27

external layer, 5

See also layers of abstraction

external model, 5

extranets, 237

F
fact tables, 298

fifth normal form, 163

files, 2

See also flat files

final exam, 307–324

firewalls, 237, 251

first normal form, 153–155

flat files, 7–9

See also database models

flowcharts, 190–192

foreign key constraints, 37–41, 216–217

naming, 189

forms, 55

forms-based queries, 52

fourth normal form, 162–163

functional dependence, 156

functions

aggregate, 80–82, 83, 112–114

column, 81

function hierarchy diagram, 192–193

G
Gane, Chris, 194

General Electric, 17

Generalized Update Access Method (GUAM), 17

GRANT statements, 123

grantees, 122

GROUP BY clause, aggregate functions with the,

112–114

H
Hawthorne effect, 135

hierarchical model, 9–11

See also database models

host language variables, 275

HP ALLBASE, 18

Hypertext Markup Language (HTML), 238

Hypertext Transfer Protocol (HTTP), 237

I
IBM, 17, 90–91

IDEF1X format, 182–184, 185–186

identifying relationships, 183

IDMS/SQL, 18

Illustra, 19

implicit mode, 277, 278

independence

logical data, 6–7

physical data, 5–6

indexes, 37

adding for performance, 221–222

index selectivity, 285

naming conventions, 213

Information Management System (IMS), 17

Informix, 19

INGRES DBMS, 18, 91

Inmon, William H., 293, 296

inner joins, 72–74

of two tables, 109

insert anomaly, 148

INSERT statements, 115–116

tuning, 286

instances, 27, 261

defined, 1

See also object instances

Integrated Data Store (IDS), 17

integrity constraints, 42–45

internal design, 136

Internet

Internet computing model, 234–235

isolating the enterprise network from the, 250

overview, 236–238

intersection data, 31

intersection tables, 41–42

interviews, conducting, 133–134

intranets, 237

IP spoofing, 251

isolation, 276

332 Databases Demystified

P:\010Comp\DeMYST\364-9\index.vp
Tuesday, February 10, 2004 11:12:36 AM

Color profile: Generic CMYK printer profile
Composite Default screen

J
Java applications, connecting databases to,

241–242

Java Database Connectivity, 241–242

Java Relational Binding, 242

Java SQL, 242

JDBC, 241–242

joining, 14

inner joins, 72–74, 109

limiting join results, 72–74, 110–111

multiple joins, 77–80

outer joins, 75–77, 78

outer joins in Oracle, 110

self-joins, 82–84, 110

tables, 70–72, 73, 108–111

Joint Application Design (JAD), 140

JRB, 242

JSQL, 242

K
Kimball, Ralph, 297

King, Frank, 18

L
layers of abstraction, 3, 4

external layer, 5

logical layer, 5

physical layer, 4

life cycle, 129–130

nontraditional methods, 139–140

prototyping, 139–140

system development life cycle (SDLC),

130–139

LIKE operator, 104–105

limiting columns to display, 100–101

limiting join results, 110–111

listing all employees, 100, 101

locking mechanisms, 280–281

deadlocks, 282–283

logical database design, 25, 136

columns and data types, 34–36

constraints, 37–42

integrity constraints, 42–45

tables, 33–34

using normalization, 145–173

views, 45–46

logical data independence, 6–7

logical layer, 5

See also layers of abstraction

login

credentials, 256

security, 259–260

M
MAC address lists, 254

macros, 55

many-to-many relationships, 31

mapping, 25

direct mapping of RDBMS tables to Java

classes, 242

master database, 260–261

maximum cardinality, 28, 183–184

metadata, 7

methods, defined, 15

Microsoft Access

advanced sorting, 66, 67

aggregate functions, 80–82, 83

calculated columns, 77–80

choosing columns to display, 63–64

choosing rows to display, 66–68

compound row selection, 68–69

creating queries in, 59–85

Datasheet View, 57

Design View, 57–59

getting started in, 52–55

joining tables, 70–72, 73

limiting join results, 72–74

listing entire Customers table, 62–63

multiple joins, 77–80

outer joins, 75–77, 78

Queries window, 59

Query Design View panel, 60–62

Relationships panel, 55–57

self-joins, 82–84

sorting results, 64–65

using not equal, 70, 71

INDEX 333

P:\010Comp\DeMYST\364-9\index.vp
Tuesday, February 10, 2004 11:12:36 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Microsoft SQL Server

