DATABASE

DESIGN fo-

SMARTIES

ROBERT J. MULLER

Release Team[oR] 2001
[x] Database

Database Design for Smarties: Using UML for Data
Modeling
by Robert J. Muller ISBN: 1558605150

Morgan Kaufmann Publishers © 1999, 442 pages

Learn UML techniques for object-oriented database design.

«Table of Contents wColleague Comments

=wBack Cover

Synopsis by Dean Andrews

In Database Design for Smarties, author Robert Muller tells us that current
database products -- like Oracle, Sybase, Informix and SQL Server -- can be
adapted to the UML (Unified Modeling Language) object-oriented database
design techniques even if the products weren't designed with UML in mind.
The text guides the reader through the basics of entities and attributes
through to the more sophisticated concepts of analysis patterns and reuse
techniques. Most of the code samples in the book are based on Oracle, but
some examples use Sybase, Informix, and SQL Server syntax.

Table of Contents

Database Design for Smarties - 3

Preface - 5

Chapter 1 - The Database Life Cycle - 6

Chapter 2 - System Architecture and Design - 11

Chapter 3 - Gathering Requirements - 38

Chapter 4 - Modeling Requirements with Use Cases - 50

Chapter 5 - Testing the System - 65

Chapter 6 - Building Entity-Relationship Models - 68

Chapter 7 - Building Class Models in UML - 81

Chapter 8 - Patterns of Data Modeling - 116

Chapter 9 - Measures for Success - 134

Chapter 10 - Choosing Your Parents - 147

Chapter 11 - Designing a Relational Database Schema - 166
Chapter 12 - Designing an Object-Relational Database Schema - 212
Chapter 13 - Designing an Object-Oriented Database Schema - 236
Sherlock Holmes Story References - 259

Bibliography - 268
Index -

List of Figures - 266
List of Titles - 267

Back Cover

Whether building a relational, Object-relational (OR), or Object-oriented (OO)
database, database developers are incleasingly relying on an object-oriented
design approach as the best way to meet user needs and performance
criteria. This book teaches you how to use the Unified Modeling Language
(UML) -- the approved standard of the Object management Group (OMG) -- to
devop and implement the best possible design for your database.

Inside, the author leads you step-by-step through the design process, from
requirements analysis to schema generation. You'll learn to express
stakeholder needs in UML use cases and actor diagrams; to translate UML
entities into database components; and to transform the resulting design into
relational, object-relational, and object-oriented schemas for all major DBMS
products.

Features

o Teahces you everything you need to know to design, build and test
databasese using an OO model

o Shows you hoe to use UML, the accepted standards for database
design according to OO principles

e Explains how to transform your design into a conceptual schema for
relational, object-relational, and object-oriented DBMSs

e Offers proactical examples of design for Oracle, Microsoft, Sybase,
Informix, Object Design, POET, and other database management
systems

e Focuses heavily on reusing design patterns for maximum productivity
and teaches you how to certify completed desings for reuse

About the Author

Robert J. Muller, Ph.D., has been desinging databases since 1980, in the
process gaining extensive experience in relational, object-relational, and
object-oriented systems. He is the author of books on object-oriented software
testing, project management, and the Oracle DBMS, including The Oracle
Developer/2000 Handbook, Second Edition (Oracle Press).

Database Design for Smarties

USING UML FOR DATA MODELING
Robert J. Muller

Copyright © 1999 by by Academic Press
USING UML FOR DATA MODELING
MORGAN KAUFMANN PUBLISHERS AN IMPRINT OF ACADEMIC PRESS A Harcourt Science and
Technology Company

SAN FRANCISCO SAN DIEGO NEW YORK BOSTON LONDON SYDNEY TOKYO
Senior Editor Diane D. Cerra
Director of Production and Manufacturing Yonie Overton
Production Editors Julie Pabst and Cheri Palmer
Editorial Assistant Belinda Breyer
Copyeditor Ken DellaPenta
Proofreader Christine Sabooni
Text Design Based on a design by Detta Penna, Penna Design & Production
Composition and Technical lllustrations Technologies 'N Typography
Cover Design Ross Carron Design

-3-

Cover Image PhotoDisc (magnifying glass)

Archive Photos (Sherlock Holmes)
Indexer Ty Koontz
Printer Courier Corporation

Designations used by companies to distinguish their products are often claimed as trademarks or registered
trademarks. In all instances where Morgan Kaufmann Publishers is aware of a claim, the product names appear in
initial capital or all capital letters. Readers, however, should contact the appropriate companies for more complete
information regarding trademarks and registration.

ACADEMIC PRESS

A Harcourt Science and Technology Company

525 B Street, Suite 1900, San Diego, CA 92101-4495, USA
htto//www.academicpress.com

Academic Press

Harcourt Place, 32 Jamestown Road, London, NW1 7BY United Kingdom
http://www.hbuk.co.uk/ap/

Morgan Kaufmann Publishers

340 Pine Street, Sixth Floor, San Francisco, CA 94104-3205, USA
http://www.mkp.com
1999by Academic Press

All rights reserved
Printed in the United States of America
04030201005432
No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any
mea_ns—electronic, mechanical, photocopying, recording, or otherwise—without the prior written permission of the
E?I?I!:rzegf Congress Cataloging-in-Publication Data
Muller, Robert J.
Database design for smarties : using UML for data modeling /
Robert J. Muller.
p. cm.
Includes bibliographical references and index.
ISBN 1-55860-515-0
Database design.UML (Computer science)Title.
QAT76.9.D26 M85 1999
005.74—dc21 98-54436

CIP

Dedication
To Theo,
whose database design expands every day

Preface

This book presents a simple thesis: that you can design any kind of database with standard object-oriented design
techniques. As with most things, the devil is in the details, and with database design, the details often wag the dog.

That's Not the Way We Do Things Here

The book discusses relational, object-relational (OR), and object-oriented (OO) databases. It does not, however,
provide a comparative backdrop of all the database design and information modeling methods in existence. The
thesis, again, is that you can pretty much dispose of most of these methods in favor of using standard 00 designh—
whatever that might be. If you're looking for information on the right way to do IDEF1X designs, or how to use
SSADM diagramming, or how to develop good designs in Oracle's Designer/2000, check out the Bibliography for the
competition to this book.

I've adopted the Unified Modeling Language (UML) and its modeling methods for two reasons. First, it's an approved
standard of the Object Management Group (OMG). Second, it's the culmination of years of effort by three very smart
object modelers, who have come together to unify their disparate methods into a single, very capable notation
standard. See Chapter 7 for details on the UML. Nevertheless, you may want to use some other object modeling
method. You owe it to yourself to become familiar with the UML concepts, not least because they are a union of
virtually all object-oriented method concepts that I've seen in practice. By learning UML, you learn object-oriented
design concepts systematically. You can then transform the UML notation and its application in this book into
whatever object-oriented notation and method you want to use.

This book is not a database theory book; it's a database practice book. Unlike some authors [Codd 1990; Date and
Darwen 1998], | am not engaged in presenting a completely new way to look at databases, nor am | presenting an
academic thesis. This book is about using current technologies to build valuable software systems productively. |
stress the adapting of current technologies to object-oriented design, not the replacement of them by object-oriented
technologies.

Finally, you will notice this book tends to use examples from the Oracle database management system. | have spent
virtually my entire working life with Oracle, though I've used other databases from Sybase to Informix to SQL Server,
and | use examples from all of those DBMS products. The concepts in this book are quite general. You can translate
any Oracle example into an equivalent from any other DBMS, at least as far as the relational schema goes. Once
you move into the realm of the object-relational DBMS or the object-oriented DBMS, however, you will find that your
specific product determines much of what you can do (see Chapters 12 and 13 for details). My point: Don't be fooled
into thinking the techniques in this book are any different if you use Informix or MS Access. Design is the point of this
book, not implementation. As with UML, if you understand the concepts, you can translate the details into your
chosen technology with little trouble. If you have specific questions about applying the techniques in practice, please
feel free to drop me a line at <muller@computer.org>, and I'll do my best to work out the issues with you.

Data Warehousing

Aficionados of database theory will soon realize there is a big topic missing from this book: data warehousing, data
marts, and star schemas. One has to draw the line somewhere in an effort of this size, and my publisher and |
decided not to include the issues with data warehousing to make the scope of the book manageabile.

Briefly, a key concept in data warehousing is the dimension, a set of information attributes related to the basic
objects in the warehouse. In classic data analysis, for example, you often structure your data into multidimensional
tables, with the cells being the intersection of the various dimensions or categories. These tables become the basis
for analysis of variance and other statistical modeling techniques. One important organization for dimensions is the
star schema, in which the dimension tables surround a fact table (the object) in a star configuration of one-to-many
relationships. This configuration lets a data analyst look at the facts in the database (the basic objects) from the
different dimensional perspectives.

In a classic OO design, the star schema is a pattern of interrelated objects that come together in a central object of
some kind. The central object does not own the other objects; rather, it relates them to one another in a
multidimensional framework. You implement a star schema in a relational database as a set of one-to-many tables,
in an object-relational database as a set of object references, and in an object-oriented database as an object with
dimensional accessors and attributes that refer to other objects.

Web Enhancement

If you're intersted in learning more about database management, here are some of the prominent
relational, object-relational, and object-oreinted products. Go to the Web sites to find the status of the
current product and any trial downloads they might have.

Tool | Company | Web Site

-5-

Rational Rose Rational www.rational.com

98 Software

Object Team Cayenne www.cool.sterling.com
Software

Oracle Oracle Corp. www.oracle.com

Designer

Object

Extension

ObjectStore Object Design www.odi.com

PSE Pro for
Jave

POET Object

POET Software

www.poet.com

Database

System

Jasmine Computer www.cai.com
Associates

Objectivity Objectivity, www.objectivity.com
Inc.

Versant ODBMS

Versant Corp.

www.versant.com

Personal Oracle Corp. www.oracle.com
Oracle8

Personal Oracle Corp. www.oracle.com
Oracle?7

Informix Informix www.informix.com
Universal Software, Inc.

Data Option

Informix Informix www.informix.com
Dynamic Software, Inc.

Server,

Personal

Edition

Informix SE

Imformix

Software, Inc.

www.informix.com

Sybase Sybase, Inc. www.sybase.com

Adaptive

Server

Sybase Sybase, Inc. www.sybase.com

Adaptive

Server

Anywhere

SQL Server 7 Microsoft www.microsoft.com
Corp.

DB2 Universal IBM Corp. www.ibm.com

Database

Chapter 1: The Database Life Cycle

For mine own part, | could be well content

To entertain the lagend of my life

With quiet hours.

Shakespeare, Henry IV Part 1, V.i.23

Overview

Databases, like every kind of software object, go through a life stressed with change. This chapter introduces you to
the life cycle of databases. While database design is but one step in this life cycle, understanding the whole is

-6-

definitely relevant to understanding the part. You will also find that, like honor and taxes, design pops up in the most
unlikely places.

The life cycle of a database is really many smaller cycles, like most lives. Successful database design does not
lumber along in a straight line, Godzilla-like, crushing everything in its path. Particularly when you start using OO
techniques in design, database design is an iterative, incremental process. Each increment produces a working
database; each iteration goes from modeling to design to construction and back again in whatever order makes
sense. Database design, like all system design, uses a leveling process [Hohmann 1997]. Leveling is the cognitive
equivalent of water finding its own level. When the situation changes, you move to the part of the life cycle that suits
your needs at the moment. Sometimes that means you are building the physical structures; at other times, you are
modeling and designing new structures.

Note Beware of terminological confusion here. I've found it expedient to define my terms as | go, as
there are so many different ways of describing the same thing. In particular, be aware of my
use of the terms "logical” and "physical." Often, CASE vendors and others use the term
"physical" design to distinguish the relational schema design from the entity-relationship data
model. | call the latter process modeling and the former process logical or conceptual design,
following the ANSI architectural standards that Chapter 2 discusses. Physical design is the
process of setting up the physical schema, the collection of access paths and storage
structures of the database. This is completely distinct from setting up the relational schema,
though often you use similar data definition language statements in both processes. Focus on
the actual purpose behind the work, not on arbitrary divisions of the work into these
categories. You should also realize that these terminological distinctions are purely cultural in
nature; learning them is a part of your socialization into the particular design culture in which
you will work. You will need to map the actual work into your particular culture's language to
communicate effectively with the locals.

Information Requirements Analysis

Databases begin with people and their needs. As you design your database, your concern should be for the needs of
database users. The end user is the ultimate consumer of the software, the person staring at the computer screen
while your queries iterate through the thousands or millions of objects in your system. The system user is the direct
consumer of your database, which he or she uses in building the system the end user uses. The system user is the
programmer who uses SQL or OQL or any other language to access the database to deliver the goods to the end
user.

Both the end user and the system user have specific needs that you must know about before you can design your
database. Requirements are needs that you must translate into some kind of structure in your database design.
Information requirements merge almost indistinguishably into the requirements for the larger system of which the
database is a part.

