Solutions and Examples for My5S0L
Database Developers

QIREILLY. Faul DuBois

MySQL Cookbook

By Paul DuBois

Publisher : O'Reilly
Pub Date : October 2002

Preface

Chapter

MySQL APIs Used in This Book

Who This Book Is For

What's in This Book

Platform Notes

Conventions Used in This Book

The Companion Web Site

Comments and Questions

Additional Resources

Acknowledgments

1. Using the mysqgl Client Program

Section 1.1. Introduction

Section 1.2. Setting Up a MySQL User Account

Section 1.3. Creating a Database and a Sample Table

Section 1.4. Starting and Terminating mysql

Section 1.5. Specifying Connection Parameters by Using Option Files
Section 1.6. Protecting Option Files

Section 1.7. Mixing Command-Line and Option File Parameters
Section 1.8. What to Do if mysgl Cannot Be Found

Section 1.9. Setting Environment Variables

Section 1.10. Issuing Queries

Section 1.11. Selecting a Database

Section 1.12. Canceling a Partially Entered Query

Section 1.13. Repeating and Editing Queries

Section 1.14. Using Auto-Completion for Database and Table Names
Section 1.15. Using SQL Variables in Queries

Section 1.16. Telling mysql to Read Queries from a File

Section 1.17. Telling mysql to Read Queries from Other Programs
Section 1.18. Specifying Queries on the Command Line

Section 1.19. Using Copy and Paste as a mysqgl Input Source
Section 1.20. Preventing Query Output from Scrolling off the Screen
Section 1.21. Sending Query Output to a File or to a Program
Section 1.22. Selecting Tabular or Tab-Delimited Query Output Format
Section 1.23. Specifying Arbitrary Output Column Delimiters
Section 1.24. Producing HTML Output

Section 1.25. Producing XML Output

Section 1.26. Suppressing Column Headings in Query Output
Section 1.27. Numbering Query Output Lines

Section 1.28. Making Long Output Lines More Readable

Section 1.29. Controlling mysqgl's Verbosity Level

Section 1.30. Logging Interactive mysqgl Sessions

Chapter

Section 1.31.

Creating mysql Scripts from Previously Executed Queries

Section 1.32.

Using mysgl as a Calculator

Section 1.33.

Using mysgl in Shell Scripts

2. Writing MySQL-Based Programs

Section 2.1.

Introduction

Section 2.2.

Connecting to the MySQL Server, Selecting a Database, and Disconnecting

Section 2.3.

Checking for Errors

Section 2.4.

Writing Library Files

Section 2.5. Issuing Queries and Retrieving Results

Section 2.6. Moving Around Within a Result Set

Section 2.7. Using Prepared Statements and Placeholders in Queries
Section 2.8. Including Special Characters and NULL Values in Queries
Section 2.9. Handling NULL Values in Result Sets

Section 2.10. Writing an Object-Oriented MySQL Interface for PHP
Section 2.11. Ways of Obtaining Connection Parameters

Section 2.12. Conclusion and Words of Advice

Chapter 3. Record Selection Techniques

Section 3.1. Introduction

Section 3.2. Specifying Which Columns to Display

Section 3.3. Avoiding Output Column Order Problems When Writing Programs
Section 3.4. Giving Names to Output Columns

Section 3.5. Using Column Aliases to Make Programs Easier to Write
Section 3.6. Combining Columns to Construct Composite Values

Section 3.7. Specifying Which Rows to Select

Section 3.8. WHERE Clauses and Column Aliases

Section 3.9. Displaying Comparisons to Find Out How Something Works
Section 3.10. Reversing or Negating Query Conditions

Section 3.11. Removing Duplicate Rows

Section 3.12. Working with NULL Values

Section 3.13. Negating a Condition on a Column That Contains NULL Values
Section 3.14. Writing Comparisons Involving NULL in Programs

Section 3.15. Mapping NULL Values to Other Values for Display

Section 3.16. Sorting a Result Set

Section 3.17. Selecting Records from the Beginning or End of a Result Set
Section 3.18. Pulling a Section from the Middle of a Result Set

Section 3.19. Choosing Appropriate LIMIT Values

Section 3.20. Calculating LIMIT Values from Expressions

Section 3.21. What to Do When LIMIT Requires the "Wrong" Sort Order
Section 3.22. Selecting a Result Set into an Existing Table

Section 3.23. Creating a Destination Table on the Fly from a Result Set
Section 3.24. Moving Records Between Tables Safely

Section 3.25.

Creating Temporary Tables

Section 3.26.

Cloning a Table Exactly

Section 3.27.

Generating Unique Table Names

Chapter 4. Working with Strings

Section 4.1. Introduction

Section 4.2. Writing Strings That Include Quotes or Special Characters
Section 4.3. Preserving Trailing Spaces in String Columns

Section 4.4. Testing String Equality or Relative Ordering

Section 4.5. Decomposing or Combining Strings

Section 4.6. Checking Whether a String Contains a Substring
Section 4.7. Pattern Matching with SQL Patterns

Section 4.8. Pattern Matching with Reqular Expressions

Section 4.9. Matching Pattern Metacharacters Literally

Section 4.10. Controlling Case Sensitivity in String Comparisons
Section 4.11. Controlling Case Sensitivity in Pattern Matching
Section 4.12. Using FULLTEXT Searches

Section 4.13. Using a FULLTEXT Search with Short Words

Section 4.14. Requiring or Excluding FULLTEXT Search Words
Section 4.15. Performing Phrase Searches with a FULLTEXT Index

Chapter 5. Working with Dates and Times

Section 5.1. Introduction

Section 5.2. Changing MySQL's Date Format

Section 5.3. Telling MySQL How to Display Dates or Times

Section 5.4. Determining the Current Date or Time

Section 5.5. Decomposing Dates and Times Using Formatting Functions
Section 5.6. Decomposing Dates or Times Using Component-Extraction Functions
Section 5.7. Decomposing Dates or Times Using String Functions
Section 5.8. Synthesizing Dates or Times Using Formatting Functions
Section 5.9. Synthesizing Dates or Times Using Component-Extraction Functions
Section 5.10. Combining a Date and a Time into a Date-and-Time Value
Section 5.11. Converting Between Times and Seconds

Section 5.12. Converting Between Dates and Days

Section 5.13. Converting Between Date-and-Time Values and Seconds
Section 5.14. Adding a Temporal Interval to a Time

Section 5.15. Calculating Intervals Between Times

Section 5.16. Breaking Down Time Intervals into Components

Section 5.17. Adding a Temporal Interval to a Date

Section 5.18. Calculating Intervals Between Dates

Section 5.19. Canonizing Not-Quite-1SO Date Strings

Section 5.20. Calculating Ages

Section 5.21. Shifting Dates by a Known Amount

Chapter

Section 5.22.

Finding First and Last Days of Months

Section 5.23.

Finding the Length of a Month

Section 5.24.

Calculating One Date from Another by Substring Replacement

Section 5.25.

Finding the Day of the Week for a Date

Section 5.26.

Finding Dates for Days of the Current Week

Section 5.27.

Finding Dates for Weekdays of Other Weeks

Section 5.28.

Performing Leap Year Calculations

Section 5.29.

Treating Dates or Times as Numbers

Section 5.30.

Forcing MySQL to Treat Strings as Temporal Values

Section 5.31.

Selecting Records Based on Their Temporal Characteristics

Section 5.32.

Using TIMESTAMP Values

Section 5.33.

Recording a Row's Last Modification Time

Section 5.34.

Recording a Row's Creation Time

Section 5.35.

Performing Calculations with TIMESTAMP Values

Section 5.36.

Displaying TIMESTAMP Values in Readable Form

6. Sorting Query Results

Chapter

Section 6.1.

Introduction

Section 6.2.

Using ORDER BY to Sort Query Results

Section 6.3.

Sorting Subsets of a Table

Section 6.4.

Sorting Expression Results

Section 6.5.

Displaying One Set of Values While Sorting by Another

Controlling Case Sensitivity of String Sorts

Section 6.6. Sorting and NULL Values
Section 6.7.

Section 6.8. Date-Based Sorting
Section 6.9. Sorting by Calendar Day

Section 6.10.

Sorting by Day of Week

Section 6.11.

Sorting by Time of Day

Section 6.12.

Sorting Using Substrings of Column Values

Section 6.13.

Sorting by Fixed-Length Substrings

Section 6.14.

Sorting by Variable-Length Substrings

Section 6.15.

Sorting Hostnames in Domain Order

Section 6.16.

Sorting Dotted-Quad IP Values in Numeric Order

Section 6.17.

Floating Specific Values to the Head or Tail of the Sort Order

Section 6.18.

Sorting in User-Defined Orders

Section 6.19.

Sorting ENUM Values

7. Generating Summaries

Section 7.1.

Introduction

Section 7.2.

Summarizing with COUNT()

Section 7.3.

Summarizing with MIN() and MAX()

Section 7.4.

Summarizing with SUM() and AVG()

Section 7.5.

Using DISTINCT to Eliminate Duplicates

Chapter

Section 7.6. Finding Values Associated with Minimum and Maximum Values

Section 7.7. Controlling String Case Sensitivity for MIN() and MAX()

Section 7.8. Dividing a Summary into Subgroups

Section 7.9. Summaries and NULL Values

Section 7.10.

Selecting Only Groups with Certain Characteristics

Section 7.11.

Determining Whether Values are Unique

Section 7.12.

Grouping by Expression Results

Section 7.13.

Categorizing Non-Categorical Data

Section 7.14.

Controlling Summary Display Order

Section 7.15.

Finding Smallest or Largest Summary Values

Section 7.16.

Date-Based Summaries

Section 7.17.

Working with Per-Group and Overall Summary Values Simultaneously

Section 7.18.

Generating a Report That Includes a Summary and a List

8. Modifying Tables with ALTER TABLE

Chapter

Section 8.1.

Introduction

Section 8.2. Dropping, Adding, or Repositioning a Column

Section 8.3. Changing a Column Definition or Name

Section 8.4. The Effect of ALTER TABLE on Null and Default Value Attributes

Section 8.5. Changing a Column's Default Value

Section 8.6. Changing a Table Type

Section 8.7. Renaming a Table

Section 8.8. Adding or Dropping Indexes

Section 8.9. Eliminating Duplicates by Adding an Index

Section 8.10.

Using ALTER TABLE to Normalize a Table

9. Obtaining and Using Metadata

Section 9.1.

Introduction

Section 9.2. Obtaining the Number of Rows Affected by a Query

Section 9.3. Obtaining Result Set Metadata

Section 9.4. Determining Presence or Absence of a Result Set

Section 9.5. Formatting Query Results for Display

Section 9.6. Getting Table Structure Information

Section 9.7. Getting ENUM and SET Column Information

Section 9.8. Database-Independent Methods of Obtaining Table Information

Section 9.9. Applying Table Structure Information

Section 9.10.

Listing Tables and Databases

Section 9.11.

Testing Whether a Table Exists

Section 9.12.

Testing Whether a Database Exists

Section 9.13.

Getting Server Metadata

Section 9.14.

Writing Applications That Adapt to the MySQL Server Version

Section 9.15.

Determining the Current Database

Section 9.16.

Determining the Current MySQL User

Chapter

Section 9.17. Monitoring the MySQL Server

Section 9.18. Determining Which Table Types the Server Supports

10. Importing and Exporting Data

Section 10.1. Introduction

Section 10.2. Importing Data with LOAD DATA and mysglimport
Section 10.3. Specifying the Datafile Location

Section 10.4. Specifying the Datafile Format

Section 10.5. Dealing with Quotes and Special Characters

Section 10.6. Importing CSV Files

Section 10.7. Reading Files from Different Operating Systems
Section 10.8. Handling Duplicate Index Values

Section 10.9. Getting LOAD DATA to Cough Up More Information
Section 10.10. Don't Assume LOAD DATA Knows More than It Does
Section 10.11. Skipping Datafile Lines

Section 10.12. Specifying Input Column Order

Section 10.13. Skipping Datafile Columns

Section 10.14. Exporting Query Results from MySQL

Section 10.15. Exporting Tables as Raw Data

Section 10.16. Exporting Table Contents or Definitions in SQL Format
Section 10.17. Copying Tables or Databases to Another Server
Section 10.18. Writing Your Own Export Programs

Section 10.19. Converting Datafiles from One Format to Another
Section 10.20. Extracting and Rearranging Datafile Columns
Section 10.21. Validating and Transforming Data

Section 10.22. Validation by Direct Comparison

Section 10.23. Validation by Pattern Matching

Section 10.24. Using Patterns to Match Broad Content Types
Section 10.25. Using Patterns to Match Numeric Values

Section 10.26. Using Patterns to Match Dates or Times

Section 10.27. Using Patterns to Match Email Addresses and URLs
Section 10.28. Validation Using Table Metadata

Section 10.29. Validation Using a Lookup Table

Section 10.30. Converting Two-Digit Year Values to Four-Digit Form
Section 10.31. Performing Validity Checking on Date or Time Subparts
Section 10.32. Writing Date-Processing Utilities

Section 10.33. Using Dates with Missing Components

Section 10.34. Performing Date Conversion Using SQL

Section 10.35. Using Temporary Tables for Data Transformation
Section 10.36. Dealing with NULL Values

Section 10.37. Guessing Table Structure from a Datafile

Section 10.38. A LOAD DATA Diagnostic Utility

Section 10.39. Exchanging Data Between MySQL and Microsoft Access

Chapter

Section 10.40.

Exchanging Data Between MySQL and Microsoft Excel

Section 10.41.

Exchanging Data Between MySQL and FileMaker Pro

Section 10.42.

Exporting Query Results as XML

Section 10.43.

Importing XML into MySQL

Section 10.44.

Epilog

11. Generating and Using Sequences

Chapter

Section 11.1.

Introduction

Section 11.2.

Using AUTO_INCREMENT To Set Up a Sequence Column

Section 11.3.

Generating Sequence Values

Section 11.4.

Choosing the Type for a Sequence Column

Section 11.5.

The Effect of Record Deletions on Sequence Generation

Section 11.6.

Retrieving Sequence Values

Section 11.7.

Determining Whether to Resequence a Column

Section 11.8.

Extending the Range of a Sequence Column

Section 11.9.

Renumbering an Existing Sequence

Section 11.10.

Reusing Values at the Top of a Sequence

Section 11.11.

Ensuring That Rows Are Renumbered in a Particular Order

Section 11.12.

Starting a Sequence at a Particular Value

Section 11.13.

Seguencing an Unsequenced Table

Section 11.14.

Using an AUTO_INCREMENT Column to Create Multiple Sequences

Section 11.15.

Managing Multiple SimultaneousAUTO_INCREMENT Values

Section 11.16.

Using AUTO_INCREMENT Valuesto Relate Tables

Section 11.17.

Using Single-Row Sequence Generators

Section 11.18.

Generating Repeating Sequences

Section 11.19.

Numbering Query Output Rows Sequentially

12. Using Multiple Tables

Section 12.1.

Introduction

Section 12.2.

Combining Rows in One Table with Rows in Another

Section 12.3.

Performing a Join Between Tables in Different Databases

Section 12.4.

Referring to Join Output Column Names in Programs

Section 12.5.

Finding Rows in One Table That Match Rows in Another

Section 12.6.

Finding Rows with No Match in Another Table

Section 12.7.

Finding Rows Containing Per-Group Minimum or Maximum Values

Section 12.8.

Computing Team Standings

Section 12.9.

Producing Master-Detail Lists and Summaries

Section 12.10.

Using a Join to Fill in Holes in a List

Section 12.11.

Enumerating a Many-to-Many Relationship

Section 12.12.

Comparing a Table to Itself

Section 12.13.

Calculating Differences Between Successive Rows

Section 12.14.

Finding Cumulative Sums and Running Averages

Section 12.15.

Using a Join to Control Query Output Order

Section 12.16. Converting Subselects to Join Operations

Section 12.17. Selecting Records in Parallel from Multiple Tables

Section 12.18. Inserting Records in One Table That Include Values from Another

Section 12.19. Updating One Table Based on Values in Another

Section 12.20. Using a Join to Create a Lookup Table from Descriptive Labels

Section 12.21. Deleting Related Rows in Multiple Tables

Section 12.22. ldentifying and Removing Unattached Records

Section 12.23. Using Different MySQL Servers Simultaneously

Chapter 13. Statistical Techniques

Section 13.1. Introduction

Section 13.2. Calculating Descriptive Statistics

Section 13.3. Per-Group Descriptive Statistics

Section 13.4. Generating Frequency Distributions

Section 13.5. Counting Missing Values

Section 13.6. Calculating Linear Regressions or Correlation Coefficients

Section 13.7. Generating Random Numbers

Section 13.8. Randomizing a Set of Rows

Section 13.9. Selecting Random Items from a Set of Rows

Section 13.10. Assigning Ranks

Chapter 14. Handling Duplicates

Section 14.1. Introduction

Section 14.2. Preventing Duplicates from Occurring in a Table

Section 14.3. Dealing with Duplicates at Record-Creation Time

Section 14.4. Counting and Identifying Duplicates

Section 14.5. Eliminating Duplicates from a Query Result

Section 14.6. Eliminating Duplicates from a Self-Join Result

Section 14.7. Eliminating Duplicates from a Table

Chapter 15. Performing Transactions

Section 15.1. Introduction

Section 15.2. Verifying Transaction Support Requirements

Section 15.3. Performing Transactions Using SQL

Section 15.4. Performing Transactions from Within Programs

Section 15.5. Using Transactions in Perl Programs

Section 15.6. Using Transactions in PHP Programs

Section 15.7. Using Transactions in Python Programs

Section 15.8. Using Transactions in Java Programs

Section 15.9. Using Alternatives to Transactions

Chapter 16. Introduction to MySQL on the Web

Section 16.1. Introduction

Section 16.2. Basic Web Page Generation

Section 16.3. Using Apache to Run Web Scripts

Section 16.4. Using Tomcat to Run Web Scripts

Section 16.5. Encoding Special Characters in Web Output

Chapter 17. Incorporating Query Resultsinto Web Pages

Section 17.1. Introduction

Section 17.2. Displaying Query Results as Paragraph Text

Section 17.3. Displaying Query Results as Lists

Section 17.4. Displaying Query Results as Tables

Section 17.5. Displaying Query Results as Hyperlinks

Section 17.6. Creating a Navigation Index from Database Content

Section 17.7. Storing Images or Other Binary Data

Section 17.8. Retrieving Images or Other Binary Data

Section 17.9. Serving Banner Ads

Section 17.10. Serving Query Results for Download

Chapter 18. Processing Web Input with MySQL

Section 18.1. Introduction

Section 18.2. Creating Forms in Scripts

Section 18.3. Creating Single-Pick Form Elements from Database Content

Section 18.4. Creating Multiple-Pick Form Elements from Database Content

Section 18.5. Loading a Database Record into a Form

Section 18.6. Collecting Web Input

Section 18.7. Validating Web Input

Section 18.8. Using Web Input to Construct Queries

Section 18.9. Processing File Uploads

Section 18.10. Performing Searches and Presenting the Results

Section 18.11. Generating Previous-Page and Next-Page Links

Section 18.12. Generating "Click to Sort" Table Headings

Section 18.13. Web Page Access Counting

Section 18.14. Web Page Access Logging

Section 18.15. Using MySQL for Apache Logging

Chapter 19. Using MySQL-Based Web Session Management

Section 19.1. Introduction

Section 19.2. Using MySQL-Based Sessions in Perl Applications

Section 19.3. Using MySQL-Based Storage with the PHP Session Manager

Section 19.4. Using MySQL for Session BackingStore with Tomcat

Appendix A. Obtaining MySQL Software

Section A.1. Obtaining Sample Source Code and Data

Section A.2. Obtaining MySQL and Related Software

Appendix B. JSP and Tomcat Primer

Section B.1. Servlet and JavaServer Pages Overview

Section B.2. Setting Up a Tomcat Server

Section B.3. Web Application Structure

Section B.4. Elements of JSP Pages

Appendix C. References

Section C.1. MySQL Resources

Section C.2. Perl Resources

Section C.3. PHP Resources

Section C.4. Python Resources

Section C.5. Java Resources

Section C.6. Apache Resources

Section C.7. Other Resources

Colophon

Preface

The MySQL database management system has become quite popular in recent years. This has
been true especially in the Linux and open source communities, but MySQL's presence in the
commercial sector now is increasing as well. It is well liked for several reasons: MySQL is fast,
and it's easy to set up, use, and administrate. MySQL runs under many varieties of Unix and
Windows, and MySQL-based programs can be written in many languages. MySQL is especially
heavily used in combination with a web server for constructing database-backed web sites that
involve dynamic content generation.

