

Microsoft® SQL ServerTM

2005 Performance
Optimization and Tuning

Handbook

This Page Intentionally Left Blank

Microsoft® SQL ServerTM

2005 Performance
Optimization and Tuning

Handbook

Ken England
Gavin Powell

Amsterdam • Boston • Heidelberg • London • New York • Oxford
Paris • San Diego• San Francisco • Singapore • Sydney • Tokyo

 Digital Press is an imprint of Elsevier

Digital Press is an imprint of Elsevier
30 Corporate Drive, Suite 400, Burlington, MA 01803, USA
Linacre House, Jordan Hill, Oxford OX2 8DP, UK

Copyright © 2007, Elsevier Inc. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior written permission of the publisher.

Permissions may be sought directly from Elsevier’s Science & Technology Rights
Department in Oxford, UK: phone: (+44) 1865 843830, fax: (+44) 1865 853333,
E-mail: permissions@elsevier.com. You may also complete your request online
via the Elsevier homepage (http://elsevier.com), by selecting “Support & Contact”
then “Copyright and Permission” and then “Obtaining Permissions.”

Recognizing the importance of preserving what has been written, Elsevier prints its
books on acid-free paper whenever possible.

Library of Congress Cataloging-in-Publication Data
Application Submitted.

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library.

ISBN: 978-1-55558-319-4

For information on all Elsevier Digital Press publications visit our Web site at
www.books.elsevier.com

Printed in the United States of America
07 08 09 10 11 12 10 9 8 7 6 5 4 3 2 1

v

Contents at a Glance

Introduction xv

1 Performance and SQL Server 2005 1

2. Logical Database Design for Performance 19

3. Physical Database Design 65

4. SQL Server Storage Structures 75

5. Indexing 121

6. Basic Query Tuning 193

7. What Is Query Optimization? 217

8. Investigating and Influencing the Optimizer 257

9. SQL Server and Windows 307

10. Transactions and Locking 355

11. Architectural Performance Options and Choices 409

12. Monitoring Performance 421

Appendices

A. Syntax Conventions 445

B. Database Scripts 447

C. Performance Strategies and Tuning Checklist 477

Index 487

This Page Intentionally Left Blank

vii

Contents

Introduction xv

1 Performance and SQL Server 2005 1

1.1 Partitioning tables and indexes 1
1.2 Building indexes online 2
1.3 Transact SQL improvements 2
1.4 Adding the .NET Framework 3
1.5 Trace and replay objects 4
1.6 Monitoring resource consumption with SQL OS 4
1.7 Establishing baseline metrics 4
1.8 Start using the GUI tools 7

1.8.1 SQL Server Management Studio 8
1.8.2 SQL Server Configuration Manager 9
1.8.3 Database Engine Tuning Advisor 9
1.8.4 SQL Server Profiler 12
1.8.5 Business Intelligence Development Studio 14

1.9 Availability and scalability 15
1.10 Other useful stuff 16
1.11 Where to begin? 17

2 Logical Database Design for Performance 19

2.1 Introducing logical database design for performance 19
2.2 Commercial normalization techniques 21

2.2.1 Referential integrity 22
2.2.2 Primary and foreign keys 23
2.2.3 Business rules in a relational database model 25
2.2.4 Alternate indexes 26

2.3 Denormalization for performance 29

viii Contents

2.3.1 What is denormalization? 31
2.3.2 Denormalizing the already normalized 31

2.3.2.1 Multiple table joins (more than two tables) 32
2.3.2.2 Multiple table joins finding a few fields 32
2.3.2.3 The presence of composite keys 34
2.3.2.4 One-to-one relationships 35
2.3.2.5 Denormalize static tables 37
2.3.2.6 Reconstructing collection lists 38
2.3.2.7 Removing tables with common fields 38
2.3.2.8 Reincorporating transitive dependencies 39

2.3.3 Denormalizing by context 40
2.3.3.1 Copies of single fields across tables 40
2.3.3.2 Summary fields in parent tables 42
2.3.3.3 Separating data by activity and

application requirements 43
2.3.3.4 Local application caching 44

2.3.4 Denormalizing and special purpose objects 44
2.4 Extreme denormalization in data warehouses 48

2.4.1 The dimensional data model 51
2.4.1.1 What is a star schema? 53
2.4.1.2 What is a snowflake schema? 54

2.4.2 Data warehouse data model design basics 56
2.4.2.1 Dimension tables 57
2.4.2.2 Fact tables 60
2.4.2.3 Other factors to consider during design 63

3 Physical Database Design 65

3.1 Introducing physical database design 65
3.2 Data volume analysis 67
3.3 Transaction analysis 69
3.4 Hardware environment considerations 73

4 SQL Server Storage Structures 75

4.1 Databases and files 75
4.2 Creating databases 79
4.3 Increasing the size of a database 83
4.4 Decreasing the size of a database 84

4.4.1 The autoshrink database option 86
4.4.2 Shrinking a database in the SQL Server

Management Studio 86

Contents ix

Contents

4.4.3 Shrinking a database using DBCC statements 88
4.5 Modifying filegroup properties 90
4.6 Setting database options 92
4.7 Displaying information about databases 95
4.8 System tables used in database configuration 98
4.9 Units of storage 102
4.10 Database pages 104
4.11 Looking into database pages 108
4.12 Pages for space management 112
4.13 Partitioning tables into physical chunks 115

4.13.1 Types of partitions 117
4.13.2 Creating a range partition 117
4.13.3 Creating an even distribution partition 118

4.14 The BankingDB database 119

5 Indexing 121

5.1 Data retrieval with no indexes 121
5.2 Clustered indexes 122
5.3 Non-clustered indexes 127
5.4 Online indexes 129
5.5 The more exotic indexing forms 129

5.5.1 Parallel indexing 129
5.5.2 Partition indexing 130
5.5.3 XML data type indexes 130

5.6 The role of indexes in insertion and deletion 131
5.7 A note with regard to updates 141
5.8 So how do you create indexes? 142

5.8.1 The Transact-SQL CREATE INDEX statement 142
5.8.2 The SQL Management Studio 153
5.8.3 The SQL Distributed Management

Framework (SQL-DMF) 155
5.9 Dropping and renaming indexes 157
5.10 Displaying information about indexes 158

5.10.1 The system stored procedure sp_helpindex 158
5.10.2 The system table sysindexes 159
5.10.3 Using metadata functions to obtain information

about indexes 161
5.10.4 The DBCC statement DBCC SHOWCONTIG 163

5.11 Creating indexes on views 167
5.12 Creating indexes with computed columns 170
5.13 Using indexes to retrieve data 171

x Contents

5.13.1 Retrieving a single row 173
5.13.2 Retrieving a range of rows 175
5.13.3 Covered queries 177
5.13.4 Retrieving a single row with a clustered index on

the table 178
5.13.5 Retrieving a range of rows with a clustered index on

the table 179
5.13.6 Covered queries with a clustered index on the table 180
5.13.7 Retrieving a range of rows with multiple non-clustered

indexes on the table 180
5.14 Choosing indexes 182

5.14.1 Why not create many indexes? 183
5.14.2 Online transaction processing versus decision support 184
5.14.3 Choosing sensible index columns 185
5.14.4 Choosing a clustered index or a non-clustered index 189

6 Basic Query Tuning 193

6.1 The SELECT statement 194
6.1.1 Filtering with the WHERE clause 195
6.1.2 Sorting with the ORDER BY clause 196

6.1.2.1 Overriding WHERE with ORDER BY 197
6.1.3 Grouping result sets 198

6.1.3.1 Sorting with the GROUP BY clause 198
6.1.3.2 Using DISTINCT 199
6.1.3.3 The HAVING clause 199

6.2 Using functions 200
6.2.1 Data type conversions 200

6.3 Comparison conditions 201
6.3.1 Equi, anti, and range 202
6.3.2 LIKE pattern matching 203
6.3.3 Set membership 204

6.4 Joins 204
6.4.1 Efficient joins 205

6.4.1.1 Intersections 205
6.4.1.2 Self joins 206

6.4.2 Inefficient Joins 207
6.4.2.1 Cartesian Products 207
6.4.2.2 Outer Joins 207
6.4.2.3 Anti-joins 209

6.4.3 How to tune a join 209
6.5 Using subqueries for efficiency 210

Contents xi

Contents

6.5.1 Correlated versus non-correlated subqueries 210
6.5.2 IN versus EXISTS 210
6.5.3 Nested subqueries 210
6.5.4 Advanced subquery joins 211

6.6 Specialized metadata objects 213
6.7 Procedures in Transact SQL 214

7 What Is Query Optimization? 217

7.1 When is a query optimized? 218
7.2 The steps in query optimization 218
7.3 Query analysis 219

7.3.1 Search arguments 219
7.3.2 OR clauses 223
7.3.3 Join clauses 224

7.4 Index selection 225
7.4.1 Does a useful index exist? 226
7.4.2 How selective is the search argument? 226
7.4.3 Key distribution statistics 227
7.4.4 Column statistics 233
7.4.5 Updating index and column statistics 234
7.4.6 When can we not use statistics? 240
7.4.7 Translating rows to logical reads 241

7.4.7.1 No index present 242
7.4.7.2 A clustered index present 242
7.4.7.3 A non-clustered index present 243
7.4.7.4 A non-clustered index present and a clustered

index present 245
7.4.7.5 Multiple non-clustered indexes present 245

7.5 Join order selection 246
7.6 How joins are processed 247

7.6.1 Nested loops joins 248
7.6.2 Merge joins 251
7.6.3 Hash joins 253

8 Investigating and Influencing the Optimizer 257

8.1 Text-based query plans and statistics 259
8.1.1 SET SHOWPLAN_TEXT { ON | OFF } 259
8.1.2 SET SHOWPLAN_ALL { ON | OFF } 260
8.1.3 SET SHOWPLAN_XML { ON | OFF } 265
8.1.4 SET STATISTICS PROFILE { ON | OFF } 266

xii Contents

8.1.5 SET STATISTICS IO { ON | OFF } 267
8.1.6 SET STATISTICS TIME { ON | OFF } 268
8.1.7 SET STATISTICS XML { ON | OFF } 270

8.2 Query plans in Management Studio 270
8.2.1 Statistics and cost-based optimization 275

8.3 Hinting to the optimizer 282
8.3.1 Join hints 283
8.3.2 Table and index hints 283
8.3.3 View hints 284
8.3.4 Query hints 285

8.4 Stored procedures and the query optimizer 289
8.4.1 A stored procedure challenge 292

8.4.1.1 Changes to the table structure 295
8.4.1.2 Changes to indexes 295
8.4.1.3 Executing update statistics 295
8.4.1.4 Aging the stored procedure out of cache 295
8.4.1.5 Table data modifications 295
8.4.1.6 Mixing data definition language and data

manipulation language statements 296
8.4.2 Temporary tables 297
8.4.3 Forcing recompilation 298
8.4.4 Aging stored procedures from cache 300

8.5 Non-stored procedure plans 301
8.6 The syscacheobjects system table 304

9 SQL Server and Windows 307

9.1 SQL Server and CPU 307
9.1.1 An overview of Windows and CPU utilization 307
9.1.2 How SQL Server uses CPU 309

9.1.2.1 Priority 309
9.1.2.2 Use of symmetric multiprocessing systems 311
9.1.2.3 Thread use 312
9.1.2.4 Query parallelism 313

9.1.3 Investigating CPU bottlenecks 314
9.1.4 Solving problems with CPU 321

9.2 SQL Server and memory 323
9.2.1 An overview of Windows virtual memory management 323
9.2.2 How SQL Server uses memory 325

9.2.2.1 Configuring memory for SQL Server 326
9.2.3 Investigating memory bottlenecks 329
9.2.4 Solving problems with memory 335

Contents xiii

Contents

9.3 SQL Server and disk I/O 335
9.3.1 An overview of Windows and disk I/O 336
9.3.2 How SQL Server uses disk I/O 339

9.3.2.1 An overview of the data cache 340
9.3.2.2 Keeping tables and indexes in cache 343
9.3.2.3 Read-ahead scans 344
9.3.2.4 Shrinking database files 346

9.3.3 Investigating disk I/O bottlenecks 348
9.3.4 Solving problems with disk I/O 352

10 Transactions and Locking 355

10.1 Why a locking protocol? 356
10.1.1 Scenario 1 356
10.1.2 Scenario 2 357

10.2 The SQL Server locking protocol 358
10.2.1 Shared and exclusive locks 358
10.2.2 Row-, page-, and table-level locking 360

10.2.2.1 When are row-level locks used? 361
10.2.2.2 When are table-level locks used? 362

10.2.3 Lock timeouts 363
10.2.4 Deadlocks 364
10.2.5 Update locks 365
10.2.6 Intent locks 367
10.2.7 Modifying the default locking behavior 367

10.2.7.1 Transaction isolation levels 368
10.2.7.2 Lock hints 369

10.2.8 Locking in system tables 373
10.2.9 Monitoring locks 374

10.2.9.1 Using the sp_lock system stored procedure 375
10.2.9.2 Using the SQL Server 2005 Management Studio 379
10.2.9.3 Using the System Monitor 381
10.2.9.4 Interrogating the syslockinfo table 383
10.2.9.5 Using the system procedure sp_who 386
10.2.9.6 The SQL Server Profiler 387
10.2.9.7 Using trace flags with DBCC 388

10.3 SQL Server locking in action 393
10.4 Uncommitted data, non-repeatable reads, phantoms, and more 398

10.4.1 Reading uncommitted data 398
10.4.2 Non-repeatable reads 399
10.4.3 Phantoms 401
10.4.4 More modified locking behavior 405

xiv Contents

10.5 Application resource locks 406
10.6 A summary of lock compatibility 407

11 Architectural Performance Options
and Choices 409

11.1 The Management Studio and the .NET Framework 410
11.2 Striping and mirroring 410

11.2.1 RAID arrays 410
11.2.2 Partitioning and Parallel Processing 411

11.3 Workflow management 411
11.4 Analysis Services and data warehousing 412

11.4.1 Data modeling techniques in SQL Server 2005 413
11.5 Distribution and replication 414
11.6 Standby failover (hot spare) 417

11.6.1 Clustered failover databases 418
11.7 Flashback snapshot databases 419

12 Monitoring Performance 421

12.1 System stored procedures 422
12.2 System monitor, performance logs, and alerts 424
12.3 SQL Server 2005 Management Studio 427

12.3.1 Client statistics 427
12.3.2 The SQL Server Profiler 428

12.3.2.1 What events can be traced? 429
12.3.2.2 What information is collected? 430
12.3.2.3 Filtering information 431
12.3.2.4 Creating an SQL Server profiler trace 431
12.3.2.5 Creating traces with stored procedures 438

12.3.3 Database Engine Tuning Advisor 442
12.4 SQL OS and resource consumption 443

A Syntax Conventions 445

B Database Scripts 447

C Performance Strategies and Tuning Checklist 477

Index 487

xv

Introduction

What is the goal of tuning an SQL Server database? The goal is to improve
performance until acceptable levels are reached. Acceptable levels can be
defined in a number of ways. For a large online transaction processing
(OLTP) application the performance goal might be to provide sub-second
response time for critical transactions and to provide a response time of less
than two seconds for 95 percent of the other main transactions. For some
systems, typically batch systems, acceptable performance might be mea-
sured in throughput. For example, a settlement system may define accept-
able performance in terms of the number of trades settled per hour. For an
overnight batch suite acceptable performance might be that it must finish
before the business day starts.

Whatever the system, designing for performance should start early in
the design process and continue after the application has gone live. Per-
formance tuning is not a one-off process but an iterative process during
which response time is measured, tuning performed, and response time
measured again.

There is no right way to design a database; there are a number of possi-
ble approaches and all these may be perfectly valid. It is sometimes said that
performance tuning is an art, not a science. This may be true, but it is
important to undertake performance tuning experiments with the same
kind of rigorous, controlled conditions under which scientific experiments
are performed. Measurements should be taken before and after any modifi-
cation, and these should be made one at a time so it can be established
which modification, if any, resulted in an improvement or degradation.

What areas should the database designer concentrate on? The simple
answer to this question is that the database designer should concentrate on
those areas that will return the most benefit. In my experience, for most
database designs I have worked with, large gains are typically made in the
area of query and index design. As we shall see later in this book, inappro-

xvi Introduction

priate indexes and badly written queries, as well as some other contributing
factors, can negatively influence the query optimizer such that it chooses an
inefficient strategy.

To give you some idea of the gains to be made in this area, I once was
asked to look at a query that joined a number of large tables together. The
query was abandoned after it had not completed within 12 hours. The
addition of an index in conjunction with a modification to the query meant
the query now completed in less than eight minutes! This magnitude of
gain cannot be achieved just by purchasing more hardware or by twiddling
with some arcane SQL Server configuration option. A database designer or
administrator’s time is always limited, so make the best use of it! The other
main area where gains can be dramatic is lock contention. Removing lock
bottlenecks in a system with a large number of users can have a huge impact
on response times.

Now, some words of caution when chasing performance problems. If
users phone up to tell you that they are getting poor response times, do not
immediately jump to conclusions about what is causing the problem. Circle
at a high altitude first. Having made sure that you are about to monitor the
correct server, use the System Monitor to look at the CPU, disk subsystem,
and memory use. Are there any obvious bottlenecks? If there are, then look
for the culprit. Everyone blames the database, but it could just as easily be
someone running his or her favorite game! If there are no obvious bottle-
necks, and the CPU, disk, and memory counters in the System Monitor are
lower than usual, then that might tell you something. Perhaps the network
is sluggish or there is lock contention. Also be aware of the fact that some
bottlenecks hide others. A memory bottleneck often manifests itself as a
disk bottleneck.

There is no substitute for knowing your own server and knowing the
normal range of System Monitor counters. Establish trends. Measure a set
of counters regularly, and then, when someone comments that the system is
slow, you can wave a graph in front of him or her showing that it isn’t!

Also there are special thanks to be made to Craig Mullins for his work
on technical editing of this book.

So, when do we start to worry about performance? As soon as possible,
of course! We want to take the logical design and start to look at how we
should transform it into an efficient physical design.

Gavin Powell can be contacted at the following email address:

ezpowell@ezpowell.com

1

1
Performance and SQL Server 2005

1.1 Partitioning tables and indexes

Partitioning lets you split large chunks of data in much more manageable
smaller physical chunks of disk space. The intention is to reduce I/O activ-
ity. For example, let’s say you have a table with 10 million rows and you
only want to read 1 million rows to compile an analytical report. If the table
is divided into 10 partitions, and your 1 million rows are contained in a sin-
gle partition, then you get to read 1 million rows as opposed to 10 million
rows. On that scale you can get quite a serious difference in I/O activity for
a single report.

SQL Server 2005 allows for table partitioning and index partitioning.
What this means is that you can create a table as a partitioned table, defin-
ing specifically where each physical chunk of the table or index resides.

SQL Server 2000 partitioning was essentially manual partitioning, using
multiple tables, distributed across multiple SQL Server computers. Then a
view (partition view) was created to overlay those tables across the servers.
In other words, a query required access to a view, which contained a query,
not data. SQL Server 2005 table partitions contain real physical rows.

Physically partitioning tables and indexes has a number of benefits:

� Data can be read from a single partition at once, cutting down enor-
mously on performance hogging I/O.

� Data can be accessed from multiple partitions in parallel, which gets
things done at double the speed, depending on how many processors
a server platform has.

� Different partitions can be managed separately, without having to
interfere with the entire table.

2 1.3 Transact SQL improvements

1.2 Building indexes online

Building an index online allows the table indexed against to be accessed
during the index creation process. Creating or regenerating an index for a
very large table can consume a considerable period of time (hours, days).
Without online index building, creating an index puts a table offline. If that
is crucial to the running of a computer system, then you have down time.
The result was usually that indexes are not created, or never regenerated.

Even the most versatile BTree indexes can sometimes require rebuilding
to increase their performance. Constant data manipulation activity on a
table (record insert, update and deletions) can cause a BTree index to deteri-
orate over time. Online index building is crucial to the constant uptime
required by modern databases for popular websites.

1.3 Transact SQL improvements

Transact SQL provides programmable access to SQL Server. Programmable
access means that Transact SQL allows you to construct database stored
code blocks, such as stored procedures, triggers, and functions. These code
blocks have direct access to other database objects—most significantly
tables where query and data manipulation commands can be executed
directly in the stored code blocks; and code blocks are executed on the data-
base server. New capabilities added to Transact SQL in SQL Server 2005
are as follows:

� Error handling

� Recursive queries

� Better query writing capabilities

There is also something new to SQL Server 2005 called Multiple Active
Result Sets (MARS). MARS allows for more than a single set of rows for a
single connection. In other words, a second query can be submitted to a
SQL Server while the result set of a first query is still being returned from
database server to client application.

The overall result of Transact SQL enhancements to SQL Server 2005 is
increased performance of code, better written code, and more versatility.
Better written code can ultimately make for better performing applications
in general.

1.4 Adding the .NET Framework 3

Chapter 1

1.4 Adding the .NET Framework

You can use programming languages other than just Transact SQL and
embed code into SQL Server as .NET Framework executables. These pro-
graming languages can leverage existing personnel skills. Perhaps more
importantly, some tasks can be written in programming languages more
appropriate to a task at hand. For example a language like C# can be used,
letting a programmer take advantage of the enormous speed advantages of
writing executable code using the C programming language.

Overall, you get support for languages not inherently part of SQL Server
(Transact SQL). You get faster and easier development. You get to use Web
Services and XML (with Native XML capabilities using XML data types).
The result is faster development, better development, and hopefully better
over database performance in the long run.

The result you get is something called managed code. Managed code is
code executed by the .NET Framework. As already stated, managed code
can be written using all sorts of programming languages. Different pro-
gramming languages have different benefits. For example, C is fast and effi-
cient, where Visual Basic is easier to write code with but executes slower.
Additionally, the .NET Framework has tremendous built-in functionality.
.NET is much, much more versatile and powerful than Transact SQL.

There is much to be said for placing executable into a database, on a
database server such as SQL Server. There is also much to be said against
this practice. Essentially, the more metadata and logic you add to a data-
base, the more business logic you add to a database. In my experience, add-
ing too much business logic to a database can cause performance problems
in the long run. After all, application development languages cater to num-
ber crunching and other tasks. Why put intensive, non-data access process-
ing into a database? The database system has enough to do just in keeping
your data up to date and available.

Managed code also compiles to native code, or native form in SQL
Server, immediately prior to execution. So, it should execute a little faster
because it executes in a form which is amenable to best performance in
SQL Server.

SQL Server 2005 includes a new management object model called SQL
Management Objects (SMO). The SMO has a basis in the .NET Frame-
work. The new graphical, SQL Server Management Studio, is written using
the SMO.

4 1.7 Establishing baseline metrics

1.5 Trace and replay objects

Tracing is the process of producing large amounts of log entry information
during the process of normal database operations. However, it might be
prudent to not choose tracing as a first option to solving a performance
issue. Tracing can hurt performance simply because it generates lots of data.
The point of producing trace files is to aid in finding errors or performance
bottlenecks, which cannot be deciphered by more readily available means.
So, tracing quite literally produces trace information. Replay allows replay
of actions that generated those trace events. So, you could replay a sequence
of events against a SQL Server, without actually changing any data, and
reproduce the unpleasant performance problem. And then you could try to
reanalyze the problem, try to decipher it, and try to resolve or improve it.

1.6 Monitoring resource consumption with SQL OS

SQL OS is a new tool for SQL Server 2005, which lives between an SQL
Server database and the underlying Windows operating system (OS). The
operating system manages, runs, and accesses computer hardware on your
database server, such as CPU, memory, disk I/O, and even tasks and sched-
uling. SQL OS allows a direct picture into the hardware side of SQL Server
and how the database is perhaps abusing that hardware and operating sys-
tem. The idea is to view the hardware and the operating system from within
an SQL Server 2005 database.

1.7 Establishing baseline metrics

A baseline is a setting established by a database administrator, either written
on paper, but preferably stored in a database (generated by the database).
This baseline establishes an acceptable standard of performance. If a base-
line is exceeded then the database is deemed to have a performance prob-
lem. A metric is essentially a measure of something. The result is many
metrics, with established acceptable baseline values. If one or more metric
baselines are exceeded then there is deemed to be one or more performance
problems. Additionally, each metric can be exceeded for a previously estab-
lished reason, based on what the metric is. So, if a table, with its indexes,
has an established baseline value of 10 bytes per minute of I/O activity, and
suddenly that value jumps up to 10 giga bytes per minute—there is proba-
bly a performance problem.

1.7 Establishing baseline metrics 5

Chapter 1

An established baseline metric is a measure of normal or acceptable
activity.

Metric baselines have more significance (there are more metrics) in SQL
Server 2005 than in SQL Server 2000. The overall effect is that an SQL
Server 2005 database is now more easily monitored, and the prospect of
some automated tuning activities becomes more practical in the long term.
SQL Server 2005 has added over 70 additional baseline measures applicable
to performance of an SQL Server database. These new baseline metrics
cover areas such as memory usage, locking activities, scheduling, network
usage, transaction management, and disk I/O activity.

The obvious answer to a situation such as this is that a key index is
dropped, corrupt, or deteriorated. Or a query could be doing something
unexpected such as reading all rows in a very large table.

Using metrics and their established baseline or expected values, one can
perform a certain amount of automated monitoring and detection of per-
formance problems.

Baseline metrics are essentially statistical values collected for a set of
metrics.

A metric is a measure of some activity in a database.

The most effective method of gathering those expected metric values is
to collect multiple values—and then aggregate and average them. And thus
the term statistic applies because a statistic is an aggregate or average value,
resulting from a sample of multiple values. So, when some activity veers
away from previously established statistics, you know that there could be
some kind of performance problem—the larger the variation, the larger the
potential problem.

Baseline metrics should be gathered in the following activity sectors:

� High load: Peak times (highest database activity)

� Low load: Off peak times (lowest database activity)

� Batch activity: Batch processing time such as during backup process-
ing and heavy reporting or extraction cycles

� Downtime: How long it takes to backup, restore, and recover is
something the executive management will always have to detail to cli-
ents. This equates to uptime and potential downtime

6 1.7 Establishing baseline metrics

Some very generalized categories areas of metric baseline measurement
are as follows:

� Applications database access: The most common performance
problems are caused by poorly built queries and locking or hot blocks
(conflict caused by too much concurrency on the same data).

In computer jargon, concurrency means lots of users accessing
and changing the same data all at the same time. If there are too
many concurrent users, ultimately any relational database has its lim-
itations on what it can manage efficiently.

� Internalized database activity: Statistics must not only be present
but also kept up to date. When a query reads a table, it uses what’s
called an optimizer process to make a wild guess at what it should do.
If a table has 1 million rows, plus an index, and a query seeks 1
record, the optimizer will tell the query to read the index. The opti-
mizer uses statistics to compare 1 record required, within 1 million
rows available. Without the optimizer 1 million rows will be read to
find 1 record. Without the statistics the optimizer cannot even hazard
a guess and will probably read everything. If statistics are out of date
where the optimizer thinks the table has 2 rows, but there are really 1
million, then the optimizer will likely guess very badly.

� Internalized database structure: Too much business logic, such as
stored procedures or a highly over normalized table structure, can
ultimately cause overloading of a database, slowing performance
because a database is just a little too top heavy.

� Database configuration: An OLTP database accesses a few rows at a
time. It often uses indexes, depending on table size, and will pass very
small amounts of data across network and telephone cables. So, an
OLTP database can be specifically configured to use lots of mem-
ory—things like caching on client computers and middle tier servers
(web and application servers), plus very little I/O. A data warehouse
on the other hand produces a small number of very large transac-
tions, with low memory usage, enormous amounts of I/O, and lots of
throughput processing. So, a data warehouse doesn’t care too much
about memory but wants the fastest access to disk possible, plus lots
of localized (LAN) network bandwidth. An OLTP database uses all
hardware resources and a data warehouse uses mainly I/O.

� Hardware resource usage: This is really very similar to the above
point under database configuration, expect that hardware can be

1.8 Start using the GUI tools 7

Chapter 1

improved upon. In some circumstances beefing up hardware will
solve performance issues. For example, an OLTP database server
needs plenty of memory, whereas a data warehouse does well with fast
disks, and perhaps multiple CPUs with partitioning for rapid parallel
processing. Beefing up hardware doesn’t always help. Sometimes
increasing CPU speed and number, or increasing onboard memory,
can only hide performance problems until a database grows in physi-
cal size, or there are more users—the problem still exists. For exam-
ple, poor query coding and indexing in an OLTP database will always
cause performance problems, no matter how much money is spent
on hardware. Sometimes hardware solutions are easier and cheaper,
but often only a stopgap solution.

� Network design and configuration: Network bandwidth and bot-
tlenecks can cause problems sometimes, but this is something rarely
seen in commercial environments because the network engineers are
usually prepared for potential bandwidth requirements.

The above categories are most often the culprits of the biggest perfor-
mance issues. There are other possibilities, but they are rare and don’t really
warrant mentioning at this point. Additionally, the most frequent and exac-
erbating causes of performance problems are usually the most obvious ones,
and more often than not something to do with the people maintaining and
using the software, inadequate software, or inadequate hardware. Hardware
is usually the easiest problem to fix. Fixing software is more expensive
depending on location of errors in database or application software. Per-
suading users to use your applications and database the way you want is
either a matter of expensive training, or developers having built software
without enough of a human use (user friendly) perspective in mind.

1.8 Start using the GUI tools

Traditionally, many database administrators will still utilize command line
tools because they perceive them as being more grassroots and, thus easier
to use. Sometimes these administrators are correct. I am as guilty of this as
is anyone else. However, as in any profession, new gadgets are often
frowned upon due to simple resistance to change and a desire to deal with
tools and methods which are familiar. The new GUI tools appearing in
many relational databases these days are just too good to miss.

8 1.8 Start using the GUI tools

1.8.1 SQL Server Management Studio

The SQL Server Management Studio is a new tool used to manage all the
facets of an SQL Server, including multiple databases, tables, indexes, fields,
and data types, anything you can think of. Figure 1.1 shows a sample view
of the SQL Server Management Studio tool in SQL Server 2005.

SQL Server Management Studio is a fully integrated, multi-task ori-
ented screen (console) that can be used to manage all aspects of an SQL
Server installation, including direct access to metadata and business logic,
integration, analysis, reports, notification, scheduling, and XML, among
other facets of SQL Server architecture. Additionally, queries and scripting
can be constructed, tested, and executed. Scripting also includes versioning
control (multiple historical versions of the same piece of code allow for
backtracking). It can also be used for very easy general database mainte-
nance.

SQL Server Management Studio is in reality wholly constructed using
something called SQL Management Objects (SMO). SMO is essentially a
very large group of predefined objects, built-in and reusable, which can be
used to access all functionality of a SQL Server database. SMO is written
using the object-oriented and highly versatile .NET Framework. Database

Figure 1.1
SQL Server

Management
Studio

1.8 Start using the GUI tools 9

Chapter 1

administrators and programmers can use SMO objects in order to create
their own customized procedures, for instance, to automate something like
daily backup processing.

SMO is an SQL Server 2005 updated and more reliable version of Dis-
tributed Management Objects (DMO), as seen in versions of SQL Server
prior to SQL Server 2005.

1.8.2 SQL Server Configuration Manager

The SQL Server 2005 Configuration Manager tool allows access to the
operating system level. This includes services such as configuration for cli-
ent application access to an SQL Server database, as well as access to data-
base server services running on a Windows server. This is all shown in
Figure 1.2.

1.8.3 Database Engine Tuning Advisor

The SQL Server 2005 Database Engine Tuning Advisor tool is just that, a
tuning advisor used to assess options for tuning the performance of an SQL

Figure 1.2
SQL Server

Configuration
Manager

10 1.8 Start using the GUI tools

Server database. This tool includes both a Graphical User Interface in Win-
dows and a command line tool called dta.exe.

This book will focus on the GUI tools as they are becoming more prom-
inent in recent versions of all relational databases,

The SQL Server 2005 Database Engine Tuning Advisor includes other
tools from SQL Server 2000, such as the Index Tuning Wizard. However,
SQL Server 2005 is very much enhanced to cater to more scenarios and more
sensible recommendations. In the past, recommendations have been basic at
best, and even wildly incorrect. Also, now included are more object types
including differentiating between clustered and non-clustered indexing, plus
indexing for view, and of course partitioning and parallel processing.

The Database Engine Tuning Advisor is backwardly compatible with
previous versions of SQL Server.

New features provided by the SQL Server 2005 Database Engine Tun-
ing Advisor tool are as follows:

� Multiple databases: Multiple databases can be accessed at the same
time.

� More objects types: As already stated, more object types can be
tuned. This includes XML, XML data types, and partitioning recom-
mendations. There is also more versatility in choosing what to tune
and what to recommend for tuning. Figure 1.3 shows available
options for differing object types allowed to be subjected to analysis.

And there are also some advanced tuning options as shown in Figure 1.4.

� Time period workload analysis: Workloads can be analyzed over set
time periods, thus isolating peak times, off-peak times, and so on.
Figure 1.5 shows analysis, allowance of time period settings, as well as
application and evaluation of recommendations made by the tool.

� Tuning log entries: A log file containing a record of events which the
Database Engine Tuning Advisor cannot tune automatically. This log
can be use by a database administrator to attempt manual tuning if
appropriate.

� Negligible size test database copy: The Database Engine Tuning
Advisor can create a duplicate test copy of a production environment,

1.8 Start using the GUI tools 11

Chapter 1

in order to offload performance tuning testing processing. Most
importantly, the test database created does not copy data. The only
thing copied is the state of a database without the actual data. This is
actually very easy for a relational database like SQL Server. All that is

Figure 1.3
Object types to tune

in the Database
Engine Tuning

Advisor

Figure 1.4
Advanced object

type tuning options
in the Database
Engine Tuning

Advisor

12 1.8 Start using the GUI tools

copied are objects, such as tables and indexes, plus statistics of those
objects. Typical table statistics include record counts and physical
size. This allows a process such as the optimizer to accurately estimate
how to execute a query.

� What-if scenarios: A database administrator can create a configura-
tion and scenario and subject it to the Database Engine Tuning Advi-
sor. The advisory tool can give a response as to the possible effects of
specified configuration changes. In other words, you can experiment
with changes, and get an estimation of their impact, without making
those changes in a production environment.

1.8.4 SQL Server Profiler

The SQL Server Profiler tool was available in SQL Server 2000 but has
some improvements in SQL Server 2005. Improvements apply to the
recording of things or events, which have happened in the database, and the
ability to replay those recordings. The replay feature allows repetition of
problematic scenarios which are difficult to resolve.

Essentially, the SQL Server Profiler is a direct window into trace files.
Trace for any relational database contain a record of some, most, or even all
activities in a database. Trace files can also include general table and index-
ing statistics as well. Performance issues related to trace files themselves is
that tracing can be relatively intensive, depending on how tracing is config-
ured. Sometimes too much tracing can affect overall database performance,

Figure 1.5
Setting analytical

time periods in the
Database Engine

Tuning Advisor

1.8 Start using the GUI tools 13

Chapter 1

and sometimes even quite drastically. Tracing is usually a last resort but also
a very powerful option when it comes to tracking down the reason for per-
formance problems and bottlenecks.

There are a number of things new to SQL Server 2005 for SQL Server
Profiler:

� Trace file replays: Rollover trace files can be replayed. Figure 1.6
shows various options that can be set for tracing, rollover, and subse-
quent tracing entry replay.

� XML: The profiler tool has more flexibility by allowing for various
definitions using XML.

� Query plans in XML: Query plans can be stored as XML allowing
for viewing without database access.

� Trace entries as XML: Trace file entries can be stored as XML allow-
ing for viewing without database access.

Figure 1.6
SQL Server Profiler

options

14 1.8 Start using the GUI tools

� Analysis Services: SQL Server Profiler now allows for tracing of
Analysis Services (SQL Server data warehousing) and Integration Ser-
vices.

� Various other things: Aggregate views of trace results and Perfor-
mance Monitor counters matched with SQL Server database events.
The Windows Performance Monitor tool is shown in Figure 1.7.

1.8.5 Business Intelligence Development Studio

This tool is used to build something called Business Intelligence (BI)
objects. The BI Development Studio is a new SQL Server 2005 tool used to
manage projects for development. This tool allows for integration of various
aspects of SQL Server databases, including analysis, integration, and report-
ing services. This tool doesn’t really do much for database performance in
general, but moreover can help to speed up development, and make devel-
opment a cleaner and better coded process. In the long term, better built
applications perform better.

Figure 1.7
The Windows

Performance
Monitor tool from

SQL Server Profiler

1.9 Availability and scalability 15

Chapter 1

1.9 Availability and scalability

Availability means that an SQL Server database will have less down time
and is less likely to irritate your source of income—your customers. Scal-
ability means you can now service more customers with SQL Server 2005.
Availability and scalability are improved in SQL Server 2005 by the addi-
tion and enhancement of the following:

� Data mirroring: Addition hot standby databases. This is called data-
base mirroring in SQL Server.

� Clustering: Clustering is introduced which is not the same thing as a
hot standby. A hot standby takes over from a primary database, in the
event that the primary database fails. Standby is purely failover abil-
ity. A clustered environment provides more capacity and up-time by
allowing connections and requests to be serviced by more than one
computer in a cluster of computers. Many computers work in a clus-
ter, in concert with each other. A cluster of multiple SQL Server data-
bases effectively becomes a single database spread across multiple
locally located computers—just a much larger and more powerful
database. Essentially, clustering provides higher capacity, speed
through mirrored and parallel databases access, in addition to just
failover potential. When failover occurs in a clustered environment
the failed node is simply no longer servicing the needs of the entire
cluster, whereas a hot standby is a switch from one server to another.

� Replication: Replication is enhanced in SQL Server 2005. Workload
can be spread across multiple, distributed, replicated databases. Also
the addition of a graphical Replication Monitor tool eases manage-
ment of replication and distributed databases.

� Snapshot flashbacks: A snapshot is a picture of a database, frozen at
a specific point in time. This allows users to go back in time, and look
at data at that point in time in the past. The performance benefit is
that the availability of old data sets, in static databases, allows queries
to be executed against multiple sets of the same data.

� Backup and restore: Improved restoration using snapshots to
enhance restore after crash recovery, and giving partial, general online
access, during the recovery process.

� Bulk imports: This is improved in SQL Server 2005.

16 1.10 Other useful stuff

1.10 Other useful stuff

Other useful stuff introduced in SQL Server 2005 offers the potential of
improving the speed of development and software quality. Improvements
include the following:

� Native XML data types: Native XML allows the storage of XML doc-
uments in their entirety inside an SQL Server database. The term
Native implies that that stored XML document is not only stored as
the textual data of the XML document, but it also includes the
browser interpretive XML structure and metadata meaning. In other
words, XML data types are directly accessible from the database as
fully executable XML documents. The result is the inclusion of all the
power, versatility, and performance of XML in general—ALL OF IT!
Essentially, XML data types allow direct access to XQuery, SOAP,
XML data manipulation languages, XSD—anything and everything
XML. Also included are specifics of XML exclusive to SQL Server [1].

� XML is the eXtensible Markup Language. There is a whole host of
stuff added to SQL Server 2005 with the introduction of XML data
types. You can even create specific XML indexes, indexing stored
XML data type and XML documents.

� Service broker notification: This helps performance enormously
because multiple applications are often tied together in eCommerce
architectures. The Server Broker part essentially organizes messages
between different things. The notification part knows what to send,
and where. For example, a user purchases a book online at the Ama-
zon website. What happens? Transactions are placed into multiple
different types of databases:

� stock inventory databases
� shipping detail databases
� payment processing such as credit cards or a provider like Paypal
� data warehouse archives
� accounting databases

The different targets for data messages are really dependent on the
size of the online operation. The larger the retailer, the more distrib-
uted their architecture becomes. This stuff is just too big to manage
all in one place.

� New data modeling techniques: A Unified Dimensional Model
(UDM) used for OLAP and analysis is data warehouse environments.

1.12 Endnotes 17

Chapter 1

This type of feature helps performance in terms of overall end-user pro-
ductivity, rather than SQL Server database performance specifically.

1.11 Where to begin?

Essentially, when looking at database performance, it is best to start at the
beginning. Where is the beginning of a relational database? The data model
logical design is the where a relational database is first created. The next
chapter will examine relational data model design, as applied to improving
overall SQL Server database performance.

1.12 Endnotes

1. Beginning XML Databases, Gavin Powell, Nov 2006, ISBN:
0471791202, Wiley.

This Page Intentionally Left Blank

19

2
Logical Database Design for Performance

In database parlance, logical design is the human perceivable organization
of the slots into which data is put. These are the tables, the fields, data
types, and the relationships between tables. Physical design is the underly-
ing file structure, within the operating system, out of which a database is
built as a whole. This chapter covers logical database design. Physical design
is covered in the next chapter.

This book is about performance. Some knowledge of logical relational
database design, plus general underlying operating system and file system
structure, and file system functioning is assumed. Let’s begin with logical
database design, with database performance foremost in mind.

2.1 Introducing logical database design for
performance

Logical database design for relational databases can be divided into a num-
ber of distinct areas:

� Normalization: A sequence of steps by which a relational database
model is both created and improved upon. The sequence of steps
involved in the normalization process is called normal forms. Each
normal form improves the previous one. The objective is to remove
redundancy and duplication, plus reduce the chance of inconsisten-
cies in data and increase the precision of relationships between differ-
ent data sets within a database.

� Denormalization: Does the opposite of normalization by undoing
normal forms. It thus reintroduces some redundancy and duplica-
tion, plus increases the potential for inconsistencies in data, and so
on. Denormalization is typically implemented to help increase per-

20 2.1 Introducing logical database design for performance

formance. The extreme in denormalization helps to create specialized
data models in data warehouses.

� Object Design: The advent of object databases was first expected to
introduce a new competitor to relational database technology. This
did not happen. What did happen was that relational databases have
absorbed some aspects of object modeling, in many cases helping to
enhance the relational database model into what is now known as an
object-relational database model.

Objects stored in object-relational databases typically do not enhance
relational database performance, but rather enhance functionality and ver-
satility.

To find out more about normalization [1] and object design [2] you will
have to read other books as these topics are both very comprehensive all by
themselves. There simply isn’t enough space in this book. This book deals
with performance tuning. So, let’s begin with the topic of normalization,
and how it can be both used (or not used) to help enhance the performance
of a relational database in general.

So, how do we go about tuning a relational database model? What does
normalization have to do with tuning? There are a few simple guidelines to
follow and some things to watch out for:

� Normalization optimizes data modification at the possible expense of
data retrieval. Denormalization is just the opposite, optimizing data
retrieval at the expense of data modification.

� Too little normalization can lead to too much duplication. The result
could be a database that is bigger than it should be, resulting in more
disk I/O. Then again, disk space is cheap compared with processor
and memory power.

� Incorrect normalization is often made obvious by convoluted and
complex application code.

� Too much normalization leads to overcomplex SQL code which can
be difficult, if not impossible, to tune. Be very careful implementing
beyond 3rd normal form in a commercial environment.

� Too many tables results in bigger joins, which makes for slower queries.

� Quite often databases are designed without forehand knowledge of
applications. The data model could be built on a purely theoretical

2.2 Commercial normalization techniques 21

Chapter 2

basis. Later in the development cycle, applications may have diffi-
culty mating to a highly granular data model (highly normalized).
One possible answer is that both development and administration
people should be involved in data modeling. Busy commercial devel-
opment projects rarely have spare time to ensure that absolutely
everything is taken into account. It’s just too expensive. It should be
acceptable to alter the data model at least during the development
process, possibly substantially. Most of the problems with relational
database model tuning are normalization related.

� Normalization should be simple because it is simple! Don’t overcom-
plicate it. Normalization is somewhat based on mathematical set the-
ory, which is very simple mathematics.

� Watch out for excessive use of outer joins in SQL code. This could
mean that your data model is too granular. You could have overused
the higher normal forms. Higher normal forms are rarely needed in
the name of efficiency, but rather preferred in the name of perfection,
and possibly overapplication of business rules into database defini-
tions. Sometimes excessive use of outer joins might be akin to: Go
and get this. Oh! Go and get that too because this doesn’t quite cover it.

The other side of normalization is of course denormalization. In many
cases, denormalization is the undoing of normalization. Normalization is
performed by the application of normal form transformations. In other
cases, denormalization is performed through the application of numerous
specialized tricks. Let’s begin with some basic rules for normalization in a
modern commercial environment.

2.2 Commercial normalization techniques

The terms modern and commercial imply a lack of traditional normaliza-
tion. This also means that techniques used in a commercial environment
are likely to bear only a vague resemblance to what you were taught about
normalization in college or university. In busy commercial environments,
relational database models tend to contradict the mathematical purity of a
highly normalized table structure. Purity is often sacrificed for the sake of
performance, particularly with respect to queries. This is often because
commercial implementations tend to do things that an academic would
never dream of, such as mix small transactions of an OLTP database with
large transactions of a data warehouse. Some academics may not think too

22 2.2 Commercial normalization techniques

highly of a data warehouse dimensional model, which is essentially denor-
malized up the gazoo! Each approach has its role to play in the constant
dance of trying to get things right and turn a profit.

2.2.1 Referential integrity

How referential integrity and tuning are related is twofold:

� Implement Referential Integrity? Yes. Too many problems and
issues can arise if not.

� How to Implement Referential Integrity? Use built-in database
constraints if possible. Do not use triggers or application coding.
Triggers can especially hurt performance. Application coding can
cause much duplication when distributed. Triggers are event driven,
and thus by their very definition cannot contain transaction termina-
tion commands (COMMIT and ROLLBACK commands). The
result is that their over use can result in a huge mess, with no transac-
tion termination commands.

Some things to remember:

� Always Index Foreign Keys: This helps to avoid locking contention
on small tables when referential integrity is validated. Why? Without
indexes on foreign key fields, every referential integrity check against
a foreign key will read an entire table without the index to read.
Unfavorable results can be hot blocking on small tables and too much
I/O activity for large tables.

Note: A hot block is a section of physical disk or memory with excessive
activity—more than the software or hardware can handle.

� Avoid Generic Tables: A table within a table. In some older data-
base models, a single centralized table was used to store system
information; for example, sequence numbers for surrogate keys, or
system codes. This is a very bad idea. Hot blocking on tables like
this can completely kill performance in even a low concurrency
multi-user environment.

2.2 Commercial normalization techniques 23

Chapter 2

2.2.2 Primary and foreign keys

Using surrogates for primary and foreign keys can help to improve perfor-
mance. A surrogate key is a field added to a table, usually an integer
sequence counter, giving a unique value for a record in a table. It is also
totally unrelated to the content of a record, other than just uniqueness for
that record.

Primary and foreign keys can use natural values, effectively names or
codes for values. For example, in Figure 2.1, primary keys and foreign keys
are created on the names of companies, divisions, departments, and
employees. These values are easily identifiable to the human eye but are
lengthy and complex string values as far as a computer is concerned. People
do not check referential integrity of records, the relational database model is
supposed to do that.

The data model in Figure 2.1 could use coded values for names, making
values shorter. However, years ago, coded values were often used for names
in order to facilitate easier typing and selection of static values—not for the
purpose of efficiency in a data model. For example, it is much easier to type
USA (or select it from a pick list), rather than United States of America,
when typing in a client address.

The primary and foreign keys, denoted in Figure 2.1 as PK and FK
respectively, are what apply referential integrity. In Figure 2.1, in order for a
division to exist it must be part of a company. Additionally, a company can-
not be removed if it has an existing division. What referential integrity does
is verify that these conditions exist whenever changes are attempted to any
of these tables. If a violation occurs an error will be returned. It is also pos-

Figure 2.1
Natural value keys

24 2.2 Commercial normalization techniques

sible to cascade or pass changes down through the hierarchy. In other
words, when cascade deleting a company all divisions, departments, and
employees for that company will be removed from the database, as well as
the company itself.

In a purist’s or traditional relational data model, keys are created on
actual values, such as those shown in Figure 2.1. The primary key for the
Company table is created on the name of the company, a variable length
string. Try to create keys on integer values. Integer values make for more
efficient keys than alphanumeric values. This is because both range and
exact searches, using numbers, are mathematically much easier than using
alphanumeric values. There are only 10 possible digits to compare (0 to 9),
but many more alphanumeric characters than just 10. Sorting and particu-
larly hashing are much more efficient with numbers.

Avoid creating keys on large fixed or variable length strings. Dates can
also cause problems due to implicit conversion requirements, and differ-
ences between dates and timestamps. Numbers require less storage and thus
shorter byte lengths. The only negative aspect is that as the numbers grow,
predicting space occupied becomes more difficult.

A possibly more efficient key structure for the data model in Figure 2.1
would be as shown in Figure 2.2. In Figure 2.2, all variable length strings
are relegated as details of the table, by the introduction of integer primary
keys. Integer primary keys are known as surrogate keys, the term surrogate
meaning substitute value or key.

A more effective form of the data model shown in Figure 2.1 and Figure
2.2 would be the data model as shown in Figure 2.3. In Figure 2.3, the rela-
tionships become non-identifying.

Figure 2.2
Surrogate value

keys

2.2 Commercial normalization techniques 25

Chapter 2

An identifying relationship exists where a parent table primary key is
part of a child table primary key (the parent identifies each child directly).
A parent table primary key, which is not part of the primary key in a child
table, makes the relationship non-identifying. This is because each record in
the child is not directly and exclusively identified by the primary key in the
parent table.

In Figure 2.3, all foreign keys have been removed from the composite
primary keys, resulting in a single unique primary key surrogate key field.
This is often the most effective structure for an OLTP database. However,
where there is heavy reporting, it can sometimes be beneficial to retain
composite indexing structures like this, but perhaps as alternate keys and
not as part of the primary key.

In most relational databases, surrogate keys are most efficiently gener-
ated using autonomous sequence counter objects, or auto counters.

2.2.3 Business rules in a relational database model

Business rules are the rules defining both database metadata structure, and
some of the data manipulation coding (commonly seen in application cod-
ing—not in the database model). The idea of modern relational databases,
such as SQL Server, is that you do have the option of implementing all
business rules pertaining to a set of data, and large parts of the noncustomer
facing part of applications, within a database model. This does not mean
that you should do so.

Business rules can be implemented in a relational database model using
the combination of tables, fields, data types, relationships between tables,
procedures, triggers, specialized objects, and so on.

Figure 2.3
Single field, unique

surrogate keys

26 2.2 Commercial normalization techniques

What are business rules? This term is often used vaguely where it could
quite possibly have different meanings. Some technical people will insist on
placing all business rules into a database. Others will insist on the opposite.
Either approach is often dependent on available skills of personnel working
on a particular project.

There are two important areas with respect to business rule implementa-
tion inside a relational database model:

� Referential Integrity: Referential integrity can be implemented in
the database using constraints, triggers, or application coding. Usu-
ally the best option is use of constraints because they are centralized
and simplistic.

� SQL code: Using stored procedures, functions, and sometimes triggers.

You can put as much as you want of the business rules of an application,
into a database model. Sometimes this can work well for performance. In a
practical situation it makes the database model just too complex. It is better
to divide up structural and processing requirements between database and
application coding. There is a very simple reason for this: application cod-
ing is much more proficient at processing data than any database is.

A database is primarily built to both store data and to read and write
data. A database is not built to process data.

The term process means to change data from one thing into another.
This function is often called number-crunching in the case of complex
numerical calculations.

An application coding tool is built to process data, not store it. In short,
use the appropriate tools in the appropriate places. This is fundamental to
building applications and databases with acceptable performance.

2.2.4 Alternate indexes

Alternate indexes are sometimes known as secondary indexes. The meaning
of the terms alternate and secondary is somewhat confusing because they
mean different things in English. In the context of a relational database,
these terms are one and the same. Alternate implies another option, and sec-
ondary implies in addition to. So now complete confusion reigns supreme.
The precise meaning of the terms in this context is not really too important.

2.2 Commercial normalization techniques 27

Chapter 2

Alternate indexes are usually created because the primary and foreign
key indexes in a data model do not cater to everything required by applica-
tions. That everything would be any kind of filtering and sorting, particu-
larly in SQL statements, such as queries. Filtering and sorting SQL
statements is what uses indexes. Those indexes help applications to access
the database quickly, scanning over much smaller amounts of physical disk
space, than when reading an entire table.

A database with too many alternate indexes will have more to maintain.
For example, whenever a record in a table is changed, every index created
against that table must be changed at the same time. So, inserting a single
record into a table with four indexes in reality requires four index additions
and one table addition. That is a total of five additions, not a single addi-
tion. That’s a lot of work for a database to do. That can hurt performance,
sometimes very badly. On the contrary, if a database has a large number of
alternate indexes, there could be a number of reasons, but not necessarily all
performance friendly scenarios:

� Reporting in an OLTP database: More traditional relational data-
base structures, such as those shown in Figure 2.1 and Figure 2.2,
include composite primary keys. Composite primary keys get a little
too precise and are more compatible with reporting efficiency and
perhaps only a very few specific reports. Structures such as that shown
in Figure 2.3 do not have composite primary keys. Imposition of
reporting requirements on the structure in Figure 2.3 would probably
require composite alternate indexes, somewhat negating the useful-
ness of surrogate keys.

� Matching query filtering and sorting with existing keys: When
existing composite primary keys do not cater to requirements then
perhaps either further normalization or denormalization is a possibil-
ity. Or perhaps current structures simply do not match application
requirements. However, changing the data model at a late stage (post-
development) is difficult. Also, further normalization can cause other
problems, particularly with recoding of application and stored proce-
dure code.

� Direct copying between development and production databases:
Developers have a habit of creating a lot of indexes while coding, as
they should do. They are building and testing after all. Quite often
indexes will not be cleaned up. And they may not be removed when
no longer in use.

28 2.2 Commercial normalization techniques

� Surrogate keys do not negate uniqueness requirements: When
using surrogate keys, such as in Figure 2.3, items such as names of
people or departments may be required to be unique. These unique
keys are not part of referential integrity but they can be important
and are most easily maintained at the database level using unique
alternate indexes.

There is no cut-and-dry answers to which alternate keys should be
allowed, and how many should be created. The only sensible approach is to
keep control of the creation of what are essentially extra keys. These keys
were not thought about in the first place. Or perhaps an application
designed for one thing has been expanded to include new functionality,
such as reporting.

Alternate indexing is not part of the normalization process. It should be
somewhat included at the data model design stage, if only to avoid difficul-
ties when coding. Programmers may swamp database administrators with
requests for new indexes, if those indexes were not added when the data
model was first created. Typically, alternate keys added in the data modeling
stage are those most obvious as composites, where foreign keys are inherited
from parent tables, such as the composite primary keys shown in Figure 2.1
and Figure 2.2.

Composite field keys use up a lot of physical space, somewhat negating
the space saving I/O advantage of creating an index in the first place. Also, a
composite index will create a more complicated index. A more complicated
index makes the job of specialized index searching algorithms a more diffi-
cult task.

The sheer scale and size of OLTP Internet databases can sometimes be
horrifying to even the most seasoned of database administrators. Many
hundreds of gigabytes are common. Some modern OLTP databases are
even on the terabyte scale. Some installations even mix OLTP and reporting
processing into the same database, even to the point of mixing intense
OLTP concurrency and heavy I/O data warehousing activity. Enormous
amounts of money can be spent on very expensive hardware to maintain
performance at a level acceptable to customer satisfaction. And, developers
cannot possibly test reliably against databases of such magnitude. The result
is often applications coded to small-scale databases, and unexpected, if not
disappointing, performance in much larger scale production environments.
Extensive tuning is often required. The larger the database, the more likely
that a dual database architecture has to be adopted. That dual database

2.3 Denormalization for performance 29

Chapter 2

architecture would be OLTP plus data warehouse architecture in separate
databases, on different computers. Unless of course you prefer to spend a
small fortune on fancy computer hardware.

2.3 Denormalization for performance

Before we get to data warehouse data modeling, you need to have a brief
understanding of what denormalization is. A large part of denormalization
is a process of undoing normalization. This is a process of removal of too
much data model granularity. Too much granularity may be preventing
acceptable performance of data retrieval from a relational data model. This
is true not only for reporting and data warehouse databases, but also quite
significantly even for OLTP databases.

In SQL Server the SQL Analysis Server is effectively a data warehousing
query analysis tool.

So, as already stated, denormalization is largely a process of undoing
normalization. However, that does not cover all practical possibilities. Here
are some areas of interest when it comes to undoing of granularity, in addi-
tion to that of undoing of normalization:

� Denormalization: Undoing various normal forms, some more than
others.

� Context: Various tricks to speed up data access based on the context
of data or application function.

� Denormalization using unusual database objects: Creation of spe-
cial types of database objects used to cluster, pre-sort, and pre-con-
struct data. These specialized objects help to avoid excessive amounts
of complex repetitive SQL.

The reason for removal or degradation of normalization is for the pur-
pose of improving performance. As already stated, it is very important to
note that removal of normalization granularity is usually a necessity in data
warehousing, and sometimes even smaller scale reporting environments. It
has often been the case, in my experience, that even OLTP transactional
data models have required reduction in granularity produced by overnor-
malization. Any application retrieving data from an overnormalized data-
base can potentially have performance problems. A very deeply normalized

30 2.3 Denormalization for performance

database is only most effective for single record insert, update, and deletion
transactions; changing single data items.

In the past I have even seen some very poorly performing OLTP appli-
cations, even those with small transactional units. The reason for this
poor performance is often the result of severely granular data models.
Some of these systems did not contain large numbers of records or occupy
a lot of physical space. Even so, brief data selection listings into one page
of a browser, more often than not performed join queries comprising
many tables.

 These types of applications sometimes fail, their creators fail or both. In
these cases, there is a very strong case to be said for the necessity of design-
ing a data model with the functionality of the application in mind, and not
just the beauty of the granularity of an enormously overnormalized rela-
tional data model structure.

One particular project I have in mind had some queries with joins con-
taining in excess of 15 tables, a database under 10 megabytes in size, and
some query return times of over 30 seconds on initial testing. These time
tests were reduced to mere seconds after extensive application code changes
of embedded SQL code (to get around an impractically over normalized
table structure). However, it was too late to change the data model without
extensive application recoding, and thus some very highly tuned and con-
voluted embedded SQL code remained. Maintenance for this particular
application will probably be a nightmare, if it is even possible. In a situation
such as this, it might even be more cost effective to rewrite.

In conclusion, normalization granularity can often be degraded in order
to speed up SQL data retrieval performance. How do we do this? The easi-
est and often the most effective method, from the perspective of the data
model, is a drastic reduction to the number tables in joins. It is possible to
tune SQL statements joining 15 tables but it is extremely difficult—not
only to write SQL code but also for the database optimizer to perform at its
best. If the data model can possibly be changed then begin with that data
model. Changing the data model obviously affects any SQL code, be it in
stored procedures or embedded in applications.

Some basic strategies when attempting to tune a logical database (the
data model), could include the following approaches:

� Application tasks versus database tables: Compare the number of
tasks (or application interface screens) in an application and compare
with the number of tables. If there are many more tables than appli-

2.3 Denormalization for performance 31

Chapter 2

cation task units, then you might want to denormalize or simply
remove some of the tables. There may well be some redundant tables
in the data model. For example, a database originally designed to
store aircraft parts is later changed to a seating reservation system.
This is probably an unrealistic scenario but retaining tables describing
tolerances for aircraft parts is irrelevant when reserving seats for pas-
sengers on flights of those aircraft.

� Focus on heavily used functionality: Focus on the heavily active
tables in a data model. The simple reason is that attacking the busiest
parts of any system is likely to gain the best results, the quickest.

2.3.1 What is denormalization?

In most cases, denormalization is the opposite of normalization. Normal-
ization is an increase in granularity by removing duplication. Denormaliza-
tion is an attempt to remove granularity by reintroducing duplication,
previously removed by normalization.

Denormalization is usually required in order to assist performance
because a highly granular structure is only useful for retrieving very precise,
small amounts of information, rather than large amounts of information.
Denormalization is used to analyze and report, not to facilitate changing
specific data items. In simple terms denormalize to decrease the number of
tables in joins. Joins are slow! Simple SQL statements are fast and they are
easy to tune, being the order of the day wherever possible.

It is sometimes the case that table structure is much too granular, or pos-
sibly even incompatible with structure imposed by applications. This par-
ticular situation can occur when the data model is designed with the
perfection of normalization in mind, without knowledge of, or perhaps
even consideration for, realistic application requirements. It is a lucky devel-
opment team that understands application requirements completely, when
the data model is being built. Denormalization is one possible solution in
this type of situation.

Denormalization is not rocket science. Denormalization is antonymic
with normalization. In other words, the two are often completely opposite.
Both are common sense.

2.3.2 Denormalizing the already normalized

From my own past experience and that of others, there are numerous things
you can look for when considering what to denormalize in a data model.

32 2.3 Denormalization for performance

2.3.2.1 Multiple table joins (more than two tables)

A join is a query that merges records from two tables based on matching
fields. When more than two tables are in a single join, it gets more difficult
for a relational database to find all the records efficiently. If these types of
joins are executed frequently, the result is usually a general decrease in per-
formance. Queries can sometimes be speeded up by denormalizing multiple
tables into fewer tables. The objective would be to reduce the number of
tables in join queries overall. Query filtering (WHERE clause) and sorting
(ORDER BY clause) only add to the complexity of queries. The following
query is an ANSI format query showing a horribly complex join of 8 tables:

SELECT cu.customer_id, o.order_id, ol.seq#, ca.category_id

FROM customer cu JOIN orders o ON (cu.customer_id = o.customer_id)

 JOIN transactions t ON (o.order_id = t.order_id)

 JOIN transactionsline tl ON (t.transaction_id = tl.transaction_id)

 JOIN ordersline ol ON (o.order_id = ol.order_id)

 JOIN stockmovement sm ON (tl.stockmovement_id = sm.stockmovement_id

 AND ol.stockmovement_id = sm.stockmovement_id)

 JOIN stock s ON (s.stock_id = sm.stock_id)

 JOIN category ca ON (ca.category_id = s.category_id)

WHERE ca.text = 'Software';

The above query is completely ridiculous but it is the sort of complexity
that you might want to search for. The data model for the above query is
shown in Figure 2.4.

2.3.2.2 Multiple table joins finding a few fields

Sometimes a join gets at many tables in a data model and only retrieves as
little as one field, or even just a few fields, from a single table in a multiple
table join. A join could be passing through one or more tables, from which
no fields are retrieved. This can be inefficient because every table passed
through adds another table to the join. This problem can be resolved in
two ways:

� By denormalizing tables to fewer tables. However, this may be diffi-
cult to implement because so much denormalization could be
required, that it may affect functionality in a lot of application code

� Maintain copies of the offending field values in more than a single
table.

2.3 Denormalization for performance 33

Chapter 2

In the next script is the same ANSI format query as above, but with a
small change. In the join query below, only the customer_id and
category_id fields are retrieved. Of course, the join is still ridiculous. It
probably would never be a requirement for an application but this is the
only way that the stock category can be linked to a customer. This is defi-
nitely a problem. In this example, denormalization would be nonsensical
but some type of a relationship could possibly be established between the

Figure 2.4 A relational data model for a simple accounting database

34 2.3 Denormalization for performance

customer and stock tables. On the other hand, new table relationships
would only serve to complicate the data model further:

SELECT cu.customer_id, ca.category_id

FROM customer cu JOIN orders o ON (cu.customer_id = o.customer_id)

 JOIN transactions t ON (o.order_id = t.order_id)

 JOIN transactionsline tl ON (t.transaction_id = tl.transaction_id)

 JOIN ordersline ol ON (o.order_id = ol.order_id)

 JOIN stockmovement sm ON (tl.stockmovement_id = sm.stockmovement_id

 AND ol.stockmovement_id = sm.stockmovement_id)

 JOIN stock s ON (s.stock_id = sm.stock_id)

 JOIN category ca ON (ca.category_id = s.category_id)

WHERE ca.text = 'Software';

Again, the data model for the above query is shown in Figure 2.4.

2.3.2.3 The presence of composite keys

Do tables in your data model have composite keys? It is possible to partially
denormalize by adding composite key elements to the primary keys of sub-
set tables. Composite keys are totally contrary to object structure and more
compatible with reporting. Applications written using object-oriented pro-
gramming languages, such as Java, may perform poorly when data is
accessed using composite keys. Object applications perform best when
accessing precise data objects, containing collections of other precisely
defined objects.

This is what an object design is and is common for front-end applica-
tion development tools such as Java, JavaScript, .NET objects, and even
XML. In other words, modern object-oriented applications are more com-
patible with surrogate keys in the data model. This is especially the case
when applications control database access, and customers do not have
direct access to the tables in your database. Now something like Analysis
Services provides an overlay structure to tables in a database, and typically
does not provide direct access to underlying tables. If end-users and power
users do have direct access to your normalized table structure, then you
probably don’t need to read this book. If not, then be warned that database
performance tuning is a highly complex topic, with many variables that
even an experienced database performance tuner can’t predict. Hire some
help if you need to, and keep your customers.

Composite indexes that are primary keys fall into the realm of alternate
indexing.

2.3 Denormalization for performance 35

Chapter 2

The use of composite keys has already been discussed between Figure
2.1, Figure 2.2, and Figure 2.3. Figure 2.3 represents the most efficient and
compatible form of unique primary key structures, in that Figure 2.3 uses a
surrogate key (or replacement key) in each table. In other words, the surro-
gate acts as a replacement for any possible combination of fields, which
uniquely identify each record, within each table.

2.3.2.4 One-to-one relationships

One-to-one relationships are often the result of overapplication of BCNF
(Boyce-Codd Normal Form), or 4th normal form. Look for them! They are
usually used to preserve disk space and provide integrity for potentially
NULL values. They may be unnecessary if the required removal of NULL
values causes costly joins. Disk space is cheap! An example of this is shown
in Figure 2.5.

In Figure 2.5, the fully denormalized version is shown bottom-right, in
the form of the customer table, containing both address and listing infor-
mation. This is based on listing information potentially not being present,
and address information potentially not being present. Splitting the cus-
tomer table into customer, listed, and address tables is correct. And it is

Figure 2.5
Denormalizing

one-to-one NULL
separation

relationships

36 2.3 Denormalization for performance

proper normalization. However, if 99% of all queries in your database find
both the name of the customer and their address, then you are simply over
stressing your applications in general with constant repetition of a join
between customer and address tables. On the contrary, if 99% of queries
find only a customer’s name without their address, then this level of nor-
malization is warranted. Applications should help to influence the normal-
ization process. So, database design is usually most effective with as much
knowledge of future applications as possible.

Finding address information without the customer name is unlikely in
an OLTP database. It is more likely for a data warehouse. OLTP databases
require precisely identifiable, small amounts of information (a single cus-
tomer). Data warehouses seek to analyze large quantities of data by one or
more criteria, such as one or more regions in a country.

Removal of one-to-one relationships can also be pictured mentally as
disallowing related static data to exist in multiple tables.

Application of BCNF (Boyce-Codd Normal Form) creates unnecessary
one-to-one relationships, within static data tables.

BCNF is intended to separate candidate keys into separate tables. In
other words, any field in a table, which has potential as a primary key (is
capable of representing a record in a table uniquely), should not be allowed
to be dependant on the primary key. It should be its own primary key, in its
own table, and link back to the parent table through a one-to-one relation-
ship. An extreme application of BCNF is shown in Figure 2.6, where I have
created a rather absurdly broken up picture of BCNF, separating out all
unique values (candidate keys) into separate tables.

Figure 2.6
Denormalize

absurd applications
of BCNF

2.3 Denormalization for performance 37

Chapter 2

2.3.2.5 Denormalize static tables
Similar to that shown in Figure 2.5, but not identical because the relation-
ships are not all one-to-one, are queries against multiple static tables per-
forming a lot of joins. Querying a single table is much more efficient than
multiple tables. Static data does not need to be normalized into separate
tables unless said separate tables are accessed individually, from separate
queries. Even so, static tables are often small and generally will be full table
scanned by the optimizer anyway, regardless of any indexing. A good exam-
ple of this is represented by the listing (Listed) and exchange (Exchange)
tables in Figure 2.7. The listing and exchange tables do not need to be sepa-
rate tables.

Just to be more precise, and prevent any confusion, in Figure 2.7 the
denormalized customers at the bottom of the diagram contains a ticker
symbol but no exchange. Ticker symbols are in actuality unique regardless
of the exchange. For example, the company International Business
Machines is listed on the NYSE with the ticker symbol IBM. It is also listed
on the London Stock Exchange as IBM, because it’s the same company. If
the ticker symbol is different, you would be looking at a different company
with respect to stock trading. The Exchange table was added for the pur-
poses of demonstrating a point.

Figure 2.7
Static tables should

be fully
denormalized

38 2.3 Denormalization for performance

2.3.2.6 Reconstructing collection lists

An object collection inside a table implies a multi-valued list, or a comma-
delimited list. This comma-delimited list has zero or more elements, with
same data type values repeated in a single field of a table. For example,
1,2,3,4,5 is a comma-delimited list consisting of five numbers. Rome, Lon-
don, Hamburg, Paris, Nice is a comma-delimited list of five European cities.

A multi-valued list is directly dependent on the primary key as a whole,
but not as individual elements within the list. Figure 2.8 shows normaliza-
tion (from left to right) of two multi-valued lists. Employee skill and certifi-
cation collections are removed into separate tables. An employee could have
skills, or certifications, or both. So, there is no connection between the
fields of the employees table, other than the employee number, and the
details of skills or certifications for each employee.

Figure 2.8 shows that one table has been divided up into three tables. In
the interests of good join query performance, Figure 2.8 is exactly what you
don’t want to do. Application programming languages are highly effective at
managing comma-delimited lists, and all sorts of other lists for that matter.
There is no reason on earth why this kind of deep business logic needs be
buried within a relational database.

This type of normalization is usually 4th normal form normalization,
which strives to eliminate multi-valued dependencies. In modern commer-
cial applications, this kind of depth is unnecessary and can be detrimental
to performance. Let your application programmers code for this type of
data in something like Java. Perhaps just try to use the best tools for each
particular job.

2.3.2.7 Removing tables with common fields

3rd normal form can be used to remove fields, shared on two or more tables,
making a single copy of the shared fields in a new table. The result is shown
on the left side of Figure 2.9, where common fields are shared between mul-

Figure 2.8
Normalizing

contained object
collections

2.3 Denormalization for performance 39

Chapter 2

tiple tables, using an extra table. Once again, the denormalized version of
this transformation, as shown on the right side of Figure 2.9, is possibly a
more efficient form.

And yet again, the simple reason is reducing the number of tables in join
queries to be constructed to read records from these tables. It is sometimes
better just to duplicate the fields in their parent tables. Of course, not
duplicating and normalizing may be determined by, in how many tables the
fields are repeated. Additionally, the context of the data may be important
as well.

In the case of the customers and suppliers shown in Figure 2.9, it can
possibly improve to denormalize something the way it is shown. Relative to
invoices and transactions in an accounting system, customers and suppliers
are relatively static data. So, normalizing in this context is splitting static
data unnecessarily.

2.3.2.8 Reincorporating transitive dependencies

Another type of 3rd normal form transformation can remove a transitive
dependency, as shown on the left side of Figure 2.10. A transitive depen-
dency is when a third field is dependent on a second field. Also, the second
field is dependent on the primary key but the third field is not fully depen-
dent on the primary key. So, the third field can be removed to a new table,
as shown on the left side of Figure 2.10. The result is that the second field
becomes the primary key of the new table. In other words, on the left side
of Figure 2.10, each department depends on division (it’s in a division),
which in turn depends on being in a company. However, each department
does not absolutely depend on being part of any particular company (dif-
ferent companies can have the same department names).

Figure 2.9
Denormalize

common fields by
duplication

40 2.3 Denormalization for performance

Once again, in the interests of efficient join queries, the denormalized
form, as shown on the right side of Figure 2.10, might be the most prudent
option.

In the interest of simplicity, I have not labeled primary key column
names in my standard format for surrogate keys, as column_id. However,
the company column in the Company table on the right side of Figure 2.10
is a surrogate key. Otherwise, the division column should be part of a com-
posite primary key of both division and company.

2.3.3 Denormalizing by context
There are many tricks to denormalize data, which are not necessarily rever-
sals of any of the steps of normalization. These we examine in this section.
There could be similarities between denormalization by context, and that of
the reversal of normal forms. However, the fitting of scenarios, to a specific
normal form rule, rather defeats the purpose of creating the rules in the first
place. Why qualify something when it is already done? Application of the-
ory by way of proof of that theory is used to create the environment, which
that theory has described. Normal forms create the environment of per-
fectly structured relational data. The theory is normalization. Normaliza-
tion works properly. Then again, in commercial environments the critical
factors are speed and customer satisfaction, not perfection—usually far
from it!

2.3.3.1 Copies of single fields across tables

The sheer depth of some data models can necessitate searching through
multiple tables just to find sometimes even as little as one or two fields, and
even from a single table. Again, the performance objective is to avoid too

Figure 2.10
Reincorporate

transitive
dependencies

2.3 Denormalization for performance 41

Chapter 2

many tables in join queries, thereby increasing performance. Figure 2.11 is
a small section of the data model shown in Figure 2.4.

In Figure 2.11, the field called DTE (containing a date value) is present in
three different tables. Realistically an order will be placed completely, or a
transaction will be executed such as sending an invoice, all at the same time.
This is regardless of how many stock items are moved in or out of stock. So, it
makes perfect sense to include the date with each order and transaction.
However, this particular data model combines the activities of accounting
data, stock tracking (movements in and out of stock), plus an ordering-
invoicing system. So, when taking stock, if dates are required by stock move-
ment records, that date must be retrieved from orders or transactions. Both
orders and transactions are irrelevant to deciding which stock items need to
be ordered from suppliers. The date is relevant to stock movements because
when an order is placed, those items are not necessarily from stock until
invoiced. Or they may also be sent to a customer before invoicing. Or per-
haps even removed when payment is received – which is after invoicing. So,
in this case dates are copied into the stock movements history file.

Figure 2.11
Duplicate fields
across distantly

related tables

42 2.3 Denormalization for performance

2.3.3.2 Summary fields in parent tables

Summary fields can be used to add up or aggregate a repetitive value, from a
child table into a parent table. These aggregates can be placed into parent
tables to summarize information held in child tables. So, in the case of the
data model section (from Figure 2.4), shown in Figure 2.12, every transac-
tion (a transaction is an invoice) contains lines (items on each transaction).

When you go to a store and buy three items there are three different
items on your receipt. The receipt is a little like an invoice. Each line item
has an amount (how much it cost you). Also, your total transaction has an
amount, which is actually the sum of all the items you purchased, plus sales
tax of course. Now if you were using a credit card then your credit card will
send you a statement at the end of the month showing all purchases (trans-
actions) for the entire month. So, your credit card has a total balance owed
by you to your credit card company.

Figure 2.12
Summary fields in

parent tables

2.3 Denormalization for performance 43

Chapter 2

The point to make in this situation is that all amounts and balances can
be recalculated by adding up all individual line items, Calculations can be
executed again, every time some kind of summary is required. In many sit-
uations, it is more efficient to store summary values in each parent table.
Bear in mind that this data model sits in a single database, and is thus an
enclosed system. In other words, the scenario of the store, your receipt, and
your credit card company is quite inappropriate from a practical perspective
because the store and the credit card company—are different companies—
they do not share the same database, or even the same building.

The only potential problems with maintaining summary amounts is
what is called hot block locking. Consider that thousands or even millions of
transaction lines are generated by credit card companies every second. In this
case, maintaining summary amounts could cause conflict because lots of
credit card users are generating summary amount updates all at once. This
wouldn’t happen at the customer level, but when understanding how a data-
base is physically structured, many customer records could be stored in a sin-
gle database block (because each customer occupies a small byte chunk of
physical data space). So, lots of people are trying to update summaries all at
once. Again, for a credit card company maintaining a balance for each cus-
tomer, locking is not likely to be an issue. This type of denormalization is
context sensitive. For example, if a new parent table summarized all amounts
owed, by a company like American Express, for all states across the United
States, then the context would be quite different indeed. In this situation,
there could be millions of customers updating a summary of states table,
throughout the table, and all at once—24 hours per day. Not a good idea!

2.3.3.3 Separating data by activity and application requirements

The classic example of data separation, of active and inactive data, is that of
a data warehouse. Data warehouses can be used to maintain historical data
over many years. Those data warehouses can grow to be thousands of times
larger than the customer facing OLTP databases. It is much easier to find a
customer’s transactions for a credit card statement, for one customer, when
searching transactions in a single year’s transactions. If the data contained
the last 20 years of credit card transactions, every statement would take 20
times longer to find. When considering that American Express perhaps
prints millions of statements per month, then multiplying quantities of
data by 20 can be quite a staggering thought.

Essentially OLTP data is active and data warehouse data is inactive data.
Part of the reason for separating data into data warehouses is because the
OLTP data model requires fast action for customers—with everything

44 2.3 Denormalization for performance

divided into small pieces (normalized). Data warehouses on the other hand
like to put things back together into meaningful reports (not small pieces
but great big chunks of data). Not only does this cause serious conflict with
OLTP requirements, but reports that continually stitch data back into joins
from OLTP tables are just too slow.

Recent years have seen the power of computer hardware and software
grow, such that OLTP and data warehouse functionality is often placed
onto the same computer, or even in the same database, but unlikely in the
same table structures.

Even with using a data warehouse to store historical data, quite often
older data is constantly phased out or just deleted. And sometimes older data
is stored in separate tables to that of the customer facing OLTP database
tables. Even copies of tables can be used. This is done for the same reasons
mentioned above, when creating a separate data warehouse. That reason is
separation of active and inactive data to prevent performance issues, as a
result of conflicting requirements placed on active versus inactive data.

Similar to separating active and inactive data is the separation of heavily
and lightly accessed fields within the same table. Tables can be split based
on varying degrees of access to fields. This can help to avoid unnecessary
frequent access to rarely used data.

2.3.3.4 Local application caching

Caching means to temporarily store data, from a database, somewhere in
memory. Obviously, you would want to cache data that is frequently used,
changed as little as possible, and is small in size. The perfect type of data for
caching is static data. Static data is generally physically small, it is much in
demand, and it is rarely changed.

Also, you can store static data in memory on a database server computer
or on a middle tier computer such as an application or web server. You can
even send copies of static data to client computers, even those on the other
side of the world, connected to your database over an Internet connection.

2.3.4 Denormalizing and special purpose objects
Some relational databases allow creation of specialized objects, allowing
storage of things like summaries, and copies of data. The result is reduction
in conflicting requirements of customer facing OLTP applications, and
reporting such as in a data warehouse. The ultimate objective is increasing
overall database performance. The simplest forms of copies are copies of
tables, views, or temporary tables. Let’s examine different types of database
objects in use in relational databases:

2.3 Denormalization for performance 45

Chapter 2

� Views: A view does not store data but stores a query. That query can
be executed at will, by querying the view whenever you want. This is
not a performance issue in itself. One of the problems with views is
that they are often used to filter and sort data from tables. When a
view is read, someone writing the query should be aware of how the
underlying view query works, in order to avoid extra work in the view
and extra work in the query against the view. The worst scenario is
major reduction filtering or sorting against a view, which finds all
records in a large table anyway. The equivalent filter against a table
would read only the filtered portion. The view will always read the
entire table. Where the underlying table is extremely large, 1 record
read from the view could still retrieve millions of records from the
underlying table because only the view uses no filtering. Another
problem with views is the tendency for developers to sometimes over-
use them, embedding layer upon layer of views within each other.
This can simply become too complex for any database to handle.
This is an example of a view:

CREATE VIEW VIEW_ChartOfAccounts AS

 SELECT coa.coa#, coa.type, coa.subtype, coa.text,

 sum(gl.dr), sum(gl.cr)

 FROM coa, generalledger gl

 WHERE coa.coa# = gl.coa#

GROUP BY coa.coa#, coa.type, coa.subtype, coa.text;

The above script is pseudocode and creates a view, which joins two
tables shown in the data model of Figure 2.4.

Note: Pseudocode is a type of coding used to explain a concept.
Pseudocode will not function 100% in any particular environment, data-
base, programming language, or on any specific hardware platform. The
intention of presenting a concept using pseudocode is to demonstrate—not
to provide bulletproof example coding.

� Temporary tables: These can be used to form intermediary functions
per session and are manually or automatically emptied and dropped
after each use.

A session is a connection to a database, between a user and a data-
base.

46 2.3 Denormalization for performance

Temporary tables can sometimes help to eliminate intermediary
functionality and eliminate duplication. The result is less I/O activity
on primary tables because temporary tables are read after they have
first been filled. Temporary tables are superseded in modern relational
databases by other more exotic and more versatile database objects,
such as materialized views. This is a simple pseudocode example of a
temporary table created to drop all its records when the session creat-
ing it terminates:

CREATE TABLE TEMP_ChartOfAccounts AS

 SELECT coa.coa#, coa.type, coa.subtype, coa.text,

 sum(gl.dr), sum(gl.cr)

 FROM coa, generalledger gl

 WHERE coa.coa# = gl.coa#

GROUP BY coa.coa#, coa.type, coa.subtype, coa.text

DELETE ON DISCONNECT;

� Intermediary tables: A table with more permanent data content
than a temporary table. That data is retained for different sessions to
make use of and would like be deleted manually when so required.
These tables could also be used to contain summary information.
Summary records consist of groups of many other records.

Materialized views and clusters can also be used, which are regen-
erated periodically and automatically. These types of objects are com-
monly used in data warehouses but can sometimes be useful in OLTP
databases.

Intermediary tables are useful as long as less than real time
response is acceptable for the summarized information.

� Cluster: Places most commonly accessed indexed fields, sometimes
including some data fields, together into the same physical space.
They would also be commonly ordered in a specified order. This is a
method of splitting active and inactive data by fields, making more
frequent use fields more readily available, in pre-sorted, indexed, and
clustered form. So, the most active data is copied to a presorted, pre-
organized cluster. Less active data remains only in underlying table
(or tables), from which the cluster has been created. Clusters help
performance by organizing in desired order, and allowing for less I/O
time on the most highly active fields in a table.

2.3 Denormalization for performance 47

Chapter 2

� Clustered and non-clustered indexes: A clustered index contains
actual data values in leaf nodes. A non-clustered index contains
addresses to data values, in leaf nodes, not the actual data values in an
index. Both these types of indexes use a BTree structure. So, a clus-
tered index creates an index out of the fields in a table, sorting table
data in the order of the index, and physically stored in the order of a
specified group of one or more fields (in the same table). In other
words, it turns a table into an index, but retaining all the fields in the
table. The result is a table logically sorted based on the index. This
can help with performance only when reading the data in the order of
the index. Updating can be relatively efficient, depending on how
flexible the index structure is. BTree indexes are generally amenable
to frequent small changes. Bitmap, hash key, and ISAM indexes cause
changes to be made outside of the indexed structure—this is known
as overflow. Subsequent reads into overflow space cause bouncing
around the disk, which is highly inefficient.

A clustered single table index is also known in some relational
databases as an index organized table (IOT).

� Indexed view: This allows creation of either a clustered or non-clus-
tered index against a view. The view still consists of a query, which
will be executed against underlying tables, every time the view is
accessed.

Some relational databases allow creation of what is called a materi-
alized view. A materialized view does not contain a query, but is a
copy of data. The data copy in the materialized view can be updated
automatically, periodically, or even in real-time. Additionally, materi-
alized views usually allow automated changes to queries, as they are
submitted to a database, effectively rewriting the query (query
rewrite) during the optimization process. This can help to improve
performance if a materialized view contains a summary (much fewer
records) of data in underlying tables.

Materialized views are mostly applicable in data warehouses but
can be utilized in OLTP databases under certain circumstances. As
with views, materialized views, and index views—these objects will
not help performance if over-used or used to cater to overlaying a
new table design on top of a poorly designed data model.

SQL Server does not allow explicit creation of, or even direct access
to materialized views. In SQL Server, materialized views are all inter-
nalized within Analysis Services and cannot be used outside of the

48 2.4 Extreme denormalization in data warehouses

context of the analytical processing engine. In other words, you can’t
explicitly build a materialized view, you can’t explicitly access a materi-
alized view (using a query), and you can’t force the optimizer to use or
ignore query rewrite. In essence, materialized views are utilized in SQL
Server 2005 but completely contained within Analysis Services.

� Other factors: This includes more architectural aspects, such as par-
titioning at the table and index level, parallel processing, clustering,
replication, duplication, and mirrored (or standby) databases.

Most of these performance solutions are more physical rather than logi-
cal forms of denormalization, as they require creation of objects not part of
the standard normalization process. These specialized objects do not reduce
logical complexity, but can very well do the opposite by increasing com-
plexity. This is simply because more database objects are being created.
What specialized objects do accomplish is to place data sets into purpose
built constructs. These constructs can be used to access data in the required
order, without jeopardizing access speed to the underlying tables, which
may be very busy doing other things like servicing a busy website. So, in
addition to allowing access to data in required order, extra objects such as
materialized views can help to reduce multi-user conflict issues.

2.4 Extreme denormalization in data warehouses

Data warehouses deal with such enormous quantities of data that they can
sometimes require specialized data modeling techniques. Some data ware-
houses use specialized modeling technique called the dimensional data
model.

The dimensional data model is sometimes also called the dimensional-
fact model.

The dimensional data model contains tables built to form a star (a star
schema) or a snowflake (a snowflake schema). Some data warehouses may
use 3rd normal form schemas (just like an OLTP data model relational
schema).

Many data warehouses contain hybrid schemas using a combination of
two or even all three data model types including star, snowflake, and 3rd

normal form schemas. In general, for large amounts of data, and the inten-
sity of data warehouse analytical reporting, the most efficient data model
for a data warehouse is a star schema. A snowflake is a slightly more granu-
lar structural form of a star schema, containing more tables, and is thus less

2.4 Extreme denormalization in data warehouses 49

Chapter 2

efficient than a star schema. A 3rd normal form schema is a highly granular
and broken down schema, requiring many tables in join queries—and con-
sequently provides very poor performance.

So, let’s briefly describe the data warehouse dimensional model for rep-
resenting data. The dimensional model consists of dimensions and facts. A
fact is some historical or archived record, about some type of activity. A
dimension is literally a dimension of a fact, or something describing a fact.

OLTP transactional databases use a normalized relational data model,
which requires a large number of small operations. Data warehouses on the
other hand require small numbers of large transactions, for data loading
and reporting. The requirements are thus completely different with respect
to performance—a data warehouse does lots of joins, on lots of tables, and
reads lots of data in each transaction. Performing data warehouse type
reports on a normalized OLTP database would likely cause the customer
facing OLTP applications to perform very poorly.

A data mart is a term often bandied around in data warehouse terminol-
ogy. A data mart is simply a subsection of a data warehouse.

Let’s take a quick look at an OLTP relational data model for a container
shipping company. This company ships containers of luxury goods. The
company owns a number of small container ships. They ship goods
between a European port and a number of West African ports. Figure 2.13
shows this OLTP database relational data model.

The meanings of tables shown in Figure 2.13 are as follows:

� CONSIGNEE. The party receiving the container contents.

� SENDER. The party shipping the container contents.

� VESSEL. The ship on which the container was transported.

� VOYAGE. Ships making voyages can call at multiple ports. Individ-
ual containers or groups of containers are transported on all or some
legs of the entire voyage.

� SHIPMENT. Contents of part of a container, or even one or more
containers, are shipped from one port to another. For the sake of sim-
plicity we assume a shipment as being an individual container
shipped from one port to another.

� CONTENTS. The contents of a container or the Bill of Lading.

50 2.4 Extreme denormalization in data warehouses

� GROUP. A group of containers are transported from one port to
another as a single shipment.

� CONTAINER. An individual container.

� TYPE. A container can be refrigerated, open-topped, or a flatbed,
amongst numerous other types.

� DEPOT. A container depot or container port.

Figure 2.13
OLTP relational

model for tracking
container
shipments

2.4 Extreme denormalization in data warehouses 51

Chapter 2

� DAMAGE. Containers can sustain damage.

� SCRAP. Damaged containers can become irreparably damaged and
have a scrap value.

� LOST. Containers can be stolen or sometimes even lost at sea. In fact
loss of containers at sea happens often. Additionally these containers
being sealed can float just below the water, sometimes doing really
nasty things to smaller craft.

Now let’s convert the relational model to a data warehouse dimensional-
fact model.

2.4.1 The dimensional data model

A table relationship model is inappropriate to the requirements of a data
warehouse, even a denormalized one. Another modeling technique used for
data warehouses is called dimensional modeling. In layman’s terms a
dimensional model consists of facts and dimensions. What does that mean?
What is a fact and what is a dimension? A fact is a single iteration in a his-
torical record. A dimension is something used to dig into, divide, and col-
late those facts into something useful. That isn’t really layman’s terms now is
it? Let’s try to explain this a little more easily by example.

Let’s explain dimensional modeling in small steps. Figure 2.14 shows
the same table relationship as that shown in Figure 2.13, but with a slight
difference. Vaguely, facts are the equivalent of transactional tables and
dimensions are the equivalent of static data. Therefore in Figure 2.14 the
fact tables are colored gray and the dimensions tables are not. Note how the
facts represent historical or archived data and dimensions represent smaller
static data tables. It follows that dimension tables will generally be small
and fact tables can become frighteningly huge. What does this tell us? Fact
tables will always be appended to and dimension tables can be changed,
preferably not as often as the fact tables are appended to. The result is many
very small tables related to data in groups from very large tables.

The most desirable result when modeling for a data warehouse using
dimensions and facts is called a star schema. Figure 2.15 and Figure 2.16
show slightly modified, pseudo-type star schema versions of the normalized
table relationship diagrams in Figure 2.13 and Figure 2.14. In Figure 2.15
we can see that all dimensions would be contained within a single fact table,
containing shipping history records of containers. Each record in the fact
table would have foreign key values to all related dimension tables.

52 2.4 Extreme denormalization in data warehouses

Every star or snowflake schema always has a fact table. A single data
warehouse can consist of multiple fact tables and thus multiple star and or
snowflake schemas.

Figure 2.15 simply contains another fact table or another subset of the
data contained in the normalized table relationship structure in Figure 2.13
and Figure 2.14. It is quite conceivable that the two fact table sets in Figure

Figure 2.14
Highlighting

dimensions and
facts for container

shipments

2.4 Extreme denormalization in data warehouses 53

Chapter 2

2.14 and Figure 2.15 should be merged into a single table, separating used,
damaged, scrapped, and lost containers by an appropriate type field.

There could be a small problem with the fact table shown in Figure
2.15. Damaged, scrapped, and lost containers could either be a fact table or
part of the container dimension. This decision would depend on exactly
how often containers are damaged, scrapped or lost. It is more than likely
that this type of thing occurs frequently in relation to other dimensions, but
not necessarily in relation to the high frequency of container shipments.

The star schemas shown in Figure 1.8 and Figure 1.9 show that there are
two potential fact tables for the relational schema shown in Figure 2.13 and
Figure 2.14.

2.4.1.1 What is a star schema?

A star schema contains one or at least very few, very large fact tables, plus a
large number of small dimensional tables. As already stated, effectively fact

Figure 2.15
Star schema for

containers currently
at sea

54 2.4 Extreme denormalization in data warehouses

tables contain transactional histories and dimension tables contain static
data describing the fact table archive entries. The objective for performance
is to obtain joins on a single join level where one fact table is joined to mul-
tiple small dimension tables, or perhaps even a single dimension table. Fig-
ure 2.17 shows a snowflake schema for the used container portion of the
original normalized structure in Figure 2.13 and Figure 2.14, assuming that
damaged, scrapped, and lost containers represented in Figure 2.16 are
rolled into the container dimension.

2.4.1.2 What is a snowflake schema?

A snowflake schema is a normalized star schema such that dimension tables
are normalized.

Dimension objects can be used in Oracle Database to represent multiple
layers between dimensions creating dimensional hierarchies. Oracle Data-
base dimensional hierarchies can assist optimizer efficiency and materialized
view query rewrite selection.

The schema shown in Figure 2.17 is actually a snowflake schema
because the type dimension has been normalized out from the container
dimension. Figure 2.18 shows a star schema representation of the snowflake

Figure 2.16
Damaged, scrapped
and lost containers

star schema

2.4 Extreme denormalization in data warehouses 55

Chapter 2

schema in Figure 2.17. Figure 2.18 has the type dimension included into
the container dimension. There is no dimensional normalization in a star
schema.

Once again let’s reinforce the point previously made: the schema repre-
sentation shown in Figure 2.18 is a star schema of the snowflake schema
shown in Figure 2.17. The reason why is because the type table has been
rolled into or contained within the container table. Effectively the container
and type tables have been denormalized such that type.name field values,
the name of the type itself excluding the type.id field, are now included

Figure 2.17
A snowflake

schema

Figure 2.18
A star schema

56 2.4 Extreme denormalization in data warehouses

with the container table. Denormalization is effective for a data warehouse
schema for a number of reasons:

� Non-technical users such as salespeople, forecasters, and sometimes
even executives often access data warehouse tables. A star schema is
very simple to understand without bombarding the user with all the
complex tables and intra-table relationships of a relational data model
and multiple dimensional hierarchies. Containers are meaningful to
end-users. Types of containers may not be as meaningful in a users
mind, perhaps being understood better as refrigerated or flatbed. If
users do not know what something is it could potentially render the
entire structure useless to some people.

� As you can see by the simplicity of the star schema shown in Figure
2.18 a star schema can easily be augmented by adding new dimen-
sions as long as they fit in with the fact table.