In a database-centric system, the data requirements are critical. For example, if the whole point of your system is to
provide a persistent collection of informational objects for searching and access, you must spend a good deal of time
understanding information requirements. The more usual system is one where the database supports the ongoing
use of the system rather than forming a key part of its purpose. With such a database, you spend more of your time
on requirements that go beyond the simple needs of the database. Using standard OO use cases and the other
accouterments of OO analysis, you develop the requirements that lead to your information needs. Chapters 3 and 4
go into detail on these techniques, which permit you to resolve the ambiguities in the end users' views of the
database. They also permit you to recognize the needs of the system users of your data as you recognize the things
that the database will need to do. End users need objects that reflect their world; system users need structures that
permit them to do their jobs effectively and productively.

One class of system user is more important than the rest: the reuser. The true benefit of OO system design is in the
ability of the system user to change the use of your database. You should always design it as though there is
someone looking over your shoulder who will be adding something new after you finish—maybe new database
structures, connecting to other databases, or new systems that use your database. The key to understanding reuse
is the combination of reuse potential and reuse certification.

Reuse potential is the degree to which a system user will be able to reuse the database in a given situation [Muller
1998]. Reuse potential measures the inherent reusability of the system, the reusability of the system in a specific
domain, and the reusability of the system in an organization. As you design, you must look at each of these
components of reuse potential to create an optimally reusable database.

Reuse cetrtification, on the other hand, tells the system user what to expect from your database. Certifying the
reusability of your database consists of telling system users what the level of risk is in reusing the database, what the
functions of the database are, and who takes responsibility for the system.

Chapter 9 goes into detail on reuse potential and certification for databases.

Data Modeling

Given the users' needs, you now must formally model the problem. Data modeling serves several purposes. It helps
you to organize your thinking about the data, clarifying its meaning and practical application. It helps you to
communicate both the needs and how you intend to meet them. It provides a platform from which you can proceed to
design and construction with some assurance of success.

Data modeling is the first step in database design. It provides the link between the users' needs and the software
solution that meets them. It is the initial abstraction that hides the complexity of the system. The data model reduces
complexity to a level that the designer can grasp and manipulate. As databases and data structures grow ever more
numerous and complex, data modeling takes on more and more importance. Its contribution comes from its ability to
reveal the essence of the system out of the obscurity of the physical and conceptual structures on the one hand and
the multiplicity of uses on the other.

Most database data modeling currently uses some variant of entity-relationship (ER) modeling [Teorey 1999]. Such
models focus on the things and the links between things (entities and relationships). Most database design tools are
ER modeling tools. You can't write a book about database design without talking about ER modeling; Chapter 6 does
that in this book to provide a context for Chapter 7, which proposes a change in thinking.

The next chapter (Chapter 2) proposes the idea that system architecture and database design are one and the
same. ER modeling is not particularly appropriate for modeling system architecture. How can you resolve the
contradiction? You either use ER modeling as a piece of the puzzle under the assumption that database design is a
puzzle, or you integrate your modeling into a unified structure that designs systems, not puzzles.

Chapter 7 introduces the basics of the UML, a modeling notation that provides tools for modeling every aspect of a
software system from requirements to implementation. Object modeling with the UML takes the place of ER
modeling in modern database design, or at least that's what this book proposes.

Object modeling uses standard OO concepts of data hiding and inheritance to model the system. Part of that model
covers the data needs of the system. As you develop the structure of classes and objects, you model the data your
system provides to its users to meet their needs.

But object modeling is about far more than modeling the static structure of a system. Object modeling covers the
dynamic behavior of the system as well. Inheritance reflects the data structure of the system, but it also reflects the
division of labor through behavioral inheritance and polymorphism. This dynamic character has at least two major
effects on database design. First, the structure of the system reflects behavioral needs as well as data structure
differences. This focus on behavior often yields a different understanding of the mapping of the design to the real
world that would not be obvious from a more static data model. Second, with the increasing integration of behavior
into the database through rules, triggers, stored procedures, and active objects, static methods often fail to capture a
vital part of the database design. How does an ER model reflect a business rule that goes beyond the simple
referential integrity foreign key constraint, for example?

Chapters 8 to 10 step back from object modeling to integrate models into a useful whole from the perspective of the
user. Relating the design to requirements is a critical aspect of database design because it clarifies the reasons
behind your design decisions. It also highlights the places where different parts of the system conflict, perhaps
because of conflicting user expectations for the system. A key part of data modeling is the resolution of such conflicts
at the highest level of the model.

The modeling process is just the start of design. Once you have a model, the next step is to relate the model back to
needs, then to move forward to adding the structures that support both reuse and system functions.

Database Design and Optimization

When does design start? Design starts at whatever point in the process that you begin thinking about how things
relate to one another. You iterate from modeling to design seamlessly. Adding a new entity or class is modeling;
deciding how that entity or class relates to other ones is design.

Where does design start? Usually, design starts somewhere else. That is, when you start designing, you are almost
always taking structures from somebody else's work, whether it's requirements analysis, a legacy database, a prior

system's architecture, or whatever. The quality, or value, of the genetic material that forms the basis of your design

can often determine its success. As with anything else, however, how you proceed can have as much impact on the
ultimate result of your project.

You may, for example, start with a legacy system designed for a relational database that you must transform into an
OO database. That legacy system may not even be in third normal form (see Chapter 11), or it may be the result of

six committees over a 20-year period (like the U.S. tax code, for example). While having a decent starting system

-8-

helps, where you wind up depends at least as much on how you get there as on where you start. Chapter 10 gives
you some hints on how to proceed from different starting points and also discusses the cultural context in which your
design happens. Organizational culture may impact design more than technology.

The nitty-gritty part of design comes when you transform your data model into a schema. Often, CASE tools provide
a way to generate a relational schema directly from your data model. Until those tools catch up with current realities,
however, they won't be of much help unless you are doing standard ER modeling and producing standard relational
schemas. There are no tools of which I'm aware that produce OO or OR models from OO designs, for example.
Chapters 11, 12, and 13 show how to produce relational, OR, and OO designs, respectively, from the OO data
model. While this transformation uses variations on the standard algorithm for generating schemas from models, it
differs subtly in the three different cases. As well, there are some tricks of the trade that you can use to improve your
schemas during the transformation process.

Build bridges before you, and don't let them burn down behind you after you've crossed. Because database design is
iterative and incremental, you cannot afford to let your model lapse. If your data model gets out of synch with your
schema, you will find it more and more difficult to return to the early part of design. Again, CASE tools can help if
they contain reverse-engineering tools for generating models from schemas, but again those tools won't support
much of the techniques in this book. Also, since the OO model supports more than just simple schema definition,
lack of maintenance of the model will spill over into the general system design, not just database design.

At some point, your design crosses from logical design to physical design. This book covers only logical design,
leaving physical design to a future book. Physical design is also an iterative process, not a rigid sequence of steps.
As you develop your physical schema, you will realize that certain aspects of your logical design affect the physical
design in negative ways and need revision. Changes to the logical design as you iterate through requirements and
modeling also require Changes to physical design. For example, many database designers optimize performance by
denormalizing their logical design. Denormalization is the process of combining tables or objects to promote faster
access, usually through avoiding data joins. You trade off better performance for the need to do more work to
maintain integrity, as data may appear in more than one place in the database. Because it has negative effects on
your design, you need to consider denormalizing in an iterative process driven by requirements rather than as a
standard operating procedure. Chapter 11 discusses denormalization in some detail.

Physical design mainly consists of building the access paths and storage structures in the physical model of the
database. For example, in a relational database, you create indexes on sets of columns, you decide whether to use
B*-trees, hash indexes, or bitmaps, or you decide whether to prejoin tables in clusters. In an OO database, you might
decide to cluster certain objects together or index particular partitions of object extents. In an OR database, you
might install optional storage management or access path modules for extended data types, configuring them for
your particular situation, or you might partition a table across several disk drives. Going beyond this simple
configuration of the physical schema, you might distribute the database over several servers, implement replication
strategies, or build security systems to control access.

As you move from logical to physical design, your emphasis changes from modeling the real world to improving the
system's performance—database optimization and tuning. Most aspects of physical design have a direct impact on
how your database performs. In particular, you must take into consideration at this point how end users will access
the data. The need to know about end user access means that you must do some physical design while
incrementally designing and building the systems that use the database. It's not a bad idea to have some
brainstorming sessions to predict the future of the system as well. Particularly if you are designing mission-critical
decision support data warehouses or instantresponse online transaction processing systems, you must have a clear
idea of the performance requirements before finalizing your physical design. Also, if you are designing physical
models using advanced software/hardware combinations such as symmetric multiprocessing (SMP), massively
parallel processing (MPP), or clustered processors, physical design is critical to tuning your database.

Tip You can benefit from the Internet in many ways as a database designer. There are many
different Usenet newsgroups under the comp.databases interest group, such as
comp.databases .oracle.server. There are several Web sites that specialize in vendorspecific
tips and tricks; use a Web search engine to search for such sites. There are also mailing lists
(email that gets sent to you automatically with discussion threads about a specific topic) such
as the data modeling mail list. These lists may be more or less useful depending on the level of
activity on the list server, which can vary from nothing for months to hundreds of messages in a
week. You can usually find out about lists through the Usenet newsgroups relating to your
specific subject area. Finally, consider joining any user groups in your subject area such as the
Oracle Developer Tools User Group (www.odtug.com); they usually have conferences,
maintain web sites, and have mailing lists for their members.

Your design is not complete until you consider risks to your database and the risk management methods you can
use to mitigate or avoid them. Risk is the potential for an occurrence that will result in negative consequences. Risk
is a probability that you can estimate with data or with subjective opinion. In the database area, risks include such
things as disasters, hardware failures, software failures and defects, accidental data corruption, and deliberate

-9.-

attacks on the data or server. To deal with risk, you first determine your tolerance for risk. You then manage risk to
keep it within your tolerance. For example, if you can tolerate a few hours of downtime every so often, you don't
need to take advantage of the many fault-tolerant features of modern DBMS products. If you don't care about minor
data problems, you can avoid the huge programming effort to catch problems at every level of data entry and
modification. Your risk management methods should reflect your tolerance for risk instead of being magical rituals
you perform to keep your culture safe from the database gods (see Chapter 10 on some of the more shamanistic
cultural influences on database design). Somewhere in this process, you need to start considering that most direct of
risk management techniques, testing.

Database Quality, Reviews, and Testing

Database quality comes from three sources: requirements, design, and construction. Requirements and design
quality use review techniques, while construction uses testing. Chapter 5 covers requirements and database testing,
and the various design chapters cover the issues you should raise in design reviews. Testing the database comes in
three forms: testing content, testing structure, and testing behavior. Database test plans use test models that reflect
these components: the content model, the structural model, and the design model.

Content is what database people usually call "data quality." When building a database, you have many alternative
ways to get data into the database. Many databases come with prepackaged content, such as databases of images
and text for the Internet, search-oriented databases, or parts of databases populated with data to reflect options
and/or choices in a software product. You must develop a model that describes what the assumptions and rules are
for this data. Part of this model comes from your data model, but no current modeling technique is completely
adequate to describe all the semantics and pragmatics of database content. Good content test plans cover the full
range of content, not just the data model's limited view of it.

The data model provides part of the structure for the database, and the physical schema provides the rest. You need
to verify that the database actually constructed contains the structures that the data model calls out. You must also
verify that the database contains the physical structures (indexes, clusters, extended data types, object containers,
character sets, security grants and roles, and so on) that your physical design specifies. Stress, performance, and
configuration tests come into play here as well. There are several testing tools on the market that help you in testing
the physical capabilities of the database, though most are for relational databases only.

The behavioral model comes from your design's specification of behavior related to persistent objects. You usually
implement such behavior in stored procedures, triggers or rules, or server-based object methods. You use the usual
procedural test modeling techniques, such as data flow modeling or state-transition modeling, to specify the test
model. You then build test suites of test scripts to cover those models to your acceptable level of risk. To some
extent, this overlaps with your standard object and integration testing, but often the testing techniques are different,
involving exercise of program units outside your main code base.

Both structural and behavioral testing require a test bed of data in the database. Most developers seem to believe
that "real" data is all the test bed you need. Unfortunately, just as with code testing, "real" data only covers a small
portion of the possibilities, and it doesn't do so particularly systematically. Using your test models, you need to
develop consistent, systematic collections of data that cover all the possibilities you need to test. This often requires
several test beds, as the requirements result in conflicting data in the same structures. Creating a test bed is not a
simple, straightforward loading of real-world data.

Your test development proceeds in parallel with your database design and construction, just as with all other types of
software. You should think of your testing effort in the same way as your development effort. Use the same iterative
and incremental design efforts, with reviews, that you use in development, and test your tests.

Testing results in a clear understanding of the risks of using your database. That in turn leads to the ability to
communicate that risk to others who want to use it: certification.