database security in, 259–261

system privilege examples, 264

transaction support in, 277–278

middleware, 242

minimum cardinality, 28, 183–184

model database, 261

models, database, 2

modules, 55

MOLAP databases, 299–301

msdb database, 261

multidimensional OLAP databases, 299–301

multiple joins, 77–80

multivalued attributes, 150

N
namespace, 100, 213

naming conventions

columns, 212

constraints, 212–213

indexes, 213

tables, 211

views, 213–214

natural identifiers, 151

network address translation (NAT), 252

network computing devices, 235

network model, 11–13

See also database models

network security, 250

isolating the enterprise network from the

Internet, 250–253

securing wireless network access, 253–254

nodes, 10

non-CGI gateways, 240

noncorrelated subselects, 107

non-identifying relationships, 183

nonprocedural languages, 191

normalization, 33, 136

applying, 148–163

Computer Books Company (CBC), 170–173

logical database design using, 145–173

need for, 147–148

practice problems, 164–173

process, 146

TLA University academic tracking, 164–170

See also denormalization

North American Aviation (NAA), 17

not equal, 70, 71

NOT NULL constraints, 43, 216

O
object instances, 16

object privileges, 123, 261, 265

object request brokers, 230

object-oriented model, 15–16

See also database models

object-relational model, 16–17

See also database models

objects, defined, 2, 15

observation, 134–135

ODBC, 240–241

OEM, 98–99

OLAP, 294

OLTP, 294

compared with data warehouse systems, 295

one-to-many relationships, 30

in a hierarchical model, 10

one-to-one relationships, 28–29

online analytical processing. See OLAP

online transaction processing. See OLTP

Open Database Connectivity, 240–241

operators, 70, 71

BETWEEN, 104

LIKE, 104–105

OR, 105, 106

OR. See object-relational model

OR operator, 105, 106

Oracle, 18

database security in, 261–263

Enterprise Manager, 98–99

outer joins, 110

Personal Edition, 89–90

SQL, 91–96

system privilege examples, 264–265

transaction support in, 278

outer joins, 75–77, 78

in Oracle, 110

owner-member relationships, 12

334 Databases Demystified

P:\010Comp\DeMYST\364-9\index.vp
Tuesday, February 10, 2004 11:12:36 AM

Color profile: Generic CMYK printer profile
Composite Default screen

P
packets, 250

filtering, 251

pages, 55

parent-child relationships, 12–13

partitioning, 33

performance tuning, 283–284

tuning database queries, 284–285

permissions, 261

See also privileges

persistence, 276

physical database design, 26, 136–137, 203

adding indexes for performance, 221–222

columns and data types, 34–36

constraints, 37–42

designing tables, 204–214

designing views, 220–221

implementing super types and subtypes,

208–210

integrating business rules and data integrity,

214–220

integrity constraints, 42–45

tables, 33–34

views, 45–46

physical data independence, 5–6

physical layer, 4

See also layers of abstraction

physical security, 249–250

pointers, 10

port scans, 252

precision, 218–219

primary key constraints, 37, 120, 216

choosing a primary key, 151–153

naming, 189

prioritization of changes, 287

private keys, 256

privileges, 122–123, 261, 263

procedural languages, 191

process models, 189–196

processes, relating, 196–197

prototyping, 139–140

proxy servers, 251–252

public keys, 256

Q
QBE, 52

queries, 55

creating in Microsoft Access, 59–85

Query By Example. See QBE

query execution plan, 284

query languages, 3

quizzes

answers, 325–327

Chapter 1, 20–23

Chapter 2, 46–49

Chapter 3, 85–88

Chapter 4, 124–127

Chapter 5, 141–144

Chapter 6, 174–177

Chapter 7, 198–201

Chapter 8, 222–226

Chapter 9, 242–246

Chapter 10, 268–271

Chapter 11, 288–291

Chapter 12, 303–306