� From a purely performance tuning perspective a star schema rolls
subset dimensions into single tables from a multiple dimensional
hierarchy of a snowflake schema. The number of joins in queries will
be reduced. Therefore queries should execute faster.

A single data warehouse database can contain multiple fact tables and
therefore multiple star schemas. Additionally individual dimension tables
can point to multiple fact tables. Perhaps more importantly bear in mind
that dimension tables will occupy a small fraction of the storage space that
fact tables do. Fact tables in a data warehouse can have billions of rows
whereas dimensions are in the range of tens, hundreds. or perhaps thou-
sands. Any larger than thousands and those dimensions could possibly be
facts.

As a final note, snowflake schemas help to organize dimensions a little
better from a mathematical perspective by saving disk space. Disk space is
cheap. Increasing dimension number increases joins in queries. The more
joins in queries the worse a data warehouse will perform in general.

2.4.2 Data warehouse data model design basics

What is the objective of a data warehouse? When asking this question the
primary consideration is for the end-users, the people who read reporting
produced from a data warehouse, whether they build those reports or not.

2.4 Extreme denormalization in data warehouses 57

Chapter 2

So think in terms of end-users searching for patterns and trying to forecast
trends from masses of historical information.

How does one go about designing a data warehouse data model?

� Business Processes. What are the business processes? The business
processes will result in the source of facts about the business, the fact
tables.

� Granularity. What is the level of granularity required? Fact tables are
appended to at a specific level of granularity or grain. The finer the
granularity the more of your historical data is stored. The lowest
level of granularity excludes any summaries of historical data, even
though specialized objects such as materialized views can create sum-
maries at a later stage. When you do not know the precise require-
ments for future use of your data warehouse, to be on the safe side, it
is best to store all levels of detail. If you miss a level of detail in any
specific area and it is later requested you are likely to be up the creek
without a paddle!

� Identify Dimensions. What are your dimensions? Dimensions gen-
erally consist of static data such as codes and descriptions, the kind of
data that goes into front-end application pick lists. Make sure that
the dimensional data conforms to fact data granularity levels.

� Build Facts. The last step is to build the fact tables containing all the
non-static transactional information generated by applications on a
daily basis.

When building a data model for a data warehouse database there are var-
ious factors to consider. Some of these design factors to consider in design
can be vaguely divided up by dimension and fact tables. Let’s begin with
dimension tables.

2.4.2.1 Dimension tables

Data warehouse dimensions can be loosely classified into various groups.
The more generic types are dimensions such as time, product, or location
dimensions. Obviously your classifications may vary depending on the data
warehouse.

58 2.4 Extreme denormalization in data warehouses

A time dimension determines how long archived or historical data is to
be retained. Figure 2.19 shows an example.

A product dimension would be used to contain details or products a
company produces or deals with in some way, as shown in Figure 2.20.

Figure 2.21 shows what could be an original relational table set of prod-
uct and category tables, with a many-to-one relationship between the prod-
uct and category tables. The product dimensional table in Figure 2.21 has
the name of the category rolled into the product table, minimizing on joins
and ultimately providing for faster performing code in a data warehouse.

Transactional databases usually have some form of demographic infor-
mation attached to transactions, either directly or through relations with
other tables. The equivalent for a data warehouse is sometimes a location
dimension such as that shown in Figure 2.22.

Figure 2.23 shows a transformation between a relational table location
structure design, and that of a location dimension table on the right side of
the diagram. Figure 2.23 serves to show the stark difference in complexity
between a relational structure and its equivalent denormalized dimensional
structure.

Figure 2.19
A time dimension

table

Figure 2.20
A product

dimension table

2.4 Extreme denormalization in data warehouses 59

Chapter 2

Using generic dimensions containing information such as time, product,
and location it is likely that dimensions in Figure 2.14 to Figure 2.18 could
very well be absorbed or denormalized into the existing shipment fact table.

Figure 2.21
Relational to

dimensional star
schema

transformation for
Figure 2.20

Figure 2.22
A location

dimension table

Figure 2.23
Relational to

dimensional star
schema

transformation for
Figure 2.22

60 2.4 Extreme denormalization in data warehouses

Commonly used data warehouse dimensions can also be tables such as
customers, stock items, and suppliers. The star schema in Figure 2.18 shows
more specific rather than generic dimensions in the form of senders, con-
signees, vessels, and containers.

Now let’s take a look at factors affecting data warehouse data model
design with respect to fact tables.

2.4.2.2 Fact tables

In general fact tables contain two field types, namely numeric fact values
and foreign key reference attributes to dimension tables. Figure 2.24 shows
a more detailed version of the snowflake schema shown in Figure 2.15. The
shipment, group, contents, and voyage specific table fields are named as
such simply to indicate their relational table origins. All of these attributes
are measurements of one form or another. The remaining attributes for the
shipment table shown in Figure 2.24 are all dimensional table foreign keys.

The two voyage departure and arrival dates could be removed to a time-
based table and replaced with the appropriate foreign keys.

Data warehouse fact tables can be loosely classified into various areas.
Once again classifications may vary depending on the data warehouse. Fact
table types are as follows:

� Fact tables can contain detailed fact record entries.

� Fact tables can be summary tables, which are aggregations of details.
Detail rows are not stored in the data warehouse, probably having
been summarized in transportation from transactional databases.

� Fact tables can be simply added to or changed, but are preferably only
partially changed, or better still static. The least intrusive method of
adding new data is during low usage times and appended to the end
of existing data.

Fact table attribute types are another significant point to note with
respect to fact tables. Facts are often known as additive, semi-additive, or
non-additive. For example, accounting amounts can be added together
(additive) but averages cannot (non-additive). Semi-additive facts can be
accumulated for some but not all facts.

In Figure 2.24 the shipment.shipment_gross_weight is additive across
all dimensions. In other words there is a gross weight for a sender (the per-

2.4 Extreme denormalization in data warehouses 61

Chapter 2

son or company shipping the container), the consignee (the person or com-
pany receiving the container), a vessel, and a container. The
shipment.contents_contents attribute is semi-additive because contents are
only specific to each container and thus meaningless to sender, consignee,
or vessel. Multiple senders and consignees can have their individual ship-
ments grouped in a single container or even spread across multiple contain-
ers. The shipment.voyage# and shipment.voyage_leg# attributes are non-
additive since these values simply do not make sense to be accumulated.
However, an average number of legs per voyage, per vessel might make
some sense as an accumulation.

Figure 2.24
A detailed
fact table

62 2.4 Extreme denormalization in data warehouses

It is always preferable that fact tables are only added to, and also best
appended to. Less desirable situations are fact tables with updatable
cumulative fields such as summaries or even fact tables requiring dele-
tions. Even worse are fact tables containing directly updatable numerical
values. For example, if a table contains a history of stock movements and
all prices have increased, it is possible that a large portion of those stock
movement entries must be updated. It might be best in a situation such as
this to maintain stock item prices outside of the stock movements table,
perhaps as part of a dimension.

Granularity, Granularity, and Granularity! The most significant factor
with respect to fact tables is granularity—how much data to keep, to what
level of detail. Do you store every transaction or do you summarize transac-
tions and only store totals for each day, month, per client, and so on?

Granularity is deciding how much detail the data warehouse will need in
the future. This is all about requirements. Firstly, do the end-users know
how much detail they will need? Do you understand and trust that they
know what they need? Will they change their minds? Probably. If there is
any doubt, and if possible, keep everything! Now there’s a simple of rule of
thumb. Disk space is cheap unless your data warehouse is truly humun-
gous. If that is the case you have plenty of other problems to deal with as
well, You also have a good reason why particular details might be missing
say one year down the line when some really irritated executive comes to
ask you why the data he wants isn’t there. Too much data is your answer.

So the most important design issue with fact tables is the level of granu-
larity. Simply put this means, does one save all the data or summarize it?
Storing all data can lead to very large fact tables and thus very large data-
bases. However, after data has been deleted from your transactional data
sources it might be costly to discover that all the archived dimensional-fact
combinations are required for reports at a later date. From a planning per-
spective it might be best to begin by retaining all facts down to the smallest
detail if at all possible. Data warehouses are expected to be large and disk
space is cheap.

The time factor and how long should data be retained? How long do
you keep data in the data warehouse for? Some data warehouses retain data
in perpetuity and others discard data over a few years old. Expired data
removed from a data warehouse can always be copied to backup copies.
However, remember that if a data warehouse is extremely large, removing
older data may cause serious performance problems for appending of new
data, and most especially for end users. Many modern databases operate on

2.4 Extreme denormalization in data warehouses 63

Chapter 2

a global twenty-four hour time scale; there simply is no room for down
time or even slow time for that matter.

2.4.2.3 Other factors to consider during design

On the topic of surrogate keys: when designing tables for data warehouses
use surrogate keys or unique sequential identifiers for table primary keys.
The reason for this is possible multiple data sources from different data-
bases and perhaps even different database vendor software. Additionally
data can originate from flat text files and perhaps from outside purchased
data sets. Keys in different data sources could be named differently contain-
ing the same values or named the same with different values. The data ware-
house needs its own unique key values specific to itself and each of its
tables, as a distinct data table set.

On the subject of duplication of surrogate keys and associated names:
when creating composite field keys for child tables, parent key fields could
be copied into child tables; not only copy the key values into the child
tables but also the unique naming values they represent, as shown in Figure
2.25. This will allow access to all details of a multiple hierarchical dimen-
sion in all forms.

This chapter has shown you the essentials for logical database design. In
this case, relational database design. This chapter is deliberately non-vendor
database specific. This is because logical relational database design is not
fussy about the database vendor, only that you are using a relational data-
base. The relational design features are still more or less identical. Except
that perhaps there are a few small quirky differences here and there. The

Figure 2.25
Duplicate all

composite key fields

64 2.5 Endnotes

next chapter will cover physical database design, including information
about underlying operating system file structure.

2.5 Endnotes

1. Beginning Database Design (Gavin Powell, Wiley, Late 2005,
ISBN: 0764574906).

2. The Object Database Standard (Cattell, Morgan Kaufmann, Jun
1997, ISBN: 1558604634) and The Object Database Handbook
(Barry, Wiley, pre-2000, ISBN: 0471147184).

65

3
Physical Database Design

Physical design is the underlying file structure, within the operating system,
out of which a database is built as a whole. Physical database design takes
into account the performance speed of hardware in use. And thus factors
such as I/O, memory, and CPU processing speed are important. Just as
important though is the matching of hardware parameters with require-
ments. For example, a data warehouse is generally very I/O intensive. So, a
data warehouse will likely perform best if you spent relatively more time
and money of the disk subsystem, than on the CPU and memory.

3.1 Introducing physical database design

Once the database logical design has been satisfactorily completed on paper,
it can be turned into a database physical design.

Note: Logical database design, as pertaining to performance, was covered in
Chapter 2.

In the physical design process the database designer will be considering
such issues as the placement of data and the choice of indexes and, as such,
the resulting physical design will be crucial to good database performance.
The following important points should be made here:

� A bad logical design means that a good physical design cannot be
implemented. Good logical design is crucial to good database perfor-
mance. A bad logical design will result in a physical design that
attempts to cover up weaknesses in a logical design. A bad logical
design is hard to change, and once the system is implemented it will
be almost impossible to do so.

66 3.1 Introducing physical database design

� The physical design process is a key phase in the overall design pro-
cess. It is too often ignored until the last minute in the vain hope that
performance will be satisfactory. Without a good physical design, per-
formance is rarely satisfactory. Throwing hardware at the problem is
rarely completely effective. There is no substitute for a good physical
design. The time and effort spent in the physical design process will
be rewarded with an efficient and well-tuned database, not to men-
tion happy users!

Before embarking on the physical design of the database, it is worth
stepping back and considering a number of points, as follows:

� What kind of system are we trying to design? Is it a fast online trans-
action processing (OLTP) system comprised of perhaps hundreds of
users with a throughput of hundreds of transactions per second
(TPS) and an average transaction response time that must not exceed
two seconds? Is it a multi-gigabyte or even a multi-terabyte data ware-
house, which must support few online users but must be able to pro-
cess very complex ad hoc queries in a reasonable time. Is your
database perhaps a combination of both OLTP and data warehouse
databases?

Note: The type of system will strongly influence the physical database
design decisions that must be made. If the system is to support OLTP and
complex decision support, then maybe more than one database should be
considered—one for the operational OLTP system and one, fed by extracts
from the operational OLTP system, to support complex decision support
(the data warehouse).

Even some of the very largest of modern databases are combinations of
both OLTP and data warehouses. However, achieving good performance
with combining OLTP and data warehouse structure creates conflicting
requirements. An OLTP environment needs to get at small pieces of data,
rapidly. A data warehouse needs to find lots of data all at once, and it is not
expected to happen in milliseconds. In other words, the two requirements
are completely contradictory. It is possible to join the two architectures into
a single database, if your database is either very small, or you can afford
incredibly expensive hardware.

3.2 Data volume analysis 67

Chapter 3

� What are our hardware and budget constraints? The most efficient
physical database design will still have a maximum performance capa-
bility on any given hardware platform. It is no use spending weeks
trying to squeeze the last few CPU cycles out of a CPU bound data-
base when, for a small outlay, another processor can be purchased.
Similarly, there is little point purchasing another CPU for a system
that is disk I/O bound.

� Has the database design been approached from a textbook normaliza-
tion standpoint? Normalizing the database design is the correct
approach and has many benefits, but there may be areas where some
denormalization might be a good idea. This might upset a few pur-
ists, but if a very short response time is needed for a specific query it
might be the best approach. This is not an excuse for not creating a
normalized design. A normalized design should be the starting point
for any effort made at denormalization.

� How important is data consistency? For example, is it important that
if a query rereads a piece of data within a transaction it is guaranteed
that it will not have changed? Data consistency and performance are
enemies of one another, and, therefore, if consistency requirements
can be relaxed, performance may be improved as a result.

How does a database designer move from the logical design phase to a
good physical database design? There is no single correct method. However,
certain information should be captured and used as input to the physical
design process. Such information includes data volumes, data growth, and
transaction profiles.

3.2 Data volume analysis

It is very important to capture information on current data volumes and
expected data volumes. Without this information it is not even possible to
estimate the number and size of the disk drives that will be required by the
database. Recording the information is often a case of using a simple
spreadsheet, as shown in Table 3.1.

The activity shown in Table 3.1 may appear to be a trivial operation, but
it is surprising how few database designers do it. It is also interesting to find
the different views from business users on what the figures should be!
Another column that could be added might represent how volatile the data
is in a particular table. The percentage annual growth of a table might be

68 3.2 Data volume analysis

zero, but this may be because a large amount of data is continually being
removed as well as being added.

Simple addition of these figures in Table 3.1 gives the data size require-
ments, but this is only part of the calculation. The database designer must
take into account the space required by indexes, the transaction log, and the
backup devices. An experienced database designer would not ask for the
disk space that came out of the sum in Table 3.1. They would, of course,
add on a percentage for safety. Users typically do not phone you to com-
plain that you oversized the database by 20 percent. They will certainly
phone you to complain that the system just stopped because the database
was full!

So how are the sizes of indexes calculated? The Creating and Maintaining
Databases online book gives sample calculations to assist in the sizing of
tables, as well as clustered and non-clustered indexes with both fixed, and
variable-length columns.

Note: The Creating and Maintaining Databases online book can be found
in Microsoft documentation. Search http://www.microsoft.com for Creat-
ing and Maintaining Databases.

It is highly recommended that these calculations are performed, and it is
worth using a spreadsheet such as Microsoft Excel to perform the calcula-
tions in order to save time and effort. Watch the newsgroups for stored pro-
cedures in circulation that do these calculations. When sizing a table, a
general rule of thumb is to double the size of the user data to estimate the
size of the database. Crude though this appears, by the time indexes and
some space for expansion is added—double the size is not far off!

Table 3.1 Capturing simple data volume information

Table Name # of Rows
Row
Size Space Needed

%
Annual
Growth

Space Needed in
12 Months

Accounts 25,000 100 2,500,000 10 2,750,000

Branches 100 200 20,000 5 21,000

Customers 10,000 200 2,000,000 20 2,400,000

Transactions 400,000 50 20,000,000 25 25,000,000

3.3 Transaction analysis 69

Chapter 3

What about the size of the transaction log? This is difficult to size
because it depends on write activity to the database, frequency of transac-
tion backups, and transaction profiles. Microsoft suggests that about 10
percent to 25 percent of the database size should be chosen. This is not a
bad start, but once the system testing phase of development has started,
then the database designer can start monitoring the space use in the transac-
tion log with dbcc sqlperf (logspace).The transaction log space is a critical
resource and running out of it should be avoided.

 Unfortunately, many factors contribute to transaction log growth. Fac-
tors include the rate per second of transactions that change database data,
and the amount of data these transactions change. Remember that in an
operational system, if a transaction log backup fails for some reason, then
the transaction log will continue to fill until the next successful transaction
log backup. It may be desirable to have a transaction log large enough so
that it can accommodate the failure of one transaction log backup. Replica-
tion failures will impact the effectiveness of transaction log backups, and, of
course, there is always the user who runs a job that updates a million-row
table without warning you—or by mistake.

For all these reasons, do not be tight with transaction log space. Disk
space is cheap. So, a transaction log can be created with a large amount of
contingency space.

Finally, do not forget that as a database designer/administrator, you will
need lots of disk space to hold at least one copy of the production database
for performance tuning testing. Not having a copy of the production data-
base can really hinder you. And if you are doing performance testing on a
production database—then don’t.

So, we now have documented information on data volumes and growth.
This in itself will determine a minimum disk configuration. However, it is
only a minimum because transaction analysis may determine that the mini-
mum disk configuration will not provide enough disk I/O bandwidth.

If data volume analysis is concerned with the amount of data in the
database and the space it needs, then transaction analysis is concerned with
the way in which data is manipulated—and at what frequency.

3.3 Transaction analysis

Data in the database may be manipulated by code, such as Visual Basic, or a
tool like Microsoft Access, or even a third-party product accessing SQL
Server. Whichever way the data is accessed, it will presumably be as a result

70 3.3 Transaction analysis

of a business transaction of some kind. Transaction analysis is about captur-
ing information on these business transactions and investigating how they
access data in the database, and in which mode. Table 3.2 shows some
attributes of a business transaction it might be useful to record.

Clearly, by its very nature, it is not possible to capture the information
shown in Table 3.2 for ad hoc transactions. Nor is it practical to capture
this information for every business transaction in anything other than a
very simple system. However, this information should be captured for at
least the most important business transactions. By most important we mean
those transactions that must provide the fastest response times and/or are
frequently executed. A business transaction that runs every three months
and can be run over a weekend is unlikely to appear on the list of most
important transactions!

It is important to prioritize transactions because it is virtually impossible
to be able to optimize every transaction in the system. Indexes that will
speed up queries will almost certainly slow down insert operations.

An example of the attributes captured for a transaction are shown in
Table 3.3.

There are various ways to document the transaction analysis process.
Some modeling tools will automate part of this documentation. The
secret is to document the important transactions and their attributes. This
allows the database designer to decide which indexes should be defined
for which tables.

Table 3.2 Capturing transaction attributes

Attribute Explanation

Name A name assigned to the transaction

Average frequency Average number of times executed per hour

Peak frequency Peak number of times executed per hour

Priority A relative priority assigned to each transaction

Mode Whether the transaction only reads the database or writes to it
also

Tables accessed Tables accessed by the transaction and in which mode

Table keys Keys used to access the table

3.3 Transaction analysis 71

Chapter 3

Again, it is often a case of using simple spreadsheets, as shown in Table
3.4.

The first spreadsheet maps the transactions to the mode in which they
access tables. Modes are I for insert, R for read, U for update, and D for
delete. The second spreadsheet maps the transactions to the key with which
they access tables. Again, there is nothing complex about this but it really
pays to go through these steps. Depending on how the system has been
implemented, a business transaction may be modeled as a number of stored
procedures. Also, one may wish to use these instead of transaction names if
so desired.

Table 3.3 Example transaction attributes

Attribute Value

Name Order Creation

Average frequency 10,000 per hour

Peak frequency 15,000 per hour

Priority 1 (high)

Mode Write

Tables accessed Orders (w), Order Items (w), Customers (r), Parts (r)

Table keys Orders (order_number), Order Items (order_number),
Customers (cust_number), Parts (parts_number)

Table 3.4 Capturing simple transaction analysis information

Transactions/Tables Orders Order_items Parts Customers

Customer inquiry R

Order inquiry R R

Order entry I I R R

Customer inquiry cust_number

Order inquiry order_number order_number

Order entry order_number order_number Parts_number cust_number

72 3.3 Transaction analysis

It is also important when considering the key business transactions not
to forget triggers. A trigger accesses tables in various modes, just as applica-
tion code does.

Data integrity enforcement using declarative referential integrity should
also be included. Foreign key constraints will access other tables in the data-
base, and there is nothing magical about them. If an appropriate index is
not present, they will scan the whole table like any other query.

Note: This is because foreign keys do not have indexes automatically cre-
ated for them by SQL Server, as in the case of primary keys. A primary key
must have a unique index otherwise every time new record is added to a
table, SQL Server will scan the entire table to ensure that the new primary
key is unique. A primary key must be unique. Foreign keys are not required
to be unique, so, a unique key is not required. In fact, a foreign is not a
requirement, and can be null under certain circumstances. If a foreign key
index is required then one must be created manually.

Once a transaction analysis has been performed, the database designer
should have a good understanding of the tables that are accessed frequently,
in which mode, and with which key. From this information once a begin-
ning can be made at deriving the following:

� Which tables are accessed the most and therefore, experience the
most disk I/O?

� Which tables are written to frequently by many transactions and,
therefore, might experience the most locking contention?

� For a given table, which columns are used to access the required rows?
In other words, which common column combinations form the
search arguments in the queries?

In short, where are the hot spots in the database?

The database designer, armed with this information, should now be able
to make informed decisions. Those decisions will cover estimated disk I/O
rates to tables, the type of indexes required on those tables, and the columns
that should be used in indexes.

Most relational databases make it very easy to prototype where a proto-
type allows you to create something, which can be examined visually for

3.4 Hardware environment considerations 73

Chapter 3

correctness, and easily changed. SQL Server is as any other relational data-
base at allowing for prototyping. So, there is no excuse for not testing the
physical design you are considering. Load data into your tables, add your
indexes, and put your database under stress using some appropriately repre-
sentative Transact-SQL. See how many transactions a second you can per-
form on a given server. Or, to look at it another way, how much disk I/O
does a named transaction generate? Which resource—CPU or disk—do
you run out of first?

Start stress testing with simple experiments. Jumping in at the deep end
with many users, and testing complex functionality, is likely to only com-
plicate and confuse the issue. Begin with simple transactions issued by a
single user, and then try some more complex transactions.

Do not forget multiuser testing! Lock contention cannot be tested
unless some kind of multiuser testing is performed. In its simplest form,
this might involve persuading a number of potential users to use the test
system concurrently. Perhaps have them follow a set of scripts while perfor-
mance statistics are monitored. In its more sophisticated form, this might
involve the use of a multiuser testing product, which can simulate many
users, while running automated scripts.

Transaction analysis and performance testing can be approached in a
much more sophisticated way than has been described above. The impor-
tant point is that it should be done—the level of sophistication being deter-
mined by the available resource, be it time or money.

Again, note that physical design and performance testing are ongoing
activities. Systems are usually in a constant state of flux. This is because
business requirements are usually in a constant state of flux. Therefore, per-
formance should be regularly monitored and, if necessary, the database
tuned.

3.4 Hardware environment considerations

The previous section described preproduction performance testing. This
should have given the database designer a feel for the hardware require-
ments of the production system. Obviously, there is a hardware budget for
any project, but it is clearly critical to have sufficient hardware to support
the workload of the system. It is also critical to have the correct balance and
correct type of hardware.

For example, there is no point in spending a small fortune on CPU
power if only a small amount of money is spent on the disk subsystem. Sim-

74 3.4 Hardware environment considerations

ilarly, there is no point in spending a small fortune on the disk subsystem if
only a small amount of money is spent on memory. Would the application
benefit from a multiprocessor configuration or a single powerful processor?

If the application’s main component is a single report that runs through
the night but must be finished before 9:00 A.M., then a single powerful
processor might be the best choice. On the other hand, if the application
consists of a large number of users using an OLTP system, a more cost-
effective solution would probably be a multiprocessor configuration.

Take a step back and look at the application and its hardware as a whole.
Make sure the system resource is not unbalanced and do not forget the net-
work!

Once we have performed our data volume and transaction analysis we
can start to consider our physical design. We will need to decide what trans-
actions need to be supported by indexes and what type of index we should
use. Chapter 5 discusses indexes in detail, but before we look at indexes we
need a more general view of the storage structures used in SQL Server, and
these are covered in the next chapter.

75

4
SQL Server Storage Structures

A developer of application code is probably quite content to consider an
SQL Server as being a collection of databases containing tables, indexes,
triggers, stored procedures, views, and so on. As a database designer and a
person who will be responsible for the performance of those databases, it is
useful to be able to look a little deeper at the storage structures in SQL
Server. A lot of the internals of SQL Server are hidden and undocumented.
However, one can still learn a fair amount about the way the product
works. This chapter investigates the storage structures that SQL Server uses
and the methods available to view them.

4.1 Databases and files

A database contains all the tables, views, indexes, triggers, stored proce-
dures, and user data that make up an application. An SQL Server will typi-
cally host many databases.

The term SQL Server refers to a computer containing an installation of
the SQL Server software. An SQL Server database is a single database, cre-
ated within a SQL Server installation.

Usually individual databases are backed up, restored, and checked for
integrity—database by database. So, a database can also be thought of as a
unit of administration. We will need to spend some time here looking at
how databases are structured and managed because a database is the con-
tainer for our objects. We will then drill down into the database files and
investigate database pages and other structures.

A database resides in one or more operating system files, which may
reside on FAT, FAT32, or NTFS partitions; depending on the operating
system in use. These operating system files are known, in SQL Server termi-
nology, as database files. These database files may be used to hold user and

76 4.1 Databases and files

system tables (data files), or to track changes made to these tables (transac-
tion log files). An SQL Server 2005 database can contain a ridiculous num-
ber of files and in the multiple terabyte (TB) range in physical size. Even a
single data file, by itself, can be many TB in size; this includes the transac-
tion log as well. Of course, most sites will never get anywhere remotely close
to these numbers, but it is nice to know that there is plenty of headroom!

The files used by an SQL Server database belong exclusively to a partic-
ular database. In other words, a file cannot be shared by more than one
database, even if those databases share the same SQL Server installation.
Clustering is the exception to this rule.

Clustering allows for multiple CPUs to share the same set of underlying
data files. Clustering is an advanced architectural structure and will be cov-
ered briefly, later on in this book.

Also, a file cannot be used to hold both data and transaction log infor-
mation. This means that a database must consist of a minimum of two files.
This is a much cleaner model than used in previous versions (prior to SQL
Server 7.0).

There are three file types associated with an SQL Server database:

� The primary data file is the starting point of the database and con-
tains the pointers to the other files in the database. All databases have
a single primary data file. The recommended file extension for a pri-
mary data file is an .mdf extension.

� Secondary data files hold data that does not fit into the primary data
file. Some databases may not have any secondary data files. Other
databases may have multiple secondary data files. The recommended
file extension for secondary data files is an .ndf extension.

� Log files hold all of the log information used to recover the database.
There is at least one log file for each database. The recommended file
extension for log files is an .ldf extension.

The primary data file will hold the system tables and may hold user
tables. For most users, placing all their database tables in this file, and plac-
ing the file on a suitable RAID configuration will be sufficient. For some
users, their user tables may be too large to place in a single file, because this
would mean that the file would be too large to place on one of the storage
devices. In this case, multiple data files—primary and multiple secondary

4.1 Databases and files 77

Chapter 4

files—may be used. User tables would then be created and populated. SQL
Server would allocate space from each file to each table, such that tables
were effectively spread across the files and physical storage devices.

Figure 4.1 shows a simple database topology. It uses a single file to
hold the system tables and user tables, plus a single file for the transaction
log. The files reside on separate physical storage devices, which may be
single disks or RAID configurations. RAID configurations are discussed
in Chapter 10.

Figure 4.2 shows a more complex database topology, using multiple files
to hold the system tables and user tables, as well as multiple files for the
transaction log. The files reside on separate physical storage devices, which
may be single disks or RAID configurations.

For those users with even greater database performance and size require-
ments, filegroups may be used. The role of a filegroup is to gather data files
together into collections of files into which database tables, indexes, and
text/image data can be explicitly placed. This gives the database administra-
tor a lot of flexibility and control over the placement of these database
objects. For example, if two database tables are very heavily accessed, then
they can be separated into two filegroups. Those two filegroups would con-
sist of two sets of data files, residing on two sets of physical storage devices.
The tables could also be separated from their non-clustered indexes in a
similar fashion. Non-clustered indexes are described in Chapter 5. From an
administration perspective, individual filegroups can be backed up, allow-
ing for a large database to be backed up in parts.

Figure 4.1
A simple database

topology

78 4.1 Databases and files

Some rules govern the use of filegroups. Transaction logs are never mem-
bers of filegroups—only data files are. Also, data files can only be a member
of one filegroup.

For most users, though, the use of filegroups and multiple data and
transaction log files will not be necessary to support their performance and
administration requirements. They will use one data file and one transac-
tion log file. Though they will not use user-defined filegroups, even in this
simple case the database will contain a filegroup known as the primary file-
group. This will contain the system tables and user tables. It will also be the
default filegroup. The default filegroup is the filegroup into which tables,
indexes, and text or image data is placed when no filegroup is specified as
part of their definition. Any filegroup can be made the default filegroup,
and there is a school of thought that advocates always create a single user-
defined filegroup, and making this the default filegroup when the database
is first created. This ensures that the system tables alone reside in the pri-

Figure 4.2
A more complex

database topology

4.2 Creating databases 79

Chapter 4

mary filegroup and all user data resides in the user-defined filegroup in a
separate, secondary data file.

4.2 Creating databases

The easiest way to create a database in SQL Server 2005 is to use the SQL
Server Management Studio, which incidentally can also be used to gener-
ate a script for creating a database at a later date. Obviously scripts can be
manually changed as well for fine tuning. There is also the Transact-SQL
CREATE DATABASE statement. What used to be the Create Database
Wizard prior to SQL Server 2005 is now part and parcel of the SQL
Server Management Studio

Let’s use the SQL Server Management Studio to create a sample data-
base:

1. Start up the SQL Server Management Studio.

2. Right-click Databases in the Object Explorer, then click New
Database.

3. Enter the name of the database.

4. Leave everything else set to the default settings.

5. Click OK.

Depending on how large the database will be, this may take a consider-
able length of time. If your database is very large, using a Transact-SQL
script running in the background may be a better bet. The SQL Server
Management Studio New Database dialog box is shown in Figure 4.3.

As can be seen in Figure 4.3, various properties can be set for each data
and transaction log file. The logical name of the file is the name by which
it is referred to within SQL Server. For example, by various system-stored
procedures, such as sp_helpfile. The file type is general data or a log file. A
filegroup may also be entered for data files other than the primary at this
point, in which case a secondary data file will be placed in that filegroup.
Other attributes of the file relate to size and growth, which will be dis-
cussed shortly.

An example of creating a database using the Transact-SQL CREATE
DATABASE statement is as follows:

80 4.2 Creating databases

CREATE DATABASE BankingDB ON PRIMARY

(NAME = BankingData, FILENAME = 'd:\data\BankingData.mdf',

 SIZE = 2MB, MAXSIZE = 100MB, FILEGROWTH = 1MB)

LOG ON (NAME = 'BankingLog',

 FILENAME = 'e:\data\BankingLog.ldf',

 SIZE = 1MB, MAXSIZE = 100MB, FILEGROWTH = 10%)

The script above, and many following, uses very small default values set
in SQL Server Management Studio. Small sizes for files and growth are gen-
erally unrealistic for a busy database.

As with SQL Server Management Studio, a name is specified for the
file—this time with the NAME option—and a physical location is specified
with the FILENAME option. The ON keyword introduces a list contain-
ing one or more data file definitions, and the LOG ON keyword introduces
a list containing one or more transaction log file definitions.

Figure 4.3
Creating databases

4.2 Creating databases 81

Chapter 4

The PRIMARY keyword identifies the list of files following it as files that
belong to the primary filegroup. The first file definition in the primary file-
group becomes the primary file, which is the file containing the database sys-
tem tables. The PRIMARY keyword can be omitted, in which case the first
file specified in the CREATE DATABASE statement is the primary file.

Regardless of the mechanism by which a database is created, size and
growth information may be specified. The Initial size (MB) in the SQL Server
Enterprise Manager and the SIZE keyword in the CREATE DATABASE
statement specify the initial size of the file. In Transact-SQL, the units are, by
default, megabytes, although this can be specified explicitly by using the suffix
MB. If desired, the file size can be specified in kilobytes using the KB suffix,
gigabytes using the GB suffix, and terabytes using the TB suffix.

When a data file or transaction log file fills it can automatically grow.
In the SQL Server Management Studio, a file is allowed to automatically
grow by default. In Transact-SQL, the file, by default, will be allowed to
grow unless the FILEGROWTH keyword is set to 0. When a file grows,
the size of the growth increment is controlled by the file growth property
in the SQL Server Enterprise Manager and the FILEGROWTH keyword
in Transact-SQL. In Transact-SQL, the growth increment can be specified
as a fixed value, such as 10 megabytes, or as a percentage. This is the per-
centage of the size of the file at the time the increment takes place. There-
fore, the size increment will increase over time. In Transact-SQL, the
FILEGROWTH value can be specified using the suffix MB, KB, GB, TB,
or %, with MB being the default. If the FILEGROWTH keyword is not
specified in Transact-SQL, the default is 10 percent.

The file may be allowed to grow until it takes up all the available space
in the physical storage device on which it resides, at which point an error
will be returned when it tries to grow again. Alternatively, a limit can be set
using the Restrict file growth (MB) text box in the SQL Server Enterprise
Manager or the MAXSIZE keyword in Transact-SQL. The MAXSIZE
value can be specified using the suffix MB, which is the default, KB, GB, or
TB. The keyword UNLIMITED can also be specified—this is the default.

Every time a file extends, the applications using the database during the
file extension operation may experience performance degradation. Also,
extending a file multiple times may result in fragmented disk space, most
especially where file growth additions are not all of the same size. It is advis-
able, therefore, to try to create the file with an initial size estimated to be
close to the size that will ultimately be required by the file.

82 4.2 Creating databases

The following example shows a CREATE DATABASE statement,
which will create a database consisting of multiple data and transaction log
files:

CREATE DATABASE BankingDB ON PRIMARY

(NAME = BankingData1, FILENAME = 'd:\data\BankingData1.mdf',

 SIZE = 2MB, MAXSIZE = 100MB, FILEGROWTH = 1MB),

(NAME = BankingData2, FILENAME = 'e:\data\BankingData2.ndf',

 SIZE = 2MB, MAXSIZE = 100MB, FILEGROWTH = 1MB)

LOG ON

(NAME = BankingLog1, FILENAME = 'f:\data\BankingLog1.ldf',

 SIZE = 1MB, MAXSIZE = 100MB, FILEGROWTH = 10%),

(NAME = BankingLog2, FILENAME = 'g:\data\BankingLog2.ldf',

 SIZE = 1MB, MAXSIZE = 100MB, FILEGROWTH = 10%)

The following example re-creates the multiple file BankingDB database
created in the previous example, but this time a user-defined filegroup,
Filegroup1, is created. The file named BankingData2 is placed into
Filegroup1 because it follows the file-group definition. This means that
tables, indexes, and text or image data can be explicitly placed in this file-
group, if so required. If no filegroup is specified on the object definition,
the object will be created in the DEFAULT filegroup, which is the primary
filegroup (unless deliberately changed):

CREATE DATABASE BankingDB ON PRIMARY

(NAME = BankingData1, FILENAME = 'd:\data\BankingData1.mdf',

 SIZE = 2MB, MAXSIZE = 100MB, FILEGROWTH = 1MB),

FILEGROUP Filegroup1

(NAME = BankingData2, FILENAME = 'e:\data\BankingData2.ndf',

 SIZE = 2MB, MAXSIZE = 100MB, FILEGROWTH = 1MB)

LOG ON

(NAME = BankingLog1, FILENAME = 'f:\data\BankingLog1.ldf',

 SIZE = 1MB, MAXSIZE = 100MB, FILEGROWTH = 10%),

(NAME = BankingLog2, FILENAME = 'g:\data\BankingLog2.ldf',

 SIZE = 1MB, MAXSIZE = 100MB, FILEGROWTH = 10%)

Various attributes of a database can be modified after it has been created.
These include increasing and reducing the size of data and transaction log
files, adding and removing database and transaction log files, creating file-
groups, changing the DEFAULT filegroup, and changing database options.

4.3 Increasing the size of a database 83

Chapter 4

These operations are achieved by using the ALTER DATABASE state-
ment, DBCC SHRINKFILE, and DBCC SHRINKDATABASE. These
operations can also be changed through the SQL Server Management Stu-
dio. Let us first look at increasing the size of a database.

4.3 Increasing the size of a database

To increase the size of a database, data and transaction log files may be
expanded by using the SQL Server Management Studio or the Transact-
SQL ALTER DATABASE statement. Increasing the size of a file in the
SQL Server Management Studio is merely a case of entering a new value in
the Space allocated (MB) text box, as shown in Figure 4.4.

In Transact-SQL, the ALTER DATABASE statement is used, as follows:

ALTER DATABASE BankingDB MODIFY FILE

 (NAME = BankingData2, SIZE = 5MB)

Figure 4.4
Increasing the size
of a database file

84 4.4 Decreasing the size of a database

File attributes such as MAXSIZE and FILEGROWTH may also be
modified with an ALTER DATABASE statement.

Another way of increasing the size of a database is to add data and trans-
action log files, as follows:

ALTER DATABASE BankingDB ADD FILE

(NAME = BankingData3, FILENAME = 'h:\data\BankingData3.ndf',

 SIZE = 2MB, MAXSIZE = 100MB, FILEGROWTH = 1MB)

The ADD LOG clause is used to add a transaction log file.

To add a file to an existing user-defined filegroup, the ADD FILE ... TO
FILEGROUP syntax is used, as follows:

ALTER DATABASE BankingDB ADD FILE

 (NAME = BankingData3, FILENAME = 'd:\data\
BankingData3.ndf',

 SIZE = 2MB, MAXSIZE = 100MB, FILEGROWTH = 1MB)

 TO FILEGROUP FileGroup1

In the SQL Server Management Studio, adding a new file to an existing
filegroup is achieved by selecting the appropriate filegroup from the drop-
down File group list, as shown in Figure 4.5.

A file that already exists in the database cannot be subsequently added to
another filegroup.

4.4 Decreasing the size of a database

There are a number of mechanisms that can be used to decrease the size of a
database. On one hand, a database can be flagged to allow automatic data-
base shrinkage to occur at periodic intervals. This requires no effort on the
part of the database administrator, but it also allows no control. On the
other hand, DBCC statements can be used to manually shrink a database
or individual database files. These DBCC statements provide the database
administrator with the greatest control over how the shrinkage takes place.
The SQL Server Management Studio also provides a means to shrink a
database or file, and this operation can be scheduled under the control of
the database administrator.

4.4 Decreasing the size of a database 85

Chapter 4

Before we look at shrinking a database, it is worth considering why we
might want to do so. Obviously, shrinking a database in a way that physi-
cally releases space back to the operating system is an attractive proposition
if space is limited on the server. Also disk space must be shared among
applications. However, if space is taken away from a database and used by
another application, it is no longer available for use by that database. If the
database is likely to grow and needs the space in the short term, it is point-
less releasing the space. Also, the process of expanding the database files in
increments, as previously discussed, is not necessarily efficient. The act of
extending a file may impact the performance of applications, and the file
extents may end up being fragmented around the disk drive.

However, if a database has grown in an uncharacteristic fashion because
a large amount of data has been added and then removed, it makes sense to
release the space that is not likely to be needed again. With these thoughts
in mind, let us look at how a database and its files can be shrunk.

Figure 4.5
Adding a new file

to an existing
file group

86 4.4 Decreasing the size of a database

4.4.1 The autoshrink database option

A database option can be set that makes a database a candidate for automat-
ically being shrunk. Database options and how to set them will be discussed
shortly. At periodic intervals a database with this option set may be shrunk
if there is sufficient free space in the database to warrant it. Note that the
database administrator has no control over exactly what happens and when.

4.4.2 Shrinking a database in the SQL Server
Management Studio

A database can be shrunk using SQL Server Management Studio as follows:

1. Expand the server group and expand the server.

2. Expand Databases, then right-click the database to be shrunk.

3. Select Tasks, Shrink, and Database (select Files to shrink an indi-
vidual file).

4. Select the desired options.

5. Click OK.

The SQL Server Enterprise Manager Shrink Database dialog box is
shown in Figure 4.6.

The dialog box offers the database administrator some options concern-
ing database shrinkage. Selecting the option to reorganize before releasing
unused space is effectively a defragmentation process. This will typically
result in empty pages at the end of the file. Whether this option is chosen or
not, SQL Server will truncate the files, releasing the free space at the end of
the files back to the operating system. How much free space is not released
but kept at the end of the file can be controlled by the option to specify the
maximum free space after shrinking.

This dialog box pretty much maps onto the DBCC SHRINKDATA-
BASE statement, which will be described shortly. There are two restrictions
to bear in mind when using a shrink database operation:

� A database cannot be shrunk in such a way that user data is lost.

4.4 Decreasing the size of a database 87

Chapter 4

� The files that comprise the database cannot be shrunk past their ini-
tial size (the size at which they were initially created).

For greater control, individual files can be shrunk (see Figure 4.6), as
opposed to a database as a whole. The Shrink File dialog box is displayed in
Figure 4.7.

When a file is shrunk using this dialog box, it can be shrunk below its
initial creation size as long as user data would not be lost. Various options
allow a finer level of control. The file can be reorganized (compressed), and
the free space truncated from the end. The target file size can be set using
the shrink file to option. This option will compress and truncate. There is
also an option to migrate data from the file to other files in its filegroup so it
can be emptied and then removed from the database. This dialog box pretty
much maps onto the DBCC SHRINKFILE statement described in the fol-
lowing section.

Figure 4.6
Shrinking a

database using the
SQL Server

Management
Studio

88 4.4 Decreasing the size of a database

4.4.3 Shrinking a database using DBCC statements

The greatest control over database shrinkage is provided by two DBCC
statements—DBCC SHRINKDATABASE and DBCC SHRINKFILE.
The first statement considers all the files in the database when attempting
to shrink it. The second statement only considers the named file.

The SQL Server Enterprise Manager actually executes a DBCC
SHRINKDATABASE statement when it is used to shrink a database and a
DBCC SHRINKFILE statement when it is used to shrink a database file.

Let us first consider DBCC SHRINKDATABASE. The syntax diagram
for this statement is as follows:

DBCC SHRINKDATABASE

(database_name [, target_percent]

[, {NOTRUNCATE | TRUNCATEONLY}]

)

Figure 4.7
Decreasing the size

of a database

4.4 Decreasing the size of a database 89

Chapter 4

The target percent parameter is the desired percentage of free space left in
the database file after the database has been shrunk. If this parameter is omit-
ted, SQL Server will attempt to shrink the database as much as possible.

The NOTRUNCATE option ensures that any free file space produced
by relocating data is kept within the database files and not given back to the
operating system. If the database files were examined with Windows
Explorer before and after the shrink operation, no change in file size would
be observed.

The TRUNCATEONLY option ensures that any free space at the end
of the data files is returned to the operating system but no data is relocated
within the files. If the database files were examined with Windows Explorer
before and after the shrink operation, a change in file size may be observed.
The target_percent parameter is disregarded when the TRUNCATEONLY
option is used.

If neither of these is specified, data is relocated in the files, and the free
space at the end of the files is released to the operating system.

The operation of shrinking a database is not quite as straightforward as
it first appears. Various restrictions come into play, and you may not always
see shrinkage as large as you may expect. For example, as we have said, a
database file cannot be shrunk, using DBCC SHRINKDATABASE,
smaller than the size at which it was first created. Also, a database cannot be
shrunk smaller than the model database (a DBCC SHRINKFILE can
shrink a file smaller than its initial size). Data files and transaction log files
are also treated differently. In the case of data files, each file is considered
individually. In the case of transaction log files, all the files are treated as if
they were one contiguous lump of transaction log.

Of course, a database can never be shrunk smaller than the amount of
data it currently holds.

Let us now consider DBCC SHRINKFILE. The syntax diagram for this
statement is as follows:

DBCC SHRINKFILE

({file_name | file_id }

{ [, target_size]

| [, {EMPTYFILE | NOTRUNCATE | TRUNCATEONLY}]

}

)

90 4.5 Modifying filegroup properties

The target size parameter is the desired size, to which the database file
should be shrunk. If this parameter is omitted, SQL Server will attempt to
shrink the file as much as possible.

The NOTRUNCATE and TRUNCATEONLY options have the same
meaning as DBCC SHRINKDATABASE. The EMPTYFILE option
moves the data contained in the file to other files that reside in the same
filegroup and stops the file being used to hold new data. This option is most
often used to prepare a file for removal from the database. It could not oth-
erwise be removed if it contained data.

Files can be removed from the database by using the ALTER DATBASE
statement. Neither data files nor transaction log files can be removed from a
database if they contain data or transaction log records. In the case of data
files, the DBCC SHRINKFILE statement with the EMPTYFILE option
can be used to move data out of the file that is to be removed to other files
in the same filegroup. This is not possible in the case of transaction log files.
The transaction log will have to be truncated to remove transaction log
records before the removal of a transaction log file is possible.

The following example removes a file from the BankingDB database cre-
ated earlier:

ALTER DATABASE BankingDB REMOVE FILE BankingData2

Removing a file using the SQL Server Enterprise Manager is merely a
case of selecting the file to remove and mouse-clicking the Delete button, as
shown in Figure 4.8.

A filegroup can also be removed, as follows:

ALTER DATABASE BankingDB REMOVE FILEGROUP FileGroup1

However, a filegroup cannot be removed if it contains files.

4.5 Modifying filegroup properties

The properties of a filegroup can be changed. Filegroup properties can be
READWRITE, READONLY, and DEFAULT. The READWRITE prop-
erty is typically the property that is set for most filegroups. This means that
objects such as tables and indexes in the filegroup can be both retrieved and
changed. The READONLY property is the opposite of the READWRITE

4.5 Modifying filegroup properties 91

Chapter 4

property in that those objects in a filegroup with the READONLY property
set cannot be changed; they can only be retrieved. The primary file-group
cannot have this property set.

The DEFAULT property is by default set on the primary filegroup. A
filegroup with this property set is used to store objects whose definition
does not include a target filegroup specification. The DEFAULT property
can be set on a filegroup other than the primary filegroup, but only one file-
group in a database can have this property set. The following example sets
the READONLY attribute on the filegroup FileGroup1:

ALTER DATABASE BankingDB MODIFY FILEGROUP FileGroup1 READONLY

Setting the properties READONLY or READWRITE requires exclusive
use of the database.

Figure 4.8
Removing a file

with the SQL
Server

Management
Studio

92 4.6 Setting database options

4.6 Setting database options

Database options are the attributes of a database and controlling its behav-
ior and capabilities. The database options are listed in Table 4.1.

Table 4.1 Database options

Settable Database Options Meaning

ANSI null default This option controls the database default nullability. If a
table column is created without specifying NULL or
NOT NULL, the default behavior is to create the column
with NOT NULL. However, the ANSI standard specifies
that the column should be created with NULL. Set this
option to follow the ANSI standard. It is recommended
that NULL or NOT NULL always be explicitly specified
to avoid confusion.

ANSI nulls This option controls the result of comparing NULL val-
ues. If it is set, comparisons with a NULL value evaluate
to NULL, not TRUE or FALSE. When not set, compari-
sons of non-Unicode values with a NULL value evaluate
to TRUE if both values are NULL.

ANSI padding If ON, strings are padded to the same length before com-
parison or insert. If OFF, strings are not padded.

ANSI warnings This option controls whether warnings are issued if, for
example, NULL values appear in aggregate functions.

arithabort If ON, a query is terminated when an overflow or divide-
by-zero error occurs during the execution of the query.

auto create
statistics

This option controls whether statistics are automatically
created on columns used in the search conditions in
WHERE clauses.

auto update
statistics

This option controls whether existing statistics are auto-
matically updated when the statistics become inaccurate
because the data in the tables have changed.

autoclose This option controls whether a database is shut down and
its resources released when the last user finishes using it.

autoshrink This option controls whether a database is a candidate for
automatic shrinking.

concat null yields
null

This option controls whether NULL is the result of a
concatenation if either operand is NULL.

4.6 Setting database options 93

Chapter 4

The following is a simple database creation script generated by SQL
Server Management Studio, showing all the default options:

CREATE DATABASE test ON PRIMARY

(NAME = 'test', FILENAME = 'C:\data\test.mdf',

 SIZE = 2MB , FILEGROWTH = 1MB)

LOG ON

cursor close on
commit

This option controls whether cursors are closed when a
transaction commits.

default to global
cursor

This option controls whether cursors are created locally
or globally when this is not explicitly specified.

numeric roundabort If ON, an error is generated when loss of precision occurs
in an expression.

offline This option ensures that the database is closed and shut
down cleanly and marked offline.

quoted identifier This option controls whether identifiers can be delimited
by double quotation marks.

read only This option controls whether a database can be modified.

recursive triggers This option controls whether triggers can fire recursively.

single user This option limits database access to a single user connec-
tion.

auto update
statistics
asynchronization

Reduces dependence between query optimization and the
existence of up to date statistics. However, executing a
query without up to date statistics can cause the query to
possibly run slower.

date correlation
optimization

Can help performance of join queries, with joins on date
and time fields

simple
parameterization

Allows for better SQL optimization, by matching previ-
ously compiled SQL statements with submitted SQL
statements. In other words, reduces hard parsing on que-
ries.

full recovery Allows for a full database recovery.

page verification
checksum

Used for high availability and scalability in tandem with
torn page detection. (This option allows incomplete I/O
operations to be detected.)

Table 4.1 Database options (continued)

94 4.6 Setting database options

(NAME = 'test_log', FILENAME = 'C:\data\test_log.ldf',

 SIZE = 1MB , FILEGROWTH = 10%)

GO

ALTER DATABASE test SET ANSI_NULL_DEFAULT OFF

GO

ALTER DATABASE test SET ANSI_NULLS OFF

GO

ALTER DATABASE test SET ANSI_PADDING OFF

GO

ALTER DATABASE test SET ANSI_WARNINGS OFF

GO

ALTER DATABASE test SET ARITHABORT OFF

GO

ALTER DATABASE test SET AUTO_CLOSE OFF

GO

ALTER DATABASE test SET AUTO_CREATE_STATISTICS ON

GO

ALTER DATABASE test SET AUTO_SHRINK OFF

GO

ALTER DATABASE test SET AUTO_UPDATE_STATISTICS ON

GO

ALTER DATABASE test SET CURSOR_CLOSE_ON_COMMIT OFF

GO

ALTER DATABASE test SET CURSOR_DEFAULT GLOBAL

GO

ALTER DATABASE test SET CONCAT_NULL_YIELDS_NULL OFF

GO

ALTER DATABASE test SET NUMERIC_ROUNDABORT OFF

GO

ALTER DATABASE test SET QUOTED_IDENTIFIER OFF

GO

ALTER DATABASE test SET RECURSIVE_TRIGGERS OFF

GO

ALTER DATABASE test SET AUTO_UPDATE_STATISTICS_ASYNC OFF

GO

ALTER DATABASE test SET DATE_CORRELATION_OPTIMIZATION OFF

GO

ALTER DATABASE test SET PARAMETERIZATION SIMPLE

GO

ALTER DATABASE test SET READ_WRITE

GO

4.7 Displaying information about databases 95

Chapter 4

ALTER DATABASE test SET RECOVERY FULL

GO

ALTER DATABASE test SET MULTI_USER

GO

ALTER DATABASE test SET PAGE_VERIFY CHECKSUM

GO

Both SQL Server Management Studio and the ALTER DATABASE
statement can be used to set a database option. To use the SQL Server
Enterprise Manager, do the following:

1. Expand the server group and expand the server.

2. Expand Databases, then right-click the database whose options
are to be set.

3. Select Properties.

4. Select the Options tab and the required options.

5. Click OK. The SQL Server Enterprise Manager Options tab is
shown in Figure 4.9.

Because some options—for example, replication options—are set by
other parts of the SQL Server Management Server, the options displayed in
the Options tab are a subset of the available database options.

The following example sets a database option using Transact-SQL:

ALTER DATABASE BankingDB SET AUTO_SHRINK ON

4.7 Displaying information about databases

Information about databases can be obtained through the SQL Server
Management Studio, or various Transact-SQL statements. We have already
seen the properties page that is displayed when a database is right-clicked
and Properties selected. This shows us quite a lot of information, including
the files that comprise the database. An example of this is shown in Figure
4.4. Right-click a database in the SQL Server Management Studio, and
select the Properties option. Figure 4.10 shows general options under data-
base properties.

96 4.7 Displaying information about databases

To examine properties for other SQL Server objects, such as a table, you
have to select properties from that object, as shown in Figure 4.11.

In Transact-SQL, the sp_helpdb system stored procedure is very useful.
This is as follows:

EXEC sp_helpdb

name db_size owner dbid created status

BankingDB 1500.00 MB sa 6 Oct 23 2000 Status=ONLINE…

Derivatives 25.00 MB sa 8 Oct 18 2000 Status=ONLINE…

master 17.00 MB sa 1 Oct 12 2000 Status=ONLINE…

model 1.00 MB sa 3 Oct 12 2000 Status=ONLINE…

msdb 8.00 MB sa 5 Oct 12 2000 Status=ONLINE…

pubs 3.00 MB sa 4 Oct 12 2000 Status=ONLINE…

tempdb 2.00 MB sa 2 Oct 19 2000 Status=ONLINE…

Figure 4.9
Setting database

options

4.7 Displaying information about databases 97

Chapter 4

Figure 4.10
Viewing the details

of a database

Figure 4.11
Displaying space

allocation
information

98 4.8 System tables used in database configuration

This outputs one row for each database on the server. The db_size col-
umn is the total size of all the files in the database. A database name can be
specified as a parameter, as follows:

EXEC sp_helpdb BankingDB

name db_size owner dbid created status

BankingDB 1500.00 MB sa 6 Oct 23 2000 Status=ONLINE…

Name fileid filename filegroup size maxsize growth usage

bankingdata 1 d:\data\bankingdata.mdf PRIMARY 1024000 KB Unlimited 1024 KB data only
bankinglog 2 d:\data\bankinglog.ldf NULL 512000 KB Unlimited 1024 KB log only

This displays information about the files in the database. Other useful sys-
tem-stored procedures, which can be used to obtain information about files
and filegroups, are sp_helpfile and sp_helpfilegroup. Another useful system-
stored procedure is sp_spaceused, which returns space use information.

SQL OS (SQL Server Operating System) is a new tool used to examine
a SQL Server 2005 installation, at the point between the database server
and the underlying Windows operating system. SQL OS is thus more of a
monitoring tool, as opposed to simple examination, and thus is presented
in a later chapter which covers performance monitoring.

4.8 System tables used in database configuration

The configuration of a database is reflected in various system tables held in
the master database and the user database. The master database contains a
system table, SYSDATABASES, which contains one row for every database
resident on the SQL Server. The structure of this system table is shown in
Table 4.2.

As can be seen, the SYSDATABASES system table contains a column,
filename, which points to the primary data file (.MDF) of a database on the
server. This is the pointer from the master database to each user database.
Once the primary data file of a database has been located, the SYSFILES
system table, which resides in every database, can be located. This has one

4.8 System tables used in database configuration 99

Chapter 4

row representing each file—data or log—found in the database. The SYS-

Table 4.2 The SYSDATABASES system table

Column Datatype Description

name sysname The database name

dbid smallint The unique ID of the database

sid varbinary(85) The Windows NT system ID of the database creator

mode smallint Internal lock mechanism used in database creation

status integer Database status bits (O = set by sp_dboption):

1 = autoclose (O)

4 = select into/bulkcopy (O)

8 = trunc. log on chkpt (O)

16 = torn page detection (O)

32 = loading

64 = prerecovery

128 = recovering

256 = not recovered

512 = offline (O)

1,024 = read only (O)

2,048 = dbo use only (O)

4,096 = single user (O)

32,768 = emergency mode

4,194,304 = autoshrink

1,073,741,824 = cleanly shut down

100 4.8 System tables used in database configuration

FILES system table is shown in Table 4.3.

status2 integer 16,384 = ANSI null default (O)

2,048 = numeric roundabort (O)

4,096 = arithabort (O)

8,192 = ANSI padding (O)

65,536 = concat null yields null (O)

131,072 = recursive triggers(O)

1,048,576 = default to local cursor (O)

8,388,608 = quoted identifier (O)

33,554,432 = cursor close on commit (O)

67,108,864 = ANSI nulls (O)

268,435,456 = ANSI warnings (O)

536,870,912 = full text enabled

crdate datetime Date when database was created

reserved datetime Reserved by Microsoft

category integer Contains a bitmap used for replication: 1 = Published
2 = Subscribed 4 = Merge Published 8 = Merge Sub-
scribed

cmptlevel tinyint Set by sp_dbcmptlevel—specifies the database com-
patibility level

filename nvarchar(260) Location of the primary data file for this database

version smallint SQL Server internal code version that created the
database

Table 4.3 The SYSFILES system table

Column Datatype Description

fileid smallint Unique identifier for the file within the database

groupid smallint Identifier of the filegroup to which the file belongs

size integer File size in (8 KB) database pages

maxsize integer Maximum file size in (8 KB) database pages. 0 = no
growth and -1 = unlimited growth.

Table 4.2 The SYSDATABASES system table (continued)

4.8 System tables used in database configuration 101

Chapter 4

One other system table found in each database is worthy of note at this
point: the SYSFILEGROUPS system table, which contains one row for
every filegroup in the database. The SYSFILEGROUPS system table is
shown in Table 4.4.

All of these tables can be queried with SELECT statements, but it is eas-
ier to use the system stored procedures provided, namely sp_helpdb,
sp_helpfile, and sp_helpfilegroup. We have already seen an example of
sp_helpdb. Examples of sp_helpfile and sp_helpfilegroup are as follows:

growth integer Growth increment of the file. 0 = no growth. This is in
units of 8 KB pages or a percentage, depending on the
status column. If the status column contains
0x100,000, then growth is in percentage, not pages.

status integer Status bits for the growth value in either megabytes
(MB) or kilobytes (K): 0x1 = Default device 0x2 =
Disk file 0x40 = Log device 0x80 = File has been writ-
ten to since last backup 0x4000 = Device created
implicitly by the CREATE DATABASE statement
0x8000 = Device created during database creation
0x100000 = Growth is in percentage, not pages

perf integer Reserved by Microsoft

name nchar(128) Logical name of the file

filename nchar(260) Full path of filename

Table 4.4 The SYSFILEGROUPS system table

Column Datatype Description

groupid smallint Unique identifier for the filegroup within the database

allocpolicy smallint Reserved by Microsoft

status int 0x8 = READ ONLY 0x10 = DEFAULT

groupname sysname Filegroup name

Table 4.3 The SYSFILES system table (continued)

102 4.9 Units of storage

EXEC sp_helpfile

Name fileid filename filegroup size maxsize growth usage

bankingdata 1 d:\data\bankingdata.mdf PRIMARY 1024000 KB Unlimited 1024 KB data only
bankinglog 2 d:\data\bankinglog.ldf NULL 512000 KB Unlimited 1024 KB log only

EXEC sp_helpfilegroup

groupname groupid filecount

PRIMARY

4.9 Units of storage

A database is a collection of logical pages, each 8 KB in size. Database pages
are always this size and cannot be adjusted by the database designer. The 8
KB page is the fundamental unit of storage and it is also a unit of I/O and a
unit of locking (there are other units of I/O and locking).

Tables and indexes consist of database pages. The way that database
pages are allocated to tables and indexes is through extents.

An extent is a structure that contains eight database pages (64 KB).
Extents are of two types—uniform and mixed. A uniform extent devotes its
eight pages completely to one object, for example, a particular table in the
database. A mixed extent allows its pages to be used by up to eight different
objects. Although each page can only be used for one object, all eight pages
in a mixed extent can be used by different objects. For example, a mixed
extent can provide space for eight tables. A uniform extent is shown in Fig-
ure 4.12.

A mixed extent is shown in Figure 4.13.

Figure 4.12
A uniform extent

Figure 4.13
A mixed extent

4.9 Units of storage 103

Chapter 4

The reason that SQL Server 2000 uses mixed extents is to ensure that a
whole eight page (64 KB) extent is not used for a small table. Instead, single
pages are allocated to the table one at a time as the number of rows it con-
tains grows. When eight pages have been allocated and more pages are
needed, uniform extents are used to allocate eight pages at a time.

To observe the allocation of space to a table, try the following:

1. Create a table, T1, with a single column of data type
CHAR(8000). A single row only can fit onto a database page.

2. Insert eight rows, one at a time, checking the space allocated to
the table with the sp_spaceused system stored procedure after
each insert (e.g., EXEC sp_spaceused T1).

3. Insert another row, checking the space reserved.

What you will find is that after each row is inserted, the data column
(the amount of space used by data in the table) is incremented by 8 KB—
that is, a single page from a mixed extent. The reserved column (the
amount of total reserved space for the table) is also incremented by 8 KB.

The reserved column displays 8 KB more than the data column, since a
page is used in the table’s page allocation to hold a special structure called
an Index Allocation Map (IAM), which we will discuss later. This is the 8
KB that is displayed in the Index_Size column. There is no index space
actually used, since there is no index on this table.

After eight rows have been inserted, the data column will display 64 KB
and the reserved column will display 72 KB. After row 9 is inserted, how-
ever, the data column will display 72 KB but the reserved column will dis-
play 136 KB. This is because a whole eight page uniform extent has now
been allocated to the table, causing the reserved value to jump by 64 KB.

Let us have a quick look at the sp_spaceused system stored procedure.
To see the space allocated to a table use the system stored procedure
sp_spaceused, as follows:

sp_spaceused branches

name rows reserved data index_size unused

branches 100 72 KB 64 KB 8 KB 0 KB

104 4.10 Database pages

In the above example, sp_spaceused reports that there are 100 rows in
the Branches table and that 72 KB or 9 database pages of space have been
reserved for it. Out of the 9 pages, 8 pages have been used by the table to
store rows and another 1 page has been used for index space which, as men-
tioned above, is actually used by an IAM page. Note that the system stored
procedure sp_spaceused gets its information from the sysindexes system
table, which only holds estimates. It does this to avoid becoming a bottle-
neck at run time, but it can become inaccurate. To synchronize the sysin-
dexes system table with the real space used, execute a DBCC
CHECKTABLE or a DBCC UPDATEUSAGE statement, which will scan
the table and indexes.

4.10 Database pages

Database pages are used for a variety of tasks. Database pages that are used
to hold table rows and index entries are known as data pages and index
pages, respectively. If the table contains columns of the data type TEXT or
IMAGE, then these columns are usually implemented as structures of Text/
Image pages (unless the TEXT/IMAGE data is stored in the row). There are
other types of pages also, namely Global Allocation Map (GAM) pages,
Page Free Space (PFS), and Index Allocation Map (IAM) pages. We will
discuss these types of pages shortly.

First, though, let us take out the magnifying glass and take a closer look
at a typical page structure. The most common database page we are likely to
meet is a data page, so we will use a data page as an example.

The basic structure of all types of database pages is shown in Figure
4.14.

Figure 4.14
The basic structure
of a database page

4.10 Database pages 105

Chapter 4

There is a fixed 96-byte page header, which contains information such
as the page number, pointers to the previous and next page (if used), and
the object ID of the object to which the page belongs. The pointers are
needed, because pages are linked together, as shown in Figure 4.15. How-
ever, this only happens in certain circumstances.

What does a data page look like inside? The internal structure of a data
page is shown in Figure 4.16. We can see the data rows, but there is also
another structure called a row offset table. The row offset table contains two
byte entries consisting of the row number and the offset byte address of the
row in the page. The first row in our page is at byte offset 96, because of the
96-byte page header. Our row (plus overhead) is 20 bytes in length, so the
next row is at byte offset 116 and so on. The row offset table basically gives
us a level of indirection when addressing a row. This is important because
non-clustered indexes may contain pointers to data rows in their leaf-level
index pages. Such a pointer is known as a Row ID and is made up of a File
ID, database page number, and a row number. The File ID and database
page number (a Page ID) take SQL Server to an individual page in a file
and the row number and then takes SQL Server to an entry in the row off-
set table. In our example, the Row ID of the row nearest the fixed page
header would consist of the page number, 23, and the row number, 0.

Entry 0 in the row offset table contains byte offset address 96. SQL
Server can then use this offset to retrieve the row. Because the Row ID is
implemented this way, we can see that a row can change position in the
table without the Row ID having to change. All that has to change is the
offset address in the row offset table entry. Why would a row change posi-
tion in a page? In Figure 2.16, if row 1 were deleted, row 2 may move up to
row 0 in order to keep the free space in the page contiguous if a new row
needed to be inserted. The Row ID for row 2 would not change.

Figure 4.15
Pages linked in a

chain

106 4.10 Database pages

SQL Server will not shuffle rows like this for the sake of it. It will only
do so to accommodate new inserts on the page.

What does a data row look like inside? Data rows contain columns of
data, as you would expect, but they also contain overhead. The amount of
overhead depends on whether the row contains all fixed-length columns or
whether there are also variable-length columns. In Figure 4.17 we have the
structure of the Accounts table row in our BankingDB database.

The Accounts table has five fixed-length columns. The first three col-
umns are of type integer, the fourth column is of type money, and the last
column is of type char(400).

The first two bytes are used for status bits. The first status byte holds
information that tells SQL Server, for example, whether the row is a pri-
mary data row or a forwarded row. A status bit in this byte also specifies
whether there is variable-length data in the row. In our example there are no
variable-length data.

The next two bytes hold a number representing the length of the fixed
data in the row. This number is the number of bytes of data plus the two
status bytes and these two bytes themselves.

Figure 4.16
The internals of

a data page

Figure 4.17
A row containing
only fixed length

columns

4.10 Database pages 107

Chapter 4

The fixed-length data now follow. Finally, there are two bytes holding a
number that represents the number of columns in the row and a variable
number of bytes holding a NULL bitmap. This contains one bit per every
column with a bit set to show whether the column contains a NULL value.
(See Figure 4.17.)

The shaded area represents the overhead. Our Account row, which we
expected to be 420 bytes in length, has turned out to be 424 bytes in
length—and that does not include the fields holding the number of col-
umns and the NULL bitmap.

Suppose the last column in our Accounts table was not a char(400) data
type but a varchar(400). The structure of our row containing variable
length data is shown in Figure 4.18.

The structure shown in Figure 4.18 assumes that the account_notes col-
umn does indeed contain 400 characters. If it contains less, then less bytes
will be used to hold the account notes. We can immediately see two differ-
ences between the structure of a row containing only fixed-length columns
and a row that also contains variable-length columns. First, the fixed-length
columns are grouped together separate from the variable-length columns,
which are also grouped together. Second, there are more overhead bytes.

Looking at the structure, the first status byte will now have a bit set to
specify that variable-length columns are present in the row. After the two
status bytes the next two bytes hold a number representing the length of the
fixed data in the row followed by the fixed data, the two-byte field holding
the number of columns, and the NULL bitmap. Now we find extra fields.
A two-byte field holds the number of variable-length columns followed by a
field known as the column offset array, which contains a two-byte cell for
each variable-length column used to hold information that SQL Server uses
to find the position of the variable-length data.

We can see that the order of the columns in a row that contains variable-
length columns is not the same order as the table definition.

SQL Server also allows small amounts of text or image data to be held
inside the row. Normally, text and image data is held outside the row.

Figure 4.18
A row containing

fixed length and
variable length

columns

108 4.11 Looking into database pages

4.11 Looking into database pages

I often find it useful and educational to be able to burrow into the contents
of a database page. A useful DBCC statement that will allow you to do this
is DBCC PAGE. This DBCC statement is not documented as an option of
the DBCC statement in the Microsoft SQL Server documentation; how-
ever, some references to it can be found on TechNet and various other
sources.

The most useful form of the syntax of this statement is:

DBCC PAGE (dbid | dbname, file id, page number)

or:

DBCC PAGE (dbid | dbname, file id, page number, 1)

The first form of the syntax displays the page header; the second form
also displays the contents of the page—that is, data in the form of rows and
the row offset table.

How do you know which page number to display? One of the columns
in the sysindexes system table, described in Chapter 3, contains a column
first. This contains the Page ID (File ID plus page number) of the first data
page in the table if the sysindexes entry is a table or clustered index (indid =
0 or 1). Also, if the sysindexes entry is a table, the root column holds the
Page ID of the last data page in the table.

To find the relevant entry in the sysindexes table you need to convert the
table name to an Object ID because the sysindexes table holds the Object
ID rather than the table name. The Object_ID function can be used to
translate the table name to its Object ID. For example, suppose we want to
look at pages in the Accounts table. To get the start Page ID from the sysin-
dexes table, use the following example:

SELECT first FROM sysindexes WHERE

 id = OBJECT_ID ('accounts')

 AND

 indid IN (0,1)

first

4.11 Looking into database pages 109

Chapter 4

0x1E0000000100

Unfortunately, the Page ID is represented in hexadecimal and a swapped
byte order, so some manipulation will be needed to arrive at the page num-
ber. First of all, take away the 0x symbol and separate the number into one-
byte (two-digit) values:

1E 00 00 00 01 00

Now you must reverse the order of the bytes:

00 01 00 00 00 1E

The first two bytes hold the File ID number, and the last four bytes hold
the page number:

00 01 | 00 00 00 1E

Therefore, in our example, the File ID number is 1 and the page num-
ber is 30 (the decimal equivalent of hexadecimal 1E).

To get information out of DBCC PAGE we must initiate tracing to the
client:

DBCC TRACEON (3604)

We are now ready to display the contents of a page, but first of all let us
just display the page header so we can see what is in it:

DBCC PAGE ('BankingDB',1,30)

PAGE: (1:30)

BUFFER:

BUF @0x18F0BF80

bpage = 0x1B14C000 bhash = 0x00000000 bpageno = (1:30)

bdbid = breferences = 1 bstat = 0x9

110 4.11 Looking into database pages

bspin = 0 bnext = 0x00000000

PAGE HEADER:

Page @0x1B14C000

m_pageId = (1:30) m_headerVersion = 1 m_type = 1

m_typeFlagBits = 0x0 m_level = 0 m_flagBits = 0x8000

m_objId = 199305813 m_indexId = 0 m_prevPage = (0:0)

m_nextPage = (0:0) pminlen = 424 m_slotCnt = 16

m_freeCnt = 1232 m_freeData = 6928 m_reservedCnt = 0

m_lsn = (5:84:25) m_xactReserved = 0 m_xdesId = (0:0)

m_ghostRecCnt = 0 m_tornBits = 1

Allocation Status

GAM (1:2) = ALLOCATED SGAM (1:3) = NOT ALLOCATED

PFS (1:1) = 0x63 MIXED_EXT ALLOCATED 95_PCT_FULL DIFF (1:6) = CHANGED

ML (1:7) = NOT MIN_LOGGED

We can see the entry m_pageId = (1:30) telling us that this is page 30
in File ID 1. The entry m_objId = 199305813 tells us what Object ID
the page belongs to. OK, we know this but there are occasions when error
messages contain page numbers and in that situation the Object ID is
very useful.

The m_level and m_indexid fields are meaningful if this page is an index
page. The level is the index level where this page resides, and indid tells us
the ID of the index to which this page belongs. The field m_freeData is the
offset of the start of the free space on the page, and the pminlen field tells us
the smallest value a row can be. The entry m_slotCnt tells us how many
slots (entries) there are in the row offset table.

Let us now look at the contents of the page. I will omit the page header
from the example for clarity:

DBCC PAGE ('BankingDB',1,30,1)

DATA:

Slot 0, Offset 0x60

4.11 Looking into database pages 111

Chapter 4

Record Type = PRIMARY_RECORD

Record Attributes = NULL_BITMAP

1b14c060: 01a80010 00000001 00000001 000003e9

1b14c070: 057e8dbc 00000000 6576654e 766f2072 ..~.....Never ov

1b14c080: 72647265 206e7761 20202020 20202020 erdrawn

1b14c090: 20202020 20202020 20202020 20202020

 :

1b14c1f0: 20202020 20202020 20202020 20202020

1b14c200: 20202020 20202020 000005 ...

 :

Slot 1, Offset 0x20b

Record Type = PRIMARY_RECORD

Record Attributes = NULL_BITMAP

1b14c20b: 01a80010 000186a1 00000001 000003e9

1b14c21b: 03ee6580 00000000 6576654e 766f2072 .e......Never ov

1b14c22b: 72647265 206e7761 20202020 20202020 erdrawn

1b14c23b: 20202020 20202020 20202020 20202020

1b14c24b: 20202020 20202020 20202020 20202020

 :

OFFSET TABLE:

Row - Offset

15 (0xf) - 6501 (0x1965)

14 (0xe) - 6074 (0x17ba)

13 (0xd) - 5647 (0x160f)

 :

3 (0x3) - 1377 (0x561)

2 (0x2) - 950 (0x3b6)

1 (0x1) - 523 (0x20b)

0 (0x0) - 96 (0x60)

We can see, in the DATA section, each row and the offset of the row. We
can see, in the OFFSET TABLE section, each entry in the row offset table.
Each entry contains a slot number and an offset—for example, the row ref-

112 4.12 Pages for space management

erenced by slot 0 is at offset 96 (straight after the page header), and the row
referenced by slot 15 is at offset 6,501.

4.12 Pages for space management

There are a number of pages resident in a primary or secondary database file
that are used to manage space in a file. These special pages are as follows:

� Global Allocation Map (GAM) pages

� Secondary Global Allocation Map (SGAM) pages

� Index Allocation Map (IAM) pages

� Page Free Space (PFS) pages

To understand how GAM and SGAM pages fit into the picture we need
to remind ourselves that there are two types of extents in SQL Server 2000.
Uniform extents are eight pages in length and are allocated exclusively to
one object when it requires space. For example, if a uniform extent is allo-
cated to the Accounts table in the BankingDB database, then only rows
from that table can use space on the eight pages.

Mixed extents are eight pages in length also but are allocated one page at
a time to many objects when they require space. For example, a mixed
extent may provide space for the Accounts table in the BankingDB database
plus another seven tables. As we discussed earlier, mixed extents exist to save
space, and, as such, the first eight pages of a table (or index) are allocated
from mixed extents.

GAM pages hold information concerning which extents are currently
allocated—that is, are not free. A single GAM page can manage 64,000
extents, which equates to nearly 4 GB of space. If more than 64,000 extents
are present in the file, additional GAM pages are used. A GAM page uses a
single bit to represent each extent out of the 64,000 extent range. If the bit
is set (1), the extent is free; if it is not set (0), it is allocated.

SGAM pages hold information concerning which extents are currently
being used as mixed extents and have one or more unused page—that is,
have space that can still be allocated to objects. A single SGAM page can
also manage 64,000 extents. If more than 64,000 extents are present in the
file, additional SGAM pages are used. An SGAM page uses a single bit to
represent each extent out of the 64,000 extent range. If the bit is set (1),

4.12 Pages for space management 113

Chapter 4

the extent is being used as a mixed extent and has at least one unused page;
if it is not set (0), it is not being used as a mixed extent, or, alternatively, it

is a mixed extent but all the pages are in use. These settings are shown in
Table 4.5.

To find a free extent to allocate as a uniform extent, the GAM is scanned
for a bit that is set (1)—that is, an extent not currently in use. The bit is
then set to 0 (allocated). To find a mixed extent having at least one free page
that can be allocated, SQL Server searches the SGAM for a bit that is set
(1). To find a free extent to allocate as a mixed extent, the GAM is scanned
for a bit that is set (1)—that is, an extent that is not currently in use. The
bit is then set to 0 (allocated). The equivalent bit in the SGAM is set to 1.
To free an extent, the GAM bit is set to 1 and the SGAM bit is set to 0.

When allocating extents to a table, SQL Server “round-robins” the allo-
cation from each file if there is more than one file in the filegroup to which
the table belongs. This ensures that space is allocated proportionately from
each file in the filegroup.

How does SQL Server keep track of which pages belong to a table or
index? In previous versions of SQL Server (prior to SQL Server 7.0), data
pages in a table were always chained together in a doubly linked list. This
behavior changed in SQL Server 7.0 and so in SQL Server 2000 and 2005,
this is true only if the table has a clustered index (much more about clus-
tered indexes in Chapter 5).

In SQL Server the extents used by a table or index are managed by IAM
pages. A table or index has at least one IAM page, and, if the table or index
is spread across more than one file, it will have an IAM page for each file.
An IAM page can manage 512,000 pages, and, if the table size exceeds this
within a file, another IAM is used. The IAM pages for a file or index are
chained together. An IAM page must not only cater to uniform extents allo-
cated to the table or index, but must also cater to single pages allocated
from mixed extents.

Table 4.5 GAM and SGAM page settings

Extent Status GAM Bit Setting SGAM Bit Setting

Free, not being used 1 0

Uniform or full mixed extent 0 0

Mixed extent with free pages 0 1

114 4.12 Pages for space management

To do this the first IAM page in the chain of IAM pages holds eight slots
which can contain pointers to the eight pages that may be allocated from
mixed extents. Other IAM pages in the IAM chain will not hold pointers in
these slots. All IAM pages, though, will contain a bitmap with each bit pre-
senting an extent in the range of extents held by the IAM. If the bit is set
(1), the extent represented by that bit is allocated to the table or index; if it
is not set (0), the extent represented by that bit is not allocated to the table
or index.

To find the page ID of the first IAM page for a table or index, use the
FirstIAM column in the sysindexes system table (the sysindexes system
table will be discussed in Chapter 5). To do this use the following example:

SELECT object_name(id) AS Tablename , Name, FirstIAM FROM
sysindexes

Tablename Name FirstIAM

--------- ---- --------------

Authors aunmind 0x7C0000000100

Publishers UPKCL_pubind 0x650000000100

Titles UPKCL_titleidind 0x690000000100

The Page ID is a hexadecimal number, which can be decoded as
described previously in this chapter.

The SQL Server documentation refers to a heap. A heap is a table that
does not have a clustered index and, therefore, the pages are not linked by
pointers. The IAM pages are the only structures that link the pages in a
table together.

Finally, our last special page is a PFS page. A PFS page holds the infor-
mation that shows whether an individual page has been allocated to table,
index, or some other structure. It also documents how free an allocated
page is. For each page, the PFS has a bitmap recording whether the page is
empty, 1 percent to 50 percent full, 51 percent to 80 percent full, 81 per-
cent to 95 percent full, or 96 percent to 100 percent full. Each PFS page
covers an 8,000-page range. When a search is made to look for free space,
the PFS page is consulted to see which page in an extent belonging to the
table or index may have enough free space.

This results in a fundamental difference between SQL Server 2005 and
versions prior to SQL Server 7.0. In these previous versions, if there were
no clustered index on the table, new rows were always added at the end—

4.13 Partitioning tables into physical chunks 115

Chapter 4

that is, inserted into the last page. Now, rows can be inserted on any page in
the table that has free space.

So, where in the database file do we find these special pages? The first
page (0) contains a file header. The second page (1) is the first PFS page.
The next PFS page will be found after another 8,000 pages. The third page
(2) is the first GAM, and the fourth page (3) is the first SGAM. IAM pages
are located in arbitrary positions throughout the file. This is shown in Fig-
ure 4.19.

This chapter has provided an overview of the SQL Server storage struc-
tures. In the next chapter we will look at tables and indexes in much more
detail. But first of all, now that we have discussed databases, it is time to
introduce the BankingDB database used in this book.

4.13 Partitioning tables into physical chunks

Partitioning involves the physical splitting of large objects, such as tables
and indexes, into separate physical parts. Partitioning results in two primary
benefits:

� Operations can be performed on individual physical partitions. This
leads to a substantial reduction in I/O requirements. For example,
you can execute a query on a single partition, or you can also add or
remove a single partition. The rest of the table (all other partitions)
remains unaffected.

� Multiple partitions can be executed on in parallel. The result is faster
processing on multiple CPU platforms.

Both of the above factors make partitioning a tuning method as opposed
to something that can be tuned specifically. Any tuning of partitions is

Figure 4.19
The PFS, GAM,

and SGAM pages

116 4.13 Partitioning tables into physical chunks

essentially related to underlying structures, indexing techniques, and the
way in which partitions are constructed.

Figure 4.20 shows a very simple picture of how partitioning can be used
to split physical data, containing something like a table, into multiple phys-
ical files. Each file is mapped individually to separate partitions within that
table. As you can see, physical chunks can even be placed onto separate disk
drives. However, splitting to separate disk drives is not necessarily beneficial
when using RAID array storage. The reason why is RAID storage already
splits physical data into many small pieces.

As already stated in Chapter 1, partitioning lets you split large chunks of
data into much more manageable smaller physical chunks of disk space.
The intention is to reduce I/O activity. For example, let’s say you have a
table with 10 million records and you only want to read 1 million records
to compile an analytical report. If the table is divided into 10 partitions,
and your 1 million records are contained in a single partition, then you get
to read 1 million records as opposed to 10 million records. On that scale
you can get quite a serious difference in I/O activity for a single report.

SQL Server 2005 allows for table partitioning and index partitioning.
What this means is that you can create a table as a partitioned table, defin-
ing specifically where each physical chunk of the table or index resides.

SQL Server 2000 partitioning was essentially manual partitioning, using
multiple tables, distributed across multiple SQL Server computers. Then a
view (partition view) was created to overlay those tables across the servers.

Figure 4.20
Physical

partitioning

4.13 Partitioning tables into physical chunks 117

Chapter 4

In other words, a query required access to a view, which contained a query,
not data. SQL Server 2005 table partitions contain real physical records.

Partitioning is much improved in SQL Server 2005 because there is now
a physical split between different partitions, rather than just a logical split
using a view. An SQL Server 2000 partition view contained a query, against
multiple tables, using a UNION statement to merge those multiple under-
lying tables. Yuk! The effect of partition views is that the partitions you
used, the worse performance became—essentially making the use of parti-
tioning pointless with respect to improving performance. In SQL Server
2005, each partition is a separate physical chunk, where indexes are created
the same, but also for separate physical chunk. Thus, data plus index parti-
tion can be acted on individually without disturbing, or needing to access
records in other partitions of the same table.

4.13.1 Types of partitions

SQL Server 2005 has two different variations of partitions:

� Range partition: Partition a table based on column in the table
where the number of row in each partition can vary. This is because
their allocation to each partition is based on the value on the parti-
tioning field.

� Even distribution partition: Using partitioning in tandem with file-
groups places a partition into a physical disk space area. Splitting data
based on quantities of data in partitions. In other words, all partitions
should have relatively equal numbers of records, because data is split
based on the size of each partition.

4.13.2 Creating a range partition

Create a partition by creating a partition function. Use a CREATE PARTI-
TION FUNCTION metadata statement. This is the syntax:

CREATE PARTITION FUNCTION <partition function>

 (<partitioning column>)

 AS RANGE [LEFT | RIGHT]

 FOR VALUES ([<boundary value> [, …]])

� Partition function: name of partition

118 4.13 Partitioning tables into physical chunks

� Partitioning column: This is a data type of field used to create range
partition. Generally, only simple data types are allowed, such as inte-
gers and fixed length strings. Logically, you really wouldn’t want to
partition on the kind of data type you would not want to create an
index out of. So, things like binary objects, XML data types, and
timestamps are not permitted.

� Boundary value: Range partition value setting how many partitions
are created, field values determining target partitions for each record
and index partitions. A boundary value can be a literal value, but also
a functional expression value (the result of a function). It cannot be
the result of a query, unless of course that query is contained inside a
function, which produces an expression. By definition, a function
produces a single value (it can be Boolean); a function is thus identi-
cal to an expression result.

Partition columns and boundary values must exist in underlying tables
and indexes.

LEFT and RIGHT simply determines that a range is specified values
occurring to the left or right of each value in the list of boundary values. For
example:

CREATE PARTITION FUNCTION <partition> (INT)

AS RANGE LEFT (10, 20, 30)

FOR VALUES ([<boundary> [, …]])

In the above pseudocoded CREATE PARTITION statement, there are
three partitions: <=10, >10, and <=20, >20, and <=30, >30.

4.13.3 Creating an even distribution partition

This type of partition is created using a combination of a CREATE PARTI-
TION FUNCTION statement, followed by a CREATE PARITITION
SCHEME statement. The latter will create a mapping between a partitioned
table (or a partitioned index), mapping to filegroups. This is the syntax:

CREATE PARTITION SCHEME <partition scheme>

AS PARTITION <partition function>

[ALL] TO ({file group | [PRIMARY]} [, ...])

4.14 The BankingDB database 119

Chapter 4

� ALL: All partitions map to file group or PRIMARY (if set).

� PRIMARY: Partition stored in the primary filegroup.

The result is a range partition, spliced into an even distribution parti-
tion. If there are fewer ranges provided by the partition function than there
are filegroups, then there will be empty filegroups that can be used later on.

4.14 The BankingDB database

The BankingDB database is very simple. It consists of just three tables,
which are created with the following Transact-SQL syntax:

CREATE TABLE customers

(

 customer_no INT NOT NULL,

 customer_fname CHAR(20) NOT NULL,

 customer_lname CHAR(20) NOT NULL,

 customer_notes CHAR(400) NOT NULL

)

CREATE TABLE accounts

(

 account_no INT NOT NULL,

 customer_no INT NOT NULL,

 branch_no INT NOT NULL,

 balance MONEY NOT NULL,

 account_notes CHAR(400) NOT NULL

)

CREATE TABLE branches

(

 branch_no INT NOT NULL,

 branch_name CHAR(60) NOT NULL,

 branch_address CHAR(400) NOT NULL,

 managers_name CHAR(60) NOT NULL

)

120 4.14 The BankingDB database

The BankingDB database has customers who have one or many bank
accounts. A bank account is managed by a branch of the bank at some geo-
graphical location. It is as simple as that.

There are 10,000 bank accounts for 5,000 customers. These are man-
aged by 100 branches. Since we will be creating indexes frequently as we
progress through the book, there are no indexes created in the basic data-
base. For the same reason, the tables are also assumed to have no primary
key constraints or foreign key constraints.

121

5
Indexing

There are many bells and whistles that can be tweaked to improve SQL
Server performance. Some will provide a more positive benefit than others.
To really improve performance, often with dramatic results, the database
designer is well advised to concentrate his or her efforts in the area of index-
ing. The correct choice of index on a table with respect to the WHERE
clause in a Transact-SQL statement, so that the query optimizer chooses the
most efficient strategy, can have sensational results.

I was once asked to look at a query that performed a complex join and
had not completed in over 12 hours. Who knows when the query would
have completed had it not been cancelled by the user—it may still have
been running at the end of the year! Examination of the query showed that
a join condition was missing in the WHERE clause, as was an index on one
of the large tables involved in the join.

Making the appropriate changes meant that the query ran in less than
eight minutes!

This magnitude of performance improvement is not likely to be
achieved every day, but it makes an important point—namely, that focus-
ing effort in the area of indexing and query optimization is likely to pro-
duce good results for the effort involved and should be high on the database
tuner’s hit list.

So, what are these indexes and why are they so important?

5.1 Data retrieval with no indexes

Imagine that this book had no index, and you were asked to find references
to the topic page faults. You would have no choice but to open the book at
page 1, scan the page looking for the topic, turn to page 2, and continue
until you had scanned the last page of the book. You would have to con-

122 5.2 Clustered indexes

tinue your search to the last page in the book, since you would not know
when you had found the last reference to the topic. You would have read
and scanned every page in the book, which would probably have taken you
a considerable length of time.

SQL Server has to behave in a similar fashion when asked to retrieve
rows from a table that has no appropriate index. Suppose we were to exe-
cute the following Transact-SQL statement against the Accounts table,
assuming there was no suitable index present:

SELECT * FROM accounts WHERE branch_no = 1100

How would SQL Server find the appropriate rows? It would have to
search the Accounts table from the start of the table to the end of the
table looking for rows that had a branch_no containing the value 1,100.
This might be fine for small tables containing just a few rows, but, if the
table contained millions of rows, the above query would take a very long
time to complete.

What is needed is a fast and efficient way of finding the data that con-
forms to the query requirements. In the case of a book, there is usually an
index section from which the required topic can be found in an alphabeti-
cally ordered list, and the page numbers of the pages featuring that topic can
then be obtained. The required pages can be directly accessed in the book.

The method used to directly retrieve the required data from a table in
SQL Server is not unlike that used with books. Structures called indexes
may be created on a table, which enable SQL Server to quickly look up the
database pages that hold the supplied key value—in our example the value
1,100 for the branch_no column.

Unlike a book, which normally has one index, a table may have many
indexes. These indexes are based on one or more columns in the table. In
SQL Server there are two types of index—clustered and non-clustered—
which we shall now compare and contrast. The ultimate decision as to
whether an index is used or whether a complete scan of the table is per-
formed is made by a component of SQL Server known as the query opti-
mizer, which we will discuss in detail in Chapter 7.

5.2 Clustered indexes

As a database designer you are allowed to create only one clustered index on
a table—you have one chance to play this ace and so you must play it care-

5.2 Clustered indexes 123

Chapter 5

fully. Why only one clustered index per table? Unlike its non-clustered
cousin, described shortly, a clustered index imposes a physical ordering of
the table data.

Creating a clustered index forces the data rows in the table to be reor-
dered on disk so that they are in the same key sequence order as the clus-
tered index key. For example, if we were to create a clustered index on the
customer_lname column of the Customers table, the data rows would be
sorted so that their physical order on the disk was in ascending order of the
customers’ last names—that is, Adamski would precede Tolstoy.

This order would be maintained as long as the clustered index was
present. SQL Server would ensure that the insertion of a new data row
would cause the row to be placed in the correct physical location in key
sequence order.

The structure of a clustered index with its key defined on the
customer_lname column of the Customers table is shown in Figure 5.1.

The lowest level of the clustered index is composed of the data pages
themselves, and in a clustered index the data pages are known as the leaf
level of the index. The rest of the clustered index is composed of index
pages. The index page at the top of the index is known as the index root.
Levels in the index between the root page and the leaf-level pages are
known as intermediate-level pages. Another name for an index page is an
index node. For simplicity we have shown the structure with the ability to

Figure 5.1
The structure of a

clustered index

124 5.2 Clustered indexes

hold two data rows per page and three index entries per page. In reality
many more rows and index entries are likely to be found.

At any given level in the index the pages are linked together. This is
shown in Figure 5.1, whereas Figure 5.2 emphasizes the linkage. Figure 5.2
shows how index pages are linked together, and this is true regardless of
whether the index is a clustered index or non-clustered index.

The entries in the index pages contain a key value and a pointer to the
next index page at the next lowest level starting with that key value, plus
some control information. The pointer in a clustered index is a page num-
ber. In Figure 5.1, for example, the root page has an entry containing a key
value, Adams, and a page number, 58, pointing to the intermediate index
page 58, whose lowest key value is Adams.

The pointer also contains the File ID as a prefix. This is needed because
page numbers are only unique within a database file. A File ID plus a page
number is referred to as a Page ID.

The reason why there can be only one clustered index on a table is that
the clustered index governs the physical placement of the data, and the data
cannot be in two places at once. There can only be one sequence in which
the data can be physically placed.

So how can a clustered index support our requirement to perform fast
and efficient data retrieval? The clustered index will help us to avoid table
scans, since the query optimizer will probably use the clustered index to
retrieve data directly. Suppose we issued the following SELECT statement:

SELECT * FROM customers WHERE customer_lname = 'Green'

Figure 5.2
Index pages are
linked together

5.2 Clustered indexes 125

Chapter 5

Let us assume that the query optimizer decides that the clustered index
is the most efficient access path to the data. This is a realistic assumption,
since the WHERE clause only specifies the customer_lname column on
which the clustered index is based.

SQL Server will first obtain the page number of the root page from the
sysindexes table—in our example, page 42. In this root page there will be a
number of key values, and in our clustered index these are Adams and
James. SQL Server will look for the highest key value not greater than
Green, which will be Adams.

In a clustered index an index entry consists of the index key plus a
pointer, which is a page number. The pointer held in the Adams key entry
points to page 58, and so index page number 58 will be retrieved.

SQL Server will look for the highest key value not greater than Green
because page 58 is still an index page. In index page number 58 this is Date.
The pointer held in the Date key entry is to page 337, which is a data page,
and so this page will be retrieved. The data page is now scanned for a row
containing Green in the customer_lname column. The row is found and
returned. Note that SQL Server did not know the row existed until the data
page was obtained.

Clearly, the clustered index in our example has supported fast access to
the data row. If we consider the number of I/Os required to traverse the
index in this way, we can see that one I/O is required to retrieve the root
page, one I/O is required to retrieve the intermediate index page, and one
I/O is required to retrieve the data page—a total of three I/Os. A table
scan would probably result in many more I/Os.

Would the three I/Os required to traverse our index be physical reads to
the disk? Probably not. The root page of an index is accessed by every query
that needs to traverse the index and so is normally always found in cache if
the index is accessed frequently. The intermediate nodes and data pages are
less likely to be, but if the data cache is large enough it is possible that they
will stay in the cache.