With MySQL's rise in popularity comes the need to address the questions posed by its users
about how to solve specific problems. That is the purpose of MySQL Cookbook. It's designed to
serve as a handy resource to which you can turn when you need quick solutions or techniques
for attacking particular types of questions that come up when you use MySQL. Naturally,
because it's a cookbook, it contains recipes: straightforward instructions you can follow rather
than develop your own code from scratch. It's written using a problem-and-solution format
designed to be extremely practical and to make the contents easy to read and assimilate. It
contains many short sections, each describing how to write a query, apply a technique, or
develop a script to solve a problem of limited and specific scope. This book doesn't attempt to
develop full-fledged applications. Instead, it's intended to assist you in developing such
applications yourself by helping you get past problems that have you stumped.

For example, a common question is, "How can | deal with quotes and special characters in
data values when I'm writing queries?" That's not difficult, but figuring out how to do it is
frustrating when you're not sure where to start. This book demonstrates what to do; it shows
you where to begin and how to proceed from there. This knowledge will serve you repeatedly,
because after you see what's involved, you'll be able to apply the technique to any kind of
data, such as text, images, sound or video clips, news articles, compressed files, PDF files, or
word processing documents. Another common question is, "Can | access tables from two
databases at the same time?" The answer is "Yes," and it's easy to do because it's just a
matter of knowing the proper SQL syntax. But it's hard to do until you see how; this book will
show you. Other things that you'll learn from this book include:

How to use SQL to select, sort, and summarize records.

How to find matches or mismatches between records in two tables.

How to perform a transaction.

How to determine intervals between dates or times, including age calculations.

How to remove duplicate records.

How to store images into MySQL and retrieve them for display in web pages.

How to convert the legal values of an ENUMcolumn into radio buttons in a web page,
or the values of a SET column into checkboxes.

How to get LOAD DATA to read your datafiles properly, or find out which values in the

file are bad.

How to use pattern matching techniques to cope with mismatches between the CCYY-
MWt DD date format that MySQL uses and dates in your datafiles.
How to copy a table or a database to another server.

How to resequence a sequence number column, and why you really don't want to.

One part of knowing how to use MySQL is understanding how to communicate with the
server—that is, how to use SQL, the language through which queries are formulated.
Therefore, one major emphasis of this book is on using SQL to formulate queries that answer
particular kinds of questions. One helpful tool for learning and using SQL is the mysql client
program that is included in MySQL distributions. By using this client interactively, you can
send SQL statements to the server and see the results. This is extremely useful because it
provides a direct interface to SQL. The mysql client is so useful, in fact, that the entire first
chapter is devoted to it.

But the ability to issue SQL queries alone is not enough. Information extracted from a
database often needs to be processed further or presented in a particular way to be useful.
What if you have queries with complex interrelationships, such as when you need to use the
results of one query as the basis for others? SQL by itself has little facility for making these
kinds of choices, which makes it difficult to use decision-based logic to determine which
queries to execute. Or what if you need to generate a specialized report with very specific
formatting requirements? This too is difficult to achieve using just SQL. These problems bring
us to the other major emphasis of the book—how to write programs that interact with the
MySQL server through an application programming interface (APIl). When you know how to
use MySQL from within the context of a programming language, you gain the ability to exploit
MySQL's capabilities in the following ways:

You can remember the result from a query and use it at a later time.

You can make decisions based on success or failure of a query, or on the content of
the rows that are returned. Difficulties in implementing control flow disappear when
using an API because the host language provides facilities for expressing decision-
based logic: if-then-else constructs, while loops, subroutines, and so forth.

You can format and display query results however you like. If you're writing a
command-line script, you can generate plain text. If it's a web-based script, you can
generate an HTML table. If it's an application that extracts information for transfer to
some other system, you might write a datafile expressed in XML.

When you combine SQL with a general purpose programming language and a MySQL client
API, you have an extremely flexible framework for issuing queries and processing their results.
Programming languages increase your expressive capabilities by giving you a great deal of
additional power to perform complex database operations. This doesn't mean this book is
complicated, though. It keeps things simple, showing how to construct small building blocks
by using techniques that are easy to understand and easily mastered.

I'll leave it to you to combine these techniques within your own programs, which you can do to
produce arbitrarily complex applications. After all, the genetic code is based on only four

nucleic acids, but these basic elements have been combined to produce the astonishing array
of biological life we see all around us. Similarly, there are only 12 notes in the scale, but in the
hands of skilled composers, they can be interwoven to produce a rich and endless variety of
music. In the same way, when you take a set of simple recipes, add your imagination, and
apply them to the database programming problems you want to solve, you can produce that
are perhaps not works of art, but certainly applications that are useful and that will help you
and others be more productive.

MySQL APIs Used in This Book

MySQL programming interfaces exist for many languages, including (in alphabetical order) C,
C++, Eiffel, Java, Pascal, Perl, PHP, Python, Ruby, Smalltalk, and Tcl.B Given this fact, writing
a MySQL cookbook presents an author with something of a challenge. Clearly the book should
provide recipes for doing many interesting and useful things with MySQL, but which API or
APIs should the book use? Showing an implementation of every recipe in every language
would result either in covering very few recipes or in a very, very large book! It would also
result in a lot of redundancy when implementations in different languages bear a strong
resemblance to each other. On the other hand, it's worthwhile taking advantage of multiple
languages, because one language often will be more suitable than another for solving a
particular type of problem.

U To see what APIs are currently available, visit the development portal at the
MySQL web site, located at http://www.mysgl.com/portal/development/html/.

To resolve this dilemma, I've picked a small number of APIs from among those that are
available and used them to write the recipes in this book. This limits its scope to a manageable
number of APIs while allowing some latitude to choose from among them. The primary APIls
covered here are:

Perl
Using the DBI module and its MySQL-specific driver
PHP
Using its set of built-in MySQL support functions
Python
Using the DB-API module and its MySQL-specific driver
Java ™
Using a MySQL-specific driver for the Java Database Connectivity (JDBC) interface

Why these languages? Perl and PHP were easy to pick. Perl is arguably the most widely used
language on the Web, and it became so based on certain strengths such as its text-processing

http://www.mysql.com/portal/development/html/

capabilities. In particular, it's very popular for writing MySQL programs. PHP also is widely
deployed, and its use is increasing steadily. One of PHP's strengths is the ease with which you
can use it to access databases, making it a natural choice for MySQL scripting. Python and
Java are not as popular as Perl or PHP for MySQL programming, but each has significant
numbers of followers. In the Java community in particular, MySQL seems to be making strong
inroads among developers who use JavaServer Pages (JSP) technology to build database-
backed web applications. (An anecdotal observation: After | wrote MySQL (New Riders),
Python and Java were the two languages not covered in that book that readers most often
said they would have liked to have seen addressed. So here they are!)

I believe these languages taken together reflect pretty well the majority of the existing user
base of MySQL programmers. If you prefer some language not shown here, you can still use
this book, but be sure to pay careful attention to Chapter 2, to familiarize yourself with the
book’s primary API languages. Knowing how database operations are performed with the APIs
used here will help you understand the recipes in later chapters so that you can translate them
into languages not discussed.

Who This Book Is For

This book should be useful for anybody who uses MySQL, ranging from novices who want to
use a database for personal reasons, to professional database and web developers. The book
should also appeal to people who do not now use MySQL, but would like to. For example, it
should be useful to beginners who want to learn about databases but realize that Oracle isn't
the best choice for that.

If you're relatively new to MySQL, you'll probably find lots of ways to use it here that you
hadn't thought of. If you're more experienced, you'll probably be familiar with many of the
problems addressed here, but you may not have had to solve them before and should find the
book a great timesaver; take advantage of the recipes given in the book and use them in your
own programs rather than figuring out how to write the code from scratch.

The book also can be useful for people who aren't even using MySQL. You might suppose that
because this is a MySQL cookbook and not a PostgreSQL cookbook or an InterBase cookbook
that it won't apply to databases other than MySQL. To some extent that's true, because some
of the SQL constructs are MySQL-specific. On the other hand, many of the queries are
standard SQL that is portable to many other database engines, so you should be able to use
them with little or no modification. And several of our programming language interfaces
provide database-independent access methods; you use them the same way regardless of
which database you're connecting to.

The material ranges from introductory to advanced, so if a recipe describes techniques that
seem obvious to you, skip it. Or if you find that you don't understand a recipe, it may be best
to set it aside for a while and come back to it later, perhaps after reading some of the
preceding recipes.

More advanced readers may wonder on occasion why in a book on MySQL | sometimes
provide explanatory material on certain basic topics that are not directly MySQL-related, such
as how to set environment variables. | decided to do this based on my experience in helping
novice MySQL users. One thing that makes MySQL attractive is that it is easy to use, which
makes it a popular choice for people without extensive background in databases. However,
many of these same people also tend to be thwarted by simple barriers to more effective use
of MySQL, as evidenced by the common question, "How can | avoid having to type the full
pathname of mysql each time | invoke it?" Experienced readers will recognize immediately
that this is simply a matter of appropriately setting the PATH environment variable to include
the directory where mysql is installed. But other readers will not, particularly Windows users
who are used to dealing only with a graphical interface and, more recently, Mac OS X users
who find their familiar user interface now augmented by the powerful but sometimes
mysterious command line provided by the Terminal application. If you are in this situation,
you'll find these more elementary sections helpful in knocking down barriers that keep you
from using MySQL more easily. If you're a more advanced user, just skip over such sections.

What's in This Book

It's very likely when you use this book that you'll have an application in mind you're trying to
develop but are not sure how to implement certain pieces of it. In this case, you'll already
know what type of problem you want to solve, so you should search the table of contents or
the index looking for a recipe that shows how to do what you want. Ideally, the recipe will be
just what you had in mind. Failing that, you should be able to find a recipe for a similar
problem that you can adapt to suit the issue at hand. (I try to explain the principles involved
in developing each technique so that you'll be able to modify it to fit the particular
requirements of your own applications.)

Another way to approach this book is to just read through it with no specific problem in mind.
This can help you because it will give you a broader understanding of the things MySQL can
do, so | recommend that you page through the book occasionally. It's a more effective tool if
you have a general familiarity with it and know the kinds of problems it addresses. The
following paragraphs summarize each chapter, to help give you an overview of the book's
contents.

Chapter 1, describes how to use the standard MySQL command-line client. mysql is often the
first interface to MySQL that people use, and it's important to know how to exploit its
capabilities. This program allows you to issue queries and see the results interactively, so it's
good for quick experimentation. You can also use it in batch mode to execute canned SQL
scripts or send its output into other programs. In addition, the chapter discusses other ways to
use mysql, such as how to number output lines or make long lines more readable, how to
generate various output formats, and how to log mysql sessions.

Chapter 2, demonstrates the basic elements of MySQL programming in each APl language:
how to connect to the server, issue queries, retrieve the results, and handle errors. It also
discusses how to handle special characters and NULL values in queries, how to write library

files to encapsulate code for commonly used operations, and various ways to gather the
parameters needed for making connections to the server.

Chapter 3, covers several aspects of the SELECT statement, which is the primary vehicle for
retrieving data from the MySQL server: specifying which columns and rows you want to
retrieve, performing comparisons, dealing with NULL values, selecting one section of a query
result, using temporary tables, and copying results into other tables. Later chapters cover
some of these topics in more detail, but this chapter provides an overview of the concepts on
which they depend. You should read it if you need some introductory background on record
selection, for example, if you don't yet know a lot about SQL.

Chapter 4, describes how to deal with string data. It addresses string comparisons, pattern
matching, breaking apart and combining strings, dealing with case-sensitivity issues, and
performing FULLTEXT searches.

Chapter 5, shows how to work with temporal data. It describes MySQL's date format and how
to display date values in other formats. It also covers conversion between different temporal
units, how to perform date arithmetic to compute intervals or generate one date from another,
leap-year calculations, and how to use MySQL's special TI MESTAMP column type.

Chapter 6, describes how to put the rows of a query result in the order you want. This includes
specifying the sort direction, dealing with NULL values, accounting for string case sensitivity,
and sorting by dates or partial column values. It also provides examples that show how to sort
special kinds of values, such as domain names, IP numbers, and ENUMvalues.

Chapter 7, shows techniques that are useful for assessing the general characteristics of a set
of data, such as how many values it contains or what the minimum, maximum, or average
values are.

Chapter 8, describes how to alter the structure of tables by adding, dropping, or modifying
columns, and how to set up indexes.

Chapter 9, discusses how to get information about the data a query returns, such as the
number of rows or columns in the result, or the name and type of each column. It also shows
how to ask MySQL what databases and tables are available or about the structure of a table
and its columns.

Chapter 10, describes how to transfer information between MySQL and other programs. This
includes how to convert files from one format to another, extract or rearrange columns in
datafiles, check and validate data, rewrite values such as dates that often come in a variety of
formats, and how to figure out which data values cause problems when you load them into
MySQL with LOAD DATA.

Chapter 11, discusses AUTO | NCREMENT columns, MySQL's mechanism for producing

sequence numbers. It shows how to generate new sequence values or determine the most

recent value, how to resequence a column, how to begin a sequence at a given value, and
how to set up a table so that it can maintain multiple sequences at once. It also shows how to
use AUTO | NCREMENT values to maintain a master-detail relationship between tables,

including some of the pitfalls to avoid.

Chapter 12, shows how to perform joins, which are operations that combine rows in one table
with those from another. It demonstrates how to compare tables to find matches or
mismatches, produce master-detail lists and summaries, enumerate many-to-many
relationships, and update or delete records in one table based on the contents of another.

Chapter 13, illustrates how to produce descriptive statistics, frequency distributions,
regressions, and correlations. It also covers how to randomize a set of rows or pick a row at
random from the set.

Chapter 14, discusses how to identify, count, and remove duplicate records—and how to
prevent them from occurring in the first place.

Chapter 15, shows how to handle multiple SQL statements that must execute together as a
unit. It discusses how to control MySQL's auto-commit mode, how to commit or roll back
transactions, and demonstrates some workarounds you can use if transactional capabilities are
unavailable in your version of MySQL.

Chapter 16, gets you set up to write web-based MySQL scripts. Web programming allows you
to generate dynamic pages or collect information for storage in your database. The chapter
discusses how to configure Apache to run Perl, PHP, and Python scripts, and how to configure
Tomcat to run Java scripts written using JSP notation. It also provides an overview of the Java
Standard Tag Library (JSTL) that is used heavily in JSP pages in the following chapters.

Chapter 17, shows how to use the results of queries to produce various types of HTML
structures, such as paragraphs, lists, tables, hyperlinks, and navigation indexes. It also
describes how to store images into MySQL, retrieve and display them later, and how to send a
downloadable result set to a browser.

Chapter 18, discusses ways to obtain input from users over the Web and use it to create new
database records or as the basis for performing searches. It deals heavily with form
processing, including how to construct form elements, such as radio buttons, pop-up menus,
or checkboxes, based on information contained in your database.

Chapter 19, describes how to write web applications that remember information across
multiple requests, using MySQL for backing store. This is useful when you want to collect
information in stages, or when you need to make decisions based on what the user has done
earlier.

Appendix A, indicates where to get the source code for the examples shown in this book, and
where to get the software you need to use MySQL and write your own database programs.

Appendix B, provides a general overview of JSP and installation instructions for the Tomcat
web server. Read this if you need to install Tomcat or are not familiar with it, or if you're
never written JSP pages.

Appendix C, lists sources of information that provide additional information about topics
covered in this book. It also lists some books that provide introductory background for the
programming languages used here.

As you get into later chapters, you'll sometimes find recipes that assume a knowledge of
topics covered in earlier chapters. This also applies within a chapter, where later sections often
use techniques discussed earlier in the chapter. If you jump into a chapter and find a recipe
that uses a technique with which you're not familiar, check the table of contents or the index
to find out where the technique is covered. You should find that it's been explained earlier. For
example, if you find that a recipe sorts a query result using an ORDER BY clause that you don't
understand, turn to Chapter 6, which discusses various sorting methods and explains how
they work.

Platform Notes

Development of the code in this book took place under MySQL 3.23 and 4.0. Because new
features are added to MySQL on a regular basis, some examples will not work under older
versions. I've tried to point out version dependencies when introducing such features for the
first time.

The MySQL language APl modules that | used include DBI 1.20 and up, DBD::mysql 2.0901
and up, MySQLdb 0.9 and up, MM.MySQL 2.0.5 and up, and MySQL Connector/J 2.0.14. DBI
requires Perl 5.004_05 or higher up through DBI 1.20, after which it requires Perl 5.005_03 or
higher. MySQLdb requires Python 1.5.6 or higher. MM.MySQL and MySQL Connector/J require
Java SDK 1.1 or higher.

Language processors include Perl 5.6 and 5.6.1; PHP 3 and 4; Python 1.5.6, 2.2; and 2.3, and
Java SDK 1.3.1. Most PHP scripts shown here will run under either PHP 3 or PHP 4 (although |
strongly recommend PHP 4 over PHP 3). Scripts that require PHP 4 are so noted.

I do not assume that you are using Unix, although that is my own preferred development
platform. Most of the material here should be applicable both to Unix and Windows. The
operating systems | used most for development of the recipes in this book were Mac OS X;
RedHat Linux 6.2, 7.0, and 7.3; and various versions of Windows (Me, 98, NT, and 2000).

I do assume that MySQL is installed already and available for you to use. | also assume that if
you plan to write your own MySQL-based programs, you're reasonably familiar with the
language you'll use. If you need to install software, see Appendix A. If you require background
material on the programming languages used here, see Appendix C.

Conventions Used in This Book

The following font conventions have been used throughout the book:
Const ant wi dt h

Used for program listings, as well as within paragraphs to refer to program elements such as variable or function
names.