R
Rapid Application Development (RAD), 140

RDBMSs. See Relational Database Management

Systems

record types, 9

records, 10

recursive relationships, 31–32

Red Brick, 297–298

referential constraints, 37–41, 120, 216–217

referential integrity, 41

relational calculus, 18

Relational Database Management Systems, 15

relational format, 181–182

relational model, 13–15

features of, 19

See also database models

relationships, 28

many-to-many, 31

Microsoft Access Relationships panel, 55–57

one-to-many, 10, 30

one-to-one, 28–29

recursive, 31–32

INDEX 335

P:\010Comp\DeMYST\364-9\index.vp
Tuesday, February 10, 2004 11:12:36 AM

Color profile: Generic CMYK printer profile
Composite Default screen

release numbering, 287

repeating groups, 153–155

reports, 55

result sets, 273

REVOKE statements, 123–124

roles, 95, 123, 265–266

ROLLBACK statements, 114–115

routers, 250

routing tables, 250

rows

choosing to display, 66–68, 103–108

compound row selection, 68–69

S
Sarson, Trish, 194

scale, 218–219

schemas, 262–263

defined, 2

logical layer, 5

owner accounts, 263–264

subschemas, 5

scripting languages, 258

second normal form, 156–158

security

architectures, 259–263

cookies, 257–258

data encryption, 256–257

database access, 258–267

database clients and application security,

255–258

login credentials, 256

in Microsoft SQL Server, 259–261

monitoring and auditing, 267

need for, 247–248

network, 250–254

object privileges, 265

in Oracle, 261–263

physical, 249–250

roles, 265–266

schema owner accounts, 263–264

scripting languages, 258

in Sybase, 259–261

system privileges, 264–265

system-level, 255

views, 266–267

Web browser security level, 257–258

SELECT statements, 100–114

self-joins, 82–84, 110

server privileges, 261

servers, 55

Server-Side Includes, 239

sets, 12

Slammer worm, 247–248

sorting

advanced, 66, 67

results, 64–65, 102

SQL, 40

aggregate functions, 112–114

ALTER TABLE statements, 119–121

BETWEEN operator, 104

Cartesian products, 108–109

choosing rows to display, 103–108

COMMIT and ROLLBACK statements,

114–115

compound conditions using OR, 105, 106

CREATE INDEX statements, 121–122

CREATE TABLE statements, 118–119

CREATE VIEW statements, 121

DELETE statements, 117–118

DROP statements, 122

embedded SQL for Java, 242

GRANT statements, 123

history of, 90–91

injection, 258

inner joins of two tables, 109

INSERT statements, 115–116

LIKE operator, 104–105

limiting columns to display, 100–101

limiting join results, 110–111

listing all employees, 100, 101

Oracle, 91–96

outer joins in Oracle, 110

REVOKE statements, 123–124

self-joins, 110

simple WHERE clause, 103

sorting results, 102

statements, 90

336 Databases Demystified

P:\010Comp\DeMYST\364-9\index.vp
Tuesday, February 10, 2004 11:12:36 AM

Color profile: Generic CMYK printer profile
Composite Default screen

subselects, 106–108

tuning tips, 284–285

UPDATE statements, 116–117

See also Java SQL

SQL Plus, 91–96

SQL Plus Worksheet, 91, 93–96

SQL Server. See Microsoft SQL Server

SQL/DS, 18

SSI, 239

star schema data warehouse architecture,

297–299

state, 184

statement privileges, 261

Stonebraker, Michael, 18, 19

subclasses, 184

subqueries, 106–108

INSERT statements with, 116

subschemas, 5

subselects, 106–108

subtypes, 184–188

collapsing into the super type table, 210

implementing as discrete tables, 208–210

implementing as is, 208, 209

summary table data warehouse architecture,

296–297

super classes, 184

super types, 184–188, 208–210

surrogate identifiers, 151

surveys, conducting, 134

swim lane diagram, 193–194

Sybase, 18–19

database security in, 259–261

symmetric keys, 256

synonyms, 100, 213

System 10, 18–19