We have looked at a SELECT statement that retrieved a single row.
What about a SELECT statement that retrieves a range of rows?

SELECT * FROM customers

WHERE customer_lname BETWEEN 'Date' AND 'Kirk'

126 5.2 Clustered indexes

In the above example a range of values is specified based on the
customer_lname column. It can be seen from Figure 5.1 that because our
clustered index is based on the customer_lname column and the data is
thus in key sequence order, the rows that meet the criteria are all stored
together—that is, clustered. In our example, the six rows that meet the cri-
teria of the SELECT statement are found in three data pages, and so only
three I/Os would be required to retrieve these data pages.

If the clustered index had not been based on the customer_lname col-
umn, the rows would have not been clustered together (unless fate had
intervened or the rows were loaded in that manner with no other clustered
indexes on the table).

In the worst case, the six rows would have been stored across six data
pages, resulting in six I/Os to retrieve them.

In the BankingDB database there are about 15 customer rows per data
page. As an example, eight I/Os would return 120 rows. As we will see,
when a clustered index is not present to keep the rows in key sequence
order, indexed access of these rows may require 120 I/Os. A not inconsider-
able difference!

In a similar manner, clustered indexes support searches using the LIKE
operator. Suppose we execute the following query:

SELECT * FROM customers WHERE customer_lname LIKE 'N%'

All the customers with last names beginning with N will be returned.
Again, our clustered index on customer_lname will ensure that these rows
are stored together, resulting in the least number of I/Os to retrieve them.
Of course, duplicate last names would also be stored in the same cluster of
pages.

Finally, what about returning the data in order? Suppose we execute the
following query:

SELECT * FROM customers ORDER BY customer_lname

The query optimizer will know that the clustered index guarantees that
the data is in key sequence order, and so there is no need to perform a sort
of the rows to satisfy the ORDER BY clause, again saving disk I/O.

5.3 Non-clustered indexes 127

Chapter 5

5.3 Non-clustered indexes

Similar to their clustered counterparts, non-clustered indexes are balanced
trees with a hierarchy of index pages—starting with the index root page at
the top, leaf-level pages at the bottom- and intermediate-level pages
between the root page and the leaf-level pages. Again, at any given level in
the index the pages are linked together, as shown in Figure 5.2.

Data pages in a table without a clustered index will not be chained
together, even if non-clustered indexes are present on the table. As was
mentioned in Chapter 2, the data pages of the table will only be related
through the IAM page(s) managing that table.

Unlike their clustered counterparts, non-clustered indexes have no influ-
ence on the physical order of the data, and the leaf level of a sorted index is
not considered to be the data but is the lowest level of index pages. The
structure of a non-clustered index with its key defined on the
customer_fname column of the Customers table is shown in Figure 5.3.

Figure 5.3
Structure of a non-

clustered index
when no clustered
index on the table

128 5.3 Non-clustered indexes

The first observation we can make is that every data row in the table has
a pointer to it from the index leaf level (the dashed lines). This was not the
case with the clustered index in Figure 5.1, where the leaf level only con-
tained pointers to the lowest keyed data row in each page. This means that
non-clustered indexes are typically larger than their clustered counterparts,
because their leaf level has to hold many more pointers. There are about 15
customer rows per data page, so the leaf level of the non-clustered index will
need to hold 15 times more pointers than the lowest-level index page in the
clustered index. The typical effect of this is that a non-clustered index on a
key will usually have one more level of index pages than a clustered index
on the same key.

What do the index entries in a non-clustered index look like? Similar to
a clustered index, they contain a key value and a pointer to the relevant
index page at the next lowest level. This pointer is a Page ID (File ID and
database page number). The lowest index level, the leaf level, has index
entries also containing a key value and a pointer. While in versions of SQL
Server prior to 7.0 the pointer was always a Row ID, which pointed directly
at the data row, this is no longer always true.

A Row ID is a Page ID plus a row number. In Figure 5.3 the leaf-level
index page 96 has an entry for the key Ben, which points to Page ID 1:340,
slot number 2.

So when is a pointer a Row ID and when is it not? If there is no clus-
tered index present on the table, then the pointer is a Row ID. If there is a
clustered index present on the table, then the pointer becomes something
else. We shall see what this something is shortly and why this is so.

The most important observation to make about Figure 5.3 is that
although the index levels are in key sequence order, the data is not. This
means that any kind of range retrieval performed using the sorted index will
have to use a logical read to follow each relevant leaf-level pointer to the
data rows. This is an important point, which we will revisit later. Note also
that once the leaf level has been accessed, SQL Server knows whether a row
exists or not.

So far we have discussed the behavior of clustered indexes and non-clus-
tered indexes with respect to data retrieval. Let us now look at the behavior
of these indexes with respect to data insertion, update, and deletion.

5.5 The more exotic indexing forms 129

Chapter 5

5.4 Online indexes

Simply put, an online index is an index created or altered without affecting
any activity against that index. In other words, any queries or change activ-
ity using that index will not wait for the creation or rebuilding of a new
index, but will rather use existing structures until the new index is fully
available. In the past, without generation of indexes with the rest of the
database online, any activities against an object in the database, using an
index which is rebuilt, would have halted until that index had completed
building. For a very large table with millions of billions of records, indexes
can take a very long time to create. The way online indexes are created is
done using the ONLINE key word in a CREATE INDEX or ALTER
INDEX REBUILD statement. It’s that easy!

5.5 The more exotic indexing forms

More exotic (new) forms of indexing include parallel created and accessed
indexes, partition indexing (parallel indexing is often heavily dependent on
partitioning), and native XML data type indexing.

5.5.1 Parallel indexing

The term parallel indexing implies two things: (1) indexes can be created in
parallel, and (2) indexes can be read in parallel. Essentially, the result is
something called parallel indexing operations, as opposed to just parallel
indexing. So, when an index is first created, using a multi-CPU platform,
that index can actually be created or rebuilt in parallel, using the multiple
CPUs to execute multiple index threads simultaneously. At least that’s the
theory. And obviously with multi-CPU platforms any index can be read in
parallel when different parts of an index structure are required to satisfy a
query. Partitioning will more than likely help when executing parallel index
operations, only encouraging a greater degree of parallelism. Most impor-
tantly, parallel operations in any form are only really beneficial with very
large amounts of data and equally large-sized queries. Sometimes parallel-
ism can be of benefit on single CPU platforms but not very often. The most
effective use of parallel processing, of any form, in modern relational data-
bases is where table and index partitioning are utilized, given exact physical/
logical splits to data stored in a database. RAID arrays do not necessarily
internal database parallel (as opposed to sequential) processing, within a
database, unless RAID mirrors are divided up beneficial to database internal

130 5.5 The more exotic indexing forms

partitioning. If you want to execute parallel queries, indexes, index cre-
ations, and so on—your best bet is to use table and index partitioning.

5.5.2 Partition indexing

A partitioned index is simply an index which is physically divided into sep-
arate partitions or sections. Those sections are usually stored on separate
areas of disk space but not necessarily. Partitioning can be used to logically
divide records in large tables, and underlying RAID array physical split-
ting, striping, and mirroring can perform physical partitioning in the
underlying disk subsystem. In other words, partitioning is implemented at
the database level, and RAID storage is executed at the disk subsystem (or
operating system) level.

5.5.3 XML data type indexes

The most recent versions of modern relational database engines allow the
storage and internal processing of XML documents, much in the same way
that a Native XML database does. In other words, an XML document can
be acted upon, in the database, as it would in textual form outside of a data-
base using all XML standards such as XSL (eXtensible Style Sheets), and a
plethora of other XML standards. Essentially, XML documents can be
stored into relational databases, including SQL Server 2005, as a fully func-
tional and executable Native XML database (for each individually stored
XML document). Herein lies a problem—relational databases rely heavily
on indexing of large chunks of data for rapid access. Essentially, an index
creates a search-enhanced structure, occupying much less space than the
table itself. Address pointers from index leaf values into table records allow
fast access from index to table once an index record has been found. This
avoids reading a large table to find small quantities of data. As XML docu-
ments become large, it becomes less efficient to use the native XML struc-
ture of each document to scan through an entire XML document just to
find one little-bitty snippet of data. So, a relational database quite sensibly
should allow developers and administrators to create indexes of the contents
of XML documents using specific repetitive data items. The resulting index
is an index like any other, except that the target table data pointed to is not
actually a table but an XML document.

5.6 The role of indexes in insertion and deletion 131

Chapter 5

5.6 The role of indexes in insertion and deletion

The existence of indexes on tables is usually considered with respect to
query execution time. However, SQL Server indexes, in particular clustered
indexes, also affect the behavior of SQL Server when rows are inserted. For
non-clustered indexes insertion and deletion change the index. In a clus-
tered index, because the entire table is built as an index, then any DML
activity will more likely change the index.

Consider the Customers table shown in Figure 5.4. The table has been
allocated four pages from a mixed extent. Three pages are full, and the
fourth page is partly filled.

We will assume, for clarity, that a database page only holds three rows
and that only the customer_lname and customer_fname columns are
shown.

Suppose we wish to add a new row. Where is it stored? Since the table
has no indexes present and there is no free space anywhere else in the pages
allocated to the table, the new row is inserted at the end of the table on the
last page, as shown in Figure 5.5.

We shall see shortly that this behavior is true even if there are non-clus-
tered indexes present on the table. Only the creation of a clustered index
can modify this behavior.

Figure 5.4
Customers table
with no indexes

present

Figure 5.5
Insertion at the end

of a table

132 5.6 The role of indexes in insertion and deletion

One can imagine that in a multiuser system many users will be attempt-
ing to insert customer rows. In previous versions of SQL Server prior to 7.0
this would have resulted in a hot spot at the end of the table, since a full
implementation of row-level locking was not present. However, SQL Server
2000 has a full and robust implementation of row-level locking, and so the
hot spot has been virtually eliminated. Locking is discussed in Chapter 9.
What happens when rows are deleted from a table?

Suppose some rows are now deleted, as shown in Figure 5.6.

Free space, shown in Figure 5.7, is left on the pages from which the rows
are deleted.

If a new row is now inserted, where will it go? In versions of SQL Server
prior to 7.0, SQL Server would not have reused the space freed by the dele-
tion of the rows. More sophisticated page management algorithms using
more sophisticated page management structures (see Chapter 4) mean that
space freed by deleting old rows can be reused by new rows. This is shown
in Figure 5.8.

Once all the rows are removed from a page it becomes available for use
by the table again. If all the rows are removed from an extent, it may be
deallocated and so no longer belongs to the table.

If a row size is used so that only one row can fit on a page, the deletion
of a row will mean that there is no remaining row on the page. The page
will immediately become available for reuse, and free space will not be
wasted.

Figure 5.6
Deleting rows from

the table

Figure 5.7
Space freed as a

result of row
deletion

5.6 The role of indexes in insertion and deletion 133

Chapter 5

The previous discussion has shown that in a table without any indexes
at all, rows will be inserted at the end of the existing data—that is,
appended to the rows already present if there is no free space elsewhere in
the table. However, if there is free space present in existing database pages
in the table because some rows stored earlier have been deleted, then SQL
Server can make use of this space to accommodate newly inserted data
rows. In Figure 5.9, new rows can be inserted where free space has been
left by deleted rows. The PFS management pages hold information about
the free space in each page and so can be consulted when a page with suffi-
cient free space is required.

This behavior stays the same if non-clustered indexes are present on the
table, since they do not govern the physical placement of data. However, a
clustered index will modify this behavior. This is because a clustered index
will always ensure that new rows are inserted in key sequence order. In our
Customers table example, this means in ascending order of the customer’s
last name. So let’s delete some rows and see what happens.

We’ll delete the customers who have the last names Green and Hunt.
Pages 337 and 338 now have free space in them, as shown in Figure 5.10.
Let’s now insert two new customers, French and Hood. The clustered index
forces these rows to be inserted in key sequence order, so French will need
to be inserted after Date but before Hobbs, and Hood will need to be
inserted after Hobbs but before James.

Figure 5.8
Free space being

reused

Figure 5.9
Pages with

sufficient free space
can be used for

new rows

134 5.6 The role of indexes in insertion and deletion

Well, we are lucky. It just so happens that there is free space on the pages
where we want to insert the rows, and this space is therefore reused, as
shown in Figure 5.11.

We can see that in our clustered index, space freed by deleting rows can
be reused. Of course, if our clustered index key had been an increasing key
value such as that generated in a column with the identity property, new

Figure 5.10
Clustered index

with some
deleted rows

Figure 5.11
Full clustered index

leaf pages

5.6 The role of indexes in insertion and deletion 135

Chapter 5

rows would always be inserted at the end of the table and free space in a
page may not be efficiently reused.

Our example is, of course, a little contrived, since there will be many
occasions where there is not going to be free space in the page where we
want to insert the new row, and we will deal with this scenario now.

Suppose that our clustered index contains the entries shown in Figure
5.12. We want to insert a row with a key value of Jones, which SQL Server
must store between the key values James and Kent, but there is obviously
insufficient space in page 337 to hold the new row. In this case SQL Server
must perform a page split. This involves acquiring a new empty page and
chaining it into the existing chain of pages.

This type of page splitting is known as a 50:50 split, since SQL Server
ensures that approximately 50 percent of the rows on the existing page are
moved onto the new page, as shown in Figure 5.13. This is only part of the
work that SQL Server must do. The intermediate index pages in the clus-
tered index must be updated so that the new page is referenced. This will
involve adding a new entry into an index page at the next level up. Of
course, if there is insufficient room for the new entry, the index page might
split also! In our example, a new entry must be made for the key James
pointing to page 202.

What about any non-clustered indexes that point to the table? Previ-
ously we mentioned that the index entries at the leaf level of a non-clustered
index pointed directly at the data rows and these pointers, known as Row
IDs, are of the form Page ID plus a row number on the data page. A Page
ID is of the form File ID and database page number. We have just seen that
when a page split occurs in a clustered index, rows can migrate from the old
page to the newly chained-in page. So does this mean that the Row IDs for
these rows are now incorrect? In versions of SQL Server prior to SQL Server
7.0 this is exactly what this would mean. The pointers in any non-clustered
indexes present on the table pointing to the rows that had migrated would
have to be changed to point to the row locations on the new page. This

Figure 5.12
Full clustered index

leaf pages

136 5.6 The role of indexes in insertion and deletion

would result in a lot of non-clustered index update activity and a conse-
quent increase in lock activity in these non-clustered indexes.

For this reason, as of SQL Server 2000, if a clustered index is present on
a table, the non-clustered index pointers are no longer Row IDs. Instead,
the non-clustered index pointers are the clustering index key. This is shown
in Figure 5.14.

This needs a little more discussion! Instead of the index entries at the
leaf level of a non-clustered index consisting of the non-clustered index key
plus a Row ID pointer, each entry is composed of the non-clustered index
key plus the clustered index key. A leaf-level index entry, therefore, no
longer points directly at a data row; rather, it takes a route through the clus-

Figure 5.13
A 50:50 page split

Figure 5.14
Non-clustered

index pointers with
and without

a clustered
index present

5.6 The role of indexes in insertion and deletion 137

Chapter 5

tered index using the clustering key and then out to the data row. This is
shown in Figure 5.15.

The query specifies a column in the non-clustered index on the
customer_fname column, and this index is chosen by the query optimizer.
The index is traversed until the relevant index entry is found in the leaf-level
index page. The pointer in this index entry is the clustered index key for this
row. Since the clustered index is defined on the customer_lname column,
this pointer is the customer’s last name, in this case, Adams. The clustered
index is now traversed using this key value, and the data row is fetched.

So, when is a pointer a Row ID and when is it not? If there is no clus-
tered index present on the table, then the pointer is a Row ID. If there is a
clustered index present on the table, the non-clustered index pointer (at the
leaf level of the index) is the clustered index key. The primary reason for this
approach is to avoid the work that must be performed by the server adjust-
ing non-clustered index entries when a data page splits because of insertion
into a clustered index, causing data rows to migrate to new pages.

Since the non-clustered index leaf entries do not contain page numbers,
if they contain the clustered index key, then the fact that data rows might
move to a new page is irrelevant. The pointers will not need to be
changed—in other words, they are stable. Because data page splits are a
phenomenon only observed when a clustered index is present on a table, it
follows that if there is no clustered index present on a table, data page splits
cannot occur. The non-clustered index leaf entries are stable with respect to

Figure 5.15
Non-clustered

index traversal
with a clustered

index present

138 5.6 The role of indexes in insertion and deletion

the insertion of new data rows, and the pointers can remain Row IDs, as in
versions of SQL Server prior to 7.0.

This is all well and good, but suppose that we issue the following query:

SELECT * FROM customers WHERE customer_fname = 'John'

If we assume that there is a non-clustered index on the firstname col-
umn and a clustered index on the lastname column, then, from what we
have just discussed, we can state that the pointer in the non-clustered
index will be the clustered index key. Now suppose that for our customer
John our pointer is Smith (John’s last name). We traverse the non-clustered
index searching for a key value of John and find the leaf-level index entry.
We will assume for simplicity that there is only one customer with the first
name John.

The pointer will contain the clustered index key Smith, and so the clus-
tered index is now traversed from the top searching for this key. If there is
only one customer with the last name Smith, we will traverse the clustered
index and finally retrieve the data page containing our row. That’s fine, but
suppose in our Customer table we have more than one customer with the
last name Smith. Perhaps we have a customer named Mary Smith. Now we
have an interesting scenario. If the clustered index is now traversed from the
top searching for a key of Smith, two rows will be found. Clearly this is
nonsense, so how does SQL Server find the correct Smith?

The answer can be found in the way that duplicate clustered index key
values are handled. If a clustered index is not created as a unique index,
then duplicate key values will be allowed in the index. In our example this is
not unreasonable—some customers will have the same last name. Inter-
nally, SQL Server will, however, add an extra column to the key, known as a
uniqueifier. The first instance of a key value will not have a uniqueifier but
subsequent instances will. The second instance will have a uniqueifier of 1,
the third 2, and so on. In this way, SQL Server internally makes all the key
values unique, and it is, in fact, the clustered index key and the uniqueifier
that are held as the pointer in a non-clustered leaf-level index pointer. This
pointer is then used to traverse the clustered index, and it will return a sin-
gle, uniquely identified row. The uniqueifier will be completely transparent
to the query and the application.

OK, let’s now return to where we left off. We had just inserted a cus-
tomer with the last name Jones, which caused a page split to occur. We
might wish to insert another data row with a key value that is close to

5.6 The role of indexes in insertion and deletion 139

Chapter 5

Jones. Are the split pages going to split again soon? We can see that if
inserts continue, with key values greater than and less than James, there
will be a delay before page splitting occurs again. This delay is caused by
the fact that the page splitting left us with pages that had free space in
them. We can store about 15 Customer rows on a data page, so in reality
the page split will leave us with approximately seven rows per page and,
therefore, room for another seven or eight rows more per page, which will
delay the page splitting.

On average we can expect to find pages that range from 50 percent full
having just split to 100 percent full just before they split, giving us an aver-
age page fullness of about 75 percent.

This is fine, but suppose the clustered index is based on an ever-increas-
ing key value such as that provided by a column with the identity property
or a column containing the date and time an order is taken. Insertion of
new rows will always happen at the end of the clustered index. In this case
there is no point in SQL Server performing a 50:50 split when a new page
is chained in, since space that is reserved physically before the last row
inserted will never be used.

Figure 5.16 shows the insertion of a key value of Moss. There is no space
in which to store this row on page 338, so a new page must be chained in.
In this case SQL Server does not shuffle rows from page 338 onto the new

Figure 5.16
Insertion at the end

of the key range

140 5.6 The role of indexes in insertion and deletion

page but instead inserts only the new row on the new page, as shown in Fig-
ure 5.17.

An entry is added into the index page to point to the new key value on
the new page.

The action of page splitting when a 50:50 split occurs is clearly going to
give SQL Server some work to do. The new page must be obtained and
chained in, rows must be shuffled, and entries in many cases will be inserted
into a clustered index. Also, of course, new entries will have to be added to
the non-clustered indexes to point to the new row.

It would clearly be beneficial to minimize page splitting, but how can we
achieve this? One obvious way would be to not use clustered indexes, but
the benefits they can bring to the performance of some queries can often
outweigh the overhead of page splitting.

Is there another way to minimize page splitting? Fortunately, there is.
We can reserve space in a clustered index or a non-clustered index when we
create the index using a FILLFACTOR. During the creation of the index
the index pages have free space reserved in them and, most importantly in a
clustered index, free space is reserved in the data pages.

This free space is only reserved during the index creation process. Once
the index has been created, the free space in the index and data pages can be
used for newly inserted rows. The size of the index will be larger if space is
reserved in it, and in the case of a clustered index the number of data pages
in the table will also be greater, but this does mean that the point when
SQL Server needs to page split will be delayed.

Figure 5.17
A page split that

does not
shuffle data

5.7 A note with regard to updates 141

Chapter 5

When SQL Server starts to split pages, fragmentation is said to occur. If
many rows are inserted into a clustered index, such that page splits occur,
many data pages will be chained into the table, and the table will become
fragmented. This affects both insertion and scan efficiency, and so we want
to avoid it. We can tell if a table is becoming fragmented by using the
DBCC SHOWCONTIG statement.

SHOWCONTIG contiguous implies that two physical chunks of data
are contiguous, or close to each other on disk. This means that when
searching to find both data chunks, less disk scanning will be performed,
thus saving time.

5.7 A note with regard to updates

Obviously, if an indexed column is updated to a new value, the index must
also be updated. In the case of a non-clustered index the index entry must
change position since index keys are held in key sequence order. In the case
of a clustered index, the data row may also have to change position, since
the data rows are stored in key sequence order. But what happens to a data
row when there is no clustered index present on the table?

Usually the update is performed in-place, which means that the row
does not move to another page. Usually an update is logged as a single mod-
ification operation in the transaction log. In the case of the table having an
update trigger or being replicated, the update is logged as a delete and insert
operation. Even in this case the update will usually be an in-place update.

However, there comes a point where a variable-length column is
updated to a size greater than its original size and there is no free space
available on the page to accommodate it. In this case SQL Server 2000 will
delete the row and insert it into a page that has free space. To avoid the
overhead of having to adjust index pointers in non-clustered indexes to the
new page, a forwarding pointer is left in the original location, which points
to the new location. The index pointers will continue to point to the origi-
nal location. This does mean that a retrieval of the row will incur an extra
data page request for the forwarding pointer. If a subsequent update moves
the row again, the pointer is adjusted to the new location. If a subsequent
update means that the row can return to its original location, it will—and
the forwarding pointer will disappear.

To detect the number of forwarding pointers in a table the DBCC
SHOWCONTIG statement may be used with the TABLERESULTS
option.

142 5.8 So how do you create indexes?

Note that a table with a large number of forwarding pointers will experi-
ence performance degradation, especially if groups of rows are scanned, due
to the extra accesses required. To tidy up the forwarding pointers the clus-
tered index on the table can be rebuilt. If there is no clustered index, if pos-
sible create a dummy one and then drop it. Alternatively, unload the data
into a file, truncate the table, and reload the data.

5.8 So how do you create indexes?

We have discussed the mechanics of indexes, and later we will discuss
indexes with reference to performance, but it is time that we looked at how
you create them. Indexes can be created using a Transact-SQL CREATE
INDEX statement, or better still, with just the SQL Management Studio.

If you don’t like any of the above options, you can always use the
SQLDMO (Distributed Management Objects) and the Index object to cre-
ate an index!

An index is also created when a primary or unique key constraint is
added to a table.

First, let us look at the Transact-SQL options, and then we will look at
the graphical approach provided by the SQL Manager Studio. We will also
have a quick peak at how this may be done in the SQL-DMO.

5.8.1 The Transact-SQL CREATE INDEX statement

The Transact-SQL syntax for a relational table index is as follows:

CREATE [UNIQUE] [CLUSTERED | NONCLUSTERED] INDEX
index_name

 ON table | view (column [ASC | DESC] [,...n])

 [INCLUDE (column_name [,...n])]

 [ON { partition_scheme_name (column_name)

 | filegroup_name

 | default

 }

 [WITH (

 PAD_INDEX = { ON | OFF }

 | FILLFACTOR = fillfactor

 | SORT_IN_TEMPDB = { ON | OFF }

 | IGNORE_DUP_KEY = { ON | OFF }

 | STATISTICS_NORECOMPUTE = { ON | OFF }

5.8 So how do you create indexes? 143

Chapter 5

 | DROP_EXISTING = { ON | OFF }

 | ONLINE = { ON | OFF }

 | ALLOW_ROW_LOCKS = { ON | OFF }

 | ALLOW_PAGE_LOCKS = { ON | OFF }

 | MAXDOP = max_degree_of_parallelism

 [,...n])

]

]

[;]

The following syntax creates an XML index against an XML document:

CREATE [PRIMARY] XML INDEX index_name

 ON table | view (xml_column_name)

 [USING XML INDEX xml_index_name

 [FOR { VALUE | PATH | PROPERTY }]

 [WITH (

 PAD_INDEX = { ON | OFF }

 | FILLFACTOR = fillfactor

 | SORT_IN_TEMPDB = { ON | OFF }

 | STATISTICS_NORECOMPUTE = { ON | OFF }

 | DROP_EXISTING = { ON | OFF }

 | ALLOW_ROW_LOCKS = { ON | OFF }

 | ALLOW_PAGE_LOCKS = { ON | OFF }

 | MAXDOP = max_degree_of_parallelism

 [,...n])

]

[;]

The ONLINE option is not allowed for XML document indexes,
because the entire XML document is stored in a single object.

An XML document is ultimately stored in a relational structure as an
embedded object, and is thus a field (column) in a table.

The different options will now be described. To create a clustered index
in Transact-SQL the CLUSTERED keyword is used:

CREATE CLUSTERED INDEX CI_AccountNo

 ON accounts (account_no)

144 5.8 So how do you create indexes?

The above example creates a clustered index on the account_no column
of the Accounts table. The next example creates a unique clustered index, as
follows:

CREATE UNIQUE CLUSTERED INDEX CI_AccountNo

 ON accounts (account_no)

The unique keyword ensures that only one row has a particular key
value, in this case account_no. In other words, the uniqueness of the key is
enforced. Note that the table may or may not already contain data. If it
does, and if there are duplicate values, the above CREATE INDEX state-
ment will fail:

CREATE UNIQUE CLUSTERED INDEX CI_AccountNo

 ON accounts (account_no)

Server: Msg 1505, Level 16, State 1, Line 1

CREATE UNIQUE INDEX terminated because a duplicate key

was found. Most significant primary key is '105000'.

The statement has been terminated.

Similarly, once the index has been successfully created, an attempt to
insert or update a row that would result in a duplicate key value will fail:

INSERT INTO accounts (account_no, customer_no, branch_no,

balance, account_notes)

 VALUES (1916, 103424, 1012, 10765, 'A busy account')

Server: Msg 2601, Level 14, State 3, Line 1

Cannot insert duplicate key row in object 'accounts' with

unique index 'CI_AccountNo'.

The statement has been terminated.

This is fine, since we want the account_no column to contain no dupli-
cate values, since this is the way we uniquely identify an account.

As mentioned previously, only one clustered index can be created on a
table. This makes sense, since data can only be physically sorted in one
order. Any attempt to create a second clustered index will fail:

5.8 So how do you create indexes? 145

Chapter 5

CREATE CLUSTERED INDEX CI_AccountBalance

 ON accounts (balance)

Server: Msg 1902, Level 16, State 3, Line 1

Cannot create more than one clustered index on table

'accounts'. Drop the existing clustered index

'CI_AccountNo' before creating another.

To create a non-clustered index the CREATE INDEX statement is used,
as it was for creating the clustered index, only in this case the NONCLUS-
TERED keyword is specified:

CREATE NONCLUSTERED INDEX NCI_AccountBalance

 ON accounts (balance)

If neither CLUSTERED nor NONCLUSTERED is specified, a non-
clustered index is created. The UNIQUE keyword has the same effect as it
does for a clustered index. Hence, the following CREATE INDEX state-
ment defaults to a non-unique, non-clustered index:

CREATE INDEX NCI_AccountBalance ON accounts (balance)

The name of the index can be any name considered legal by SQL Server.
I prefer to prefix the name with CI_ or NCI_ to signify a clustered or non-
clustered index, respectively. I also find it useful to then use meaningful text
that indicates the column name. This does, however, become unwieldy
when you have an index that is comprised of many columns, so some com-
promises will have to be made. No naming scheme is ever perfect!

The INCLUDE option allows specification of non-key fields which can
be added to a non-clustered index at the leaf level. In other words, this is
where the data gets added into the index making what is sometimes called
an Index Organized Table or IOT.

IOT means that the entire table, or at least some of the fields in the table,
in addition to indexed fields, are included in the index. Some databases call
these types of index clusters where index and high usage data fields are clus-
tered together. In some databases, an IOT is exclusively the indexing of all
fields in a table—not the case in SQL Server 2005. In SQL Server 2005, a
clustered index, a non-clustered index, and IOT are all the same thing.

146 5.8 So how do you create indexes?

So, the previous non-clustered index creation statement above could be
altered as follows to create a cluster of indexes and some data fields:

CREATE INDEX NCI_Cluster_AccountBalance ON accounts

 (account_no, customer_no, branch_no, balance)

And this statement creates the entire table as an index or Index Orga-
nized Table (IOT):

CREATE CLUSTERED INDEX IOT_AccountBalance ON accounts

 (account_no, customer_no, branch_no, balance,
account_notes)

So far our examples have shown indexes that consist of only one col-
umn. It is not uncommon to create an index that consists of more than one
column. Such an index is known as a composite index. An index can be cre-
ated consisting of no greater than 16 columns, which, in practical terms, is
a limit few people are likely to hit. Also, the sum of the column sizes in the
index cannot be greater than 900 bytes. It is not a good idea to choose a
composite key of 900 bytes in length, because very few index entries will be
able to fit into an index page and so many index pages will be used in the
index. This will ultimately result in deep indexes consisting of many index
levels. Traversing the index may then require many disk I/Os. In SQL
Server 2005 it is, in fact, possible to create an index that contains columns
defined with variable-length data types, such as VARCHAR, where the sum
of the maximum sizes appears to exceed 900 bytes. However, if an attempt
is made to insert a row so that the actual size of the index key would exceed
the 900-byte limit, an error is returned.

For example, suppose a table consists of the following structure:

CREATE TABLE account_details

 (

 account_no INT NOT NULL,

 account_notes VARCHAR(1000) NOT NULL

)

If we attempt to create a non-clustered index on the account_notes col-
umn, SQL Server will successfully create the index but will warn us that the
index key is potentially too large:

5.8 So how do you create indexes? 147

Chapter 5

CREATE NONCLUSTERED INDEX NCI_AccountDetails

 ON account_details (account_notes)

Warning! The maximum permissible key length is 900 bytes. The
index 'NCI_AccountDetails' has maximum length of 1000 bytes.
For some combination of large values, the insert/update
operation will fail.

If we then attempt to insert a short string into the table, there is no
problem:

INSERT INTO account_details VALUES (1000, 'This string is

less than 900')

However, if we attempt to insert a row with a string value large than 900
bytes, we are not allowed to do so:

INSERT INTO account_details

 VALUES (1001, 'This string is more than 900'+
REPLICATE('*',900))

Server: Msg 1946, Level 16, State 4, Line 1

Operation failed. The index entry of length 928 bytes for

the index 'NCI_AccountDetails' exceeds the maximum

permissible length of 900 bytes.

How do we specify an option to reserve space in index pages when an
index is created? Remember that in the case of a clustered index the data
pages are considered to be the lowest level of the index, whereas in the case
of a non-clustered index the bottom level of the index is considered to be
the lowest level of the index pages. In either case the lowest level of index is
known as the leaf level.

The FILLFACTOR option is used to reserve space, and this option
takes a value from 0 to 100. An index created with a FILLFACTOR of 100
will have its index pages completely filled. This is useful if no data is to be
entered into the table in the future.

An index created with a FILLFACTOR of 0 will have its leaf pages com-
pletely filled, but other levels in the index will have enough space for a min-
imum of another index entry. An index created with a FILLFACTOR of
between 0 and 100 will have its leaf pages filled to the FILLFACTOR per-

148 5.8 So how do you create indexes?

centage specified, and, again, other levels in the index will have enough
space for a minimum of another index entry.

The default FILLFACTOR value is 0, and this default value can be
changed with the sp_configure system stored procedure or via the Database
Settings tab in the Server Properties dialog box in the SQL Enterprise Man-
ager. Table 5.1 shows the consequence of different FILLFACTOR values.

A FILLFACTOR value of 0 percent specifies that the leaf-level page of
the index should be completely filled, leaving no free space; however, the
non-leaf pages should reserve space for one extra index entry. A FILLFAC-
TOR value of 100 percent specifies that the leaf-level page of the index
should be completely filled, leaving no free space. There should also be no
free space reserved in the index pages. A FILLFACTOR value of 1 percent
to 99 percent specifies that the leaf-level page of the index should be filled
no more than the FILLFACTOR value. The non-leaf pages should reserve
space for one extra index entry. Note that for non-unique clustered indexes,
space is reserved for two index entries.

Care should be taken when choosing a FILLFACTOR, since its rele-
vance will depend on the way the application uses the table data. There is
little point in reserving space throughout an index if the row inserted
always has a key greater than the current maximum key value. The follow-
ing example creates an index with a FILLFACTOR of 50 percent, meaning
that each data page (leaf page) will only be filled to 50 percent. Index pages
at the other levels will have room for one or two more index entries:

CREATE CLUSTERED INDEX CI_AccountBalance ON accounts

 (balance) WITH FILLFACTOR = 50

SQL Server will round up the number of rows placed on a page, so if the
FILLFACTOR value would allow 3 rows, then 4 rows are stored.

Table 5.1 The effect of differing FILLFACTOR values

FILLFACTOR Value % Non-leaf Page Leaf Page

0 One index entry Completely full

1-99 One index entry ∑ FILLFACTOR % full

100 Completely full Completely full

5.8 So how do you create indexes? 149

Chapter 5

Over time, as rows are inserted into the table, the effectiveness of the
FILLFACTOR value will vanish, and a planned rebuilding of critical
indexes at periodic intervals should be considered if heavy inserts are made
to the table. Because SQL Server merges index pages with only one index
entry to keep the index compact, the number of items on an index page is
never less than two, even if a low value of FILLFACTOR is specified.

Another option, PAD_INDEX on the CREATE INDEX statement, is
relevant to reserving space. The PAD_INDEX clause means that the FILL-
FACTOR setting should be applied to the index pages as well as to the data
pages in the index.

The IGNORE_DUP_KEY option is useful when a unique clustered or
non-clustered index is to be created on a table that might have rows with
duplicate key values inserted. If the IGNORE_DUP_KEY option is set,
rows containing duplicate key values are discarded, but the statement will
succeed. However, if the IGNORE_DUP_KEY option is not set, the state-
ment as a whole will be aborted.

The DROP_EXISTING option can be a very useful performance opti-
mization. Suppose we have a scenario where we have a table on which we
have built a clustered index and perhaps two non-clustered indexes. As dis-
cussed earlier, if there is a clustered index present on a table, then the point-
ers at the leaf level of any non-clustered indexes on that table will be the
clustered index key. Suppose we drop the clustered index from the table.
The non-clustered index leaf pages can no longer contain index entries that
use the clustered index key as the pointer value—there is no clustered index
and therefore no clustered index key!

When the clustered index is dropped, SQL Server will rebuild all the
non-clustered indexes on that table so that their index leaf pages will now
contain index entries that use the Row ID as the pointer value. Remember, a
Row ID is a Page ID (File ID plus page number) plus the position of the row
on the page. The important point here is that SQL Server will rebuild all the
non-clustered indexes on that table. This obviously can be a very time-con-
suming and resource-intensive process. But this is only the half of it.

Suppose the reason we wished to drop the clustered index was because
we wanted to rebuild it. Perhaps we wanted to reorganize it so that page
fragmentation was eliminated. Well, this means that after dropping the
clustered index we are now going to create it again. Guess what’s going to
happen to all the non-clustered indexes on that table? You guessed! SQL
Server will rebuild all the non-clustered indexes on that table so that their

150 5.8 So how do you create indexes?

index leaf pages will now contain index entries that use the clustered index
key as the pointer value.

This means that our clustered index reorganization has caused our non-
clustered indexes to be rebuilt twice. What’s annoying is that their leaf-level
pointers have ended up as they started out anyway—clustered index key
pointers. So what can we do to reduce the impact of rebuilding a clustered
index?

Luckily for us the CREATE INDEX statement allows us to specify the
DROP_EXISTING option. This allows us to issue a CREATE INDEX
statement with the same name as an existing index. Using this option when
you wish to rebuild a clustered index will give you a performance boost.
The clustered index will be re-created on a new set of database pages, but,
because the clustered index key values remain the same, the non-clustered
indexes on the table do not have to be rebuilt. In fact, the re-creation of the
clustered index can make use of the fact that the data is already sorted in
key sequence order so this data does not have to be sorted.

The DROP_EXISTING option can also be used if the clustered index
key definition changes. Perhaps a new column is used. In this case the non-
clustered index will have to be rebuilt—but only once.

The DROP_EXISTING option can also be used for a non-clustered
index, and there will be a performance advantage over dropping and creat-
ing the non-clustered index. However, the real benefit is with rebuilding
clustered indexes. Using this option will definitely use fewer resources than
performing a DROP INDEX followed by a CREATE INDEX.

A CREATE INDEX using this option can also be used to rebuild the
index that is created when a primary key constraint is defined on a table.
This was previously accomplished with DBCC DBREINDEX. Comparing
the resource use of both approaches, they seem identical—so there is proba-
bly no need to change existing scripts on this basis alone.

The STATISTICS_NORECOMPUTE option dictates that out-of-date
index statistics are not automatically recomputed. This is an option I have
never had to use. I have found that ensuring that index key distribution sta-
tistics are as up-to-date and accurate as possible is the best approach. Index
key distribution statistics are discussed in Chapter 7.

 The ON FILEGROUP option allows the database administrator to cre-
ate the index on a filegroup different from the table itself. The use of file-
groups was discussed in Chapter 4. The idea is that by using multiple file-
groups, disk I/O to the index and table can be spread across separate disk
drives for better performance. However, most database administrators typi-

5.8 So how do you create indexes? 151

Chapter 5

cally use a form of disk striping to spread disk I/O. Disk striping is dis-
cussed later on in this book.

Filegroups are also used to facilitate the backing up of large databases.
However, if one filegroup contains a table and a separate filegroup contains
an index for that table, then both filegroups must be backed up together.

Another index creation option that needs to be discussed is the column
[ASC | DESC], which is part of the CREATE INDEX statement. Using
these options determines whether an ascending or descending index is cre-
ated. When an index is created, each column in the index key can be
flagged with ASC or DESC. This specifies whether the index column has its
data sorted in an ascending or descending manner. The default is ASC,
which ensures that scripts written to create indexes in earlier versions of
SQL Server behave correctly.

Suppose we create an index on the Accounts table, as in the following
example:

CREATE NONCLUSTERED INDEX NCI_CustNoAccountNo

 ON accounts (customer_no ASC, account_no DESC)

The data in the customer_no key column will be held in ascending
order, whereas the data in the account_no key column will be held in
descending order. Why bother providing this capability? After all, the dou-
bly linked lists that chain the index pages in an index level together allow
SQL Server to rapidly move backward and forward along the sequence of
keys. This is true, but if the query requests data to be sorted in the ascend-
ing order of one column and the descending order of another column, then
just moving along the chain is not going to provide the optimum perfor-
mance. If, however, the key columns are actually held in a sequence that
matches the ORDER BY, then the chain can be followed in one direction
and this will provide the optimum performance, so no additional sorting
will be required.

The following query will be fully supported by the NCI_CustNo-
AccountNo index without an additional sort step:

SELECT customer_no, account_no FROM accounts

 WHERE customer_no BETWEEN 1000 AND 1500

 ORDER BY customer_no ASC, account_no DESC

152 5.8 So how do you create indexes?

The following query will not be fully supported by the
NCI_CustNoAccountNo index, and it will need an additional sort step:

SELECT customer_no, account_no FROM accounts

 WHERE customer_no BETWEEN 1000 AND 1500

 ORDER BY customer_no ASC, account_no ASC

A new metadata function named INDEXKEY_PROPERTY reports
whether an index column is stored in ascending or descending order. The
sp_helpindex system stored procedure has also been enhanced to report the
direction of index key columns.

Finally, the SORT_IN_TEMPDB option can be used to place the data
from intermediate sort runs used while creating the index into tempdb.
This can result in a performance improvement if tempdb is placed on
another disk drive or RAID array. The default behavior, if this option is not
used, is to utilize space in the database in which the index is being created.
This means that the disk heads are moving back and forth between the data
pages and the temporary sort work area, which may degrade performance.

One aspect of index creation that can be seen from the CREATE
INDEX syntax diagram is that SQL Server can create indexes on views.
This is significant from a performance perspective and therefore is treated
separately later in this chapter.

The ALLOW_ROW_LOCKS and ALLOW_PAGE_LOCKS options
are both defaulted to on, which allow both individual record locking and
page locking (usually a group of records stored within a 2Kb page lock).

Page size can depend on database block size and underlying block for
the operating system. These can vary from 2Kb upwards to as much as
64Kb on high systems.

Switching these options off and disabling record or page locking, or
both, is ill advised in some environments. In general, OLTP (small transac-
tion sized) systems require record locking. Some data warehouse systems
can make do with page locking if large chunks of data are processed in each
transaction (usually).

The MAXDOP option specifies a maximum degree (amount) of paral-
lelism to allow for a particular index. The default value is 0 which utilizes
parallel processing on all available CPUs, depending on other server activi-
ties at the same time. In other words, it tries not to suck up all the processor
time and swamp other activities. Setting this option to 1 disables parallel

5.8 So how do you create indexes? 153

Chapter 5

processing regardless of CPU numbers on the platform. Setting to >1 is the
same as setting to 0, except that it restricts the number of CPUs used to the
number specified in MAXDOP.

So, we have looked at the CREATE INDEX statement and the options
that can be chosen. There are other ways in which we can create indexes
and these are discussed in the following sections.

5.8.2 The SQL Management Studio

To create a new index in the SQL Management Studio the following
sequence of events can be performed (this is an easy method):

1. Start up the SQL Management Studio and connect to your SQL
Server.

2. Open up the Databases folder

3. Open the BankingDB folder. This is a specific database for this
book.

4. Open the Tables folder.

5. Right-click one of the tables, and select the Modify option, as
shown in Figure 5.18.

6. Next go to the Table Designer option and select the Indexes/
Keys…option as shown in Figure 5.19.

7. Then, as shown, in Figure 5.20 various fields can be added to the
new index; in this case all the fields in the table.

8. Finally, as shown in Figure 5.21, click the Add button to add or
alter the index.

9. There are various other routes in the SQL Server Management
Studio that can be used to create a new index and alter existing
indexes. For instance, open the Tables folder, modify a table, then
open the table folder itself, right-click the Indexes folder, and
select the New Index…option from the pop-up menu.

In SQL Server 2000 there were specifically named index tools called
Manage Indexes and the Create Index Wizard. These tools are now built
into the SQL Server Management Studio for SQL Server 2005.

154 5.8 So how do you create indexes?

Figure 5.18
Modify a table to

create a new
index in SQL
Management

Studio

Figure 5.19
Edit indexes using

the index editor
under Table

Designer

5.8 So how do you create indexes? 155

Chapter 5

5.8.3 The SQL Distributed Management Framework
(SQL-DMF)

The SQL Distributed Management Framework (SQL-DMF) is an inte-
grated framework of objects, services, and components that may be used to
manage SQL Server. Within the SQL-DMF resides SQL Distributed Man-
agement Objects (SQL-DMO). The SQL-DMO is a collection of objects
that may be used for SQL Server database management. Index management
can be performed through the SQL-DMO. Here is an example of Visual
Basic code, which uses the SQL-DMO to create an index:

Figure 5.20
Add fields to an

index

Figure 5.21
Click the Add

button to make
changes

156 5.8 So how do you create indexes?

Private Sub cmdCommand1_Click()

On Error GoTo ErrorHandler

 Dim oSQLServer As SQLDMO.SQLServer

 Dim oTblCustomers As SQLDMO.Table

 Dim oIdxCustomerNo As SQLDMO.Index

 Dim bConnected As Boolean

 Set oSQLServer = New SQLDMO.SQLServer

 Set oIdxCustomerNo = New SQLDMO.Index

 Set oTblCustomers = New SQLDMO.Table

 bConnected = False

 oSQLServer.LoginTimeout = 30

 oSQLServer.Connect "KENENG01", "SA", ""

 bConnected = True

 Set oTblCustomers =

oSQLServer.Databases("BankingDB").Tables("Customers")

 ' Create a new Index object, then populate the object

 ' defining a unique, non-clustered index

 oIdxCustomerNo.Name = "NCI_CustomerNo"

 oIdxCustomerNo.Type = SQLDMOIndex_Unique

 oIdxCustomerNo.IndexedColumns = "[customer_no]"

 ' Create the index by adding the populated Index object

 ' to its containing collection.

 oTblCustomers.Indexes.Add oIdxCustomerNo

 oSQLServer.DisConnect

 Set oSQLServer = Nothing

 Set oTblCustomers = Nothing

 Set oIdxCustomerNo = Nothing

 Exit Sub

ErrorHandler:

5.9 Dropping and renaming indexes 157

Chapter 5

 MsgBox (Err.Description)

 If bConnected = True Then

 oSQLServer.DisConnect

 Set oSQLServer = Nothing

 Set oTblCustomers = Nothing

 End If

End Sub

5.9 Dropping and renaming indexes

Both clustered and non-clustered indexes can be dropped with the DROP
INDEX Transact-SQL statement:

DROP INDEX CI_AccountBalance on accounts

Note that the table name must also be specified. Indexes can also be
dropped by using the graphical interfaces. As discussed previously, if there is
a clustered index present on the table, then all the non-clustered indexes
will use the clustered index key as a pointer in the leaf-level index pages.
Therefore, dropping a clustered index may be a slow, resource-intensive
operation, since all the non-clustered indexes will have to be rebuilt. On the
other hand, dropping a non-clustered index will be a relatively fast opera-
tion, since no other indexes on the table will be affected.

It follows, therefore, that the order in which you drop indexes is impor-
tant. Drop the non-clustered indexes first, before you drop the clustered
index if there is one present on the table. Otherwise, you will waste time
rebuilding the non-clustered indexes you are just about to drop.

Indexes can be renamed by using the sp_rename system stored proce-
dure:

EXEC sp_rename 'accounts.CI_AccountBalance',

CI_AccountCurrentBalance

The use of the single quotes. Indexes may also be renamed by using the
graphical interfaces.

158 5.10 Displaying information about indexes

You can also drop an index in the SQL Server Management Studio
interface.

5.10 Displaying information about indexes

Information can be graphically displayed by using the SQL Server Manage-
ment Studio as seen in the previous section. There are, however, some other
tools worth mentioning.

5.10.1 The system stored procedure sp_helpindex

The indexes that are present on a table can be listed by using the
sp_helpindex system stored procedure:

EXEC sp_helpindex accounts

index_name index_description index_keys

NCI_CustomerNo non-clustered located on PRIMARY customer_no

NCI_Balance non-clustered located on PRIMARY balance

The above command executed within a query window of the SQL Server
Management Studio is shown Figure 5.22, with the same information.

Figure 5.22
The sp_helpindex

procedure

5.10 Displaying information about indexes 159

Chapter 5

5.10.2 The system table sysindexes

The stored procedure sp_helpindex looks in the system table sysindexes,
which contains much useful information about indexes. Sysindexes is
present in every database. The definition of the table is shown in Table 5.2.

Table 5.2 Sysindexes table definition

Column Datatype Description

id int ID of table (for indid = 0 or 255)—else, the ID of
table on which the index is created.

status smallint Internal system-status information:

1 = Terminate command if attempt to insert dupli-
cate key.

2 = Unique index.

4 = Terminate command if attempt to insert dupli-
cate row.

16 = Clustered index.

64 = Index allows duplicate rows.

2048 = Index created to support PRIMARY KEY
constraint.

4096 = Index created to support UNIQUE con-
straint.

first int If indid = 0 or indid = 1, pointer to first data page.

If indid > 1 or ∑ 250, pointer to first leaf page.

If indid = 255, pointer to first text or image page.

indid smallint Index ID: 0 = Table, 1 = Clustered index, >1 =
Non-clustered index, 255 = text or image data.

root int If indid > 0 or ∑ 250, pointer to root page.

If indid = 0 or indid = 255, pointer to last page.

minlen smallint Minimum length of a row.

keycnt smallint Number of key columns in the index.

groupid smallint ID of the filegroup in which the object is created.

dpages int If indid = 0 or indid = 1, dpages is the count of
used data pages.

If indid > 1 or ∑ 250, dpages is the count of index
leaf pages.

160 5.10 Displaying information about indexes

reserved int If indid = 0 or indid = 1, the total of pages allo-
cated for all indexes and data pages.

If indid > 1 or ∑ 250, the total pages allocated to
this index.

If indid = 255, the total pages allocated for text or
image data.

used int If indid = 0 or indid = 1, the total of pages used for
all indexes and data pages.

If indid > 1 or ∑ 250, the total pages used by this
index.

If indid = 255, the total pages used for text or
image data.

rowcnt bigint If indid ∏ 0 and indid ∑ 250, the number of rows
in the table—else this is set to 0.

rowmodctr int Holds the total number of inserted, deleted, or
updated rows since the last time statistics were
updated for the table.

xmaxlen smallint Maximum size of a row.

maxirow smallint Maximum size of a nonleaf index row.

OrigFillFactor tinyint The original FILLFACTOR value used when the
index was created.

StatVersion tinyint Reserved.

reserved2 tinyint Reserved.

FirstIAM binary(6) Page ID of first IAM page for object.

impid smallint Reserved.

lockflags smallint Used to constrain locking in index.

pgmodctr int Reserved.

keys varbinary
(1088)

List of the column IDs of the columns that make
up the index key.

name sysname Name of table (for indid = 0 or 255)—else index
name.

statblob image Distribution statistics.

Table 5.2 Sysindexes table definition (continued)

Column Datatype Description

5.10 Displaying information about indexes 161

Chapter 5

The following example shows a sysindexes entry for the clustered index
on the Accounts table. The column headings have been edited and moved
for clarity:

SELECT * FROM sysindexes WHERE name = 'CI_account'

The result of the above query is as shown in Figure 5.23.

The indid is 1, which shows that this is a clustered index. The number
of data pages, dpages, is 0 (there are no records in the table).

5.10.3 Using metadata functions to obtain information
about indexes

There are a number of extremely useful functions that can be used to obtain
information about the properties of an index. Probably the most useful one
is the INDEXPROPERTY function.

This function takes the following form:

INDEXPROPERTY(table_ID, index, property)

maxlen int Reserved.

rows int If indid ∏ 0 and indid ∑ 250. The number of
rows in the table—else this is set to 0 (for back-
ward compatibility).

Figure 5.23
Examining the

sysindexes system
table in SQL

Server
Management

Studio

Table 5.2 Sysindexes table definition (continued)

Column Datatype Description

162 5.10 Displaying information about indexes

The table_ID holds the object ID of the table (remember that the ID of
an object can be obtained by using the object_id function passing the
object’s name).

The index contains the name of the index whose properties you are
investigating.

The property is the property to return and can be one of the values
shown in Table 5.3.

An example of the INDEXPROPERTY function is as follows:

SELECT INDEXPROPERTY(OBJECT_ID('accounts'), 'NCI_Balance',
'IndexDepth')

There are other functions that can also be useful when displaying infor-
mation about an index. The INDEXKEY_PROPERTY function returns
information about an index key—for example, whether a column in the
key is sorted in ascending or descending order. Another useful function is
the OBJECTPROPERTY function. Some properties specified in this func-
tion are concerned with indexing, such as whether a table has a clustered
index or not.

Table 5.3 Property values for the INDEXPROPERTY function

Value Description Value Returned

IndexDepth Depth of the index. Number of levels the index
has.

IndexFillFactor Index specifies its own fill factor. Fill factor used when the
index was created or last
rebuilt.

IndexID Index ID of the index on the
table or indexed view.

Index ID NULL = Invalid
input.

IsAutoStatistics Index was generated by the auto
create statistics option of
sp_dboption.

1 = True, 0 = False, NULL =
Invalid input.

IsClustered Index is clustered. 1 = True, 0 = False, NULL =
Invalid input.

IsDisabled Index is disabled. 1 = True, 0 = False, NULL =
Input is not valid.

5.10 Displaying information about indexes 163

Chapter 5

5.10.4 The DBCC statement DBCC SHOWCONTIG

This DBCC statement is used to obtain information about an index or
table that can be used to investigate performance degradation. It is a very
useful tool for performance analysis. Some of the output is a little arcane
and is not very useful, but that is more than made up for by the fact that
DBCC SHOWCONTIG outputs useful information concerning the level
of fragmentation that has occurred in a table—in other words, the level of
page splitting. The following DBCC SHOWCONTIG output was from
the Accounts table after it had been loaded with 12,500 rows with even val-
ues in the account_no column and a clustered index created on the
account_no column.

DBCC SHOWCONTIG scanning 'accounts' table...

Table: 'accounts' (709577566); index ID: 1, database ID: 7

IsFulltextKey Index is the full-text key for a
table.

1 = True, 0 = False, NULL =
Invalid input.

IsHypothetical Index is hypothetical and cannot
be used directly as a data access
path. Hypothetical indexes hold
column-level statistics.

1 = True, 0 = False, NULL =
Invalid input.

IsPadIndex Index specifies space to leave
open on each interior node.

1 = True, 0 = False, NULL =
Invalid input.

IsPageLockDisal-
lowed

Page locking is disallowed
through sp_indexoption.

1 = disallowed, 0 = allowed,
NULL = Invalid input.

IsRowLockDisal-
lowed

Row locking is disallowed
through sp_indexoption.

1 = disallowed, 0 = allowed,
NULL = Invalid input.

IsStatistics Index was created by the CRE-
ATE STATISTICS statement or
by the auto create statistics
option sp_dboption. Statistics
indexes are used as a placeholder
for column-level statistics.

1 = True, 0 = False, NULL =
Invalid input.

IsUnique Index is unique. 1 = True, 0 = False, NULL =
Invalid input.

Table 5.3 Property values for the INDEXPROPERTY function (continued)

Value Description Value Returned

164 5.10 Displaying information about indexes

TABLE level scan performed.

- Pages Scanned : 695

- Extents Scanned : 88

- Extent Switches : 87

- Avg. Pages per Extent : 7.9

- Scan Density [Best Count:Actual Count] : 98.86% [87:88]

- Logical Scan Fragmentation : 12.52%

- Extent Scan Fragmentation : 0.00%

- Avg. Bytes Free per Page : 380.2

- Avg. Page Density (full) : 95.30%

The above was taken from a filled database available from the previous
edition of this book.

The first line of output, Pages Scanned, is the number of pages in the
page chain; in our example, it is the number of pages in the table (dpages in
sysindexes). Another way of looking at this item is that it has taken 695
pages to hold the 12,500 rows. Since a page will hold about 18 rows by the
time you have taken away the 96-byte page header and other overhead from
the 8 Kb page size, this is in the right ballpark.

Extents Scanned is the number of extents read, which means that this is
the number of extents used to hold the data rows. Since we have 695 pages,
the best we can hope for is (number of pages/8 pages per extent) extents to
hold the data. In our case 695/8 is 86.9, and, therefore, the best we can
hope for is to hold the data in 87 extents. The data is actually held in 88
extents, slightly over our theoretical calculation but because of the initial
allocation in mixed extents, this is reasonable.

Extent Switches is the number of times the DBCC statement moved off
an extent while it was scanning the pages in the extent. We would expect an
extent switch to happen after the whole extent had been scanned and a new
extent needed to be scanned next. Our extent switches value is 87, which is
expected, since the jump onto the first extent is not counted.

The Average Pages per Extent is merely the number of pages per extent,
which is the (number of pages/number of extents). In our example this is
695/88, which gives us 7.9.

Perhaps the most useful line of output is the Scan Density [Best
Count:Actual Count]. This is our measure of fragmentation. The Best
Count is the ideal number of extents used to hold our data pages if every-
thing is contiguously linked, whereas the Actual Count is the actual num-

5.10 Displaying information about indexes 165

Chapter 5

ber of extents used to hold our data pages. The Scan Density is the ratio of
these two values expressed as a percentage. In other words ([Best Count/
Actual Count] * 100). In our example Scan Density is 87/88 * 100, giving
us 98.86 percent, which is close enough to perfect—we are pretty much
utilizing our data pages and extents in the most effective way.

The Logical Scan Fragmentation and Extent Scan Fragmentation are
not particularly useful, but they do represent the non-contiguity of pages
and extents in the index leaf level. The Average Bytes Free per Page and Avg.
Page Density (full) are a measure of the average free bytes on the pages in
the chain and the percentage of fullness, respectively. These are values that
are affected by the FILLFACTOR used.

Next, 12,500 rows with odd values in the account_no column were
loaded. This results in page splitting, since the even-numbered rows now
have odd-numbered rows inserted between them.

Output after loading 12,500 rows with odd values in the account_no
column:

DBCC SHOWCONTIG (accounts)

DBCC SHOWCONTIG scanning 'accounts' table...

Table: 'accounts' (709577566); index ID: 1, database ID: 7

TABLE level scan performed.

- Pages Scanned : 1389

- Extents Scanned : 176

- Extent Switches : 1388

- Avg. Pages per Extent : 7.9

- Scan Density [Best Count:Actual Count] : 12.53% [174:1389]

- Logical Scan Fragmentation : 50.04%

- Extent Scan Fragmentation : 1.14%

- Avg. Bytes Free per Page : 374.6

- Avg. Page Density (full) : 95.37%

The above was taken from a filled database available from the previous
edition of this book.

After loading our second batch of 12,500 rows, we can see that the situ-
ation has deteriorated. We have doubled the number of rows in the table
and the Pages Scanned value is now 1,389, which is double the number of
pages scanned previously, 695. The number of extents used to hold the data

166 5.10 Displaying information about indexes

is now 176, which, again, is not far off from double the number we have
just seen, which was 88. The most dramatic increase is in the number of
extent switches performed, which is now 1,388—about 16 times greater
than the previous value. This gives us a Scan Density of only 12.53 percent.

The bottom line is that there is much page fragmentation. Many pages
have been inserted into the original page chain and SQL Server would have
to jump around a lot to scan this table. Note also that the page fullness has
not changed much. This is often not the case with real-world applications.
After page splitting, pages are often found to be between two-thirds and
three-quarters full. This is common when page splitting is occurring and is
due to the fact that 50:50 splitting is taking place, as mentioned earlier in
this chapter. An index rebuild, preferably with an appropriate FILLFAC-
TOR value, would be advisable here.

The full syntax of the DBCC SHOWCONTIG statement is as follows:

DBCC SHOWCONTIG

[

({ table_name | table_id | view_name | view_id }

[, index_name | index_id])

]

[WITH

{ ALL_INDEXES

| FAST [, ALL_INDEXES]

| TABLERESULTS [, {ALL_INDEXES}] [, {FAST | ALL_LEVELS}]

}

]

IDs may be used instead of names, if preferred. The index name is
optional and if omitted DBCC SHOWCONTIG reports information for
the table—unless there is a clustered index on the table, in which case it
reports information for that. So, if you want to report on a non-clustered
index, it should be named. The option ALL_INDEXES outputs informa-
tion on all the indexes on the table. The FAST option specifies whether to
perform a fast scan of the index and output minimal information. A fast
scan does not read the data on each page. The TABLERESULTS option
displays results as a rowset and also outputs extra information. Some of this
extra information can be very useful. For example, the number of rows ref-
erenced by forwarding pointers (as discussed in Chapter 4) is output. By
default, information pertaining to a table’s data pages (also by convention

5.11 Creating indexes on views 167

Chapter 5

the clustered index leaf-level pages) or the non-clustered index leaf-level
index pages is output. If the ALL_LEVELS option is specified, information
pertaining to all index levels is output.

5.11 Creating indexes on views

Unlike previous versions of SQL Server, in SQL Server 2000 indexes can be
created on a view, if its definition meets certain criteria. Unlike a non-
indexed view, which does not physically hold data, an indexed view has its
result physically stored in the database. Any modifications to the base data
are reflected in the indexed view, so they are best created on tables that are
changed infrequently.

The first index created on a view that is to be indexed must be a unique
clustered index. Other indexes may then be created. For a view to be
indexed it must satisfy a number of criteria.

One criterion is that it must be created with the SCHEMABINDING
option. This option binds the view to the schema of the underlying base
tables. This means that any views or tables participating in the view cannot
be dropped, unless that view is dropped or changed so that it no longer has
schema binding. Also, ALTER TABLE statements on tables that participate
in views having schema binding will fail if these statements affect the view
definition. Some, but not all, of the other criteria are as follows:

� The view must only use base tables in its definition—no views.

� Any user-defined functions in the view must use the SCHEMA-
BINDING option.

� The ANSI_NULLS and QUOTED_IDENTIFIER options must
have been set to ON for the connection that defined the view.

� The ANSI_NULLS option must have been set to ON for the con-
nection that defined the tables referenced by the view.

� The base tables referenced in the view must be in the same database
and have the same database owner.

� Base tables and user-defined functions referenced in the view must
use a two-part name. No other combination of names is allowed.

� All functions referenced by expressions in the view must be determin-
istic. This means that for a given set of inputs, the same result is
always returned.

168 5.11 Creating indexes on views

� The select_list of the SELECT statement in the view must not
include the * notation—the columns must be listed explicitly.

� Columns must not appear more than once, unless they appear the
second time (or third time, etc.) in a complex expression. The
select_list Col1, Col2 is valid and so is Col1, Col2, Col1+Col2 but
not Col1, Col2, Col1.

� Also not allowed are derived tables, rowset functions, the UNION
operator, subqueries, outer or self joins, the TOP clause, the ORDER
BY clause, the DISTINCT keyword, and COUNT(*); however,
COUNT_BIG(*) is allowed.

� If the AVG, MAX, MIN, STDEV, STDEVP, VAR, or VARP aggre-
gate functions are specified in queries referencing the indexed view,
the optimizer can often calculate the result if the view select_list
contains SUM and COUNT_BIG. For example, AVG() can be cal-
culated from SUM() / COUNT_BIG().

� A SUM function that references an expression that can be nullable is
not allowed.

� The full-text search predicates CONTAINS or FREETEXT are not
allowed.

� The view select_list cannot contain aggregate expressions unless a
GROUP BY is present.

� If GROUP BY is present, the view select_list must contain a
COUNT_BIG(*) expression, and the view definition cannot include
HAVING, CUBE, or ROLLUP.

� A column that results from an expression that either evaluates to a
float value or uses float expressions for its evaluation cannot be a key
of an index in an indexed view.

We’ve not finished yet! Indexes created on the view have some restric-
tions also, as shown in the following list. Most importantly, the first index
that is created on the view must be clustered and unique.

� The user executing the CREATE INDEX statement must be the
owner of the view.

� The following options must be set to ON for the connection creating
the index: CONCAT_NULL_YIELDS_NULL, ANSI_NULLS,

5.11 Creating indexes on views 169

Chapter 5

ANSI_PADDING, ANSI_WARNINGS, and ARITHABORT. The
QUOTED_IDENTIFIERS and NUMERIC_ROUNDABORT
options must be set to OFF.

� Even if the CREATE INDEX statement does not reference them, the
view cannot include text, ntext, or image columns.

� If the SELECT statement in the view definition specifies a GROUP
BY clause, then the key of the unique clustered index can reference
only columns specified in the GROUP BY clause.

An example view definition is as follows:

CREATE VIEW dbo.BranchTotalFunds

 WITH SCHEMABINDING

AS

 SELECT branch_no,

 COUNT_BIG(*) AS AccountInstances,

 SUM(balance) AS TotalBalance

 FROM dbo.accounts

 GROUP BY branch_no

The following clustered index can now be created:

CREATE UNIQUE CLUSTERED INDEX CIV_BranchTotalFunds

 ON dbo.BranchTotalFunds (branch_no)

Although the clustered index key will only contain the branch_no col-
umn, being a clustered index, the complete set of data rows with all the col-
umns will be stored at the clustered index leaf level in the database. Non-
clustered indexes may also now be created on the indexed view if desired.

The query optimizer automatically makes use of indexed views—they
do not have to be named explicitly—however, this is only true of the Enter-
prise Edition. We will discuss this behavior in Chapter 7.

170 5.12 Creating indexes with computed columns

5.12 Creating indexes with computed columns

In SQL Server it is possible to utilize computed columns in an index defini-
tion. The definition of the computed column must be deterministic. This
means that for a given set of inputs, the same result is always returned.

A computed column definition is deterministic if the following occur:

� All functions referenced in the definition are deterministic and pre-
cise.

� All columns referenced in the definition are from the same table as
the computed column.

� Multiple rows are not used to provide data for the computed col-
umn—for example, using SUM().

FLOAT data types are not precise. Also, various connection options,
such as ANSI_NULL, must be set to ON when the table is created, and
other options must be set to ON for the connection that creates the index.

As an example, the GETDATE() and @@IDENTITY functions are
nondeterministic, whereas SQUARE() and DATEDIFF() are deterministic.

Suppose we create the following table:

CREATE TABLE accounts

(

 account_no INT NOT NULL ,

 customer_no INT NOT NULL ,

 branch_no INT NOT NULL ,

 balance MONEY NOT NULL ,

 account_notes CHAR (400) NOT NULL ,

 taxed_balance AS (balance * 0.9)

)

The computed column is deterministic, since, for a given input, it pro-
duces the same output. Therefore, we can create an index using this col-
umn:

CREATE INDEX nci_taxed_balance ON accounts (taxed_balance)

5.13 Using indexes to retrieve data 171

Chapter 5

A SELECT statement that specifies the column in its WHERE clause
will use this index if it makes sense to do so:

CREATE TABLE accounts

(

 account_no INT NOT NULL ,

 customer_no INT NOT NULL ,

 branch_no INT NOT NULL ,

 balance MONEY NOT NULL ,

 account_notes CHAR (400) NOT NULL ,

 account_date AS (GETDATE())

)

We could not, however, create an index on the account_date column,
since the computed column is nondeterministic.

5.13 Using indexes to retrieve data

Now that we have seen how indexes are put together and how they behave
when data is retrieved and added, we can investigate how indexes are used
to support good performance.

The choice of whether to use an index or not and if so which index is a
decision that the query optimizer makes. We will discuss the query opti-
mizer in detail in Chapter 7, but we need to look at the different mecha-
nisms of using an index to understand what the query optimizer is
considering when it is in the process of making its decision.

If there are no indexes present on a table, there is only one mechanism
by which the data can be accessed and that is by means of a table scan.
When a table scan is performed, each page in the table is read starting at the
first page and ending at the last page. To read each page, a page request,
SQL Server performs a logical read, also known as a logical I/O. If the page
is not found in the data cache, this results in a physical read from disk. Each
time a query is run the number of physical reads generated by the query is
likely to change, because data will be cached from the previous execution of
the query. For this reason, when comparing the work performed by differ-
ent query optimizer strategies, it is better to compare the logical read values.

The table scan is a useful baseline, since we know that we can always
access our data in the number of logical reads the table scan requires. Any-
thing more is likely to be a poor strategy. However, be aware that the query

172 5.13 Using indexes to retrieve data

optimizer in SQL Server 2000 considers other factors, such as CPU, when
choosing a plan, and so the point at which the query optimizer chooses a
table scan in preference to an indexed access is not just the point at which
the logical reads used by an index plan exceed the pages in the table, as it
was with SQL Server 6.5. With this in mind let us consider different types
of index access.

We will use simplified diagrams for our two index types, as shown in
Figures 5.24 and 5.25. Figure 5.24 shows a simplified clustered index.

Figure 5.25 shows a simplified non-clustered index. Note that, as is
commonly found, the clustered index contains one less level than the non-
clustered index.

We will use a number of scenarios. First of all, we will use a scenario
where we request a single row from the Accounts table using a clustered
index on the account_no column and then a non-clustered index on the
account_no column.

Our second scenario will perform a range retrieval from the Accounts
table with the same indexing strategy.

Figure 5.24
A simplified

clustered index

Figure 5.25
A simplified non-

clustered index

5.13 Using indexes to retrieve data 173

Chapter 5

Our third scenario will perform an access to the Accounts table that can
be satisfied completely by the non-clustered index key columns.

Our fourth scenario will revisit the above scenarios; however, there will
still be a non-clustered index on the account_no column of the Accounts
table, but we will also add a clustered index on the customer_no column of
the Accounts table.

Our fifth scenario will involve the use of multiple non-clustered indexes
on our Accounts table.

5.13.1 Retrieving a single row

This is sometimes called a direct key lookup. We are attempting to retrieve
a single row as opposed to a range of rows. Often this is a result of using the
equality operator (=) on a primary key, for example:

SELECT balance FROM accounts WHERE account_no = 4000

In the case of the clustered index, SQL Server will first obtain the page
number of the root page from the sysindexes table. In this root page there
will be a number of key values, and SQL Server will look for the highest key
value that is not greater than the key we wish to retrieve.

Remember that with both clustered indexes and non-clustered indexes,
the index entries in the index pages are always held in key sequence at a
given index level. Refer to Figures 5.1 and 5.3 to clarify this point.

As we have already seen, in a clustered index an index entry consists of
the index key plus a pointer, which is a page number (ignoring the fileID),
so the index key retrieved in the root page will point to an intermediate
index page.

Again, SQL Server will look for the highest key value that is not greater
than the key we wish to retrieve. In our diagram, the key found will now
contain a page pointer to a data page, and this page will be retrieved. The
data page is now scanned for a row containing the key we wish to retrieve.
The rows in the data page in a clustered index are in key sequence, so the
row is either found and returned or SQL Server will return a message stat-
ing “(0 row(s) affected).” This is shown in Figure 5.26.

174 5.13 Using indexes to retrieve data

In the case of a non-clustered index, the traversal of the index is per-
formed in a similar manner. However, once the leaf level is reached the key
value of the key we wish to retrieve is found, and this leaf-level index entry
will contain the Row ID of the data row, so SQL Server will go directly to it
in the appropriate data page, as shown in Figure 5.27.

The non-clustered index has taken one more logical read. Is this impor-
tant? Taken on its own probably not; however, if this is a query we are try-
ing to optimize for an online transaction processing (OLTP) system with a
large user population, it might just influence our design. On the whole
though, the difference between using a clustered index or a non-clustered
index for single row retrieval is slim. Therefore, it can be a wise design
choice to save the clustered index specification for columns that are accessed
as a range more frequently than they are accessed directly (as a single row
hit). Furthermore, as we will see in the next section, retrieving sequential
ranges using a clustered index can consume significantly less I/O than when

Figure 5.26
A direct key lookup
in a clustered index

Figure 5.27
A direct key lookup
in a non-clustered

index

5.13 Using indexes to retrieve data 175

Chapter 5

using a non-clustered index because the data pages are stored contiguously.
This of course assumes you access the data in the sequence that the index is
built in. If you don’t access in the index order of the clustered index, you
might as well read the entire table.

5.13.2 Retrieving a range of rows

We shall now attempt to retrieve a range of rows, as opposed to a single row.
Often this is a result of using operators such as BETWEEN, <, >, and
LIKE—for example:

SELECT balance FROM accounts WHERE account_no BETWEEN 4001
AND 4500

In the case of the clustered index, SQL Server will first obtain the page
number of the root page from the sysindexes table. In this root page there
will be a number of key values, and SQL Server will look for the highest key
value that is not greater than the lowest key we wish to retrieve.

The page pointer will be followed to the intermediate index page.

Again, SQL Server will look for the highest key value that is not greater
than the lowest key we wish to retrieve. In Figure 5.28, the key found will
now contain a page pointer to a data page, and this page will be retrieved.
The data page is now scanned for a row containing the lowest key we wish
to retrieve. The row is retrieved and so is the next row and so on until the
key value of a retrieved row is found to be higher than the range we require.

This is shown in Figure 5.28 with the query returning three rows. Note
that SQL Server is directed to the data page that contains the lowest key
value in the range. Once there, SQL Server needs only to retrieve the rows
sequentially until the range is exhausted. SQL Server can do this because
the clustered index has ensured that the rows are in key sequence order.

In the case of a non-clustered index the traversal of the index is per-
formed in a similar fashion. However, once the leaf level is reached the key
value of the key we wish to retrieve is found, and this leaf-level index entry
will contain the Row ID of the data row, so SQL Server will go directly to it
in the appropriate data page. Now the leaf level of the non-clustered index
is in key sequence order but the data is not. What this means is that the key
values in the range are found next to one another in the index leaf pages,
but it is highly unlikely that the data rows will be found next to one another
in the data pages. In Figure 5.29 the query has returned three rows. The leaf

176 5.13 Using indexes to retrieve data

level of the non-clustered index contains the three index entries next to one
another, but the data rows are on different data pages.

This is a very important point and is a fundamental difference between
the behavior of a clustered index and a non-clustered index with range
retrievals. In our example the clustered index has required less logical reads
to retrieve the data than the non-clustered index because in the clustered
index the data rows are adjacent.

We have only retrieved three data rows in our example, but suppose we
had retrieved 180 data rows. We can hold 18 rows from the Accounts table
in one page, so the clustered index could theoretically retrieve the 180 data
rows with ten logical reads to the data pages. The non-clustered index will
take 180 logical reads to the data pages, which could equate to 180 physical
reads if the data rows were all on their own separate data pages and none
were found in the data cache (more on data caching in Chapter 8).

Figure 5.28
A range retrieval in

a clustered index

Figure 5.29
A range retrieval in

a non-clustered
index

5.13 Using indexes to retrieve data 177

Chapter 5

Suppose one data page happened to hold ten of the rows that satisfied
the range. The non-clustered index would have ten pointers addressing that
page and would still generate ten logical reads to it.

If the query optimizer decided that the number of logical reads needed
to traverse the non-clustered index, scan the relevant leaf-level pages, and
retrieve the data was greater than the number of pages in the table, a table
scan would be performed—assuming that other factors such as CPU had
been taken into consideration.

5.13.3 Covered queries

The leaf level of a clustered index contains the data rows, whereas the leaf
level of a non-clustered index contains only the key and a pointer; as long as
the key is only a small portion of the total row we can see that a database
page will hold more key values than complete data rows. That is, an index
page in the database can hold more index entries than a data page in the
database can hold data rows.

We can use this fact to provide fast access for certain queries using a
non-clustered index. Suppose we have created a composite index—that is,
an index that consists of more than one column. An example of this might
be the following:

CREATE INDEX NCI_AccountNoBalance

 ON accounts (account_no, balance)

Now, suppose we execute the following query:

SELECT balance FROM accounts

 WHERE account_no BETWEEN 4001 AND 4500

The query optimizer will realize that this is a covered query and that the
index named NCI_AccountNoBalance is a covering index. This means that
SQL Server does not have to go to the data level to satisfy the query. It only
needs to go down as far as the leaf level of the non-clustered index, as
shown in Figure 5.30.

This is very efficient. In reality, there are 500 rows satisfying the query,
but SQL Server only used four logical reads to satisfy the query. Although
clustered indexes are often more efficient than their non-clustered cousins,
when a non-clustered index is used as a covering index it is normally more

178 5.13 Using indexes to retrieve data

efficient than an equivalent clustered index. As with a table scan, scanning
the leaf level of an index activates the read ahead capability and a parallel
data scan is initiated.

5.13.4 Retrieving a single row with a clustered index on
the table

The important point to note here is that the non-clustered index on the
Accounts table now has its leaf-level index entries containing the clustered
index key as a pointer, not the Row ID. This was discussed earlier in the
chapter. This means that access to data rows via the non-clustered index will
take a route from the non-clustered index leaf-level pointer to the data rows
via the clustered index. Let us look at our query again:

SELECT balance FROM accounts WHERE account_no = 4000

SQL Server will first obtain the page number of the root page of the
non-clustered index on account_no from the sysindexes table. In this root
page there will be a number of key values, and SQL Server will look for the
highest key value that is not greater than the key we wish to retrieve. As
before, the index key retrieved in the root page will point to an intermediate
index page.

Again, SQL Server will look for the highest key value that is not greater
than the key we wish to retrieve. Having located that, the next-level index
page will be retrieved, which will be the leaf-level index page. The leaf-level

Figure 5.30
A covering index

5.13 Using indexes to retrieve data 179

Chapter 5

index entry for account number 4,000 will contain the clustered index key,
which will be a customer number.

The root index page of the clustered index will now be retrieved. Using
the customer number value to traverse the clustered index, the data row will
be retrieved in exactly the same way as any single row retrieval from a clus-
tered index. This is shown in Figure 5.31.

How does this retrieval strategy compare with our single row retrieval
described earlier using a Row ID? Clearly it is less efficient. Instead of fol-
lowing the index pointer directly to the data, we now have to take a trip
through the clustered index as well. In reality this is unlikely to be too
much of an overhead. A clustered index is a compact index with typically
few levels, so we are adding an overhead of a small number of page requests.
For a single row retrieval this is not likely to be significant.

5.13.5 Retrieving a range of rows with a clustered index
on the table

Again, the basic index retrieval strategy is similar to the range retrieval with
a non-clustered index, described earlier. In this case, however, instead of
requesting a data page containing the row for each leaf-level index entry
found in the range, the clustered index will be accessed to fetch each of the
rows in the range. In other words, instead of requesting 180 data pages to
fetch our 180 rows, as before, we are now accessing the clustered index 180

Figure 5.31
A non-clustered

index with a
clustered index

180 5.13 Using indexes to retrieve data

times. This is not efficient at all. Again, range retrieval via a non-clustered
index is not efficient. Once more than a few rows are returned by the range
retrieval, a table scan is likely to be performed by the query optimizer.

5.13.6 Covered queries with a clustered index on
the table

This is an interesting scenario. Suppose we wish to execute the following
query:

SELECT customer_no FROM accounts

 WHERE account_no BETWEEN 4001 AND 4500

We will assume that we have a non-clustered index on the account_no
column of the Accounts table and a clustered index on the customer_no
column of the Accounts table as well.

At first glance, this query does not appear to be covered by the non-clus-
tered index. It is a single column index on account_no. However, we know
that the leaf-level pointer is the clustered index key, so the leaf-level index
entry contains both the account_no column and the customer_no column.
Therefore, the query can indeed be satisfied by the non-clustered index
without the data rows being fetched, and the query is, in fact, covered.

The fact that the clustered index key is part of the index entry in a non-
clustered index can result in the query optimizer choosing a very efficient
strategy.

5.13.7 Retrieving a range of rows with multiple non-
clustered indexes on the table

Suppose we wished to execute the following query:

SELECT * FROM accounts

WHERE balance BETWEEN 100 AND 200

AND customer_no BETWEEN 1000 AND 1200

If there are no appropriate indexes on the table, SQL Server would per-
form a table scan. If there is a non-clustered index present on the balance
column, then the query optimizer might choose to use that index if the
number of rows returned was not too large. If there is a non-clustered index

5.13 Using indexes to retrieve data 181

Chapter 5

present on the customer_no column, then the query optimizer might
choose to use that index if the number of rows returned is not too large.

If one of the indexes is present and is chosen, then SQL Server would
process the range retrieval by processing the appropriate range in index key
values in the leaf level of the non-clustered index and issuing a data page
request for each pointer (we’ll assume there is no clustered index on the
table, so we are dealing with Row IDs). When each data row is fetched, the
remaining criteria would be applied to the data row. We say that it is filtered.

One problem with this technique is that it can be wasteful. Suppose we
have a non-clustered index present on the balance column alone and that
the query optimizer chooses that index to perform the previous query. The
index may have 100 leaf-level index key values satisfying the balance range,
and 100 data page requests (logical reads) will be performed. SQL Server
will then apply the customer number range filter and could eliminate most
of the data rows from the resulting set. We have used the non-clustered
index to fetch a set of rows, most of which are ultimately discarded. Fetch-
ing data pages is a relatively expensive operation.

Now suppose we create a second non-clustered index on the
customer_no column. The query optimizer can often make use of both of
these indexes in the plan. The result of the query is the set intersection of
the set of accounts that have a balance between 100 and 200 and the set of
accounts that have a customer number between 1,000 and 1,200. This is
shown in Figure 5.32.

Figure 5.32
Index intersection

182 5.14 Choosing indexes

From an indexing perspective we can think of this as the set intersec-
tion of the valid set of Row IDs from the non-clustered index on balance
and the valid set of Row IDs from the non-clustered index on
customer_no. As Figure 5.32 shows, the sets of Row IDs may overlap a lit-
tle, overlap greatly, or not overlap at all. In the latter case, this means that
no rows satisfy both criteria. The query optimizer can perform this set
intersection in memory (typically) and so find the set of Row IDs that
point to data rows satisfying both query conditions before the data pages
have been accessed. This will often avoid having many data page requests
performed needlessly. How does SQL Server perform the set intersection
operation on the Row IDs? It uses a hashing algorithm, which we will dis-
cuss in Chapter 7. In Chapter 7 we will also discuss a query optimizer
plan, which utilizes index intersection.

So, typically how much benefit can this use of multiple indexes provide?
This depends on a number of considerations, but the main one concerns
the size of the reduction in the data page requests. Remember: If there are
too many, the query optimizer will probably decide a table scan is a more
efficient means of querying the data.

If we look at Figure 5.32, we can see that the intersection of the two sets
of Row IDs in the second case results in a set that contains most of the Row
IDs. In this case the number of data page requests will not be reduced
greatly by the use of both indexes.

The intersection of the two sets of Row IDs in the first case results in a
set that contains few of the Row IDs. In this case the number of data page
requests will be reduced by the use of both indexes and this is a win.

In the third case the two sets of Row IDs do not intersect. This results in
a set that contains no Row IDs. In this case the number of data page
requests will be reduced to zero by the use of both indexes in the query
plan, since clearly no rows satisfy the query. This is a big win.

We have just looked at a variety of scenarios using clustered and non-
clustered indexes. In Chapter 7 we will look more closely at the query opti-
mizer itself and how these fundamental scenarios are used.

5.14 Choosing indexes

The choice of indexes can dramatically affect performance and can mean
the difference between data being retrieved in seconds, with few disk I/Os
or minutes, even hours, with many disk I/Os. Choosing the optimum

5.14 Choosing indexes 183

Chapter 5

number of indexes to support the critical queries is therefore an extremely
important task.

5.14.1 Why not create many indexes?

If queries can be assisted by indexes, why not create lots of indexes on every
table? Unfortunately, as in so many areas of database technology, there are
swings and roundabouts concerning the use of indexes. On one hand,
indexes can speed up access to data, but, on the other hand, they can slow
down table insertions, updates, and deletions. This is because SQL Server
has more work to do maintaining all the indexes to ensure that they always
truly reflect the current data in the table. Indexes also take up disk space.

Clearly, if disk space is plentiful and the database is read only, there are
good reasons to create many indexes. In reality most databases experience a
mixture of read and write activity, so the correct choice of indexes is critical
to good performance. The choice of appropriate indexes should be a prod-
uct of good upfront design and transaction analysis.

We have already seen the effect that inserts can have on a clustered
index. If the index key is not an increasing key value—that is, the newly
inserted key is not always higher than existing key values—data rows will be
inserted throughout the page chain. This will cause page splitting to occur.

Either way, row insertion means that SQL Server must perform work to
maintain the clustered index. If there are also non-clustered indexes on the
table, which is usually the case, each non-clustered index must also be
maintained when row insertions occur. Every non-clustered index must
accommodate a new index entry, which may cause page splitting to occur in
the index pages.

What about row deletion? In a clustered index a row may be deleted
from a data page, and, if there is no index entry pointing to it because it is
not the lowest key value in the page, little maintenance activity need be per-
formed. In the case of non-clustered indexes there will always be mainte-
nance activity if a row is deleted. Every non-clustered index must remove
the index entry. If this leaves a single row in an index page, SQL Server will
merge the index page with another in order to keep the index compact.
Again, this means work for SQL Server.

The behavior of updates was discussed earlier. It is possible that an
update to a row can result in the row being deleted and then reinserted,
which has the overhead of deletion and insertion.

184 5.14 Choosing indexes

The bottom line is that too many indexes on a table can be disastrous
for the performance of transactions that write to the table. How many
indexes should there be on a table? There is no correct answer, but for a vol-
atile table I start to worry if someone wants to put more than three on it.
That’s not to say that it will be a problem. I’m just saying I worry, which
means I don’t leave things to chance—I test them!

5.14.2 Online transaction processing versus
decision support

Online transaction processing (OLTP) systems have characteristics that are
different from decision support systems (DSSs), and you should have a
good appreciation of where your application fits into this spectrum.

OLTP systems tend to involve a high frequency of short, predefined
transactions that affect small amounts of data. More often than not, OLTP
systems change data by insertion, update, and deletion. OLTP systems fre-
quently support large user populations and provide guaranteed response
times in the subsecond range.

DSS systems tend to be read only. They tend to involve a low frequency
of long, complex, ad hoc queries that affect large amounts of data. Usually
DSS systems do not support large user populations, and the response time of
queries may be measured in minutes or even hours. Unlike OLTP systems,
DSS systems are often not mission critical. This is shown in Figure 5.33.

Examples of OLTP systems are sales order entry systems and travel
booking systems; examples of DSS systems might be anything from MIS
reporting systems to large data warehousing systems.

Given the differences in the two application types it is clear that the
indexing strategies are going to be different. In the case of OLTP there are
likely to be high transaction rates involving transactions that change data.
Having too many indexes will adversely affect the performance of OLTP
systems, so the designer should limit the number of indexes to those that
are really necessary. In the case of DSS the system is likely to be predomi-

Figure 5.33
The OLTP

DSS spectrum

5.14 Choosing indexes 185

Chapter 5

nantly read only, and therefore the designer can use as many indexes as are
needed to support the query mix.

Unlike OLTP transactions, DSS queries are ad-hoc by nature, and the
designer will often be unable to perform much upfront transaction analysis
in order to arrive at a fixed indexing strategy; therefore, using a good mix of
indexes is frequently necessary.

5.14.3 Choosing sensible index columns

When the query optimizer is investigating different access strategies, it will
cost each strategy to determine the number of logical reads the strategy will
use. This will be an estimate, but, depending on the choice of columns in
an index, the query optimizer might decide very quickly that an index is
not worth bothering with.

When we are choosing index columns, we should be looking for a com-
bination of columns that support our queries, as well as the number of
duplicate values in the index column or columns. Suppose we were to index
a column that could contain only the code M (male) and F (female). Would
this be a good column to index? It would not be a good column to index,
because probably half the rows would contain M and half would contain F.
We can say that the following query is not very selective:

SELECT * FROM clients WHERE gender = 'F'

If there is a non-clustered index on gender, it is highly unlikely that the
query optimizer would use it.

Another example would be the state column in a table holding client
information. If we executed the following query on a 100,000-row table,
how many rows would be returned?

SELECT * FROM clients WHERE state = 'CA'

If our company is based in San Francisco, we might expect that most of
our clients were in California, and therefore 90 percent of the rows in the
table might be returned. However, if our company is based in Ulan Bator,
we might expect that few of our clients were in California, and therefore 5
percent of the rows in the table might be returned.

We can define selectivity as the percentage of the rows returned. For
example:

186 5.14 Choosing indexes

selectivity = (the number of rows returned

 / the count of rows in the table) * 100

If 5,000 of the rows in our 100,000-row table were returned, the selec-
tivity of our query would be:

selectivity = (5000 / 100000) * 100 = 5%

If 90,000 of the rows in our 100,000-row table were returned, the selec-
tivity of our query would be:

selectivity = (90000 / 100000) * 100 = 90%

The more selective a query the fewer rows returned and the more likely
that an index will be chosen by the query optimizer. In the example where
90 percent of the rows in the table are returned, the query optimizer would
probably choose a table scan in preference to a non-clustered index on the
state column. In the example where 5 percent of the rows in the table are
returned, the query optimizer would probably choose to use a non-clus-
tered index on the state column.

The terminology here can be quite confusing. If a query is highly selec-
tive, few rows are returned, but the selectivity will be a low percentage
value. If a query is not highly selective, many rows are returned, but the
selectivity will be a high percentage value.

How does the query optimizer know that 5 percent or 90 percent of the
rows in a table will be returned by a query? We shall see later that each
index usually has key distribution statistics to help the query optimizer esti-
mate the number of rows returned.

Another value associated with selectivity is density. The density is the
average fraction of duplicate index key values in the index. We can easily
work out the density by finding the reciprocal of the count of unique values
in the index key. Suppose in our example we had clients in 40 states; then
the index density would be 1/40 = 0.025.

Once the index density is known, by multiplying the total count of rows
in the table by it, we can obtain the likely number of rows hit by specifying
a given value, in our example:

row hits = 100000 * 0.025 = 2500

5.14 Choosing indexes 187

Chapter 5

This is obviously an approximation, since it does not take into account
the fact that we might have many or few column values of CA, so index
density is only used when key distribution statistics cannot be used.

Again, these terms can be confusing. A high selectivity refers to few
duplicates, but a high density refers to many duplicates.

SQL Server holds multiple index densities for a composite index, and
we can picture the fact that adding more columns to an index is likely to
increase the number of unique values in the index key.

Suppose, in our example, that the index is not based on the state column
alone but is based on the state and city columns. Whereas previously
10,000 clients may have been located in California, only ten may be located
in Oakland. The selectivity of a query specifying both the state and city col-
umns will be higher than the selectivity of a query specifying only the state
column.

SQL Server will hold the index densities for the state column and the
state and city columns combined—that is, two density values. The query
optimizer can access these values when working out its strategy.

How can we easily find information about the density of an index
key? DBCC comes to the rescue with the DBCC SHOW_STATISTICS
statement:

DBCC SHOW_STATISTICS (accounts, 'NCI_BranchNoCustNo')

Statistics for INDEX 'NCI_BranchNoCustNo'.

 Updated Rows Rows Sampled Steps Density Average key length

Feb 29 2000 11:58AM 10000 10000 295 0.0 11.999647

All density Columns

9.9999998E-3 branch_no

1.9999999E-4 branch_no, customer_no

Statistics for INDEX 'NCI_BranchNoCustNo'.

 Updated Rows Rows Sampled Steps Density Average key length

Oct 19 2000 9:31PM 25000 25000 100 0.0 8.0

All density Average Length Columns

9.9999998E-3 4.0 branch_no

188 5.14 Choosing indexes

7.9999998E-5 8.0 branch_no, customer_no

RANGE_HI_KEY RANGE_ROWS EQ_ROWS DISTINCT_RANGE_ROWS AVG_RANGE_ROWS

1000 0.0 250.0 0 0.0

1001 0.0 250.0 0 0.0

1002 0.0 250.0 0 0.0

1003 0.0 250.0 0 0.0

1004 0.0 250.0 0 0.0

1005 0.0 250.0 0 0.0

1006 0.0 250.0 0 0.0

This DBCC statement displays information about the key distribution
statistics. Most of this information will be discussed with respect to the
query optimizer later in the book. However, there is some information,
referred to as All Density, which is the index density we have been discuss-
ing. Our index is a composite index of two columns, branch_no and
customer_no. The branch_no column has a density value of
9.9999998E3—that is, approximately 0.01. This is representative of the
fact that we have 100 unique branch_no values (density = 1/100).

The density of both columns combined is very low (1.9999999E-4 or
0.0002). Suppose there are 10,000 rows in the Accounts table. A query
containing the following:

WHERE branch_no = 1000

would return (10,000 * .01 = 100) rows, whereas a query containing:

WHERE branch_no = 1000 AND customer_no = 34667

would return (10,000 * 0.0002 = 2) rows.

Let us have a look at another example to emphasize a point. Let us
assume that we have a non-clustered index on the balance column in the
Accounts table. Here is a fragment of the DBCC SHOW_STATISTICS
output:

DBCC SHOW_STATISTICS (accounts, NCI_Balance)

Statistics for INDEX 'NCI_Balance'.

5.14 Choosing indexes 189

Chapter 5

 Updated Rows Rows Sampled Steps Density Average key length

Oct 19 2000 9:46PM 25000 25000 106 4.0426468E-5 12.0

All density Average Length Columns

4.0471085E-5 8.0 balance

3.9999999E-5 12.0 balance, customer_no

If we look at the All Density information, we can see that statistics are
displayed not only for the balance column but also for the balance,
customer_no combination. Why is this? This is a single-column index con-
taining only the balance column. This is because the database administrator
has just created a clustered index on the Accounts table on the customer_no
column.

Therefore, all non-clustered indexes use this clustered index key as the
pointer at the index leaf level. Since the leaf-level index entry for our
NCI_Balance index is then effectively balance, customer_no, SQL Server
can keep meaningful index density information using both columns. Note
that in our previous example the index NCI_BranchNoCustNo would be
holding the customer_no column redundantly if there was a clustered index
present on the Accounts table on the customer_no column.

This raises an interesting point. If a clustered index is dropped from a
table, we know that the non-clustered indexes will be rebuilt so that their
leaf-level pointers become Row IDs. This means that they no longer con-
tain the clustered index key, which previously made the non-clustered
indexes effectively composite indexes. Therefore, be prepared for some
query optimizer strategy changes if you change a clustered index into a non-
clustered index at some point.