Constant wi dth bold
Used to indicate text that you type when running commands.
Constant widthitalic
Used to indicate variable input; you should substitute a value of your own choosing.
Italic
Used for URLs, hostnames, names of directories and files, Unix commands and options, and occasionally for emphasis.

Commands often are shown with a prompt to illustrate the context in which they are used.
Commands that you issue from the command line are shown with a %prompt:

% chnod 600 ny. cnf

That prompt is one that Unix users are used to seeing, but it doesn't necessarily signify that a
command will work only under Unix. Unless indicated otherwise, commands shown with a %

prompt generally should work under Windows, too.

If you should run a command under Unix as the r oot user, the prompt is # instead:
chkconfig --add tontat4

For commands that are specific only to Windows, the C. \ > prompt is used:

C.\> copy C\nysqgl\lib\cygwi nbl9.dll C. \Wndows\ System

SQL statements that are issued from within the mysql client program are shown with a
nmysql > prompt and terminated with a semicolon:

nysql > SELECT * FROM ny_t abl e;

For examples that show a query result as you would see it when using mysql, | sometimes
truncate the output, using an ellipsis (. . .) to indicate that the result consists of more rows
than are shown. The following query produces many rows of output, of which those in the
middle have been omitted:

nysql > SELECT nane, abbrev FROM states ORDER BY nane;

| Arizona |
| West Virginia |

W/
| Wsconsin | W |
| Wom ng | W

Examples that just show the syntax for SQL statements do not include the mysql > prompt,
but they do include semicolons as necessary to make it clear where statements end. For
example, this is a single statement:

CREATE TABLE t1 (i INT)
SELECT * FROM t 2;

But this example represents two statements:

CREATE TABLE t1 (i INT);
SELECT * FROM t 2;

The semicolon is a notational convenience used within mysqgl as a statement terminator. But it
is not part of SQL itself, so when you issue SQL statements from within programs that you
write (for example, using Perl or Java), you should not include terminating semicolons.

This icon indicates a tip, suggestion, or general note.

The Companion Web Site

MySQL Cookbook has a companion web site that you can visit to obtain the source code and
sample data for examples developed throughout this book:

http://www.Kitebird.com/mysagl-cookbook/

The main software distribution is named r eci pes and you'll find many references to it
throughout the book. You can use it to save a lot of typing. For example, when you see a
CREATE TABLE statement in the book that describes what a database table looks like, you'll
find a SQL batch file in the tables directory of the r eci pes distribution that you can use to
create the table instead of typing out the definition. Change location into the tables directory,
then execute the following command, where fi | enane is the name of the containing the
CREATE TABLE statement:

http://www.kitebird.com/mysql-cookbook/

% nmysqgl cookbook < fil enane

If you need to specify MySQL username or password options, put them before the database
name.

For more information about the distributions, see Appendix A.

The Kitebird site also makes some of the examples from the book available online so that you
can try them out from your browser.

Comments and Questions

Please address comments and questions concerning this book to the publisher:
O'Reilly & Associates, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
(800) 998-9938 (in the United States or Canada)
(707) 829-0515 (international/local)
(707) 829-0104 (fax)
O'Reilly keeps a web page for this book that you can access at:

http://www.oreilly.com/catalog/mysqlckbk/

To comment or ask technical questions about this book, send email to:

bookguestions@oreilly.com

For more information about books, conferences, Resource Centers, and the O'Reilly Network,
see the O'Reilly web site at:

http://www.oreilly.com

Additional Resources

Any language that attracts a following tends to benefit from the efforts of its user community,
because people who use the language produce code that they make available to others. Perl in
particular is served by an extensive support network designed to provide external modules
that are not distributed with Perl itself. This is called the Comprehensive Perl Archive Network
(CPAN), a mechanism for organizing and distributing Perl code and documentation. CPAN

http://www.oreilly.com/catalog/mysqlckbk/
http://www.oreilly.com

contains modules that allow database access, web programming, and XML processing, to
name a few of direct relevance to this cookbook. External support exists for the other
languages as well, though none of them currently enjoys the same level of organization as
CPAN. PHP has the PEAR archive, and Python has a module archive called the Vaults of
Parnassus. For Java, a good starting point is Sun's Java site. Sites that you can visit to find
more information are shown in the following table.

API language Where to find external support

Perl http://cpan.perl.org/

PHP http://pear.php.net/

Python http://www.python.org/

Java http://java.sun.com/

Acknowledgments

I'd like to thank my technical reviewers, Tim Allwine, David Lane, Hugh Williams, and Justin
Zobel. They made several helpful suggestions and corrections with regard to both
organizational structure and technical accuracy. Several members of MySQL AB were gracious
enough to add their comments: In particular, principal MySQL developer Monty Widenius
combed the text and spotted many problems. Arjen Lentz, Jani Tolonen, Sergei Golubchik, and
Zak Greant reviewed sections of the manuscript as well. Andy Dustman, author of the Python
MySQLdb module, and Mark Matthews, author of MM.MySQL and MySQL Connector/J, also
provided feedback. My thanks to all for improving the manuscript; any errors remaining are
my own.

Laurie Petrycki, executive editor, conceived the idea for the book and provided valuable overall
editorial guidance and cattle-prodding. Lenny Muellner, tools expert, assisted in the conversion
of the manuscript from my original format into something printable. David Chu acted as
editorial assistant. Ellie Volckhausen designed the cover, which | am happy to see is reptilian
in nature. Linley Dolby served as the production editor and proofreader, and Colleen Gorman,
Darren Kelly, Jeffrey Holcomb, Brian Sawyer, and Claire Cloutier provided quality control.

Thanks to Todd Greanier and Sean Lahman of The Baseball Archive for all their hard work in
putting together the baseball database that is used for several of the examples in this book.

Some authors are able to compose text productively while sitting at a keyboard, but | write
better while sitting far from a computer—preferably with a cup of coffee. That being so, I'd like
to acknowledge my debt to the Sow's Ear coffee shop in Verona for providing pleasant
surroundings in which to spend many hours scribbling on paper.

http://cpan.perl.org/
http://pear.php.net/
http://www.python.org/
http://java.sun.com/

My wife Karen provided considerable support and understanding in what turned out to be a
much longer endeavor than anticipated. Her encouragement is much appreciated, and her
patience something to marvel at.

Chapter 1. Using the mysql Client Program

Section 1.1. Introduction

Section 1.2. Setting Up a MySQL User Account

Section 1.3. Creating a Database and a Sample Table

Section 1.4. Starting and Terminating mysal

Section 1.5. Specifying Connection Parameters by Using Option Files

Section 1.6. Protecting Option Files

Section 1.7. Mixing Command-Line and Option File Parameters

Section 1.8. What to Do if mysqgl Cannot Be Found

Section 1.9. Setting Environment Variables

Section 1.10. Issuing Queries

Section 1.11. Selecting a Database

Section 1.12. Canceling a Partially Entered Query

Section 1.13. Repeating and Editing Queries

Section 1.14. Using Auto-Completion for Database and Table Names

Section 1.15. Using SQL Variables in Queries

Section 1.16. Telling mysgl to Read Queries from a File

Section 1.17. Telling mysgl to Read Queries from Other Programs

Section 1.18. Specifying Queries on the Command Line

Section 1.19. Using Copy and Paste as a mysql Input Source

Section 1.20. Preventing Query Output from Scrolling off the Screen

Section 1.21. Sending Query Output to a File or to a Program

Section 1.22. Selecting Tabular or Tab-Delimited Query Output Format

Section 1.23. Specifying Arbitrary Output Column Delimiters
Section 1.24. Producing HTML Output

Section 1.25. Producing XML Output

Section 1.26. Suppressing Column Headings in Query Output
Section 1.27. Numbering Query Output Lines

Section 1.28. Making Long Output Lines More Readable
Section 1.29. Controlling mysql's Verbosity Level

Section 1.30. Logging Interactive mysql Sessions

Section 1.31. Creating mysql Scripts from Previously Executed Queries
Section 1.32. Using mysql as a Calculator

Section 1.33. Using mysql in Shell Scripts

1.1 Introduction

The MySQL database system uses a client-server architecture that centers around the server,
mysqld. The server is the program that actually manipulates databases. Client programs don't
do that directly; rather, they communicate your intent to the server by means of queries
written in Structured Query Language (SQL). The client program or programs are installed
locally on the machine from which you wish to access MySQL, but the server can be installed
anywhere, as long as clients can connect to it. MySQL is an inherently networked database
system, so clients can communicate with a server that is running locally on your machine or
one that is running somewhere else, perhaps on a machine on the other side of the planet.
Clients can be written for many different purposes, but each interacts with the server by
connecting to it, sending SQL queries to it to have database operations performed, and
receiving the query results from it.

One such client is the mysql program that is included in MySQL distributions. When used
interactively, mysql prompts for a query, sends it to the MySQL server for execution, and
displays the results. This capability makes mysql useful in its own right, but it's also a valuable
tool to help you with your MySQL programming activities. It's often convenient to be able to
quickly review the structure of a table that you're accessing from within a script, to try a query
before using it in a program to make sure it produces the right kind of output, and so forth.
mysql is just right for these jobs. mysqgl also can be used non-interactively, for example, to
read queries from a file or from other programs. This allows you to use it from within scripts
or cron jobs or in conjunction with other applications.

This chapter describes mysql's capabilities so that you can use it more effectively. Of course,
to try out for yourself the recipes and examples shown in this book, you'll need a MySQL user
account and a database to work with. The first two sections of the chapter describe how to use
mysql to set these up. For demonstration purposes, the examples assume that you'll use
MySQL as follows:

The MySQL server is running on the local host.
Your MySQL username and password are cbuser and cbpass.

Your database is named cookbook.

For your own experimentation, you can violate any of these assumptions. Your server need
not be running locally, and you need not use the username, password, or database name that
are used in this book. Naturally, if you don't use MySQL in the manner just described, you'll
need to change the examples to use values that are appropriate for your system. Even if you
do use different names, | recommend that you at least create a database specifically for trying
the recipes shown here, rather than one you're using currently for other purposes. Otherwise,
the names of your existing tables may conflict with those used in the examples, and you'll
have to make modifications to the examples that are unnecessary when you use a separate
database.

1.2 Setting Up a MySQL User Account
1.2.1 Problem

You need to create an account to use for connecting to the MySQL server running on a given
host.

1.2.2 Solution

Use the GRANT statement to set up the MySQL user account. Then use that account's name

and password to make connections to the server.

1.2.3 Discussion

Connecting to a MySQL server requires a username and password. You can also specify the
name of the host where the server is running. If you don't specify connection parameters
explicitly, mysql assumes default values. For example, if you specify no hostname, mysql
typically assumes the server is running on the local host.

The following example shows how to use the mysql program to connect to the server and
issue a GRANT statement that sets up a user account with privileges for accessing a database
named cookbook. The arguments to mysql include -h localhost to connect to the MySQL
server running on the local host, -p to tell mysqgl to prompt for a password, and -u root to
connect as the MySQL r oot user. Text that you type is shown in bold; non-bold text is

program output:

% nmysqgl -h local host -p -u root

Ent er password:; ****x*

mysqgl > GRANT ALL ON cookbook.* TO 'chuser' @I ocal host' | DENTI FI ED BY
' cbpass';

Query OK, 0 rows affected (0.09 sec)

nysql> QU T

Bye

After you enter the mysql command shown on the first line, if you get a message indicating
that the program cannot be found or that it is a bad command, see Recipe 1.8. Otherwise,
when mysql prints the password prompt, enter the MySQL r oot password where you see the
*¥Fxxk**E*(If the MySQL r oot user has no password, just press Return at the password

prompt.) Then issue a GRANT statement like the one shown.

To use a database name other than cookbook, substitute its name where you see cookbook
in the GRANT statement. Note that you need to grant privileges for the database even if the
user account already exists. However, in that case, you'll likely want to omit the | DENTI FI ED
BY ' cbpass' part of the statement, because otherwise you'll change that account's current

password.

The hostname part of ' cbuser' @1 ocal host' indicates the host from which you'll be
connecting to the MySQL server to access the cookbook database. To set up an account that
will connect to a server running on the local host, use | ocal host , as shown. If you plan to
make connections to the server from another host, substitute that host in the GRANT
statement. For example, if you'll be connecting to the server as cbuser from a host named
xyz.com, the GRANT statement should look like this:

nysql > GRANT ALL ON cookbook.* TO 'cbuser' @xyz.com | DENTI FI ED BY
' cbpass';

It may have occurred to you that there's a bit of a paradox involved in the procedure just
described. That is, to set up a user account that can make connections to the MySQL server,
you must connect to the server first so that you can issue the GRANT statement. I'm assuming
that you can already connect as the MySQL r oot user, because GRANT can be used only by a
user such as r oot that has the administrative privileges needed to set up other user accounts.
If you can't connect to the server as r 00t , ask your MySQL administrator to issue the GRANT
statement for you. Once that has been done, you should be able to use the new MySQL
account to connect to the server, create your own database, and proceed from there on your
own.

MySQL Accounts and Login Accounts

MySQL accounts and login accounts for your operating system are different. For
example, the MySQL r oot user and the Unix r oot user are separate and have
nothing to do with each other, even though the username is the same in each case.
This means they are very likely to have different passwords. It also means you
cannot create new MySQL accounts by creating login accounts for your operating
system; use the GRANT statement instead.

1.3 Creating a Database and a Sample Table
1.3.1 Problem

You want to create a database and to set up tables within it.

1.3.2 Solution

Use a CREATE DATABASE statement to create a database, a CREATE TABLE statement for

each table you want to use, and | NSERT to add records to the tables.

1.3.3 Discussion

The GRANT statement used in the previous section defines privileges for the cookbook

database, but does not create it. You need to create the database explicitly before you can use

it. This section shows how to do that, and also how to create a table and load it with some
sample data that can be used for examples in the following sections.

After the cbuser account has been set up, verify that you can use it to connect to the MySQL
server. Once you've connected successfully, create the database. From the host that was
named in the GRANT statement, run the following commands to do this (the host named after

-h should be the host where the MySQL server is running):

% nmysqgl -h local host -p -u chuser
Enter password: cbpass

nysql > CREATE DATABASE cookbook;
Query OK, 1 row affected (0.08 sec)

Now you have a database, so you can create tables in it. Issue the following statements to
select cookbook as the default database, create a simple table, and populate it with a few

records:!

[If you don't want to enter the complete text of the | NSERT statements (and
I don't blame you), skip ahead to Recipe 1.13 for a shortcut. And if you don't
want to type in any of the statements, skip ahead to Recipe 1.16.

nysql > USE cookbook;

nysql > CREATE TABLE |inbs (thing VARCHAR(20), legs INT, arns |INT);
nysqgl > | NSERT I NTO |i nmbs (thing,!|egs,arns) VALUES(' human', 2, 2);
nysql > | NSERT INTO |i mbs (thing,!legs,arns) VALUES('insect',6,0);

nysql > | NSERT INTO |i mbs (thing,!|egs,arns) VALUES('squid', 0, 10);

nysql > | NSERT I NTO |i nmbs (thing,legs,arns) VALUES('octopus',O0, 8);

nysqgl > | NSERT INTO |i nbs (thing,!|egs,arnms) VALUES('fish',0,0);

nysql > | NSERT I NTO |i nbs (thing,legs,arns) VALUES(' centi pede', 100, 0);

nmysqgl > | NSERT INTO |i mbs (thing,|egs,arns) VALUES('table',4,0);

nmysql > | NSERT INTO |i mbs (thing,!|egs,arnms) VALUES('arnthair',4,2);

nysqgl > | NSERT INTO |i mbs (thing,!|egs,arns) VALUES(' phonograph', 0, 1);

nysql > | NSERT INTO linbs (thing,|egs,arns) VALUES('tripod',3,0);

nysqgl > | NSERT INTO linbs (thing,|egs,arns) VALUES(' Peg Leg Pete', 1, 2);
nysqgl > | NSERT INTO |i mbs (thing,|egs,arns) VALUES(' space alien', NULL, NULL);

The table is named | i mbs and contains three columns to records the number of legs and arms
possessed by various life forms and objects. (The physiology of the alien in the last row is
such that the proper values for the ar ns and | egs column cannot be determined; NULL

indicates "unknown value.")

Verify that the table contains what you expect by issuing a SELECT statement:

nysql > SELECT * FROM | i nbs;

Fememeeme e +o- oo - +oo - +
| thing | legs | arms |
Fememeeme e +o- oo - +oo - +
human	2	2
insect	6	0
squid	0	10
octopus	0	8
fish	0	0

| centipede |
| table |
| arnchair |
| phonograph
| tripod |
| Peg Leg Pete |
| space alien

+

12 rows in set (0.00 sec)

At this point, you're all set up with a database and a table that can be used to run some
example queries.

1.4 Starting and Terminating mysq|l
1.4.1 Problem

You want to start and stop the mysqgl program.

1.4.2 Solution

Invoke mysgl from your command prompt to start it, specifying any connection parameters
that may be necessary. To leave mysql, use a QUI T statement.

1.4.3 Discussion

To start the mysqgl program, try just typing its name at your command-line prompt. If mysq|l
starts up correctly, you'll see a short message, followed by a nmysql > prompt that indicates
the program is ready to accept queries. To illustrate, here's what the welcome message looks
like (to save space, | won't show it in any further examples):

% nysql
Wel come to the MySQ. nonitor. Conmands end with ; or \g.
Your MySQL connection id is 18427 to server version: 3.23.51-10g

Type '"help;' or "\h' for help. Type '\c' to clear the buffer.
nysql >

If mysq|l tries to start but exits immediately with an "access denied" message, you'll need to
specify connection parameters. The most commonly needed parameters are the host to
connect to (the host where the MySQL server runs), your MySQL username, and a password.
For example:

% nmysqgl -h local host -p -u chuser
Enter password: cbpass

In general, I'll show mysqgl commands in examples with no connection parameter options. |
assume that you'll supply any parameters that you need, either on the command line, or in an
option file (Recipe 1.5) so that you don't have to type them each time you invoke mysq|l.

If you don't have a MySQL username and password, you need to obtain permission to use the
MySQL server, as described earlier in Recipe 1.2.

The syntax and default values for the connection parameter options are shown in the following
table. These options have both a single-dash short form and a double-dash long form.

Parameter type Option syntax forms Default value
Hostname -h host nanme--host=host nane | ocal host
Username -uU user name--user=user name Your login name
Password -p--password None

As the table indicates, there is no default password. To supply one, use --password or -p, then
enter your password when mysql prompts you for it:

%

nysql -p
Ent er password: <—enter your password here

If you like, you can specify the password directly on the command line by using either -
ppasswor d (note that there is no space after the -p) or --password=passwor d. | don't
recommend doing this on a multiple-user machine, because the password may be visible
momentarily to other users who are running tools such as ps that report process information.

If you get an error message that mysql cannot be found or is an invalid command when you
try to invoke it, that means your command interpreter doesn't know where mysql is installed.

See Recipe 1.8.

To terminate a mysql session, issue a QUI T statement:

nysql> QU T

You can also terminate the session by issuing an EXI T statement or (under Unix) by typing
Ctrl-D.