Database Certification

It's very rare to find a certified database. That's a pity, because the need for such a thing is tremendous. I've
encountered time and again users of database-centric systems wanting to reuse the database or its design. They are
usually not able to do so, either because they have no way to figure out how it works or because the vendor of the
software refuses to permit access to it out of fear of "corruption."

This kind of thing is a special case of a more general problem: the lack of reusability in software. One of the stated

advantages of OO technology is increased productivity through reuse [Muller 1998]. The reality is that reuse is hard,
and few projects do it well. The key to reuse comes in two pieces: design for reuse and reuse certification.

-10 -

This whole book is about design for reuse. All the techniques | present have an aspect of making software and
databases more reusable. A previous section in this chapter, "Information Requirements Analysis," briefly discussed
the nature of reuse potential, and Chapter 9 goes into detail on both reuse potential and certification.

Certification has three parts: risk, function, and responsibility. Your reviewing and testing efforts provide data you can
use to assess the risk of reusing the database and its design. The absence of risk certification leads to the reflexive
reaction of most developers that the product should allow no one other than them to use the database. On the other
hand, the lack of risk analysis can mislead maintainers into thinking that changes are easy or that they will have little
impact on existing systems. The functional part of the certification consists of clear documentation for the conceptual
and physical schemas and a clear statement of the intended goals of the database. Without understanding how it
functions, no one will be able to reuse the database. Finally, a clear statement of who owns and is responsible for
the maintenance of the database permits others to reuse it with little or no worries about the future. Without it, users
may find it difficult to justify reusing "as is" code and design—and data. This can seriously inhibit maintenance and
enhancement of the database, where most reuse occurs.

Database Maintenance and Enhancement

This book spends little time on it, but maintenance and enhancement are the final stage of the database life cycle.
Once you've built the database, you're done, right? Not quite.

You often begin the design process with a database in place, either as a legacy system or by inheriting the design
from a previous version of the system. Often, database design is in thrall to the logic of maintenance and
enhancement. Over the years, I've heard more plaintive comments from designers on this subject than any other.
The inertia of the existing system drives designers crazy. You are ready to do your best work on interesting
problems, and someone has constrained your creativity by actually building a system that you must now modify.
Chapter 10 goes into detail on how to best adapt your design talents to these situations.

Again, database design is an iterative, incremental process. The incremental nature does not cease with delivery of
the first live database, only when the database ceases to exist. In the course of things, a database goes through
many changes, never really settling down into quiet hours at the lag-end of life. The next few chapters return to the
first part of the life cycle, the birth of the database as a response to user needs.

Chapter 2: System Architecture and Design

Works of art, in my opinion, are the only objects in the material universe to possess internal order, and that is why,
though | don't believe that only art matters, | do believe in Art for Art's Sake.
E. M Forster, Art for Art's Sake

Overview

Is there a difference between the verbs "to design" and "to architect"? Many people think that "to architect" is one of
those bastard words that become verbs by way of misguided efforts to activate nouns. Not so, in this case: the verb
"to architect" has a long and distinguished history reaching back to the sixteenth century. But is there a difference?

In the modern world of databases, often it seems there is little difference in theory but much difference in practice.
Database administrators and data architects "design" databases and systems, and application developers "architect"
the systems that use them. You can easily distinguish the tools of database design from the tools of system
architecture.

The main thesis of this book is that there is no difference. Designing a database using the methods in this book
merges indistinguishably with architecting the overall system of which the database is a part. Architecture is
multidimensional, but these dimensions interact as a complex system rather than being completely separate and
distinct. Database design, like most architecture, is art, not science.

That art pursues a very practical goal: to make information available to clients of the software system. Databases
have been around since Sumerians and Egyptians first began using cuneiform and hieroglyphics to record accounts
in a form that could be preserved and reexamined on demand [Diamond 1997]. That's the essence of a database: a
reasonably permanent and accessible storage mechanism for information. Designing databases before the computer
age came upon us was literally an art, as examination of museum-quality Sumerian, Egyptian, Mayan, and Chinese
writings will demonstrate. The computer gave us something more: the database management system, software that
makes the database come alive in the hands of the client. Rather than a clay tablet or dusty wall, the database has
become an abstract collection of bits organized around data structures, operations, and constraints. The design of
these software systems encompassing both data and its use is the subject of this book.

-11 -

System architecture, the first dimension of database design, is the architectural abstraction you use to model your
system as a whole: applications, servers, databases, and everything else that is part of the system. System
architecture for database systems has followed a tortuous path in the last three decades. Early hierarchical and flat-
file databases have developed into networked collections of pointers to relations to objects—and mixtures of all of
these together. These data models all fit within a more slowly evolving model of database system architecture.
Architectures have moved from simple internal models to the CODASYL DBTG (Conference on Data Systems
Languages Data Base Task Group) network model of the late 1960s [CODASYL DBTG 1971] through the three-
schema ANSI/SPARC (American National Standards Institute/Standards Planning and Requirements Committee)
architecture of the 1970s [ANSI 1975] to the multitier client/server and distributed-object models of the 1980s and
1990s. And we have by no means achieved the end of history in database architecture, though what lies beyond
objects hides in the mists of the future.

The data architecture, the architectural abstraction you use to model your persistent data, provides the second
dimension to database design. Although there are other kinds of database management systems, this book focuses
on the three most popular types: relational (RDBMS), object-relational (ORDBMS), and object-oriented (OODBMS).
The data architecture provides not only the structures (tables, classes, types, and so on) that you use to design the
database but also the language for expressing both behavior and business rules or constraints.

Modern database design not only reflects the underlying system architecture you choose, it derives its essence from
your architectural choices. Making architectural decisions is as much a part of a database designer's life as drawing
entities and relationships or navigating the complexities of SQL, the standardized relational database language.
Thus, this book begins with architecture before getting to the issue at hand—design.

System Architectures

A system architecture is an abstract structure of the objects and relationships that make up a system. Database
system architectures reveal the objects that make up a data-centric software system. Such objects include
applications components and their views of data, the database layers (often called the server architecture), and the
middleware (software that connects clients to servers, adding value as needed) that establishes connections
between the application and the database. Each architecture contains such objects and the relationships between
them. Architectural differences often center in such relationships.

Studying the history and theory of system architecture pays large rewards to the database designer. In the course of
this book, | introduce the architectural features that have influenced my own design practice. By the end of this
chapter, you will be able to recognize the basic architectural elements in your own design efforts. You can further
hone your design sense by pursuing more detailed studies of system architecture in other sources.

The Three-Schema Architecture

The most influential early effort to create a standard system architecture was the ANSI/SPARC architecture [ANSI
1975; Date 1977]. ANSI/SPARC divided database-centric systems into three models: the internal, conceptual, and
external, as Figure 2-1 shows. A schema is a description of the model (a metamodel). Each schema has structures
and relationships that reflect its role. The goal was to make the three schemas independent of one another. The
architecture results in systems resistant to changes to physical or conceptual structures. Instead of having to rebuild
your entire system for every change to a storage structure, you would just change the structure without affecting the
systems that used it. This concept, data independence, was critical to the early years of database management and
design, and it is still critical today. It underlies everything that database designers do.

For example, consider what an accounting system would be like without data independence. Every time an
application developer wanted to access the general ledger, he or she would need to program the code to access the
data on disk, specifying the disk sectors and hardware storage formats, looking for and using indexes, adapting to
"optimal" storage structures that are different for each kind of data element, coding the logic and navigational access
to subset the data, and coding the sorting routines to order it (again using the indexes and intermediate storage
facilities if the data could not fit entirely in memory. Now a database engineer comes along and redoes the whole
mess. That leaves the application programmer the Herculean task of reworking the whole accounting system to
handle the new structures. Without the layers of encapsulation and independence that a database management
system provides, programming for large databases would be impossible.

Note Lack of data independence is at least one reason for the existence of the Year 2000 problem.
Programs would store dates in files using two-byte storage representation and would
propagate that throughout the code, then use tricky coding techniques based onthe storage
representation to achieve wonders of optimized programming (and completely
unmaintainable programs).

-12 -

External Schema 1 External Schema 2 External Schema 3
Class
Data Structure 1 Data Structure 1 Data Structure 2
Attributes
Operations
Data Structure 2 Data Structure 3

\ N 7
‘%%% I
N N 7

Conceptual Schema

Conceptual-to-internal
Mapping

Internal Schema

Figure 2-1: The ANSI/SPARC Architecture
The conceptual model represents the information in the database. The structures of this schema are the structures,
operations, and constraints of the data model you are using. In a relational database, for example, the conceptual
schema contains the tables and integrity constraints as well as the SQL query language. In an object-oriented
database, it contains the classes that make up the persistent data, including the data structures and methods of the

-13 -

classes. In an objectrelational database, it contains the relational structures as well as the extended type or class
definitions, including the class or type methods that represent object behavior. The database management system
provides a query and data manipulation language, such as the SELECT, INSERT, UPDATE, and DELETE
statements of SQL.

The internal model has the structure of storage and retrieval. It represents the "real" structure of the database,
including indexes, storage representations, field orders, character sets, and so on. The internal schema supports the
conceptual schema by implementing the high-level conceptual structures in lower-level storage structures. It supplies
additional structures such as indexes to manage access to the data. The mapping between the conceptual and
internal models insulates the conceptual model from any changes in storage. New indexes, changed storage
structures, or differing storage orders of fields do not affect the higherlevel models. This is the concept of physical
data independence. Usually, database management systems extend the data definition language to enable database
administrators to manage the internal model and schema.

The external model is really a series of views of the different applications or users that use the data. Each user maps
its data to the data in the conceptual schema. The view might use only a portion of the total data model. This
mapping shows you how different applications will make use of the data. Programming languages generally provide
the management tools for managing the external model and its schema. For example, the facilities in C++ for
building class structures and allocating memory at runtime give you the basis for your C++ external models.

This three-level schema greatly influences database design. Dividing the conceptual from the internal schema
separates machine and operating system dependencies from the abstract model of the data. This separation frees
you from worrying about access paths, file structures, or physical optimization when you are designing your logical
data model. Separating the conceptual schema from the external schemas establishes the many-to-one relationship
between them. No application need access all of the data in the database. The conceptual schema, on the other
hand, logically supports all the different applications and their datarelated needs.

For example, say Holmes PLC (Sherlock Holmes's investigative agency, a running example throughout this book)
was designing its database back in 1965, probably with the intention of writing a COBOL system from scratch using
standard access path technology such as ISAM (Indexed Sequential Access Method, a very old programming
interface for indexed file lookup). The first pass would build an application that accessed hierarchically structured
files, with each query procedure needing to decide which primary or secondary index to use to retrieve the file data.
The next pass, adding another application, would need to decide whether the original files and their access methods
were adequate or would need extension, and the original program would need modification to accommodate the
changes. At some point, the changes might prove dramatically incompatible, requiring a complete rewrite of all the
existing applications. Shall | drag in Year 2000 problems due to conflicting storage designs for dates?

In 1998, Holmes PLC would design a conceptual data model after doing a thorough analysis of the systems it will
support. Data architects would build that conceptual model in a database management system using the appropriate
data model. Eventually, the database administrator would take over and structure the internal model, adding indexes
where appropriate, clustering and partitioning the data, and so on. That optimization would not end with the first
system but would continue throughout the long process of adding systems to the business. Depending on the design
quality of the conceptual schema, you would need no changes to the existing systems to add a new one. In no case
would changes in the internal design require changes.

Data independence comes from the fundamental design concept of coupling, the degree of interdependence
between modules in a system [Yourdon and Constantine 1979; Fenton and Pfleeger 1997]. By separating the three
models and their schemas, the ANSI/SPARC architecture changes the degree of coupling from the highest level of
coupling (content coupling) to a much lower level of coupling (data coupling through parameters). Thus, by using this
architecture, you achieve a better system design by reducing the overall coupling in your system.

Despite its age and venerability, this way of looking at the world still has major value in today's design methods. As a
consultant in the database world, | have seen over and over the tendency to throw away all the advantages of this
architecture. An example is a company | worked with that made a highly sophisticated layout tool for manufacturing
plants. A performance analysis seemed to indicate that the problem lay in inefficient database queries. The
(inexperienced) database programmer decided to store the data in flat files instead to speed up access. The result: a
system that tied its fundamental data structures directly into physical file storage. Should the application change
slightly, or should the data files grow beyond their current size, the company would have to completely redo their
data access subroutines to accommodate new file data structures.

Note As a sidelight, the problem here was using a relational database for a situation that required
navigational access. Replacing the relational design with an object-oriented design was a
better solution. The engineers in this small company had no exposure to OO technology and
barely any to relational database technology. This lack of knowledge made it very difficult for
them to understand the trade-offs they were making.

- 14 -

The Multitier Architectures

The 1980s saw the availability of personal computers and ever-smaller server machines and the local-area networks
that connected them. These technologies made it possible to distribute computing over several machines rather than
doing it all on one big mainframe or minicomputer. Initially, this architecture took the form of client/server computing,
where a database server supported several client machines. This evolved into the distributed client/server
architecture, where several servers taken together made up the distributed database.