5.14.4 Choosing a clustered index or a
non-clustered index

As we have seen, a table can only have one clustered index, so it is impor-
tant that we use it carefully—it’s our ace, and we want to play it at the right
time. So when is a clustered index useful?

Consider using a clustered index when the following occur:

� The physical ordering supports the range retrievals of important que-
ries, or equality returns many duplicates.

190 5.14 Choosing indexes

� The clustered index key is used in the ORDER BY clause or GROUP
BY clause of critical queries.

� The clustered index key is used in important joins to relate the
tables—that is, it supports the foreign key.

� The clustered index columns are not changed regularly.

However, remember that there is a downside to using a clustered index.
Every non-clustered index leaf-level pointer will become the clustered index
key. If the clustered index is large, this may significantly impact the size and
efficiency of the non-clustered indexes on the table. Also, creating a clus-
tered index on a large table will require a large amount of free space in the
database to accommodate the mechanics of the clustered index creation
algorithm. A 1 GB table will require free space equal to 1 GB plus at least
0.2 GB during the creation phase.

Consider using a non-clustered index when the following occur:

� Once or more rows will be retrieved—that is, the query is highly
selective.

� The non-clustered index key is used in the ORDER BY clause or
GROUP BY clause of critical queries.

� The non-clustered index key is used in important joins to relate the
tables.

� A covered query is required.

� Multiple indexes can be used for index intersection.

Also consider that many applications will require the selection of a row
by its primary key. This is a single-row selection and therefore would nor-
mally benefit from the creation of an index containing the same columns as
the primary key. Since it is less common to request ranges of primary keys,
a non-clustered index is probably the best option.

There are occasions when neither a clustered index nor a non-clustered
index should be used. If the table is small the query optimizer will probably
choose a table scan anyway, and if the index has a low selectivity, the query
optimizer might ignore it.

5.14 Choosing indexes 191

Chapter 5

Creating an index in these instances just increases disk space use and
maintenance overhead. The choice of index and index columns is often a
compromise, in my experience, regardless of the database product. This
choice is perhaps the most critical one the database designer must face, since
incorrect indexes will result in potentially greater disk I/O, CPU, locking
contention, and a lower caching efficiency. A piece of good news, though, as
we shall see later in this book, is that SQL Server possesses an Index Tuning
Wizard, which can assist us when designing our indexing strategy.

This Page Intentionally Left Blank

193

6
Basic Query Tuning

There are some very basic guidelines for writing efficient SQL code. These
guidelines largely constitute nothing more than writing queries in the
proper way. In fact, it might be quite surprising to learn that as you work
with a relational database and applications, one of the most common causes
of performance problems, can usually be tracked down to poorly coded
queries.

This chapter will discuss in general terms what in SQL statements is
good for performance, and what is not. The approach to performance in
this chapter will be one of focusing purely on the SQL coding itself. This
approach is somewhat database independent as well, in that it could apply
to any relational database vendor product. So, this chapter focuses on tun-
ing SQL code statements and ignores performance factors, such as I/O,
cache, and configuration parameters. It is essential to understand the basic
facts about how to write well-performing SQL code first, without consider-
ing specific details of database structure and hardware configuration.

The most important rule of thumb with SQL statements, and particu-
larly SELECT statements, those most subject to tuning, is what I like to
call the KISS rule, or the Keep It Simple Stupid rule. The simpler your
SQL statements are, then the faster they will execute. There are two rea-
sons for this:

1. Simple SQL statements are much more easily tuned because there
is less code to consider when programming it. In other words, it is
also easier for a person to write simple code, even a very intelli-
gent person.

2. The optimizer will function a lot better when accessing less com-
plex SQL code, incidentally, also because there is less code to con-

194 6.1 The SELECT statement

sider—in this case, for the optimizer. The optimizer has a limit to
its capabilities.

The negative effect of keeping things simple is granularity but this nega-
tive effect depends on how applications are coded. For instance, connecting
to and disconnecting from the database for every SQL code statement is
extremely inefficient. That’s far too much granularity.

By no means will all the queries in this chapter be executed always as
stated in this text. There are many factors that will influence the way a
query will execute at any given time. All this chapter will do is describe
some rules as to how to approach building queries.

6.1 The SELECT statement

It is always faster to SELECT exact column names:

SELECT country_id, country, population, area FROM country

is faster than (even if all fields were selected above):

SELECT * FROM country

And if there is a primary key index on the country table then this query
may read only the index, ignoring the table altogether:

SELECT country_id FROM country

The index contains only a single column and the table contains nine
columns; reading the index is faster because there is less physical space to
traverse.

Using composite indexes can become quite complicated because some-
times the index will be read, and sometimes not. The country table could
have an index on the country and region id columns. This query reads only
the index:

SELECT region_id, country_id FROM country

6.1 The SELECT statement 195

Chapter 6

In some cases, the optimizer will read the index only for the query
above. However, in other cases, the optimizer can use an index when part of
the composite index is missing (even the prefix field). So, this can use the
index:

SELECT * FROM country WHERE region_id BETWEEN 1 AND 10

So, can this:

SELECT * FROM country WHERE country_id BETWEEN 5 AND 100

In reality, sometimes the optimizer will completely ignore an index, even
if the index and query structure match properly. For example, where a table
is very small, it can sometimes be more efficient to read the entire table
(ignoring the index), rather than reading both index and table. Also, when
reading over say 5 to 10 percent of a large table, then reading the entire
table can be more efficient than reading both index and table.

6.1.1 Filtering with the WHERE clause

Filtering the results of a SELECT statement using a WHERE clause implies
retrieving only a subset of rows from a larger set of rows. The WHERE
clause can be used to either include wanted rows, exclude unwanted rows,
or both.

In the following query we filter rows to include only those rows we
want, thus retrieving only those rows we want:

SELECT * FROM country WHERE country LIKE 'U%'

Now we do the opposite and filter out rows we do not want:

SELECT * FROM country WHERE country NOT LIKE 'U%'

The above query reads the entire table, ignoring any indexing, simply
because it finds what is not there. The only option for a negative search is a
full table scan.

The fastest possible WHERE clause is reading a single record, utilizing a
unique key, preferably an integer valued key.

196 6.1 The SELECT statement

So far we have looked at WHERE clauses containing single comparison
conditions. In tables where multiple column indexes exist there are other
factors to consider. As with the ordering of index columns in the SELECT
statement, the same index should be used for both queries regardless of the
sequencing of the columns in each query—but not always:

SELECT * FROM country WHERE region_id = 6 AND country_id = 92

SELECT * FROM country WHERE country_id = 92 AND region_id = 6

In addition, the above queries could force the use of only one column in
the composite index and either the first (prefix) or second columns of the
index alone.

Try to always do two things with WHERE clauses:

1. Try to match comparison condition column sequence with exist-
ing index column sequences (although it is not strictly necessary).

2. Always try to use unique, single-column indexes wherever possi-
ble. A single-column unique index is much more likely to pro-
duce exact hits. An exact hit is the fastest access method.

6.1.2 Sorting with the ORDER BY clause

The ORDER BY clause sorts the results of a query. The ORDER BY clause
is always applied after all other clauses are applied, such as the WHERE and
GROUP BY clauses.

The GROUP BY clause will be covered shortly.

Without an ORDER BY clause in a query, rows will often be retrieved
in the physical order in which they were added to the table. Also, rows are
not always appended to the end of a table as space can be reused. Therefore,
physical row order is often useless. Additionally, the sequence and content
of columns in the SELECT statement, WHERE, and GROUP BY clauses
can help to determine returned sort order to a certain extent.

In the following example, we are sorting based on the content of the pri-
mary key index. There is no use of the index because the entire table is
being read:

SELECT country_id, country FROM country ORDER BY country_id

6.1 The SELECT statement 197

Chapter 6

In the next example, the country column is removed from the SELECT
statement and thus the primary key index is used. Selecting only the
country_id column forces use of the index. The ORDER BY clause does
not force use of the index. Additionally, there should be no sorting
required because the index is already sorted in the required order. In this
case the ORDER BY clause is unnecessary because an identical result would
be obtained without it:

SELECT country_id FROM country ORDER BY country_id

The next example re-sorts the result by country. Again, the whole table
will be read. So, no index is used. The results are the same as for the query
before the previous one:

SELECT country_id, country FROM country ORDER BY country

The ORDER BY clause will re-sort results even if records are already
sorted according to the ORDER BY clause.

6.1.2.1 Overriding WHERE with ORDER BY

In the following query, if the WHERE clause reads an index, then the
ORDER BY clause is likely re-sorting what the WHERE has already per-
formed. This is a waste of processing power:

SELECT * FROM country WHERE region_id < 10

ORDER BY region_id, country_id

It is better just to remove the ORDER BY clause in some cases:

SELECT * FROM country WHERE region_id < 10

An ORDER BY clause can be used as a refinement of previous clauses,
rather than to replace those previous clauses. The WHERE clause will filter
rows, and the ORDER BY clause re-sorts those filtered rows. The ORDER
BY clause can sometimes persuade the optimizer to use a less efficient key.

Be cautious about removing an ORDER BY clause, especially where
composite indexing is used. There can be unexpected results. It is best to
verify by examining an optimizer query plan. If the query plan might

198 6.1 The SELECT statement

change in the future because your data changes frequently, or a lot over
time, then don’t use this option at all. Also, check the sorting of the result.

6.1.3 Grouping result sets

The GROUP BY clause can perform some inherent sorting. As with the
SELECT statement, WHERE, and ORDER BY clause, matching of
GROUP BY clause column sequences with index column sequences is rele-
vant to SQL code performance.

In the following query, the region_id column is indexed, and thus the
GROUP BY clause will read the index:

SELECT region_id, SUM(region_id) FROM country

GROUP BY country_id

In the next example both columns in a composite index are read. The
composite index is much larger in both size and rows, so it will be more
expensive:

SELECT region_id, country_id, SUM(region_id) FROM country

GROUP BY region_id, country_id

6.1.3.1 Sorting with the GROUP BY clause

The next example uses a non-indexed column to aggregate, and the whole
table is accessed. The amount column is not indexed. The GROUP BY
clause is now performing sorting on the AMOUNT column:

SELECT balance, SUM(balance) FROM accounts

GROUP BY balance

The ORDER BY clause in the next query is unnecessary. The ORDER
BY clause in this query will likely be ignored by the optimizer:

SELECT balance, SUM(balance) FROM accounts

GROUP BY balance

ORDER BY balance

6.1 The SELECT statement 199

Chapter 6

6.1.3.2 Using DISTINCT

DISTINCT retrieves the first value from a repeating group. When there are
multiple repeating groups, DISTINCT will retrieve the first row from each
group. DISTINCT will always require a sort (or read a presorted index) in
order to return all repeating groups in the correct sequence. DISTINCT
can operate on single or multiple columns. For example, the following
query executes a sort in order to find the first value in each group:

SELECT DISTINCT(region_id) FROM country

6.1.3.3 The HAVING clause

The HAVING clause is intended to filter records from the result of a
GROUP BY clause. The only common mistake with the HAVING clause is
filtering records that can be more efficiently filtered using a WHERE
clause. The WHERE clause is executed as the records are retrieved. So, a
WHERE clause filter reading 10,000 rows from 1 million rows will find
10,000 rows. On the other hand, if somehow a HAVING clause can result
in an aggregation on those 10,000 rows, then it is possible to read 1 million
rows, aggregate on a million rows, and then return an aggregation of
10,000 rows—this is inefficient because you are reading 1 million rows,
instead of 10,000 rows. So, this query finds the total amount of all orders
from each customer:

SELECT customer_no, SUM(balance) FROM accounts

GROUP BY customer_no

This query reads all the customers, adds them all up, and then only
returns the first 10 customers:

SELECT customer_no, SUM(balance) FROM accounts

GROUP BY customer_no

HAVING customer_no < 10

A more efficient form of the above query is to move the HAVING
clause filter to the WHERE clause. Now the unwanted customers are not
even added together but simply ignored:

SELECT customer_no, SUM(balance) FROM accounts

WHERE customer_no < 10

200 6.2 Using functions

GROUP BY customer_no

The point of the HAVING clause is to apply the filter to the aggregation
itself. In the following query we only return customer order totals in excess
of $100:

SELECT customer_id, SUM(amount) AS total FROM orders

WHERE customer_id < 10

GROUP BY customer_id

HAVING total > 100

6.2 Using functions

The most relevant thing to say about functions is that they should not be
used where you expect an SQL statement to use an index. To resolve this
issue, some databases allow creation of a function-based index. A function-
based index contains the resulting value of an expression. An index search
against that function-based index will search the index for the result of the
calculation of the expression, not the expression or contents thereof.

When using a function in a query, do not execute the expression against
a table field if possible. This example executes a data type conversion against
a string:

SELECT * FROM customer WHERE zip = TO_NUMBER('94002')

This next example places the function against the table and will cause all
records to be read, even if the zip code field is indexed (the index is on the
zip code and not the string data type conversion of the zip code):

SELECT * FROM customer WHERE TO_CHAR(zip) = '94002'

6.2.1 Data type conversions

Some data type conversions will be allowed automatically, particularly
when the values themselves are compatible (simple numbers converting to a
string is an example), and when values are small. On the contrary, data type
conversions are often a problem and will likely conflict with existing
indexes. Unless implicit data type conversion occurs, as described above
between number and string, indexes will likely be ignored.

6.3 Comparison conditions 201

Chapter 6

The most obvious data type conversion concerns dates. Date fields in all
the databases I have used are stored internally in one or another, but not the
visible form. For example, a Julian number (Julian form date) is an integer
value measured from a database-specific date in seconds. When retrieving a
date value in a tool, such as SQL Server Management Studio, there is usu-
ally a default date format to make the date readable. The internal date value
is converted to that default format. The conversion is implicit, automatic,
and transparent. However, it might ignore indexing on date fields.

Note: In short, try to avoid using any type of data conversion function in
any part of a SQL statement which could potentially match an index, espe-
cially if you are trying to assist performance by matching appropriate
indexes.

In general, any ANSI SQL compliant relational database will allow
functions to be included in many parts of a SQL statement (queries plus
INSERT, UPDATE, and DELETE commands), including the WHERE
clause, ORDER BY clause, GROUP BY clause, HAVING clause, and even
in the select list of fields for a query.

Note: When using functions in SQL statements, it is best to keep the func-
tions away from any columns involving index matching.

6.3 Comparison conditions

Different comparison conditions can sometimes have vastly different effects
on the performance of SQL statements. Let’s examine each in turn with
various options and recommendations for potential improvement. These
are the comparison conditions:

� Equi, anti, and range

� expr { [!]= | > | < | <= | >= } expr

� expr [NOT] BETWEEN expr AND expr

� LIKE pattern matching

� expr [NOT] LIKE expr

202 6.3 Comparison conditions

� Set membership

� expr [NOT] IN expr

� expr [NOT] EXISTS expr

� Groups

� expr [= | != | > | < | >= | <=] [ANY | SOME | ALL] expr

6.3.1 Equi, anti, and range

Using an equals sign (equi) is the fastest comparison condition if a unique
index exists. Any type of anti comparison, such as != or NOT, is looking
for what is not in a table— the entire table must be read regardless
(sometimes full index scans can be used). Range comparisons scan indexes
for ranges of rows.

This example performs a unique index hit in a large table, using the
equals sign an exact hit single row is found:

SELECT * FROM accounts WHERE account_no = 100

The anti (!=) comparison finds everything but the single row specified
and reads the entire table because there is no other way to search for some-
thing which is not present:

SELECT * FROM accounts WHERE account_no != 100

In the next case, the (<) comparison searches a range of index values
rather than a single unique index value:

SELECT * FROM accounts WHERE account_no < 100

In the next example the whole table is probably read rather than using
an index range scan. This is because for >= 100, most of the table will be
read. The optimizer considers reading the table as being faster in a situation
such as this one:

SELECT * FROM accounts WHERE account_no >= 100

6.3 Comparison conditions 203

Chapter 6

In this next example the BETWEEN comparison causes a range scan on
an index because the range of rows is small enough to not warrant a full
table scan, but also not a single record to allow a unique index match on a
single record (even if there is a single record between 10 and 20):

SELECT * FROM accounts WHERE account_no BETWEEN 10 AND 20

As already stated, by no means will all the queries in this chapter be
executed always as stated in this text. The manner in which the optimizer
executes a query, using indexes or a full table scan, is dependent on the
how much of the table is read. Usually a small percentage forces a full table
scan. Other factors also influence the optimizer, such as the presence of
statistics and whether those statistics are up to date (reflecting the true
nature of the data in a table).

6.3.2 LIKE pattern matching

The approach in the query plan used by the optimizer will depend on how
many rows are retrieved and how the pattern match is constructed. This
query finds a single row:

SELECT * FROM country WHERE country like 'Central Africa
Republic'

This next query also retrieves a single row but there is a wildcard pattern
match. A full table scan is performed (even though only a single record is
the result):

SELECT * FROM country WHERE country LIKE 'Central Af%';

For the next query, if there are enough matching rows then the next
query executes a full scan of the table:

SELECT * FROM country WHERE country LIKE '%a%';

A pattern match using a % full wildcard pattern matching character any-
where in the pattern matching string will usually produce a full table scan.

In general LIKE will often read an entire table because LIKE usually
matches patterns which are in no way related to indexes.

204 6.4 Joins

6.3.3 Set membership

Traditionally, IN should be used to test against literal values and EXISTS to
create a correlation between a calling query and a subquery. IN will cause a
subquery to be executed in its entirety before passing the result back to the
calling query. EXISTS will stop once a result is found. IN is best used as a
pre-constructed set of literal values:

SELECT * FROM country WHERE region_id IN (5, 10, 13)

So, when executing a correlation, it is possible that EXISTS is better
than IN because EXISTS stops when it finds a result, and IN reads every-
thing in the subquery every time the subquery is executed. The benefit of
correlation is matching of indexes between calling query and subquery:

SELECT * FROM country WHERE EXISTS

(SELECT country_id FROM region

WHERE region_id = country.region_id)

The benefit of using EXISTS rather than IN for a subquery comparison
is that EXISTS can potentially find much fewer rows than IN. IN is best
used with literal values, and EXISTS is best used as applying a fast access
correlation between a calling and a subquery.

Note: Some database engines do allow correlation between calling query
and subquery using both IN and EXISTS. Some databases only allow cor-
related subqueries using EXISTS.

6.4 Joins

A join is a combination of rows extracted from two or more tables. Joins
can be very specific, for instance an intersection between two tables, or they
can be less specific, such as an outer join. An outer join is a join returning
an intersection plus rows from either or both tables, not in the other table.

6.4 Joins 205

Chapter 6

6.4.1 Efficient joins

What is an efficient join? An efficient join is a join SQL query that can be
tuned to an acceptable level of performance. Certain types of join queries are
inherently easily tuned and can give good performance. In general a join is
efficient when it can use indexes on large tables, or is reading only very small
tables. Moreover any type of join will be inefficient if coded improperly.

6.4.1.1 Intersections

An inner or natural join is an intersection between two tables. In mathe-
matical set parlance an intersection contains all elements occurring in both
of the sets (elements common to both sets). An intersection is efficient
when index columns are matched together in join clauses. Intersection
matching not using indexed columns will be inefficient. In that case you
may want to create alternate indexes. On the other hand, when a table is
very small the optimizer may conclude that reading the whole table is faster
than reading an associated index, plus the table.

In the example below both of the two tables are so small that the opti-
mizer does not bother with the indexes, simply reading both of the tables
fully:

SELECT r.region, c.country FROM region r

JOIN country c USING(region_id)

When joining a very small with a very large table, it is likely the small
table would be read in full and the large table with an index:

SELECT b.branch_name, a.account_no FROM branch b

JOIN accounts USING (branch_no)

The most efficient type of inner join will generally be one retrieving very
specific rows, such as in the next example. Most SQL is more efficient when
retrieving very specific, small numbers of rows:

SELECT r.region, c.country, b.branch_name, a.account_no

FROM region r JOIN country c USING (region_id)

JOIN branch b USING (country_id)

JOIN accounts a USING (branch_no)

WHERE a.account_no = 100

206 6.4 Joins

Note: The above query will cause errors because there is conflict between
table alias names and fields in USING clauses—the ON clause should be
used to specifically state alias.column = alias.column. The query is left this
way for the sake of simplicity in understanding a concept, not to teach you
ANSI SQL syntax. Other queries in this chapter are also pseudocoded in
this manner.

6.4.1.2 Self joins

A self join joins a table to itself. Sometimes self-joining tables can be han-
dled with hierarchical queries. Otherwise a self join is applied to a table
containing columns within each row, which link to each other. One of the
classic examples of a self-join hierarchy is a family tree:

CREATE TABLE familytree(

parent CHAR(40) NULL,

child CHAR(40) NOT NULL

)

Note: The parent is NULL only when the very first ancestor is found.

It is fairly efficient to join the tables using the link between parent and
child—given that both fields are uniquely indexed—and individually (no
composite keys):

SELECT parent.name, child.name FROM familytree parent,
familytree child

WHERE child.parent = parent.child;

Note: An equijoin uses the equals sign (=), and a range join uses range opera-
tors (<, >, <=, >=, and the BETWEEN operator). In general the = operator
will execute an exact row hit on an index and thus use unique index hits. The
range operators will usually require the optimizer to execute index range scans.
BTree (binary tree) indexes, the most commonly used indexes in relational
databases, are highly amenable to range scans. A BTree index is a little like a
limited depth tree and is optimized for both unique hits and range scans.

6.4 Joins 207

Chapter 6

6.4.2 Inefficient Joins

What is an inefficient join? An inefficient join is an SQL query joining
tables, which is difficult to tune, or it cannot be tuned to an acceptable level
of performance. Certain types of join queries are inherently both poor per-
formers and difficult, if not impossible, to tune. Inefficient joins are best
avoided.

6.4.2.1 Cartesian Products

The ANSI join format calls a Cartesian product a cross join. A cross join is
only tunable as far as columns selected match indexes, such that rows are
retrieved from indexes and not tables. A cross join matches every record in
one table, with every record in every other table. The result returns a num-
ber of records equal to a direct multiplication of the number of records in
both tables. So, if there are 5,000 customers and 10,000 accounts, the fol-
lowing query will return 50 million records:

SELECT * FROM customer CROSS JOIN accounts

Note: Cartesian products are meaningless in OLTP databases because the
information returned is not necessarily related. Cartesian products are
sometimes used in data warehouses, or for reports requiring blank rows, or
even for hierarchical materialized view structures. I have never used one
myself. Also, data warehouse fact tables can become extremely large. Some-
times if you read enough data from a fact table, and read too many dimen-
sions at once, the optimizer may simply give up and join the tables as a
Cartesian product before anything else occurs.

6.4.2.2 Outer Joins

Tuning an outer join requires the same approach to tuning as with an inner
join. The only point to note is that if applications require a large quantity of
outer joins, there is likely to be a potential for data model tuning. The data
model could be too granular. Outer joins are probably more applicable to
reporting and data warehouse type applications.

An outer join is not always inefficient. The performance, and to a cer-
tain extent the indication of a need for data model tuning, depends on the
ratio of rows retrieved from the intersecting joins, in comparison to rows

208 6.4 Joins

retrieved outside of intersecting joins. The more rows retrieved from the
intersection the better.

My question is this. Why are outer joins needed? Examine the data
model first to see if outer joins are a result of poor data model design. Outer
joins are common in OLTP environments where orphaned data exists, or
there is too much granularity in design. Outer joins are more appropriate to
reporting, data warehouses, and data warehouse analytical processing.

Outer joins can be left outer joins, right outer joins, or even full outer
joins. This query finds the intersection of the two tables, in addition to all
records in the table on the left, but not in the table on the right:

SELECT * FROM customer LEFT OUTER JOIN accounts USING
(customer_no)

Similarly, a right outer join finds the intersection, plus all records in the
right side table, but not in the left:

SELECT * FROM customer RIGHT OUTER JOIN accounts USING
(customer_no)

And a full outer join is simply a combination of intersection, left outer
join, and right outer join:

SELECT * FROM customer FULL OUTER JOIN accounts USING
(customer_no)

Note: A full outer join is not the same as a Cartesian product because the
full outer join does actually include an intersection and doesn’t simply join
everything with everything else, without any matching whatsoever.

Note: Excessive use of outer joins is possibly indicative of an overgranular
data model structure. However, it could also indicate orphaned child table
rows or the opposite: redundant static data. Cleaning out redundant or
orphaned rows can sometimes help performance immensely by negating the
need for complex and expensive outer joins on what is really useless data.

6.4 Joins 209

Chapter 6

6.4.2.3 Anti-joins

An anti-join is always a problem. It can be useful from a business perspec-
tive but an anti-join simply does the opposite of a requirement. The result
is that the optimizer must search for everything not meeting a condition.
An anti-join will generally always produce a full table scan, as seen in the
following example. Again the Rows and Bytes columns are left as overflow-
ing showing the possible folly of using anti-joins:

SELECT * FROM customer c JOIN accounts a

WHERE a.customer_no != c.customer_no

Note: An anti-join might be so completely contrary to proper query tuning
that it might even be a worse thing than a Cartesian product.

6.4.3 How to tune a join

So how can a join be tuned? There are a number of factors to consider:

� Use equality first.

� Use range operators where equality does not apply.

� Avoid use of negatives in the form of != or NOT.

� Avoid LIKE pattern matching.

� Try to retrieve specific rows, and in small numbers.

� Filter from large tables first to reduce the number of rows joined.
Retrieve tables in order from the most highly filtered table down-
wards, preferably the largest table, which has the most filtering
applied.

Note: The most highly filtered table is the largest table having the smallest
percentage of its rows retrieved.

� Use indexes wherever possible except for very small tables.

� Let the optimizer do its job.

210 6.5 Using subqueries for efficiency

� Specialized objects and functionality such as materialized views and
query rewrite can be very useful, both for OLTP databases and data
warehouses.

6.5 Using subqueries for efficiency

Tuning subqueries is a highly complex topic. Quite often subqueries can be
used to partially replace subset parts of very large mutable joins, with possi-
ble enormous performance improvements. This I have personally seen in
highly normalized data models utilizing higher normal forms beyond 3rd

normal form.

6.5.1 Correlated versus non-correlated subqueries

A correlated subquery allows a correlation between a calling query and a
subquery. A value for each row in the calling query is passed into the sub-
query to be used as a constraint by the subquery. A non-correlated or regu-
lar subquery does not contain a correlation between calling query and
subquery. The subquery is executed in its entirety, independently of the
calling query, for each row in the calling query. Tuning correlated subque-
ries is easier because values in subqueries can be precisely searched for in
relation to each row of the calling query.

A correlated subquery will access a specified row or set of rows for each
row in the calling query. Depending on the circumstances, a correlated sub-
query is not always faster than a non-correlated subquery. Use of indexes or
small tables inside a subquery, even for non-correlated subqueries, does not
necessarily make a subquery perform poorly.

6.5.2 IN versus EXISTS

We have already seen commentary on the use of IN and EXISTS in the sec-
tion on comparison conditions. We know already that IN is best used for
small tables or lists of literal values. EXISTS is best used to code queries in a
correlated fashion, establishing a link between a calling query and a sub-
query. To reiterate—it is important to remember that using EXISTS is not
always faster than using IN.

6.5.3 Nested subqueries

Subqueries can be nested where a subquery can call another subquery, and
the subquery can yet again call another subquery (recursion). The following

6.5 Using subqueries for efficiency 211

Chapter 6

example contains a query calling a subquery, which in turn calls another
subquery, and so on:

SELECT * FROM region WHERE region_id IN

(SELECT region_id FROM country WHERE country_id IN

(SELECT country_id FROM branches WHERE branch_no IN

(SELECT branch_no from accounts)))

A query like the above query can sometimes be more efficient than its
equivalent join query, particularly for a highly normalized data model.
Depending on the relational database, the data model, statistics, and some
other factors—EXISTS may be faster than IN because EXISTS allows more
efficient correlation between calling query and subquery:

SELECT * FROM region WHERE region_id EXISTS

(SELECT region_id FROM country WHERE country_id EXIST

(SELECT country_id FROM branches WHERE branch_no EXISTS

(SELECT branch_no from accounts)))

Nested subqueries can be difficult to tune but can often be a viable, and
sometimes highly effective tool for the tuning of mutable complex joins,
with three and sometimes many more tables in a single join. There is a
point when there are so many tables in a join that the optimizer can become
less effective. However, using nested subqueries, it might be easier to tune a
large join query because one can tune each subquery independently of the
rest of the entire join query. This is why a calling query plus subquery com-
bination is often known as a semi-join.

Note: Subqueries are also known as semi-joins because the calling query
does not return any information from a subquery (it is only semi- or par-
tially joined).

6.5.4 Advanced subquery joins

For very large complex mutable joins it is often possible to replace joins or
parts of joins with subqueries. Very large joins can benefit the most because
they are difficult for programmers to decipher, and thus just as difficult to
tune by either human hand or optimizer. Huge joins can be made more
tunable in a number of ways:

212 6.5 Using subqueries for efficiency

� A table in a join not returning a column in the primary calling query
can be removed from the join and simply checked using a subquery.
The table is not really part of the join so why retain it in the data
being returned for display? This join query:

SELECT r.region_id, r.region FROM region r

JOIN country c ON(c.region_id = r.region_id)

can be changed to:

SELECT r.region_id, r.region FROM region r WHERE EXISTS

(SELECT region_id FROM country

WHERE region_id = r.region_id)

� A SELECT statement FROM clause can contain nested subqueries,
breaking up joins much in the way that a Transact SQL procedure
would use nested loops. This gives better control to programmers,
allowing breaking up of queries into simplified parts. And a FROM
clause subquery is not actually a semi-join (returns no columns)
because it can return columns. This is why a FROM clause subquery
is known as an inline view. An inline view is a little like a view, just
inline, or within a query. This join query:

SELECT r.region, c.country FROM region r

JOIN country c ON(c.region_id = r.region_id)

can be changed to:

SELECT r.region FROM region r,

(SELECT country FROM country

WHERE region_id = r.region_id)

� An ORDER BY clause is always applied to a final result and should
not be included in subqueries if possible. Why sort a subquery when
sorting is usually required by the final result? The final result is
returned by the query returning the rows and columns for display. A
calling query does not need to see a subquery in sorted order because
no human eyes are looking at its results; only the calling query is
using the results of the subquery.

6.6 Specialized metadata objects 213

Chapter 6

� DISTINCT will always cause a sort and is not always necessary.
Sometimes a parent can be used where a unique value is present.

� When testing against subqueries, retrieve, filter, and aggregate on
indexes and not against tables. Indexes usually offer better performance.

� Do not be too concerned about full table scans on very small static
tables.

6.6 Specialized metadata objects

A synonym is as its name implies: it is another name for a known object.
Synonyms are typically used to reference tables between schemas or to all
users in general. Apart from the obvious security issues, there can be poten-
tial performance problems when overusing synonyms in highly concurrent
environments.

Don’t create too many synonyms. With enormous numbers of database
objects, a relational database just has more stuff to manage. Metadata
objects—such as tables, views, and synonyms—all have very high memory
concurrency requirements. In short, they are used a lot. For example, a busy
table has its table structure accessed far more frequently than its entire
record set, especially if single records are retrieved. Obviously more memory
can be allocated to the database (or added to hardware), but then more
memory is simply more stuff for the server to manage in other respects.

Overuse of objects like synonyms and views is often a development
practice, sensible for the purpose of hiding or burying complexity. This
approach is highly effective for organizing programming code and database
structure. However, it can often lead to complexity and performance prob-
lems in production.

Like synonyms, views are application friendly and security friendly and
can be used to reduce, hide, or bury complexity. This is particularly the case
in development environments. In general, views are not conducive to good
performance because they are often overused, or even misused.

A view is a logical overlay on top of one or more tables. A view is cre-
ated using an SQL statement. A view does not contain data itself. The big-
gest problem with a view is that whenever it is queried, its defining SQL
statement is re-executed. It is common in applications for a developer to
query a view and add additional filtering. The potential results are views
containing large queries where programmers will then execute small row
number retrievals from the view. The result is that two queries are exe-

214 6.7 Procedures in Transact SQL

cuted, commonly with the view query selecting all the rows in the underly-
ing table or join.

The performance issue is not that things like view and synonyms are
bad things, but that they are often inappropriately used, or just used far
too much.

A materialized view is not the same thing as a view. Don’t confuse the
two. A materialized view materializes data, in that it makes a copy of data.
So, when a materialized view is read, underlying tables are not read, but
the copy is read. This reduces conflict between OLTP application reading
tables, and reporting or data warehousing reading all the data copied to a
materialized view. Heavy I/O activity is very bad for OLTP database per-
formance.

SQL Server does not allow explicit creation of, or even direct access to,
materialized views. In SQL Server, materialized views are all internalized
within analysis services and cannot be used outside of the context of the
analytical processing engine. In other words, you can’t explicitly build a
materialized view, you can’t explicitly access a materialized view (using a
SQLCMD), and you can’t force the optimizer to use or ignore query
rewrite. In essence, materialized views are utilized in SQL Server 2005 but
completely contained within Analysis Services.

Beware of including binary objects, or large objects, into queries. Some-
times it is most efficient to store binary objects external to a database, and
store on a reference in the database itself.

6.7 Procedures in Transact SQL

Transact SQL and other programming languages (using the .NET Frame-
work) allow for a programmer to have more control over how database
access code is written. If the coder is skilled, then it is possible that Transact
SQL database access stored procedures are not only easier to write and eas-
ier to tune, but perhaps even faster to execute because only so much can be
done to tweak an absurdly complex query.

There are a number of reasons for resorting to stored procedures in
Transact SQL:

� A stored procedure may not provide better performance but can
allow a breakdown of SQL coding complexity. Breaking down com-
plexity can allow easier tuning of SQL statements, giving more pre-

6.7 Procedures in Transact SQL 215

Chapter 6

cise and more easily decipherable programming control—to the
programmer.

� Stored procedure coding is stored in the database server and provides
centralized control and potential performance increases. It also pre-
vents multiple copies of SQL code with application code or worse on
client machines. Stored procedure code is executed on the server. Exe-
cution on a database server reduces network traffic. The result is
improved performance. However, centralization has its limits where
the database server can become top-heavy and performance can actu-
ally slow.

� There are some situations where it is impossible to code SQL code
using ANSI SQL queries and DML (Data Manipulation Language)
statements alone. This is becoming less frequent as basic ANSI SQL
syntax becomes more and more sophisticated.

This Page Intentionally Left Blank

217

7
What Is Query Optimization?

When we execute a query, either by typing in a Transact-SQL statement or
by using a tool such as Microsoft Access, it is highly likely we will require
that rows be read from one or more database tables. Suppose we require
that SQL Server performs a join of two tables: table A containing a dozen
rows, and table B containing a million rows. How should SQL Server access
the required data in the most efficient manner? Should it access table A
looking for rows that meet the selection criteria and then read matching
rows from table B, or should it access table B first? Should it use indexes, if
any are present, or perform a table scan? If indexes are present and there is a
choice of index, which one should SQL Server choose?

The good news is that SQL Server contains a component known as the
query optimizer, which will automatically take a query passed to it and
attempt to execute the query in the most efficient way. The bad news is that
it is not magic, and it does not always come up with the best solution. A
database administrator should be aware of the factors that govern query
optimization, what pitfalls there are, and how the query optimizer can be
assisted in its job. Database administrators who know their data well can
often influence the optimizer with the judicious use of indexes to choose
the most efficient solution.

What do we mean by efficient in the context of the query optimizer?
Basically, the query optimizer is looking to minimize the number of logical
reads required to fetch the required data. The query optimizer is the SQL
Server AutoRoute Express, choosing the best route to the data. Unfortu-
nately, the query optimizer doesn’t show you the golf courses on the way!

The query optimizer’s main task, therefore, is to minimize the work
required to execute a query, whether it is a query that retrieves data from a
single table or a query that retrieves data from multiple tables participating
in a join.

218 7.2 The steps in query optimization

Although we have referred only to queries, the query optimization pro-
cess is necessary for SELECT, INSERT, UPDATE, and DELETE Transact-
SQL statements. This is because the UPDATE and DELETE Transact-
SQL statements will often contain a WHERE clause, and the INSERT
statement may contain a SELECT clause.

7.1 When is a query optimized?

When a query is submitted to SQL Server, various phases of processing
occur. First of all, the query is parsed—that is, it is syntax checked and con-
verted into a parsed query tree that the standardization phase can under-
stand. The standardization phase takes the parsed query tree and processes
it to remove redundant syntax and to flatten subqueries. This phase essen-
tially prepares the parsed query tree for query optimization. The output of
this phase is a standardized query tree. This phase is sometimes known as
normalization.

The query optimizer takes the standardized query tree and investigates a
number of possible access strategies, finally eliminating all but the most effi-
cient query execution plan. In order to formulate the most efficient query
execution plan, the query optimizer must carry out a number of functions.
These are query analysis, index selection, and join order selection.

Once the most efficient query execution plan is produced, the query
optimizer must translate this into executable code that can execute under
Windows operating systems. This code can then access the appropriate
indexes and tables to produce the result set.

Figure 7.1 shows a simplified diagram of how query optimization takes
place. In reality the process is much more complex but this gives us a
basic idea.

How does the query optimizer work out the most efficient query execu-
tion plan? We will look at the way it does this now. We will see that it takes
in the information available to it in the form of the query itself, indexes and
key distribution statistics, size of the table, and rows per page, and then cal-
culates the logical read cost given a possible access path.

7.2 The steps in query optimization

The query optimization phase is the phase we will concern ourselves with in
this chapter. This phase can be broken down into a number of logical steps,
as follows:

7.3 Query analysis 219

Chapter 7

1. Query analysis

2. Index selection

3. Join order selection

Let us discuss each step in sequence.

7.3 Query analysis

The first step the query optimizer performs during the query optimiza-
tion phase is query analysis. In this step the query optimizer examines the
query for search arguments (SARGs), the use of the OR operator, and
join conditions.

7.3.1 Search arguments

A search argument is the part of a query that restricts the result set. Hope-
fully, if indexes have been chosen carefully, an index can be used to support
the search argument. Examples of search arguments are as follows:

Figure 7.1
The phases of query

processing

220 7.3 Query analysis

account_no = 7665332

balance > 30

lname = 'Burrows'

The AND operator can be used to connect conditions, so another exam-
ple of a valid search argument would be as follows:

balance > 30 AND lname = 'Burrows'

Examples of common operators that are valid in a search argument are
=, >, <, , and . Other operators such as BETWEEN and LIKE are also valid,
because the query optimizer can represent them with the common opera-
tors listed above. For example, a BETWEEN can always be represented as
AND. For example:

balance BETWEEN 1000 AND 10000

Becomes:

balance >= 1000 AND balance <= 10000

A LIKE operator can always be represented as AND <. For example:

lname LIKE 'Burr%'

Becomes:

lname >= 'Burr' AND lname < 'Burs'

The expression balance BETWEEN 1000 AND 10000 is not equiva-
lent to balance BETWEEN 10000 AND 1000, because the expression >=
10000 AND <= 1000 finds nothing between two sensible values. The query
optimizer will not detect the mistake and switch the values.

There are a number of expressions that are not considered to be search
arguments. The NOT operator is an example:

NOT IN ('CA', 'NH', 'TX')

customer_no <> 9099755

7.3 Query analysis 221

Chapter 7

balance <> 78000

Another example of this is the use of NOT EXISTS.

NOT is not considered to be a search argument, because it does not
limit the search. Whereas account_no = 100,000 specifies a single value in a
table that may potentially be efficiently retrieved using an index,
account_no <> 100,000 will cause SQL Server to look at every row in the
table to ensure that the account_no column does not contain this value.

There are other expressions that are not considered to be search argu-
ments. If a column is used instead of an operator, the expression is not con-
sidered to be a search argument. For example:

loan < loan_agreed

How can SQL Server use such an expression to restrict the result set? It
cannot, since the loan_agreed value is not known until the row is read; until
it is known, it cannot be used to compare against the loan column. This
will normally result in a table scan or index scan if the query is covered.

Another example of an expression that cannot be considered for query
optimization is one that involves mathematics or functions. For example:

balance * 1.175 > 10000

UPPER(lname) = 'SHARMAN'

Against my database, using mathematics as in the first example, the
query optimizer chose to use a non-clustered index on balance as long as
the number of rows returned was low. The query optimizer had done the
math and estimated correctly the number of rows returned whose balance
would be greater than 10,000/1.175. However, using a function such as
CEILING() caused a table scan to be performed, as in:

SELECT * FROM accounts WHERE CEILING(balance) = 100

String functions, as in the previous example using the UPPER function,
will cause the query optimizer to resort to a table scan. A number of com-
mon string functions cause a table scan to be performed—for example,
LEFT().

222 7.3 Query analysis

The bottom line is that using a function or expression on the left side of
the operator will cause the query optimizer to use a table scan. In short,
don’t place functions onto table columns if you can avoid it. Apply func-
tions to literal values, not table columns. That way the filter may be able to
use an index on the table column. This was already covered in Chapter 6 so
further explanation is unnecessary. This is one reason why it is very impor-
tant to check the query execution plan that the query optimizer has pro-
duced—it may not be what you expect! We’ll see how to check the query
execution plan shortly.

As long as we have just a column on the left side of an appropriate oper-
ator, we have a search argument. We can often compare the column with an
expression, so that the query optimizer will be able to use the distribution
steps in the index key distribution statistics for the index rather than just
the density values. Distribution statistics will be covered shortly. This is true
as long as the expression can be evaluated before the query execution
phase—in other words, before the query actually runs. An example of such
a search argument would be as follows:

monthly_yield = items_processed/12

yearly_amount = daily_rate * 365

However, consider the following query:

sell_by_date > DATEADD (DAY, -10, GETDATE())

The query optimizer will choose a table scan. Again, this is common
when a function is used. So check the query execution plan carefully!

How can we make sure that the index is used? There are various tech-
niques, which we will discuss shortly. We could put the query in a stored
procedure and pass the result of the function as a parameter. We may be
able to create a computed column on the table and index it. Depending on
what we want to achieve, this may or not make sense. However, we can only
index a computed column if the computation is deterministic. This was dis-
cussed in the previous chapter. The function GETDATE() is not determin-
istic. We can also force the query optimizer to use an index. This technique
is discussed later but should be used with care.

If the query optimizer cannot evaluate the expression until the query
runs—that is, until after the query optimization phase has completed, then

7.3 Query analysis 223

Chapter 7

SQL Server has no chance of making use of distribution steps. A classic
example of this is where variables are used:

DECLARE @bal MONEY

SELECT @bal = 9990.23

SELECT * FROM accounts WHERE balance > @bal

In the BankingDB database, the previous example used a table scan
instead of the non-clustered index on balance. If we do not use a variable,
the non-clustered index is used, as follows:

SELECT * FROM accounts WHERE balance > 9990.23

This is different from stored procedure parameters, which will be dis-
cussed later in this chapter.

7.3.2 OR clauses

The query optimizer also checks the query for ORs. The OR clause links
multiple search arguments together. For example, we might have a query
that looks like the following:

SELECT * FROM customers

OR WHERE age > 40

OR height < 2

OR weight < 200

OR state = 'NH'

OR city = 'Manchester'

Any row matching any of the above conditions will appear in the result
set. A customer will be displayed who lives in the city of Manchester in the
United Kingdom or who lives in Nashua in New Hampshire. In other
words, it is likely that many rows in the table will meet one or more of these
criteria.

Compare the previous query with the following query:

SELECT * FROM customers

WHERE age > 40

AND height < 2

224 7.3 Query analysis

AND weight < 200

AND state = 'NH'

AND city = 'Manchester'

The number of rows in the table that meet all the criteria is likely to be
far less. The ANDs restrict the result set, whereas the ORs widen it. For this
reason a query containing ORs is handled in a particular way, which will be
discussed later in the chapter. Because of this, the query optimizer looks for
OR clauses in the query analysis step.

There may be OR clauses in the query that are hiding. Take the follow-
ing query, for example:

SELECT lname, fname FROM employees

WHERE state IN ('CA', 'IL', 'KS', 'MD', 'NY', 'TN', 'TX')

At first glance there are no ORs in this query. The query optimizer sees
this, however, as a number of OR clauses, as follows:

SELECT lname, fname FROM employees

WHERE state = 'CA'

OR state = 'IL'

OR state = 'KS'

OR state = 'MD'

OR state = 'NY'

OR state = 'TN'

OR state = 'TX'

7.3.3 Join clauses

After looking for search arguments and OR clauses the query optimizer
looks for any join conditions. When more than one table is processed in a
query, a join clause is usually found. The join clause can be in the WHERE
clause or in the ON clause of the SELECT statement if ANSI standard join
clauses are used. Here is an SQL Server join example:

SELECT fname, lname FROM customers, accounts

WHERE customers.customer_no = accounts.customer_no

AND balance > 10000

7.4 Index selection 225

Chapter 7

Here is an ANSI SQL join example:

SELECT fname, lname FROM customers

INNER JOIN accounts ON customers.customer_no =

 accounts.customer_no

WHERE balance > 10000

The following ANSI standard join clauses have been supported from
SQL Server 2000: JOIN, CROSS JOIN, INNER JOIN, LEFT OUTER
JOIN, RIGHT OUTER JOIN, FULL OUTER JOIN. Sometimes a table
can be joined with itself. This is known as a self join, or reflexive join.
Although only one table is being accessed, the table is mentioned in the
query more than once and so a join clause is used. The classic self join is the
Employees table containing a column, supervisor_id, that holds a value
found in the employee_id column elsewhere in the table. In other words, a
supervisor is an employee. The Employees table might be defined as follows:

CREATE TABLE employees

(

 employee_id CHAR(8),

 lname CHAR(10),

 fname CHAR(10),

 supervisor_id CHAR(8)

)

A query to retrieve the last name of the employee and the last name of
the supervisor would be as follows:

SELECT e1.lname AS employee, e2.lname AS supervisor

FROM employees e1

 INNER JOIN employees e2 ON e1.supervisor_id =
e2.employee_id

7.4 Index selection

Having identified the search arguments in the query, the next step the
query optimizer performs during the query optimization phase is index
selection. In this step the query optimizer takes each search argument and
checks to see if it is supported by one or more indexes on the table. The
selectivity of the indexes is taken into consideration, and, based on this, the

226 7.4 Index selection

query optimizer can calculate the cost of a strategy that uses that index in
terms of logical reads and CPU. This cost is used to compare strategies that
use different indexes and a strategy that uses a table scan.

7.4.1 Does a useful index exist?

To obtain information on the indexes present on a table and their charac-
teristics, SQL Server can check the sysindexes system table. From the sysin-
dexes table the query optimizer can quickly establish the indexes present on
the table by checking the rows that have a value in the id column equal to
the object ID of the table (as defined in the sysobjects system table) and an
indid column value > 0 and < 255. Other columns in the sysindexes table
help the query optimizer determine on which columns the index is based.

The query optimizer will look for an index based on the same column
as the search argument. If the index is a composite index, the query opti-
mizer determines if the first column in the index is specified in the search
argument.

If a search argument has no matching index, then no index can be used
to support the search argument and so the query optimizer will look for
indexes supporting other search arguments. If it is the only search argu-
ment, then a table scan will be performed.

7.4.2 How selective is the search argument?

Suppose the following query is presented to the query optimizer:

SELECT account_no FROM accounts

WHERE branch_no = 1005

AND balance > 5000

AND customer_no BETWEEN 10000 AND 110000

If there are indexes present on the branch_no, balance, and
customer_no columns, how can the query optimizer decide which indexes
are the most efficient to use—that is, which indexes will use the least num-
ber of logical reads and CPU to return the data? The query optimizer may
choose to use no indexes, since a table scan is estimated to be a more effi-
cient access mechanism, or it may choose to use one or more indexes.

The query optimizer has a number of mechanisms by which it can
determine this information. The most accurate method is to use statistical
information available in the key distribution statistics associated with the

7.4 Index selection 227

Chapter 7

index. We will look at these distribution statistics shortly. If the key distri-
bution statistics do not exist, the query optimizer applies a weighting to
each operator. For example, the = operator has a weighting of 10 percent,
which means that the query optimizer will assume that 10 percent of the
rows in the table will be returned.

The approximate weightings of some common operators are shown in
Table 7.1.

As you might imagine, these weightings are very general estimates and
can be wildly inaccurate, so it is always best if the query optimizer is able to
use the distribution statistics associated with an index.

If we have a unique index matching the search argument, then the query
optimizer knows immediately the number of rows returned by the = opera-
tor. Because of the unique index, the query optimizer knows that at most
one row can be returned (of course, zero rows could be returned), so this
figure is used rather than the 10 percent weighting.

7.4.3 Key distribution statistics

Key distribution statistics are usually created when an index is created. The
one exception to this is when an index is created on an empty table; other-
wise, the index has key distribution statistics held for it. Note that the
indexes on a table that has been truncated will have no key distribution sta-
tistics held for them. From now on we’ll just refer to key distribution statis-
tics as index statistics. We cannot just refer to them as statistics, since this is
ambiguous. Why? Because a little later on we’ll meet another type of distri-
bution statistics known as column statistics.

Where are these index statistics held? They are held as a column in the
sysindexes system table for the relevant row representing the index whose
index statistics we wish to keep. This column is named statblob and is an

Table 7.1 Weightings of common operations

Operator Weighting

= 10%

< 33%

> 33%

BETWEEN 12%

228 7.4 Index selection

IMAGE datatype. Since it is an IMAGE datatype, there is plenty of room
to hold lots of statistics, if required, although SQL Server keeps the number
of statistics held to a fairly small but significant value. In my experience, for
most indexes, the number of samples held in this column is in the low hun-
dreds, typically about 300.

If this column is empty (holds NULL), then there are no index statistics
associated with the index.

The statblob column holds index statistics information for the index to
allow the query optimizer to quickly estimate the proportion of rows that
will be returned by a search argument. Suppose we execute the following
query on the Accounts table, which holds information for 25,000 accounts:

SELECT account_no FROM accounts WHERE balance > 9999

Will 25,000 rows be returned, or 1,000 rows, or 25 rows, or 0 rows? The
query optimizer needs to know this information so it can decide whether a
non-clustered index on the balance column should be considered interest-
ing or whether a table scan is likely to be more efficient. Remember that
returning a range of rows using a non-clustered index is going to result in a
request for a data page (logical read) for every row returned. If the query
optimizer can accurately estimate how many rows are likely to be returned,
it knows with reasonable accuracy how many data page requests will be
needed, and, therefore, it can calculate the cost of the query and compare
this with the cost of a table scan.

In the BankingDB database there are, on average, less than five accounts
that have a balance greater than 9,999, and so an indexed access should be
more efficient than a table scan. But how can the query optimizer know
this? It could count the number of rows that satisfied the search argument
before it actually executed the query, but that would defeat the object of the
exercise!

This is where the statblob column comes to the rescue. It holds a series
of samples across the index key range that the query optimizer can check.
Based on these samples the query optimizer can quickly estimate the per-
centage of the rows in the table that will be returned by the search argu-
ment using that index.

The statblob column actually holds a number of key values. This num-
ber is a function of the key size and the number of rows in the table.
Although, in theory, the statblob column could hold up to 2 GB of key dis-
tribution statistics for an index, only a very large table would need that, and

7.4 Index selection 229

Chapter 7

the effort in reading the index statistics would be far greater than the data.
Of course, in practice, only a small amount of data space is needed in the
statblob column, since few key values are actually held. For example, a non-
clustered index on the account_no column in the Accounts table, which is a
four byte (integer) key, has index statistics information consisting of 200
steps. By comparison, a non-clustered index on the account_notes column,
which is a CHAR(400), has index statistics information consisting of 74
steps. The more steps, the more accurate the statistics, so, in this respect at
least, it is better to have a smaller key value.

Suppose we have an index key that is an integer, such as the account_no
column in our Accounts table. The initial key value found in the index is
the first one to be sampled and stored in the statblob column, so we will
have the statblob column contents shown in Figure 7.2.

We can see that the number of distribution steps is typically going to be
less than the number of key values stored in the statblob column. Apart
from the choice of key size we cannot influence the number of key values
held. However, as we shall see shortly, we can choose how much of our data
is actually sampled in order to generate our index statistics.

What about composite indexes? SQL Server only stores key values for
the first column. This means that it is better to choose the most selective
column as the first column of an index—that is, the column with the least
number of duplicate values. Of course, the first column of the index needs
to be specified in the query, and choosing the most selective column will
need to be done with this in mind.

I find that many database designers choose the key order in a composite
index starting with the first column being the least selective, the next col-
umn being the next least selective, and so on, even if the query is going to
specify all of the columns in its WHERE clause. Why is this? Usually it is
because it is the most natural approach to take.

Figure 7.2
Distribution steps

and keys in a
statblob column

230 7.4 Index selection

Consider a three-column composite index on the columns region, state,
city. There is a natural hierarchy here—cities belong to states, which in turn
belong to regions. There are few regions, more states, and many more cities.
It’s natural to create the index in the region, state, city column order just as
you would in a report. But we can see that if we do this, we are going to
populate the statblob column with few distinct values. This could result in
the query optimizer choosing a table scan to execute the following state-
ment when the non-clustered index would have been a better choice.

SELECT qty FROM sales

WHERE region = 'North'

AND state = 'CO'

AND city = 'Denver'

As we saw in Chapter 5, we can use the utility DBCC
SHOW_STATISTICS to investigate index statistics. The format of this
DBCC statement is as follows:

DBCC SHOW_STATISTICS (table_name, target)

The target is an index name or a statistics collection name. We will talk
about statistics that are not index statistics later. For example, to show the
index statistics on the non-clustered index nci-Balance, the following code
segment would be used:

DBCC SHOW_STATISTICS (accounts, nciBalance)

Statistics for INDEX ' nciBalance'.

Updated Rows Rows Sampled Steps Density Average key length

Oct 20 2000 5:50PM 25000 25000 106 4.0426468E-5 8.0

All density Average Length Columns

4.0471085E-5 8.0 balance

RANGE_HI_KEy RANGE_ROWS EQ_ROWS DISTINCT_RANGE_ROWS AVG_RANGE_ROWS

.9500 0.0 1.0 0 0.0

88.1000 237.0 2.0 235 1.0085106

237.0600 357.0 1.0 353 1.0084746

282.3600 127.0 1.0 127 1.0

316.1400 107.0 2.0 107 1.0

7.4 Index selection 231

Chapter 7

413.7800 225.0 2.0 224 1.0044643

699.9500 735.0 2.0 729 1.0082304

723.5500 64.0 2.0 64 1.0

:

:

9696.2000 383.0 1.0 379 1.0078948

9739.9200 126.0 2.0 124 1.008

9998.5700 603.0 1.0 596 1.0100503

9998.8500 0.0 1.0 0 0.0

The index statistics shown above are associated with the non-clustered
index based on the balance MONEY data type column in the Accounts
table. The index statistics indicate that there are 111 steps and that 25,000
rows from the Accounts table were sampled to create these statistics. There
are 25,000 rows in the Accounts table in total, so, in fact, all the rows were
sampled. This is expected behavior when a CREATE INDEX statement
generates the index statistics. Later we will see that other mechanisms to
update the key distribution statistics will not necessarily sample all the rows.

If we look at the All Density value, we can see that it is 4.0471085E-5.
The density is the average fraction of duplicate index key values in the
index. Since the density is the reciprocal of the count of unique values in
the index key, the count of unique values in our non-clustered index must
be 1 / 4.0471085E-5, which yields 24,709 unique values, which is correct
as checked with a SELECT DISTINCT (balance) query. Multiplying the
total count of rows in the table by the index density, 4.0465478E-5, we can
obtain the likely number of rows hit by specifying a given value, in our
example:

row hits = 25000 * 4.0471085E-5 = 1.011777125

This means that a query specifying balance = value would usually return
one row.

Note: Just to remind us of the terminology, this is an example of high selec-
tivity and low density.

The output from DBCC SHOW_STATISTICS needs a few more
words of explanation. The Density value, 4.0426468E-5, is close to the All
Density value of 4.0471085E-5. The difference is due to the fact that the
Density value considers non-frequent values. These are values that appear
only once in a step. If a value appears more than once, it is considered to be

232 7.4 Index selection

a frequent value. The All Density value includes frequent values. The Aver-
age Length is the average length of the index key. If the index were a com-
posite index, there would be an entry for the first column, first plus second
column, and so on. The Average Key Length is the average length of the
total composite index key (including a clustered index key pointer if there is
a clustered index on the table). The average in this context is necessary
because columns in the key can be variable-length datatypes.

The next section of data contains the sample steps themselves. Remem-
ber that they only apply to the first column in the key. The column
RANGE_HI_KEY is the upper bound value of a histogram step—that is,
the highest value in the step. The first step is the lowest value for the col-
umn in the table. The column RANGE_ROWS is the number of rows
from the sample that fall within a histogram step, excluding the upper
bound. By definition, this must be zero in the first sample. We can see that
the seventh step contains the value 735 and that the values are quite varied
across other steps. The column EQ_ROWS is the number of rows from the
sample that are equal in value to the upper bound of the histogram step. In
our data this varies between 1.0 and 2.0. For our seventh step this is 2.0.

The column DISTINCT_RANGE_ROWS is the number of distinct
values within a histogram step, excluding the upper bound. For our seventh
step there are 729 distinct values within the step, excluding the value
699.9500 (the upper bound). Finally, the column AVG_RANGE_ROWS
is the average number of duplicate values within a histogram step, exclud-
ing the upper bound. This is defined as:

(RANGE_ROWS / DISTINCT_RANGE_ROWS

 for DISTINCT_RANGE_ROWS > 0)

For our seventh step this value is 1.0082304.

To check out some of these column values let us focus on the seventh
step. Suppose we execute the SQL statement:

SELECT COUNT (balance) FROM accounts

 WHERE balance BETWEEN 413.7800 AND 699.9500

This SELECT specifies the two RANGE_HI_KEY values: for our sev-
enth step and the one before. We find that 739 rows are returned. This is
because the BETWEEN operator is inclusive, but the definition of the
RANGE_ROWS column excludes the upper bound; the upper bound of

7.4 Index selection 233

Chapter 7

the previous sample will not be included in the RANGE_ROWS column.
So we need to rewrite the query, as follows:

SELECT COUNT (balance) FROM accounts

 WHERE balance > 413.7800 AND balance < 699.9500

We now find that 735 rows are returned, which is the correct value,
matching the RANGE_ROWS value. Suppose we execute the following
query:

SELECT COUNT (balance) FROM accounts WHERE balance=

699.9500

We find that the value 2 is returned, which agrees with the value in the
EQ_ROWS column for this step. Finally, let us execute this statement:

SELECT COUNT (DISTINCT (balance)) FROM accounts

 WHERE balance > 413.7800 AND balance < 699.9500

This returns 729, which agrees with the value in the DISTINCT_
RANGE_ROWS column for this step. We can then calculate
RANGE_ROWS / DISTINCT_RANGE_ROWS, which is 735/729, giving
1.0082304. This agrees with the value in the AVG_RANGE_ROWS column
for this step.

7.4.4 Column statistics

As well as maintaining statistics on indexed columns—to be precise, the
first column of an index key—SQL Server will optionally maintain statis-
tics on non-indexed columns. This includes columns in a composite index
key other than the first. As long as the database option auto create statistics
is set to on, if a column on which index statistics are not being maintained
is referenced in a WHERE clause, statistics will be gathered if it would help
the query optimizer.

This behavior can be suppressed by setting the database option auto cre-
ate statistics to off. If this option is set to off, the fact that the query opti-
mizer would like statistics information for the column is usually made
obvious by a warning in the estimated query execution plan output in the
Query Analyzer. A Missing Column Statistics event will also be evident in

234 7.4 Index selection

the SQL Server Profiler if it is being traced. If auto create statistics is set to
on, an Auto Stats event will occur.

There are many occasions when SQL Server will automatically create
column statistics. Basically, it will do so if they are missing and the query
optimizer would really like to have them. Here is an example of such an
occasion. Suppose we have created a non-clustered index with a composite
key consisting of the customer_no and balance columns. We now execute
the following query:

SELECT account_no FROM accounts

WHERE customer_no = 100

AND balance = 100

The query optimizer knows the statistical distribution of key values in
the customer_no column but not in the balance column. It will create sta-
tistics for this column because they are helpful in finding the most efficient
query plan.

To find the column statistics that have been created automatically by the
query optimizer, look for statistics with names similar to _WA_Sys_
balance_0519C6AF. To display statistics use the system stored procedure
sp_helpstats or Tools Manage Statistics in the Query Analyzer.

Of course, you can manually create column statistics. Use Tools Manage
Statistics in the Query Analyzer or the CREATE STATISTICS Transact-SQL
statement. Alternatively, the system stored procedure sp_createstats can be
used to create single-column statistics for all eligible columns for all user
tables in the current database.

7.4.5 Updating index and column statistics

When do index and column statistics get updated? Statistics are not auto-
matically updated when transactions that change the index commit. This
would cause the statblob column to become a bottleneck. The statblob col-
umn is accurate when it is first constructed as part of the index creation
(assuming there is data in the table at that time). After that, on a volatile
index, the key distribution statistics will diverge from reality. It is the
responsibility of the database administrator to ensure that the key distribu-
tion statistics are updated to reflect reality, and there are various ways to
achieve this. The most common method is to use the Transact-SQL state-
ment UPDATE STATISTICS. The format of this statement is as follows:

7.4 Index selection 235

Chapter 7

UPDATE STATISTICS table

[

 index

| (statistics_name[,...n])

]

[

WITH

[

 [FULLSCAN]

| SAMPLE number {PERCENT | ROWS}]

| RESAMPLE

]

 [[,] [ALL | COLUMNS | INDEX]

 [[,] NORECOMPUTE]

]

If both the table name and index name are specified, the statistics for
that index are updated. If only the table name is specified, the statistics for
all indexes present on the table are updated. The same is true for column
statistics, which are referred to by statistics_name. The FULLSCAN and
SAMPLE number {PERCENT | ROWS} clause allows the database admin-
istrator to choose how much data is actually sampled from the table. The
FULLSCAN option is used to specify that all the rows in a table should be
retrieved to generate the key distribution statistics.

The SAMPLE number {PERCENT | ROWS} option is used to specify
the percentage of the table or the number of rows to sample when generating
statistics. This is typically used when a large table is being processed. SQL
Server will make sure that a minimum number of rows are sampled to guar-
antee useful statistics. If the PERCENT, ROWS, or number option results in
too small a number of rows being sampled, SQL Server automatically cor-
rects the sampling based on the number of existing rows in the table.

Note that updating index statistics for a non-clustered index can be per-
formed by scanning the leaf-level index pages of the non-clustered index,
which may well be a lot faster than scanning the table rows. When updating
column statistics, it is likely that the table will need to be scanned

If neither of these options is specified, SQL Server automatically com-
putes the required sample size for the scan.

236 7.4 Index selection

The RESAMPLE option specifies that an inherited sampling ratio will
be applied to the indexes and columns. In other words, the sampling ratio
from the old statistics will be used. When a table has undergone major
changes (e.g., numerous deletes), SQL Server 2000 may override the inher-
ited sampling factor and implement a full scan instead.

The ALL | COLUMNS | INDEX option specifies whether the
UPDATE STATISTICS statement updates column statistics, index statis-
tics, or both. If no option is specified, the UPDATE STATISTICS state-
ment updates all statistics.

The NORECOMPUTE option specifies that statistics that become out
of date will not be automatically recomputed. When statistics become out
of date is a function of the number of changes (INSERT, UPDATE, and
DELETE operations) that hit indexed columns. If this option is used, SQL
Server will not automatically rebuild statistics. To switch automatic statis-
tics re-computation back on, the UPDATE STATISTICS statement can be
executed omitting the NORECOMPUTE option, or the system stored
procedure sp_autostats can be used.

One might imagine that omitting the table name would cause the key
distribution statistics on all of the indexes on all of the tables in the database
to be updated. Not so; this will result in a syntax error. Microsoft provides a
convenient way to accomplish this with the system stored procedure
sp_updatestats. This will run UPDATE STATISTICS against all user tables
in the current database. For example:

USE BankingDB

EXEC sp_updatestats

The above will update both index- and column-level statistics. Another
way of achieving this might be to use a Transact-SQL cursor, as follows:

DECLARE tables_cursor CURSOR FOR

SELECT table_name FROM information_schema.tables

 WHERE table_type = 'BASE TABLE'

OPEN tables_cursor

DECLARE @tablename NVARCHAR(128)

FETCH NEXT FROM tables_cursor INTO @tablename

WHILE (@@fetch_status <> -1)

BEGIN

EXEC ('UPDATE STATISTICS ' + @tablename)

7.4 Index selection 237

Chapter 7

FETCH NEXT FROM tables_cursor INTO @tablename

END

PRINT 'The statistics have been updated.'

CLOSE tables_cursor

DEALLOCATE tables_cursor

The above cursor creates a result set of all the user tables and then pro-
ceeds to update the key statistics of all the indexes on each one. Obviously,
using sp_updatestats is more straightforward, but the cursor can be modi-
fied easily to only update the statistics of certain tables—for example, only
those beginning with cust. This may be useful on a database consisting of
large tables.

Another method of checking and updating statistics is to use the SQL
Server Management Studio, I SQL Server 2005. Simply open up a table
and edit the Statistics folder for a table, as shown in Figure 7.3.

Figure 7.3
Statistics in SQL

Server
Management

Studio

238 7.4 Index selection

A possible reason for not using this wizard is that it will run UPDATE
STATISTICS on all the tables in the database, and this may become a prob-
lem with a database consisting of large tables.

Updating distribution statistics can also be achieved using the Distrib-
uted Management Objects (DMO) interface. The Table object has methods
named UpdateStatistics and UpdateStatisticsWith, which can be used to
update the distribution statistics of all the indexes and columns on a table.
The Index object and Column object also support these methods.

How can we easily tell when distribution statistics were last updated?
This information is displayed by DBCC SHOW_STATISTICS. However,
there is also a function called STATS_DATE that can be used. The format
of this function is as follows:

STATS_DATE (table_id, index_id)

To check the date the distribution statistics were last updated on all the
indexes and column statistics on a given table, the following Transact SQL
can be used:

SELECT

 ind.name AS 'Index/Column Statistics',

 STATS_DATE(ind.id, ind.indid) AS 'Date Last Updated'

 FROM sysobjects tab INNER JOIN sysindexes ind

 ON tab.id = ind.id

 WHERE tab.name = 'accounts'

This might give the following output:

Index/Column Statistics Date Last Updated

nciBalance 2000-10-10 20:38:27.927

stat_branch_no 2000-10-10 20:38:28.627

Note that if there are no distribution statistics created for an index,
because the index was created on an empty table, the Date Last Updated
column will contain null. This should be a red warning light to a database
administrator, who should run UPDATE STATISTICS without delay!

7.4 Index selection 239

Chapter 7

Another method that can be used to check when distribution statistics
were last updated is to use the system stored procedure sp_autostats,
described shortly.

Whichever method is chosen, the distribution statistics for an index or
column on a table should be updated regularly or the query optimizer will
start to use inaccurate information. An extreme example of this would be
an index that was created on a table containing a single row that then had a
million rows added. Most cases are not so extreme, but it is easy to forget to
update statistics if no automated mechanism such as a scheduled task is set
up. When the query optimizer chooses a strategy that you would not
expect, the date the statistics were last updated is often the first information
to check.

However, there is a safety net for the database administrator who forgets
to update statistics. SQL Server 2000 contains functionality to automati-
cally update statistics. This functionality is enabled globally for all the dis-
tribution statistics in a database by the database option auto update
statistics.

Individual distribution statistics can have the automatic updating of sta-
tistics turned on or off by the use of the UPDATE STATISTICS statement
with the NORECOMPUTE option. If UPDATE STATISTICS is executed
with the NORECOMPUTE option, the automatic updating of statistics is
turned off for the index or column distribution statistics referenced in the
statement. If UPDATE STATISTICS is executed without the NORECOM-
PUTE option, the automatic updating of statistics is turned on for the index
or column distribution statistics referenced in the statement.

The automatic updating of statistics may also be turned on or off by the
sp_autostats system stored procedure. If this is executed with just the table
name parameter, information is displayed regarding all the index- and col-
umn-level distribution statistics relevant to that table, as follows:

EXEC sp_autostats accounts

IndexName AUTOSTATS Last Updated

[nciBalance] ON 2000-10-1020:38:27.927

[stat_branch_no] ON 2000-10-1020:38:28.627

An index or column statistics name can be specified to limit the output:

240 7.4 Index selection

EXEC sp_autostats @tblname=accounts, @indname= nciBalance

IndexName AUTOSTATS Last Updated

[nciBalance] ON 2000-10-1020:38:27.927

Note that this system stored procedure also displays when the statistics
were last updated.

7.4.6 When can we not use statistics?

Statistics cannot be used by the query optimizer if they are not there! As we
have said, this occurs if the index was created on an empty table. In this case
the STATBLOB column in the sysindexes table will contain NULL. If a
table is truncated, the STATBLOB column will also be set to NULL. It fol-
lows, therefore, that if an index is created on an empty table, which is then
populated with data, an UPDATE STATISTICS operation should be exe-
cuted, or the query optimizer may create an inefficient query execution plan
based on false assumptions. An UPDATE STATISTICS operation should
also be run after a table has been truncated and repopulated. Of course,
SQL Server may jump in and automatically update the distribution statis-
tics if the appropriate database options are set, but why leave it to chance!

Not having distribution statistics present means that the query opti-
mizer has little idea how many rows are likely to satisfy the query and,
therefore, whether an index should be used. This is of particular importance
when dealing with non-clustered indexes, since the query optimizer may
decide not to use it and use a table scan instead. As an example, our
Accounts table was created with a non-clustered index on the balance col-
umn. The table contained 25,000 rows. It was then truncated and repopu-
lated with the 25,000 rows. The following query was then executed:

SELECT * FROM accounts WHERE balance = 100

The estimated query execution plan showed that the query optimizer
had decided to use a table scan, and it had estimated that 1,988 rows would
be returned. In fact, zero rows were returned, since no accounts had a bal-
ance of exactly zero. A bad decision, since the non-clustered index would
have been the most efficient access method.

Even if statistics are present, they may not be used. When we discussed
search arguments earlier in this chapter, we introduced cases where the
query optimizer cannot evaluate the expression in the WHERE clause until

7.4 Index selection 241

Chapter 7

the query runs—that is, until after the query optimization phase has com-
pleted. An example of this is using a variable, as follows:

DECLARE @bal MONEY

SELECT @bal = 4954.99

SELECT * FROM accounts WHERE balance = @bal

In this case distribution steps cannot be used when the query optimizer
creates a query execution plan for the Transact-SQL batch, and the query
optimizer will use the index density information present in the statblob col-
umn. Index density was discussed in Chapter 3 and is the average fraction
of duplicate index key values in the index. It is the reciprocal of the count of
unique values in the index key.

Suppose we have a Supplier table with a country_code column and we
deal with suppliers from 20 countries. The index density would then be
1/20 = 0.05.

By multiplying the total count of rows in the table by the index density,
we can obtain the likely number of rows hit by specifying a given value.
Suppose our table contains 5,000 suppliers:

row hits = 5000 * 0.05 = 250

However, this does not take into account the fact that we might have
many or few column values of UK; therefore, index density is a poor substi-
tute for statistics.

An even worse substitute are the weightings we saw earlier in this chap-
ter (shown in Table 4.1). These are used if there are no statistics.

7.4.7 Translating rows to logical reads

When the query optimizer has found a particular index interesting and has
used the selectivity of the search argument to assess the number of rows
returned, it translates this value into logical reads.

The way it does this translation depends on the index type—clustered or
non-clustered—and whether there is actually an index present.

242 7.4 Index selection

7.4.7.1 No index present

If we have no suitable index on the table, a table scan must be performed, as
shown in Figure 7.4.

The number of logical reads a table scan will use is easy to calculate.
All we have to do is find the number of database pages used by the table.
We can find this information from the sysindexes system table by looking
at the dpages column. In the BankingDB database the Accounts table
uses 1,389 pages.

This is an extremely important number. We immediately know that we
can retrieve all the rows from the Accounts table in 1,389 logical reads. This
establishes a baseline value against which the query optimizer measures the
cost of index access in terms of logical read.

7.4.7.2 A clustered index present

What if we can use a clustered index? SQL Server will have to traverse the
index until the appropriate data page is reached. Because the data is in key
sequence, this data page and any other relevant pages will then be retrieved.
The cost of using a clustered index is the cost of the index traversal plus the
data pages scanned, as shown Figure 7.5.

We can estimate the number of data pages scanned by knowing the
approximate number of rows per page. I tend to use the DBCC SHOW-

Figure 7.4
Logical reads

required for a
table scan

Figure 7.5
Logical reads

required for a
clustered index

7.4 Index selection 243

Chapter 7

CONTIG statement with the TABLERESULTS option to find the average
record size and then divide this into 8,000 to get the approximate number
of rows per page. In the BankingDB database the Accounts table holds
about 18 rows per page. Knowing this, you can estimate the number of data
pages scanned if you know roughly how many rows will be returned by the
query. But what about the index pages?

To find the number of logical reads used to traverse the clustered index
we need to know the number of levels in the index. This is known as the
depth of the index. Again, I tend to use the DBCC SHOWCONTIG state-
ment with the TABLERESULTS option and the ALL_LEVELS option to
find the number of levels in an index. The number of levels in an index will
be the number of logical reads used to traverse the index. Most indexes will
consist of a small number of levels, so the number of logical reads used to
traverse an index can often be ignored.

7.4.7.3 A non-clustered index present

If there is a non-clustered index present, SQL Server will have to traverse
the index until the appropriate leaf pages are reached. The pointers from
the leaf pages will then have to be followed to each row pointed at by an
index entry in the leaf page. Each data row may reside on its own data page,
or a data page may host a number of the rows we wish to retrieve. This is
irrelevant. Each row retrieved will result in a data page request—that is, a
logical read. The cost of using a non-clustered index is then the cost of the
index traversal plus the leaf pages scanned plus the cost of retrieving each
row, as shown in Figure 7.6.

Figure 7.6
Logical reads

required for a non-
clustered index

244 7.4 Index selection

This could result in many logical reads. If the query returns a range of
rows, say 2,000, the query optimizer will assume that this will cost the
number of logical reads to traverse the non-clustered index plus the number
of logical reads to scan the relevant leaf pages plus 2,000 logical reads to
retrieve the data rows. We can immediately see that in the case of our
Accounts table, this is greater than our baseline value for a table scan. In
other words, all other things being equal, the table scan would be the most
efficient retrieval method.

Note: In fact, the query optimizer does not consider only logical reads. It
also considers CPU. For this reason, a comparison alone between logical
reads and the number of pages in the table is an oversimplification.

Clearly, if the query is only going to return one row—for example, when
we use the = operator with a unique index, the cost is the index traversal
plus the cost of retrieving the single data page, as shown in Figure 7.7.
Compared with performing the same operation using a clustered index, the
non-clustered index will usually take only one extra logical read.

We have previously mentioned the covered query, where all the informa-
tion necessary is satisfied from the index leaf level without visiting the data.
SQL Server will have to traverse the index until the leaf level is reached and
then the relevant leaf-level pages are scanned, as shown in Figure 7.8.

Figure 7.7
Logical reads

required for a non-
clustered index,

plus a single row
retrieval

7.4 Index selection 245

Chapter 7

7.4.7.4 A non-clustered index present and a clustered index present

We have already mentioned in Chapter 3 that the presence of a clustered
index on a table results in the leaf-level index page pointers in any non-clus-
tered indexes on the table to become the clustered index key instead of the
Row ID.

So now, as well as SQL Server 2000 traversing the non-clustered index,
it must also traverse the clustered index. Of course, a query that returns a
range of rows will return a range of pointers from the non-clustered index,
all of which will have to access the clustered index. The number of logical
reads performed to access the non-clustered index will therefore be
increased by the logical reads needed to access the clustered index.

However, there is a positive side to this. As we have stated, the presence
of a clustered index on a table results in the leaf-level index page pointers in
any non-clustered indexes on the table to become the clustered index key
instead of the Row ID. In other words, the leaf-level index entries in the
clustered index will now hold the non-clustered index key plus the clustered
index key, and so there is more chance of the non-clustered index covering
the query.

7.4.7.5 Multiple non-clustered indexes present

We have discussed the fact that range retrieval in a non-clustered index may
result in a large number of data page requests such that a table scan is cho-
sen in preference. But what if the WHERE clause of the query contains
more than one filter. For example:

SELECT * FROM accounts

Figure 7.8
Logical reads

required for a
covering non-

clustered index

246 7.5 Join order selection

WHERE balance BETWEEN 100 AND 200

AND customer_no BETWEEN 1000 AND 2000

If we have a non-clustered index on the balance column and the range is
reasonably selective, we should expect the query optimizer to choose a
query execution plan that selects the data rows based on the index and then
discards the ones where the customer_no column holds a value that is not
in range. If the range is not selective, we will expect a table scan. But what if
there is also a non-clustered index present on the customer_no column? As
we discussed in Chapter 3, the query optimizer may be able to perform an
index intersection. If the query optimizer believes that using both indexes
will reduce the number of data page requests, then it will do just that.

7.5 Join order selection

If the query contains more than one table or the query performs a self-join,
the query optimizer will derive the most efficient strategy for joining the
tables. The order in which tables are joined can have a large impact on per-
formance. For example, suppose we wanted to run the following query,
which joins the Accounts table with the Customers table:

SELECT * FROM accounts INNER JOIN customers

ON accounts.customer_no = customers.customer_no

WHERE balance > 9990

Both tables have a non-clustered index on customer_no. Suppose the
Customers table was accessed first. There is no restriction on the
customer_no column and so all 12,500 customer rows would be retrieved,
and for each of these rows the Accounts table would be accessed. It would,
therefore, be accessed 12,500 times, and since each customer has two
accounts, 25,000 account rows would be retrieved. Each one would then be
tested for the restriction > 9,990.

Suppose, instead, the Accounts table was accessed first. The restriction
would be applied, removing the majority of rows in the Accounts table and
leaving only 21 rows with the balance column containing a value > 9,990.
This means that the Customers table will only be accessed 21 times, consid-
erably reducing the logical reads needed to execute the query. In fact in our
BankingDB database this join order needed 96 logical reads against the
51,695 logical reads needed by the first join order!

7.6 How joins are processed 247

Chapter 7

The query optimizer can use information in the statblob column to help
it choose an efficient strategy. We have already seen that the statblob col-
umn contains index density information, and it is this information the
query optimizer uses to estimate how many rows from one table will join
with rows from another table—that is, the join selectivity. The statblob col-
umn not only holds index density for a single column in a composite index
but also the index densities of some of the column combinations. If the
composite index contained three columns—COL1, COL2, and COL3,
then the index densities held would be for the following combinations:

COL1 index density value (a)

COL1, COL2 index density value (b)

COL1, COL2, COL3 index density value (c)

Suppose the statblob column is not populated. In this case the query
optimizer uses a formula to work out the join selectivity. It is simply the
reciprocal of the number of rows in the smaller table. If we had a query that
joined the Accounts table (25,000 rows) with the Customers table (12,500
rows), the join selectivity would be (1/12500) = 0.00008. For each row in
the Customers table we would expect a match to (0.00008 * 250000) = 2
rows in the Accounts table.

7.6 How joins are processed

Prior to SQL Server 7.0, there was only one basic join mechanism available
to the query optimizer to join two tables together. This was the nested loops
join. In SQL Server 2000 there are three, as follows:

� Nested loops joins

� Merge joins

� Hash joins

The nested loops join is still the best general-purpose join available, but
the merge and hash joins can be utilized by the query optimizer to produce
a more efficient join plan in certain circumstances.

248 7.6 How joins are processed

7.6.1 Nested loops joins

In the nested loops join, tables are processed as a series of nested loops,
which are known as nested iterations. In a two-table join every row selected
from the outer table (the table in the outer loop) causes the inner table (the
table in the inner loop) to be accessed. This is known as a scan (not to be
confused with table scan). The number of times the inner table is accessed
is known as its scan count. The outer table will have a scan count of 1; the
inner table will have a scan count equal to the number of rows selected in
the outer table. Figure 7.9 illustrates a three-table join.

The outer table will use indexes to restrict the rows if it can, whereas the
inner table will use indexes on the join columns and potentially any other
indexes that might be efficient in limiting the rows returned. However, the
index on the join column is the most important index, since, without it, the
inner table will be table scanned for each relevant row in the outer table.
The optimizer should attempt to make the table with the smallest number
of qualifying rows the inner table. It will make the attempt at least but
won’t necessarily succeed.

For example, consider an inner join between the Customers table and
the Accounts table. There are 12,500 rows in the Customers table and
25,000 rows in the Accounts table. Suppose the Accounts table has a non-
clustered index on the customer_no column. The query optimizer will
choose the Customers table as the outer table (there is no index that is use-
ful, and, besides, this is the smaller table). The Customers table will be
passed through once. Its scan count will be one—that is, it is processed
once, or, if you prefer, it is visited once.

There are 12,500 qualifying rows in the Customers table and so the
Accounts table will be visited 12,500 times. It will have a scan count of
12,500. Luckily, there is a useful index on the customer_no column of the
Accounts table so the table will not be table scanned 12,500 times!

Figure 7.9
A nested loop join

of three tables

7.6 How joins are processed 249

Chapter 7

Note: The emphasis in the above paragraph should be on the term qualify-
ing. In other words, if you apply a WHERE clause to a table and get 1 row
from 1 million, then you want to continue join execution with 1 row and
not 1 million rows. So, if the second table in a join has another 1 million
rows, it is obvious that much better efficiency is found by joining 1 row
with 1 million rows, as opposed to 1 million with another 1 million rows.
Apart from that the result of the former is 1 million rows. And the result of
the latter join is 1012. That’s a huge difference in the amount of I/O.

Later on we will look at how we can return statistical information about
the scan count and the logical read (pages requested) count. But for now
just let me say that this join indeed results in the following statistics:

Table Logical Read Scan Count

Customers 736 1

Accounts 50,859 12,500

Note that the logical read count of the Customers table is 736, because
there are 736 data pages in this table. The logical read count for the
Accounts table is approximately four per scan count, indicating that for
each access of the Accounts table, via the index, four logical reads were used
(three for index pages and one for the data page).

The nested loop join does not depend on an equality operation relating
the two tables together. The operator, for example, can be < or >.

If the outer table supplies only a few rows to the query—that is, it is a
small table or is filtered by a WHERE clause and the inner table has an
index on the join column—a nested loop join can be very efficient, usually
more so than a merge or hash join. However, when large tables are being
joined, a merge or hash join may be more efficient.

How many ways are there of joining two tables, A and B? There are in
fact two ways: AB and BA. What about three tables? There are six ways:
ABC, ACB, BAC, BCA, CAB, and CBA. What about four tables? The
answer is four, or 1 * 2 * 3 * 4 = 24.

The number of ways, then, to join X tables is X!, or factorial X. If a
query were to join 16 tables, we are talking about 20,922,789,888,000 pos-
sible ways of performing this join. A join of ten tables would have

250 7.6 How joins are processed

3,628,800 possible combinations, and SQL Server can join a maximum of
256 tables in a SELECT statement!

Luckily, the query optimizer uses techniques internally to minimize the
number of possible combinations, but the fact still remains that the more
tables in a join the longer the query optimizer will take to work out the
most efficient access strategy. Also, any inefficiency will be magnified enor-
mously, since we are basically placing loops within loops within loops
within a nested loops join.

The bottom line is: If you are going to execute a query that joins many
tables, test it! Check what the final query execution plan is. Check the
number of logical reads. Check the elapsed time. If you are not happy, then
break the join down into parts, perhaps joining a subset of the tables into a
temporary table and then joining that with the remaining tables. Or you
could even use subqueries or CTE (common table expressions) and the
WITH clause as opposed to a temporary table.

One useful rule of thumb is to make sure that if the number of tables in
the query is N, then the number of join conditions is at least N – 1. For
example, suppose we join three tables—TAB1, TAB2, and TAB3—and the
join is over a column we will call C1. Suppose the query is as follows:

SELECT * FROM TAB1, TAB2, TAB3 WHERE TAB1.C1 = TAB2.C1

Applying our rule of thumb we can see that there are three tables in the
join, so there should be at least two join conditions. There is only one join
condition in the query, which is below the minimum number. This will
result in SQL Server performing a lot of extra work joining all the rows in
TAB3 with all the rows in the result set from the join of TAB1 and TAB2 or
some combination of this. Depending on the form of the SELECT state-
ment, the answer returned may be correct—for example, if a DISTINCT
was used. The time taken to process the query, though, would be much
greater than necessary.

Applying our rule of thumb we can see that the query should be written
as follows:

SELECT * FROM TAB1, TAB2, TAB3

WHERE TAB1.C1 = TAB2.C1

AND TAB2.C1 = TAB3.C1

7.6 How joins are processed 251

Chapter 7

However, if it makes sense to add a third join condition, then do not be
afraid to do so, since it will give the query optimizer more options to work
with:

SELECT * FROM TAB1, TAB2, TAB3

WHERE TAB1.C1 = TAB2.C1

AND TAB2.C1 = TAB3.C1

AND TAB1.C1 = TAB3.C1

Of course, if you use the ANSI join syntax (recommended) with the
ON clause you cannot miss the join condition.

7.6.2 Merge joins

Merge joins can be efficient when two large tables of similar size need to be
joined and both inputs are already sorted by virtue of their indexes, or a sort
operation is not expensive for sorting one or more of the inputs. The result
from a merge join is sorted on the join column, and if this ordering is
needed by the query, the merge join can supply it. The equality operator
must be used in the query to join the tables; otherwise, a merge join cannot
be used.

There are two types of merge join: a one-to-many (regular) and a many-
to-many. In the case of a one-to-many, one input will contain unique join
column values, whereas the other will contain zero, one, or many matching
values. In the case of a many-to-many merge join, both inputs may contain
duplicate join column values.

A many-to-many merge join requires that a temporary worktable is
used, and this is apparent when looking at the logical read information that
can be returned from a query (discussed later). In my experience, the added
work required to process this worktable often means that the query opti-
mizer uses one of the other join techniques—for example, a hash join in
preference to the many-to-many merge join. If the join column from one
input does contain unique values, the query optimizer will not know this
unless a unique index is present on that column.

If the two join columns from the two input tables both have a clustered
index created on them, the query optimizer knows that the rows are physi-
cally sorted on the join column. In this case the query optimizer does not
need to perform a sort on any of the inputs. Joining these two tables will
probably be performed with a merge join, especially if the merge join is a

252 7.6 How joins are processed

one-to-many. The presence of an ORDER BY clause on the query will
increase the likelihood that a merge join is used.

If the two join columns from the two input tables both have a non-clus-
tered index created on them, then the query optimizer knows that the rows
are not physically sorted on the join column. In this case the query opti-
mizer will need to perform a sort on the inputs. Joining these two tables
with a merge join is less likely, unless an ORDER BY clause on the query is
used. In this case the query optimizer will decide if a merge join is more
efficient than nested loops or hash.

So how does a merge join work? Basically, the two tables being joined
are visited once each. The scan count for each table is one. This is shown in
Figure 7.10.

The algorithm for a one-to-many merge join is as follows:

� Read a row from Table 1.

� Read a row from Table 2.

� If the join column values are equal, return all the matching rows.

� If the value from Table 1 is less than the value from Table 2, read the
next row from Table 1.

� If the value from Table 2 is less than the value from Table 1, read the
next row from Table 2.

The query optimizer carries on, stepping along each table until the pro-
cessing is complete.

Figure 7.10
Basic merge join

algorithm

7.6 How joins are processed 253

Chapter 7

7.6.3 Hash joins

In my experience, hash joins are used by the query optimizer frequently in
SQL Server—somewhat more, in fact, than merge joins. You would like to
have fewer hash joins than nested loop joins because nested loop joins don’t
have the added step of building a hash key with which to search one of
tables (or its index). Of course, this may not be the case with your applica-
tion. With a hash join, there are two inputs: the build input and the probe
input. The build input is typically the smaller table, although this may not
be the table that uses fewer data pages on disk. Rather, it is the table with
the least rows after selection criteria in the WHERE clause have been con-
sidered by the query optimizer. An interesting consideration with hash joins
is that there need be no useful indexes on the tables to be joined. This
means that the hash join mechanism can be used to join any two non-
indexed inputs. This is very useful, because this is exactly the form that
intermediate results in the query execution plan take. We will see examples
of this later. The equality operator must be used in the query to join the
tables; otherwise, a hash join cannot be used.

Assuming that the query optimizer has chosen the smaller table to be
the build input; it now reads each row in turn from the table. For each row
read, the value in the join column is processed by a hashing algorithm.
Hashing algorithms apply some function to the input value to arrive at an
output value. The important consideration is that when the same value is
input to the hashing algorithm later, the value output is the same as was
previously output.

In a hash join, the value returned by the hashing algorithm is used to
identify a cell in memory known as a hash bucket. The row from the build
input is then written into this hash bucket (at least the columns of interest
to the query are). The number of hash buckets is a function of the size of
the build input. It is best if the query optimizer can hold all of the hash
buckets (the build input) in memory. It is not always possible to do this,
and therefore several variations of the basic hash algorithm exist to facilitate
the storing of hash buckets to disk. Two of these mechanisms are known as
a Grace Hash Join and a Recursive Hash Join.

Once the build input has completed, the probe input phase starts. Each
row in the probe input (the bigger table) is read, and the value of the join
column is input to the same hash algorithm. The resulting value again iden-
tifies a hash bucket. The query optimizer then checks the hash bucket to see
if there are any rows in it from the build input with the same join column
value. If there are, the row is retrieved from the hash bucket and, with the

254 7.6 How joins are processed

row from the probe phase, returned to the query. If there is no match, the
row may be discarded depending on the type of join being performed.

With a hash join, both tables are visited just once—that is, each has a
scan count of one. Memory is needed for the hash buckets, so hash joins
tend to be memory and CPU intensive. They typically perform better than
merge joins if one table is large and one is small, and they are better than
nested loops joins if both tables are large. However, because the build input
is performed before any rows are returned, hash joins are not efficient when
the first row of the join must be retrieved quickly.

Figure 7.11 shows a build input being processed. A row has been read
with a value of 3 in the join column. This is hashed to a value of 11, and the
row (relevant columns) is written into the hash bucket. Later, the probe
input is processed. A row is read with a value of 3 in the join column. This
is hashed to a value of 11, and the query optimizer checks to see if there is a
matching row in the hash bucket from the build input. There is, so the rows
are concatenated and returned to the query.

The hash join mechanism, as previously mentioned, can be used to join
non-indexed inputs. One example of this is when the query optimizer has

Figure 7.11
Basic hash join

algorithm

7.6 How joins are processed 255

Chapter 7

created a plan that involves two sets of index pointers, and pointers need to
be found that exist in both sets—that is, the set intersection. Hashing is also
useful when the query contains an aggregate operator—for example, SUM
or MAX with a GROUP BY. Using SUM as an example, suppose we want
to find the sum of the bank balances for the accounts managed by each
branch on a per branch basis, as follows:

SELECT branch_no, SUM(balance)

FROM accounts

GROUP BY branch_no

The query optimizer may choose to create a query execution plan using
a hashing mechanism. The build input creates a set of hash buckets and
then reads each row in turn. The branch number of the first account (the
GROUP BY column) will be hashed, and the branch number and account
balance values will be written into the appropriate hash bucket. This pro-
cess will continue for each row. However, if a branch number is found to be
present already in a hash bucket, the balance will be added to the value
present. Finally, when all the rows have been retrieved, the hash buckets are
scanned and the branch number values returned with their sums.

Note: This mechanism will produce a non-ordered output, so, as always,
use an ORDER BY clause if you wish the output to be ordered.

This Page Intentionally Left Blank

257

8
Investigating and Influencing
the Optimizer

In the previous chapter, we discussed the steps that the query optimizer per-
forms during query optimization:

� Query analysis

� Index selection

� Join order selection

To facilitate performance, tuning, and optimization it is essential that
we are able to see the decisions that the query optimizer has made so that
we can compare the decisions with what we expect. We also need to be able
to measure the work done in executing the query so we can compare the
effectiveness of different indexes.

Note: You should always calculate a rough estimate of the logical reads a
query should use. If the logical reads used differ significantly from the esti-
mate, it could be that your estimate is very inaccurate or, more likely, the
query execution plan is not what you expected!

There are a number of tools at our disposal for checking what the query
optimizer is doing. SQL Server 2000 and before had all sorts of tools for
this including the Query Analyzer, the graphical query execution plan, and
the SQL Server Profiler. The SQL Server Profiler is discussed in Chapter
11. We will focus our discussion here on the graphical query execution
plan, but, first, let us investigate the SET statements and options available
to us. The graphical interface in SQL Server 2005 is now part and parcel of
the SQL Server Management Studio, which will be examined shortly.

258

Before beginning with this chapter in earnest, the BankingDB database
definition has been updated from when it was used previously. We have
now added all primary and foreign keys. We have created indexes on for-
eign keys. This shows the region and country tables (all the tables are in
Appendix B):

CREATE TABLE region

(

 region_id INT NOT NULL

,region CHAR(40) NOT NULL

,population INT NULL

,area INT NULL

,CONSTRAINT pk_region PRIMARY KEY
NONCLUSTERED(region_id)

)

GO

By default indexes for referential integrity keys are created as clustered.
Indexes for tables in this book are created as non-clustered for the purposes
of demonstrating optimizer behavior.