The way you specify connection parameters for mysql also applies to other MySQL programs
such as mysqldump and mysqgladmin. For example, some of the actions that mysqgladmin can
perform are available only to the MySQL r oot account, so you need to specify name and

password options for that user:

% nmysqgl adm n -p -u root shutdown
Ent er password:

1.5 Specifying Connection Parameters by Using Option Files
1.5.1 Problem

You don't want to type connection parameters on the command line every time you invoke
mysql.

1.5.2 Solution

Put the parameters in an option file.

1.5.3 Discussion

To avoid entering connection parameters manually, put them in an option file for mysql to
read automatically. Under Unix, your personal option file is named .my.cnf in your home
directory. There are also site-wide option files that administrators can use to specify
parameters that apply globally to all users. You can use /etc/my.cnf or the my.cnf file in the
MySQL server's data directory. Under Windows, the option files you can use are C:\my.cnf, the
my.ini file in your Windows system directory, or my.cnf in the server's data directory.

Windows may hide filename extensions when displaying files, so a
file named my.cnf may appear to be named just my. Your version of
Windows may allow you to disable extension-hiding. Alternatively,

issue a DI Rcommand in a DOS window to see full names.

The following example illustrates the format used to write MySQL option files:

general client program connection options
[client]

host =I ocal host

user =cbuser

passwor d=cbpass

options specific to the nysql program
[nysal]

no- aut o- r ehash

specify pager for interactive node
pager =/ usr/ bin/less

This format has the following general characteristics:

Lines are written in groups. The first line of the group specifies the group name inside
of square brackets, and the remaining lines specify options associated with the group.
The example file just shown has a [client] group and a [nysql] group. Within a

group, option lines are written in nane=val ue format, where nane corresponds to an

option name (without leading dashes) and val ue is the option's value. If an option

doesn't take any value (such as for the no- aut o- r ehash option), the name is listed
by itself with no trailing =val ue part.

If you don't need some particular parameter, just leave out the corresponding line. For
example, if you normally connect to the default host (I ocal host), you don't need
any host line. If your MySQL username is the same as your operating system login
name, you can omit the user line.

In option files, only the long form of an option is allowed. This is in contrast to
command lines, where options often can be specified using a short form or a long
form. For example, the hostname can be given using either -h host nane or --
host=host nane on the command line; in an option file, only host =host nane is
allowed.

Options often are used for connection parameters (such as host , user, and

passwor d). However, the file can specify options that have other purposes. The
pager option shown for the [mysql] group specifies the paging program that mysq|l
should use for displaying output in interactive mode. It has nothing to do with how the
program connects to the server.

The usual group for specifying client connection parameters is [¢l i ent] . This group
actually is used by all the standard MySQL clients, so by creating an option file to use
with mysql, you make it easier to invoke other programs such as mysqgldump and
mysqgladmin as well.

You can define multiple groups in an option file. A common convention is for a
program to look for parameters in the [¢l i ent] group and in the group named after
the program itself. This provides a convenient way to list general client parameters
that you want all client programs to use, but still be able to specify options that apply
only to a particular program. The preceding sample option file illustrates this
convention for the mysql program, which gets general connection parameters from the
[client] group and also picks up the no- aut o- r ehash and pager options from the
[mysql] group. (If you put the mysqgl-specific options in the [cl i ent] group, that
will result in "unknown option" errors for all other programs that use the [cl i ent]
group and they won't run properly.)

If a parameter is specified multiple times in an option file, the last value found takes
precedence. This means that normally you should list any program-specific groups
after the [cl i ent] group so that if there is any overlap in the options set by the two
groups, the more general options will be overridden by the program-specific values.
Lines beginning with # or ; characters are ignored as comments. Blank lines are
ignored, too.

Option files must be plain text files. If you create an option file with a word processor
that uses some non-text format by default, be sure to save the file explicitly as text.
Windows users especially should take note of this.

Options that specify file or directory pathnames should be written using / as the

pathname separator character, even under Windows.

If you want to find out which options will be taken from option files by mysql, use this
command:

% nmysqgl --print-defaults

You can also use the my_print_defaults utility, which takes as arguments the names of the
option file groups that it should read. For example, mysql looks in both the [cl i ent] and

[mysql] groups for options, so you can check which values it will take from option files like
this:

% nmy_print_defaults client nysql
1.6 Protecting Option Files
1.6.1 Problem

Your MySQL username and password are stored in your option file, and you don't want other
users reading it.

1.6.2 Solution

Change the file's mode to make it accessible only by you.

1.6.3 Discussion

If you use a multiple-user operating system such as Unix, you should protect your option file
to prevent other users from finding out how to connect to MySQL using your account. Use
chmod to make the file private by setting its mode to allow access only by yourself:

% chnmod 600 . my. cnf
1.7 Mixing Command-Line and Option File Parameters
1.7.1 Problem

You'd rather not store your MySQL password in an option file, but you don't want to enter your
username and server host manually.

1.7.2 Solution

Put the username and host in the option file, and specify the password interactively when you
invoke mysql; it looks both in the option file and on the command line for connection
parameters. If an option is specified in both places, the one on the command line takes
precedence.

1.7.3 Discussion

mysql first reads your option file to see what connection parameters are listed there, then
checks the command line for additional parameters. This means you can specify some options
one way, and some the other way.

Command-line parameters take precedence over parameters found in your option file, so if for
some reason you need to override an option file parameter, just specify it on the command
line. For example, you might list your regular MySQL username and password in the option file
for general purpose use. If you need to connect on occasion as the MySQL r oot user, specify

the user and password options on the command line to override the option file values:
% nysql -p -u root

To explicitly specify "no password™ when there is a non-empty password in the option file, use
-p on the command line, and then just press Return when mysqgl prompts you for the
password:

%
nysql -p
Ent er password: <—press Return here

1.8 What to Do if mysql Cannot Be Found
1.8.1 Problem

When you invoke mysqgl from the command line, your command interpreter can't find it.

1.8.2 Solution

Add the directory where mysql is installed to your PATH setting. Then you'll be able to run

mysql from any directory easily.

1.8.3 Discussion

If your shell or command interpreter can't find mysql when you invoke it, you'll see some sort
of error message. It may look like this under Unix:

% nysql
nysql : Command not found.

Or like this under Windows:

C:\> nysql
Bad command or invalid fil enane

One way to tell your shell where to find mysql is to type its full pathname each time you run
it. The command might look like this under Unix:

% /usr /1 ocal / mysql / bi n/ nysql

Or like this under Windows:
C.\> C\nysqgl\bin\nysql

Typing long pathnames gets tiresome pretty quickly, though. You can avoid doing so by
changing into the directory where mysql is installed before you run it. However, I recommend
that you not do that. If you do, the inevitable result is that you'll end up putting all your
datafiles and query batch files in the same directory as mysql, thus unnecessarily cluttering up
what should be a location intended only for programs.

A better solution is to make sure that the directory where mysql is installed is included in the
PATH environment variable that lists pathnames of directories where the shell looks for
commands. (See Recipe 1.9.) Then you can invoke mysql from any directory by entering just
its name, and your shell will be able to find it. This eliminates a lot of unnecessary pathname
typing. An additional benefit is that because you can easily run mysqgl from anywhere, you will
have no need to put your datafiles in the same directory where mysql is located. When you're
not operating under the burden of running mysqgl from a particular location, you'll be free to
organize your files in a way that makes sense to you, not in a way imposed by some artificial
necessity. For example, you can create a directory under your home directory for each
database you have and put the files associated with each database in the appropriate
directory.

I've pointed out the importance of the search path here because | receive many questions
from people who aren't aware of the existence of such a thing, and who consequently try to do
all their MySQL-related work in the bin directory where mysql is installed. This seems
particularly common among Windows users. Perhaps the reason is that, except for Windows
NT and its derivatives, the Windows Help application seems to be silent on the subject of the
command interpreter search path or how to set it. (Apparently, Windows Help considers it
dangerous for people to know how to do something useful for themselves.)

Another way for Windows users to avoid typing the pathname or changing into the mysq|l
directory is to create a shortcut and place it in a more convenient location. That has the
advantage of making it easy to start up mysql just by opening the shortcut. To specify
command-line options or the startup directory, edit the shortcut's properties. If you don't
always invoke mysql with the same options, it might be useful to create a shortcut
corresponding to each set of options you need—for example, one shortcut to connect as an
ordinary user for general work and another to connect as the MySQL r oot user for

administrative purposes.

1.9 Setting Environment Variables
1.9.1 Problem

You need to modify your operating environment, for example, to change your shell's PATH

setting.

1.9.2 Solution

Edit the appropriate shell startup file. Under Windows NT-based systems, another alternative

is to use the System control panel.

1.9.3 Discussion

The shell or command interpreter you use to run programs from the command-line prompt
includes an environment in which you can store variable values. Some of these variables are
used by the shell itself. For example, it uses PATH to determine which directories to look in for
programs such as mysgl. Other variables are used by other programs (such as PERL5LI B,

which tells Perl where to look for library files used by Perl scripts).

Your shell determines the syntax used to set environment variables, as well as the startup file
in which to place the settings. Typical startup files for various shells are shown in the following
table. If you've never looked through your shell's startup files, it's a good idea to do so to
familiarize yourself with their contents.

Shell Possible startup files
csh, tcsh Jlogin, .cshrc, .tcshrc
sh, bash, ksh .profile .bash_profile, .bash_login, .bashrc
DOS prompt C:\AUTOEXEC.BAT

The following examples show how to set the PATH variable so that it includes the directory
where the mysqgl program is installed. The examples assume there is an existing PATH setting
in one of your startup files. If you have no PATH setting currently, simply add the appropriate

line or lines to one of the files.

If you're reading this section because you've been referred here from
another chapter, you'll probably be more interested in changing
some variable other than PATH. The instructions are similar because

you use the same syntax.

The PATH variable lists the pathnames for one or more directories. If an environment
variable's value consists of multiple pathnames, it's conventional under Unix to separate them
using the colon character (:). Under Windows, pathnames may contain colons, so the

separator is the semicolon character (;).

To set the value of PATH, use the instructions that pertain to your shell:

For csh or tcsh, look for a set env PATH command in your startup files, then add the
appropriate directory to the line. Suppose your search path is set by a line like this in
your .login file:

setenv PATH /bin:/usr/bin:/usr/local/bin

If mysql is installed in /usr/local/mysqgl/bin, add that directory to the search path by
changing the set env line to look like this:

setenv PATH /usr/local /nysql /bin:/bin:/usr/bin:/usr/local/bin

It's also possible that your path will be set with set pat h, which uses different

syntax:
set path = (/usr/local/nysqgl/bin /bin /usr/bin /usr/local/bin)

For a shell in the Bourne shell family such as sh, bash, or ksh, look in your startup files
for a line that sets up and exports the PATH variable:

export PATH=/bi n:/usr/bin:/usr/local/bin
The assignment and the export might be on separate lines:

PATH=/ bi n: /usr/ bin:/usr/local/bin
export PATH

Change the setting to this:
export PATH=/usr/| ocal / mysql /bin:/bin:/usr/bin:/usr/local/bin

Or:

PATH=/ usr/ 1 ocal / mysql / bi n: /bin:/usr/bin:/usr/local/bin
export PATH

Under Windows, check for a line that sets the PATH variable in your AUTOEXEC.BAT
file. It might look like this:

PATH=C: \ W NDOWS5; C: \ W NDOAS\ COMVAND

Or like this:

SET PATH=C: \ W NDOWS; C: \ W NDOWS\ COMVAND

Change the PATH value to include the directory where mysql is installed. If this is
C:\mysql\bin, the resulting PATH setting looks like this:

PATH=C: \ nysql \ bi n; C: \ W NDOWS5; C: \ W NDOAS\ COMVAND

Or:
SET PATH=C: \ nysql \ bi n; C:\ W NDOWS5; C: \ W NDOAS\ COVIVAND

Under Windows NT-based systems, another way to change the PATH value is to use
the System control panel (use its Environment or Advanced tab, whichever is present).
In other versions of Windows, you can use the Registry Editor application.
Unfortunately, the name of the Registry Editor key that contains the path value seems
to vary among versions of Windows. For example, on the Windows machines that |
use, the key has one name under Windows Me and a different name under Windows
98; under Windows 95, | couldn't find the key at all. It's probably simpler just to edit
AUTOEXEC.BAT.

After setting an environment variable, you'll need to cause the modification to take effect.
Under Unix, you can log out and log in again. Under Windows, if you set PATH using the
System control panel, you can simply open a new DOS window. If you edited AUTOEXEC.BAT
instead, restart the machine.

1.10 Issuing Queries
1.10.1 Problem

You've started mysqgl and now you want to send queries to the MySQL server.

1.10.2 Solution

Just type them in, but be sure to let mysgl know where each one ends.

1.10.3 Discussion

To issue a query at the mysql > prompt, type it in, add a semicolon (;) at the end to signify
the end of the statement, and press Return. An explicit statement terminator is necessary;
mysql doesn't interpret Return as a terminator because it's allowable to enter a statement
using multiple input lines. The semicolon is the most common terminator, but you can also use
\ g ("go") as a synonym for the semicolon. Thus, the following examples are equivalent ways
of issuing the same query, even though they are entered differently and terminated
differently 1%

[21 Example queries in this book are shown with SQL keywords like SELECT in
uppercase for distinctiveness, but that's simply a typographical convention.
You can enter keywords in any lettercase.

nysql > SELECT NOW);

T +
| NOW) |
T +
| 2001-07-04 10: 27: 23 |
e +
nysql > SELECT
-> NOWN)\g

e +
| NOW) |
e +
| 2001-07-04 10: 27:28 |
e +

Notice for the second query that the prompt changes from nysql > to - > on the second input
line. mysqgl changes the prompt this way to let you know that it's still waiting to see the query
terminator.

Be sure to understand that neither the ; character nor the \ g sequence that serve as query
terminators are part of the query itself. They're conventions used by the mysql program,
which recognizes these terminators and strips them from the input before sending the query
to the MySQL server. It's important to remember this when you write your own programs that
send queries to the server (as we'll begin to do in the next chapter). In that context, you don't
include any terminator characters; the end of the query string itself signifies the end of the
query. In fact, adding a terminator may well cause the query to fail with an error.

1.11 Selecting a Database
1.11.1 Problem

You want to tell mysql which database to use.

1.11.2 Solution

Name the database on the mysqgl command line or issue a USE statement from within mysq|l.

1.11.3 Discussion

When you issue a query that refers to a table (as most queries do), you need to indicate which
database the table is part of. One way to do so is to use a fully qualified table reference that
begins with the database name. (For example, cookbook. | i nbs refers to the | i nbs table in
the cookbook database.) As a convenience, MySQL also allows you to select a default
(current) database so that you can refer to its tables without explicitly specifying the database
name each time. You can specify the database on the command line when you start mysql:

% nmysqgl cookbook

If you provide options on the command line such as connection parameters when you run
mysql, they should precede the database name:

% nmysqgl -h host -p -u wuser cookbook

If you've already started a mysqgl session, you can select a database (or switch to a different
one) by issuing a USE statement:

nysql > USE cookbook;
Dat abase changed

If you've forgotten or are not sure which database is the current one (which can happen easily
if you're using multiple databases and switching between them several times during the
course of a mysql session), use the following statement:

nysql > SELECT DATABASE():

Femmmmme e +
| DATABASE() |
Femmmmme e +
| cookbook |
Femmmmme e +

DATABASE() is a function that returns the name of the current database. If no database has

been selected yet, the function returns an empty string:

nysql > SELECT DATABASE():

Fom e e e oo +
| DATABASE() |
Fom e - +
| I
Fom e e e oo +

The STATUS command (and its synonym, \ s) also display the current database name, in

additional to several other pieces of information:

nysql > \'s

Connection id: 5589

Current database: cookbook

Current user: cbuser @ ocal host
Current pager: st dout

Using outfile: v

Server version: 3.23.51-10g

Pr ot ocol version: 10

Connecti on: Local host via UN X socket
Client characterset: latinl
Server characterset: latinl

UNI X socket : /tmp/ nmysql . sock
Upti me: 9 days 39 mn 43 sec

Threads: 4 Questions: 42265 Slow queries: 0 Opens: 82 Flush tables: 1
Open tables: 52 Queries per second avg: 0.054

Temporarily Using a Table from Another Database

To use a table from another database temporarily, you can switch to that database
and then switch back when you're done using the table. However, you can also use
the table without switching databases by referring to the table using its fully qualified
name. For example, to use the table ot her _t bl in another database ot her _db,

you can refer to it as ot her _db. ot her _tbl .

1.12 Canceling a Partially Entered Query
1.12.1 Problem

You start to enter a query, then decide not to issue it after all.

1.12.2 Solution

Cancel the query using your line kill character or the \ ¢ sequence.

1.12.3 Discussion

If you change your mind about issuing a query that you're entering, cancel it. If the query is
on a single line, use your line kill character to erase the entire line. (The particular character
to use depends on your terminal setup; for me, the character is Ctrl-U.) If you've entered a
statement over multiple lines, the line kill character will erase only the last line. To cancel the
statement completely, enter \ ¢ and type Return. This will return you to the nysql > prompt:

nysql > SELECT *

-> FROM | i nbs
-> ORDER BY\c
nysql >

Sometimes \ ¢ appears to do nothing (that is, the nysql > prompt does not reappear), which
leads to the sense that you're "trapped" in a query and can't escape. If \ c is ineffective, the
cause usually is that you began typing a quoted string and haven't yet entered the matching
end quote that terminates the string. Let mysqgl's prompt help you figure out what to do here.
If the prompt has changed from nysql > to " >, That means mysq| is looking for a terminating
double quote. If the prompt is ' > instead, mysql is looking for a terminating single quote.
Type the appropriate matching quote to end the string, then enter \ ¢ followed by Return and
you should be okay.

1.13 Repeating and Editing Queries
1.13.1 Problem

The query you just entered contained an error, and you want to fix it without typing the whole
thing again. Or you want to repeat an earlier statement without retyping it.

1.13.2 Solution
Use mysql's built-in query editor.
1.13.3 Discussion

If you issue a long query only to find that it contains a syntax error, what should you do? Type
in the entire corrected query from scratch? No need. mysqgl maintains a statement history and
supports input-line editing. This allows you to recall queries so that you can modify and
reissue them easily. There are many, many editing functions, but most people tend to use a
small set of commands for the majority of their editing.r2! A basic set of useful commands is
shown in the following table. Typically, you use Up Arrow to recall the previous line, Left Arrow
and Right Arrow to move around within the line, and Backspace or Delete to erase characters.
To add new characters to the line, just move the cursor to the appropriate spot and type them
in. When you're done editing, press Return to issue the query (the cursor need not be at the
end of the line when you do this).

Bl The input-line editing capabilities in mysql are based on the GNU Readline
library. You can read the documentation for this library to find out more about
the many editing functions that are available. For more information, check the
Bash manual, available online at http://www.gnu.org/manual/.