In the early 1990s, this architecture evolved even further with the concept of application partitioning, a refinement of
the basic client/server approach. Along with the database server, you could run part of the application on the client
and another part on an application server that several clients could share. One popular form of this architecture is the
transaction processing (TP) monitor architecture, in which a middleware server handles transaction management.
The database server treats the TP monitor as its client, and the TP monitor in turn serves its clients. Other kinds of
middleware emerged to provide various kinds of application support, and this architecture became known as the
three-tier architecture.

In the later 1990s, this architecture again transformed itself through the availability of thin-client Internet browsers,
distributed-object middleware, and other technology. This made it possible to move even more processing out of the
client onto servers. It now became possible to distribute objects around multiple machines, leading to a multitier,
distributed-object architecture.

These multitier system architectures have extensive ramifications for system and network hardware as well as
software [Berson 1992]. Even so, this book focuses primarily on the softer aspects of the architectures. The critical
impact of system architecture on design comes from the system software architecture, which is what the rest of this
section discusses.

Database Servers: Client/Server Architectures

The client/server architecture [Berson 1992] structures your system into two parts: the software running on the server
responds to requests from multiple clients running another part of the software. The primary goal of client/server
architecture is to reduce the amount of data that travels across the network. With a standard file server, when you
access a file, you copy the entire file over the network to the system that requested access to it. The client/server
architecture lets you structure both the request and the response through the server software that lets the server
respond with only the data you need. Figure 2-2 illustrates the classic client/server system, with the database
management system as server and the database application as client.

In reality, you can break down the software architecture into layers and distribute the layers in different ways. One
approach breaks the software into three parts, for example: presentation, business processing, and data
management [Berson 1992]. The X-Windows system, for example, is a pure presentation layer client/server system.
The X terminal is a client-based software system that runs the presentation software and makes requests to the
server that is running the business processing. This lets you run a program on a server and interact with it on a
"smart terminal” running X. The X terminal software is what makes the terminal smart.

A more recent example is the World Wide Web browser, which connects to a network and handles presentation of
data that it demands from a Web server. The Web server acts as a client of the database server, which may or may
not be running on the same hardware box. The user interacts with the Web browser, which submits requests to the
Web server in whatever programming or scripting language is set up on the server. The Web server then connects to
the database and submits SQL, makes remote procedure calls (RPCs), or does whatever else is required to request
a database service, and the database server responds with database

-15 -

Figure 2-2: The Client/Server Architecture
actions and/or data. The Web server then displays the results through the Web browser (Figure 2-3).
The Web architecture illustrates the distribution of the business processing between the client and server. Usually,
you want to do this when you have certain elements of the business processing that are database intensive and
other parts that are not. By placing the database-intensive parts on the database server, you reduce the network
traffic and get the benefits of encapsulating the databaserelated code in one place. Such benefits might include
greater database security, higher-level client interfaces that are easier to maintain, and cohesive subsystem designs
on the server side. Although the Web represents one approach to such distribution of processing, it isn't the only way
to do it. This approach leads inevitably to the transaction processing monitor architecture previously mentioned, in
which the TP monitor software is in the middle between the database and the client. If the TP monitor and the
database are running on the same server, you have a client/server architecture. If they are on separate servers, you
have a multitier architecture, as Figure 2-4 illustrates. Application partitioning is the process of breaking up your
application code into modules that run on different clients and servers.

The Distributed Database Architecture

Simultaneously with the development of relational databases comes the development of distributed databases, data
spread across a geographically dispersed network connected through communication links [Date 1983; Ullman
1988]. Figure 2-5illustrates an example distributed database architecture with two servers, three databases, several
clients, and a number of local databases on the clients. The tables with arrows show a replication arrangement, with
the tables existing on multiple servers that keep them synchronized automatically.

-16 -

Web Client 1

sQL E

Web Client 2 nes._ T
Web Server Database
Server ==)
== Printer
Web Client 3
Figure 2-3: A Web-Based Client/Server System
s o

il L

=]

Application Server Database ———
or Server =
TP Monitor
Printer
Client 3
Figure 2-4: Application Partitioning in a Client/Server System
Note Data warehouses often encapsulate a distributed database architecture, especially if you

construct them by referring to, copying, and/or aggregating data from multiple databases into
the warehouse. Snapshots, for example, let you take data from a table and copy it to another
server for use there; the original table changes, but the snapshot doesn't. Although this book

does not go into the design issues for data warehousing, the distributed database
architecture and its impact on design covers a good deal of the issues surrounding data
warehouse design.

-17 -

There are three operational elements in a distributed database: transparency, transaction management, and
optimization.

Distributed database transparency is the degree to which a database operation appears to be running on a single,
unified database from the perspective of the user of the database. In a fully transparent system, the application sees
only the standard data model and interfaces, with no need to know where things are really happening. It never has to
do anything special to access a table, commit a transaction, or connect. For example, if a query accesses data on
several servers, the query manager must break the query apart into a query for each server, then combine the
results (see the optimization discussion below).The application submits a single SQL statement, but multiple ones
actually execute on the servers. Another aspect of transparency is fragmentation, the distribution of data in a table
over multiple locations (another word for this is partitioning). Most distributed systems achieve a reasonable level of
transparency down to the database administration level. Then they abandon transparency to make it easier on the
poor DBA who needs to manage the underlying complexity of the distribution of data and behavior. One wrinkle in
the transparency issue is the heterogeneous distributed database, a database comprising different database
management system software running on the different servers.

"‘_,..--'_'—'_‘-\—\.___‘
S—

D Database 1 Table 1
X X o m
I\.‘‘l‘-\-‘'‘—‘—n_.—,_-—'—"'-'-"‘w l
- -
Database

Server 1 Database 2 replicated

=

Client 1

e

ittt -
Database
Server 2 Database 3 Table 1

Figure 2.5: A distributed Database Architecture
Note Database fragmentation is unrelated to file fragmentation, the condition that occurs in file
systems such as DOS or NTFS when the segments that comprise files become randomly
distributed around the disk instead of clustered together. Defragmenting your disk drive on a
weekly basis is a good idea for improving performance; defragmenting your database is not,
Jjust the reverse.

Distributed database transaction management differs from single-database transaction management because of the
possibility that a part of the database will become unavailable during a commit process, leading to an incomplete
transaction commit. Distributed databases thus require an extended transaction management process capable of
guaranteeing the completion of the commit or a full rollback of the transaction. There are many strategies for doing
this [Date 1983; EImagarmid 1991; Gray and Reuter 1993; Papadimitriou 1986]. The two most popular strategies are
the two-phase commit and distributed optimistic concurrency.

Two-phase commit breaks the regular commit process into two parts [Date 1983; Gray and Reuter 1993; Ullman
1988]. First, the distributed servers communicate with one another until all have expressed readiness to commit their
portion of the transaction. Then each commits and informs the rest of success or failure. If all servers commit, then
the transaction completes successfully; otherwise, the system rolls back the changes on all servers. There are many
practical details involved in administering this kind of system, including things like recovering lost servers and other
administrivia.

- 18 -

Optimistic concurrency takes the opposite approach [Uliman 1988; Kung and Robinson 1981]. Instead of trying to
ensure that everything is correct as the transaction proceeds, either through locking or timestamp management,
optimistic methods let you do anything to anything, then check for conflicts when you commit. Using some rule for
conflict resolution, such as timestamp comparison or transaction priorities, the optimistic approach avoids deadlock
situations and permits high concurrency, especially in read-only situations. Oracle7 and Oracle8 both have a version
of optimistic concurrency called read consistency, which lets readers access a consistent database regardless of
changes made since they read the data.

Distributed database optimization is the process of optimizing queries that are executing on separate servers. This
requires extended cost-based optimization that understands where data is, where operations can take place, and
what the true costs of distribution are [Ullman 1989]. In the case where the query manager breaks a query into parts,
for example, to execute on separate servers, it must optimize the queries both for execution on their respective
servers and for transmission and receipt over the network. Current technology isn't terrific here, and there is a good
way to go in making automatic optimization effective. The result: your design must take optimization requirements
into account, especially at the physical level.

The key impact of distributed transaction management on design is that you must take the capabilities of the
language you are designing for into account when planning your transaction logic and data location. Transparency
affects this a good deal; the less the application needs to know about what is happening on the server, the better. If
the application transaction logic is transparent, your application need not concern itself with design issues relating to
transaction management. Almost certainly, however, your logical and physical database design will need to take
distributed transactions into account.

For example, you may know that network traffic over a certain link is going to be much slower than over other links.
You can benchmark applications using a cost-benefit approach to decide whether local access to the data outweighs
the remote access needs. A case in point is the table that contains a union of local data from several localities. Each
locality benefits from having the table on the local site. Other localities benefit from having remotely generated data
on their site. Especially if all links are not equal, you must decide which server is best for all. You can also take more
sophisticated approaches to the problem. You can build separate tables, offloading the design problem to the
application language that has to recombine them. You can replicate data, offloading the design problem to the
database administrator and vendor developers. You can use table partitioning, offloading the design problem to
Oracle8, the only database to support this feature, and hence making the solution not portable to other database
managers. The impact of optimization on design is thus direct and immediate, and pretty hairy if your database is
complex.

Holmes PLC, for example, is using Oracle7 and Oracle8 to manage certain distributed database transactions. Both
systems fully implement the distributed two-phase commit protocol in a relatively transparent manner on both the
client and the server. There are two impact points: where the physical design must accommodate transparency
requirements and the administrative interface. Oracle implements distributed servers through a linking strategy, with
the link object in one schema referring to a remote database connection string. The result is that when you refer to a
table on a remote server, you must specify the link name to find the table. If you need to make the reference
transparent, you can take one of at least three approaches. You can set up a synonym that encapsulates the link
name, making it either public or private to a particular user or Oracle role. Alternatively, you can replicate the table,
enabling "local" transaction management with hidden costs on the back end because of the reconciliation of the
replicas. Or, you can set up stored procedures and triggers that encapsulate the link references, with the costs
migrating to procedure maintenance on the various servers.

As you can tell from the example, distributed database architectures have a major impact on design, particularly at
the physical level. It is critical to understand that impact if you choose to distribute your databases.

Objects Everywhere: The Multitier Distributed-Object Architecture

As OO technology grew in popularity, the concept of distributing those objects came to the fore. If you could partition
applications into pieces running on different servers, why not break apart OO applications into separately running
objects on those servers? The Object Management Group defined a reference object model and a slew of standard
models for the Common Object Request Broker Architecture (CORBA) [Soley 1992; Siegel 1996]. Competing with
this industry standard is the Distributed Common Object Model (DCOM) and various database access tools such as
Remote Data Objects (RDO), Data Access Objects (DAQ), Object Linking and Embedding Data Base (OLE DB),
Active Data Objects (ADO), and ODBCDirect [Baans 1997; Lassesen 1995], part of the ActiveX architecture from
Microsoft and the Open Group, a similar standard for distributing objects on servers around a network [Chappell
1996; Grimes 1997; Lee 1997]. This model is migrating toward the new Microsoft COM+ or COM 3 model [Vaughan-
Nichols 1997]. Whatever the pros and cons of the different reference architectures [Mowbray and Zahavi 1995, pp.
135-149], these models affect database design the same way: they allow you to hide the database access within

-19-

objects, then place those objects on servers rather than in the client application. That application then gets data from
the objects on demand over the network. Figure 2-6 shows a typical distributed-object architecture using CORBA.
Warning This area of software technology is definitely not for the dyslexic, as a casual scan over

the last few pages will tell you. Microsoft in particular has contributed a tremendously
confusing array of technologies and their acronyms to the mash in the last couple of
years. Want to get into Microsoft data access? Choose between MFC, DAO, RDO, ADO,
or good old ODBC, or use all of them at once. I'm forced to give my opinion: | think
Microsoft is making it much more difficult than necessary to develop database
applications with all this nonsense. Between the confusion caused by the variety of
technologies and the way using those technologies locksyou into a single vendor's
muddled thinking about the issues of database application development, you are caught
between the devil and the deep blue sea.

Database 1
[1
= —
| _
=
.
"-._H‘ 1
DI
] .
Object
Server 3
Server 1
= = - Database 2
Client 2 i
Object
Server 2
Database 3
Client 3

Figure 2-6: A Simple Distributed-Object Architecture Using CORBA
In a very real sense, as Figure 2-6 illustrates by putting them at the same level, the distributed-object architecture
makes the database and its contents a peer of the application objects. The database becomes just another object
communicating through the distributed network. This object transparency has a subtle influence on database design.
Often there is a tendency to drive system design either by letting the database lead or by letting the application lead.
In a distributed-object system, no component leads all the time. When you think about the database as a cooperating
component rather than as the fundamental basis for your system or as a persistent data store appendage, you begin
to see different ways of using and getting to the data. Instead of using a single DBMS and its servers, you can
combine multiple DBMS products, even combining an object-oriented database system with a relational one if that
makes sense. Instead of seeing a series of application data models that map to the conceptual model, as in the
ANSI/SPARC architecture, you see a series of object models mapping to a series of conceptual models through
distributed networks.

Note Some advocates of the OODBMS would have you believe that the OO technology's main
benefit is to make the database disappear. To be frank, that's horse hockey. Under certain
circumstances and for special cases, you may not care whether an object is in memory or in
the database. If you look at code that does not use a database and code that does, you will
see massive differences between the two, whatever technology you're using. The database

-20 -

never disappears. | find it much more useful to regard the database as a peer object with
which my code has to work rather than as an invisible slave robot toiling away under the
covers

For example, in an application | worked on, | had a requirement for a tree structure (a series of parents and children,
sort of like a genealogical tree). The original designers of the relational database | was using had represented this
structure in the database as a table of parent-child pairs. One column of the table was the parent, the other column
was one of the children of that parent, so each row represented a link between two tree elements. The client would
specify a root or entry point into the tree, and the application then would build the tree based on navigating from that
root based on the parent-child links.

If you designed using the application-leading approach, you would figure out a way to store the tree in the database.
For example, this might mean special tables for each tree, or even binary large objects to hold the in-memory tree for
quick retrieval. If you designed using a database-centric approach, you would simply retrieve the link table into
memory and build the tree from it using a graph-building algorithm. Alternatively, you could use special database
tools such as the Oracle CONNECT BY clause to retrieve the data in tree form.

Designing from the distributed-object viewpoint, | built a subsystem in the database that queried raw information from
the database. This subsystem combined several queries into a comprehensive basis for further analysis. The object
on the client then queried this data using an ORDER BY and a WHERE clause to get just the information it required
in the format it needed. This approach represents a cooperative, distributed-object approach to designing the system
rather than an approach that started with the database or the application as the primary force behind the design.

Another application | worked on had two databases, one a repository of images and the other a standard relational
database describing them. The application used a standard three-tier client/server model with two separate database
servers, one for the document management system and one for the relational database, and much code on the client
and server for moving data around to get it into the right place. Using a distributed-object architecture would have
allowed a much more flexible arrangement. The database servers could have presented themselves as object
caches accessible from any authenticated client. This architectural style would have allowed the designers to build
object servers for moving data between the two databases and their many clients.

The OMG Object Management Architecture (OMA) [Soley 1992; Siegel 1996] serves as a standard example of the
kind of software objects you will find in distributed-object architectures, as Figure 2-7 shows. The Open Group
Architectural Framework [Open Group 1997] contains other examples in a framework for building such architectures.
The CORBAservices layer provides the infrastructure for the building blocks of the architecture, giving you all the
tools you need to create and manage objects. Lifecycle services handle creation, movement, copying, and garbage
collection. Naming services handle the management of unique object names around the network (a key service that
has been a bottleneck for network services for years under thenom de guerre of directory services). Persistence
services provide permanent or transient storage for objects, including the objects that CORBA uses to manage
application objects.

The Object Request Broker (ORB) layer provides the basic communication facilities for dispatching messages,
marshaling data across heterogeneous machine architectures, object activation, exception handling, and security. It
also integrates basic network communications through a TCP/IP protocol implementation or a Distributed Computing
Environment (DCE) layer.

The CORBAfacilities layer provides business objects both horizontal and vertical. Horizontal facilities provide objects
for managing specific kinds of application behaviors, such as the user interface, browsing, printing, email, compound
documents, systems management, and so on. Vertical facilities provide solutionsfor particular kinds of industrial
applications (financial, health care, manufacturing, and so on).

-21 -

Persistence

Notification |

Security

| Commonplace [~
EE Book 5

g f '"-EakerSL ':_ b
B Irregular [REEES

Figure 2-7: The Object Management Group's Object Management Architecture

The Application Objects layer consists of the collections of objects in individual applications that use the CORBA
software bus to communicate with the CORBAfacilities and CORBAservices. This can be as minimal as providing a
graphical user interface for a facility or as major as developing a whole range of interacting objects for a specific site.

Where does the database fit in all this? Wherever it wants to, like the proverbial 500-pound gorilla. Databases fit in
the persistence CORBAservice; these will usually be object-oriented databases such as POET, ObjectStore, or
Versant/ DB. It can also be a horizontal CORBAfacility providing storage for a particular kind of management facility,
or a vertical facility offering persistent storage of financial or manufacturing data. It can even be an application object,
such as a local database for traveling systems or a database of local data of one sort or another. These objects work
through the Object Adapters of the ORB layer, such as the Basic Object Adapter or the Object Oriented Database
Adapter [Siegel 1996; Cattell and Barry 1997]. These components activate and deactivate the database and its
objects, map object references, and control security through the OMG security facilities. Again, these are all peer
objects in the architecture communicating with one another through the ORB.

-22 -

As an example, consider the image and fact database that Holmes PLC manages, the commonplace book system.
This database contains images and text relating to criminals, information sources, and any other object that might be
of interest in pursuing consulting detective work around the world. Although Holmes PLC could build this database
entirely within an object-relational or object-oriented DBMS (and some of the examples in this book use such
implementations as examples), a distributed-object architecture gives Holmes PLC a great deal of flexibility in
organizing its data for security and performance on its servers around the world. It allows them to combine the
specialized document management system that contains photographs and document images with an object-oriented
database of fingerprint and DNA data. It allows the inclusion of a relational database containing information about a
complex configuration of objects from people to places to events (trials, prison status, and so on).

System Architecture Summary

System architecture at the highest level provides the context for database design. That context is as varied as the
systems that make it up. In this section, I've tried to present the architectures that have the most impact on database
design through a direct influence on the nature and location of the database:
= The three-schema architecture contributes the concept of data independence, separating the
conceptual from the physical and the application views. Data independence is the principle on
which modern database design rests.
= The client/server architecture contributes the partitioning of the application into client and server
portions, some of which reside on the server or even in the database. This can affect both the
conceptual and physical schemas, which must take the partitioning into account for best security,
availability, and performance.
» The distributed database architecture directly impacts the physical layout of the database through
fragmentation and concurrency requirements.
= The distributed-object architecture affects all levels of database design by raising (or lowering,
depending on your perspective) the status of the database to that of a peer of the application.
Treating databases, and potentially several different databases, as communicating objects requires
a different strategy for laying out the data. Design benefits from decreased coupling of the database
structures, coming full circle back to the concept of data independence.

Data Architectures

System architecture sets the stage for the designer; data architecture provides the scenery and the lines that the
designer delivers on stage. There are three major data architectures that are current contenders for the attentions of
database designers: relational, object-relational, and object-oriented data models. The choice between these models
colors every aspect of your system architecture:

" The data access language

" The structure and mapping of your application-database interface

" The layout of your conceptual design

" The layout of your internal design
It's really impossible to overstate the effect of your data architecture choice on your system. It is not, however,
impossible to isolate the effects. One hypothesis, which has many advocates in the computer science community,
asserts that your objective should be to align your system architecture and tools with your data model: the
impendance mismatch hypothesis. If your data architecture is out of step with your system architecture, you will be
much less productive because you will constantly have to layer and interface the two. For example, you might use a
distributed-object architecture for your application but a relational database.

The reality is somewhat different. With adequate design and careful system structuring, you can hide almost
anything, including the kitchen sink. A current example is the Java Data Base Connectivity (JDBC) standard for
accessing databases from the Java language. JDBC is a set of Java classes that provide an object-oriented version
of the ODBC standard, originally designed for use through the C language. JDBC presents a solid, OO design face
to the Java world. Underneath, it can take several different forms. The original approach was to write an interface
layer to ODBC drivers, thus hiding the underlying functional nature of the database interface. For performance
reasons, a more direct approach evolved, replacing the ODBC driver with native JDBC drivers. Thus, at the level of
the programming interface, all was copacetic. Unfortunately, the basic function of JDBC is to retrieve relational data
in relational result sets, not to handle objects. Thus, there is still an impedance mismatch between the fully OO Java
application and the relational data it uses.

Personally, | don't find this problem that serious. Writing a JDBC applet isn't that hard, and the extra design needed
to develop the methods for handling the relational data doesn't take that much serious design or programming effort.
The key to database programming productivity is the ability of the development language to express what you want. |
find it more difficult to deal with constantly writing new wrinkles of tree-building code in C++ and Java than to use

-23 .

Oracle's CONNECT BY extension to standard SQL. On the other hand, if your tree has cycles in it (where a child
connects back to its parent at some level), CONNECT BY just doesn't work. Some people I've talked to hate the
need to "bind" SQL to their programs through repetitive mapping calls to ODBC or other APIs. On the other hand,
using JSQL or other embedded SQL precompiler standards for hiding such mapping through a simple reference
syntax eliminates this problem without eliminating the benefits of using high-level SQL instead of low-level Java or
C++ to query the database. As with most things, fitting your tools to your needs leads to different solutions in
different contexts.

The rest of this section introduces the three major paradigms of data architecture. My intent is to summarize the
basic structures in each data architecture that form a part of your design tool kit. Later chapters relate specific design
issues to specific parts of these data architectures.

Relational Databases

The relational data model comes from the seminal paper by Edgar Codd published in 1972 [Codd 1972]. Codd's
main insight was to use the concept of mathematical relations to model data. A relation is a table of rows and
columns. Figure 2-8 shows a simple relational layout in which multiple tables relate to one another by mapping data
values between the tables, and such mappings are themselves relations. Referential integrity is the collection of
constraints that ensure that the mappings between tables are correct at the end of a transaction. Normalization is the
process of establishing an optimal table structure based on the internal data dependencies (details in Chapter 11).

A relation is a table of columns and rows. The relation (also called a table) is a finite subset of the Cartesian product
of a set of domains, each of which is a set of values [Ullman 1988]. Each attribute of the relation (also called a
column) corresponds to a domain (the type of the column). The relation is thus a set of tuples (also called rows). You
can also see a relation's rows as mapping attribute names to values in the domains of the attributes [Codd 1970].

-4 -

Historical
Role

Person Role — Criminal
—| Organization

—— organizationlD —

personiD

personlD J L personiD —‘ |~ roleTypelD —‘

Address
organization
name
Organization
Address Address
addressiD
addressiD —

Figure 2-8: A Relational Schema: The Holmes PLC Criminal Network Database
For example, the Criminal Organization table in Figure 2-8 has five columns:

= OrganizationName: The name of the organization (a character string)

» [egalStatus: The current legal status of the organization, a subdomain of strings including "Legally
Defined", "On Trial", "Alleged”, "Unknown"

= Stability: How stable the organization is, a subdomain of strings including "Highly Stable",
"Moderately Stable", "Unstable"

= |nvestigativePriority: The level of investigative focus at Holmes PLC on the organization, a
subdomain of strings including "Intense", "Ongoing", "Watch","On Hold"

= ProsecutionStatus: The current status of the organization with respect to criminal prosecution
strategies for fighting the organization, a subdomain of strings including "History", "On the Ropes",
"Getting There", "Little Progress", "No Progress"

Most of the characteristics of a criminal organization are in its relationships to other tables, such as the roles that
people play in the organization and the various addresses out of which the organization operates. These are
separate tables, OrganizationAddress and Role, with the OrganizationName identifying the organization in both
tables. By mapping the tables through OrganizationName, you can get information from all the tables together in a
single query.

You can constrain each column in many ways, including making it contain unique values for each row in the relation
(a unique, primary key, or candidate key constraint); making it a subset of the total domain (a domain constraint), as
for the subdomains in the CriminalOrganization table; or constraining the domain as a set of values in rows in
another relation (a foreign key constraint), such as the constraint on the OrganizationName in the

_25.-

OrganizationAddress table, which must appear in the Organization table. You can also constrain several attributes
together, such as a primary key consisting of several attributes (AddressID and OrganizationName, for example) or a
conditional constraint between two or more attributes. You can even express relationships between rows as logical
constraints, though most RDBMS products and SQL do not have any way to do this. Another term you often hear for
all these types of constraints is "business rules," presumably on the strength of the constraints' ability to express the
policies and underlying workings of a business.

These simple structures and constraints don't really address the major issues of database construction,
maintenance, and use. For that, you need a set of operations on the structures. Because of the mathematical
underpinnings of relational theory, logic supplies the operations through relational algebra and relational calculus,
mathematical models of the way you access the data in relations [Date 1977; Ullman 1988]. Some vendors have
tried to sell such languages; most have failed in one way or another in the marketplace. Instead, a simpler and
easier-to-understand language has worked its way into the popular consciousness: SQL.

The SQL language starts with defining the domains for columns and literals [ANSI 1992]:
» Character, varying character, and national varying character (strings)
= Numeric, decimal, integer, smallint
» Float, real, double
= Date, time, timestamp
= Interval (an interval of time, either year-month or day-hour)

You create tables with columns and constraints with the CREATE TABLE statement, change such definitions with
ALTER TABLE, and remove tables with DROP TABLE. Table names are unique within a schema (database, user, or
any number of other boundary concepts in different systems).