CREATE TABLE country

(

 country_id INT NOT NULL

,region_id INT NOT NULL

,country CHAR(40) NOT NULL

,code CHAR(2) NOT NULL

,population INT NULL

,area INT NULL

,fxcode CHAR(3) NULL

,currency CHAR(40) NULL

,rate FLOAT NULL

,CONSTRAINT pk_country PRIMARY KEY
NONCLUSTERED(country_id)

,CONSTRAINT fk_country_region FOREIGN KEY(region_id)

REFERENCES region

)

GO

CREATE NONCLUSTERED INDEX fkx_country_region ON
country(region_id)

GO

8.1 Text-based query plans and statistics 259

Chapter 8

The most efficient relational databases will automatically create an index
on a primary key because a primary has to be unique. Conversely, an index
is not automatically created on a foreign key because a foreign key can be
duplicated. A foreign key can even have a NULL value, which if a primary
should not be NULL. Serious locking contention issues can result if indexes
are not created on foreign keys. Indexing foreign keys tends to prevent
gazillions of full table scans between both parent and child tables when ref-
erential integrity is checked internally.

There are no indexes to begin with. We will define indexes on the tables
as we go along, showing possible improvements. Before we do some experi-
menting we need to indulge in few a brief words about relational databases,
statistics, rule-based optimization, and cost-based optimization.

8.1 Text-based query plans and statistics

The SET SHOWPLAN and SET STATISTICS commands are used for
examining query plans and execution details of a query. The difference is dis-
tinct between the SHOWPLAN and STATISTICS options. SHOWPLAN
describes how the optimizer intends to execute a query (the optimizer might
execute the query differently). The STATISTICS actually performs the
query and then returns information about how the query executed. So,
SHOWPLAN estimates before query execution, and STATISTICS provides
a picture of query execution, after execution of the query has completed.

8.1.1 SET SHOWPLAN_TEXT { ON | OFF }

When SET SHOWPLAN_TEXT is set on, information is displayed per-
taining to the query execution plan used. The query is not executed. This
statement must be the only statement in the query batch.

Suppose we execute the following query when SET SHOWPLAN_
TEXT ON has been executed:

SELECT * FROM accounts WHERE balance = 0

The following output will result:

StmtText

select * from accounts where balance = 0

260 8.1 Text-based query plans and statistics

(1 row(s) affected)

StmtText

 |--Table Scan(OBJECT:([accounts]),

WHERE:([accounts].[balance]=($0.0000)))

The output above has been wrapped to fit on the page.

The text of the query is repeated and then information pertaining to the
query execution plan is displayed. This contains information such as the
logical and physical operators used (described shortly) and other informa-
tion pertinent to the plan. Since this statement is designed to be used pri-
marily with Microsoft MS-DOS applications, such as the osql command-
line utility, we will not spend any more time on it.

8.1.2 SET SHOWPLAN_ALL { ON | OFF }

When SET SHOWPLAN_ALL is set on, detailed information is displayed
pertaining to the query execution plan used. The query is not executed.
This statement must be the only statement in the query batch.

Suppose we execute the following query when SET SHOWPLAN_ALL
ON has been executed:

SELECT * FROM customers C INNER JOIN accounts A

 ON C.customer_no = A.customer_no

WHERE balance = 100

The output will be returned in the form of a rowset that can be accessed
by programs. There is too much information returned to display it across
the page, so we will break it down into its constituent parts. Rather than use
the previous SQL statement, we will use a slightly more complex one
involving an inner join of the Customers and Accounts tables. We are not
too concerned with the reason a particular plan was chosen here—the goal
of this example is merely to show the output from this SET statement. Ulti-
mately, I find the graphical query execution plan much easier to use, and I
will focus on that shortly:

StmtText

SELECT * FROM customers C INNER JOIN accounts A ON C.customer_no = A.customer_no WHERE balance =
100

8.1 Text-based query plans and statistics 261

Chapter 8

 |--Bookmark Lookup(BOOKMARK:([Bmk1000]), OBJECT:([BankingDB].[dbo].[customers] AS [C]))
 |--Nested Loops(Inner Join, OUTER REFERENCES:([A].[customer_no]) WITH PREFETCH)
 |--Table Scan(OBJECT:([BankingDB].[dbo].[accounts] AS [A]), WHERE:([A].[balance]=100.00))
 |--Index Seek(OBJECT:([BankingDB].[dbo].[customers].[nciCustomerNo] AS [C]),
SEEK:([C].[customer_no]=
 [A].[customer_no]) ORDERED FORWARD)

I have wrapped the output so this StmtText column can be read com-
pletely. This is how it looks with no wrap, so it can easily be matched with
the other columns I will discuss. I have had to truncate the text to fit it on
the page:

SELECT * FROM customers C INNER JOIN accounts A ON C.customer_no = A.customer_no WHERE balance =
100
 |--Bookmark Lookup(BOOKMARK:([Bmk1000]), OBJECT:([BankingDB].[dbo].[customers] AS [C]))
 |--Nested Loops(Inner Join, OUTER REFERENCES:([A].[customer_no]) WITH PREFETCH)
 |--Table Scan(OBJECT:([BankingDB].[dbo].[accounts] AS [A]), WHERE:([A].[balance]=100.00))
 |--Index Seek(OBJECT:([BankingDB].[dbo].[customers].[nciCustomerNo] AS [C]),
SEEK:([C].[customer_no]=

This StmtText column repeats the SQL statement in the first row of the
column. Subsequent rows in the display, known as PLAN_ROWS, contain
a description of the operation taking place. This column contains the phys-
ical operator and may or may not also contain the logical operator. So what
are physical and logical operators? The physical operator describes the phys-
ical mechanism by which the operation was performed. In our example we
can see physical operators such as Nested Loops, Table Scan, and Index
Seek. Logical operators describe the relational operation being performed—
in our example, an Inner Join. Often, there is no separate logical operator,
since the logical operation results in a number of steps—each representing
physical operations. In our example, there is no logical operator mentioned
in the line that represents the Table Scan physical operation.

Other information is also often present in the StmtText column. In our
example, we can see that the row containing the Index Seek physical opera-
tor also names the index in question—nciCustomerNo—and the column
used in the predicate—customer_no—as well as the table name. The row
containing the Nested Loops physical operator also specifies WITH
PREFETCH, which means that asynchronous read ahead is being utilized
(see Chapter 9). The information in the StmtText column is also repeated
in other columns, as we shall now see.

Note that the output is in the form of a hierarchical tree with the SQL
statement itself at the top of the tree. I find that decoding the hierarchy can
sometimes be confusing, but, again, as we shall see, the graphical query exe-
cution plan will help us here. It is often best, however, to start looking at
the deepest level in the hierarchy. This represents the basic operations

262 8.1 Text-based query plans and statistics

against tables and indexes, which together form the basic building blocks of
the query execution plan. Other steps will utilize these basic steps until the
result of the query is returned. To assist in understanding the hierarchy, the
next set of columns lend a helping hand.

StmtId NodeId Parent PhysicalOp LogicalOp

17 1 0 NULL NULL

17 3 1 Bookmark Lookup Bookmark Lookup

17 5 3 Nested Loops Inner Join

17 7 5 Table Scan Table Scan

17 8 5 Index Seek Index Seek

The StmtId is a number that identifies the statement in the batch of
SQL statements if there is more than one SQL statement in the batch. This
groups all the steps together for the one statement. The NodeId is a number
that identifies the step in the query execution plan, and the Parent is the
node ID of the parent step. Using these numbers, the position of a step in
the hierarchical tree can be ascertained. The PhysicalOp and LogicalOp col-
umns contain the physical and logical operators as described above.

Argument

BOOKMARK:([Bmk1000]), OBJECT:([BankingDB].[dbo].[customers] AS [C])

OUTER REFERENCES:([A].[customer_no]) WITH PREFETCH

OBJECT:([BankingDB].[dbo].[accounts] AS [A]), WHERE:([A].[balance]=100.00)

OBJECT:([BankingDB].[dbo].[customers].[nciCustomerNo] AS [C]),

OBJECT:([BankingDB].[dbo].[customers].[nciCustomerNo] AS [C]),
SEEK:([C].[customer_no]=[A].[customer_no])

ORDERED FORWARD

This column displays extra information concerning the operation, as
described previously.

The next set of columns includes the values used by the operator; they
are typically columns from a SELECT list or WHERE clause. Internal val-
ues may also be represented here. In our example, the * has been expanded
to the actual list of columns.

DefinedValues

8.1 Text-based query plans and statistics 263

Chapter 8

NULL

[C].[customer_no], [C].[customer_fname],
[C].[customer_lname], [C].[customer_notes]

NULL

[A].[account_no], [A].[customer_no], [A].[branch_no],
[A].[balance], [A].[account_notes]

[Bmk1000]

Next we see columns that are concerned with the estimated cost of the
query:

EstimateRows EstimateIO EstimateCPU AvgRowSize TotalSubtreeCost

1988.1769 NULL NULL NULL 1.4232613

1988.1769 6.2500001E-3 2.1869945E-3 886 1.4230624

1988.1769 0.0 8.3105788E-3 445 1.4146254

1988.1769 0.60027075 0.01378925 435 1.22812

1.0 6.3284999E-3 7.9603E-5 19 0.1661949

The EstimateRows column contains the number of rows the query opti-
mizer expects the operator to return. In our example, we are looking at
1,988 rows estimated for all the operators except the Index Seek. The 1,988
estimate comes from the fact that the query optimizer estimates that this
number of Account table rows will have a balance of 100. The value of 1
from the index seek indicates that the query optimizer knows that for each
row from the Accounts table a maximum of one row can be returned from
the Customers table (it has a unique index on the customer_no column).

How many rows are actually returned? How many customer accounts
have a balance of exactly 100? The answer in our database is, in fact, zero!
The query optimizer estimate is very inaccurate. Why? We shall see shortly!

The EstimateIO column contains the estimated I/O cost for the opera-
tor. In our example, the cost estimates are small numbers, so what do the
values represent? The numbers are weighted by some undocumented
weighting factor. Microsoft does not publish the weighting factor, since
they want the ability to adjust it to their heart’s desire. This means that it is
practically impossible to translate the EstimateIO value into logical reads.
However, it is possible to compare these numbers with one another, and we
know the lower the number the lower the cost.

The EstimateCPU column contains the estimated CPU cost for the
operator. In our example, the cost estimates are again small numbers, and,
again, the numbers are weighted by some undocumented weighting factor.

264 8.1 Text-based query plans and statistics

This means that it is not possible to translate the EstimateCPU value into
CPU milliseconds. Again, it is possible to compare these numbers with
one another, and, again, the lower the number the lower the cost. Using
these two estimates we can easily see the most expensive operation in terms
of I/O and CPU in a query.

The AvgRowSize is the estimated average row size (in bytes) passing
through the operator. In our example, rows from the Accounts table are
estimated to be 435 bytes in length. The output of the Index Seek operator
is an index entry (key plus pointer) of 19 bytes. Once the Customers table
row has been retrieved from the data page (the Index Lookup) and joined
with the Accounts table row, the combined size is estimated at 886 bytes.

The TotalSubtreeCost column contains the estimated total cost of the
operator and the cost of all its children. This is derived from the Esti-
mateIO and EstimateCPU columns, and, again, some mystery weighting
factor is used. This number, though, represents a cost value that combines
the I/O and CPU costs and is very useful when looking for the operation in
a query that is using the lion’s share of the query resource. The OutputList
column represents a list of the columns that will be displayed by the query.

OutputList

NULL

[C].[customer_no], [C].[customer_fname], [C].[customer_lname], [C].[customer_notes],
[A].[account_no],

[A].[customer_no], [A].[branch_no], [A].[balance], [A].[account_notes]

[Bmk1000], [A].[account_no], [A].[customer_no], [A].[branch_no], [A].[balance],
[A].[account_notes]

[A].[account_no], [A].[customer_no], [A].[branch_no], [A].[balance],
[A].[account_notes]

[Bmk1000]

Warnings Type Parallel EstimateExecutions

NULL SELECT 0 NULL

NULL PLAN_ROW 0 1.0

NULL PLAN_ROW 0 1.0

NO STATS:([accounts] [customer_no], PLAN_ROW 0 1.0

 [accounts].[balance])

NULL PLAN_ROW 0 1988.1769

The Warnings column contains any warning messages issued by the
query optimizer for the operation. In our example, the only operation to
be associated with a warning is the Table Scan operation, where the

8.1 Text-based query plans and statistics 265

Chapter 8

Accounts table is being scanned looking for rows with a balance of 100.
We shall look at this warning in the graphical query execution plan shortly,
but for now let us just say that the query optimizer is telling us why the
estimate of the number of rows returned is so inaccurate—can you guess
what the warning means?

The Type column merely flags a row as being the parent row for the
query—a SELECT, INSERT, UPDATE, or DELETE, for example, or a
row representing an element of the query execution plan—PLAN_ROW.

The Parallel column contains a value of 0 or 1 specifying whether the
operator can execute in parallel (1) or not (0).

The EstimateExecutions column is the estimated number of times the
operator will execute during the query. In our example, the Table Scan
operator will execute once. However, for each row in the Accounts table
being scanned, the Customer table will be accessed (it is the inner table in a
nested loops join). For this reason, the EstimateExecutions column for the
Index Seek operator contains the value 1988.1769.

So, as we have seen, the SET SHOWPLAN_ALL statement produces a
large amount of information concerning the query execution plan. As I’ve
hinted at a number of times now, I feel this information is best displayed
through the graphical query execution plan. Before we take a look at this
there are more SET statements that are useful—so let’s have a look at them.

8.1.3 SET SHOWPLAN_XML { ON | OFF }

The XML option is new to SQL Server 2005. The only difference with the
XML is that the output is returned as a properly structured and formed
XML document. So, you execute SET SHOWPLAN_XML ON and then
against execute the same query as before:

SELECT * FROM customers C INNER JOIN accounts A

 ON C.customer_no = A.customer_no

WHERE balance = 100

The query plan output is returned as an XML document, as shown in
Figure 8.1.

266 8.1 Text-based query plans and statistics

8.1.4 SET STATISTICS PROFILE { ON | OFF }

The SET SHOWPLAN_TEXT and SET SHOWPLAN_ALL statements
we have just looked at both display information concerning the query exe-
cution plan adopted by the query optimizer. Neither statement actually
allows the query to execute. This has a number of ramifications. Consider
the following stored procedure:

CREATE PROCEDURE usp_testplan

AS

CREATE TABLE #t1 (c1 int)

SELECT c1 from #t1

RETURN

Suppose we now issue a SET SHOWPLAN_ALL ON and execute the
stored procedure, as follows:

EXEC usp_testplan

Server: Msg 208, Level 16, State 1, Procedure

usp_testplan, Line 4

Invalid object name '#t1'.

Figure 8.1
An XML formatted

query plan

8.1 Text-based query plans and statistics 267

Chapter 8

Because the SET statement suppresses the execution of the stored proce-
dure, the temporary table #t1 is not created, and it is therefore not possible
to display plan information for the SELECT statement.

Another problem caused by the SET statement suppressing query execu-
tion is that we cannot produce information about the logical reads actually
used by the query, nor can we see how many rows pass through an operator
as opposed to an estimated number.

Enter SET STATISTICS PROFILE. This statement does not suppress
the execution of the query. As well as returning the same information as
SET SHOWPLAN_ALL, it also displays two extra columns—Rows and
Executes—which contain the actual number of rows returned and the
actual number of times the operator executed during the query. In other
words, the equivalent of the EstimateRows column and the EstimateExecu-
tions column, respectively.

8.1.5 SET STATISTICS IO { ON | OFF }

Another SET statement that is useful when investigating different query
optimizer strategies is SET STATISTICS IO. This displays the count of
table accesses (scans), logical and physical reads, and read ahead reads for
each Transact-SQL statement, as follows:

SET STATISTICS IO ON
SELECT C.customer_lname, A.account_no, A.balance
FROM customers C INNER JOIN accounts A
ON C.customer_no = A.customer_no
WHERE balance BETWEEN 100 AND 120

customer_lname account_no balance

Burrows 107540 118.0400

 :

 :

(56 row(s) affected)

Table 'customers'. Scan count 56, logical reads 181,

physical reads 0, read-ahead reads 0.

Table 'accounts'. Scan count 1, logical reads 1569,

physical reads 0, read-ahead reads 0.

268 8.1 Text-based query plans and statistics

In the above example, the Accounts table experienced a scan count of 1,
and the Customers table experienced a scan count of 56. The phrase scan
count has nothing to do with the use of table scans; it merely states how
many times the table was accessed in the query. In our example, the
Accounts table is processed as the outer table of the (nested loops) join and is
therefore accessed only once. For each qualifying row in the Accounts table,
the Customers table is accessed. In this example there are 56 qualifying rows
in the Accounts table, so the scan count of the Customers table is 56.

There are 1,569 pages in the Accounts table. As this is table scanned,
SQL Server 2000 must retrieve every page—hence, the logical read value of
1,569. The Customers table experiences 181 logical reads, approximately
three per scan. This is because the index is two levels deep, so two index
pages and one data page will be fetched on each scan.

Since the data and index pages are already cached in memory, the physi-
cal reads counter is zero. A physical read represents a database page request
that is not found in cache, so SQL Server 2000 has to fetch it from disk.
Read-ahead reads will be discussed in Chapter 9.

Note: The scan count may sometimes be larger than you expect. For exam-
ple, you may expect the scan count for a table to be one. However, the
query optimizer has created a parallel execution plan and two parallel
threads access the table—hence, it has a scan count of two.

8.1.6 SET STATISTICS TIME { ON | OFF }

The SET STATISTICS TIME ON statement displays the time (in millisec-
onds) that SQL Server took to parse the statement, compile the query opti-
mizer strategy, and execute the statement, as follows:

SELECT C.customer_lname, A.account_no, A.balance

FROM customers C INNER JOIN accounts A

ON C.customer_no = A.customer_no

WHERE balance BETWEEN 100 AND 120

SQL Server parse and compile time:

 CPU time = 10 ms, elapsed time = 10 ms.

customer_lname account_no balance

8.1 Text-based query plans and statistics 269

Chapter 8

Burrows 107540 118.0400

 :

 :

(56 row(s) affected)

SQL Server Execution Times:

 CPU time = 29 ms, elapsed time = 29 ms.

I personally do not use this statement. Whereas logical reads is a con-
stant and will be the same for a given access strategy at any time irrespective
of other work on the server, this is not true for the statistics time. For that
reason I do not find it very useful. If I really want to compare the elapsed
times of queries, I often use my own statements, as follows:

DECLARE

 @time_msg CHAR(255),

 @start_time DATETIME

SELECT @start_time = GETDATE()

-- Execute the query we wish to test

SELECT C.customer_lname, A.account_no, A.balance

FROM customers C INNER JOIN accounts A

ON C.customer_no = A.customer_no

WHERE balance BETWEEN 100 AND 120

-- Calculate the query duration

SELECT @time_msg = 'Query time (minutes:seconds) ' +

 CONVERT(CHAR(2),

 DATEDIFF(ss,@start_time,GETDATE())/60) +

 ':' +

 CONVERT(CHAR(2),

 DATEDIFF(ss,@start_time,GETDATE())%60)

print @time_msg

customer_lname account_no balance

Burrows 107540 118.0400

 :

 :

270 8.2 Query plans in Management Studio

(56 row(s) affected)

Query time (minutes:seconds) 0 :16

8.1.7 SET STATISTICS XML { ON | OFF }

Once again, the XML option is new to SQL Server 2005. The only differ-
ence with the XML is that the output is returned as a properly structured
and formed XML document. The result will be very similar to that shown
in Figure 8.1.

As a final note with regard to the SET statements, the Query Analyzer,
now part and parcel of SQL Server Management Studio. The Management
Studio tends to put all the administration and tuning functionality into a
single graphical user interface (GUI). That GUI is intended to make all
databases, servers, and associated hardware and software accessible through-
out an organization.

8.2 Query plans in Management Studio

The SQL Server Management Studio in SQL Server 2005 replaces much of
the interactive GUI tools in previous versions of SQL Server. Essentially,
everything is more or less the same, except that now it’s all wrapped up nice
and neatly, inside the Management Studio. In short, all tools are accessible
from a single interface.

We have been discussing SET statements so far in this chapter that allow
us to check the query execution plan that the query optimizer has created.
As mentioned on a number of occasions, I find this easier to do with the
graphical query execution plan, and this will now be our focus. As with
SET SHOWPLAN_TEXT and SET SHOWPLAN_ALL, displaying the
estimated execution plan does not cause the query to execute. However, as
with SET STATISTICS PROFILE, it is possible to execute the query and
view the query execution plan afterwards.

To display the estimated execution plan the keyboard shortcut CTRL+L
can be used, or choose Display Estimated Execution Plan from the Query
menu. Alternatively, just click the Display Estimated Execution Plan but-
ton on the toolbar. Let us take a trip around the graphical display, and then
we will look at the graphical query execution plans we might encounter
when analyzing our queries. We’ll use the inner join we previously used for
the SET SHOWPLAN_ALL statement, as follows:

8.2 Query plans in Management Studio 271

Chapter 8

SELECT * FROM customers C INNER JOIN accounts A

 ON C.customer_no = A.customer_no

 WHERE balance = 100

The estimated execution plan for this statement is shown in Figure 8.2.

Various other options are available across the top of the Management
Studio window, at the right of the Display Estimated Execution Plan
Option, shown by the rollover yellow text box toward the top of Figure
8.2. These other options include Analyze Query in Database Engine Tun-
ing Advisor, Include Actual Execution Plan, Include Client Statistics, and
so on. For example, the query plan shown in Figure 8.2 executes a hash
join between the two tables because appropriate indexes are not present.
So, Figure 8.3, using the Analyze Query in the Database Engine Tuning
Advisor option, shows the obvious recommendation that these indexes
should be created.

So, let’s now assume the indexes are properly constructed – particularly
on primary and foreign keys. The execution plan changes somewhat, as
shown in Figure 8.4. The query execution plan is read from right to left. We
can see the operators that were rows in the SET SHOWPLAN_ALL out-
put. The hierarchical tree is displayed on its side with the top of the tree on

Figure 8.2
An estimated

execution plan in
the Management

Studio

272 8.2 Query plans in Management Studio

the left—the SELECT statement. On the far right of the display the chil-
dren at the lowest branches of the tree are displayed. The children at the
same level are displayed vertically above one another. The flow of rows,
index pointers, and so on is illustrated by the arrows joining the operators.
Note that these arrows vary in width. This variation is proportional to the
number of rows passed to the next operator up the tree.

At the top of the display shown in Figure 8.4 is a heading specifying that
this is query 1. We only have one query in our query batch, but if there
were more than one query these would be labeled accordingly. The query
text is also displayed. More interestingly, the query optimizer has also esti-
mated the cost of the query relative to the cost of the batch. This is useful

Figure 8.3
The Database

Engine Tuning
Advisor can

analyze a query

Figure 8.4
A graphical

estimated
execution plan

8.2 Query plans in Management Studio 273

Chapter 8

when you want to see which query in the batch is the one that is the most
expensive. In our example, having only one query, the cost is 100 percent of
the batch.

Different operations within a query are also cost checked relative to one
another. In our example the cost of the Table Scan is 86 percent of the cost
of the query. Clearly, this operator is worthy of some investigation if the
query is performing badly.

The operators are named and represented by an icon. In the case of the
nested loops join, the icon represents a nested loop, and the name of the
physical and logical operators are displayed in the format physical/logical.
In the case of the table scan, the physical operator Table Scan is displayed.
There is no logical operator as such; therefore it takes the same name as the
physical operator and just physical is displayed. In the case of the indexed
access of the Customers table, the icon representing an Index Seek is dis-
played, and the index name in the format table.index is displayed under-
neath. How do we know what these icons represent? In the background of
the display, if an icon or arrow is right-clicked, a menu appears. If Help is
chosen, a list of operators appears. Click on an operator and an explanation
is displayed. You will also notice that the displayed menu contains options
for zooming, fonts, and managing indexes and statistics.

What about the detailed information that was produced by SET
SHOWPLAN_ALL? Can the graphical execution plan produce this infor-
mation also? It can and all we have to do is move the mouse pointer over
the operator we are interested in—no click is needed. This is shown in
Figure 8.5.

Figure 8.5
Placing the pointer

over an operator

274 8.2 Query plans in Management Studio

As can be seen, lots of information pertaining to the operator is dis-
played. Pretty much all the cost information and any other text that was
displayed in the SET SHOWPLAN_ALL are displayed in this window.
Note what happens when we move the mouse pointer over the Table Scan
operator. This is shown in Figure 8.6.

A warning message is displayed (in red—but you can’t see that because
this book is printed in black and white so the red looks just a little grayish!)
telling us that statistics are missing from the table. If we recall, the SET
SHOWPLAN_ALL output also had a warning in the Warnings column of
its output for this operator. We’ll look at what the warning means shortly,
but for now let us just register that the graphical query execution plan dis-
plays warnings and, in this case, suggests a course of action. Again, we can’t
see this, but on the graphical display shown in Figure 8.4, the Table Scan
Cost 86 is percent—also displayed in red to draw our attention to the fact
that this operator has warnings associated with it.

If the mouse pointer is placed over an arrow, a window pops up—as
shown in Figure 8.7.

Figure 8.6
Placing the pointer

over the Table
Scan operator

Figure 8.7
Placing the pointer

over an arrow

8.2 Query plans in Management Studio 275

Chapter 8

This window displays information about the estimated number of rows
being passed to the next operator and the estimated row size.

Now that we know the format of the Display Estimated Execution Plan
window, we can investigate some query optimizer strategies. These strate-
gies will be examples of the query optimizer and index behavior we have
discussed in this and the previous chapter. We will start with simple exam-
ples and then move to more complex examples.

8.2.1 Statistics and cost-based optimization

In general, in SQL Server 2005, the statistical picture is quite different to
that of SQL Server 2000. In Figure 8.8, statistics are already present—and I
did nothing to create them, but simply created tables and added rows using
simple INSERT statements. In fact, this was also the case in SQL Server
2000, except that in SQL Server 2005, it appears to be much more difficult
to completely switch off the automation of statistics generation, if not
impossible.

As shown in Figure 8.8, statistics and execution plan information are
readily and very easily available in the SQL Server 2005 Management Stu-
dio interface. The two buttons at the top of the main window display exe-
cution plan and/or statistics—either or both selected by the buttons on the

Figure 8.8
SQL Server 2005

execution plans
with statistics

276 8.2 Query plans in Management Studio

out frame of the main window (the buttons marked Execution Plan and
Client Statistics).

In SQL Server 2000, the existence of statistics was somewhat dependent
on the existence of indexes. In the database that produced the output
shown in Figure 8.8, there are no indexes on the accounts table. There are
actually no indexes in the BankingDB database at all (at this point). Statis-
tics are not dependent on indexes in SQL Server 2005. This is because opti-
mization will often read an entire table without even reading any indexes at
all. Sometimes reading a table and ignoring its indexes is more efficient.
This can occur when the entire table is read or the table is very small.

This leads to a current trend in relational database technology, the
replacement of rule-based optimization with that of cost-based optimiza-
tion. Optimization makes a best guess at the best way to execute a query.

Note: Some may say that an optimizer is in reality an expert system for query
analysis. It uses a lot of information, including statistics, in order to formulate
access plans. Then again, an expert system is rule-based. Thus a optimization
is not an expert system because statistics are sampled measurements of reality,
rather than coded rules based on the knowledge of an expert.

An optimizer is a program running inside a relational database. Rule-
based optimization does not use statistics but a set of rules. In some envi-
ronments rule-based guessing at the best way to execute a query can func-
tion well—but most often rule-based optimization is pretty hopeless. The
most recent versions of relational databases allow only cost-based optimiza-
tion. Rule-based optimization has been discarded. Cost-based optimization
uses statistical measurements of actual data spaces in a database, to guess at
efficient methods of getting at that data—at any particular time. So, a cost-
based optimization guess may not always be the same for a particular
query—depending on all sorts of things, such as database size, current
activity, and so on.

Note: Rule based optimization is a thing of the past in SQL Server data-
base, as with many other relational database vendors. Why? Because cost-
based optimization is so much more efficient and is thus much better for
performance.

So, you can’t really switch statistics off completely. It is also inadvisable,
even for the purposes of demonstration. This is because cost based optimi-

8.2 Query plans in Management Studio 277

Chapter 8

zation is based purely on statistics. Even when statistics are not present, they
will be generated on-the-fly as sampling of larger sets—aiding in cost based
optimization.

Now let’s go through some example queries to demonstrate graphical
query plans and statistics used in the SQL Server 2005 Management Stu-
dio. One way to do this is to go back to Chapter 6 and show query plans for
queries (or similar queries) as described. Perhaps some improvements can
be made with indexes and otherwise.

In this first query we execute a simple query that finds all fields and
records in the accounts table:

SELECT * FROM accounts

Before executing the above query, let’s briefly change the primary key
from a non-clustered index to the clustered index form:

ALTER TABLE accounts DROP CONSTRAINT pk_accounts

GO

ALTER TABLE accounts ADD CONSTRAINT pk_accounts

PRIMARY KEY CLUSTERED(account_no)

GO

The above change does not need to be scripted. It can also be executed
in the Management Studio.

Note: The default for primary key indexes in SQL Server Management Stu-
dio is creation as a clustered index. All primary keys have indexes created as
non-clustered indexes at this point in this book (see Appendix B).

The result in Figure 8.9 is interesting because the clustered primary key
index is read, as opposed to the table as a full scan. The reason for this is
simple: a clustered index is made up of all the columns in a table by default.

Now let’s change the primary key from a clustered index back to a non-
clustered index:

ALTER TABLE accounts DROP CONSTRAINT pk_accounts
GO
ALTER TABLE accounts ADD CONSTRAINT pk_accounts

PRIMARY KEY NONCLUSTERED(account_no)
GO

278 8.2 Query plans in Management Studio

Figure 8.10 shows the obvious result, which is a full scan of the entire
table. There is no other alternative for the optimizer to choose.

Now let’s try another query:

SELECT account_no, customer_no, branch_no,

balance, account_notes FROM accounts

Figure 8.9
Reading everything

from a clustered
index

Figure 8.10
A non-clustered

primary key forces
a full table scan

8.2 Query plans in Management Studio 279

Chapter 8

The result is shown in Figure 8.11. We substitute the individual column
names for the asterisk. There is no difference in performance between using
the star character (*) or explicitly naming the column. Technically speaking,
explicitly naming columns might speed up the query a little because it
removes the need for the query to search through metadata in order to find
field names. Perhaps more importantly, explicitly listing field names might
help to avoid unnecessary reading of large objects, which are not contained
within the regular field structure of a table, such as externally stored images.

In the next query, I select the account_no column only, which also hap-
pens to be the non-clustered primary key:

SELECT account_no FROM accounts

As shown in Figure 8.12, the optimizer selects to read the primary key
index and ignores the table. It is more efficient to read the index because
only the indexed column is read. Of course, because of previous queries all
the records in the table, and may all be loaded into RAM, the table could
still be read as a full table scan—but not in this situation.

Figure 8.11
Reading all fields
explicitly can be

faster, but
is not apparent

280 8.2 Query plans in Management Studio

In the next query all the columns are selected but a single row is
retrieved using a WHERE clause. The result is shown in Figure 8.13:

SELECT * FROM accounts WHERE account_no = 1

The next query pulls more than 1 row but still much less than the entire
table. The result is the same as for the previous query, reading index and
table as shown in Figure 8.13:

SELECT * FROM accounts WHERE account_no <= 100

The next query defaults to a full table scan, avoiding the index. This is
because the optimizer thinks that reading the entire table is faster than
reading the index and table, for that many rows. The result is shown in
Figure 8.14:

SELECT * from accounts WHERE account_no <= 1000

Figure 8.12
Reading a single
indexed column

read only the index

Figure 8.13
A small number of
filtered rows reads

the index and table

8.2 Query plans in Management Studio 281

Chapter 8

So, based on previous queries, it is highly likely that the following types
of queries will all read the accounts table, ignoring the non-clustered index:

SELECT * FROM accounts WHERE account_no BETWEEN 1 AND 3000

SELECT * FROM accounts WHERE account_no != 100

SELECT * FROM customers WHERE name LIKE '%a%'

SELECT * FROM accounts WHERE account_no NOT LIKE '%a%'

The next example uses an ORDER BY clause to sort rows. Figure 8.15
shows a sort applied after the full table scan:

SELECT * FROM accounts ORDER BY account_no

The next query finds all records. It then uses a GROUP BY clause to
merge rows into aggregates, based on the customer-no. This, of course,

Figure 8.14
Increase row count
and index + table
scan becomes full

table scan

Figure 8.15
The ORDER BY

clause forces a sort
after reading

the table

282 8.3 Hinting to the optimizer

assumes that customers have more than one account with a single branch.
The result is show in Figure 8.16:

SELECT customer_no, SUM(account_no)

FROM accounts GROUP BY customer_no

8.3 Hinting to the optimizer

As we have already seen, the query optimizer is a sophisticated piece of soft-
ware that can consider multiple factors and create the most efficient query
plan. However, there will be situations when you may wish to force the
query optimizer to create a plan that it would not otherwise have chosen.
Perhaps what it considers the most efficient plan is not really the case in
some specific situations that you understand well. As we shall now see, it is
possible to override the query optimizer, but this should be considered only
as a last resort. Perhaps rewriting the query or changing the index design
strategy might be a better long-term option.

The query optimizer can be overridden by using a query optimizer hint.
These hints can be grouped into four categories:

� Join hints

� Table hints

� View hints

� Query hints

Figure 8.16
GROUP BY

matches common
values into

multiple groups

8.3 Hinting to the optimizer 283

Chapter 8

8.3.1 Join hints

Join hints are used to force the query optimizer to create a query plan that
adopts a particular join technique when joining two tables. We already
know that there are three join techniques available; these are nested loops,
merge, and hash. We can specify a join hint, which will force two tables to
be joined using one of these techniques. A fourth join hint, REMOTE, can
also be specified to dictate on which server a join is to be performed in a
distributed join query.

The join hint syntax is simple to use; the join type is specified as part of
the join, as follows:

SELECT * FROM accounts INNER HASH JOIN customers

ON accounts.customer_no = customers.customer_no

WHERE balance > 9990

In the above example, a hash join technique is forced.

The REMOTE join hint dictates that the join operation is performed
on the server hosting the right table. This is useful when the left table is a
local table with few rows and the right table is a remote table that has many
rows, since this may avoid a lot of data being shipped to the local server.

8.3.2 Table and index hints

Table hints are very useful, since they dictate the access method to use when
retrieving data from a table. This can be a table scan, a single index, or mul-
tiple indexes. An example of the syntax used is as follows:

SELECT * FROM accounts WITH (INDEX (nciBalance))

 WHERE balance BETWEEN 100 AND 200

 AND customer_no BETWEEN 1000 AND 2000

The above example forces the query optimizer to adopt a plan that uses
the non-clustered index nciBalance to access the Accounts table. The fol-
lowing example forces the query optimizer to adopt a plan that uses the
non-clustered indexes nciBalance and nciCustomerNo to access the
Accounts table—in other words, to perform an index intersection:

SELECT * FROM accounts WITH (INDEX (nciBalance,
nciCustomerNo))

284 8.3 Hinting to the optimizer

 WHERE balance BETWEEN 100 AND 200

 AND customer_no BETWEEN 1000 AND 2000

Suppose a table scan must be forced. The following syntax forces the
query optimizer to adopt a plan that uses a table scan if there is no clustered
index present on the table or that uses a clustered index scan if there is:

SELECT * FROM accounts WITH (INDEX (0))

 WHERE balance BETWEEN 100 AND 200

 AND customer_no BETWEEN 1000 AND 2000

If there is a clustered index present on the table, a clustered index scan or
seek can be forced, as shown in the following example:

SELECT * FROM accounts WITH (INDEX (1))

 WHERE balance BETWEEN 100 AND 200

 AND customer_no BETWEEN 1000 AND 2000

Another table hint that we have briefly discussed is FASTFIRSTROW.
As mentioned in our previous discussion concerning ORDER BY, in the
case of a table scan and sort no rows will be returned until the result set has
been sorted. If the non-clustered index is chosen by the query optimizer,
the first row can be returned immediately. This behavior can be forced with
the FASTFIRSTROW query optimizer hint, as follows:

SELECT customer_no, balance FROM accounts

 WITH (FASTFIRSTROW)

 ORDER BY customer_no

8.3.3 View hints

View hints are similar to table hints but are used with indexed views. The
only view hint is NOEXPAND, which forces the query optimizer to pro-
cess the view like a table with a clustered index. The index on the view
which should be used may be specified. An example of the syntax used is as
follows:

SELECT * FROM BranchTotalFunds

 WITH (NOEXPAND,INDEX (nciTotalBal))

 WHERE TotalBalance > $1350000.00

8.3 Hinting to the optimizer 285

Chapter 8

A query hint, described in the following section, can be used to expand
the indexed view.

8.3.4 Query hints

A query hint is used throughout the whole query. Query hints can be used
to specify many plan behaviors. For example, the following query hint
forces the query optimizer to use hashing when calculating an aggregate:

SELECT branch_no, SUM(balance)

FROM accounts

GROUP BY branch_no

OPTION (HASH GROUP)

If an ordering (sorting) rather than a hashing technique should be used,
then this can be forced as follows:

SELECT branch_no, SUM(balance)

FROM accounts

GROUP BY branch_no

OPTION (ORDER GROUP)

A query hint can be used to force the query optimizer to adopt different
techniques when performing UNION operations. The following example
will force the use of a Concatenation operator to perform the union, and
thus a Sort/Distinct operator will subsequently eliminate the duplicate rows
if any:

SELECT * FROM AccountsEurope WHERE balance > 9990

UNION ALL

SELECT * FROM AccountsUSA WHERE balance > 9990

OPTION (CONCAT UNION)

The following example will force the use of a Hash/Union operator to
perform the union, and thus a Sort/Distinct operator will not be needed to
eliminate the duplicate rows:

SELECT * FROM AccountsEurope WHERE balance > 9990

UNION ALL

SELECT * FROM AccountsUSA WHERE balance > 9990

OPTION (HASH UNION)

286 8.3 Hinting to the optimizer

Finally, the following example will force the use of a Merge/Union oper-
ator to perform the union, and thus a Sort/Distinct operator will not be
needed to eliminate the duplicate rows. Normally, the Merge/Union opera-
tor would exploit the sorted order of the inputs in a manner similar to a
merge join, as follows:

SELECT * FROM AccountsEurope WHERE balance > 9990

UNION ALL

SELECT * FROM AccountsUSA WHERE balance > 9990

OPTION (MERGE UNION)

We have already seen that a JOIN clause can include a join hint. The
join hint is relevant to the two tables being joined by that particular join
operator. The type of join may also be specified as a query hint, in which
case the join type will be applied to all the joins in the query, as follows:

SELECT * FROM accounts

 INNER JOIN customers

 ON accounts.customer_no = customers.customer_no

 INNER JOIN branches

 ON accounts.branch_no = branches.branch_no

 WHERE balance > 9990

 OPTION (HASH JOIN)

Note that a join hint will override the query hint.

To force a query plan to deliver the first rows quickly, perhaps at the
expense of the whole query, the FAST query hint can be used, as in the fol-
lowing example:

SELECT customers.customer_no, customer_lname, balance

 FROM customers INNER JOIN accounts

 ON customers.customer_no = accounts.account_no

 WHERE customers.customer_no > 12400

 ORDER BY customers.customer_no

 OPTION (FAST 10)

This query hint will force the query optimizer to create a plan that will
be optimized to return the first ten rows.

8.3 Hinting to the optimizer 287

Chapter 8

Perhaps a more practical hint is one that can force the query optimizer
to change the join order to that specified by the query syntax, as follows:

SELECT customers.customer_no, customer_lname, balance

 FROM customers INNER JOIN accounts

 ON customers.customer_no = accounts.account_no

 WHERE accounts.balance BETWEEN 100 AND 200

 OPTION (FORCE ORDER)

In the above example, the outer table will become the Customers table
even though it is the Accounts table that is filtered.

The next query hint is used to specify the number of CPUs used to par-
allelize the query on a multiprocessor computer. If there is only one proces-
sor, this hint is ignored. The following hint limits the number of CPUs that
can be used for parallelism to two:

SELECT branch_no, SUM(balance)

FROM accounts

GROUP BY branch_no

OPTION (MAXDOP 2)

If MAXDOP is set to 1, parallel query plan is suppressed.

The KEEP PLAN and KEEPFIXED PLAN options are similar in that
they control when query plans are recompiled. This is discussed later in the
chapter. The KEEPFIXED PLAN option ensures that the query optimizer
does not recompile a query due to changes in statistics or to the indexed
column. A query will only be recompiled if the table schema changes or
sp_recompile is executed specifying the table. The KEEPPLAN option is
used to reduce the recompilation thresholds, which determine how many
inserts, deletes, and index column updates cause a query to be recompiled.
The recompilation thresholds used for querying temporary tables in a
stored procedure are less than those for a permanent table, and therefore
this option is useful when it is necessary to reduce stored procedure recom-
pilations for stored procedures that use temporary tables. This is discussed
later in the chapter.

The EXPAND VIEWS option is used with indexed views. This option
effectively ensures that the indexes on an indexed view are not used. The
view is expanded into its definition, which is the traditional behavior with
non-indexed views, as follows:

288 8.3 Hinting to the optimizer

SELECT * FROM BranchTotalFunds

 WHERE TotalBalance > $1350000.00

 OPTION (EXPAND VIEWS)

The ROBUST PLAN option ensures that the query plan will not fail
due to size limitations when the maximum row sizes are used in the query.
For example, plan A may be more efficient than plan B. However, due to
the fact that plan A uses intermediate tables to store intermediate results,
if any of the variable-length rows used in the query are at their maximum
size, the use of the intermediate tables will fail due to size limitations. The
ROBUST PLAN option will ignore plan A and choose plan B, which,
although less efficient, will not have the same potential problems due to
the way the plan executes—perhaps it does not use intermediate storage
of results.

As a final note on hints, hints are not always the most prudent option. It
is always best to attempt to get as much out of a query as possible, using
just the query. Leave the hint for later. Then again, utilizing a hint can be a
useful short-cut to resolve a specific performance issue with a query. The
only danger with using hints is that in the past, hints were provided in data-
base engines such as SQL Server and Oracle, merely as suggestions. In other
words, the optimizer had the option of ignoring hints. The general trend in
relational database technology is that hints are now more a forced rather
than a suggested influence on an optimizer. SQL Server appears to be no
exception to this general trend. So, use hints as a last resort. I myself have
never used hints when tuning queries. I do sometimes find it useful to use
hints in order to test assumptions, such as why a specific index is not used
as I would expect. Also, if you take a very close look at the buttons at the
top of the Management Studio, you may notice one of those little rollover
text boxes states Include Actual Execution Plan. The use of the word Actual is
significant. Why? Because there is s proposed or estimated execution plan,
which is the one the optimizer figures out from things like statistics, appro-
priate indexes, hints, and a host of other things. However, the actual execu-
tion might be very different to the estimated execution plan. In actuality,
hints could be ignored, statistics could be ignored, and indexes could be
completely useless. What happens in reality is not necessarily what you
might always expect, or even what the optimizer tells you to expect. In
short, hints can be very useful in trying to predict the expected, because by
hinting at the query to do one thing, and something else happens entirely,
then you are made clearly aware that something is odd with your query.
Keep an open mind because the unexpected can happen.

8.4 Stored procedures and the query optimizer 289

Chapter 8

8.4 Stored procedures and the query optimizer

Stored procedures are found everywhere in SQL Server. There are many sys-
tem-stored procedures, and a typical SQL Server development department
will also create and use many stored procedures. There are a number of ben-
efits to using stored procedures, such as the following:

� Function encapsulation

� Security

� Performance

By function encapsulation I mean that complex logic can be placed into
a stored procedure and hidden from the client software, which then only
has to call the stored procedure, passing appropriate parameters. The stored
procedure logic can be changed, perhaps to encompass a database modifica-
tion, without having to change client application software or at least mini-
mizing any change. We can say that stored procedures insulate the client
application software from the database structure.

Many sites take a stance that updates to database data can only be made
through stored procedures and cannot be made directly to the tables by the
client issuing Transact-SQL statements. This model of processing is shown
in Figure 8.17.

Even without the use of stored procedures, many clients are insulated
from the database, or at least the database is insulated from clients, because

Figure 8.17
Insulating clients

from the database
structure via stored

procedures

290 8.4 Stored procedures and the query optimizer

custom applications execute SQL code from the applications. Do you really
want 1 million and 1 Internet users running all sorts of things directly onto
your database? Even with the potential performance nightmare, the lack of
security of sensitive data makes this impractical.

This brings us to the second benefit of stored procedures: security. Tak-
ing the model shown in Figure 8.17, we can see that in order to implement
it, we need a security mechanism that allows us to prohibit client software
from directly accessing tables and other objects but allows indirect access in
a way that we can define and control. Stored procedures provide this benefit
by means of ownership chains.

As long as the owner of the stored procedure is the owner of all the
objects referenced by the stored procedure, then execute access on that
stored procedure can be granted to database users. They can perform all of
the actions defined in the stored procedure even though they have no direct
access to the underlying objects. For example, a database user may be
granted execute access to a stored procedure that deletes from one table and
inserts into another. As long as the ownership of the stored procedure and
tables is the same, the database user needs no permissions on the tables.

The most important benefit of stored procedures from the perspective of
this book is performance, and it is this aspect of stored procedures on which
we will now concentrate. Generally speaking, stored procedures save us the
time and effort spent syntax checking Transact SQL and optimizing it.
They reduce network load because they minimize the amount of traffic sent
to and from the server.

The stages in stored procedure processing are shown in Figure 8.18.
This figure can be compared with Figure 7.1, which shows the stages in
query processing. The principal difference is that when a Transact-SQL
query is submitted, all the above phases are performed. If the query is sub-
mitted 100 times, these phases are performed for each submission unless
the query plan for the statement can be reused. We will discuss plan reuse
for statements later.

With a stored procedure, the query plan is generally always reused—
with a few exceptions. When the stored procedure is initially created, the
syntax is checked, and, if correct, the stored procedure code is stored in the
syscomments system table, which is resident in every database. Also, the
stored procedure name is stored in the sysobjects system table, which is also
resident in every database.

When a stored procedure is first executed after SQL Server starts (in
other words it is not cached in any way), the stored procedure is retrieved

8.4 Stored procedures and the query optimizer 291

Chapter 8

from syscomments. We can see that we immediately have a performance
gain, since we do not have to perform the syntax checking, which, for a
large stored procedure, may be nontrivial. Existence checking must be per-
formed at this point, since SQL Server allows us to create the stored proce-
dure even if tables and views, which are referenced in it, do not exist at
creation time. This is known as delayed name resolution.

Assuming all the objects referenced exist, the query optimizer creates a
query plan for the Transact SQL in the stored procedure and compiles it
into executable code. Once the query plan has been created and compiled,
it is cached in an area of memory known as the procedure cache. It is then
available for the next user.

If another user wishes to execute the stored procedure, SQL Server can
now skip the above phases, since the query plan is ready and waiting in the
cache. This can increase the performance benefit of the stored procedure
quite substantially. How useful the performance advantage of skipping
these phases is depends on how long it takes to perform these phases relative
to the execution time of the stored procedure and how often the stored pro-
cedure is executed. For a complex stored procedure, which is frequently exe-
cuted, the performance advantage is significant.

Microsoft recommends that the owner name be specified when a stored
procedure is executed. This enables SQL Server to access the execution plan
for the specific procedure more efficiently. Therefore, it is better to issue:

Figure 8.18
Stages in stored

procedure
processing

292 8.4 Stored procedures and the query optimizer

EXEC dbo.usp_GetAuthors

than:

exec usp_GetAuthors

The query plan of a stored procedure can be utilized by many users at the
same time. The stored procedure is effectively split into a read only section,
which many users can share, and multiple sections, which are private to a
user. They are reusable but cannot be shared simultaneously between users.
These sections can be used, for example, to hold a user’s read/write variables.
This is known as an execution context. This approach means that the bulk of
the stored procedure plan, the executable code, is held in cache as a single
copy. Actually, even this is not quite true. Two copies of the plan may be held
on a multiprocessor computer: a nonparallel plan and a parallel plan.

8.4.1 A stored procedure challenge

There is one disadvantage to the stored procedure mechanism compared
with executing Transact-SQL queries outside of a stored procedure. Sup-
pose we execute the following query outside of a stored procedure, assum-
ing that there is a non-clustered index on the balance column:

SELECT account_no, balance FROM accounts

 WHERE balance BETWEEN 8000 AND 8100

What strategy will the query optimizer choose? The non-clustered index
on the balance column is, in fact, chosen. This is a reasonable plan given
what we already know. If we execute the query, the following Show Stats IO
output is displayed after 239 rows have been returned:

Table 'accounts'. Scan count 1, logical reads 241,

physical reads 0, read-ahead reads 0.

The query optimizer has chosen to use a non-clustered index to access
the data and has taken 241 logical reads to do so. Now suppose we execute
the following query:

SELECT account_no, balance FROM accounts

8.4 Stored procedures and the query optimizer 293

Chapter 8

 WHERE balance BETWEEN 8000 AND 9000

What strategy will the query optimizer now choose? As we might expect,
the query optimizer has decided to use a table scan. Again, this is a reason-
able plan given what we already know. As the number of rows returned
increases, it becomes more efficient to execute a table scan rather than use
the non-clustered index. If we execute the query, the following Show Stats
IO output is displayed after 2,426 rows have been returned:

Table 'accounts'. Scan count 1, logical reads 1570,

physical reads 0, read-ahead reads 0.

So, the query optimizer has now chosen to use a table scan, taking 1,570
logical reads to do so.

Now let us place the query in a stored procedure, as follows:

CREATE PROCEDURE dbo.usp_accounts_per_range (@minbal

MONEY, @maxbal MONEY)

AS

SET STATISTICS IO ON

SELECT account_no, balance FROM accounts

 WHERE balance BETWEEN @minbal AND @maxbal

RETURN

Let us execute it with the following EXEC statement:

EXEC dbo.usp_accounts_per_range @minbal=8000, @maxbal =

8100

account_no balance

7880 8000.43

12053 8000.43

 :

 :

Table: accounts scan count 1, logical reads: 241,

physical reads: 0, read ahead reads: 0

294 8.4 Stored procedures and the query optimizer

This is exactly the same number of logical reads as before. The query
optimizer has chosen a query plan that uses the non-clustered index as it
did for the stand-alone query.

Now let us execute the stored procedure with the following EXEC state-
ment:

EXEC dbo.usp_accounts_per_range @minbal=8000, @maxbal =

9000

account_no balance

7880 8000.43

12053 8000.43

 :

 :

Table: accounts scan count 1, logical reads: 2433,

physical reads: 0, read ahead reads: 0

The number of logical reads has increased from 1,570 executing the
query as a stand-alone statement to 2,433 executing the query in a stored
procedure. Why is this?

The problem is caused by the fact that the query plan was created and
loaded into cache by the first execution. The query optimizer created the
query plan based on the parameters passed to it, so in this case it created a
query plan for the SELECT statement, as follows:

SELECT account_no, balance FROM accounts

 WHERE balance BETWEEN 8000 AND 8100

The next time the stored procedure was executed no query optimization
was done, and the query plan utilizing the non-clustered index was used.
This is not the most efficient query plan for the range, as can be seen from
the logical reads.

In its worst manifestation we can imagine that the first stored procedure
execution happens to use a query plan that is not efficient for all subsequent
stored procedure executions. So how can we deal with this situation?

8.4 Stored procedures and the query optimizer 295

Chapter 8

One mechanism available to us is to make sure that the stored procedure
always creates and uses a new query plan. We can force a stored procedure
to create and use a new query plan, but there are also times when a stored
procedure is automatically recompiled.

We will look shortly at how we can force a stored procedure to create
and use a new query plan, but first let us look at some of the situations that
result in SQL Server automatically recompiling a plan. To check if a stored
procedure plan is recompiled the SP:Recompile SQL Server Profiler event
can be monitored.

8.4.1.1 Changes to the table structure

If the structure of a table referenced by the stored procedure is changed,
typically by the use of an ALTER TABLE statement, the schema_ver and
base_schema_ver columns in the sysobjects system table are incremented.
This informs SQL Server that it needs to recompile the stored procedure
plan the next time the stored procedure executes. Examples of structure
changes are the addition and deletion of columns and constraints.

8.4.1.2 Changes to indexes

If indexes are created and dropped, the schema_ver and base_schema_ver
columns are incremented. This will cause a stored procedure recompilation
even if the indexes are not relevant to the queries in the stored procedure.

8.4.1.3 Executing update statistics

If UPDATE STATISTICS is run against a table referenced by the stored
procedure, stored procedure recompilation will take place the next time the
stored procedure is executed. Running UPDATE STATISTICS increments
the base_schema_ver and stats_schema_ver columns.

8.4.1.4 Aging the stored procedure out of cache

We will discuss how stored procedures are aged out of cache later. If this
happens, then the next time the stored procedure executes it must be com-
piled and cached again.

8.4.1.5 Table data modifications

SQL Server will detect that a certain fraction of the data in a table has
changed since the original plan was compiled. Once this threshold has been
crossed a recompilation will occur. To keep track of the changes to the table
data, the rowmodctr column in the sysindexes system table is incremented
whenever one of the following conditions occurs to the table in question:

296 8.4 Stored procedures and the query optimizer

� A row is inserted.

� A row is deleted.

� An indexed column is updated.

� When a predefined threshold has been crossed, the statistics for the
table will be automatically updated when it is accessed next, assuming
the database option Auto update statistics is set to on. This automatic
updating of statistics will reset the rowmodctr column. This thresh-
old tends to depend on the size of the table.

So the stored procedure is recompiled when the threshold is crossed. As
was mentioned earlier, the SP:Recompile SQL Server Profiler event can be
monitored to check for recompilations; however, trace flag 205 can also be
used to output information about when a statistics-dependent stored proce-
dure is being recompiled. I tend to set this in the Startup Parameters section
of the General Tab in Server Properties in the SQL Server Enterprise Man-
ager together with trace flag 3605 to ensure logging of trace messages to the
error log. A typical pair of messages logged follows:

Recompile issued : ProcName: usp_GetAccts LineNo:2

StmtNo: 3

Schema Change: Tbl Dbid: 7 Objid: 1993058136 RowModCnt:

25000.000000 RowModCntMax: 0 RowModLimit: 22000

The first message specifies the stored procedure. The second message
holds the table name in the form of its object ID. The item RowModCnt is
the total number of modifications to the table, and RowModLimit is the
threshold, which, when exceeded, results in the statistics being updated for
the table and the stored procedure being recompiled. It is possible to ensure
that the query optimizer does not recompile a query due to changes in sta-
tistics or to the indexed column by using the KEEPFIXED PLAN query
option. In this case a query will only be recompiled if the table schema
changes or sp_recompile is executed specifying the table.

8.4.1.6 Mixing data definition language and data manipulation
language statements

If Data Definition Language (DDL) statements and Data Manipulation
Language (DML) statements are mixed together in a stored procedure, the

8.4 Stored procedures and the query optimizer 297

Chapter 8

stored procedure will be recompiled when the DML statements are exe-
cuted. The following example displays a stored procedure:

CREATE PROC dbo.usp_DDL_DML

AS

CREATE TABLE #table1 (c1 INT)

SELECT COUNT(*) FROM #table1

CREATE INDEX i1 ON #table1(c1)

SELECT COUNT(*) FROM #table1

CREATE TABLE #table2 (c1 INT)

SELECT COUNT(*) FROM #table2

CREATE INDEX i2 ON #table2(c1)

SELECT COUNT(*) FROM #table2

RETURN

This will result in four stored procedure recompilations. When the
stored procedure compilation takes place the first time around, the tempo-
rary tables—#table1 and #table2 have not yet been created. The stored pro-
cedure must execute for this to happen. The SELECT statements that
access #table1 and #table2 are not yet able to have a plan created. When the
stored procedure executes, #table1 is created and then accessed by the first
SELECT statement. Since a plan does not exist for this query, the stored
procedure is recompiled in order to create a plan for this query.

The index is then created for #table1. A SELECT statement is then exe-
cuted against #table1, but, as we have previously mentioned, this is treated
as a schema change and therefore the stored procedure is recompiled again.
The same recompilations occur because of #table2, and thus four recompi-
lations are performed. It would have been better to place all the DDL state-
ments at the beginning of the stored procedure and then execute the DML
statements. Doing this results in one stored procedure recompilation.

8.4.2 Temporary tables

Another reason that stored procedures may be recompiled concerns the use
of temporary tables. SQL Server will recompile a stored procedure if a few
changes have been made to a temporary table created in the stored proce-
dure. At the time of writing, only six changes to the temporary table have to
be made inside the stored procedure before it is recompiled. This means
that changes to a temporary table will result in recompilation far more fre-

298 8.4 Stored procedures and the query optimizer

quently than in the case of a permanent table, as previously discussed. If
you wish to apply the same recompilation thresholds to temporary tables as
were applied to permanent tables, use the KEEP PLAN query option on
any query that uses the temporary table.

8.4.3 Forcing recompilation

How can we manually cause a stored procedure to be recompiled? There are a
number of mechanisms. One is the sp_recompile stored procedure. CREATE
PROCEDURE WITH RECOMPILE.EXECUTE WITH RECOMPILE.

The sp_recompile system stored procedure ensures that each stored pro-
cedure and trigger that uses the specified table are recompiled the next time
the stored procedure and triggers are run:

EXEC sp_recompile accounts

Object 'accounts' was successfully marked for

recompilation.

It is also possible to specify a stored procedure name instead of a table
name, in which case only that stored procedure will be recompiled the next
time it is run.

The sp_recompile system stored procedure actually increments the
schema_ver and base_schema_ver column in the sysobjects system table.
Note that triggers are also affected. Triggers are just a special kind of stored
procedure that are automatically executed when inserts, updates, and
deletes happen to a table. As such, they have their query plans stored in
cache like any other stored procedure.

When we create a procedure, we can use the WITH RECOMPILE
option. This means that every execution of a stored procedure causes a new
query plan to be created. Using this option means that we do not have the
problem of a query plan resident in cache that is inefficient for various
parameter combinations. However, because we generate a new query plan
for each execution of the stored procedure, the performance benefit of
stored procedures is negated.

A less-severe option is to execute a stored procedure with the WITH
RECOMPILE option. This causes a new query plan to be created for just
that execution.

8.4 Stored procedures and the query optimizer 299

Chapter 8

These options will help us avoid the problem described previously with
an inefficient query plan loaded into procedure cache, but they do mean
that new query plans get created. Another option is to break up the stored
procedure into smaller pieces:

CREATE PROC dbo.usp_few_accounts_per_range (@minbal

MONEY, @maxbal MONEY) AS

SET STATISTICS IO ON

SELECT account_no, balance FROM accounts

 WHERE balance BETWEEN @minbal AND @maxbal

RETURN

GO

CREATE PROC dbo.usp_many_accounts_per_range (@minbal

MONEY, @maxbal MONEY) AS

SET STATISTICS IO ON

SELECT account_no, balance FROM accounts

 WHERE balance BETWEEN @minbal AND @maxbal

RETURN

GO

CREATE PROC dbo.usp_accounts_per_range (@minbal MONEY,

@maxbal MONEY) AS

IF (@maxbal - @minbal) <= 100

 EXEC dbo.usp_few_accounts_per_range @minbal,
@maxbal

ELSE

 EXEC dbo.usp_many_accounts_per_range @minbal,
@maxbal

RETURN

GO

The stored procedure usp_accounts_per_range is executed passing the
minimum and maximum balance. It tests to see if the difference between
the minimum and maximum balance is less than or equal to 100, and, if
it is, it executes the stored procedure usp_few_accounts_per_range. If the
difference is greater than 100, it executes the stored procedure
usp_many_accounts_per_range. In this way the two stored procedures
that access the data are compiled with their own execution plan. In this
example the stored procedure usp_few_accounts_per_range gets a query

300 8.4 Stored procedures and the query optimizer

plan that uses a nonclustered index, whereas the query plan for
usp_many_accounts_per_range uses a table scan.

This method can work well, but it did require the developer writing the
stored procedures to know that a balance range greater than 100 was best
dealt with by a table scan, and, of course, this distribution can change over
time. Another approach is to recompile not the whole stored procedure but
only the troublesome statement. This can be brought about by using the
EXECUTE statement with a character string:

CREATE PROC dbo.usp_example_proc (@bal MONEY) AS

DECLARE @balstr VARCHAR(10)

SELECT @balstr = CONVERT(VARCHAR(10), @bal)

 :

EXECUTE ('SELECT account_no, balance FROM accounts

WHERE balance > ' + @balstr)

 :

RETURN

The Transact-SQL statement inside the EXECUTE statement goes
through the same phases that any standalone Transact-SQL statement goes
through—that is, parsing through to query compilation. This does not hap-
pen until the EXECUTE statement is performed. Other Transact-SQL
statements in the stored procedure are compiled just once. To see the plan
used for the Transact-SQL statement in the EXECUTE you need to look at
the query plan after the stored procedure has been executed. In other
words, choose Show Execution Plan from the Query menu in the Query
Analyzer.

Another possibility is to use query optimizer hints. We have already seen
optimizer hints and how they can be used to force the query optimizer to
use a particular index. Optimizer hints can also be used with queries in
stored procedures to ensure that a particular query plan is always used.

8.4.4 Aging stored procedures from cache

Versions of SQL Server prior to SQL Server 7.0 used two areas of cache—
one for stored procedure plans and one for database pages, in particular

8.5 Non-stored procedure plans 301

Chapter 8

data and index pages. SQL Server 7.0 and SQL Server 2000 use a single
unified cache for database pages, stored procedure plans, and the query
plans of SQL statements that are not stored procedures. The cache can
grow and shrink dynamically as the memory allocated to SQL Server grows
and shrinks.

Different stored procedures will require different amounts of effort to
compile. Some will be simple and cheap to compile, and some will be
complex and expensive to compile. To ensure that a stored procedure plan
that is expensive to compile is not as easily aged out of cache as a simple
stored procedure, the cost of the stored procedure compilation is stored
with the plan.

If memory is tight, a component of SQL Server known as the lazywriter
frees up cache pages. It does this by looking at the buffers in cache and
checking the cost value associated with them. The lazywriter will decrement
the cost of a buffer page by one. If the lazywriter finds that the cost of a
page is zero, it will be freed. Conversely, if a stored procedure plan is used,
the cost is set to the initial creation cost. This means that a frequently used
stored procedure will not have its cost decremented over time to zero by the
lazywriter. Also, a stored procedure that was expensive to compile and
therefore has an associated large cost will take a long time to have its cost
decremented to zero. Therefore, a stored procedure that is expensive to
compile but not used frequently may stay in cache, as would a stored proce-
dure that is cheap to compile but is used frequently.

8.5 Non-stored procedure plans

If you wish to ensure that a query plan is created and stored in cache, then
placing the query inside a stored procedure will guarantee this. However,
SQL Server does not only place stored procedure plans in cache. It will
store the plans of SQL statements that are not part of a stored procedure in
cache and attempt to reuse them.

SQL Server distinguishes between RPC events and SQL language
events. RPC events are parameterized in some way. If the developer has
used sp_executesql to submit the query or has used the prepare/execute
model from the database API, it is an RPC event. Parameterization is typi-
cally used by a developer who wishes to submit a SQL statement for multi-
ple execution, and in this case it makes sense to try to keep the query plan
of the SQL statement.

302 8.5 Non-stored procedure plans

A SQL language event is typically a SQL statement that is sent direct to
the server. It has not been prepared and has not been submitted using
sp_executesql. In this case the developer probably does not intend that the
SQL statement be resubmitted multiple times.

Note: The SQL Server Profiler distinguishes between these events—for
example, RPC:Starting, Prepare SQL, and SQL:StmtStarting.

When an RPC statement is received by SQL Server, the query plan is
created and placed into cache. So that the query plan can be retrieved for a
subsequent statement, some mechanism must be used to allow the plan to
be identified. In the case of a stored procedure this was not necessary, since
the stored procedure has a unique name. In the case of a SQL statement,
which has no such name, the statement text is hashed to produce a hash
key, which identifies it in cache. The hash key seems to be particularly sen-
sitive to the statement text. The following two statements will have differ-
ent keys even though the only difference is the case of the WHERE
keyword (the server is case insensitive):

SELECT account_no FROM accounts where balance=100

SELECT account_no FROM accounts WHERE balance=100

Even the number of spaces in the statement is significant when hashing
the statement text. Different plans will also be stored for identical state-
ments that have different connection settings. Suppose two connections
both execute the following SQL statement.:

SELECT account_no FROM accounts WHERE balance=100

Suppose one connection has its ANSI_NULL setting set to TRUE, and
one connection has it set to FALSE. There will be two plans cached.

For nonparameterized (ad hoc) SQL language statements, the query
optimizer may actually attempt to change a hard-coded value into a param-
eter marker in order to facilitate reuse of the query plan. This is known as
autoparameterization. However, the query optimizer is very conservative,
and few statements will undergo this process. The reason for this is the
same as our previous discussion of stored procedure plans. A plan that is
efficient for one parameter value may be extremely inefficient for another

8.5 Non-stored procedure plans 303

Chapter 8

value. At least with stored procedures, the developer is in control and can
use one of the techniques suggested earlier to avoid this problem. This is
not the case with non-stored procedure statements, so the responsibility
falls with SQL Server to avoid using inefficient plans.

To achieve this, it only autoparameterizes when it knows it is safe to do
so. A typical case would be the following statement.:

SELECT balance FROM accounts WHERE account_no = 1000

There is a unique non-clustered index on the account_no column. An
obvious efficient plan is to use this non-clustered index. Since this index is
unique, a maximum of one row only can be returned.

Now consider the following statement.:

SELECT account_no FROM accounts

WHERE balance between 100 and 120

It would be very risky to replace the values 100 and 120 by parameter
markers. Two different values from a subsequent query such as 50 and
5,000 would probably benefit from an entirely different plan.

It’s worth it at this point to mention the system-stored procedure
sp_executesql. This allows the developer to build a Transact-SQL statement
that can be executed dynamically. Unlike the EXECUTE statement
though, sp_executesql allows the setting of parameter values separately from
the Transact-SQL string. This means that sp_executesql can be used instead
of stored procedures to execute a Transact-SQL statement a number of
times when only the parameters change. Because the Transact-SQL state-
ment itself does not change—rather, the parameter values change—it is
highly probable that the query optimizer will reuse the query plan it creates
and saves for the first execution. Again, it is up to the developer, being
familiar with the data, to decide whether reusing plans is a good strategy for
a particular statement.

Here is an example of using sp_executesql:

DECLARE @MoneyVariable MONEY

DECLARE @SQLString NVARCHAR(500)

DECLARE @ParameterDefinition NVARCHAR(500)

304 8.6 The syscacheobjects system table

-- Create the SQL String – only need to do this once

SET @SQLString =

 N'SELECT account_no FROM accounts WHERE balance =

@bal'

SET @ParameterDefinition = N'@bal MONEY'

-- Execute the string with the first parameter value

SET @MoneyVariable = 100

EXECUTE sp_executesql @SQLString, @ParameterDefinition,

 @bal = @MoneyVariable

-- Execute the string with the next parameter value

SET @MoneyVariable = 200

EXECUTE sp_executesql @SQLString, @ParameterDefinition,

 @bal = @MoneyVariable

Note that the query plans of the non-stored procedure SQL statements
are placed in the cache and aged in a manner similar to stored procedures,
described previously. Ad hoc statements that are not autoparameterized,
however, will be placed in the cache with a cost of zero, so their plans will
be removed from cache as soon as memory becomes short.

8.6 The syscacheobjects system table

To check for plans in cache the system table syscacheobjects can be queried.
Here is a fragment of the output of syscacheobjects:

SELECT cacheobjtype, objtype, sql FROM syscacheobjects

cacheobjtype objtype sql

8.6 The syscacheobjects system table 305

Chapter 8

Compiled Plan Adhoc SELECT account_no FROM accounts
where balance=100

Compiled Plan Adoc SELECT account_no FROM accounts
WHERE balance=100

Compiled Plan Adhoc SELECT account_no FROM accounts
WHERE balance between

100 and 120

Executable Plan Prepared (@1 smallint)SELECT
[balance]=[balance] FROM [accounts]

WHERE [account_no]=@1

Compiled Plan Prepared (@1 smallint)SELECT
[balance]=[balance] FROM [accounts]

WHERE [account_no]=@1

Executable Plan Prepared (@bal MONEY)SELECT account_no
FROM accounts

WHERE balance = @bal

Compiled Plan Prepared (@bal MONEY)SELECT account_no
FROM accounts

WHERE balance = @bal

Executable Plan Proc usp_accounts_per_range

Compiled Plan Proc usp_accounts_per_range

The column sql holds the statement text. The column cacheobjtype rep-
resents the type of object in the cache. We can see that the two statements
previously mentioned that have their WHERE keyword in different case
are represented by separate plans. The statement that was too dangerous to
autoparameterize with the balance between 100 and 120 values is held as a
separate plan. All three statements are held as ad hoc objects in the objtype
column. This column holds the type of object.

One of our statements was autoparameterized:

SELECT balance FROM accounts WHERE account_no = 1000

306 8.6 The syscacheobjects system table

This is held as a prepared object, as is the statement that was submitted
through sp_executesql. Finally, we can see that a stored procedure is also
held in cache. Because different users will usually have different parameter
values when executing stored procedures and prepared statements, they
must also be given an execution context as well as a completely shared plan.

307

9
SQL Server and Windows

This chapter discusses SQL Server performance with respect to the CPU,
memory, and disk resources found on a Windows server.

9.1 SQL Server and CPU

The first resource on a Windows server that is usually monitored is the
CPU. CPUs have been gaining in power dramatically over the last few
years, and Windows supports multiprocessor systems.

Although a multiprocessor system may not reduce CPU bottlenecks
when a single threaded process is consuming the CPU, multithreaded pro-
cesses such as SQL Server will benefit greatly.

CPU is a system resource. The more CPU power available the better the
system is likely to perform. Windows schedules CPU time to the threads of
a process, and, if more threads require CPU time than there is CPU time
available, a queue of waiting threads will develop. Sometimes a processor
bottleneck is actually masking another bottleneck, such as memory, so it is
important to look at CPU use in conjunction with other resource use on
the system. This first part of the chapter provides an overview of CPU usage
and looks at how SQL Server makes use of the CPU. It then looks at how
CPU bottlenecks can be observed.

9.1.1 An overview of Windows and CPU utilization

To understand the way that Windows uses the CPU we first of all need to
consider the difference between a process and a thread. A process can be
considered to be an object containing executable code and data; an
address space, which is a set of virtual addresses; and any other resources
allocated to the code as it runs. It also must contain a minimum of one
thread of execution.

308 9.1 SQL Server and CPU

A thread is the item inside a process that is scheduled to run, not the
process itself as in some older operating systems. A Windows process can
contain any number of threads, and a process that contains more than
one thread is known as a multithreaded process. Windows is able to
simultaneously schedule a number of threads across multiple CPUs.
These can be threads belonging to many processes or threads belonging to
just one process.

Each running instance of SQL Server is a multithreaded process, and so
it is able to schedule a number of threads simultaneously across multiple
processors to perform a multitude of functions. SQL Server may have
threads concurrently executing across multiple processors with one servic-
ing a user connection, one performing a backup, and one writing pages
from cache to disk. Also, SQL Server is able to perform queries in parallel as
well as various database operations in parallel, such as index creation.
Although SQL Server can be parallelizing operations across multiple pro-
cessors, it can be restricted to only using a subset of the available processors
on the server.

The order in which threads are scheduled is governed by a priority asso-
ciated with those threads. Windows always schedules the highest-priority
thread waiting for processor time to run first in order to make sure that the
highest-priority work gets done first. Each process is allocated to one of four
base priority classes:

� Idle

� Normal

� High

� Real time

The base priority of a process can change within its base priority class.
The base priority of a process thread varies within the base priority of its
parent process. As a general rule, the base priority of a thread varies only
within a range of two greater than or two less than the base priority of its
process. The dynamic priority of a thread governs when it will be sched-
uled. The dynamic priority of a thread is constantly being adjusted by Win-
dows. For example, the dynamic priority of a thread is typically increased
when an I/O operation it has been waiting for completes and the thread
now needs processor time. The dynamic priority of a thread can equal or
grow beyond its base priority, but it can never drop below it.

9.1 SQL Server and CPU 309

Chapter 9

SQL Server also has the concept of fibers. Normally, SQL Server exe-
cutes work using Windows threads. Work is allocated to threads. The Win-
dows operating system code that manages threads runs in kernel mode.
Switching threads requires switches between the user mode of the applica-
tion code and the kernel mode of the thread manager. This context switch-
ing can be expensive on systems with multiple CPUs that are very busy. For
that reason, SQL Server can be configured to use fibers by means of the
lightweight pooling server configuration option. Setting this option can be
accomplished using sp_configure or setting the option on the Processor tab
of the SQL Server Properties (Configure) window in the SQL Server Enter-
prise Manager.

Lightweight pooling allows SQL Server to manage scheduling within
the normal Windows thread structures. Fibers are managed by code run-
ning in user mode, and switching fibers does not require the user-mode to
kernel-mode context switch needed to switch threads. Each Windows
thread can support multiple fibers, and SQL Server performs the schedul-
ing of these fibers. For most SQL Server systems, using lightweight pooling
is unlikely to produce any noticeable benefit.

9.1.2 How SQL Server uses CPU

There are various ways that SQL Server can be configured with respect to
how it makes use of the CPU. These can be grouped into the following cat-
egories:

� Priority

� Use of symmetric multiprocessing systems

� Thread use

� Query parallelism

Let us consider each of the above categories in turn.

9.1.2.1 Priority

On the Windows Server running SQL Server it is likely that little interac-
tive use will take place. The server will communicate with client worksta-
tions. Usually, when there is interactive use made of a workstation, it is
preferable to increase the priority of the foreground application—that is,

310 9.1 SQL Server and CPU

the application running in the window that is currently displayed at the top
of the other windows.

By default, Windows Server has longer, fixed quanta with no priority
boost for foreground applications, allowing background services to run
more efficiently. Windows Professional, however, defines short, variable
quanta for applications and gives a foreground application a priority boost
(a quantum is the maximum amount of time a thread can run before the
system checks for another thread of the same priority to run).

Whether a priority boost for foreground applications occurs or not can
be overridden. This can be done using the System icon in the Control
Panel, choosing the Advanced tab, and mouse-clicking the Performance
Options button. This is shown in Figure 9.1.

SQL Server is never a foreground application, and so, on the server, the
performance should be optimized for Background services. On the client
workstation, however, boosting the foreground priority by optimizing for
Applications makes sense. Again, the choice of the Windows platform will
likely accomplish this by default. Of course, using the Query Analyzer, for

Figure 9.1
The advanced

performance
options window

9.1 SQL Server and CPU 311

Chapter 9

example, on the server directly will not benefit from any priority boost, so
you might find that you do not get great performance. This does not mean
that SQL Server is running slowly; it means that the Query Analyzer is not
priority boosted and so will be contending equally with it for the CPU.

Another method of changing the priority of SQL Server is to change the
advanced server configuration option priority boost. This governs whether or
not SQL Server should run at a higher priority than other processes on the
same server. Setting this option can be accomplished using sp_configure or
setting the option on the Processor tab of the SQL Server Properties (Config-
ure) window in the SQL Server Enterprise Manager.

Setting priority boost to 1 causes SQL Server to execute at a higher
priority and to be scheduled more often. In fact, its priority will be
changed from Windows base priority 7 to base priority 13. This will
probably have a negative impact on other applications running on the
server (including other instances of SQL Server), and therefore this
parameter should be used with care unless the server has been designated
as being dedicated to SQL Server (in which case why bother setting it
anyway!). To use our previous example, executing the Query Analyzer
locally on a server that has priority boost set to 1 would result in degraded
Query Analyzer performance.

9.1.2.2 Use of symmetric multiprocessing systems

With respect to multiprocessor systems, the edition of SQL Server and the
operating system platform on which it is running governs the maximum
number of processors that can be supported.

For query parallelism, described shortly, the maximum number of pro-
cessors that can be used to execute a query can be specified as a server con-
figuration option, max degree of parallelism. Setting this option can be
accomplished using sp_configure or setting the option on the Processor tab
of the SQL Server Properties (Configure) window in the SQL Server Enter-
prise Manager. This also limits the degree of parallelism for utility execution
such as DBCC CHECKDB.

Which processors on a multiprocessor system can SQL Server use? Gen-
erally, Windows does not guarantee that any thread in a process will run on
a given processor. However, it uses a soft affinity algorithm, which tries to
run a thread on the last processor that serviced it. A thread may still migrate
from processor to processor if the favored processor is busy, which causes
reloading of the processor’s cache. Under heavy system loads, this is likely to
degrade performance. Specifying the processors that should and should not

312 9.1 SQL Server and CPU

run SQL Server threads can boost performance by reducing the reloading
of processor cache. This is only likely to make a difference with four or
more processors under load. By specifying the processors manually a hard
affinity algorithm is used.

The association between a processor and a thread is called processor
affinity. SQL Server enables a processor affinity mask to be specified as a
server configuration option. By setting bits in the mask, the system admin-
istrator can decide on which processors SQL Server will run. The number
of the bit set represents the processor. For example, setting the mask to the
value 126 (hexadecimal 0x7E) sets the bits 01111110, or 1, 2, 3, 4, 5, and
6. This means that SQL Server threads should run on processors 1, 2, 3, 4,
5, and 6. On an eight-processor system this means that SQL Server threads
should not run on processors 0 and 7.

In the SQL Server Enterprise Manager, the CPU affinity can be set in
the Processor control section on the Processor tab of the SQL Server Prop-
erties (Configure) window.

Note: It is also possible to use the Set Affinity option in the Task Manager
to allocate a process to specific CPUs.

For most database administrators, using a hard affinity option is unlikely
to be an option that gains much in the way of performance.

9.1.2.3 Thread use

When a SQL Server client executes a request, the network handler places
the command in a queue and the next usable thread from the worker pool
of threads acquires the request and handles it. If no free worker thread is
available when a request arrives, SQL Server creates a new thread dynam-
ically, until it reaches the server configuration option maximum worker
threads.

The default value for maximum worker threads is 255, which will
often be greater than the number of users connected to the server. How-
ever, when there are a large number of connections (typically hundreds),
using a thread for every user connection may deplete operating system
resources. To avoid this, SQL Server can use a technique called thread
pooling. With thread pooling a pool of worker threads will handle a larger
number of user connections.

If the maximum worker threads value has not been exceeded, a new
thread is created for each user connection. Once the maximum worker

9.1 SQL Server and CPU 313

Chapter 9

threads value has been exceeded, user connections will share the pool of
worker threads. A new client request will be handled by the first thread in
the pool that becomes free.

9.1.2.4 Query parallelism

In SQL Server, a single query can execute in parallel over multiple CPUs.
For workloads that have a small number of complex queries running on
SMP computers, this should bring a performance boost. For OLTP work-
loads, which consist of many small transactions, parallelism is unlikely to
enhance performance.

Parallel query processing is aimed at improving the performance of sin-
gle, complex queries. The query optimizer decides if a query plan can be
executed in parallel based on various criteria. If it can, the query plan will
contain extra operators, known as exchange operators, which will enable the
query plan to be executed in parallel. At run time, SQL Server will decide,
again based on various criteria, how many processors the query will use—
that is, how many threads will be used. This is known as the Degree of Par-
allelism (DOP).

Parallel query processing is pretty much out of the box. There are, how-
ever, two server configuration options that affect parallel query processing:

� Max degree of parallelism

� Cost threshold for parallelism

The max degree of parallelism option controls the number of CPUs
SQL Server can use for parallel queries—that is, the maximum number of
threads a query can use. The cost threshold for parallelism controls the
threshold over which the query optimizer will generate a parallel query
plan. If a query is short, such as an OLTP query, the overhead of setting up
a parallel query is not worth the gain.

The query optimizer will not generate a parallel query plan if the com-
puter is only a single processor. Before the query starts to execute, SQL
Server uses its knowledge of CPU use and the available memory to decide
the degree of parallelism for the query. It may be that SQL Server decides
not to run the query in parallel at all.

If the estimated cost of executing the query is less than the cost thresh-
old for parallelism, the query optimizer will not generate a parallel plan.
This is also true if the query optimizer determines that only a few rows will

314 9.1 SQL Server and CPU

be returned. To summarize, the query optimizer will only generate a parallel
query plan if it considers that it is worth doing so, and at run time the
query will only be executed in parallel if SQL Server decides that there are
sufficient free resources to do so.

There are SQL statements that will not be executed with a parallel query
plan. INSERT, UPDATE, and DELETE statements will use a serial plan,
but their WHERE clause may use a parallel plan. Static and keyset cursors
can use a parallel plan but not dynamic cursors.

To control parallel query execution, as previously mentioned, the maxi-
mum number of processors that can be used to execute a query can be spec-
ified as a server configuration option, max degree of parallelism. Setting this
option can be accomplished using sp_configure or setting the option on the
Processor tab of the SQL Server Properties (Configure) window in the SQL
Server Enterprise Manager. The default is to use all the processors.

The cost threshold for parallelism server configuration can be specified
using sp_configure or setting the Minimum query plan threshold . . . value
on the Processor tab of the SQL Server Properties (Configure) window in
the SQL Server Enterprise Manager. The default is five seconds.

There is also a query optimizer hint, which can be used to influence par-
allel query execution. The MAXDOP query hint allows the max degree of
parallelism to be set on a statement-by-statement basis. However, this is not
supported for CREATE INDEX statements.

The CREATE INDEX in SQL Server can be executed in parallel.
Assuming that the max degree of parallelism option is sufficiently high, and
the workload on the server is not great, the CREATE INDEX statement
can be executed across all the CPUs. To give each CPU an equal portion of
work to do, a fast, random initial scan is performed to check on the data
value distribution of the table column that will be used for the index col-
umn. This initial thread then dispatches the number of threads determined
by the max degree of parallelism option. Each thread builds its own index
structure based on the range of data it is working with. The initial thread
then combines these smaller index structures into a single index structure.

Let us now look at how we can detect processor bottlenecks.

9.1.3 Investigating CPU bottlenecks

The tools used to observe CPU bottlenecks are typically the System Moni-
tor and the Task Manager. We will focus on using the System Monitor in
this section, although the Processes and Performance tabs in the Task Man-

9.1 SQL Server and CPU 315

Chapter 9

ager are also quite useful. These are shown later in Figures 9.14 and 9.15
when we investigate memory. The System, Processor, and Process objects
are a useful place to start and it’s worth a look at some of their counters, as
shown in Table 9.1.

In Figure 9.2 the System Monitor is being used to monitor the following
counters:

� Processor: % Processor Time

� System: Processor Queue Length

The counter Processor: % Processor Time is highlighted (in white). We
can see that the processor appears to be 100 percent utilized. This in itself is
not necessarily going to cause a bottleneck; however, we can see that the
Processor Queue Length is quite high. It averages around six (note the scale
factor of ten so it can be seen on the display) and peaks at around ten. To
check the average and maximum, this counter was selected instead of the
counter Processor: % Processor Time counter. This means that on average,

Table 9.1 Selected counters for the System, Processor, and Process Objects

CPU-Related Counters Explanation

System: Processor Queue
Length

The number of threads that need CPU time but
have to wait. This counts only ready threads, not
those being handled. This counter belongs to the
system object, because there is only one queue even
when there are multiple processors on the server.

Processor: % Processor Time This is the percentage that a processor is busy.
There is an instance of this counter for every pro-
cessor on the server. The _Total instance can be
used to display the value of total processor utiliza-
tion system-wide.

Processor: % User Time This is the percentage that a processor is busy in
user mode. User mode means application code and
subsystem code.

Processor: % Privileged Time This is the percentage that a processor is busy in
privileged mode. Privileged mode means operating
system services.

Process: % Processor Time This is the percentage of CPU time that a process is
busy.

316 9.1 SQL Server and CPU

six threads are waiting for the CPU; this is a clear indication that we have a
processor bottleneck.

The lows and highs in the Processor Queue Length counter display are
caused by the randomness that ready tasks are being generated. This is not
uncommon. Queues usually appear when the processor is very busy, but
they can appear when CPU utilization not high. This can happen if
requests for the processor’s time arrive randomly and if threads demand
irregular amounts of time from the processor.

So what is causing the bottleneck? Is it one process or many processes?
We can monitor the processor use of each process to get a feel for the
answer. In Figure 9.3 the System Monitor is being used to monitor the Pro-
cess: % Processor Time counter.

We have selected the Histogram display to make it easier to look at the
processes using the processor. It is pretty clear that one process is monopo-
lizing the processor. This is the highlighted process and we can see that it is
SQL Server. The only problem is that we do not know which SQL Server!
We may have many instances of SQL Server running, and in each case the
instance will be named sqlservr in the System Monitor. There are various
approaches to finding out which instance is which. One approach I find
useful is to create a System Monitor report showing the Process: % Proces-

Figure 9.2
A busy processor

9.1 SQL Server and CPU 317

Chapter 9

sor Time counter and the Process: ID Process counter. This is shown in
Figure 9.4.

Figure 9.3
Monitoring

processor time for
individual processes

Figure 9.4
Checking process
ID for the SQL
Server instance

318 9.1 SQL Server and CPU

We can confirm that the instance sqlservr with process ID 1000 is using
up the CPU. Another way (often easier) is to check the Processes tab in the
Task Manager. This is shown in Figure 9.5.

If we click on the CPU column heading, the display will be sorted with
the process using most of the CPU displayed first. We can easily read off the
process ID from the PID column.

Whichever method we use to find the process ID, once we have
obtained it we now need to translate it into a SQL Server instance. An easy
way to do this is to connect to the SQL Server instance you suspect in the
Query Analyzer and execute the following statement.

SELECT SERVERPROPERTY('ProcessID')

This will return the process ID. If it is not correct, connect to the next
instance and check that. Most servers will not be running more than a few
instances.

Once we have established the SQL Server instance that is monopolizing
the processor, we need to further investigate why this is so, and, if it is not a
database or application design problem, perhaps consider moving the
instance of SQL Server onto its own server. If no process stands out in this
display, this might be an indication that the processor is just too slow.

Figure 9.5
The Task Manager

processes tab

9.1 SQL Server and CPU 319

Chapter 9

Can we drill down further into SQL Server? We can look at the individ-
ual threads. In Figure 9.6 the System Monitor is being used to monitor the
Thread: % Processor Time counter for all the SQLSERVR process’s threads.
We can clearly see that one thread with thread instance number 26 is using
most of the CPU.

Compare this with Figure 9.7. Here we see that many SQL Server
threads are running the CPU. So looking at the Thread: % Processor Time
counter can be useful to help distinguish between the case of one busy
connection versus many busy connections. However, I find that at this
point I really want to start using the SQL Profiler because it provides
information more appropriate to SQL Server, rather than the operating
system as a whole.

Chapter 12 discusses the SQL Profiler in detail. We wish to check for
connections that are using a large proportion of the CPU and which SQL
statements on those connections are using the most CPU.

For our requirement we can create a trace with the SQLServerProfiler-
Standard template. The default events are sufficient, since they include the
events that we need. We can choose to filter out low CPU use events, but
we must be careful not to filter out information that might prove useful in
our investigation. In Figure 9.8, a graphic SQL Profiler display is shown.

Figure 9.6
A single SQL
Server thread

monopolizing the
CPU

320 9.1 SQL Server and CPU

The data columns have been grouped by the data column CPU, and we
can immediately see that although many queries are using between 10 and
20 milliseconds of CPU, one query is using nearly 62 seconds of CPU. We
can see that the duration of this query is about 62 seconds also. In fact, vir-
tually this entire query is CPU. The SQL Profiler identifies the query syn-

Figure 9.7
Many SQL Server

threads using the
CPU

Figure 9.8
The SQL Profiler
showing a single

thread
monopolizing

the CPU

9.1 SQL Server and CPU 321

Chapter 9

tax, application name, and so on so we can easily identify the problem
query in our application. We can then, of course, investigate the query plan
using the Query Analyzer and hopefully improve it.

We could have saved the trace into a table and then searched the table
for events taking, for example, greater than one second of CPU. In practice,
I find myself taking this approach most of the time.

In Figure 9.9, many queries are using between 50 and 60 seconds of
CPU. No one query stands out. If the queries have a duration, reads, writes,
and a CPU use that is expected, then it may be that the queries are efficient.
If the processor is constantly busy and there is a significant queue, it may be
the case that the CPU is just not powerful enough.

9.1.4 Solving problems with CPU

Having determined that there is indeed a CPU bottleneck and that there is
a queue of threads waiting for processor time, the next step is to find out
what is using up the CPU. Other bottlenecks should be investigated, such
as memory, to ensure that they are not manifesting themselves as a CPU
bottleneck. If there is no particular candidate process to home in on, then
the CPU is probably too slow and either a faster CPU can be purchased or
an additional CPU. If it is obvious which application is monopolizing the
CPU and it is not SQL Server, then it might be an idea to move that appli-

Figure 9.9
The SQL Profiler

showing many
threads using

the CPU

322 9.1 SQL Server and CPU

cation to another server. Moving SQL Server off a Domain Controller may
help if that is where it is installed.

If SQL Server is monopolizing the CPU, then it should be possible to
track down a query that is inefficient and using too much CPU. If there is
no particular candidate query to home in on, then the CPU is probably too
slow and an additional CPU might be the most cost-effective solution.

Another consumer of CPU is the network interface card. Better network
cards will save some CPU. Network interface cards that use bus-mastering
direct memory access (DMA) are less of a burden on the CPU.

If SQL Server does not seem to be the main consumer of the CPU, it is
always worth checking the counters System: Context Switches/sec and Pro-
cessor: Interrupts/sec. The System: Context Switches/sec counter measures
the average rate per second at which context switches among threads on the
computer occur. On a multiprocessor system experiencing processor bottle-
necks, high context switches may be reduced by using fibers, which can be
enabled by setting the lightweight pooling server configuration option.

The Processor: Interrupts/sec counter measures the average rate per sec-
ond at which the processor handles interrupts from applications or hard-
ware devices. High activity rates can indicate hardware problems. Expect to
see interrupts in the range upward from 1,000 per second for computers
running Windows Server and upward from 100 per second for computers
running Windows Professional.

One very important factor to consider is the processor cache. Use the
largest processor cache that is practical. Typically, choose from 512 KB to
2 MB (or greater) for the L2 cache. Benchmarks have shown that upgrad-
ing to a faster processor but with a smaller cache usually results in poorer
performance.

Multiprocessors need some further consideration. Adding extra processors
to the server may well increase performance if SQL Server is bottlenecking on
CPU. It is recommended that the addition of CPUs be accompanied by the
addition of other resources such as memory and disk. It is recommended to
scale memory with processors. For example, if a single-processor system
requires 512 MB of memory and a second processor is added to increase the
throughput, double the memory to 1,024 MB. The simple reason for this is
that more processing power needs more memory, apart from the fact that
coordinating two processors needs extra memory as well.

Because of the extra processors, the acceptable queue length will be
longer. If the CPUs are mostly utilized, a queue value equal to about three

9.2 SQL Server and memory 323

Chapter 9

per processor is not unreasonable. A four-processor server, for example,
might have a queue length of 12.

If SQL Server is running in lightweight pooling mode—that is, using
fibers, the queue length should not exceed one, because there is a single
thread on each processor in which fibers are scheduled.

9.2 SQL Server and memory

Another important resource on a Windows server is memory. Over the last
few years the amount of memory found on servers and workstations has
rapidly increased.

Having large amounts of physical memory is not enough in itself. The
software running on the server must be able to benefit from it, and it is
therefore vital that the server operating system manages memory in an effi-
cient and intelligent fashion. Windows employs a virtual memory manager
to do just that, and it can provide excellent memory management on a wide
range of memory configurations with multiple users.

SQL Server uses the virtual memory management features of Windows
to enable it and other processes to share the physical memory on the server
and to hold memory pages on disk in a page file.

Physical memory is a system resource. The more physical memory the
better the system is likely to perform. If there is not enough physical mem-
ory on the server, then performance will be degraded as processes fight for
memory. This section provides an overview of the Windows virtual mem-
ory model and looks at how SQL Server uses memory. It then looks at how
memory bottlenecks can be observed.

9.2.1 An overview of Windows virtual memory
management

Similar to a number of modern server operating systems, Windows uses a
flat, linear memory model. Each process is able to address 4 GB of virtual
memory. The upper 2 GB of virtual memory are reserved for system code
and data, which are accessible to the process only when it is running in
privileged mode. The lower 2 GB are available to the process when it is run-
ning in user mode. However, SQL Server Enterprise Edition provides sup-
port for using Windows Address Windowing Extensions (AWEs).

Information held in physical memory can usually be categorized as
either code or data. The pages given to a Windows process by the virtual

324 9.2 SQL Server and memory

memory manager are known as the working set of the process, and this
working set holds pages containing any code and data recently used by the
process. The working set of a process can grow or shrink as the virtual
memory manager transfers pages of code and data between hard disk and
physical memory. This is known as paging. All virtual memory operating
systems page, and the secret is to make sure that the amount of physical
memory and the memory requirements of processes are such that paging
does not become a burden on the system. In this situation, paging can cause
disk bottlenecks and start to consume the processor.