Editing Key Effect of Key
Up Arrow Scroll up through statement history
Down Arrow Scroll down through statement history
Left Arrow Move left within line
Right Arrow Move right within line
Ctrl-A Move to beginning of line
Ctrl-E Move to end of line
Backspace Delete previous character
Ctrl-D Delete character under cursor

Input-line editing is useful for more than just fixing mistakes. You can use it to try out variant
forms of a query without retyping the entire thing each time. It's also handy for entering a
series of similar statements. For example, if you wanted to use the query history to issue the
series of | NSERT statements shown earlier in Recipe 1.3 to create the | i nbs table, first enter
the initial | NSERT statement. Then, to issue each successive statement, press the Up Arrow
key to recall the previous statement with the cursor at the end, backspace back through the
column values to erase them, enter the new values, and press Return.

To recall a statement that was entered on multiple lines, the editing procedure is a little
trickier than for single-line statements. In this case, you must recall and reenter each
successive line of the query in order. For example, if you've entered a two-line query that
contains a mistake, press Up Arrow twice to recall the first line. Make any modifications

http://www.gnu.org/manual/

necessary and press Return. Then press Up Arrow twice more to recall the second line. Modify
it, press Return, and the query will execute.

Under Windows, mysqgl allows statement recall only for NT-based systems. For versions such
as Windows 98 or Me, you can use the special mysqglc client program instead. However,
mysqlc requires an additional library file, cygwinb19.dll. If you find a copy of this library in the
same directory where mysqlc is installed (the bin dir under the MySQL installation directory),
you should be all set. If the library is located in the MySQL lib directory, copy it into your
Windows system directory. The command looks something like this; you should modify it to
reflect the actual locations of the two directories on your system:

C.\> copy C\nysqgl\lib\cygwi nbl9.dll C. \Wndows\ System

After you make sure the library is in a location where mysqlc can find it, invoke mysqlc and it
should be capable of input-line editing.

One unfortunate consequence of using mysqlc is that it's actually a fairly old program. (For
example, even in MySQL 4.x distributions, mysqlc dates back to 3.22.7.) This means it doesn't
understand newer statements such as SOURCE.

1.14 Using Auto-Completion for Database and Table Names
1.14.1 Problem

You wish there was a way to type database and table names more quickly.

1.14.2 Solution

There is; use mysgl's name auto-completion facility.

1.14.3 Discussion

Normally when you use mysql interactively, it reads the list of database names and the names
of the tables and columns in your current database when it starts up. mysqgl remembers this
information to provide name completion capabilities that are useful for entering statements
with fewer keystrokes:

Type in a partial database, table, or column name and then hit the Tab key.

If the partial name is unique, mysqgl completes it for you. Otherwise, you can hit Tab
again to see the possible matches.

Enter additional characters and hit Tab again once to complete it or twice to see the
new set of matches.

mysql's name auto-completion capability is based on the table names in the current database,
and thus is unavailable within a mysql session until a database has been selected, either on
the command line or by means of a USE statement.

Auto-completion allows you to cut down the amount of typing you do. However, if you don't
use this feature, reading name-completion information from the MySQL server may be
counterproductive because it can cause mysql to start up more slowly when you have a lot of
tables in your database. To tell mysql not to read this information so that it starts up more
quickly, specify the -A (or --no-auto-rehash) option on the mysqgl command line. Alternatively,
put a no- aut o- r ehash line in the [mysql] group of your MySQL option file:

[nysal]
no- aut o- r ehash

To force mysql to read name completion information even if it was invoked in no-completion
mode, issue a REHASH or \ # command at the nmysql > prompt.

1.15 Using SQL Variables in Queries
1.15.1 Problem

You want to save a value from a query so you can refer to it in a subsequent query.

1.15.2 Solution

Use a SQL variable to store the value for later use.

1.15.3 Discussion

As of MySQL 3.23.6, you can assign a value returned by a SELECT statement to a variable,
then refer to the variable later in your mysqgl session. This provides a way to save a result
returned from one query, then refer to it later in other queries. The syntax for assigning a
value to a SQL variable within a SELECT query is @ar _nane : = val ue, where var _nane is
the variable name and val ue is a value that you're retrieving. The variable may be used in
subsequent queries wherever an expression is allowed, such as in a WHERE clause or in an

| NSERT statement.

A common situation in which SQL variables come in handy is when you need to issue
successive queries on multiple tables that are related by a common key value. Suppose you
have a cust oner s table with a cust _i d column that identifies each customer, and an

or der s table that also has a cust _i d column to indicate which customer each order is
associated with. If you have a customer name and you want to delete the customer record as
well as all the customer's orders, you need to determine the proper cust i d value for that
customer, then delete records from both the cust oner s and or der s tables that match the
ID. One way to do this is to first save the ID value in a variable, then refer to the variable in
the DELETE statements: !

M1 |n MySQL 4, you can use multiple-table DELETE statements to accomplish
tasks like this with a single query. See Chapter 12 for examples.

nysql > SELECT @d : = cust_id FROM custonmers WHERE cust _i d=' custoner nane

nysql > DELETE FROM cust omers WHERE cust id = @d:
nysql > DELETE FROM orders WHERE cust _id = @d;

The preceding SELECT statement assigns a column value to a variable, but variables also can
be assigned values from arbitrary expressions. The following statement determines the
highest sum of the ar ns and | egs columns in the | i nbs table and assigns it to the

@rax_| i nbs variable:

nysql > SELECT @max_|inbs := MAX(arns+l egs) FROM | i nbs;

Another use for a variable is to save the result from LAST_| NSERT | D() after creating a
new record in a table that has an AUTO | NCREMENT column:

nysql > SELECT @ast_id := LAST_INSERT_ID();

LAST I NSERT_I X) returns the value of the new AUTO | NCREMENT value. By saving it in a
variable, you can refer to the value several times in subsequent statements, even if you issue
other statements that create their own AUTO_| NCREMENT values and thus change the value
returned by LAST | NSERT | X) . This is discussed further in Chapter 11.

SQL variables hold single values. If you assign a value to a variable using a statement that
returns multiple rows, the value from the last row is used:

nysql > SELECT @ane := thing FROM | i nbs WHERE | egs = O;

e e e e aaaaa o +
| @ane :=thing |

Fem e emee e aaaaa +

| squid |

| octopus |

| fish |

| phonograph |

Fem e emee e aaaaa +
nysql > SELECT @ane;
Femmmmme e +

| @ane I
Femmmmme e +

| phonograph |
Femmmmme e +

If the statement returns no rows, no assignment takes place and the variable retains its
previous value. If the variable has not been used previously, that value is NULL:

nysql > SELECT @ane2 := thing FROM | i mbs WHERE | egs < O;
Enpty set (0.00 sec)
nysql > SELECT @ane2;

To set a variable explicitly to a particular value, use a SET statement. SET syntax uses =

rather than : = to assign the value:

nysql > SET @um = 4 + 7;
nysql > SELECT @um

S +
| @um |
S +
| 11|
S +

A given variable's value persists until you assign it another value or until the end of your
mysql session, whichever comes first.

Variable names are case sensitive:

nysql > SET @ = 1; SELECT @&, @X

ommmm - S +
| @ | & |
Fommm - S +
| 1] NULL
Fommmm - S +

SQL variables can be used only where expressions are allowed, not where constants or literal
identifiers must be provided. Although it's tempting to attempt to use variables for such things
as table names, it doesn't work. For example, you might try to generate a temporary table
name using a variable as follows, but the result is only an error message:

nysql > SET @bl _name = CONCAT('tbl ', FLOOR(RAND()*1000000));

nysql > CREATE TABLE @bl _name (int_col |NT);

ERROR 1064 at line 2: You have an error in your SQ syntax near ' @bl _nanme
(int_col INT)' at line 1

SQL variables are a MySQL-specific extension, so they will not work with other database
engines.

1.16 Telling mysql to Read Queries from a File
1.16.1 Problem

You want mysql to read queries stored in a file so you don't have to enter them manually.

1.16.2 Solution

Redirect mysql's input or use the SOURCE command.

1.16.3 Discussion

By default, the mysql program reads input interactively from the terminal, but you can feed it
queries in batch mode using other input sources such as a file, another program, or the
command arguments. You can also use copy and paste as a source of query input. This section
discusses how to read queries from a file. The next few sections discuss how to take input
from other sources.

To create a SQL script for mysql to execute in batch mode, put your statements in a text file,
then invoke mysqgl and redirect its input to read from that file:

% nmysqgl cookbook < fil enane

Statements that are read from an input file substitute for what you'd normally type in by
hand, so they must be terminated with semicolons (or \ g), just as if you were entering them
manually. One difference between interactive and batch modes is the default output style. For
interactive mode, the default is tabular (boxed) format. For batch mode, the default is to
delimit column values with tabs. However, you can select whichever output style you want
using the appropriate command-line options. See the section on selecting tabular or tab-
delimited format later in the chapter (Recipe 1.22).

Batch mode is convenient when you need to issue a given set of statements on multiple
occasions, because then you need not enter them manually each time. For example, batch
mode makes it easy to set up cron jobs that run with no user intervention. SQL scripts are
also useful for distributing queries to other people. Many of the examples shown in this book
can be run using script files that are available as part of the accompanying r eci pes source
distribution (see Appendix A). You can feed these files to mysqgl in batch mode to avoid typing
queries yourself. A common instance of this is that when an example shows a CREATE TABLE
statement that describes what a particular table looks like, you'll find a SQL batch file in the
distribution that can be used to create (and perhaps load data into) the table. For example,
earlier in the chapter, statements for creating and populating the | i nbs table were shown.
The r eci pes distribution includes a file limbs.sqgl that contains statements to do the same
thing. The file looks like this:

DROP TABLE | F EXI STS |inbs;
CREATE TABLE | i nbs

(
t hi ng VARCHAR(20) , # what the thing is
| egs I NT, # nunber of legs it has
ar ms | NT # nunber of arms it has
)
I NSERT I NTO |'i nbs (thing,legs,arms) VALUES(' human', 2, 2);
I NSERT I NTO |i mbs (thing,|egs,arnms) VALUES('insect',6,0);
I NSERT I NTO |i mbs (thing,legs,arnms) VALUES('squid',O0,10);
I NSERT I NTO |'i mbs (thing,legs,arms) VALUES('octopus',O,8);
I NSERT I NTO |i nbs (thing,legs,arms) VALUES('fish',O0,0);
I NSERT I NTO |i mbs (thing,| egs,arms) VALUES('centipede', 100, 0);
I NSERT I NTO |'i nbs (thing,|egs,arms) VALUES('table',4,0);
I NSERT I NTO |i nbs (thing,|egs,arms) VALUES('arnchair', 4, 2);
I NSERT I NTO |'i mbs (thing,legs,arns) VALUES(' phonograph',0,1);

I NSERT I NTO |i mbs (thing,|egs,arnms) VALUES('tripod',3,0);
I NSERT I NTO |'i nmbs (thing,|egs,arms) VALUES(' Peg Leg Pete',1,2);
I NSERT I NTO |'i mbs (thing,| egs,arms) VALUES('space alien', NULL, NULL);

To execute the statements in this SQL script file in batch mode, change directory into the
tables directory of the r eci pes distribution where the table-creation scripts are located, then

run this command:

% nmysqgl cookbook < |inbs. sql

You'll note that the script contains a statement to drop the table if it exists before creating it
anew and loading it with data. That allows you to experiment with the table without worrying
about changing its contents, because you can restore the table to its baseline state any time
by running the script again.

The command just shown illustrates how to specify an input file for mysqgl on the command
line. As of MySQL 3.23.9, you can read a file of SQL statements from within a mysgl session
by using a SOURCE f i | ename command (or \. fil enane, which is synonymous). Suppose

the SQL script file test.sql contains the following statements:

SELECT NOW);
SELECT COUNT(*) FROM | i nbs;

You can execute that file from within mysql as follows:

nysql > SOURCE test.sql;

o m e mm e eeeaeaaaa +
| NOW() I
o m e emee e eemeeaaaaa +
| 2001-07-04 10: 35:08 |
o m e mm e eeeaeaaaa +
1 rowin set (0.00 sec)
S +
| COUNT(*) |
S +
| 12 |
S +

1 rowin set (0.01 sec)

SQL scripts can themselves include SOURCE or \ . commands to include other scripts. The
danger of this is that it's possible to create a source loop. Normally you should take care to
avoid such loops, but if you're feeling mischievous and want to create one deliberately to find
out how deep mysql can nest input files, here's how to do it. First, issue the following two
statements manually to create a count er table to keep track of the source file depth and

initialize the nesting level to zero:

nysql > CREATE TABLE counter (depth |INT);
nysql > | NSERT | NTO counter SET depth = 0;

Then create a script file loop.sql that contains the following lines (be sure each line ends with a
semicolon):

UPDATE counter SET depth = depth + 1;
SELECT depth FROM counter;
SOURCE | oop. sql ;

Finally, invoke mysgl and issue a SOURCE command to read the script file:

% nmysqgl cookbook
nysql > SOURCE | oop. sql ;

The first two statements in loop.sql increment the nesting counter and display the current
dept h value. In the third statement, loop.sql sources itself, thus creating an input loop. You'll
see the output whiz by, with the counter display incrementing each time through the loop.
Eventually mysql will run out of file descriptors and stop with an error:

ERROR:
Failed to open file 'loop.sqgl', error: 24

What is error 24? Find out by using MySQL's perror (print error) utility:

% perror 24
Error code 24: Too nmany open files

1.17 Telling mysql to Read Queries from Other Programs
1.17.1 Problem

You want to shove the output from another program into mysql.
1.17.2 Solution

Use a pipe.

1.17.3 Discussion

An earlier section used the following command to show how mysql can read SQL statements
from a file:

% nmysqgl cookbook < Iinbs. sql

mysql can also read a pipe, to receive output from other programs as its input. As a trivial
example, the preceding command is equivalent to this one:

% cat |inbs.sqgl | mysql cookbook

Before you tell me that I've qualified for this week's "useless use of cat award,"™! allow me to
observe that you can substitute other commands for cat. The point is that any command that

produces output consisting of semicolon-terminated SQL statements can be used as an input
source for mysql. This can be useful in many ways. For example, the mysgldump utility is used
to generate database backups. It writes a backup as a set of SQL statements that recreate the
database, so to process mysqgldump output, you feed it to mysqgl. This means you can use the
combination of mysgldump and mysql to copy a database over the network to another MySQL
server:

1 Under Windows, the equivalent would be the "useless use of type award":
% nysql dunp cookbook | mysql -h some. ot her. host.com cookbook

Program-generated SQL also can be useful when you need to populate a table with test data
but don't want to write the | NSERT statements by hand. Instead, write a short program that

generates the statements and send its output to mysqgl using a pipe:

% generate-test-data | mysql cookbook

1.17.4 See Also

mysqldump is discussed further in Chapter 10.

1.18 Specifying Queries on the Command Line

1.18.1 Problem

You want to specify a query directly on the command line for mysql to execute.
1.18.2 Solution

mysql can read a query from its argument list. Use the -e (or --execute) option to specify a
query on the command line.

1.18.3 Discussion

For example, to find out how many records are in the | i nbs table, run this command:

% nmysqgl -e "SELECT COUNT(*) FROM I|inmbs" cookbook

o +
| COUNT(*) |
o +
| 12 |
o +

To run multiple queries with the -e option, separate them with semicolons:

% nmysql -e "SELECT COUNT(*) FROM I|inmbs; SELECT NON)" cookbook

e e +
| NON() |
e e e +
| 2001-07-04 10:42:22 |
e e +

1.18.4 See Also

By default, results generated by queries that are specified with -e are displayed in tabular
format if output goes to the terminal, and in tab-delimited format otherwise. To produce a
different output style, see Recipe 1.22.

1.19 Using Copy and Paste as a mysql Input Source
1.19.1 Problem

You want to take advantage of your graphical user interface (GUI) to make mysql easier to
use.

1.19.2 Solution

Use copy and paste to supply mysqgl with queries to execute. In this way, you can take
advantage of your GUI's capabilities to augment the terminal interface presented by mysql.

1.19.3 Discussion

Copy and paste is useful in a windowing environment that allows you to run multiple programs
at once and transfer information between them. If you have a document containing queries
open in a window, you can just copy the queries from there and paste them into the window in
which you're running mysqgl. This is equivalent to typing the queries yourself, but often
quicker. For queries that you issue frequently, keeping them visible in a separate window can
be a good way to make sure they're always at your fingertips and easily accessible.

1.20 Preventing Query Output from Scrolling off the Screen
1.20.1 Problem

Query output zooms off the top of your screen before you can see it.
1.20.2 Solution
Tell mysql to display output a page at a time, or run mysql in a window that allows scrollback.

1.20.3 Discussion

If a query produces many lines of output, normally they just scroll right off the top of the
screen. To prevent this, tell mysqgl to present output a page at a time by specifying the --pager
option.® —-pager=pr ogr amtells mysqg|l to use a specific program as your pager:

[81 The --pager option is not available under Windows.
% nysql --pager=/usr/bin/less

--pager by itself tells mysqgl to use your default pager, as specified in your PAGER environment
variable:

% nysqgl - - pager

If your PACGER variable isn't set, you must either define it or use the first form of the command
to specify a pager program explicitly. To define PACGER, use the instructions in Recipe 1.9 for
setting environment variables.

Within a mysql session, you can turn paging on and off using \ P and \ n. \ P without an
argument enables paging using the program specified in your PAGER variable. \ P with an

argument enables paging using the argument as the name of the paging program:

nysql > \ P

PAGER set to /bin/nore
nysql > \P /usr/bin/less
PAGER set to /usr/bin/less

nysqgl > \'n
PAGER set to stdout

Output paging was introduced in MySQL 3.23.28.

Another way to deal with long result sets is to use a terminal program that allows you to scroll
back through previous output. Programs such as xterm for the X Window System, Terminal for
Mac OS X, MacSSH or BetterTelnet for Mac OS, or Telnet for Windows allow you to set the
number of output lines saved in the scrollback buffer. Under Windows NT, 2000, or XP, you
can set up a DOS window that allows scrollback using the following procedure:

1. Open the Control Panel.

2. Create a shortcut to the MS-DOS prompt by right clicking on the Console item and dragging the mouse to where you
want to place the shortcut (on the desktop, for example).

3. Right click on the shortcut and select the Properties item from the menu that appears.

>

Select the Layout tab in the resulting Properties window.
5. Set the screen buffer height to the number of lines you want to save and click the OK button.

Now you should be able to launch the shortcut to get a scrollable DOS window that allows
output produced by commands in that window to be retrieved by using the scrollbar.

1.21 Sending Query Output to a File or to a Program
1.21.1 Problem

You want to send mysqgl output somewhere other than to your screen.

1.21.2 Solution

Redirect mysql's output or use a pipe.