system development life cycle (SDLC), 130

conceptual database design, 135–136

conducting interviews, 133–134

conducting surveys, 134

construction, 137–138

document review, 135

implementation and rollout, 138

logical database design, 136

observation, 134–135

ongoing support, 138–139

physical database design, 136–137

planning, 130–132

requirements gathering, 132–135

system privileges, 122, 261, 264–265

System R, 18, 90

system-level security, 255

T
tables, 33–34, 54

designing, 204–214

dimension, 298

fact, 298

intersection, 41–42

joining, 70–72, 73, 108–111

listing entire Customers table, 62–63

naming conventions, 211

virtual, 45

tablespaces, 33

technology stack components, 238

tempdb database, 261

terminal emulators, 229

third normal form, 158–160

beyond, 160–163

TLA University academic tracking, 164–170

transactions

ACID, 276

concurrent update problem, 279–280

DBMS support for, 276–278

defined, 276

log, 277–278

support in Microsoft SQL Server, 277–278

support in Oracle, 278

transitive dependencies, 158–160

triggers, 219–220

constraint enforcement using, 44–45

U
Uniform Resource Locators. See URLs

URL spoofing, 258

unique constraints, 120–121, 217–218

unique identifiers, 27, 151–152

universal databases, 16

See also object-relational model

INDEX 337

P:\010Comp\DeMYST\364-9\index.vp
Tuesday, February 10, 2004 11:12:36 AM

Color profile: Generic CMYK printer profile
Composite Default screen

update anomaly, 148

UPDATE statements, 116–117

tuning, 286

URLs, 237

spoofing, 258

user views, 3, 133

Computer Books Company (CBC), 170–173

TLA University academic tracking, 165–167

users, 3, 261, 262

USER_TABLES, 97

USER_VIEWS, 97

V
VALUES clause, INSERT statements with,

115–116

variables

defined, 15

host language variables, 275

version numbering, 287

views, 45–46, 266–267

catalog views, 96, 97

designing, 220–221

naming conventions, 213–214

virtual private networks (VPNs), 252–253

virtual tables, 45

virus scanners, 258

W
Web

browser security level, 257–258

connecting databases to the, 235–240

cookies, 257–258

invoking transactions from Web pages,

239–240

overview, 236–238

technology stack components, 238

WHERE clause, 103

wildcards, 104–105

wireless networks, securing access, 253–254

Wong, Eugene, 18

World Wide Web. See Web

X
XML, 238

Z
zombie attacks, 251

338 Databases Demystified

P:\010Comp\DeMYST\364-9\index.vp
Tuesday, February 10, 2004 11:12:36 AM

Color profile: Generic CMYK printer profile
Composite Default screen

INTERNATIONAL CONTACT INFORMATION

AUSTRALIA
McGraw-Hill Book Company
Australia Pty. Ltd.
TEL +61-2-9900-1800
FAX +61-2-9878-8881
http://www.mcgraw-hill.com.au
books-it_sydney@mcgraw-hill.com

CANADA
McGraw-Hill Ryerson Ltd.
TEL +905-430-5000
FAX +905-430-5020
http://www.mcgraw-hill.ca

GREECE, MIDDLE EAST, & AFRICA
(Excluding South Africa)
McGraw-Hill Hellas
TEL +30-210-6560-990
TEL +30-210-6560-993
TEL +30-210-6560-994
FAX +30-210-6545-525

MEXICO (Also serving Latin America)
McGraw-Hill Interamericana Editores
S.A. de C.V.
TEL +525-1500-5108
FAX +525-117-1589
http://www.mcgraw-hill.com.mx
carlos_ruiz@mcgraw-hill.com

SINGAPORE (Serving Asia)
McGraw-Hill Book Company
TEL +65-6863-1580
FAX +65-6862-3354
http://www.mcgraw-hill.com.sg
mghasia@mcgraw-hill.com

SOUTH AFRICA
McGraw-Hill South Africa
TEL +27-11-622-7512
FAX +27-11-622-9045
robyn_swanepoel@mcgraw-hill.com

SPAIN
McGraw-Hill/
Interamericana de España, S.A.U.
TEL +34-91-180-3000
FAX +34-91-372-8513
http://www.mcgraw-hill.es
professional@mcgraw-hill.es

UNITED KINGDOM, NORTHERN,
EASTERN, & CENTRAL EUROPE
McGraw-Hill Education Europe
TEL +44-1-628-502500
FAX +44-1-628-770224
http://www.mcgraw-hill.co.uk
emea_queries@mcgraw-hill.com