The most extensive part of the SQL language is the query and data manipulation language. The SELECT statement
queries data from tables with the following clauses:
» SELECT: Lists the output expressions or "projection” of the query
» FROM: Specifies the input tables and optionally the join conditions on those tables
» WHERE: Specifies the subset of the input based on a form of the first-order predicate calculus and
also contains join conditions if they're not in the FROM clause
= GROUP BYand HAVING: Specify an aggregation of the output rows and a selection condition on the
aggregate output row
= ORDER BY: Specifies the order of the output rows

You can also combine several such statements into a single query using the set operations UNION, DIFFERENCE,
and INTERSECT.

There are three data manipulation operations:
» |NSERT: Adds rows to a table
= UPDATE: Updates columns in rows in a table
» DELETE: Removes rows from a table

The ANS/ISO standard for relational databases focuses on the "programming language" for manipulating the data,
SQL [ANSI 1992]. While SQL is a hugely popular language and one that | recommend without reservation, it is not
without flaws when you consider the theoretical issues of the relational model. The series of articles and books by
Date and Codd provide a thorough critique of the limitations of SQL [Date 1986; Codd 1990]. Any database designer
needs to know these issues to make the best of the technology, though it does not necessarily impact database
design all that much. When the language presents features that benefit from a design choice, almost invariably it is
because SQL either does not provide some feature (a function over strings, say, or the transitive closure operator for
querying parts explosions) or actually gets in the way of doing something (no way of dropping columns, no ability to
retrieve lists of values in GROUP BY queries, and so on). These limitations can force your hand in designing tables
to accommodate your applications' needs and requirements.

The version of SQL that most large RDBMS vendors provide conforms to the Entry level of the SQL-92 standard
[ANSI 1992]. Without question, this level of SQL as a dialect is seriously flawed as a practical tool for dealing with
databases. Everyone uses it, but everyone would be a lot better off if the big RDBMS vendors would implement the
full SQL-92 standard. The full language has much better join syntax, lets you use SELECTS in many different places
instead of just the few that the simpler standard allows, and integrates a very comprehensive approach to transaction
management, session management, and national character sets.

The critical design impact of SQL is its ability to express queries and manipulate data. Every RDBMS has a different
dialect of SQL. For example, Oracle's CONNECT BY clause is unique in the RDBMS world in providing the ability to

-26 -

query a transitive closure over a parent-child link table (the parts explosion query). Sybase has interesting
aggregation functions for data warehousing such as CUBE that Oracle does not. Oracle alone supports the ability to
use a nested select with an IN operator that compares more than one return value:

WHERE (col1, col2) IN (SELECT x, y FROM TABLE1 WHERE z = 3)
Not all dialect differences have a big impact on design, but structural ones like this do.

Because SQL unifies the query language with the language for controlling the schema and its use, SQL also directly
affects physical database design, again through its abilities to express the structures and constraints on such design.
The physical design of a database depends quite a lot on which RDBMS you use. For example, Oracle constructs its
world around a set of users, each of which owns a schema of tables, views, and other Oracle objects. Sybase
Adaptive Server and Microsoft SQL Server, on the other hand, have the concept of a database, a separate area of
storage for tables, and users are quasi-independent of the database schema. SQL Server's transaction processing
system locks pages rather than rows, with various exceptions, features, and advantages. Oracle locks rows rather
than pages. You design your database differently because, for SQL Server, you can run into concurrency deadlocks
much more easily than in Oracle. Oracle has the concept of read consistency, in which a user reading data from a
table continues to see the data in unchanged form no matter whether other users have changed it. On updating the
data, the original user can get a message indicating that the underlying data has changed and that they must query it
again to change it. The other major RDBMSs don't have this concept, though they have other concepts that Oracle
does not. Again, this leads to interesting design decisions. As a final example, each RDBMS supports a different set
of physical storage access methods ranging from standard B*-tree index schemes to hash indexes to bitmap indexes
to indexed join clusters.

There's also the issue of national language character sets and how each system implements them. There is an ANSI
standard [ANSI 1992] for representing different character sets that no vendor implements, and each vendor's way of
doing national character sets is totally different from the others. Taking advantage of the special features of a given
RDBMS can directly affect your design.

Object-Oriented Databases

The object-oriented data model for object-oriented database management does not really exist in a formal sense,
although several authors have proposed such models. The structure of this model comes from 00 programming, with
the concepts of inheritance, encapsulation and abstraction, and polymorphism structuring the data.

The driving force behind object-oriented databases has been the impedance mismatch hypothesis mentioned in the
section above on the distributed-object architecture. As 00 programming languages became more popular, it seemed
to make sense to provide integrated database environments that simultaneously made 00 data persistent and
provided all the transaction processing, multipleuser access, and data integrity features of modern database
managers. Again, the problem the designers of these databases saw was that application programmers who needed
to use persistent data had to convert from 00 thinking to SQL thinking to use relational databases. Specifically, 00
systems and SQL systems use different type systems, requiring designers to translate between the two. Instead, 00
databases remove the need to translate by directly supporting the programming models of the popular 00
programming languages as data models for the database.

There are two ways of making objects persistent in the mainstream ODBMS community. The market leader,
ObjectStore by Object Design Inc., uses a storage model. This approach designates an object as using persistent
storage. In C++, this means adding a "persist" storage specifier to accompany the other storage specifiers of volatile,
static, and automatic. The downside to this approach is that it requires precompilation of the program, since it
changes the actual programming language by adding the persistent specifier. You precompile the program and then
run it through a standard C++ compiler. POET adds a "persistent” keyword in front of the "class" keyword, again
using a precompiler. The other vendors use an inheritance approach, with persistent classes inheriting from a root
persistence class of some kind. The downside of this is to make persistence a feature of the type hierarchy, meaning
you can't have a class produce both in-memory objects and persistent objects (which, somehow, you always want to
do).

It is not possible to describe the 00 data model without running into one or another controversy over features or the
lack thereof. This section will describe certain features that are generally common to 00 databases, but each system
implements a model largely different from all others. The best place to start is the ODMG object model from the
ODMG standard for object databases [Cattell and Barry 1997; ODMG 1998] and its bindings to C++, Smalltalk, and
Java. This is the only real ODBMS standard in existence; the ODBMS community has not yet proposed any formal
standards through ANSI, IEEE, or ISO.

_27 -

The Object Model specifies the constructs that are supported by an ODBMS:

» The basic modeling primitives are the object and the literal. Each object has a unique identifier. A
literal has no identifier.

= Objects and literals can be categorized by their types. All elements of a given type have a common
range of states (i.e., the same set of properties) and common behavior (i.e., the same set of defined
operations). An object is sometimes referred to as an instance of its type.

= The state of an object is defined by the values it carries for a set of properties. These properties can
be attributes of the object itself or relationships between the object and one or more other objects.
Typically the values of an object's properties can change over time.

= The behavior of an object is defined by the set of operations that can be executed on or by the
object. Operations may have a list of input and output parameters, each with a specified type. Each
operation may also return a typed result.

= A database stores objects, enabling them to be shared by multiple users and applications. A
database is based on a schema that is defined in ODL and contains instances of the types defined
by its schema.

The ODMG Object Model specified what is meant by objects, literals, types, operations, properties, attributes,
relationships, and so forth. An application developer uses the construct of the ODMG Object Model to construct the
object model for the application. The application's object model specifies particular types, such as Document, Author,
Publisher, and Chapter, and the operations and properties of each of these types. The application's object model is
the database's (logical) schema [Cattell and Barry 1997, pp. 11—12].
This summary statement touches on all the parts of the object model. As with most things, the devil is in the details.
Figure 2-9 shows a simplified UML model of the Criminal Network database, the 00 equivalent of the relational
database in Figure 2-8.

Note Chapter 7 introduces the UML notation in detail and contains references to the literature on

UML

Without desiring to either incite controversy or go into gory detail comparing vendor feature sets, a designer needs to
understand several basic ODMG concepts that apply across the board to most ODBMS products: the structure of
object types, inheritance, object life cycles, the standard collection class hierarchy, relationships, and operation
structure [Cattell and Barry 1997]. Understanding these concepts will give you a minimal basis for deciding whether
your problem is better solved by an OODBMS, an RDBMS, or an ORDBMS.

-28 -

«Persistent»
Person

«Persistent»
Alias

+FirstName : varchar
+Middlelnitial : varchar
+LastName : varchar

Figure 2-9: An OO Schema: The Holmes PLC Criminal Network Database

+Honeorific : Honorific
+FirstName : varchar
+MiddleName : varchar
+LastName : varchar
+5uffix : varchar

+5ex : Sex
+DateOfBirth : date
+DateOfDeath : date

«Persistent»
Ex Role Player

+5tartDate : date

+EndDate : date

+MethodOfRemoval : RemovalMethod

«Persistent»
Role

+Height : float
+Weight : float
+MaritalStatus : MaritalStatus

"’1-

+Description : varchar
+StartDate : date

+FormPerson(person : Person)
+DropPerson{method : RemovalMethaod)

+Comment : nullable varchar —:' +GetHistory() : Iterator
+AddAddress{address : Address) 1 *"
+GetAddresses() : lterator .
+RemoveAddress(address : Iterator) *
+AddAlias(alias : Alias) [
+GetAliases() : Iterator
+Removedlias(alias : Iterator)
*
v*) 1..1
«Persistent» «Persistent»
Address Criminal Organization
+StreetNumber : integer +OrganizationName : varchar
+StreetFraction : varchar +LegalStatus : LegalStatus
+StreetName : varchar +Stability : Stability
+StreetSuffix : varchar e * | -HinvestigativePriority : Priority
+Locator : GeoCoord 1. * +ProsecutionStatus : ProsecutionStatus

+City : varchar

+State : varchar

+PostalCode : varchar
+Country : varchar
—Comment : nullable varchar

+ CreatelLabel() : varchar

Objects and Type Structure
Every object in an 00 database has a type, and each type has an internal and an external definition. The external
definition, also called a specification, consists of the operations, properties or attributes, and exceptions that users of
the object can access. The internal definition, also called an implementation or body, contains the details of the
operations and anything else required by the object that is not visible to the user of the object. ODMG 2.0 defines an
interface as "a specification that defines only the abstract behavior of an object type" [Cattell and Barry 1997, p. 12].
A class is "a specification that defines the abstract behavior and abstract state of an object type." A literal
specification defines only the abstract state of a literal type. Figure 2-9 shows a series of class specifications with
operations and properties. The CriminalOrganization class, for example, has five properties (the same as the
columns in the relational table) and several operations.
An operation is the abstract behavior of the object. The implementation of the operation is a method defined in a
specific programming language. For example, the AddRole operation handles adding a person in a role to an
organization. The implementation of this operation in C++ might implement the operation through calling an insert()
function attached to a set<> or map<> template containing the set of roles. Similarly, the property is an abstract state
of the object, and its implementation is a representation based on the language binding (a C++ enum or class type,
for example, for the LegalStatus property). Literal implementations also map to specific language constructs. The key
to understanding the ODMG Object Definition Language (ODL) is to understand that it represents the specification,

-29.

+AddRole(role : Role)

+GetRoles() : terator
+RemoveRole(role : Iterator)
+AddAddress(address : Address)
+GetAddresses() : lterator
+RemoveAddress(address : [terator)

not the implementation, of an object. The language bindings specify how to implement the ODL abstractions in
specific 00 languages. This separation makes the 00 database specification independent of the languages that
implement it.

ODMG defines the following literal types:
= Long and unsigned long
Short and unsigned short
Float and double
Boolean
Octet (an eight-bit quantity)
Character
String
Enum (an enumeration or finite set of distinct values)

Beyond these types, there are four structured types:
= Date, time, timestamp
= |[nterval

Finally, ODMG lets you define any structure of these types using a struct format much like that of the C language.

Because much of the work in 00 databases has to do with collections of objects, ODMG also provides a class
hierarchy of collection classes for use with methods and relationships (see the following section, "Relationships and
Collections," for details).

Inheritance

Inheritance has many names: subtype-supertype relationship, is-a relationship, or generalization-specialization
relationship are the most common. The idea is to express the relationship between types as a specialization of the
type. Each subtype inherits the operations and properties of its supertypes and adds more operations and properties
to its own definition. A cup of coffee is a kind of beverage.

For example, the commonplace book system contains a subsystem relating to identification documents for people.
Each person can have any number of identification documents (including those for aliases and so on). There are
many different kinds of identity documents, and the 00 schema therefore needs to represent this data with an
inheritance hierarchy. One design appears in Figure 2-10.

The abstract class IdentificationDocument represents any document and has an internal object identifier and the
relationship to the Person class. An abstract class is a class that has no objects, or instances, because it represents
a generalization of the real object classes.

In this particular approach, there are four subclasses of Identification Document:

= ExpiringlD: An ID document that has an expiration date

= LawEnforcementID: An ID document that identifies a law enforcement officer

= SocialSecurityCard: A U.S. social security card

» BirthCertificate: A birth certificate issued by some jurisdiction
All but the social security card have their own subclasses; Figure 2-10 shows only those for ExpiringID for illustrative
purposes. ExpiringID inherits the relationship to Person from IdentificationDocument along with any operations you
might choose to add to the class. It adds the expiration date, the issue date, and the issuing jurisdiction, as all
expiring cards have a jurisdiction that enforces the expiration of the card. The Driver's License subclass adds the
license number to expiration date, issue date, and issuing jurisdiction; the Passport adds the passport number; and
the NationalldentityCard adds card number and issuing country, which presumably contains the issuing jurisdiction.
Each subclass thus inherits the primary characteristics of all identification documents, plus the characteristics of the
expiring document subclass. A passport, for example, belongs to a person through the relationship it inherits through
the Identification Document superclass.

-30 -

«Persistent»
Person

1.1
*

«Persistent»
ldentification Document

#DocumentiD : OID

A

«Persistent» «Persistent» «Persistent» «Persistent»

Expiring ID Law Enforcement ID Social Security Card Birth Certificate
+lssueDate : date +OfficerNumber : integer +SocialSecurityNumber : SodialSecurityNumber +DateOfBirth : timestamp
+Issuinglurisdiction : GeoRegion +issuingAgency : varchar +issueDate : date +Signature : Image
+ExpirationDate : date —lssueDate : date

b

«Persistent» «Persistent» - «Persisten_t»
Driver's License Passport National Identity Card

+CardNumber : varchar

+LicenseNumber : varchar +PassportNumber : varchar ;
+IssuingCountry : Country

Figure 2-10: An Inheritance Example: Identification Documents
Note The example here focuses primarily on inheriting state, but inheritance in 00 design often
focuses primarily on inheriting behavior. Often, 00 design deals primarily with interfaces, not
with classes, so you don't even see the state variables. Since this book is proposing to use 00
methods for designing databases, you will see a much stronger focus on class and abstract
state than you might in a classical 00 design.

Object Life Cycles

The easiest way to see the life cycle of an object is to examine the interface of the ObjectFactory and Object classes
in ODMG [Cattell and Barry 1997, p. 17]:

interface ObjectFactory {
Object new();

2

Interface Object {
enum Lock Type{read, write, upgrade}
exception LockNotGranted{}
void lock(in Lock_Type mode) raises (LockNotGranted);
boolean try lock(in Lock_Type mode);
boolean same_as(in Object anObject);
Object copy();
void delete();

I

The new() operator creates an object. Each object has a unique identifier, or object id (OID). As the object goes
through its life, you can lock it or try to lock it, you can compare it to other objects for identity based on the OID, or
you can copy the object to create a new object with the same property values. At the end of its life, you delete the
object with the delete() operation. An object may be either transient (managed by the programming language runtime
system) or persistent (managed by the ODBMS). ODMG specifies that the object lifetime (transient or persistent) is
independent of its type.

231 -

Relationships and Collections

A relationship maps objects to other objects. The ODMG standard specifies binary relationships between two types,
and these may have the standard multiplicities one-to-one, one-to-many, or many-to-many.

Relationships in this release of the Object Model are not named and are not "first class." A relationship is not itself an
object and does not have an object identifier. A relationship is defined implicitly by declaration of traversal paths that
enable applications to use the logical connections between the objects participating in the relationship. Traversal
paths are declared in pairs, one for each direction of traversal of the binary relationship. [Cattell and Barry 1997, p.
36]

For example, a CriminalOrganization has a one-to-many relationship to objects of the Role class: a role pertains to a
single criminal organization, which in turn has at least one and possibly many roles. In ODL, this becomes the
following traversal path in CriminalOrganization:

relationship set<Role> has_roles inverse Role::pertains_to;

In practice, the ODBMS manages a relationship as a set of links through internal OIDs, much as network databases
did in the days of yore. The ODBMS takes care of referential integrity by updating the links when the status of
objects changes. The goal is to eliminate the possibility of attempting to refer to an object that doesn't exist through a
link.

If you have a situation where you want to refer to a single object in one direction only, you can declare an attribute or
property of the type to which you want to refer instead of defining an explicit relationship with an inverse. This
situation does not correspond to a full relationship to the ODMG standard and does not guarantee referential
integrity, leading to the presence of dangling references (the database equivalent of invalid pointers).

You operate on relationships through standard relationship operations. This translates into operations to form or drop
a relationship, adding a single object, or to add or remove additional objects from the relationship. The to-many side
of a relationship corresponds to one of several standard collection classes:

= Set<>: An unordered collection of objects or literals with no duplicates allowed
Bag<>: An unordered collection of objects or literals that may contain duplicates
List<>: An ordered collection of objects or literals
Array<>: A dynamically sized, ordered collection of objects or literals accessible by position
Dictionary<>: An unordered sequence of key-value pairs (associations) with no duplicate keys

You use these collection objects through standard interfaces (insert, remove, is_empty, and so on). When you want
to move through the collection, you get an Ilterator object with the create_iterator or create_bidirectional_iterator
operations. These iterators support a standard set of operations for traversal (next_position, previous_position,
get_element, at_end, at_beginning). For example, to do something with the people associated with a criminal
organization, you would first retrieve an iterator to the organization's roles. In a loop, you would then retrieve the
people through the role's current relationship to Person.

It is impossible to overstate the importance of collections and iterators in an 00 database. Although there is a query
language (OQL) as well, most 00 code retrieves data through relationships by navigating with iterators rather than by
querying sets of data as in a relational database. Even the query language retrieves collections of objects that you
must then iterate through. Also, most OODBMS products started out with no query language, and there is still not all
that much interest in querying (as opposed to navigating) in the OODBMS application community.

Operations
The ODMG standard adopts the OMG CORBA standard for operations and supports overloading of operations. You
overload an operation when you create an operation in a class with the same name and signature (combination of
parameter types) as an operation in another class. Some OO languages permit overloading to occur between any
classes, as in Smalltalk. Others restrict overloading to the subclass-superclass relationship, with an operation in the
subclass overloading only an operation with the same name and signature in a superclass.
The ODMG standard also supports exceptions and exception handling following the C++, or termination, model of
exception handling. There is a hierarchy of Exception objects that you subclass to create your own exceptions. The
rules for exception handling are complex:
1. The programmer declares an exception handler within scope s capable of handling exceptions
of type t.
2. An operation within a contained scope sn may "raise" an exception of type t.
3. The exception is "caught" by the most immediately containing scope that has an exception
handler. The call stack is automatically unwound by the run-time system out to the level of the
handler. Memory is freed for all objects allocated in intervening stack frames. Any transactions

-32-

begun within a nested scope, that is, unwound by the run-time system in the process of
searching up the stack for an exception handler, are aborted.
4. When control reaches the handler, the handler may either decide that it can handle the

exception or pass it on (reraise it) to a containing handler [Cattel and Barry 1997, p. 40].

Object-Relational Databases

The object-relational data model is in even worse shape than the 00 data model. Being a hybrid, the data model
takes the relational model and extends it with certain object-oriented concepts. Which ones depend on the particular
vendor or sage (I won't say oracle) you choose. There is an ISO standard, SQL3, that is staggering toward adoption,

but it has not yet had a large impact on vendors' systems [ISO 1997; Melton 1998].

Depending on the vendor you choose, the database system more or less resembles an object-oriented system. It

Note

C. J. Date, one of the most famous proponents of the relational model, has penned a
manifesto with his collaborator Hugh Darwen on the ideas relating to the integration of object

and relational technologies [Date and Darwen 1998]. The version of the OR data model |

present here is very different. Anyone seriously considering using an OR data model, or more

practically an ORDBMS, should read Date's book. It is by turns infuriating, illuminating, and
aggravating. Infuriating, because Date and Darwen bring a caustic and arrogant sense of

British humour to the book, which trashes virtually every aspect of the OR world. llluminating,
because they work through some serious problems with OR "theory," if you can call it that,
from a relational instead of 00 perspective. Aggravating, because there is very little chance of
the ORDBMS vendors learning anything from the book, to their and our loss. | do not present

the detailed manifesto here because | don't believe the system they demand delivers the

benefits of object-oriented integration with relational technology and because | seriously

doubt that system will ever become a working ORDBMS.

also presents a relational face to the world, theoretically giving you the best of both worlds. Figure 2-11 shows this

hybrid nature as the combination of the OO and relational structures from Figure 2-8 and 2-9. The tables have
corresponding object types, and the relationships are sets or collections of objects. The issues that these data
models introduce are so new that vendors have only begun to resolve them, and most of the current solutions are ad

hoc in nature. Time will show how well the object-relational model matures.

Alias

|
«Persistent»
Alias
Aliases

tFirstName : varchar
+Middlelnitial : varchar
+LastName : varchar

*

Person

«Persistents»
Ex Role Player

Ex Role
Player

+StartDate : date
+EndDate : date

+MethodOfRemoval : RemovalMethod

Y

«Persistent»
Person

1
Person

+Honorific : Honorific
+FirstName : varchar
+MiddleName : varchar
+LastName : varchar

+5uffix : varchar

+5ex 1 Sex

+DateOfBirth : date
+DateOfDeath : date
+Height : float

+Weight : float
+MaritalStatus : MaritalStatus
+Comment : nullable varchar

ExRoles

«Persistent»
* Role

Role

*

|

i

Address

*

People

*

Addresses

«Persistent»
Address

+StreetNumber : integer
+StreetFraction : varchar
+StreetName : varchar
#StreetSuffix : varchar
+Locator : GeoCoord
+City : varchar

+State : varchar
+PostalCode : varchar
+Country : varchar
+Comment : nullable varchar
+CreateLabel() : varchar

-33 -

Roles
Addresses %
1..* Organizations

+Description : varchar

»
ExPlayers
+StartDate : date

People

*® L

Organization ¢ 1.1

«Persistent»
Criminal Organization

+OrganizationName : varchar
+LegalStatus : LegalStatus

+Stability : Stability
+InvestigativePriority : Priority
+ProsecutionStatus : ProsecutionStatus

Criminal
Organization

Figure 2-11: An OR Schema: The Holmes PLC Criminal Network Database

In the meantime, you can work with the framework that Michael Stonebraker introduced in his 1999 book on
ORDBMS technology. That book suggests the following features to define a true ORDBMS [Stonebraker 1999, p.
268]:
1. Base type extension
Dynamic linking of user-defined functions
Client or server activation of user-defined functions
Integration of user-defined functions with middleware application systems
Secure user-defined functions
Callback in user-defined functions
User-defined access methods
Arbitrary-length data types
. Open storage manager
2. Complex objects
a. Type constructors
= setof
= record of
= reference
b. User-defined functions
= dynamic linking
= client or server activation
= securer user-defined functions
= callback
c. Arbitrary-length complex data types
d. SQL support
3. Inheritance
a. Data and function inheritance
b. Overloading
c. Inheritance of types, not tables
d. Multiple inheritance
4. Rule system
a. Events and actions are retrieves as well as updates
b. Integration of rules with inheritance and type extension
c. Rich execution semantics for rules
d. No infinite loops
Note While this definition provides a good basis for academic wrangling over truth and beauty, it
probably is neither a necessary nor a sufficient definition of the data model from the
perspective of the practicing data architect. Certainly it doesn't cover all the issues that
interest me, and it smacks of the same logic that led to the Ten-Year War over the true
character of the "object." It is counterproductive, | believe, to treat a list of features as a
definition. Until there is a formal, mathematical model that extends the relational model with
whatever constructs are appropriate, | choose to leave truth to the academic communities'
debates. It's also important to note that these features reflect Stonebraker's interest in illustra,
the product he designed based on his work in the ORDBMS arena, since acquired by
Informix and shipped as the Informix Dynamic Server with Universal Data Option.

S@ ™m0 o0 T

In the following sections, | will cover the basics of these features. Where useful, | will illustrate the abstraction with
the implementation in one or more commercial ORDBMS products, including Oracle8 with its Objects Option, DB2
Universal Database [Chamberlin 1998], and Informix with its optional Dynamic Server (also known as lllustra)
[Stonebraker and Brown 1999].

Types and Inheritance
The relational data architecture contains types through reference to the domains of columns. The ANSI standard
limits types to very primitive ones: NUMERIC, CHARACTER, TIMESTAMP, RAW, GRAPHIC, DATE, TIME, and
INTERVAL. There are also subtypes (INTEGER, VARYING CHARACTER, LONG RAW), which are restrictions on
the more general types. These are the base types of the data model.
An OR data model adds extended or user-defined types to the base types of the relational model. There are three
variations on extended types:

= Subtypes or distinct data types

= Record data types

= Encapsulated data types

-34 -

Subtypes A subtype is a base type with a specific restriction. Standard SQL supports a combination of size and
logical restrictions. For example, you can use the NUMERIC type but limit the numbers with a precision of 11 and a
scale of 2 to represent monetary amounts up to $999,999,999.99. You could also include a CHECK constraint that
limited the value to something between 0 and 999,999,999.99, making it a nonnegative monetary amount. However,
you can put these restrictions only on a column definition. You can't create them separately. An OR model lets you
create and name a separate type with the restrictions.

DB2 UDB, for example, has this statement:
CREATE DISTINCT TYPE <name> AS <type declaration> WITH COMPARISONS

This syntax lets you name the type declaration. The system then treats the new type as a completely separate
(distinct) type from its underlying base type, which can greatly aid you in finding errors in your SQL code. Distinct
types are part of the SQL3 standard. The WITH COMPARISONS clause, in the best tradition of IBM, does nothing. It
is there to remind you that the type supports the relational operators such as + and <, and all base types but BLOBs
require it. Informix has a similar CREATE DISTINCT TYPE statement but doesn't have the WITH COMPARISONS.
Both systems let you cast values to a type to tell the system that you mean the value to be of the specified type. DB2
has a CAST function to do this, while Informix uses a :: on the literal: 82::fahrenheit, for example, casts the number
82 to the type "fahrenheit." Both systems let you create conversion functions that casting operators use to convert
values from type to type as appropriate. Oracle8, on the other hand, does not have any concept of subtype.

Record Data Types A record data type (or a structured type in the ISO SQL3 standard) is a table definition, perhaps
accompanied by methods or functions. Once you define the type, you can then create objects of the type, or you can
define tables of such objects. OR systems do not typically have any access control over the members of the record,
so programs can access the data attributes of the object directly. | therefore distinguish these types from
encapsulated data types, which conceal the data behind a firewall of methods or functions.

Note SQL3 defines the type so that each attribute generates observer and mutator functions
(functions that get and set the attribute values). The standard thus rigorously supports full
encapsulation, yet exposes the underlying attributes directly, something similar to having
one's cake and eating it.

Oracle8 contains record data types as the primary way of declaring the structure of objects in the system. The
CREATE TYPE AS OBJECT statement lets you define the attributes and methods of the type. DB2 has no concept
of record type. Informix Dynamic Server offers the row type for defining the attributes (CREATE ROW TYPE with a
syntax similar to CREATE TABLE), but no methods. You can, however, create user-defined routines that take
objects of any type and act as methods. To a certain extent, this means that Oracle8 object types resemble the
encapsulated types in the next section, except for your being able to access all the data attributes of the object
directly.

Encapsulated Data Types and BLOBs The real fun in OR systems begins when you add encapsulated data
types—types that hide their implementation completely. Informix provides what it calls DataBlades (perhaps on the
metaphor of razor blades snapping into razors); Oracle8 has Network Computing Architecture (NCA) data cartridges.
These technologies let you extend the base type system with new types and the behaviors you associate with them.
The Informix spatial data blade, for example, provides a comprehensive way of dealing with spatial and geographic
information. It lets you store data and query it in natural ways rather than forcing you to create relational structures.
The Oracle8 Spatial Data Cartridge performs similar functions, though with interesting design limitations (see
Chapter 12 for some details). Not only do these extension modules let you represent data and behavior, they also
provide indexing and other accessmethod-related tools that integrate with the DBMS optimizer [Stonebraker 1999,
pp. 117—149].

A critical piece of the puzzle for encapsulated data types is the constructor, a function that acts as a factory to build
an object. Informix, for example, provides the row() function and cast operator to construct an instance of a row type
in an INSERT statement. For example, when you use a row type "triplet" to declare a three-integer column in a table,
you use "row(1, 2, 3)::triplet" as the value in the VALUES clause to cast the integers into a row type. In Oracle8, you
create types with constructor methods having the same name as the type and a set of parameters. You then use that
method as the value: triplet(1, 2, 3), for example. Oracle8 also supports methods to enable comparison through
standard indexing.

OR systems also provide extensive support for LOBs, or large objects. These are encapsulated types in the sense
that their internal structure is completely inaccessible to SQL. You typically retrieve the LOB in a program, then
convert its contents into an object of some kind. Both the conversion and the behavior associated with the new
object are in your client program, though, not in the database. Oracle8 provides the BLOB, CLOB, NCLOB, and bfile
types. A BLOB is a binary string with any structure you want. The CLOB and NCLOB are character objects for
storing very large text objects. The CLOB contains single-byte characters, while the NCLOB contains multibyte
characters. The bfile is a reference to a BLOB in an external file; bfile functions let you manipulate the file in the
usual ways but through SQL instead of program statements. Informix Dynamic Server also provides BLOBs and

-35-

CLOBs. DB2 V2 provides BLOBs, CLOBs, and DBCLOBs (binary, single-byte, and multibyte characters,
respectively). V2 also provides file references to let you read and write LOBs from and to files.

Inheritance Inheritance in OR systems comes with a couple of twists compared to the inheritance in OODBMSs.
The first twist is a negative one: Oracle8 and DB2 V2 do not support any kind of inheritance. Oracle8 may acquire
some form of inheritance in future releases, but the first release has none. Informix Dynamic Server provides
inheritance and introduces the second twist: inheritance of types and of tables. Stonebraker's definition calls for
inheritance of types, not tables; by this he seems to mean that inheritance based only on types isn't good enough,
since his book details the table inheritance mechanism as well. Type inheritance is just like 00 inheritance applied to
row types. You inherit both the data structure and the use of any user-defined functions that take the row type as an
argument. You can overload functions for inheriting types, and Dynamic Server will execute the appropriate function
on the appropriate data.

The twist comes when you reflect on the structure of data in the system. In an OODBMS, the extension of a type is
the set of all objects of the type. You usually have ways to iterate through all of these objects. In an ORDBMS,
however, data is in tables. You use types in two ways in these systems. You can either declare a table of a type,
giving the table the type structure, or you declare a column in the table of the type, giving the column the type
structure. You can therefore declare multiple tables of a single type, partitioning the type extension. In current
systems, there is no way other than a UNION to operate over the type extension as a whole.

Inheritance of the usual sort works with types and type extensions. To accommodate the needs of tables, Informix
extends the concept to table inheritance based on type inheritance. When you create a table of a subtype, you can
create it under a table of the supertype. This two-step inheritance lets you build separate data hierarchies using the
same type hierarchies. It also permits the ORDBMS to query over the subtypes.

Figure 2-10 in the OODBMS section above shows the inheritance hierarchy of identification documents. Using
Informix Dynamic Server, you would declare row types for IdentificationDocument, Expiring Document, Passport,
and so on, to represent the type hierarchy. You could then declare a table for each of these types that corresponds
to a concrete object. In this case, IdentificationDocument, Expiring Document, and LawEnforcementID are abstract
classes and don't require tables, while the rest are concrete and do. You could partition any of these classes by
creating multiple tables to hold the data (US Passport, UK Passport, and so on).

Because of its clear distinction between abstract and concrete structures, this hierarchy has no need to declare table
inheritance. Consider a hierarchy of Roles as a counterexample. Figure 2-9 shows the Role as a class representing
a connection between a Person and a CriminalOrganization. You could create a class hierarchy representing the
different kinds of roles (Boss, Lieutenant, Soldier, Counselor, Associate, for example), and you could leave Role as a
kind of generic association. You would create a Role table as well as a table for each of its subtypes. In this case,
you would create the tables using the UNDER clause to establish the type hierarchy. When you queried the Role
table, you would actually scan not just that table but also all of its subtype tables. If you used a function in the query,
SQL would apply the correct overloaded function to the actual row based on its real type (dynamic binding and
polymorphism). You can use the ONLY qualifier in the FROM clause to restrict the query to a single table instead of
ranging over all the subtype tables.

ORDBMS products are inconsistent in their use of inheritance. The one that does offer the feature does so with
some twists on the OODBMS concept of inheritance. These twists have a definite effect on database design through
effects on your conceptual and physical schemas. But the impact of the OR data architecture does not end with
types. They offer multiple structuring opportunities through complex objects and collections as well.

Complex Objects and Collections

The OR data architectures all offer complex objects of various sorts:
= Nested tables: Tables with columns that are defined with multiple components as tables
themselves
= Typed columns: Tables with columns of a user-defined type
= References: Tables with columns that refer to objects in other tables
» Collections: Tables with columns that are collections of objects, such as sets or variable-length
arrays
Note Those exposed to some of the issues in mathematical modeling of data structures will
recognize the difficulties in the above categorization. For example, you can model nested
tables using types, or you can see them as a special kind of collection (a set of records, for
example). This again points up the difficulty of characterizing a model that has no formal
basis. From the perspective of practical design, the above categories reflect the different
choices you must make between product features in the target DBMS.

-36 -

Oracle8's new table structure features rely heavily on nested structures. You first create a table type, which defines a
type as a table of objects of a user-defined type:

CREATE TYPE <table type> ASTABLE OF <user-defined type>

A nested table is a column of a table declared to be of a table type. For example, you could store a table of aliases
within the Person table if you used the following definitions:

CREATE TYPE ALIAS_TYPE (...);
CREATE TYPE ALIAS AS TABLE OF ALIAS TYPE;
CREATE TABLE Person (

PersonlD NUMBER PRIMARY KEY,

Name VARCHAR2(100) NOT NULL,

Aliases ALIAS)

The Informix Dynamic Server, on the other hand, relies exclusively on types to represent complex objects. You
create a user-defined type, then declare a table using the type for the type of a column in the table. Informix has no
ability to store tables in columns, but it does support sets of user-defined types, which comes down to the same
thing.

Both Oracle8 and Informix Dynamic Server provide references to types, with certain practical differences. A
reference, in this context, is a persistent pointer to an object stored outside the table. References use an
encapsulated OID to refer to the object it identifies. References often take the place of foreign key relationships in
OR architectures. You can combine them with types to reduce the complexity of queries dramatically. Both Oracle8
and Informix provide a navigational syntax for using references in SQL expressions known as the dot notation. For
example, in the relational model of Figure 2-8, there is a foreign key relationship between CriminalOrganization and
Address through the OrganizationAddress relationship table. To query the postal codes of an organization, you might
use this standard SQL:

SELECT a.PostalCode
FROM CriminalOrganization o, OrganizationAddress oa, Address a
WHERE o0.0rganizationID = oa.Organization|D AND
oa.AddressID = a.Address|D

To get the same information from an ORDBMS, you might have represented the address relationship as a set of
references to addresses, which are a separate type. To query these, you would use this SQL in Informix:

SELECT deref(*).PostalCode
FROM (SELECT Addresses
FROM CriminalOrganization)

The SELECT in the FROM clause returns a set of object references of type Address, and you dereference this set
and navigate to the PostalCode attribute of the type in the main SELECT clause expression.

Oracle8 works from a position much closer to the relational model, as it does not support this kind of set retrieval.
Instead, you can retrieve the address references and dereference them in the context of an object view and its type.
An object view is a view you define with the CREATE VIEW statement to be a view of objects of a certain type. This
lets you encapsulate a query of indefinite complexity that builds the objects. In this case, for example, you might
build a view of criminal organization address objects that includes the name of the organization and a VARRAY of
addresses for each organization. You would then typically select an object into a PL/SQL data structure and use the
standard dot notation to access the postal code element of the individual members of the VARRAY.

The Oracle8 VARRAY is a varying length array of objects of a single type, including references to objects. The
varying array has enjoyed on-again, off-again popularity in various products and approaches to data structure
representation. It provides a basic ability to structure data in a sequentially ordered list. Informix Dynamic Server
provides the more exact SET, MULTISET, and LIST collections. A SET is a collection of unique elements with no
order. AMULTISET is a collection of elements with no order and duplicate values allowed. A LIST is a collection of
elements with sequential ordering and duplicate values allowed. You can access the LIST elements using an integer
index. The LIST and the VARRAY are similar in character, though different in implementation.

-37 -

DB2 V2 comes out on the short end for this category of features. It offers neither the ability to create complex types
nor any kind of collection. This ORDBMS relies entirely on lobs and externally defined functions that operate on
them.

Rules

A rule is the combination of event detection (ON EVENT x) and handling (DO action). When the database server
detects an event (usually an INSERT, UPDATE, or DELETE but also possibly a SELECT), it fires an action. The
combination of event-action pairs is the rule [Stonebraker 1999, pp. 101—111]. Most database managers call rules
triggers.

While rules are interesting, | don't believe they really form part of the essential, differentiating basis for an ORDBMS.
Most RDBMSs and some OODBMSs also have triggers, and the extensions that Stonebraker enumerates do not
relate to the OO features of the DBMS. It would be nice if the SQL3 standard finally deals with triggers and/or rules in
a solid way so that you can develop portable triggers. You can't do this today. The result is that many shops avoid
triggers because they would prevent moving to a different DBMS, should that become necessary for economic or
technical reasons. That means you must implement business rules in application server or client code rather than in
the database where they belong.

Decisions

The object-relational model makes a big impact on application design. The relational features of the model let you
migrate your legacy relational designs to the new data model, insofar as that model supports the full relational data
model. To make full use of the data model, however, leads you down at least two additional paths.

First, you can choose to use multiple-valued data types in your relational tables through nested tables or typed
attributes. For certain purposes, such as rapid application development tools that can take advantage of these
features, this may be very useful. For the general case, however, | believe you should avoid these features unless
you hav