1.21.3 Discussion

mysql chooses its default output format according to whether you run it interactively or non-
interactively. Under interactive use, mysql normally sends its output to the terminal and writes
query results using tabular format:

nysql > SELECT * FROM | i nbs;

| human |
| insect |
| squid [
| octopus |
| fish |
| centipede |
| table |
| arnchair |
I I
I I
I I
I I

+

(BN

phonogr aph
tripod

Peg Leg Pete
space alien

H
o
TrMPWORARPPOOOOON

|
I
I
I
|
I
|
I
I
I
I
|
+

12 rows in set (0.00 sec)

In non-interactive mode (that is, when either the input or output is redirected), mysqgl writes
output in tab-delimited format:

% echo "SELECT * FROM |i mbs" | nysqgl cookbook

t hi ng | egs ar ms
human 2 2

insect 6 0

squid 0 10
octopus O 8

fish 0 0

centi pede 100 0
tabl e 4 0
arnchair 4 2
phonogr aph 0 1
tripod 3 0

Peg Leg Pete 1 2
space alien NULL NULL

However, in either context, you can select any of mysql's output formats by using the
appropriate command-line options. This section describes how to send mysql output
somewhere other than the terminal. The next several sections discuss the various mysql
output formats and how to select them explicitly according to your needs when the default
format isn't what you want.

To save output from mysql in a file, use your shell's standard redirection capability:

% nmysqgl cookbook > outputfile

However, if you try to run mysqgl interactively with the output redirected, you won't be able to
see what you're typing, so generally in this case you'll also take query input from a file (or
another program):

% nmysqgl cookbook < inputfile > outputfile

You can also send query output to another program. For example, if you want to mail query
output to someone, you might do so like this:

% nysql cookbook < inputfile | nmail paul

Note that because mysqgl runs non-interactively in that context, it produces tab-delimited
output, which the mail recipient may find more difficult to read than tabular output. Recipe
1.22 shows how to fix this problem.

1.22 Selecting Tabular or Tab-Delimited Query Output Format
1.22.1 Problem

mysql produces tabular output when you want tab-delimited output, or vice versa.

1.22.2 Solution

Select the desired format explicitly with the appropriate command-line option.

1.22.3 Discussion

When you use mysgl non-interactively (such as to read queries from a file or to send results
into a pipe), it writes output in tab-delimited format by default. Sometimes it's desirable to
produce tabular output instead. For example, if you want to print or mail query results, tab-
delimited output doesn't look very nice. Use the -t (or --table) option to produce tabular
output that is more readable:

% nysql -t cookbook < inputfile | Ipr
% nysql -t cookbook < inputfile | nail paul

The inverse operation is to produce batch (tab-delimited) output in interactive mode. To do
this, use -B or --batch.

1.23 Specifying Arbitrary Output Column Delimiters
1.23.1 Problem

You want mysql to produce query output using a delimiter other than tab.

1.23.2 Solution

Postprocess mysql's output.

1.23.3 Discussion

In non-interactive mode, mysqgl separates output columns with tabs and there is no option for
specifying the output delimiter. Under some circumstances, it may be desirable to produce
output that uses a different delimiter. Suppose you want to create an output file for use by a
program that expects values to be separated by colon characters (.) rather than tabs. Under
Unix, you can convert tabs to arbitrary delimiters by using utilities such as tr and sed. For
example, to change tabs to colons, any of the following commands would work (TAB indicates

where you type a tab character):™%

] The syntax for some versions of tr may be different; consult your local
documentation. Also, some shells use the tab character for special purposes
such as filename completion. For such shells, type a literal tab into the
command by preceding it with Ctrl-V.

% nmysqgl cookbook < inputfile | sed -e "s/ TAB/:/g" > outputfile
% nmysqgl cookbook < inputfile | tr " TAB " ":" > outputfile
% nmysqgl cookbook < inputfile | tr "\011" ":" > outputfile

sed is more powerful than tr because it understands regular expressions and allows multiple
substitutions. This is useful when you want to produce output in something like comma-
separated values (CSV) format, which requires three substitutions:

Escape any quote characters that appear in the data by doubling them so that when
you use the resulting CSV file, they won't be taken as column delimiters.
Change the tabs to commas.

Surround column values with quotes.
sed allows all three subsitutions to be performed in a single command:

% nysql cookbook < inputfile \
| sed -e "s/"/""/g" -e 's/ TAB/","/g -e '"s/™"]' -e "s/$/"]" >
outputfile

That's fairly cryptic, to say the least. You can achieve the same result with other languages
that may be easier to read. Here's a short Perl script that does the same thing as the sed
command (it converts tab-delimited input to CSV output), and includes comments to
document how it works:

#! [usr/bin/perl -w

while (<>) # read next input |ine
{
s/*/""lg; # doubl e any quotes within columm val ues
s/\t/","Iqg; # put ~","" between columm val ues
s/IN " # add "' before the first value
s/ $/"/; # add ""' after the last value
print; # print the result

exit (0);
If you name the script csv.pl, you can use it like this:
% nmysqgl cookbook < inputfile | csv.pl > outputfile

If you run the command under a version of Windows that doesn't know how to associate .pl
files with Perl, it may be necessary to invoke Perl explicitly:

C.\> nysqgl cookbook < inputfile | perl csv.pl > outputfile

Perl may be more suitable if you need a cross-platform solution, because it runs under both
Unix and Windows. tr and sed normally are unavailable under Windows.

1.23.4 See Also

An even better way to produce CSV output is to use the Perl Text::CSV_XS module, which was
designed for that purpose. This module is discussed in Chapter 10, where it's used to
construct a more general-purpose file reformatter.

1.24 Producing HTML Output
1.24.1 Problem

You'd like to turn a query result into HTML.

1.24.2 Solution

mysql can do that for you.

1.24.3 Discussion

mysql generates result set output as HTML tables if you use -H (or --html) option. This gives
you a quick way to produce sample output for inclusion into a web page that shows what the
result of a query looks like 8! Here's an example that shows the difference between tabular
format and HTML table output (a few line breaks have been added to the HTML output to
make it easier to read):

81 I'm referring to writing static HTML pages here. If you're writing a script
that produces web pages on the fly, there are better ways to generate HTML
output from a query. For more information on writing web scripts, see Chapter
16.

% nysql -e "SELECT * FROM | i nmbs WHERE | egs=0" cookbook

Femmmmme e +om - - - +o- oo - +
| thing | legs | arns |
Femmmmme e +om - - - +o- oo - +
squid	0	10
octopus	0	8
fish	0	0

| phonograph | 0 | 1]

% nmysql -H -e "SELECT * FROM | i nbs WHERE | egs=0" cookbook
<TABLE BORDER=1>

<TR><TH>t hi ng</ TH><TH>| egs</ TH><TH>ar ns</ TH></ TR>
<TR><TD>squi d</ TD><TD>0</ TD><TD>10</ TD></ TR>

<TR><TD>oct opus</ TD><TD>0</ TD><TD>8</ TD></ TR>

<TR><TD>f i sh</ TD><TD>0</ TD><TD>0</ TD></ TR>
<TR><TD>phonogr aph</ TD><TD>0</ TD><TD>1</ TD></ TR>

</ TABLE>

The first line of the table contains column headings. If you don't want a header row, see
Recipe 1.26.

The -H and --html options produce output only for queries that generate a result set. No
output is written for queries such as | NSERT or UPDATE statements.

-H and --html may be used as of MySQL 3.22.26. (They actually were introduced in an earlier
version, but the output was not quite correct.)

1.25 Producing XML Output

1.25.1 Problem

You'd like to turn a query result into XML.
1.25.2 Solution

mysql can do that for you.

1.25.3 Discussion

mysql creates an XML document from the result of a query if you use the -X (or --xml) option.
Here's an example that shows the difference between tabular format and the XML created
from the same query:

% nysql -e "SELECT * FROM | i nmbs WHERE | egs=0" cookbook

Femmmmme e +om - - - +o- oo - +
| thing | legs | arns |
Femmmmme e +om - - - +o- oo - +
squid	0	10
octopus	0	8
fish	0	0
phonograph	0	1]
+ +

% nmysqgl -X -e "SELECT * FROM | i nbs WHERE | egs=0" cookbook
<?xm version="1.0"?>

<resul tset statenent="SELECT * FROM |inbs WHERE | egs=0">
<r ow>
<t hi ng>squi d</t hi ng>
<l egs>0</| egs>
<ar ns>10</ ar ns>

</ row>

<r ow>
<t hi ng>oct opus</t hi ng>
<l egs>0</ | egs>
<ar ns>8</ ar ns>

</ row>

<r ow>
<t hi ng>f i sh</t hi ng>
<l egs>0</| egs>
<ar ns>0</ ar ns>

</ row>

<r ow>
<t hi ng>phonogr aph</t hi ng>
<l egs>0</| egs>
<arns>1</ ar ns>
</ row>
</resul tset>

-X and --xml may be used as of MySQL 4.0. If your version of MySQL is older than that, you
can write your own XML generator. See Recipe 10.42.

1.26 Suppressing Column Headings in Query Output
1.26.1 Problem

You don't want to include column headings in query output.

1.26.2 Solution

Turn column headings off with the appropriate command-line option. Normally this is -N or --
skip-column-names, but you can use -ss instead.

1.26.3 Discussion

Tab-delimited format is convenient for generating datafiles that you can import into other
programs. However, the first row of output for each query lists the column headings by
default, which may not always be what you want. Suppose you have a program named
summarize the produces various descriptive statistics for a column of numbers. If you're
producing output from mysgl to be used with this program, you wouldn't want the header row
because it would throw off the results. That is, if you ran a command like this, the output
would be inaccurate because summarize would count the column heading:

% nysql -e "SELECT arns FROM |inbs" cookbook | summarize

To create output that contains only data values, suppress the column header row with the -N
(or --skip-column-names) option:

% nysql -N -e "SELECT arnms FROM | i mbs" cookbook | summari ze

-N and --skip-column-names were introduced in MySQL 3.22.20. For older versions, you can
achieve the same effect by specifying the "silent” option (-s or --silent) twice:

% nysql -ss -e "SELECT arns FROM | inbs" cookbook | sunmmarize

Under Unix, another alternative is to use tail to skip the first line:

% nysql -e "SELECT arns FROM |inbs" cookbook | tail +2 | summarize
1.27 Numbering Query Output Lines

1.27.1 Problem

You'd like the lines of a query result nicely numbered.

1.27.2 Solution

Postprocess the output from mysqgl, or use a SQL variable.

1.27.3 Discussion

The -N option can be useful in combination with cat -n when you want to number the output
rows from a query under Unix:

% nysql -N -e "SELECT thing, arns FROM |inbs" cookbook | cat -n
1 human 2

2 insect O

3 squid 10

4 octopus 8

5 fish 0

6 centipede 0
7 table 0

8 arncthair 2
9 phonogr aph 1

10 tripod O
11 Peg Leg Pete 2
12 NULL

Another option is to use a SQL variable. Expressions involving variables are evaluated for each
row of a query result, a property that you can use to provide a column of row numbers in the
output:

nysql > SET @ = O;
nysql > SELECT @ := @+1 AS rownum thing, arns, |egs FROM |i nbs;

| 1 | human | 2| 2 |
[2 | insect | 0 | 6 |
| 3 | squid | 10 | 0|
[4 | octopus | 8 | 0 |
| 5| fish | 0| 0 |

[6 | centipede | 0| 100 |
| 7] table | 0 | 4 |
[8 | arncthair | 2| 4 |
[9 | phonograph | 1| 0 |
[10 | tripod | 0 | 3|
[11 | Peg Leg Pete | 2 | 1]
[12 | space alien | NULL | NULL |
Fomm e e oo R +o- oo - +o- oo - +

1.28 Making Long Output Lines More Readable
1.28.1 Problem

The output lines from a query are too long. They wrap around and make a mess of your
screen.

1.28.2 Solution

Use vertical output format.

1.28.3 Discussion

Some queries generate output lines that are so long they take up more than one line on your
terminal, which can make query results difficult to read. Here is an example that shows what
excessively long query output lines might look like on your screen:*

1 prior to MySQL 3.23.32, omit the FULL keyword from the SHONCOLUVWNS
statement.

nysqgl > SHOW FULL COLUWNS FROM I i nbs;

[R e eaemaaa s [[U E - e e e e e e el iee e eeiaiaaeaaaaaas
| Field | Type | Null | Key | Default | Extra | Privileges

E R Fem e meaaa +oo - e — . Fom oo - L S
thing	varchar(20)	YES		NULL		select,insert,update,references
legs	int(11)	YES		NULL		select,insert,update,references
arms	int(11)	YES		NULL		select,insert,update,references
E R Fem e meaaa +oo - e — . E L S

An alternative is to generate "vertical" output with each column value on a separate line. This
is done by terminating a query with \ Grather than with a ; character or with \ g. Here's what

the result from the preceding query looks like when displayed using vertical format:

nysqgl > SHOW FULL COLUWMNS FROM | i mbs\ G

EE I R R R R I I I 1 r ow EE R R R R I I
Field: thing
Type: varchar (20)
Null: YES
Key:
Def aul t: NULL
Extra:
Privil eges: select,insert, update,references

LR E R EEEEEEEEEEEEREEEEEEEEEESS 2

Fi el d:

LR EREEEEEEEEEEEEEEEEEEEEEEESES
row

| egs

Type: int(11)

Nul I : YES
Key:
Defaul t: NULL
Extra:

Privil eges: select,insert,update,references

LR EEEEEEEEEEEEEEREEEEEEEEE RS 3 r ow LR EREEEEEEEEEEEEEEEEEEEEEEEES

Field: arns
Type: int(11)

Nul I : YES
Key:
Defaul t: NULL
Extra:

Privil eges: select,insert, update,references

To specify vertical output from the command line, use the -E (or --vertical) option when you
invoke mysql. This affects all queries issued during the session, something that can be useful
when using mysql to execute a script. (If you write the statements in the SQL script file using
the usual semicolon terminator, you can select normal or vertical output from the command
line by selective use of -E.)

1.29 Controlling mysqgl's Verbosity Level
1.29.1 Problem

You want mysql to produce more output. Or less.

1.29.2 Solution

Use the -v or -s options for more or less verbosity.

1.29.3 Discussion

When you run mysql non-interactively, not only does the default output format change, it
becomes more terse. For example, mysqgl doesn't print row counts or indicate how long
queries took to execute. To tell mysqgl to be more verbose, use -v or --verbose. These options
can be specified multiple times for increasing verbosity. Try the following commands to see
how the output differs:

% echo "SELECT NON)" | nysdl

% echo "SELECT NON)" | nysgl -v
% echo "SELECT NON)" | nysqgl -vv
% echo "SELECT NON)" | nysqgl -vvv

The counterparts of -v and --verbose are -s and --silent. These options too may be used
multiple times for increased effect.

1.30 Logging Interactive mysql Sessions

1.30.1 Problem

You want to keep a record of what you did in a mysql session.

1.30.2 Solution

Create a tee file.

1.30.3 Discussion

If you maintain a log of an interactive MySQL session, you can refer back to it later to see
what you did and how. Under Unix, you can use the script program to save a log of a terminal
session. This works for arbitrary commands, so it works for interactive mysql sessions, too.
However, script also adds a carriage return to every line of the transcript, and it includes any
backspacing and corrections you make as you're typing. A method of logging an interactive
mysql session that doesn't add extra messy junk to the log file (and that works under both
Unix and Windows) is to start mysqgl with a --tee option that specifies the name of the file in
which to record the session:*9

191 1t's called a "tee" because it's similar to the Unix tee utility. For more
background, try this command:

% nysql --tee=tnp.out cookbook

To control session logging from within mysgl, use \ T and \'t to turn tee output on and off.

This is useful if you want to record only parts of a session:

nysqgl > \' T tnp. out
Logging to file "tnp.out'
nysql > \'t

Qutfile disabled.

A tee file contains the queries you enter as well as the output from those queries, so it's a
convenient way to keep a complete record of them. It's useful, for example, when you want to
print or mail a session or parts of it, or for capturing query output to include as an example in
a document. It's also a good way to try out queries to make sure you have the syntax correct
before putting them in a script file; you can create the script from the tee file later by editing
it to remove everything except those queries you want to keep.

mysql appends session output to the end of the tee file rather than overwriting it. If you want
an existing file to contain only the contents of a single session, remove it first before invoking

mysql.
The ability to create tee files was introduced in MySQL 3.23.28.
1.31 Creating mysql Scripts from Previously Executed Queries

1.31.1 Problem

You want to reuse queries that were issued during an earlier mysql session.

1.31.2 Solution

Use a tee file from the earlier session, or look in mysql's statement history file.

1.31.3 Discussion

One way to create a batch file is to enter your queries into the file from scratch with a text
editor and hope that you don't make any mistakes while typing them. But it's often easier to
use queries that you've already verified as correct. How? First, try out the queries "by hand"
using mysql in interactive mode to make sure they work properly. Then, extract the queries
from a record of your session to create the batch file. Two sources of information are
particularly useful for creating SQL scripts:

You can record all or parts of a mysqgl session by using the --tee command-line option
or the \ T command from within mysql. (See Recipe 1.30 for more information.)

Under Unix, a second option is to use your history file. mysgl maintains a record of
your queries, which it stores in the file .mysql_history in your home directory.

A tee file session log has more context because it contains both query input and output, not
just the text of the queries. This additional information can make it easier to locate the parts
of the session you want. (Of course, you must also remove the extra stuff to create a batch
file from the tee file.) Conversely, the history file is more concise. It contains only of the
queries you issue, so there are fewer extraneous lines to delete to obtain the queries you
want. Choose whichever source of information best suits your needs.

1.32 Using mysql as a Calculator

1.32.1 Problem

You need a quick way to evaluate an expression.
1.32.2 Solution

Use mysqgl as a calculator. MySQL doesn't require every SELECT statement to refer to a table,

so you can select the results of arbitrary expressions.

1.32.3 Discussion

SELECT statements typically refer to some table or tables from which you're retrieving rows.
However, in MySQL, SELECT need not reference any table at all, which means that you can

use the mysql program as a calculator for evaluating an expression:

nysql > SELECT (17 + 23) / SQRT(64):

This is also useful for checking how a comparison works. For example, to determine whether
or not string comparisons are case sensitive, try the following query:

nysql > SELECT ' ABC = 'abc';

dom e +
| "ABC = "abc' |
dom e +
| 1]
dom e +

The result of this comparison is 1 (meaning "true"; in general, nonzero values are true). This
tells you that string comparisons are not case sensitive by default. Expressions that evaluate
to false return zero:

nysql > SELECT ' ABC = 'abcd';

Fem e emee e aaaaa +
| "ABC = 'abcd |
Fem e emee e aaaaa +
| 0|
Fem e emee e aaaaa +

If the value of an expression cannot be determined, the result is NULL:

nysql > SELECT 1/0;

R +
| 1/0 |
R +
| NULL |
R +

SQL variables may be used to store the results of intermediate calculations. The following
statements use variables this way to compute the total cost of a hotel bill:

nysql > SET @lai l y_room charge = 100. 00;

nysql > SET @um of _nights = 3;

nysql > SET @ ax_percent = 8;

nysql > SET @otal _room charge = @aily_roomcharge * @um of nights;
nysql > SET @ax = (@otal _roomcharge * @ax_percent) / 100;

nysql > SET @otal = @otal _roomcharge + @ ax;

nysql > SELECT @ot al ;

Fomm e e oo +
| @otal |
Fomm e e oo +
| 324 |
Fomm e e oo +

1.33 Using mysql in Shell Scripts
1.33.1 Problem

You want to invoke mysql from within a shell script rather than using it interactively.

1.33.2 Solution

There's no rule against that. Just be sure to supply the appropriate arguments to the
command.