ALL OTHER INQUIRIES Contact:
McGraw-Hill/Osborne
TEL +1-510-420-7700
FAX +1-510-420-7703
http://www.osborne.com
omg_international@mcgraw-hill.com

P:\010Comp\DeMYST\364-9\index.vp
Tuesday, February 10, 2004 11:15:20 AM

Color profile: Generic CMYK printer profile
Composite Default screen

P:\010Comp\DeMYST\364-9\index.vp
Tuesday, February 10, 2004 11:12:39 AM

Color profile: Generic CMYK printer profile
Composite Default screen

	cover.pdf
	page_r01.pdf
	page_r02.pdf
	page_r03.pdf
	page_r04.pdf
	page_r05.pdf
	page_r06.pdf
	page_r07.pdf
	page_r08.pdf
	page_r09.pdf
	page_r10.pdf
	page_r11.pdf
	page_r12.pdf
	page_r13.pdf
	page_r14.pdf
	page_r15.pdf
	page_r16.pdf
	page_r17.pdf
	page_r18.pdf
	page_r19.pdf
	page_r20.pdf
	page_z0001.pdf
	page_z0002.pdf
	page_z0003.pdf
	page_z0004.pdf
	page_z0005.pdf
	page_z0006.pdf
	page_z0007.pdf
	page_z0008.pdf
	page_z0009.pdf
	page_z0010.pdf
	page_z0011.pdf
	page_z0012.pdf
	page_z0013.pdf
	page_z0014.pdf
	page_z0015.pdf
	page_z0016.pdf
	page_z0017.pdf
	page_z0018.pdf
	page_z0019.pdf
	page_z0020.pdf
	page_z0021.pdf
	page_z0022.pdf
	page_z0023.pdf
	page_z0024.pdf
	page_z0025.pdf
	page_z0026.pdf
	page_z0027.pdf
	page_z0028.pdf
	page_z0029.pdf
	page_z0030.pdf
	page_z0031.pdf
	page_z0032.pdf
	page_z0033.pdf
	page_z0034.pdf
	page_z0035.pdf
	page_z0036.pdf
	page_z0037.pdf
	page_z0038.pdf
	page_z0039.pdf
	page_z0040.pdf
	page_z0041.pdf
	page_z0042.pdf
	page_z0043.pdf
	page_z0044.pdf
	page_z0045.pdf
	page_z0046.pdf
	page_z0047.pdf
	page_z0048.pdf
	page_z0049.pdf
	page_z0050.pdf
	page_z0051.pdf
	page_z0052.pdf
	page_z0053.pdf
	page_z0054.pdf
	page_z0055.pdf
	page_z0056.pdf
	page_z0057.pdf
	page_z0058.pdf
	page_z0059.pdf
	page_z0060.pdf
	page_z0061.pdf
	page_z0062.pdf
	page_z0063.pdf
	page_z0064.pdf
	page_z0065.pdf
	page_z0066.pdf
	page_z0067.pdf
	page_z0068.pdf
	page_z0069.pdf
	page_z0070.pdf
	page_z0071.pdf
	page_z0072.pdf
	page_z0073.pdf
	page_z0074.pdf
	page_z0075.pdf
	page_z0076.pdf
	page_z0077.pdf
	page_z0078.pdf
	page_z0079.pdf
	page_z0080.pdf
	page_z0081.pdf
	page_z0082.pdf
	page_z0083.pdf
	page_z0084.pdf