If a page of code or data is required by a process, and it is not present in
the working set of the process, a page fault results. The page is then brought
into its working set. Whether the working set of the process then grows is
determined by the availability of free memory on the server. If there is an
abundance of free memory, the working set of the process will grow as the
new page is added. If there is a lack of free memory, pages in the working
set that have not been used for a while will be removed. This is known as
working set trimming. If pages are continually being taken out of the work-
ing set of a process to make room for new pages, it is likely that the
removed pages will be needed again soon. The process will again page fault
and the cycle will be repeated.

We can see that if memory is running low, code and data pages will be
continually removed from, and added to, the working set of the process,
resulting in many page faults. This can lead to a disk bottleneck and wasted
CPU, since the system spends more time paging than doing useful work on
behalf of the user.

There are two types of page fault. A hard page fault happens when the
code or data page needs to be retrieved from disk. A soft page fault happens
when it is discovered elsewhere in physical memory. Soft faults use CPU,
but hard faults cause disk reads and writes to occur.

When a page is removed from the working set, it may need to be written
to disk if it has been changed. If it has not been changed, this need not hap-
pen. The area on disk that pages are read from and written to is known as
the page file. The file name of the page file is pagefile.sys, and its default size
is equal to 1.5 times the amount of physical memory. If memory is commit-
ted to a process (known as committed memory), space will be reserved for it
in the page file.

9.2 SQL Server and memory 325

Chapter 9

9.2.2 How SQL Server uses memory

An instance of SQL Server is a single Windows process as is an instance of
the SQL agent process that manages components such as the replication and
alert subsystems. The amount of memory you can give to SQL Server really
depends upon the amount of memory available on your Windows server,
and this is a function of the amount of physical memory on the server and
the memory requirements of other processes running on the server. Ideally, if
it is possible, dedicate a single Windows Server to run a single instance of
SQL Server, and then SQL Server will not compete for memory resources
with anything else. Of course, it can compete with Windows 2003 itself for
memory, but this will degrade performance and so the dynamic memory
configuration in SQL Server leaves free memory for the operating system. If
you decide to configure the memory requirements of SQL Server manually,
you are advised to leave ample memory for the operating system.

Remember that multiple instances of SQL Server can run on one
Windows server—a default instance with up to 16 named instances. Each
of these instances will compete for memory.

So what is memory used for in an instance of SQL Server? The short
answer is lots of things. There is a pool of 8 KB buffers that are used for
database pages—for example, data and index pages and also query plans.
Memory is required for user connections and locks. Most importantly,
memory is required for the queries themselves.

Different queries can have very diverse memory requirements. A simple
query such as a single row lookup will require little memory to execute.
Such queries are typically found in online transaction processing systems
(OLTPs). Other queries, such as the ad hoc queries found in data ware-
house type systems, may need to perform large sorts. Some queries will
need to perform hash joins on large amounts of data. The queries that need
to sort and hash will benefit from lots of memory. If the sort can fit into
memory, or the hash buckets can fit into memory, query performance will
be improved.

When the query optimizer creates a plan for a query, it calculates the
minimum memory a query will need and the maximum amount of mem-
ory it would benefit from. When a query needs to be executed, it is passed
to a special scheduler. This scheduler checks to see if the query indeed does
perform a sort or hash operation. If it does not, it is scheduled to run
immediately. Queries that have a sort or hash operation will then be sched-
uled based on their memory requirements. Queries with small sorts or joins

326 9.2 SQL Server and memory

will be scheduled almost immediately. Queries with large sorts or joins will
be scheduled in such a way that only a few can run concurrently.

9.2.2.1 Configuring memory for SQL Server

SQL Server will dynamically configure its memory requirements. It will
expand to use up the free memory on the Windows server as long as it
needs memory and that amount of memory is available on the server. It will
not use all the free memory, since some will be needed by the operating sys-
tem—typically under 10 MB. As other processes start up and need mem-
ory, the available free memory will drop and SQL Server will then release
memory.

Two server configuration options, min server memory (MB) and max
server memory (MB), can be used to specify upper and lower bounds for
the memory an SQL Server instance will use. When the instance is started,
it takes as much memory as it needs to initialize. This may well be below
the min server memory (MB) value. However, once it has crossed this
value, it should not drop below it. This ensures that even if the instance is
not busy, some memory will be kept ready for starting queries. This ensures
that their performance is not degraded by the instance trying to suddenly
acquire memory it has given up. The max server memory (MB) value places
an upper limit on the memory the instance will use.

These two server options can be set so that their values are equal. In this
situation, once the instance has grown its memory to that value, it should
not increase or decrease it.

These server configuration options can be set with the system stored
procedure sp_configure or with the SQL Server Management Studio.

The slider controls that set the min server memory (MB) and max server
memory (MB) server configuration option values can be seen. These can be
adjusted and are meaningful when the Dynamically configure SQL Server
memory option is selected. If preferred, the Use a fixed memory size (MB)
option can be selected, which effectively sets min server memory (MB) and
max server memory (MB) values equal and stops dynamic configuration.

Once the server has been allocated memory, it uses it for a variety of
objects—for example, user connections, locks, and the buffer pool (cache).

There are various methods to investigate the apportionment of memory.
The System Monitor has a number of objects and counters to help us. Fig-
ure 9.10 shows the System Monitor in report format displaying some useful
object counters.

9.2 SQL Server and memory 327

Chapter 9

In Figure 9.10 we can see three objects—Buffer Manager, Cache Man-
ager, and Memory Manager. They belong to the instance of SQL Server
named SQL2000_A. Some useful counters belonging to these objects are
displayed.

The Buffer Manager: Total Pages counter represents the total number of
8-KB pages (buffers) in the buffer pool. This holds, for example, database
pages and stored procedure query plans. There are currently 8,939 buffers
in the pool.

The Cache Manager: Cache Pages counter, for the _Total instance, rep-
resents the total number of 8-KB pages (buffers) in the buffer pool used by
cached objects, such as stored procedure plans, trigger plans, prepared SQL
plans, and ad hoc SQL plans. If required, the number of pages used by each
of these cached object types can be monitored individually. There are cur-
rently 4,867 pages used for cached objects.

The Memory Manager: Connection Memory (KB) counter represents
the amount of memory in kilobytes used by connections. There are cur-
rently 384 KB used by connections. Generally, a new connection will take
about 24 KB depending on the network packet size. The formula for con-
nection memory is: ((3 * the network packet size) + 12 KB), with the
default network packet size being 4 KB.

Figure 9.10
System Monitor

counters useful for
checking memory

use of objects

328 9.2 SQL Server and memory

The Memory Manager: Lock Memory (KB) counter represents the
amount of memory in kilobytes used by locks. There are currently 240 KB
used by locks. Generally, a lock will take about 96 KB.

The Memory Manager: Optimizer Memory (KB) counter represents the
amount of memory in kilobytes used for query optimization. There is no
query optimization being performed at the time of the monitoring.

The Memory Manager: Total Server Memory (KB) counter represents
the amount of dynamic memory that the instance is currently using. We
can see that if we add up the Buffer Manager: Total Pages counter (remem-
ber, each page is 8 KB) and the Memory Manager counters, the value is not
far from 72,592 KB. The figure arrived at is less, because we have not mon-
itored all consumers of dynamic memory.

Another useful tool is DBCC MEMUSAGE. This has not been docu-
mented since SQL Server 6.5, and its output has changed dramatically
since then. However, if we use it with that thought in mind, we get the fol-
lowing output:

dbcc memusage (names)

Buffer Cache Top 20

Database Name Object Name Index Name Buffers Dirty

BIG accounts 5556 0

Master syscharsets 33 0

Master syscomments 24 0

Master sysmessages 14 0

BIG accounts UNKNOWN 11 0

:

:

This gives us an insight into the number of data and index pages used by
the largest objects in cache.

To look at the sizes of cached objects, such as stored procedure plans, the
syscacheobjects system table can be queried. Here is a fragment of output
showing the pages used by different objects in cache.

SELECT cacheobjtype, objtype, pagesused, sql
FROM master..syscacheobjects

9.2 SQL Server and memory 329

Chapter 9

ORDER BY pagesused DESC

Cacheobjtype objtype pagesused sql

Executable Plan Proc 2164 usp_test
Compiled Plan Proc 206 usp_test
Compiled Plan Proc 52 sp_helpdb
Executable Plan Proc 42 sp_helpdb
Compiled Plan Proc 31 sp_helpconstraint

9.2.3 Investigating memory bottlenecks

If memory starts to get tight on the server, performance will start to suffer.
This is most likely to happen on a server that is running applications other
than just SQL Server, since they will contend for memory.

Before we investigate memory bottlenecks, we need to look at the tools
we can use to do so. The first piece of information we will want to know is
likely to be how much physical memory the server has. We can easily check
this by choosing About Windows from the Help menu in Windows
Explorer, as shown in Figure 9.11.

Another handy tool is the Task Manager, which is present in Win-
dows. There are a number of tabs that can be chosen, and these are Appli-

Figure 9.11
Memory available

as shown by
Windows Explorer

330 9.2 SQL Server and memory

cations, Processes, and Performance. The Applications tab is shown in
Figure 9.12.

This tab shows the status of programs that are running on the system.
SQL Server is not shown, since it is running as a service. The Processes tab
displays information about processes that are running on the system, as
shown in Figure 9.13.

Information such as the memory usage and the page faults is shown for
each process. Columns can be added or removed from this tab. The Perfor-
mance tab, shown in Figure 9.14, displays a graph of CPU and memory use
history as well as a textual display.

The most useful tool is the System Monitor, which we have already met.
There are a number of useful System Monitor objects concerning memory,
such as Memory and Process.

Let us now focus on using the System Monitor to investigate memory
bottlenecks. The memory object is a useful place to start, and it is worthwhile
to look at some of the memory object’s counters, as shown in Table 9.2.

Figure 9.12
The Windows

2003 Task
Manager

applications tab

9.2 SQL Server and memory 331

Chapter 9

Figure 9.13
The Windows Task

Manager
processes tab

Figure 9.14
The Windows Task

Manager
performance tab

332 9.2 SQL Server and memory

In Figure 9.15 the System Monitor is being used to monitor the follow-
ing counters: Memory: Page Reads/sec. Memory: Page Writes/sec. Memory:
Pages Input/sec. Memory: Page Faults/sec. The line that peaks the highest is
Page Faults. This is to be expected, since it represents both hard and soft
faults.

The averages for these counters are shown in the following chart (the
averages cannot be deduced from the screenshot alone).

Table 9.2 Selected counters for the Memory Object

Memory Object Counter Explanation

Page Faults/sec This counter includes both hard page faults and
soft page faults. Hard page faults result in disk I/O.
Soft page faults mean pages are found elsewhere in
memory.

Pages Input/sec This is a measure of the number of pages brought
in from disk every second. The difference between
this value and Page Faults/sec represents soft page
faults.

Pages Output/sec This is a measure of the number of pages written
to disk every second to make room in the working
set of the process for newly faulted pages. If the
process modifies pages, they must be written out.
They cannot be discarded.

Pages/sec This is total of Pages Input/sec plus Pages Output/
sec.

Page Reads/sec This indicates the reads from disk per second to sat-
isfy page faults. This is an important counter. As a
rule of thumb, if this counter exceeds five pages per
second there is a memory shortage. A single read
operation can actually bring in more than one page.

Page Writes/sec This indicates the writes to disk per second to sat-
isfy page faults. This is another important counter,
since it measures real disk I/O work being done by
the system because of page faulting. A single write
operation can actually write out more than one
page.

Available Bytes Available KBytes This shows how much memory remains that can
be given to processes. The three counters only dif-
fer in the units used.

Available MBytes

9.2 SQL Server and memory 333

Chapter 9

Counter Average

Page Reads/sec 0.2

Pages Input/sec 0.8

Page Faults/sec 405

The Page Faults/sec counter represents the sum of hard and soft page
faults. The Pages Input/sec counter represents hard faults, so about 0.2 per-
cent of the faults are hard faults. The 0.8 pages that are input per second are
brought in by 0.2 page reads per second, so approximately four pages are
being brought in by every disk read. Although the majority of page faults are
soft, 0.2 I/Os per second are hitting the disk to retrieve pages, which is trivial.

It is useful to also examine the disk activity to see how hard paging is
hitting the disks. Some useful counters are as follows:

� % Disk Time

� Avg. Disk Queue Length

� Disk Reads/sec

The % Disk Time is the percentage of elapsed time that the selected disk
drives are busy servicing requests. Avg. Disk Queue Length is the average
number of read and write requests queued on the selected disks. Disk

Figure 9.15
Memory pages
being read in

from disk

334 9.2 SQL Server and memory

Reads/sec is the rate of read operations on the disk. These are shown in Fig-
ure 9.16. The averages for these counters are shown in the following chart.

Counter Average

Page Reads/sec 0.4

Pages Input/Sec 1.6

Page Faults/sec 282

% Disk Read Time 23.8

Avg. Disk Queue Length 0.2

Disk Reads/sec 9

We can immediately compare Page Reads/sec with Disk Reads/sec. This
shows us that only a small part of our disk activity is caused by paging. The
disk is busy about 24 percent of the time. The Avg. Disk Queue Length is
small: about 0.2.

A similar investigation can be performed for page writes. It is also worth
looking at which individual processes are faulting heavily. This can be done
by monitoring the Page Faults/sec counter on the process object for all the
process instances. If this is viewed in histogram format, processes that are
page faulting heavily stand out immediately, as shown in Figure 9.17.

Another area worth monitoring is the page file, to see if it is filling.
Ensure that there is enough free space to let it expand if it needs to.

Figure 9.16
Memory counters

with disk counters

9.3 SQL Server and disk I/O 335

Chapter 9

9.2.4 Solving problems with memory

The two main approaches to solving memory problems are: making best
use of available memory and adding more physical memory to the server.

To make more use of available memory, remove anything that is not
needed but is consuming memory resources, for example, Windows services,
drivers, and network protocols that are not used. As was mentioned earlier: if
possible, dedicate the server to a single instance of SQL Server.

Increasing the size of the paging file and adding another paging file may
help. The addition of extra memory should also be accompanied by an
increase in paging file size and, if possible, an increase in secondary cache
size. In my experience, the addition of more memory is often the simplest
and quickest fix to memory problems and is often the most cost effective.

9.3 SQL Server and disk I/O

A bottleneck that is often experienced with database management systems
concerns the disk subsystem. By definition a database is a shared repository
of information, and, consequently, many users are likely to be reading and
writing to the database. Depending on whether the database supports an
online transaction processing (OLTP) system or a decision support system

Figure 9.17
Monitoring page

faults for
individual processes

336 9.3 SQL Server and disk I/O

(DSS), users may update small amounts of data or may perform read only
queries on large amounts of data.

The disks themselves are different from most other components in the
server in that they typically have moving parts. The disk surface rotates and
the disk heads move in and out across the disk surface. Relative to memory
access this takes a long time, and therefore SQL Server uses many tech-
niques to help it minimize disk access. In fact, as we have seen, the query
optimizer attempts to choose an access strategy that limits the number of
disk I/Os performed.

Care should be taken when investigating disk I/O bottlenecks, since
there can be many causes. One cause is a memory bottleneck, which results
in high levels of paging to disk, as was described in the previous section.

9.3.1 An overview of Windows and disk I/O

To perform its disk I/O, SQL Server issues reads and writes to Windows
and lets Windows deal with the business of reading and writing to the
underlying disk subsystem. Various techniques are employed to keep the
physical disk I/Os efficient. For example, Windows utilizes a technique
known as scatter-gather I/O. This technique enables Windows to transfer
data into or out of areas of memory, which are not contiguous, in a highly
efficient fashion. Unlike Windows XP, Windows Server can also make use
of asynchronous I/O, which gives SQL Server the ability to issue I/Os to
disk and, instead of waiting for the I/O to complete, carry on with other
work. The I/O completion can then be checked later.

To provide high levels of disk I/O throughput, Windows provides vari-
ous levels of RAID (Redundant Arrays of Inexpensive Disks), and SQL
Server can make use of this capability. Various vendors also provide hard-
ware-based RAID solutions. These increase the cost of the system but tend
to provide better performance and are becoming increasingly popular. For
that reason, we will assume we are using hardware-based RAID arrays.

Commonly supported RAID levels are as follows:

� RAID 0—disk striping

� RAID 1—disk mirroring

� RAID 5—disk striping with parity

9.3 SQL Server and disk I/O 337

Chapter 9

In a RAID 0 stripe set, data is spread across all the drives in the set. If
you were to create a database file on a RAID 0 stripe set, the disk controller
would actually break the file into pieces (known as chunks) as you created
it. Each piece would be placed on the next disk in the set circling round
when it moved off the last one. We can imagine a three-disk stripe set now
providing three sets of disk heads to access the file. This is the bonus of
RAID 0: performance. RAID 0 provides very good performance for both
reading and writing. The downside of RAID 0 is that the loss of a single
disk will affect the whole stripe set. The RAID 0 array will appear to be a
single disk to Windows and SQL Server.

RAID 5 is very similar to RAID 0. However, as well as writing data onto
a disk drive in the stripe set, parity information is written to another stripe
set member. Not only do we stripe data, but we stripe parity information.
This gives us a level of redundancy. We can lose one disk and the data infor-
mation on that disk can be recreated from the parity on other disks when a
request for data on the failed disk is made. The downside of RAID 5 is that
although read performance is good, write performance is worse than RAID
0, since two disks must be written to. Hardware-based implementations of
RAID 5 can help to absorb this write performance degradation. Again, the
RAID 5 array will appear to be a single disk to Windows and SQL Server.

In RAID 1 data is duplicated on a mirror disk drive (some RAID imple-
mentations allow more than one mirror). Writes are performed to both
members of the set. This configuration gains us redundancy. We can lose
one of the members and still continue working with the other one. There is
no performance advantage in using RAID 1 for writing; in fact, it can be
slightly slower, but it may well give some performance boost to reading. A
downside of RAID 1 is that twice as much disk space is necessary and,
therefore, twice the cost.

It is also possible to use two disk controllers—one for each mirror set
member. This means that a disk controller failure can be tolerated. This is
known as duplexing. As with the other RAID configurations, the RAID 1
array will appear to be a single disk to Windows 2003 and SQL Server.

Table 9.3 summarizes the different RAID levels.

What happened to RAID levels 2, 3, and 4? Generally, these are consid-
ered to be evolutionary steps toward RAID 5 and thus are not often used
with database systems.

338 9.3 SQL Server and disk I/O

Note: Choosing the appropriate RAID implementation is a compromise
between performance, fault tolerance, and cost. Figures 9.19 and 9.20 show
two common configurations.

Note: Both of the configurations store the log on a separate RAID array
from the data using a separate disk controller. This means that the data file
can be lost while the transaction log remains unaffected.

Table 9.3 RAID levels 0, 1, and 5

Number of

RAID Type Characteristics Disks Reliability Performance

RAID 0: disk striping Data is spread over
all the disks in the
stripe set with no
redundancy.

N Less than a
single disk.

High for
read and
write.

RAID 1: disk mirroring Data duplicated on
each member.

2N Higher than
RAID 0 or
5.

Good for
read but less
than a

or single disk Single disk
for write.

RAID 5: disk striping
with parity

Similar to RAID 0,
but parity informa-
tion is stored with
data for redundancy.

N + 1 Higher than
RAID 0 or
single disk.

Similar to
RAID 0 for
read but less
than a single
disk for
write.

Figure 9.18
A RAID

configuration
utilizing RAID 0

and 1 for the data
and RAID 1

for the log

9.3 SQL Server and disk I/O 339

Chapter 9

The configuration in Figure 9.18 places the data file on a RAID 0 array
for optimum read and write performance. The RAID 0 array is mirrored to
provide fault tolerance. This is often known as RAID 1+0, or RAID 10.
This provides the best performance and fault tolerance but at the greatest
cost. The transaction log is placed on a RAID 1 array. The transaction log is
usually written to sequentially so, as long as nothing competes for disk
bandwidth on this array, this configuration provides good write perfor-
mance (and read). The transaction log is mirrored, since losing it may result
in the loss of work.

The configuration in Figure 9.19 places the data file on a RAID 5 array.
This will provide optimum read performance, but write performance will
be degraded. This will be a lower-cost solution than the previous configura-
tion. The transaction log is placed on a RAID 1 array as before.

Suppose the size of our data was greater than the size of the RAID arrays
available to us. In this case we could use multiple data files, placing each file
on each RAID array. Space for our tables would be allocated from each file
on each RAID array. SQL Server would be able to issue read requests simul-
taneously to each RAID array when the table was scanned.

9.3.2 How SQL Server uses disk I/O

We have already mentioned the fact that SQL Server maintains a pool of 8
KB buffers. This buffer pool is sometimes referred to as a unified cache,
since it holds both cached objects, such as stored procedure plans, and data-
base pages, such as data and index pages. The buffers used for cached
objects are often referred to as the procedure cache, and the buffers used for
database pages are referred to as the data cache.

The goal of the data cache is to minimize physical accesses to the disk
subsystem. There is a single data cache for each instance of SQL Server that
all the instances databases share. In this section we will look at the data

Figure 9.19
A RAID

configuration
utilizing RAID 0

and 1 for data, plus
RAID 1 for the log

340 9.3 SQL Server and disk I/O

cache and the various techniques used to make reading from it and writing
to it more efficient.

9.3.2.1 An overview of the data cache

As we discussed earlier, a portion of SQL Server memory is used for the
data cache. As long as there is enough memory available on the server to
allow SQL Server to dynamically grow its memory allocation, the data
cache can grow.

The idea behind the data cache is quite simple. If a user connection
requests a row, SQL Server will translate this into a page request, and it will
then look for the page in the data cache to see if this page has previously
been retrieved from disk. This request for a page represents a logical read.

If the page cannot be found, it must be retrieved from the database on
disk, and this disk access represents a physical read. The page is read into a
free buffer, and the data requested by the connection obtained. The page is
now in cache, and, assuming that it does not leave the cache for any reason,
it will be available for any connection requesting it. The next connection
requesting that page will issue a logical read, which will be satisfied from the
data cache. This is a memory access, as opposed to a disk access, and is con-
sequently much faster than the original request that brought in the page
from disk.

We can envision a situation where a whole database gets brought into
the cache, and this is quite feasible—the only limiting factor being the size
of the data cache. In reality, 20 percent of most databases get accessed 80
percent of the time, so we find that the most accessed pages in the database
find themselves in the data cache. Note that increasing the size of the data
cache does not bring us a linear performance increase. Once we can hold
the most accessed pages in a database or group of databases in the data
cache, the allocation of more memory to the data cache brings us little gain.

An empty data cache is created when SQL Server is started. At this point
most database page requests end up as physical reads. After a while a steady
state is reached, with the data cache holding the most frequently used pages,
as shown in Figure 9.20.

As shown in Figure 9.20, the percentage of time a requested database
page is found in the data cache is known as the cache hit ratio. The cache
hit ratio is defined as follows:

9.3 SQL Server and disk I/O 341

Chapter 9

cache hit ratio (%) = ((logical read - physical read)/
logical read) * 100

What happens if we fill the data cache and then we need to read in a
new page? We will discuss the mechanisms employed shortly, but SQL
Server will have to make room in the data cache for the new page. If the
new page has been changed by a user connection, then it is known as a dirty
page and it cannot be discarded, because it reflects the latest state or version
of that page. It must be written back to the database on disk. However, if
the page has not been changed, it can be discarded. SQL Server keeps track
of which pages have not been used for the longest length of time. This is
important, because this is taken into account when SQL Server jettisons
pages from the cache.

How does SQL Server find out if a page is resident in the data cache? It
could look at every used buffer in the data cache, but this would be very
expensive for large data caches consisting of tens of thousands of buffers.
Instead, it uses an internal hashing scheme to quickly locate buffers.

What happens if we change pages in the data cache? How do they get to
disk? There are a number of mechanisms involved. First of all, we need to
consider the fact that usually the data cache is finite in size and eventually
all the buffers in it could be used. In other words, there are no free buffers.
If there are no free buffers, then SQL Server has no room to place new
pages that are read in from disk. To avoid and preempt this situation, SQL

Figure 9.20
A steady state
reached in the

data cache

342 9.3 SQL Server and disk I/O

Server periodically frees up buffers in the data cache. When a buffer is freed,
it is first checked to see if it is dirty. A dirty page is one where changes have
not yet been written to disk and therefore the buffer cannot just be dis-
carded. The dirty page must be written to the data file. If the page is not
dirty, then its contents can be discarded and the buffer is placed into a
chain of free buffers.

It would not make sense to free a buffer containing a page that was fre-
quently accessed instead of a buffer containing a page that had not been
accessed for a long time. To avoid this situation, each buffer contains a ref-
erence count, which is incremented each time the page in the buffer is
accessed. The more the page is accessed, the greater the reference count.
When the data cache is searched in order to find buffers that can be freed,
the reference count is decremented. When a buffer is found with a reference
count of zero, it is freed. This mechanism ensures that frequently accessed
pages stay in the cache. Of course, if we have a large data cache and lots of
memory on the server so that the data cache can expand, there is no reason
to free up buffers constantly.

Note: SQL Server uses a write-ahead log algorithm. This means that the
transaction log is always written to before the data file, and this ensures that
a change can always be rolled back in a recovery situation.

So what writes the dirty pages to disk? There is no one process that does
this. Often it is the worker threads that perform the function of scanning
the buffer pool looking for pages to discard. They do this while waiting for
their own disk accesses to complete. If they need to write a page, this is per-
formed as an asynchronous I/O.

A system process known as the lazywriter also performs the same func-
tion. The lazywriter thread is activated at periodic intervals. It then scans
the data cache in order to find buffers that can be freed. It basically per-
forms the same activities at the worker threads. Because the worker threads
have been freeing up buffers, the lazywriter system process is not kept busy.
However, on the Windows XP platform, where asynchronous I/O is not
supported, the worker threads cannot perform this function and therefore
the lazywriter system process can become very busy.

Another system process that contributes is the checkpoint process. The
checkpoint thread’s goal in life is not to free up buffers but rather to ensure
that the contents of dirty pages eventually get written to the data files on
disk. It does this to keep recovery time short; otherwise, an automatic SQL

9.3 SQL Server and disk I/O 343

Chapter 9

Server recovery, performed perhaps because of a power failure, would
potentially take a long time rolling forward changes from the transaction
log to the data files. The checkpoint thread writes the pages asynchronously
to disk with what are sometimes referred to as batch writes. This is a very
efficient mechanism, especially if it is used in conjunction with hardware-
based RAID arrays.

To monitor the lazywriter and checkpoint processes, SQL Server pro-
vides us with a number of useful counters associated with the Buffer Man-
ager object, as shown in Table 9.4.

Another Buffer Manager counter that is very useful is Buffer Cache Hit
Ratio. This is the cache hit ratio described previously.

Figure 9.21 shows checkpoint activity occurring on the server. The high-
lighted counter is the Checkpoint pages/sec counter. Notice that during the
checkpoint, another counter is also active. This is the Page Writes/sec
counter. In this example both counters had a maximum value of 1,807.

9.3.2.2 Keeping tables and indexes in cache

As described previously, tables and indexes that are accessed frequently
stay in the data cache, while other, least used pages are flushed out first. In
this way the pages that are often required are the pages that connections
get fast access to. However, it is possible that fast access is required to
tables and indexes that are not accessed frequently enough to keep them
in the data cache.

To keep a table and its indexes in data cache the sp_tableoption system
stored procedure can be used, as follows:

Table 9.4 Some useful counters for observing page transfers to and from disk

Lazywrites/sec Number of Buffers Written per Second by the Lazywriter

Checkpoint Pages/sec Number of pages flushed to disk per second by a check-
point

Page Reads/sec Number of physical database page reads per second

Page Writes/sec Number of physical database page writes per second

Database Pages Number of database pages in the buffer pool

Free Pages Number of free pages

344 9.3 SQL Server and disk I/O

EXEC sp_tableoption 'branches', 'pintable', true

Note that the table name can use wildcard characters. This statement
does not load pages from the table into the data cache, but once they are
read into data cache by normal activity, they stay there and are not
removed. This can result in little data cache being left for other tables and
indexes, so table pinning should be used with care.

To turn the option off, just use the false keyword, as follows:

EXEC sp_tableoption 'branches', 'pintable', false

9.3.2.3 Read-ahead scans

Read-ahead processing is a mechanism used by SQL Server to reduce the
number of stalls a thread experiences waiting for a physical read to com-
plete. It is a concept similar to instruction prefetch in a CPU. If SQL Server
realizes that a table scan or an index scan is taking place—in other words,
sequential scanning of pages—it can start to prefetch pages into the data
cache before the thread requests those pages. This means that when the
thread requests a page, it is found in the data cache, and the thread does not
stall waiting for a physical read from disk to complete.

Figure 9.21
Checkpoint activity

observed in the
System Monitor

9.3 SQL Server and disk I/O 345

Chapter 9

If a read-ahead mechanism was not employed, a thread issuing many
disk I/Os while executing a table scan or index scan would spend a large
amount of time waiting for the disk read to complete, as shown in Figure
9.22. We know that disk I/O takes a long time relative to memory access,
and this is represented by ‘t’ in Figure 9.22.

If we employ a read-ahead mechanism, which can read the pages into
cache using other threads before the user’s thread requests them, we have
eliminated the stall caused by the physical read and only the data cache
access is required, as shown in Figure 9.23.

The read-ahead mechanism also reads in units of extents, so it reads in
eight pages in one disk I/O, which clearly is more efficient than reading
eight pages with eight single-page reads.

So what can we benefit from the read-ahead capability? Basically, any-
thing that performs a sequential scan of data pages, including the following:

� Table scans

� Non-clustered index leaf scans

� DBCC statements, such as DBCC CHECKDB

� Transact-SQL statements, such as UPDATE STATISTICS

Figure 9.22
Performing a table
scan with no read

ahead

Figure 9.23
Performing a table

scan with read
ahead

346 9.3 SQL Server and disk I/O

How does SQL Server know, for example, that a table scan is taking
place? It knows because that was the decision the query optimizer made.

How does SQL Server know which pages to read next? Because the
extents in a table or index are managed by IAM pages SQL Server can easily
retrieve the relevant IAM page or pages and find the extents that need to be
read. A sorted list is then built of the extents to be read and this drives the
read ahead. Contiguous extents can then be read very efficiently.

To observe read-ahead processing in action, the Set statistics IO option
can be set in the Query Analyzer. For example, suppose we execute the fol-
lowing query against the Accounts table—this time increased to 400,000
rows:

SELECT COUNT(*) FROM accounts

The output from Set statistics IO is as follows:

Table 'accounts'. Scan count 1, logical reads 24306,
physical reads 136, read-ahead reads 24087.

This shows that 24,306 logical reads were required to perform the table
scan but only 136 physical reads. The number of read-ahead reads per-
formed was 24,087. This means that 24,087 pages were read into the data
cache by the read-ahead mechanism. The low value of physical reads per-
formed by this query is due to read ahead.

What happens if we immediately reissue the query:

Table 'accounts'. Scan count 1, logical reads 24306,
physical reads 0, read-ahead reads 0.

In this case the pages are already in data cache. The read-ahead mecha-
nism is never initiated.

The System Monitor can also be used to monitor read ahead. The Buffer
Manager object has an associated counter: Readahead pages/sec.

9.3.2.4 Shrinking database files

One consideration to be made when scanning the pages of a table is the uti-
lization of the pages. If we have many pages that are only partly filled
because of row deletions, perhaps made by an archive program, we are scan-

9.3 SQL Server and disk I/O 347

Chapter 9

ning more pages than should be necessary to retrieve our data. We need
some way of detecting the problem and then fixing it by compacting the file.

The DBCC SHOWCONTIG statement, which we discussed in a previ-
ous chapter, can show us how densely rows are stored on pages. For example:

DBCC SHOWCONTIG ('accounts')

 :

- Pages Scanned.............. : 1570
 :

- Avg. Page Density (full)... : 42.34%
 :
 :

To compact the file we can use DBCC SHRINKFILE. Previously, we
noted that in the default case data rows from the pages at the end of the
table would migrate to the free space in pages at the beginning of the table.
Let us issue a DBCC SHRINKFILE:

DBCC SHRINKFILE (BankingDB_Data,10)

Now let us execute DBCC SHOWCONTIG again:

DBCC SHOWCONTIG ('accounts')

 :

- Pages Scanned.............. : 782
 :

- Avg. Page Density (full)... : 84.70%
 :
 :

We can immediately see that the page density has increased by about a
factor of two. This means we are storing twice as many rows per page and
that we need half the pages to hold our data compared with what we
needed previously. This is clear from the Pages Scanned value, which has
changed from 1,570 to 782. So, although it may take a while to shrink a
large file, you may find that subsequent scans take somewhat less time.

348 9.3 SQL Server and disk I/O

9.3.3 Investigating disk I/O bottlenecks

The tool used to observe disk I/O bottlenecks is typically the System Mon-
itor. The Task Manager displays little useful information as far as disk I/O is
concerned. We will focus on using the System Monitor, since it is the most
comprehensive tool, and we will also introduce a useful system table-valued
function, fn_virtualfilestats.

If you are using Windows, the statistics collection for the Logical-disk
object is not active by default. However, the statistics collection for the
Physicaldisk object is active by default.

To activate statistics collection in Windows for the Logicaldisk object,
run the diskperf command and reboot Windows. To turn on statistics col-
lection for the Logicaldisk object, type in:

diskperf -yv

To deactivate statistics collection, type in:

diskperf -nv

The Physicaldisk object uses the syntax -yd and -nd. Once the diskperf
command has been run, it will not have to be run again until you want to
change the statistics collection. For Windows NT the syntax is just -y and
-n. Let us look at some of the more useful counters associated with disk
activity.

The Logical Disk, Physical Disk, and a number of SQL Server objects are
a useful place to start, and it is worth a look at some of their counters. Again,
note that it often is a memory bottleneck that manifests itself as a disk bot-
tleneck, and therefore the counters associated with the Memory object, as
described earlier, should also be monitored. Some of the most useful Logical
Disk and Physical Disk counters are shown in Table 9.5.

Table 9.5 Logical and Physical Disk counters

Logical/Physical Disk Object Counter Explanation

% Disk Time How busy is the disk? This is the percentage
of elapsed time that the selected disk is busy
handling read and write requests.

9.3 SQL Server and disk I/O 349

Chapter 9

Useful SQL Server counters are shown in Table 9.6.

% Disk Read Time This is the percentage of elapsed time that
the selected disk is busy handling read
requests.

% Disk Write Time This is the percentage of elapsed time that
the selected disk is busy handling write
requests.

% Idle Time This is the percentage of elapsed time that
the selected disk is not processing requests.

Disk Reads/sec The rate of read operations on the disk.

Disk Writes/sec The rate of write operations on the disk.

Avg. Disk Queue Length This is the average number of read and write
requests for the disk in the sample interval. If
disk queue length is greater than two and the
%Disk Time is high, this may indicate a disk
bottleneck.

Current Disk Queue Length This is an instantaneous value at the point of
sample. It includes the requests being ser-
viced.

Avg. Disk Bytes/Read This is the average number of bytes trans-
ferred to disk during read operations.

Avg. Disk Bytes/Write This is the average number of bytes trans-
ferred to disk during write operations.

Table 9.6 Useful SQL Server counters

SQL Server Object Counter Explanation

Access Methods: Forwarded Records/
sec

Number of records per second fetched through for-
warded record pointers

Access Methods: Full Scans/sec Number of unrestricted table or index scans per sec-
ond

Access Methods: Page Splits/sec Number of page splits per second that occur as the
result of over flowing index pages (data pages in a
clustered index).

Table 9.5 Logical and Physical Disk counters (continued)

350 9.3 SQL Server and disk I/O

Be aware that the % Disk Time, % Disk Read Time, % Disk Write
Time, and % Idle Time counters can exaggerate. You may see values over

Buffer Manager: Buffer Cache Hit
Ratio

The percentage of time that a page was found in the
data cache. Usually 95% plus on a server in steady
state with a large cache.

Buffer Manager: Checkpoint Pages/sec Number of pages written to disk per second by a
checkpoint.

Buffer Manager: Database Pages Number of database pages in the buffer pool.

Buffer Manager: Free List Stall/sec Number of requests per second that had to wait for
a free page.

Buffer Manager: Free Pages Total number of pages on all free lists.

Buffer Manager: Lazy Writes/sec The number of pages written out to disk per second
by the lazy-writer. This cleans buffers and returns
them to the free buffer pool.

Buffer Manager: Page life Expectancy Number of seconds a page will stay in the buffer
pool without any references to it.

Buffer Manager: Page Lookups/sec Number of requests per second to find a page in the
buffer pool.

Buffer Manager: Page Reads/sec The number of physical page reads per second. This
is what we try to minimize with indexes and data
cache.

Buffer Manager: Page Writes/sec The number of physical page writes per second.

Buffer Manager: Procedure Cache Pages Number of pages used to store compiled queries.

Buffer Manager: Readahead Pages/sec Number of pages read in by the read-ahead mecha-
nism.

Buffer Manager: Reserved Pages Pages reserved in the buffer pool.

Buffer Manager: Stolen Pages Number of pages used for miscellaneous server pur-
poses.

Buffer Manager: Target Pages Ideal number of pages in the buffer pool.

Buffer Manager: Total Pages Number of pages in the buffer pool—includes data-
base, free, and stolen pages.

Databases: Data File(s) Size (KB) Total size of all data files in a database.

Databases: Log File(s) Size (KB) Total size of all log files in a database.

Table 9.6 Useful SQL Server counters (continued)

9.3 SQL Server and disk I/O 351

Chapter 9

100 percent. It is a good idea to monitor % Idle Time with the other three
counters to get an indication of whether this is happening.

In the System Monitor chart shown in Figure 9.24 we have added the
PhysicalDisk: Avg. Disk Bytes/Read counter and the Buffer Manager: Page
lookups/sec counter. We have executed a query that retrieves a row from the
Accounts table using a non-clustered index. We can see a blip in the Buffer
Manager: Page lookups/sec counter. However, note the value of the Physi-
calDisk: Avg. Disk Bytes/Read counter. It is 8,192 bytes. This shows us that
a single page read was performed.

In the System Monitor chart shown in Figure 9.25, we have added the
PhysicalDisk counters, Avg. Disk Queue Length and %Disk write time, and
the Buffer Manager counters, Page writes/sec, and Checkpoint pages/sec.

We have initiated an update of a large table, resulting in many rows
being changed. The Avg. Disk Queue Length counter is labeled (1). This
peaks at 14 and averages 2.7. The counter that closely tracks it is %Disk
write time, which is 100 percent at peak. Clearly, a lot of write activity is
being performed. The data file and log file are on one disk, so what is
responsible for the activity? The clue is our highlighted counter, Check-
point pages/sec. This averages 140 pages/sec with a peak of 904 pages/sec.
This results in a Page writes/sec, labeled (2), averaging 140 and peaking at
904. This is the checkpoint that is flushing to disk.

Figure 9.24
Investigating disk

activity –
examining

read size

352 9.3 SQL Server and disk I/O

Finally, let us have a look at fn_virtualfilestats—a system table-valued
function. This gives us very useful information about I/O statistics for indi-
vidual data and log files. It is very easy to use.

SELECT * FROM :: fn_virtualfilestats(11, 1)

The first parameter is the database ID, and the second parameter is the
file ID. Personally, I find the best way to obtain these values is with
sp_helpdb and sp_helpfile. If you prefer, use the system functions DB_ID()
and FILE_ID() to find these values. Example output is as follows:

DbId FileId TimeStamp NumberReads NumberWrites BytesRead BytesWritten IoStallMS

11 1 9293172 1579 572 398663680 73203712 11810

9.3.4 Solving problems with disk I/O

Having determined that there is indeed a disk I/O bottleneck and that there
is a sustained queue of requests, the next step is to eliminate causes other
than SQL Server, such as a memory bottleneck causing high levels of pag-
ing to disk.

Figure 9.25
Investigating disk

activity –
examining a large

update

9.3 SQL Server and disk I/O 353

Chapter 9

If the disk bottleneck proves to be SQL Server, it could be a specific set
of queries—in which case it is possible that these queries could be made
more efficient by rewriting or by a change in index design. This often cures
the problem. However, if the workload on the SQL Server as a whole is
generating more disk I/O than the I/O subsystem can handle, it may be
time to invest in a RAID approach.

There are a number of RAID topologies that can be used; the fastest
implementation of RAID, however, is usually hardware based. We have
already discussed RAID configurations in this chapter.

If RAID configurations are not available, using multiple data files and
filegroups on multiple disk spindles may be another option.

Also, remember that Windows can defragment disk drives. It is possible
that a database file is fragmented because of the way it was created. This
may have happened if many automatic extensions took place and the disk
was shared with other applications that create files.

Ensure that the hardware components can theoretically handle the load.
Apart from the disk drives, the disk controllers and I/O bus have a finite
bandwidth.

This Page Intentionally Left Blank

355

10
Transactions and Locking

I once visited a customer to sanity check the physical design for a new data-
base. In the course of checking the design I happened to notice that there
were some people in an adjoining room entering data into forms on their
PCs. Every so often one of these people would raise their hands in the air for
a few seconds. After a while my curiosity got the better of me, and I asked
the person who had invited me to do the sanity check what was happening.

It transpired that the people in the next room were entering trades into a
financial system, but the lock conflict caused by the action of entering two
trades simultaneously was so bad that they found it easier to raise their hands
just before they pressed Enter on the keyboard to signal to their colleagues
not to do the same. Ironically, what they were doing was implementing a
locking protocol, which single-threaded the insertion of a trade. This is an
example of a multiuser system where two users are one user too many!

Unfortunately, there are many multiuser systems out there that suffer
from locking problems. Whether you design a system with locking in mind
tends, like most things in life, to depend on your previous experiences.
While I was working for Digital Equipment Corporation I was involved in
the design of many multiuser online transaction processing systems
(OLTPs). I came to learn very quickly that if I did not constantly ask the
question: “Is this transaction likely to be the cause of a locking bottle-
neck?,” that I would run into trouble. If your background is single-user sys-
tems or read only databases, this question might not be the first one on
your mind.

This chapter introduces the concepts of transactions and locking, per-
haps two of the most important features provided by a modern database
management system and, perhaps, two of the features whose correct imple-
mentation by a database designer is most critical to database performance.
The default SQL Server locking protocol provided by SQL Server is sophis-
ticated. However, for those developers who need it, the default locking pro-

356 10.1 Why a locking protocol?

tocol provided by SQL Server can easily be changed to behave in a number
of different ways. These capabilities will be covered in this chapter.

10.1 Why a locking protocol?

Single-user access to a database does not require a locking protocol. Nor
does single or multiuser access to a read only database. Database manage-
ment systems in reality must support more than one user concurrently
accessing information, and it is this multiuser access that requires the data-
base management system to provide a protocol to ensure that the changes
being made to the database data by one user are not corrupted by another.
Locking is not a luxury in a multiuser environment—it is a necessity.

Locking protocols are not all or nothing. Some protocols are more strin-
gent than others with different database management systems adopting
their own unique approaches. Locking is the natural enemy of perfor-
mance, and so a more stringent locking protocol is more likely to adversely
affect performance than a less stringent one. However, a more stringent
locking protocol is also likely to provide a more consistent view of the data.

To provide an idea as to why a locking protocol is necessary let us con-
sider some multiuser scenarios.

10.1.1 Scenario 1

In this scenario Mike modifies a stock level by subtracting 1,000 from it,
leaving 100 items. Katy reads the stock level and sees that there are only
100 items in stock. Immediately after Katy has read this value and acted
upon it, Mike’s transaction fails and is rolled back, returning the stock level
to its original value of 1,100.

This scenario highlights a classic problem. Katy has been allowed to read
changes made by Mike before Mike has committed the changes—in other
words, before Mike has irrevocably changed the data by ending the transac-
tion with a commit. Until the transaction ends, Mike can choose to roll
back the transaction, change the value again, or commit the transaction. In
our example, Mike’s transaction actually fails before it completes, causing
the database management system to roll back the change. Katy is said to
have read uncommitted, or dirty data. This is shown in Figure 10.1.

10.1 Why a locking protocol? 357

Chapter 10

10.1.2 Scenario 2

In this scenario Mike’s transaction sums a list of debts in a table and checks
the result against a total debt value held elsewhere in the database. While
Mike’s transaction is summing the values in the list, Katy’s transaction
inserts a new row into the debt table after Mike’s transaction has passed by
and updates the total debt value. When Mike finishes summing the list and
compares the calculated sum with the total debt value, it reports a discrep-
ancy, where, in fact, there is no discrepancy at all. This is called the phan-
tom insert phenomenon. This is shown in Figure 10.2.

These are only two examples of a number of possibilities that can occur if
locking protocols are not used or the locking protocol used is not stringent
enough. We will revisit some of these scenarios later. We have said that SQL
Server uses a locking protocol, so let us now investigate how this works.

Figure 10.1
Reading

uncommitted
changes

Figure 10.2
The phantom

insert phenomenon

358 10.2 The SQL Server locking protocol

10.2 The SQL Server locking protocol

The locking protocol adopted by SQL Server consists of placing different
types of locks on different database objects. In SQL Server these objects
include a table, a database page, a row, and an index entry. As we have seen,
a database page is 8 KB in size, and any object resident within this 8 KB is
locked implicitly when the database page is locked. Therefore, if a database
page is locked, every row held on that page is effectively locked. Similarly, if
a table is locked, every row in that table is locked.

We will now look in detail at the types of locks used, what objects can be
locked, and the duration of these locks.

10.2.1 Shared and exclusive locks

To generalize, SQL Server applies a write lock when it writes information or
a read lock when it reads information. Writing information usually refers to
inserting, updating, or deleting rows, whereas reading information usually
refers to retrieving rows with, for example, a SELECT statement. There are
some simple rules that we can make at this point:

� If a user has placed a read lock on an object such as a row, another
user can also place a read lock on that object. In other words, both
users can read the same object simultaneously. In fact, any number of
users can place a read lock on an object at the same time.

� If a user has placed a write lock on an object, another user cannot also
place a write lock on that object. Also, another user cannot place a
read lock on that object. In other words, once a user has placed a
write lock on an object, other users cannot place read or write locks
on the same object simultaneously.

Because many users can place read locks on the same table, page, or row
concurrently these read locks are usually referred to as shared locks. Write
locks, on the other hand, are normally referred to as exclusive locks. Table
10.1 shows the compatibility between shared and exclusive locks. As can be
seen, only shared locks are compatible.

Once a lock has been placed on an object, it has a lifetime. Suppose a
Transact-SQL statement that causes a row lock to be taken out is executed
inside a user-defined transaction. In the default case, shared locks live for

10.2 The SQL Server locking protocol 359

Chapter 10

the time it takes the SQL statement to read the row, whereas exclusive
locks live for the length of the user-defined transaction. This is shown in
Figure 10.3.

This behavior can be overridden with the use of the REPEATABLE
READ keyword or transaction isolation levels, as we will see later in this
chapter.

Note: Beware of the SET IMPLICIT_TRANSACTIONS ON statement.
It will automatically start a transaction when Transact-SQL statements such
as SELECT, INSERT, UPDATE, and DELETE are used. The transaction
will not be committed and its locks will not be released until an explicit
COMMIT TRANSACTION statement is executed. To see if it is set, use
DBCC USEROPTIONS (described later).

Table 10.1 Compatibility between shared and exclusive locks

Mode of Currently Granted Lock Mode of Requested Lock

Exclusive Shared

Exclusive

Shared

Figure 10.3
The default

lifetime of SQL
server locks

360 10.2 The SQL Server locking protocol

SQL Server also uses locks other than shared or exclusive. For example,
it uses update locks as an optimization to avoid deadlocks. We will look at
update locks when we investigate deadlocks later in the chapter.

10.2.2 Row-, page-, and table-level locking

Is row-level locking better than page-level locking? It depends. Applications
require different levels of locking granularity. One application may benefit
from page-level locking while another application may benefit from row-
level locking. Why is this? To investigate it is useful to consider the different
granularity of lock that could be taken out by some theoretical database
management system.

Figure 10.4 shows the database concurrency for different lock granular-
ity. By lock granularity we mean the object that is locked from, on one side
of the spectrum, an individual column in a row to the other side of the
spectrum, a whole database. As can be observed from Figure 10.4, locking
individual columns provides the highest level of concurrency. By this we
mean that multiple users could be updating different columns in the same
row simultaneously. They would not be involved in lock conflict.

If the lock granularity is implemented at the database level, the lowest
level of concurrency is achieved. Multiple users could not simultaneously
change anything at all in the database. If they tried, they would be involved
in lock conflict.

Figure 10.4
Concurrency versus
locking granularity

10.2 The SQL Server locking protocol 361

Chapter 10

So, if locking individual columns provides the highest level of concur-
rency, why do SQL Server and databases in general not lock at the column
level? To explain this we need to add some more information to our graph.
In Figure 10.5, we have added system resource use to our graph. It can be
seen that an increase in system resource use parallels an increase in lock
granularity. The finer the granularity, the more system resources used.

This is why SQL Server and databases in general do not lock at the col-
umn level. The system resource use in terms of the number of locks
required and their management would be too great. Locks are approxi-
mately 100 bytes each in SQL Server. Using 100 bytes of memory to lock a
ten-byte column seems a little over the top. To lock at the column level
would probably use tens of thousands of locks in a medium-sized database,
which could equate to many megabytes of memory. The CPU resource
needed to manage these locks would be massive.

Consequently, SQL Server locks rows, pages, and tables, which, depend-
ing on the application, is a reasonable approach. The database itself can, of
course, be set to single-user mode, which effectively provides locking at the
database level.

10.2.2.1 When are row-level locks used?

Locking at the row level can be considered to be the default situation. Usu-
ally, unless you have changed the default behavior, SQL Server will take
shared and exclusive locks out on rows. When we refer to rows, we are refer-

Figure 10.5
System resource

versus locking
granularity

362 10.2 The SQL Server locking protocol

ring to data rows in the data pages of a table. However, within an index,
index pages contain index entries. These can also be locked with a lock
equivalent to a row lock, known as a key lock.

Conventionally, the data pages in a table on which there is a clustered
index present are considered to be the leaf level of the clustered index—that
is, part of the clustered index. For this reason, the row locks on the data
rows in a table with a clustered index are managed as key locks. Figure 10.6
shows individual rows being locked within the pages of a table.

Figure 10.7 shows page locks being used to lock the individual pages
within a table. In this case one lock will effectively lock all the rows in the
page.

10.2.2.2 When are table-level locks used?

One of the reasons that SQL Server tends to lock at the row level is that it
has the capability to escalate locks but not to de-escalate locks. Therefore, if
SQL Server decides that a SQL statement is likely to lock the majority of
rows in a table, it may lock at the table level. The same logic is used if SQL
Server determines that most of the rows in a page are likely to be locked—it
may take out a page lock instead of multiple row locks.

The advantage to holding a single table lock is due to system resources.
Managing a single table lock is less resource intensive than managing multi-
ple row locks, and saving locks will save memory. However, locking at the

Figure 10.6
Row-level locking

Figure 10.7
Page-level locking

10.2 The SQL Server locking protocol 363

Chapter 10

table level may reduce concurrency. For example, an exclusive lock held at
the table level will block all other users from accessing rows within that
table, whether they wish to acquire shared or exclusive locks. Figure 10.8
shows table-level locking.

SQL Server controls when escalation occurs. The database administrator
has no control over this, since there is no relevant server configuration
option.

Note: If a table scan is being used to read data, row locks will be taken out
and released in a sequential fashion. If we choose to use certain lock hints—
for example, REPEATABLEREAD, discussed later—we are requesting not
to release the row lock when we have finished with the row. In this circum-
stance, when performing a table scan, SQL Server may well take out a table
lock if the number of row locks exceeds an internal threshold.

So, we have introduced shared and exclusive locks, as well as page-,
table-, and row-level locking. We need to introduce more types of locks
before we can give examples of the SQL Server locking protocol in action;
but first let us look at lock timeouts and then a phenomenon known as a
deadlock or deadly embrace.

10.2.3 Lock timeouts

If a user’s lock is blocked by another lock, the user must wait until the
blocking lock is released before he or she can acquire the lock. If the block-
ing lock is not released for a long time, the user will have to wait for a long
time. An application design flaw may mean that the blocking lock is not
released at all, and then the database administrator must intervene.

It is possible in SQL Server to set a lock timeout value for a connection
so that it will only wait to be granted its lock for a predefined period of
time, after which it will receive an error message informing it that the time-
out period has been exceeded. This approach assumes that if a lock is kept

Figure 10.8
Table-level locking

364 10.2 The SQL Server locking protocol

waiting for a period of time there must be a problem, and it is better that
the connection gives up and releases its locks rather than wait indefinitely,
perhaps blocking other users. The connection can always try again, or log
the problem and gracefully inform the user that it cannot continue.

What constitutes a realistic timeout value? Too long and the user will
become impatient, too short and the connection will give up when it would
have acquired the lock had it waited a little longer. Personally, I think
around ten seconds is not unreasonable.

A lock timeout value is set per connection as follows:

SET LOCK_TIMEOUT 10000

The timeout value is specified in milliseconds. A value of –1 means wait
indefinitely (the default), whereas a value of 0 means do not wait at all. I do
not recommend using this value. You could timeout as soon as you attempt
to execute a statement, whereas if you had waited a fraction of a second you
would have acquired the lock.

If a timeout occurs, an error, 1222, is returned and the connection is
rolled back.

To test the value of lock timeout set for a connection the function
@@LOCK_TIMEOUT can be used.

10.2.4 Deadlocks

A deadlock situation can occur in SQL Server when a user holds a lock on a
resource needed by a fellow user who holds a lock on a resource needed by
the first user. This is a deadly embrace, and the users would wait forever if
SQL Server did not intervene (see Figure 10.9.)

Figure 10.9
A deadlock between

two users

10.2 The SQL Server locking protocol 365

Chapter 10

SQL Server chooses one of the deadlocked users as a victim and issues a
rollback for its transaction. It will receive an error message similar to the fol-
lowing:

Server: Msg 1205, Level 13, State 1, Line 1

Your transaction (Process ID 52) was deadlocked on {lock}
resources with another process and has been chosen as the
deadlock victim. Rerun your transaction.

In the application code, this error should be trapped and dealt with
cleanly. The application might retry a number of times before giving up and
informing the user that there is a problem.

A connection can set its deadlock priority such that, in the event of it
being involved in a deadlock, it will be chosen as the victim, as follows:

SET DEADLOCK_PRIORITY LOW

To return to the default deadlock handling mechanism, use the follow-
ing code:

SET DEADLOCK_PRIORITY NORMAL

Generally, the transaction involved in the deadlock that has accumu-
lated the least amount of CPU time is usually chosen as the victim.

10.2.5 Update locks

As well as placing shared and exclusive locks on database rows, SQL Server
also makes use of a type of lock known as an update lock. These locks are
associated with SQL statements that perform update and delete opera-
tions, which need to initially read rows before changing or deleting them.
These rows have update locks placed on them that are compatible with
shared read locks but are not compatible with other update locks or exclu-
sive locks. If the rows must subsequently be updated or deleted, SQL
Server attempts to promote the update locks to exclusive locks. If any
other shared locks are associated with the rows, SQL Server will not be
able to promote the update locks until these are released. In reality the
update lock is not promoted, but a second lock is taken out, which is, in
fact, an exclusive lock.

366 10.2 The SQL Server locking protocol

Why bother with update locks? Update locks are really an optimization
to minimize the possibility of deadlocks. Consider two users, Mike and
Katy, who are about to update the same row. Without update locks, each
user will take out a shared lock on the row. Shared locks are compatible, so
both users will acquire the lock successfully. Mike’s UPDATE statement,
finding that the row meets the criteria in its WHERE clause, attempts to
take out an exclusive lock on it. Mike’s UPDATE statement will now have
to wait, since it is blocked by Katy’s shared lock.

Katy’s UPDATE statement, finding that the row meets the criteria in its
WHERE clause, attempts to take out an exclusive lock on the row. Katy’s
UPDATE statement cannot take out the exclusive lock, since it is blocked
by Mike’s shared lock. Her update statement would also be forced to wait,
except that this is clearly a deadlock. SQL Server will choose a victim and
its transaction will be rolled back. This is shown in Figure 10.10.

Now let us take the same example, but this time we will make use of
update locks. This is exactly what SQL Server does.

When Mike issues his UPDATE statement, he now takes out an update
lock on the row instead of a shared lock. Katy’s UPDATE statement also
attempts to take out an update lock on the row, but update locks are not
compatible so she will be forced to wait. Mike’s UPDATE statement, find-
ing that the row meets the criteria in its WHERE clause, attempts to take
out an exclusive lock on the row. Since Katy does not have any locks on the
row, Mike’s UPDATE statement successfully acquires the exclusive lock and
completes. Mike now commits his transaction and releases his locks. Katy’s

Figure 10.10
A deadlock caused

by two users
updating

the same page

10.2 The SQL Server locking protocol 367

Chapter 10

UPDATE statement, which has been waiting, can now proceed. This is
shown in Figure 10.11.

Clearly, this is a cleaner mechanism. No transactions are deadlock vic-
tims, which means no transactions are cancelled and rolled back. Transac-
tions that are rolled back have their work effectively thrown away. Using
update locks, Katy’s UPDATE statement merely suffers a short delay.

10.2.6 Intent locks

As well as placing shared and exclusive locks on database tables, SQL Server
also makes use of a type of lock known as an intent lock. Intent locks are
placed on the table and pages in the table when a user locks rows in the
table, and they stay in place for the life of the row locks. These locks are
used primarily to ensure that a user cannot take out locks on a table or
pages in the table that would conflict with another user’s row locks. For
example, if a user was holding an exclusive row lock and another user
wished to take out an exclusive table lock on the table containing the row,
the intent lock held on the table by the first user would ensure that its row
lock would not be overlooked by the lock manager.

10.2.7 Modifying the default locking behavior

There are two ways in which SQL Server’s default locking behavior can be
modified. Individual SQL statements can be qualified with a keyword
known as a lock hint to modify the locking behavior for that particular

Figure 10.11
A deadlock avoided

by using
update locks

368 10.2 The SQL Server locking protocol

statement, or a default locking behavior for the connection can be set with
the SET TRANSACTION ISOLATION LEVEL statement.

10.2.7.1 Transaction isolation levels

SQL Server allows the transaction isolation level to be set for a connection.
This sets a default locking behavior.

Levels of transaction isolation are specified by the ANSI standard, with
each one defining the type of phenomenon not permitted while concurrent
transactions are running. The higher the isolation level, the more stringent
the locking protocol—with the higher levels being a superset of the lower
levels. The transaction isolation levels are as follows:

� Read uncommitted

� Read committed

� Repeatable read

� Serializable

The locking behavior that corresponds with read uncommitted pro-
vides the least integrity but potentially the best performance. The read
committed isolation level provides more integrity than read uncommitted,
and the repeatable read isolation level provides even more integrity. The
greatest integrity is provided by the serializable isolation level. We have
already met dirty reads and the phantom phenomena. Table 10.2 shows
whether the dirty read and the phantom phenomena are allowed by the
various isolation levels.

Table 10.2 Isolation levels and allowed locking phenomena

Isolation Level Dirty Reads
Nonrepeatable Reads
Allowed

Phantoms
Allowed

Serializable No No No

Repeatable Read No No Yes

Read Committed No Yes Yes

Read Uncommitted Yes Yes Yes

10.2 The SQL Server locking protocol 369

Chapter 10

It can be seen that only the serializable isolation level prevents all these
phenomena from occurring.

By default, SQL Server runs at transaction isolation level read committed.

The transaction isolation level is set for the connection with the follow-
ing syntax:

SET TRANSACTION ISOLATION LEVEL READ UNCOMMITTED
SET TRANSACTION ISOLATION LEVEL READ COMMITTED
SET TRANSACTION ISOLATION LEVEL REPEATABLE READ
SET TRANSACTION ISOLATION LEVEL SERIALIZABLE

The DBCC utility with the USEROPTIONS parameter can be used to
check the current isolation level of the connection, as follows:

DBCC USEROPTIONS

Set Option Value

textsize 2147483647

language us_english

dateformat mdy

datefirst 7

quoted_identifier SET

arithabort SET

ansi_null_dflt_on SET

ansi_defaults SET

ansi_warnings SET

ansi_padding SET

ansi_nulls SET

concat_null_yields_null SET

isolation level repeatable read

We will study how transaction isolation levels modify locking behavior
between users later in this chapter.

10.2.7.2 Lock hints

The keywords available as lock hints for modifying locking behavior are as
follows:

� DBLOCK

370 10.2 The SQL Server locking protocol

� HOLDLOCK

� NOLOCK

� PAGLOCK

� READCOMMITTED

� READPAST

� READUNCOMMITTED

� REPEATABLEREAD

� ROWLOCK

� SERIALIZABLE

� TABLOCK

� UPDLOCK

� XLOCK

Note: DBLOCK is new to SQL Server 2005. TABLOCKX is no longer
available in SQL Server 2005.

Some hints are supported for backward compatibility such as:

� HOLDLOCK

� NOLOCK

The recommended hints to use instead are as follows:

� SERIALIZABLE

� READUNCOMMITTED

Some hints enable the developer to specify the lock granularity, such as:

� DBLOCK

� PAGLOCK

� ROWLOCK

10.2 The SQL Server locking protocol 371

Chapter 10

� TABLOCK

Other hints enable the developer to specify the transaction isolation
level behavior at the statement level, such as:

� READUNCOMMITTED

� READCOMMITTED

� REPEATABLEREAD

� SERIALIZABLE

Lock hints are used, for example, on a SELECT statement, as follows:

SELECT * FROM branches WITH (SERIALIZABLE)

SELECT balance FROM accounts WITH (READUNCOMMITTED)
 WHERE account_no = 1000

The effect of these lock hints can be described as follows:

� DBLOCK: The DBLOCK hint forces a shared database lock to be
taken when enough information is read by a single SELECT state-
ment.

� HOLDLOCK: The HOLDLOCK hint forces a shared lock on a
table to remain until the transaction completes. Key range locking
will also be used to prevent phantom inserts. Nonrepeatable reads are
also prevented. This is equivalent to the SERIALIZABLE hint. Data
consistency will be provided to the level experienced by transactions
running at transaction isolation level SERIALIZABLE. Using the
HOLDLOCK keyword may, and usually will, degrade performance,
since lock contention may increase.

� NOLOCK: The NOLOCK hint allows a dirty read to take place—
that is, a transaction can read the uncommitted changes made by
another transaction. The exclusive locks of other transactions are not
honored, and the statement using this hint will not take out shared
locks. This is equivalent to the READUNCOMMITTED hint.
Data consistency will be provided to the level experienced by trans-

372 10.2 The SQL Server locking protocol

actions running at transaction isolation level READ UNCOMMIT-
TED. Using the NOLOCK keyword may increase performance,
since lock contention may decrease, but this will be at the risk of
lower consistency.

� PAGLOCK: The PAGLOCK hint forces shared page locks to be
taken where otherwise SQL Server may have used a table or row lock.
For example, consider the following statement:

SELECT balance FROM accounts WITH (REPEATABLEREAD,
PAGLOCK)

If there is no appropriate index, the query optimizer will choose a
table scan as the strategy used to execute the query. Depending on the
number of rows that may be locked, the lock manager will take out
row locks or perhaps a table lock because the REPEATABLE READ
lock hint will force the shared row locks to be held until the end of
the transaction, and therefore a single table lock is far more efficient.
The PAGLOCK hint will ensure that the lock manager will use page
locking instead of table locking or row locking. This hint does not
only apply to shared locks. Exclusive page locks will also be forced if,
say, an UPDATE statement rather than a SELECT statement was
using the hint.

� READCOMMITTED: The READCOMMITTED hint ensures
that the statement behaves in the same way as if the connection were
set to transaction isolation level READ COMMITTED. This is the
default behavior for SQL Server. Shared locks will be used when data
is read, which prevents dirty reads, but the shared locks are released
at the end of the read and are not kept until the end of the transac-
tion. This means that non-repeatable reads or phantom inserts are
not prevented.

� READPAST: This lock hint enables a statement to skip rows that are
locked by other statements. The READPAST lock hint applies only
to transactions operating at READ COMMITTED isolation level
and will read only past row-level locks. This is only valid on a
SELECT statement. This is useful when, for example, multiple trans-
actions are reading items from a queue implemented as a table and a
transaction wants to skip a locked queue item and read another item
to process.

� READUNCOMMITTED: This lock hint is equivalent to the
NOLOCK lock hint.

10.2 The SQL Server locking protocol 373

Chapter 10

� REPEATABLEREAD: The REPEATABLEREAD hint ensures that
the statement behaves in the same way as if the connection were set
to transaction isolation level REPEATABLE READ. This is not the
default behavior for SQL Server. Shared locks will be used when data
is read, and these will not be released until the end of the transaction.
This means that non-repeatable reads are prevented. However, phan-
tom inserts are not prevented. This lock hint may reduce concur-
rency, since shared locks are held for longer periods of time than if
the default read committed behavior is used.

� ROWLOCK: This hint forces the use of rowlocks and is similar in
use to PAGLOCK.

� SERIALIZABLE: The SERIALIZABLE hint forces shared locks to
stay until the transaction completes. This is equivalent to specifying
the HOLDLOCK hint. Key range locking will be used to prevent
phantom inserts if indexes are present. Non-repeatable reads are also
prevented. Data consistency will be provided to the level experienced
by transactions running at transaction isolation level SERIALIZ-
ABLE. Using the SERIALIZABLE keyword may, and usually will,
degrade performance, since lock contention may increase.

� TABLOCK: The TABLOCK hint forces a shared table lock to be
taken where otherwise SQL Server may have used row locks. It will
not be held until the end of the transaction unless hints such as
REPEATABLEREAD are also used.

� UPDLOCK: The UPDLOCK hint forces SQL Server to take update
locks where otherwise SQL Server would have used shared locks. The
update locks are held until the end of the transaction. Update locks
are compatible with shared locks but not exclusive locks or other
update locks.

� XLOCK: This hint forces exclusive locks to be taken out. It is typi-
cally used with TABLOCK and PAGLOCK.

10.2.8 Locking in system tables

Transact-SQL statements such as CREATE TABLE manipulate system
tables. For example, when a table is created, rows are inserted into the
sysobjects, sysindexes, and syscolumns system tables. Data definition lan-
guage (DDL) statements can appear in explicit transactions, and, there-
fore, any locks taken out as a result of actions to the system tables can be
held for a period of time—blocking other users if the developer is not care-

374 10.2 The SQL Server locking protocol

ful. Here are some examples of DDL statements that can appear in an
explicit transaction:

As an example of this behavior, suppose a table is created in an explicit
transaction. SQL Server takes out exclusive locks in the sysobjects, sysin-
dexes, and syscolumns system tables. These locks are key locks, since each of
these system tables has a clustered index present. If the transaction does not
complete, a query issued in another connection against these system tables
will be blocked. For example, a CREATE TABLE statement issued within
an explicit transaction will block an sp_help issued on another connection.
It is important, therefore, that these transactions are committed quickly.

Note that Sch-M (schema modification) locks are taken when a table
data definition language (DDL) operation is being executed. This is incom-
patible with all other lock types.

10.2.9 Monitoring locks

Finally, we need to introduce the means by which we can observe SQL
Server lock management in action, and then we can look at some examples
of the SQL Server locking protocol. There are a number of ways to find
information about the locking that is happening within SQL Server. These
include the following:

� Use the sp_lock system stored procedure.

� Use the SQL Enterprise Manager.

ALTER TABLE DROP PROCEDURE

CREATE DEFAULT DROP RULE

CREATE INDEX DROP TABLE

CREATE PROCEDURE DROP TRIGGER

CREATE RULE DROP VIEW

CREATE TABLE GRANT

CREATE TRIGGER REVOKE

CREATE VIEW SELECT INTO

DROP DEFAULT TRUNCATE TABLE

DROP INDEX

10.2 The SQL Server locking protocol 375

Chapter 10

� Use the Performance Monitor.

� Interrogate the system table syslockinfo directly.

� Use the SQL Profiler.

Additionally, the sp_who system stored procedure is useful in finding
blocked and blocking processes, and the DBCC utility can be used to set
trace flags to record lock and deadlock information.

10.2.9.1 Using the sp_lock system stored procedure

The sp_lock system stored procedure displays information about the locks
held by processes using the server. It can be entered as a stand-alone state-
ment, in which case it will display all locks managed by the server, or it can
take up to two SQL Server process identifiers (SPIDs) as a parameter. Some
example output from the sp_lock system stored procedure is as follows:

EXEC sp_lock

spid dbid ObjId IndId Type Resource Mode Status

-------- ---- -----

51 7 0 0 DB S GRANT

51 7 965578478 2 PAG 1:113 IS GRANT

51 7 965578478 2 KEY (4501518d90d1) S GRANT

51 7 965578478 0 RID 1:348:14 S GRANT

51 7 965578478 0 PAG 1:348 IS GRANT

51 7 965578478 0 TAB IS GRANT

52 7 965578478 0 TAB IX GRANT

52 7 965578478 0 PAG 1:348 IX GRANT

52 7 965578478 0 RID 1:348:14 X CNVT

52 7 965578478 0 RID 1:348:14 U GRANT

52 7 965578478 2 KEY (4501518d90d1) U GRANT

52 7 965578478 2 PAG 1:113 IU GRANT

52 7 0 0 DB S GRANT

Here’s a hint—to translate the ObjId to a table name, use the built-in
system function OBJECT_NAME. For example:

SELECT OBJECT_NAME (965578478)

accounts

376 10.2 The SQL Server locking protocol

The above output from sp_lock shows a number of locks held on vari-
ous objects. Let us discuss the meaning of the columns in the output before
we investigate the rows.

The first column contains the SPID value. A client connection to SQL
Server is allocated an SPID value, and each row in the output represents a
lock requested by the SPID that has not been released at the time sp_lock
was executed. A typical server will be managing many locks at a given
instance in time, so it is often more practical to limit the output to a partic-
ular SPID or pair of SPIDs by supplying these values as parameters.

The next five columns, dbid, ObjId, IndId, Type, and Resource, help to
define the resource that is locked. We know already that SQL Server locks
objects such as rows and tables, and these columns let us know what type
of resource is locked as well as which instance of this resource type. The
dbid column contains the database ID, the ObjId column contains the
object ID, and the IndId contains the index ID. This column can contain
the values 0, to represent the table itself; 1, the clustered index, if one is
present; > 1 for a non-clustered index; and 255 for TEXT/IMAGE data.
The Type column tells us the type of resource locked, such as a row or
page, and, finally, the Resource column provides information to com-
pletely identify the resource instance. Whether these columns contain data
depends on the type of resource being locked. For example, in the case of a
database, the Resource column is empty.

The Mode column tells us whether we have a shared lock or exclusive
lock or one of a myriad of other modes of lock on our resource. Finally, the
Status column shows us whether the lock has been granted (GRANT), is
waiting to be granted (WAIT), or is waiting to be converted to another
mode (CNVT). When investigating lock problems, I often hunt first for
locks that have not been granted. They normally relate to the blocked user
and represent a small number of locks on the system. Let us now look at the
connections in our example.

All the connections—that is, SPIDs—have been granted a shared lock
on the database with ID value 7:

51 7 0 0 DB S GRANT
52 7 0 0 DB S GRANT

An easy way to translate the dbid to a database name is to execute the
system stored procedure sp_helpdb, which returns this information in its
display. Alternatively, use the function DB_NAME(). The reason the con-

10.2 The SQL Server locking protocol 377

Chapter 10

nections have been granted a shared lock is that any connection that has
selected a database with a USE statement explicitly or implicitly via the
drop-down list in the query analyzer is granted such a lock. This is used to
manage such operations as a connection attempting to set the database to
single-user mode.

Let us investigate the locks held by SPID 51. Apart from the database
lock, it has requested and been granted shared (S) locks on two resources: a
KEY and a RID.

51 7 965578478 2 KEY (4501518d90d1) S GRANT
51 7 965578478 0 RID 1:348:14 S GRANT

A RID is a row lock on a data row on a data page. A KEY lock is a row
lock on an index entry (key plus pointer) on an index page.

Note: Conventionally, the data pages in a table with a clustered index are
considered to be part of the clustered index. For that reason a row lock on a
data row on a data page in such a table is considered to be a KEY lock, not
a RID lock.

If we take the row lock first, we can see that the resource information
shows us that we have a dbid value of 7, which represents the database
BankingDB, and an ObjId value of 965578478, which, when translated
with the OBJECT_NAME function, represents the table, Accounts, in this
database. The IndId column contains a value of 0, which represents the
table rather than an index on the table. The Resource column value is
1:348:14, which specifies that the resource in the table is identified as file
ID 1, page 348, slot 14. This uniquely identifies a row on the page. The file
ID must be present, since page numbers are only unique with a database
file.

Hint: To convert a file ID to a filename, use the FILE_NAME() function.

If we look at the KEY lock, we can see the same values in the dbid and
ObjId columns, but there is a value of 2 in the IndId column.

The following Transact-SQL will translate this index ID to an index
name:

378 10.2 The SQL Server locking protocol

SELECT name FROM SYSINDEXES
 WHERE id = OBJECT_ID('Accounts') AND indid = 2

Of course, since we already know the object ID value, we could have
just used this instead of translating the object name.

So we now know the index in which our KEY lock is held. The Resource
column value is (4501518d90d1). This is of little use to us, since it is a
hexadecimal number, which is the result of some hash function used inter-
nally, presumably used on the key value and other inputs. The other locks
held by SPID 51 are intent locks:

51 7 965578478 2 PAG 1:113 IS GRANT

51 7 965578478 0 PAG 1:348 IS GRANT

51 7 965578478 0 TAB IS GRANT

We discussed intent locks earlier in the chapter. We stated that intent
locks are placed on the table and pages in the table when a user locks rows
in the table, and they stay in place for the life of the row locks. We can see
that a shared intent (IS) lock has been taken out on page 1:348 and page
1:113. This is expected behavior, because we have a row lock held in data
page 1:348. Page 1:113 will be the index page containing the locked index
entry. Both of these pages are subordinate to the table, and so we see an
intent lock on the table. These intent locks will prevent, for example,
another connection from taking out an exclusive (X) lock on the table while
our connection has shared (S) locks on rows in the table.

Those were the locks held by SPID 51. Let us now investigate the locks
held by SPID 52. They are repeated here for clarity:

52 7 965578478 0 TAB IX GRANT
52 7 965578478 0 PAG 1:348 IX GRANT
52 7 965578478 0 RID 1:348:14 X CNVT
52 7 965578478 0 RID 1:348:14 U GRANT
52 7 965578478 2 KEY (4501518d90d1) U GRANT
52 7 965578478 2 PAG 1:113 IU GRANT
52 7 0 0 DB S GRANT

We can see that SPID 52 has been granted two update (U) locks. These
are compatible with shared (S) locks, as we described earlier in the chapter,
and are used in UPDATE and DELETE statements during the search
phase, when target rows are being identified. In fact, SPID 52 has issued an

10.2 The SQL Server locking protocol 379

Chapter 10

UPDATE statement, which is attempting to change a row on which SPID
51 has shared (S) locks. Both update (U) locks have been granted, and the
columns in the display contain values that are the same as the shared (S)
locks on the KEY and RID for SPID 51. However, we can see that SPID 52
also has a lock that has not been granted:

52 7 965578478 0 RID 1:348:14 X CNVT

The lock manager has attempted to convert an update (U) lock to an
exclusive (X) lock in order to change the row. It cannot do this, since SPID
51 has a shared (S) lock on this row, and we know that these locks are
incompatible. For this reason the lock is now waiting to be converted, at
which point it will have a status of GRANT. If the blocked lock were a new
lock that the connection had tried to acquire, rather than the conversion of
an existing lock, we would have seen a status of WAIT.

The intent locks behave in a fashion similar to those for SPID 51:

52 7 965578478 0 TAB IX GRANT

52 7 965578478 0 PAG 1:348 IX GRANT

52 7 965578478 2 PAG 1:113 IU GRANT

Exclusive intent (IX) locks have been granted on the data page and
table, since these are compatible with the shared intent (IS) locks of SPID
51. An update intent (IU) lock has also been granted on the index page,
since an update lock (U) has been granted on the index entry. The lock
manager is not going to take out an exclusive (X) lock on the index entry,
since the index column was not being updated.

10.2.9.2 Using the SQL Server 2005 Management Studio

The SQL Server 2005 Management Studio is as much about monitoring of
performance as it is about solving performance problems. However, this
chapter is all about locks. So, some basic locking information is included
here. Chapter 12 will expand on the Management Studio in general.

What was called the Activity Folder (Enterprise Manager), in SQL
Server 2000, is now called the Activity Monitor in SQL Server 2005. Figure
10.12 shows the Activity Monitor in the Management folder of the Object
Explorer pane of the Management Studio.

As shown in Figure 10.12, the Activity Monitor allows you to examine
database connections. The three available options cover processes, locks by

380 10.2 The SQL Server locking protocol

process, and locks by object. If we expand Process Info and hide the console
tree, we find the display shown in Figure 10.13.

Figure 10.12
The Activity

Monitor

Figure 10.13
Activity Monitor

processes view

10.2 The SQL Server locking protocol 381

Chapter 10

As shown in Figure 10.13, you can filter rows returned and set the
refresh rate automatically. You can also move columns and sort by a particu-
lar column.

In Figure 10.14, you can isolate locks based on which process causes a
specific lock to occur.

In Figure 10.15, locks can be isolated based on the object causing a lock-
ing problem.

The objective of the Activity Monitor and its locking monitoring tools
is to allow for locks to be removed—if a lock is causing some kind of per-
formance problem. In extreme cases, a lock such as a deadlock can even
cause a database halt.

10.2.9.3 Using the System Monitor

The System Monitor is a Windows utility that enables system managers and
database administrators to monitor the many objects within a Windows
system. There are many counters that can be monitored for many objects,
but here we are interested in those counters specific to the SQL
Server:Locks object. These counters are shown in Table 10.3.

The counters shown in Table 10.3 are for a particular instance of locked
object. The instances that can be monitored are as follows:

Figure 10.14
Locks by Process

382 10.2 The SQL Server locking protocol

Figure 10.15
Locks by Object

Table 10.3 Counters monitored for the SQL Server lock object

SQL Server: Locks

Object Counters Explanation

Average Wait Time (ms) Average amount of wait time (in milliseconds) for each
lock request that resulted in a wait.

Lock Requests/sec Number of new locks and lock conversions per second
requested from the lock manager.

Lock Timeouts/sec Number of lock requests per second that timed out,
including internal requests.

for NOWAIT locks.

Lock Wait Time (ms) Total wait time (in milliseconds) for locks in the last second.

Lock Waits/sec Number of lock requests per second that could not be sat-
isfied immediately and required the caller to wait before
being granted the lock.

Number of Deadlocks/sec Number of lock requests per second that resulted in a
deadlock.

10.2 The SQL Server locking protocol 383

Chapter 10

� RID

� Key

� Page

� Extent

� Table

� Database

� Total

This allows us to monitor counters for a particular type of lock or for all
locks (Total).

Note: The System Monitor differentiates between SQL Server 2005
instances. An instance named PEGASUS\SQL_A running on server
PEGASUS will have a locks object named MSSQL$SQL_A:Locks.

10.2.9.4 Interrogating the syslockinfo table

The syslockinfo system table can be interrogated in the same way that any
other system table can be interrogated. It is only found in the master data-
base, where it holds information concerning the locks held in SQL Server.
Unlike most other system tables, it is materialized when a query is executed
that accesses it; otherwise, it does not exist physically. A query issued against
the syslockinfo table produces the following output:

SELECT rsc_text, rsc_dbid, rsc_indid, rsc_objid, rsc_type,

req_mode, req_status, req_spid FROM sys.syslockinfo

rsc_text rsc_dbid rsc_indid rsc_objid rsc_type req_mode req_status req_spid
 7 0 0 2 3 1 52
 7 0 0 2 3 1 51
 1:113 7 2 965578478 6 7 1 52
 1:113 7 2 965578478 6 6 1 51
(4501518d90d1) 7 2 965578478 7 4 1 52
(4501518d90d1) 7 2 965578478 7 3 1 51
 1:348:14 7 0 965578478 9 4 1 52
 :
 :

Not all the columns from syslockinfo have been displayed, since some
are a binary representation of the ones shown and some are for Microsoft

384 10.2 The SQL Server locking protocol

internal use. The displayed columns have the definitions shown in Table
10.4.

Examples of common values for rsc_type are shown in Table 10.5.

Apart from the locks we have already discussed, there are several other
types of locks. File locks tend to be acquired when a file is being added to a

Table 10.4 Column definitions for the syslockinfo system table

Column Definition

rsc_text Textual description of a lock resource

rsc_dbid The database ID of the resource

rsc_indid The index ID of the resource if an index

rsc_objid The object ID of the resource if an object

rsc_type The type of resource—e.g., page

req_mode The mode of the lock—e.g., shared (S)

req_status The status of the lock—e.g., granted

req_spid The SPID owning the lock

Table 10.5 Values for the rsc_type column in syslockinfo

Value Type

1 NULL Resource

2 Database

3 File

4 Index

5 Table

6 Page

7 Key

8 Extent

9 RID

10 Application

10.2 The SQL Server locking protocol 385

Chapter 10

database, or a file is being shrunk, or similar file-related activities. Extent
locks are used by SQL Server to internally manage the allocation and deal-
location of extents. Extents, as discussed in Chapter 4, are of types mixed
and uniform and are 64 KB (eight pages) in size. These locks can often be
seen while you are inserting rows into a table. Index locks can be seen when
an index is being created on a table.

The column req_mode represents the mode of the lock requested. We
have discussed most of the common ones. There are, however, a number of
more obscure modes, and we will list these here for completeness. Numbers
greater than 12 are used for key range locks, discussed later. The req_mode
values are listed in Table 10.6.

Table 10.6 Values for the req_mode column in syslockinfo

Value Lock Mode Code Lock Mode Name

0 NULL Used as a placeholder only

1 Sch-S Schema stability

2 Sch-M Schema modification

3 S Shared

4 U Update

5 X Exclusive

6 IS Intent Shared

7 IU Intent Update

8 IX Intent Exclusive

9 SIU Shared Intent Update

10 SIX Shared Intent Exclusive

11 UIX Update Intent Exclusive

12 BU Bulk

13 RangeS_S Shared Key Range + Shared Resource

14 RangeS_U Shared Key Range + Update Resource

15 RangeI_N Insert Key Range + NULL Resource

16 RangeI_S RangeI_N +S

17 RangeI_U RangeI_N + U

386 10.2 The SQL Server locking protocol

Note: A range lock will lock a range of key values (in an index not the
table). Range locks help to maintain data consistency for transactions.

The schema stability locks are used to control access to schema objects,
such as tables, to avoid problems where multiple connections are referenc-
ing an object that a connection wishes to modify or drop. The SIX, SIU,
and UIX locks are special kinds of intent locks. The bulk lock is used when
bulk loads are being performed into a table—for example, when the data
transformation services BULK INSERT task is used to load data into a
table and the option Table Lock has been set on the task. There are also
some other lock modes used for serializable transactions, which we will dis-
cuss later.

Finally, the req_status column allows just three values, as shown in Table
10.7.

10.2.9.5 Using the system procedure sp_who

The system procedure sp_who can be used to obtain information on the
processes active within SQL Server. It can be entered as a stand-alone state-
ment, in which case it will display information about all users and pro-
cesses. It can take a SQL Server process identifier (SPID) or alternatively a
SQL Server login name as a parameter. Also, the parameter value ACTIVE
can be used, which eliminates user connections that are waiting for input

18 RangeI_X RangeI_N +X

19 RangeX_S RangeI_N + RangeS_S

20 RangeX_U RangeI_N + RangeS_U

21 RangeX_X Exclusive Key Range + Exclusive Resource

Table 10.7 Values for the req_status Column in syslockinfo

Value Status

1 Granted

2 Converting

3 Waiting

Table 10.6 Values for the req_mode column in syslockinfo (continued)

10.2 The SQL Server locking protocol 387

Chapter 10

from the user—that is, with AWAITING COMMAND in the cmd col-
umn. Some example output from the sp_who system stored procedure is
as follows:

SPID ecid status loginame hostname blk dbname cmd

1 0 background sa 0 NULL LAZY WRITER
2 0 sleeping sa 0 NULL LOG WRITER
3 0 background sa 0 master SIGNAL HANDLER
4 0 background sa 0 NULL LOCK MONITOR
5 0 background sa 0 master TASK MANAGER
6 0 sleeping sa 0 NULL CHECKPOINT SLEEP
7 0 background sa 0 master TASK MANAGER
8 0 background sa 0 master TASK MANAGER
9 0 background sa 0 master TASK MANAGER
10 0 background sa 0 master TASK MANAGER
51 0 runnable sa PEGASUS 0 master SELECT
52 0 sleeping dave PEGASUS 0 BankingDB AWAITING COMMAND
53 0 sleeping sue PEGASUS 52 BankingDB UPDATE
54 0 sleeping tony PEGASUS 0 BankingDB AWAITING COMMAND

Note that the process with SPID 53 has a value of 52 in the blk column,
whereas other processes have 0. This is because the process with SPID 53 is
being blocked by another user—in fact, the user with SPID 52.

Note: Microsoft also ships a stored procedure, called sp_who2. This out-
puts more information and in a slightly more readable form than sp_who.

10.2.9.6 The SQL Server Profiler

The SQL Server Profiler will be discussed in detail in Chapter 12. However,
we need to mention it here, since it has capabilities that help us investigate
lock problems. The SQL Server Profiler allows us to trace events graphically
into a table and/or into a file. If the events are captured into a file or table,
they can be analyzed later.

The Locks Event Category contains a number of Locks Event Classes,
and these are shown in Table 10.8.

When an event is traced, the SQL Server Profiler captures various pieces
of information about the event. These pieces of information are specified as
Data Columns in the trace definition. Many data columns always contain
the same information, regardless of the event class being traced. For exam-

388 10.2 The SQL Server locking protocol

ple, the CPU column is the amount of CPU in milliseconds used by the
event. However, some data columns contain values that are specific to a par-
ticular event class. For the Lock Event Class there are some very useful data
columns.

Generally, the Binary Data column contains the resource ID for a lock
event class and the Object ID contains the ID of the object participating in
the lock. Duration tends to represent wait time and the Mode represents
the lock mode.

With a little practice some elements of the resource ID can be recog-
nized and decoded as the lock type. If the SQL Server Profiler is being used
interactively, this is done for you. Selecting the lock event with the mouse
pointer will display the lock type.

10.2.9.7 Using trace flags with DBCC

The SQL Server documentation states that trace flag behavior may or may
not be supported in future releases. It is worth mentioning this here,
though, since trace flags can be used to provide some lock trace informa-
tion. The database consistency checker, more usually referred to as DBCC,
can be used to set trace flags, or they can be set if SQL Server is started at
the command line or via the Startup Parameters in the General tab of
Server Properties in the SQL Server Enterprise Manager. Trace information
can be sent to destinations such as the errorlog (using trace flag 3605) or
the client (using trace flag 3604). Locking information can be generated by

Table 10.8 Lock Event Classes in the SQL Server Profiler

Event Class Description

Lock:Acquired A lock has been taken out on a row, page, etc.

Lock:Cancel A held lock has been cancelled—e.g., by a dead-
lock.

Lock:Deadlock A deadlock has occurred.

Lock:Deadlock Chain The events preceding a deadlock.

Lock:Escalation Lock escalation has occurred—e.g., a row escalated
to a table.

Lock:Released A lock has been taken off a row, page, etc.

Lock:Timeout A lock has timed out.

10.2 The SQL Server locking protocol 389

Chapter 10

setting the trace flags to 1200 or, for deadlock information, 1204 and 1205.
An example trace output is as follows:

DBCC TRACEON (3604,1200)

SELECT SUM(balance) FROM accounts

Process 51 acquiring S lock on KEY: 7:1:2 (9c0206b5c98d) (class bit0 ref1)
result: OK
Process 51 acquiring S lock on KEY: 7:1:1 (ee006c4e98d2) (class bit0 ref1)
result: OK
Process 51 acquiring Schema lock on TAB: 7:965578478 [] (class bit0 ref1)
result: OK
Process 51 acquiring S lock on KEY: 7:3:2 (9302d58cf78b) (class bit0 ref1)
result: OK

:
Process 51 acquiring S lock on PAG: 7:1:41 (class bit0 ref1) result: OK
Process 51 releasing lock on PAG: 7:1:41
Process 51 acquiring S lock on PAG: 7:1:42 (class bit0 ref1) result: OK
Process 51 releasing lock on PAG: 7:1:42
Process 51 acquiring S lock on PAG: 7:1:50 (class bit0 ref1) result: OK
Process 51 releasing lock on PAG: 7:1:50
Process 51 acquiring S lock on PAG: 7:1:91 (class bit0 ref1) result: OK
Process 51 releasing lock on PAG: 7:1:91
Process 51 acquiring S lock on PAG: 7:1:160 (class bit0 ref1) result: OK
Process 51 releasing lock on PAG: 7:1:160
:
Process 51 releasing lock on TAB: 7:965578478 []

The output can be somewhat cryptic, but with a little effort a database
administrator can follow what is happening. In this example, SPID 51 is
performing a table scan and, after some initial reading of the system tables,
is sequentially reading pages. When it wants to read a page, it requests and
acquires a page lock; when it has read a page, it releases the page lock. Note
that page locks refer to page numbers, whereas table locks (we will have
taken out an intent table lock) refer to the object ID of the table. As we
have seen, the OBJECT_NAME() function can be used to find the table
name, as follows:

SELECT OBJECT_NAME (965578478)

accounts

390 10.2 The SQL Server locking protocol

Whether tables or pages are being referenced, the number preceding the
object ID or page number is the database ID. The DB_NAME() function
can be used to find the database name, as follows:

SELECT DB_NAME(7)

BankingDB

To find which object a page belongs, use the DBCC PAGE statement, as
follows:

DBCC TRACEON (3604)
DBCC PAGE (7,1,50,0)

PAGE: (1:50)

BUFFER:

BUF @0x10EB7FC0

bpage = 0x1BA2E000 bhash = 0x00000000 bpageno = (1:50)
bdbid = 7 breferences = 1 bstat = 0x9
bspin = 0 bnext = 0x00000000

PAGE HEADER:

Page @0x1BA2E000

m_pageId = (1:50) m_headerVersion = 1 m_type = 1
m_typeFlagBits = 0x0 m_level = 0 m_flagBits = 0x8000
m_objId = 965578478 m_indexId = 0 m_prevPage = (0:0)
m_nextPage = (0:0) pminlen = 424 m_slotCnt = 16
m_freeCnt = 1232 m_freeData = 6928 m_reservedCnt = 0
m_lsn = (1274:16:151) m_xactReserved = 0 m_xdesId = (0:0)
m_ghostRecCnt = 0 m_tornBits = 805306369

Allocation Status

GAM (1:2) = ALLOCATED SGAM (1:3) = NOT ALLOCATED
PFS (1:1) = 0x63 MIXED_EXT ALLOCATED 95_PCT_FULL DIFF (1:6) =
CHANGED
ML (1:7) = NOT MIN_LOGGED

10.2 The SQL Server locking protocol 391

Chapter 10

The field containing the object ID is in bold type. Note also that to the
right of that field is the index ID of the index to which the page belongs, if
it is an index page.

The DBCC PAGE statement is specifying, in order, the database ID of
7, the file ID of 1, the page number 50, and 0 to indicate that we only need
to see the header, not the data.

This trace flag returns the type of locks participating in a deadlock and
the current commands involved. I usually set this trace flag with trace flag
3605 (log to errorlog). Here is some example output when a deadlock
occurrs:

10:39:49.10 spid4 Deadlock encountered Printing deadlock
information

10:39:49.10 spid4 Owner:0x1b69f380 Mode: X Flg:0x0 Ref:0
Life:02000000 SPID:55
ECID:0

10:39:49.10 spid4 SPID: 55 ECID: 0 Statement Type: UPDATE Line #: 1
10:39:49.10 spid4

10:39:49.10 spid4 Wait-for graph

10:39:49.10 spid4

10:39:49.10 spid4 Node:1

10:39:49.10 spid4 RID: 7:1:537:14 CleanCnt:1 Mode: X Flags: 0x2

10:39:49.10 spid4 Grant List::

10:39:49.11 spid4 Input Buf: UPDATE CUSTOMERS SET customer_lname
= 'Phillips'
 WHERE customer_no = 1000

10:39:49.11 spid4 Requested By:

10:39:49.11 spid4 ResType:LockOwner Stype:'OR' Mode: U SPID:53
ECID:0

Ec:(0x1b9e13e0)
Value:0x1b6a3300 Cost:(0/A0)

10:39:49.11 spid4

10:39:49.11 spid4 Node:2

10:39:49.11 spid4 RID: 7:1:338:9 CleanCnt:1 Mode: X Flags: 0x2

392 10.2 The SQL Server locking protocol

10:39:49.11 spid4 Grant List::

10:39:49.11 spid4 Owner:0x1b69f2e0 Mode: X Flg:0x0 Ref:0
Life:02000000
SPID:53 ECID:0

10:39:49.11 spid4 SPID: 53 ECID: 0 Statement Type: UPDATE Line #: 1

10:39:49.11 spid4 Input Buf: UPDATE ACCOUNTS SET balance = 99
 WHERE account_no = 2000

10:39:49.11 spid4 Requested By:

10:39:49.11 spid4 ResType:LockOwner Stype:'OR' Mode: U SPID:55
ECID:0

Ec:(0x1c1cd3e0)
Value:0x1b6a33c0 Cost:(0/98)

10:39:49.11 spid4 Victim Resource Owner:

10:39:49.11 spid4 ResType:LockOwner Stype:'OR' Mode: U SPID:55 ECID:0

Ec:(0x1c1cd3e0) Value:0x1b6a33c0 Cost:(0/98)

I have removed the data from the date/time to fit more information
onto the page. We can see that a deadlock was encountered, and by examin-
ing the output we can see the following:

� SPID 53 and SPID 55 are involved in a deadlock.

� Resources involved are RID: 7:1:537:14 and RID: 7:1:338:9.

� The last statements sent by the participating connections were:

'UPDATE CUSTOMERS SET customer_lname = 'Phillips'

 WHERE customer_no = 1000 '
'UPDATE ACCOUNTS SET balance = 99 WHERE account_no =
2000'

� SPID 55 was chosen as the deadlock victim.

� The locks involved were update (U) locks.

10.3 SQL Server locking in action 393

Chapter 10

This trace flag returns more detailed information about the deadlock.
You will need to set trace flag 1204 to get information out of trace flag
1205, but, to be honest, the extra information is probably only likely to be
useful (and understandable) by Microsoft Support.

10.3 SQL Server locking in action

Now that we understand how SQL Server uses its locking protocol, we can
look at some examples. Our examples will all follow the same format, that
of the T graph. Some people believe it is called a T graph because it looks
like a T; others believe it is because the vertical axis represents time! What-
ever the reason, it is a useful method for representing the interaction of
locks in a multiuser scenario. In order to keep the output as clear as possi-
ble, the actual results of the SELECT statements are not shown.

Our examples will use the Accounts table in the BankingDB database.
In these examples, all indexes have been removed from this table unless oth-
erwise specified. Also, until we change it, the default locking protocol will
be used—that is, transaction isolation level read committed:

Mike Katy

SELECT * FROM accounts SELECT * FROM accounts
WHERE account_no = 1000 WHERE account_no = 2000

*** OK *** *** OK ***

In the above example, Mike retrieves all the rows in the Accounts table.
Katy attempts to concurrently retrieve all the rows in the Accounts table
and is successful. This is because Mike places and releases shared locks on
the rows in the Accounts table as he scans through it. Katy also attempts to
place shared locks on the rows in the Accounts table, and, since shared locks
are compatible, her attempt is successful.

In the following example, Mike updates all the rows in the Accounts
table. He performs this operation within a transaction, which he does not
end. Katy attempts to retrieve rows from the Accounts table:

Mike Katy

BEGIN TRANSACTION

394 10.3 SQL Server locking in action

UPDATE accounts SET balance = 0
 WHERE account_no = 1000

 SELECT * FROM accounts
 WHERE account_no = 2000

*** OK ***

 *** wait ***

In this example, Mike is updating a row in the Accounts table, and so
SQL Server takes out an exclusive (X) row lock. Katy’s SELECT statement
needs to search the table looking for rows that match her criteria
(account_no = 2000). SQL Server decides that it is efficient to search using
page locks. This is not unreasonable, since it knows it will be retrieving every
row on every page. This is because, with no indexes present, a table scan is
performed, and every page must be retrieved from the Accounts table.

As Katy scans through the table acquiring and releasing shared (S) page
locks, she reaches the page on which Mike has taken an exclusive (X) lock on
his row. As SQL Server will have also placed an Exclusive Intent (IX) lock on
the page in which his row resides, Katy’s shared (S) page lock will be blocked.
A shared (S) lock is not compatible with an exclusive intent (IX) lock.

This example serves to illustrate a very important point: Transactions
should be kept as short as possible. If they are not, then they could block
another transaction for an unacceptable length of time.

If we were to issue an sp_lock at this point, we would see the following
fragment of output relating to Mike and Katy’s connections:

SPID dbid ObjId IndId Type Resource Mode Status

53 7 965578478 0 TAB IS GRANT
53 7 965578478 0 PAG 1:348 S WAIT
54 7 965578478 0 RID 1:348:14 X GRANT
54 7 965578478 0 PAG 1:348 IX GRANT
54 7 965578478 0 TAB IX GRANT

Her shared lock is blocked on the page. An sp_who issued at this point
would show the following columns (with some deleted):

10.3 SQL Server locking in action 395

Chapter 10

SPID status loginame hostname blk dbname

54 sleeping mike PEGASUS 0 BankingDB
53 sleeping katy PEGASUS 54 BankingDB

In the following example, Mike again updates all the rows in the
Accounts table. Again, he performs this operation within a transaction,
which he does not end. This time Katy attempts to delete the rows in the
Accounts table:

Mike Katy

BEGIN TRANSACTION

UPDATE accounts SET balance = 0 BEGIN TRANSACTION
WHERE account_no = 1000

 DELETE FROM accounts
 WHERE account_no = 2000

*** OK ***

 *** wait ***

In this example, Katy attempts to place an update (U) lock on the rows
in the Accounts table while searching for a row that meets her criteria for
deletion. Since there are no indexes on the table, every row must be
checked. Eventually Katy attempts to place an update (U) lock on the row
Mike has just updated, which holds an exclusive (X) lock. An exclusive (X)
lock is incompatible with all other locks, so Katy is blocked. If we were to
issue an sp_lock at this point, we would see the following fragment of out-
put relating to Mike and Katy’s connections:

Spid dbid ObjId IndId Type Resource Mode Status

53 7 965578478 0 RID 1:348:14 U WAIT
53 7 965578478 0 PAG 1:348 IU GRANT
53 7 965578478 0 TAB IX GRANT
54 7 965578478 0 TAB IX GRANT
54 7 965578478 0 RID 1:348:14 X GRANT
54 7 965578478 0 PAG 1:348 IX GRANT

396 10.3 SQL Server locking in action

We can see Katy’s blocked update (U) lock on row 1:348:14. This exam-
ple is similar to the previous example with the exception that Katy is search-
ing with update (U) locks on rows rather than shared (S) locks on pages.

In the following example Mike will again update rows in the Accounts
table and Katy will retrieve them. This is the same as the second example
except that now Katy will issue her SELECT statement first. We will use
BEGIN TRANSACTION for both users:

Mike Katy

 BEGIN TRANSACTION

 SELECT * FROM accounts

 WHERE
account_no = 2000

BEGIN TRANSACTION

UPDATE accounts SET balance = 0

 WHERE account_no = 1000

 *** OK ***

*** OK ***

In this example, Katy attempts to place shared locks in the Accounts
table. She is successful, since Mike has not issued his update yet. Mike then
issues his update, which is also successful. Mike’s exclusive lock is not
blocked by Katy’s shared locks, because SQL Server will have released the
shared locks when the SELECT statement completed. Katy’s locks were
gone before Mike issued his update. The fact that Katy issues her SELECT
statement within a transaction is irrelevant.

Because SQL Server runs at the default transaction isolation level of
READ COMMITTED, shared locks are not held until the end of the
transaction but are released as soon as the row or page is read. This increases
concurrency (and therefore performance), but this does mean that the read
is not guaranteed to be repeatable, as we shall see shortly.

Let us now create some indexes on the Accounts table:

CREATE UNIQUE NONCLUSTERED INDEX NCI_AccountNo
 ON accounts (account_no)

Mike will now update rows in the Accounts table while Katy attempts to
delete them. We will use a WHERE clause in order to choose different
rows:

10.3 SQL Server locking in action 397

Chapter 10

Mike Katy

BEGIN TRANSACTION

UPDATE accounts SET balance = 0
WHERE account_no = 1000 BEGIN TRANSACTION

 DELETE FROM accounts
 WHERE account_no = 2000

*** OK ***

 *** OK ***

Both users succeeded. This is because indexed access can now be used,
and, consequently, row-level locks can be taken out just on the resources
required. If we were to issue an sp_lock at this point, we would see the fol-
lowing fragment of output:

Spid dbid ObjId IndId Type Resource Mode Status

53 7 965578478 0 RID 1:537:14 X GRANT
53 7 965578478 2 KEY (ea003d68f923) X GRANT
53 7 965578478 0 PAG 1:537 IX GRANT
53 7 965578478 2 PAG 1:2612 IX GRANT
53 7 965578478 0 TAB IX GRANT
54 7 965578478 0 TAB IX GRANT
54 7 965578478 0 RID 1:348:14 X GRANT
54 7 965578478 0 PAG 1:348 IX GRANT

We can see that all locks have been granted. Katy (SPID 53) holds exclu-
sive locks on a row and an index entry. This is because her delete will not
only remove the row but will also remove the index entry. Mike holds an
exclusive lock on the row only, since he will not change the index entry in
any way—he is updating the balance column, not the account_no column.

Suppose Mike and Katy insert rows into the Accounts table. Let us
assume that there are no indexes on the Accounts table:

Mike Katy

BEGIN TRANSACTION

INSERT INTO accounts VALUES
(112501, 2000, 1000, 1510.77,

398 10.4 Uncommitted data, non-repeatable reads, phantoms, and more

'some notes')

 BEGIN TRANSACTION

 INSERT INTO accounts VALUES
 (112502, 2012, 987, 123.78,
 'some notes')

*** OK ***

 *** OK ***

There is no problem. Because SQL Server supports row-level locking,
there is generally no blocking on insert. The same is true if indexes are
present on the table, since the individual index entries will be locked with
KEY locks.

10.4 Uncommitted data, non-repeatable reads,
phantoms, and more

With our knowledge of locking protocols we can now investigate how SQL
Server deals with the reading of uncommitted data, non-repeatable reads,
and phantoms.

10.4.1 Reading uncommitted data

Figure 10.1 illustrated the problems with reading uncommitted data. As
should already be clear, SQL Server forbids this by virtue of the fact that
any row that has been changed cannot be read by another user, since an
exclusive lock will prevent the row from being retrieved until the write
transaction ends.

SQL Server, however, allows the default behavior to be overridden. A
query is allowed to read uncommitted data with the use of the READUN-
COMMITTED keyword, introduced earlier in this chapter. For example,
the following SELECT statement would read the row from the Accounts
table regardless of whether another transaction had a row locked with an
exclusive lock:

SELECT balance FROM accounts WITH (READUNCOMMITTED)
 WHERE account_no = 15000

10.4 Uncommitted data, non-repeatable reads, phantoms, and more 399

Chapter 10

The lock hint is recommended rather than NOLOCK, which is
retained for backward compatibility.

Suppose Mike updates a row in the Accounts table. He performs this
operation within a transaction, which he does not end. Katy attempts to
retrieve rows from the titles table:

Mike Katy

BEGIN TRANSACTION

UPDATE accounts SET balance = 500
 WHERE account_no = 5000

 SELECT balance FROM accounts

 WITH (READUNCOMMITTED)
 WHERE account_no = 5000

*** OK ***

 *** OK ***

In this example, Katy does not attempt to place a shared lock, and she
can read the row that Mike has updated. She will read a balance of 500.
Mike may well ultimately choose to roll back his change, leaving Katy with
incorrect balance information.

This behavior is the same as if the connection had set the transaction
isolation level to READ UNCOMMITTED. However, the behavior would
apply to all the transactions executed on that connection until another SET
TRANSACTION changed the isolation level, or the statement overrode
the isolation level for itself with a lock hint.

10.4.2 Non-repeatable reads

In the case of a non-repeatable read, a transaction is allowed to read a data
item on more than one occasion and retrieve different values each time.
This is shown in Figure 10.16. By default, SQL Server allows non-repeat-
able reads. It is sometimes desirable, however, to guarantee repeatable
reads—that is, each read of the same data item while in the same transac-
tion returns the same value. The means of guaranteeing repeatable reads in
SQL Server is by the use of the REPEATABLEREAD keyword.

400 10.4 Uncommitted data, non-repeatable reads, phantoms, and more

If the REPEATABLEREAD keyword is used, the page is read the first
time a shared lock is taken out as usual. This then remains until the end
of the transaction. This blocks any other transaction from changing the
data item:

Mike Katy

BEGIN TRANSACTION

SELECT balance FROM accounts WITH
(REPEATABLEREAD)

 WHERE account_no = 5000

*** OK ***

BEGIN TRANSACTION

UPDATE accounts SET balance =

50.00

 WHERE account_no = 5000

*** wait ***

SELECT balance FROM accounts

 WITH (REPEATABLEREAD)

 WHERE account_no = 5000

*** OK ***

Figure 10.16
Non-repeatable

reads

10.4 Uncommitted data, non-repeatable reads, phantoms, and more 401

Chapter 10

Now Mike is forced to wait. Katy’s shared locks block Mike’s exclusive
lock, and when Katy repeats her read she will receive the same value—
hence, the use of the REPEATABLEREAD keyword has provided repeat-
able reads. Again, this is at the expense of concurrency.

Setting the isolation level to REPEATABLE READ (or SERIALIZ-
ABLE) will also provide repeatable reads:

Mike Katy

SET TRANSACTION

 ISOLATION LEVEL REPEATABLE

READ

BEGIN TRANSACTION

SELECT balance FROM accounts

 WHERE account_no = 5000

 *** OK ***

BEGIN TRANSACTION

UPDATE accounts SET balance =

50.00

 WHERE account_no = 5000

*** wait ***

SELECT balance FROM accounts

 WHERE account_no = 5000

 *** OK ***

Again, Mike is forced to wait. Katy’s shared locks block Mike’s exclusive
lock, and when Katy repeats her read she will receive the same value. The
use of the REPEATABLEREAD lock hint is not required, since the set
transaction isolation level repeatable read statement has provided repeatable
reads.

10.4.3 Phantoms

The phantom problem was illustrated in Figure 10.2. By default, SQL
Server does not forbid phantoms, but the use of the SERIALIZABLE hint
will prevent them, as the following examples show:

Mike Katy

BEGIN TRANSACTION

402 10.4 Uncommitted data, non-repeatable reads, phantoms, and more

SELECT SUM(balance) FROM accounts
 124961532.6600

*** OK ***

INSERT INTO accounts VALUES
 (112502, 2012, 987, 123.78,
'some notes')

*** OK ***

SELECT SUM(balance) FROM accounts
 1249616510.4400

*** OK ***

In the previous example, phantoms are allowed to occur. The two sums
of the same list of values, give different results. In the following example,
Katy’s transaction is blocked, and the phantom phenomenon is not allowed
to occur.

Mike Katy

BEGIN TRANSACTION

SELECT SUM(balance)

FROM accounts WITH

(SERIALIZABLE)

 124961532.6600

*** OK ***

INSERT INTO accounts VALUES

 (112502, 2012, 987, 123.78,

'some notes')

*** wait ***

Mike Katy

SELECT SUM(balance)
FROM accounts WITH
(SERIALIZABLE)
 124961532.6600

*** OK ***

The use of the SERIALIZABLE keyword is not required if the set trans-
action isolation level serializable is used:

10.4 Uncommitted data, non-repeatable reads, phantoms, and more 403

Chapter 10

Mike Katy

SET TRANSACTION
 ISOLATION LEVEL SERIALIZABLE

BEGIN TRANSACTION
SELECT SUM(balance) FROM accounts
 124961532.6600
*** OK ***

INSERT INTO accounts VALUES
 (112502, 2012, 987, 123.78,
'some notes')
*** wait ***

SELECT SUM(balance) FROM accounts
 124961532.6600
*** OK ***

Note that the SERIALIZABLE lock hint is recommended rather than
HOLDLOCK, which is retained for backward compatibility.

To enforce serializability the lock manager must use some special tech-
niques. In a sense, if we consider our previous example, the lock manager
must lock something that does not exist! It cannot lock the row that Katy
inserts, because it does not exist at the time of the first SELECT operation.
Now SQL Server could lock the whole table if it wanted to, and, if there
were no relevant indexes on the table, this is possibly what it might do. This
would certainly stop phantoms.

However, if there are indexes on the table, then the SQL Server lock
manager uses a technique known as key-range locking. A key-range lock
works by covering the index rows and the ranges between those index rows.
Any row insertion, update, or deletion within the range by another connec-
tion that requires a modification to the index causes the second connection
to wait.

For example, suppose we execute the following query against the
Branches table:

SELECT branch_no, branch_name FROM branches

WHERE branch_name BETWEEN 'Ealing' AND 'Exton'

We find the following branch names:

404 10.4 Uncommitted data, non-repeatable reads, phantoms, and more

branch_no branch_name

1081 Ealing

1021 Eden

1031 Edmonton

1051 Elton

1061 Epsom

1071 Eton

1041 Exton

We may want to ensure that we cannot insert a new branch between
executions of this query. To do this we run the statement with the SERIAL-
IZABLE lock hint:

BEGIN TRANSACTION

SELECT branch_no, branch_name FROM branches WITH
(SERIALIZABLE)

 WHERE branch_name BETWEEN 'Ealing' AND 'Exton' : :

If we investigate the locks acquired during this transaction, we find the
following (simplified) output from sp_lock:

SPID dbid ObjId IndId Type Resource ModeStatus

57 7 0 0 DB S GRANT

57 7 981578535 2 KEY (680236ce107b) RangeS-S GRANT

57 7 981578535 0 PAG 1:102 IS GRANT

57 7 981578535 0 PAG 1:103 IS GRANT

57 7 981578535 0 PAG 1:100 IS GRANT

57 7 981578535 2 KEY (b8020849fa4b) RangeS-S GRANT

57 7 981578535 2 KEY (b802f9924eb9) RangeS-S GRANT

57 7 981578535 2 KEY (b702b7e93c9b) RangeS-S GRANT

57 7 981578535 2 KEY (b002a45d0732) RangeS-S GRANT

57 7 981578535 2 KEY (b802194c7ac6) RangeS-S GRANT

57 7 981578535 2 KEY (6c028abdf769) RangeS-S GRANT

There are eight key locks acquired, but if we look at the mode we can see
RangeS-S. This tells us that these are key-range locks. Basically, a key-range
lock covers a range of values starting with the key before the key that is
locked.

10.4 Uncommitted data, non-repeatable reads, phantoms, and more 405

Chapter 10

In our example, the first branch name in our range is Ealing. The branch
name preceding the start of our range is Ducklington. The key-range lock
on the index entry Ealing would cover Ducklington to Ealing and this
would then prevent a branch being inserted with the name Eaglesfield or
Duddington, because those key values lie in between Ducklington and Eal-
ing. In theory this is too restrictive, since these are not in our range. This
said, key-range locking is pretty good and a lot better than locking the
whole page or table; after all, we can successfully insert the local branch in
Duchally!

Similarly, the branch name following the end of our range is Fairford.
We would not be able to insert branches named Eyam or Failsworth, but we
would be able to insert Fairlight.

Note: In fact, we would be able to insert branches named Ducklington or
Fairford but, of course, only if the index on branch_name was not unique.

The number of RangeS-S locks held is N + 1, where N is the number of
rows that satisfy the query. In our case, seven rows satisfy the query, so eight
RangeS-S locks are held.

The name of the key-range mode is in two parts. The RangeS part repre-
sents the lock mode protecting the range between two consecutive index
entries, and the part after the “-” represents the lock mode protecting the
index entry itself. So, RangeS-S means the range is locked in shared mode
and the index entry itself is locked in shared mode. Another key range
mode is RangeS-U. The difference between RangeS-S and RangeS-U is
similar to the difference between shared (S) and update (U) locks, which
has been discussed previously. RangeX-X is used when a key in a range is
updated. Finally, RangeI-N is used as a probe to test ranges before inserting
a key into an index.

10.4.4 More modified locking behavior

While showing examples of how the lock hints and transaction isolation
levels can modify the default locking behavior, it is also worth looking at
examples of some of the other lock hints introduced earlier in this chapter.
An interesting lock hint is READPAST. Consider the case when we have no
index on the Accounts table:

Mike Katy

406 10.5 Application resource locks

BEGIN TRANSACTION

UPDATE accounts SET balance = 0
 WHERE account_no = 1000

SELECT * FROM accounts
 WHERE account_no = 2000

*** OK ***

*** wait ***

This was our second example. Katy is forced to wait because her sequen-
tial table scan hits Mike’s locked row and cannot get past it. With the
READPAST lock hint Katy will skip the locked row and continue searching:

Mike Katy

BEGIN TRANSACTION

UPDATE accounts SET balance = 0
 WHERE account_no = 1000

SELECT * FROM accounts WITH
(READPAST)
 WHERE account_no = 2000

*** OK ***

*** OK ***

10.5 Application resource locks

SQL Server exposes an interface to its lock manager with the system stored
procedure sp_getapplock and sp_releaseapplock. Suppose we execute
sp_getapplock, as follows:

DECLARE @resultcode int
EXEC @resultcode = sp_getapplock @Resource = 'Store 5'

, @LockMode = 'Exclusive'

, @LockOwner = 'Session'

10.6 A summary of lock compatibility 407

Chapter 10

We are taking out an exclusive lock on a resource named Store 5.
Although this resource may have no relationship to objects in the SQL
Server database, we are able to use the SQL Server 2000 lock manager to
manage our application lock protocol. Any other connection attempting to
take out a lock on a resource named Store 5 will be forced to wait.

An application resource lock may be acquired with an owner of Transac-
tion (the default) or Session. If the owner is Transaction the application
resource lock behaves like any other lock acquired in an explicit transac-
tion—it will disappear when the transaction completes with a commit or
rollback. However, if the owner is Session, the application resource lock will
be held until it is explicitly released with the system stored procedure
sp_releaseapplock. For example:

DECLARE @resultcode int
EXEC @resultcode = sp_releaseapplock @Resource = 'Store 5'

, @LockOwner = 'Session'

This is very useful, since it means that an application resource lock may
be acquired for a period of time that is independent of the individual SQL
Server transactions that are being performed on the underlying data. In our
example, we can take out an application resource lock on a resource known
as Store 5. This stops any other user from working on Store 5. However,
our inserts, updates, and deletes against the database data that represent
Store 5 can be performed in very short transactions, so normal SQL Server
resource locks do not become bottlenecks.

10.6 A summary of lock compatibility

We have seen a number of scenarios involving locks and it is worth now
summarizing the compatibility between different locks. Locks can be
Shared (S), Exclusive (X), or Update (U). They can also be intent shared
(IS), Intent Exclusive (IX), or Intent Update (IU). These interact as shown
in Table 10.9.

We mentioned schema stability locks earlier in this chapter. They too
have a compatibility. The schema stability lock (Sch-S) is compatible with
all lock modes except the schema modification lock (Sch-M). The schema
modification lock (Sch-M) is incompatible with all lock modes. The bulk
update (BU) lock is compatible only with schema stability and other bulk
update locks. This is how parallel BCP loads are possible.

408 10.6 A summary of lock compatibility

In a multiuser system that has not been designed with concurrency in
mind, lock conflict is often the cause of performance degradation, and the
effects of this are second only to the effects of bad query and index design.

Table 10.9 Lock Compatibility

Mode of Requested Lock Mode of Currently Granted Lock

IS S U IX SIX X

Intent Shared (IS)

Shared (S)

Update (U)

Intent Exclusive (IX)

Shared with Intent Exclusive
(SIX)

Exclusive (X)

409

11
Architectural Performance Options
and Choices

Some SQL Server database choices are architectural ones. A database architec-
tural choice is essentially an additional option, as well as the basic SQL Server
2005 database engine. For example, a decision to use replication to either dis-
tribute or ensure failover capability is a software architectural choice.

It’s not always the case, but most often, the overall objective of using add
on options, such as replication, is all about availability and scalability. Mak-
ing a database more available means that your database is available 365 days
a year, 24 hours a day—that’s the most extreme scenario. Not all databases
require 100% availability. Any time a database is not available is known as
downtime. Downtime is where nothing and nobody can talk to your data-
base—apart from the database administrator fixing the problem that caused
the database to go down in the first place. Making a database more scalable
means you want to allow a lot more users to talk to your database at the
same time. This is known as concurrency. Making a database more scalable
basically lets you service a lot more potential customers. In the age of the
Internet, and its global population, both availability and scalability are very
important.

The process of performance tuning all of these different types of archi-
tectures is really a little too detailed for a book such as this one. However,
simple provision of availability and scalability, by use of exotic add-on
architectural components, is a performance tuning method. This is because
service capacity is improved. So, it would make little sense to exclude topics
such as replication, partitioning, and standby from this book.

410 11.2 Striping and mirroring

11.1 The Management Studio and the .NET
Framework

One of the most significant changes helping improve performance in SQL
Server 2005 is a development issue rather than one of availability and scal-
ability. This development improvement is the inclusion of all tools into the
SQL Server Management Studio, plus the capabilities of writing and exe-
cuting code in any programming language, using the .NET Framework.
Essentially, developers can build databases and software much faster. Also,
using the .NET Framework allows building of any kind of code, be it
Visual Basic to allow for rapid coding and testing, or C programming to
allow for ultra-fast execution times.

Note: Short descriptions of the Management Studio and the .NET
Framework can be found in Chapter 1. Going into details of each gets
more into database administration and programming, both of which are
related to performance tuning, but moreover are each topics worthy of an
entire book each.

11.2 Striping and mirroring

Before discussing topics such as standby mirrors and partitioning to stripe
files into separate chunks, it is necessary to note the existence of striping
and mirroring capabilities outside of the scope of SQL Server 2005.

11.2.1 RAID arrays

As seen in Chapter 9, there is something called RAID array. A RAID array
is a bunch of disks, all grouped together, used as a single virtual hardware
disk storage subsystem. All of the disk access is controlled by RAID hard-
ware or software (or both hardware and software). Some really expensive
RAID arrays are completely independent of the operating system, with
their own built-in hardware control system and on-board memory (RAM).
RAID arrays allow striping and mirroring.

Some operating systems will allow striping and mirroring within the
disk subsystem, with everything controlled by the operating system. This
type of software can also be a middleware type of application, residing
between the operating system and the underlying hardware.

11.3 Workflow management 411

Chapter 11

It is common for various relational database engines to provide inherent
striping and mirroring from within the database. This includes SQL Server
2005. How this functionality is implemented is not dependent on a data-
base vendor but more likely dependent on skills within an organization and
preference.

11.2.2 Partitioning and Parallel Processing

Partitioning allows you to split data at the table level. So, instead of break-
ing up information by striping at the disk level, using something like a
RAID array, you can split data logically. What is the result of splitting data
logically? What it really means is that you can break up tables based on the
data content of those tables. In a really simplistic form, you could partition
a table between current rows, and archived rows. The result would be two
partitions—one your OLTP data, the other your data warehouse analytical
type data. Your online applications could run much faster because they only
need to read the OLTP partition to answer customer queries over the Inter-
net. And obviously, when running analytical reports, your customers will
not be disrupted by huge read access requirements for monstrous analytical
reporting techniques such as cubes.

The other beneficial side effect of partitioning is when combining it
with parallel processing. A parallel processing capable platform will allow
execution of more than one thing at the same time. Technically, this can
increase processing times significantly. When combining parallel processing
with partitioning, and executing the same query against multiple partitions
in parallel, the performance benefits can be enormous.

Note: Partitioning is covered in more detail in Chapter 4. In Chapter 5
there is information of creation of parallel processing capable indexes.
Chapter 9 contains a description of parallel queries.

11.3 Workflow management

Workflow management is the way in which tasks of work flow across an
organization. With respect to an SQL Server database environment, this
involves the passing of messages across a network, both within and outside
of a company. The result is a computer system coordinating the flow of
information between people and computers. Also included is tracking

412 11.4 Analysis Services and data warehousing

information, ways to prioritize messages and tasks, scheduling of automated
tasks, reporting functions, and so on.

Computerized workflow management is software which manages and
coordinates workflow between people’s computers, using predetermined pro-
cedures, presenting each person in a team with all tasks and responsibilities.

The benefit to a business of using workflow management software, is
increased flexibility with the ability to assess differing scenarios. So, in addi-
tion to effective management of people’s time, is the ability to plan for vary-
ing scenarios, or pick the best scenario from a set of alternatives. The result
is a smoother running business, more efficient use of time, and more effec-
tive and better computer resources—this includes an SQL Server 2005
database. Workflow management software is a part of SQL Server 2005 in
the form of Notification Services and the Service Broker.

The SQL Server 2005 Service Broker will permit both internal and
external processes, to send information from within Transact-SQL. That
information is placed onto streams, much like a kind of full accessible pipe-
line, which computers can access by simply writing to and reading from the
stream of information. SQL Server 2005 can queue messages onto a queue.
That queue can be passed on to other SQL Server instances on a local or a
remote server.

Notification Services allows for building of applications which can cre-
ate and send notifications out to the user population. Those notifications
can be personalized for any specific person, sent at specified times and auto-
matically scheduled, to different types of targets. Those targets can include
computers, cell phones, digital assistants, online messenger tools, or even an
email account. Users who receive the messages subscribe to a specific notifi-
cation service in order to receive the messages being sent on the message
queue stream. Messages can even be sent to indicate some kind of event has
occurred, such as sending an alert to a database administrator if a database
is having problems.

11.4 Analysis Services and data warehousing

Analysis Services provides OLAP (Online Analytical Processing) and data
mining. Data mining allows for drill-down and search into sources of data,
allowing for searches on both specific items and patterns. OLAP, on the
other hand, allows you to build metadata structures, in addition to tables,
which can be read by queries against the database. This works by usually
creating what is called a materialized view. A view contains a query and

11.4 Analysis Services and data warehousing 413

Chapter 11

always reads data in underlying tables. A materialized view creates a copy of
data in underlying tables, such that something called query rewrite can read
data from the materialized view, and not the underlying tables. That’s how
it all works. Also consider that most OLAP type queries contain some kind
of aggregation of one form or another. So, it is highly likely that a material-
ized view has far fewer rows than the underlying tables. Additionally, if
there is more than one underlying table, a query would normally read a
join—whereas a materialized view is effectively a single table (object), and
no costly join operations are required.

This book does not need to go into the details of SQL Server 2005
Analysis Services, or the theory behind OLAP and how all the various que-
ries are built. It does, however, make perfect sense to state that when build-
ing analytical or data warehouse reports consider Analysis Services. Do not
attempt to write horribly complex and slow running queries yourself, run-
ning against normalized OLTP relational tables. Use Analysis Services to
build that functionality.

11.4.1 Data modeling techniques in SQL Server 2005

The UDM or Unified Dimensional Model is new to SQL Server 2005, and
more specifically to Analysis Services. The UDM implements a form of the
dimensional data model.

Note: The dimensional model for data warehouses is described in Chapter 2.

Analysis Services graphically presents an entire suite of processes, which
can be used to extract data from multiple heterogeneous data sources, store
it in materialized form, and build queries and reports from that material-
ized data.

Once again, there is no need to go into the nitty-gritty details of Analy-
sis Service because that would be a book in itself. However, use of Analysis
Services, the built-in graphical tools, and the UDM presents end-users with
more business-oriented tools and functionality—as compared to the under-
lying tables in what could be multiple relational databases, even from mul-
tiple vendors.

The result is easy integration and analysis of data. It provides something
that end-users understand (those requiring analytical reporting). It doesn’t
need an army of database administrators and programmers to produce the
data that management is really looking for.

414 11.5 Distribution and replication

11.5 Distribution and replication

Replication is a process of splitting data out to multiple databases, usually
distributed out to multiple computers. Those computers can also be geo-
graphically dispersed, such as across an entire country. The separate sites
can help performance of the database as a whole, because each replicated
database is servicing a fraction of the user population. The result is less
competition for user access at each site. Additionally, some data can be spe-
cific to each geographical site (you don’t have to replicate everything).

In the extreme all data is replicated from all databases to all other data-
bases—and it’s done in real-time. The result is that all databases in a distrib-
uted network have all the same data copied to all databases, regardless of
which database changes originate from.

There are two different types of replication. A simple model is master to
slave replication as shown in Figure 11.1.

In master to slave replication there is a single master database. All other
databases in the distribution network are slave databases. The master data-
base is the only database which can be changed by users and applications.
All changes are replicated (copied) out to the slave databases. The result is
that users connected to a slave database get faster access to the database
because of less competition (fewer users connected to each individual data-
base). Also, users connected to a slave database don’t have to talk to a master
database on the other side of the country, across a long network cable.

Figure 11.1
Master to slave

replication

11.5 Distribution and replication 415

Chapter 11

Note: A slave database may not receive and update changes in real-time.
Replication can be performed in real-time. Replication can be performed
periodically depending on the needs of the users, and the limitations of the
hardware.

A far more complex implementation of replication is to set up master to
master replication as shown in Figure 11.2.

In master to master replication all databases in the distributed network
can accept changes from users and applications. Also, all databases can rep-
licate changes out to all other databases in real-time (or periodically). The
resource requirements for master to master replication are intense. In real-
ity, it is likely that the best design is a mixture of master and slave databases
across a distributed network, depending on requirements in different geo-
graphical locations.

That’s the basics of replication. The downside of replication is that
implementation is usually difficult because it is highly complex and
detailed. One of the most interesting problems caused by replication is that
it is often inappropriately used, such as for a failover database or even for
backups. Replication is simply too complicated to use for tasks which can
be resolved by more appropriate implementations.

There are other methods of implementing replication, without using
replication itself. These methods are not recommended as they may require
some serious programming skills. However, in some cases more innovative
methods can function better than database vendor-provided replication

Figure 11.2
Master to master

replication

416 11.5 Distribution and replication

tool sets. SQL Server 2005 Notification Services and the Service Broker
could potentially be used to pass database changes onto a queue—and
down to all other replicated databases as a stream. A picture of this is
shown in Figure 11.3.

Materialized views are also a possibility but for master to slave replica-
tion only. This is because materialized views are created using underlying
tables and cannot be used to replicate changes back into tables. This is not
the case for all database vendors but the downside would be much more
complexity. Of course, replication can be manually coded using something
like Transact-SQL and triggers, but that might be just too complex to even
consider.

The objective of SQL Server 2005 replication is to raise data availability
by distributing multiple copies of data across multiple database servers.
Users in different locations can then access data from their local database.
In other words, the load for reading the database in queries is spread out.
SQL Server 2005 replication functions by allowing a database to be
declared as being a publisher or a subscriber. A publishing database pro-
duces new data (master database), and a subscriber subscribes to published
data (slave database). The Replication Monitor tool is built into the Man-
agement Studio making implementation, maintenance, and monitoring of
replication much easier than it has been in the past.

From a purely performance perspective, replication and distributing of
data allows for lower numbers of concurrent users reading data from each
database. However, replication can have its own critical performance issues,
which are briefly as follows:

Figure 11.3
Using streams to

manually
implement
replication

11.6 Standby failover (hot spare) 417

Chapter 11

� Latency and Synchronization: The time to propagate data across
the nodes (replicated databases) of a distributed network can be criti-
cal for users getting up-to-date results from queries. Some applica-
tions will require as real-time a response as is possible. For example,
an airline booking system cannot be allowed to double book seats.
Then again, airlines overbook flights constantly to ensure their flights
are profitable. However, how many times have you been bumped off
a flight? Myself? Never!

� Throughput: How much data replication can a distributed network
manage? Again, if real-time replication is required then throughput
has to be fast enough to get changes to all distributed databases as
quickly as possible.

� Concurrency of Replication: Distribution of data to multiple repli-
cated databases can help performance on each individual database.
However, too much replication activity might result in the act of rep-
lication using too many resources on local databases, and perhaps
negating the beneficial effect of distribution. In other words, if data-
base changes are too frequent, they could swamp the concurrency
capacity of individual databases in the network. The use of hardware
resources cannot outweigh the benefit of data distribution.

In conclusion, replication is complex and can require heavy processing
both on publishing and subscriber database servers. Used appropriately (if
data latency is acceptable), replication can help performance in general.
However, inappropriate use can hinder performance drastically. This is usu-
ally only discovered after the fact, so careful planning and thorough under-
standing is best gained before implementation.

11.6 Standby failover (hot spare)

SQL Server 2005 uses what it calls database mirroring, in order to imple-
ment a standby failover. A standby failover is a hot spare database, prefera-
bly updated in real-time. The standby can automatically take over servicing
of database requests, in the event that the primary (or principal) database
should fail.

An SQL Server 2005 database mirror uses transaction log entries to pass
changes to a database mirror. Log entries are then applied to the database
mirror as reverse log entries.

418 11.6 Standby failover (hot spare)

Note: Transaction log entries in a relational database store all changes to a
database. Applying log entries in reverse implies that the database mirror
duplicates changes recorded as log entries, onto the database mirror. This is
a mirror image database.

The database mirror will not likely be as up to date as an equivalent rep-
licated database would be, but it could be very close. The only entries that
could be lost in the event of principal database failure would be any changes
on the principal database that are yet to be logged—or any log entries made
on the principal database not yet transferred to the database mirror. This
potential loss could be quite substantial depending on requirements, but
that level of loss could be acceptable depending on the company.

Note: Officially, all committed transactions should be stored on the data-
base mirror. Any pending transactions are not yet written to log files, and
thus pending transactions may be lost.

In general, because a database mirror uses a back door to pass log entries
onto a not directly connected hot spare server, then the database mirror
architecture is technically much easier to implement than replication. And a
hot spare is also much faster in terms of transfer and update of the mirrored
database. By passing log entries from principal to hot spare database using
log files, the transfer occurs within the file system and not the databases.
Copying a file within the operating system is much faster than transferring
and applying each change one at a time, which is the way that replication
does it. The result of application of log entries on the database mirror has
no connection to the principal database and is thus not disruptive to the
principle database. In some scenarios, a hot spare database can be used as a
read only database. This can be useful for getting reporting functionality off
the principal database, further reducing demand on a principal and data-
base mirror servers.

11.6.1 Clustered failover databases

The Enterprise and Datacenter editions of Windows 2003 contain cluster-
ing technology. Clustering is a very high availability architecture in the
form of a clustered or load balanced. Essentially, multiple SQL Servers can
reside on each node of the cluster creating a very highly available and scal-
able failover solution.

11.7 Flashback snapshot databases 419

Chapter 11

11.7 Flashback snapshot databases

In relational database terminology a snapshot is like a still picture or still-
life of a database at a specific point in time. For example, a snapshot of a
database taken at midday will look the same an hour later, or the middle
of the next week—unless you delete the snapshot. One of the great bene-
fits of snapshots is the possibility of really rapid recovery in the case of
failure. In SQL Server 2005, a snapshot is a point in view-like copy of a
database. Also, that snapshot is automatically updated making copies of
changed pages to the snapshot from the principle database. So, a snapshot
also provides for multiple sources of data, much like replication and data-
base mirrors can.

Figure 11.4
Principal to

database mirror
(hot spare)

architecture

This Page Intentionally Left Blank

421

12
Monitoring Performance

As we have mentioned on a number of occasions, physical database design
is not a static, one-off process. Once the database has gone into production,
the user requirements are likely to change. Even if they do not, the database
data is likely to be volatile, and tables are likely to grow. Figure 12.1 shows a
typical monitoring and tuning cycle.

In the previous chapters, we have seen a number of tools that can be
used to monitor performance. There are also other tools that have hardly
been mentioned. This chapter will look at the array of tools the database
administrator can use to monitor SQL Server performance. These tools
include the following:

� System stored procedures

� Windows operating system tools: System Monitor, Performance
Logs, and Alerts

Figure 12.1
The monitoring
and tuning cycle

422 12.1 System stored procedures

� SQL Server Management Studio

� SQL Server Profiler

� Database Engine Tuning Advisor

� SQL OS

12.1 System stored procedures

There are a number of system stored procedures that can assist in perfor-
mance monitoring, including:

sp_lock

sp_who

sp_monitor

The system stored procedures sp_lock and sp_who provide information
on locks, blocked connections, and much more. Both these system stored
procedures were described in Chapter 10, so we will concentrate on
sp_monitor here.

SQL Server keeps resource use information available through system sta-
tistical functions and sp_monitor then formats and displays this informa-
tion. In fact, it displays the current values of resource use and the difference
between these current values and the values last time sp_monitor was run:

EXEC sp_monitor

last_run current_run seconds

2000-08-17 18:33:25.263 2000-08-17 18:36:43.500 198

cpu_busy io_busy idle

62(61)-30% 1(0)-0% 651(130)-65%

packets_received packets_sent packet_errors

110(66) 109(66) 0(0)

total_read total_write total_errorsconnections

432(217) 69(6) 0(0) 18(2)

12.1 System stored procedures 423

Chapter 12

The cpu_busy, io_busy, and idle values are measured in seconds. The
value 62(61)-30% is decoded as 62 seconds of CPU use since SQL Server
was started, and (61) is decoded as 61 seconds of CPU use since
sp_monitor was last executed. The CPU has been busy 30 percent of the
time since sp_monitor was last executed. Similarly, for total_write the value
69(6) can be decoded as 69 writes since SQL Server was started, and (6) is
decoded as six writes since sp_monitor was last executed.

These functions are available to be executed by Transact-SQL statements
if the database administrator prefers his or her own format. The sp_monitor
Transact-SQL definition can easily be examined using the SQL Enterprise
Manager.

Many database administrators use their own home-grown stored proce-
dures to interrogate the system tables. Taking this approach means that the
output is customized to individual preference and is fine-tuned for the
application.

In the Management Studio, the sp_monitor procedure can be executed
as a query and would look as shown in Figure 12.2.

Figure 12.2
Query results in

the Management
Studio

424 12.2 System monitor, performance logs, and alerts

12.2 System monitor, performance logs, and alerts

The System Monitor and Performance Logs and Alerts are provided with
the Windows server operating system in order to facilitate performance
monitoring through a graphical interface.

There are many objects that can be monitored for the Windows operat-
ing system. These objects include the processor object and the memory
object, and for each object various counters can be monitored. The proces-
sor object has counters such as %Processor Time.

There are special objects for SQL Server, including the following:

SQLServer: Access Methods

SQLServer: Backup Device

SQLServer: Buffer Manager

SQLServer: Buffer Partition

SQLServer: Cache Manager

SQLServer: Databases

SQLServer: General Statistics

SQLServer: Latches

SQLServer: Locks

SQLServer: Memory Manager

SQLServer: Replication Agents

SQLServer: Replication Dist.

SQLServer: Replication Logreader

SQLServer: Replication Merge

SQLServer: Replication Snapshot

SQLServer: SQL Statistics

SQLServer: Use Settable Object

If multiple instances of SQL Server are being used, the object name is
formed from the instance name. For example, the SQL Server instance
named SQL_A will use object names such as MSSQL$SQL_A: Locks.

Ensuring that System Monitor is selected in the console pane, click the
Add (+) button. This will display drop-down lists of objects and counters
and the computers that can be monitored. Monitoring performance will
affect performance, so running the System Monitor on a computer other
than the server being monitored will reduce its impact on that server.

The SQLServer: Access Methods object has associated counters such as
Page Splits/sec, the SQLServer: Buffer Manager object has associated

12.2 System monitor, performance logs, and alerts 425

Chapter 12

counters such as Buffer cache hit ratio, the SQLServer: Databases object
has associated counters such as Percentage Log Used, and the SQLServer:
Locks object has associated counters such as Lock Requests/sec. A typical
display, showing Buffer cache hit ratio and three other counters, is shown
in Figure 12.3.

Many counters can be displayed simultaneously, and the display can be
changed to a histogram or a report. A report display using SQLServer:
Databases counters is shown in Figure 12.4.

Alerts can also be defined via Performance Logs and Alerts. This must be
selected and expanded in the console pane. The Alerts folder is right mouse–
clicked and New Alert Settings chosen. A counter is selected and a threshold
value chosen over (or under) which the alert is signaled. When an alert is sig-
naled, various actions can be taken, such as an entry being logged in the
application event log, a program executed, or a network message sent.

Figure 12.5 shows the performance console with two alerts running.

Figure 12.6 shows a network message sent when one of the alerts has
been exceeded.

A useful feature is the capability to log counters to a file and then moni-
tor the logged values later. This facility is very useful, since it means that
samples can be taken, say, every few minutes, over a period of days. Perfor-

Figure 12.3
The System

Monitor chart
display

426 12.2 System monitor, performance logs, and alerts

Figure 12.4
The System

Monitor report
display

Figure 12.5
The alert display

12.3 SQL Server 2005 Management Studio 427

Chapter 12

mance monitoring over a long period of time makes it easier to spot trends
and sustained bottlenecks. A log is set up via Performance Logs and Alerts.

This must be selected and expanded in the console pane. The Counter
Logs folder is right mouse–clicked and New Log Settings chosen.

The System Monitor and Performance Logs and Alerts are key tools for
monitoring SQL Server performance, and any SQL Server database admin-
istrator should familiarize himself or herself with these tools.

12.3 SQL Server 2005 Management Studio

The SQL Server 2005 Management Studio tool is a GUI, which has been
introduced as a method of repackaging all SQL Server tools into a single
interface. Some of the GUI tools from SQL Server 2000 are still accessible
by themselves. Others are only accessible from within other tools, such as
the Management Studio. The general trend is toward centralizing and ulti-
mately easing the tasks of administration, maintenance, and performance
tuning of SQL Server environments.

12.3.1 Client statistics

Query optimization has already been examined extensively in previous
chapters but in the context of viewing estimated query execution plans.
This section takes a brief look into client statistics. Client statistics can be
gathered and examined for a query executed, in the Management Studio,
by selecting the Include Client Statistics tab at the top of the window.

Note: This functionality is known as Show Server Trace and Show Client
Statistics in SQL Server 2000.

The Include Client Statistics tab shows client-side information about
the execution of a query. An example is shown in Figure 12.7.

Figure 12.6
A network message

resulting from an
alert

428 12.3 SQL Server 2005 Management Studio

The client statistics are grouped into three areas, as follows:

� Query Profile Statistics—containing information such as the number
of SELECT statements.

� Network Statistics—containing information such as the number of
server roundtrips.

� Time Statistics—containing information such as the cumulative cli-
ent processing time.

12.3.2 The SQL Server Profiler

The SQL Server Profiler is probably one of the most useful tools for perfor-
mance investigation. It allows the database administrator to trace the events
that are happening on an SQL Server.

Note: In SQL Server 2005 you can even replay a sequence of events with-
out changing anything in the database. The objective of replay is to isolate a
previously occurring problem. The replay facility is very useful when trying
to track down intermittent problems. Intermittent problems are often diffi-
cult to duplicate because they do not repeat consistently in a given scenario.

Figure 12.7
The Include Client

Statistics tab

12.3 SQL Server 2005 Management Studio 429

Chapter 12

One or more traces are defined that are designed to capture a set of
events. The trace definition will also specify what information is to be cap-
tured concerning the events, and what filtering criteria are to be used. It
may be that you only wish to capture events for a particular database, or for
events that exceed a minimum duration.

The information captured by the trace can be displayed graphically and
can also be written to a file and/or a database table. This allows the traced
data to be analyzed later.

12.3.2.1 What events can be traced?

There are many events that can be traced. These are known as event classes.
Related event classes are grouped into event categories. For example, the
Lock:Acquired and Lock:Timeout event classes are grouped together into
the Locks event category. Event categories are shown in Table 12.1.

Table 12.1 SQL Server Profiler event categories

Event Category Definition

Broker Service Broker events

CLR .NET Framework objects

Cursors Event classes concerned with cursors

Database Event classes concerned with data and log file growth and shrink-
age

Deprecation Indicates future removal of features from SQL Server software

Errors and Warn-
ings

Event classes concerned with errors, warnings, and writes to error
logs

Full-Text Full-text search events

Locks Event classes concerned with locks

Objects Event classes concerned with an object being opened, closed, cre-
ated, and deleted, as well as the execution of autostats

OLEDB OLEDB call events

Performance Event classes concerned with query plans, parallelism, and DML
commands

Progress Report Progress of online index rebuilds

Scans Event classes concerned with table and index scans

430 12.3 SQL Server 2005 Management Studio

Some event classes are very useful and are often traced, while some event
classes are more obscure. You will often find that the traces you wish to cre-
ate will involve the same event classes. For this reason, as we shall see, tem-
plates can be created containing your common event classes that can then
form the basis of your traces.

12.3.2.2 What information is collected?

Before looking at specific event classes, let us look at the information that
can be collected about them and how they are filtered. The elements of
information that can be collected are known as Data Columns, and there
are over 40 of them. Some data columns are not relevant for an event class.
For example, the Reads data column is not relevant for the Lock:Aquired
event class. Generally speaking, though, many data columns are relevant for
most event classes.

Some data columns contain information whose definition remains the
same regardless of the event class being traced. A data column such as CPU,
which holds the amount of CPU time (in milliseconds) used by the event,
always holds this value for any event that CPU is relevant for. On the other
hand, data columns such as Binary Data, Integer Data, and TextData hold
values that are dependent on the event class captured in the trace. For
example, the Errorlog event class, which occurs when error events have
been logged in the SQL Server error log, causes the Text data column to
hold the text of the error message. On the other hand, the Missing Column
Statistics event class, which occurs when column statistics that could be

Security Audit Event classes concerned with security operations; logins/logouts;
and server starts, stops, and pauses

Server Event classes concerned with server events, such as memory
changes

Sessions Event classes concerned with connects and disconnects

Stored procedures Event classes concerned with stored procedures

Transactions Event classes concerned with transactions starting and stop-
ping—includes MS DTC transactions and writes to the transac-
tion log

TSQL Event classes concerned with SQL statements and batches

User Configurable Event classes concerned with user-defined events created with the
stored procedure sp_trace_generateevent

Table 12.1 SQL Server Profiler event categories (continued)

12.3 SQL Server 2005 Management Studio 431

Chapter 12

used by the query optimizer are not available, causes the Text data column
to hold the list of the columns with missing statistics.

When defining a trace, the data columns can be grouped. Grouping
overrides the default behavior in the graphical interface of the SQL Server
Profiler by displaying events in the order that they occur. For example,
grouping the events by Application Name groups together all the events for
an application.

12.3.2.3 Filtering information

In order to reduce the volume of information traced, it can be filtered. Fil-
tering can also reduce the impact of the trace on the server. You will need to
take care, however, that what you choose to filter out of the trace is not a
participant in the situation you are trying to observe. It may be that filter-
ing out events whose duration is less than one second will help you see the
wood for the trees, but if an SQL:StmtCompleted event takes just less than
a second but is being executed thousands of times, it may be the culprit
behind a performance problem.

Most, but not all, data columns can have filters defined for them. We
can create a filter that includes applications with a filter that specifies LIKE
MyProc% or NOT LIKE MS EM%. The % symbol represents a wildcard
character, which can substitute for zero or more characters (just the same as
LIKE in Transact-SQL). We might specify that we only wish to trace events
with Duration greater than or equal to 1,000 or DatabaseID = 12.

12.3.2.4 Creating an SQL Server profiler trace

Now that we have introduced the basic concepts behind an SQL Server
Profiler trace, we can create one. Let us start by creating a trace to capture
events whose duration is greater than or equal to one-hundredth of a sec-
ond. This will filter out very short-lived events. Let us assume we are inter-
ested in looking for rogue Transact-SQL statements.

Launch the SQL Server Profiler from the Start menu, the Management
Studio, or even from within the Database Engine Tuning Advisors. The
tools are all closely linked together in SQL Server 2005. You will be faced
with a fairly blank window, as shown in Figure 12.8.

We can then select File and New Trace, click on the New Trace but-
ton—or just type CTRL+N. Having responded to the connection prompt
with appropriate security credentials, the SQL Server Profiler displays the
Trace Properties window, as shown in Figure 12.9.

432 12.3 SQL Server 2005 Management Studio

First of all, the trace is named and the SQL Server or SQL Server
instance that is to be traced selected. A trace template is then selected. A
trace template contains a predefined set of event classes and data columns.
These are used as a convenience when creating new traces. Their event
classes and data columns can be added to or removed, and the resulting
template can be saved under a new name if desired. Apart from Blank, there

Figure 12.8
The SQL Server

Profiler initial
window

Figure 12.9
The SQL Server

Profiler trace
properties window

12.3 SQL Server 2005 Management Studio 433

Chapter 12

are a number of template names to choose from. We will choose the
SQLServerProfilerStandard template, since this fits our needs quite well.

Next, we must specify where we are going to save trace information, if
at all. The information will always be displayed in the SQL Server Profiler
graphical interface, but we also have the choice of saving the information
in a file or database table, or both. Microsoft suggests that saving data to a
file is faster than saving data to a database table. Analyzing data in a table,
though, is much easier. To have the best of both worlds, save the trace
information to a file and then afterwards open the trace file and save it as
a trace table.

If Save to file is checked, the SQL Server Profiler will prompt for a loca-
tion and filename. This SQL Server Profiler trace file will have an extension
of .trc. A maximum file size (MB) may be optionally specified. A trace
whose maximum file size has been specified finishes saving trace informa-
tion to the file after the maximum file size has been reached. Another
option, Enable file rollover, may be checked if the Set maximum file size
(MB) is checked. With this option set, when the original file reaches the
maximum size, a second file is opened and trace data is written to it. When
the second file reaches the maximum size, a third file is opened and so on.
The SQL Server Profiler adopts a simple strategy for the filenames. It
merely appends an integer to the original filename. The filename
MyTrace.trc becomes MyTrace_1.trc, then MyTrace_2.trc, and so on.

The Server processes SQL Server trace data option may be checked if
the server running the trace is to process the trace data rather than the cli-
ent. Selecting this option may adversely affect the performance of the server
being traced, since it ensures that no events are skipped—even when the
server is overloaded.

As well as, or instead of, capturing trace information to a file, it can
also be captured in a table. The table can be present on any SQL Server,
and, by default, it takes the name of the trace. The maximum number of
rows to capture can be set, after which no more trace information is
stored in the table.

Finally, a stop time can be set. Once this time is reached, the trace will
stop and close itself. Figure 12.10 shows an example of the General tab of
the SQL Server Profiler Trace Properties window.

Next, the event classes that are to be traced must be specified. The event
classes are chosen in the Events tab of the SQL Server Profiler Trace Proper-
ties window. The default configuration is shown in Figure 12.11.

434 12.3 SQL Server 2005 Management Studio

Now check the Show All Events checkbox and the screen shows a more
familiar event class category set of choices.

As shown in Figure 12.12, to begin with, nothing is selected by default.
Events categories and classes are initially set based on the template selected
under the General tab, as shown in Figure 12.11. So, click the General tab,
and select Tuning from the list of templates. And then click the Events
Selection tab again. Check Show All Events again. Open up the Perfor-

Figure 12.10
The SQL Server

Profiler trace
properties General

tab

Figure 12.11
The SQL Server

Profiler trace
properties Events

tab

12.3 SQL Server 2005 Management Studio 435

Chapter 12

mance category by clicking the little plus sign next to it. Scroll down and
check the Showplan Text (Unencoded) and Showplan XML event classes.

Finally, we can specify a filter by clicking the Column Filters button as
shown in Figure 12.13.

Now select Greater than or equal, enter a value of 10, as shown in Figure
12.14, and click the OK button.

Figure 12.12
SQL Server Profiler

events categories

Figure 12.13
SQL Server Profiler

column filtering
selection

436 12.3 SQL Server 2005 Management Studio

We have decided only to include events of duration greater or equal to
one-hundredth of a second. Now all we have to do is click the run button
and our trace will start. The trace window looks as shown in Figure 12.15.

In reality, as a database administrator, you will probably be so busy that
sitting and watching an SQL Server Profiler trace graphically will not be the
best use of your time. It is often more convenient and productive to analyze
the trace output that you have captured into a table. For example, another

Figure 12.14
SQL Server Profiler

column filtering
settings

Figure 12.15
SQL Server Profiler

column filtering
settings

12.3 SQL Server 2005 Management Studio 437

Chapter 12

trace was run and also captured in the database table MyTrace, in a database
called Perf-StatsDB.

Suppose we execute the following query:

SELECT TextData, Duration, CPU FROM MyTrace where Duration > 1000

Sample output would be as follows:

TextData Duration CPU

SELECT * FROM accounts WHERE balance = 100 1693 40
SELECT * FROM customers WHERE customer_no = 1000 1540 40

By using familiar Transact-SQL statements, the trace data can be ana-
lyzed to look for problem statements. As well as responding to problems,
traces can be run on a regular basis and the trace data analyzed to monitor
trends. The Transact-SQL functions AVG, MIN, and MAX are useful, and
the data can be grouped by the first few characters of the TextData column
so that the statements are distinguished:

Statement AverageDuration MaxDuration AverageCPU MaxCPU

exec USP_CustBal 33.333333 40 33.333333 40

This line of output was generated by the following Transact-SQL state-
ment.

SELECT
CAST(TextData AS CHAR(16)) AS Statement,
AVG(Duration) AS AverageDuration,
MAX(Duration) AS MaxDuration,
 AVG(CPU) AS AverageCPU,
MAX(CPU) AS MaxCPU
 FROM MyTrace4
WHERE Duration > 10
 GROUP BY CAST(TextData AS CHAR(16))

The GROUP BY uses as CAST of CHAR(16) to group only by the
stored procedure name and does not include any parameters. Of course, the
other aggregate functions, such as COUNT, can be used. It is also useful to

438 12.3 SQL Server 2005 Management Studio

filter out the stored procedures and statements you are interested in with a
LIKE operator in the WHERE clause.

12.3.2.5 Creating traces with stored procedures

As well as using the SQL Server Profiler graphical interface to create, mod-
ify, start, and stop traces, various system stored procedures can also be used.
These are all documented, but the easiest way to create a script that utilizes
them is to create a trace using the SQL Server Profiler graphical interface
and then from the File menu in the graphical interface choose Script Trace.
The trace can be scripted using the SQL Server 2005 system stored proce-
dures. The script produced can then be edited and executed using the query
tools in the Management Studio.

There are only a few system stored procedures that need to be used
when creating and managing a trace. The ones we will use are as follows:

sp_trace_create

sp_trace_setevent

sp_trace_setfilter

sp_trace_setstatus

The system stored procedure sp_trace_create is typically run first to cre-
ate the trace. Information such as the stop time, trace file name, maximum
file size, and whether file rollover is performed can be specified. This system
stored procedure returns an integer trace ID, which is subsequently used to
identify the trace.

The system stored procedure sp_trace_setevent is used to add or remove
an event or event column to a trace. The event ID and column ID pair is
specified and is either turned on or off. The trace that is to be modified is
identified through the trace ID.

The system stored procedure sp_trace_setfilter is used to specify filters.
The trace that is to be modified is identified through the trace ID. A col-
umn is specified together with a value specifying whether it will be ANDed
or ORed with other filter conditions. A value to represent a comparison
operator, such as Greater Than, is specified for the column together with
the value to be compared. Finally, the system stored procedure
sp_trace_setstatus is used to stop and start the event. Again, the trace that is
to be started or stopped is identified through the trace ID.

Here is a trace script generated by the SQL Server Profiler:

12.3 SQL Server 2005 Management Studio 439

Chapter 12

-- Create a Queue
DECLARE @rc int
DECLARE @TraceID INT
DECLARE @maxfilesize BIGINT
SET @maxfilesize = 5344176266805258
EXEC @rc = sp_trace_create @TraceID OUTPUT, 2, N'C:\
MyTrace.trc', @maxfilesize, NULL
IF (@rc != 0) GOTO error

-- Client side File and Table cannot be scripted

-- Set the events
DECLARE @on BIT
SET @on = 1
EXEC sp_trace_setevent @TraceID, 10, 1, @on
EXEC sp_trace_setevent @TraceID, 10, 6, @on
EXEC sp_trace_setevent @TraceID, 10, 9, @on
EXEC sp_trace_setevent @TraceID, 10, 10, @on
EXEC sp_trace_setevent @TraceID, 10, 11, @on
EXEC sp_trace_setevent @TraceID, 10, 12, @on
EXEC sp_trace_setevent @TraceID, 10, 13, @on
EXEC sp_trace_setevent @TraceID, 10, 14, @on
EXEC sp_trace_setevent @TraceID, 10, 16, @on
EXEC sp_trace_setevent @TraceID, 10, 17, @on
EXEC sp_trace_setevent @TraceID, 10, 18, @on
EXEC sp_trace_setevent @TraceID, 12, 1, @on
EXEC sp_trace_setevent @TraceID, 12, 6, @on
EXEC sp_trace_setevent @TraceID, 12, 9, @on
EXEC sp_trace_setevent @TraceID, 12, 10, @on
EXEC sp_trace_setevent @TraceID, 12, 11, @on
EXEC sp_trace_setevent @TraceID, 12, 12, @on
EXEC sp_trace_setevent @TraceID, 12, 13, @on
EXEC sp_trace_setevent @TraceID, 12, 14, @on
EXEC sp_trace_setevent @TraceID, 12, 16, @on

EXEC sp_trace_setevent @TraceID, 12, 17, @on
EXEC sp_trace_setevent @TraceID, 12, 18, @on
EXEC sp_trace_setevent @TraceID, 14, 1, @on
EXEC sp_trace_setevent @TraceID, 14, 6, @on
EXEC sp_trace_setevent @TraceID, 14, 9, @on
EXEC sp_trace_setevent @TraceID, 14, 10, @on
EXEC sp_trace_setevent @TraceID, 14, 11, @on
EXEC sp_trace_setevent @TraceID, 14, 12, @on
EXEC sp_trace_setevent @TraceID, 14, 13, @on
EXEC sp_trace_setevent @TraceID, 14, 14, @on
EXEC sp_trace_setevent @TraceID, 14, 16, @on
EXEC sp_trace_setevent @TraceID, 14, 17, @on
EXEC sp_trace_setevent @TraceID, 14, 18, @on

440 12.3 SQL Server 2005 Management Studio

EXEC sp_trace_setevent @TraceID, 15, 1, @on
EXEC sp_trace_setevent @TraceID, 15, 6, @on
EXEC sp_trace_setevent @TraceID, 15, 9, @on
EXEC sp_trace_setevent @TraceID, 15, 10, @on
EXEC sp_trace_setevent @TraceID, 15, 11, @on
EXEC sp_trace_setevent @TraceID, 15, 12, @on
EXEC sp_trace_setevent @TraceID, 15, 13, @on
EXEC sp_trace_setevent @TraceID, 15, 14, @on
EXEC sp_trace_setevent @TraceID, 15, 16, @on
EXEC sp_trace_setevent @TraceID, 15, 17, @on
EXEC sp_trace_setevent @TraceID, 15, 18, @on
EXEC sp_trace_setevent @TraceID, 17, 1, @on
EXEC sp_trace_setevent @TraceID, 17, 6, @on
EXEC sp_trace_setevent @TraceID, 17, 9, @on
EXEC sp_trace_setevent @TraceID, 17, 10, @on
EXEC sp_trace_setevent @TraceID, 17, 11, @on
EXEC sp_trace_setevent @TraceID, 17, 12, @on
EXEC sp_trace_setevent @TraceID, 17, 13, @on
EXEC sp_trace_setevent @TraceID, 17, 14, @on
EXEC sp_trace_setevent @TraceID, 17, 16, @on
EXEC sp_trace_setevent @TraceID, 17, 17, @on
EXEC sp_trace_setevent @TraceID, 17, 18, @on

-- Set the Filters
DECLARE @intfilter INT
DECLARE @bigintfilter BIGINT

EXEC sp_trace_setfilter @TraceID, 10, 0, 7, N'SQL Server
Profiler%'
SET @intfilter = 100
EXEC sp_trace_setfilter @TraceID, 13, 0, 4, @intfilter

EXEC sp_trace_setfilter @TraceID, 35, 1, 6, N'BankingDB'

-- Set the trace status to start
EXEC sp_trace_setstatus @TraceID, 1

error:
GO

This trace creates a trace file, C:\MyTrace.trc, with file rollover (option
value 2). There is no stop time (NULL), and the maximum file size possible
is set.

Event IDs 10, 12, 14, 15, and 17 are set. These are RPC:Completed,
SQL:BatchCompleted, Login, Logout, and ExistingConnection, respec-

12.3 SQL Server 2005 Management Studio 441

Chapter 12

tively. The sp_trace_setevent stored procedure sets each required event ID
and column ID pair. Therefore, we see examples such as the following:

EXEC sp_trace_setevent @TraceID, 12, 13, @on

This sets event ID 12 (SQL:BatchCompleted) with column ID 13
(Duration) on.

Filters are set to specify that the database must be BankingDB, the dura-
tion is greater than 100 milliseconds, and the application is not the SQL
Server Profiler itself.

Finally, the trace is set to status value 1, which means start. A status
value of 0 means stop. To subsequently view the trace file with the profiler,
it is necessary to first stop the trace with status value 0 and then close it with
status value 2.

To view information about current traces a useful function is
::fn_trace_getinfo. This takes a trace ID as an argument. Specifying NULL
returns information for all existing traces. For example:

SELECT * FROM ::fn_trace_getinfo(NULL)

traceid property value

1 1 2

1 2 C:\DocumentsandSettings
\Administrator\MyDocuments
\MyTrace11.trc

1 3 5344176266805258

1 4 NULL

1 5 1

The property value 1 is the trace option value to sp_trace_create. In
our example, 2 means file rollover is enabled. The property value 2 is the
trace file name, and 3 is the maximum file size. The property value 4 is
the stop time, and 5 is the current trace status, as set in sp_trace_setstatus.
In our example, no stop time is specified. The trace status 1 means the
trace is started.

The SQL Server Profiler is a very powerful tool, and I would urge data-
base administrators to familiarize themselves with it. It has many other
capabilities, which we will not cover here, but it can, for example, replay a

442 12.3 SQL Server 2005 Management Studio

trace file, which is useful for regression and stress testing. It is also able to
single step through a trace file, similar to a debugger. Also, a workload saved
by the SQL Server Profiler can be used in the Database Engine Tuning wiz-
ard, described next.

12.3.3 Database Engine Tuning Advisor

Much like the Management Studio, the Database Engine Tuning Advisor is
partly new features and also partly SQL Server 2000 features bundled into a
much better interface. The Database Engine Tuning Advisor tool was pre-
sented in Chapter 1 as a new feature of SQL Server 2005. So, reiterating at
this point would simply be repetitious. Essentially, the Database Engine
Tuning Advisor can make recommendations about indexes, partitioning,
and underlying physical design structures.

The Database Engine Tuning Advisor can make suggestions about
changes, such as the most effective indexes that could be created on a
table (or view), based on a workload previously captured by the SQL
Server Profiler. Of course, recommendations assume that the workload is
representative, and so the onus is on the database administrator to ensure
that this is the case. I personally use automated index tuning to get a sec-
ond opinion on my index design, rather than as a tool that produces a
definitive index design.

In an example workload, the Tuning Advisor recommended that three
indexes, if created, should improve performance based on the workload. It
predicted an 83 percent improvement.

The indexes recommended were as follows:

� A clustered index on the Accounts table on columns balance.

� A non-clustered index on the Accounts table on columns balance,
account_no

� A non-clustered index on the Accounts table on column
customer_no

� A clustered index on the Customers table on column customer_no

This report showed the percentage of queries in the workload that
would make use of the new index and the estimated size of the new index.

12.4 SQL OS and resource consumption 443

Chapter 12

Once again, recommendations are based on the workload. That work-
load has to be representative of daily operations. Also, recommendations of
using clustered indexes, as opposed to non-clustered index—on primary
keys, should be verified with manual testing. It really depends on how your
application accesses data.

12.4 SQL OS and resource consumption

SQL Server 2005 contains many newly introduced metrics. Many are for
measuring the database internal performance, and resource usage (memory,
locks, schedules, transactions, network, I/O). The SQL OS accesses under-
lying resource details using a set of what are called Dynamic Management
Views (or DMVs).

SQL OS attempts to fill the statistical gap, perhaps more apparent in
previous versions of SQL Server. SQL OS creates a virtual performance
monitoring layer placed between SQL Server and the underlying Windows
operating system. Table 12.2 shows a list of available DMVs and their
respective functions.

Table 12.2 SQL OS Dynamic Management Views

DMV Statistics

sys.dm_os_buffer_descriptors Buffer pools

sys.dm_os_cluster_nodes Windows cluster nodes

sys.dm_os_hosts Host details

sys.dm_os_latch_stats Latch statistics (buffer pool locks)

sys.dm_os_loaded_modules Loaded Dynamic Link Libraries
(DLLs)

sys.dm_os_memory_cache_clock_hands Cached objects

sys.dm_os_memory_cache_counters Size of cached objects

sys.dm_os_memory_cache_entries Cached object entry specifics

sys.dm_os_memory_cache_hash_tables Cached object soft and hard parsing
counts

sys.dm_os_memory_clerks Memory clerks for SQL Server ser-
vices and processes

sys.dm_os_memory_objects Memory objects

444 12.4 SQL OS and resource consumption

We have looked at a number of monitoring tools in this chapter. I find
the SQL Server Profiler particularly useful when hunting for poorly per-
forming queries. The Query Analyzer is then really useful for analyzing the
problem query to check on the query plan. As an initial step, the System
Monitor is very useful for getting an overall feel for the system.

sys.dm_os_memory_pools Memory pools

sys.dm_os_performance_counters Performance monitor counters

sys.dm_os_scheduler Memory to CPU schedule mapping

sys.dm_os_stacks SQL Server process call stack

sys.dm_os_sys_info Windows operating system infor-
mation

sys.dm_os_tasks Windows session, scheduling and
request tasks

sys.dm_os_threads SQL Server thread use

sys.dm_os_virtual_address_dump Virtual memory pages

sys.dm_os_wait_stats Wait statistics

sys.dm_os_waiting_tasks Tasks waiting for something else to
complete

sys.dm_os_workers Thread worker information

Table 12.2 SQL OS Dynamic Management Views (continued)

445

A
Syntax Conventions

Syntax diagrams in this book will utilize what is known as Backus-Naur Form
syntax notation convention. Backus-Naur Form has become the de facto
standard for most computer texts. SQL is used to describe the notation.

� Angle brackets: < … >. Angle brackets are used to represent names
of categories (substitution variable representation). In this example
<table> will be replaced with a table name in a schema as shown.

SELECT * FROM <table>;

Becomes:

SELECT * FROM ARTIST;

Note: Angle brackets are generally not used in this book unless stated as
such at the beginning of a chapter.

� OR: |. A pipe or | character represents an OR conjunction meaning
either can be selected. The asterisk (*) and curly braces are explained
further on. In this case all or some columns can be retrieved, some
meaning one or more.

SELECT { * | { <column>, … } } FROM <table>;

� Optional: […]. In a SELECT statement a WHERE clause is syntac-
tically optional.

SELECT * FROM <table> [WHERE <column> = …];

446 Appendix

� At least one of: { … | … | … }. In this example the SELECT state-
ment retrieval list must include an asterisk (*), retrieving all columns
in a table, or a list of one or more columns.

SELECT { * | { <column>, … } } FROM <table>;

Note: This is not a precise interpretation of Backus-Naur Form where curly
braces usually represent zero or more. In this book curly braces represent
one or more iterations, never zero.

447

B
Database Scripts

All relevant schema scripts can be found from a simple menu on my website
at the following URL:

http://www.oracledbaexpert.com/sqlserver/tuning/index.html

IF @@TRANCOUNT > 0

ROLLBACK TRAN

--

-- This loads 5000 customers, 10000 accounts and 100 branches

--

GO

--DROP DATABASE BankingDB

--GO

CREATE DATABASE BankingDB

GO

USE BankingDB

GO

SET NOCOUNT ON

GO

BACKUP LOG BankingDB WITH TRUNCATE_ONLY

DROP TABLE branches

GO

DROP TABLE accounts

GO

448 Appendix

DROP TABLE customers

GO

DROP TABLE country

GO

DROP TABLE region

GO

DROP TABLE employee

GO

CREATE TABLE employee

(

 employee_id CHAR(8)

,lname CHAR(10)

,fname CHAR(10)

,supervisor_id CHAR(8)

,CONSTRAINT pk_employee PRIMARY KEY

CLUSTERED(employee_id)

,CONSTRAINT fk_employee_supervisor FOREIGN
KEY(supervisor_id) REFERENCES employee

)

GO

CREATE NONCLUSTERED INDEX fkx_employee_supervisor ON

 employee(employee_id)

GO

CREATE TABLE region

(

 region_id INT NOT NULL

,region CHAR(40) NOT NULL

,population INT NULL

,area INT NULL

,CONSTRAINT pk_region PRIMARY KEY CLUSTERED(region_id)

)

GO

CREATE TABLE country

(

 country_id INT NOT NULL

,region_id INT NOT NULL

,country CHAR(40) NOT NULL

,code CHAR(2) NOT NULL

,population INT NULL

Appendix 449

Appendix B

,area INT NULL

,fxcode CHAR(3) NULL

,currency CHAR(40) NULL

,rate FLOAT NULL

,CONSTRAINT pk_country PRIMARY KEY CLUSTERED(country_id)

,CONSTRAINT fk_country_region FOREIGN KEY(region_id)

 REFERENCES region

)

GO

CREATE NONCLUSTERED INDEX fkx_country_region ON

 country(region_id)

GO

CREATE TABLE customers

(

 customer_no INT NOT NULL

,region_id INT NOT NULL

,name CHAR(40) NOT NULL

,creditnotes CHAR(1800) NOT NULL

,CONSTRAINT pk_customers PRIMARY KEY

 CLUSTERED(customer_no)

,CONSTRAINT fk_customers_region FOREIGN KEY(region_id)

 REFERENCES region

)

GO

CREATE NONCLUSTERED INDEX fkx_customers_region ON

customers(region_id)

GO

CREATE TABLE branches

(

 branch_no INT NOT NULL

,country_id INT NOT NULL

 ,branch_name CHAR(60) NOT NULL

 ,branch_address CHAR(400) NOT NULL

 ,managers_name CHAR(60) NOT NULL

,CONSTRAINT pk_branches PRIMARY KEY CLUSTERED(branch_no)

,CONSTRAINT fk_branches_country FOREIGN KEY(country_id)

 REFERENCES country

)

GO

450 Appendix

CREATE NONCLUSTERED INDEX fkx_branches_country ON

branches(country_id)

GO

CREATE TABLE accounts

(

 account_no INT NOT NULL

,customer_no INT NOT NULL

,branch_no INT NOT NULL

,balance MONEY NOT NULL

,account_notes CHAR(1800) NOT NULL

,CONSTRAINT pk_accounts PRIMARY KEY CLUSTERED(account_no)

,CONSTRAINT fk_accounts_customers FOREIGN

 KEY(customer_no) REFERENCES customers

,CONSTRAINT fk_accounts_branches FOREIGN KEY(branch_no)

 REFERENCES branches

)

GO

CREATE NONCLUSTERED INDEX fkx_accounts_customers ON

 accounts(customer_no)

GO

CREATE NONCLUSTERED INDEX fkx_accounts_branches ON

 accounts(branch_no)

GO

--

-- INSERT THE CUSTOMERS AND ACCOUNTS TABLE

--

BEGIN TRAN

INSERT into region (region_id,region,population,area)
VALUES(1,'Africa',789548670,26780325)

INSERT into region (region_id,region,population,area)
VALUES(2,'Asia',47382633,657741)

INSERT into region (region_id,region,population,area)
VALUES(3,'Australasia',24340222,7886602)

INSERT into region (region_id,region,population,area)
VALUES(4,'Caribbean',40417697,268857)

INSERT into region (region_id,region,population,area)
VALUES(5,'Central America',142653392,2360325)

INSERT into region (region_id,region,population,area)
VALUES(6,'Europe',488674441,4583335)

Appendix 451

Appendix B

INSERT into region (region_id,region,population,area)
VALUES(7,'Far East',2100636517,15357441)

INSERT into region (region_id,region,population,area)
VALUES(8,'Middle East',294625718,6798768)

INSERT into region (region_id,region,population,area)
VALUES(9,'Near East',1499157105,4721322)

INSERT into region (region_id,region,population,area)
VALUES(10,'North America',331599508,18729272)

INSERT into region (region_id,region,population,area)
VALUES(11,'Oceania',9133256,536238)

INSERT into region (region_id,region,population,area)
VALUES(12,'Russian Federation',258037209,21237500)

INSERT into region (region_id,region,population,area)
VALUES(13,'South America',375489788,17545171)

COMMIT TRAN

BEGIN TRAN

INSERT into country
(COUNTRY_ID,REGION_ID,COUNTRY,CODE,POPULATION,AREA,FXCODE,CUR
RENCY,RATE)
VALUES(1,1,'Algeria','AG',32930091,2381741,'DZD','Algeria
Dinars',0)

INSERT into country
(COUNTRY_ID,REGION_ID,COUNTRY,CODE,POPULATION,AREA,FXCODE,CUR
RENCY,RATE)
VALUES(2,1,'Angola','AO',12127071,1246699,'AOA','Kwanza',0)

INSERT into country
(COUNTRY_ID,REGION_ID,COUNTRY,CODE,POPULATION,AREA,FXCODE,CUR
RENCY,RATE) VALUES(3,1,'Benin','BN',7862944,110619,'','',0)

INSERT into country
(COUNTRY_ID,REGION_ID,COUNTRY,CODE,POPULATION,AREA,FXCODE,CUR
RENCY,RATE)
VALUES(4,1,'Botswana','BC',1639833,585371,'BWP','Pulas',0)

INSERT into country
(COUNTRY_ID,REGION_ID,COUNTRY,CODE,POPULATION,AREA,FXCODE,CUR
RENCY,RATE) VALUES(5,1,'Burkina
Faso','UV',13902972,273799,'','',0)

INSERT into country
(COUNTRY_ID,REGION_ID,COUNTRY,CODE,POPULATION,AREA,FXCODE,CUR
RENCY,RATE)
VALUES(6,1,'Burundi','BY',8090068,25649,'BIF','Francs',0)

INSERT into country
(COUNTRY_ID,REGION_ID,COUNTRY,CODE,POPULATION,AREA,FXCODE,CUR
RENCY,RATE) VALUES(7,1,'Central African
Republic','CT',4303356,622980,'','',0)

452 Appendix

INSERT into country
(COUNTRY_ID,REGION_ID,COUNTRY,CODE,POPULATION,AREA,FXCODE,CUR
RENCY,RATE) VALUES(8,1,'Congo','CG',62660551,2267599,'','',0)

INSERT into country
(COUNTRY_ID,REGION_ID,COUNTRY,CODE,POPULATION,AREA,FXCODE,CUR
RENCY,RATE)
VALUES(9,1,'Djibouti','DJ',486530,21979,'DJF','Francs',0)

INSERT into country
(COUNTRY_ID,REGION_ID,COUNTRY,CODE,POPULATION,AREA,FXCODE,CUR
RENCY,RATE) VALUES(10,1,'Equatorial
Guinea','EK',540109,28050,'','',0)

INSERT into country
(COUNTRY_ID,REGION_ID,COUNTRY,CODE,POPULATION,AREA,FXCODE,CUR
RENCY,RATE)
VALUES(11,1,'Ethiopia','ET',74777981,1119683,'ETB','Birr',0)

INSERT into country
(COUNTRY_ID,REGION_ID,COUNTRY,CODE,POPULATION,AREA,FXCODE,CUR
RENCY,RATE) VALUES(12,1,'Gabon','GB',1424906,257669,'','',0)

INSERT into country
(COUNTRY_ID,REGION_ID,COUNTRY,CODE,POPULATION,AREA,FXCODE,CUR
RENCY,RATE)
VALUES(13,1,'Gambia','GA',0,10000,'GMD','Dalasi',0)

INSERT into country
(COUNTRY_ID,REGION_ID,COUNTRY,CODE,POPULATION,AREA,FXCODE,CUR
RENCY,RATE)
VALUES(14,1,'Ghana','GH',22409572,230020,'GHC','Cedis',0)

INSERT into country
(COUNTRY_ID,REGION_ID,COUNTRY,CODE,POPULATION,AREA,FXCODE,CUR
RENCY,RATE)
VALUES(15,1,'Guinea','GV',9690222,245861,'GNF','Francs',0)

INSERT into country
(COUNTRY_ID,REGION_ID,COUNTRY,CODE,POPULATION,AREA,FXCODE,CUR
RENCY,RATE) VALUES(16,1,'Guinea-
Bissau','PU',1442029,28000,'','',0)

INSERT into country
(COUNTRY_ID,REGION_ID,COUNTRY,CODE,POPULATION,AREA,FXCODE,CUR
RENCY,RATE) VALUES(17,1,'Ivory Coast','IY',0,0,'','',0)

INSERT into country
(COUNTRY_ID,REGION_ID,COUNTRY,CODE,POPULATION,AREA,FXCODE,CUR
RENCY,RATE)
VALUES(18,1,'Kenya','KE',34707817,569251,'KES','Shillings',0)

INSERT into country
(COUNTRY_ID,REGION_ID,COUNTRY,CODE,POPULATION,AREA,FXCODE,CUR
RENCY,RATE)
VALUES(19,1,'Liberia','LI',3042004,96320,'LRD','Dollars',0)

INSERT into country
(COUNTRY_ID,REGION_ID,COUNTRY,CODE,POPULATION,AREA,FXCODE,CUR

Appendix 453

Appendix B

RENCY,RATE)
VALUES(20,1,'Libya','LY',5900754,1759540,'LYD','Dinars',0)

INSERT into country
(COUNTRY_ID,REGION_ID,COUNTRY,CODE,POPULATION,AREA,FXCODE,CUR
RENCY,RATE)
VALUES(21,1,'Madagascar','MA',18595469,581540,'MGA','Ariary',
0)

INSERT into country
(COUNTRY_ID,REGION_ID,COUNTRY,CODE,POPULATION,AREA,FXCODE,CUR
RENCY,RATE)
VALUES(22,1,'Malawi','MI',13013926,94079,'MWK','Kwachas',0)

INSERT into country
(COUNTRY_ID,REGION_ID,COUNTRY,CODE,POPULATION,AREA,FXCODE,CUR
RENCY,RATE) VALUES(23,1,'Mali','ML',11716829,1219999,'','',0)

INSERT into country
(COUNTRY_ID,REGION_ID,COUNTRY,CODE,POPULATION,AREA,FXCODE,CUR
RENCY,RATE)
VALUES(24,1,'Mauritania','MR',3177388,1030400,'MRO','Ouguiyas
',0)

INSERT into country
(COUNTRY_ID,REGION_ID,COUNTRY,CODE,POPULATION,AREA,FXCODE,CUR
RENCY,RATE)
VALUES(25,1,'Mauritius','MP',1240827,1849,'MUR','Rupees',0)

INSERT into country
(COUNTRY_ID,REGION_ID,COUNTRY,CODE,POPULATION,AREA,FXCODE,CUR
RENCY,RATE)
VALUES(26,1,'Morocco','MO',33241259,446301,'MAD','Dirhams',0)

INSERT into country
(COUNTRY_ID,REGION_ID,COUNTRY,CODE,POPULATION,AREA,FXCODE,CUR
RENCY,RATE)
VALUES(27,1,'Mozambique','MZ',19686505,784089,'MZM','Meticais
',0)

INSERT into country
(COUNTRY_ID,REGION_ID,COUNTRY,CODE,POPULATION,AREA,FXCODE,CUR
RENCY,RATE)
VALUES(28,1,'Namibia','WA',2044147,823291,'NAD','Dollars',0)

INSERT into country
(COUNTRY_ID,REGION_ID,COUNTRY,CODE,POPULATION,AREA,FXCODE,CUR
RENCY,RATE)
VALUES(29,1,'Niger','NG',12525094,1266699,'','',0)

INSERT into country
(COUNTRY_ID,REGION_ID,COUNTRY,CODE,POPULATION,AREA,FXCODE,CUR
RENCY,RATE)
VALUES(30,1,'Nigeria','NI',131859731,910771,'NGN','Nairas',0)

INSERT into country
(COUNTRY_ID,REGION_ID,COUNTRY,CODE,POPULATION,AREA,FXCODE,CUR
RENCY,RATE)

454 Appendix

VALUES(31,1,'Rwanda','RW',8648248,24949,'RWF','Rwanda
Francs',0)

INSERT into country
(COUNTRY_ID,REGION_ID,COUNTRY,CODE,POPULATION,AREA,FXCODE,CUR
RENCY,RATE)
VALUES(32,1,'Senegal','SG',11987121,191999,'','',0)

INSERT into country
(COUNTRY_ID,REGION_ID,COUNTRY,CODE,POPULATION,AREA,FXCODE,CUR
RENCY,RATE) VALUES(33,1,'Sierra
Leone','SL',6005250,71621,'SLL','Leones',0)

INSERT into country
(COUNTRY_ID,REGION_ID,COUNTRY,CODE,POPULATION,AREA,FXCODE,CUR
RENCY,RATE)
VALUES(34,1,'Somalia','SO',8863338,627339,'SOS','Shillings',0
)

INSERT into country
(COUNTRY_ID,REGION_ID,COUNTRY,CODE,POPULATION,AREA,FXCODE,CUR
RENCY,RATE) VALUES(35,1,'South
Africa','SF',44187637,1221040,'ZAR','Rand',6.2225)

INSERT into country
(COUNTRY_ID,REGION_ID,COUNTRY,CODE,POPULATION,AREA,FXCODE,CUR
RENCY,RATE)
VALUES(36,1,'Sudan','SU',41236378,2376001,'SDD','Dinars',0)

INSERT into country
(COUNTRY_ID,REGION_ID,COUNTRY,CODE,POPULATION,AREA,FXCODE,CUR
RENCY,RATE)
VALUES(37,1,'Swaziland','WZ',1136334,17200,'SZL','Emalangeni'
,0)

INSERT into country
(COUNTRY_ID,REGION_ID,COUNTRY,CODE,POPULATION,AREA,FXCODE,CUR
RENCY,RATE)
VALUES(38,1,'Tanzania','TZ',37445392,886039,'TZS','Shillings'
,0)

INSERT into country
(COUNTRY_ID,REGION_ID,COUNTRY,CODE,POPULATION,AREA,FXCODE,CUR
RENCY,RATE) VALUES(39,1,'Togo','TO',5548702,54390,'','',0)

INSERT into country
(COUNTRY_ID,REGION_ID,COUNTRY,CODE,POPULATION,AREA,FXCODE,CUR
RENCY,RATE)
VALUES(40,1,'Tunisia','TS',10175014,155361,'TND','Dinars',0)

INSERT into country
(COUNTRY_ID,REGION_ID,COUNTRY,CODE,POPULATION,AREA,FXCODE,CUR
RENCY,RATE)
VALUES(41,1,'Uganda','UG',28195754,199710,'UGX','Shillings',0
)

Appendix 455

Appendix B

INSERT into country
(COUNTRY_ID,REGION_ID,COUNTRY,CODE,POPULATION,AREA,FXCODE,CUR
RENCY,RATE) VALUES(42,1,'Zaire','ZE',0,0,'','',0)

INSERT into country
(COUNTRY_ID,REGION_ID,COUNTRY,CODE,POPULATION,AREA,FXCODE,CUR
RENCY,RATE)
VALUES(43,1,'Zambia','ZA',11502010,740719,'ZMK','Kwacha',0)

INSERT into country
(COUNTRY_ID,REGION_ID,COUNTRY,CODE,POPULATION,AREA,FXCODE,CUR
RENCY,RATE)
VALUES(44,1,'Zimbabwe','ZI',12236805,386669,'ZWD','Zimbabwe
Dollars',0)

INSERT into country
(COUNTRY_ID,REGION_ID,COUNTRY,CODE,POPULATION,AREA,FXCODE,CUR
RENCY,RATE) VALUES(45,2,'Burma','BM',47382633,657741,'','',0)

INSERT into country
(COUNTRY_ID,REGION_ID,COUNTRY,CODE,POPULATION,AREA,FXCODE,CUR
RENCY,RATE)
VALUES(46,3,'Australia','AS',20264082,7617931,'AUD','Dollars'
,1.30141)

INSERT into country
(COUNTRY_ID,REGION_ID,COUNTRY,CODE,POPULATION,AREA,FXCODE,CUR
RENCY,RATE) VALUES(47,3,'New
Zealand','NZ',4076140,268671,'NZD','Dollars',1.42369)

INSERT into country
(COUNTRY_ID,REGION_ID,COUNTRY,CODE,POPULATION,AREA,FXCODE,CUR
RENCY,RATE)
VALUES(48,4,'Bahamas','BF',0,10070,'BSD','Dollars',0)

INSERT into country
(COUNTRY_ID,REGION_ID,COUNTRY,CODE,POPULATION,AREA,FXCODE,CUR
RENCY,RATE)
VALUES(49,4,'Barbados','BB',279912,430,'BBD','Dollars',0)

INSERT into country
(COUNTRY_ID,REGION_ID,COUNTRY,CODE,POPULATION,AREA,FXCODE,CUR
RENCY,RATE)
VALUES(50,4,'Bermuda','BD',65773,49,'BMD','Dollars',0)

INSERT into country
(COUNTRY_ID,REGION_ID,COUNTRY,CODE,POPULATION,AREA,FXCODE,CUR
RENCY,RATE) VALUES(51,4,'Costa
Rica','CS',4075261,50660,'CRC','Colones',0)

INSERT into country
(COUNTRY_ID,REGION_ID,COUNTRY,CODE,POPULATION,AREA,FXCODE,CUR
RENCY,RATE)
VALUES(52,4,'Cuba','CU',11382820,110860,'CUP','Pesos',0)

INSERT into country
(COUNTRY_ID,REGION_ID,COUNTRY,CODE,POPULATION,AREA,FXCODE,CUR

456 Appendix

RENCY,RATE) VALUES(53,4,'Dominican
Republic','DR',9183984,48381,'DOP','Pesos',0)

INSERT into country
(COUNTRY_ID,REGION_ID,COUNTRY,CODE,POPULATION,AREA,FXCODE,CUR
RENCY,RATE)
VALUES(54,4,'Haiti','HA',8308504,27560,'HTG','Gourdes',0)

INSERT into country
(COUNTRY_ID,REGION_ID,COUNTRY,CODE,POPULATION,AREA,FXCODE,CUR
RENCY,RATE)
VALUES(55,4,'Jamaica','JM',2758124,10829,'JMD','Dollars',0)

INSERT into country
(COUNTRY_ID,REGION_ID,COUNTRY,CODE,POPULATION,AREA,FXCODE,CUR
RENCY,RATE)
VALUES(56,4,'Martinique','MB',436131,1059,'','',0)

INSERT into country
(COUNTRY_ID,REGION_ID,COUNTRY,CODE,POPULATION,AREA,FXCODE,CUR
RENCY,RATE) VALUES(57,4,'Puerto
Rico','RQ',3927188,8959,'','',0)

INSERT into country
(COUNTRY_ID,REGION_ID,COUNTRY,CODE,POPULATION,AREA,FXCODE,CUR
RENCY,RATE) VALUES(58,5,'El
Salvador','ES',6822378,20720,'SVC','Colones',0)

INSERT into country
(COUNTRY_ID,REGION_ID,COUNTRY,CODE,POPULATION,AREA,FXCODE,CUR
RENCY,RATE)
VALUES(59,5,'Guatemala','GT',12293545,108430,'GTQ','Quetzales
',0)

INSERT into country
(COUNTRY_ID,REGION_ID,COUNTRY,CODE,POPULATION,AREA,FXCODE,CUR
RENCY,RATE)
VALUES(60,5,'Honduras','HO',7326496,111891,'HNL','Lempiras',0
)

INSERT into country
(COUNTRY_ID,REGION_ID,COUNTRY,CODE,POPULATION,AREA,FXCODE,CUR
RENCY,RATE)
VALUES(61,5,'Mexico','MX',107449525,1923039,'MXN','Pesos',11.
19)

INSERT into country
(COUNTRY_ID,REGION_ID,COUNTRY,CODE,POPULATION,AREA,FXCODE,CUR
RENCY,RATE)
VALUES(62,5,'Nicaragua','NU',5570129,120254,'NIO','Cordobas',
0)

INSERT into country
(COUNTRY_ID,REGION_ID,COUNTRY,CODE,POPULATION,AREA,FXCODE,CUR
RENCY,RATE)
VALUES(63,5,'Panama','PM',3191319,75991,'PAB','Balboa',0)

Appendix 457

Appendix B

INSERT into country
(COUNTRY_ID,REGION_ID,COUNTRY,CODE,POPULATION,AREA,FXCODE,CUR
RENCY,RATE)
VALUES(64,6,'Albania','AL',3581655,27400,'ALL','Leke',0)

INSERT into country
(COUNTRY_ID,REGION_ID,COUNTRY,CODE,POPULATION,AREA,FXCODE,CUR
RENCY,RATE) VALUES(65,6,'Austria','AU',8192880,82730,'','',0)

INSERT into country
(COUNTRY_ID,REGION_ID,COUNTRY,CODE,POPULATION,AREA,FXCODE,CUR
RENCY,RATE)
VALUES(66,6,'Belgium','BE',10379067,30230,'','',0)

INSERT into country
(COUNTRY_ID,REGION_ID,COUNTRY,CODE,POPULATION,AREA,FXCODE,CUR
RENCY,RATE)
VALUES(67,6,'Bulgaria','BU',7385367,110549,'BGN','Leva',0)

INSERT into country
(COUNTRY_ID,REGION_ID,COUNTRY,CODE,POPULATION,AREA,FXCODE,CUR
RENCY,RATE)
VALUES(68,6,'Cyprus','CY',784301,9241,'CYP','Pounds',0)

INSERT into country
(COUNTRY_ID,REGION_ID,COUNTRY,CODE,POPULATION,AREA,FXCODE,CUR
RENCY,RATE) VALUES(69,6,'Czech
Republic','EZ',10235455,78645,'CZK','Koruny',0)

INSERT into country
(COUNTRY_ID,REGION_ID,COUNTRY,CODE,POPULATION,AREA,FXCODE,CUR
RENCY,RATE)
VALUES(70,6,'Denmark','DA',5450661,42370,'DKK','Kroner',5.815
7)

INSERT into country
(COUNTRY_ID,REGION_ID,COUNTRY,CODE,POPULATION,AREA,FXCODE,CUR
RENCY,RATE)
VALUES(71,6,'Finland','FI',5231372,305470,'','',0)

INSERT into country
(COUNTRY_ID,REGION_ID,COUNTRY,CODE,POPULATION,AREA,FXCODE,CUR
RENCY,RATE)
VALUES(72,6,'France','FR',60876136,545630,'','',0)

INSERT into country
(COUNTRY_ID,REGION_ID,COUNTRY,CODE,POPULATION,AREA,FXCODE,CUR
RENCY,RATE) VALUES(73,6,'Germany','GM',82422299,350261,'DM
','Deutsche Marks',1.5)

INSERT into country
(COUNTRY_ID,REGION_ID,COUNTRY,CODE,POPULATION,AREA,FXCODE,CUR
RENCY,RATE)
VALUES(74,6,'Greece','GR',10688058,130800,'','',0)

INSERT into country
(COUNTRY_ID,REGION_ID,COUNTRY,CODE,POPULATION,AREA,FXCODE,CUR

458 Appendix

RENCY,RATE)
VALUES(75,6,'Hungary','HU',9981334,92341,'HUF','Forint',0)

INSERT into country
(COUNTRY_ID,REGION_ID,COUNTRY,CODE,POPULATION,AREA,FXCODE,CUR
RENCY,RATE)
VALUES(76,6,'Iceland','IC',299388,100251,'ISK','Kronur',0)

INSERT into country
(COUNTRY_ID,REGION_ID,COUNTRY,CODE,POPULATION,AREA,FXCODE,CUR
RENCY,RATE) VALUES(77,6,'Ireland','EI',4062235,68889,'','',0)

INSERT into country
(COUNTRY_ID,REGION_ID,COUNTRY,CODE,POPULATION,AREA,FXCODE,CUR
RENCY,RATE) VALUES(78,6,'Italy','IT',58133509,294019,'','',0)

INSERT into country
(COUNTRY_ID,REGION_ID,COUNTRY,CODE,POPULATION,AREA,FXCODE,CUR
RENCY,RATE)
VALUES(79,6,'Luxembourg','LU',474413,2585,'','',0)

INSERT into country
(COUNTRY_ID,REGION_ID,COUNTRY,CODE,POPULATION,AREA,FXCODE,CUR
RENCY,RATE)
VALUES(80,6,'Malta','MT',400214,321,'MTL','Liri',0)

INSERT into country
(COUNTRY_ID,REGION_ID,COUNTRY,CODE,POPULATION,AREA,FXCODE,CUR
RENCY,RATE)
VALUES(81,6,'Netherlands','NL',16491461,33939,'','',0)

INSERT into country
(COUNTRY_ID,REGION_ID,COUNTRY,CODE,POPULATION,AREA,FXCODE,CUR
RENCY,RATE) VALUES(82,6,'Northern Ireland','NR',0,0,'','',0)

INSERT into country
(COUNTRY_ID,REGION_ID,COUNTRY,CODE,POPULATION,AREA,FXCODE,CUR
RENCY,RATE)
VALUES(83,6,'Norway','NO',4610820,307860,'NOK','Krone',6.5412
)

INSERT into country
(COUNTRY_ID,REGION_ID,COUNTRY,CODE,POPULATION,AREA,FXCODE,CUR
RENCY,RATE)
VALUES(84,6,'Poland','PL',38536869,304509,'PLN','Zlotych',0)

INSERT into country
(COUNTRY_ID,REGION_ID,COUNTRY,CODE,POPULATION,AREA,FXCODE,CUR
RENCY,RATE)
VALUES(85,6,'Portugal','PO',10605870,91639,'','',0)

INSERT into country
(COUNTRY_ID,REGION_ID,COUNTRY,CODE,POPULATION,AREA,FXCODE,CUR
RENCY,RATE)
VALUES(86,6,'Romania','RO',22303552,230339,'ROL','Lei',0)

INSERT into country
(COUNTRY_ID,REGION_ID,COUNTRY,CODE,POPULATION,AREA,FXCODE,CUR
RENCY,RATE) VALUES(87,6,'Scotland','SC',0,0,'','',0)

Appendix 459

Appendix B

INSERT into country
(COUNTRY_ID,REGION_ID,COUNTRY,CODE,POPULATION,AREA,FXCODE,CUR
RENCY,RATE) VALUES(88,6,'Slovak
Republic','LO',0,48800,'','',0)

INSERT into country
(COUNTRY_ID,REGION_ID,COUNTRY,CODE,POPULATION,AREA,FXCODE,CUR
RENCY,RATE) VALUES(89,6,'Spain','SP',40397842,499401,'','',0)

INSERT into country
(COUNTRY_ID,REGION_ID,COUNTRY,CODE,POPULATION,AREA,FXCODE,CUR
RENCY,RATE)
VALUES(90,6,'Sweden','SW',9016596,411621,'SEK','Kronor',7.087
)

INSERT into country
(COUNTRY_ID,REGION_ID,COUNTRY,CODE,POPULATION,AREA,FXCODE,CUR
RENCY,RATE)
VALUES(91,6,'Switzerland','SZ',7523934,39769,'CHF','Francs',1
.217)

INSERT into country
(COUNTRY_ID,REGION_ID,COUNTRY,CODE,POPULATION,AREA,FXCODE,CUR
RENCY,RATE) VALUES(92,6,'United
Kingdom','UK',60609153,241590,'GBP','Pounds',.538155)

INSERT into country
(COUNTRY_ID,REGION_ID,COUNTRY,CODE,POPULATION,AREA,FXCODE,CUR
RENCY,RATE) VALUES(93,6,'Yugoslavia','YI',0,102136,'','',0)

INSERT into country
(COUNTRY_ID,REGION_ID,COUNTRY,CODE,POPULATION,AREA,FXCODE,CUR
RENCY,RATE)
VALUES(94,7,'Cambodia','CB',13881427,176519,'KHR','Riels',0)

INSERT into country
(COUNTRY_ID,REGION_ID,COUNTRY,CODE,POPULATION,AREA,FXCODE,CUR
RENCY,RATE)
VALUES(95,7,'China','CH',1313973713,9326411,'CNY','Yuan
Renminbi',8.2765)

INSERT into country
(COUNTRY_ID,REGION_ID,COUNTRY,CODE,POPULATION,AREA,FXCODE,CUR
RENCY,RATE)
VALUES(96,7,'Indonesia','ID',245452739,1811831,'IDR','Rupiahs
',0)

INSERT into country
(COUNTRY_ID,REGION_ID,COUNTRY,CODE,POPULATION,AREA,FXCODE,CUR
RENCY,RATE)
VALUES(97,7,'Japan','JA',127463611,394744,'JPY','Yen',105.84)

INSERT into country
(COUNTRY_ID,REGION_ID,COUNTRY,CODE,POPULATION,AREA,FXCODE,CUR
RENCY,RATE)
VALUES(98,7,'Laos','LA',6368481,230800,'LAK','Kips',0)

460 Appendix

INSERT into country
(COUNTRY_ID,REGION_ID,COUNTRY,CODE,POPULATION,AREA,FXCODE,CUR
RENCY,RATE)
VALUES(99,7,'Malaysia','MY',24385858,328549,'MYR','Ringgits',
3.8)

INSERT into country
(COUNTRY_ID,REGION_ID,COUNTRY,CODE,POPULATION,AREA,FXCODE,CUR
RENCY,RATE)
VALUES(100,7,'Mongolia','MG',2832224,1565000,'MNT','Tugriks',
0)

INSERT into country
(COUNTRY_ID,REGION_ID,COUNTRY,CODE,POPULATION,AREA,FXCODE,CUR
RENCY,RATE)
VALUES(101,7,'Nepal','NP',28287147,136801,'NPR','Nepal
Rupees',0)

INSERT into country
(COUNTRY_ID,REGION_ID,COUNTRY,CODE,POPULATION,AREA,FXCODE,CUR
RENCY,RATE) VALUES(102,7,'North
Korea','KN',23113019,120409,'','',0)

INSERT into country
(COUNTRY_ID,REGION_ID,COUNTRY,CODE,POPULATION,AREA,FXCODE,CUR
RENCY,RATE)
VALUES(103,7,'Philippines','RP',89468677,298171,'PHP','Pesos'
,0)

INSERT into country
(COUNTRY_ID,REGION_ID,COUNTRY,CODE,POPULATION,AREA,FXCODE,CUR
RENCY,RATE)
VALUES(104,7,'Singapore','SN',4492150,624,'SGD','Dollars',1.6
491)

INSERT into country
(COUNTRY_ID,REGION_ID,COUNTRY,CODE,POPULATION,AREA,FXCODE,CUR
RENCY,RATE)
VALUES(105,7,'Taiwan','TW',23036087,32261,'TWD','New
Dollars',31.79)

INSERT into country
(COUNTRY_ID,REGION_ID,COUNTRY,CODE,POPULATION,AREA,FXCODE,CUR
RENCY,RATE)
VALUES(106,7,'Thailand','TH',64631595,511771,'THB','Baht',38.
58)

INSERT into country
(COUNTRY_ID,REGION_ID,COUNTRY,CODE,POPULATION,AREA,FXCODE,CUR
RENCY,RATE)
VALUES(107,7,'Vietnam','VM',84402966,325361,'','',0)

INSERT into country
(COUNTRY_ID,REGION_ID,COUNTRY,CODE,POPULATION,AREA,FXCODE,CUR
RENCY,RATE)

Appendix 461

Appendix B

VALUES(108,8,'Afghanistan','AF',31056997,647500,'AFA','Afghan
is',0)

INSERT into country
(COUNTRY_ID,REGION_ID,COUNTRY,CODE,POPULATION,AREA,FXCODE,CUR
RENCY,RATE)
VALUES(109,8,'Bahrain','BA',698585,619,'BHD','Dinars',0)

INSERT into country
(COUNTRY_ID,REGION_ID,COUNTRY,CODE,POPULATION,AREA,FXCODE,CUR
RENCY,RATE)
VALUES(110,8,'Egypt','EG',78887007,995451,'EGP','Pounds',0)

INSERT into country
(COUNTRY_ID,REGION_ID,COUNTRY,CODE,POPULATION,AREA,FXCODE,CUR
RENCY,RATE)
VALUES(111,8,'Iran','IR',68688433,1635999,'IRR','Rials',0)

INSERT into country
(COUNTRY_ID,REGION_ID,COUNTRY,CODE,POPULATION,AREA,FXCODE,CUR
RENCY,RATE)
VALUES(112,8,'Iraq','IZ',26783383,433970,'IQD','Dinars',0)

INSERT into country
(COUNTRY_ID,REGION_ID,COUNTRY,CODE,POPULATION,AREA,FXCODE,CUR
RENCY,RATE)
VALUES(113,8,'Israel','IS',6352117,20329,'ILS','New
Shekels',0)

INSERT into country
(COUNTRY_ID,REGION_ID,COUNTRY,CODE,POPULATION,AREA,FXCODE,CUR
RENCY,RATE)
VALUES(114,8,'Jordan','JO',5906760,91541,'JOD','Dinars',0)

INSERT into country
(COUNTRY_ID,REGION_ID,COUNTRY,CODE,POPULATION,AREA,FXCODE,CUR
RENCY,RATE)
VALUES(115,8,'Kuwait','KU',2418393,17819,'KWD','Dinars',0)

INSERT into country
(COUNTRY_ID,REGION_ID,COUNTRY,CODE,POPULATION,AREA,FXCODE,CUR
RENCY,RATE)
VALUES(116,8,'Lebanon','LE',3874050,10230,'LBP','Pounds',0)

INSERT into country
(COUNTRY_ID,REGION_ID,COUNTRY,CODE,POPULATION,AREA,FXCODE,CUR
RENCY,RATE) VALUES(117,8,'Saudi
Arabia','SA',27019731,2149690,'SAR','Riyals',0)

INSERT into country
(COUNTRY_ID,REGION_ID,COUNTRY,CODE,POPULATION,AREA,FXCODE,CUR
RENCY,RATE)
VALUES(118,8,'Syria','SY',18881361,184051,'SYP','Pounds',0)

INSERT into country
(COUNTRY_ID,REGION_ID,COUNTRY,CODE,POPULATION,AREA,FXCODE,CUR
RENCY,RATE)
VALUES(119,8,'Yemen','YM',21456188,527969,'YER','Rials',0)

462 Appendix

INSERT into country
(COUNTRY_ID,REGION_ID,COUNTRY,CODE,POPULATION,AREA,FXCODE,CUR
RENCY,RATE)
VALUES(120,9,'Bangladesh','BG',147365352,133911,'BDT','Taka',
0)

INSERT into country
(COUNTRY_ID,REGION_ID,COUNTRY,CODE,POPULATION,AREA,FXCODE,CUR
RENCY,RATE)
VALUES(121,9,'India','IN',1095351995,2973190,'INR','Rupees',4
3.62)

INSERT into country
(COUNTRY_ID,REGION_ID,COUNTRY,CODE,POPULATION,AREA,FXCODE,CUR
RENCY,RATE)
VALUES(122,9,'Pakistan','PK',165803560,778720,'PKR','Rupees',
0)

INSERT into country
(COUNTRY_ID,REGION_ID,COUNTRY,CODE,POPULATION,AREA,FXCODE,CUR
RENCY,RATE) VALUES(123,9,'Sri
Lanka','CE',20222240,64740,'LKR','Rupees',99.4)

INSERT into country
(COUNTRY_ID,REGION_ID,COUNTRY,CODE,POPULATION,AREA,FXCODE,CUR
RENCY,RATE)
VALUES(124,9,'Turkey','TU',70413958,770761,'TRY','New
Lira',0)

INSERT into country
(COUNTRY_ID,REGION_ID,COUNTRY,CODE,POPULATION,AREA,FXCODE,CUR
RENCY,RATE)
VALUES(125,10,'Canada','CA',33098932,9220970,'CAD','Dollars',
1.2511)

INSERT into country
(COUNTRY_ID,REGION_ID,COUNTRY,CODE,POPULATION,AREA,FXCODE,CUR
RENCY,RATE)
VALUES(126,10,'Greenland','GL',56361,341701,'','',0)

INSERT into country
(COUNTRY_ID,REGION_ID,COUNTRY,CODE,POPULATION,AREA,FXCODE,CUR
RENCY,RATE) VALUES(127,10,'United
States','US',298444215,9166601,'','',0)

INSERT into country
(COUNTRY_ID,REGION_ID,COUNTRY,CODE,POPULATION,AREA,FXCODE,CUR
RENCY,RATE) VALUES(128,11,'American
Samoa','AQ',57794,199,'','',0)

INSERT into country
(COUNTRY_ID,REGION_ID,COUNTRY,CODE,POPULATION,AREA,FXCODE,CUR
RENCY,RATE)
VALUES(129,11,'Bhutan','BT',2279723,47001,'BTN','Ngultrum',0)

Appendix 463

Appendix B

INSERT into country
(COUNTRY_ID,REGION_ID,COUNTRY,CODE,POPULATION,AREA,FXCODE,CUR
RENCY,RATE) VALUES(130,11,'Comoros Islands','CD',0,0,'','',0)

INSERT into country
(COUNTRY_ID,REGION_ID,COUNTRY,CODE,POPULATION,AREA,FXCODE,CUR
RENCY,RATE) VALUES(131,11,'Falkland
Islands','FS',0,0,'','',0)

INSERT into country
(COUNTRY_ID,REGION_ID,COUNTRY,CODE,POPULATION,AREA,FXCODE,CUR
RENCY,RATE)
VALUES(132,11,'Fiji','FJ',905949,18270,'FJD','Dollars',0)

INSERT into country
(COUNTRY_ID,REGION_ID,COUNTRY,CODE,POPULATION,AREA,FXCODE,CUR
RENCY,RATE) VALUES(133,11,'Maldive
Islands','MV',0,300,'','',0)

INSERT into country
(COUNTRY_ID,REGION_ID,COUNTRY,CODE,POPULATION,AREA,FXCODE,CUR
RENCY,RATE) VALUES(134,11,'New
Caledonia','NC',219246,18759,'','',0)

INSERT into country
(COUNTRY_ID,REGION_ID,COUNTRY,CODE,POPULATION,AREA,FXCODE,CUR
RENCY,RATE) VALUES(135,11,'Oceania','OC',0,0,'','',0)

INSERT into country
(COUNTRY_ID,REGION_ID,COUNTRY,CODE,POPULATION,AREA,FXCODE,CUR
RENCY,RATE) VALUES(136,11,'Papua New
Guinea','PP',5670544,451709,'PGK','Kina',0)

INSERT into country
(COUNTRY_ID,REGION_ID,COUNTRY,CODE,POPULATION,AREA,FXCODE,CUR
RENCY,RATE)
VALUES(137,12,'Russia','RS',142893540,17075400,'RUB','Rubles'
,0)

INSERT into country
(COUNTRY_ID,REGION_ID,COUNTRY,CODE,POPULATION,AREA,FXCODE,CUR
RENCY,RATE)
VALUES(138,13,'Argentina','AR',39921833,2736690,'ARS','Pesos'
,0)

INSERT into country
(COUNTRY_ID,REGION_ID,COUNTRY,CODE,POPULATION,AREA,FXCODE,CUR
RENCY,RATE)
VALUES(139,13,'Belize','BH',287730,22800,'BZD','Dollars',0)

INSERT into country
(COUNTRY_ID,REGION_ID,COUNTRY,CODE,POPULATION,AREA,FXCODE,CUR
RENCY,RATE)
VALUES(140,13,'Bolivia','BL',8989046,1084389,'BOB','Boliviano
s',0)

INSERT into country
(COUNTRY_ID,REGION_ID,COUNTRY,CODE,POPULATION,AREA,FXCODE,CUR

464 Appendix

RENCY,RATE)
VALUES(141,13,'Brazil','BR',188078227,8456511,'BRL','Brazil
Real',2.6075)

INSERT into country
(COUNTRY_ID,REGION_ID,COUNTRY,CODE,POPULATION,AREA,FXCODE,CUR
RENCY,RATE)
VALUES(142,13,'Chile','CI',16134219,748800,'CLP','Pesos',0)

INSERT into country
(COUNTRY_ID,REGION_ID,COUNTRY,CODE,POPULATION,AREA,FXCODE,CUR
RENCY,RATE)
VALUES(143,13,'Colombia','CO',43593035,1038699,'COP','Pesos',
0)

INSERT into country
(COUNTRY_ID,REGION_ID,COUNTRY,CODE,POPULATION,AREA,FXCODE,CUR
RENCY,RATE)
VALUES(144,13,'Ecuador','EC',13547510,276840,'','',0)

INSERT into country
(COUNTRY_ID,REGION_ID,COUNTRY,CODE,POPULATION,AREA,FXCODE,CUR
RENCY,RATE) VALUES(145,13,'French
Guiana','FG',199509,89150,'','',0)

INSERT into country
(COUNTRY_ID,REGION_ID,COUNTRY,CODE,POPULATION,AREA,FXCODE,CUR
RENCY,RATE)
VALUES(146,13,'Guyana','GY',767245,196850,'GYD','Dollars',0)

INSERT into country
(COUNTRY_ID,REGION_ID,COUNTRY,CODE,POPULATION,AREA,FXCODE,CUR
RENCY,RATE)
VALUES(147,13,'Paraguay','PA',6506464,397301,'PYG','Guarani',
0)

INSERT into country
(COUNTRY_ID,REGION_ID,COUNTRY,CODE,POPULATION,AREA,FXCODE,CUR
RENCY,RATE)
VALUES(148,13,'Peru','PE',28302603,1279999,'PEN','Nuevos
Soles',0)

INSERT into country
(COUNTRY_ID,REGION_ID,COUNTRY,CODE,POPULATION,AREA,FXCODE,CUR
RENCY,RATE) VALUES(149,13,'Surinam','NS',0,161471,'','',0)

INSERT into country
(COUNTRY_ID,REGION_ID,COUNTRY,CODE,POPULATION,AREA,FXCODE,CUR
RENCY,RATE)
VALUES(150,13,'Uruguay','UY',3431932,173621,'UYU','Pesos',0)

INSERT into country
(COUNTRY_ID,REGION_ID,COUNTRY,CODE,POPULATION,AREA,FXCODE,CUR
RENCY,RATE)
VALUES(151,13,'Venezuela','VE',25730435,882050,'VEB','Bolivar
es',1915.2)

Appendix 465

Appendix B

INSERT into country
(COUNTRY_ID,REGION_ID,COUNTRY,CODE,POPULATION,AREA,FXCODE,CUR
RENCY,RATE)
VALUES(152,12,'Armenia','AM',2976372,29800,'','',0)

INSERT into country
(COUNTRY_ID,REGION_ID,COUNTRY,CODE,POPULATION,AREA,FXCODE,CUR
RENCY,RATE)
VALUES(153,12,'Azerbaijan','AJ',7961619,86600,'','',0)

INSERT into country
(COUNTRY_ID,REGION_ID,COUNTRY,CODE,POPULATION,AREA,FXCODE,CUR
RENCY,RATE) VALUES(154,12,'Belarus','BO',10293011,207600,'AB
','',0)

INSERT into country
(COUNTRY_ID,REGION_ID,COUNTRY,CODE,POPULATION,AREA,FXCODE,CUR
RENCY,RATE)
VALUES(155,1,'Cameroon','CM',17340702,469440,'','',0)

INSERT into country
(COUNTRY_ID,REGION_ID,COUNTRY,CODE,POPULATION,AREA,FXCODE,CUR
RENCY,RATE) VALUES(156,1,'Cote
Divoire','IV',0,318000,'','',0)

INSERT into country
(COUNTRY_ID,REGION_ID,COUNTRY,CODE,POPULATION,AREA,FXCODE,CUR
RENCY,RATE)
VALUES(157,12,'Georgia','GG',4661473,69700,'','',0)

INSERT into country
(COUNTRY_ID,REGION_ID,COUNTRY,CODE,POPULATION,AREA,FXCODE,CUR
RENCY,RATE)
VALUES(158,12,'Kazakhstan','KZ',15233244,2717300,'','',0)

INSERT into country
(COUNTRY_ID,REGION_ID,COUNTRY,CODE,POPULATION,AREA,FXCODE,CUR
RENCY,RATE) VALUES(159,7,'Myanmar','MM',0,0,'','',0)

INSERT into country
(COUNTRY_ID,REGION_ID,COUNTRY,CODE,POPULATION,AREA,FXCODE,CUR
RENCY,RATE) VALUES(160,8,'Palestinian
Territories','PT',0,0,'','',0)

INSERT into country
(COUNTRY_ID,REGION_ID,COUNTRY,CODE,POPULATION,AREA,FXCODE,CUR
RENCY,RATE) VALUES(161,6,'Serbia And
Montenegro','SM',0,0,'','',0)

INSERT into country
(COUNTRY_ID,REGION_ID,COUNTRY,CODE,POPULATION,AREA,FXCODE,CUR
RENCY,RATE) VALUES(162,7,'South
Korea','KS',48846823,98189,'','',0)

INSERT into country
(COUNTRY_ID,REGION_ID,COUNTRY,CODE,POPULATION,AREA,FXCODE,CUR
RENCY,RATE)
VALUES(163,12,'Ukraine','UP',46710816,603700,'','',0)

466 Appendix

INSERT into country
(COUNTRY_ID,REGION_ID,COUNTRY,CODE,POPULATION,AREA,FXCODE,CUR
RENCY,RATE) VALUES(164,8,'United Arab
Emirates','AE',2602713,83600,'','',0)

INSERT into country
(COUNTRY_ID,REGION_ID,COUNTRY,CODE,POPULATION,AREA,FXCODE,CUR
RENCY,RATE)
VALUES(165,12,'Uzbekistan','UZ',27307134,447400,'','',0)

COMMIT TRAN

BEGIN TRAN

INSERT into
branches(country_id,branch_no,branch_name,branch_address,mana
gers_name) VALUES (92, 1000,'Ropley','The High St, Ropley,
Hampshire','Ken Smith')

INSERT into
branches(country_id,branch_no,branch_name,branch_address,mana
gers_name) VALUES (92, 1001,'Epsom','The Main St, Epsom,
Surrey','Fred Stanley')

INSERT into
branches(country_id,branch_no,branch_name,branch_address,mana
gers_name) VALUES (92, 1002,'Chandlers','FordElm St,
Chandlers Ford, Hampshire','Lilian Jones')

INSERT into
branches(country_id,branch_no,branch_name,branch_address,mana
gers_name) VALUES (92, 1003,'Reading','Station St, Reading,
Berkshire','Bill Burns')

INSERT into
branches(country_id,branch_no,branch_name,branch_address,mana
gers_name) VALUES (92, 1004,'Bracknell','Oak Rd., Bracknell,
Berkshire','Pat Phillips')

INSERT into
branches(country_id,branch_no,branch_name,branch_address,mana
gers_name) VALUES (92, 1005,'Sandwich','West St., Sandwich,
Kent','Peter Hunt')

INSERT into
branches(country_id,branch_no,branch_name,branch_address,mana
gers_name) VALUES (92, 1006,'Poole','Water St., Poole,
Dorset','Andy James')

INSERT into
branches(country_id,branch_no,branch_name,branch_address,mana
gers_name) VALUES (92, 1007,'Gillingham','Church St.,
Gillingham, Dorset','Douglas Adams')

INSERT into
branches(country_id,branch_no,branch_name,branch_address,mana

Appendix 467

Appendix B

gers_name) VALUES (92, 1008,'Hastings','St. Helens Rd.,
Hastings, East Sussex','Bill Burrows')

INSERT into
branches(country_id,branch_no,branch_name,branch_address,mana
gers_name) VALUES (92, 1009,'Beech','Beech, Alton,
Hampshire','Margaret Smith')

INSERT into
branches(country_id,branch_no,branch_name,branch_address,mana
gers_name) VALUES (92, 1010,'Urmston','Urmston,
Manchester','Beryl Smith')

INSERT into
branches(country_id,branch_no,branch_name,branch_address,mana
gers_name) VALUES (92, 1011,'Epsom','The Main St, Epsom,
Surrey','Fred Stanley')

INSERT into
branches(country_id,branch_no,branch_name,branch_address,mana
gers_name) VALUES (92, 1012,'Chandlers','FordElm St,
Chandlers Ford, Hampshire','Lilian Jones')

INSERT into
branches(country_id,branch_no,branch_name,branch_address,mana
gers_name) VALUES (92, 1013,'Reading','Station St, Reading,
Berkshire','Bill Burns')

INSERT into
branches(country_id,branch_no,branch_name,branch_address,mana
gers_name) VALUES (92, 1014,'Bracknell','Oak Rd., Bracknell,
Berkshire','Pat Phillips')

INSERT into
branches(country_id,branch_no,branch_name,branch_address,mana
gers_name) VALUES (92, 1015,'Sandwich','West St., Sandwich,
Kent','Peter Hunt')

INSERT into
branches(country_id,branch_no,branch_name,branch_address,mana
gers_name) VALUES (92, 1016,'Poole','Water St., Poole,
Dorset','Andy James')

INSERT into
branches(country_id,branch_no,branch_name,branch_address,mana
gers_name) VALUES (92, 1017,'Gillingham','Church St.,
Gillingham, Dorset','Douglas Adams')

INSERT into
branches(country_id,branch_no,branch_name,branch_address,mana
gers_name) VALUES (92, 1018,'Hastings','St. Helens Rd.,
Hastings, East Sussex','Bill Burrows')

INSERT into
branches(country_id,branch_no,branch_name,branch_address,mana
gers_name) VALUES (92, 1019,'Beech','Beech, Alton,
Hampshire','Margaret Smith')

468 Appendix

INSERT into
branches(country_id,branch_no,branch_name,branch_address,mana
gers_name) VALUES (92, 1020,'Ropley','The High St, Ropley,
Hampshire','Ken Smith')

INSERT into
branches(country_id,branch_no,branch_name,branch_address,mana
gers_name) VALUES (92, 1021,'Epsom','The Main St, Epsom,
Surrey','Fred Stanley')

INSERT into
branches(country_id,branch_no,branch_name,branch_address,mana
gers_name) VALUES (92, 1022,'Chandlers','FordElm St,
Chandlers Ford, Hampshire','Lilian Jones')

INSERT into
branches(country_id,branch_no,branch_name,branch_address,mana
gers_name) VALUES (92, 1023,'Reading','Station St, Reading,
Berkshire','Bill Burns')

INSERT into
branches(country_id,branch_no,branch_name,branch_address,mana
gers_name) VALUES (92, 1024,'Bracknell','Oak Rd., Bracknell,
Berkshire','Pat Phillips')

INSERT into
branches(country_id,branch_no,branch_name,branch_address,mana
gers_name) VALUES (92, 1025,'Sandwich','West St., Sandwich,
Kent','Peter Hunt')

INSERT into
branches(country_id,branch_no,branch_name,branch_address,mana
gers_name) VALUES (92, 1026,'Poole','Water St., Poole,
Dorset','Andy James')

INSERT into
branches(country_id,branch_no,branch_name,branch_address,mana
gers_name) VALUES (92, 1027,'Gillingham','Church St.,
Gillingham, Dorset','Douglas Adams')

INSERT into
branches(country_id,branch_no,branch_name,branch_address,mana
gers_name) VALUES (92, 1028,'Hastings','St. Helens Rd.,
Hastings, East Sussex','Bill Burrows')

INSERT into
branches(country_id,branch_no,branch_name,branch_address,mana
gers_name) VALUES (92, 1029,'Beech','Beech, Alton,
Hampshire','Margaret Smith')

INSERT into
branches(country_id,branch_no,branch_name,branch_address,mana
gers_name) VALUES (92, 1030,'Urmston','Urmston,
Manchester','Beryl Smith')

INSERT into
branches(country_id,branch_no,branch_name,branch_address,mana

Appendix 469

Appendix B

gers_name) VALUES (92, 1031,'Epsom','The Main St, Epsom,
Surrey','Fred Stanley')

INSERT into
branches(country_id,branch_no,branch_name,branch_address,mana
gers_name) VALUES (92, 1032,'Chandlers','FordElm St,
Chandlers Ford, Hampshire','Lilian Jones')

INSERT into
branches(country_id,branch_no,branch_name,branch_address,mana
gers_name) VALUES (92, 1033,'Reading','Station St, Reading,
Berkshire','Bill Burns')

INSERT into
branches(country_id,branch_no,branch_name,branch_address,mana
gers_name) VALUES (92, 1034,'Bracknell','Oak Rd., Bracknell,
Berkshire','Pat Phillips')

INSERT into
branches(country_id,branch_no,branch_name,branch_address,mana
gers_name) VALUES (92, 1035,'Sandwich','West St., Sandwich,
Kent','Peter Hunt')

INSERT into
branches(country_id,branch_no,branch_name,branch_address,mana
gers_name) VALUES (92, 1036,'Poole','Water St., Poole,
Dorset','Andy James')

INSERT into
branches(country_id,branch_no,branch_name,branch_address,mana
gers_name) VALUES (92, 1037,'Gillingham','Church St.,
Gillingham, Dorset','Douglas Adams')

INSERT into
branches(country_id,branch_no,branch_name,branch_address,mana
gers_name) VALUES (92, 1038,'Hastings','St. Helens Rd.,
Hastings, East Sussex','Bill Burrows')

INSERT into
branches(country_id,branch_no,branch_name,branch_address,mana
gers_name) VALUES (92, 1039,'Beech','Beech, Alton,
Hampshire','Margaret Smith')

INSERT into
branches(country_id,branch_no,branch_name,branch_address,mana
gers_name) VALUES (92, 1040,'Urmston','Urmston,
Manchester','Beryl Smith')

INSERT into
branches(country_id,branch_no,branch_name,branch_address,mana
gers_name) VALUES (92, 1041,'Epsom','The Main St, Epsom,
Surrey','Fred Stanley')

INSERT into
branches(country_id,branch_no,branch_name,branch_address,mana
gers_name) VALUES (92, 1042,'Chandlers','FordElm St,
Chandlers Ford, Hampshire','Lilian Jones')

470 Appendix

INSERT into
branches(country_id,branch_no,branch_name,branch_address,mana
gers_name) VALUES (92, 1043,'Reading','Station St, Reading,
Berkshire','Bill Burns')

INSERT into
branches(country_id,branch_no,branch_name,branch_address,mana
gers_name) VALUES (92, 1044,'Bracknell','Oak Rd., Bracknell,
Berkshire','Pat Phillips')

INSERT into
branches(country_id,branch_no,branch_name,branch_address,mana
gers_name) VALUES (92, 1045,'Sandwich','West St., Sandwich,
Kent','Peter Hunt')

INSERT into
branches(country_id,branch_no,branch_name,branch_address,mana
gers_name) VALUES (92, 1046,'Poole','Water St., Poole,
Dorset','Andy James')

INSERT into
branches(country_id,branch_no,branch_name,branch_address,mana
gers_name) VALUES (92, 1047,'Gillingham','Church St.,
Gillingham, Dorset','Douglas Adams')

INSERT into
branches(country_id,branch_no,branch_name,branch_address,mana
gers_name) VALUES (92, 1048,'Hastings','St. Helens Rd.,
Hastings, East Sussex','Bill Burrows')

INSERT into
branches(country_id,branch_no,branch_name,branch_address,mana
gers_name) VALUES (92, 1049,'Beech','Beech, Alton,
Hampshire','Margaret Smith')

INSERT into
branches(country_id,branch_no,branch_name,branch_address,mana
gers_name) VALUES (92, 1050,'Ropley','The High St, Ropley,
Hampshire','Ken Smith')

INSERT into
branches(country_id,branch_no,branch_name,branch_address,mana
gers_name) VALUES (92, 1051,'Epsom','The Main St, Epsom,
Surrey','Fred Stanley')

INSERT into
branches(country_id,branch_no,branch_name,branch_address,mana
gers_name) VALUES (92, 1052,'Chandlers','FordElm St,
Chandlers Ford, Hampshire','Lilian Jones')

INSERT into
branches(country_id,branch_no,branch_name,branch_address,mana
gers_name) VALUES (92, 1053,'Reading','Station St, Reading,
Berkshire','Bill Burns')

INSERT into
branches(country_id,branch_no,branch_name,branch_address,mana

Appendix 471

Appendix B

gers_name) VALUES (92, 1054,'Bracknell','Oak Rd., Bracknell,
Berkshire','Pat Phillips')

INSERT into
branches(country_id,branch_no,branch_name,branch_address,mana
gers_name) VALUES (92, 1055,'Sandwich','West St., Sandwich,
Kent','Peter Hunt')

INSERT into
branches(country_id,branch_no,branch_name,branch_address,mana
gers_name) VALUES (92, 1056,'Poole','Water St., Poole,
Dorset','Andy James')

INSERT into
branches(country_id,branch_no,branch_name,branch_address,mana
gers_name) VALUES (92, 1057,'Gillingham','Church St.,
Gillingham, Dorset','Douglas Adams')

INSERT into
branches(country_id,branch_no,branch_name,branch_address,mana
gers_name) VALUES (92, 1058,'Hastings','St. Helens Rd.,
Hastings, East Sussex','Bill Burrows')

INSERT into
branches(country_id,branch_no,branch_name,branch_address,mana
gers_name) VALUES (92, 1059,'Beech','Beech, Alton,
Hampshire','Margaret Smith')

INSERT into
branches(country_id,branch_no,branch_name,branch_address,mana
gers_name) VALUES (92, 1060,'Urmston','Urmston,
Manchester','Beryl Smith')

INSERT into
branches(country_id,branch_no,branch_name,branch_address,mana
gers_name) VALUES (92, 1061,'Epsom','The Main St, Epsom,
Surrey','Fred Stanley')

INSERT into
branches(country_id,branch_no,branch_name,branch_address,mana
gers_name) VALUES (92, 1062,'Chandlers','FordElm St,
Chandlers Ford, Hampshire','Lilian Jones')

INSERT into
branches(country_id,branch_no,branch_name,branch_address,mana
gers_name) VALUES (92, 1063,'Reading','Station St, Reading,
Berkshire','Bill Burns')

INSERT into
branches(country_id,branch_no,branch_name,branch_address,mana
gers_name) VALUES (92, 1064,'Bracknell','Oak Rd., Bracknell,
Berkshire','Pat Phillips')

INSERT into
branches(country_id,branch_no,branch_name,branch_address,mana
gers_name) VALUES (92, 1065,'Sandwich','West St., Sandwich,
Kent','Peter Hunt')

472 Appendix

INSERT into
branches(country_id,branch_no,branch_name,branch_address,mana
gers_name) VALUES (92, 1066,'Poole','Water St., Poole,
Dorset','Andy James')

INSERT into
branches(country_id,branch_no,branch_name,branch_address,mana
gers_name) VALUES (92, 1067,'Gillingham','Church St.,
Gillingham, Dorset','Douglas Adams')

INSERT into
branches(country_id,branch_no,branch_name,branch_address,mana
gers_name) VALUES (92, 1068,'Hastings','St. Helens Rd.,
Hastings, East Sussex','Bill Burrows')

INSERT into
branches(country_id,branch_no,branch_name,branch_address,mana
gers_name) VALUES (92, 1069,'Beech','Beech, Alton,
Hampshire','Margaret Smith')

INSERT into
branches(country_id,branch_no,branch_name,branch_address,mana
gers_name) VALUES (92, 1070,'Urmston','Urmston,
Manchester','Beryl Smith')

INSERT into
branches(country_id,branch_no,branch_name,branch_address,mana
gers_name) VALUES (92, 1071,'Epsom','The Main St, Epsom,
Surrey','Fred Stanley')

INSERT into
branches(country_id,branch_no,branch_name,branch_address,mana
gers_name) VALUES (92, 1072,'Chandlers','FordElm St,
Chandlers Ford, Hampshire','Lilian Jones')

INSERT into
branches(country_id,branch_no,branch_name,branch_address,mana
gers_name) VALUES (92, 1073,'Reading','Station St, Reading,
Berkshire','Bill Burns')

INSERT into
branches(country_id,branch_no,branch_name,branch_address,mana
gers_name) VALUES (92, 1074,'Bracknell','Oak Rd., Bracknell,
Berkshire','Pat Phillips')

INSERT into
branches(country_id,branch_no,branch_name,branch_address,mana
gers_name) VALUES (92, 1075,'Sandwich','West St., Sandwich,
Kent','Peter Hunt')

INSERT into
branches(country_id,branch_no,branch_name,branch_address,mana
gers_name) VALUES (92, 1076,'Poole','Water St., Poole,
Dorset','Andy James')

INSERT into
branches(country_id,branch_no,branch_name,branch_address,mana

Appendix 473

Appendix B

gers_name) VALUES (92, 1077,'Gillingham','Church St.,
Gillingham, Dorset','Douglas Adams')

INSERT into
branches(country_id,branch_no,branch_name,branch_address,mana
gers_name) VALUES (92, 1078,'Hastings','St. Helens Rd.,
Hastings, East Sussex','Bill Burrows')

INSERT into
branches(country_id,branch_no,branch_name,branch_address,mana
gers_name) VALUES (92, 1079,'Beech','Beech, Alton,
Hampshire','Margaret Smith')

INSERT into
branches(country_id,branch_no,branch_name,branch_address,mana
gers_name) VALUES (92, 1080,'Urmston','Urmston,
Manchester','Beryl Smith')

INSERT into
branches(country_id,branch_no,branch_name,branch_address,mana
gers_name) VALUES (92, 1081,'Epsom','The Main St, Epsom,
Surrey','Fred Stanley')

INSERT into
branches(country_id,branch_no,branch_name,branch_address,mana
gers_name) VALUES (92, 1082,'Chandlers','FordElm St,
Chandlers Ford, Hampshire','Lilian Jones')

INSERT into
branches(country_id,branch_no,branch_name,branch_address,mana
gers_name) VALUES (92, 1083,'Reading','Station St, Reading,
Berkshire','Bill Burns')

INSERT into
branches(country_id,branch_no,branch_name,branch_address,mana
gers_name) VALUES (92, 1084,'Bracknell','Oak Rd., Bracknell,
Berkshire','Pat Phillips')

INSERT into
branches(country_id,branch_no,branch_name,branch_address,mana
gers_name) VALUES (92, 1085,'Sandwich','West St., Sandwich,
Kent','Peter Hunt')

INSERT into
branches(country_id,branch_no,branch_name,branch_address,mana
gers_name) VALUES (92, 1086,'Poole','Water St., Poole,
Dorset','Andy James')

INSERT into
branches(country_id,branch_no,branch_name,branch_address,mana
gers_name) VALUES (92, 1087,'Gillingham','Church St.,
Gillingham, Dorset','Douglas Adams')

INSERT into
branches(country_id,branch_no,branch_name,branch_address,mana
gers_name) VALUES (92, 1088,'Hastings','St. Helens Rd.,
Hastings, East Sussex','Bill Burrows')

474 Appendix

INSERT into
branches(country_id,branch_no,branch_name,branch_address,mana
gers_name) VALUES (92, 1089,'Beech','Beech, Alton,
Hampshire','Margaret Smith')

INSERT into
branches(country_id,branch_no,branch_name,branch_address,mana
gers_name) VALUES (92, 1090,'Urmston','Urmston,
Manchester','Beryl Smith')

INSERT into
branches(country_id,branch_no,branch_name,branch_address,mana
gers_name) VALUES (92, 1091,'Ropley','The High St, Ropley,
Hampshire','Ken Smith')

INSERT into
branches(country_id,branch_no,branch_name,branch_address,mana
gers_name) VALUES (92, 1092,'Chandlers','FordElm St,
Chandlers Ford, Hampshire','Lilian Jones')

INSERT into
branches(country_id,branch_no,branch_name,branch_address,mana
gers_name) VALUES (92, 1093,'Reading','Station St, Reading,
Berkshire','Bill Burns')

INSERT into
branches(country_id,branch_no,branch_name,branch_address,mana
gers_name) VALUES (92, 1094,'Bracknell','Oak Rd., Bracknell,
Berkshire','Pat Phillips')

INSERT into
branches(country_id,branch_no,branch_name,branch_address,mana
gers_name) VALUES (92, 1095,'Sandwich','West St., Sandwich,
Kent','Peter Hunt')

INSERT into
branches(country_id,branch_no,branch_name,branch_address,mana
gers_name) VALUES (92, 1096,'Poole','Water St., Poole,
Dorset','Andy James')

INSERT into
branches(country_id,branch_no,branch_name,branch_address,mana
gers_name) VALUES (92, 1097,'Gillingham','Church St.,
Gillingham, Dorset','Douglas Adams')

INSERT into
branches(country_id,branch_no,branch_name,branch_address,mana
gers_name) VALUES (92, 1098,'Hastings','St. Helens Rd.,
Hastings, East Sussex','Bill Burrows')

INSERT into
branches(country_id,branch_no,branch_name,branch_address,mana
gers_name) VALUES (92, 1099,'Beech','Beech, Alton,
Hampshire','Margaret Smith')

COMMIT TRAN

Appendix 475

Appendix B

BEGIN TRAN

DECLARE @count INT

SELECT @count = 0

WHILE @count < 5000

BEGIN

SELECT @count=@count+1

INSERT customers VALUES (@count, 6, 'ABC' + CAST(@count
AS CHAR(37)),'A fine customer')

INSERT accounts VALUES (@count,@count,(@count%100)+1000,
ROUND(RAND() * 10000,2), 'Never overdrawn')

INSERT accounts VALUES
(@count+100000,@count,(@count%100)+1000, ROUND(RAND() *
10000,2),'Never overdrawn')

IF(@count%1000) = 0

SELECT CONVERT(VARCHAR(10),@count)+ ' Customers Loaded'

END

COMMIT TRAN

SET NOCOUNT OFF

This Page Intentionally Left Blank

477

C
Performance Strategies and Tuning Checklist

This Appendix contains a few thoughts that might be useful as an aide-
memoir when you are considering performance issues.

C.1 System resource use

The following apply to hardware resource:

� Establish trends. Use the System Monitor to monitor resources into a
log file over a period of time. Get to know the normal ranges of the
key counters.

� When using the System Monitor interactively, run the graphical user
interface on a machine other than the server being monitored to min-
imize the System Monitor impact.

� Do not jump to conclusions. The performance problem may be
caused by something you do not expect. It’s easy to become con-
vinced that something is causing a problem and to subconsciously
twist the evidence to fit your theory.

� Remember that system resource bottlenecks may be a symptom of
something else. A classic is a disk I/O bottleneck caused by paging
due to a memory shortage.

� Ensure that you have sufficient page file space.

� Remove services and protocols you are not using from the server. Do
not run a screen saver on the server.

� Try to run SQL Server on a dedicated server with no other applica-
tions running. It is much easier to optimize SQL Server in this situa-
tion. Try to avoid installing SQL Server on a Domain Controller
(PDC).

478 Appendix

� Place tempdb on a fast device. Use the System Monitor or Alert sub-
system to track it if it expands dynamically. By default it will be reset
to its initial size on SQL Server restart. It may be beneficial to manu-
ally expand it to the size to which it frequently grows.

� Use RAID for your database and transaction log. One approach
would be to use a RAID 0 stripe set for the database and mirror it.
Use a dedicated disk for the transaction log and mirror it. Hardware-
based RAID is faster than software-based RAID.

� Use a good quality network card. A 32-bit network card has better
throughput than a 16-bit card.

C.2 Choosing efficient indexes

It is likely that for all but the smallest of tables the database designer will
need to define indexes. These will probably consist of a clustered index with
a number of non-clustered indexes. Queries benefit from lots of indexes, but
too many indexes will degrade the performance of Transact-SQL statements
that change data, such as INSERT, UPDATE, and DELETE, since all the
indexes will need to be maintained, which requires CPU and disk I/O. Even
worse, many indexes being updated are likely to increase lock contention.

� Consider using a clustered index in the following situations:

� The physical ordering supports the range retrievals of important
queries—that is, queries that use BETWEEN and LIKE.

� Few duplicate values mean that an equality test (=) returns few
rows.

� Many duplicate values mean that an equality test (=) returns many
rows.

� The clustered index key is used in the ORDER BY clause of criti-
cal queries.

� The clustered index supports the GROUP BY clause of critical
queries.

� For a given row in the outer table of a join, there are few rows that
match in the inner table. A clustered index on the join column in
the inner table will be beneficial.

� For a given row in the outer table of a join, there are many rows
that match in the inner table. A clustered index on the join col-
umn in the inner table will be beneficial.

� When to avoid using a clustered index:

Appendix 479

Appendix C

� On a volatile column. A volatile column is a column that is
updated frequently. This would result in the data row moving
around the table repeatedly.

� Consider using a non-clustered index in the following situations:

� Few duplicate values mean that an equality test (=) returns few
rows.

� The non-clustered index key is used in the ORDER BY clause of
critical queries.

� The non-clustered index supports the GROUP BY clause of criti-
cal queries.

� For a given row in the outer table of a join, there are few rows that
match in the inner table. A clustered index on the join column in
the inner table will be beneficial.

� A critical query can be efficiently covered.
� Many applications will require the selection of a row by the pri-

mary key. This is a single-row selection and therefore would nor-
mally benefit from the creation of an index containing the same
columns as the primary key. Since it is not common to request
ranges of primary keys, a non-clustered index is probably the best
option. If a primary key constraint is created, the index will be
automatically created; it is recommended that this be a non-clus-
tered index.

� Avoid using a non-clustered index:

� When a query returns many rows, such as a range retrieval, or
when there are many duplicate values returned by an equality test.
Also, if, for a given row in the outer table of a join, there are many
rows that match in the inner table, a non-clustered index on the
join column in the inner table will not be beneficial.

� Avoid using a non-clustered index on a volatile column. The
result may not be as unfavorable as using a clustered index, since
the data row will not move; however, the index will still have to be
maintained.

� Some general guidelines are as follows:

� Do not create an index on a column that is not very selective. An
example of this would be a column that contained a status flag
containing two or three values. It is unlikely that such an index
would be used by the query optimizer.

� Be careful when creating indexes with large keys. Fewer keys can
be held in an index page, resulting in many index pages and

480 Appendix

deeper indexes. Take care with a large key in a clustered index.
This will be used as the pointer in all the non-clustered indexes on
the table.

� Regularly check the levels of internal and external page fragmenta-
tion with DBCC SHOWCONTIG. Tidy up by rebuilding
indexes. Make sure that there is enough free space in the database
to rebuild clustered indexes. Another approach is to use the Data-
base Maintenance Wizard.

� Consider using DBCC INDEXDEFRAG on tables where there is
little opportunity for maintenance—for example, a 24 × 7 system.

C.3 Helping the Query Optimizer

Can you help the optimizer to improve query processing?

� Ensure that the UPDATE STATISTICS statement (or sp_updatestats)
is run regularly.

� Set the database options to allow automatic statistics updating and
creation.

� Always test query performance on representative data. Data distribu-
tions that do not reflect live data in the production database and
tables that are smaller than those in the production database could
result in query plans different from those used when the application
goes live.

� Make sure that join conditions are not omitted. Always check in the
case of joins involving many tables that N tables must have a mini-
mum of N – 1 join conditions. Better still, use the ANSI SQL-92
join syntax.

� Try to establish a standard so that program documentation includes
an attached showplan output. This has a number of advantages. First,
it forces the SQL developer to actually run the query and obtain a
showplan output, which otherwise may not have happened. Second,
it allows the person responsible for database performance to quickly
scan the showplan output for obvious problems. Third, if the query
performance suddenly degrades in the future, it is easy to check if the
query optimizer has adopted a new query plan. Attaching statistics
IO output is also recommended.

� Use query optimizer hints only if it is absolutely necessary. Revisit
them to check if the plan they force is still the most efficient.

Appendix 481

Appendix C

� Ensure that stored procedures are not being passed a range of param-
eters such that a highly inefficient query plan is being used for some
values.

� The use of order by, distinct, and union in a query results in SQL
Server having to do more work. If they can be avoided, do so. It
might be that you know there are no duplicates, or a sort may be per-
formed elsewhere, perhaps on the client.

C.4 Avoiding lock contention

No matter how well the database is tuned to minimize disk I/O, all the
database designer’s efforts will be wasted if lock contention is prevalent in
the database. SQL Server’s locking mechanisms were described in Chapter
10, and we will now look at some general guidelines to follow when design-
ing a database. Remember that in most multiuser systems that make
changes to data some lock contention is unavoidable. The secret is to mini-
mize both the locking hot spots and the length of time for which locks are
held. There are a number of guidelines to adhere to:

� Rule 1: Keep transactions as short as possible. If a transaction has
placed an exclusive lock on a row, page, or table, it will keep that lock
until it ends with a commit or rollback. This is also true with shared
locks if the REPEATABLE, SERIALIZABLE, or HOLDLOCK hints
are used or the repeatable read or serializable isolation level is used.
The longer the lock is held, the more chance there will be that the
lock blocks another user. This has a cascade effect, with the blocked
user blocking other users. Minimize the time the locks are held. Do
not perform work inside a transaction that can be performed outside
of it.

� Rule 2: Do not hold locks across user interactions. This follows
from Rule 1. Unless special considerations apply, you have a real need
to, and you know what you are doing, this rule should be adhered to
at all costs in a multiuser environment. What does this mean? It
means that transactions should be completed before control is passed
back to the user, and the transaction should not be active while the
user is staring at the screen. The reasons are obvious. The computer
may process a transaction’s workload in less than a second, and if that
transaction then completes, another transaction will only have waited
a fraction of a second before it acquired its locks. If, however, a trans-

482 Appendix

action places locks on rows, pages, or tables, and the transaction is
left active while the application returns to the user, it will keep its
locks while the user stares at the screen, scratches his or her head,
chats with a colleague, or, worse still, goes to lunch! This could be,
and usually is, disastrous for system throughput, and it is more com-
monplace that one might imagine! I know of instances where busi-
nesses have stopped trading for critical periods of time because a user
went to lunch while a screen prompt sat on his or her workstation.
This is not the user’s fault. Blame resides with the application
designer. If it becomes necessary to retrieve data in the database for
later modification, it is usually far better to choose an option where
locks are not held on database objects and an optimistic locking
approach is taken—that is, the retrieved rows are not locked and,
when updates are eventually performed, a check is made in the appli-
cation to see if another user has changed the data since the data was
read. SQL Server provides the row version data type to assist the
developer.

� Rule 3: Try not to interleave updates and reads. If a transaction
changes data when it starts, it will hold exclusive locks until it fin-
ishes. Try not to change data and then spend time reading data. If
possible read the data, save all of the updates until the end of the
transaction, and then issue them in one short burst. This minimizes
the length of time that exclusive locks are held.

� Rule 4: Help the query optimizer to choose indexed access. The
query optimizer chooses whether a table scan or index is used to
retrieve data. Judicious use of indexes and care when writing Trans-
act-SQL statements will help the query optimizer to choose an
indexed access. From a locking contention viewpoint this is prefera-
ble to a table scan, since a table scan may lock at the table or page
level if shared locks are to be held.

� Rule 5: Only lock as strictly as is necessary to meet your integrity
requirements. Only hold shared locks if you require that the row you
have read must not be changed by anyone else before your transac-
tion ends.

� Rule 6: Update tables in the same order throughout the applica-
tion. If one program updates table A and then updates table B, and
another program updates table B and then updates table A, there is
potential for deadlock. It is better to settle on some simple applica-
tion development standard, such as always updating tables in alpha-
betical order wherever possible. In this case, the first program will

Appendix 483

Appendix C

cause the second program to wait cleanly and avoid the potential
deadlock scenario.

� Rule 7: Perform multiuser testing before the application goes
live. This is often forgotten or left to the last minute. Whether you
use sophisticated multiuser testing products or you persuade your
users to stay late in the evening—do it!

We could add more rules but we have found that if the above seven are
adhered to, lock contention should be minimized.

C.5 Database integrity

Integrity is the natural enemy of performance:

� The greater the data consistency requirements the more the impact
on performance.

� Do not implement your data integrity checks at the last minute
before you go live. It does not matter whether you have used triggers
or constraints, your performance is likely to suddenly drop.

� Remember that if you do not index your foreign key column(s), you
are likely to experience bad performance if you delete a row from the
referenced table, since a table scan will probably be performed on the
child table.

� A table that has many foreign key constraints defined on it will have
degraded insert performance, since many lookups will be performed
against the referenced tables.

C.6 Database administration activities

Database administration can obstruct normal activity:

� Avoid running DBCC statements, UPDATE STATISTICS, and
backups during periods of high user activity.

� Consider creating a reporting database to off-load reporting and ad
hoc querying. This could be kept up-to-date by replication or log
shipping if required.

484 Appendix

� When loading a table using Data Transformation Services, the BULK
INSERT statement, or BCP, be aware of the logging impact of the
different SQL Server recovery models.

� Put the file to be loaded on the same server as the database and data
file to avoid network traffic.

� Creating indexes will usually impact performance on the server, so it
is better to perform index rebuilds during a quiet period.

� Creating a non-clustered index has less impact than creating a clus-
tered index. Clustered index creation uses an exclusive table lock,
whereas non-clustered index creation uses a shared table lock.

� Use the DROP_EXISTING clause of the CREATE INDEX state-
ment when rebuilding a clustered index to minimize the impact on
the non-clustered indexes on the table.

� Consider using the SORT_IN_TEMPDB option on the CREATE
INDEX statement to spread the I/O load across multiple disk drives.

� When creating a database, try to set a realistic initial size to avoid
multiple file extensions.

� It might be better to switch variable-length datatypes to fixed-length
datatypes in some cases to avoid the potential use of forwarding
pointers.

� Consider shrinking database files at periodic intervals.

C.7 Archiving data

This is a requirement that usually gets left until the last minute. The fact
remains, however, that the larger a database gets, the more performance is
likely to degrade. Many database administration tasks will also take longer:
database backups, the update of statistics, DBCC checks, and index builds.

The reasons that performance degrades include the following:

� Larger tables mean longer table scans.

� Larger tables mean deeper indexes—hence, more I/O to reach the
table row.

� Longer table scans and index traversals mean locks may be held
longer.

Appendix 485

Appendix C

Ensure that there is an archiving strategy in place before the database
gets too large.

C.8 Read only report databases

Reporting has different requirements, to that of OLTP databases:

� If we consider a typical OLTP production system comprised of many
users, we would probably expect to find that the system included
many short transactions that updated the tables in the database in
real-time. In reality, we would also find that there was a requirement
to run long and perhaps complex reports against portions of the data-
base. The fast-response time requirements of the lightweight online
transactions and the data-hungry requirements of the heavyweight
report transactions often do not mix well. The report transactions can
severely impact the response times of the online transactions in the
production system and in the worst case may cause lock conflict.

� One option is to separate these two different workloads into their
own databases on their own server. This can never, in reality, be done
completely, since there is usually no clear break between the require-
ments of the two systems. However, there is a case for off-loading as
much reporting work as possible to another database. This also means
that there will be a natural frozen cut-off point. If the report database
is only updated overnight, then it will hold the close of day position
all the following day, which can be a useful asset.

� A separate report database can also have extra indexes added to it that
would have been unacceptable in the production database for perfor-
mance reasons.

� Updating information in the report database could be a simple mat-
ter of restoring it from last night’s backup of the OLTP database, or
the replication capabilities present in SQL Server could be used.
Whatever the method, consider the approach of separating the differ-
ent workloads, since this can greatly help performance and increase
flexibility.

� If the report database is created from last night’s backup, there are
also two more added bonuses. First, the fact that you are restoring
your backup means that you can feel confident that your backup/
restore scripts work. Second, since the database is identical to the

486 Appendix

OLTP database, those lengthy DBCC integrity checks can be run on
the report database instead of the OLTP database.

C.9 Denormalization

Denormalization removes granularity from a data model:

� Before considering denormalization, a fully normalized database
design should be your starting point. A fully normalized database
design helps to avoid data redundancy and possible update anoma-
lies, but it usually results in a design that requires tables to be joined
frequently.

� Possible approaches to denormalization include the duplication of
columns from one or more tables into another to avoid the join in a
critical query. For columns that are volatile, this can make updates
more complex.

� Another denormalization technique is to store derived data in the
database. Transactions that change data can, usually by means of trig-
gers, modify the derived data column. This can save query time, since
the work has already been done calculating the derived column.

487

Index

{...|...|...} (at least one of), 446
{...} (optional), 445
= (equi) comparison condition,

202
<> (range) comparison condition,

202–3
!= (anti) comparison condition,

202
50:50 page splits, 135, 136, 139

Activity Monitor, 379–81
defined, 379
illustrated, 380
objective, 381
processes view, 380

Address Windowing Extensions
(AWEs), 323

Ad hoc queries, 325
Affinity, CPU, 312
Alerts, 424–27

display, 426
network message from, 427

ALTER DATABASE statement,
83–84, 95

defining, 424
use example, 83–84

ALTER INDEX REBUILD
statement, 129

Alternate indexes, 26–29
defined, 26
use of, 28
See also Indexes

ALTER TABLE statement, 295
Analysis Services, 412–13
Angle brackets (<...>), 445
Anti (!=) comparison condition,

202
Anti-joins, 209
Application resource locks, 406–7
Availability, 409

defined, 15
improvement, 15

AVG function, 437

BankingDB database, 119–20
Baseline metrics

batch activity, 5
categories, 6–7
defined, 5
downtime, 5
establishing, 4–7
high load, 5
low load, 5

Batch activity, 5
BETWEEN operator, 220, 232
Bottlenecks

CPU, 314–23
disk I/O, 348–52
memory, 329–35

Boyce-Codd Normal Form
(BCNF)

candidate keys separation, 36
denormalizing applications of,

36

overapplication, 35
BTree indexes, rebuilding, 2
Buffer Manager counters, 343

Readahead pages/sec, 346
Total Pages, 327

Buffer pool, 339
Bulk update locks, 407
Business Intelligence (BI)

Development Studio, 14
Business rules, 25–26

defined, 25
implementation, 25–26

Cache Manager: Cache Pages
counter, 327

Candidate keys, 36
Cartesian products, 207
Checkpoint process, 342–43

defined, 342
monitoring, 343

Client statistics, 427–28
Clustered failover databases, 418
Clustered indexes, 122–26

choosing, 189–91
covered queries with, 180
creating, 123, 143–44
data pages, 123
defined, 47
with deleted rows, 134
direct key lookup, 174
index pages, 123–24
key, 169

488 Index

leaf pages, 134, 135
logical reads for, 242
lowest level, 123
non-clustered indexes with,

179
query optimizer and, 126
range retrieval, 176
retrieving range of rows with,

179–80
retrieving single row with,

178–79
row deletion, 183
row translation, 242–43
simplified, 172
structure, 123
table scans and, 124
See also Indexes

Clustering, 76
defined, 15
as high availability

architecture, 418
performance and, 46

Collections, 38
Columns

computed, creating indexes
with, 170–71

explicitly naming, 279
fixed-length, 107
index, choosing, 185–89
names, selecting, 194
partition, 118
variable-length, 107

Column statistics, 233–34
index updating and, 234–40
manual creation, 234
not using, 240–41
updating, 237–39

Committed memory, 324
COMMIT TRANSACTION

statement, 359
Common fields

denormalizing by duplication,
39

tables with, removing, 38–39
Comparison conditions, 201–4

anti, 202
equi, 202
LIKE, 203
range, 202–3
set membership, 204
types of, 201–2

Composite indexes, 34, 194,
229, 230

Composite keys
field duplication, 63
presence of, 34–35

Computed columns, 170–71
Concurrency

defined, 409
of replication, 417

Configuration Manager, 9
Correlated subqueries, 210
Cost-based optimization, 275–

82
Counters

Buffer Manager, 327, 343
Cache Manager, 327
lock object, 382
Logical Disk, 349–50
Memory Manager, 327, 328
Physical Disk, 349–50
Processor, 315, 316–17, 322
useful SQL Server, 349–50
See also specific counters

Covered queries, 177–78, 180
CPUs

affinity, 312
bottlenecks, 314–23
monopoly, 319
multiple, 308, 309
problems, solving, 321–23
solving problems with, 321–

23
SQL Server and, 307–23
SQL Server use, 309–14
as system resource, 307
threads using, 308, 320, 321
utilization, 307–9

CREATE DATABASE
statement, 79–82

example use, 79–80
with multiple data/transaction

log files, 82
PRIMARY keyword, 81

CREATE INDEX statement,
142–53, 231, 484

ALLOW_PAGE_LOCKS
option, 152

ALLOW_ROW_LOCKS
option, 152

CLUSTERED keyword, 143,
145

DROP_EXISTING option,
149, 150

FILLFACTOR option, 147–
49

IGNORE_DUP_KEY
option, 149

INCLUDE option, 145
MAXDOP option, 152–53
NONCLUSTERED

keyword, 145
ON FILEGROUP option,

150–51
ONLINE option, 129, 143
PAD_INDEX option, 149
parallel execution, 314
SORT_IN_TEMPDB

option, 152

STATISTICS_NORECO
MPUTE option, 150

syntax, 142–43
Create Index Wizard tool, 153
CREATE PARTITION

FUNCTION statement,
117–18

CREATE PARTITION
SCHEME statement, 118

CREATE TABLE statement, 373
The Creating and Maintaining

Databases online book, 68
CROSS JOIN clause, 225
Cross joins, 207
Curly braces ({}), 446

Index 489

Index

Database Engine Tuning Advisor,
9–12, 271, 272, 442–43

backward compatibility, 10
change suggestions, 442
defined, 9–10, 442
features, 10–12
index recommendation, 442
tuning options, 10–12

Database pages, 104–12
contents, displaying, 109
illustrated example, 110–11
linked in chains, 105
structure, 104

Databases
administration, 483–84
clustered failover, 418
creating, 79–83
defined, 75
files, shrinking, 346–47
file types, 76
flashback snapshot, 419
information, displaying, 95–

98
integrity, 483
name, as parameter, 98
options, setting, 92–95
report, 485–86
residence, 75
scripts, 447–75
shrinking, 84–90
size, decreasing, 84–90
size, increasing, 83–84
slave, 415
topologies, 77, 78

Data cache
buffers, freeing up, 342
empty, 340
goal, 339
indexes in, 343–44
overview, 340–43
pages in, 341
steady state, 341
tables in, 343–44

Data consistency, 67
Data Definition Language

(DDL) statements, 374
in explicit transactions, 373–

74
mixing, 296–97

Data files
primary, 76
secondary, 76
size, increasing, 83–84

Data Manipulation Language
(DML) statements, 296–
97

Data marts, 49
Data mirroring, 15
Data pages

in clustered index, 123
defined, 104
internals, 106
structure, 105
See also Database pages

Data types
conversions, 200–201
FLOAT, 170
IMAGE, 228

Data volume analysis, 67–69
calculations, 68
information capture, 68

Data warehouses
build facts, 57
business processes, 57
data model design basics, 56–

64
dimensional data model, 48,

51–56
dimensions, 57
extreme denormalization in,

48–64
granularity, 57
objective, 56

Dates, data type conversions, 201
DBCC

CHECKDB statement, 311
defined, 388

INDEXDEFRAG statement,
480

MEMUSAGE statement, 328
PAGE statement, 108, 109,

390
SHOWCONTIG statement,

141, 163–67, 243, 347,
480

SHOW_STATISTICS
statement, 187–88, 231,
238

SHRINKFILE statement, 347
trace flags with, 388–93
USEROPTIONS statement,

359
DBLOCK lock hint, 371
Deadlocks, 364–65

default handling, 365
illustrated, 364
occurrence, 364
priority, 365
simultaneous updating, 366
update locks and, 367
See also Locks

Decision support systems
(DSSs), 184, 335–36

queries, 185
system examples, 184

Denormalization, 29–64
already normalized, 31–40
by context, 40–44
defined, 19–20, 31
extreme, 48–64
granularity and, 486
one-to-one NULL

relationships, 35
for performance, 29–48
reasons for, 29
special purpose objects and,

44–48
static tables, 37
with unusual database objects,

29
Dependencies, transitive, 39–40

490 Index

Dimensional data model, 48,
51–56

illustrated, 52
snowflake schema, 54–56
star schema, 51, 53–54
steps, 51

Dimensions
classifications, 57
commonly used, 60
identification, 57

Dimension tables, 57–60
location, 59
product, 58
time, 58

Direct key lookup
in clustered index, 174
defined, 173
in non-clustered index, 174

Direct memory access (DMA),
322

Disk I/O
bottlenecks, 348–52
problems, solving, 352–53
SQL Server and, 335–53
throughput, 336
Windows and, 336–39

DISTINCT keyword, 199
Distribution statistics, 222, 227,

234
Downtime, 5, 409
DROP INDEX statement, 157
Dynamic Management Views

(DMVs), 443–44

Equal (=) comparison condition,
202

Estimated execution plans, 271–
72

graphical, 272
in SQL Server Management

Studio, 271
Even distribution partitions

creating, 118–19
defined, 117

See also Partitioning;
Partitions

Exclusive locks, 358–60
defined, 358
intent, 379
shared locks compatibility,

359
See also Locks

EXEC statement, 293
EXECUTE statement, 300
Execution context, 292
Execution plans

estimated, 271, 272
with statistics, 275

EXISTS, 204, 210
Extents

defined, 102
free, finding, 113
management, 113
mixed, 102, 112
uniform, 102

Fact tables, 52, 60–63
attribute types, 60
design issues, 62
field types, 60
illustrated, 61
preference, 62
types, 60

FASTFIRSTROW hint, 284
Fibers, 309
Fields

common, 38–39
duplicate across tables, 40–42
summary, in parent tables,

42–43
Filegroups

adding files to, 85
default, 78, 82
DEFAULT property, 91
properties, modifying, 90–91
READONLY property, 90–91
READWRITE property, 90
role, 77

use-defined, 79
use of, 78

Files
defined, 76
log, 76
primary data, 76
secondary data, 76
shrinking, 346–47
size, increasing, 83–84
types, 76

Fixed-length columns, 107
Flashback snapshot databases,

419
FLOAT data types, 170
Foreign keys

indexing, 22
natural values, 23
NULL value and, 259
surrogate, 23–25

Free space
in index creation process, 140
information, 133
for new rows, 133
reused, 133
from row deletion, 132

FROM clause, 212
FULL OUTER JOIN clause,

225
Function encapsulation, 289
Functions

metadata, 161–63
string, 221
using, 200–201
See also specific functions

GETDATE() function, 222
Global Allocation Map (GAM)

pages, 112
defined, 112
settings, 113
See also Pages

Granularity, 62
data warehouse data model,

57

Index 491

Index

denormalization and, 486
GROUP BY clause, 190, 198–

200
defined, 198
HAVING clause and, 199–

200
matching common values,

282
sorting with, 198

GUI tools, 7–14

Hard page fault, 324
Hard paging, 333
Hashing algorithms, 253
Hash joins, 253–55

algorithm, 254
for non-indexed inputs, 254–

55
number of hash buckets, 253
returned value, 253
See also Joins

Hash/Union operator, 285
HAVING clause, 199–200
Heaps, 114
High load, 5
Hints, 282–88

categories, 282
index, 283–84
join, 283
lock, 369–73
query, 285–88
table, 283–84
use caution, 288
utilizing, 288
view, 284–85

HOLDLOCK lock hint, 371
Hot spare, 417–18
Hot standby, 15

IMAGE datatype, 228
Index Allocation Map (IAM)

pages, 103, 113–14, 346
bitmaps, 114

in extent management, 113
See also Pages

Indexed views, 47–48
Indexes

adding fields to, 155
alternate, 26–29
basis, 122
BTree, 2
building online, 2
in cache, 343–44
changes to, 295
choosing, 182–91
clustered, 47, 122–26
columns, choosing, 185–89
composite, 34
covering, 178
creating on views, 167–69
creating with computed

columns, 170–71
creating with CREATE

INDEX statement, 142–
57

creating with SQL-DMO,
155–57

creating with SQL
Management Studio,
153–55

data retrieval with, 171–82
data retrieval without, 121–22
in deletion, 131–41
density, 186, 187
dropping, 157
editing, 154
efficient, choosing, 478–80
function-based, 200
information, displaying, 158–

67
information with metadata

functions, 161–63
in insertion, 131–41
intersections, 181–82
non-clustered, 47, 127–28
online, 129
primary key, 277

query execution time and,
131

for referential integrity keys,
258

renaming, 157–58
types, 122
updating, 234–40
use guidelines, 478–80
XML data type, 130

Index hints, 283–84
Indexing, 121–91

foreign keys, 22
parallel, 129–30
partition, 130

INDEXKEY_ function, 162
INDEXKEY_PROPERTY

function, 162
Index matching, 227
Index Organized Table (IOT),

145, 146
Index pages

in clustered index, 123–24
defined, 104
entries, 124
linked, 124
in non-clustered indexes, 127

Index partitioning, 1, 116
INDEXPROPERTY function,

161–62
examples, 162
form, 162
property values, 162–63

Index selection, 225–46
column statistics, 233–40
key distribution statistics,

227–33
row translation, 241–46
search argument, 226–27
See also Query optimization

INNER JOIN clause, 225
Inner joins, 105
Insertion

at end of key range, 139
at end of table, 131
index role and, 131–41

492 Index

Insert phenomenon, 357
INSERT statements, 275
Integrity, database, 483
Intent locks, 367

exclusive, 379
update, 379
See also Locks

Intermediary tables, 46
Intersections, 181–82, 205

JOIN clause, 225
Join hints, 283
Joins, 204–10

anti-, 209
cross, 207
defined, 32, 204
efficient, 205–6
hash, 253–55
inefficient, 207–9
inner, 105
intersections, 205–6
merge, 251–52
multiple, 32
multiple, finding few fields,

32–34
natural, 205
nested loops, 247, 248–51
order selection, 246–47
outer, 204, 207–8
processing, 247–52
queries with, 325–26
range, 206
self, 206
tuning, 209–10

Key-range locking, 403–4
defined, 403
mode name, 405
range of values, 404
See also Locks

KISS (Keep It Simple Stupid)
rule, 193

Lazywriter, 301
defined, 342
monitoring, 343

LEFT OUTER JOIN clause,
225

Lightweight pooling, 309, 323
LIKE operator, 220
LIKE pattern matching, 203
Lock contention, avoiding, 481–

83
Lock hints, 369–73

backward compatibility, 370
DBLOCK, 371
HOLDLOCK, 371
keywords, 369–70
lock granularity and, 370–71
NOLOCK, 371–72
PAGLOCK, 372
READCOMMITTED, 372
READPAST, 372, 405–6
READUNCOMMITTED,

372
recommended, 370
REPEATABLEREAD, 373,

401
ROWLOCK, 373
SERIALIZABLE, 373, 401,

403
TABLOCK, 373
UPDLOCK, 373
XLOCK, 373

Locking granularity
concurrency versus, 360
defined, 360
implementation, 360
lock hints and, 370–71
system resource versus, 361

Locking protocol
defined, 358
reason for, 356
scenarios, 356–57
using, 393–98

Lock manager, 379
key-range locking, 403

serializability enforcement,
403

Locks
application resource, 406–7
bulk update, 407
compatibility, 407–8
deadlocks, 364–65
default behavior, modifying,

367–73
default lifetime, 359
exclusive, 358–60
intent, 367
isolation levels and, 368
key-range, 403, 404
monitoring, 374–93
page-level, 362
read, 358
row-level, 360, 361–62
schema modification, 407
schema stability, 386, 407
shared, 358–60, 396
in system tables, 373–74
table-level, 362–63
timeouts, 363–64
update, 365–67
using, 393–98
write, 358

Log files, 76
Logical database design

bad, 65
denormalization, 19–20
non-clustered index, 243
normalization, 19
object design, 20
for performance, 19–21
tuning approaches, 30–31

Logical Disk counters, 348–49
Logical reads

clustered index, 242–43
covering non-clustered index,

245
non-clustered index plus

single row retrieval, 244
table scan, 242

Low load, 5

Index 493

Index

Manage Indexes tool, 153
Materialized views, 47, 214
MAXDOP query hint, 314
MAX function, 437
Memory

available, making use of, 335
available (Windows Explorer),

329
bottlenecks, 329–35
committed, 324
configuring, 326–29
data cache, 340–43
fixed size, 326
free, 324
max server, 326
minimum, calculation, 325
min server, 326
on-board, 410
physical, 323
problems, solving, 335
SQL Server and, 323–35
use, 325

Memory Manager counters
Connection Memory (KB),

327
Lock Memory (KB), 328
Optimizer Memory (KB), 328
Total Server Memory (KB),

328
Merge joins, 251–52

efficiency, 251
many-to-many, 251
one-to-many, 252
See also Joins

Metadata objects, 213–14
MIN function, 437
Mirroring, 410–11
Mixed extents, 102, 112
Monitoring locks, 374–93

with sp_lock system stored
procedure, 375–79

with sp_who system
procedure, 386–87

with SQL Server Management
Studio, 379–81

with SQL Server Profiler,
387–88

with syslockinfo table, 383–
86

with System Monitor, 381–83
with trace flags with DBCC,

388–93
Monitoring performance, 421–

44
Alerts, 424–27
cycle, 421
Performance Logs, 424–27
SQL Server Management

Studio, 427–43
System Monitor, 424–27
system stored procedures,

422–23
tools, 421–22

Multiple Active Result Sets
(MARS), 2

Multiprocessors, 322
Multiuser testing, 483

Natural joins, 205
Nested loops joins, 247, 248–51

combinations, 250
defined, 248
illustrated, 248
operations, 249
rule of thumb, 250
See also Joins

Nested subqueries, 210–11
example, 211
tuning, 211

.NET framework, 410
adding, 3
code execution, 3

Network bandwidth, 7
NOEXPAND hint, 284
NOLOCK lock hint, 371–72
Non-clustered indexes, 127–28

choosing, 189–91

with clustered index, 179
defined, 47
direct key lookup, 174
dropping, 157
index entries, 128
index pages hierarchy, 127
leaf entries, 137
logical reads for, 243
page pointers, 177
pointers, 136
primary key, 278
range retrieval, 176
retrieving range of rows with,

180–82
root page, 178, 179
row deletion, 183
row translation, 243–44
simplified, 172
structure, 127
traversal, 137
use criteria, 189–90, 190
See also Indexes

Non-repeatable reads, 399–401
defined, 399
illustrated, 400

Non-stored procedure plans,
301–4

Normal forms, 19
Normalization

commercial techniques, 21–
29

defined, 19
fourth normal form, 38
simplification, 21

Notification services, 412
NOT operator, 220–21

OBJECTPROPERTY function,
162

Objects
design, 20
metadata, 213–14
properties, examining, 96
special purpose, 44–48

494 Index

See also specific types of objects
OLTP databases, 66

coding, 6
configuration, 6
hardware resource usage, 6–7
indexing, 7
reporting in, 27
terabyte scale, 28
See also Databases

One-to-one relationships, 35–36
Online Analytical Processing

(OLAP), 412–13
Online indexes, 129
Online transaction processing

(OLTP) relational model,
49, 50

Online transaction processing
(OLTP) systems, 325, 335

characteristics, 184
DSS spectrum, 184
examples, 184
multiuser, 355
See also OLTP databases

Optional {...}, 445–46
OR clauses, 223–24
ORDER BY clause, 190, 196–98

defined, 196
overriding, 197–98
removal, 197
results, re-sorting, 197
sort, 281

OR (pipe |) character, 445
Outer joins, 207–8

defined, 204
excessive use, 208
full, 208
left, 208
right, 208
tuning, 207
See also Joins

Page faults
hard, 324
information, 330

monitoring for individual
processes, 335

soft, 324
Page Free Space (PFS) pages,

114–15
defined, 114
free space information, 133
page range, 114

Page-level locks, 362
Page pointers, 175, 177
Pages

data, 104, 105
database, 104–12
GAM, 112
IAM, 113–14, 346
index, 104
PFS, 114–15
sequential scanning of, 344
SGAM, 112–13
for space management, 112–

15
Page splits, 135, 139

50:50, 135, 136
fragmentation, 141
minimizing, 140
no data shuffle, 140
observation, 137

Paging
defined, 324
file size, increasing, 335
hard, 333

PAGLOCK lock hint, 372
Parallel indexing, 129–30
Parallel processing, 129, 411
Parameterization, 301
Parent tables, 42–43
Partition indexing, 130
Partitioning, 411

benefits, 1, 115
defined, 115, 411
improvement, 117
index, 116
physical, 116
table, 115–19

Partitions

columns, 118
even distribution, 117, 118–

19
range, 117–18
tuning, 115–16
types, 117

Performance
architectural options, 409–19
denormalization for, 29–48
logical database design for,

19–21, 19–64
monitoring, 421–44
Query Analyzer, 311
as stored procedure benefit,

290
testing, 73
tracing and, 4
upgrades, 484

Performance Logs, 424–27
Phantoms, 401–5
Physical database design, 65–74

data volume analysis, 67–69
efficiency, 67
hardware environment

considerations, 73–74
normalizing, 67
as ongoing activity, 73
process, 65, 66
transaction analysis, 69–73

Physical Disk counters, 348–49
Physical memory, 323
Pipe (|) character, 445
Pointers

placing over arrows, 274
placing over operators, 273
placing over Table Scan

operator, 274
Primary data file, 76
Primary keys

index defaults, 277
natural values, 23
non-clustered, 278
surrogates, 23–25
uniqueness, 72

Priority

Index 495

Index

boost, 311
changing, 310–11
SQL Server, 309–11

Processor counters
% Processor Time, 315, 316–

17
Interrupts/sec, 322
Queue Length, 315, 316

Processors
busy, 316
monopoly, 318
time, monitoring, 317

Queries
ad hoc, 325
covered, 177–78, 180
DSS, 185
hash operation, 325
joins, 325–26
selectivity, 186, 187
sorts, 325–26
tuning, 193–215

Query analysis, 219–25
JOIN clauses, 224–25
OR clauses, 223–24
search arguments, 219–23

Query Analyzer, 257, 270, 311
Query hints, 285–88

defined, 285
use, 285–87
See also Hints

Query optimization, 217–55
index selection, 225–46
join order selection, 246–47
phase illustration, 219
query analysis and, 219–25
steps, 218–19

Query optimizer
defined, 276
as expert system, 276
function, 218
helping, 480–81
hinting to, 282–88
indexed access help, 482

nested loop joins, 250
query execution plan, 218
steps preformed by, 257
stored procedures and, 289–

301
task, 217

Query parallelism, 311, 313–14
cost threshold, 313–14
defined, 313
execution control, 314
goal, 313
max degree, 313
server configuration options,

313
Query plans

examining, 259
forcing, 286
in SQL Server Management

Studio, 270–82

RAID, 478
arrays, 410–11
configurations, 353
levels, 336–39
RAID 0, 337, 338
RAID 1, 337, 338
RAID 1+0, 339
RAID 5, 337, 338
software-based, 478
storage, 116
topologies, 353

Range (<>) comparison
condition, 202–3

Range partitions
creating, 117–18
defined, 117
See also Partitioning;

Partitions
Range retrieval, 175–77

in clustered index, 176
in non-clustered index, 176

Read-ahead scans, 344–46
benefits, 345
defined, 344

performing, 345
READCOMMITTED lock hint,

372
Read locks, 358
READPAST lock hint, 372,

405–6
READUNCOMMITTED

keyword, 398
READUNCOMMITTED lock

hint, 372
Redundant Arrays of Inexpensive

Disks. See RAID
Referential integrity, 22

declarative, 72
implementation, 22
indexes for, 258

REMOTE join hint, 283
REPEATABLEREAD keyword,

359, 399, 400, 401
REPEATABLEREAD lock hint,

373, 401
Repeatable reads, 399
Replay

defined, 4
facility, 428

Replication
concurrency of, 417
defined, 414
downside of, 415
enhancement, 15
manual implementation with

streams, 416
master to master, 415
master to slave, 414
objective, 416
performance issues, 416–17

Report databases, 485–86
Reporting, 485–86
RIGHT OUTER JOIN clause,

225
Row-level locks, 360, 361–62

illustrated, 362
use, 361–62
See also Locks

ROWLOCK lock hint, 373

496 Index

Rows
deleting, 132, 183
inserting, 183
range, retrieving, 125–26,

175–77
range, retrieving with

clustered index, 179–80
range, retrieving with non-

clustered indexes, 180–82
single, retrieving, 173–75
single, retrieving with

clustered index, 178–79
size, 132
structure, 106
translating, to logical reads,

241–46
RPC events, 301–2
Rule-based optimization, 276

Scalability, 409
defined, 15
improvement, 15

Schema modification locks, 407
Schema stability locks, 386, 407
Scripts, database, 447–75
Search arguments, 219–23

defined, 219
examples, 219–20
selectivity, 226–27

Secondary data files, 76
Secondary Global Allocation

Map (SGAM) pages, 112–
13

defined, 112
settings, 113
See also Pages

Secondary indexes. See Alternate
indexes

Security, as stored procedure
benefit, 290

Selectivity, 186, 187
SELECT statement, 171, 193,

194–200, 294, 297
DISTINCT keyword, 199

FROM clause, 212
GROUP BY clause, 198–200
HAVING clause, 199–200
ORDER BY clause, 196–98
WHERE clause, 195–96

Self joins, 206
Semi-joins. See Subqueries
SERIALIZABLE lock hint, 373,

401, 403
Set membership, 204
SET SHOWPLAN, 259
SET SHOWPLAN_ALL, 260–

65
SET SHOWPLAN_TEXT, 259–

60
SET SHOWPLAN_XML, 265–

66
SET STATISTICS, 259
SET STATISTICS IO, 267–68
SET STATISTICS PROFILE,

266–67
SET STATISTICS TIME, 268–

70
SET STATISTICS XML, 270
Shared locks, 358–60, 396
Shrink Database dialog box, 86,

87
SHRINKDATABASE statement,

86, 87, 88–90
defined, 88
NOTRUNCATE option, 89
Shrink Database dialog box

mapping, 86–87
syntax diagram, 88
TRUNCATEONLY option,

89
SHRINKFILE statement, 88,

89–90
Shrinking databases, 84–90

with autoshrink option, 86
with DBCC statements, 88–

90
mechanisms, 84
with SQL Server Management

Studio, 86–88

Snapshots, 419
defined, 15
flashbacks, 15
restoration, 15
updating, 419

Snowflake schema, 54–56
defined, 54
fact table, 52
illustrated, 55

Soft page fault, 324
Sorting

with GROUP BY clause, 198
with ORDER BY clause, 281

Space allocation information,
displaying, 97–98

Sp_executesql, 303–4
Sp_getapplock, 406
Sp_helpdb, 96
Sp_helpfile, 98
Sp_helpfilegroup, 98
Sp_helpindex, 158
Sp_lock, 375–79, 422
Sp_monitor, 422
Sp_recompile, 298
Sp_releaseapplock, 406
Sp_spaceused, 103
Sp_tableoption, 343–44
Sp_trace_create, 438
Sp_trace_setevent, 438–42
Sp_trace_setfilter, 438
Sp_trace_setstatus, 438
Sp_who, 386–87, 422
SQL Distributed Management

Framework (SQL-DMF)
defined, 155
index creation with, 155–57

SQL Distributed Management
Objects (SQL-DMO)

defined, 155
in index creation, 155–57

SQLDMO (Distributed
Management Objects),
142

SQL language
events, 302

Index 497

Index

nonparameterized statements,
302

RPC events distinguished
from, 301–2

SQL Management Objects
(SMO), 3

defined, 8
objects, 9

SQL OS
defined, 98, 443
Dynamic Management Views

(DMVs), 443–44
resource consumption

monitoring with, 4, 443–
44

SQL Server
CPU and, 307–23
data modeling techniques,

413
disk I/O and, 335–53
disk I/O use, 339–47
fibers concept, 309
lightweight pooling, 309, 323
locking protocol, 358–93
memory and, 323–35
memory configuration, 326–

29
memory use, 325–29
optimized for Background

services, 310
priority, 309–11
query parallelism, 311, 313–

14
thread use, 312–13
useful counters, 349–50
Windows and, 307–53

SQL Server Enterprise Manager,
95, 312

SQL Server Management Studio,
8–9

Activity Monitor, 379–81
in database creation, 79
default options, 93–95
defined, 8
estimated execution plan, 271

illustrated, 8
Include Client Statistics tab,

427–28
index creation with, 153–55
index editor, 154
lock monitoring with, 379–81
.NET Framework and, 410
performance monitoring,

427–43
query plans in, 270–82
Shrink Database dialog box,

86, 87
shrinking databases with, 86–

88
SMO, 8–9
statistics in, 237

SQL Server process identifiers
(SPIDs), 375, 376, 386

SQL Server Profiler, 12–14, 257,
428–42

column filtering selection,
435, 436

column filtering settings, 436
defined, 12
events categories, 429–30,

435
event tracing, 429–30
function, 12–13
information collection, 430–

31
information filtering, 431
initial window, 432
launching, 431
lock event classes, 388
in lock monitoring, 387–88
new features, 13–14
options, 13
in performance monitoring,

428–42
query syntax identification,

320–21
threads using CPU, 321
trace creation, 431–38
trace properties window, 432–

33

SQLServerProfilerStandard
template, 319

Standby failover, 417–18
Star schema, 53–54

defined, 51
fact table, 52
illustrated, 53, 55

Static tables, denormalizing, 37
Statistics

client, 427–28
column, 233–40
cost-based optimization and,

275–82
distribution, 222, 227, 234
execution plans with, 275
existence of, 276
updating, 237–39

STATS_DATE function, 238
Storage

RAID, 116
structures, 75–120
units of, 102–4

Stored procedures
aging from cache, 295, 300–

301
benefits, 289–90
coding, 215
compile effort, 301
creating traces with, 438–42
disadvantage, 292–97
function encapsulation

benefit, 289–90
insulating clients via, 289
owner name specification,

291–92
performance benefit, 290–91
processing stages, 291
query optimizer and, 289–

301
reasons for using, 214–15
recompilation, forcing, 298–

300
security benefit, 290
temporary tables and, 297–98
in Transact SQL, 214–15

498 Index

WITH RECOMPILE option,
298

See also System stored
procedures

Stress testing, 73
String functions, 221
Striping, 410–11
Subqueries

advanced, 211–13
correlated, 210
for efficiency, 210–13
nested, 210–11
uncorrelated, 210

Surrogate keys, 23–25, 63
Symmetric multiprocessing,

311–14
Synonyms, overuse, 213
Syntax conventions, 445–46
Syscacheobjects system table,

304–6
autoparameterization, 305
output, 304–5
See also System tables

SYSDATABASES system table,
98–100

SYSFILEGROUPS system table,
101

SYSFILES system table, 100–101
Sysindexes system table, 159–61

defined, 159
examining, 161
table definition, 159–61
See also System tables

Syslockinfo systems table, 383–
86

column definitions, 384
defined, 383
output, 383
req_mode column values,

385–86
req_status column values, 386
See also System tables

System Monitor, 314
Buffer Manager: Readahead

pages/sec counter, 346

Buffer Manager: Total Pages
counter, 327

Cache Manager: Cache Pages
counter, 327

chart display, 425
defined, 381
disk counters, 334
in lock monitoring, 381–83
lock object counters, 382
memory checking counters,

326–28
Memory Manager:

Connection Memory (KB)
counter, 327

Memory Manager: Lock
Memory (KB) counter,
328

Memory Manager: Optimizer
Memory (KB) counter,
328

Memory Manager: Total
Server Memory (KB)
counter, 328

Memory: Page Faults/sec
counter, 332, 333

Memory: Pages Input/sec
counter, 332, 333

Processor: % Processor Time
counter, 315, 316–17

Processor Queue Length
counter, 315, 316

report display, 426
System resource use, 477–78
System stored procedures

sp_executesql, 303–4
sp_getapplock, 406
sp_helpdb, 96
sp_helpfile, 98
sp_helpfilegroup, 98
sp_helpindex, 158
sp_lock, 375–79, 422
sp_monitor, 422
sp_recompile, 298
sp_releaseapplock, 406
sp_spaceused, 103

sp_tableoption, 343–44
sp_trace_create, 438
sp_trace_setevent, 438–42
sp_trace_setfilter, 438
sp_trace_setstatus, 438
sp_who, 386–87, 422
See also Stored procedures

System tables, 76
in database configuration, 98–

102
locking in, 373–74
syscacheobjects, 304–6
SYSDATABASES, 98–100
SYSFILEGROUPS, 101
SYSFILES, 100–101
sysindexes, 159–61
syslockinfo, 383–86

Table hints, 283–84
Table-level locks, 362–63

illustrated, 363
use, 362–63
See also Locks

Table partitioning, 1
Tables

in cache, 343–44
with common fields,

removing, 38–39
data modifications, 295–96
dimension, 57–60
duplicate fields across, 40–42
fact, 52, 60–63
generic, 22
intermediary, 46
join, 32–34
parent, 42–43
partitioning, 115–19
static, 37
system, 76, 98–102
temporary, 45–46, 297–98
updating, 482–83

Table scans, 293
as baseline, 171
clustered indexes and, 124

Index 499

Index

forced, 284
full, 280
logical reads for, 242
with no read ahead, 345
with read ahead, 345

TABLOCK lock hint, 373
Task Manager, 314

Applications tab, 330
Performance tab, 314–15,

331
Process tab, 314–15, 318, 331

Temporary tables, 297–98
defined, 45–46
stored procedures and, 297–

98
See also Tables

Testing, multiuser, 483
Threads, 312–13

across CPUs, 308
checkpoint, 342
maximum default value, 312
monopolizing CPUs, 319
use, 312–13
using CPU, 321

Throughput, 417
Timeouts, lock, 363–64
Traces

creating with SQL Server
Profiler, 431–38

creating with stored
procedures, 438–42

defined, 4
performance and, 4

Transactional databases, 58
Transaction analysis, 69–73

approach, 73
attribute capture, 70
attributes example, 71
defined, 70
documentation, 70
information capture, 71

Transaction isolation
levels, 368–69
locking phenomena and, 368
setting, 369

Transaction logs
entries, 418
size, 69
size, increasing, 83–84

Transact SQL
improvements, 2
procedures, 214–15
See also specific Transact-SQL

statements
Transitive dependencies,

reincorporating, 39–40
Translating rows, 241–46

clustered index present, 242–
43

multiple non-clustered index
present, 245–46

no index present, 242
non-clustered index/clustered

index present, 245
non-clustered index present,

243–44
See also Rows

Uncommitted data, reading,
398–99

Uncorrelated subqueries, 210
Unified cache, 339
Unified Dimensional Model

(UDM), 16, 413
Uniform extents, 102
Units of storage, 102–4
Update locks, 365–67

bulk, 407
intent, 379
See also Locks

UPDATE STATISTICS
statement, 234–39, 295

executing, 295
format, 234–35
NORECOMPUTE option,

236, 239
RESAMPLE option, 236
running, 236–37, 240
SAMPLE number, 235

Updating
indexes, 234–40
interleaving, 482
statistics, 237–39
tables, 482–83

UPDLOCK lock hint, 373

Variable-length columns, 107
View hints, 284–85
Views

creating indexes on, 167–69
defined, 45
indexed, 47–48
materialized, 47, 214
overuse, 213

Weightings, common operations,
227

WHERE clause, 195–96, 280
overriding, 197–98
use guidelines, 196

Windows, 307–53
Address Windowing

Extensions (AWEs), 323
CPU utilization and, 307–9
disk I/O and, 336–39

Workflow management, 411–12
benefit, 412
computerized, 412
defined, 411–12

Write locks, 358

XLOCK lock hint, 373
XML

data type indexes, 130
defined, 16
native data types, 16

XSL (eXtensible Style Sheets),
130

This Page Intentionally Left Blank