1.33.3 Discussion

If you need to process query results within a program, you'll typically use a MySQL
programming interface designed specifically for the language you're using (for example, in a
Perl script you'd use the DBI interface). But for simple, short, or quick-and-dirty tasks, it may
be easier just to invoke mysqgl directly from within a shell script, possibly postprocessing the
results with other commands. For example, an easy way to write a MySQL server status tester
is to use a shell script that invokes mysql, as is demonstrated later in this section. Shell scripts
are also useful for prototyping programs that you intend to convert for use with a standard
API later.

For Unix shell scripting, | recommend that you stick to shells in the Bourne shell family, such
as sh, bash, or ksh. (The csh and tcsh shells are more suited to interactive use than to
scripting.) This section provides some examples showing how to write Unix scripts for /bin/sh.
It also comments briefly on DOS scripting. The sidebar "Using Executable Programs" describes
how to make scripts executable and run them.

Using Executable Programs

When you write a program, you'll generally need to make it executable before you
can run it. In Unix, you do this by setting the "execute" file access modes using the
chmod command:

% chnod +x myprog

To run the program, name it on the command line:

% nypr og

However, if the program is in your current directory, your shell might not find it. The
shell searches for programs in the directories named in your PATH environment
variable, but for security reasons, the search path for Unix shells often is deliberately
set not to include the current directory (.). In that case, you need to include a

leading path of . / to explicitly indicate the program's location:

% ./ myprog

Some of the programs developed in this book are intended only to demonstrate a
particular concept and probably never will be run outside your current directory, so
examples that use them generally show how to invoke them using the leading . /
path. For programs that are intended for repeated use, it's more likely that you'll
install them in a directory named in your PATH setting. In that case, no leading path
will be necessary to invoke them. This also holds for common Unix utilities (such as
chmod), which are installed in standard system directories.

Under Windows, programs are interpreted as executable based on their filename
extensions (such as .exe or .bat), so chmod is unnecessary. Also, the command
interpreter includes the current directory in its search path by default, so you should
be able to invoke programs that are located there without specifying any leading
path. (Thus, if you're using Windows and you want to run an example command that
is shown in this book using . / , you should omit the . / from the command.)

1.33.4 Writing Shell Scripts Under Unix

Here is a shell script that reports the current uptime of the MySQL server. It runs a SHONV
STATUS query to get the value of the Upt i ne status variable that contains the server uptime
in seconds:

#! [/ bin/sh
mysql _uptine.sh - report server uptine in seconds

nysgl -B -N -e "SHOW STATUS LI KE ' Uptine""

The first line of the script that begins with #! is special. It indicates the pathname of the
program that should be invoked to execute the rest of the script, /bin/sh in this case. To use
the script, create a file named mysql_uptime.sh that contains the preceding lines and make it
executable with chmod +x. The mysql_uptime.sh script runs mysqgl using -e to indicate the
query string, -B to generate batch (tab-delimited) output, and -N to suppress the column
header line. The resulting output looks like this:

% ./ nysql _uptine. sh
Uptime 1260142

The command shown here begins with . / , indicating that the script is located in your current
directory. If you move the script to a directory named in your PATH setting, you can invoke it
from anywhere, but then you should omit the . / from the command. Note that moving the
script make cause csh or tcsh not to know where the script is located until your next login. To
remedy this without logging in again, use rehash after moving the script. The following
example illustrates this process:

% ./ nysql _uptine. sh

Uptime 1260348

% mv nysql _uptine.sh /usr/local/bin
% nmysql _uptine. sh

nysql _uptinme.sh: Command not found.
% r ehash

% nmysql _uptine. sh

Uptime 1260397

If you prefer a report that lists the time in days, hours, minutes, and seconds rather than just
seconds, you can use the output from the mysqgl STATUS statement, which provides the

following information:

nysql > STATUS

Connection id: 12347

Current database: cookbook

Current user: cbuser @ ocal host

Current pager: st dout

Using outfile: t

Server version: 3.23.47-10g

Pr ot ocol version: 10

Connecti on: Local host via UN X socket
Client characterset: latinl

Server characterset: latinl

UNI X socket :
Upti ne:

/tnp/ mysql . sock
14 days 14 hours 2 mn 46 sec

For uptime reporting, the only relevant part of that information is the line that begins with

Upt i me. It's a simple matter to write a script that sends a STATUS command to the server

and filters the output with grep to extract the desired line:

#! [bin/sh

nysql _uptine2.sh -

report server uptine

nysql -e STATUS | grep "“Uptine"
The result looks like this:

% ./ nysql _uptinme2. sh
Upti ne: 14 days 14 hours 2 mn 46 sec

The preceding two scripts specify the statement to be executed by means of the -e command-
line option, but you can use other mysql input sources described earlier in the chapter, such
as files and pipes. For example, the following mysql_uptime3.sh script is like
mysql_uptime2.sh but provides input to mysql using a pipe:

#! [/ bin/sh
nmysql _uptine3.sh - report server uptine

echo STATUS | nysql | grep "“Uptine"

Some shells support the concept of a "here-document,” which serves essentially the same
purpose as file input to a command, except that no explicit filename is involved. (In other
words, the document is located "right here" in the script, not stored in an external file.) To
provide input to a command using a here-document, use the following syntax:

command <<MARKER
input line 1
input line 2
input line 3

MARKER

<<MARKER signals the beginning of the input and indicates the marker symbol to look for at
the end of the input. The symbol that you use for MARKER is relatively arbitrary, but should be

some distinctive identifier that does not occur in the input given to the command.

Here-documents are a useful alternative to the -e option when you need to specify lengthy
query input. In such cases, when -e becomes awkward to use, a here-document is more
convenient and easier to write. Suppose you have a log table | og_t bl that contains a column
dat e_added to indicate when each row was added. A query to report the number of records

that were added yesterday looks like this:

SELECT COUNT(*) As 'New log entries:'
FROM | og_t bl
VWHERE dat e_added = DATE SUB(CURDATE(), | NTERVAL 1 DAY);

That query could be specified in a script using -e, but the command line would be difficult to
read because the query is so long. A here-document is a more suitable choice in this case
because you can write the query in more readable form:

#! [/ bin/sh
new_| og_entries.sh - count yesterday's log entries

nysql cookbook <<MySQL_I| NPUT

SELECT COUNT(*) As 'New log entries:'

FROM | og_t bl

VWHERE dat e_added = DATE SUB(CURDATE(), | NTERVAL 1 DAY);
MYSQ_ | NPUT

When you use -e or here-documents, you can refer to shell variables within the query input—
although the following example demonstrates that it might be best to avoid the practice.
Suppose you have a simple script count_rows.sh for counting the rows of any table in the
cookbook database:

#! [/ bin/sh
count _rows.sh - count rows in cookbook database table

require one argunent on the command |ine
if [$# -ne 1]; then
echo "Usage: count_rows.sh tbhl_nane";
exit 1;
fi

use argunent ($1) in the query string
nysql cookbook <<MySQL_| NPUT

SELECT COUNT(*) AS 'Rows in table:' FROM $1;
MYSQ_ | NPUT

The script uses the $# shell variable, which holds the command-line argument count, and $1,
which holds the first argument after the script name. count_rows.sh makes sure that exactly
one argument was provided, then uses it as a table name in a row-counting query. To run the
script, invoke it with a table name argument:

% ./ count _rows. sh |inbs
Rows in table:
12

Variable substitution can be helpful for constructing queries, but you should use this capability
with caution. A malicious user could invoke the script as follows:

% ./ count _rows.sh "linbs; DROP TABLE | i nbs"
In that case, the resulting query input to mysql becomes:
SELECT COUNT(*) AS 'Rows in table:'" FROMI|inbs; DROP TABLE | i nbs;

This input counts the table rows, then destroys the table! For this reason, it may be prudent to
limit use of variable substitution to your own private scripts. Alternatively, rewrite the script
using an API that allows special characters such as ; to be dealt with and rendered harmless

(see Recipe 2.8).

1.33.5 Writing Shell Scripts Under Windows

Under Windows, you can run mysqgl from within a batch file (a file with a .bat extension). Here
is a Windows batch file, mysqgl_uptime.bat, that is similar to the mysqgl_uptime.sh Unix shell
script shown earlier:

@CHO OFF
REM nysql _uptine.bat - report server uptine in seconds

nysql -B -N -e "SHOW STATUS LIKE ' Uptine'"
Batch files may be invoked without the .bat extension:

C.\> nysqgl _uptine
Uptime 9609

DOS scripting has some serious limitations, however. For example, here-documents are not
supported, and command argument quoting capabilities are more limited. One way around
these problems is to install a more reasonable working environment; see the sidebar "Finding
the DOS Prompt Restrictive?"

Finding the DOS Prompt Restrictive?

If you're a Unix user who is comfortable with the shells and utilities that are part of
the Unix command-line interface, you probably take for granted some of the
commands used in this chapter, such as grep, sed, tr, and tail. These tools are so
commonly available on Unix systems that it can be a rude and painful shock to
realize that they are nowhere to be found if at some point you find it necessary to
work at the DOS prompt under Windows.

One way to make the DOS command-line environment more palatable is to install
Cygnus tools for Windows (Cygwin) or Unix for Windows (UWIN). These packages
include some of the more popular Unix shells as well as many of the utilities that
Unix users have come to expect. Programming tools such as compilers are available
with each package as well. The package distributions may be obtained at the
following locations:

http://www.cygwin.com/

http://www.research.att.com/sw/tools/uwin/

These distributions can change the way you use this book under Windows, because
they eliminate some of the exceptions where | qualify commands as available under
Unix but not Windows. By installing Cygwin or UWIN, many of those distinctions
become irrelevant.

http://www.cygwin.com/
http://www.research.att.com/sw/tools/uwin/

Chapter 2. Writing MySQL-Based Programs

Section 2.1. Introduction

Section 2.2. Connecting to the MySQL Server, Selecting a Database, and
Disconnecting

Section 2.3. Checking for Errors

Section 2.4. Writing Library Files

Section 2.5. Issuing Queries and Retrieving Results

Section 2.6. Moving Around Within a Result Set

Section 2.7. Using Prepared Statements and Placeholders in Queries

Section 2.8. Including Special Characters and NULL Values in Queries

Section 2.9. Handling NULL Values in Result Sets

Section 2.10. Writing an Object-Oriented MySQL Interface for PHP

Section 2.11. Ways of Obtaining Connection Parameters

Section 2.12. Conclusion and Words of Advice

2.1 Introduction

This chapter discusses how to write programs that use MySQL. It covers basic APl operations
that are fundamental to your understanding of the recipes in later chapters, such as
connecting to the MySQL server, issuing queries, and retrieving the results.

2.1.1 MySQL Client Application Programming Interfaces

This book shows how to write MySQL-based programs using Perl, PHP, Python, and Java, and
it's possible to use several other languages as well. But one thing all MySQL clients have in
common, no matter which language you use, is that they connect to the server using some
kind of application programming interface (API) that implements a communications protocol.
This is true regardless of the program's purpose, whether it's a command-line utility, a job
that runs automatically on a predetermined schedule, or a script that's used from a web server
to make database content available over the Web. MySQL APIs provide a standard way for
you, the application developer, to express database operations. Each API translates your
instructions into something the MySQL server can understand.

The server itself speaks a low-level protocol that | call the raw protocol. This is the level at
which direct communication takes place over the network between the server and its clients. A
client establishes a connection to the port on which the server is listening and communicates
with it by speaking the client-server protocol in its most basic terms. (Basically, the client fills
in data structures and shoves them over the network.) It's not productive to attempt to
communicate directly with the server at this level (see the sidebar Want to Telnet to the
MySQL Server?"), nor to write programs that do so. The raw protocol is a binary
communication stream that is efficient, but not particularly easy to use, a fact that usually

deters developers from attempting to write programs that talk to the server this way. More
convenient access to the MySQL server is provided through a programming interface that is
written at a level above that of the raw protocol level. The interface handles the details of the
raw protocol on behalf of your programs. It provides calls for operations such as connecting to
the server, sending queries, retrieving the results of queries, and obtaining query status
information.

Java drivers implement this low-level protocol directly. They plug into the Java Database
Connectivity (JDBC) interface, so you write your programs using standard JDBC calls. JDBC
passes your requests for database operations to the MySQL driver, which maps them into
operations that communicate with the MySQL server using the raw protocol.

The MySQL drivers for Perl, PHP, and Python adopt a different approach. They do not
implement the raw protocol directly. Instead, they rely on the MySQL client library that is
included with MySQL distributions. This client library is written in C and thus provides the basis
of an application programming interface for communicating with the server from within C
programs. Most of the standard clients in the MySQL distribution are written in C and use this
API. You can use it in your own programs, too, and should consider doing so if you want the
most efficient programs possible. However, most third-party application development is not
done in C. Instead, the C API is most often used indirectly as an embedded library within other

languages. This is how MySQL communication is implemented for Perl, PHP, Python, and
several other languages. The API for these higher-level languages is written as a "wrapper"
around the C routines, which are linked into the language processor.

The benefit of this approach is that it allows a language processor to talk to the MySQL server
on your behalf using the C routines while providing to you an interface in which you express
database operations more conveniently. For example, scripting languages such as Perl
typically make it easy to manipulate text without having to allocate string buffers or dispose of
them when you're done with them the way you do in C. Higher-level languages let you
concentrate more on what you're trying to do and less on the details that you must think
about when you're writing directly in C.

This book doesn't cover the C API in any detail, because we never use it directly; the
programs developed in this book use higher-level interfaces that are built on top of the C API.
However, if you'd like to try writing MySQL client programs in C, the following sources of
information may be helpful:

The MySQL Reference Manual contains a chapter that provides a reference for the C
API functions. You should also have a look at the source for the standard MySQL
clients provided with the MySQL source distribution that are written in C. Source
distributions and the manual both are available at the MySQL web site,
http://www.mysqgl.com/, and you can obtain the manual in printed form from O'Reilly

& Associates.

The book MySQL (New Riders) contains reference material for the C API, and also
includes a chapter that provides detailed tutorial instructions for writing MySQL
programs in C. In fact, you needn't even buy the book to get this particular chapter;
it's available in PDF form at http://www.kitebird.com/mysql-book/. The source code

for the sample programs discussed in the chapter is available from the same site for
you to study and use. These programs were deliberately written for instructional
purposes, so you may find them easier to understand than the standard clients in the
MySQL source distribution.

http://www.mysql.com/
http://www.kitebird.com/mysql-book/

Want to Telnet to the MySQL Server?

Some networking protocols such as SMTP and POP are ASCII based. This makes it
possible to talk directly to a server for those protocols by using Telnet to connect to
the port on which the server is listening and typing in commands from the keyboard.
Because of this, people sometimes assume that it should also be possible to
communicate with the MySQL server the same way: by opening a Telnet connection
to it and entering commands. That doesn't work, due to the binary nature of the raw
protocol that the server uses. You can verify this for yourself. Suppose the MySQL
server is running on the local host and listening on the default port (3306). Connect
to it using the following command:

% telnet |ocal host 3306

You'll see something that looks like a version number, probably accompanied by a
bunch of gibberish characters. What you're seeing is the raw protocol. You can't get
very far by communicating with the server in this fashion, which is why the answer
to the common question, "How can | Telnet to the MySQL server?" is, "Don't bother."
The only thing you can find out this way is whether or not the server is up and
listening for connections on the port.

MySQL client APlIs provide the following capabilities, each of which is covered in this chapter:

Connecting to the MySQL server; selecting a database; disconnecting from the
server.

Every program that uses MySQL must first establish a connection to the server, and
most programs also will specify which database to use. Some APIs expect the
database name to be supplied at connect time (which is why connecting and selecting
are covered in the same section). Others provide an explicit call for selecting the
database. In addition, well-behaved MySQL programs close the connection to the
server when they're done with it.

Checking for errors.

Many people write MySQL programs that perform no error checking at all, which
makes them difficult to debug when things go wrong. Any database operation can fail
and you should know how to find out when that occurs and why. This is necessary so
that you can take appropriate action such as terminating the program or informing the
user of the problem.

Issuing queries and retrieving results.

The whole point of connecting to a database server is to run queries. Each API
provides at least one way to issue queries, as well as several functions for processing

the results of queries. Because of the many options available to you, this section is
easily the most extensive of the chapter.

Using prepared statements and placeholders in queries.

One way to write a query that refers to specific data values is to embed the values
directly in the query string. Most APIs provide another mechanism that allows you to
prepare a query in advance that refers to the data values symbolically. When you
execute the statement, you supply the data values separately and the API places them
into the query string for you.

Including special characters and NULL values in queries.

Some characters such as quotes and backslashes have special meaning in queries, and
you must take certain precautions when constructing queries containing them. The
same is true for NULL values. If you do not handle these properly, your programs may
generate SQL statements that are erroneous or that yield unexpected results. This
section discusses how to avoid these problems.

Handling NULL values in result sets.

NULL values are special not only when you construct queries, but in results returned

from queries. Each API provides a convention for dealing with them.

To write your own programs, it's necessary to know how to perform each of the fundamental
database API operations no matter which language you use, so each one is shown in each of
our languages (PHP, Perl, Python, and Java). Seeing how each API handles a given operation
should help you see the correspondences between APIs more easily and facilitate
understanding of recipes shown in the following chapters, even if they're written in a language
you don't use very much. (Later chapters usually illustrate recipe implementations using just
one or two languages.)

I recognize that it may seem overwhelming to see each recipe in four different languages if
you're interested only in one particular API. In that case, | advise you to approach the recipes
as follows: read just the introductory part that provides the general background, then go
directly to the section for the language in which you're interested. Skip the other languages.
Should you develop an interest in writing programs in other languages later, you can always
come back and read the other sections then.

This chapter also discusses the following topics, which are not directly part of MySQL APIs but
can help you use them more easily:

Writing library files.

As you write program after program, you may find that there are certain operations
you carry out repeatedly. Library files provide a way to encapsulate the code for these
operations so that you can perform them from multiple scripts without including all the
code in each script. This reduces code duplication and makes your programs more
portable. This section shows how to write a library file for each API that includes a
function for connecting to the server—one operation that every program that uses
MySQL must perform. (Later chapters develop additional library routines for other
operations.)

Writing an object-oriented MySQL interface for PHP.

The APIs for Perl, Python, and Java each are class-based and provide an object-
oriented programming model based on a database-independent architecture. PHP's
built-in interface is based on MySQL-specific function calls. The section describes how
to write a PHP class that can be used to take an object-oriented approach to
developing MySQL scripts.

Ways of obtaining connection parameters.

The earlier section on establishing connections to the MySQL server relies on
connection parameters hardwired into the code. However, there are several other
ways to obtain parameters, ranging from storing them in a separate file to allowing
the user to specify them at runtime.

To avoid typing in the example programs, you should obtain the r eci pes source distribution
(see Appendix A). Then when an example says something like "create a file named xyz that
contains the following information . . . " you can just use the corresponding file from the

reci pes distribution. The scripts for this chapter are located under the api directory, with the
exception of the library files, which can be found in the lib directory.

The primary table used for examples in this chapter is named pr ofi | e. It's created in Recipe
2.5, which you should know in case you skip around in the chapter and wonder where it came
from. See also the note at the very end of the chapter about resetting the pr of i | e table to a

known state for use in other chapters.

2.1.2 Assumptions

Several assumptions should be satisfied for the material in this chapter to be used most
effectively:

You should have MySQL support installed for any language processors you plan to use.
If you need to install any of the APIs, see Appendix A.

You should already have set up a MySQL user account for accessing the server and a
database to use for trying out queries. As described in Chapter 1, the examples use a
MySQL account with a name and password of cbuser and cbpass, and we'll connect

to a MySQL server running on the local host to access a database named cookbook. If
you need to create the account or the database, see the instructions in that chapter.
The recipes assume a certain basic understanding of the API languages. If a recipe
uses constructs with which you're not familiar, consult a good general text for the
language in which you're interested. Appendix C lists some sources that may be
helpful.

Proper execution of some of the programs may require that you set environment
variables that control their behavior. See Recipe 1.9 for details about how to do this.

2.2 Connecting to the MySQL Server, Selecting a Database, and Disconnecting
2.2.1 Problem

You need to establish a connection to the server to access a database, and to shut down the
connection when you're done.

2.2.2 Solution

Each API provides functions for connecting and disconnecting. The connection routines require
that you provide parameters specifying the MySQL user account you want to use. You can also
specify a database to use. Some APIs allow this at connection time; others require a separate

call after connecting.

2.2.3 Discussion

The programs in this section show how to perform three fundamental operations that are
common to the vast majority of MySQL programs:

Establishing a connection to the MySQL server.

Every program that uses MySQL does this, no matter which APl you use. The details
on specifying connection parameters vary between APIs, and some APIs provide more
flexibility than others. However, there are many common elements. For example, you
must specify the host where the server is running, as well as the name and password
for the MySQL account that you're using to access the server.

Selecting a database.

Most MySQL programs select a database, either when they connect to the server or
immediately thereafter.

Disconnecting from the server
Each API provides a means of shutting down an open connection. It's best to close the

connection as soon as you're done with the server so that it can free up any resources
that are allocated to servicing the connection. Otherwise, if your program performs

additional computations after accessing the server, the connection will be held open
longer than necessary. It's also preferable to close the connection explicitly. If a
program simply terminates without closing the connection, the MySQL server
eventually notices, but shutting down the connection explicitly allows the server to
perform an orderly close on its end immediately.

Our example programs for each API in this section show how to connect to the server, select
the cookbook database, and disconnect. However, on occasion you might want to write a
MySQL program that doesn't select a database. This would be the case if you plan to issue a
query that doesn't require a default database, such as SHONVARI ABLES or SHONDATABASES.
Or perhaps you're writing an interactive program that connects to the server and allows the
user to specify the database after the connection has been made. To cover such situations, the
discussion for each API also indicates how to connect without selecting any database.

The Meaning of localhost in MySQL

One of the parameters you specify when connecting to a MySQL server is the host
where the server is running. Most programs treat the hostname localhost and the IP
address 127. 0. 0. 1 as synonymous. Under Unix, MySQL programs behave
differently; by convention, they treat the hostname localhost specially and attempt
to connect to the server using a Unix domain socket file. To force a TCP/IP
connection to the local host, use the IP address 127. 0. 0. 1 rather than the
hostname localhost. (Under Windows, localhost and 127. 0. 0. 1 are treated the

same, because Windows doesn't have Unix domain sockets.)

The default port is 3306 for TCP/IP connections. The pathname for the Unix domain
socket varies, although it's often /tmp/mysql.sock. The recipes indicate how to
specify the socket file pathname or TCP/IP port number explicitly if you don't want to
use the default.

2.2.4 Perl

To write MySQL scripts in Perl, you should have the DBI module installed, as well as the
MySQL-specific DBI driver module, DBD::mysql. Appendix A contains information on getting
these if they're not already installed. There is an older interface for Perl named MysqlPerl, but
it's obsolete and is not covered here.

Here is a simple Perl script that connects to the cookbook database, then disconnects:

#! [usr/bin/perl -w

connect.pl - connect to the MySQ. server

use strict;

use DBI;

ny $dsn "DBI : mysql : host =l ocal host ; dat abase=cookbook";

ny $dbh = DBI ->connect ($dsn, "cbuser", "cbpass")

or die "Cannot connect to server\n";

print "Connected\n";
$dbh- >di sconnect ();
print "D sconnected\n";
exit (0);

To try the script, create a file named connect.pl that contains the preceding code. To run
connect.pl under Unix, you may need to change the pathname on the first line if your Perl
program is located somewhere other than /usr/bin/perl. Then make the script executable with
chmod +x, and invoke it as follows:

% chnod +x connect. pl
% ./ connect . pl
Connect ed

Di sconnect ed

Under Windows, chmod will not be necessary; you run connect.pl like this:

C.\> perl connect. pl
Connect ed
Di sconnect ed

If you have a filename association set up that allows .pl files to be executed directly from the
command line, you need not invoke Perl explicitly:

C.\ > connect. pl
Connect ed
Di sconnect ed

For more information on running programs that you've written yourself, see the sidebar "Using
Executable Programs" in Recipe 1.33.

The -w option turns on warning mode so that Perl produces warnings for any questionable
constructs. Our example script has no such constructs, but it's a good idea to get in the habit
of using -w; as you modify your scripts during the development process, you'll often find that
Perl has useful comments to make about them.

The use stri ct line turns on strict variable checking and causes Perl to complain about any
variables that are used without having been declared first. This is a sensible precaution
because it helps find errors that might otherwise go undetected. The use DBl statement tells
Perl that the program needs to use the DBI module. It's unnecessary to load the MySQL driver
module (DBD::mysql) explicitly, because DBI will do that itself when the script connects to the
database server.

The next two lines establish the connection to MySQL by setting up a data source name (DSN)
and calling the DBI connect () method. The arguments to connect () are the DSN, the
MySQL username, the password, and any connection attributes you want to specify. The DSN
is required. The other arguments are optional, although usually it's necessary to supply a
name and password to get very far.

The DSN specifies which database driver to use and other options indicating where to connect.
For MySQL programs, the DSN has the format DBI : nysql : opti ons. The three components

of which have the following meanings:

The first component is always DBI . It's not case sensitive; dbi or Dbi would do just
as well.

The second component tells DBI which database driver to use. For MySQL, the name
must be nysql and it is case sensitive. You can't use MySQL, MYSQL, or any other
variation.

The third component, if present, is a semicolon-separated list of nane=val ue pairs
specifying additional connection options. The order of any options you provide doesn't
matter. For our purposes here, the two most relevant options are host and

dat abase. They specify the hostname where the MySQL server is running and the
database you want to use. Note that the second colon in the DSN is not optional, even
if you don't specify any options.

Given this information, the DSN for connecting to the cookbook database on the local host

localhost looks like this:

DBI : mysql : host =l ocal host ; dat abase=cookbook

If you leave out the host option, its default value is | ocal host . Thus, these two DSNs are

equivalent:

DBI : mysql : host =I ocal host ; dat abase=cookbook
DBI : mysql : dat abase=cookbook

If you omit the dat abase option, no database is selected when you connect.

The second and third arguments of the connect () call are your MySQL username and
password. You can also provide a fourth argument following the password to specify attributes
that control DBI's behavior when errors occur. By default, DBI prints error messages when
errors occur but does not terminate your script. That's why connect.pl checks whether
connect () returns undef to indicate failure:

ny $dbh = DBI->connect ($dsn, "chuser", "chpass")
or die "Cannot connect to server\n";

Other error-handling strategies are possible. For example, you can tell DBI to terminate the
script automatically when an error occurs in a DBI call by disabling the Pri nt Err or attribute

and enabling Rai seError instead. Then you don't have to check for errors yourself:

nmy $dbh = DBl ->connect ($dsn, $user_nane, $password,
{PrintError => 0, RaiseError => 1});

Error handling is discussed further in Recipe 2.3.

Assuming that connect () succeeds, it returns a database handle that contains information
about the state of the connection. (In DBI parlance, references to objects are called
"handles.") Later we'll see other handles, such as statement handles that are associated with
particular queries. DBI scripts in this book conventionally use $dbh and $st h to signify

database and statement handles.

2.2.4.1 Additional connection parameters

For connections to localhost, you can provide a nysql _socket option in the DSN to specify

the path to the Unix domain socket:

ny $dsn = "DBI: nysql: host =l ocal host ; nysql _socket =/ var/t np/ nysql . sock"
"; dat abase=cookbook";

The nysql _socket option is available as of MySQL 3.21.15.

For non-localhost connections, you can provide a port option to specify the port number:

ny $dsn = "DBI: nysql : host =nysql . snake. net ; port =3307; dat abase=cookbook";
2.2.5 PHP

To write PHP scripts that use MySQL, your PHP interpreter must have MySQL support compiled
in. If it doesn't, your scripts will terminate with an error message like this:

Fatal error: Call to undefined function: nysql_connect()

Should that occur, check the instructions included with your PHP distribution to see how to
enable MySQL support.

PHP scripts usually are written for use with a web server. I'll assume that if you're going to
use PHP that way here, you can simply drop PHP scripts into your server's document tree,
request them from your browser, and they will execute. For example, if you run Apache as the
web server on the host http://apache.snake.net/ and you install a PHP script myscript.php at

the top level of the Apache document tree, you should be able to access the script by
requesting this URL:

http://apache.snake.net/myscript.php

This book uses the .php extension (suffix) for PHP script filenames. If you use a different
extension, such as .php3 or .phtml, you'll need to change the script names or else reconfigure
your web server to recognize the .php extension. Otherwise, when you request a PHP script
from your browser, the literal text of the script will appear in your browser window. You don't
want this to happen, particularly if the script contains the username and password you use for
connecting to MySQL. (For additional information about configuring Apache for use with PHP,

see Recipe 16.3.)

http://apache.snake.net/
http://apache.snake.net/myscript.php

PHP scripts often are written as a mixture of HTML and PHP code, with the PHP code
embedded between the special <?php and ?> tags. Here is a simple example:

<htm >
<head><titl e>A sinple page</title></head>
<body>
<p>
<?php

print ("I am PHP code, hear ne roar!\n");
?>

</ p>
</ body>
</htm >

For brevity, when | show PHP examples consisting entirely of code, typically I'll omit the
enclosing <?php and ?> tags. Examples that switch between HTML and PHP code include the

tags.

To use MySQL in a PHP script, you connect to the MySQL server and select a database in two
steps, by calling the nysql _connect () and nysql _sel ect _db() functions. Our first PHP

script, connect.php, shows how this works:

connect. php - connect to the MySQ. server

if (!'($conn_id = @rysqgl _connect ("local host", "cbuser", "cbpass")))
die ("Cannot connect to server\n");

print ("Connected\n");

if (!@rnysql _select_db ("cookbook"”, $conn_id))
die ("Cannot sel ect database\n");

nysql _cl ose ($conn_id);

print ("Disconnected\n");

nmysqgl _connect () takes three arguments: the host where the MySQL server is running,
and the name and password of the MySQL account you want to use. If the connection attempt
succeeds, nmysgl _connect () returns a connection identifier that can be passed to other
MySQL-related functions later. PHP scripts in this book conventionally use $conn_i d to signify

connection identifiers.

If the connection attempt fails, mysqgl _connect () prints a warning and returns FALSE.
(The script prevents any such warning by putting @(the warning-suppression operator) in

front of the function name so it can print its own message instead.)

nmysqgl _sel ect _db() takes the database name and an optional connection identifier as
arguments. If you omit the second argument, the function assumes it should use the current
connection (that is, the one most recently opened). The script just shown calls

nmysqgl _sel ect _db() immediately after it connects, so the following calls are equivalent:

if (!@rnysql _select_db ("cookbook"”, $conn_id))
die ("Cannot sel ect database\n");

if (!@vysql _select_db ("cookbook"))

die ("Cannot sel ect database\n");

If mysqgl _sel ect _db() selects the database successfully, it returns TRUE. Otherwise, it
prints a warning and returns FALSE. (Again, as with the nysql _connect () call, the script
uses the @operator to suppress the warning.) If you don't want to select any database, just
omit the call to nysql _sel ect _db().

To try the connect.php script, copy it to your web server's document tree and request it from
your browser. Alternatively, if you have a standalone version of the PHP interpreter that can
be run from the command line, you can try the script without a web server or browser:

% php -q connect. php
Connect ed
Di sconnect ed

PHP actually provides two functions for connecting to the MySQL server. The script
connect.php uses nysql _connect (), but you can use mysql _pconnect () instead if you
want to establish a persistent connection that doesn't close when the script terminates. This
allows the connection to be reused by subsequent PHP scripts run by the web server, thus
avoiding the overhead of setting up a new connection. However, MySQL is so efficient at
opening connections that you might not notice much difference between the two functions.
Also, you should consider that use of nysql _pconnect () sometimes results in too many
connections being left open. A symptom of this is that the MySQL server stops accepting new
connections because so many persistent connections have been opened by web server
processes. Using mysql _connect () rather than nysql _pconnect() may help to avoid

this problem.

2.2.5.1 Additional connection parameters

For connections to localhost, you can specify a pathname for the Unix domain socket by
adding : / pat h/ t o/ socket to the hostname in the connect call:

$host nane = "l ocal host:/var/tnp/ nysql . sock";
if (!($conn_id = @mwysql _connect ($hostnanme, "cbuser", "chpass")))
die ("Cannot connect to server\n");

For non-localhost, connections, you can specify a port number by adding : port _numto the

hostname:

$host nane = "nysql . snake. net: 3307";
if (!($conn_id = @mwysql _connect ($hostnanme, "cbuser", "chpass")))
die ("Cannot connect to server\n");

The socket pathname option is available as of PHP 3.0.B4. The port number option is available
as of PHP 3.0.10.

In PHP 4, you can use the PHP initialization file to specify a default hostname, username,
password, socket path, or port number by setting the values of the nysql . def aul t _host ,
nmysql . def aul t _user, nysql . def aul t _passwor d, nmysql . def aul t _socket, or
nmysql . def aul t _port configuration directives.

2.2.6 Python

To write MySQL programs in Python, you need the MySQLdb module that provides MySQL
connectivity for Python's DB-API interface. If you don't have this module, see Appendix A for
instructions. DB-API, like Perl's DBl module, provides a relatively database-independent way
to access database servers, and supplants earlier Python DBMS-access modules that each had
their own interfaces and calling conventions. This book doesn't cover the older, obsolete
MySQL Python interface.

Python avoids the use of functions that return a special value to indicate the occurrence of an
error. In other words, you typically don't write code like this:

if (funcl () == sone_bad_val ue or func2 () == another_bad_val ue):
print "An error occurred"

el se:
print "No error occurred"

Instead, put the statements you want to execute in a t ry block. Errors cause exceptions to be

raised that you can catch with an except block containing the error handling code:

try:
funcl ()
func2 ()
except :
print "An error occurred"

Exceptions that occur at the top level of a script (that is, outside of any t ry block) are caught

by the default exception handler, which prints a stack trace and exits.

To use the DB-API interface, import the database driver module you want to use (which is
MySQLdb for MySQL programs). Then create a database connection object by calling the
driver's connect () method. This object provides access to other DB-API methods, such as
the cl ose() method that severs the connection to the database server. Here is a short

Python program, connect.py, that illustrates these operations:

#! [usr/ bi n/ pyt hon
connect.py - connect to the MySQ. server

i mport sys
i mport MySQLdb

try:
conn = MySQLdb. connect (db = "cookbook",
host = "l ocal host",

user = "chbuser",
passwd = "cbpass")
print "Connected"
except :
print "Cannot connect to server"
sys.exit (1)

conn.close ()
print "D sconnected"
sys.exit (0)

The i nport lines give the script access to the sys module (needed for the sys. exit()
function) and to the MySQLdb module. Then the script attempts to establish a connection to
the MySQL server by calling connect () to obtain a connection object, conn. Python scripts

in this book conventionally use conn to signify connection objects.

If the connection cannot be established, an exception occurs and the script prints an error
message. Otherwise, it closes the connection by using the cl ose() method.

Because the arguments to connect () are named, their order does not matter. If you omit
the host argument from the connect () call, its default value is | ocal host . If you leave

out the db argument or pass a db value of (the empty string), no database is selected. If

you pass a value of None, however, the call will fail.

To try the script, create a file called connect.py containing the code just shown. Under Unix,
you may need to change the path to Python on the first line of the script if your Python
interpreter is located somewhere other than /usr/bin/python. Then make the script executable
with chmod +x and run it:

% chnod +x connect. py
% ./ connect . py
Connect ed

Di sconnect ed

Under Windows, run the script like this:

C.\> python connect. py
Connect ed
Di sconnect ed

If you have a filename association set up that allows .py files to be executed directly from the
command line, you need not invoke Python explicitly:

C.\ > connect. py
Connect ed
Di sconnect ed

2.2.6.1 Additional connection parameters

For connections to localhost, you can provide a uni Xx_socket parameter to specify the path

to the Unix domain socket:

conn = MySQLdb. connect (db = "cookbook",

host = "l ocal host",
uni x_sock = "/var/tnmp/ nysql.sock",
user = "cbuser",

passwd = "cbpass")

For non-localhost connections, you can provide a port parameter to specify the port number:

conn = MySQLdb. connect (db = "cookbook",

host = "nysql.snake. net",
port = 3307,
user = "cbuser",

passwd = "cbpass")
2.2.7 Java

Database programs in Java are written using the JDBC interface, in conjunction with a driver
for the particular database engine you wish to access. This makes the JDBC architecture
similar to that used by the Perl DBI and Python DB-API modules: a generic interface used in
conjunction with database-specific drivers. Java itself is similar to Python in that you don't test
specific function calls for return values that indicate an error. Instead, you provide handlers
that are called when exceptions are thrown.

Java programming requires a software development kit (SDK). See the sidebar, Installing a
Java SDK for instructions on installing one if you need it. To write MySQL-based Java
programs, you'll also need a MySQL-specific JDBC driver. Several are listed in Appendix A. |
use the MySQL Connector/J driver because it is free and is actively maintained; use one of the
other drivers if you prefer. (MySQL Connector/J is the successor to MM.MySQL, and if you
already have MM.MySQL installed, you can use it instead by making a simple change:
whenever you see 0r g. gj t. nm nysqgl in Java code, replace it with com nysql . j dbc.)

Installing a Java SDK

java.sun.com makes Java SDKs available for Solaris, Linux, and Windows, but you
may already have the necessary tools installed, or they may be available by another
means. For example, Mac OS X includes javac, jikes, and other support needed for
building Java applications in the Developer Tools distribution available at
connect.apple.com.

If a Java SDK is not already installed on your system, get one from java.sun.com,
install it, and set the JAVA HOVE environment variable to the pathname where the
SDK is installed. Examples shown here assume an SDK installation directory of
/usr/local/java/jdk for Unix and D:\jdk for Windows, so the commands for setting
JAVA HOVE look like this:

export JAVA HOVE=/usr/l ocal /javal/jdk (sh, bash, etc.)
setenv JAVA HOMVE=/usr/ | ocal /javalj dk (csh, tcsh, etc.)
set JAVA HOVE=D: \j dk (W ndows)

Adjust t