	page_z0085.pdf
	page_z0086.pdf
	page_z0087.pdf
	page_z0088.pdf
	page_z0089.pdf
	page_z0090.pdf
	page_z0091.pdf
	page_z0092.pdf
	page_z0093.pdf
	page_z0094.pdf
	page_z0095.pdf
	page_z0096.pdf
	page_z0097.pdf
	page_z0098.pdf
	page_z0099.pdf
	page_z0100.pdf
	page_z0101.pdf
	page_z0102.pdf
	page_z0103.pdf
	page_z0104.pdf
	page_z0105.pdf
	page_z0106.pdf
	page_z0107.pdf
	page_z0108.pdf
	page_z0109.pdf
	page_z0110.pdf
	page_z0111.pdf
	page_z0112.pdf
	page_z0113.pdf
	page_z0114.pdf
	page_z0115.pdf
	page_z0116.pdf
	page_z0117.pdf
	page_z0118.pdf
	page_z0119.pdf
	page_z0120.pdf
	page_z0121.pdf
	page_z0122.pdf
	page_z0123.pdf
	page_z0124.pdf
	page_z0125.pdf
	page_z0126.pdf
	page_z0127.pdf
	page_z0128.pdf
	page_z0129.pdf
	page_z0130.pdf
	page_z0131.pdf
	page_z0132.pdf
	page_z0133.pdf
	page_z0134.pdf
	page_z0135.pdf
	page_z0136.pdf
	page_z0137.pdf
	page_z0138.pdf
	page_z0139.pdf
	page_z0140.pdf
	page_z0141.pdf
	page_z0142.pdf
	page_z0143.pdf
	page_z0144.pdf
	page_z0145.pdf
	page_z0146.pdf
	page_z0147.pdf
	page_z0148.pdf
	page_z0149.pdf
	page_z0150.pdf
	page_z0151.pdf
	page_z0152.pdf
	page_z0153.pdf
	page_z0154.pdf
	page_z0155.pdf
	page_z0156.pdf
	page_z0157.pdf
	page_z0158.pdf
	page_z0159.pdf
	page_z0160.pdf
	page_z0161.pdf
	page_z0162.pdf
	page_z0163.pdf
	page_z0164.pdf
	page_z0165.pdf
	page_z0166.pdf
	page_z0167.pdf
	page_z0168.pdf
	page_z0169.pdf
	page_z0170.pdf
	page_z0171.pdf
	page_z0172.pdf
	page_z0173.pdf
	page_z0174.pdf
	page_z0175.pdf
	page_z0176.pdf
	page_z0177.pdf
	page_z0178.pdf
	page_z0179.pdf
	page_z0180.pdf
	page_z0181.pdf
	page_z0182.pdf
	page_z0183.pdf
	page_z0184.pdf
	page_z0185.pdf
	page_z0186.pdf
	page_z0187.pdf
	page_z0188.pdf
	page_z0189.pdf
	page_z0190.pdf
	page_z0191.pdf
	page_z0192.pdf
	page_z0193.pdf
	page_z0194.pdf
	page_z0195.pdf
	page_z0196.pdf
	page_z0197.pdf
	page_z0198.pdf
	page_z0199.pdf
	page_z0200.pdf
	page_z0201.pdf
	page_z0202.pdf
	page_z0203.pdf
	page_z0204.pdf
	page_z0205.pdf
	page_z0206.pdf
	page_z0207.pdf
	page_z0208.pdf
	page_z0209.pdf
	page_z0210.pdf
	page_z0211.pdf
	page_z0212.pdf
	page_z0213.pdf
	page_z0214.pdf
	page_z0215.pdf
	page_z0216.pdf
	page_z0217.pdf
	page_z0218.pdf
	page_z0219.pdf
	page_z0220.pdf
	page_z0221.pdf
	page_z0222.pdf
	page_z0223.pdf
	page_z0224.pdf
	page_z0225.pdf
	page_z0226.pdf
	page_z0227.pdf
	page_z0228.pdf
	page_z0229.pdf
	page_z0230.pdf
	page_z0231.pdf
	page_z0232.pdf
	page_z0233.pdf
	page_z0234.pdf
	page_z0235.pdf
	page_z0236.pdf
	page_z0237.pdf
	page_z0238.pdf
	page_z0239.pdf
	page_z0240.pdf
	page_z0241.pdf
	page_z0242.pdf
	page_z0243.pdf
	page_z0244.pdf
	page_z0245.pdf
	page_z0246.pdf
	page_z0247.pdf
	page_z0248.pdf
	page_z0249.pdf
	page_z0250.pdf
	page_z0251.pdf
	page_z0252.pdf
	page_z0253.pdf
	page_z0254.pdf
	page_z0255.pdf
	page_z0256.pdf
	page_z0257.pdf
	page_z0258.pdf
	page_z0259.pdf
	page_z0260.pdf
	page_z0261.pdf
	page_z0262.pdf
	page_z0263.pdf
	page_z0264.pdf
	page_z0265.pdf
	page_z0266.pdf
	page_z0267.pdf
	page_z0268.pdf
	page_z0269.pdf
	page_z0270.pdf
	page_z0271.pdf
	page_z0272.pdf
	page_z0273.pdf
	page_z0274.pdf
	page_z0275.pdf
	page_z0276.pdf
	page_z0277.pdf
	page_z0278.pdf
	page_z0279.pdf
	page_z0280.pdf
	page_z0281.pdf
	page_z0282.pdf
	page_z0283.pdf
	page_z0284.pdf
	page_z0285.pdf
	page_z0286.pdf
	page_z0287.pdf
	page_z0288.pdf
	page_z0289.pdf
	page_z0290.pdf
	page_z0291.pdf
	page_z0292.pdf
	page_z0293.pdf
	page_z0294.pdf
	page_z0295.pdf
	page_z0296.pdf
	page_z0297.pdf
	page_z0298.pdf
	page_z0299.pdf
	page_z0300.pdf
	page_z0301.pdf
	page_z0302.pdf
	page_z0303.pdf
	page_z0304.pdf
	page_z0305.pdf
	page_z0306.pdf
	page_z0307.pdf
	page_z0308.pdf
	page_z0309.pdf
	page_z0310.pdf
	page_z0311.pdf
	page_z0312.pdf
	page_z0313.pdf
	page_z0314.pdf
	page_z0315.pdf
	page_z0316.pdf
	page_z0317.pdf
	page_z0318.pdf
	page_z0319.pdf
	page_z0320.pdf
	page_z0321.pdf
	page_z0322.pdf
	page_z0323.pdf
	page_z0324.pdf
	page_z0325.pdf
	page_z0326.pdf
	page_z0327.pdf
	page_z0328.pdf
	page_z0329.pdf
	page_z0330.pdf
	page_z0331.pdf
	page_z0332.pdf
	page_z0333.pdf
	page_z0334.pdf
	page_z0335.pdf
	page_z0336.pdf
	page_z0337.pdf
	page_z0338.pdf
	page_z0339.pdf
	page_z0340.pdf
	important.pdf
	Local Disk
	articlopedia.gigcities.com

	1.pdf
	Local Disk
	file:///C|/Documents and Settings/me/デスクトップ/desktop/pictures/getpedia.html

	Copyright © 2004 by The McGraw-Hill Companies:
	 Click here for terms of use:

	Acknowledgments:
	Introduction:
	Chapter 1 Database Fundamentals:
	Properties of a Database:
	The Database Management System (DBMS):
	Layers of Data Abstraction:
	Physical Data Independence:
	Logical Data Independence:
	Prevalent Database Models:
	Flat Files:
	The Hierarchical Model:
	The Network Model:
	The Relational Model:
	The Object-Oriented Model:
	The Object-Relational Model:
	A Brief History of Databases:
	Why Focus on Relational?:
	Chapter 2 Exploring Relational Database Components:
	Conceptual Database Design Components:
	Entities:
	Attributes:
	Relationships:
	Business Rules:
	Logical/Physical Database Design Components:
	Tables:
	Columns and Data Types:
	Constraints:
	Integrity Constraints:
	Quiz:
	Chapter 3 Forms-Based Database Queries:
	QBE: The Roots of Forms-Based Queries:
	Getting Started in Microsoft Access:
	The Microsoft Access Relationships Panel:
	The Microsoft Access Table Design View:
	Creating Queries in Microsoft Access:
	Example 3-1: List All Customers:
	Example 3-2: Choosing Columns to Display:
	Example 3-3: Sorting Results:
	Example 3-4: Advanced Sorting:
	Example 3-5: Choosing Rows to Display:
	Example 3-6: Compound Row Selection:
	Example 3-7: Using Not Equal:
	Example 3-8: Joining Tables:
	Example 3-9: Limiting Join Results:
	Example 3-10: Outer Joins:
	Example 3-11: Multiple Joins; Calculated Columns:
	Example 3-12: Aggregate Functions:
	Example 3-13: Self-Joins:
	Chapter 4 Introduction to SQL:
	The History of SQL:
	Getting Started with Oracle SQL:
	WhereLs the Data?:
	Finding Database Objects Using Catalog Views:
	Viewing Database Objects Using Oracle Enterprise Manager:
	Data Query Language (DQL): The SELECT Statement:
	Example 4-1: Listing All Employees:
	Example 4-2: Limiting Columns to Display:
	Example 4-3: Sorting Results:
	Choosing Rows to Display:
	Joining Tables:
	Aggregate Functions:
	Data Manipulation Language (DML):
	Transaction Support (COMMIT and ROLLBACK):
	The INSERT Statement:
	The UPDATE Statement:
	The DELETE Statement:
	Data Definition Language (DDL) Statements:
	The CREATE TABLE Statement:
	The ALTER TABLE Statement:
	The CREATE VIEW Statement:
	The CREATE INDEX Statement:
	The DROP Statement:
	Data Control Language (DCL) Statements:
	The GRANT Statement:
	The REVOKE Statement:
	Chapter 5 The Database Life Cycle:
	The Traditional Method:
	Planning:
	Requirements Gathering:
	Conceptual Design:
	Logical Design:
	Physical Design:
	Construction:
	Implementation and Rollout:
	Ongoing Support:
	Nontraditional Methods:
	Prototyping:
	Rapid Application Development (RAD):
	Chapter 6 Logical Database Design Using Normalization:
	The Need for Normalization:
	Insert Anomaly:
	Delete Anomaly:
	Update Anomaly:
	Applying the Normalization Process:
	Choosing a Primary Key:
	First Normal Form: Eliminating Repeating Data:
	Second Normal Form: Eliminating Partial Dependencies:
	Third Normal Form: Eliminating Transitive Dependencies:
	Beyond Third Normal Form:
	Denormalization:
	Practice Problems:
	TLA University Academic Tracking:
	Computer Books Company:
	Chapter 7 Data and Process Modeling:
	Entity Relationship Modeling:
	ERD Formats:
	Super Types and Subtypes:
	Guidelines for Drawing ERDs:
	Process Models:
	The Flowchart:
	The Function Hierarchy Diagram:
	The Swim Lane Diagram:
	The Data Flow Diagram:
	Relating Entities and Processes:
	Chapter 8 Physical Database Design:
	Designing Tables:
	Implementing Super Types and Subtypes:
	Naming Conventions:
	Integrating Business Rules and Data Integrity:
	NOT NULL Constraints:
	Primary Key Constraints:
	Referential (Foreign Key) Constraints:
	Unique Constraints:
	Check Constraints:
	Data Types, Precision, and Scale:
	Triggers:
	Designing Views:
	Adding Indexes for Performance:
	Chapter 9 Connecting Databases to the Outside World:
	Deployment Models:
	Centralized Model:
	Distributed Model:
	Client/Server Model:
	Connecting Databases to the Web:
	Introduction to the Internet and the Web:
	Components of the Web "Technology Stack":
	Invoking Transactions from Web Pages:
	Connecting Databases to Applications:
	Connecting Databases via ODBC:
	Connecting Databases to Java Applications:
	Chapter 10 Database Security:
	Why Is Security Necessary?:
	Database Server Security:
	Physical Security:
	Network Security:
	System-Level Security:
	Database Client and Application Security:
	Login Credentials:
	Data Encryption:
	Other Client Considerations:
	Database Access Security:
	Database Security Architectures:
	Schema Owner Accounts:
	System Privileges:
	Object Privileges:
	Roles:
	Views:
	Security Monitoring and Auditing:
	Chapter 11 Database Implementation:
	Cursor Processing:
	Transaction Management:
	What Is a Transaction?:
	DBMS Support for Transactions:
	Locking and Transaction Deadlock:
	Performance Tuning:
	Tuning Database Queries:
	Tuning DML Statements:
	Change Control:
	Chapter 12 Databases for Online Analytical Processing:
	Data Warehouses:
	OLTP Systems Compared with Data Warehouse Systems:
	Data Warehouse Architecture:
	Data Marts:
	Data Mining:
	Final Exam:
	Answers to Quizzes and Final Exam:
	Chapter 1:
	Chapter 2:
	Chapter 3:
	Chapter 4:
	Chapter 5:
	Chapter 6:
	Chapter 7:
	Chapter 8:
	Chapter 9:
	Chapter 10:
	Chapter 11:
	Chapter 12:
	Index:

