
Dewson

Shelve in
Databases/MS SQL Server

User level:
Beginning–Intermediate

www.apress.com

SOURCE CODE ONLINE

BOOKS FOR PROFESSIONALS BY PROFESSIONALS®

Beginning SQL Server for Developers
Beginning SQL Server for Developers is the perfect book for developers new to SQL
Server and planning to create and deploy applications against Microsoft’s market-
leading database system for the Windows platform. Now in its fourth edition, the
book is enhanced to cover the very latest developments in SQL Server, including the
in-memory features that are introduced in SQL Server 2014.

Within the book, there are plenty of examples of tasks that developers routinely
perform. You’ll learn to create tables and indexes, and be introduced to best practices
for securing your valuable data. You’ll learn design tradeoffs and find out how to make
sound decisions resulting in scalable databases and maintainable code.

Beginning SQL Server for Developers takes you through the entire database
development process, from installing the software to creating a database to writing
the code to connect to that database and move data in and out. By the end of the
book, you’ll be able to design and create solid and reliable database solutions using
SQL Server.

FOURTH
EDITION

RELATED

9 781484 202814

54999
ISBN 978-1-4842-0281-4

For your convenience Apress has placed some of the front
matter material after the index. Please use the Bookmarks

and Contents at a Glance links to access them.

v

Contents at a Glance

About the Author ��� xix

About the Technical Reviewer ��� xxi

Acknowledgments ��� xxiii

Introduction �� xxv

Chapter 1: Overview and Installation ■ ��1

Chapter 2: SQL Server Management Studio ■ ��25

Chapter 3: Database Design and Creation ■ ���43

Chapter 4: Security and Compliance ■ ���93

Chapter 5: Defining Tables ■ ���127

Chapter 6: Creating Indexes and Database Diagramming ■ ���167

Chapter 7: In-Memory Tables ■ ��197

Chapter 8: Database Backups and Recovery ■ ���211

Chapter 9: Database Maintenance ■ ���265

Chapter 10: Data Insertion, Deletion, and Transactions—Disk-Based ■ ��������������������������303

Chapter 11: Selecting and Updating Data from Disk-Based Tables ■ �������������������������������335

Chapter 12: Working with In-Memory Tables ■ ��379

Chapter 13: Building a View ■ ��395

Chapter 14: Stored Procedures, Functions, and Security ■ ��421

■ Contents at a GlanCe

vi

Chapter 15: Natively Compiled Stored Procedures ■ ��463

Chapter 16: Essentials for Effective Coding ■ ��469

Chapter 17: Advanced T-SQL and Debugging ■ ��521

Chapter 18: Triggers ■ ��567

Chapter 19: Connecting via Code ■ ��593

Index ���641

xxv

Introduction

Beginning SQL Server for Developers is for those people who see themselves as becoming either developers, database
administrators, or a mixture of both, but have yet to tread that path with SQL Server. This edition of my book is for
readers who wish to learn and develop on either the free version of SQL Server, SQL Server Express, or with either the
trial or licensed versions of SQL Server.

Whether you have no knowledge of databases, or have knowledge of desktop databases such as MS Access, or
even come from a server-based background such as Oracle, DB2, Sybase, then this book will provide you with the
insight to get up and running with SQL Server.

Right from the start, your basic knowledge will be expanded, and you will soon be moving from being a beginner
through to a competent and professional developer. It is the aim of this book to cater to a wide range of developers,
from those who prefer to use the graphical interface for as much work as possible, to those who want to become more
adept at using SQL Server’s programming language, T-SQL. Where practical, each method of using SQL Server is
demonstrated, explained, and expanded so that you can evaluate what works best in your situation. You will also find
a chapter on how to work with Excel, .NET and Java, and incorporate them with T-SQL into your programming.

There are plenty of examples within the book of every action, along with details about the security of your data.
You will learn the best way to complete a task and even how to make the correct decision when there are two or
more choices that can be made. And let us not forget that SQL Server can work with in-memory tables and natively
compiled stored procedures.

Once you reach the end of this book, you will be able to design and create solid and reliable database solutions
competently and proficiently.

1

Chapter 1

Overview and Installation

Welcome to Beginning SQL Server for Developers. This book has been written for those who are interested in learning
how to create solutions with Microsoft SQL Server, but have no prior knowledge of SQL Server. You may well have
had exposure to other database management systems (DBMSs), such as MySQL, Oracle, or Microsoft Access, but SQL
Server uses different interfaces and has a different way of working compared to much of the competition. The aim of
this book is to bring you quickly up to a level at which you are developing competently with SQL Server. This book
is specifically dedicated to beginners and to those who at this stage wish to use only SQL Server. You may find this
book useful for understanding the basics of other database management systems in the marketplace, especially when
working with T-SQL within this book. Many DBMSs use an ANSI-standard SQL, so moving from SQL Server to Oracle,
Sybase, and so on, will be a great deal easier after reading this book.

This chapter answers the following questions:

Why should I use SQL Server?•	

How do I know whether my hardware meets the requirements?•	

Can I just confirm that I have the right operating system?•	

What can I do with SQL Server?•	

We will also look at installing your chosen edition and cover the following topics:

Installing SQL Server on a Windows platform•	

Options not installed by default•	

Where to install SQL Server physically•	

Multiple installations on one computer•	

How SQL Server runs on a machine•	

How security is implemented•	

Logon IDs for SQL Server, especially the •	 sa (system administrator) logon

Why Should I Use SQL Server?
The following discussion is from my point of view, and although it no doubt differs from that of others, the basis of the
discussion holds true. SQL Server faces competition from other database management systems, not only from other
Microsoft products such as Microsoft Access, but also from competitors such as Oracle, Sybase, DB2, and Informix, to
name a few.

Chapter 1 ■ Overview and installatiOn

2

You can find Microsoft Access on a large number of PCs. The fact that it is packaged with some editions of Office
and has been around for a number of years in different versions of Office has helped make this DBMS ubiquitous; in
fact, a great number of people actually do use the software. Unfortunately, it does have its limitations when it comes to
scalability, speed, and flexibility, but for many small, in-house systems, these areas of concern are not an issue since
such systems do not require major DBMS functionality. To this end, Microsoft Access can be the correct solution.

Now you come to the serious competition: Oracle and Sybase. Oracle is seen as perhaps the market leader in
the DBMS community, and it has an extremely large user base. There is no denying it is a great product to work with,
if somewhat more complex to install and administer than SQL Server; it fits well with large companies that require
large solutions. It also forms the backbone of some major software packages. There are many parts to Oracle, which
make it a powerful tool, including scalability and performance. It also provides flexibility in that you can add on tools
as you need them, making Oracle more accommodating in that area than SQL Server. For example, SQL Server forces
you to install the .NET Framework on your server regardless of whether you use the new .NET functionality. However,
Oracle isn’t as user-friendly from a developer’s point of view in areas like its ad hoc SQL Query tool and its XML and
web technology tools. It is also less straightforward in how to build up a complete database solution. Other drawbacks
include its cost and the complexity involved in installing and running it effectively. However, you will find that it is
used extensively by web search engines even though SQL Server could and does work just as effectively. SQL Server
has always been a one-purchase solution, such that (providing you buy the correct version or license) tools that allow
you to analyze your data or copy data from one data source such as Excel into SQL Server will all be “in the box.” With
Oracle, on the other hand, you have to purchase more options for every additional feature you want.

Then there is Sybase. It is very much like SQL Server with similar SQL commands and statements (this is the
code used to work with the database and its data) although not as feature-rich. There is a GUI for Sybase although
it is separate from the DBMS installation and a separate product. You will find that many Sybase developers use
command-line commands or third-party tools.

Sybase is also mainly found on Unix/Linux although there is a Windows version. It is very fast and very robust,
and it is rebooted only once, or maybe twice, a year. Being hosted on Unix, Linux, or Solaris also helps with the
reduction in reboots because you don’t have the monthly Windows patching. However, Sybase isn’t as command-and
feature-rich as SQL Server. SQL Server has a more extensive programming language and functionality that is more
powerful than Sybase.

Each DBMS has its own SQL syntax although they all will have the same basic SQL syntax, known as the ANSI-92
standard. This means that the syntax for retrieving data and such is the same from one DBMS to another. However,
each DBMS has its own special syntax to maintain it—trying to use a feature from this SQL syntax in one DBMS may
not work, or may work differently, in another.

SQL Server for me is the best choice in the DBMS marketplace. There are versions of SQL Server that can be
installed and be small enough for a handful of users and versions large enough for the largest corporations, and
there is even a version for Cloud computing. There is also a specific Development Edition, which gives almost the
full functionality of the most expensive version, the Enterprise Edition, but for a tiny fraction of the price. It has the
ability to scale up and deal with terabytes of data without many concerns. As you will see, it is easy to install; it comes
as one complete package for most of its functionality, with a simple install to be performed for the remaining areas if
required.

Now that you know the reasons behind choosing SQL Server, you need to know which versions of SQL Server are
available for purchase, what market each version is aimed at, and which version will be best for you, including which
version can run on your machine.

SQL Server Editions
Before buying this book, you will have perhaps found the Microsoft SQL Server home page, taken a look at the
different editions of SQL Server, and noticed that there are several choices to make. This book focuses on the
Development Edition as this is the edition to work with prior to moving into industry. There are, however, many
developers who will use the Express Edition because it is a free version that is ideal for smaller developments and,

Chapter 1 ■ Overview and installatiOn

3

where required, the change or non-existence of functionality is detailed. The differences between the two editions
that this book will cover are the in-memory held data and options concerning backing up and restoring data. Other
editions, where relevant, may be mentioned in passing.

The editions you have are as follows:

Enterprise: the most powerful edition of SQL Server often used by corporations that will be •	
running SQL Server on at least one powerful server; fully functional

Developer: the same functionality as Enterprise but not licensed for production•	

Business Intelligence (BI): tools and feature set orientated to building and browsing business •	
intelligence based data; has a feature set that is reduced or not available where the feature is
designed for transactional based data

Standard: reduced functionality and memory allowed to be used is limited to 128GB; ideal for •	
corporations that don’t work with very large data sets due to the reduction useful functionality

Web: ideal for web \-based corporations that work with smaller online-based data sets; also •	
useful for ISPs to offer to clients to build their web sites off

Azure: SQL Server is provided as a service in the cloud where you are supplied with a pre-•	
installed SQL Server instance and you buy compute and memory

Express: ideal for small companies and for those wishing to develop small database •	
applications such as students, charity organizations, and small work-at-home developers. This
edition is free to license.

If you are planning to read this book with an Express Edition of SQL Server, either the Express Edition with Tools
or Express Edition with Advanced Services is required.

The Example
In order to demonstrate SQL Server fully, we will develop a system for a financial company that will have features
such as banking, purchasing shares, and regular buying, including a unit trust savings plan. This is an application that
could fit into a large organization or, with very minor modifications, could be used by a single person to record their
own banking and financial transactions.

The book builds on this idea and develops the example, demonstrating how to take an idea and formulate it into
a design with the correct architecture. It should be said, though, that the example will be the bare minimum to make it
run, as I don’t want to detract from SQL Server and why you have bought the book.

Note ■ it would be possible to use the Microsoft standard example that can be downloaded; however, this detracts
from many areas that, as a developer, you need to be aware of and be confident dealing with. Building an example from
the very beginning is the only way to learn sQl server.

if you are coming from another database, you may find that you can skip parts of the example building.

I also use a tool from Red Gate Software to generate some random test data. You do not need this tool for the
book as the random data are available for download from the Apress web site and my own web site. But before you
can get to this point, you need to install SQL Server.

Chapter 1 ■ Overview and installatiOn

4

Installation
This chapter will guide you through the installation process of the Developer Edition, although virtually all that you
see will be in every edition. Reporting Services is only available within the Advanced Services Edition of the Express
Edition, which is not covered within the book. Security is also different in the Express and Web Editions, as will be
noted later. Microsoft offers a 180-day trial version at www.microsoft.com/sql, which you can use to follow along with
the examples in this book if you don’t already have SQL Server and are not ready to purchase. However, the Developer
Edition is very cheap to purchase a license to use compared to other editions, and so, by selecting this version, it is not
cost-prohibitive to continue past the trial period.

This book will cover many of the options and combinations of features that can be included within an
installation. A number of different tools are supplied with SQL Server to be included with the installation. You will
look at these tools so that a basic understanding of what they are will allow you to decide which to install.

Installation covers a great many different areas:

Security issues•	

Different types of installation—whether this is the first installation and instance of SQL Server •	
or a subsequent instance, for development, test, or production

Custom installations•	

Installing only some of the products available•	

Most of these options will be covered so that by the end of the chapter, you can feel confident and knowledgeable
enough to complete any subsequent installations that suit your needs.

As mentioned in the Editions section of the chapter, this book uses the Developer Edition because it is most likely
the edition you will use as a developer since it doesn’t have all the operating system requirements of the Enterprise
Edition. I will denote in the installation when a feature is not available in other editions. Insert the CD or download
and extract SQL Server from the web site for the Microsoft SQL Server edition of your choice or mount an ISO image
as a virtual drive on your computer. The installation is based on a local computer with only a C: hard drive. I will also
mention installation options concerning servers and network storage where appropriate.

Install
Ensure that you have logged on to the machine with administrative rights so that you are allowed to create files and
folders on your machine, which is obviously required for installation to be successful. If you are using a CD-ROM
and the installation process does not automatically start, open up Windows Explorer and double-click setup.exe,
found at the root level of the CD-ROM. If you are not using a CD-ROM, double-click the installer executable that you
downloaded. This may expand the downloaded single file to a folder with the setup.exe within it.

Tip ■ For installation on multiple computers, it is possible to create an automatic build script to ensure all servers are
built to the same company standard. i do not cover this topic, but it is an option to be aware of.

You are now presented with the installation screen for Microsoft .NET Framework if it is not already installed.
.NET is a framework that Microsoft created that allows programs written in VB .NET, C#, and other programming
languages to have a common compile set for computers. SQL Server uses .NET for some of its own internal work, but
also, as a developer, you can write .NET code in any of Microsoft’s .NET languages and include this within SQL Server
databases. With SQL Server 2008 and later, there is also the ability to query the database using .NET and LINQ rather
than native T-SQL, although for clarity the code would be converted to T-SQL.

http://www.microsoft.com/sql

Chapter 1 ■ Overview and installatiOn

5

You are then presented with the SQL Server Installation Center. This screen, shown in Figure 1-1, deals with all
setup processes, including new installations, upgrades from previous versions of SQL Server, and many other options
for maintaining SQL Server installations.

Figure 1-1. Beginning the install with the Installation Center

When you click Installation on the left-hand menu, the options within the main menu alter and you can now
select the New SQL Server stand-alone installation or add features to an existing installation item (at the top of the
Installation Center); then SQL Server installation starts. The first few screens may be different depending on the
edition you are installing.

The first screen asks for an edition and product key. If you have a product key, such as that for the Developers
Edition, you would enter it now. Whatever your selection you wish to use here, click Next. You will then be asked to
accept the license terms. Then click Next. You then come to the system configuration check known as the Global Rules
Check, as you see in Figure 1-2. This is my setup support rules screen, but your screen may slightly differ depending
on operating systems and service packs. It will only be shown if you have action points; otherwise, the SQL Server
installation process will continue automatically. Its main function is to check that the PC meets the hardware and
software requirements, that there are no outstanding reboots, and that you are logged in as an administrator.

Chapter 1 ■ Overview and installatiOn

6

SQL Server will then attempt to connect to the Internet and check for any product updates and service packs. It
is recommended that all updates and service packs should be installed; however, these should not be applied directly
to a production install without an install on a development server and your code and application tested against any
updates first. Occasionally, a service pack or product update can alter functionality. If there are no updates or Internet
connection is not possible, the installation process will automatically move to the next stage, Install Rules.

After the setup, install files are installed. The second set of checks that are performed continues to ensure that
the install will proceed without failures. These second checks are more to ensure that SQL Server itself will install
and perform once installed, unlike the first set of checks, which was related to the computer and operating system
requirements.

You will notice in Figure 1-3 that there is one warning triangle with a warning message in the screenshot; you
may have more depending on your computer setup. SQL Server will still install. The warning at this point is unlikely to
be of concern; however, if you are installing onto a machine that you will be accessing from a second machine either
on a network or by the Internet, then the message is indicating that you have Windows Firewall enabled. If you want to
connect using TCP/IP, then you need to have the correct ports open and enabled for use. Click Next.

Figure 1-2. System configuration check

Chapter 1 ■ Overview and installatiOn

7

Setup Role
You will now be presented with the Setup Role screen in Figure 1-4. There are three possible methods of installation
that can be chosen. The first option allows you to select which specific features are to be installed on the computer.
The second option allows Reporting Services to use powerful techniques and tools called PowerPivot to deal with data
held in an Analysis Services database, or Business Intelligence database, in conjunction with SharePoint. SharePoint
can be found in large organizations that use it to store generated reports that can be accessed in a secure and
controlled method by users. The final option is instructing the setup process to install every feature, tool, SDK, and
SQL Server service that is available. You will use the SQL Server Feature Installation option. Click Next.

Figure 1-3. System configuration checks

Chapter 1 ■ Overview and installatiOn

8

Choosing the Features to Install
You now come to the Feature Selection screen, where you have to make some decisions. As shown in Figure 1-5,
only certain options have been selected, and these are the options that will be discussed and demonstrated within
this book. You can select all of the options so that you do not need to install features as you progress your SQL Server
knowledge or if this will be your development instance where you’ll be testing every aspect of SQL Server away from
any development of projects taking place. No matter what you select, you can always run the installation process later
and add features. I will go through all of the options in this chapter, but the options in Figure 1-5 are the ones I have
used for this book.

Figure 1-4. Installation type to be performed

Chapter 1 ■ Overview and installatiOn

9

Let’s briefly take a look at each of these components:

•	 Database Engine Services: This is the core for SQL Server, and this option installs the main
engine, data files, and so forth, to make SQL Server run.

•	 SQL Server Replication: When you want to send data changes not only on the database it
is being executed on, but also on a similar database that has been built to duplicate those
changes, you can use this option to replicate the changes to that database.

•	 Full-Text Search: This option lets you allow searching of the text within your database. This
is a very useful tool for searching documents or other large text-based data and could be
used if you were building a search engine.

•	 Data Quality Services: This tool allows you or users to inspect the data within your
database for data quality. You can inspect your data for duplication and quality from a
reference database using the client tool to inspect the results.

•	 Analysis Services: Using this tool, you can take a set of data, slice and dice, and analyze the
information contained. Analysis Services has received a great deal of attention from Microsoft
in the last few years as it improves and expands the ability to aggregate data and perform
analysis functions. It is ideal for taking data such as sales figures and allowing you to see these
by product, by sales region, by client, and by any other method that could be analyzed.

Figure 1-5. Selecting the features to install

Chapter 1 ■ Overview and installatiOn

10

•	 Reporting Services: There are three different features for this service. One feature is installed
for each SQL Server instance, and then two options are installed once and can be used by any
installed instance on the server. Reporting Services allows reports to be produced from SQL
Server instead of using third-party tools such as Crystal Reports. It is used by both SQL Server
and Analysis Services.

•	 Data Quality Client: This is the client tool that allows you or users to inspect the data within
your database for data quality. You can inspect your data for duplication and quality from a
reference database using the client tool to inspect the results.

•	 Client Tools Connectivity: Some of these tools sit on the client machine and provide the
graphical interface to SQL Server, while others sit on the client and work with SQL Server
via tools such as Visual Studio, Excel, third-party tools and utilities such as iSQL, and a basic
command prompt tool. Client Tools Connectivity is the option you would package up for
rollout to developers to sit on their machines.

•	 Integration Services: This is a very powerful tool as it allows you to build packages of processes
to complete actions, such as importing data from other data sources and manipulating the
data. You will see Integration Services in action in Chapter 8 when you look at building a
backup maintenance plan.

•	 Client Tools Backwards Compatibility: Previous versions of SQL Server used different tools and
methods to access data from the client tools. This option will install these tools so that if you
are accessing—as an example—Integration Services on a SQL Server 2005 database that was
called DTS, then you will be able to do this.

•	 Client Tools SDK: This is a software development kit for client tools that Microsoft uses.

•	 Documentation Components: This is the help system. If you need more information,
clarification, or extra detail on any area of SQL Server, this is the area to turn to.

•	 Management Tools: The basic option will install the components required for this book. There
will be a graphical interface called Management Studio as well as the ability to write SQL at
the command prompt. The complete option expands Management Studio to have the ability
to interact with Reporting Services and Integration Services, as well as installing tools to help
in performance monitoring of your SQL Server. You would tend to deploy the complete set to
developers and the basic set to those dedicated to supporting a system, who need only to run
queries against your data to solve production problems and to retrieve and execute ad hoc
queries.

•	 Distributed Replay Controller: Distributed replay allows for workloads to be distributed over
one or more clients to try to simulate a real-life workload on SQL Server. This option is the
controller of the replay.

•	 Distributed Replay Client: This is the client software that would be used on one or more clients
to send through a distributed replay of SQL Server actions to the controller. You would install
this on each client that you want to partake in the replay.

•	 SQL Client Connectivity SDK: SQL Native Client provides the ability to connect to SQL Server
with some limitation to the functionality available from development systems. In general,
from .NET and other similar languages, you would connect to SQL Server using the SQL
Server ADO.NET library. If you are accessing SQL Server from a COM-based language such as
the C or C++ programming languages, you would look to install this option.

Chapter 1 ■ Overview and installatiOn

11

•	 Master Data Services (MDS): If you have multiple servers used within your organization for
different data repositories, for example, one database for clients, one database for orders,
another database for delivery information, then by using MDS you can bring the data together
in one master data hub. Each of the databases has a valid use in its own right and does belong
as a separate entity; however, an organization’s management or decision makers may need to
see the whole picture to assess how the company is performing.

The locations shown in Figure 1-5 demonstrate the likely setup on a server although if you have a local machine
with multiple drives, placing the data files away from the main system hard drive is preferable. The instance root
directory folder in this example is named based on the next step in the setup process; however, I am using just the
C: drive as this is the likely setup you will be using.

Of these components, Replication, Full-Text Searching, Analysis Services, SQL Server Data Tools, and Master
Data Services fall outside the scope of this book, and I touch upon Integration Services only as mentioned.

Note ■ at this point, sQl server no longer has the option to install the sample databases. You can download the
samples from www.codeplex.com/SqlServerSamples.

Naming the Instance
After a final check that nothing will block the installation via the Feature Rules check, you are ready to start defining
the the options selected earlier.

It is possible to install SQL Server more than once on one computer. This could happen when you have a
powerful server that has enough resources such as memory and processor to cope with two or three different
applications running. ISPs will have this setup when you request SQL Server, as this is their and your cheapest option
and allows SQL Server to be easily maintained by them. These different applications may be required to have their
own SQL Server databases. Each install is called an instance. You are now at the stage that you can name the instance
of the install. Each instance must have a unique name attached to it, although “no name,” known as a default instance,
is also classified as a unique name.

Naming instances is important as the first step to organizing your environments. For example, you may have
an instance for development, another instance for system testing, and finally one for user testing. It is bad practice
to share production server hardware with anything but production databases. If you share your hardware and if you
have a rogue development action that occurs and crashes the server, you will stop production from running. Although
you would have to make this decision at the start of the install process you are currently going through, it is a useful
second reminder here when naming the instance to give some indication of what environment it is for. I tend to use
DEV1, STG1, UAT1, and PRD1. The reason for the number is to cater for the scenario for replication, if you split audit,
archiving, live data, and so on.

The default instance is available as an option, which is what is selected when you are not giving the install a
specific name. You should avoid this, as it gives you an installation with no name and therefore no hint as to its use.
Even if you believe this will be your only instance or that while you are learning and a name is not required, it is good
practice to name the instance as shown in Figure 1-6. Choose the name you wish to use, and then click Next. Once you
have instances installed on the server and you complete further installations, they will be listed here. You can also see
the path detailed for each of the directories for the three services selected in the previous step if you chose them. Click
Next. The next screen checks the amount of free space on the selected drive. Click Next.

http://www.codeplex.com/SqlServerSamples

Chapter 1 ■ Overview and installatiOn

12

Service Accounts
SQL Server and other services, as defined in the Feature Selection screen (shown in Figure 1-5), require you to log on
to Windows before starting, just as you need to log on to Windows before using your system. SQL Server, Reporting
Services, and so on can run without you or anyone being logged in to the computer the install took place on. They can
run just so long as the computer has fired up successfully. This is normal when SQL Server is installed on a server that
is held in a remote location like a server room.

When the computer boots up and loads Windows, not only will Windows be running but also there will be
processes that run in the background before you or any other user has logged in to Windows. The ability to run
services with no user-based account logged in to Windows is the behavior that is required for SQL Server. SQL Server
needs to use a system-based Windows account.

Nothing can run on Windows without having some sort of login. If you do log in to the computer with your
Windows account while working through this book, you can use this Windows user ID for SQL Server to also log in
and start the required services manually. However, if you have your SQL Server running on a separate machine such
as a server in a specialized server room, at your client’s location, or at your ISP, you will not be around to log on to that
machine every time SQL Server is required. In that situation, it is necessary to use a Windows service account, which
is similar to how your virus checker runs without being logged in with your own account.

Each built-in service account, as shown in Figure 1-7, has special rights and privileges within Windows Therefore,
choosing the correct service account for the correct SQL Server service is important. If you are on a network domain,
not normally found in the home environment, it is possible for the domain administrator to create domain accounts
that can be used as service accounts, and this is the option to choose when there is a network domain. For the
moment, although not the best option within a production environment, you will use the built-in service accounts.
In a networked environment, it is best to create new service accounts for SQL Server. It is better and more normal
practice for each instance to have new, specific Windows system accounts so that if an account becomes locked, it
does not affect every SQL Server instance installed.

Figure 1-6. Naming the install instance

Chapter 1 ■ Overview and installatiOn

13

You will look at service accounts in more detail toward the end of the chapter. The options you see in Figure 1-7
will install SQL Server with a low-level set of privileges, and Figure 1-7 also shows more services than you would see if
you chose the options in Figure 1-5. The extra services are included if you did choose more options to install.

You can always change which accounts are used to run SQL Server later. You may notice that SQL Server Browser
service is disabled. If you install SQL Server on a remote computer such as a server, then you may opt to enable this
service so that client computers can search and browse for your SQL Server installation rather than having to know the
exact computer name and instance. ISPs are unlikely to switch this service on, as they will give any users the SQL Server
server name; however, corporations are likely to have this service running so that you can find SQL Server instances
within the network. For the book, switch this service to automatically start if it is not already defined as automatic.

Click Next to continue with the install.

Authentication Mode
You now come to how you want to enforce security on your SQL Server installation. As Figure 1-8 shows, there are
two choices: Windows authentication mode and mixed mode. You will learn more about modes later in the chapter,
but, very, very simply, Windows authentication mode denotes that you are going to use Windows security to maintain
your SQL Server logins, whereas mixed mode uses either Windows security or a SQL Server–defined login ID and
password. You also need to define a password for a special login ID, called sa, if you are working with mixed mode.
Again, you will learn more about this in a moment, but for now you must enter a valid password. Use a meaningful
and impossible-to-guess password, but not one that you will forget.

Figure 1-7. Service account selection

Chapter 1 ■ Overview and installatiOn

14

It is also necessary to define a SQL Server administrator account. This is a special account that you can use to
log on in dire emergencies, such as when SQL Server refuses connections. This special account allows you to log on,
debug the situation, and get SQL Server back up and running. Normally, this administrator account would be a DBA
specific account ID so that any changes that had to be completed would leave an audit trail, but for now, use the
account you have used to log on to your computer.

You will also see a similar screen for Analysis Services if you selected Analysis Services from the features list, and
the settings are the same.

Defining the Data Directories
The Data Directories tab, as shown in Figure 1-9, is where you define where SQL Server stores its data, backup
directories, and temporary database by default. It is normal practice to hold the data on a different disk drive to the
Windows system drive, which is normally the C: drive. For each instance, you define where the relevant folders should
reside. As stated earlier, you can have several installations on one physical or virtual server, and it is not uncommon
for a physical or virtual server to hold more than one production installation of SQL Server. For example, there could
be an installation for accounts, another for product control, and so on. Each instance would have its data held in a
different data directory. This includes any temporary databases that are created and any log files that are generated,
so although the physical server is shared, the installation is isolated. A virtual server is similar to a physical server,
but it can be one large server that has been split, quite often using software, into multiple servers. This is the method
used by many companies, including Microsoft on its Azure platform. The virtuality is dealt with by the Windows
engineering teams rather than the DBMS engineering teams. As you are dealing with only one instance within this
book, leave these settings as they are.

Figure 1-8. Authentication choices, including the SQL Server administrator account

Chapter 1 ■ Overview and installatiOn

15

You will see the same tabs shown in Figure 1-9 in the next step if you selected Analysis Services.

FILESTREAM Options
The FILESTREAM tab as shown in Figure 1-10 is another type of data directory that is used when dealing with large
amounts of unstructured data. In the past, this data was held totally separate from SQL Server with a link to where
the data was held, but FILESTREAM allows the data to be managed by SQL Server, and this tab informs SQL Server
of where it resides. FILESTREAM data are also used for full-text searching. If you enable filestreaming, then you
have the option to hold the data in FileTables. I think of this functionality as similar to SharePoint, which holds large
unstructured data as do Word, Excel, and so on. SharePoint holds and manages the documents. By holding the data
in FileTables, you can then access the documents from Windows and Windows applications, but SQL Server will also
provide the ability to search the documents, similarly to a search engine. Leave this option disabled.

Figure 1-9. Defining the locations of SQL Server data directories

Figure 1-10. FILESTREAM and FileTable options

Creating the Reporting Services Database
If you selected Reporting Services to be installed (from the options in Figure 1-5), you need to create a database for
the reporting server to use. There are three different possible installation options for Reporting Services: native,
SharePoint, and installed but not configured. If you select the last option, SQL Server Reporting Services will be
installed on the server but will not be configured. This is ideal if you’re setting up a specific server just for the
reporting options or if SQL Server is being installed in unattended mode and the reporting server will be configured
after this completes. Once installed, you would then have to create a reporting database.

Chapter 1 ■ Overview and installatiOn

16

The native mode configuration, as shown in Figure 1-11, is the simplest and the option demonstrated here. It
installs Reporting Services and also creates the necessary databases within your SQL Server. It will be available only
if you are installing on a local instance rather than a remote instance and if Reporting Services is also on that local
instance. Default values are used for the service account, the report server URL on the local instance (which will be
localhost), the Report Manager URL, and the name of the Reporting Services.

Figure 1-11. Installing native mode configuration for Reporting Services

If you have a SharePoint installation and you want Reporting Services to use that architecture, select the
Reporting Services SharePoint install option, which allows you to use SharePoint’s functionality and storage for
reporting purposes.

Distributed Replay Options
Although not covered in the book, distributed replay allows for one or more client computers to connect to a
SQL Server instance to send a workload to SQL Server for it to process. The controller will sit with the SQL Server
installation and control the clients’ connections through to the server. The client is used to mimic a user and the
workload being sent through. Figure 1-12 shows the name of the controller for it to connect to.

Chapter 1 ■ Overview and installatiOn

17

When you click Next, a final check is made to ensure that the install should be able to complete and, finally, by
clicking Next, the final screen (see Figure 1-13) is displayed. The setup collection is complete, and you are ready to
install. You can now install SQL Server, and you will be able to monitor the installation progress.

Figure 1-12. Controller computer for the Distributed Replay Client

Figure 1-13. Complete setup details

Chapter 1 ■ Overview and installatiOn

18

Security
To discuss further the Service Account dialog box that you came across in the installation properly, I need to delve into
the area of Windows security.

In this section, I will first examine the concept of Windows services as opposed to programs, and then move on to
discussing different types of authentication you can choose when installing SQL Server.

Services Accounts
SQL Server runs as a Windows service. So what is a service? A good example of a service is any antivirus software that
runs continuously from when the user restarts a computer to the point that the computer shuts down. A program,
on the other hand, is either loaded in memory and running, or not started. So what is the advantage of running a
service? When you have a unit of work that can run as a service, Windows can control a great deal more concerning
that process. A service can be set to start automatically before any user has even logged on; all other programs require
a user to be logged in to Windows in order for the services to start.

A service also has absolutely no user interface. There will have no form to display and no user input to deal with
at runtime. The only interaction with the process runs either through a separate user interface, which then links to
the service but is a totally separate unit of work (for example, SQL Server Management Studio), or from Windows
management of that service itself. Any output that comes from the service will usually go to the event log, which is a
Windows area that stores any notification from the services that Windows runs.

Having no interface means that the whole process can be controlled without human intervention. Providing
the service is designed well, Windows can take care of every eventuality itself, and it can also run the service before
anyone has even logged in to the computer.

In most production environments, SQL Server will be running on a remote server, one probably locked away in
a secure and controlled area, possibly where the only people allowed in are hardware engineers. There possibly isn’t
even a remote access program installed, as this could give unauthorized access to these computers. SQL Server will
run quite happily and, with any luck, never give an error. But what if one day there is an error? If SQL Server is running
as a program, you’ll have to make some sort of decision. Even if SQL Server crashes, there at least has to be some sort
of mechanism to restart it. This means another process needs to be run—a monitoring process, which in itself could
result in a whole ream of problems. However, as a service, SQL Server is under Windows control. If a problem occurs,
whether with SQL Server, Windows, or any outside influence, Windows is smart enough to deal with it through the
services process and restart the SQL Server service.

If you do log in to the computer, as you likely will while working through this book, then you can use this
Windows user ID for SQL Server to also log in and start its service. The Windows user ID that SQL Server uses is
known as a local system account. However, if you followed the steps and used the accounts in Figure 1-7, there are
other specific accounts created for some services that SQL Server services will use.

On the other hand, you can create a new Windows login that exists purely for SQL Server, and this is the correct
behavior to implement in production. You avoid it in this book only to keep things simple while you are learning
SQL Server.

Your personal Windows account should be set up so that the password expires after so many days, or so that it
locks out after a number of incorrect password attempts. This is to protect your computer and the network, among
many other things. SQL Server should follow a similar security process and use a separate account that locks the
account after a number of unsuccessful attempts as well as some mechanism to force developers to change the
password on a regular basis (this could be through company policy and a process to cross-check when passwords
were last altered). Be aware that choosing a locking password account may affect a production running system if a
lockout occurs. The account will also be set up to access only specific resources both on the local computer as well as
network-related. This kind of non–user-specific, “generic” account removes the link between SQL Server and a person
within an organization. If you are looking at the domain account option as shown earlier in Figure 1-7, this account is
likely to be in a network environment or a production environment. There is an option to define a different account
for each service. This ability is crucial when in a corporate environment because of the security implications that you
must deal with.

Chapter 1 ■ Overview and installatiOn

19

SQL Server has several different processes that exist for different work. There is an executable named sqlservr.exe
that is used to run SQL Server itself. You’ll see that process listed in Task Manager as MSSQL$instancename. Including
the instance name as part of the process name allows each instance to be unaffected if a different instance is stopped.
Another executable named sqlagent.exe represents the SQL Server Agent, which runs processes such as batch jobs
and is shown in Task Manager as SQLAgent$Instancename. Finally SQL Server Agent, because it runs batch processes
and complex tasks including working with other servers, needs a more powerful domain account than the SQL Server
process. Your network administrator may have created these accounts and will know which account is best to use or
best to create for these tasks.

It’s time to move on to the options you are given during installation regarding authentication mode.

Looking at the Authentication Mode
Probably the most crucial information in the whole setup process, and also the biggest decision that you have to
make, concerns the authentication mode you wish to apply to your server. As you saw earlier in the setup process,
there are two choices: Windows authentication mode and mixed mode.

Windows Authentication Mode
To log on to a Windows machine, the user must supply a username. There is no way around this. So, to log on to
Windows, the username and password have to be validated within Windows. When this is done, Windows is actually
verifying the user against username credentials held within the domain controller, or, if you are running Windows/
SQL Server on a stand-alone machine at home, the credentials held locally. These credentials check the access
group the user belongs to (the user rights). The user could be an administrator, who has the ability to alter anything
within the computer, all the way down to a basic user, who has very restricted rights. This then gives you a trusted
connection; in other words, applications that are started up after logging in to Windows can trust that Windows has
verified that the account has passed the necessary security checks.

Once you have logged in to Windows, SQL Server uses a trusted connection when working with Windows
authentication mode. This means SQL Server is trusting that the username and password have been validated as I just
mentioned. If, however, the Windows username you give does not exist within SQL Server, you won’t be able to log on
to SQL Server. However, if the username isn’t valid, SQL Server will check the Windows group that the user belongs to
and check its security to see whether that group is set up to access SQL Server. If that user has administration rights to
your computer, then the user may well be able to at least connect to SQL Server.

You are in a bit of a Catch-22 situation here. You need to know about security for your install process, but to
demonstrate it fully means working with SQL Server Management Studio, which the next chapter covers. I will keep
that area simple, so let’s look at an example involving security now.

Note ■ to follow exercise 1-1, you will need the professional version of windows 7 or 8

Chapter 1 ■ Overview and installatiOn

20

eXerCISe 1-1. trY It OUt: WINDOWS aUtheNtICatION MODe

1. ensure that you are logged on to your machine as an administrator. if you are on a local
computer, chances are that your login is in fact an administrator id. if this computer is on a
network and you are unsure about your access rights, ask your pC support desk to help you
out with the id and password. On windows 7, you may need to change your user control
access to avoid many dialogs confirming that you wish to continue with each step.

2. From Control panel, select User accounts.

3. when the Users accounts screen is displayed, click Manage another account, followed by
Create new account in windows 7 or add a new user in pC settings in windows 8 followed
by add an account. if you are on windows 8, then create the account without a Microsoft
account. Once selected, click the local account button.

4. Once the add a user dialog box comes up, enter the username Msmith, as shown in
Figure 1-14.

Figure 1-14. Creating a new user account

5. ensure that the account type specified is standard on windows 7. On windows 8, by default,
it will be added as a standard user. this means that it will not have administrator privileges.

6. repeat the process as you want to add a second username. repeat the preceding process
using the following details:

Username: noelMorgala•	

account type: administrator (to create an administrator, first create the account, then select •	
it, edit, and change the account type)

7. log off from windows, and then log on using the first id that you created: Msmith.

Chapter 1 ■ Overview and installatiOn

21

8. Once logged in, start up sQl server Management studio by selecting start ➤ all programs
➤ Microsoft sQl server ➤ sQl server Management studio or finding the app sQl server
Management studio in windows 8. You may need to populate the dialog with the server name
of the install. Click Browse For More, select database engine, and select the install server
and instance. we will go through this in more detail in Chapter 2. the dialog should look like
Figure 1-15.

Figure 1-15. Attempting to connect to SQL Server

Figure 1-16. Failed login to server

9. examine the error message that appears, which should resemble what you see in
Figure 1-16. Msmith as a login has not been defined within sQl server specifically and does
not belong to a group that allows access. the only group at the moment is a user who is in
the administrators windows group. recall that Msmith is a limited user.

10. You will now try out the other user you created. Close down sQl server Management studio,
log off windows, and log on using the second id you created—noelMorgala. Once logged in,
start up sQl server Management studio and connect to your server. similar to Msmith, the
login will not work. admin rights don’t give you access to sQl server unlike other programs
with the exception of one specialized scenario covered at the end of this exercise.

11. log off noelMorgala and connect with your own login again. if you start up sQl server
Management studio on your own login, then it should allow you to gain access within sQl
server. if you have followed the chapter, you will need to have as the server name the name
of your computer, followed by a backslash (\) and the name of the instance, apress_dev1.
if you have installed sQl server with no instance name, you need just your computer name
or you need to enter (local), localhost, or a single dot. this is possible because during the
installation you added your account in the authentication Mode section.

Chapter 1 ■ Overview and installatiOn

22

You have created two usernames on top of the username you already have as your own account: one that has
restricted access (Msmith) and one that has administration rights (noelMorgala), as well as your own account
that installed sQl server. neither of these specific usernames exists within sQl server itself: after all, you haven’t
entered them and they haven’t appeared as if by magic. neither account is in any windows group that has access
to sQl server as part of running any sQl services. the windows security model has ensured that both new ids are
valid as well as your own. if the id or password were incorrect, there would be no way that you could be logged in
to windows. therefore, when you try to connect to sQl server, the only check that is performed is whether the user
has access to sQl server either via membership of a system group that has been defined within sQl server or
through the specific logged-in user account that has been defined to sQl server. as you can see in Figure 1-17,
neither Msmith nor noelMorgala exists within sQl server. You can see my login, and therefore i am entitled to
connect. sQl server in some previous versions added a group to the list of logins. the group is called BUiltin\
administrators, and noelMorgala would have been a member of the group. if this group existed, then step 10 would
have succeeded. BUiltin\administrators is a dangerous group to have within sQl server, as many people can be
administrators within a network domain and therefore could have access to your server and log in; it is a loophole
in your security if you keep this as a login. in existing installations, if you see this group exists, investigate removing
it and certainly do not add it for new installations. the same is true if you see a group called BUiltin\Users. in
Chapter 4, you will see how to build specific groups of users to allow individuals access to your server.

Figure 1-17. Logins within Management Studio for SQL Server

Administrators on a Machine
Any account defined as a member of the Administrators group can access SQL Server in one specific scenario. If at
any point the accounts for System Administration are locked out, then as a System Administrator you will still need
access to SQL Server to perform those tasks. Any account in the Administrators group can access SQL Server when
SQL Server is placed in to a specific mode called Single User mode. This mode is where one user and one user only
can access SQL Server. In this mode you can then connect with NoelMorgala as they are in the Administrators group.

Note ■ there is a further way to access sQl server when you need to troubleshoot a problem called dedicated
administrator Connection (daC), which will be used when sQl server is unresponsive.

Chapter 1 ■ Overview and installatiOn

23

Mixed Mode
If you installed SQL Server with mixed mode, this means you could use either Windows authentication, as has just
been covered, or SQL Server authentication.

How does mixed mode differ from Windows authentication mode? To start with, you need to supply a user ID
and password to connect rather than SQL Server taking the Windows ID, or the group the user belongs to, of the
logged-in account. There is no assumption that the username supplied is a valid Windows ID. SQL Server when
authenticating a mixed-mode account will not verify any additional security from Windows. Using mixed mode is
appropriate in many cases when working with ISPs. To clarify this, if you are working on your remote data at a local
client machine, the remote machine would need to know the credentials of your login, and the easiest method is to
use SQL Server authentication. Be clear that in this scenario, it is you connecting to your data from your machine. The
web-site code used to access your data, if written in ASP.NET, may use a Windows account to log in, so although you
may lock out your SQL Server mixed-mode account, it should not stop your web site from working.

I will demonstrate how to add usernames to SQL Server (as opposed to adding Windows users) when I talk about
security in Chapter 4.

This leaves one area of security left that needs to be discussed here: the sa login.

The sa Login
The sa login is a default login that has full administration rights for SQL Server. If you selected mixed-mode
authentication during the installation process, you would be forced to include a password for this account. This is
because the sa user ID is such a powerful login. It also exists in every SQL Server installation; therefore, any hacker
knows that this user ID exists and will try to connect to the server using it. Prior to SQL Server 2005, when creating a
password became compulsory, many installations had the password blank, therefore allowing hackers instant access.
If you log in to SQL Server as sa, you will have full control over any aspect of SQL Server. SQL Server inserts this ID no
matter which authentication mode you install.

In a mixed-mode installation, sa will be a valid username and validated as such. As you can guess, if any user gets
ahold of this username and the password, that user will have full access to view and amend or delete any item of data.
At worst, the user could corrupt any database, as well as corrupt SQL Server itself. The user could even set up tasks
that e-mail data to a remote location as it is being processed.

It is essential to set up a strong password on the sa account in the Authentication Mode screen if you choose
mixed mode. It is a major improvement in SQL Server 2012 that you are now forced to enter a password, although it
is possible to set up a very easily guessed password. Do not use passwords such as “password” or “adminpwd,” for
example. Always keep the password safe, but also make a note of it in a safe place. If you forget the sa password and
this is the only administration ID that exists, you will need to reinstall SQL Server to get out of this problem. A good
password is one that mixes numbers and letters, but doesn’t include letters that can be made into numbers and
numbers into letters in all cases. For example, pa55word is just as easy to guess as password. Or 4pr355 for Apress.

There is also another reason not to log on to SQL Server with the sa username. At times, it will be essential
to know who is running a particular query on a SQL Server database. In a production database, someone may be
running an update of the data, which is filling up the disk space or filling up the transaction log. You will need to
contact that person to check whether he or she can stop the process. If that person logs in as sa, you will have no idea
who he or she is. However, if that person logged on with an identifiable name, he or she would have an ID in SQL
Server, which you could track. By restricting the sa login so that people have to use their own accounts, you can ensure
a much higher degree of system monitoring and integrity.

There will be times that you want mixed-mode authentication; it is perfectly acceptable to want this. Internet
providers use mixed mode because many applications may be on one web server. If this ISP is a reseller (in other
words, many people around the globe use the one computer), you will not want these people to have the ability to
see your data. You have also decided not to have sa as an administration logon at this point. So what do you do? Well,
you create a logon ID that will have the access privileges you wish; in other words, it will have the ability to just see the
data and work with the data you need, and no more. The ISP may require you to supply a user ID and password that it
uses to create an account on its SQL Server instance. You will encounter more about this in Chapter 4.

Chapter 1 ■ Overview and installatiOn

24

Note ■ regardless of the authentication mode, it is important that you always supply a strong password.

Summary
By this point, you should understand the small differences between each version of SQL Server. You should also know
how to check your computer to see whether it is suitable for a SQL Server installation.

By following the steps given earlier, you should have a successful installation of SQL Server on your computer.
You may even have completed the installation twice so that you have a development server installation as well as a
test server installation. This is a good idea and something to consider if you have only one installation so far. Whether
you are working in a large corporation or are a “one-man band,” keeping your production and development code
separate leads to greatly reduced complications if, when developing, you need to make a production fix.

This chapter introduced you to security in SQL Server so that you can feel comfortable knowing which way you
want to implement this and how to deal with different usernames. You may not have any data yet, but you want to
ensure that when you do, only the right people get to look at it!

You are now ready to explore SQL Server. One of the best ways of managing SQL Server is by using SQL Server
Management Studio, which will be discussed next.

25

Chapter 2

SQL Server Management Studio

Now that SQL Server is successfully installed on your machine, you can start exploring the various areas that make
this an easy and effective product to use. With SQL Server, all the administration interfaces that reside in SQL Server
can be accessed by graphical interfaces called studios, such as SQL Server Management Studio, which features tools
for working with developing database solutions. This chapter concentrates on SQL Server Management Studio (SSMS),
which you will use to develop and maintain your databases and the objects SSMS contains.

SSMS is the graphical user interface (GUI) you will use to build your database solutions. This is an easy-to-use
and intuitive tool, and before long, you will feel confident using it to work with SQL Server quickly and efficiently.
I will be discussing several aspects of SSMS in this chapter. You can then use this knowledge throughout the book.
I’ll discuss some aspects in more detail throughout the book. However, you can use other tools from third-party
vendors or commands from the command prompt or within a file executed from the command prompt, and you can
also use a command prompt tool called sqlcmd to work with your database. Finally, it is possible to use development
tools such as C#, Java, PowerShell, and so on. No matter how you proceed, the work we will go through in SSMS can be
completed in any of these choices. I will demonstrate sqlcmd within this chapter and you will see some development
tools in Chapter 19. SSMS is crucial and the quickest tool to your success as a developer as it shows you how to build
database solutions graphically. It also allows you to write and test lines of code to complete tasks that could then be
placed into your programming language of choice. In Chapter 19, you will learn how you can transfer what you see
demonstrated within SSMS to .NET, Excel, and Java. By the end of this chapter, you will have gained experience with it
and be proficient in the following areas:

The components of SSMS•	

Working with the editor to enter queries•	

SQLCMD and command line access•	

Let’s start by having a look at SSMS and how it is used to work with SQL Server.

A Quick Overview of SSMS
SQL Server runs as a separate Windows process, as touched on in Chapter 1, whether on a stand-alone desktop machine,
or on a server within a network. If you open Task Manager and move to the Processes tab, you will see, among other
processes, sqlservr.exe. This process or service runs in its own process space and is isolated from other processes
on the machine. SQL Server should not be affected by any other piece of software that does not talk to any SQL Server
component. If you have to kill any other component’s process, the SQL Server engine should continue to run.

SQL Server runs as a service that is controlled and monitored by Windows. SQL Server ensures that it is given
the right amount of memory, processing power, and time from the operating system by instructing Windows on what
it (SQL Server) needs within the confines defined at the database creation and what is available on the computer,
although pressures on the server will mean that SQL Server will modify what it requests based on what is available.

Chapter 2 ■ SQL Server ManageMent Studio

26

Because SQL Server runs as a service and there is one service per database instance as well as main feature such as
Reporting Services, Analysis Services and instance, it has no interface attached to it for a user to interact with. As a
result, there needs to be at least one separate utility that can pass commands and functions from a user through to the
SQL Server service, which then passes them through to the underlying database. The GUI tool that accomplishes the
passing of SQL commands and functions is SSMS. You can use other tools, and you could even create your own GUI,
but you’ll concentrate only on SSMS within this book.

SSMS can be used to develop and work with several installations and instances of SQL Server in one application.
These installations can be on one computer or on many computers connected through a local area network (LAN),
a wide area network (WAN), or even the Internet and Cloud computing. Therefore, it is possible to deal with your
development, system testing, user testing, and production instances of SQL Server from one instance of SSMS.

Caution ■ it is highly recommended that you have at least two instances, one for production and at least one for
development and testing.

SSMS helps you in the development of database solutions, including creating and modifying components of a
database, amending the database itself, and dealing with security issues. Getting to know this tool well is crucial to
becoming a successful professional SQL Server developer, as well as a database administrator.

One of the tools within SSMS that you will use for completing tasks is Query Editor. This tool allows program
code to be written and executed, from objects to commands that manipulate data, and even complete tasks, such as
backing up the data. This program code is called Transact SQL (T-SQL). T-SQL is a Microsoft proprietary language,
although it is strongly linked to the ANSI-92 SQL standard of the American National Standards Institute (ANSI).
The current specification Microsoft bases its code on is ANSI-92.

Tip ■ although Microsoft SQL is linked to anSi-92, it can be more flexible and powerful than other databases. For ex-
ample, there are scenarios that you can run as a stand-alone script in SQL Server that would require a stored procedure
in dB2. there are also minor differences in implementation of some functionality.

Query Editor is a tool within SSMS that allows you to programmatically build the same actions as dragging and
dropping or using wizards. However, using T-SQL within Query Editor can give you more control over certain aspects
of certain commands. Although dragging and dropping and using wizards may be quick, as a developer knowing
T-SQL allows you not only to put the T-SQL code into other languages and tools, but also to transfer your skills to
many other databases. Do not underestimate the power you will gain by learning T-SQL. Note that the name “Query
Editor” comes from the fact that it sends queries to the database using T-SQL. Don’t worry if you don’t quite grasp
this—all will become clear very soon.

Spend some time taking a look at SSMS in more detail.

Chapter 2 ■ SQL Server ManageMent Studio

27

trY It OUt: tOUrING SQL SerVer MaNaGeMeNt StUDIO

1. to start up SQL Server Management Studio, from Windows 8 you are looking for an app
called SQL Server Management Studio or from Windows 7 select Start ➤ all programs ➤
Microsoft SQL Server ➤ SQL Server Management Studio. if you are using Windows 8,
i suggest pinning this app.

2. a Connect to Server dialog box similar to the one in Figure 2-1 should appear automatically.
note the following items in this dialog box:

Figure 2-1. SQL Server Management Studio Connect to Server dialog box without expanded options

•	 Server type: For the purposes of the examples in this book, leave the server type as
database engine. the other options are other types of servers that are available for
connection such as analysis Services, integration Services, and reporting Services.

•	 Server name: the second combobox lists the SQL Server installations that the Connect
to Server dialog box can find, or that it knows about. in the dialog box in Figure 2-1, you
will see the name of the computer that the local install is on. if you open the Server name
combobox, you can search for more servers locally or over a network connection using
<Browse for more...>. the first time you connect to SQL Server, you may need to browse
for or type in the details. You will have already found the server in Chapter 1.

•	 Authentication: the final combobox specifies which type of connection you want to use.
You installed SQL Server with Windows authentication in Chapter 1; therefore, this is the
option to use. if you had installed SQL Server with mixed mode or if in the future you wish to
connect by this method, you could change this option to SQL Server authentication, which
would enable the next two text boxes and allow you to enter a username and password.

Chapter 2 ■ SQL Server ManageMent Studio

28

3. Click options, which will switch you to the Connection properties tab. here you will see
specific properties for this connection, as shown in Figure 2-2.

Figure 2-2. SQL Server Management Studio connection properties

Connect to database•	 : this combobox provides a list of databases based on the server and
login details in the Login tab. Clicking the down button for this combobox allows you to
browse for and select a database on the server to which you want to connect. only the
databases that the Windows account or SQL Server login can connect to will populate this
list. also, any error in the login details will cause an error message to be displayed here
instead of listing databases.

•	 Network: this area details how you want this connection to be made with SQL Server. at the
moment, you don’t need to change the current settings.

•	 Connection: this area deals with connection time-outs. the first item, Connection time-out,
defines how long the connection should wait before returning an error. For local installs and
even most network installs, a setting of 15 seconds should be more than enough. the only
situation that may require you to increase this setting is if you were connecting over a Wan
or to a SQL Server installation at an iSp and that connection was slow. a connection from
new York to Moscow could exceed this value, for example. the second option, execution
tme-out, details the time-out value for any t-SQL code that you execute. a setting of 0
means that there is no time-out; there should be few, if any, occasions when you would
want to change this setting.

Chapter 2 ■ SQL Server ManageMent Studio

29

Note ■ any subsequent connection parameters would appear in the third tab. this will be empty for this book.

4. once you are happy with all of the items in the Connection properties tab, click Connect. this
brings you to SSMS itself. if you have ever used visual Studio, you will notice that SSMS has
a reasonably similar layout. this is deliberate on Microsoft’s part, as the company is making
SQL Server more integrated with visual Studio. When you look at some of the options you can
set and use in SQL Server, you will see functionality and options that exist in both software
development tools. Your layout should look like the one in Figure 2-3, with only minor name
changes based on the server you have connected to and the connection you have used. this
figure shows i have connected to FAT-BELLY-Sony SQL Server using the Windows account
FAT-BELLY-Sony\RobinDewson.

Figure 2-3. SQL Server Management Studio graphical interface for SQL Server

Figure 2-4. A list of registered servers

5. the first area of SSMS you will look at is the registered Servers explorer. access this
explorer, shown in Figure 2-4, by selecting view ➤ registered Servers or by pressing
Ctrl+alt+g. this area details all SQL Server servers that have been registered by you on
this SSMS installation. Currently, there will be only the server just registered, but as time
progresses and you develop more systems, this list will expand. this explorer will also show
registered services for other services such as analysis Services and reporting Services.

Chapter 2 ■ SQL Server ManageMent Studio

30

6. the second node in the registered Servers explorer, Central Management Servers, is where
a SQL Server instance is used as a central management point from which you can perform
actions against multiple other servers in your environment. this central point of management
provides you with a lot of power. For example, you can run checks to ensure that all the
servers have the same disk space, or the same values within rows of a specific table.

7. if you need to register another server, right-click the Local Server groups node and select
new Server registration to bring up a dialog box very similar to the Connect to Server dialog
box shown earlier. go ahead and do this now to familiarize yourself with the new Server
registration dialog box, shown in Figure 2-5. You don’t need to register servers to connect
to them, but it will make it easier to find any regular servers. in Figure 2-5, you will see a
demonstration of a registration to my iSp that uses SQL Server authentication.

Figure 2-5. The New Server Registration dialog box

8. the differences from the Connect to Server dialog box are that the Server name combobox
starts empty and there is a new section called registered server. in this area, you can give
a registration a different name, such as development Server or user testing region, and on
top of this give the registration a description. You don’t have a server to register, so just click
Cancel now. When bringing up the menu from the right-click within the registered Servers
explorer, you may have noticed an option to create a new server group. along with using
a different name, i suggest you also group your registrations so that you can instantly tell
where a server resides, whether that is environment or locale.

Chapter 2 ■ SQL Server ManageMent Studio

31

9. Moving back to SSMS’s explorer window below the registered servers, take a look at object
explorer, which should have been present when you first opened SSMS; it normally sits below
the registered Servers explorer. if it isn’t there or if it disappears, you can redisplay it by
selecting view ➤ object explorer or by pressing F8. You will likely use this explorer the most,
as it details every object, every security item, and many other areas concerning SQL Server.
You can see that SSMS uses nodes (which you expand by clicking the + signs) to keep much
of the layout of object explorer (the hierarchy) compact and hidden until needed. Let’s go
through each of the main nodes you see in Figure 2-6 now.

Figure 2-6. Object Explorer nodes

•	 Databases: holds the system and user databases within the SQL Server you are
connected to

•	 Security: details the list of SQL Server logins that can connect to SQL Server; you will see
more on this in Chapter 4.

Server Objects•	 : details objects such as backup devices and provides a list of linked servers,
where one server is connected to another remote server

Replication•	 : Shows the details involving data replication from a database on this server to
another database (on this or another server) or vice versa

AlwaysOn High Availability:•	 allows you to define groups of databases to failover to if the
primary fails; provides a setup so that your database is always available

•	 Management: details maintenance plans, policy management, data collection, and database
Mail setup, which you will learn more about in Chapter 8, and provides a log of informational
and error messages that can be very useful when troubleshooting SQL Server Integration
Services Catalogs: Created catalogs for working with SQL Server integration Services (SSiS).
SSiS is a servce that allows you to perform multiple tasks to achieve a goal. to give one
example, you can have multiple tasks where a connection to a data source is made, data
is loaded, the data is then transformed, enhanced, segregated and then placed in to a data
location. a common example is to load data from files in to SQL Server.

Chapter 2 ■ SQL Server ManageMent Studio

32

SQL Server Agent•	 : Builds and runs tasks within SQL Server at certain times, with details of
successes or failures that can be sent to pagers, e-mail, or operators defined within SQL
Server; the running of these jobs and the notifications of these failures or successes are
dealt with by SQL Server agent, and the details are found in this node. You will look at this
more in Chapter 8, where you will schedule backup jobs.

10. Select the topmost node, the server node, in the object explorer, and then from the menu
select view ➤ object explorer details, or press F7 to see a Summary page similar to the one
in Figure 2-7. this area is known as the documents area. You don’t have to be on the top
node for this page to be of use, as it will provide a summary of any node within this explorer.
this works a bit like folders within Windows explorer, where you can navigate through each
item to get a summary of details of objects within the node. the left column matches the
groupings below the node you have selected in object explorer, and the right column details
how compliant your database is compared to a set of policies defined. You have no policies at
this time, and therefore the column is blank. You will see policies detailed in Chapter 4.

Figure 2-7. Summary page

Chapter 2 ■ SQL Server ManageMent Studio

33

11. Moving to the menu bar of SSMS, the first item of interest is the view menu option. the first
two options and the fourth and fifth options on the view menu, shown in Figure 2-8, open the
two explorer windows, object explorer and the registered Servers explorer, as well as the
summary page you encountered previously. therefore, if you ever need to close these items
to give yourself more screen space, you can reopen them from the menu or with the shortcut
keys you see defined. the other options on the view menu are as follows:

Figure 2-8. The View menu options

•	 Utility Explorer : enables a central point for monitoring disparate servers; this is ideal for
database administrators who monitor several servers within their organization that could be
in one location, several locations, and even with external clients. From this one explorer, you
can monitor how the servers are performing, if they have issues, and how the servers are
performing against policies defined as part of the monitoring process.

•	 Template Explorer : provides access to code templates; template functionality is similar to
code snippets within visual Studio.

Chapter 2 ■ SQL Server ManageMent Studio

34

•	 Solution Explorer : displays solutions, which are convenient groupings of objects, t-SQL,
or special programs called stored procedures, among other items. these are collected
together to address a specific business or technical problem and can be collected for the
whole system or collected to only contain scripts for a release. if you use visual Studio,
files are collected into projects, and one or more projects create the overall solution. i don’t
use the solution method of developing projects for SQL Server, as i find that good use of
development and source control utilities such as SourceSafe or team Foundation Server
removes the need for that level of thought and complexity.

•	 Bookmark Window : allows you to create bookmarks, which you place into various locations
in your code to allow you to jump quickly to those locations.

Call Hierarchy•	 : as your application expands, you will find that you will have code that
executes code in a different program and so on. this is a call hierarchy, and it is sometimes
advantageous to see that hierarchy to debug a problem that you are experiencing.

•	 Error List : Shows errors found in the code you have entered in the editor; this can be
compilation or syntax errors.

•	 Output : unlike the error List, this window is used to print output while debugging code or
status messages from some commands. if output is being displayed from more than one
location, you can filter the output to be displayed.

Task List •	 : if you need a method to keep a list of work items, or tasks, then you can use this
area to keep a note and to track them. the task list is ideal if you are debugging your code
and you want to take notes of areas that need working on, or if you wish to make a task list
of items you need to complete to finish developing your application.

•	 Toolbox : holds a list of objects that are database maintenance tasks and details where these
tasks can be altered.

•	 Find Results: if you need to search via a number of files for a particular phrase, then the
results will be kept in the Find results window.

•	 Other Windows: allows you to access other windows generated when running t-SQL from
Query editor, which may hold error messages or results from queries

Toolbars•	 : Brings up toolbars: such as those for Query editor, diagramming the database,
and integration with visual SourceSafe for source control, if they are not opened by default
among many others

•	 Full Screen: removes title bars and explorer windows, and then maximizes SSMS to show
as much of the main pages as possible

•	 Navigate Backward/Forward : allows you to navigate through the different Query editor
windows by either navigating forward or backward through the tabs

•	 Next Task/Previous Task : once you have created tasks using the task window described
earlier, you can navigate through the list of tasks using this menu option. You may find using
the arrow keys easier and quicker.

Properties Window •	 : displays the set of properties for each object; you will see this from time
to time throughout the chapters of the book.

Chapter 2 ■ SQL Server ManageMent Studio

35

12. as you develop complex code, the ability to test via debugging will have greater importance
in your life. the next menu option, debug, allows you to step through your code, pause at
specific breakpoints, and perform checks on the code to see if it is performing as expected.
You will see more of this in Chapter 17 when i take you through some advanced t-SQL.
however, for the moment, it is useful to have a small flavor of what options are available, as
shown in Figure 2-9.

Figure 2-9. The Debug menu options

•	 Windows: there are three window options possible from this menu option.

Start Debugging•	 : this starts the debugging process and will execute the first line of code.

•	 Stop Debugging: this allows you to stop debugging at the line of code you are on; it is not
possible to restart from that point, and you would have to start over again.

•	 Step Into: When stepping through your code and reaching a stored procedure, you can step
into that stored procedure and step through that code.

•	 Step Over: if you do not wish to step into the stored procedure, you can execute the whole
code set and then step to the next line in your code.

Toggle Breakpoint•	 : it switches a breakpoint from being set to not being set, or vice versa.

•	 New Breakpoint : it creates a new breakpoint at the line of code; the cursor is on.
a breakpoint is where the execution of the code will pause to allow you to complete
other actions.

Delete All Breakpoints•	 : this selection is a good option if you are debugging code and you are
happy with the code from the point you are at and do not wish to break any further. deleting
the breakpoints will allow this to happen.

Clear All DataTips•	 : a datatip is the ability to watch the contents of a variable as you debug
your code. this menu option will remove all tips that you have stored.

Chapter 2 ■ SQL Server ManageMent Studio

36

Export DataTips•	 : any datatips created can be saved and exported, allowing you to share
datatips.

•	 Import DataTips: any exported datatips can be imported.

13. SQL Server has two built-in tools, as well as the capability to include other tools when they
are launched. these can be accessed through the tools menu, shown in Figure 2-10, along
with the means to customize keyboard commands, show or hide toolbar buttons, and so on,
as is the case with other Microsoft products such as Word. the first two options are available
outside of SSMS from the performance tools subprograms list from the Start menu. these
programs are separate from SSMS. in particular, note the following options:

Figure 2-10. The Tools menu options

•	 SQL Server Profiler : there will come a time when you’ll wish to monitor SQL Server’s
performance. this tool will monitor and log events, running code, and so on, that you have
informed it to check when they happen within SQL Server.

•	 Database Engine Tuning Advisor : it is possible to take a workload of data and process it
through your solution. this advisor can suggest ways to improve the performance of this
process.

•	 Code Snippets Manager : it is possible to create useful short sections of code that will be
used more than once. unlike templates where a template of code for a whole action such
as creating a new table, code snippets are at most a few lines of code and tend to be
organizational or project-specific. an example of a code snippet would be a code snippet
that performs logging of information as code executes. another is for error logging where
there is specific code to log any errors that occur. You will see how to test for errors in
Chapters 16 and 17.

Options•	 : this option lets you access different options you can use to set up your SSMS as
you like. i will take a look at each of these options in the next section.

Chapter 2 ■ SQL Server ManageMent Studio

37

14. the final part of SSMS that i will examine at this point is the main SSMS toolbar, as you can
see in Figure 2-11. Some of the icons, such as the Save icon, will be instantly recognizable,
but i will go through each button, from left to right, so that it is clear what they all do.

Figure 2-11. Main toolbar

New Project•	 : Creates a project within the solution. a project is a logical subset of scripts.
a solution could be the whole script set for an application and a logical project set could be
scripts for online ordering, scripts for batch processing, and so on.

•	 Add item: allows you to add a script item to the project such as a stored procedure or a
table but also non-script items such as a connection.

Open File/Save/Save All •	 : as standard throughout Microsoft products.

New Query •	 : in the next section, you will see how you can write code to add objects, work
with data, and so on. Clicking the new Query button opens up a new query window, which
allows you to do this using the connection already made with SQL Server.

Database Engine Query •	 : Similar to the new Query button, the new database engine Query
button also creates a new query window. however, it gives you the option of having a
different connection to SQL Server through which to run your code. this is a good way of
testing code with a different connection to ensure that you cannot see data that should be
secure, such as wages, via that connection. So to clarify if you have a connection pointing to
dev, you could use this option to create a connection to the uat instance.

Caution ■ the database engine Query also allows you to multitask with two different databases. this can be
 dangerous if your new Query is pointing to dev but this new connection is pointing to prod. however, with care and the
right circumstances, it can be very useful since the only ways to know which connection a query is running against are
by using the window bar of SSMS or by hovering over the particular tab. if you are working with different databases or
instances, especially if you are connecting to a development and production instance of a similar database, then you
should open another instance of SSMS for safety. although the method of knowing which connection is the same via
the toolbar or the tab, object explorer on the left is a quick reminder of which connection your SSMS is dealing with.
By having different SSMSs, you should see which instance you are connected to.

•	 Analysis Services MDX/DMX/XMLA Query : data within a specialized database known as an
analysis database allow you to interrogate the data and analyze the information contained
within. the three new analysis Service Query buttons allow you to build different types
of analysis queries. i include this information here only for your reference since analysis
databases fall outside the scope of this book.

Cut/Copy/Paste/Undo/Redo•	 : Standard Windows actions as found in applications like Word
and excel.

Chapter 2 ■ SQL Server ManageMent Studio

38

navigate Backward/Forward: these two buttons allow you to move backward and forward •	
through your query editors and to select the query editor you wish to use. as you work on your
application, you will find that you have several query editors open achieving different tasks from
querying the data multiple different ways, building t-SQL code. these buttons allow you to switch
between the editors. the buttons work using Ctrl+Shift with either plus (+) or minus (-) and are
very similar to using Ctrl+tab when you switch between applications in Windows. these buttons
work as the navigate menu options described in the view menu option.

Note ■ a query editor is a tabbed document, sometimes known as a multiple document interface (Mdi), and will be
used extensively throughout the book to write code against SQL Server.

•	 Activity Monitor : this is a useful tool that allows you to monitor your SQL Server and investigate
some performance issues within your server or your database. as a developer, optimizing your
code so that it performs as efficiently as possible is crucial to a successful database application.

the main area of SQL Server Management Studio that you will be dealing with as a developer is Query editor,
which is covered next. it is a tabbed entry window where you have the ability to enter the code you want
to execute.

Query Editor
As you progress through the book, the creation of objects, the manipulation of data, and the execution of code will be
shown either by using the graphical interface and options that Object Explorer provides, or by showing code written
using T-SQL. To write code, you need a free-form text editor so that you can type anything you need. Luckily, SSMS
provides just such an editor as a tabbed screen within the document view on the right-hand side. This is known
as Query Editor, and you can find it when you click New Query in the main toolbar or by selecting File ➤ New ➤
Database Engine Query.

There is not a great deal to say about the editor itself, as it really is a free-form method of entering commands and
statements for SQL Server to execute, although it does have some good features that you will see as you work through
the book. However, Query Editor has a toolbar that is worth covering at this point in time that is shown when you
click New Query and a Query Editor window is displayed. Figure 2-12 shows this Query Editor toolbar, and Table 2-1
describes each of the toolbar options.

Figure 2-12. Query Editor toolbar

Chapter 2 ■ SQL Server ManageMent Studio

39

Table 2-1. Query Editor Toolbar Options

Tool Tool Name Description

Connect Requests a connection to the server if one doesn’t
currently exist

Change Connection Allows you to change the current connection by disconnecting
and reconnecting the connection you are using

Available Databases A combobox that lists all the databases in the server you are
currently connected to; if you want to run a query against a
different database, you can select the database here. The code
will execute against the database displayed, provided that you
have permission to run against it.

Execute Executes the code in the query window, or if some of the code
is highlighted, will execute only the highlighted code

Debug Will debug and allow you to step through the code; you will
see this in Chapter 17.

Cancel Executing Query Sends a cancel signal to the server to request the query that
is executing to be stopped as soon as the server can; a cancel
is not always immediate. There will be a delay in sending
the command while SQL Server “pauses” to receive the
command.

Parse Parses the query code looking for syntactical errors

Display Estimated
Execution Plan

Helps you to analyze your T-SQL query for optimization;
displays the query plan SQL Server estimates would execute if
you were to run the code

Query Options The connection options that will be used when executing the
code

IntelliSense Enabled The ability to allow SSMS to help you write your code; when
you start typing code, if IntelliSense is enabled, then SSMS will
attempt to intelligently sense what you are wanting to achieve
and suggest column names and syntax keywords and so forth
to help you write your code more quickly than if you were to
type it all out by hand.

Include Actual
Execution Plan

When your code is executed, you can also output the steps
SQL Server executed between the start and end of your query.
This will be placed in a separate tab to the results and any
messages.

Include Client Statistics Displays statistics about the query; this will be placed in a
separate tab to the results and any messages.

(continued)

Chapter 2 ■ SQL Server ManageMent Studio

40

Tool Tool Name Description

Results To Text Displays the results in text format

Results To Grid Displays the results in a grid format, the default

Results To File Places the results in an output file rather than in SQL Server
Management Studio

Comment out the
selected lines

Takes the lines that are highlighted and comments them out
so that they don’t execute

Uncomment out the
selected lines

Takes the lines that are highlighted and uncomments them
out so that they don’t execute

Decrease Indent Decreases the indentation of the highlighted code

Increase Indent Increases the indentation of the highlighted code

Specify Values for
Template Parameters

SSMS has templates for many actions. You will see these used
throughout the book. When a template is used, pressing this
button will allow you to enter values in the template options.

Table 2-1. (continued)

You will see and use this toolbar quite extensively within this book and throughout your development career, so it
will soon become very familiar to you.

sqlcmd
There is one final tool to demonstrate, which is called sqlcmd. This is a command prompt based tool that augments
SSMS and is very useful for running scripts as a batch. You may also find DBAs who use multiple different databases
such as Sybase and DB2. These databases are based on Linux and therefore are command-driven rather than
GUI-driven. DBAs use the sqlcmd tool as they prefer more commonly use command prompt based methods
of working. Finally, if you are using SQL Server Express without the tools addition, you are likely to use sqlcmd.
Throughout the book, the scripts I use can be executed using sqlcmd.

To use sqlcmd, you need to open a command prompt. In Windows 7 this is from the Start ➤ Run ➤ cmd or finding
the Command Prompt app in Windows 8. Once the command prompt window is open, you can navigate to where any
script resides that you wish to execute or you can work in the default folder. You can also enter a T-SQL based script
without a file.

Once a command prompt is open, to execute sqlcmd you type sqlcmd and then use a number of parameters
to define some of the options you want to use. In Figure 2-13 the options, as defined with a hyphen and a letter, will
connect to the server (-S) and instance of FAT-BELLY-SONY\APRESS_DEV1 to database (-d) APRESSFINANCIAL if it
existed using Windows Authentication (-E). For SQL Server authentication, you would use parameters –U for user and
–P for password. Parameters are case sensitive.

Chapter 2 ■ SQL Server ManageMent Studio

41

At this point, there is no database within SQL Server to demonstrate sqlcmd, but I will demonstrate it further in
Chapter 17.

In Chapter 1, I mentioned Single User Mode where you need to connect to SQL Server when the System
Administrator account is locked out. By using SQL Server startup option –mSQLCMD, you can then use sqlcmd to access
SQL Server and remedy the problem. You can set the startup option in the Services section on the SQL Server service
as shown in Figure 2-14.

Summary
SSMS is a tool for working with SQL Server that you will see in action throughout this book, whether you’re working
with the graphical interface or using Query Editor to write T-SQL code. As you learned in this chapter, the main areas
of the tool are the Registered Servers explorer, Object Explorer, and the main documents window that will contain
graphical representations of objects in the database.

You were also introduced to the sqlcmd utility, which is ideal for entering T-SQL code outside of SSMS when
SSMS isn’t available or unable to be used, such as when you need to connect in an emergency.

Figure 2-14. Using sqlcmd within a command prompt

Figure 2-13. Using sqlcmd within a command prompt

43

Chapter 3

Database Design and Creation

Now that you’ve installed SQL Server and examined the main tools you’ll use as a SQL Server developer or
administrator, it’s almost time to start building the ApressFinancial database solution. However, you can’t do this
yet because you still don’t know what the database will hold. At this point in time, all the information you have is that
you’ll be building a database to hold some financial transactions for a personal or corporate financial tool. You’ll gear
this database toward a financial tool that a corporation might use because SQL Server can be scaled from one user
to thousands of users very easily. The next step is to gather more information about the requirements of the solution
and about what data is required to be stored in the database. Once the information-gathering stage is complete, you’ll
then be able to create the database within SQL Server throughout the book. The book’s main intent is to demonstrate
to you how to build a database solution from the ground up.

The design of a database solution is not a simple task; it requires a great deal of work. This chapter will provide
you with insight into the vast area that is database design for OLTP based databases, although there is an awesome
book by Louis Davidson on this subject called Pro SQL Server Relational Database Design and Implementation
(Apress). Armed with this information, you’ll proceed through arranging the data so that retrieval is as efficient as
possible (this is referred to as normalizing the data) and ensuring that data duplication is minimal or, ideally, that no
data duplication exists. You’ll also need to know how the system and the data within it will be used on a day-to-day
basis. Finally, you’ll need to know what type of system is being built—for instance, whether it will receive instant data
updates or just be used to analyze already defined data. Once the design is complete, building a database solution will
be a much smoother process. A good design ensures you’ve gathered all the information you need to build the correct
tables with the correct information without duplication.

Although the methods and processes involved with the design may not meet the needs of every organization, this
chapter presents an overview of the processes involved and also shows you how to build up information and ensure
that the design is well thought out. This chapter will cover the following topics:

What a database is, what it consists of, and where it is stored•	

How to define the type of system: transactional or analytical•	

How to collect data about the current system and seek out information about the new system•	

How to create a database where the data is disk-based through SQL Server Management Studio, •	
a wizard, or a Query Editor window, and how to set database options in a Query Editor window.
The options for a database that also deals with in-memory will be covered in Chapter 7.

How to review the database details•	

How to remove a database using SQL Server Management Studio and a Query Editor window•	

Chapter 3 ■ Database Design anD Creation

44

Note ■ no specific formal design techniques will be used in this chapter’s exercise, as this is not a book specifically
geared toward database design. however, the processes—both physical and logical—to get to the final design of the
database will be the same.

Defining a Database
A database is a container for objects that not only store data, but also enable data storage and retrieval to operate in a
secure and safe manner. A SQL Server database can hold the following objects (among others):

Table definitions•	

Columns within those tables, which make up rows of data•	

Programs (either •	 stored procedures or triggers written in T-SQL or assemblies that are written in
.NET) used to access or manipulate the data

Indexes, which are used to speed up the retrieval of data•	

Views, which are specialized ways of looking at the actual data•	

Functions, which are repetitive tasks that can be applied to rows of data•	

The preceding list contains a fair number of technical terms, so let’s take a few moments to look at their
definitions:

•	 Tables: Tables are where data are kept within the database. A database must contain at least
one table to be of use, although you can have a database with no user tables and only system
tables. System tables are special tables that SQL Server uses to help it work with the database.
These tables contain information within rows and columns, much like in Excel, but they have
a great deal more power than cells within Excel. Temporary tables—another type of database
table—can take several different forms. These will be discussed at several points within the
book. You can have tables that reside on disk or in memory.

•	 Columns: Columns provide a definition of each single item of information that builds up to
a table definition. A column consists of cells that all hold data, much like a column in Excel.
Unlike in Excel, though, where each cell can hold a different type of data, a column within a
SQL Server table is restricted to what the data within it relates to, the type of data it will hold,
and how much information can be stored in it. Each table must have at least one column,
although the column doesn’t need to contain any information.

•	 Rows: A row consists of one cell from every column defined for the table. There can be any
number of rows in a table; you are limited only by your disk space or available memory, or
the amount of disk space you defined as the maximum in your database creation definition
or the amount of disk space on your server. A row will define a single unit of information,
such as a user’s bank account details or a product on an e-commerce site. Stored procedures:
When it comes to requiring a program to manipulate or work with data, or perform the same
data-intensive task repeatedly, it’s often better to store this code in a stored procedure. Stored
procedures contain one or more T-SQL statements, which are compiled and ready to be
executed when required. Stored procedures are permanently stored in the database, ready for
use at any time.

Chapter 3 ■ Database Design anD Creation

45

•	 T-SQL statements: A T-SQL statement is a program statement that SQL Server can use to work
with your data.

•	 Assemblies: Assemblies are similar to stored procedures, in that they can be used to
manipulate or work with data, but they are used more for procedural logic, as you might find
in a .NET program. An assembly can be more than a replacement for a stored procedure
and can take on many different guises—for example, you can also build data types using an
assembly.

•	 Indexes: These can be regarded as predefined lists of information that can inform the database
how the data is physically sorted and stored, or they can be used by SQL Server to find rows of
data quickly using information supplied by a T-SQL query and matching this information to
data within columns. An index consists of one or more columns from the table it is defined for,
but it is not possible for an index to cover more than one table. A table with no index is called
a heap. An index in SQL Server is very much like the index of a book, which is used to locate
a piece of information faster than looking through the book page by page. An index is not
mandatory for disk-based tables but is mandatory for memory-based tables.

•	 Views: Views can be thought of as virtual tables. Views can contain information combined
from several tables and can present a more user-friendly interface to the data. Views can also
add a great deal of security to an application, but they do give reduced functionality over the
use of stored procedures or direct access to the tables. Views can also be indexed to speed
processing of data within.

•	 Functions: A function is similar to a stored procedure, but it takes information one row at
a time or produces information one row at a time as you work through the rows of data you
re processing. For example, you would use a stored procedure to produce output to create
a report, but you would use a function to go through each transaction to calculate interest on
a daily basis.

Also within every database is a set of system tables that SQL Server uses to maintain that database. These
tables hold information about every column, information about every user, and many other pieces of information
(such as metadata). System table security in SQL Server is such that you cannot access these tables directly—only
through views. You don’t need to investigate system tables at this point because their data can’t be modified and the
information they produce is useful only for working with advanced functionality.

Prebuilt Databases Within SQL Server
Several databases are installed and displayed when SQL Server is first installed. A Microsoft pre-built example
database can be downloaded and installed post installation. This section explores each of these databases so that
you’ll know what each does and feel comfortable when you come across them outside of this book.

Let’s first look at the most important database in SQL Server: the master database. I will then cover the tempdb,
model, msdb, and AdventureWorks/AdventureWorksDW sample databases.

Note ■ the AdventureWorksDW database is used with analysis services, which will not be installed.

Chapter 3 ■ Database Design anD Creation

46

master
master is the most important database in SQL Server, so I must start off with a warning.

Caution ■ Directly alter this database at your own peril!

There should be no reason to go into any of the system views within this database and alter the records or column
information directly. There are system functions that allow a constructive alteration of any of the data in an orderly
fashion, and these are the only approaches you should use to alter the master database.

The master database is at the heart of SQL Server, and if it should become corrupted, there is a very good chance
that SQL Server will not work correctly. The master database contains the following crucial information used by SQL
Server in its work:

All logins, or roles, to which the user IDs belong•	

Every system configuration setting (for example, data sorting information, security •	
implementation, default language)

The names of and information about the databases within the server•	

The location of databases•	

How SQL Server is initialized•	

Specific system tables holding the following information (this list is not exhaustive):•	

How the cache is used•	

Which character sets are available•	

A list of the available languages•	

System error and warning messages•	

Special SQL Server objects called •	 assemblies The master database is the security guard
of SQL Server, and it uses the preceding information to ensure that everything is kept
in check.

Note ■ it is crucial that you regularly back up the master database. Make sure that doing so is part of your backup
strategy. backups are covered in more detail in Chapter 8.

tempdb
The tempdb database is—as its name suggests—a temporary database whose lifetime is the duration of a SQL Server
session; once SQL Server stops, the tempdb database is lost. When SQL Server starts up again, the tempdb database is
re-created, fresh and new, and ready for use. There is more to this process, but before I delve into that, you first need
to know what the tempdb database is used for.

Chapter 3 ■ Database Design anD Creation

47

A database can hold data, and that data can be held in many tables. You use commands and functions to retrieve
and manipulate that data. However, there may be times when you want to temporarily store a certain set of data for
processing at a later time—for example, when you pass data from one stored procedure to another that is going to
run right after the first one. One option is to store that data within a table within the tempdb database. Such a table
could be thought of as a “permanent” temporary table, as it will exist until it is specifically deleted or until tempdb is
re-created on a SQL Server restart. Another type of temporary table is one created within a stored procedure or query
each time the stored procedure or query executes. This will also be placed within the tempdb database, although its
lifetime will last only until all users of the table finish. You’ll look at both of these types of tables in Chapter 16 when
looking at essentials of coding T-SQL. Storing data in temporary tables is fine and something you will do in your
lifetime as a developer, as long as the tempdb database is not refreshed. If it is, then your data will be gone, and you will
need to rebuild them.

You may be thinking that this is not an ideal solution. After all, wouldn’t it be wonderful if temporary information
could be stored somewhere outside of the database? Well, that’s not really where tempdb would be used. It really
should be thought of only as transitional storage space.

Another reason tempdb is refreshed is that not only is it available for a developer to use, but also SQL Server
itself uses tempdb. Actually, SQL Server uses tempdb all the time, and when you reinitialize SQL Server, it will want to
know that any temporary work it was dealing with is cleaned out. After all, there could have been a problem with this
temporary work that caused you to restart the service in the first place.

Being just like any other database, tempdb has size restrictions, and you must ensure that it is big enough to cope
with your applications and any temporary information stored within it generated both by yourself and by SQL Server.
An example of SQL Server using tempdb is when it has to hold data while it completes a sort of data for output. As
you read through the next sections, you will see that a database has a minimum and a maximum size. tempdb is no
exception to this, and you should ensure that its settings provide for expansion so it can grow as required.

Caution ■ because tempdb has a limited size, you must take care when you use it that it doesn’t get filled with records
in tables from rogue procedures that indefinitely create tables with too many records. if this were to happen, not only
would your process stop working, but also the whole server could stop functioning and therefore impact everyone on that
server!

As indicated in the first paragraph of this section, there’s more to say about tempdb’s refresh process,, which you’ll
examine in the next section.

model
Whenever you create a database, as you’ll do shortly in this chapter, it has to be modeled on a predefined set
of criteria. For example, if you want all your databases to have a specific initial size or to have a specific set of
information, you would place this information into the model database, which acts as a template database for further
databases. If you wanted all databases to have a specific table within them, for example, you would put this table in
the model database.

The model database is used as the basis for creating the tempdb database as well as any other database created
by you. Thus, you need to think ahead if you decide to alter the model database because any changes will be mirrored
within the tempdb database. It is rare for the model database to be changed.

Chapter 3 ■ Database Design anD Creation

48

msdb
msdb is another crucial database within SQL Server because it provides the necessary information to run jobs to
SQL Server Agent.

SQL Server Agent is a Windows service in SQL Server that runs any scheduled jobs that you set up (for example,
jobs that contain backup processing). A job is a process defined in SQL Server that runs automatically without any
manual intervention to start it but can be manually started if desired.

As with tempdb and model, you should not directly amend this database, and there is no real need to do so.
Many other processes use msdb. For example, when you create a backup or perform a restore, msdb is used to store
information about these tasks.

AdventureWorks/AdventureWorksDW
AdventureWorks and AdventureWorksDW are the example databases that can be downloaded and installed from
Microsoft’s CodePlex web site, www.codeplex.com. There is a link from the SQL Server install placed on your
computer that can be used. Once these databases have been downloaded and installed on the computer, you
have to attach these databases to SQL Server. Attaching databases will be demonstrated in Chapter 8. You will
use the AdventureWorks database when looking at Advanced T-SQL in Chapter 17. These databases are based
on a manufacturing company that produces bicycles. They exemplify the new features in SQL Server as well as
demonstrate the features that already exist in earlier SQL Server versions, such as Reporting Services and CLR
functionality, in a simple, easy-to-follow way.

The following excerpt from the Microsoft documentation provides a concise overview of what the
AdventureWorks databases are about:

Adventure Works Cycles, the fictitious company on which the AdventureWorks sample databases are
based, is a large, multinational manufacturing company. The company manufactures and sells
metal and composite bicycles to North American, European, and Asian commercial markets. While
its base operation is located in Bothell, Washington, with 290 employees, several regional sales
teams are located throughout their market base.

The example databases are not meant for novice SQL Server developers, although you’ll have no problems with
them after you learn the basics of SQL Server. They are also very good for practicing what you learn about SQL Server
from this book with different data to check out what you’re learning.

Now that you know what databases are in SQL Server, let’s start building one! You’ll start by deciding what type of
database to create, depending on what it will be used for.

Choosing the Database System Type
Before you can design a database, you have to decide whether the system will be an Online Transaction Processing
(OLTP) system or an Online Analytical Processing (OLAP) system, also known as a Business Intelligence (BI) system.
You could find this out prior to your first meeting with the users, or even during the first meeting, but the choice of
OLTP or OLAP will probably be indicated in the initial proposal.

Before you make a decision, you need to understand these two key types of systems.

OLTP
An OLTP system provides instant updates of data. There is a good chance that an OLTP database system has a separate
user front end written in a .NET language such as Visual Basic .NET (VB .NET), C#, or ASP.NET. This user front end
calls through to the database and instantly updates any changes a user has made to the underlying data.

http://www.codeplex.com/

Chapter 3 ■ Database Design anD Creation

49

OLTP systems require many considerations to ensure they’re fast and reliable and can keep the data integrity
intact. When you design an OLTP system, it’s crucial that you get not only the database structure right, but also where
the data physically resides. It’s common to find that OLTP systems are normalized to third normal form (more on what
this term means later in the chapter), although this may not happen in every case. By normalizing your data, you will
aid the achievement of one of the main goals of an OLTP system: keeping data updates as short as possible. When you
normalize your data by removing redundant or duplicate columns, you should ensure that the data to be written is as
compact as possible. In many OLTP systems, normalization is critical.

Backups
Many OLTP systems are in use 24 hours a day, 7 days a week. The high frequency of changes in such a system’s data
means that backing up the database is a necessary and mandatory task.

It is possible to back up a database while SQL Server is in use, although it is best to perform a backup either when
SQL Server is not in use or when there will be a small amount of activity updating the data taking place. The ideal time
frame might be in the middle of the night or even during a break period.

Whenever you decide to perform a backup, it’s crucial you constantly monitor and check the backup to ensure
that the system is still performing as desired. You would not be the first person to find that what you thought was
a valid backup that could be restored in a disaster situation was in fact corrupt, incomplete, or just not happening.
Therefore, periodically take a backup from production and reload it into a secure development area just to confirm
that it works. I have found the best solution to be a refresh of a non-production database to be completed on a
Monday from a production backup taken over the weekend.

Indexes
Speed is essential to a successful OLTP system. You should see a higher number of indexes within an OLTP system as
compared to an OLAP system, with these indexes used not only to help relate data from one table to another, but also
to allow fast access to rows within tables.

Note ■ Chapter 6 covers how to build indexes, how indexes work, and how to manage indexes within your solutions.

In-memory data
Staying on the subject of speed, working with high-access critical data as fast as possible is a major tennet of a
successful OLTP system. Having data in memory reduces the need for any disk I/O, which is slower than having the
data already loaded. SQL Server will attempt to keep the correct data loaded as best as possible, but you are limited
by memory constraints so SQL Server can unload the data from memory requiring the data to be re-read from disk
when next required. It is possible to define a table that is permanently held in memory and the data never unloaded
therefore providing you with the fastest access. This decision and method of design should not be applied to all tables
as you could exhaust the memory on the server as your application and data requirements increase. In-memory data
is covered in great detail throughout the book so that you are fully aware of best practices and how to use it safely.

BI/OLAP
When considering an OLTP system, you must keep in mind that an update to the database could happen at any
moment in time, and that update must be reflected within the database instantly. It is also crucial that the system
performs many updates simultaneously and that it does not corrupt any data when it does so.

Chapter 3 ■ Database Design anD Creation

50

A BI system is designed with the premise that the data remains fairly static with infrequent updates. These
updates could be nightly, weekly, monthly, or any other time variant as long as updates aren’t happening on a
frequent basis, like in an OLTP system. As the name “Business Intelligence” suggests, in this system a large amount of
the processing involves analysis of existing data to provide intelligent, analytical, and informative data to the business.
There should be little or no updating of that data—ostensibly only when the data within the analysis is found to
be incorrect or, as mentioned previously, when more data are being applied for analysis. Backing up the data will
probably take place only as a “final action,” after the database has had changes applied to it. There is no need to make
it a regular occurrence. Many BI systems can also be refreshed from empty from the host data source.

BI systems tend to have two databases involved in their overall architecture. The first database is a normal SQL
Server database in which you would store the data to be used to build your BI database. This could be your main
database, although you would need to take care with the processing time and resources that can be taken up when the
BI database extracts that data. A BI database has a completely different database infrastructure and objects compared
to OLTP, and what you are going to learn in this book and does not have tables and indexes. Instead it uses the data
loaded from the SQL Server database and stores the data in files on the servers where the data has been aggregated
with measures and dimensions. BI databases require a totally different mindset and use different SQL called MDX to
extract the data.

Systems designed for BI sometimes do not follow any design standards or normalization techniques. You tend to
see no normalization in an OLAP system, as it is easier to take data and to slice and dice it without having to bring in
data from a normalized table.

Example System Choice
When you take into consideration all the information presented in the preceding sections, it becomes fairly obvious
that although the data updates will be relatively infrequent in the example system (in other words, only when a
financial transaction occurs or a statement is generated), there will be updates occurring online with instant results
expected. Therefore, the system you will be building will be an OLTP system.

Gathering the Data
Among the first things you need to do before building a database is to find out what information the database system
has to hold and then decide how that information should be stored (for example, numerical or text, length, and so on).
To achieve this goal, you’ll perform a data-gathering exercise, which could involve talking with those people who are
the owners of the system and those who will be using the system.

For larger systems, you would hold several meetings, each of which would pinpoint one area of the system to
discuss and research. Even then, several meetings may be spent going back and discussing each area. You could also
conduct interviews, distribute questionnaires, or even just observe any existing processes in action, all in an effort to
gather as much information as possible about the database and how it will be used.

The key indicator of whether a database solution is successful is not found so much in the building of the system,
but rather in the information-gathering process before the first line of code is actually written. If you’re working off
an incorrect piece of information, or you’re missing an element that might be crucial to the final solution, already the
system is flawed. Involving the users as much as possible at the earliest stage and then including them as the design
progresses should result in a significant reduction of errors and missing parts in the final product.

For the example financial program, the first people you would want to talk to are the owners of the data that
will be displayed. These are the people in the banking department who handle checks, cash withdrawals, credit
card transactions, and so forth, and also those people who handle the purchase and sale of stock shares, unit trusts,
life insurance policies, and so on. These people will know what documentation or statements are sent to which
customers, as well as the information those statements contain. In addition, these people will likely have a good idea
about how customers may want to reconcile these statements, and also what data will be allowed to be downloaded
and inserted into your SQL Server database.

Chapter 3 ■ Database Design anD Creation

51

At the first meeting, you examine all the documentation to see what information is stored in the current system.
You find out at the meeting that the current system sends out different statements, one statement for the customer’s
current account and a separate statement for each financial product the customer owns. When you examine the
statements, you focus on the information each contains that you need to capture to produce a similar statement. This
could be not only customer-related information, but also regulatory statements.

With the information from all the documentation in hand, you can start discussions about what is required from
the system you are to build. Obviously, a great deal of information will be discussed in these meetings; some of it
is useful and some not. Make sure that the discussions are recorded in the order in which the people present make
points and not in “logical” order. This simulates meetings where people “remember” items that have to be catered to,
where one point raised may make someone remember a point elsewhere.

Out of the initial discussions, you note the following points:

 1. The software must be able to handle working with more than one product. The main
product is a current checking account that a bank or a single user might use to hold
banking details. The system also must be able to manage by-products such as loans, life
insurance policies, and car insurance policies, and it should be able to record any trading
of shares on the stock market.

 2. Statements are produced on a monthly basis or at any time the customer requests them
from the system. If a customer requests a statement within the month, there will still be a
statement produced for that month.

 3. Interest accrues daily on accounts that are in credit and is subtracted daily from overdrawn
accounts.

 4. Annual, monthly, or single-premium products can be held for a customer or held by a
customer in a stand-alone version of the system. You need to know when to start and
stop collecting payments, and you also need to determine which products you send out a
reminder for (for example, a notice to let a customer know her car insurance policy is up
for renewal).

 5. If a collection for a product failed, the system needs to recognize this so the amount can be
collected the next time a collection is due.

 6. Each product will have its own statement, but only banking statements will be produced
on request.

 7. Trading of stock shares is allowed, so the system needs to record and display the current
value for a customer’s specific share at any time.

Notice how the information in this list is in no set order because this is how information tends to come out. Also
notice that there is a little bit of duplication of information in points 2 and 6; if this is not realized or understood, it
could cause problems.

Note ■ this is the only data-gathering exercise performed for the example database. the information gathered here
should be cross-checked later in the design phase with the users, although this is beyond the scope of this book.

Chapter 3 ■ Database Design anD Creation

52

Determining the Information to Store in the Database
Using the notes you took in the previous section, you’ll now try to find every area each point has an interest in.
Looking at the list of areas that require information to be recorded and stored within the database, it’s clear you need
to arrange them in some sort of order. You’re still looking at your solution from a logical viewpoint, and you’re not
ready to start building anything in SQL Server yet.

First off, let’s scan through the points listed and try to group the information into specific, related areas. The
list items are numbered, so I will be able to easily demonstrate the groupings. The following list shows some initial
groupings and reasons for them:

Financial products•	

1: You are dealing with more than one product. You need to record each product.•	

2: Statements will be produced for each product, and specific product information for •	
those statements will be recorded here, such as the name of the product.

4: You need to record what type of premium is associated with this product.•	

5: This point deals with a financial product’s premium collection.•	

6: This point deals again with statement production.•	

Customers•	

2: Customers can request statements.•	

3: You need to record the amount of interest for a customer.•	

4: A list of the different products associated with each customer is required.•	

7: For each share, you need to keep a current value.•	

Customer addresses•	

2: You need each customer’s address in order to send a statement.•	

6: As with point 2, you need the customer’s address to send a statement.•	

Shares•	

1: You trade shares on the stock market; therefore, you need to record share information.•	

7: You need to keep a given share’s value.•	

Transactions•	

2: A list of transactions is required for statement production.•	

3: Interest charges have to be calculated and recorded.•	

4: Regular and ad hoc premiums have to be recorded.•	

5: You need to record failed transaction collection.•	

6: Statements will be produced for each product.•	

These five distinct groups could translate into five distinct tables within the proposed database. At this point
in the logical design process, you would base your design on these five tables. From here, it is then possible to start
examining the information that should go into these logical tables. There might be duplication of data with columns
in the “wrong” table, and the potential for multiple columns to hold “similar” information or the same column in
more than one table.

Chapter 3 ■ Database Design anD Creation

53

Let’s look at the list points in turn in the following sections and examine what information should be stored in
each “table.” The information listed in the sections that follow is taken from the discussion with the users, and a list of
the columns is supplied that may initially form the basis of the tables. Each column has a description, so when you go
back to the users, they’ll understand the purpose of the columns. Also at this stage, you will add columns to hold any
identifiers for finding the records; in the following sections, these are denoted with (K). These are potentially the keys,
which I’ll cover in more detail later in the “Building Relationships” section of this chapter.

Financial Products
The aim of this table is to hold the different products the company sells. From bank accounts to life insurance, all
products will be held here. This table will be used when producing statements and creating transactions when the
user’s balance changes—for example, when buying further shares:

•	 Financial Product ID (K): This is a unique identifier.

•	 Financial Product Name: This is the name of the product, such as checking account, share,
loan, and so forth.

•	 Frequency of Payment: For each product, this indicates how often payments are collected for
those products that require it, such as a loan, a regular savings account, and so on.

Customers
This table will hold customer details, such as the customer’s products and balances. To clarify and reiterate, there will
be items currently within this table that will no longer reside within it once you normalize the data. For example, you
will see an attribute for “Account Numbers for Each Product.” When you proceed through normalization, you will see
how attributes such as this are “moved”:

•	 Customer ID (K): This is a unique ID for each customer.

•	 Financial Product Balance: This is the current balance of each product.

•	 Title: This is the customer’s title (Mr., Ms., and so on).

•	 First Name: This is the customer’s first name.

•	 Last Name: This is the customer’s last name.

•	 Address: This is the customer’s address.

•	 Account Numbers for Each Product: This is the account number of each product the customer
owns.

•	 Financial Products Details: These are the details of each financial product the customer owns.

Customer Addresses
As part of the analysis, you will not hold your own address information, and you will instead get this from a third-party
system. This table will therefore not exist within your database.

Chapter 3 ■ Database Design anD Creation

54

Shares
This table holds the details of each stock share, such as its current price and its price history:

•	 Share Price ID (K): This is a unique ID for each share.

•	 Share Name: This is the name of the share.

•	 Current Price: This is the current price of the share.

•	 Previous Price: This contains previous prices of the share.

•	 Price Date: This is the date the price was set at this level.

•	 Stock Market Ticker ID: This is the ID for this share on the stock market.

Transactions
This table holds the details of each financial transaction that takes place for each product.

•	 Financial Transaction ID (K): This is a unique ID for each financial transaction.

•	 Customer ID: This is the customer’s unique identifier, as defined in the “Customers” section
earlier.

•	 Date of the Transaction: This is the date the transaction took place.

•	 Financial Product: This is a link to the financial products table.

•	 Amount: This is the amount the transaction is for.

•	 Debit/Credit: This flag denotes whether the transaction is a debit or a credit.

External and Ignored Information
At this point, you have a first draft of the logical tables and attributes, but there are still no relationships between these
tables. There is one more piece of information that you need to know, which concerns information not recorded
because it won’t be included within this database.

The example database will not hold every item of information that is required to make the system complete.
This is to keep the example simple and to avoid having extra tables that will not be used within the book’s exercises.
However, there may be other times when you may want to implement only some of the tables—for example, when
performing a viability study (in other words, when you’re building part of a system to prove the viability of an idea). Or
perhaps a third-party tool can fill in the gaps.

For example, a system might use an external addressing system, and instead of holding all customer addresses
within the system, it may use a cross-reference ID. A table could also exist to hold all of the financial transactions for
products not covered where specialized tables are required, such as for company pension plans.

Next, let’s move on to consider relationships between the tables in the database.

Building Relationships
Much like people, databases can be temperamental creatures and need a bit of TLC. Good relationships can provide
this kind of care and attention.

At the moment, the tables in the example database are essentially single, unrelated items. Of course, they have
columns with the same name in different tables, but there is nothing tying them together. This is where defining
relationships between the tables comes in. Binding the tables together in this way ensures that changes in one table
do not cause data in another table to become invalid.

Chapter 3 ■ Database Design anD Creation

55

Using Keys
A key is a way of identifying a record in a database table. You can use keys to build relationships between tables
because a key refers to a whole record—a property you can exploit when working with columns that, for example,
have the same name in different tables or even a different name in different tables but the columns hold the same
information. Using a key as a shortcut, you can make the link between the two very easily. Keys can also uniquely
identify a record in a table when that is an important part of the database’s design.

A key can be defined on a single column if that’s enough to identify the record, or it can be defined on more
than one column if not. The sections that follow introduce the three kinds of keys you can use in a database: primary,
foreign/referencing, and candidate/alternate. You will also look at using a SQL Server method called a constraint
instead of a primary key.

Primary Key
The primary key is probably the most important key type. First and foremost, the column (or combination of columns)
on which the primary key is defined must contain only unique values. A primary key cannot be defined on a column,
or a sequence of columns, that does not return a single row. To this end, it is not possible to define a primary key for
any columns that allow NULL values. A further restraint is that a table may have only one primary key.

A primary key can be used to link data from one table to data from another. For instance, in your example
database, you have two tables: one holding customers and another holding customer banking transactions. You will
define a primary key on the Customers table on the customer ID that is generated uniquely each time a new customer
record is inserted. This is then used to link to the many records within the banking transactions table, to return all
the transactions for that customer ID. The link between these two tables is the customer ID, which as previously
mentioned is defined as a primary key in the Customers table.

Later in this chapter, you’ll see how to join tables together and define a relationship between them. A join and a
relationship are essentially the same thing: a logical link between two or more tables that can be defined through a
specific column or set of columns between the tables.

Foreign/Referencing Key
There will be times when you have two or more tables linked together in a relationship, as demonstrated in the earlier
example, where the link between the Customers and Transactions tables is the customer ID column. This column
returns a unique row in the Customers table; hence, it is defined as the primary key of the Customers table. However,
there has to be a corresponding foreign (or referencing) key in the Transactions table to link back to the Customers
table, which is the customer ID column of the Customers table.

When it comes to creating relationships within your example database, you will later see how a foreign key is
created that will create a link, or a relationship, between two columns. This link is created through a constraint, which
is a method SQL Server uses to check the details built into the relationship. From the viewpoint of a foreign key, this
constraint, or check, will ensure that the relationship follows the conditions set with it. You’ll examine foreign keys in
more depth in the “More on Foreign Keys” section.

Candidate/Alternate Key
As mentioned previously, a table can have only one primary key. However, there may be another key that could
just as easily be defined as a primary key. This is known as a candidate key because it is a candidate for being the
primary key.

Chapter 3 ■ Database Design anD Creation

56

There is no logical difference at all between the definition of a candidate key and a primary key. For example,
if you have a table that holds spare parts for a General Motors (GM) vehicle, you could have an internal GM part
number to use when ordering parts at the head office for various GM branches. This part number would be unique
and would likely be used as the primary key. However, a part number is also created by each of the manufacturers,
which is unique to them. This, too, could be a primary key if you include the supplier identifier in the database. You
can’t have two primary keys, and you’ve chosen the GM part number as the primary key, but you could create a
candidate key using the manufacturer identifier and part number.

A Unique Constraint Instead of a Primary Key
This is where having a constraint defined will ensure that only unique values can be entered into columns defined
within the constraint. This sounds very much like the previous primary key definition, but there are differences.

A unique constraint is not a primary key, but the column or columns defined within the constraint could be a
primary key. Also, a unique constraint can contain NULL values, but recall that a primary key cannot. However, NULL
is treated as any other value within a column; therefore, the columns used to make a unique constraint must remain
unique, including the NULL value, when you’re looking to insert or update data. Therefore, this means that there would
only be one NULL value to keep the uniqueness. Finally, it is possible to have multiple unique constraints, but you
can have only one primary key. An example of a table with a unique constraint could be a table that holds the dates
and numbers that correspond to the weeks of the year. Week 1 could begin on January 4, Week 2 would then begin on
January 11, and so on. The primary key would be the week number; however, a unique constraint could also be placed
on the date column.

Creating Relationships
A relationship in a SQL Server database is a logical link between two tables. It is impossible to have a physical link,
although, as you will see later, a physical line is drawn between two tables when designing the database. Having a
physical link, such as having a table holding relationship data, would mean the actual data linking the two tables
would be stored only once in a central location, and that information within the keys linking the tables would be
stored more than once, which is just not the case.

When defining a logical relationship, you’re informing SQL Server that you’ll be linking a primary key from the
master table to a foreign key in another table. So already there is a need for two keys: one on each table.

The following sections present specific details about relationships, starting with a look at how relationships work
with the concept of referential integrity.

Relationships and Referential Integrity
A relationship can be used to enforce data integrity. In other words, if you are expecting data in one table because
there is data in another, you can place a relationship between these two tables to ensure that no SQL command breaks
this rule.

Referential integrity revolves around the idea that there are two tables in the database that contain the same
information, and it requires that the duplicated data elements are kept consistent. For example, if you have a primary
key in one table and a foreign key in another table that have data that match exactly, it is important that both pieces
of data either change together or don’t change at all. Relationships are not the only way referential integrity can be
enforced; you can also use triggers to ensure that data remains valid (you will examine this further in Chapter 18). For
instance, the example banking system includes the Customers and Transactions tables. It is not possible to record
customer transactions without a customer record. As a result, you have to use referential integrity to enforce data
integrity between these two tables so that a customer record can’t be removed from the database while there are
customer transaction records for that customer. Similarly, this rule should allow the removal of a customer record
when there are no customer transaction records.

Chapter 3 ■ Database Design anD Creation

57

Another result of enforcing referential integrity is that it isn’t possible for a customer transaction to be entered
using a customer reference number that doesn’t exist within the Customers table. Instead, to enter a customer
transaction in this situation, you first have to create the customer record, and then you can carry out the transaction.

Finally, if you had a customer record and related customer transaction records, you couldn’t alter the customer
reference number in the customer record without first altering the customer transaction records and checking that the
reference you’re altering the customer transaction records to already exists.

Note ■ Don’t confuse referential integrity with other processes that are associated with maintaining data integrity, such
as placing checks or default values on columns to ensure that values for a specific column are valid.

So, there are a number of rules to follow if you want to maintain the integrity of your data. If you so desired,
you could use referential integrity to enforce data integrity. However, a flip side to all of this to be aware of is that
you can keep data integrity within a system and not use referential integrity. Instead, you can create stored
procedures or triggers, which are types of programs within SQL Server, to do this task. We will look at these topics in
Chapters 15 and 19.

Using stored procedures and triggers is a possible but undesirable solution because it leaves the system open
to instances where data integrity is not kept due to holes within the design of the system or the fact that perhaps a
developer doesn’t have the correct processing sequence to ensure that all data are always valid. Not only that, but if
someone adds data directly to a table, the referential integrity could be lost. That said, having the data integrity checks
in an application does lead to less traffic flow over the network and potentially less work on the server as the client
application is performing the referential integrity checks instead. In most cases, I personally prefer the referential
integrity to be performed within the database.

There is one more important point about referential integrity before I move on to discuss database relationship
types: If you want to maintain referential integrity by creating a relationship between two tables, these two tables must
be in the same database. It is not possible to have referential integrity between two databases.

Types of Relationships
Three main relationship types can exist in a database:

One-to-one•	

One-to-many•	

Many-to-many•	

The sections that follow cover each type, so when it comes to creating a relationship, you’ll know which one to
create, when to create it, and why. We’ll start off by looking at the one-to-one relationship, which is perhaps the easiest
type of relationship to understand, although it is one of the least used.

One-to-One

This relationship type isn’t very common within a working database. Typically, there is no real reason for one record
in one table to match just one record in another. This scenario would exist, for example, only if you were splitting a
very large table into two separate tables.

To illustrate the one-to-one relationship, imagine that in the example bank database there is a table that holds
PINs for ATM cards, keeping them completely separate from the remainder of the customer records (see Figure 3-1).
In most cases, there would be one PIN record for each customer record, but there may be exceptions—for instance, a
high-interest deposit account may not have a card, and therefore there would be no associated PIN record.

Chapter 3 ■ Database Design anD Creation

58

One-to-Many

Perhaps the most common relationship found in a database is the one-to-many relationship. This is where one master
record is linked with zero, one, or more records in a child table.

Using the banking example, say you have a customer master record along with any number of associated
transaction records. The number of these transaction records could range from none, which corresponds to
when a customer is new to the bank and hasn’t made a deposit or performed a transaction, to one or more, which
corresponds to when there has been an initial deposit in an account, and then further deposits or withdrawal
transactions after that (see Figure 3-2).

Figure 3-2. One-to-many relationship

Figure 3-1. One-to-one relationship

You’ll see this concept in action again in the customer-to-transactions relationship you will build for the solution.

Chapter 3 ■ Database Design anD Creation

59

Figure 3-3. Many-to-many relationship

Many-to-Many

Many-to-many is the final relationship type that can exist in a database. This relationship can happen relatively
frequently where there are zero, one, or indeed many records in the master table related to zero, one, or many records
in a child table.

An example of a many-to-many relationship might be where a company has several depots for dispatching
goods, presented in the master table, which then dispatch goods to many stores, presented in the child table
(see Figure 3-3). The depots could be located and organized so that different depots could all supply the same store,
and they could be arranged in groups of produce, frozen, perishables, and bonded. In order for a store to be supplied
with a full complement of goods, it would need to be supplied by a number of different depots, which would typically
be in different locations.

When building relationships within a database, it is necessary to have a foreign key whether that is logically
defined in code where the relationship is checked or physically via keys. I covered foreign keys briefly earlier in the
chapter; let’s take a closer look at them in the next section.

More on Foreign Keys
A foreign key is any key on a child table where a column, or a set of columns, can be directly matched with exactly the
same number and information from the master table. By using this foreign key, you can build up the data to return via
a relationship.

However, a foreign key does not have to map to a primary key on a master table. Although it is common to see a
foreign key mapped to a primary key, as long as the key in the master table that is being mapped to is a unique key
(a candidate or alternate key), you can build a relationship between a master table and a child table.

The whole essence of a foreign key lies in its mapping process and the fact that it is on the child table. A foreign
key will exist only when a relationship has been created from the child table to the parent table. But what exactly are
the master table and the child tables? To demonstrate, let’s refer to the relationship examples. Take the one-to-many
relationship. The master table would be on the left side, or the “one” side of the relationship, and the child table would
be on the right side, or the “many” side of the relationship (see Figure 3-4).

Chapter 3 ■ Database Design anD Creation

60

It is totally possible for the master table and the child table to be the same table, and for the foreign key and the
unique key to both be defined within the same table. This is called a self-join or a reflexive relationship. You don’t tend
to see this much within a database because it is quite an unusual situation, although you could use it to ensure that
the data in one column exactly match the information in another column, just as in any other join.

For example, say you have a table built around customers and you have two columns, one of which is a parent
customer ID, which holds an ID for the head office and is used to link all the branches. If the head office is also seen as a
valid branch of the conglomerate, the second column could be the specific branch ID. You could put a link between these
two columns so that there is still a valid link for the head office as a branch as well (see Figure 3-5). Another example is in
an employees table where all employees reside, with a self-join from an employee back to his or her manager.

Figure 3-4. Foreign key

Figure 3-5. Foreign keys in same table

Now that we’ve looked at relationships, let’s move on to see how to normalize the database.

Chapter 3 ■ Database Design anD Creation

61

Normalization
Normalizing a database means minimizing data redundancy to avoid update anomalies. Removing duplicate data
leads to smaller, more compact databases. This avoids confusion over which column holds data and reduces the
overhead of keeping data up to date.

Note ■ Just a reminder that you’re still in the logical phase of building the solution and you’re not ready to start
building your database within sQL server.

A database designer should not normalize with impunity because this may negatively affect data retrieval. In
good normalization, the removal of the duplication of data will provide faster sorting of data and queries that run
faster, thereby improving performance. Although normalization can make a database more efficient, overnormalizing
may create too many relationships and too many slim, small tables so that to retrieve one piece of information
requires access to many tables and many joins between these tables. Database design is an art, and a knowledgeable
designer knows when to stop normalizing. In fact, after normalizing a design, it’s often wise to denormalize it by
adding back some redundancy to make critical queries run faster (see “Denormalization” later in this chapter).

In this section of the chapter, you’ll model your example in a method known as logical modeling. The purpose of
the logical model is to show the data that the application must store to satisfy business requirements. It demonstrates
how these data are related and explores any integration requirements with business areas outside the scope of
the development project. It is created without any specific computer environment in mind, so no optimization for
performance, data storage, and so forth is done.

In logical modeling, the term entity is used to mean a conceptual version of a table. As you’re still in the logical
modeling stage of designing your database, I’ll use “entity” rather than “table” in this discussion, since it is less tied
to implementation. Also within logical modeling, a column of data is referred to as an attribute. To build the logical
model, you will take the information gathered previously in the chapter and implement attributes in the entities. From
that, you’ll see how you need to alter the design.

The question remains, what should be contained in an entity? Three principles should govern the contents of
an entity:

Assign each entity a unique identifier.•	

Store only information that directly relates to that entity.•	

Avoid repeating values or columns.•	

The sections that follow provide more detail about each principle.

Chapter 3 ■ Database Design anD Creation

62

Assign Each Entity a Unique Identifier
It must be possible to find a unique row in each entity. You can do this through the use of a unique identifying
attribute or the combination of several attributes. However, no matter which method you use, it must be impossible
for two rows to contain the same information within the unique identifying attribute(s).

Consider the possibility that there is no combination of attributes in an entity that can make a row unique, or
perhaps you want to build a single value from a single attribute. SQL Server has a special data type, called unique
identifier, that can do this, but a more common solution is to build a column attribute with an integer data type and
then set this up as an identity column. You’ll learn more about this technique when building the tables in Chapter 5.

Store Only Information That Directly Relates to That Entity
It can be very easy in certain situations to have too much information in one entity and, as a result, almost change the
reason for the existence of the specific entity. Doing so could reduce efficiency in an OLTP system, where duplicate
information has to be inserted. It could also lead to confusion when an entity that has been designed for one thing
actually contains data for another.

Avoid Repeating Values or Columns
Having attributes of data where the information is an exact copy of another attribute within either the same entity or
a related entity is a waste of space and resources. If you don’t avoid repeating values or attributes within two or more
tables, the information is duplicated and will require two modiciations to avoid the data becoming out of sync and
confusing or duplicated data where there are subtle differences leading to uncertainty of which is correct. If you find
repeating values or columns in your design, you should normalize this so that the information is only held once. You
will see this expanded in the First Normal Form section in a moment.

Normal Forms
Now that you know what should be contained within an entity, how do you go about normalizing the data? The
normal forms addressed within this chapter are as follows:

First normal form (1NF)•	

Second normal form (2NF)•	

Third normal form (3NF)•	

There are other, “higher” normal forms, but they are mainly of theoretical significance, so they will not be
covered here.

First Normal Form
To achieve 1NF within a database, it is required that you eliminate any repeating groups of information. Any groups
of data found to be repeated will be moved to a new table. Looking at each table in turn, you find that you have two
tables in the example database that potentially flout the first requirement of 1NF: customers and shares.

Chapter 3 ■ Database Design anD Creation

63

Customers

There are two columns with possible repeating values in this table:

•	 Title: A customer’s title will be Mr., Miss, Ms., or Mrs., all of which you could put in to a
reference table. Some corporations do this; others don’t. It all depends on whether you want
to restrict what users can enter.

•	 Address: The address should be split out into separate lines, one for each part of the address
(for example, street, district, and so on.). It is probably well worth having a reference table for
cities, states, and countries, for example.

Shares

There is one column that will possibly repeat: share name. This is really because the Shares table actually does two
jobs: holds details about the share, such as its name and the market ticker, which really are unique; and holds a
historical list of share prices. This table actually needs to be split into Share Details and Share Prices, which you’ll see
happening when we discuss the 3NF.

Second Normal Form
To achieve 2NF, each column within the table must depend on the whole primary key. This means that if you look at
any single column within a table, you need to ask whether it is possible to get to this information using the whole key
or just part of the key. If only part of the key is required, you must look to splitting the tables so that every column does
match the whole key. To do this, you would look at each column within the table and ask, “Can I reach the information
contained within this column just using part of the key?” All of the tables use an ID as the primary key, and only one
column will define that ID. Therefore, to break 2NF with this is almost impossible. Where you are more likely to break
2NF is a scenario in which the primary key uses several columns.

If you look at all the tables within the example, every column within each table does require the whole key to
find it.

Third Normal Form
To achieve 3NF, you must now have no column that is not part of the primary key be dependent on any other column
within the table.

The Customers table does have data derived from another table, with account numbers for each product
the customer has bought and financial product details. This means the account number plus details about the
product such as the date opened, how much is paid with each payment, and the product type do not belong in the
Customers table. If such information did remain in the table, Customers would have multiple rows for the same
customer. Therefore, this table also now needs to be split into Customer details such as name and address, and
CustomerProducts, such as a row for each product bought with the customer details about that product.

We have now reached full normalization to 3NF of the tables within the database. Let’s take a moment to clarify
where you are. Figure 3-6 shows that you’re now moving from a logical model to a physical model, where you are
physically defining what information is stored where.

Chapter 3 ■ Database Design anD Creation

64

Denormalization
Despite having normalized your data to be more efficient, there will be times when denormalizing the data is a better
option. Denormalization is the complete opposite of normalization: It is where you introduce data redundancy within
a table to reduce the number of table joins and potentially speed up data access. Instances of denormalization can
be found in production systems where the join to a table is slowing down queries, or perhaps where normalization
is not required (for example, when working with a system in which the data are not regularly updated). You may also
denormalize your data to make full use of data being held in-memory so that a small amount of data can be read
optimally without the need to access disk-based data. If you consider this, I would add a word of caution not to let
your application performance dicate bad practice. What is meant by this is that you shouldn’t alter your design or
create extra data to be held just to place a piece of information in memory.

Just because others say your data should be totally normalized, it is not necessarily true, so don’t feel forced
down that route. The drawback of denormalizing your data too far, though, is that you’ll be holding duplicate and
unnecessary information that could be normalized out to another table and then just joined during a query. This
will, therefore, create performance issues as well as use a larger amount of data storage space. However, the costs of
denormalization can be justified if queries run faster or the data is denormalized to improve performance of areas
such as reporting. That said, data integrity is paramount in a system. It’s no use having denormalized data in which
there are duplications of data where one area is updated when there’s a change, and the other area isn’t updated.

Denormalization is not the route you want to take in the database example. Now that you have all the data to
produce the system, it’s time to look at how these tables will link together.

Figure 3-6. Physical database model

Chapter 3 ■ Database Design anD Creation

65

Creating the Sample Database
Let’s now begin to create your example database. In this section, you will examine two different ways to create a
database in SQL Server:

Using the SQL Server Management Studio graphical interface•	

Using T-SQL code•	

Both methods have their own merits and pitfalls for creating databases, as you’ll discover, but these two methods
are used whenever possible throughout the book; where you might find one method is good for one task, it may
not be ideal for another. Neither method is right or wrong for every task, and your decision of which to use basically
comes down to personal preference and what you’re trying to achieve at the time. You may find that using T-SQL code
for building objects provides the best results because you will see instantly the different possible selections. Using
T-SQL also provides you with a greater base from which to work with other programming languages and databases,
although some databases do differ considerably in the language used to work with them. However, if the syntax for the
commands is not familiar to you, you may well choose to use a wizard or SQL Server Management Studio. Once you
become more comfortable with the syntax, then a Query Editor pane should become your favored method. Finally,
T-SQL code allows for deployment of your code in a repeatable fashion such as a deployment to production, or a
re-deployment of development code after a restore from an earlier backup.

You’ll also examine how to drop a database in SQL Server Management Studio.

Creating a Database in SQL Server Management Studio
The first method of creating a database you will look at is using SQL Server Management Studio,, which was
introduced in Chapter 2. The databases being created will be defined to only hold disk-based data. In Chapter 7 when
you are introduced to in-memory data, you will see how to alter the database to accommodate in-memory data.

trY It OUt: CreatING a DataBaSe IN SQL SerVer
MaNaGeMeNt StUDIO

1. before creating the database, you’ll need to start up sQL server Management studio. to do
this, select start ➤ all programs ➤ Microsoft sQL server ➤ sQL server Management studio
or start the app sQL server Management studio from list of apps in Windows 8.

Tip ■ i run all this book’s examples from a server called FAT-BELLY-Sony using the named instance APRESS_DEV1.
You will have your own name for your host computer and possibly even your own name for the installed instance.
therefore, throughout the book, when you see FAT-BELLY-Sony, you should substitute your own host computer name.

2. ensure that you have registered and connected to your server. if the sQL server service
was not previously started, it will automatically start as you connect, which may take a few
moments. if it still fails to start, then check the service is running from Control panel ➤
administrative tools ➤ sercices finding the service sQL server (apress_DeV1). however,
if you have not shut down your computer since the install of sQL server, then everything
should be up and running. sQL server will stop only if you have shut down your computer

Chapter 3 ■ Database Design anD Creation

66

and indicated not to start the sQL server service automatically or the Windows account
used to start the service has a problem, such as being locked out. to start sQL server, or
conversely, if you want to set up sQL server not to start automatically when Windows starts,
set this either from Control panel mentioned at the start of this point or from the sQL server
Configuration Manager found under start ➤ all programs ➤ Microsoft sQL server ➤
Configuration tools or from the app window.

3. in object explorer, expand the Databases node until you see either just the system database
and database snapshot nodes that always exist. ensure that the Databases folder is
highlighted and ready for the next action, as shown in Figure 3-7.

Figure 3-7. The Databases node in Object Explorer

a minimum amount of information is required to create a database:

the name the database will be given •

how the data will be sorted •

the size of the database •

Where the database will be located •

the name of the files used to store the information contained within the database •

Chapter 3 ■ Database Design anD Creation

67

sQL server Management studio gathers this information using the new Database menu option.

4. right-click the Databases node to bring up a pop-up menu with a number of different
options. select new Database, as shown in Figure 3-8.

Figure 3-8. Selecting to create a new database

5. You are now presented with the new Database dialog box set to the general tab. First, enter
the name of the database you want to create—in this case, ApressFinancial. notice as you
type that the two file names in the Database Files list box also populate. this is simply an
aid, and you can change the names (see Figure 3-9). however, you should have a very good
reason to not accept the names that the screen is creating, as this is enforcing a standard.

Chapter 3 ■ Database Design anD Creation

68

the general screen within this page collects the first two pieces of information. the first piece of information
required is the database name. no checks are done at this point as to whether the database exists (this comes
when you click oK); however, there is some validation in the field so that certain illegal characters will not be
allowed when oK is clicked.

Note ■ Characters to avoid for a database name are as follows: ” ’ */?:\<>

Keep to alphabetic, numeric, underscore, or dash characters. also, you may want to keep the database name
short (but meaningful), as the database name has to be entered manually in many parts of sQL server. below the
database name is the owner of the database;in other words, the login defined as having the ability to do anything
within the database as well as determine what other logins can do with the database. this can be any login
that has the authority to create databases. a server in many—but not all—installations can hold databases that
belong to different development groups. one example is an isp who on one server will hold databases for multiple
customers. each group would have a login that was the database owner, and at this point, you would assign
the specific owner. For the moment, let it default to the <default> account, which will be the account currently
logged in to sQL server; you’ll learn how to change this later. if you’re using Windows authentication, then your
Windows account will be your user iD. if you’re using sQL server authentication, it will be the login iD you used at
connection time.

Figure 3-9. General settings in the New Database dialog

Chapter 3 ■ Database Design anD Creation

69

the database owner, which is often shortened to dbo, initially has full administration rights on the database, from
creating the database, to modifying it or its contents, to even deleting the database. because a dbo account has
such power, it is best to create either a user or a group specifically for administration rights. You will see groups
discussed in Chapter 4.

Caution ■ an account with such power needs to be carefully controlled and secure in a production environment.

ignore the check box for Full-text indexing. You would select this option if you wanted your database to have
columns that you could search for a particular word or phrase and Full-text indexing had been installed. as
Full-text was not installed, the check box is disabled. For example, search engines could have a column that
holds a set of phrases from web pages, and full-text searching could be used to find which web pages contain
the words being searched for.

the File name entry (off-screen to the right in Figure 3-9) is the name of the physical file that will hold the data
within the database you’re working with. by default, sQL server takes the name of the database and adds a suffix
of _Data to create this name.

Just to the left of the File name option is the physical path where the files will reside. the files will typically
reside in a directory on a local drive and, if possible, on a different physical drive to the system files. Many larger
companies attach network storage to the server, and the data will reside there, off the main computer. in this
case, you would enter the network path or the mapped network drive letter. For an installation such as you are
completing on a local machine, the path will normally be the path specified by default defined at installation of
sQL server. if you are working on a server, although you will be placing the files on a local or mapped drive, the
path may be different to the sQL server install option so that different teams’ installations will be in different
physical locations or even on different local drives.

the database files are stored on your drive with an extension of .MDF—for example, ApressFinancial_Data.MDF.
in this case, .MDF is not something used by DiY enthusiasts, but it actually stands for Master Data File and is the
name of the primary data file. every database must have at least one primary data file. this file may hold not only
the data for the database, but also the location of all the other files that make up the database, as well as startup
information for the database catalog. an MDF is an allocation of space on the hard drive where sQL server places
the tables as well as the rows of information that are within the tables.

it is also possible to have secondary data files. these would have the suffix .NDF. again, you could use whatever
name you wished, and, in fact, you could have an entirely different name from the primary data file. however,
if you did so, the confusion that would abound is not worth thinking about. so do use the same name, and if you
need a third, fourth, and so on, then add on a numerical suffix.

secondary data files allow you to spread your tables and indexes over two or more disks. the upside is that by
spreading the data over several disks, you will get better performance. in a production environment, you may
have several secondary data files to spread out your heavily used tables.

Note ■ as the primary data file holds the database catalog information that will be accessed constantly during the
operation of the server, it would be best, in a production environment at least, to place all your tables on a secondary
data file.

Chapter 3 ■ Database Design anD Creation

70

Finally, there will be another file type, which is .LDF. this is the transaction log file that holds a record of certain
actions you perform. this is covered in detail in Chapter 8 when we take a look at backup and restores. You would
place the file name for a secondary data file in the row below the ApressFinancial_Data entry in the Data Files
list box, after clicking the add button. the File Type column shows whether the file is a data file or a log file, as
in a file for holding the data or a file for holding a record of the actions done to the data.

the next column in the grid is titled Filegroup. this allows you to specify the PRIMARY disk-based filegroup and
any SECONDARY data disk-based filegroups for your database. Memory-based filegroups are covered in a moment.
Filegroups are for grouping logical data files together to manage them as a logical unit. You could place some of
your tables in one filegroup, more tables in another filegroup, indexes in another, and so on. Dividing your tables
and indexes into filegroups allows sQL server to perform parallel disk operations and tasks if the filegroups
are on different drives. You could also place tables that are not allowed to be modified as one in a filegroup
and set the filegroup to read-only. if you want to have another filegroup file, you can click add at the bottom of
the general page. Figure 3-10 shows the dialog for creating a new disk-based filegroup, which is displayed if
you click the combobox in the Filegroup column on any newly created database file. the top option allows you
to create read-only filegroups. Finally, when creating a database object, the default filegroup is the PRIMARY
filegroup. in a production environment—and therefore in a development environment as well, so that it is simpler
to move from development through to production—you would create a secondary filegroup and set it as the
default. in this book, you will just keep to the PRIMARY filegroup for simplicity. at this point, a third disk database
filegroup is not required.

Figure 3-10. New filegroup

Chapter 3 ■ Database Design anD Creation

71

the logic behind secondary data files is relatively straightforward. a PRIMARY filegroup will always—and must
always—contain the system tables that hold the information about the database, the tables, the columns, and so
on. if you have the autogrowth file option (covered shortly) switched off, the PRIMARY filegroup is likely to run out
of space at some point. if this happens and no secondary data files are specified, the database will grind to a halt
until some space is added. however, in most instances, especially when you’re first starting out, you can leave the
database with only a PRIMARY filegroup.

Don’t misunderstand filegroups and space, though: filegroups are there to help you organize your files within your
database storage, and the files that make up the filegroup may span several disks for a performance issue. You
will move files around filegroups for speed, efficiency, security, backups, and a number of other reasons.

6. Click Cancel in the new Filegroup dialog box, and then click remove in the new Database
dialog box to remove the third line within the database files grid if you added a line while
checking out the filegroup discussion for Figure 3-10.

Note ■ remember that the PRIMARY filegroup may hold not only data, but also the system tables, so the PRIMARY
filegroup could fill up purely with information about tables, columns, and so forth used to run sQL server.

the next item in the new Database dialog box is the initial size (Mb) column. the initial size of the database is
its size when empty. Don’t forget that the database won’t be totally empty and is created from the model system
database, and some of the space will be initially taken up with the system tables. it is impossible to say, “i’m
creating a database, and the initial size must be nnMb”—the database size depends on many factors, such
as the number of tables, how much static information is stored, to what size you expect the database to grow,
and so on. it would be during the investigation phase that you would try to determine the size that you expect
the database to reach over a given period of time. if anything, estimate larger rather than smaller to avoid
fragmentation. this size is the disk-based size for the files and will not include the size of memory-based tables.

Moving on to the next, and possibly most important, area: autogrowth. this option indicates whether sQL server
will automatically handle the situation that arises if your database reaches the initial size limit. if you set this
option for no automatic growth, you will have to monitor your database and expand its size manually, if and when
required. While starting out, let your database grow automatically. however, do set a reasonable maximum size so
that you have some emergency disk space available in case it is required.

Note ■ in a production environment, or even when you’re developing in the future, it will be more common to switch
autogrowth on and fix the maximum size. this prevents your hard drive from filling up and your server from being unable
to continue. You would also define database size monitoring so that you could see when the database size was increasing
toward the limit and an action plan can be put in place.

Chapter 3 ■ Database Design anD Creation

72

While sQL server handles increasing the size of the database for you, it has to know by how much. this is where
the autogrowth option comes in. You can let sQL server increase the database either by a set amount each time
in megabytes or by a percentage. if you want to change the autogrowth options by selecting the autogrowth
options button (the ellipsis) to the right of the current setting, you can disable autogrowth of your database in the
dialog that appears.

in the autogrowth dialog, the Maximum File size option sets a limit on how large the database is allowed to
grow. the default is “unrestricted growth”—in other words, the only limit is the spare space on the hard drive.
this is not good. What if you have a rogue piece of code entering an infinite loop of data? this scenario is
rare, but not unheard of. also, many firms run many databases and you should divide up storage in a sensible
manner, leaving room for new databases and for new file space to be attached to relevant databases. With a
setting of unrestricted growth, it might take a long time to fill up the drive, but fill up the drive it will, and with a
full drive, purging the data will prove troublesome. When it is time to start moving the database to a production
environment, ensure the restrict File growth (Mb) option is set to guard against such problems.

the final column that you will find in the new Database dialog box by scrolling to the right is Path. in this column,
you define where the database files will reside on your drive. if sQL server is installed on your C drive, no paths
for the data were changed, and you are working on a default instance, then you will find that the default is
C:\Program Files\Microsoft SQL Server\MSSQL.nn.MSSQLSERVER\MSSQL\Data. Figure 3-9 shows i’m
working on a mapped drive that has been given the drive letter C. the command button with the ellipsis (. . .) to
the right of the path brings up an explorer-style dialog that allows you to change the location of the database
files. For example, if you move to a larger sQL server installation, moving the location of these files to a server or
network storage relevant to the needs of your database will probably be a necessity.

the line that has a File type setting of Log includes the same information as a Data File type setting, with one or
two minor exceptions. the File name places a suffix of _Log onto the database name, and there is no ability to
change the Filegroup column, since the transaction Log doesn’t actually hold system tables and so would fill
up only through the recording of actions. it is possible, however, to define multiple log file locations. Filling the
transaction log and not being able to process any more information because the log is full will cause your sQL
server to stop processing. specifying more than one log location means that you can avoid this problem. the use
of a failover log file in larger production systems is advisable.

Let’s now move on to discuss the options page of the new Database dialog box (see Figure 3-11).

Chapter 3 ■ Database Design anD Creation

73

the first field in the options page is labeled Collation—i discussed this option in Chapter 1 when installing sQL
server. if you need to alter a collation setting post installation on a database, you can do so, but care is required.
note that altering the collation sequence on a server should be undertaken only by the system administrator,
who will be aware of the issues and have the authority to perform this task. Changing a collation setting can alter
areas such as how data is searched and sorted, and how the queries work with upper- and lower-cased data.

Figure 3-11. Options page of the New Database dialog

Chapter 3 ■ Database Design anD Creation

74

the next setting is recovery Model. You’ll learn about backing up and restoring your database in Chapter 8, and
this option forms part of that decision-making process. in development, the best option is to choose the simple
recovery mode, as you should have your most up-to-date source being developed and saved to your local hard
drive and even in to a source control system. in production, you might feel a different mode is more suitable.
any non-development database, such as user acceptance or parallel, should have the same recovery model as
production. the three modes are as follows:

 • Full : allows the database to be restored to where the failure took place; every transaction is
logged; therefore, you can restore a database backup and then move forward to the individual
point in time required using the transaction log.

 • Bulk-Logged : Minimally logs bulk operations, so if you’re performing a bulk operation such
as bulk copying into sQL server, or if you’re inserting a bulk of rows of data, then only the
action is recorded and not every row is inserted; this will increase performance during these
sorts of operations, but if a problem occurs, then recovery can occur only to the end of the last
transaction log backup.

 • Simple : truncates the transaction log after each checkpoint; restores can only be applied up to
the last successful data backup only, as no transaction log backups are taken. You would not
normally use this mode in a production environment except in low-volume, low-risk applications.

Note ■ it is possible to switch modes, and you may want to do this if you have a number of bulk-logged
operations—for example, if you’re completing a refresh of static data as part of a release process. You would also switch
modes once a production restore to a development database has taken place and you have decided that a different
recovery model is best for that environment.

the third item in the options page is Compatibility Level. it is possible to build a database for previous versions
of sQL server, provided you are willing to sacrifice the new functionality. among the next set of options, the ones
of interest to you at the moment are the first five. You will examine the remaining options when you build the
database using t-sQL.

 • Auto Close: if you want the database to shut down when the last user exits, then set this option
to true. the standard practice is a setting of False, and you should have a good reason to set this
option to true, especially on a remote server.

 • Auto Create Statistics: this option relates to the creation of statistics used when querying data.
the standard practice is a setting of true; however, in a production environment, especially if you
have a nightly or weekly process that generates statistics on your data, you would switch this to
False. Creating and updating statistics while your system is being used does increase processing
required on your server, and if your server is heavily used for inserting data, then you will find a
performance degradation with this option set to true. to clarify, though, it is necessary to balance
your choice with how much your system will have to query data.

Chapter 3 ■ Database Design anD Creation

75

 • Auto Shrink: Database and transaction logs grow in size not only with increased data input, but
also through other actions, which i’ll discuss in more detail in Chapter 8. You can shrink the
logical size of the log file through certain actions, some of which can be instigated by t-sQL and
some as a by-product of actions being performed. shrinking a database, whether automatically
or manually, takes processing power and time. You should be in control of when shrinking takes
place rather than leaving this to sQL server, and therefore auto shrink should be set to False
in a production environment. even if the database is remote, alerts should be set up to warn
you about database size reaching its limit rather than allowing sQL server to perform this task
unattended.

 • Auto Update Statistics and Auto Update Statistics Asynchronously: these are more common
options to have set to true, even on production servers, although there is still a performance
degradation. these options will update statistics as data are inserted, modified, or deleted for
tables for use in indexes, and they will also update statistics for columns within a table. i will
discuss indexes further in Chapter 6. statistics are used by sQL server to find the best method to
work with your data, and having good statistics will ensure the best method is normally chosen.

Tip ■ You don’t need to create the database at this point if you don’t want to. there are several other options available
to you to save the underlying t-sQL to a file, to the clipboard, or to the Query window. the first two options are very useful
as methods of storing actions you’re creating to keep in your source code repository, such as Visual sourcesafe. the first
two options are also useful if you wish to keep t-sQL code to execute when deploying on several different computers at
client sites. Clients may have sQL server installed on a server but no ssMs installed locally from which to build a
database graphically. they should have sqlcmd, which as shown as an introduction in Chapter 2 could also be used to
deploy the scripts. Finally, by using t-sQL rather than dialog screens, you will achieve consistency and clarity when
performing an action multiple times. the third option is ideal if you wish to add more options to your database than you
have defined within the wizard setup. all of the options enable you to see the underlying code and understand what is
required to create a database. You will look at the code in a moment.

7. Click the oK button at the bottom of the screen to create the database.

sQL server will now perform several actions. First, it checks whether the database already exists; if so, you will
have to choose another name. second, once the database name is validated, sQL server does a security check
to make sure the user has permission to create the database. this is not a concern here since by following
this book, you will always be logged on to sQL server with the proper permissions. now that you have security
clearance, the data files are created and placed on the hard drive. provided there is enough space, these files will
be successfully created, and it is not until this point that sQL server is updated with the new database details in
the internal system tables.

once this is done, the database is ready for use. as you can see, this whole process is relatively straightforward.

Chapter 3 ■ Database Design anD Creation

76

When you return to Object Explorer in SQL Server Management Studio, refresh the contents manually if the
explorer hasn’t auto-refreshed. You will see the new database listed, as shown in Figure 3-12.

Figure 3-13. Scripting the database from SSMS

Figure 3-12. The new database within Object Explorer

SQL Server Management Studio is simply a GUI front end to running T-SQL scripts in the background. As you
progress through the book, you’ll see the T-SQL generated for each object type you’re using, and you’ll create the
objects graphically, as you’ve just seen.

Once the database has been created, you can right-click and, as shown in Figure 3-13, have the details sent to one
of four locations.

Whichever method you choose to use, the script will be the same, with the exception of a comment line when you
create the script in the second option. The script for generating the database from this option is listed here, so you can
go through what is happening. The fourth option allows you to schedule a re-create of the database at a certain point
in time. This is ideal to use when building a database from scratch on a regular basis. For example, you might create a
daily job for setting up a test area.

First of all, SQL Server points itself to a known database, as shown in the following snippet. master has to exist;
otherwise, SQL Server will not work. The USE statement, which instructs SQL Server to alter its connection to default
to the database after the USE statement, points further statements to the master database:

USE [master]

GO

Chapter 3 ■ Database Design anD Creation

77

Next, the script builds up the CREATE DATABASE T-SQL statement built on the options selected. (I’ll walk you
through the CREATE DATABASE syntax that could be used in the “Creating a Database in a Query Pane” section, as
this statement doesn’t cover all the possibilities.) Notice in the code that follows the next note that the name of the
database is surrounded by square brackets: []. SQL Server does this as a way of defining that the information between
the square brackets is to be used similarly to a literal and not as a variable. Also, it defines that the information is to
be treated as one unit. To clarify, if you want to name the database Apress Financial (in other words, with a space
between “Apress” and “Financial”), then you and SQL Server need to have a method of knowing where the name of
the database starts and ends. This is where the identifier brackets come in to play.

Note ■ there is an option that can be set for a sQL server connection where instead of square brackes you
can use quotation marks. this is called the set Quoted identifier option defined with the t-sQL command
SET QUOTED_IDENTIFIER ON/OFF. therefore, instead of using the square brackets around master as you see in the
preceding text, you can define identifiers by surrounding them with double quotation marks using this command.
therefore, anything that has double quotation marks around it is seen as an identifier rather than a literal, if this option is
set to ON. to get around this requirement, you can use single quotation marks, as shown in the example, but then if you
do have to enter a single quotation mark—as in the word “don’t”—you would have to use another single quotation mark.
as you can see, this situation can get a bit messy. i prefer to have QUOTED_IDENTIFIER set to OFF to reduce confusion.

The following code is generated by the script for creating the ApressFinancial database:

CREATE DATABASE [ApressFinancial]
 CONTAINMENT = NONE
 ON PRIMARY
(NAME = N'ApressFinancial',
FILENAME =
N'C:\APRESS_DEV1\MSSQL12.APRESS_DEV1\MSSQL\DATA\
ApressFinancial.mdf',
 SIZE = 5120KB , MAXSIZE = UNLIMITED, FILEGROWTH = 1024KB)
 LOG ON
(NAME = N'ApressFinancial_log',
FILENAME =
N'C:\APRESS_DEV1\MSSQL12.APRESS_DEV1\MSSQL\DATA\
ApressFinancial_log.ldf',
SIZE = 2048KB , MAXSIZE = 2048GB , FILEGROWTH = 10%)
GO

Most of the preceding code should be easy to understand and follow as it is taking the details entered in the
database creation dialog screen and transforming those details into T-SQL. However, there is one item I would like
to bring to your attention and that is the CONTAINMENT = NONE argument. With SQL Server, databases can be fully
contained, partially contained, or non-contained. A fully contained database is one in which all of the objects, data,
accounts, and metadata are contained within that database. You can then move databases between SQL Server
instances and installations much more easily than is the case with partial or non-contained databases, as all of the
information required to move a database is held by the database itself. Previous versions of SQL Server are seen as
non-contained, and therefore porting databases have problems with database ownership and some of the metadata
required to be rebuilt when placed on the new server. Partially contained databases have some of the information
held within the database itself, although code can have dependence outside of its own database. One example would
be when trying to retrieve customer information from the Customer database from within the Invoicing database.

Chapter 3 ■ Database Design anD Creation

78

Finally, non-contained databases, as created for ApressFinancial, are built similarly to previous versions of SQL
Server, where to move a database from one server to another requires some work. At this point, I am building the
database as a non-contained database for simplicity of discussion throughout the book and to ensure you have the
basics of databases clear in your mind before introducing these complexities.

The CREATE DATABASE command is followed by a GO command. This signals to SQL Server—or any other SQL
Server utility—that this is the end of a batch of T-SQL statements and the utility should send the batch of statements
to SQL Server. Certain statements need to be in their own batch and cannot be combined with other statements in the
same batch. To clarify, a GO statement determines that you have come to the end of a batch of statements and that SQL
Server should process these statements before moving on to the next batch of statements.

Note ■ GO statements are used only in ad hoc t-sQL, which is what i’m demonstrating here. Later in the book, you’ll
build t-sQL into programs called stored procedures. GO statements are not used in stored procedures.

Next, you define the new database’s compatibility level. The following ALTER DATABASE statement sets the
database’s base level to SQL Server 2014. It is possible to define SQL Server to an earlier level, as far back as SQL
Server 2005, by changing the version number. A base level of 110 actually means 11.0, as in version 11 (110), which
equates to SQL Server 2012.

ALTER DATABASE [ApressFinancial] SET COMPATIBILITY_LEVEL = 120
GO

You then can define the remaining database options. The statements to set those options have GO statements
separating them. But in this scenario, the GO statement is superfluous. So why are they included? When SQL Server
is preparing the wizard, it is safer for it to place GO statements after each statement because it then doesn’t have to
predict what the next statement is and, therefore, whether the end of the batch of transactions has to be defined.

It is possible to initialize full-text indexing or remove all full-text catalogs from the current database. By default,
all user-created databases in SQL Server 2012 are enabled for full-text indexing if the feature is installed.

There is an IF statement around the following code that enables or disables full-text searching. This code is
testing whether full-text indexing has been installed as part of the current instance. If it has not been installed, then by
default the option is not enabled.

IF (1 = FULLTEXTSERVICEPROPERTY('IsFullTextInstalled'))
begin
EXEC [ApressFinancial].[dbo].[sp_fulltext_database] @action = 'enable'
end

There will be times when columns have no data in them. When a column is empty, it is said to contain the special
value of NULL. Setting ANSI_NULL_DEFAULT to OFF means that a column’s default value is NOT NULL. You’ll learn about
NULL values in Chapter 5 during the table creation discussion. The following is the statement to define the default
setting for a new column definition when defining a new column within a table in SQL Server. If you define a new
column for a table without defining whether it can hold NULL values using the T-SQL ALTER TABLE command, then the
column by default will not allow NULL values.

ALTER DATABASE [ApressFinancial] SET ANSI_NULL_DEFAULT OFF
GO

Chapter 3 ■ Database Design anD Creation

79

Still on the topic of NULL values, the ANSI standard states that if you are comparing two columns of data that have
this special NULL value in them, then the comparison should fail and the two columns will not be considered equal.
They also won’t be considered not equal to each other. Setting ANSI NULLS to OFF alters that behavior, so that when
you do compare two NULL values, they will be considered equal to each other. The following is the statement to use:

ALTER DATABASE [ApressFinancial] SET ANSI_NULLS OFF
GO

There are columns of characters that can store variable-length data. You’ll come across these when you build
your table in Chapter 5. If set to ON, this option makes every column of data contain the maximum number of
characters, whether you sent through just one character or many more. It is common to have this set to OFF.

ALTER DATABASE [ApressFinancial] SET ANSI_PADDING OFF
GO

If an ANSI standard warning or error occurs, such as divide by zero, switching the ANSI_WARNINGS setting to OFF
will suppress these. A value of NULL will be returned in any columns that have the error.

ALTER DATABASE [ApressFinancial] SET ANSI_WARNINGS OFF
GO

If the ANSI_WARNINGS setting were ON, and you performed a divide by zero, the query would terminate. To change
this in combination with ANSI_WARNINGS set to ON, you tell SQL Server not to abort when there’s an arithmetic error.

ALTER DATABASE [ApressFinancial] SET ARITHABORT OFF
GO

If you have a database that is “active” only when users are logged in, then switching the AUTO_CLOSE setting to ON
would close down the database when the last user logged out. This is unusual, as databases tend to stay active 24/7,
but closing unwanted databases frees up resources for other databases on the server to use if required. One example
of when to switch this setting ON is for a database used for analyzing data by users through the day (for example, one in
an actuarial department, where death rates would be analyzed).

ALTER DATABASE [ApressFinancial] SET AUTO_CLOSE OFF
GO

If the volume of data within your database grows smaller (for example, if you have a daily or weekly archive
process), you can reduce the size of the database automatically by setting the following option ON. It is standard to
have the option OFF because the database size will simply increase as data are re-added. It would be switched ON only
if a reduction in the database is required—due to disk space requirements, for example—but it is never a good idea for
this option to kick in when the database is in use, so really it is best to keep it off.

ALTER DATABASE [ApressFinancial] SET AUTO_SHRINK OFF
GO

Note ■ it would be better to shrink the database manually by using the DBCC SHRINKDATABASE command if you do
need to shrink it. shrinking databases helps backups but sQL server would need to re-allocate if it expands again. You
will see this in Chapter 8.

Chapter 3 ■ Database Design anD Creation

80

When data are added or modified to SQL Server, statistics are created that are then used when querying the data.
These statistics can be updated with every modification, or they can be completed via a T-SQL set of code at set times.
There is a performance reduction as data are inserted, modified, or deleted, but this performance is gained back when
you want to return data. Your application being a pure insertion, pure query, or a mix determines whether you’ll want
this option on. If you have a pure insertion application, you probably want this option switched off, for example, but
this is an optimization decision.

ALTER DATABASE [ApressFinancial] SET AUTO_UPDATE_STATISTICS ON
GO

A cursor is an in-memory table built with T-SQL used for row-at-a-time processing. It’s a temporary memory
resident table, in essence. A cursor can exist for the lifetime of a program, but if you switch the following setting to ON,
when a batch of data is committed or rolled back during a transaction, the cursor will be closed.

ALTER DATABASE [ApressFinancial] SET CURSOR_CLOSE_ON_COMMIT OFF
GO

A cursor can exist either locally or globally. This means that if GLOBAL is selected for this option, then any cursor
created in a program is available to any subprogram that is called. LOCAL, the other option, indicates that the cursor
exists only within that program that created it.

ALTER DATABASE [ApressFinancial] SET CURSOR_DEFAULT GLOBAL
GO

If you’re concatenating character fields and if the following option is ON, then if any of the columns has a NULL
value, the result is a NULL.

ALTER DATABASE [ApressFinancial] SET CONCAT_NULL_YIELDS_NULL OFF
GO

When you’re working with some numeric data types, it is possible to lose precision of the numerics. This can
occur when you move a floating-point value to a specific numeric decimal point location, and the value you’re passing
has too many significant digits. If the following option is set to ON, then an error is generated. OFF means the value is
truncated.

ALTER DATABASE [ApressFinancial] SET NUMERIC_ROUNDABORT OFF
GO

As mentioned earlier, when you’re defining database names, if there is a space in the name or the name is a
reserved word, it is possible to tell SQL Server to ignore that fact and treat the contents of the squared brackets as a
literal. You are using quoted identifiers when you use the double quotation mark instead of square brackets. I’ll delve
into this topic further when showing how to insert data in Chapter 10, as there are a number of details to discuss with
this option.

ALTER DATABASE [ApressFinancial] SET QUOTED_IDENTIFIER OFF
GO

Chapter 3 ■ Database Design anD Creation

81

The following option relates to a special type of program called a trigger. A trigger can run when data are
modified, and one trigger can call another trigger. A setting of OFF means that an AFTER trigger is not allowed to
recursively cause itself to be invoked. This is known as a direct recursion.

ALTER DATABASE [ApressFinancial] SET RECURSIVE_TRIGGERS OFF
GO

Service Broker provides developers with a raft of functionality, such as asynchronous processing or the ability to
distribute processing over more than one computer. Such a scenario might be heavy overnight batch processing that
needs to be completed within a certain time window. By distributing the processing, it could mean that a process that
wouldn’t have been distributed could finish within that time frame.

ALTER DATABASE [ApressFinancial] SET DISABLE_BROKER
GO

I mentioned statistics earlier with another option and how they can be updated as data are modified. The
following option is similar to AUTO_UPDATE_STATISTICS. If this option is set to ON, the query that triggers an update
of the statistics will not wait for the statistics to be created. The statistics update will start, but it will do so in the
background asynchronously.

ALTER DATABASE [ApressFinancial] SET AUTO_UPDATE_STATISTICS_ASYNC OFF
GO

If there is a relationship between two tables via a foreign key, by setting this option to ON, SQL Server will correlate
statistics for the two tables to try to improve query optimization. Unless you have this scenario, the setting should be
switched to OFF, which is the default:

ALTER DATABASE [ApressFinancial] SET DATE_CORRELATION_OPTIMIZATION OFF
GO

This option defines whether this database is seen as trustworthy with what resources it can access. For example,
the option defines whether SQL Server can trust the database not to crash the server. By setting the option to OFF, you
ensure (among other things) that SQL Server will not allow any code developed to have access to external resources.

ALTER DATABASE [ApressFinancial] SET TRUSTWORTHY OFF
GO

If you build a database that is set for replication—in other words, where data changes are replicated to another
server, which you sometimes see for distributed solutions—then this option details how SQL Server deals with data
you are trying to process when it is involved in a transaction. This is an advanced topic outside the scope of this book.

ALTER DATABASE [ApressFinancial] SET ALLOW_SNAPSHOT_ISOLATION OFF
GO

The basis of the following option is to inform SQL Server how best to work with code that has parameters within
it and to decide the best and fastest way to work with that query. To clarify, when you try to retrieve data from a
table, you are likely to have some sort of filtering such as a specific value, a range of values, and so on. This is a query
parameter. SQL Server can discard the value when trying to figure out the best way to get the data from the database
based on previous queries. SQL Server uses previous query executions to try to calculate the fastest method of getting
that data, known as a query plan. By keeping the parameterization simple, SQL Server will look at the query, and if

Chapter 3 ■ Database Design anD Creation

82

the query is a simple query with very few parameters, it will try to find a query plan that it has in memory to use. If the
query is complex or SQL Server feels the number of parameters is too high to be deemed simple, then SQL Server will
build a new query plan. If the query has only one possible execution such as an insert of data of pure values, then this
is called a trivial plan and will be used immediately.

ALTER DATABASE [ApressFinancial] SET PARAMETERIZATION SIMPLE
GO

SQL Server has many features and techniques for ensuring that your data are correct, safe, and valid. In
Chapter 10, you will see one way to keep your data correct when you look at transactions. There are two ways
SQL Server can enforce data safety: either by locking data that are being updated in a transaction, or by keeping a
version of the row prior to the modification in tempdb until it is committed via a transaction. This latter technique is
known as row versioning. By setting READ_COMMITTED_SNAPSHOT to OFF as in the following example, you are indicating
that you will be taking the approach that the data will be locked. You guarantee that the information being read
contains the value currently committed to the database. If you set the option to ON, it is possible that you could be
reading the data after it has been altered within T-SQL but before it has been committed to the database. There are
pros and cons of both methods, and I will cover more about transactions in Chapter 10.

ALTER DATABASE [ApressFinancial] SET READ_COMMITTED_SNAPSHOT OFF
GO

The option HONOR_BROKER_PRIORITY, shown in the example to follow, is used with SQL Server Service Broker,
which is used by SQL Server when XML messages are being passed from one SQL Server to another. One way of
thinking about how Service Broker works would be to compare its use to having a chat conversation over the Internet
in Facebook. The software accepts the message you type and sends it to the recipients, and the recipients send back an
acknowledgment indicating that the message has been successfully received. A setting of ON indicates that if messages
are given a priority, then SQL Server will process these in a priority order. A setting of OFF indicates that messages will
be processed in order of generation.

ALTER DATABASE [ApressFinancial] SET HONOR_BROKER_PRIORITY OFF
GO

The next option determines how your data can be recovered when a failure such as a power outage happens.
In other words, the following option defines the recovery model, as discussed earlier. You’ll look at this in more detail
when I discuss database maintenance in Chapter 8.

ALTER DATABASE [ApressFinancial] SET RECOVERY FULL
GO

The following option defines the user access to the database. MULTI_USER is the norm and allows more than
one user into the database. The other settings are SINGLE_USER and RESTRICTED_USER, where only people who have
powerful privileges can connect. You would set your database to RESTRICTED_USER after a media or power failure, for
example, when a database administrator needs to connect to the database to ensure everything is okay. (The setting
RESTRICTED_USER causes the database to allow only administrator logins.) Specify SINGLE_USER when you want to lock
down the database so that no other person can connect—for example, when you are detaching the database from this
instance and you are moving it to another instance. Specify MULTI_USE when you want to open the database up for
general use, as in the following example:

ALTER DATABASE [ApressFinancial] SET MULTI_USER
GO

Chapter 3 ■ Database Design anD Creation

83

When you have an I/O error (for example, a hard drive might be on its way to breaking down), then this option
will report an error if checksums don’t match:

ALTER DATABASE [ApressFinancial] SET PAGE_VERIFY CHECKSUM
GO

The following line is used for controlling whether permissions checks are required when referring to objects in
another database:

ALTER DATABASE [ApressFinancial] SET DB_CHAINING OFF

If you are using your database to hold unstructured data such as Word documents, it is possible to work with
that data within or outside of a transaction. The default is that working with files-treamed data it has to be within a
transaction.

ALTER DATABASE [ApressFinancial] SET FILESTREAM(NON_TRANSACTED_ACCESS = OFF)
GO

When you write data to a database, the data is to a transaction log and in to memory; data is not instantly written
to disk as writing to disk is slow. SQL Server will write data to disk at some point of its choosing based on a setting at
the instance level (around one minute although this can and will vary and is an estimate) and, once it is completed, a
checkpoint is issued. This process is automatic. If you want to reduce the number of checkpoints, this option can do
this. If you extend the time, then fewer checkpoints will be issued. Large data modifications will be faster; however, if
the database has a failure, it will take longer to recover. This option should be altered after extensive testing.

ALTER DATABASE [ApressFinancial] SET TARGET_RECOVERY_TIME = 0 SECONDS
GO

When you update a table, SQL Server will record the fact in the transaction log. The transaction log in simplest
terms is how SQL Server records the updates to data so that if there is a server or database failure, or if you wish
to revert your changes, the correct action to the underlying tables can be achieved correctly. Transactions and
the transaction log are discussed more in Chapter 10. The following setting defines that data modifications are
written to the transaction log before notification back to the client is sent to indicate that the work is complete. It is
possible to change this so that writing to the transaction log is completed asynchronously, which has a performance
improvement but you may get data loss if there is a sudden unexpected failure.

ALTER DATABASE [ApressFinancial] SET DELAYED_DURABILITY = DISABLED
GO

The final option defines how the filegroups are set: READ_WRITE or READ_ONLY. The use of READ_ONLY is ideal
when you have a backup database that users can use to inspect data. The database is an exact mirror of a production
database, for example, so it has the security on it set to allow updates to it, but by setting this option to READ_ONLY, you
can be sure that no updates can occur.

ALTER DATABASE [ApressFinancial] SET READ_WRITE
GO

Chapter 3 ■ Database Design anD Creation

84

Figure 3-14. Deleting a database within SSMS

Dropping the Database in SQL Server Management Studio
To follow the next section properly and build the database using code, it is necessary to remove the database just
created. It is also handy to know how to do this anyway, for those times when you have made an error or when you
want to remove a database that is no longer in use. Deleting a database is also known as dropping a database.

trY It OUt: DrOppING a DataBaSe IN SQL SerVer
MaNaGeMeNt StUDIO

1. if sQL server Management studio should still be running from the previous example, expand
the nodes until you see the database ApressFinancial.

2. right-click ApressFinancial to bring up the context menu.

3. Click the Delete option, as shown in Figure 3-14.

4. the dialog shown in Figure 3-15 will display. select Close existing Connections and
then click oK.

Chapter 3 ■ Database Design anD Creation

85

the first check box, Delete backup and restore history information for Databases, gives you the option of keeping
or removing the history information that was generated when completing backups or restores. if you want to keep
this information for audit purposes, then uncheck the box.

the second check box is very important. if there is a program running against a database, or if you have any
design windows or query panes open and pointing to the database you want to delete, then this option will close
those connections. if you are deleting a database, there really should be no connections there. this is a good
check and will prevent accidents from happening, and it also allows any rogue databases to be removed without
having to track down who is connected to them.

5. Click oK. the database is now permanently removed.You will be re-creating the database in
a moment, so it is okay for you to delete.

Figure 3-15. Selecting to delete a database in the Delete Object dialog

Chapter 3 ■ Database Design anD Creation

86

When you click the oK button, sQL server actually performs several actions. First, a command is sent to sQL
server informing it of the name of the database to remove. sQL server then checks that nobody is currently
connected to that database. if someone is connected, through either sQL server Query editor or a data access
method like aDo.net, then sQL server will refuse the deletion. only if you select Close existing Connections will
this process be overridden.

For sQL server to refuse the deletion, it does not matter whether anyone connected to the database is
actually doing anything; all that is important is the existence of the connection. For example, if you selected
ApressFinancial in Query editor and then returned to sQL server Management studio and tried to drop the
database, you would see an error in the Delete screen which, when you clicked the message, you would see the
error shown in Figure 3-16.

Figure 3-16. Failed database deletion

errors like the one shown in Figure 3-16 on the screen in the background provide hyperlinks to documentation
that can give you further help, as shown in the dialog box in the foreground. Figure 3-17 displays the information
found when the button called technical details is clicked, which is found at the bottom left of the error dialog

Chapter 3 ■ Database Design anD Creation

87

Figure 3-17. Further technical details

once sQL server has checked that nobody is connected to the database, it then checks that you have permission
to remove the database. sQL server will allow you to delete the database if it was your user iD that created it, in
which case you own this database and sQL server allows you to do what you want with it. however, you are not
alone in owning the database.

if you recall from Chapter 1, there was mention of the sa account when installing sQL server. since it is the
most powerful iD and has control over everything within sQL server, there were warnings about leaving the
sa account without any password and also about using the sa account as any sort of login iD in general. this
section also mentioned that the sa account was in fact a member of the sysadmin server role. a role is a way
of grouping together similar users who need similar access to sets of data. anyone in the sysadmin role has full
administrative privileges—and this includes rights to remove any database on the server.

so, regardless of whether you are logged in as yourself or as sysadmin, take care when using sQL server
Management studio to drop a database. i cover different roles and their power in Chapter 4.

Chapter 3 ■ Database Design anD Creation

88

Creating a Database in a Query Pane
To use the second method of creating databases, you first need to drop the ApressFinancial database as described in
the previous section. Then you can continue with the following steps.

trY It OUt: CreatING a DataBaSe IN a QUerY paNe

1. From the standard toolbar of sQL server Management studio, select new Query.

2. in the query pane, enter the following t-sQL script:

CREATE DATABASE [ApressFinancial]
 ON PRIMARY
(NAME = N'ApressFinancial', FILENAME =
 N'C:\APRESS_DEV1\MSSQL12.APRESS_DEV1\MSSQL\DATA\ApressFinancial.mdf',
 SIZE = 5120KB , FILEGROWTH = 1024KB)
 LOG ON
(NAME = N'ApressFinancial_log', FILENAME =
N'C:\APRESS_DEV1\MSSQL12.APRESS_DEV1\MSSQL\DATA\ApressFinancial_log.ldf',
SIZE = 2048KB , FILEGROWTH = 10%)
GO

3. execute this code by pressing F5 or by clicking the execute Query toolbar button.

4. once the code is executed, you should see the following result:

Command(s) completed successfully.

hOW It WOrKS: CreatING a DataBaSe IN a QUerY

the main focus of this sidebar is the code listed in the previous exercise: the CREATE DATABASE command.

When placing code in the Query editor, you’re building up a set of instructions for sQL server to act on. as you
progress through the book, you will encounter many commands that you can place in Query editor, all of which
build up to provide powerful and useful utilities or methods for working with data. before you actually look at the
code itself, you need to inspect the syntax of the CREATE DATABASE command:

CREATE DATABASE <database name>
[CONTAINMENT = NONE | PARTIAL | FULL]
[ON
 ([NAME = logical_name,]
 FILENAME = physical_file_name
 [, FILESIZE = size]
 [, MAXSIZE = maxsize]
 [, FILEGROWTH = growth_increment])]

Chapter 3 ■ Database Design anD Creation

89

[LOG ON
 ([NAME = logical_name,]
 FILENAME = physical_file_name
 [, FILESIZE = size]
 [, MAXSIZE = maxsize]
 [, FILEGROWTH = growth_increment])]
[COLLATE collation_name]

the parameters are as follows:

 • database name: the name of the database that the CREATE DATABASE command will create
within sQL server

 • Containment: Defines whether the database is fully contained or whether there is usage of
metadata, logins, and so on, outside of the database

 • ON: the ON keyword informs sQL server that the command will specifically mention where the
data files are to be placed, as well as their name, size, and file growth. With the ON keyword
comes a further list of comma-separated options.

 • NAME: the logical name of the data file that will be used as the reference within sQL server

 • FILENAME: the physical file name and full path where the data file will reside

 • SIZE: the initial size, in megabytes by default, of the data file specified; this parameter is
optional, and if omitted, it will take the size defined in the model database. You can suffix the size
with Kb, Mb, gb, or tb (terabytes). the minimum size for a database will be the same size as the
model system database, defined by default as 4Mb. MAXSIZE indicates the maximum size the
database can grow to.

 • FILEGROWTH: the amount that the data file will grow each time it fills up; you can specify either
a value that indicates by how many megabytes the data file will grow or a percentage, as
discussed earlier when you created a database with sQL server Management studio.

 • LOG ON: the use of the LOG ON keyword informs sQL server that the command will specifically
mention where the log files will be placed, and their name, size, and file growth.

 • NAME: the name of the log file that will be used as the reference within sQL server

 • FILENAME: the physical file name and full path to where the log file will reside; you must include
the suffix .LDF. this could be a different name from the FILENAME specified earlier.

 • SIZE: the initial size, in megabytes by default, of the log file specified; this parameter is optional,
and if omitted, it will take the size defined in the model database. You can suffix the size with Kb,
Mb, gb, or tb.

 • FILEGROWTH: the amount by which the log file will grow each time the data file fills up, which has
the same values as for the data file’s FILEGROWTH

 • COLLATE: the collation used for the database; collation was discussed earlier in the chapter when
you created a database with sQL server Management studio.

Chapter 3 ■ Database Design anD Creation

90

it's now time to inspect the code entered into Query analyzer that will create the ApressFinancial database.

Commencing with CREATE DATABASE, you are informing sQL server that the following statements are all
parameters to be considered for building a new database within sQL server. some of the parameters are
optional, and sQL server will include default values when these parameters are not entered. but how does sQL
server know what values to supply? recall that at the start of this chapter, i discussed the built-in sQL server
databases—specifically, the model database. sQL server takes the default options for parameters from this
database unless they are otherwise specified. thus, it is important to consider carefully any modifications to the
model database.

the database name is obviously essential, and in this case, ApressFinancial is the chosen name.

the ON parameter provides sQL server with specifics about the data files to be created, rather than taking the
defaults. admittedly, in this instance, there is no need to specify these details, as by taking the defaults, sQL
server would supply the parameters as listed anyway.

this can also be said for the next set of parameters, which deal with the transaction Log found with LOG ON.
in this instance, there is no need to supply these parameters, as again the listed amounts are the sQL server
defaults.

Finally, the collation sequence you specify is actually the default for the server.

taking all this on board, the command could actually be entered as follows, which would then take all the default
settings from sQL server to build the database:

CREATE DATABASE ApressFinancial

You can then set the database options as outlined during the discussion of the script earlier in the chapter.

similarly, if you want to delete the database using t-sQL code, it’s a simple case of ensuring that you are not
connected within that particular query pane to ApressFinancial via the USE command. then you use the
command DROP followed by the object you want to drop, or delete, and then the name of the object.

USE Master
GO
DROP DATABASE ApressFinancial

You may be thinking that it is a lot of work to type in the CREATE DATABASE T-SQL statement when there is a
quick and simple screen that can do the job for you. This is true; however, there are limitations to using the screen
that sometimes make T-SQL the better option. I have mentioned before that by using T-SQL you can place code
in programs. You will see how to do that in Chapter 20. Using T-SQL also enables you to store the code in a source
repository such as Visual SourceSafe that then allows you to track any amendments to the database code as you
release upgrades to your application. T-SQL can also be read by other developers to ensure the code is delivering what
is expected. Finally, in some institutions, auditors will visit your premises to check code releases to ensure that the
release code matches what was sought.

Chapter 3 ■ Database Design anD Creation

91

Summary
In this chapter, you looked at designing and creating the example database. Though just a sample database, it still
required careful thought. The chapter discussed the different types of database and that the book will be working with
an OLTP based database. You saw how some basic database designing was achieved. Although this is a much larger
process in real life, enough was covered to talk about data gathering, normalization, and how the data will be stored.

You also saw a discussion on relationships and keys and what types of keys there are. Finally, a database was built
and the possible options were discussed to give you a solid base of understanding of databases. In the next chapter,
you will take a look at security and start investigating how to ensure your database is safe and secure from within and
outside your organization.

93

Chapter 4

Security and Compliance

Security is important—more so, in fact, than design, creation, and performance. If your database had no security
measures in place, absolutely anyone could come along and steal or corrupt the data, causing havoc to you and your
company—and not in just one database, but in every database in every server.

Security can be enforced in many ways on SQL Server: by Windows itself through Windows authentication; by
restricting users’ access to sensitive data through views; by specifically creating users, logins, and roles that have
explicit levels of access; or by encrypting your database, logs, and files.

This chapter covers some parts of security, although it is impossible to talk about every area of security, mainly
because you haven’t seen much of SQL Server’s feature set yet! In Chapter 1, you looked at the difference between
Windows authentication and SQL Server authentication, so already you know your options with regard to the type of
security you might want to use. In this chapter, you’ll go deeper. You will see security mentioned at some other points
in the book, where relevant, to give you a good level of knowledge about securing your database solution. You will also
see a section in Chapter 14 of the book once many of SQL Server’s features have been covered.

You will also learn about Declarative Management Framework (DMF). In the past, a database administrator
had to write tools and monitor systems to ensure that any new database created in production was created with the
right options. The database administrator also had to monitor to ensure that items were not being created when they
should not be. Now it is possible to create rules on databases, tables, views, and so on to check whether an object in
question is compliant with standards defined by those rules. If an object isn’t, then you will be notified and a simple
click will allow changes to be made to bring the object back into alignment with the policy.

By the end of this chapter, you will have dealt with the following:

Logins for individuals and groups•	

Roles at the server, database, and application level•	

Schemas•	

Applying policies to your database to ensure compliance•	

Encryption within the database•	

The first area of security and compliance you need to understand is what roles and logins are.

Logins
The only way anyone can connect to SQL Server is via a login. As discussed in Chapter 1, this doesn’t necessarily
mean that every user has to have a specific login within SQL Server itself. With Windows authentication, if a Windows
user belongs to a specific Windows group, just by belonging to that group, provided that group is contained within
SQL Server, the Windows account will have access to SQL Server.

Chapter 4 ■ SeCurity and ComplianCe

94

Note ■ all groups discussed within the book are created on the local computer. in organizations, you will find that
groups will be created on the network domain and Windows users added to the necessary groups. users can be added to
multiple groups.

When a database is created, initially only the database owner and system administrator (sysadmin) has any rights
to complete any task on that database, whether that be to add a table, insert any data, or view any data. This was the
case when you first created your ApressFinancial database in Chapter 3. It is only when the database owner grants
permissions to other users that they gain extra access to complete tasks.

It is common practice to create a Windows group and place Windows user accounts into that group. In a
networked organization, you would create a domain group and place the specific user into that domain group.
However, I am demonstrating on a local non-domain setup. In a network domain, the steps will be similar; the main
difference is that you will have to complete the steps using utilities such as Microsoft Active Directory. Using Windows
groups is not mandatory, though, and it is possible to add a login for individual Windows users. You can also have a
mix of groups and individuals. However, as you proceed through the chapter, you will see the benefit of groups and
the large amount of overhead you may have to incur when using individual logins.

Using Windows groups is how I wish to work with the ApressFinancial system, so I will create some Windows
groups for it. I will group logins depending on which department the login relates to and what I want to allow each
group to do. I will allow some groups to add new financial products and other groups to add customers, and, finally,
I’ll set up a group for batch processes to add interest and financial transactions. I will create a few of these groups so
that later in the book you can see security in action.

On some versions of Windows, such as Windows 7 Home or Windows 8 (standard), creating groups is not
possible. By not having the ability to create groups, each user who is required to access the database needs to be
defined individually. I tend to find that developers who are building databases at home with SQL Server Express
Edition fit this category.

Note ■ the process you are about to go through would be the same if you were adding a single user.

trY It OUt: GrOUpS, LOGINS, aND SQL SerVer aCCeSS

1. navigate to your Control panel and then select administrative tools ➤ Computer
management.

2. this brings up a screen that shows different aspects of your computer management. i am
interested in selecting local users and Groups. When you do so, you will see that there are
already several groups within your computer, as shown in Figure 4-1. if you installed features
more than the default required for the book, such as Full-text Service or analysis Services,
you will see a larger number of groups already defined for the use of SQl Server. these
groups differ from groups that we will be defining for accessing the data.

Chapter 4 ■ SeCurity and ComplianCe

95

3. mSmith is a product controller in the fictitious corporation and can add new corporate
financial products. right-click Groups and select new Group. this brings up the new Group
screen, as shown in Figure 4-2, where you can add your grouping for the product controllers.
Apress_Product_Controllers is the group you will use in this chapter.

Figure 4-1. List of groups on the computer

Chapter 4 ■ SeCurity and ComplianCe

96

4. By clicking add, you can then add all the Windows user accounts that you need to be part
of this group. you can either type mSmith or click advanced, which brings up a selection
dialog box. if you click Find now, as i assume that there will be only a few accounts on your
computer if you are working locally, you should find mSmith. Clicking the Check names
button adds the object names text box, as shown in Figure 4-3.

Figure 4-2. Adding the first group for your application

Figure 4-3. MSmith found, ready to add to the group

Chapter 4 ■ SeCurity and ComplianCe

97

if mSmith were on your company network, you may have to prefix the name with the domain
name, and you definitely would if the account were on a different domain. For example, if
you had a network domain called Apress, and mSmith were on that domain (as opposed to
your local computer and therefore your local domain, as is the case for this example),
then you would type apress\mSmith. Figure 4-3 shows mSmith is on the FAT-BELLY-SONY
local domain.

5. Click oK and then click the Create button on the new Group screen. once you have created
the group, you should close the new Group dialog box, as you don’t want to create any more
groups at the moment. this brings you back to the Computer management dialog box, where
you see your new group added, as shown in Figure 4-4.

Figure 4-4. New group added

Chapter 4 ■ SeCurity and ComplianCe

98

6. you now need to add this group to SQl Server as a login. open SQl Server management
Studio and navigate to Security ➤ logins within object explorer. once there, right-click
logins, and then click new login, which brings up the dialog box shown in Figure 4-5.

Figure 4-5. Creating a new login

Chapter 4 ■ SeCurity and ComplianCe

99

7. Click Search to display the Select user or Group dialog box, where you will begin your search
for the group. this is very similar to the previous search box you saw but has been defined to
search for a user or built-in security principal. however, by default, the search will not search
for groups. you need to click object types and ensure the Groups option is checked on the
screen that comes up. you will then see Group added to the list of objects in the top text box,
as shown in Figure 4-6.

Figure 4-6. Searching for groups

8. By clicking advanced, you can refine the search for the group that is to be added rather than
typing it in. after clicking advanced, you can click Find now, is a button about halfway down
on the right, which will then list all of the group, user, and principal objects on your computer,
and the selected domain. highlight the following group—Apress_Product_Controllers, in
this case—as shown in Figure 4-7, and click oK.

Chapter 4 ■ SeCurity and ComplianCe

100

9. this brings you back to the Select user or Group dialog box, where you will see your group
has been added, as shown in Figure 4-8. you can then click oK.

Figure 4-7. Finding the Apress_Product_Controllers group

Figure 4-8. Group found, ready for adding

Chapter 4 ■ SeCurity and ComplianCe

101

Note ■ you are now back at the new login screen where the group will be populated. if you clicked oK at this point,
this would allow the group to connect only to SQl Server and nothing else. members of this group would therefore not
be able to do anything. While creating this login, i will not be demonstrating the Credentials section. this is used when a
login has to access external SQl Server resources.

10. you need to give this group access to the databases you wish to allow its members to use. it
is vital that you allow users or groups of users login access only to the resources they need
and don’t use the “allow everything, it’s easier” approach that i have seen on my travels.
you want your users to see only the ApressFinancial database. Click user mapping in the
left-hand list of items, and then, within the users mapped to this login section of the screen
shown in Figure 4-9, select apressFinancial.

Figure 4-9. Giving a login access to a database

11. Before you click oK, click the Script button at the top of the screen and choose to place the
script into a new query window. the SQl generated from Figure 4-9 follows. you will look at
it in more detail in a moment when you more closely examine adding a login, but you can use
this in the next section, as a basis of adding the next login. the code will be explained in
that section.

Chapter 4 ■ SeCurity and ComplianCe

102

USE [master]
GO
CREATE LOGIN [FAT-BELLY-SONY\Apress_Product_Controllers]
FROM WINDOWS WITH DEFAULT_DATABASE=[master]
GO
USE [ApressFinancial]
GO
CREATE USER [FAT-BELLY-SONY\Apress_Product_Controllers]
FOR LOGIN [FAT-BELLY-SONY\Apress_Product_Controllers]
GO

12. returning to SQl Server management Studio, you can see in Figure 4-10 that i have
moved to the Status page. here you can grant or deny access to SQl Server for a Windows
account, SQl Server login, or, in your case, Windows group. the second set of options is for
enabling or disabling SQl Server logins, which is ideal for when someone leaves the firm
if you are creating a login for a single user. the final set of options, specific to SQl Server
authentication, allows an account to be unlocked after it has been locked out either by too
many incorrect passwords or by someone with the authority to lock it.

Figure 4-10. Login status

13. you can now click oK to add the login. this will complete the addition to SQl Server.

Chapter 4 ■ SeCurity and ComplianCe

103

Now that you have created the new server login and placed it within SQL Server, you could within Windows now
switch the user account to MSmith and successfully connect. However, as MSmith, you would be able to explore only
the ApressFinancial database created in Chapter 3. As this is the ideal secure scenario, the task has succeeded in its
objective.

Note ■ as i mentioned at the start of this discussion, the process of creating a login would be the same if you wished
to add a single user.

What has been described in the preceding exercise is Windows authentication. For SQL Server authentication,
each user needs to be added separately. The process is very similar to that for adding users with Windows
authentication, but you can specify a password expiration and enforce password complexity. This forces the Windows
password policies for expiration and complexity that exist on the local computer or domain to apply to this login’s
password.

So now that you have added a server login graphically, the same can be achieved via a query pane using T-SQL
code. You saw the code generated from my computer when I took this from the scripting option, and you will use it as
the basis of your next login creation to demonstrate using T-SQL this time. This is a very straightforward process, so
let’s take a look at it next.

trY It OUt: prOGraMMatICaLLY WOrKING WIth a LOGIN

1. From SQl Server management Studio, select new Query. this brings up an empty
query pane.

2. it is necessary to add a second login group for the book example. you have available two
different methods to create the login via t-SQl, and which one you use depends on whether
you are going to use Windows authentication or SQl Server authentication. the first example
takes a look at the Windows authentication method. locate the code from Steps 10 and 11 in
the previous “try it out: Groups, logins, and SQl Server access” exercise (it is repeated here
for ease of reference).

USE [master]
GO
CREATE LOGIN [FAT-BELLY-SONY\Apress_Product_Controllers] FROM WINDOWS
WITH DEFAULT_DATABASE=[master]
GO
USE [ApressFinancial]
GO
CREATE USER [FAT-BELLY-SONY\Apress_Product_Controllers]
FOR LOGIN [FAT-BELLY-SONY\Apress_Product_Controllers]
GO

Chapter 4 ■ SeCurity and ComplianCe

104

3. you can now alter this code to create a group that will be defined for users wishing to
view customers and their information that could be used in call centers, for example. Just
to remind you that a group is being created so that you do not need to create a login for
each person in that call center. also, this time you are going to set the database that will be
connected to by default by this login to the ApressFinancial database. this is so that user
groups do not connect to a system database as they should have no reason for any user
to connect to a system database. For developer groups, you can, and in some companies
you will, make the login connect to a system database, such as the master database, by
default. then, if the default login user database is dropped or is offline, the logins can still
log in without a problem. developer accounts quite often are defined to connect to a system
database, such as the master database, but user and system logins are not and are defined
to log in to the user database. Before entering the following code, you will of course need
to add the new group, Apress_Client_Information, within your Computer management
icon found in the administrative tools of the Control panel first (see the “try it out: GroupS,
loGinS, and SQl SerVer aCCeSS” exercise earlier for more on this specifically—steps 1–5).
once you’ve done this, enter the following code in a new Query editor window (don’t execute
it yet):

CREATE LOGIN [FAT-BELLY-SONY\Apress_Client_Information]
FROM WINDOWS
WITH DEFAULT_DATABASE=[ApressFinancial],
DEFAULT_LANGUAGE=[us_english]
GO

the format of this syntax is straightforward. in this case, CREATE LOGIN instructs SQl Server
that you want to create a new login called FAT-BELLY\Apress_Client_Information,
where FAT-BELLY-SONY is the name of the network domain in which the Apress_Client_
Information group can be found. you should change the prefix to match your own setup.
here the definition appears surrounded with optional square brackets in case of spaces in the
name.

next, the keywords FROM WINDOWS inform SQl Server that you are creating a login with
Windows authentication. after that, you define the name of the database that the login will
connect to when a connection is made using WITH DEFAULT_DATABASE. Finally, the second
option specifies the default language the connection will use, although it is possible at any
time to alter the language using the Set language option. this allows this group to connect to
SQl Server. defining the default language is optional and will take the server language.

4. once you have placed the code in your query pane, you can execute it by pressing F5 or by
clicking the execute button on the toolbar. once it finishes executing, you should see the new
login in the Security node within object explorer on the left, as shown in Figure 4-11. if you
right-click the new login and select properties, you will see the same screen and details as
you saw when you created the login graphically.

Chapter 4 ■ SeCurity and ComplianCe

105

Figure 4-11. Both logins created

5. you can then enable the login’s ability to access SQl Server or disable it by using the ALTER
LOGIN command. it is also possible to alter the login’s default database. in the graphical
example, if you check back to Figure 4-5, you will see that the default database found near
the foot of the graphic was called master. it would be better for the login to connect to the
correct database as this is a user-based login rather than a developer login. the following
code informs SQl Server that it should connect your login to the ApressFinancial database
by default, rather than the master database as defined previously. remember to change the
prefix as appropriate:

ALTER LOGIN [FAT-BELLY-SONY\Apress_Product_Controllers]
WITH DEFAULT_DATABASE=ApressFinancial

6. the final piece in the jigsaw is to grant the Windows account access to the database, which
will then allow the login to use the ApressFinancial database. to do this, you need to
switch from the master database to the ApressFinancial database with the USE keyword
followed by the name of the database.

using CREATE USER, you can then specify the name of the user you want in your database.
the standard procedure is to use the same name as the login, which makes life so much
easier when maintaining the system in general. you then use FOR LOGIN to define which
server login you want to map to this database user:

USE ApressFinancial
GO
CREATE USER [FAT-BELLY-SONY\Apress_Client_Information]
FOR LOGIN [FAT-BELLY-SONY\Apress_Client_Information]
GO

Chapter 4 ■ SeCurity and ComplianCe

106

Server Logins and Database Users
As you now know, there are two steps to complete, whether you want to create a login based upon SQL Server
authentication or Windows authentication. The first step is to create a server login, which was the first part of creating a
login that you went through. A login is also quite different from a user, and the two may look the same, but this is not the
case. With a login, you can connect to SQL Server, but a user is an account that is database-specific. The two may have
exactly the same name, and this can cause confusion, but a login cannot connect to a database or perform database
actions without an association with a valid user account. A server login is one that, when used, can connect only to the
server itself. It cannot use any of the user databases within SQL Server. The second step is creating the database user; in
the graphical section that you looked at first, this is when you selected the databases you wanted to use.

Within SQL Server, permissions can be granted at multiple levels, including the server and database levels.
Examples of server-level permissions include creating new logins or managing server properties. Examples of
database permissions include being able to read data from a table or being able to create new tables. One server
login can be associated with multiple users in different databases. Generally, when using Windows authentication,
a database username is the same as the login name, but this does not have to be the case. It does, however, simplify
administration. In this book, I will mostly be dealing with database-level permissions, but I will briefly examine server
roles in the following section.

Roles
Three different types of roles exist within SQL Server: fixed server roles, database roles (which are the general roles
included during installation of SQL Server, component-specific roles such as those for Reporting Services that are
added when the component is installed, and user-defined roles), and application roles.

Fixed Server Roles
Within SQL Server, specific predefined roles are set up to allow certain tasks and to restrict other tasks. Someone with
the right permissions, such as a sysadmin, can assign these roles to any login ID within SQL Server.

Note ■ these are server roles and therefore are assigned to logins.

If you look at the Server Roles node in Object Explorer, you will see a list of roles as shown in Figure 4-12. But
what do they mean? You get a little hint within the Server Roles node within SQL Server Management Studio.

Figure 4-12. Fixed server roles

Chapter 4 ■ SeCurity and ComplianCe

107

These roles, available for anyone to use across the server, can perform the following tasks:

•	 bulkadmin: Run BULK INSERT statements. These are statements that load large amounts of
data in bulk with almost no transaction logging very quickly.

•	 dbcreator: Create, alter, or drop databases as well as restore them

•	 diskadmin: Administer disk files

•	 processadmin: Kill a process running T-SQL code

•	 public: Every login belongs to the public role. Has the ability to view database permissions but
by default can perform no other tasks. If you add the public role to any task or object, be aware
that every login will have the ability to perform what has been assigned and therefore could be
a huge security risk.

•	 securityadmin: Manage logins including passwords for SQL logins and login permissions

•	 serveradmin: Administrate the server and carry out tasks such as changing options and even
starting and shutting down the server

•	 setupadmin: Work with more than one server with which anyone in this role can add, remove,
and manage linked servers

•	 sysadmin: Perform any activity. BUILTIN\Administrators, which is the Windows
administrator account, is not added to this role automatically; however, if you want an
administrator of the server to be able to connect to your SQL Server, then adding
BUILTIN\Administrators is possible and is suggested by Microsoft. I personally would not
add the BUILTIN\Administrators group, as I believe that it is a security risk that can be
reduced by having a specific group.

Server roles are static objects. They contain groups of actions that operate at the server level rather than at the
database level. When creating a new login, you could assign these server roles to it if you wanted the login to carry out
server actions as well as any database-related actions, if required.

Database Roles
Database roles deal with actions that are performed at the database level. Actions within SQL Server can be grouped
into different types.

The following bullet points list the existing database roles installed with SQL Server and what they can or cannot do:

•	 dbo/db_owner: Specifies the owner of the database

•	 db_accessadmin: Can manage access to a database for logins

•	 db_backupoperator: Can back up the database

•	 db_datareader: Can read data from all user-defined tables

•	 db_datawriter: Can perform any write actions to user tables

•	 db_ddladmin: Can perform Data Definition Language (DDL) actions such as creating tables

•	 db_denydatareader: Cannot read data from user tables

•	 db_denydatawriter: Cannot write data from user tables

•	 db_securityadmin: Can modify database role membership and manage permissions

•	 public: Can see any database objects that are created with public, or full rights, access (every
user that you create will belong to the public database role)

Chapter 4 ■ SeCurity and ComplianCe

108

Although you will put the existing database roles to use, you’ll find it helpful to create new database roles—a
common task in SQL Server—when you want to be very specific about permissions particular users have. You do this
by creating a specific database role and then adding the database user IDs to your role. If you wanted to group several
user IDs together, then you might create a new role.

Application Roles
Databases are written for applications. However, not all databases exist for just one application. Application roles
allow you to define one role for accessing a database based on the application that is connecting, rather than having
security via database roles for different groups of users or single users. Let’s look at an example.

Consider a central database that holds client data. This database is in turn accessed from the sales order
department, which has its own separate database. The client database is also accessed from the debt recovery
department, which also has its own database.

As a database administrator, you may set up database roles for each application. Say you have a Debt Recovery
database role and a Sales Order Processing database role. Debt Recovery would want to see information that was
hidden from the Sales Order role, such as how in debt a customer is. But what if a user, such as MSmith, worked in
both the debt recovery and sales order departments, in two different part-time jobs, for instance? While working as
part of the Sales Order group of users, MSmith could see information that was not pertinent to that group.

You can set up an application role for the Sales Order application and another for the Debt Recovery application,
thus removing the conflict of having two different sets of security settings for the one user login. Also, when users
move departments, you are not wasting time revoking one set of database roles to give them a new set of database
roles for their new department. The security is controlled via the application as it would log on to the database via an
application role.

An application role overrides any user security settings and is created for giving an application access to SQL
Server. Therefore, the Sales Order Processing application would define the access for anybody using it.

An application role has no users; it is used when you wish to define what an application can access within your
database and what it cannot. You need to create an application role for examples shown later in this book, so let’s do
this now.

Chapter 4 ■ SeCurity and ComplianCe

109

2. Click Securables in object explorer on the left-hand side, and then click Search. this is how
you begin to define what objects you want to assign to this role.

3. in the add objects dialog box that appears, leave the options as they are shown in
Figure 4-14 and click oK.

Figure 4-13. Creating a new application role

trY It OUt: CreatING a NeW appLICatION rOLe

1. navigate to the ApressFinancial database, expand the Security node, right-click roles,
select new, and then new application role. in the dialog box that appears, enter a useful role
name and a password, as shown in Figure 4-13. this role will be for the banking application
through which users will want to look at checks, cash withdrawals, and so on.

Chapter 4 ■ SeCurity and ComplianCe

110

4. Select all object of the types and click oK, which will bring up a list of objects that you can
select from. Since you don’t have much within your database that you can apply permissions
to at this point in the book, select databases, as shown in Figure 4-15, and click oK. you
are going to give this application authority to access your database, but not the ability to do
anything (mainly because you don’t have anything it can do yet).

Figure 4-15. Selecting the database

5. By clicking oK once you have selected databases, which brings you back to the Securables
page, where you can allow or deny specific actions, as you see in Figure 4-16. leave
everything unchecked for the moment; you will come back to this later in the book when you
look at stored procedures in Chapter 14.

Figure 4-14. Selecting the type of objects to add

Chapter 4 ■ SeCurity and ComplianCe

111

6. Click oK to finish creating your application role.

Schemas
In the following chapters, you will be creating SQL Server objects to hold and work with your data. You could
create these objects so that each could be seen as its own small part of the overall solution. It would make for better
organization, though, if objects that could be seen as subsets of the whole solution were grouped together. For
instance, in your example, you could group share details and share prices together as share information, or group
the financial transactions the customer makes using the transactions and transaction types tables together. These
groupings could then be used as the basis of security to the underlying data for when a SQL Server connection tries
to access the data. These groupings I have just talked about, called schemas, exist at the database level within SQL
Server. Therefore, a schema is a method of creating a group and placing objects within that group, which can then be
used to grant or revoke permissions as a group to SQL Server connections. You may find some applications where the
database has only one schema for every table as the team found that their application security was such that it was
simpler to have everything under one umbrella. Whatever the decision all database objects must reside in a schema.
My advice to you on whether to break out objects to different schemas or to hold in one schema would be to use
multiple schemas where you can place an object in to a specific logical scope. Try to avoid schemas that are named to
cover multiple functional scopes.

Figure 4-16. Application roles’ explicit permission settings

Chapter 4 ■ SeCurity and ComplianCe

112

Prior to SQL Server 2005, each object was owned by a user account. Whenever a user left, quite often it would
mean moving the ownership of objects for that user’s account to a new account. As you can imagine, in a very large
system this could take hours or even days to complete. Now objects are owned by schemas, and the many objects
that exist will be contained within one schema in a very large system. Although a schema will still be owned by a SQL
Server account, as you will see when you take a look at the syntax in a moment, the number of schemas should be a
fraction of the number of objects, even in very large systems, and therefore moving ownership will be easier and faster.

So by having a schema within your solution and assigning objects to that schema, not only are you improving
security, but also you are grouping logical units of the database together, making your solution easier to understand
and use.

Creating a schema is very simple, and the syntax is defined as follows:

CREATE SCHEMA schema_name AUTHORIZATION owner_name

You can now put this in action.

trY It OUt: CreatING SCheMaS aND aDDING OBJeCtS

1. open up a Query editor window so you can create your first schema. this schema will be
used to keep all your transaction details together. enter the following code:

USE ApressFinancial
GO
CREATE SCHEMA TransactionDetails AUTHORIZATION dbo

2. When you execute this by pressing F5 or by clicking the execute button, you should see it
successfully complete. this will have created a new schema where the owner of the schema
is the dbo user. this means that any login with sysadmin privileges will automatically have
access to this schema because it maps to the dbo user in all databases. if you execute the
code successfully, you’ll see the following message:

Command(s) completed successfully.

3. you can then create further schemas for other groupings, such as one for share details or
customer details including products. enter the following code:

CREATE SCHEMA ShareDetails AUTHORIZATION dbo
GO
CREATE SCHEMA CustomerDetails AUTHORIZATION dbo

4. execute this code, which adds the schemas to the database. if you execute the code
successfully, you’ll see the following message:

Command(s) completed successfully.

5. if you move to object explorer, you can see your schemas in place, as shown in Figure 4-17.

Chapter 4 ■ SeCurity and ComplianCe

113

Before You Can Proceed with Your Solution
You have now created a database and gained an understanding of the different roles in SQL Server at both the server
and database level. Before you can proceed and create objects such as tables, you need to clear a couple of obstacles.
After the database, the next objects you will create are tables, which you will learn about in Chapters 5 and 7. So what
security considerations do you need to check before you can do this?

First of all, you must be using a database user account that has the authority to add tables to the specific database
you are required to—in this case, ApressFinancial. This is the next security issue you will tackle, and you should
keep in mind what you have learned about accounts and roles in this and the previous chapter. You also need to have
access to that specific database. Let’s look at the issue of access to the database if you are using a user ID that did not
create the database.

The database was re-created at the very end of the previous chapter under user ID FAT-BELLY-Sony\Robin.
The user who created the database is the database owner, also known as dbo. So how can you check who created the
database if you did not?

At the end of the previous chapter, I asked you to create the database under your own user ID, which, if you
followed the instructions so far and you are a local administrator of the machine SQL Server is installed on, you
should have the right privileges within SQL Server to do the check. In your organization, this is more likely to be a
specific but generic Windows user account not linked to a physical person. For example, you might have a specific
DBO user account used for DBO-based actions restricting who can perform DBO-based tasks.

The following exercise will demonstrate how you check the identity of the database owner.

Figure 4-17. Schemas applied

Chapter 4 ■ SeCurity and ComplianCe

114

trY It OUt: CheCKING the DataBaSe OWNer

1. ensure that SQl Server management Studio is open.

2. navigate to the database that you wish to check on—in this case, ApressFinancial.

3. Click the ApressFinancial database node in object explorer on the left-hand side of the
screen once, and then right-click.

4. Select properties to bring up the database properties dialog box shown in Figure 4-18.
on the General tab, you will see an item named owner. this is the fully qualified account
preceded by the domain or local machine name.

Figure 4-18. Database Properties window

5. Click Cancel to close this dialog box.

Chapter 4 ■ SeCurity and ComplianCe

115

Ownership of tables and other database objects is just as important. If you create a table using the same user
ID as that which you created the database with, or use a user ID that is a member of the sysadmin role that is also
implicitly mapped to the dbo user in the database, the table will have a default schema of dbo. However, if you logged
in with a different user ID that was not a dbo user but had sufficient privileges such as db_creator server role, the
table would have that user’s default schema as the prefix to the table name, replacing the dbo prefix.

Now that you know who the database owner is, it is up to that user, or another user who has system
administration rights (in other words, a login that has the sysadmin server role or a user ID that has the db_owner
database role), to allow any other specified user the ability to create tables within the database. You have a user
called MSmith who is not a system administrator, but a developer. Recall you created this user as a Windows user in
Chapter 1, and that this user could not log in to SQL Server.

The next section will go through a scenario where, as a developer, MSmith has no rights to create any new items.
However, you will rectify this situation in the next exercise, where you will alter MSmith’s user privileges so that he or
she can connect to SQL Server and create a table.

trY It OUt: aLLOWING a USer tO Create a taBLe

1. log on to SQl Server as a sysadmin if required. (however, you are probably already logged in
as a sysadmin if you are following the book.) Create a new login by right-clicking the logins
node on the Server Security node and selecting new login. this brings up the new login
screen, which you can populate with the login name of the account by typing in the details
of the login, as shown in Figure 4-19, or by searching for the object using the button to the
right. you are also going to allow this user to connect to ApressFinancial by default when
he or she logs in. once you are ready, click oK.

Figure 4-19. New login

2. you are not going to assign this user any server roles, but you are going to assign this login
to the db_owner database role, as you see in Figure 4-20 in the user mapping section. this
will allow the user to create tables as well as create and work with other objects and data.
you could have selected db_ddladmin, but this would have allowed the user to create only
objects and not data.

Chapter 4 ■ SeCurity and ComplianCe

116

Note ■ recall in the introduction to this section in “Before you Can proceed,” i said that you would give a db owner to a
system account for dBo work; what you are doing in this exercise is similar to that task.

3. Click oK, which will create not only a server login, but also a database user in
ApressFinancial for mSmith, as shown in Figure 4-21.

Figure 4-20. New login with database access

Chapter 4 ■ SeCurity and ComplianCe

117

Figure 4-21. User login accounts

mSmith is now in a position to log in to SQl Server and create tables in the ApressFinancial database.

Declarative Management Framework
The security of a database does not just involve ensuring that only the correct people can log in to the system and see
only the data that they are authorized to see. Security also involves knowing that the basis of the data has met certain
defined compliance criteria. This comes under the header of Declarative Management Framework (DMF). SQL
Server’s DMF allows policies to be defined to ensure that SQL Server objects follow a defined set of rules. These rules
are not compulsory, but rather generate warnings showing that you are not in compliance. DMF also includes tools to
rectify such problem situations. The logic behind DMF is for administrators to determine how an installation should be
defined as part of its setup and to then have the ability to enforce the rules of their definition should they be violated.

There are three aspects to DMF, and you must understand all three before you can make DMF work for you:

Facets: A facet is a grouping that exists to place conditions into. Facets are prebuilt within
SQL Server and expose conditions that can be tested within a policy. Each facet group will
contain logically combined conditions. One example is the Login facet, which contains
conditions to test whether a login is locked, the default database, the last time the password
was altered, whether password expiration is enabled, and so on.

Policies: A policy defines one or more conditions to be applied to a server. Policies will be
defined by database administrators, or even auditors, to ensure that specified conditions
are met. Historically, one of the largest areas of contention with installations of SQL Server
has been that it required the database administrators to write their own stored procedures
and schedule them to ensure that every database complied with company policy. Now it is a
simple method of defining a condition and letting Service Broker execute and report on the
condition. The result is a greater degree of standardization, as well as ease of programming.

Conditions: A condition within DMF is similar to any other condition and is a test on an
attribute to make sure that it meets a certain criteria. A number of conditions for your
installations will be built up over time, and it is even good practice to set up conditions to
test the value of attributes that should be set by default. Such conditions could surround
the checking of the ANSI NULL default, for example. Such a condition would then trap for
any database where, even by accident, the tested value was altered as part of the setup.
Conditions need to be part of a policy.

Chapter 4 ■ SeCurity and ComplianCe

118

Figure 4-23. Creating a new condition

Figure 4-22. Creating a new policy

trY It OUt: BUILDING a CONDItION aND a pOLICY

1. ensure that SQl Server management Studio is open. there are two ways to progress with
this example. it is possible to create a condition and then the policy, or you can create the
condition while building the policy. there is no right or wrong way. For this example, you will
be building a condition while building the policy. From within object explorer, expand the
management node, followed by the policy management node, and then the policies node.
right-click policies and select new policy, as demonstrated in Figure 4-22.

2. you are now presented with an empty Create new policy screen. enter a description of
database anSi null default in the name. Below this, you will see the Check Condition
combo box, which holds the condition the policy is testing. When you click the down arrow,
select new Condition, as shown in Figure 4-23.

Chapter 4 ■ SeCurity and ComplianCe

119

3. Selecting new Condition takes you to the Create new Condition screen. it is then necessary
to enter a name and select the type of facet you wish to select for your condition. as you
are creating a database condition, select database options under the Facet option. you will
be testing that the database has been set up with AnsiNullDefault set to False, so in the
expression section, which has been filtered to show only the database options facets, select
the facet @AnsiNullDefault from the list of expressions (see Figure 4-24). then in the Value
column, select False from the list of available options. Give the condition a name—i gave it
database anSi null default—and once complete, click oK.

Figure 4-24. The Create New Condition screen with the description and test expression

4. Clicking oK returns you to the new policy screen, which should be like the one shown
in Figure 4-25. the enabled box is protected because the policy is to run on demand. if
you wanted to run the policy at set periods, then you would select a schedule option from
the evaluation mode found toward the bottom of the dialog. the Check Condition combo
box should be populated, and in the against targets list, the condition should check every
database as the database server. you could also refine this condition to only databases that
are over a certain size or to online databases.

Chapter 4 ■ SeCurity and ComplianCe

120

5. once you click oK, you should notice both the policy and the condition listed, as shown
in Figure 4-26. at this point, nothing has been tested and no policy or condition has been
checked against any database.

Figure 4-25. New Policy screen that sets the condition

Figure 4-26. New policy in Object Browser

Chapter 4 ■ SeCurity and ComplianCe

121

Tip ■ once a policy is built, you can export it to then import in to other servers by highlighting the specific policy,
right-clicking and export. apress has published a policy-based book called Pro SQL Server 2008 Policy-Based
Management, which is still relevant today.

6. now to test the policy and its condition. Find the ApressFinancial database, and select
properties, as shown in Figure 4-27. you are going to alter the AnsiNullDefault option on
the database to break the policy. Select options from the page list on the left.

Figure 4-27. Opening the database properties

Chapter 4 ■ SeCurity and ComplianCe

122

Figure 4-28. Altering the database property to break the condition

7. in the options page, scroll down to the miscellaneous section and switch ANSI NULL
Default to True, as shown in Figure 4-28. Click oK.

Figure 4-29. Finding the policy and testing it

8. now that the database is no longer compliant, you need to run the policy and test it. running
the policy normally would be a task scheduled at periodic times, with the results sent to the
relevant person. you can schedule the running of a policy by using a job to build the script.
you will learn about the use of jobs in Chapter 9, when you see how to back up and restore
a database. For the moment, as demonstrated in Figure 4-29, highlight the policy, right-click,
and select evaluate from the pop-up menu.

9. you are now presented with the results of the evaluation, and you should see something
similar to the results shown in Figure 4-30, which demonstrate that your database is out
of policy with the red ball and white cross denoting an error. if you click View in the target
details section in the lower half, you will be shown a set of more detailed results of the
results of the conditions within the policies.

Chapter 4 ■ SeCurity and ComplianCe

123

Figure 4-30. The results of the test in the evaluation window

10. it is not necessary to close this dialog and to correct every failure manually one by one.
to clean up your database of all policies that you have set up that have failed, even if there is
just one, as you have built in this example, ensure the check box for each failure is selected
and click the apply button, as shown toward the right in Figure 4-31. you are then presented
with a confirmation dialog, and clicking yes will apply the correction required to the database
so that it conforms.

Chapter 4 ■ SeCurity and ComplianCe

124

Encryption
At this point, you are probably feeling your database is pretty secure, and it is. You have restricted who can log on
to the server and who can connect to the database. However, if someone steals the media your database or backup
is held on, then someone could take this and restore it to their own server. This isn’t as impossible as it may sound
as many large corporations hold their data in a separate location from their head office. Of course they will be very
secure locations with tight controls in place, but if your data is of a highly sensitive nature, you should consider
real-time data and transaction log encryption.

Note ■ to achieve data encryption, a key and a certificate needs to be created on the database and a key applied. you
must store the key safely away from the database on a separate media item so that if the media with the encrypted data
is stolen, the chances of finding the key on a second media item is reduced. i will not encrypt the ApressFinancial
database as it is a complication not needed for this database or while you are learning. there is an excellent book from
Apress called Expert SQL Server 2008 Encryption by michael Coles and rodney landrum, two great, authors which
is still relevant today.

Figure 4-31. All is well with your database

Chapter 4 ■ SeCurity and ComplianCe

125

Summary
There is a great deal to cover concerning security and its different aspects. I would like to recap everything that we
have seen just for one last time to ensure that you understand how everything fits together.

Before you can connect to SQL Server, an administrator of the SQL Server installation must give you permission
to connect. In a Windows authentication setup, the administrator would either allow your Windows account or a
group that contains your Windows account to connect to SQL Server. He or she can do this by either using the GUI
and creating a login via the Security node or using the CREATE LOGIN ... FROM WINDOWS T-SQL statement. If you are
in a SQL Server authentication setup, then a user ID and password would be created within SQL Server, again either
via the Security/Logins node or by using the CREATE LOGIN ... PASSWORD = 'password' syntax.

Once a connection has been made, you can create a user login within the database using the CREATE USER ...
syntax. This allows either the Windows account or the SQL Server login access to the database.

It is then possible to place the user into a role: either a predefined role or, more likely, a custom role that you
create. This role can be used to determine what can and cannot be accessed within SQL Server tables, views, stored
procedures, and any other object. Therefore, a role allows groups of users in one statement to be granted or revoked
access to objects within SQL Server. Without roles, as new people join and as others leave, or as people move between
departments, you would need to grant or revoke privileges as required—quite an onerous task.

Finally, when creating objects, as you will see in the next few chapters, these objects are owned by schemas.
This allows for groups of objects to belong to a specific schema rather than a specific user login. This also reduces
the overhead of granting privileges and allows the grouping of objects that belong together, making your application
easier to understand.

This chapter continued your coverage of security within SQL Server. At this point in the book, you now know
about SQL Server authentication and Windows authentication, and you have discovered how to control access to
databases. The discussions on security are by no means finished because there are still several areas that we need to
explore together, which we will do as we go through the book.

Security is the most important part of ensuring that your organization continues to have the ability to work. A
security breach could result in lost income and will certainly mean that many people will be unable to do their work. It
can also lead to unfulfilled orders, backlogs, or even fraudulent transactions. Regardless of whether you have the most
well-designed database or the most poorly performing application ever, if you allow the wrong person into the wrong
database, the result will be catastrophic.

The security of the database becomes a whole lot easier with the use of Declarative Management Framework
(DMF). By setting up policies using DMF, it is possible to instantly see which databases meet the necessary criteria
and which fail. It is then just a simple select-and-click to bring the database into alignment. Setting up correct policies
in the development and staging environments is just as crucial as in production because this will allow the correct
testing to take place before the database reaches production. Changing a setting in production on a failed condition
within a policy could have serious ramifications.

127

Chapter 5

Defining Tables

Now that you have created the database, it needs to have the ability to store information. After all, without this, what is
the point of a database? The first area that needs to be worked on is the table definitions.

To be functional, a database needs at least one table, but it can have many and, depending on the solution you
are building, the number of tables can become quite large. Therefore, it is important that you as a developer know as
much about tables, their structures, and their contents as possible. The aim of this chapter is to teach just that so that
you have a sound base to work from regarding tables. From this base, you can then create other associated objects
such as views, triggers, and so on.

The design of a table is crucial. Each table needs to contain the correct information for its collection of columns
to allow the correct relationships to be established. One of the skills of a database developer or administrator is to
ensure that the final design is the correct solution, hence avoiding painful alterations once further development of the
system is in progress. For example, if you designed a system where the table definitions had some major problems and
required columns to be moved around, you would have to revisit any applications using the tables. This can involve
an enormous amount of work. You learned about database design in Chapter 3; in that chapter, you also created the
database in which your tables will reside, so you know what tables you need and what data they will store.

So that we can successfully create a table, this chapter will cover the following topics:

How to define a table—disk- and memory-based•	

The different types of data that can be stored•	

How and where a table is stored—disk and memory•	

Creating a table using SQL Server Management Studio and Query Editor•	

Dealing with more advanced areas of table creation, including the following:•	

How to make a row unique•	

Special data states•	

Dealing with large text and binary data•	

What Is a Table?
A table is a repository for data, with items of data grouped in one or more columns. Tables contain zero or more
rows of information. You can think of an Excel spreadsheet as a table, albeit a very simple table with few or no rules
governing the data. If you look at Figure 5-1, you will see that the first three columns contain data that can be assumed
to be first name, last name, and date of birth, but the fourth column is free-format and varies between a hotel room
number, a house number, and a flat number. There is no consistency. In fact, in Excel, all the columns could in reality
contain any data.

Chapter 5 ■ Defining tables

128

What sets a table inside SQL Server apart from other kinds of tables is that a SQL Server table will have specific
types of data held in each column. A predetermined type of data defined for a column can never change without
affecting every row of data within that column for that table. If you use Excel, in a specific column you could have a
character in one row, a number in the next row, a monetary value in the following row, and so on. That cannot happen
in a database table. You can store all of these different values, but they would all have to be stored as a data type that
holds strings, which defeats the purpose of using a database in the first place.

At the time a table is created, every column will have a specific data type. Therefore, very careful consideration
has to be made when defining a table to ensure that the column data type is the most appropriate. There is no point
in selecting a generic data type (a string, for example) to cover all eventualities because you would have to revisit the
design later anyway. Leaving all data types as a string would cause problems with math functions, for example, when
you needed to add taxes to a price or when you wanted to add a number of days to a date for delivery times after an
order is placed.

A table’s purpose is to hold specific information. The table requires a meaningful name and one or more
columns, each given a meaningful name and a data type.

When it comes time to create a table, you do have to be connected to SQL Server with a login that belongs to the
correct server and a database role that can create tables, such as sysadmin or db_ddladmin. When you create a table,
it has to be owned within the database, and this is done by assigning the table to a schema. Recall that Chapter 4
discussed a schema for grouping objects to be used as a basis for object security. As a developer, grouping objects
together into a schema gives your database a more logical feel and will also allow you to reduce development time as
part of the natural order of objects.

Some data types have fixed storage specifications, whereas with other data types, you have to decide for yourself
how many characters the maximum will be. If you had a column defined for holding surnames, it would hold
character values. There would also be no sense in setting the maximum length of this column at 10 characters because
many surnames are longer. Similarly, there would be little sense in saying the maximum should be 1,000 characters.
You have to reach a sensible balance. Some of that balance will come from the data analysis, which you completed
in Chapter 3; some of the size setting will come from data that already exist either in a database you are expanding or
perhaps another database, as there will be similar data held. To expand on this point, if you were developing a sales
database, the size of a part item number would be defined from the inventory database, as this would hold all of the
part details including part number.

Note ■ even when working with variable-length data types for which you specify a maximum amount of characters
to be stored, sQl server still stores only the data you actually enter. thus, you can create a surname column to hold
up to 1,000 characters, and space is not wasted when most names are far shorter than that. however, you need to keep
a sensible and valid balance. a surname of 1,000 characters does not meet that balance.

Figure 5-1. Excel showing partial address details

Chapter 5 ■ Defining tables

129

The rows of data that will be held in a table should be related logically to each other. If a table is defined to hold
customer information, this is all it should hold. Under no circumstances should you consider putting information
that is not about a customer in the table. It would be illogical to put, for example, details of a customer’s orders within
it. When you are defining columns, avoid the temptation to use one column for more than one piece of information.
This is one of the easiest mistakes a developer can make. A column usage should be to hold one item type of data. For
example, a column created to hold the date an order was received could also be used to hold the date an order was
dispatched, but that would give you problems with knowing what the date being held actually was. Having separate
columns for these dates would keep things completely clear.

Note ■ there are two types of tables—system and user tables. system tables should never be accessed directly,
although some information is available through a system view.

With SQL Server, a second type of user table is available to you as a developer called a FileTable. This is a
specialized user table type that allows for files of unstructured data, such as Word documents and Excel spreadsheets,
that can be held within SQL Server for unstructured access. It is then possible for SQL Server to search these
documents using FILESTREAM technology. Within this book, I look only at traditional user tables.

Finally, there is third type of table called an in-memory table. I discuss this at length in Chapter 7 as there are a
number of areas that an in-memory table differs from a traditional disk-based table. Differences include data types,
mandatory requirements of the database and table that must be defined for you to be able to create an in-memory
table as well as the performance aspect. For the moment, be aware that tables and their data can reside on disk or
in-memory.

Note ■ although this chapter deals with disk-based tables, a great deal of the information does relate to both disk
and in-memory.

SQL Server Data Types
You have learned a great deal about SQL Server in the prior chapters before you have even created your first table.
However, it is essential to know all this information before creating a table and looking at the security of your database
to avoid any ramifications of it all going horribly wrong. You also now know why you have to be careful with users to
ensure that a user has enough security privileges to build tables. In this section, you will be introduced to the data
types that exist within SQL Server. Some of these can be defined as data types for columns within tables, and others
are used within T-SQL programs.

Defining a table can be completed either in SQL Server Management Studio, Query Editor, or in SQL Server’s
database designer tool. You can also create a table through a number of other means using SQLCMD, developer tools,
and languages, but these first three methods are the ones on which this book will focus. You will create the first table
with SQL Server Management Studio. This is the Customers table, which will hold details about each customer. But
before you can do this, it is necessary to look at the different types of data that can be stored.

Chapter 5 ■ Defining tables

130

Table Data Types
SQL Server has many different data types that are available for each column of data. This section will explain the
different data types and help choose the right type for each column. Data types described in this section are known
as base data types. This book concentrates on base data types only. However, it is possible to create your own user
data type, and there are advantages to doing so. If you want to have consistency over several tables, usually but not
exclusively on the same server for a specific type of column, then it is possible to create a data type and give it a name.
It can then be used when defining a table. An example is where you want all tax identifiers to be defined the same—
you would create a user-data type using a base data type as its type definition and then name it accordingly. Then
instead of using the base data type for any tax identifier columns, you would define the column with the user data
type. Once I have covered these base data types, you will see a demonstration of this.

Note ■ You can use .net to build more complex data types that also perform extra functionality.

You will find that several data types may look similar, but keep in mind that each data type has a specific use.
For example, unless you really need to define characters to be stored as Unicode, don’t use the N prefix data types.
Unicode characters use up more space than standard characters due to the potentially wide range of characters that
SQL Server has to store. Also, when looking at numbers, if the largest value you will store in a column is 100, don’t go
for the data type that will allow the largest number to be stored. This would be a waste of disk space.

Let’s take a look at the possible base data types you can use in a table. Afterward, you’ll see data types you can use
in a program, and throughout the book you will see several of these data types in use in the example.

Char/nchar
The char data type is fixed in length based on the length assigned at definition for the column and can hold a
maximum of 256 characters. If you define a column to be 20 characters long, 20 characters will be stored. If the data
entered is less than the number of characters defined, the remaining length will be space filled to the right. Therefore,
if a column were defined as char (10), “aaa” would be stored as “aaa”. Use this data type when the column data are to
be of fixed length, which tends to be the case for customer IDs and bank account IDs. If you define the column with no
length, a length of 1 will be defined. However, that is not good practice, and all lengths should be defined
for clarity.

Varchar/nvarchar
The varchar data type holds alphanumeric data, just like char. The difference is that each row can hold a different
number of characters up to the maximum length defined for the column. If a column is defined as varchar(50), this
means that the data in the column can be up to a maximum of 50 characters long. However, if you store a string of
only three characters, only three storage spaces are used up. This definition is perfect for scenarios in which there
is no specific length of data—for example, people’s names or descriptions where the length of the stored item does
not matter. The maximum size of a varchar column is 8,000 characters. However, if you define the column with no
size—that is, varchar()—the length will default to 1.

You can also use another setting that can exceed the 8,000-character limit, by defining the data type with the
constant max. If you know you will exceed the 8,000-character limit in at least one row, use this option. Finally, you
should use max for large blocks of text, because it will eventually supersede the text data type.

Chapter 5 ■ Defining tables

131

Text/ntext
The text data type holds data where the data are longer than 8,000 characters, but do not use this data type as it is
deprecated and will be removed. Use varchar(max) instead.

image
image is very much like the text data type, except it is for any type of binary data. However, like text and ntext, this
data type will also be removed and you should use varbinary(max) instead.

int
The int data type, or integer, is used for holding numeric values that do not have a decimal point (whole numbers).
There is a range limit to the value of the numbers held: int will hold any number between the values of –2,147,483,648
and 2,147,483,647.

bigint
The bigint data type, or big integer, is similar to int, except that much larger numbers can be held. A range of
–9,223,372,036,854,775,808 through 9,223,372,036,854,775,807 can be stored.

smallint
The smallint data type, or small integer, holds small integer numbers in the range of –32,768 through 32,767. Do take
care when defining columns with this data type, and make sure there really is no possibility of exceeding these limits.
There is always the danger when creating a column with this data type that you have to go back and change the data
type; so if in doubt, select int.

tinyint
The tinyint data type, or tiny integer, is even smaller than smallint and holds numbers from 0 through 255. It could
be used to hold a numeric value for each US or Canadian state or perhaps every county in the United Kingdom.

decimal/numeric
Both of these data types hold the same precision and ranges of data. The range is from –10 to the power 38 + 1 through
10 to the power 38 – 1. These are quite large ranges, from –0.00000000000000000000000000000000000001 through
10,000,000,000,000,000,000,000,000,000. However, do take care with this because you cannot store 38 digits to the right
and left of the decimal point. You can store only up to and including 38 digits. So, the greater the precision required to
the right of the decimal point, the fewer digits are left to represent the whole number.

Chapter 5 ■ Defining tables

132

float
For me, the float and real data types are the most dangerous of data types for a novice developer; they should be
used in the correct circumstances and should be avoided if complete accuracy is necessary. The float data type
is used for numbers where the decimal point is not fixed. float data types hold very large numbers in the range of
–1.79E+308 through 1.79E+308. There is a warning with this data type: the values cannot always be seen as 100%
accurate because they can be approximate. The approximation arises from the way the number is physically stored
as binary code. You will have problems where a number ends in .3, .6, or .7. The value stored has to be approximated,
or rounded, because some values can’t be stored accurately since they may have more decimal places than can be
catered to. A well-known example is the value of pi.

real
The real data type is very much like float, except that real can store only numbers in the range of –3.40E+38 through
3.40E+38. This data type also holds an approximate value. The real and float data types can look like the ideal data
type for their flexibility on the numerics they can hold, but look at other numeric data types when you need accurate
numbers.

money
The money data type is used for holding numeric values up to four decimal places. If you need to use more than four
decimal places, you need to look to another data type, such as decimal. This data type doesn’t actually store the
currency symbol to signify the monetary type, so you should not use this data type for different currency values.
The money data type has a range of –922,337,203,685,477.5808 through 922,337,203,685,477.5807. If you need to store the
currency symbol of the currency that is held here ($ or USD for dollars, £ or GBP for British pounds, and so on), then you
would need to store this separately because the money data type does not hold the currency symbol. A column defined
as money will hold the money to 1/10,000 of a decimal unit.

smallmoney
This data type is similar to money, with the exception of the range, which lies between –214,748.3648 and 214,748.3647.

date
The date data type has been built to hold a date from January 1, AD 1 through December 31, 9999. The format is
YYYY-MM-DD. Until SQL Server 2008, it was not possible to treat the date and time as two separate data types without
having to build such types yourself using .NET. As a result, in the past you were storing unnecessary data. For example,
it is common to see datetime columns holding only date values. This data type is a great advancement, as it reduces
confusion and gives the correct refinement for the data that the column contains.

datetime
The datetime data type will hold any date and time from January 1, 1753 through December 31, 9999. However,
it stores not only a date, but also a time alongside it. If you populate a column defined as datetime just with a date,
a default time of 12:00:00 will be stored as well.

Chapter 5 ■ Defining tables

133

datetime2
Similar to datetime, datetime2 is used to hold a date and a time. The main difference is that, with datetime2, the
fractions of a second can be held with greater precision. In addition, this type can also store a date from January 1,
AD 1 through December 31, 9999. The format is YYYY-MM-DD hh:mm:ss[.nnnnnnn].

smalldatetime
This data type is very much like datetime, except the date range is January 1, 1900 through to June 6, 2079. The reason
for the strange date at the end of the range lies in the binary storage representation of this datetime.

datetimeoffset
If you need to store a time relative to a specific date and time zone, you should define your column with this type.
The date and time are stored in this data type in Coordinated Universal Time (UTC). You define the amount of time to
add or subtract depending on the time zone to which the value should relate. For example, if you want to store 6 p.m.
on March 24, 2014 in US Eastern Standard Time, the value would be stored as 2014-03-24 13:00:00 +05:00. The +05:00
relates to the fact that US Eastern Standard Time is five hours ahead of UTC. The format for this data type is
YYYY-MM-DD hh:mm:ss[.nnnnnnn] [+|-]hh:mm.

time
If you just want to hold a time based on the 24-hour clock, you can define a column in this data type. The format is
hh:mm:ss[.nnnnnnn]. Similar to the date data type, this has been introduced to provide a column storing just the
time of day. As you can see from the format, a time column can hold up to a precision of 100 nanoseconds. This is
greater precision than is supported by the datetime data type.

hierarchyid
Prior to SQL Server 2008, producing a hierarchy of data could prove complex and usually had to involve a self-join of
the data. An example of a hierarchy of data would be the structure of employees in a company from the lowest-level
employee up through the management structure to the CEO. Now, however, it is possible to define a column of the
hierarchyid data type that will allow you to say how a given row sits in an overall hierarchy of rows. This data type is a
system variable length data type to a maximum of 892 bytes.

geometry
The geometry data type is a planar CLR data type that allows you to store geographical information in a “flat Earth”
way. Data within this data type can be one of eleven different geometry measurements including a point, curve, and
polygon, among others. It is possible to store only one type of measurement in each column defined, and part of the
data stored will be the definition of the type of data.

geography
This CLR data type stores “round Earth” data. Therefore, data are stored as degrees of latitude and longitude but use
the same type of measurement as the geometry data type.

Chapter 5 ■ Defining tables

134

Note ■ the geometry and geography data types require a chapter, if not a whole book, to understand and deal with
fully. they won’t be covered within this book, but they can be found in Beginning Spatial with SQL Server 2008, by
alastair aitchison (apress, 2009).

rowversion
This is an unusual data type as it is used for a column for which you would not be expected to supply a value. The
rowversion data type holds a binary number generated by SQL Server, which will be unique for each row within a
database. Every time a record is modified, the column with this data type in the record will be modified to reflect the
time of modification. Therefore, you can use columns with this data type in more advanced techniques where you
want to keep a version history of what has been changed.

Note ■ rowversion used to be called timestamp, and you may come across timestamp in databases created in
older versions of sQl server.

uniqueidentifier
The uniqueidentifier data type holds a globally unique identifier (GUID). This is similar to the timestamp data
type, in that the identifier is created by a SQL Server command when a record is inserted or modified. The identifier is
generated from information from the network card on a machine, the processor ID, and the date and time. If you have
no network card, uniqueidentifier is generated from information from your own machine information only. These
IDs should be unique throughout the world.

binary
Data held in this data type is in binary format. This data type is mainly used for data held as flags or combinations of
flags. For example, perhaps you wanted to hold flags about a customer. You need to know whether the customer is
active (value = 1), ordered within the last month (value = 2), placed the last order for more than $1,000 (value = 4),
or meets loyalty criteria (value = 8). This would add up to four columns of data within a database. However, by using
binary values, if a client had a value of 13 in binary, then he would have values 1 + 4 + 8, which means he is active, his
last order was more than $1,000, and he meets the loyalty criteria. When you define the column of a set size in binary,
all data will be of that size.

varbinary
The varbinary data type is very much like binary, except the physical column size per row will differ depending
on the value stored. varbinary(max) can hold values more than 8,000 characters in length and should be used for
holding data such as images.

bit
The bit data type holds a value of 0 or 1. Usually, bit is used to determine true (1) or false (0) values.

Chapter 5 ■ Defining tables

135

xml
XML data can be held in its own special data type rather than in a varchar(max) column. There are special query
commands that can then be used to query and work with this data. Prior to SQL Server 2005, XML data was almost an
afterthought with no data type, and earlier versions of SQL Server had extremely limited functionality to work with the
XML data that did exist.

Program Data Types
There are three more data types that can be used within a program, which we will take a look at now.

cursor
Data can be held in a memory-resident state called a cursor. It is like a table because it has rows and columns of data,
but that’s where the similarity ends. There are no indexes, for example. A cursor is used to build up a set of data for
processing one row at a time.

table
A table data type has similarities to both a cursor and a table. It holds rows and columns of data, but the data cannot
be indexed. In this case, you deal with the data a “set at a time,” like a normal table. You’ll learn about both the cursor
and table data types later in the book, in Chapter 17, because they are more advanced topics.

sql_variant
It is possible to have a data type that can hold a few different data types. I will be honest—I don’t recommend using
this data type because it shows you are unsure of your data and what type of data to expect. Before putting data into a
data type, you need to be sure what type of data you are getting. You can use sql_variant as a program data type or
a column data type, but the same argument applies in both cases. I won’t discuss this data type any further within
this book.

Columns As More Than Simple Data Repositories
Assigning a data type to a column defines what you expect the column to hold. But column definitions have more
power than just this. It is possible to fill the column with a seed value, or even with no value whatsoever.

Default Values
As a row is added to a table, rather than requiring developers to add values to columns that could be populated
by SQL Server, such as a column that details using a date and time when a row of data was added, it is possible to
place a default value there instead. The default value can be any valid value for that data type. A default value can be
overwritten and is not “set in stone”.

Chapter 5 ■ Defining tables

136

Generating IDENTITY Values
When adding a new row to a SQL Server table, you may want to give this row a unique but easily identifiable ID
number that can be used to link a row in one table with a row in another. Within the ApressFinancial database, there
will be a table holding a list of transactions that needs to be linked to the customer table. Rather than trying to link
on values that cannot guarantee a unique link (first name and surname, for example), a unique numeric ID value
gives that possibility, provided it is used in conjunction with a unique index. If you have a customer with an ID of 100
in the Customers table and you have linked to the Transaction table via the ID, you could retrieve all the financial
transactions for that customer where the foreign key is 100. However, this could mean that when you want to insert
a new customer, you have to figure out which ID is next via some T-SQL code or using a table that just holds “next
number” identities. But fear not, this is where the IDENTITY option within a column definition is invaluable.

Note ■ for those readers who have used Microsoft access, the IDENTITY keyword option is similar to autonumber.

By defining a column using the IDENTITY option, you are informing SQL Server of the following:

The column will have a value generated by SQL Server.•	

There will be a start point (seed).•	

An increment value is given, informing SQL Server by how much each new ID should increase.•	

SQL server will manage the allocation of IDs.•	

You would have to perform all of these tasks if SQL Server did not do so. Therefore, by using this option in a
column definition, you can use the value generated to create a solid, reliable, and unique link from one table to
another, rather than relying on more imprecise selection criteria. However, you have to realize that the numbers
generated are not guaranteed to be in ascending sequential order, as gaps can occur, as you will see in an example
later in this chapter.

Uniqueidentifiers for an Identity
Using IDENTITY is ideal if you wish to create a column within your table with unique numbers. There is an alternative,
which is to use the unique identifier data type with a default value of a system function called NEWID(). There are a few
drawbacks to using this data type as it will always use 16 bytes of data (bigint is only 8 bytes); if you want to know the
value of an inserted row, you need to generate the value before the row is inserted (IDENTITY values can be retrieved
via a system variable), and the value generated would be awkward to use in any reporting outside of the database.
Finally, if the column holding the value was used within a unique index, there will be a performance overhead.

Normally, a user would not insert the value; instead, SQL Server would create it automatically. However, you
can enter explicit values if you use the SET IDENTITY_INSERT option to alter the database setting to ON for the specific
table. This is not a regular occurrence, but you will come across scenarios when you will find this a useful feature.
I have used this option in the past when archiving data from the production system, and then when I wanted to
un-archive the data back into the production system with the initial identity values.

Chapter 5 ■ Defining tables

137

Sequences Instead of IDENTITY
IDENTITY-defined columns are ideal for small, low-frequency row insertions, but there is a small performance
overhead each time a value is created. It has been requested for some time from developers that Microsoft look at
this problem and find a way to improve performance, and so for this problem, Microsoft has developed sequences.
An identity column is defined for a single table, whereas a sequence is defined for generating a sequence of numbers
bound to a schema, therefore having the ability to generate a sequence of numbers for multiple tables.

The first benefit of sequences is that it is possible for SQL Server not only to retrieve the next values one at a time
from the underlying sequence table (like IDENTITY), but also to cache a range of numbers in memory for faster access
and retrieval. A cached set of numbers will work faster than using the IDENTITY property, which is generated with
each insertion.

You can also define a sequence so that the sequence can loop around when a maximum value is reached. This
allows you to reuse numbers.

It is also possible to retrieve the next sequence value and place it into a local variable before the row is inserted.
This will give you the flexibility of knowing the “identity” column value for any child tables’ insertions. With IDENTITY,
you can retrieve the value assigned to a row only after the row is inserted. By having the ability to assign the value to a
variable with sequence, you can avoid gaps through insertions failing by reusing the value if, for example, a rollback
occurs. Gaps will still form, though, if the server is rebooted or the SQL Server Windows service stopped, so using a
local variable is not a complete solution to the gapping issue.

Sequences can deal with generating a value for multiple tables and potentially different columns all from the
single sequencing object, unlike the IDENTITY keyword, which is bound to one column in one table. The ability to
split sequencing across multiple tables allows you to keep the sequence of data intact if, for example, you have a table
holding incoming records but two tables for processed data—one for accepted records and one for rejected records.
By inspecting the sequence column value on both these tables, you would be able to see the order in which the rows
had been processed.

Caution ■ if you use sequences within a transaction and the transaction is rolled back, then the sequence is not rolled
back and the values retrieved will look as if they have been used.

Using sequences, you can assign a value to a column programmatically. This functionality removes the problems
that can occur when using IDENTITY because IDENTITY column values are awkward to alter within a column after
they are assigned. When completing a bulk insertion or even modifying the value within a column, an incorrectly
inserted value can be modified when using sequences, as you will see in the Alter Sequence section of the exercise in
Chapter 17 The downside, however, is that developers have to be aware that a column is logically linked to a sequence
and use the sequence functionality rather than enter values manually. You can apply a sequence as a default value
to the relevant column, as will be demonstrated shortly in the sequence exercise. This will still allow you to insert the
sequence value like IDENTITY. However, when I use a sequence in the exercises in this section, I will not use it as a
default value so that you can see explicitly what is happening.

The Use of NULL Values
Columns can be defined as NULL or NOT NULL within your T-SQL code, or, if using the Table Designer, you can check or
uncheck the Allow Nulls option. These two different constraints define whether data must be entered into the column.
A NULL value means there is absolutely nothing entered in that column—no data at all. A NULL value is in a special
data state, with special meaning. It means that data value within the column is unknown.

Chapter 5 ■ Defining tables

138

If a value is a NULL value, no data has been inserted into the column or the data that did exist has been eradicated.
This also means that you have to perform special function statements within any T-SQL code to test for this value.
Take the example of a column defined to hold characters, but where one of the rows has a NULL value within it. If you
executed a query that carries out string manipulation, the row with the NULL value might cause an error. The use of
NULLs is covered in Chapter 10.

Creating a Table in SQL Server Management Studio
It is now time for you to create the first table in your example application. Every organization has to have a set of
customers and will need to store these details. Within this table, it will hold information such as each customer’s
name and an ID to an external system where addresses are held. The only product that your company has where a
customer can have an ongoing cash balance with funds that aren’t cleared is a bank account. This means your table
will also hold the bank account ID, the current balance, and any amount clearing.

trY It OUt: CreatING a taBLe

1. ensure that sQl server Management studio is running.

2. expand Object explorer so that you can see the ApressFinancial database, created in
Chapter 3.

3. expand the ApressFinancial database so that you can see the tables node, as shown in
figure 5-2.

Figure 5-3. Creating your first table with no columns as yet

Figure 5-2. ApressFinancial with no user tables defined in the Tables node

4. right-click the tables node and select new table. this will take you into the table Designer.
figure 5-3 shows how the table Designer looks when you first enter it.

Chapter 5 ■ Defining tables

139

5. from this screen, you need to enter the details for each column within the table. enter the
first column, CustomerId, in the Column Name column.

Tip ■ When naming columns, try to avoid using spaces. either keep the column names without spaces, like i have done
with CustomerId, or use an underscore (_) instead of a space. it is perfectly valid to have column names with spaces.
however, to use these columns in sQl code, you have to surround the names with a quoted identifier, such as square
brackets ([]), which is very cumbersome.

6. at the moment, notice that Column properties in the middle of figure 5-3 is empty. this
will fill up when you start entering a data type after entering the column name. the Column
properties section is just as crucial as the top half of the screen where you enter the column
name and data type.

7. the drop-down combo box that lists the data types is one of the first areas provided by sQl
server to help you with table creation. this way, you don’t have to remember every data
type there is within sQl server. by having all the necessary values listed, it is simple enough
to just select the most suitable one. in this instance, you want to select int, as shown in
figure 5-4.

Figure 5-4. Selecting the data type

8. the final major item when creating a column within a table is the allow nulls check box
option. if you don’t check the box, some sort of data must be placed in this column. leaving
the check box in the default state, which alters to checked when you start typing the
column name, will allow NULL values in the column, which is not recommended if the data
are required (name, order number, and so on) or the column(s) are going to be used as the
main method to find data within your queries, relationships, or indexes. You can also allow
NULLs for numeric columns, so instead of needing to enter a zero, you can just skip over that
column when it comes to entering the data. in this instance, you want data to be populated
within every row as it will be used within a relationship, so remove the check mark that has
appeared automatically.

Chapter 5 ■ Defining tables

140

9. the Column properties section for the column will now look like the screen shown in
figure 5-5. take a moment to peruse this section. You can see the name, whether NULLs are
allowed, and the type of data you are storing. there will be changes to what is displayed
depending on the data type chosen.

Figure 5-5. More in-depth properties for columns

Figure 5-6. Defining a column as having an identity

10. You want this column to be an identity column as it will be used to link with other tables.
if you have not already done so, within the Column properties area, expand the identity
specification node, as you need to set the is identity property to Yes, as shown in figure 5-6.
this will set the identity increment to 1 and the identity seed to 1 as well. You can alter the
increment and seed values if you wish, but generally the default settings are used.

Chapter 5 ■ Defining tables

141

11. it is now possible to add in a few more columns to the table, as shown in figure 5-7.
go ahead and add the columns now. Title is an integer data type as this will reference a
table of titles such as Mr, Mrs, Miss, Dr, and so on. this will avoid storing free text that could
result in values such as Mr, Mr., mr., mister, mr, and so on which is not ideal. not everybody
will have more than a first name and last name, although some people may have initials.
therefore, allow NULL values for any initials they may have. leave the box checked on the
OtherInitials column, as shown in figure 5-7. alter the length of this column to
ten characters, which should be more than enough. the list of columns is provided for
ease of use:

•	 Title: tinyint

•	 FirstName: varchar(50)

•	 OtherInitials: varchar(10) and also allow NULL values

•	 LastName: varchar(50)

Figure 5-7. A column that will allow NULL values

12. You can now define your final columns, which you see in figure 5-8. i suggest that you
allow AccountType and CustomerBalance to allow NULL values, as this would be a good
indicator of when a customer has no account, such as when the customer is in the process of
creating an account. this is a good demonstration of where a NULL value removes confusion.
if a value were forced into these two columns, you would need a row in the account types
table to indicate “no accounts.” similarly a NULL value in UnclearedBalance can indicate
there are no funds pending clearance, but a value of zero could indicate that funds were
processing and all amounts have been dealt with or perhaps the incoming and outgoing
uncleared transactions totaled zero. the last two columns will record when the account was
opened and closed. by setting the default value of the DateAdded column using a sQl server
function that returns the current date and time, GETDATE(), every time a row is added, it is
not necessary for a value to be entered for this column, as sQl server will put the date (there
will be no time as it is a date only based column) in for you. a default value can be a constant
value, the value from a function, or a value bound to a formula. the DateClosed column
allows NULL values, and this is the perfect indicator to demonstrate when the account is fully
closed when DateClosed has a value contained within it. the full table layout is shown in
figure 5-8, and the columns are defined here.

Chapter 5 ■ Defining tables

142

Caution ■ Defining columns with default values with a constant can be time-saving in one respect, for every row
added it will have a performance degredation while sQl server builds and then sets the value. performance degrades
further the more complex the method for defining the value. if speed of insertion is a priority, consider looking at
alternative methods.

•	 AddressLine1: varchar(100)

•	 AddressLine2: varchar(100) and allow NULL values

•	 AddressLine3: varchar(100) and allow NULL values

•	 TownOrCity: int

•	 ZipCode: varchar(20) and allow NULL values

•	 USState: tinyint

•	 AccountType: tinyint and allow NULL values

•	 ClearedBalance: money and allow NULL values

•	 UnclearedBalance: money and allow NULL values

•	 DateOpened: date and have a default value defined as GETDATE()

•	 DateClosed: date and allow NULL values

Figure 5-8. The table column definition is now complete

Chapter 5 ■ Defining tables

143

Note ■ in Chapter 3, when discussing normalization, i also covered when data should be denormalized. the Customers
table is the one place a small amount of denormalization for speed of access is required. to speed up the process when
a client goes to a cash point, there is a column that holds the account number so that a single row of data to the cash
point can be sent. the system can therefore cross-check with the client’s card as well as the cleared and uncleared
balance for display. this data will also be held within the CustomerProducts and Transactions tables, which will be
defined later. if the account number was stored in the CustomerProducts table only, you would have to access two rows
of data before you could send the data to the cash machine: one with the account number and one with the balances.
With the number of actions that happen at peak times from cash machines, point of sale terminals, and so on, speed is
critical and small design considerations such as this can make a huge difference. as a developer, it is vital that you build
an optimized database.

13. before you save the table, you need to define some properties for it, such as the schema
owner. On the right, you should see the table properties dialog window, as shown in
figure 5-9. if this is not displayed, you can press f4 or, from the menu, select
View ➤ properties Window. first of all, give the table a name, Customers, and give the
table some sort of description. then move to the schema owner details. When you click the
schema combo box, it presents you with a list of possible schemas the table can belong to.
in Chapter 4, you built the schema to use for this table, CustomerDetails.

Figure 5-9. Table properties

Chapter 5 ■ Defining tables

144

14. now that you are finished, you can save the table either by clicking the save toolbar button,
which sports a floppy disk icon, or by clicking the X (close) button on the table Designer to
close the window, which should bring up the save dialog box, asking if you want to save
the changes. by clicking Yes, you get a second box asking for the name of the table if you
didn’t enter a table name in the table properties dialog window, as shown in figure 5-10, or
if you did enter a table name, then the table is saved using the name specified and you are
returned to sQl server Management studio.

Figure 5-10. Saving a table that was not given a name

Figure 5-11. Table properties

15. Object explorer in sQl server Management studio may not automatically refresh the tables
node and show your new table. if it does not, highlight Object explorer and refresh either via
f5 or by clicking the refresh icon. if you now right-click the table and select properties, you
can see important details about the table, as shown in figure 5-11. the first section details
who is currently connected. then you see the date the table was created, its name, and the
schema name of the owner of the table.

Chapter 5 ■ Defining tables

145

the menu that opened when you right-clicked the table included various other options •	
(see figure 5-12).

Figure 5-12. Table properties

although many of these options are discussed elsewhere in the book, let’s take a look at them briefly before
moving on:

new table: builds a new table as has just been demonstrated•	

•	 Design: takes you into the design mode (figure 5-8) to let you alter a table definition; it will also
allow you to access other attributes of a table such as indexes and relationships.

•	 Select TOP 1000 Rows : Displays up to the first 1,000 rows of data; the number of rows returned
can be altered via the tools ➤ Options ➤ sQl server Object explorer.

•	 Edit Top 200 Rows : allows the first 200 rows to be displayed and can be edited; this can also
be altered via tools ➤ Options ➤ sQl server Object explorer; however, increasing this number
can have issues, especially over a slow connection from the client to the server. there are ways
you can work with this option so that 200 rows or even fewer can be used to update the data.
however, i strongly recommend that you do not use this option in a production environment.
When i discuss the use of transactions in Chapter 10, you will see how this option could cause
problems.

•	 Script Table As : Displays several different scripting options, including scripting the table as a
CREATE or a DROP, as well as options for SELECT-ing rows, DELETE-ing rows, UPDATE-ing rows,
and INSERT-ing rows; if you do use the designer to build a table, then building a script for the
table that is then placed in source control along with all your other code is very useful. it’s also
ideal if you deploy changes via scripting to your production databases. You will see this later in
the chapter.

•	 View Dependencies : lists out any other stored procedures, views, and objects that use the table;
this is a good option when you want to alter the properties of a table including adding columns.
as a developer, your system will constantly be improved with new functionality, and finding the
dependencies of your table will help you understand and realize the scope of related objects that
require investigation and also potentially need to be altered.

Chapter 5 ■ Defining tables

146

Caution ■ Don’t rely on View Dependencies being 100% accuarate. there are times when creating a stored procedure,
the dependent stored procedure doesn’t exist. therefore, when it is added, the dependency may not be created. however,
this isn’t a regular occurrence for many systems, and this issue should be known.

•	 Memory Optimization Advisor: a wizard used to look at the highlighted table and advise on what
is required to migrate the table from disk-based to memory-based. this wizard is demonstrated
and discussed in Chapter 7.

•	 Full-Text Index : Displays a special type of indexing for text data; data can be stored so that
keywords within the data are indexed. One example system i have worked on stored Word
documents of publications that were then indexed so that keywords could be searched for. You
could also store web pages and use full-text indexing to build a search engine, for example.

•	 Storage: an advanced feature of sQl server is the ability to split, known as partition, the data
within tables. partitioning can be used to speed up performance on tables with a very large
number of rows. if a table has millions of rows, then a range of rows can be placed in one
partition, a second range in a second partition, and so on. this is outside the scope of this book
for implementation because it is an area that requires a great deal of thought. however, it is
briefly covered later in the chapter.

•	 Policies/Facets : lets you view and run policies for the table; this was demonstrated in Chapter 4
when you saw how to enforce ANSI NULLs on a database.

•	 Start Powershell: Opens a command prompt window that allows you to create powershell scripts
using the powershell scripting language

reports: executes a prebuilt custom report•	

•	 Rename: renames a table to a new table; renaming a table in early development can be
acceptable, but renaming a table after this point should be avoided unless absolutely necessary.
if you do have to rename a table, use the View Dependencies option to see what else requires
altering, and don’t forget your .net, Java, and so on code that could also work with the table by
name.

•	 Delete: Drops the table from the database; before dropping a table, i strongly suggest you
click the show Dependencies button, equivalent to the View Dependencies menu option that is
displayed on the screen, but i will go through deleting a table toward the end of this chapter.

•	 Refresh: refreshes the list of tables; sometimes sQl server does not automatically or quickly
update the list of tables. there are triggers that will cause a refresh, such as collapsing and
expanding the tables node, but selecting this menu option, clicking the refresh button at the top
of Object explorer, or pressing f5 will refresh the node you are on. if you are at the database level,
then pressing f5 or the refresh button will refresh the objects within the database at all levels.

•	 Properties : produces a dialog with a number of properties about the table; this is shown in
figure 5-11.

Now that a table has been created in SQL Server Management Studio, let’s look at creating a table within
Query Editor.

Chapter 5 ■ Defining tables

147

Creating a Table Through Query Editor
The next table that needs to be created is the one that will hold the details of the financial transactions that each
customer has. These transactions will not be just simple money-in and money-out transactions, but will also be those
financial transactions involving shares when a dividend is received or a tax credit if the shares are held in a product
that is tax-free. You know from the design that details of which product the transaction relates to will be held in a
separate table, so you need to create a link between the transaction table and one holding some sort of reference
data. It is also necessary to have a link between this table and the CustomerDetails.Customers table. Notice the
slight name change in the discussion of the Customers table to allow for the inclusion of the schema name. This
should mean that your naming convention should be schemaname.tablename. Using schemaname.tablename avoids
confusion. Finally, moving back to the financial transactions table, if the transaction relates to shares and is not
recording the finances involved, you need to record that this is the case. To clarify this last point, when a client buys
some shares, there will be two records: one for the money leaving the account to buy the shares and another showing
the physical number of shares purchased.

Now, let’s create this table using Query Editor instead of SQL Server Management Studio.

trY It OUt: DeFINING a taBLe thrOUGh QUerY eDItOr

1. ensure that you are pointing to the ApressFinancial database in Query editor. if you’re not,
you’ll find that you may be creating the table in the wrong database. if you are creating code
to be placed in .net, Java, and so on, then there are advantages to prefixing the code with
the following t-sQl syntax. this will then point the connection to the correct database. You
will see this on occasion within the book as a reminder.

USE ApressFinancial
GO

2. in Query editor, enter the following code:

CREATE TABLE TransactionDetails.Transactions
 (TransactionId int IDENTITY(1,1) NOT NULL,
 CustomerId int NOT NULL,
 TransactionType smallint NOT NULL,
 DateEntered datetime NOT NULL,
 Amount numeric(18, 5) NOT NULL,
 ReferenceDetails nvarchar(50) NULL,
 Notes nvarchar(max) NULL,
 RelatedShareId int NULL,
 RelatedProductId int NOT NULL)

Note ■ notice that when you type this code into Query editor, the keywords are colored. for example, CREATE TABLE is
in blue, NOT NULL is in gray. this helps you to avoid typing mistakes. the colors are defined in the options
tools ➤ options ➤ environment ➤ fonts and Colors.

Chapter 5 ■ Defining tables

148

3. execute the code by either pressing f5 or clicking the toolbar’s execute button.

4. You should now see the following message in the results pane:

The command(s) completed successfully.

5. however, you may have received an error message instead. this could be for a number

of reasons, from a typing mistake to not having the authority to create tables. i could list
every message that you could receive at this point, but i would be doing so for many pages.
taking one example here, as you can see, the error messages generated are usually self-
explanatory. this is informing me that i have a typing error on line 5:

Msg 102, Level 15, State 1, Line 5
Incorrect syntax near 'NUL'.

6. now move to Object explorer. if it is already open, you will have to refresh the table details

tree nodes (by right-clicking the tables node and selecting refresh). You should then see the
TransactionDetails.Transactions table alongside the CustomerDetails.Customers
table created previously.

hOW It WOrKS: DeFINING a taBLe thrOUGh QUerY eDItOr

Using Query editor to define a table works very much like sQl server Management studio without the graphical
aids. all of the code will be discussed in a moment. recall that sQl server Management studio has prompts for
column name, data type, and so on, but here you have to type in every detail. however, many people prefer to
create a table this way.

by keying the t-sQl code, you are improving your t-sQl skills that make you more marketable as a developer.
When you have a job interview, you will be asked t-sQl questions rather than about creating a table in
Management studio. You can also store the t-sQl code into a source control system. this not only allows all code
to be securely held but also provides an audit trail when you are upgrading your system. by knowing t-sQl code,
you can also write code for other databases such as sybase and complete many actions in Oracle. the query
can be saved to a file until it is time to run it and build the table in the database. and, finally, as i have mentioned
before, but it is important to reiterate, you can execute t-sQl code in any programming language, something that
is not possible to perform graphically. as a developer, knowing t-sQl is mandatory if you want to succeed.

let’s now take a look at the t-sQl code that was used to create the table. this code does not include all the
options available for creating a table, as there are a large number not used within this book. the basic syntax for
creating a table is as follows:

CREATE TABLE [database_name].[schema_name].table_name
 (column_name data_type [length] [IDENTITY(seed, increment)] [NULL/NOT NULL])

Chapter 5 ■ Defining tables

149

there are a greater number of possible options, and i show only the basic syntax. You should be able to create
most tables using this syntax. You will still come across options not listed here within the book, as some of these
can be added separately, such as indexes and keys. Other options not listed are for areas that i don’t cover, such
as full-text searching and also for areas such as data locking, which is very advanced and if you don’t have
experience, it can be dangerous if incorrectly set.

the items listed in square brackets in the CREATE TABLE syntax are optional; however, there are times when you
will require them. let me explain. take the first option, database_name: if you are in the master database and you
wish to create a table in the ApressFinancial database, you would have to either switch to that database with
the USE command as mentioned in the first point of this exercise, or use the database_name option. Usually, you
will be in the database where you want to create the table, but this option is ideal when creating code that will be
executed unattended. it will ensure that the table is built for the correct database rather than trusting that you are
in the right area.

the schema_name option allows you to assign the table to the correct and relevant schema rather than in the
default schema of the user connected.

next you define the columns. Column name and data type are mandatory. however, depending on the data type,
the length is optional. You must prefix the first column with an opening parenthesis (and once you have defined
the last column, close the list with a closing parenthesis). each column should be separated from the previous
column by a comma. there is a limit of 1,024 columns for a table. if you get anywhere close to that number, you
should sit back and reevaluate your table design because chances are the design needs to be revised.

Now that you’ve created a table in SQL Server Management Studio and another using Query Editor, let’s create
one using SQLCMD.

Creating a Table: Using SQLCMD
SQL Server has a third method of creating tables via a method called sqlcmd. This is a command prompt tool used
to execute scripts from a file against a SQL Server instance, as mentioned in Chapter 2. The tool has several uses
including an easy method for accessing SQL Server in single user mode. DBAs who look afer many databases,
especially from different venders, use sqlcmd as a command line prompt that gives the DBA the consistency of
interface look and feel. One of the more significant uses is where the tool is used for script deployment. Once you start
working on larger databases, you will have hundreds of stored procedures, tables, functions, and other areas, and for
each regular deployment to production there will be a number of changes. Also during testing you will have at some
point a refresh of a non-production database from a production backup where you can then test the deployment
of your release scripts. To perform the execution of these scripts, loading them one at a time in to SQL Server
Management Studio where they are then executed is cumbersome at the very least. Through the use of a command
line tool it is possible to build up a process to perform the release in one action. The sqlcmd tool performs more than
T-SQL commands and statements but can also execute some commands such as retrieving the files in a directory.

It is also possible to select SQLCMD mode within a query editor within SQL Server Management Studio. Once
a query editor pane is open, from the menu you can select Query ➤ SQLCMD mode. This will allow you to either
execute or write scripts written for SQLCMD mode within SQL Server Management Studio.

In this example, you will just be releasing one file using the sqlcmd tool and there will be no need to use any of the
command options available.

Chapter 5 ■ Defining tables

150

trY It OUt: CreatING a taBLe USING SQLCMD

1. either start a plain text editor like notepad or create a new empty query editor.

2. Within the editor of choice, you will be creating a table to hold the types of transactions that
are held within the TransactionDetails.Transactions table. in this script, there will be
a USE command pointing the script to the ApressFinancial database even although the
sqlcmd connection will be connecting to the ApressFinancial database. having the USE
command ensures the script is being deployed to the correct database because detailing
the database at connection is optional and, therefore, the connection may be pointing to the
default database for the login, which may be the master database for example.

the code for the TransactionDetails.TransactionTypes table follows. there is a fourth
column that should be held within this table, but you are not going to place that column in at
this time. it will be added when you take a look at how to alter a table in the section
“the alter table statement” later in this chapter.

USE ApressFinancial
GO

CREATE TABLE TransactionDetails.TransactionTypes
(
 TransactionTypeId smallint IDENTITY(1,1) NOT NULL,
 Description varchar(50) NOT NULL,
 CreditType bit NOT NULL
)
GO

3. Once the code is in the editor, save the file to a central, well-named location. for this
example, i will save the file in the following location:

C:\Development\ApressFinancial\Releases\Dec2014

4. now start a command prompt found in the apps list for Windows 8 or if you are using
Windows 7 by selecting start ➤ run ➤ cmd and pressing enter.

5. navigate to where the script is to make it easier to release the script. You then execute the
sqlcmd tool passing in the relevant parameters. in this case, the parameters in use are the
following:

-s—Where you define the name of the server including the instance name•	

-e—indicates that you are using a trusted connection (Windows authentication)•	

-i—the name of the script to run•	

sqlcmd -S FAT-BELLY-SONY\APRESS_DEV1 -E -i TransactionTypes.sql

figure 5-13 shows the command in the command prompt post execution.

Chapter 5 ■ Defining tables

151

Figure 5-13. Creating a table using SQLCMD tool

6. if you move back to sQl server Management studio and refresh the tables node for the
apressfinancial database, you should see the TransactionDetails.TransactionTypes table.

Now that you have your third table, I can take you through the steps of altering a table.

The ALTER TABLE Statement
When using the table TransactionDetails.TransactionTypes, you had created the table with only three columns;
however, the table requires a fourth column. One solution is to delete the table with DROP TABLE and then recreate it.
However, if you had placed some test data in the table before you realized you had missed the column, this
would not be ideal, and of course once the table is in a production environment, dropping the table would not
be possible without losing the data. There is an alternative: the ALTER TABLE statement, which allows restrictive
alterations to a table layout but keeps the contents. SQL Server Management Studio uses this statement when
altering a table graphically, but here I will show you how to use it to add the missing fourth column for the
TransactionDetails.TransactionTypes table.

Columns can be added, removed, or modified using the ALTER TABLE statement. Removing a column will remove
the data only within that column and not any other column, but careful thought has to take place before adding or
altering a column.

There are two scenarios when adding a new column to a table: Should it contain NULL values for all the existing
rows, or should there be a default value instead? Any new columns created using the ALTER TABLE statement where
a value is expected and therefore defined as NOT NULL will take time to implement. This is because any existing data
will have NULL values for the new column or will be defined with a default value; after all, SQL Server has no way of
knowing what value to automatically enter if you want specific values without the business logic there. To clarify, in
the CustomerDetails.Customers table, if you were adding the DateOpened column after the table was created, SQL
Server has no method of working out the date each individual customer’s account was opened as it is unable to read
the customer agreement that would have been signed.

Note ■ it is common practice when creating columns to allow NULL values, as the default value may not be valid in
some rows.

In the following exercise, you will be adding a new column to a table without a default value, and it can contain
NULL values. You will then alter the table so that it cannot contain NULL values.

Chapter 5 ■ Defining tables

152

trY It OUt: aDDING a COLUMN

1. first of all, open up Query editor and ensure that you are pointing to the ApressFinancial
database in the Query editor connection. then write the code to alter the
TransactionDetails.TransactionTypes table to add the new column. the format is very
simple. You specify the table prefixed by the schema name you want to alter after the ALTER
TABLE statement. next, you use a comma-delimited list of the columns you wish to add,
though in this case you are adding a single column. You define the name, the data type, the
length if required, and finally whether you allow NULLs. as you don’t want the existing data to
have any default values, you will have to define the column to allow NULL values.

ALTER TABLE TransactionDetails.TransactionTypes
ADD AffectCashBalance bit NULL
GO

2. if your table had data within it, you could update the existing data for each row to hold the
value that is correct. Once this has been achieved, you may then want to remove the ability
for further rows of data to have a NULL value. in the case of the TransactionDetails.
TransactionTypes table, a NULL value for AlterCashBalance is not valid, so the NULL option
for the table needs to be switched. this new column will take a value of 0 or 1, denoting
false or true. again, you would use the ALTER TABLE statement, but this time you will add the
ALTER COLUMN statement with the name of the column you wish to alter. after this statement,
you would define the alterations you wish to make. although you are not altering the data
type assigned to the column, it is a mandatory requirement to redefine the data type and data
length. after this, you can inform sQl server that the column will not allow NULL values.

ALTER TABLE TransactionDetails.TransactionTypes
ALTER COLUMN AffectCashBalance bit NOT NULL
GO

Note ■ if there was data in the Transactiondetails.TransactionTypes table, you would need to update all the
rows to have a value of 0 or 1 before you sQl server would allow you to successfully alter the column.

3. execute the preceding code to make the TransactionDetails.TransactionTypes table
correct.

Chapter 5 ■ Defining tables

153

Defining the Remaining Tables
Now that three of the tables have been created, you need to create the remaining three tables. You will do this as code
placed in Query Editor. There is nothing specifically new to cover in this next section; therefore, only the code is listed.
Enter the following code and then execute it as before. You can then move into SQL Server Management Studio and
refresh it, after which you should be able to see the new tables. Note that the CustomerDetails.CustomerProducts
and CustomerDetails.FinancialProducts tables have no IDENTITY columns. These two tables will be used in
Chapter 17 to demonstrate how the SEQUENCE object works as an alternative to IDENTITY.

USE ApressFinancial
GO
CREATE TABLE CustomerDetails.CustomerProducts(
 CustomerFinancialProductId int NOT NULL,
 CustomerId int NOT NULL,
 FinancialProductId int NOT NULL,
 AmountToCollect money NOT NULL,
 Frequency smallint NOT NULL,
 LastCollected datetime NOT NULL,
 LastCollection datetime NOT NULL,
 Renewable bit NOT NULL
)
ON [PRIMARY]
GO
CREATE TABLE CustomerDetails.FinancialProducts(
 ProductId int NOT NULL,
 ProductName nvarchar(50) NOT NULL
) ON [PRIMARY]

GO
CREATE TABLE ShareDetails.Shares
(
 ShareId int IDENTITY (1,1) NOT NULL,
 Description varchar(50) NOT NULL,
 StockExchangeTicker varchar(50) NULL,
 CurrentPrice numeric(18,5) NOT NULL
)
GO
CREATE TABLE ShareDetails.SharePrices(
 SharePriceId bigint IDENTITY(1,1) NOT NULL,
 ShareId int NOT NULL,
 Price numeric(18, 5) NOT NULL,
 PriceDate datetime NOT NULL
) ON [PRIMARY]

GO

Chapter 5 ■ Defining tables

154

Figure 5-15. Primary key defined

Figure 5-14. Defining a primary key

Setting a Primary Key
Setting a primary key constraint can be completed in SQL Server Management Studio with just a couple of mouse
clicks. This section will demonstrate how easy this actually is. In Chapter 3, I discussed how primary keys are used
for referencing other tables as well as aiding data integrity, and I will discuss the difference between a primary key
constraint and an index in Chapter 6.

trY It OUt: SettING a prIMarY KeY

1. ensure that sQl server Management studio is running and that you have navigated to the
ApressFinancial database. find the ShareDetails.Shares table, right-click it, and select
Design.

2. Once in the table Designer, select the ShareId column. this will be the column to set the
primary key for. right-click to bring up the pop-up menu shown in figure 5-14.

3. select the set primary Key option from the pop-up menu. this will then change the display
to place a small key in the leftmost column details. Only one column has been defined as the
primary key, as you see in figure 5-15.

Chapter 5 ■ Defining tables

155

4. however, this is not all that happens, as you will see. save the table modifications by clicking
the save button or pressing Ctrl+s. Click the Manage indexes/Keys button on the toolbar,
which is the fourth button from the left on the table Designer toolbar, which should be visible
as you are in design mode. this brings up the dialog box shown in figure 5-16. look at the
type, the third option down in the general section. it says primary Key. notice that a key
definition has been created for you, with a name and the selected column, informing you that
the index is unique and clustered (more on indexes and their relation to primary keys
in Chapter 6).

Figure 5-16. Indexes/Keys dialog box

that’s all there is to creating and setting a primary key. a primary key has now been set up on the
ShareDetails.Shares table. in this instance, any record added to this table will ensure that the data will be kept
in ShareId ascending order (this has to do with the index, which you will see in Chapter 6), and it is impossible
to insert a duplicate row of data. this key can then be used to link to other tables within the database at a
later stage.

Creating a Relationship
I covered relationships in Chapter 3, but no relationships have been created yet. The first relationship that you create
will be between the customer and customer transactions tables. This will be a one-to-many relationship, in which
there is one customer record to many transaction records. Keep in mind that although a customer may have several
customer records—one for each product he or she has bought—the relationship is a combination of customer and
product to transactions because a new CustomerId will be generated for each product the customer buys. You will
now build that first relationship.

Chapter 5 ■ Defining tables

156

trY It OUt: BUILDING a reLatIONShIp

1. ensure that sQl server Management studio is running and that the ApressFinancial
database is selected and expanded. You need to add a primary key constraint to
CustomerDetails.Customers first of all so that the relationship can be built. enter the code
that follows and then execute it:

ALTER TABLE CustomerDetails.Customers
ADD CONSTRAINT
 PK_Customers PRIMARY KEY CLUSTERED
 (
 CustomerId
)
WITH(STATISTICS_NORECOMPUTE = OFF, IGNORE_DUP_KEY = OFF,
ALLOW_ROW_LOCKS = ON, ALLOW_PAGE_LOCKS = ON)
ON [PRIMARY]
GO

2. find and select the TransactionDetails.Transactions table, and then right-click to
display the pop-up menu. select Design to invoke the table Designer.

3. Once in the table Designer, right-click and select relationships from the pop-up menu shown
in figure 5-17, or click the relationships button (third button from the left) on the table
Designer toolbar.

Figure 5-17. Building a relationship

Chapter 5 ■ Defining tables

157

4. this brings up the relationship Designer. as it’s empty, you need to click add. this will then
populate the screen, as shown in figure 5-18.

Figure 5-18. Foreign Key Relationships dialog box

5. the first requirement is to change the name to make it more meaningful. Quite often, you will
find that naming the key FK_ParentTable_ChildTable (or a shortened best derivative of)
is the best method, so, in this case, change it to FK_Cust_Trans, as the CustomerDetails.
Customers table will be the master table for this foreign key. next expand the tables and
Columns specification node, which will allow the relationship to be built. notice that there is
now an ellipsis button on the right, as shown in figure 5-19. to create the relationship, click
the ellipsis.

Chapter 5 ■ Defining tables

158

6. You need to define the column in each table that is the link that forms the relationship. You
are linking each customer record to many transaction records, and you can do so via the
CustomerId. select that column for both tables, as shown in figure 5-20. now click OK.

Figure 5-19. Adding tables and columns

Figure 5-20. Columns selection

Chapter 5 ■ Defining tables

159

Note ■ in this instance, both columns have the same name, but this is not mandatory. the only requirement is that
the information in the two columns be the same.

7. this brings you back to the foreign Key relationships definition screen, shown in
figure 5-21. notice that at the top of the list items in the grayed-out area, you can see the
details of the foreign key you just defined. Within the identity section, there is now also a
description of the foreign key.

Figure 5-21. Foreign key with description

8. ignore the option enforce for replication found if you scroll the window displayed. replication
is when data that is inserted in one database is then replicated to a different database. You
can enforce that the foreign key is checked when data has come from the source database
to be inserted in to the recipient table (this table).

9. there are two other options that are displayed at the bottom of the dialog box, as shown in
figure 5-22. leave the options as the defaults, and i will explain them in a moment.

Chapter 5 ■ Defining tables

160

10. Closing this dialog box does not save the changes. even when you save the changes using
the save button, the relationship is not added. not until you save or close the table Designer
will the changes be applied. When you do so, you should see the dialog box in figure 5-23
notifying you that two tables are to be changed. Click Yes to save the changes.

Figure 5-23. Committing the relationship

Figure 5-22. INSERT And UPDATE Specification

the relationship is now built, but what about those options you left alone? let’s go through those now.

Chapter 5 ■ Defining tables

161

Check Existing Data on Creation
If there is data within either of the tables, by setting this option found at the top of the relationship design window
to Yes, you are instructing SQL Server that when the time comes to physically add the relationship at the point of
saving the table, the data within the tables is to be checked. If the data meets the definition of the relationship, then
the relationship is successfully inserted into the database. However, if any data fails the relationship test, then the
relationship is not applied to the database. An example of this would be when it is necessary to ensure that there is
a customer record for all transactions, but if there are transaction records that don’t have a corresponding customer
record, the relationship creation would fail and would not be applied. Obviously, if you come across this, you have a
decision to make. Either correct the data by adding master records in the customers table or altering the transactions
table, and then reapply the relationship, or revisit the relationship to ensure it is what you want.

By creating the relationship, you want the data within the relationship to work; therefore, you would select No if
you were going to go back and fix the data after the additions. What if you still miss rows? Would this be a problem?
In the preceding scenario, there should be no transaction records without customer records. But you may still wish to
add the relationship to stop further anomalies going forward.

Enforce Foreign Key Constraints
Once the relationship has been created and placed in the database, it is possible to prevent the relationship from
being broken. If you set Check Existing Data on Creation to Yes as I have just discussed, then you are more than likely
hoping to keep the integrity of the data intact. That option will check only the existing data. It does nothing for further
additions, deletions, and updates on the data. However, by setting the Enforce Foreign Key Constraints option to Yes,
which is found toward the bottom of the relationship designer window, you ensure that any addition, modification,
or deletion of the data will not break the relationship. It doesn’t stop changing or removing data, provided that
the integrity of the database is kept in sync. For example, it would be possible to change the customer number of
transactions, provided that the new customer number also exists with the CustomerDetails.Customers table. If an
application does try to add data that will break the relationship, an error is generated and the change is not
committed to the table.

Choosing Delete and Update Rules
The final section to discuss is found as the last area of the relationship designer under INSERT And UPDATE
Specification. This area deals with when a deletion or an update of a row is performed on the parent table, in this case
the CustomerDetails.Customers table. It is possible for one of four actions to then occur on the related data, based on
the following options:

•	 No Action: If a customer is deleted, then no further actions occur and could potentially leave
the database with transactions for CustomerIds that no longer exist. However, a positive
for this action is that as a developer, you would write code to complete the deletion of
transactions for this customer and so as a developer you would be in control. This is ideal if
you were archiving the data from one database to another.

•	 Cascade: If you delete a customer, then all of the transaction rows for that customer will also
be deleted.

Chapter 5 ■ Defining tables

162

•	 Set Null: If you delete a customer, then if the CustomerId column in the TransactionDetails.
Transactions table could accept NULL as a value, the value would be set to NULL. In the
customers/transactions scenario, we have specified the column cannot accept NULL values,
and therefore the value will remain. In this scenario, this action would be the same as No
Action. The danger with this option is that you are leaving “unlinked” rows behind—a
scenario that can be valid, but do take care.

•	 Set Default: When defining the table, the column could be defined so that a default value is
placed in it. On setting the option to this value, you are saying that the column will revert to
this default value—again, a dangerous setting, but potentially a less dangerous option than
SET NULL, as at least there is a meaningful value within the column.

Note ■ if at any point you do decide to implement cascade deletion, then please do take the greatest of care, as it can
result in deletions that you may regret. if you implemented this on the CustomerDetails.Customers table, all the
transactions will be gone when you delete a customer. this is ideal for use if you have an archive database to which all
rows are archived but not ideal if you are auditing the transactions table for financial information. to keep your current
and online system lean and fast, you could use delete cascades to quickly and cleanly remove customers who have
closed their accounts.

Building a Relationship via T-SQL
It is also possible to build a relationship, or constraint, through a T-SQL statement. This would be done using an
ALTER TABLE SQL statement. In the following example, a relationship will be created between the
TransactionDetails.Transactions table and the ShareDetails.Shares table. This will ensure that there is a
relationship between the transactions table and the shares table when the transaction relates to a share. This will be
a zero- or one-to-one relationship. Let’s now take a few moments to check the syntax for building a constraint within
T-SQL code:

ALTER TABLE child_table_name
WITH NOCHECK|CHECK
ADD CONSTRAINT [Constraint_Name]
FOREIGN KEY (child_column_name, ...,)
REFERENCES [master_table_name]([master_column_name, ...,])

You have to use an ALTER TABLE statement to achieve the goal of inserting a constraint to build the relationship.
After naming the child table in the ALTER TABLE statement, you then need to decide whether you want the foreign key
to check the existing data when it is being created. This is similar to the Check Existing Data on Creation option you
saw earlier.

Now we move on to building the constraint. To do this, you must first of all instruct SQL Server that this is what
you are intending to complete, so you will need the ADD CONSTRAINT command.

Next, you name the constraint you are building. Again, I tend to use underscores instead of spaces. However, if
you do wish to use spaces, which I wholeheartedly discourage, then you’ll have to surround the name of the key using
the square brackets ([]). I know I mentioned this before, but it’s crucial to realize the impact of having spaces in a
column, table, or constraint name. Every time you wish to deal with an object that has a name separated by spaces,
you will also need to surround it with square brackets. Why make extra work for yourself?

Chapter 5 ■ Defining tables

163

Finally, you will instruct SQL Server whether you wish to check or not check the existing data to ensure that the
new foreign key relationship is valid. It is common practice to use the WITH CHECK option to ensure that the data is
valid. It is possible not to check the data, but you have to be aware that you will have existing data that may break your
application.

Now that the name of the constraint has been defined, the next stage is to inform SQL Server that a FOREIGN KEY
is being defined next. Recall that a constraint can also be used for other functionality, such as creating a default value
to be inserted into a column.

When defining the foreign key, ensure that all column names are separated by a comma and surrounded by
parentheses. The final stage of building a relationship in code is to specify the master table of the constraint and the
columns involved.

The rule here is that there must be a one-to-one match on columns on the child table and the master table, and
that all corresponding columns must match on data type.

It is as simple as that. When building relationships, you may wish to use SQL Server Management Studio, as
there is a lot less typing involved, and you can also instantly see the exact correspondence between the columns
and whether they match in the same order. However, with T-SQL, you can save the code, and it will be ready for
deployment to production servers when required. You can also keep a copy for storage in your code repository, such
as Visual SourceSafe.

trY It OUt: USING t-SQL tO BUILD a reLatIONShIp

1. in a Query editor pane, enter the following t-sQl command and execute it by pressing f5 or
clicking the execute button:

USE ApressFinancial
GO
ALTER TABLE TransactionDetails.Transactions
WITH NOCHECK
ADD CONSTRAINT FK_Transactions_Shares
FOREIGN KEY(RelatedShareId)
REFERENCES ShareDetails.Shares(ShareId)

2. You should then see that the command has been executed successfully:

The command(s) completed successfully.

that’s it. the relationship is created in the second batch of t-sQl code, the first batch ensuring that you are
pointing to the right database. Once the index is built, it is possible to alter the table to add the relationship.

With your code, although you are executing an ALTER TABLE statement, no columns are being altered, but a
constraint is being added. a relationship is a special type of constraint, and it is through a constraint that a
relationship is built.

a constraint is, in essence, a logical checking mechanism, checking data modifications within sQl server and the
table(s) that it is associated with.

Chapter 5 ■ Defining tables

164

Relationships: Database or Application
Here is one last, quick discussion before you reach the end of the chapter. You have seen a relationship between two
tables built. There are positives to this approach as it will enforce referential integrity via SQL Server. If referential
integrity breaks, then SQL Server will return an error code from the T-SQL that is executed.

However, there is an alternative approach, and that is to enforce referential integrity via code. This can be
achieved with several different methods, including extra T-SQL code that is written when a data modification is to be
executed, the building of a trigger that executes automatically when a modification occurs, or within your application
code written in Java, Excel, .NET, and so on. Further thought and design away from the database are required to
accomplish this task, and strong control is required on the coding techniques within your application or elsewhere
within the database. You may be wondering why you should put yourself through the extra work and hardship: By
keeping the referential integrity through code, it does provide for flexibility if data are loaded correctly but out of
sequence. For example, if you loaded customer transactions before you inserted customers, or you wanted to be in full
control of archiving your data, the integrity checks would not interfere.

It can be a hard choice, but I believe that using physical relationships is the best option in the large majority
of cases; however, you have to be aware that, as a developer and as you progress through your career, you will find
applications that use the logical implementation, and you should be aware that it exists. However, when given the
choice, I strongly believe that relationships should be held within the database rather than the application code.

Finally, enforcing a relationship within SQL Server is a process that takes time to perform at each insertion. Not
a great deal of time but time nonetheless. For high-frequency, high-volume, rapid-responding applications, you may
find that a logical relationship where the relationship is within your code may be the correct option.

Partitioning
The final area on tables I would like to bring to your attention is a methodology called partitioning. There may come
a time that you are working on some very large volumes of data—millions of rows, maybe even hundreds of millions
of rows—that take up gigabytes of space. To search this amount of data takes time for SQL Server to process. Even if
you are finding a single specific row that can be accessed via an index, there is a cost to seek and return a row. One
method to improve performance is to section data into segments of logical “chunks.” This, at a very high level, is what
partitioning is. Take, for example, the TransactionDetails.Transactions table. Over time, this table could hold a
vast amount of data as your financial firm becomes successful. Some of the transaction records could be months and
even years old and rarely or even ever referenced. You could archive them to a different table, of course, but there
may be a reason they need to stay in the current table. It could even be that the firm is so successful that it generates a
million rows a day. Whatever the background, you know you need to improve the performance of some queries.

To give the discussion some meaning, imagine the TransactionDetails.Transactions table has 10 million rows
of data and 10,000 rows of new data is added daily. The table is required to only hold three years of data, after that it
can be deleted. Most of the queries are looking at the current financial month of data, which starts on the first of the
month based on the column DateEntered.

Without partitioning and without getting too involved in detail of how the database works, SQL Server takes data
in a tables index (indexes are discussed in Chapter 6) and creates a tree-based structure called a B-Tree where the
data is split in such a way that SQL Server follows a path through the B-Tree structure to get to the row or rows of data
it requires for the query. If you look at Figure 5-24 this is a basic B-Tree (if you look at it upside down, it is similar to
a tree where you have the trunk [the IAM page], then the branches [the non-leaf pages] with the last level being the
leafs. SQL Server keeps the B-Tree balanced such that the root node [the top] is in the middle of the tree structure,
which is how it gets its name of a B-Tree). SQL Server will look at the top of the structure and navigate through
searching down each level to the bottom row (leaf level) for the query. You can see in Figure 5-24 that this only deals
with a small number of rows of data. Notice that the data is being shown in CustomerId order as this has been deemed
as the best order for the data.

Chapter 5 ■ Defining tables

165

When there are millions of rows SQL Server will not create a very tall tree splitting the data downward to
accommodate the splitting of data equally down the middle each time. There is a limit on the number of levels the
B-Tree will have and therefore with large volumes of data the B-Tree will become wider rather than taller. SQL Server
widens the tree creating more branches. Put this in to the scenario I set of 10 million rows and expanding daily and
you can see how much work SQL Server would have to do. The data is still in CustomerId order.

By dividing, or partitioning your data by the DateEntered column in to calendar months when looking at
transactions—whether that is for overall transaction reporting or customer query-based transaction queries—SQL
Server can use the partitioning to know that there are a number of branches it can ignore completely and concentrate
its search efforts in the partitions that meet the date entered. Figure 5-25 shows a potential B-Tree structure in such a
partitioned state for the TransactionDetails.Transactions table. The table is partitioned on a year’s worth of data
and has a clustered index on the CustomerId. SQL Server, if given a query to look for rows in 2014, will know to ignore
the first two partitions and only look at the data in the third partition.

Figure 5-24. A small B-Tree

Chapter 5 ■ Defining tables

166

Note ■ this is not a accurate representation of the actual b-tree as sQl server also performs some additional
identification work to improve scanning performance. also, the layout is difference, but it demonstrates how a smaller
subset of data is scanned.

The final point I wish to make is that to delete a month’s worth of data once the three-year holding requirement
is met will take time to process as SQL Server has to delete 300,000 rows potentially. With partitioning it is possible to
delete the partition, which is much faster as SQL Server deletes pages of data rather than rows.

To be clear, this is very high-level, simple, low-volume data example with no walkthrough Try It Out example
quite deliberately. Partitioning has much more functionality, risks, checks, design, and monitoring considerations to
take in to account, and it is quite an advanced topic. However, it is important to be aware of such technology for when
you are presented with very large amounts of data.

Summary
So, now you know how to create a table. This chapter has covered several options for doing so, but there is one point
that you should keep in mind when building a table, whether you are creating or modifying it. When creating a table in
SQL Server Management Studio, you should always save the table first by clicking the Save toolbar button. If you have
made a mistake when defining the table, when you close the table designer which will close the designer and save the
changes in one action, you will get an error message informing you that an error has occurred, and all your changes
will be lost. You will then have to go back into the Table Designer and reapply any changes made.

Try also to get used to using both SQL Server Management Studio and Query Editor, as you may find that Query
Editor gives you a more comfortable feel to the way you want to work. Also, you will find that in Query Editor, you
can save your work to a file on your hard drive as you go along. You can also do this within SQL Server Management
Studio; however, the changes are saved to a text file as a set of SQL commands, which then need to be run through
Query Editor anyway.

Figure 5-25. A “partitioned B-Tree”

167

Chapter 6

Creating Indexes and Database
Diagramming

Now that you have created the tables, you could stop at this point and just work with the data from here. However, this
would not be a good decision. As soon as any table contained a reasonable amount of information and you wished
to find a particular record, it would take SQL Server a fair amount of time to locate it. Performance would suffer, and
your users would soon get annoyed with the slowdown in speed.

In this scenario, the database is like a large filing cabinet in which you have to find one piece of paper, but there’s
no clear filing system or form of indexing. If there were some sort of cross-reference facility, then it would likely be
easier to find the information that is needed. And if that cross-reference facility were in fact an index, this would be
even better, as you might be able to find the piece of paper in your filing cabinet almost instantly. It is this theory that
you need to put into practice in your SQL Server database tables. Generally, indexing is a conscious decision by a
developer who favors faster conditional selection of records over modification or insertion of records.

In this chapter, you’ll learn the basics of indexing and how you can start implementing an indexing solution. This
chapter will cover the following topics:

What an index is•	

Different types of indexes•	

Size restrictions on indexes•	

Qualities of a good index and a bad index•	

How to build an index in code as well as graphically•	

How to alter an index•	

Let’s begin by looking at what an index is and how it stores data.

What Is an Index?
In Chapter 5, you learned about tables, which are, in essence, repositories that hold data and information about
data—what it looks like and where it is held. However, a table definition is not a great deal of use in getting to the data
quickly. For this, some sort of cross-reference facility is required, where for certain columns of information within a
table it should be possible to get to the whole record of information quickly.

If you think of this book, for example, as a table, the cross-reference you would use to find information quickly
is the index at the back of the book. You look in the book index for a piece of information, or key. When you find the
listing for that information in the index, you’ll find it’s associated with a page number, or a pointer, which directs you
to where you can find the data you’re looking for. This is where an index within your SQL Server database comes in.

Chapter 6 ■ Creating indexes and database diagramming

168

You define an index in SQL Server so that it can locate the rows it requires to satisfy database queries faster. If an
index does not exist to help find the necessary rows, SQL Server has no other option but to look at every row in a table
to see if it contains the information data required by the query. This is called a table scan, which by its very nature
adds considerable overhead to data-retrieval operations.

Note ■ there will be times when a table scan is preferable to using an index. For example, if sQL server needs to
process a reasonable proportion of rows within a table (as a rule of thumb, 10% or more of rows), a table scan is likely
to be better than using an index. decisions such as this one are made by sQL server based on costs, like the cost of
accessing the hard drive a row at a time as opposed to retrieving large chunks of data and holding the data in memory.
sQL server uses a cost-based optimizer. there are other costs, but this is one example of why table scans may occur.
this is all to say that a table scan isn’t wholly a bad thing, but on large tables, it could take some time to process.

When searching a table using the index, SQL Server does not go through all the data stored in the table; rather, it
focuses on a much smaller subset of that data, as it will be looking at the columns defined within the index, which is faster.
Once the record is found in the index, a pointer states where the data for that row can be found in the relevant table.

There are different types of indexes you can build onto a table. The circumstances of the column or columns you
select and the data that will be held within these columns determine which type of index you use.

Types of Indexes
Although SQL Server has three types of indexes—clustered, nonclustered, and primary and secondary XML
indexes—I will concentrate only on clustered and nonclustered in this book, as XML and XML indexes are quite an
advanced topic.

The index type refers to the way the index and the physical rows of data are stored internally by SQL Server. The
differences between the index types are important to understand, so I will delve into them in the sections that follow.

Clustered
A clustered index defines the order of the data in the table. If you have more than one column defined in a clustered
index, the data will be stored in sequential order according to columns: the first column, then the next column, and so
on. Only one clustered index can be defined per table, and the clustered index has to generate unique values. It would
be impossible to store the data in two different orders.

Going back to the earlier book analogy, if you examine a telephone book, you’ll see that the data are presented in
alphabetical order with surnames appearing first, then first names, and then any middle-name initial(s). Therefore,
when you search the index and find the key, you are already at the point in the data from which you want to retrieve
the information, such as the telephone number. In other words, you don’t have to turn to another page as indicated
by the key because the data are right there. This is a clustered index of surname, first name, and initials. The clustered
index not only defines the order of the data but also holds the data of the columns not defined as the index.

As data are inserted, SQL Server will take the data within the index key values you have passed in and insert the
row at the appropriate point if possible. It will then move the data along so that it remains in the same order. You can
think of this data as being like books on a bookshelf. Let me take you through a simple analogy, and I will put the
relevant technical terms in brackets where appropriate. In the analogy there is an assumption that one book = one
kilobyte of data and a shelf can hold eight kilobytes (8KB page).

When a librarian gets a new book, he will find the correct alphabetical point and try to insert the book at that
point (searching the B-Tree). All the books will then be moved within the shelf. If there is no room as the books are
moved, half the books approximately at the end of the shelf will be moved to the next shelf down, and so on, until
a shelf with enough room is found (page splitting). However, if there were no shelves left, the librarian would build a

Chapter 6 ■ Creating indexes and database diagramming

169

new shelf (page) at the relevant point (new page allocation). With all the shuffling around of books, he may find that
there are shelves only partially filled and maybe shelves with only one or two books on them because of the way the
shuffling has taken place (fragmentation). The librarian would do only so much shuffling before he decided it would
be easier to insert a new shelf, as he doesn’t want to be spending all day shuffling books around. It’s not effective to
shuffle and modify at the same time (optimization), so he would build the shelf and place the book on that shelf. All of
the actions taken would also occur for updates. However, the librarian does know that there is a limit to the number
of shelves they can add as the bookcase has a definite height. It’s the same with the B-Tree—there are only so many
levels created before no more levels are created.

Also, librarians take pride in their shelves and how quickly they can find a piece of information (index scan).
They don’t particularly wish to scan every book on every shelf for a specific book (table scan), although their first
main task is to ensure every book that they have is held on the shelves (consistency). So the head librarian finds a
quiet time, such as breaktime, lunchime, nighttime, or weekends, to allow the library staff to take all the books off the
shelves, replace them on the shelves in the right order (reindexing) with a set amount of spare space on each shelf for
future insertions, and leave enough space at the end for expansion. Then, if any shelves are left over, they will remove
them and reclaim the space (fill factor).

I hope this analogy shows how important it is that the correct columns are chosen for a clustered index. You
want to avoid shuffling as much as possible; data are always added at the end so that the librarian does not need to
shuffle the data around. Although this analogy puts the process in simple terms, this is exactly what SQL Server does.
A clustered index should also be as narrow as possible. Any table with a clustered index has the index key used as
part of any nonclustered index, as the nonclustered index would retrieve its data from the clustered index. Also, if you
have a column that is varchar, try to place that at the end of the list of columns selected for the index, which is why
numerically based columns are best.

As a clustered index contains the table data itself, SQL Server would perform fewer I/O operations to retrieve the
data using the clustered index than it would using a nonclustered index. Therefore, if you have only one index on a
table, try to make sure it is a clustered index. If a table has no clustered index defined, it is known as a heap table and
the data in the table is stored in no particular order.

Nonclustered
Unlike a clustered index, a nonclustered index does not store the table data itself. Instead, a nonclustered index stores
pointers to the table data or clustered index as part of the index keys; therefore, many nonclustered indexes can exist
on a single table at one time.

As a nonclustered index is stored in a separate structure—in fact, the index data is really held as a table with
a clustered index hidden from your view—from the base table, it is possible to create the nonclustered index on a
different filegroup from the base table. If the filegroups are located on separate disks, data retrieval can be enhanced
for your queries as SQL Server can use parallel I/O operations to retrieve the data from the index and base tables
concurrently.

When you are retrieving information data from a table that has a nonclustered index, SQL Server finds the
relevant row in the nonclustered index. If the information you want doesn’t form part of the data in the index, SQL
Server will then use information in the index to retrieve a key pointer to the relevant row and retrieve the row (fetch)
in the data or clustered index if the table is defined with one. As you can see, this involves at least two I/O actions—
and possibly more, depending on the optimization of the index. A nonclustered index also uses the B-Tree structure
and therefore the analogy of page splits and fragmentation described for a clustered index also exists; however, a
nonclustered index holds just the number of bytes for the columns defined for the nonclustered index and not the
number of bytes for the whole row. This means that although the data will be page split, it will usually occur less often.

When a nonclustered index is created, the information used to build the index is placed in a separate location
from the table and therefore can be stored on a different physical disk if required.

Chapter 6 ■ Creating indexes and database diagramming

170

Caution ■ the more indexes you have, the more times sQL server has to perform index modifications when inserting
or updating data in columns that are within an index.

Note ■ if you wish to index xmL data, which i cover only briefly later in the book, you should read “sQL server books
Online,” as this topic is beyond the scope of this book.

Uniqueness
An index can be defined as either unique or nonunique. A unique index ensures that the values contained within the
unique index columns will appear only once within the table, including a value of NULL.

SQL Server automatically enforces the uniqueness of the columns contained within a unique index. If an attempt
is made to insert a value that already exists in the table, an error will be generated and the attempt to insert or modify
the data will fail.

A nonunique index is perfectly valid. However, as there can be duplicated values, a nonunique index has more
overhead than a unique index when retrieving data. SQL Server needs to check if there are multiple entries to return,
compared with a unique index, where SQL Server knows to stop searching after finding the first row (although in
reality SQL Server will return internally the whole 8KB page of data as it makes a performance assumption that there
is a possibility you will need other data from the ordered page).

Unique indexes are commonly implemented to support constraints such as the primary key and clustered
indexes. Nonunique indexes are commonly implemented to support locating rows using a nonkey column.

Determining What Makes a Good Index
To create an index on a table, you have to specify which columns are contained within the index. Columns in an index
do not have to all be of the same data type. You should be aware that there is a limit of 16 columns on an index, and
the total amount of data for the index columns within a row cannot be more than 900 bytes. To be honest, if you get
to an index that contains more than four or five columns, you should stand back and reevaluate the index definition.
Sometimes you’ll have more than five columns, but you really should double-check.

It is possible to get around this restriction and have an index that does include columns that are not part of the
key: the columns are tagged onto the end of the index known as included columns. Included columns are also useful
if you have a small amount of data not to index but that is very commonly retrieved during searches on the table. This
means that the index takes up more space, but if it means that SQL Server can retrieve all of the data from an index
search, then it will be faster and potentially remove the need for a row fetch. However, to reiterate, if you are going
down this route for indexes, then perhaps you need to look at your design.

In the sections that follow, you will examine some of the factors that can determine if an index is good:

Using “low-maintenance” columns•	

Using primary and foreign keys•	

Being able to find a specific record•	

Using covering indexes•	

Looking for a range of information•	

Keeping the data in order•	

Chapter 6 ■ Creating indexes and database diagramming

171

Using Low-Maintenance Columns
As I’ve indicated, for nonclustered indexes, the actual index data is separate from the table data, although both can
be stored in the same area or in different areas (e.g., on different hard drives). To reiterate, this means that when you
insert a record into a table, the information from the columns included in the index is copied and inserted into the
index area for nonclustered indexes. So, if you alter data in a column within a table and that column has been defined
as making up an index, SQL Server also has to alter the data in the index. Instead of only one update being completed,
two will be completed. If the table has more than one index and in more than one of those indexes is a column that is
to be updated a great deal, then there may be several disk writes to perform when updating just one record. While this
will result in a performance reduction for data-modification operations, appropriate indexing will balance this out by
greatly increasing the performance of data-retrieval operations.

Concerning a clustered index if the altering of data in the columns that define the index, this could mean SQL
Server having to move rows of data around within the BTree.

Therefore, data that are low maintenance—namely, columns that are never or not heavily updated—could
become an index and would make a good index. The fewer disk writes or maintenance tasks that SQL Server has
to do, the faster the database will be, as well as every other database within that SQL Server instance. Don’t let
this statement put you off. If you feel that data within a table is retrieved more often than it is modified or if the
performance of the retrieval is more critical than the performance of the modification, then do look at including the
column within the index.

In the example application you are building, each month you need to update a customer’s bank balance with
any interest gained or charged. However, there is a nightly job that wants to check for clients who have between
$10,000 and $50,000, as the bank can get a higher rate of deposit with the Federal Reserve on those sorts of amounts.
A client’s bank balance will be constantly updated, but an index on this sort of column could speed up the overnight
deposit check program. Before the index in this example is created, you need to determine if the slight performance
degradation in the updating of the balances is justified by the improvement of performance of the deposit check
program.

Using Primary and Foreign Keys
A primary key is a constraint and therefore can be enforced logically. However, SQL Server enforces a primary
key uniqueness by creating an index. You can see this in the ApressFinancial database by looking at the
CustomerDetails.Customers table, and you will see the index PK_Customers. The index created will be a clustered
index if the table has no clustered index already defined. If the table has a clustered index, you can have only one
clustered index per table, and therefore SQL Server will create a nonclustered unique index instead. Personally,
I prefer to use a primary key constraint rather than a unique clustered index because—although SQL Server will
generate a clustered index for the primary key—you may feel that a different set of columns would be a better
clustered index even though there is a slight performance degradation of a constraint over an index.

One important use of indexes is on referential constraints within a table. A referential constraint is where you’ve
indicated that through the use of a key certain actions are constrained depending on what data exists. To give a quick
example of a referential constraint, say you have a customer who owns banking products. A referential constraint
would prevent the customer’s record from being deleted while those products existed.

SQL Server does not automatically create indexes on your foreign keys, although it is likely that an index is
created when you build a primary key. However, as the foreign key column values need to be identified by SQL Server
when joining to the parent table, it is almost always recommended that an index be created on the columns of the
foreign key.

Chapter 6 ■ Creating indexes and database diagramming

172

Finding Specific Records
Ideal candidates for indexes are columns that allow SQL Server to quickly identify the appropriate rows. In
Chapters 10–13, you will meet the WHERE clause of a query. This clause lists certain columns in your table and is
used to limit the number of rows returned from a query. The columns used in the WHERE clause of your most common
queries make excellent choices for an index. So, for example, if you wanted to find a customer’s order for a specific
order number, an index based on customer_id and order_number would be perfect, as all the information needed to
locate a requested row in the table would be contained in the index.

If finding specific records is going to make up part of the way the application works, then do look at columns that
will reduce significantly the rows that would be returned from a search as an area for an index to be created, especially
if the column or columns would return one row.

Using Covering Indexes
As mentioned earlier, when you insert or update a record, any data in a column that is included in an index are stored
not only in the table/clustered index, but also in the indexes for nonclustered indexes. From finding an entry in an index,
SQL Server then moves to the table to locate and retrieve the record. However, if the necessary information is held within
the index, then there is no need to go to the table and retrieve the record, providing much speedier data access.

For example, consider the ShareDetails.Shares table in the ApressFinancial database. Suppose that you
wanted to find out the description, current price, and ticker ID of a share. If an index was placed on the ShareId
column, knowing that this is an identifier column and therefore unique, you would ask SQL Server to find a record
using the ID supplied. It would then take the details from the index of where the data are located and move to that
data area. If, however, there was an index with all of the columns defined, then SQL Server would be able to retrieve
the description ticker and price details in the index action. It would not be necessary to move to the data area. This is
called a covered index since the index covers every column in the table for data retrieval. However, as the current price
could be altering a great deal, you might find that the index was not ideal because too many updates to both the data
and the index would be occurring.

Looking for a Range of Information
An index can be just as useful for searching for a range of records as it can be useful for finding one record.
For example, say you wish to find a list of towns in Florida with names between Orlando and St. Petersburg in
alphabetical order. You could put an index on the town name, and SQL Server would go to the index location of
Orlando and then read forward from there an index row at a time, until it reached the item after St. Petersburg, where
it would then stop. Because SQL Server knows that an index is on this column and that the data will be sorted by town
name, this makes it ideal for building an index on a town name column.

It should be noted that SQL Server indexes are not useful when attempting to search for characters embedded in
a body of text. For example, suppose you want to find every author in a publisher’s database whose last name contains
the letters “ab.” This type of query does not provide a means of determining where in the index tree to start and stop
searching for appropriate values. The only way SQL Server can determine which rows are valid for this query is to
examine every row within the table. Depending on the amount of data within the table, this can be a slow process.
If you have a requirement to perform this sort of wildcard text searching, you should take a look at the SQL Server full-
text feature as this will provide better performance for such queries.

Keeping the Data in Order
As previously stated, a clustered index actually keeps the data in the table in a specific order. When you specify a
column (or multiple columns) as a clustered index, upon inserting a record, SQL Server will place that record in a
physical position to keep the records in the correct ascending or descending order that corresponds to the order
defined in the index. To explain this a bit further, if you have a clustered index on customer numbers and the data

Chapter 6 ■ Creating indexes and database diagramming

173

currently have customer numbers 10, 6, 4, 7, 2, and 5, then SQL Server will physically store the data in the following
order: 2, 4, 5, 6, 7, 10. If a process then adds in a customer number 9, it will be physically inserted between 7 and 10,
which may mean that the record for customer number 10 needs to move physically. This was discussed in the book
analogy when clustered indexes were introduced earlier in this chapter. Therefore, if you have defined a clustered
index on a column or a set of columns where data insertions cause the clustered index to be reordered, this will
greatly affect your insert performance. SQL Server does provide a way to reduce the reordering impact by allowing
a fill factor to be specified when an index is created. I will discuss the fill factor shortly; however, this option allows
you to define how much of an index leaf will be filled before a new leaf is created. Think of an index leaf as your index
card for each cabinet. You know that more items are going to come in, and you’ll need to add some of them to existing
index cards. You try to estimate how many items you’ll need to add to each card, so you can leave space for them and
avoid creating any new cards unnecessarily.

Determining What Makes a Bad Index
Now that you know what makes a good index, let’s investigate what makes a bad index. There are several “gotchas” to
be aware of:

Using unsuitable columns•	

Choosing unsuitable data•	

Including too many columns•	

Including too few records in the table•	

Using Unsuitable Columns
If a column isn’t used by a query to locate a row within a table, then there is a good chance that the column won’t
need to be indexed, unless it is combined with another column to create a covering index, as described earlier. If this
is the case, the index will still add overhead to the data-modification operations but will not produce any performance
benefit to the data-retrieval operations.

With clustered indexes, as I have mentioned before, columns that are modified frequently are not ideal
candidates for forming the index.

Choosing Unsuitable Data
Indexes work best when the data contained in the index columns are highly selective between rows. The optimal
index is one created on a column that has a unique value for every row within a table, such as a primary key. If a query
requests a row based on a value within this column, SQL Server can quickly navigate the index structure and identify
the single row that matches the query predicate.

However, if the selectivity of the data in the index columns is poor, the effectiveness of the index will be reduced.
For example, if an index is created on a column that contains only three distinct values, the index will be able to
reduce the number of rows to just a third of the total before applying other methods to identify the exact row. In this
instance, SQL Server would probably ignore the index anyway and find that reading the data table instead would be
faster. Therefore, when deciding on appropriate index columns, you should examine the data selectivity to estimate
the effectiveness of the index and keep the index highly selective.

Chapter 6 ■ Creating indexes and database diagramming

174

Including Too Many Columns
The more columns there are in an index, the more data writing has to take place when a process completes an update
or an insertion of data. Although these updates to the index data take a very short amount of time in SQL Server, they
can add up. Therefore, each index that is added to a table will incur extra processing overhead, so it is recommended
that you create the minimum number of indexes needed to give your data-retrieval operations acceptable
performance. Recall that a page of data in the B-Tree is 8KB and the more bytes in the index, the less data can be held
within the 8KB page.

When There Are Too Few Records in the Table
From a data-performance viewpoint, there is absolutely no need to place an index on a table that has only one row.
SQL Server will find the record at the first request, without the need of an index, because it will use a table scan. That
said, you may wish to include a primary key that can then be used to enforce data integrity.

This statement also holds true when a table has only a handful of records. Again, there is no reason to place an
index on these tables. The reason for this is that SQL Server would go to the index, use its engine to make several
reads of the data to find the correct record, and then move directly to that record using the record pointer from the
index to retrieve the information. Several actions are involved in this process as well as passing data between different
components within SQL Server. When you execute a query, SQL Server will determine whether it’s more costly (recall
SQL Server is a cost-based database and performing disk I/O is costly) to use the indexes defined for the table to
locate the necessary rows or to simply perform a table scan and look at every row within the table.

Reviewing Your Indexes for Performance
Every so often, it’s necessary for you as a developer to review the indexes built on your table to ensure that yesterday’s
good index is not today’s bad index. When a solution is built, what is perceived to be a good index in development
may not be so good in production—for example, the users may be performing one task more times than expected.
Therefore, it is highly advisable that you set up tasks that constantly review your indexes and how they are performing.
This can be completed within SQL Server via its index-tuning tool, the Database Engine Tuning Advisor (DTA).

The DTA looks at your database and a workload file holding a representative amount of information that will
be processed. It uses the information it gleans from these to figure out what indexes to place within the database
and where improvements can be made. At this point in the book, I haven’t actually covered working with data, so
going through the use of this tool will just lead to confusion. This powerful and advanced tool should be used only by
experienced SQL Server developers or database administrators. However, it is useful to know that a tool exists that can
aid you in keeping your database tuned well.

Getting the indexes right is crucial to your SQL Server database running in an optimal fashion. Spend time
thinking about the indexes, try to get them right, and then review them at regular intervals. Review clustering,
uniqueness, and especially the columns contained within indexes so that you ensure the data are retrieved as quickly
as possible. Finally, also ensure that the order of the columns within the index will reduce the number of reads
that SQL Server has to do to find the data. An index where the columns are defined as FirstName, LastName, and
Department might be better defined as Department, FirstName, and LastName if the greatest number of queries is
based on finding someone within a specific department or listing employees of a department. The difference between
these two indexes is that in the first, SQL Server would probably need to perform a table scan to find the relevant
records. Compare that with the second example, where SQL Server would search the index until it found the right
department and then just continue to return rows from the index until the department changed. As you can see, the
second involves much less work.

Chapter 6 ■ Creating indexes and database diagramming

175

Creating an Index
Now that you know what an index is and you have an understanding of the various types of indexes, let’s proceed to
create some in SQL Server. There are many different ways to create indexes within SQL Server, as you might expect.
Those various methods are the focus of this section of the chapter, starting with how to use the table designer in SQL
Server Management Studio.

The first index you will place into the database will be on the LastName and the ZipCode fields within the
CustomerDetails.Customers table.

Creating an Index with the Table Designer
In this section, you will be creating an index using SQL Server Management Studio via the Design option against the
CustomerDetails.Customers table. There is already an index on the CustomerId, which is a good column to have an
index on once you have retrieved a customer, but is not a good index to find a customer by their name.

The index created will be used to find the record to update with a customer’s information. An application will
usually have to find a specific customer using a combination of name and address rather than a customer ID. It is
possible to have multiple records with the same details. For example, you may have John J. Doe and his son, John J.
Doe, who are both living at the same address; however, a search of LastName and ZipCode would return a very small
set of records to display for the operator to choose from. Once you have sufficient details displayed on the screen of
all the possible customers based on the search criteria, the user can ask a few more questions such as date of birth
or when the account was opened. The user can then select the specific customer from the list. However, how will the
computer program know which John J. Doe to use when it comes to completing an update?

Instead of looking for the customer by first name, last name, and address for each modification, the application
will know the CustomerId and use this to find the record within SQL Server. When completing the initial search, the
CustomerId will be returned as part of the set of values, so when the user selects the appropriate John J. Doe, the
application will know the appropriate CustomerId. SQL Server will use this value to specifically locate the record to
update. In the following exercise, we’ll add an index to the CustomerDetails.Customers table to perform the search
on LastName and ZipCode.

trY It OUt: CreatING aN INDeX GraphICaLLY

1. ensure that sQL server management studio is running and that you have expanded the
nodes in the tree view so that you can see the tables node within the ApressFinancial
database.

2. Find the CustomerDetails.Customers table where the index is to be added. right-click and
select design. this will bring you into the table designer. either right-click and from the pop-
up menu select manage indexes and Keys or from the toolbar select the manage indexes and
Keys icon (see Figure 6-1).

Figure 6-1. The Manage Indexes and Keys button

3. the indexes/Keys dialog box will appear and look similar to Figure 6-2. notice that there is a
primary Key already defined. You created this in Chapter 5.

Chapter 6 ■ Creating indexes and database diagramming

176

4. Click add to create a new index or key. the first area to change is the name of the index.
notice that in the (name) text box, sQL server has created a possible value for you. the name
is prefixed with ix_, which is a good naming system to use. it is also good to keep the name
of the table and then a useful suffix, such as the name of the column or a shortened version
of this. in this case, the index will be called IX_Customers_LastNameZip. it might also
be good to place something in the description. however, index names should be
self-explanatory, so there really shouldn’t be a need for a description.

5. sQL server has, in this instance, incorrectly selected CustomerId as the column that will
make up the index. Click the CustomerId text box, which should then highlight an ellipsis, as
you can see in Figure 6-3.

Figure 6-2. The Indexes/Keys dialog box

Chapter 6 ■ Creating indexes and database diagramming

177

6. Clicking the ellipsis will display the index Columns dialog box, where you can select the
correct columns. Choose Lastname and ZipCode, as shown in Figure 6-4, and then click OK.

Figure 6-3. Selecting the columns to index

Figure 6-4. Choosing the correct columns for this index

7. the sort order of the index column is useful when creating an index on the columns that will
be used in an ORDER BY clause of a query when there are multiple columns with differing
sort orders. if the sort order of the columns within the index matches the sort order of those
columns specified in the ORDER BY clause, sQL server may be able to avoid performing an
internal sort, resulting in improved query performance.

Chapter 6 ■ Creating indexes and database diagramming

178

Tip ■ if an index is only one column, sQL server can read the index just as fast in a forward direction as it can in a
backward direction.

8. move to the Fill specification area within the indexes/Keys dialog box, and you will see two
options: Fill Factor and pad index. For the moment, set Fill Factor to 90 and pad index to Yes,
as shown in Figure 6-5. both these options will be described in detail outside of the exercise
in just a moment.

Figure 6-5. Choosing the fill factor and padding for an index

Note ■ if this were a production environment or if you were creating a system in a development environment to move
to a production environment, you would need to take a couple of other considerations into account. You would need to
alter the Filegroup or partition scheme so that indexes were placed on a different filegroup, as i discussed earlier.

9. Click Close on the indexes/Keys dialog and then close the table designer, answering Yes
when you are asked if you wish to save the changes. this will add the index to the database.

building an index in management studio is a straightforward procedure, as you have just seen. although this is
the first index that you have created yourself, it took only a few moments, and there were just a couple of areas
where you had to do any reasonable amount of decision making. i will cover those areas now.

Choosing the name of the index and the columns to include is easy and is not worth dwelling on. You should know
which columns to include from the discussions at the start of the chapter, where i examined the basics of building
indexes.

Chapter 6 ■ Creating indexes and database diagramming

179

the first major decision you need to make is determining whether a column carries unique or almost unique
values. the columns chosen for this index would not necessarily give a unique row, as there could be two people
with the same last name in the same Zip code as mentioned earlier; however, it would give a very small list from
a potentially large table. therefore this makes last name and Zip code a good choice. the same could be said with
last name or phone number.

Fill Factor, found in the Fill specification area, tells sQL server how much of a page should be filled with index
data before sQL server starts a new page of data to continue with the index. in an index such as this, some space
should be set aside for new data to be inserted to avoid page splits when the page becomes full. i mentioned
page splits in Chapter 5 when introducing partitioning. You will never get the perfect value as you never know
at what point new customers will be joining, but you can make a good estimate. a page of data in sQL server
is 8Kb. the size of the index in the example that has been built is a maximum of varchar(70) (LastName is
varchar(50) and ZipCode is varchar(20)), so you have hit your first problem in reaching an accurate estimate
as the data will be variable in length; one method is to take an average of the data in the table, either at creation
if you know the data that will be used to populate the table, or make an estimate based on a good set of random
data. For the moment, an assumption is made based on a set of random LastNames and ZipCodes you know will
be entered that the average index width is 35 bytes. You then also have to add a further 2 bytes for each index
value for sQL server to use. as well as each index length, an index page has information at the start of each
page for sQL server’s internal use of 96 bytes. a full index page would be (8192 – 96) / 37, which works out as
just over 218 index rows. a fill factor of 60, or 60% full, would mean 130 index rows on each page at the time
the index was created or rebuilt using the existing data. this would mean that between index rebuilds you are
expecting 88 new rows of data to be inserted. that’s quite a lot of data and therefore too low a value. a fill factor
value of 90 might be a better setting, as this would allow 22 new index rows before sQL server had to split the
page (shuffle the books in the librarian scenario).

pad index is similar to Fill Factor but indicates whether the same amount of space is reserved in the index tree
structure. to expand a little on this, indexes are held in a top-down tree structure, a bit like a family tree, where
you have the head of the family at the top, then the next two people in the hierarchy, and so on. this was also
mentioned in the partitioning section in Chapter 5. this is known as a b-tree structure. at the top level in sQL
server are links to the next level in the tree that allow sQL server to get to the index row quickly. setting pad
index to Yes will mean that each page on each level will also have a 90% fill rate before the pages are split.

Finally, an option that can be found at the bottom of the indexes/Keys dialog is the re-compute statistics option,
which determines whether sQL server automatically recomputes the statistics on the index when data are
modified. recomputing statistics will increase the use of sQL server resources as each modification updates the
statistics, but having good statistics also means good performance. depending on how often you rebuild your
statistics, and whether your system is a high-insertion/low-retrieval system and also if the profile of you data
alters such that the statistics would need re-computing, you could switch this option off. by default the option is
set to recompute statistics.

Indexes and Statistics
When retrieving data, SQL Server obviously has to make some decisions as to the best way to get to that data and
return it to the query requesting it. Even if an index has been created on a set of columns, SQL Server may determine
that it is better and faster to use another method to retrieve the data—through a table scan, perhaps. Or maybe there
are a couple of indexes that could be chosen to retrieve the same data. No matter what the scenario, SQL Server has to
have some basis of information on which to make sensible and accurate choices. This is where statistics come in.

Chapter 6 ■ Creating indexes and database diagramming

180

SQL Server keeps statistics on each column contained within an index if you have Auto Create Statistics set to
True. This is set at the database level. These statistics are updated over a period of time and over a number of inserts
or modifications. The specifics of how all of this works in the background and how SQL Server keeps the statistics up
to date are an advanced topic. What you need to know is that if you alter or build an index on a table that has data in it,
and you don’t let SQL Server update the statistics on the table, then SQL Server could be using inaccurate information
when it is trying to decide how to retrieve the data. It could even mean that the index change you thought would
improve performance has in fact made the performance much slower.

That said, it is not always prudent to let SQL Server recompute statistics automatically. SQL Server will do the
updates when it feels they are required. This may happen at a busy time of processing; you have no control over when
it will happen. However, if SQL Server does update the statistics, the query that caused the update to start will not be
impacted, as the statistics will be updated asynchronously if the AUTO_UPDATE_STATISTICS_ASYNC option is switched on.

It may be more efficient to manually update the statistics via a scheduled job and keep all statistics building off.
This is what you quite often see within production environments that have a number of inserts and modifications to
the data.

The main point about SQL Server and statistics is that statistics are what SQL Server uses as its method of cost-
based calculations for finding the right query plan. If the statistics are out of date or if SQL Server feels the statistics
may be out of date, it may ignore them. Therefore, whether you allow statistics to be updated automatically by SQL
Server or you wish to update the statistics manually, they have to be recalculated regularly so that they are not seen
as stale.

The CREATE INDEX Syntax
Creating an index using T-SQL is a lot easier than creating a table. In this section, we will look only at indexes on
tables, although there is an object within SQL Server called a view that can also be indexed.

The full syntax for creating an index is not listed here, although you can find it within “SQL Server Books Online”
once you progress in your SQL Server knowledge. A reduced version will be sufficient while you are learning SQL
Server. Most of your indexes will use the following version:

CREATE [UNIQUE] [CLUSTERED|NONCLUSTERED]
INDEX index_name
ON table (column [ASC|DESC] [,...n])
[WITH {IGNORE_DUP_KEY|DROP_EXISTING|SORT_IN_TEMPDB}]
[ON filegroup]

Let’s go through each point so that the options in this cut-down version are clear:

•	 CREATE: Required; this keyword informs SQL Server that you will be building a new object.

•	 UNIQUE: Optional; if used, this option will inform SQL Server that the columns listed in the
index will bring back a single unique row. This is enforced by SQL Server when attempting to
insert a duplicate row, as an error message will be returned.

•	 CLUSTERED or NONCLUSTERED: Optional; if neither CLUSTERED nor NONCLUSTERED is explicitly
listed, the index will be created as NONCLUSTERED.

•	 INDEX: Required; this informs SQL Server that the new object will be an index.

•	 index_name: Required; this is the name of the index being built. This name must be unique
for the table, and it is advisable to keep this name unique for the database, using the naming
method of IX_table_column discussed earlier.

•	 ON table: Required; this is the name of the table with which the index is associated. Only one
table can be named.

Chapter 6 ■ Creating indexes and database diagramming

181

•	 column: Required; this is the name of the column(s) in the table that we wish to include in the
index. This is a comma-separated list.

•	 ASC: Optional (default); if neither ASC nor DESC is mentioned, then ASC is assumed. ASC
informs SQL Server that it should store the column named in ascending sequence.

•	 DESC: Optional; this informs SQL Server that the column is to be stored in descending order.

•	 WITH: Optional; it is, however, required if any of the following options have to be used:

•	 IGNORE_DUP_KEY: This option is available only when the index is defined as UNIQUE. If this
option has not been used earlier, then it is not available to you. I’ll explain this further in
a moment.

•	 DROP_EXISTING: This option is used if there is an existing index of the same name
within the database. It will then drop the index before re-creating it. This is useful for
performance if you are not actually changing any columns within the index. More on this
in a moment.

•	 SORT_IN_TEMPDB: When building an index where there is already data within the table, it
may be advisable, if the table is a large table, to get the data sorted for the index within
the temporary database, tempdb, as mentioned in Chapter 3. Use this option if you have
a large table, or if tempdb is on a different hard disk from your database. This option may
speed up the building of the index, as SQL Server can simultaneously read from the disk
device where the table is located and write to the disk device where tempdb is located.

•	 ON: Optional; this option is, however, required if you are going to specify a filegroup. It is not
required if you wish the index to be built on the PRIMARY filegroup.

•	 filegroup: This is the name of the filegroup on which the index should be stored. At the
moment, there is only one filegroup set up: PRIMARY. PRIMARY is a reserved word and is
required to be surrounded by square brackets, [], if used.

Two options need further clarification: IGNORE_DUP_KEY and DROP_EXISTING. We’ll look at both in the sections
that follow.

IGNORE_DUP_KEY
If you have an index defined as UNIQUE, then no matter how hard you try, you cannot add a new row whose values
in the index columns match the values of any current row. However, there are two actions that you can perform,
depending on this setting within an index.

When performing multirow inserts, if the IGNORE_DUP_KEY option is specified, then no error will be generated
within SQL Server if some of the rows being inserted violate the unique index. Only a warning message will be issued.
The rows that violated the unique index are not inserted, although all other rows are inserted successfully.

Caution ■ the system variable called @@ERROR can be tested after every sQL server action to see if there has been
an error in any item of work or through another error-handling command called Try/Catch. if there has been an error,
some sort of error handling within the batch will usually be performed. if you have IGNORE_DUP_KEY, then no error will be
produced when there is an attempt to insert a duplicate row, and the batch will run as if everything had been inserted.
so, be warned: it may look like everything has worked, but in fact some rows were not inserted! You will see @@ERROR and
Try/Catch used in Chapter 17.

Chapter 6 ■ Creating indexes and database diagramming

182

DROP_EXISTING
When data are being inserted and modified, there will be times when an index bloats to a less than ideal state. Just
as an Access database may need to be compacted, indexes within SQL Server also need to be compacted sometimes.
Compacting the index will speed up performance and reclaim disk space by defragmentating the index. To compact
an index, you re-create the index without actually modifying the columns or, in fact, starting from scratch and having
to rebuild the whole index and visit every row within the table.

The DROP_EXISTING clause provides enhanced performance when rebuilding a clustered index compared to a
DROP INDEX command followed by a CREATE INDEX command. Nonclustered indexes will be rebuilt every time the
clustered index for a table is rebuilt if the columns are included in the clustered index. The name of the clustered
index must also remain the same, as must the sort order and the partition the index is built on. Finally, the uniqueness
attribute must not change. So, if you drop a clustered index and then re-create it, the existing nonclustered indexes
will be rebuilt twice (if they are to be rebuilt): once from the drop and once from the creation. With the DROP_EXISTING
clause, an index would be built only once. Keep this in mind as it is crucial if you are working in a time-critical
batch window. With the size of table and indexes created, it may be possible to re-create a clustered index only on a
weekend.

DROP_EXISTING can allow an existing index to be rebuilt by explicitly dropping and re-creating the index. This
is particularly useful for rebuilding primary key indexes. As other tables may reference a primary key, it may be
necessary to drop all foreign keys in these other tables prior to dropping the primary key. By specifying the
DROP_EXISTING clause, SQL Server will rebuild the index without affecting the primary key constraint.

Creating an Index in Query Editor
In the following exercise, you will create two indexes and a primary key within a Query Editor pane. This will allow
you in the next section to build a foreign key between the two tables, TransactionDetails.Transactions and Trans
actionDetails.TransactionTypes. The code will also demonstrate how to build T-SQL defining the options for the
index presented during the CREATE INDEX syntax discussion earlier.

trY It OUt: CreatING aN INDeX WIth QUerY eDItOr

1. enter the following code into an empty pane of Query editor. the first index you will
be creating in this section is a uniquely clustered index on the TransactionDetails.
TransactionTypes table.

USE ApressFinancial
GO
CREATE UNIQUE CLUSTERED INDEX IX_TransactionTypes
ON TransactionDetails.TransactionTypes
(
 TransactionTypeId ASC)
WITH (STATISTICS_NORECOMPUTE = ON, SORT_IN_TEMPDB = ON,
 DROP_EXISTING = OFF, IGNORE_DUP_KEY = OFF, ONLINE = ON,
 ALLOW_ROW_LOCKS = ON, ALLOW_PAGE_LOCKS = ON)
ON [PRIMARY]
GO

Chapter 6 ■ Creating indexes and database diagramming

183

2. the second index you’ll create is a nonclustered index on the TransactionDetails.
Transactions table based on the TransactionType column. You won’t make this index
clustered, as it would be better to consider either CustomerId or DateEntered as clustered
columns.

CREATE NONCLUSTERED INDEX IX_Transactions_TType
ON TransactionDetails.Transactions
(
 TransactionType ASC)
WITH (STATISTICS_NORECOMPUTE = OFF, SORT_IN_TEMPDB = ON,
DROP_EXISTING = OFF, IGNORE_DUP_KEY = OFF, ONLINE = ON,
ALLOW_ROW_LOCKS = ON, ALLOW_PAGE_LOCKS = ON)
ON [PRIMARY]
GO

3. the final action is to add a primary key to the TransactionDetails.TransactionTypes
table. You do this through an ALTER TABLE statement:

ALTER TABLE TransactionDetails.TransactionTypes
ADD CONSTRAINT
 PK_TransactionTypes PRIMARY KEY NONCLUSTERED
 (
 TransactionTypeId
)
WITH (STATISTICS_NORECOMPUTE = OFF, IGNORE_DUP_KEY = OFF,
ALLOW_ROW_LOCKS = ON, ALLOW_PAGE_LOCKS = ON)
ON [PRIMARY]
GO

4. You can now execute the preceding code by pressing F5, Ctrl+e or clicking the execute
toolbar button. You should then see the following success message:

The command(s) completed successfully.

as noted, two different indexes are created in this example. the first one is a unique clustered index, based on
the identity column of the TransactionDetails.TransactionTypes table. the second index’s column was
chosen because you will be linking to this table using the TransactionType column. rarely, if ever, will you link
on any other column within this table, so the two indexes would be sufficient. the overhead of the second index
is microscopic, though, due to the few records you will be entering, and it is therefore not really a concern, but it
does need to exist for the foreign key that you will be building shortly. it also allows you to see where to place the
keyword within the example.

the second index, built on the TransactionDetails.Transactions table, cannot be a unique index; there will
be multiple entries of the same value because there are multiple transactions for the same type. however, it is
still possible to make this index clustered. Changing the transaction type on a transaction will be rare, or, if you
had a full audit trail built within your system, you may “ban” such an action. the only way to change a transaction
type around this ban would be to cancel the entry, record the cancel action, and create a new entry. however, a
clustered index on transaction types will not give us much of a gain in performance, as there will be few queries
of data based on transaction type alone. as mentioned earlier, there are better choices for clustering. it should

Chapter 6 ■ Creating indexes and database diagramming

184

be noted that this second index is probably a poor choice of index for finding specific single rows and is unlikely
to be used as an index. it exists for creation of a foreign key. Uniqueness, known as cardinality, will be low as
there will be a large number of rows with the same value. however, as an index, it may be useful for queries that
request data as a range where you want transactions of all the same transaction type.

What is interesting about this example is that two indexes are created in one execution—albeit in two batch
transactions—whereas in the previous examples, only one index was created at a time. notice the keyword GO
between the two CREATE statements creating the index; each index creation has to be completed on its own,
without any other sQL statements included. if you need to create more than one index, but you would prefer
to build them at the same time, then this may be the solution you need. (please see Chapter 10 for details on
transactions.)

an area i have not yet covered is what happens if you try to create an index twice using the same index name.
the preceding indexes have already been created, but if you run the query again, sQL server will produce error
messages informing you that the index already exists. You should see messages like the following:

Msg 1913, Level 16, State 1, Line 1
The operation failed because an index or statistics with name
'IX_TransactionTypes'
already exists on table 'TransactionDetails.TransactionTypes'.
Msg 1913, Level 16, State 1, Line 1
The operation failed because an index or statistics with name
'IX_Transactions_TType' already exists on table
'TransactionDetails.Transactions'.
Msg 1779, Level 16, State 0, Line 1
Table 'TransactionDetails.TransactionTypes' already has a primary key
defined on it.
Msg 1750, Level 16, State 0, Line 1
Could not create constraint. See previous errors.

even if you alter the contents of the index and include different columns but still use the same name, it is not
possible to create another index with the same name as an existing one.

in the last part of the example, you altered the table so that you could add a primary key. there are different types
of constraints that can be defined for a table: column constraints are used for default values, as you saw in the
previous chapter, but constraints are also used for primary and foreign keys.

Once again, a couple of new areas were covered in this section, but you now have the information you need to be
able to create the most common indexes. Indexes need a lot less coding than tables and can be created quickly and
easily. However, if you are adding a new index to an existing table that has a substantial amount of information, adding
this new index could take a few minutes to complete, depending on the scenario. It is possible to add indexes while
the system is being used and the table or clustered indexes are being updated. This is available only in SQL Server
Enterprise Edition, by specifying the index action with the REBUILD WITH (ONLINE = ON) option. Take care when using
this option. If anybody tries to access the relevant table while the index is being built, SQL Server will not recognize the
index until it has been built, and when working out the best way to access the data, it will ignore this index.

If you are creating the index after removing it for rebuilding statistics, for example, problems may arise if you
don’t use the ONLINE = ON option. With this option ON, SQL Server will allow access to the table to add or modify data.
However, if it is set to OFF, then all actions against the table will have to wait until the index is re-created. This will
mean that any part of your system that requires access to the table that the index is being built on will pause while
the index is being generated. Therefore, if you are rebuilding an index with the database available, you have to decide
which of the two problems that may arise is acceptable.

Chapter 6 ■ Creating indexes and database diagramming

185

Dropping an Index
There will be times when an index is redundant and should be removed (that is, dropped) from a table. Dropping
an index is simply a case of executing the DROP INDEX statement, followed by the table name and the index name.
Keep in mind that for every index that exists, processing time is required to keep that index up-to-date for every data
modification. Therefore, when you create a new index that uses the same columns as an existing index, you should
drop the old one; or when an index is no longer providing speedy data access and is therefore being ignored by SQL
Server, it should be dropped.

Note ■ if the index is used by a primary key or unique constraint, you cannot drop it directly. in this case, you must use
the DROP CONSTRAINT command. the removal of this constraint will also remove the index from the table.

trY It OUt: DrOppING aN INDeX IN QUerY eDItOr

1. if you want to drop the clustered index created in the last section, all you need to do is
execute the following code. this will remove the index from sQL server and also remove any
statistics associated with it.

USE ApressFinancial
GO
DROP INDEX IX_TransactionTypes ON TransactionDetails.TransactionTypes

2. after execution, you should see that everything executed correctly:

Command(s) completed successfully.

3. don’t forget to re-create the index by running the following code. this code is the same as in

step 1 of the last “try it Out” exercise. if you still have that Query editor open, highlight just
that part of the query code and execute it.

USE ApressFinancial
GO
CREATE UNIQUE CLUSTERED INDEX IX_TransactionTypes
ON TransactionDetails.TransactionTypes
(
 TransactionTypeId ASC)
WITH (STATISTICS_NORECOMPUTE = ON, SORT_IN_TEMPDB = ON,
 DROP_EXISTING = OFF, IGNORE_DUP_KEY = OFF, ONLINE = ON,
 ALLOW_ROW_LOCKS = ON, ALLOW_PAGE_LOCKS = ON)
ON [PRIMARY]
GO

in the next section, we’ll examine what’s needed to alter an index.

Chapter 6 ■ Creating indexes and database diagramming

186

Altering an Index
Unlike a table, it is not possible to use an ALTER command to change the columns contained in an index. To do this,
you first have to drop the index and then re-create it. The DROP command will physically remove the index from the
table; therefore, you should ensure that you know what the contents of the index are before you drop the index if you
want to re-create a similar index.

Tip ■ One method that should allow you to re-create the index is storing all your database code in a source control
system such as Visual sourcesafe.

Re-creating an index can take a large amount of time, depending on the index, the columns, and the volume of
data. It could take hours, so you have to take this into account and definitely complete a “dry run” on a development
instance of an index build where there are hundreds of thousands or millions of rows involved. Don’t be caught out
with unexpected rebuild times in a production environment.

Note ■ in management studio, you can add and remove columns from an index’s definition without dropping and
re-creating the index, as this is all done for you behind the scenes, although the actions will be the same.

This next exercise demonstrates the steps you need to take to alter an index.

trY It OUt: aLterING aN INDeX IN QUerY eDItOr

1. First, you want to create an index to retrieve the transactions for a customer at a set point in
time or for a range in time. the following index will do just that, as you are querying the data
using the customer id and the date or date range you want the transactions for. since this
could become a large table, notice that the index is built using tempdb, but also that the code
locks the table while the index is being built, as this is simulating a build on the weekend
during scheduled downtime. if you were doing the alter when the bank was open, you would
perform this as an online alteration. execute this code to create the index, which you will then
correct in step 2:

USE ApressFinancial
GO
CREATE UNIQUE CLUSTERED INDEX IX_CustTransDate
ON TransactionDetails.Transactions
(
 CustomerId ASC,
 DateEntered ASC
) WITH (STATISTICS_NORECOMPUTE = OFF, SORT_IN_TEMPDB = ON,
DROP_EXISTING = OFF, IGNORE_DUP_KEY = OFF, ONLINE = OFF,
ALLOW_ROW_LOCKS = ON, ALLOW_PAGE_LOCKS = OFF)
ON [PRIMARY]GO

Chapter 6 ■ Creating indexes and database diagramming

187

2. however, it would be better to have the DateEntered descending, so that the latest
transactions are at the top:

CREATE UNIQUE CLUSTERED INDEX IX_CustTransDate
ON TransactionDetails.Transactions
(
 CustomerId ASC,
 DateEntered DESC
) WITH (STATISTICS_NORECOMPUTE = OFF, SORT_IN_TEMPDB = ON,
DROP_EXISTING = ON, IGNORE_DUP_KEY = OFF, ONLINE = OFF,
ALLOW_ROW_LOCKS = ON, ALLOW_PAGE_LOCKS = ON)
ON [PRIMARY]

3. now execute the code using your chosen method, and you should see the following results.
the index created in the first step is dropped, and then the new index is created:

The command(s) completed successfully.

by using the optional DROP_EXISTING clause of the CREATE INDEX command in the second step, this will drop the
existing index and re-create it.

Caution ■ take care when building indexes. it is possible to use the same columns in the same order, thus creating
the same index twice, but under two different index names. this is a waste of time and will place unnecessary overhead
on sQL server. it is unusual, but i have seen it happen. however, when including key column(s) from a clustered index
in a nonclustered index, because the row pointer is actually the clustered index key, sQL is smart enough not to store
the underlying information twice—once in the clustered index and once in the nonclustered index instead, it will be the
clustered index pointer instead of the data that is stored in the nonclustered index, and you can explicitly define the order
of the clustered index keys or key columns as they are used in the nonclustered index.

There are more indexes to build and this index to improve further, which you will see next, but you will take a
look at these later.

Included Columns
Indexes are very useful database objects for finding data. With the right columns you can find the information quickly,
but there will be many times that you will require further information from the table. In the first example, which
created an index on the CustomerDetails.Customers table with LastName and ZipCode, this would allow you to
find customers rapidly. But that is all it does, although that is pretty useful. If you needed to also retrieve the cleared
balance attached to the customer (for example, this is what most people are contacting their account for), it would
be useful to also retrieve that column of information at the same time. The ClearedBalance column is not a logical
column for the index; you are unlikely to look for a a customer for a specific amount. In this situation, SQL Server has
functionality called included columns that allow you to add extra columns to the end of an index. A word of caution
though—don’t add every column, only add low-maintenance columns (columns with changes in values mean that
SQL Server has to update the index as well as the table) and only add columns that are logical to be added to reduce

Chapter 6 ■ Creating indexes and database diagramming

188

any table access. Included columns are a fine balancing act and although it is not rare to have an index with included
columns, it certainly is not the norm. Keep in mind that any additional column will have a knock-on effect on index
performance and space used. Keep in mind that included columns are not part of the index and, therefore, will not
count toward the 16-column restriction that exists for indexes. Finally, included columns only exist for nonclustered
indexes as a clustered index is the table and, therefore, having included columns doesn’t make sense.

In the following example, the index IX_Customers_LastNameZip will be altered to add the ClearedBalance to
the index.

trY It OUt: aLterING aN INDeX tO haVe INCLUDeD COLUMNS

1. in a Query editor window, enter the following t-sQL code. this code will drop the existing
index and re-create the IX_Customers_LastNameZip with the included column of
ClearedBalance.

DROP INDEX IX_Customers_LastNameZip ON CustomerDetails.Customers
GO
CREATE NONCLUSTERED INDEX IX_Customers_LastNameZip
ON CustomerDetails.Customers
(
 LastName ASC,
 ZipCode ASC
)
INCLUDE (ClearedBalance)
WITH (PAD_INDEX = ON, STATISTICS_NORECOMPUTE = OFF,
SORT_IN_TEMPDB = OFF, DROP_EXISTING = OFF, ONLINE = OFF,
ALLOW_ROW_LOCKS = ON, ALLOW_PAGE_LOCKS = ON,
FILLFACTOR = 90)
GO

2. Once entered, execute the code (F5, CtrL+e or press the green arrow in the tool bar).

it is not possible to alter an index to add an included column; the index has to be dropped and re-created.

When an Index Does Not Exist
As the amount of data in your database expands, expansion may occur in areas that are unexpected. The application
originally built with your database could have been extended, so your original database design and index decisions
may not still be 100% correct.

When SQL Server accesses data, it uses its query optimizer to generate what is termed a query plan. A query
plan is a plan of actions that SQL Server uses to perform the query you have built against the data. The query plan
could consist of several steps that SQL Server performs to execute your query and produce the results you require.
The query plan could show that a table scan is being performed, which is an action where the data in the table is read
from start to finish. There could also be a step that performs an intermediate sort. SQL Server also attempts to identify
missing indexes and record this within the system.

Note ■ these can be seen by accessing a view of the system table using a dynamic management View (dmV). dmV’s
are special views in to system-held information.

Chapter 6 ■ Creating indexes and database diagramming

189

Diagramming the Database
Now that the database has been built, the tables have been created, a number of the indexes have been inserted, and
relationships link some of the tables, it’s time to start documenting. To help with this, SQL Server offers you Database
Diagram Designer, which is the topic of this section. This is an excellent tool as it can give developers a great deal of
information about a database and a good start to documentation with little effort (and documentation is always the
last piece of work to be completed). It can also help build relationships between tables and, therefore, can be more
than just a simple diagramming tool.

One of the most tedious aspects of creating documentation is often the task of documenting tables and showing
how they relate to one another in a diagram. Done manually, such work is tedious indeed, and the results are difficult
to keep up-to-date. A database diagram tool, however, can do the work very quickly and simply, with one caveat: if
more than one person is using the database diagram tool on the same database and there are two sets of changes to be
applied to the same table, such as rearranging tables or something more substantial such as applying a relationship,
the person who saves his or her changes last will be the person who creates the final table layout. In other words,
the people who save before the last person will lose their changes. Therefore, I advise that you develop a database
solution using the diagramming tool only on single-developer applications. At all other times, use it as a tool for
understanding and documenting the database.

As you developed tables within your database, hopefully you will have commented the columns and tables
as you go along to say what each column and table is. This is a major part of documentation anyway, although a
database-naming convention should make your solution self-documenting to an extent. Providing that you comment
columns and tables at the start, it will be less of a chore to add in further comments when you add new columns.
If you do have comments on each of your columns within a table, this will help overall with the documentation
shown within the diagram.

That said, SQL Server’s database diagram feature is more than just a documentation aid. This tool provides
developers with the ability to build and maintain database solutions. It is perhaps not always the quickest method
of building a solution, and it is not the most flexible or best method, but it is one that allows the entire solution to
be completed in one place. Alternatively, you can use it to build up sections of a database into separate diagrams,
breaking the whole solution into more manageable parts, rather than switching between nodes in Management
Studio. You will see this later in this section.

Database Diagramming Basics
In the book so far, with the creation of databases, tables, indexes, and relationships, as much documentation as
SQL Server will allow should have so far been maintained, although it should be noted that databases should be
self-documenting, just as your source code for your application should be self-documenting. However, there is no
documentation demonstrating how the tables relate to one another within the database. This is where the database
diagram comes to the forefront.

A database diagram is a useful and easy tool to build simple but effective documentation on these aspects.
You build the diagram yourself, and you control what you want to see within the diagram. When you get to a large
database solution, you may want diagrams for sections of the database that deal with specific aspects of the system,
or perhaps you want to build a diagram showing information about process flows. Although there are other external
tools to do this, none is built into SQL Server that can allow diagrams to be kept instantly up-to-date.

A diagram will show only tables, columns within those tables, and the relationships between tables in a bare
form. You will also see a yellow “key,” which denotes a primary key on the table where one has been defined, but that
is all the information displayed. It is possible to define the information that is to be displayed about the columns in
the table, whether it is just the column name or more in-depth information, such as a column’s data type and length,
comments, and so on. However, to display more than just the bare essentials, a little bit of work is required.

Although the diagram shows the physical and logical attributes of the database that is being built or has been
built, it also allows developers and administrators to see exactly what is included with the database at a glance and
how the database fits together.

In the next section, you will delve a bit deeper into what the SQL Server database diagram is all about.

Chapter 6 ■ Creating indexes and database diagramming

190

The SQL Server Database Diagram Designer
Management Studio’s database diagram tool aids in the building of diagrams that detail aspects of the database that a
developer wishes to see. Although it is a simple and straightforward tool and it’s not as powerful as some other tools
on the market for building database diagrams, it is suitably sufficient for SQL Server.

The biggest restriction of any diagram-based database tool comes down to the amount of screen space available
to view the diagram. As soon as your database solution consists of more than a handful of tables, you will find yourself
scrolling around the diagram, trying to find the table you are looking for or reducing the zoom to a percentage that
may be too small to read well.

Second, you cannot add stored procedures, schemas, users, views, or any object that is not a table. Other
products allow you to include these objects, or they may even build some of them for you.

Finally, for the moment, when altering any of the information you can change within this tool, you are usually
using the same dialogs and screens as you would in Management Studio.

As you will see as you go through the chapter, the database diagram tool is quite powerful in what it can achieve,
but there are some areas of concern that you have to be aware of when working with diagrams. Keep in mind that the
database diagram tool is holding all the changes in memory until you actually save the diagram.

For example, if you have a database diagram open and a table within that diagram is deleted outside of the
diagram, perhaps in Query Editor or Management Studio by yourself or another valid user ID, then one of two things
can happen. First, if you have unsaved changes to the deleted table, saving your diagram will re-create the table, but
don’t forget that through the earlier deletion, all the data will be removed. If, however, you have no changes pending
to that table, then the table will not be re-created. When you come to reopen the diagram, the table will have been
removed.

With several developers working on the database at once, any changes made from the diagramming tool of
your Management Studio will not be reflected in any other developer’s diagram until his changes are saved and his
diagrams are refreshed. If you have multiple diagrams open and you alter a table and insert or remove a column, then
this will reflect immediately in all the open diagrams within your own Management Studio only. Don’t forget this is
an in-memory process, so this process can’t reflect on anyone else’s diagrams until the changes are saved and the
diagrams are refreshed.

Also, if you remove an object in your diagram, when you then save the diagram, the object will be removed and
any changes completed by others will be lost. Effectively, the last person who closes his or her diagram wins!

To summarize, if you use the database diagram tool, use it with care and use it only to diagram. Because the
diagram is held in in-memory, you could inadvertently cause problems.

The Default Database Diagram
Although it’s not mandatory, I do feel every SQL Server database solution should have a default database diagram
built into it so that any developer—new or experienced—can instantly see how the database being inspected fits
together.

A default database diagram should include every table and every relationship that are held for that database.
Unlike other diagrams that may take a more sectionalized view of things, the default database diagram should be
all-encompassing.

As mentioned earlier, it is imperative that you keep this diagram up-to-date. You will notice this statement
repeated a few times in this chapter. Don’t use the default diagram as the source of development for your database
solution. The default diagram includes all the tables, which means that if you’re using the database diagram tool for
development, you are potentially logically locking out all other users from touching any other table as part of their
development, in case their changes are lost. Update the diagram with tables and relationships only once they have
been inserted in the database. We’ll look at this in more detail later when we discuss the dangers of using the database
diagram tool as a source of development.

Now that you know what diagrams are and what the tool is, it’s time to create the first diagram for this database.

Chapter 6 ■ Creating indexes and database diagramming

191

trY It OUt: CreatING a DataBaSe DIaGraM

1. to create a diagram, the database needs to be owned by the sa account. in versions prior to
sQL server 2014, a login with the sysadmin server role was sufficient. to change the owner
from your account for the ApressFinancial database, enter the following code in to a Query
editor and execute:

aLter aUthOriZatiOn On database::apressFinancial tO “sa”

2. move to the Object explorer and expand the ApressFinancial database database diagrams
node. select the database diagrams node and then right-click. Choose new database
diagram (see Figure 6-6).

Figure 6-6. Creating a new database diagram

Figure 6-7. Installing diagramming support

3. if this is the first diagram you are creating for the database, you’ll need to install support
objects. Without them, you cannot create the diagram, so click Yes at the next dialog prompt
(see Figure 6-7).

Note ■ You can also install diagramming support from the menu.

4. the first screen you’ll see when creating the diagram is the add table dialog (see Figure 6-8).
select all of the tables listed, as you want to use all the tables in your diagram, and then click
add. this will “empty” the screen. Click Close.

Chapter 6 ■ Creating indexes and database diagramming

192

5. after a few moments, you will be returned to management studio, but with the database
diagram now built. the diagram will not show all the tables at this point and will be very
large. You can reduce the size through the size combo box in the diagramming toolbar, as
shown in Figure 6-9. select the size To Fit.

Figure 6-9. The Size combo box

Figure 6-8. Selecting tables

6. You’ll then see a diagram similar to that shown in Figure 6-10. (don’t be surprised if the
layout is different, though.)

Chapter 6 ■ Creating indexes and database diagramming

193

that’s all there is to building a basic diagram.

The Database Diagram Toolbar
Let’s next take a look at the toolbar and how each of the buttons works within the diagram. The whole toolbar is
shown in Figure 6-11, and each button is described in Table 6-1.

Figure 6-10. Tables with relationships built so far

Figure 6-11. Database diagram toolbar

Chapter 6 ■ Creating indexes and database diagramming

194

Table 6-1. Toolbar Buttons and Descriptions

Toolbar Button Description

 This button will create a new table within the database designer, which is a similar
process to that shown in Chapter 5. The difference is that you need to use the
Properties window for each column rather than have the properties at the bottom of
the table designer.

 When building the diagram, you selected every table. If you hadn’t done so and you
wanted to add a table, this button displays the Add Table dialog shown earlier to add
in any missing tables.

 This button adds tables related to the selected table into the designer. Any table that
has a relationship to the table selected, and then any tables related to those tables,
and so on will be added.

 This button deletes the highlighted table from the database.

 This button removes the highlighted table from the designer only.

 Any changes made to the database within the designer can be saved as a script rather
than applied immediately.

 If you wish to set a column to be the primary key, select the relevant column within a
table and click this button.

 This button is used to create a place within the diagram to put ad hoc text.

 Each table displayed is set to a standard layout. It is possible to change this to a
different predefined layout or to create your own custom view. You can use this to
alter the diagram to display enough information to modify the underlying tables. You
will see this in a few moments.

 Relationships that exist between tables will, by default, show as a line. However, it
is possible to show the name of the relationship as a label. This button toggles the
relationship text to show or be hidden.

 Diagrams are ideal methods of documenting the database. Diagrams can be printed
for meetings, discussions about future development, and so on. This button shows
the page breaks.

 Page breaks in diagrams remain as they were first set up until they are recalculated.
You are able to view the page breaks and arrange your tables accordingly. This button
will recalculate the page breaks based on the new layout.

(continued)

Chapter 6 ■ Creating indexes and database diagramming

195

Modifying Your Database Using Database Diagram Designer
Although Database Diagram Designer will be used mainly for documentation, it can also be used to perform a
few database functions, including adding, altering, and removing columns, setting primary keys, and creating a
relationship between two tables. There are other tools that can perform these functions as well as many more. For
example, one of the market leaders in database design tools is a product called SQL Power Architect. SQL Power
Architect is a powerful database utility that not only builds diagrams of databases, but also provides data dictionary
language output, which can be used to build database solutions. Through links such as OLE DB data providers, these
tools can interact directly with databases and so they can be used as a front end for creating databases. They can also,
at the same time, keep the created source in alignment and under control from a change control perspective, not only
ensuring that the code exists within the database, but also issuing a command to create a new database quickly, if
necessary. An example of where this might be useful is when you’re creating a new test database.

Table 6-1. (continued)

Toolbar Button Description

 Tables can be expanded or shrunk singly and manually, but when you select one or
more tables using the Ctrl button, clicking the relevant tables and then clicking this
button will resize the tables to a uniform size.

 This will rearrange the tables that have been selected only where SQL Server will
make the arrangement choices.

 SQL Server will do its best to get the best layout for all the tables and relationships in
the diagram when you click this button.

 This is the zoom option on the diagram and will allow you to zoom in or out to see
less or more of the diagram.

 This button will display the relationships dialog, as you saw in Chapter 5.

 This button manages indexes and keys, as you saw in Chapter 5.

 This button will display the dialog that would allow you to manage full-text indexes.
This was mentioned in Chapter 5.

 If you wanted XML indexes for the XML data, then you would click this button to
display the XML indexes dialog.

 To manage any constraints as covered in Chapter 5, clicking this button will display
the Manage Constraints dialog.

 This button will display the spatial indexes dialog for indexes pertaining to
geographical spatial data.

Chapter 6 ■ Creating indexes and database diagramming

196

From my perspective, this is not an ideal scenario as your code should be backed up, held within Visual SourceSafe,
and deployment strategies should be created. In some projects, I have used a tool from Red Gate called SQL Compare
to deploy from development to production. It allows you to compare two databases and detail the changes between
them, and you can then decide and detail what has to be deployed.

Summary
We’ve covered yet another major building block in creating a SQL Server solution. The last few chapters have shown
you how to store data, and in this chapter, you’ve learned about indexes and how to use them to quickly and efficiently
retrieve the data stored in the table.

There are many types of indexes, and choosing the right one at the right time to complete the right job is quite
an art. This chapter has taken you through the steps to decide which columns will make an efficient index, and then
build those columns in the right type of index to make the most of the information.

This chapter also covered database diagramming. Database diagrams should initially be thought of as a form of
documentation. Keep in mind, though, that the database diagram tool may expand in future versions of SQL Server to
become much more sophisticated and powerful than it is now—although even now it is quite a powerful utility.

Tip ■ remember, those who save last save the changes.

Don’t be caught off guard by the fact that changes in the diagram are not applied until the diagram is saved,
and that your changes could overwrite another’s changes. If you’re using the database diagram tool for development
in any sort of multiuser environment, take the greatest of care when completing updates (in fact, try to avoid them
altogether). Unless you split your database solution into multiple diagrams, with any table being found in at most one
diagram, don’t use the database designer as a development tool.

197

Chapter 7

In-Memory Tables

Chapter 5 introduced you to disk-based tables and how they are defined within a database. As I have mentioned
in previous chapters, SQL Server tries to be as fast as possible in completing the given unit of work. The slowest
component of completing the unit of work will be accessing data in tables on a disk, physical I/O. To try to reduce
physical I/O and instead use logical I/O, SQL Server will try to hold data in memory based on its own calculations
on what data should be held and how recently the data was last accessed. It would be better for you to be able to
define to SQL Server which tables are so important that the data they hold should be permanently held in memory.
This is where in-memory tables come in to their own. Up to and including SQL Server 2012, the only way to achieve
holding data permanently within memory was to pin a table to being held in memory. SQL Server used disk-based
optimizations as the table was on disk, but from SQL Server 2014 it is possible to define a table to permanently reside
in-memory, and it now also has its own database optimized engine to fully utilize in-memory held data.

In-memory tables are restricted on the SQL Server versions that can implement them to 64 bit Enterprise or
Developer Editions. There are also some requirements to be met on the server for instruction sets and, of course, the
amount of memory required can be larger than disk-based for the same data so that the data can be held. You will find
out why this might within the chapter through row versions.

In this chapter, you will see the following:

How SQL Server prepares your T-SQL, builds a plan and determines the costs•	

What an in-memory table is•	

The differences with disk-based tables•	

Creating in-memory tables•	

Migration of a disk-based table to in-memory•	

Cost-Based Processing
Every action that is performed by SQL Server has a logical cost. Accessing data to read, processing that data such
as sorting the data, fetching further data, and writing data to tables uses resources either on the server such as its
memory and processor or on disks to either read or write information. There are also costs in preparing your code
that works with the data as well as the execution of the code. In Figure 7-1 you will see a query plan for a simple query,
which is coded just above the figure. A query plan is how SQL Server takes the T-SQL you write and builds a set of
steps on actions it has to perform to achieve the results you require in the most cost effective way.

Chapter 7 ■ In-MeMory tables

198

SELECT FirstName As 'First Name',LastName AS 'Surname',
ClearedBalance Balance, p.LastCollected, fp.ProductName
FROM CustomerDetails.Customers c
join CustomerDetails.CustomerProducts p
 ON p.CustomerId = c.CustomerId
left outer join CustomerDetails.FinancialProducts fp
 ON fp.ProductId = p.FinancialProductId

Figure 7-1. Query plan for a random query

Understanding query plans is a whole book in itself, but let’s take a very quick high-level look at what is presented
in Figure 7-1. Query plans are read from right to left, with the resulting action the left-most icon. In Figure 7-1, I have
hovered over the Clustered Index Scan, which generates a pop-up Windows in the very right of the figure. (I will come
back to the figure in a moment—this window is only shown when you hover over a query plan step). The query I built
has three tables involved in the query, as shown just above Figure 7-1. Don’t worry too much about understanding
the query, as you will see how queries like this are created as you progress through the book. The main point to note
is that each step has a cost percentage of the overall cost of the plan. The Hash Match step, second from the left, has a
cost of 27%, for example. You can therefore see which steps take the greatest percentage of cost, and from this you can
start to identify where you might be able to improve a query that is not performing as well as you hoped. Keep in the
forefront of your mind, though, that the query will always reach 100% cost and, therefore, tuning may not be possible
as it runs as optimally as it can. Also, if a query takes a long time, it could be other factors and not the query that is the
issue. Figure 7-1 is an estimated query plan costing, which means SQL Server has not run the query against any data
and, therefore, has not given details of the actual cost of the query.

Move back to the pop-up window on the right of Figure 7-1, as this is where the interesting information about
cost-based processing is that I want to cover. The window shows a breakdown of the estimated cost of that particular
step as well as useful information about what the step is doing. Concentrating on the costs, notice that in this
window there are four costs listed and notice how much more the cost is with IO over CPU. The main point I want to
make, though, is how SQL Server allocates costs to each step and each processing area within that step. As memory
processing involves no physical IO, the cost of any step involving an in-memory table will be less and, therefore,
should mean a more efficient query.

Chapter 7 ■ In-MeMory tables

199

Cost isn’t everything, as I mentioned earlier. To expand on this, you may have a query that has a very high cost
value but runs as efficiently as possible. A high cost could be the result of several reasons from the number of rows
processed by the query but it could also be that your query finds the necessary data in an index but then has to access
the underlying table to retrieve further column values which means a high I/O cost. However using cost is a good
starting point for performance.

What Is an In-Memory Table?
An in-memory table is where all the data for the table is held in the memory allocated on the server for SQL Server
installation with an aim of being as fast and as efficient as possible. To help achieve this, an in-memory table will hold
as few locks as possible when working with data modifications reducing contention on the data.

SQL Server can be installed multiple times on the same computer/server. For each installation, it is normal
practice for a DBA to allocate a certain amount of maximum memory slice for each instance, leaving memory for
normal server operations and also quite often “spare” memory that can be allocated to a server if required.
An in-memory table would reside in the memory allocated for the instance of SQL Server it resides within.

As I mentioned in the introduction, SQL Server, like all databases, has an aim of working with data to complete
its given task in the most efficient and quickest way possible. As a database designer, you have a responsibility to
help SQL Server achieve this through the design of your database and the objects within the database as well as code
programs that work with this data in the most efficient manner. SQL Server also tries to ensure it works effectively
through its own internal processes and tools.

One technique that SQL Server employs to work with its data efficiently is to retain disk-based data in-memory.
SQL Server is unlikely to be able to retain all of your data from every disk-based table in-memory unless you have a
data in a database that is less than the available memory on your server. If your database is greater than the memory
available, data is removed from memory and, when required by SQL Server, to free up space for required data for the
queries being executed. It is possible that some or all of the data in a highly accessed table is residing on disk and not
in memory due to SQL Server deciding at some point that this highly accessed data has not been used for a while and
has therefore “aged out” of memory. If a SQL Server process requires that data, then it will need to be reread from disk.
As a developer, you know that from a performance view that it would be better to hold the data in this highly accessed
data in memory permanently, which is where in-memory tables come in to the picture.

There are two types of in-memory tables that you can use. The first is where the data will remain in memory
until a SQL Server recycles. When SQL Server is stopped and started, the schema definition of the table will remain,
but all the data will be lost. This is ideal for data that can be easily re-created when SQL Server restarts and a process
you build is executed to repopulate the data. When creating a table with this type of in-memory table, you define it
as SCHEMA_ONLY. The second type is where the data will be kept not only in-memory but also stored on disk. This is
ideal for when you need speed of access to the data but also require the durability of recording the data for future use.
The table creation would be defined as SCHEMA_AND_DATA. Both types of in-memory tables are fully durable while SQL
Server is running and therefore any data modifications will remain.

Differences to Disk-Based Tables
The most beneficial difference between in-memory and disk-based tables is speed of access to the data in both
reading and writing. This has been touched on already, but the main driver of in-memory tables is that in-memory
is faster than disk and every consideration Microsoft has taken about in-memory tables is “will this slow down data
access and if it does is the speed reduction adding sufficient value?”. This section of the chapter will cover some of
the main differences between disk-based and in-memory-based tables and also cover areas that have already been
discussed in previous chapters.

Disk-based tables only hold within their table one row for each row of data. This may be an obvious statement to
make as why would you expect there to be multiple rows of data for each actual row of data. However, to achieve this
single row requires there to be a reasonable amount of locking and “potential” locking, called latches, to ensure that
the row of data you are reading is the correct row of data within a transaction (transactions are covered in

Chapter 7 ■ In-MeMory tables

200

Chapters 10 and 12), that the data being written is being safely written. Locks are where SQL Server places a logical
“do not touch” indicator on rows, pages, or even the whole table of data. To achieve the same requirements where
you need to know the data you are working with is the correct definition SQL Server uses, a technique called row-
versioning for storing data. Quite simply, whenever SQL Server has to modify a row of data, the previous version or
versions of data remain and a new version is written to the table, therefore making multiple versions of the same
uniquely defined primary key row. By having many versions of rows, it does increase the amount of space required.
However, this is offset by the less need for latches and locks, which will have a performance impact.

You can use the T-SQL you learn throughout the book to access in-memory tables with very few exceptions. If you
use T-SQL in an ad-hoc fashion, as you will see in Chapter 12, then this is known as interpreted SQL. When you have
defined T-SQL and then send the T-SQL to SQL Server to execute, there are several steps involved. These steps are:

the query is first parsed where the T-SQL is parsed for accuracy and for any errors•	

a logical tree of steps is produced•	

it is then passed to the query optimizer which looks at the logical tree and either uses an •	
existing execution plan to execute the code or generates a new execution plan

the plan is then executed as the final step.•	

Even as stored procedures, which are SQL Server resident modules of code, these steps are still performed. To
improve performance, in-memory tables can use a process called natively compiled stored procedures. This is where
the stored procedure is compiled to native code, which is much faster upon first execution. You will see natively
compiled stored procedures in Chapter 15.

Another difference is that every table has to have at least one nonclustered index defined at the same time the
table is defined. It is not possible to create a table without an index also defined, and any index on an in-memory table
has to be created at the same time the table is created. The data within the columns defined for a primary key cannot
be altered and would require a deletion and insertion of the row if an alteration was required. Also this would cause
problems with how row-versioning would work, and you would lose the performance gains that row-versioning gives.

Once a table or an index is defined, you cannot alter the definitions without dropping and re-creating the table.
You cannot execute the DROP INDEX or ALTER INDEX commands, and you cannot execute an ALTER TABLE command.

There are other differences that have been covered in the book prior to this point and, therefore, cannot be
applied to in-memory based tables. These are the following:

Cannot have •	 IDENTITY columns

Cannot have foreign keys•	

Can be no check or unique constraints•	

Three datatypes are not supported: •	 datetimeoffset, hierarchyid, and sql_variant. Char
and varchar datatypes also need to be defined as code page 1252 or defined as Unicode.

In-Memory Indexes and the Hash Index
When creating a table, an index has to be created at the same time as mentioned earlier in the chapter. The index
can either be a nonclustered or hash nonclustered index. A nonclustered index can be defined either as a standard
nonclustered index, as demonstrated in Chapter 6, or as a hash nonclustered index. First of all, let me detail what a
hash nonclustered index is, and then I will detail when to choose which index to use.

If you have worked with languages such as C#, you may have come across a hash value. This is a value calculated
with a function based on the data passed to the function. This is no different in SQL Server. When building a query to
access the data, you will have a query that has a filter (known as a predicate) defining what data you want to return
from a table. This predicate is what is used to pass to the hash function to create the hash value.

Hash indexes are perfect when you have a query that is looking for a specific value from a query in a table and
then scanning from that point onward. A hash index is not good when you are looking for a range of values or when

Chapter 7 ■ In-MeMory tables

201

you are looking for data that is not an “equality” request. To clarify this point just one step further, if you know a
specific customer id but you are looking for transactions for a customer between the 1st and 24th of March, a standard
nonclustered index is the best index. The difference here is that you are using the index to seek where the key values
are not a specific value but a range. Another example of where a hash index is not appropriate is where you want to
find all customer transactions that were not equal to withdrawal of funds. You can have both a nonclustered and a
hash nonclustered index on a table.

You also have to define all the columns defined in the index for the predicate for a hash index to work. To give an
example of this, if you know a specific customer number and you are looking for that customer’s transactions in no
particular order and there is a hash index that is defined as CustomerId + DateEntered, then you need to pass in both
of these columns as the predicate. By passing in CustomerId only, the hash index could not be used and the query
would scan the whole table. To explain why a hash index could not be used, behind the scenes SQL Server takes the
values from the predicate and passes it through a function to create a hash value. As there is “insufficient” data, the
hash value will match zero rows and therefore SQL Server knows this and so will discard using a hash index and either
use a nonclustered index or scan the whole table.

Hash Buckets
When you insert data into a table that has a hash index, the values for the columns will have their hash value
calculated, which points to a collection of indexes values in the hash index called a hash bucket. A hash bucket can be
thought of as being like a leaf in a B-Tree in that both hold a collection of index values except that a hash bucket is a
single dimension array of values and is, therefore, all on one level. The index values in the hash bucket have pointers
to the rows of data in the in-memory table so you can retrieve the data. Just to complete the picture, in the in-memory
table, each data row has a pointer to the next row for the hash index so SQL Server can retrieve all data for that hash
index without having to constantly return to the hash bucket to retrieve the next value. To clarify this process, taking
the example earlier of CustomerId and DateEntered, if you have a customer id of 12345678 and a date entered of
12th August 2015, this would generate a hash value. This hash value is used as a pointer to a specific hash bucket.
The hash bucket will have the index values for the customer id 12345678 and the date entered of 12th August 2015.
It may have other index values (like customer id 1238254 and 24th July 2012). Let’s assume that the hash value for
customer 12345678 points to bucket number 1. The hash bucket will then have a pointer to the row of data similar to
any other index.

When defining the hash index when creating the table, you have to define the number of buckets you want to
have. Too few will mean that when querying the data, a higher number of index searches may generate a hash value
to point to the same hash bucket causing a collision and therefore a performance impact. Conversely, an index with
too many buckets will have memory space reserved that is empty. To estimate the number of buckets, you look at the
table data and count the number of unique rows of data for the index columns. If the number of unique values is not
likely to increase, multiply the number of unique rows by 2. If there will be some additions, multiply the number of
unique rows by 4.

However the number of unique rows is also important in the decision of whether to have a hash index on the
columns or whether you should define the index as nonclustered. There should be a low ratio of number of unique
values to number of rows in the table. The closer to a ratio of 1, the better. Anything above a ratio of 4 might have a
performance impact with hash index collisions. So if you have a table with 100,000 rows, you would expect no fewer
than 25,000 unique values. A unique index would give a ratio of 1:1 and therefore the perfect candidate for a hash index.

To summarize the discussion in this section, each index entry is defined as a hash value based on the data in the
index, and several hashes are stored together in a hash bucket. Each hash value in the hash bucket relates to a row in
the in-memory table. There is also no direct correlation of one hash value in a hash bucket with another hash value,
although multiple hash values of the same hash value will reside together in the same bucket. A hash index is perfect
in the following situations:

You are searching on all the columns in the index.•	

You are looking for exact values.•	

Chapter 7 ■ In-MeMory tables

202

You are happy for rows to be returned in a non-sorted order.•	

There is a low ratio of number of rows in the table to number of unique values.•	

You will see a hash nonclustered index created in the first example below. When defining a hash index, you have
to determine how many hash buckets the index will have, known as the BUCKET_COUNT.

General Index Points
Moving back to indexes in general, for SCHEMA_AND_DATA tables, where the data is durable even after a server restart, the table
needs to be defined with a PRIMARY KEY. A primary key definition will create an index on the table; therefore, no further index
creation would be required. Indexes are not persisted to disk even if the table is defined as SCHEMA_AND_DATA.

An in-memory table has a limit of 8 indexes that can be defined. Keep in mind that every index will have a
performance degradation on row insertions and deletions and possibly updates as well.

Note ■ a nonclustered index, as discussed in Chapter 6, used as the overhead of keeping a clustered index would slow
performance. and remember that it is all about performance with in-memory tables.

Operating System and Hardware Requirements
As mentioned in the introduction, in-memory tables can only be created on 64 bit Enterprise or Developers Editions.
The Evaluation Edition is Enterprise so it can also be implemented in this edition. The processor in the server or
Virtual Machine must be new enough to be able to support cmpxchg16b instruction. A cmpxchng16b is a machine
instruction that will compare in a transactional multithreaded way used for modifying data in memory, which is what
in-memory data is all about. You also require a lot of memory that can’t be definitely defined at the start even during
use as there will be fluctuations, albeit not of a large magnitude. The rule of thumb to apply is to attempt to estimate
how much data will be held in the tables and the indexes, and double it. This is the amount of memory required
for the in-memory table and indexes only and not the data from other tables and processes. As you have probably
deduced, this can mean a reasonable amount of memory allocated for one table.

Database Requirements Prior to Table Creation
Before you can create an in-memory table in a database, the database has to be defined to allow for in-memory
tables to exist. The first requirement is to create a filegroup to hold the in-memory tables and related system objects.
In Chapter 3 when the ApressFinancial database was created, you saw the PRIMARY filegroup defined. To recap,
a filegroup is a method of grouping the data files in a logical manner. Data files hold database startup information
as well as the database objects. When the database was created, it was defined with just one filegroup called the
Primary file group, as shown in Figure 7-2.

Chapter 7 ■ In-MeMory tables

203

In-memory tables as mentioned throughout this chapter are similar to disk-based tables but are optimized for
memory and, as such, need to be placed in a filegroup that can cope with the functionality. Once an in-memory
filegroup is defined, it is then necessary to define the physical file location the filegroup will reside on. Unlike
disk-based filegroups, only one filegroup is defined per database.

Creating an In-memory Table Using SQL
The following example will build a table in-memory after defining the filegroups and files for the database for the
in-memory tables. The table will use a hash nonclustered index for the table.

trY It OUt: CreatING aN IN-MeMOrY taBLe

1. open a query window in Management studio and enter the following code to create the
filegroup for the database. once entered, execute the code:

ALTER DATABASE ApressFinancial
ADD FILEGROUP [IN-MEMORY-PRIMARY]
CONTAINS MEMORY_OPTIMIZED_DATA

Figure 7-2. The filegroups defined for ApressFinancial

Chapter 7 ■ In-MeMory tables

204

2. the second action required is to add the in-memory container to the filegroup. enter and
execute the following code:

ALTER DATABASE ApressFinancial
ADD FILE (name='ApressFinancial-Memory',
filename=
'C:\APRESS_DEV1\MSSQL12.APRESS_DEV1\MSSQL\DATA\ApressFinancial-Memory')
TO FILEGROUP [IN-MEMORY-PRIMARY]

Caution ■ the only way to drop an in-memory file or filegroup is to drop and re-create the database.

3. the database is now ready to add in-memory tables.

4. the table to be created will hold one row for each stock market ticker id that we are
receiving prices on. at present, we know that the system is listening to 9,000 tickers, but
there needs to be room to accommodate up to 1,000 more tickers. a stock market ticker is
unique. therefore the BUCKET_COUNT will be 2*10,000 rows = 20,000.

CREATE TABLE ShareDetails.CurrentSharePrices
(
 StockExchangeTicker varchar(50)
 COLLATE Latin1_General_100_BIN2 NOT NULL
 PRIMARY KEY NONCLUSTERED HASH
 WITH (BUCKET_COUNT = 20000),
 CurrentPrice numeric(18,5) NOT NULL,
 LastTickTime smalldatetime NOT NULL
)
WITH (MEMORY_OPTIMIZED = ON,
DURABILITY = SCHEMA_AND_DATA)
GO

Note ■ because the hash index is on a VARCHAR column, the column needs to be defined with a BIN2 collation.

Migrating to an In-Memory Table
The following example will use the Migration Optimization Advisor to inspect the TransactionDetails.
Transactions table and advise on the issues found, which will then be fixed. The exercise will then continue to
migrate the table across from disk-based to in-memory based.

Chapter 7 ■ In-MeMory tables

205

trY It OUt: CreatING aN IN-MeMOrY taBLe

1. highlight in the object explorer the TransactionDetails.Transactions table, right-click
and select Memory optimization advisor, as shown in Figure 7-3.

Figure 7-4. Migration Optimizer Advisor indicating issues

2. this will start the Memory optimization advisor and you will be presented with the Welcome
screen. Click oK. the Migration optimization advisor will now inspect the table and validate it
for migration. as you can see in Figure 7-4, there are three issues that require fixing.

Figure 7-3. Migration Optimizer Advisor

Chapter 7 ■ In-MeMory tables

206

3. the first error concerns lob data type. this is in relation to the NVARCHAR(MAX) on the
NOTES column. this value will need to be reduced to 4000 bytes. the easiest method to
achieve this is to use the Designer as demonstrated in Chapter 6. open the Designer for the
TransactionDetails.Transactions table, find the Notes column and alter the width from
MAX to 4000 bytes while altering to VARCHAR, and then save. (see Figure 7-5).

Figure 7-5. Altering the table in the Designer

4. the second error relates to foreign keys. In-memory tables cannot have foreign keys and,
therefore, the two foreign keys will need to be dropped. by removing these if it is necessary
to ensure referential integrity, this will need to be enforced logically.

ALTER TABLE TransactionDetails.Transactions
DROP CONSTRAINT FK_Transactions_Shares
GO

5. the final issue surrounds the index IX_CustTransDate. this index was created in Chapter 6.
this is a unique clustered index on CustomerId and TransactionDate columns. you can
alter this to either a nonclustered non-unique index or to a clustered primary key. as this
is a durable (SCHEMA_AND_DATA table) and it has no primary key, in this instance it will be
converted to a primary key. execute the code (for both steps if you haven’t).

DROP INDEX IX_CustTransDate ON TransactionDetails.Transactions
WITH (ONLINE = OFF)
GO
ALTER TABLE TransactionDetails.Transactions
ADD CONSTRAINT PK_CustTransDate
PRIMARY KEY NONCLUSTERED (CustomerId,DateEntered)

6. now when you start the Migration optimization advisor as you did in step 1, there are no
errors, as shown in Figure 7-6. Click next, which will execute the Warnings step.

Chapter 7 ■ In-MeMory tables

207

Figure 7-7. Altering the table in the Designer

7. the next screen will let you know of any warnings that you may have. It does also list general
in-memory table points to reiterate the areas you need to keep in mind. Click next to move
on within the wizard. (see Figure 7-7).

Figure 7-6. Altering the table in the Designer

8. you are now presented with the options for the migration of the table as well as informing you
of some of the setup for in-memory tables. you are automatically given a suggestion of what to
call the new name of the existing disk-based table. this table will remain post migration. It is
also possible to copy the data from the dis-based table and altering the in-memory table to be
SCHEMA_ONLY. For this exercise, keep the options as defaulted and click next. (see Figure 7-8).

Figure 7-8. Options for the migration

Chapter 7 ■ In-MeMory tables

208

9. the next step is how you would like the primary key to be defined. In this instance, the
primary key will be a “standard” nonclustered index rather than a hash index as the data
access is likely to be range based queries. If there was a varchar column, you would also be
able to define the collation for the index if required. Click next. (see Figure 7-9).

Figure 7-9. Primary key options defining the nonclustered index

10. the disk-based table also had an index defined for the foreign key access to the
TransactionDetails.TransactionTypes index. the index will also be a standard
nonclustered index. Click next. (see Figure 7-10).

Chapter 7 ■ In-MeMory tables

209

Figure 7-10. Converting the IX_Transactions_Type index

11. you will then be presented with a summary screen of all the points defined within the wizard.
Click the button to migrate, which will start the migration progress.

12. as the migration progresses, a progress screen will populate details of the steps and show
any errors. this completes the migration. (see Figure 7-11).

Figure 7-11. Post completed work with actions completed

Chapter 7 ■ In-MeMory tables

210

Migration is as simple as this. You can achieve the same using T-SQL based commands. However, migration
should be a rare occurrence and, therefore, a wizard is a quick and straightforward step-by-step process.

Summary
In-memory tables can generate a high-performance benefit to a system, especially for “hot” tables. They are not
perfect for every situation, but where you have enough memory to hold the whole table and its expansion, where the
data has performance degradation due to lock contention especially on high insertion or read-based tables, or where
you need a fast “staging” table where data is inserted for fast insertion in-memory to be later placed in to slower
disk-based tables, an in-memory table may be the ideal choice.

Everything in SQL Server has a cost, and in-memory tables are designed to look at areas to reduce the costs to
make performance improvements. Not only by removing lock contention and having the data in-memory, further
improvements can also come from natively compiled stored procedures.

How indexes are used within in-memory also differs from those for disk-based tables, and a new type of index called
a nonclustered hash index for certain queries will provide further performance improvements. The choice of indexes
should be a clear-cut one during design, although generating the correct hash bucket count for a nonclustered hash
index will require some pre-analysis of the expected data volumes to create an accurate level.

You now have in-memory tables that will be used within the book for the in-memory chapters.

13. If you move to object explorer and refresh, you will see the disk-based table renamed
as detailed within the wizard and then the new in-memory based table, as shown
in Figure 7-12. Keep the disk-based table, as it will be used within the book.

Figure 7-12. New and old table in Object Explorer

211

Chapter 8

Database Backups and Recovery

Before inserting and manipulating the data in the database you have created in the previous chapters, it is a good
idea to back it up so that if things go wrong, it will be possible to recover the data back to a stable point.

What is abundantly clear when working with any sort of system where data are held is that there must be a
comprehensible and workable backup and recovery strategy in place for when things go wrong. The recovery may
also be required to cater to problems from a hardware failure due to an act of God. In any of these instances, we may
move to an offsite location, which is a building a safe distance away from our current building housing the computing
equipment. That is quite a dramatic step and is a decision that would be taken at a higher level of authority than you
probably have; however, you must create a backup of your system and store it according to the recommendations of
the board of directors, whether they are for in-house or offsite storage. Companies have gone bust because a good and
secure backup storage plan wasn’t in place when their building burned down, for example. This is, of course, a worst-case
scenario, and there are times that moving out of the current building to a second secure location is not necessary.

This chapter looks at different backup strategies that can be implemented by you as a developer or an
administrator and shows you how to implement them. I will also show you scenarios where the database is in use
24 hours a day, 7 days a week, and how you need to form a backup strategy around such scenarios. From there, I will
show you how to perform an ad hoc backup of the database as well as scheduled transaction log backups. I make it clear
in this chapter when you would perform both of these types of backups and when they would be useful. Of course, after
the backup, you have to test that the backup can be restored. Generally, this backup is restored onto a nonproduction
system. Some companies have complete environments established to test their disaster-recovery scenarios.

What you have to realize, and what will be demonstrated, is that there are different methods of taking backups
depending on what you are trying to achieve. The most common scenarios are discussed and demonstrated in this
chapter, but you will also to look at database maintenance plans. It is imperative that you get the correct backup
strategy in place and that it works. This point will be repeated throughout the chapter.

So, in this chapter, you will learn about the following:

Backup strategies•	

When a problem might occur during the backup and restore process•	

How to take a database offline and then bring it back online•	

How to create a backup•	

Different media for building a backup and what needs to be considered•	

The transaction log and how to back it up•	

When to back up the data and when to back up the transaction log•	

Scheduling backups and what happens if the server isn’t running at the scheduled time•	

Restoring a database•	

Chapter 8 ■ Database baCkups anD reCovery

212

Detaching and attaching a database•	

Working with users still attached to the database when you need them not to be connected•	

Building SQL statements for backing up the database structure and when it is useful •	
to have them

Backup Strategies
Backing up a database, no matter how large or small, should form part of your database solution. Even if a backup is
taken only once a week or even once a month, it is crucial that you sit down and decide which backup strategy is right
for you. Much of this decision lies in the hands of the system and business owners for your company since they must
weigh the risk they’re willing to take against the cost of minimizing that risk. Many different strategies can be adopted
within your overall main backup strategy, depending on days of the week or perhaps a period within the month.
In this section of the chapter, I will cover areas of backups to help you make the correct decision.

Recovery Models
When backing up a database, the information that is backed up is partially decided by the recovery model of the
database as well as what type of database backup is being performed. In this section, I discuss these models, but you
may find you return to this section once you have looked at the exercises within this chapter as well as after discussing
transactions in Chapter 10. It is necessary to discuss models at this point, as they are something you need to be aware
of for the rest of the chapter.

The first model to discuss is the Full Recovery model. This is the most comprehensive model available and is
the most robust for data recovery from backups. This model allows recovery of a corrupt database from a backup
to the granularity of a specific point in time. This is achieved by performing a backup on the database as well as the
transaction log of the database. Transaction logs are discussed shortly. The ApressFinancial database is set to Full
Recovery, and you will see how a backup and restore are performed in this model in this chapter and in Chapter 8.
The main point about Full Recovery is that this mode provides the lowest level of recording of changes within your
tables. This means that there are space and performance issues to consider compared to the recovery of the database.

The next model to discuss is the Bulk-Logged Recovery model. Similar to the Full Recovery model, both the
database and the transaction logs are required to be backed up for a full model to be implemented. The difference is
that less information is recorded in the transaction log on what work has been completed against your tables for bulk
actions. A bulk action is an action that covers a large amount of data, such as a bulk load of data or creating an index.
In Full Recovery, each row would be logged; in Bulk-Logged, only the action details are logged. However, in both of
these models, any failure is recoverable using both the database backup and transaction log backups.

The last model is the Simple Recovery model. In this model, only the database is backed up; the transaction log
is not. What this means is that the data in the tables ,once committed to the database, will be backed up. Any restore
from a Simple Recovery model means that only data that were backed up can be restored. Therefore, if you completed
a backup using the Simple Recovery model on Saturday and your database was corrupted on Tuesday, any changes to
the database since the backup on Saturday would be lost. With the other two models, you could restore the data back
to the point of failure. This model is available in all editions.

Types of Backups
Based on the strategy that you choose, you have to decide what type of backup you need. Full database backups take
a complete snapshot of a database at any given point. A differential backup backs up only the data that has changed
since the last full backup. Finally, a transaction log backup backs up only the data in the transaction log, which
consists of transactions that were recently committed to the database. All of these types of backups can be done while
your SQL Server is online and while users are actively hitting your database. To be able to restore a database to any
point in time, you have to use a combination of these backup types.

Chapter 8 ■ Database baCkups anD reCovery

213

Backup Strategy Decisions
When determining your backup strategy, first look at your application and ask yourself the following questions:

How much of the data can be lost, if any, at any point of failure? In other words, how crucial is •	
it that no data are lost?

How often are the data updated? Do you need regular backups from a performance viewpoint •	
as well as a recovery viewpoint? For historical databases that have their data modified only
periodically, you would, at most, complete a backup post-population.

Do you need to back up all the data all of the time, or can you do this periodically and then •	
back up only the data that have altered in the meanwhile?

How much of the data needs to be backed up and how long do you need to keep the copies of •	
the backups?

In the event of catastrophic failure, how long will it take to completely rebuild the database, •	
if it’s even possible?

Many more questions can be asked, but for the moment, these are the most crucial questions that need answers.
If you can afford to allow data updates to be lost, then you need a straightforward periodic database backup—for
example, you need to back up the whole database once a week. This is simple and easy to complete and requires little
thought. However, this scenario is rare and is usually found in data-warehousing systems or those with a large amount
of static data that can be rebuilt.

Transaction Log Backups
For every data modification, a record is kept in the transaction log file (discussed in more detail in the section
“Transaction Logs”), which has a limited amount of space. This amount of space was defined when you set up the
database as a fixed maximum size or, if you are allowing it to grow with or without restrictions, equals the amount
set or the amount within the hard drive. If you back up and clear the transaction log file, initially this will free up
the space logically and also aid performance. This is known as logical log truncation. The smaller the active part of
the transaction log file, the better. The more transactions there are in the transaction log file, the longer it will take
to recover from a corrupt database. This is due to the fact that a restore will have to restore the data and then every
transaction log backup to the point of failure, and finally, depending on the failure and how you want to restore, you
may have to restore any completed transactions that were in the transaction log but not yet physically committed to
the tables. That is, each transaction log will have to be restored to update the database, not just the latest log file.
If there are transactions in the transaction log that have been committed since the last transaction log backup and you
want to restore these, you will need to back up the transaction log, called a tail backup, and restore that as well. This is
a great deal to consider and may seem a lot to take in and decide upon, but as you will see throughout the chapter, it is
not quite as daunting as this section may read. If you have multiple small files and they are held on media that has to
be mounted each time, such as a tape, then you will have to take mounting time into consideration as well.

Frequency of a Backup
The real crux of a backup strategy is how frequently you want to take a backup. If you need to back up all the data each
time, how often will that need to take place? This could well be every night, and many production systems do just this.
By completing a full data backup every night, you are allowing yourself to be in a state where only one or two restores
may need to occur to get back to a working state in a disaster scenario. This would be the data backup, followed by
the single transaction log backup, if one was taken in the meantime. This is much better than having one data backup
to be restored, and then a log file for every day since the data file backup. What happens if the failure is on a Friday at
lunchtime and you completed your last whole database backup on a Saturday evening? That would take one data file
and six transaction log file restores to complete.

Chapter 8 ■ Database baCkups anD reCovery

214

Sit down and take stock. As often as you can, take a full database backup, then a differential backup, followed by
transaction log backups. However, you have to weigh the time that a full backup takes against a differential backup
or a transaction log; how much processing time you have to complete these backups; and the risk level of having to
complete, for example, six transaction log restores.

The problem is that there is no universally right answer. Each situation is different and it is only through
experience, which comes from testing your solution thoroughly, that you find out what is best for your situation.
However, if in doubt, back up as frequently as you can and take a full backup each time.

Transaction Logs
Data within the database is stored, of course, on your hard drive, on a hard drive on a server, or within in-memory
tables. Imagine the work involved on the disk controller for disk-based tables and imagine the work SQL Server has to
do every time data are added, amended, or removed. Writing data is a slow process compared to other memory-based
processes, so inevitably, SQL Server slows down every time data are written. A good comparison is to think how long it
takes you to find a point in a document where you want to amend, insert, modify, or erase a sentence, even using MS
Word, compared to how long it takes you to read a sentence. What if part of the way through writing the data, a power
outage occurred and you had no uninterruptible power supply (UPS) in place? What a mess you would be in, not
knowing what had been written to disk and, therefore, your tables within your database, and what hadn’t!

It is also possible in SQL Server to update several tables at once. How would you work around the fact that some
of the tables had been updated, but when it came to updating a specific table, the update failed? Well, this is where
transaction logs come into play. Transactions themselves are covered in Chapter 10, but very simply, a transaction
is a single unit of work that can contain one or more table modifications that are all successful and committed to the
database or, if some are unsuccessful, the modifications are discarded. It is also possible to roll back a transaction
so that no changes are made to the database, which can either be invoked by SQL Server or by issuing a specific
T-SQL command. But you must be wondering what all this has to do with a transaction log, and you’re probably even
wondering what a transaction log is. Before moving on, there is one last area of background information we need to
discuss first.

The log file is a complex item that consists of virtual, logical, and physical logs, but to keep it simple, the
transaction log has a physical size—in other words, it is like any other file on the hard drive. Virtual log files are files of
no fixed size and are built internally by SQL Server as part of the physical creation of the transaction log.

The transaction log increases in size as necessary to accommodate the transactions. It is a wraparound file. This
means that when SQL Server reaches the end of the file as defined by the size when it was set up, it will wrap around
to the beginning again, looking for free space to use. SQL Server can wrap around without increasing the physical log
file size when there is free virtual transaction space. Virtual transaction log space becomes free when SQL Server can
write the data from the transaction log into the underlying tables within the database.

Every database within a SQL Server instance has its own transaction log. Every time SQL Server is requested to
do any data modifications—whether these are additions, deletions, or modifications—a record is kept of the action.
There are several reasons for this.

First of all, a piece of code could in fact do several different updates at once, either to different rows of data or to
rows of data in different tables or even databases. If one of the updates fails, for example, when you are attempting
to place ASCII characters into a column that allows only numerics, then you may wish to return the values in all the
updated fields to their original value. This is called rolling back a transaction. SQL Server achieves this, in part, by
looking at the data held in the transaction log. However, any successful action where all the updates are valid could be
permanently stored on file—a process called committing a transaction.

As more and more actions are placed in the transaction log, it will become full. Some of these actions will still
be within a transaction, and others may form part of a completed transaction ready to be committed to the database.
At certain points, SQL Server will want to remove all the actions it can by committing completed transactions to
the underlying tables to relieve some space in the transaction log for further actions. One point could be when the
transaction log reaches 70% full. SQL Server would then issue a checkpoint. The use of a checkpoint ensures that
any data modifications are actually committed to the database and not held in any buffers or the transaction log so

Chapter 8 ■ Database baCkups anD reCovery

215

that if a problem occurs, such as a power failure, there is a specific point that you can start from. Therefore, at the
end of a checkpoint transaction, you know the database is in a consistent and valid state. As SQL Server knows that
at a checkpoint all is well within the database, there is no need to keep the completed transactions recorded in the
transaction log stored up to the checkpoint and, therefore, it will remove the transactions stored in the virtual logs.
As a result, SQL Server issues a truncation of the transaction log to remove these records, minimizing the size of the
log on the computer. This is known as truncating the transaction log. It is thus necessary to ensure that you have
a large enough transaction log defined to hold the largest valid uncommitted transaction, as these transactions
obviously will not be truncated. A transaction log can become full with a rogue query as well—that is, one that is
coded incorrectly and keeps adding more and more uncommitted transactions. When the transaction log reaches
70%, there is nothing to checkpoint; eventually the transaction log will fill up, and your SQL Server will stop. This is
where you will need the help of an experienced database administrator.

If you have a power failure, you might have to “replay” all the work completed since the last backup, and in
certain scenarios, you could use the transaction log to do this. When a data modification is completed via a T-SQL
command, the details are recorded first in the transaction log. These changes are flushed to disk and, therefore, no
longer in memory before SQL Server starts to make changes to the tables that you are affecting. SQL Server doesn’t
write data immediately to disk. It is kept in a buffer cache until this cache is full or until SQL Server issues a checkpoint,
and then the data are written out. If a power failure occurs while the cache is still filling up, then that data are lost.
Once the power comes back, though, SQL Server would start from its last checkpoint state, and any updates after the
last checkpoint that were logged as successful transactions will be performed from the transaction log.

Transaction logs are best kept, if at all possible, on a hard drive separate from that holding the data. The reason
for this is that data are written serially when they are written to a transaction log. Therefore, if nothing else is on the
hard drive except the transaction log, the disk heads will be in the right place to continue writing each time. This is a
minor overhead, but if performance is an issue, this is worth considering.

When Problems May Occur
Obviously, when taking a backup, it must work; otherwise, you have wasted your time, but crucially, you are leaving
your database and organization in a vulnerable position if the backup fails. If you have time within your backup
window to verify that a backup has been successful, then you must do it. As you will see, SQL Server gives you different
options for doing this. It cannot be stressed strongly enough that verifying a backup is just as crucial as taking the
backup in the first place. There have been situations where a backup has been taken every night; however, no one
has noticed that the backup has failed, and then when a hardware failure occurs, there’s no backup to use as a restore
on a new machine. In one case I know of, almost a week’s worth of data was lost. Luckily, the weekend backups
had succeeded; otherwise, the company would have been in a major data loss situation. The cause of the failed
backups was that the tapes being inserted for the backup were not large enough to hold the backup being performed.
Therefore, the tapes became full, and the backup failed. Obviously, this company failed not only to verify the backup,
but also to have processes in place to check that its backup strategy was still working after a period of implementation.

The only sure and positive way of ensuring a backup has succeeded is to restore the database to a specific restore
test location and check the data. Although you will see SQL Server does have a method of checking a backup, this
still isn’t a guarantee that the backup worked. Do take time to complete regular restores to a location to test that
everything is okay. I believe for several reasons that restoring a backup to a test region after each backup should
be mandatory for all installations. Not only are you checking that the backup has worked, but also you can use this
restore to inspect production quality data as part of any problem solving or user requests without endangering your
production system.

You should always review your backup strategy on a regular basis. Even better, put in place jobs that run each
day that give some sort of space report so that it is possible to instantly see that a potential problem is looming. SQL
Server Reporting Services is a new tool that would be ideal for producing and distributing space reports to database
administrators and system owners alike. It is also possible to build an automated job to run that checks the space and
e-mails the results. This is achievable via SQL Server Integration Services.

Chapter 8 ■ Database baCkups anD reCovery

216

In-Memory Table Backup and Restore
Backing up and restoring a database with in-memory tables does not require any special actions within the backup
or restore process. However, you have to be aware that once a database restore is complete, SQL Server needs to load
the data from in-memory tables into memory, and that process takes some time.

Backups: Taking a Database Offline
SQL Server does not have to be offline to perform a backup, as you will see as you go through this book and work
through creating SQL Server–defined backups using wizards and T-SQL. In most environments, you will not have the
luxury of taking a database offline before backing it up because users are constantly making data changes. Backing
up a database can take a long time, and the longer it takes, the longer users cannot be working with the data while it
is offline. However, by taking your database offline, you do not have to use SQL Server to perform the backup. This
strategy is one in which you take a disk backup, which means the hard drive is backed up, rather than a specific
database within a server. However, don’t forget that by taking your database offline, you will have to take a backup of
the directory using some sort of drive backup.

If you have your database on a server, no doubt some sort of server backup strategy is in place, so your database
will be backed up fully and successfully through this method. If you can take your database “out of service” in time for
those backups, you should do so if you are using this option to back up your database. This does allow you to think
about your SQL Server deployment strategy. If you have several databases that can be taken offline as part of the
backup, it is worth considering whether they can all reside on the same physical server, and you can set your server
backup times accordingly. However, this is a rare scenario, and even rarer within a production environment. Taking
the database offline means taking your database out of service. Nobody can update or access the data, modify table
structures, and so on. In this next section, you will take ApressFinancial offline, allowing a physical backup to be
taken. Just to reiterate and clarify: This is being demonstrated only to complete your knowledge of backups, and it is
rare that you will perform this action in a live scenario.

trY It OUt: taKING a DataBaSe OFFLINe

1. open sQL server Management studio and open a Query editor pane. enter and execute the
following code:

USE master
GO
ALTER DATABASE ApressFinancial
SET OFFLINE

2. notice the first command is a use command and then the master database is listed. this will
move the connection away from the database that it is currently pointing at and point the
connection to the master database. If you still had a connection, this code would fail, which is
demonstrated in later examples in this chapter.

3. try to click some of the nodes for the ApressFinancial database—for example, the tables
node if it is available. If you do not see the tables node, try expanding the ApressFinancial
database node. as shown in Figure 8-1, you are reminded that the database is offline by the
change in icon and it therefore cannot be viewed or modified. you are also not able to access
the database through any application such as Query editor.

Chapter 8 ■ Database baCkups anD reCovery

217

to take a database offline, sQL server must be able to gain exclusive access to the database.
this means that no user can be in the database when you issue the command. If users
are connected, then the OFFLINE query will continue to execute and wait until all users
are disconnected. you can force the query to take the database offline by rolling back any
transactions that are running. to do this, you can execute the SET OFFLINE WITH ROLLBACK
IMMEDIATE or SET OFFLINE WITH ROLLBACK AFTER nn SECONDS. transactions are covered
in Chapter 10. however, in essence what both of these options indicate to sQL server is that
any changes in progress to any data within the tables in the database should be discarded. I
am not keen on either of these two options, unless the database needs to be taken offline for
an emergency or you are aware at the time of the command of what the ramifications are of
rolling back any changes.

as said earlier, that’s all there is to it. the database is now no longer available for any
updates or modifications, so you can back it up using any backup utility that takes files from
a hard drive.

If you have to restore from a backup completed this way, don’t forget to take the database
offline first, then restore from the backup, and finally bring the database back online,
ready for use:

USE master
go
ALTER DATABASE ApressFinancial
SET ONLINE

there is one area to note when using backup strategies that employ these methods. If you
have a server backup that runs, for example, at 0200 hours, do you fancy getting up every
night, just before 2:00 a.m., taking the database offline, and then bringing the server back up
once the backup is complete? no—not many people would. of course, there are installations
where people are working through the night, so this is less of a problem, but what if they are
busy? or forget? then your whole backup will fail because the files are in use and, therefore,
the server will not back up these files. It is possible to create jobs that take your database
offline and bring it online again so this method is still possible, but you are adding more
steps to the process. this is not the most ideal method and better methods are discussed
throughout the chapter.

So let’s now look at a more friendly method of backing up the data by using SQL Server instead.

Figure 8-1. The database is offline and therefore unable to be opened

Chapter 8 ■ Database baCkups anD reCovery

218

Backing Up the Data
You will probably use SQL Server to back up the database rather than a Windows backup utility with an offline
database. As you will see in the coming exercises, it is a simple process with different methods of achieving the goal
of backing up the data. By using SQL Server, you are keeping the backup of the database under the control of an
automated process that can control its own destiny, and as you will find out later, it can also control the system when
things go wrong. There are two types of backups that can be taken on the database and one backup option available
for the transaction log providing the recovery model is Full or Bulk-Logged. Backing up in-memory tables are backed
up just as disk-based tables and at the same time.

Backup Considerations
The first possibility, a full backup, is straightforward. Selecting the Full option ensures that the whole database will
be backed up. The ApressFinancial database was built with Full Recovery mode, the default mode for databases
built with SQL Server Enterprise and Developer Edition. In this mode, you only back up the database and not the full
transaction log as this is completed separately. This database backup would be seen as any starting point for a restore
from a database failure.

The second possibility is the differential backup, also known as an incremental backup. Use the Differential
backup option when the circumstances are such that a full backup is either not required or not possible, but there has
been at least one full backup completed at some point on the database and the full backup media has not expired.
When a backup is taken, it is possible that the media has an expiration date, at which point the media is free and
available to be used for any future backups. A differential backup performs a backup on data changed since the last
backup. For example, you may take a full backup on the weekend and then a differential backup every night. When
it comes to restoring, you would restore the weekend full backup and then add to that the latest differential backup
taken from that point. A word of warning here: If you do take a week’s worth of differential backups and you back up
to magnetic tape rather than a hard drive, keep at least enough different tapes for each differential backup. Therefore,
use a complete backup when necessary, and then in the interim, use a differential backup.

The last possibility, the transaction log backup, could be used as the most frequent method of backup in a
production environment when using the Full or Bulk-Logged recovery models. As data are modified, details of the
modifications are stored in the transaction log. These remain in place until an action “truncates” the transaction log,
as I have discussed earlier in this chapter, which means that the transaction log will increase constantly in size if not in
Simple Recovery. When you issue a transaction log backup, you are just backing up the transaction log, which issues a
checkpoint, and all committed transactions are stored onto the backup. This means that if a system failure occurs, you
will restore from a full backup, then from your differential backups for the week, and finally from any transaction log
backups after that point.

You are probably wondering why you can’t just use differential backups. Transaction logs can fill up during the
working day, or perhaps you have set differential backups to happen weekly because there is so little data modification.
However, you do need to account for when a transaction log may fill up before you reach the next differential backup.
By taking a backup of the transaction log, this is a great deal faster than the other two methods. Certainly in heavily
used databases, you may have several transaction log backups in the day. You see how to do this using T-SQL after you
take your first full backup. To remind you, at least one valid and non-expired backup must exist before you can take a
transaction log backup, as you need a point from which the transaction log can roll committed transactions forward.

Before moving on, there are a couple more points concerning backups that you must keep in mind, and it is
recommended strongly that these directions be followed. The most important point is to keep a regular and up-to-date
backup of the master and msdb system databases. SQL Server very rarely becomes corrupted, but it can happen for any
number of reasons, from a hard drive failure to a developer altering the database in error. It doesn’t really matter what the
cause of the database failure is, but if you don’t have a backup of the master database, you could find yourself in trouble.
However, be warned. Restoring the master database should not be performed unless you really have to, and only if you are
experienced with SQL Server. Restoring the master database is not like restoring other databases, and it has to be completed
outside SQL Server Management Studio. This book quite deliberately does not cover having to restore the master database
since it is a very advanced topic. If you wish to know more, take a look at “SQL Server Books Online” for more details.

Chapter 8 ■ Database baCkups anD reCovery

219

When it comes to the msdb database and when to back it up, it could be that a daily backup is required. If you
recall, this database holds job schedules and other information pertinent to SQL Server Agent for scheduling. If you
have jobs that run each day and you need to keep information about when jobs were run, a daily backup may be
required. However, if you wish only to keep a backup of jobs that are set up and there is no need to know when certain
jobs ran and whether they were successful, then perhaps look at backing up this database weekly.

The model database should be backed up if any details within the model database have been altered. This should
be fairly infrequent, and therefore backing up this database need not be as regular as any other database; once a week
is probably frequent enough.

Backing up tempdb is not necessary because this should be seen as a transient database, which has no set state.
Therefore, it would be very unusual to back up this database.

Note ■ When sQL server is restarted, tempdb is dropped and is re-created as part of the startup process.

As you can see, it is not just your own databases that need to be considered and remembered when it comes to
dealing with your backup strategy. A database within SQL Server is not an insular arrangement and affects the system
databases just as much. If in doubt, back it up more frequently than is required!

The backup coverage will be split into two parts. The first part will perform the backup manually. Obviously,
this means we have to be available to perform the backup, but this can be rectified quite easily. Once this has been
covered, the next section will show you how to schedule a backup to run at a specific time, which relieves us of
needing to be available to complete a backup at the specified time.

Performing a Manual SQL Server Backup
Let’s start by looking at the manual backup. As already mentioned, you have to be on hand to do this, but it is useful
to understand all the steps even if you plan to set up automatic backups in your production environment. The aim of
this first exercise is to perform a full backup on media that will never expire and therefore will exist until physically
deleted. The backup will be placed in the SQL Server default location. You will also see how to cater for second and
subsequent backups and the options available. You will at times have to take a manual backup.

It is possible to alter the expiry date of the backup. Different types of backups will have different expiry
dates. This means that after the defined date, the media you have stored your backup on will allow the data to be
overwritten if using SQL Server (you can’t delete the file manually!). For example, you might have a weekly full
backup that you want to keep three instances of, and then the first full backup of the month you may wish to keep for
six months, or even longer if it is a database that you must keep for government legislation. In this option, you can
retain the backup for a set number of days (for example, 21 days) or for a set period of time (a specific date covers for
uneven days in a month, or a year, for example).

A default destination is defined automatically by SQL Server, which might be acceptable. In the example, it will
be on your hard drive, in a location below where your data are. It is best to have a directory set aside for backups
so that they are easy to find, perhaps with a name such as SQL Server Backups. However, it is not recommended in
production to store your backups in a subfolder of where your database resides. What if the hard drive fails? You can
gain a substantial performance improvement by backing up the database to a separate disk or to a RAID 1 drive if one
is available. This is because data are written to the backup file in a sequential manner. Some installations will back up
the database to the hard drive for speed but will then initiate a second automatic job that will copy to tape the backup
file generated. This then allows for the speed of hard drive backup and the security of tape.

In this exercise, you will see the Options page discussed, but all the options will be left as a default; however, on the
main page, you will alter the destination of the backup to be a folder that is more in keeping with a better strategy.

Chapter 8 ■ Database baCkups anD reCovery

220

trY It OUt: BaCKING Up the Data

1. ensure sQL server Management studio is running. If you did not bring your database back
online from the previous section, find the ApressFinancial database, right-click, select
tasks, and the select bring online. after the successful message, close the dialog, right-click
again, select tasks, and then click back up.

2. this brings up the sQL server back up Database dialog box. take a moment to peruse this
dialog box, as shown in Figure 8-2. It is possible to back up not only to disk, but also to a
urL, which allows for network backups where the drive is not mapped.

Figure 8-2. Backing up a database (Full Recovery mode)

3. although you have chosen your own database to back up, you could alter which database
by changing the value in the combo box. next is the backup type, and you have up to three
options to choose from: Full, Differential, and transaction Log. the options depend on the
recovery model you have in place. During the creation of the database, you specified Full
recovery mode, which means that all the options are available. If you are developing with sQL
server express, then the simple recovery mode is chosen as the default.

Note ■ If you were backing up the master database, then the only option that would be available to you would be a
complete database backup via the Full option.

Chapter 8 ■ Database baCkups anD reCovery

221

4. It is better to alter the destination folder away from the sQL server folders. Windows protects
these folders and permissions can alter. Click remove, which will remove the single folder
defined and will leave the list destinations empty.

5. Click add, which will display a sQL server select backup Destination dialog box, as
shown in Figure 8-3.

Figure 8-3. Database backup destination file name selection dialog

Figure 8-4. Database backup options for the media

6. you can either type in a folder location and file name for the backup or click the ellipsis to
navigate and select a folder. you will also need to type in a file name and file suffix. I have
a folder on my hard drive for my sQL server backups, and I have named the backup file
ApressFinancialFirstFullBackup.bak. once you are happy, click ok.

7. Move to the Media options tab, as shown in Figure 8-4, where you can define what options
you want to happen as part of this backup.

Chapter 8 ■ Database baCkups anD reCovery

222

8. the first section of this dialog box deals with what you want to happen on second and
subsequent backups. the first time the backup is run, it creates the backup files, but when
you run subsequent backups, do you want to append to the current data or overwrite it?
If this is a full backup, then you may overwrite, as you should be placing this full backup
over an old, nonrequired backup. (keep in mind not to overwrite the last full backup, though,
just in case this full backup fails as you would then have no recent full backup to work
with). to ensure that the correct media set has been loaded and that you do not overwrite
a valid media set, ensure you check the media set name and expiry option found below the
overwrite option. however, if this is a differential backup, where it is perhaps the second
or third of the week, then you will append to the existing backup set. this will be after the
previous differential backups, and it means that if you need to do a restore, all the backups
will be one after another and, therefore, will provide the fastest retrieval.

9. the Check Media set name option forces the backup to check that where the data are going
to be backed up to is still a valid name and, if appending, that the data set has not expired.
this is, of course, a backup point of failure that I mentioned before, which can mean a
backup is not taken.

10. you use the back up to a new Media set, and erase all existing backup sets option when
any previous backups are no longer required. this is ideal when moving the database from
development to either user testing or even production and you don’t want to be able to
restore from an incorrect backup. there is no point in wishing to restore a production server
from a development backup, after all.

11. the second section deals with the reliability of the backup. It is possible to simply back up
the data and trust that everything worked perfectly, meaning no data transmission errors
occurred between your sQL server and the backup device, or that no errors occurred when
writing the data. a situation such as this is unusual, but there will be times when it does
happen. Do you trust that those times will occur when you will not need a backup? I suggest
this is something you cannot and should not rely on. therefore, although it will increase the
amount of time the backup takes, it is good to choose one of the two options in this section.
the first option allows a verification of the backup where sQL server compares what has
been backed up with what it expects to have been backed up. the second option allows for
checksum processing, whereby sQL server performs a mathematical calculation on the data
to back up, which generates a checksum that can then be compared once the data has been
transmitted from sQL server to the backup device. If you select the second option, you can
also specify whether to continue if you get a checksum error.

12. If you are doing a transaction log backup, the next area of the dialog box will be enabled. you
can logically shrink the transaction log by removing all entries that have just been backed up
by selecting the first option, truncate the transaction Log. to save processing time, the physical
transaction log is not shrunk and just the transactions are deleted. recall from the transaction
Log section earlier how sQL server will use a virtual log. the second option, back up the tail of
the Log, is used when there has been some sort of database corruption. If you want to back up
transaction log records that have not been backed up prior to performing a restore to correct
the corruption, you would use this option. to clarify, a database becomes corrupt, and you need
to be able to restore up to the last backup and then add all the transactions that have occurred
since the last backup. by executing a backup of the tail of the log, you can restore the database
and then use this tail-log backup to add the missing transactions.

Chapter 8 ■ Database baCkups anD reCovery

223

13. the penultimate area of the dialog box is available if you are using tapes as your backup
medium. you can eject the tape once the backup has finished. this is a useful option, as
the computer operators would know to remove the tape for dispatch to the safe backup
area. the second option, which specifies a rewind, is useful for full backups. on differential
backups, however, sQL server would be halted when running the next backup while the
tape device got to the right place on the tape to continue the backup. therefore, rewinding
the tape is not desirable.

14. Finally, move to the backup options page, as shown in Figure 8-5.

Figure 8-5. Database backup options with expiry, compression, and encryption

15. the first section of note after the media set name is the expiry options for the backup.
at present, the backup is set to zero days, which means it will never expire. this doesn’t mean
it cannot be physically deleted if it is on a disk, but it does mean that when sQL server is in
control of the media, it will not be overwritten. In a production environment, you usually set up
a system where backups are kept for a reasonable amount of time, a minimum of one month
and often longer. you may be required, for legal reasons, to keep backups for many years.

16. It is possible to set the compression level for the backup. this is ideal if you need to keep
space taken for each backup to a minimum. this may occur if you are then sending the
backup over the Internet or your intranet for it to be used as a restore to a remote data server.
notice that, by default, it takes the compression level set for the server, but it’s possible
to overwrite this with a new setting. If your database server is set to no compression, you
can change the backup to being compressed. If you do use compressed backups, then you
will save on I/o and the backup operation will complete in less time, but completing the
compression will increase the amount of processing sQL server is using. It is possible to
reduce the priority of completing a compressed backup so that it doesn’t affect sQL server
by using the resource governor. this is an advanced topic and not covered in this book.

Chapter 8 ■ Database baCkups anD reCovery

224

17. Finally, it is possible to encrypt your backup if you are backing up to a new media set using
one of four encryption algorithms or a key. perfect if you are exposing any backup to the
outside world where theft or loss can take place.

18. once you are happy and have everything set up, clicking ok starts the backup. once the
backup is finished, you should see the dialog box shown in Figure 8-6.

Figure 8-6. A successful backup

the first backup of the ApressFinancial database has now taken place and should have
been successful. If you now move to the directory on the hard drive where the backup took
place, you will see the ApressFinancial backup file.

Recall that it was mentioned earlier that a company lost a week’s worth of data. It had set up the option to append
to media, the tape had become full, and the administrator had not set up the proper scenario to alert someone when
a problem occurred. So there was not just one failure in the system, but two; however, it still highlights that if you are
using the option to append to the existing backup set, you must check that enough room is available on the medium
that you are appending to for the backup to succeed.

Creating a backup of your database and the data is the most crucial action in building a database solution. Get it
wrong, and you may as well go home. Well, not quite, but if (or when) things go wrong and you don’t have a valid or
recent enough backup that is acceptable to the users of your database, it will take a long time for you as a developer to
recover from that situation and get back to the excellent working relationship you had beforehand.

The backup taken in the preceding example is the simplest backup to perform. It is a complete backup of the
particular SQL Server database, and it happens while you are watching. If it goes wrong, you will instantly see and be
able to deal with it. However, most backups, in a production system especially, do not happen when you are there;
instead, they usually happen throughout the night. Creating a database backup with a schedule to run at the optimal
time is the ideal solution and certainly an area to consider. You will see this in Chapter 8, although if you are using
SQL Server Express Edition, the ability to schedule jobs is not available.

Backing Up the Database Using T-SQL
Now that you have backed up the database using the dialog within Management Studio, it is useful to see how to
perform a backup with T-SQL. These commands and statements can be used within a stored procedure that can be
scheduled to run at required intervals as part of an overnight task. If you are using SQL Server Express, there are
third-party tools that you can purchase that will run a schedule and not just tasks for databases so scheduling a
backup is still possible. As a developer, you can also write your own scheduling software using the development
language of your choice, and it is not something that is too difficult to create.

Chapter 8 ■ Database baCkups anD reCovery

225

There are two different types of backups. It is possible to back up either the database or specific filegroups or files
that are part of the database. The code for the database backup follows. The highlighted code demonstrates which of
the two possible options is the optional default used when neither option is specified and the option COMPRESSION/NO
COMPRESSION is not available within SQL Server Express Edition:

BACKUP DATABASE { database_name | @database_name_var }
TO < backup_device > [,...n]
[[MIRROR TO < backup_device > [,...n]] [...next-mirror]]
[WITH
 [BLOCKSIZE = { blocksize | @blocksize_variable }]
 [[,] { CHECKSUM | NO_CHECKSUM }]
 [[,] { STOP_ON_ERROR | CONTINUE_AFTER_ERROR }]
 [[,] DESCRIPTION = { 'text' | @text_variable }]
 [[,] DIFFERENTIAL]
 [[,] EXPIREDATE = { date | @date_var }
 | RETAINDAYS = { days | @days_var }]
 | { COMPRESSION | NO_COMPRESSION }
 [[,] PASSWORD = { password | @password_variable }]
 [[,] { FORMAT | NOFORMAT }]
 [[,] { INIT | NOINIT }]
 [[,] { NOSKIP | SKIP }]
 [[,] MEDIADESCRIPTION = { 'text' | @text_variable }]
 [[,] MEDIANAME = { media_name | @media_name_variable }]
 [[,] MEDIAPASSWORD = { mediapassword | @mediapassword_variable }]
 [[,] NAME = { backup_set_name | @backup_set_name_var }]
 [[,] { NOREWIND | REWIND }]
 [[,] { NOUNLOAD | UNLOAD }]
 [[,] STATS [= percentage]]
 [[,] COPY_ONLY]
]

If instead you wish just to back up specific filegroups, the difference in the code is highlighted in bold in the
BACKUP DATABASE statement shown here:

BACKUP DATABASE { database_name | @database_name_var }
 <file_or_filegroup> [,...f]
TO <backup_device> [,...n]
[[MIRROR TO <backup_device> [,...n]] [...next-mirror]]
[WITH
 [BLOCKSIZE = { blocksize | @blocksize_variable }]
 [[,] { CHECKSUM | NO_CHECKSUM }]
 [[,] { STOP_ON_ERROR | CONTINUE_AFTER_ERROR }]
 [[,] DESCRIPTION = { 'text' | @text_variable }]
 [[,] DIFFERENTIAL]
 [[,] EXPIREDATE = { date | @date_var }

Chapter 8 ■ Database baCkups anD reCovery

226

 | RETAINDAYS = { days | @days_var }]
 | { COMPRESSION | NO_COMPRESSION }
 [[,] PASSWORD = { password | @password_variable }]
 [[,] { FORMAT | NOFORMAT }]
 [[,] { INIT | NOINIT }]
 [[,] { NOSKIP | SKIP }]
 [[,] MEDIADESCRIPTION = { 'text' | @text_variable }]
 [[,] MEDIANAME = { media_name | @media_name_variable }]
 [[,] MEDIAPASSWORD = { mediapassword | @mediapassword_variable }]
 [[,] NAME = { backup_set_name | @backup_set_name_var }]
 [[,] { NOREWIND | REWIND }]
 [[,] { NOUNLOAD | UNLOAD }]
 [[,] STATS [= percentage]]
 [[,] COPY_ONLY]

I can now give a brief description of all the options that are available. You looked at some of these options
previously with the Back Up Database dialog box. Seeing these descriptions allows you to compare options within
T-SQL and within the backup dialog boxes:

•	 database_name | @database_name_var: Either the name of a database or a local variable that
gives the name of the database to back up

•	 file_or_filegroup: The name of the file or filegroup to back up

•	 backup_device: The name of the logical or physical backup device to use

•	 MIRROR TO: The backup file is mirrored to two to four different file locations.

•	 BLOCKSIZE: The block size to use; for example, if backing up to CD-ROM, then you would set a
block size of 2048.

•	 CHECKSUM | NO_CHECKSUM: Specifies whether to perform checksum calculations to ensure
the transmission of data

•	 STOP_ON_ERROR | CONTINUE_AFTER_ERROR: Specifies whether to stop on a checksum error

•	 DESCRIPTION: A description of the backup

•	 DIFFERENTIAL: If this is a differential backup, then specify this option. Without this option,
a full backup is taken.

•	 EXPIREDATE: The date the backup expires and is therefore available to be overwritten

•	 RETAINDAYS: The number of days the backup will be kept before the system will allow
it to be overwritten

•	 COMPRESSION: Lets you compress your backup and reduce the amount of space taken

Note ■ Compression backups are available only on the Developer and enterprise editions of sQL server. If you
don’t define this option, then the server instance setting will be used. you can change it at the server level via
the sp_configure system stored procedure.

Chapter 8 ■ Database baCkups anD reCovery

227

•	 PASSWORD: The password associated with the backup; this must be supplied when interrogating
the backup for any restore operation. There is no strong encryption on this option, so there is
the potential that it could be broken easily.

•	 FORMAT | NOFORMAT: Specifies whether to format the storage medium

•	 INIT | NOINIT: INIT Keeps the media header created with the format but erases the
contents provided that the expiredate and retaindays have expired. If you want to initialize
the media without checking these options, define the next option; SKIP. NOINIT will not
initialize the media.

•	 NOSKIP | SKIP: If you want to skip the checking of expiredate or retaindays when using
the media set, then select the SKIP option. Otherwise, expiredate and retaindays
will be checked.

Note ■ a media set is an ordered set of backups on the same disk or tape.

•	 MEDIADESCRIPTION: Gives a description to the media set

•	 MEDIANAME: Names the media set

•	 MEDIAPASSWORD: Gives the media set its password

•	 NAME: Names the backup set

•	 NOREWIND | REWIND: Specifies whether to rewind a tape once the backup has completed

•	 NOUNLOAD | UNLOAD: Specifies whether the tape is unloaded or kept on the tape drive once the
backup is completed

•	 STATS [= percentage]: SQL Server provides a message at this percentage interval telling
you how much of the approximate backup has completed. It’s useful for gauging the progress
of long-running backups.

•	 COPY_ONLY: Tells SQL Server that this is a copy of the data; it cannot be used as a full backup
point for differential backups, as the differential backups will be in line with the last “pure”
full backup. This option is ideal if you take weekly backups for dumping the data to a user
test region, as it will not affect the production backup process. The only remaining option
is for files or filegroups where you can name the file or filegroup that the backup is for. The
preceding options do not change for files or filegroups.

Chapter 8 ■ Database baCkups anD reCovery

228

trY It OUt: BaCKING Up the DataBaSe USING
t-SQL FOr a FULL BaCKUp

1. open up a fresh Query editor window. It doesn’t matter which database it is pointing to, as
the BACKUP DATABASE statement defines the database the query will be backing up.

2. the t-sQL that is needed for the full backup follows. enter the code (keeping the name of
where the backup is located via the TO DISK option and the WITH NAME option all on one
line). notice that several of the options are not defined, as the query is accepting the default.
the backup file generated within Management studio in the previous exercise will be
overwritten as the t-sQL uses the SKIP option.

BACKUP DATABASE ApressFinancial
TO DISK = ‘C:\APRESS_DEV1\MSSQL12.APRESS_DEV1\MSSQL\Backup\
ApressFinancialFirstFullBackup.bak’
WITH NAME = 'ApressFinancial-Full Database Backup',
SKIP,
NOUNLOAD,
STATS = 10

3. execute the code and you will see results similar to those that follow. the main points to
notice are the stats messages that come out in approximations of 10 percentage points.
It then lists the number of data pages backed up and the number of log pages backed up.
the on file part of the message details which file within the media set the backup now is. In this
case, this is the second backup. you will possibly see on file 2 if you had taken a subsequent
backup since the previous exercise. the final message is the one of greatest interest, as it
shows that the backup was successful and it displays the amount of time taken.

Processed 328 pages for database 'ApressFinancial',
file 'ApressFinancial' on file 1.
Processed 0 pages for database 'ApressFinancial',
file 'ApressFinancial-Memory' on file 1.
Processed 22 pages for database 'ApressFinancial',
file 'ApressFinancial_log' on file 1.
100 percent processed.
BACKUP DATABASE successfully processed 350 pages
in 1.515 seconds (1.802 MB/sec).

you now have a full backup of the database, which could be used as the starting point of
any recovery of a corrupt database. however, over time, changes will have been made to the
database. Whether it is a few hours, days, or weeks later, you now want to perform a backup
of those changes that have occurred. In the next section, you will see a differential backup
where the options are shown within Management studio, and from these the t-sQL will be
generated for the backup.

Chapter 8 ■ Database baCkups anD reCovery

229

trY It OUt: BaCKING Up the DataBaSe WIth a DIFFereNtIaL BaCKUp

1. From Management studio, select from object explorer the ApressFinancial database,
right-click, and from the menu that appears select tasks and then backup. you will then
see the same screen as you saw in the “backing up the Data” exercise. the next backup
of the database to be taken is a differential backup, so alter the backup type to this option.
this backup will be adding this differential backup to the full backup that was taken in the
previous exercise. notice that the Destination list box already has the correct location and file
name, as shown in Figure 8-7.

Figure 8-7. Backing up a database (differential)

Note ■ at the end of the screenshots, don’t back up, but rather click the Generate script button, which will place the
t-sQL equivalent code in a new query window, where you will then be asked to run it.

2. Moving to the Media options page, you will be appending the differential backup to the
same media set as the full backup. this time you will include some reliability checking by
clicking the “verify backup when finished” option. Make sure your version of the window
matches Figure 8-8.

Chapter 8 ■ Database baCkups anD reCovery

230

3. rather than clicking ok, you will see at the top of the window a menu with the option script.
Click this menu drop-down and from the options displayed, select script action to new Query
Window. then click Cancel. this will generate code based on your options and place it in a
new query window.

4. the first part of the generated code deals with the differential backup. I have put this code in
bold. again, ensure that the TO DISK and NAME options are all on the same line of the Query
editor windowpane.

BACKUP DATABASE [ApressFinancial]
TO DISK = N'C:\APRESS_DEV1\MSSQL12.APRESS_DEV1\MSSQL\
BackupApressFinancialFirstFullBackup.bak'
WITH DIFFERENTIAL,
NOFORMAT, NOINIT,
NAME = N'ApressFinancial-Full Database Backup',
SKIP, NOREWIND, NOUNLOAD, STATS = 10
GO
declare @backupSetId as int
select @backupSetId = position
from msdb..backupset
where database_name=N'ApressFinancial'
and backup_set_id=(select max(backup_set_id)
 from msdb..backupset
 where database_name=N'ApressFinancial')

Figure 8-8. Options for backing up a database (differential)

Chapter 8 ■ Database baCkups anD reCovery

231

if @backupSetId is null
begin
 raiserror(N'Verify failed. Backup information for database
 ''ApressFinancial'' not found.', 16, 1)
end
RESTORE VERIFYONLY
FROM DISK = N'C:\APRESS_DEV1\MSSQL12.APRESS_DEV1\MSSQL\
BackupApressFinancialFirstFullBackup.bak'
WITH FILE = @backupSetId,
NOUNLOAD, NOREWIND
GO

5. the second part of the query is where the reliability checking takes place. this is more
complex t-sQL than I have covered, so for the moment just trust that it works and that it
does what it is supposed to. you will encounter this code once more when looking at more
complex t-sQL later in the book in Chapter 16. however, the basis of the code is that a check
is made in the msdb database to retrieve the last backup set that was taken, that the query
will perform a “restore” of the database as verification only without actually restoring any
data, and that the restore can complete successfully. If it can’t verify the backup set or that
the restore is okay, then you will get an error message.

BACKUP DATABASE [ApressFinancial]
TO DISK = N'C:\APRESS_DEV1\MSSQL12.APRESS_DEV1\MSSQL\
BackupApressFinancialFirstFullBackup.bak'
WITH DIFFERENTIAL ,
NOFORMAT, NOINIT,
NAME = N'ApressFinancial-Full Database Backup',
SKIP, NOREWIND, NOUNLOAD, STATS = 10
GO
declare @backupSetId as int
select @backupSetId = position
from msdb..backupset
where database_name=N'ApressFinancial'
and backup_set_id=(select max(backup_set_id)
 from msdb..backupset
 where database_name=N'ApressFinancial')
if @backupSetId is null
begin
 raiserror(N'Verify failed. Backup information for database
 ''ApressFinancial'' not found.', 16, 1)
end
RESTORE VERIFYONLY
FROM DISK = N'C:\APRESS_DEV1\MSSQL12.APRESS_DEV1\MSSQL\
BackupApressFinancialFirstFullBackup.bak'
WITH FILE = @backupSetId,
NOUNLOAD, NOREWIND
GO

Chapter 8 ■ Database baCkups anD reCovery

232

6. When the code is executed, which you should do now, you will see something like the results
that follow. again, they contain details of the amount of data backed up as well as which file
number on the media set the backup is.

10 percent processed.
Processed 40 pages for database 'ApressFinancial',
file 'ApressFinancial' on file 1.
Processed 0 pages for database 'ApressFinancial',
file 'ApressFinancial-Memory' on file 1.
23 percent processed.
Processed 30 pages for database 'ApressFinancial',
file 'ApressFinancial_log' on file 1.
100 percent processed.
BACKUP DATABASE WITH DIFFERENTIAL successfully
processed 70 pages in 0.291 seconds (1.865 MB/sec).
The backup set on file 1 is valid.

Transaction Log Backup Using T-SQL
You can back up not only the data, but also, and just as importantly, the transaction log for the database. Just to
recap, the transaction log is a file used by databases to log every transaction, including data modification actions
such as rebuilding indexes. In other words, every data modification that has taken place on any table within the
database will be recorded within the transaction log. (There is one major exception, but I will cover this when
looking at deleting data later in the book.) The transaction log is then used in many different scenarios within a
database solution, but where it is most useful, from a database recovery point of view, is when a database crashes.
In this case, the transaction log can be used to move forward from the last data backup, using the transactions listed
within the transaction log.

If a database .crash occurs, then the full and differential backups will take you only to the last valid backup.
For data entered since that point, the only way to restore the information is to then “replay” the transactions that
were committed and recorded as committed in the transaction log via a tail-log backup. Any actions that were in
progress at the time of the failure that were within a transaction that was still in progress would have to be rerun
from the start.

So, to clarify, if you were in the process of deleting data within a table and the power was switched off, you
would use your full and differential backups to restore the data. You would then use the information within the
transaction log to replay all successful transactions, but because the delete had not been successful, the table
would have all the data still within it.

Backing up the transaction log is a good strategy to employ when a large number of updates occur to the
data through the day. A transaction log backup should take place at set times throughout the day, depending on
how large the transaction log has grown and how crucial it was to get your system back up and running after any
unexpected outage. When a transaction log is backed up, the transaction log itself is logically shrunk in size so that
it is kept small. It also gives you point-in-time recoverability; this means that you can quickly restore to any time in
the past at which the transaction was backed up.

Chapter 8 ■ Database baCkups anD reCovery

233

Backing up a transaction log is similar to backing up a database. The full syntax is as follows and differs
from a database backup only by using the LOG keyword instead of DATABASE and the options NO_TRUNCATE and
NORECOVERY/STANDBY:

BACKUP LOG { database_name | @database_name_var }
{
 TO <backup_device> [,...n]
[[MIRROR TO <backup_device> [,...n]] [...next-mirror]]
 [WITH
 [BLOCKSIZE = { blocksize | @blocksize_variable }]
 [[,] { CHECKSUM | NO_CHECKSUM }]
 [[,] { STOP_ON_ERROR | CONTINUE_AFTER_ERROR }]
 [[,] DESCRIPTION = { 'text' | @text_variable }]
 [[,] EXPIREDATE = { date | @date_var }
 | RETAINDAYS = { days | @days_var }]
 | { COMPRESSION | NO_COMPRESSION }
 [[,] PASSWORD = { password | @password_variable }]
 [[,] { FORMAT | NOFORMAT }]
 [[,] { INIT | NOINIT }]
 [[,] { NOSKIP | SKIP }]
 [[,] MEDIADESCRIPTION = { 'text' | @text_variable }]
 [[,] MEDIANAME = { media_name | @media_name_variable }]
 [[,] MEDIAPASSWORD = { mediapassword | @mediapassword_variable }]
 [[,] NAME = { backup_set_name | @backup_set_name_var }]
 [[,] NO_TRUNCATE]
 [[,] { NORECOVERY | STANDBY = undo_file_name }]
 [[,] { NOREWIND | REWIND }]
 [[,] { NOUNLOAD | UNLOAD }]
 [[,] STATS [= percentage]]
 [[,] COPY_ONLY]
]
}

As with the database backup, if you are using SQL Server Express, the compression option is not available.
Now let’s look at the options not covered earlier when looking at backing up the database:

•	 LOG: Determines that you wish to produce a backup of the transaction log rather than a backup
of a database or files/filegroups

•	 NO_TRUNCATE: Doesn’t truncate the log after the backup; if the database is corrupt, using this option
will allow the backup to be attempted at least. Without this option, you will get an error message.

•	 NORECOVERY | STANDBY: After the backup, the database will be in a state whereby it looks to
anyone trying to connect as if it is still being restored and is not available.

Note ■ the LOG options NO_TRUNCATE and NORECOVER | STANDBY are used when the database is corrupt and you wish
to back up the transaction log prior to performing a restore.

In the following exercise, a transaction log will be backed up using T-SQL. As the ApressFinancial database is using
a Full Recovery model, this action will back up all the transactions recorded since the last differential backup and then
remove these transactions from the log itself. A transaction log backup is not available for Simple Recovery models.

Chapter 8 ■ Database baCkups anD reCovery

234

trY It OUt: BaCKING Up the traNSaCtION LOG USING t-SQL

1. In a Query editor pane, enter the following t-sQL code.

Note ■ If you are in simple recovery mode, backing up the transaction log will fail.

BACKUP LOG [ApressFinancial]
TO DISK = N'C:\APRESS_DEV1\MSSQL12.APRESS_DEV1\MSSQL\
BackupApressFinancialFirstFullBackup.bak'
 WITH NOFORMAT, NOINIT,
 NAME = N'ApressFinancial-Transaction Log Backup',
 SKIP, NOREWIND, NOUNLOAD,
 STATS = 10GO

2. this backs up the transaction log to the same media set as the full and differential backups.
While you are developing and learning sQL server, this is a valid scenario, and in some
production setups you may want to back up to the same place as your daily full backup.
however, the downside is that if you take several transaction log backups between each
differential backup and full backup, then sQL server will have to “skip” these if they were
not required as part of the restore operation. on a tape drive, this could cause significant
overhead. In this scenario, you would be better off saving the transaction log files to a
different media set.

3. execute the code to back up the transaction log, and you should see output similar to the
following, where the transaction log has been successfully backed up and placed on file 2:

100 percent processed.
Processed 56 pages for database 'ApressFinancial', file
'ApressFinancial_log' on file 2.
BACKUP LOG successfully processed 56 pages in 0.232 seconds (1.885 MB/sec).

you can back up the transaction log from Management studio similar to how you have
performed the database backup earlier in the chapter. the only real difference is contained
within the options page, which is shown in Figure 8-9. toward the bottom of the page,
you will see the transaction Log section, where you can either truncate the transaction
log or back up the tail of the log. In this instance, you are performing only a backup of the
transaction log. this will back up all the transactions completed since the last backup. the
second option, backing up the tail of the log, is demonstrated and discussed later in the
chapter when you will see how to restore a database to a point in time after the last backup
was taken.

Chapter 8 ■ Database baCkups anD reCovery

235

Restoring a Database
Now that the data has been backed up, what if you needed to complete a restore? As I have mentioned, there are two
scenarios in which a restore could be required: either you are restoring to another system as a check that the database
backup worked or as part of restoring the database to a different server, or you are recovering from a failure on your
database. The second type of restore, in which a failure has occurred, is not one you wish to perform but will happen;
it could be set up by creating a long-running transaction and then simply switching your computer off—not one of
life’s greatest ideas to do deliberately! This book, therefore, will not be demonstrating this option, and it is not really
for a beginner to attempt. However, I will discuss the concept within this section of the chapter. The first option, a
simple restore, is easy to replicate and perform, and this will be the option I will cover.

You can choose between two means to restore the database: SQL Server Management Studio and T-SQL. If you
need a restore within the development environment to remove test data and get back to a stable, predefined set of
data to complete the testing, this next section should help you. It might also be that you do a weekly refresh of your
user test region from a production backup. The bottom line is that you are performing a “regular” restore.

Before completing the restore, you will first modify the ApressFinancial database to prove that the restore
works, as there is no data within the database yet to prove the restore has worked by that method. Keep in mind,
however, that a restore will restore not only the data structures, but also the data, the permissions, and other areas of
the database not yet covered in the book—for example, views, stored procedures, and so on.

Figure 8-9. Backing up a transaction log

Chapter 8 ■ Database baCkups anD reCovery

236

Restoring Using SQL Server Management Studio
The restore demonstrated in the following example will be a complete database restore of the ApressFinancial
database. In other words, it will restore all the full and differential backups taken.

It is also possible to restore to a point in time, which is used if you are restoring the database as well as rolling
forward changes recorded in the transaction log. This situation is similar to the scenario mentioned earlier about a
power failure or hard drive failure. In the first restore, you will be restoring only from existing backups. You need to be
aware of the point in time that you want to restore to; it is not possible to investigate the transaction log and make a
decision based on information contained within it. The decision has to be time-based. On the General page, you will
see a Timeline button, which would allow you to perform a restore to a point in time. This option will be discussed
further later in the chapter.

When taking a backup, details are stored in msdb, but it is possible to restore a database from a backup that is not
in msdb. For example, if you are rebuilding a server due to corruption and msdb was one of the databases corrupted, it
is necessary to have the option of finding a backup file and restoring from that instead. Or perhaps the last full backup
taken is not the backup you wish to restore. This might occur in a development scenario, in which you wish to restore
to a backup before major changes were done that you wish to remove. There would be no transaction log involved or
required to be involved; therefore, restoring to a point in time would not be a valid scenario. This is where you could
use the From Device option. By selecting this option and clicking the ellipsis to the right, you can navigate to any old
backup files.

Finally, on the General page, you can click which of the items in the backup you wish to restore. The default is all
backups to be selected; however, if you want to restore to a point in an earlier backup and not to restore a later backup,
you can unselect the late backups.

It is also possible to restore the database to a completely new location as well as a new name. This is ideal for a
hardware failure or to restore to a copy location.

When restoring, there are a number of options concerning how the restore should be applied to the database.
These are as follows:

•	 Overwrite the Existing Database: Although a potentially dangerous option to select, this is the
most likely option to be enabled for a restore to a point in time contained within the latest
backup. A restore to a point in the latest backup can be required when data modifications
have taken place in error, such as deleting financial transactions in error and a backup of the
transaction log had been taken. If the log backup was taken, financial transactions were added
correctly. Then the error occurred and you wanted to keep the financial transactions added
correctly. Now you have a small, but not insurmountable problem. The first action to complete
would be a new transaction log backup, sometimes called a tail-log backup, by issuing a
BACKUP LOG with the WITH NORECOVERY option. This backs up the database but then indicates
that you want to restore the database. As a result, the database will not allow any new data
modifications. You would then select restore but disable the Overwrite the Existing Database
option, as this is the safer option.

•	 Preserve the Replication Settings: A more advanced option for when a database is sending
changes to another database; for the time being, leave this option disabled.

•	 Restrict Access to the Restored Database: You may wish to check out the database after a restore
to ensure the restore is what you wish, or in a production environment to run further checks
on the database integrity.

Recovery State has one of three options:•	

•	 RESTORE WITH RECOVERY: This option defines whether users can immediately connect
and work with the data after the restore.

Chapter 8 ■ Database baCkups anD reCovery

237

•	 RESTORE WITH NORECOVERY: With this option, you can indicate that the database has been
partially restored and you are unsure if you need to perform additional actions such as
further restores. If a transaction is in progress, such as deleting a table, then whatever has
been deleted will still be deleted and will not be rolled back.

•	 RESTORE WITH STANDBY: A combination of the first two options; if a transaction is in
progress, such as deleting rows in a table, then the connection could occur once the
deletion has been rolled back. However, the changes are also kept in a separate file, so
that any of these actions that have been rolled back can be reapplied. This might happen
if there are several actions within a transaction and some can be reapplied.

•	 Prompt Before Restoring Each Backup: If you would like a prompt message before each restore
file is activated, then select this. This is ideal if you need to swap media over.

If you wanted to restore to a point in time, you would need to take a tail-log backup. I cover this later in the
chapter when discussing restoring to a point in time. You can also force-close any connections that are currently
connected to the database, and, finally, you can restore the database a file at a time with a prompt between each
file restore.

You have had a lot of options and points thrown at you, so let’s take a look at restoring a database.

trY It OUt: reStOrING a DataBaSe

1. add a new column to the ShareDetails.Shares table, using the following code in a Query
editor pane, and execute:

USE ApressFinancial
GO
ALTER TABLE ShareDetails.Shares
ADD DummyColumn varchar(30)

2. once you have confirmed that the column has been added by looking in object explorer,
you can now use the backup you created earlier to restore the database, which will
remove the changes you have just completed. From the object explorer window, select the
ApressFinancial database, right-click, and select tasks ➤ restore ➤ Database. this
brings up the dialog box shown in Figure 8-10. you will be restoring from all of the existing
backups, which will remove the column created in the previous step.

Chapter 8 ■ Database baCkups anD reCovery

238

Figure 8-10. Restoring a database: General tab

3. It is possible to change the database you wish to restore by changing the name in the
Destination Database combo box or by simply overwriting the name that is there.

4. If you switch to the Files page, you have the option of restoring the database to a new
folder location as well as a new database name. this is ideal in scenarios such as taking
a production backup of a database and restoring it to a production copy or if you need to
restore a database to a new server. you would do this by selecting the “relocate all files to
folder” check box, as shown in Figure 8-11. as you will be restoring to the same location
and name, leave the box unselected.

Chapter 8 ■ Database baCkups anD reCovery

239

5. on the options page, there are a number of points to consider as discussed prior to the
exercise. you should select overwrite the existing Database and deselect the “take tail-log
backup before restore” check box, shown in Figure 8-12, as the database changes are not
being replicated to another database. you also have no need to keep the database to a single
user post-backup, as no further work may be required on a power failure, or to check that the
correct restore has been completed.

Figure 8-11. Restoring a database: Altering the location of the database

Chapter 8 ■ Database baCkups anD reCovery

240

6. once you have the option settings you require or use the settings suggested and there are
no query editor panes open (no connections), a quick click of ok performs the restore. you
should see the message in Figure 8-13. If you then move back to the database after clicking
ok, you will see that the column you just added has been removed when you look in object
explorer for the ApressFinancial ShareDetails.Shares table.

Figure 8-13. Restore successful

Figure 8-12. Restoring a database: Options tab

Chapter 8 ■ Database baCkups anD reCovery

241

Restoring Using T-SQL
Using Management Studio is a pretty fast way to restore a database, and when under pressure, it may even be the best
way forward. However, it is not the most flexible way of performing a restore, as some options that are available via
T-SQL are not in this wizard. Some of these options were covered when you performed a backup, such as performing
checksums when transferring data from the media device back to the database or unloading media at the end of the
restore. If there is also a password on the backup medium, this option is not available within the screen in the example
you have just completed, but you can use passwords with T-SQL. Being comfortable building a restore via T-SQL
is important in becoming a more proficient and professional developer or administrator. Also by knowing how to
restore via T-SQL, you can use the code in a scheduled script such as a nightly restore to a development server of your
production data.

Restoring a Database
The syntax for restoring a database is similar to that for database backups. After looking at the syntax, I will then go
through the options you will not be familiar with. The items in bold are the default values.

RESTORE DATABASE { database_name | @database_name_var }
[FROM <backup_device> [,...n]]
[WITH
 [{ CHECKSUM | NO_CHECKSUM }]
 [[,] { CONTINUE_AFTER_ERROR | STOP_ON_ERROR }]
 [[,] FILE = { file_number | @file_number }]
 [[,] KEEP_REPLICATION]
 [[,] MEDIANAME = { media_name | @media_name_variable }]
 [[,] MEDIAPASSWORD = { mediapassword |
 @mediapassword_variable }]
 [[,] MOVE 'logical_file_name' TO 'operating_system_file_name']
 [,...n]
 [[,] PASSWORD = { password | @password_variable }]
 [[,] { RECOVERY | NORECOVERY | STANDBY =
 {standby_file_name | @standby_file_name_var }
 }]
 [[,] REPLACE]
 [[,] RESTART]
 [[,] RESTRICTED_USER]
 [[,] { REWIND | NOREWIND }]
 [[,] STATS [= percentage]]
 [[,] { STOPAT = { date_time | @date_time_var }
 | STOPATMARK = { 'mark_name' | 'lsn:lsn_number' }
 [AFTER datetime]
 | STOPBEFOREMARK = { 'mark_name' | 'lsn:lsn_number' }
 [AFTER datetime]
 }]
 [[,] { UNLOAD | NOUNLOAD }]
]

Chapter 8 ■ Database baCkups anD reCovery

242

The options I have not yet covered are as follows:

•	 KEEP_REPLICATION: When working with replication, consider using this option. Replication
is when changes completed in one database are automatically sent to another database. The
most common scenario is when you have a central database replicating changes to satellite
databases, and possibly vice versa.

•	 MOVE: When completing a restore, the MDF and LDF files that are being restored have to be
placed where they were backed up from. However, by using this option, you can change that
location.

•	 RECOVERY | NORECOVERY | STANDBY: These three options are the same, and in the same order,
as their counterparts (in parentheses) in the Management Studio screen:

•	 RECOVERY (Leave the Database Ready to Use): This option defines that after the restore is
finished, users can immediately connect to and work with the data. If a transaction is in
progress, such as updating rows in a table, then not until the updates have been rolled
back and therefore the table is back in its “original” state will connections to the database
be allowed.

•	 NORECOVERY (Leave the Database Non-operational): With this option, you are indicating
that the database has been partially restored, and you are unsure whether you need to
perform additional actions. If a transaction is in progress, such as inserting rows in a
table, then the insertions will not be rolled back. This allows additional restores to get to a
specific point in time. You will see how to then alter the database so that it is operational
in the following exercises.

•	 STANDBY (Leave the Database in Read-Only Mode): A combination of the first two
options; if a transaction is in progress, such as deleting rows in a table, then the deletion
will be rolled back. However, the changes are also in a separate file so that any of these
actions that have been rolled back can be reapplied. This might happen if several actions
occurred within a transaction and some can be reapplied.

•	 REPLACE: This works the same as the screen option Overwrite the Existing Database.

•	 RESTART: If a restore is stopped partway through, using this option will restart the restore at the
point it was stopped.

•	 RESTRICTED_USER: Use this with the RECOVERY option to allow only users in specific restricted
groups to access the database. Use this to allow further checking by a database owner, or by
the dbowner, dbcreator, or sysadmin roles.

•	 STOPAT | STOPATMARK | STOPBEFOREMARK: Use this to specify a specific date and time at which to
stop the restore.

Restoring a Transaction Log
The syntax for restoring the transaction log is exactly the same, with the only difference being the definition—you are
completing a LOG rather than a DATABASE restore:

RESTORE LOG { database_name | @database_name_var }
 <file_or_filegroup_or_pages> [,...f]
[FROM <backup_device> [,...n]]
[WITH

Chapter 8 ■ Database baCkups anD reCovery

243

 [{ CHECKSUM | NO_CHECKSUM }]
 [[,] { CONTINUE_AFTER_ERROR | STOP_ON_ERROR }]
 [[,] FILE = { file_number | @file_number }]
 [[,] KEEP_REPLICATION]
 [[,] MEDIANAME = { media_name | @media_name_variable }]
 [[,] MEDIAPASSWORD = { mediapassword | @mediapassword_variable }]
 [[,] MOVE 'logical_file_name' TO 'operating_system_file_name']
 [,...n]
 [[,] PASSWORD = { password | @password_variable }]
 [[,] { RECOVERY | NORECOVERY | STANDBY =
 {standby_file_name | @standby_file_name_var } }
]
 [[,] REPLACE]
 [[,] RESTART]
 [[,] RESTRICTED_USER]
 [[,] { REWIND | NOREWIND }]
 [[,] STATS [=percentage]]
 [[,] { STOPAT = { date_time | @date_time_var }
 | STOPATMARK = { 'mark_name' | 'lsn:lsn_number' }
 [AFTER datetime]
 | STOPBEFOREMARK = { 'mark_name' | 'lsn:lsn_number' }
 [AFTER datetime]
 }]
 [[,] { UNLOAD | NOUNLOAD }]
]

trY It OUt: reStOrING USING t-SQL

1. open up an empty Query editor pane and enter the following code. this will add the column
that you want to see “removed” after a restore.

USE ApressFinancial
GO
ALTER TABLE ShareDetails.Shares
ADD DummyColumn varchar(30)

2. now replace this code with the restore code that follows. Don’t execute any of the code just
yet, as this piece of code is the first part only. recall that when performing the backups,
FILE 1 was the FULL backup taken. this is what the first restore will do.

Note ■ ensure that the FROM DISK option is all on one line. also recall that FILE = 1 may be FILE = 2 or any other
number, depending on the backups taken, and this may be the case with different file numbers as you progress.

Chapter 8 ■ Database baCkups anD reCovery

244

USE [master]
GO
RESTORE DATABASE [ApressFinancial] FROM DISK =
N'C:\APRESS_DEV1\MSSQL12.APRESS_DEV1\MSSQL\
BackupApressFinancialFirstFullBackup.bak'WITH FILE = 1, NORECOVERY, NOUNLOAD, REPLACE,
STATS = 5
GO

3. the next part of the restore operation is to restore the transaction log file. once all this code
is in, you can run it all.

RESTORE LOG [ApressFinancial] FROM DISK =
N'C:\APRESS_DEV1\MSSQL12.APRESS_DEV1\MSSQL\
BackupApressFinancialFirstFullBackup.bak'
WITH FILE = 2, RECOVERY, NOUNLOAD, STATS = 5

4. once the code has fully executed, you should see results similar to those listed here:

100 percent processed.
Processed 42 pages for database 'ApressFinancial',
file 'ApressFinancial' on file 1.
Processed 2 pages for database 'ApressFinancial',
file 'ApressFinancial_log' on file 1.

RESTORE LOG successfully processed 6 pages
in 0.044 seconds (0.998 MB/sec).

you can now move back to the ShareDetails.Shares table and check that the column
added has now been removed. you may have to perform a refresh within object explorer first
to see the changes.

Restoring a database in production will, in most instances, take place under pressure, as the database will have
become corrupt or been inadvertently damaged. The production system is obviously down and not working, and you
have irate users wanting to know how long before the system will be up. This is hopefully the worst-case scenario,
but it is that sort of level of pressure that you will be working under when you have to restore the database. Therefore,
having the correct backup strategy for your organization based on full, differential, and transaction log backups
is crucial. Also having scripts in place ready for restores will help speed up getting the database back online. Full
database backups for a system that requires high availability so that the restore takes the least amount of time may be
what you need.

Restoring to a Point in Time
As mentioned a few times, there may come a time when you have taken a transaction log backup and before the next
transaction log backup is taken, a problem occurs—caused either by a developer or your system. This is when there
are actions that have occurred that you wish to keep, but there are subsequent actions that should not be restored.
What is required is a tail-log backup followed by a restore to a specific point in time.

Chapter 8 ■ Database baCkups anD reCovery

245

In a real-life scenario on a production database, this can be tricky and dangerous to get the exact point in time
if you have data modifications happening at the time of the failure. You may have to make a hard decision of where
to restore to and realize that some data may be lost. If it is during an overnight batch, it may be easier, depending on
your failure, as batches can be easier to track to where to restore to. You should be aware of what was running at any
specific point in time to find the right point and then rerun any batches run post restore.

To restore to a point in time requires a number of actions to be performed successfully before the restore is complete.
First of all, you are required to back up the transaction log changes from the last successful backup to the

current point in time. This is called taking a tail-log backup. You also need to put the database in NORECOVERY mode,
which means that nobody will be able to connect. This will avoid database changes being applied that will be lost
during the restore.

Once the backup is complete, the restore can commence. You would apply the last full backup, followed by all
differential backups, and then the transaction log backups that have been taken. You are then left with the restore to
the point in time from the tail-log backup. This uses the same syntax as the other transaction log restores but with the
STOPAT option defined, which determines the date and time at which to stop restoring.

It is possible, if required, to then open the database to a single user, who can then check the tables that are
required to be checked in case a different time would be better. You will see this option when detaching a database in
the next section.

You have seen the process of performing a backup and restore of your database in the examples you have just
performed, so in this section I will demonstrate how to restore up to a point in time with specific transactions restored
and other actions after that point discarded.

To demonstrate this, the following exercise will apply two changes to the database, one of which will remain in
place and the other will be rolled back as it will be after the point in time.

trY It OUt: reStOre tO a pOINt IN tIMe

1. the first change will remain after the restore. enter the following code, execute it, and take a
note of the time of execution:

CREATE TABLE TransactionDetails.TransactionHistory
(Column1 varchar(200) NULL,
 Column2 int NULL)
 GO

2. now wait a period of time. you will have to be able to distinguish between the times of the
two actions, so pick something easy. I am going to wait five minutes.

3. once a period has passed, enter the following code and execute it:

ALTER TABLE ShareDetails.Shares
ADD DummyColumn varchar(30)

4. now you have two changes to the database; the first will be kept and the second will be
rolled back. there is no backup taken at this point that you can restore to that would keep
the TransactionDetails.TransactionHistory table and remove the DummyColumn column.
therefore, you need to take a tail-log backup first and then restore to a point in time. It is
possible to do this in one action. highlight the ApressFinancial database and right-click.
From the pop-up menu, select tasks ➤ restore ➤ Database. the restore Database window
opens, as shown in Figure 8-14.

Chapter 8 ■ Database baCkups anD reCovery

246

5. Click the timeline button, which should bring up a dialog similar to Figure 8-15. the date
and times will differ but show the last backup that was taken. this is so that a regular
restore will be to the last backup, which is a more regular scenario and therefore makes
sense to be the default.

Figure 8-14. Restore Database window

Figure 8-15. The Backup Timeline dialog, wh

Chapter 8 ■ Database baCkups anD reCovery

247

Figure 8-16. The Backup Timeline dialog with the date and time set, wh

6. to restore some of the modifications since the last backup, you need to select the option
“specific date and time”. you would then select the date and time that the first modification
was taken. the screen will look something like Figure 8-16 with a notification that a tail-log
backup will be taken. once you are happy, click ok.

7. Move to the options page and select the options to overwrite the existing database. however,
you need to leave the database in a NORECOVERY state after the tail-log backup so that the
restore can be successfully completed (see Figure 8-17).

Chapter 8 ■ Database baCkups anD reCovery

248

8. once you are happy, from the menu select script ➤ new Query editor window, which will
generate the t-sQL that will achieve the restore. the code is split over the next three steps.
the first section will back up the tail of the transaction log.

USE [master]
BACKUP LOG [ApressFinancial] TO DISK =
N'C:\APRESS_DEV1\MSSQL12.APRESS_DEV1\MSSQL\Backup\
ApressFinancial_LogBackup_2014-08-24_15-26-04.bak'
WITH NOFORMAT, NOINIT,
NAME = N'ApressFinancial_LogBackup_2014-08-24_15-26-04',
NOSKIP, NOREWIND, NOUNLOAD, NORECOVERY , STATS = 5

Figure 8-17. The Options page with the proper settings

Chapter 8 ■ Database baCkups anD reCovery

249

9. the next step is a restore of the full backup and the transaction log backup taken so far.

RESTORE DATABASE [ApressFinancial] FROM DISK =
N'C:\APRESS_DEV1\MSSQL12.APRESS_DEV1\MSSQL\Backup\
ApressFinancial_LogBackup_2014-08-24_15-26-04.bak'
WITH FILE = 1,
NORECOVERY, NOUNLOAD, REPLACE, STATS = 5
RESTORE LOG [ApressFinancial] FROM DISK =
N'C:\APRESS_DEV1\MSSQL12.APRESS_DEV1\MSSQL\Backup\
ApressFinancial_LogBackup_2014-08-24_15-26-04.bak'
WITH FILE = 2, NORECOVERY, NOUNLOAD, STATS = 5

10. the final step is where you can stop the restore of the transaction log at a specific point of
time by using the STOPAT option.

RESTORE LOG [ApressFinancial] FROM DISK =
N'C:\APRESS_DEV1\MSSQL12.APRESS_DEV1\MSSQL\Backup\
ApressFinancialFirstFullBackup.bak'
WITH NOUNLOAD, STATS = 5, STOPAT = N'2014-08-24T15:22:33'
GO

11. Finally, I will drop the TransactionDetails.TransactionsHistory table, as it is not required
for the book. I entered the following code and executed it. there is no harm in keeping this table
if you want, but you will not see it in any figures within the book going forward.

DROP TABLE TransactionDetails.TransactionHistory

Detaching and Attaching a Database
Now that you can back up and restore a database, you have other methods available for dealing with the database.
There may be a time in the life of your SQL Server database when you have to move it from one server to another or,
in fact, just from one hard drive to another. For example, perhaps you currently have ApressFinancial on the C drive
and this is getting full, so you would like to move the database to another hard drive. Or perhaps you are moving
from an old, slower server to a new, faster server or a server on a better network. By detaching and reattaching the
database, you can do this simply and easily.

I would like to make a few points here; they may seem straightforward and really obvious, but better to mention
them than cause problems at a later stage. First of all, no updates can be occurring, no jobs can be running, and no
users can be attached. Secondly, just in case, take a full backup before moving the database. This may add time to
the process, but it is better to be safe than sorry. Also, ensure that where you are moving the database to has enough
disk space, not only for the move, but also for expected future growth; otherwise, you will be moving your database
twice. You should not attach your database to a server without immediately completing a backup on the new server
afterward; this way, you can ensure that the databases are protected in their new state.

Detaching a database physically removes the details from the SQL Server master and msdb databases, but does
not remove the files from the disk that it resides on. However, detaching the database from SQL Server then allows you
to safely move, copy, or delete the files that make up the database, if you so desire within Windows. This is the only
way that a database should be physically removed from a server for moving it.

Chapter 8 ■ Database baCkups anD reCovery

250

Detaching and Attaching Using SQL Server Management Studio
Let’s start by using SSMS to detach and attach a database.

trY It OUt: DetaChING a DataBaSe

1. First of all, it is necessary to ensure that nobody is logged in to the database, and even
if someone is, that the user is not doing any updates. however, to demonstrate what
happens when a user is connected to the database, ensure that sQL server Management
studio is running and that there is a Query editor pane with a connection to the
ApressFinancial database. you may already have a connection via a query pane still
open from the previous examples.

2. Find the ApressFinancial database in object explorer and ensure that it is selected.
right-click and select tasks ➤ Detach. this brings up the Detach Database dialog box for the
ApressFinancial database, as shown in Figure 8-18.

Figure 8-18. Detaching a database

Chapter 8 ■ Database baCkups anD reCovery

251

3. to remove all the connected users, select the Drop Connections check box. the second
option, update statistics, means that the sQL server statistics for indexes and so on will be
updated before the database is detached. the information is stored separately from the other
data files in sQL server. Consequently, selecting this option ensures that when the database
is detached the files are not lost and, therefore, don’t need re-creating. the status is not
ready due to the message indicating that there is still “1 active connection(s).”

Note ■ In this example, select the Drop Connections box. however, in a production environment, this could be very
dangerous. there is a system stored procedure called sp_who that can tell you what connections exist within the server.
the stored procedure sp_who will list the information from the whole data server and cannot be refined to the database
you are interested in. you will see how to execute stored procedures in Chapter 14.

4. once you are happy, you can click ok to finish detaching the database.

that’s it. the database is detached, is no longer part of sQL server, and is ready to be moved
or even deleted. If you check object explorer in sQL server Management studio, you will see
that the database is no longer listed.

Detaching a database, although seemingly a simple and innocuous operation, has the potential
to be fraught with problems and worries. as the example demonstrated, ensuring that there
are no users attached to the database at the time of detaching is not as easy as it first may
seem. setting up the database options to eliminate connections or to stop updates is possible
only once everyone has been removed from connections to the database. there is no easy
way of removing connections safely, as you never know what an application with a connection
to the database is doing. you could remove a connection that is in the middle of processing. If
you are going down the route of detaching the database, though, there is an obvious reason
to do this, such as moving servers and removing the database, so you would have a plan of
action, which would include reaching agreement with application owners that any connections
found at the time of work will be removed. users would have been notified days or weeks
in advance, and the database owner would have coordinated a date and time when nobody
should be connected. also, the database owner would be around if there were any problems,
and he or she could make the decision to kill any connections left hanging around.

To reiterate, detaching the database is a process that removes entries within the SQL Server system tables to
inform SQL Server that this database is no longer within this instance of SQL Server and therefore cannot be used. It is
as simple as that. If you are removing the database completely, then you will need to delete the files from the directory
they were created in.

Note ■ It is possible to detach the database using a system stored procedure, although this does not let you kill the
connections. this has to be done via the t-sQL command sp_detach_db, which you will see shortly in the chapter.

You need to reattach the database before being able to demonstrate detaching via T-SQL, so let’s do that now.
This would occur on new SQL Server instances after physically moving the files.

Chapter 8 ■ Database baCkups anD reCovery

252

trY It OUt: attaChING a DataBaSe

1. Within object explorer, highlight the Databases node, right-click, and select attach.

2. this brings up the attach Databases dialog box, shown in Figure 8-19. to add a database,
click add.

Figure 8-19. Options for attaching a database

3. this brings up the Locate Database Files dialog box, shown in Figure 8-20. you can use this
like other Windows explorers to locate where your database MDF files are. once you find the
database you want to reattach, highlight it and then click ok.

Chapter 8 ■ Database baCkups anD reCovery

253

4. this brings you back to the attach Databases dialog box with the details filled in, as you see
in Figure 8-21. take a moment to look over the information in this dialog box. any problems
sQL server finds will be detailed in the Messages column. It is also possible to attach more
than one database, but it is best to do databases one at a time.

Figure 8-21. Database located, preparing to attach

Figure 8-20. Locating the database to attach

Chapter 8 ■ Database baCkups anD reCovery

254

5. this then leaves you to click ok to reattach the database. Moving to object explorer, you should
see your database at the bottom of the list, where it will remain until the explorer is refreshed.

attaching a database involves informing sQL server of the name and the location of the data
files and the transaction log files. the files can be placed anywhere on a computer, but it is
recommended you place the data in a sensible location. For example, the folders tempfiles or
tobedeleted sport extreme names, but do demonstrate the unsuitability that should be avoided.

When moving the data from one physical server to another, the data does not need to be
in a subdirectory of Microsoft sQL server installation found under program Files. In fact, in
production environments, this is the last place you would locate the data. In a production
environment, you may have multiple drives or drive partitions; certainly many organizations
have this set up. you would generally want to keep these files away from any program files
or the pagefile.sys file because sQL server’s performance can be maximized when these
files are separated; if a second drive is available, it is best to place the files on a different
drive than system files. however, for the purpose of this book, placing the data in the DATA
directory under the instance of sQL server is perfectly valid and acceptable.

once the two data files have been copied, it is a simple process of using a couple of mouse
clicks to attach these files into the instance. What happens in the background, very basically,
is that sQL server takes the name of the database and the location of the data files and
places them into internal tables that are used to store information about databases. It then
scans the data files to retrieve information, such as the names of the tables, to populate the
system tables where necessary.

the main point to keep in mind is the database owner (see Chapters 1, 2, and 5). It is just as
important to use a valid database owner and not the sa login when attaching a database as
it is when creating a database. the database, when it is attached, will be given the owner of
the login attaching the database.

Detaching and Attaching Using T-SQL
Detaching and attaching a database is an ideal way to move a database from one server to another as part of an overall
solution. It’s clean, simple, and ideal if you are rolling out a “base” database to many client sites, but it’s not the only
way of doing it. Detaching a database is simply removing it logically from a server, but keeping the physical files. This
then allows these files to be moved to anywhere, from another hard drive to a DVD, for further copying to a client
computer if need be, and then reattaching the database at the other end.

Detaching a database removes entries from the master and msdb databases. The physical backup files will still be
there, so if you do need to complete a restore after a detach and reattach, then you can use the From Device option in
the Restore Wizard to define the full location in the RESTORE T-SQL command to get to those files.

Note ■ Detaching a database can be done only by a member of the db_owner role.

sp_detach_db [@dbname=] 'dbname'
 [, [@skipchecks=] 'skipchecks']
 [, [@KeepFulltextIndexFile=] 'KeepFulltextIndexFile']

Chapter 8 ■ Database baCkups anD reCovery

255

The options are straightforward, with each being optional. If they are not supplied, then the default value is
mentioned within the following bulleted list:

•	 dbname: The name of the database to detach; if this option is missed, then no database will be
detached.

•	 skipchecks: NULL (the default) will update statistics. true will skip the updating of statistics.

•	 KeepFulltextIndexFile: true (the default) will keep all the full-text index files that have been
generated with this database.

Note ■ Full-text index files are special files that hold information about data set up for full-text searching, which is
an area outside the scope of this book. basically, full-text searching gives the ability to search on all text in a column or
multiple columns of data, and it is also functionality used by search engines.

You might be expecting that you would use a stored procedure called sp_attach_db to reattach the database.
This command does exist, but it will be made obsolete in future versions of SQL Server. The correct syntax is a
“specialized” CREATE DATABASE command:

CREATE DATABASE database_name
 ON <filespec> [,...n]
 FOR { ATTACH [WITH <service_broker_option>]
 | ATTACH_REBUILD_LOG }

The syntax is easy to follow. The first option, ON, specifies the name of the primary database file to attach,
which has the MDF suffix. We will ignore the second option, <service_broker_option>, as this is for a more
advanced database.

The third option, ATTACH_REBUILD_LOG, is for situations where you wish to attach a database but at least one
transaction log file is missing. Specifying this option rebuilds the transaction log. No database can be attached when
SQL Server believes that there are missing files. If you do use this option, you will lose the full, differential, and
transaction log backup chains that exist on SQL Server, so complete a full backup after attaching to reestablish the
backup baseline. This option tends to be used when you deliberately wish to lose the transaction log file, such as a
read-only version of the database for reporting purposes.

Note ■ If you receive any error messages, reattach all files associated with the database, not just the main primary file,
if you had more than one file, which can happen in large systems.

Now let’s go through the steps for detaching and reattaching the ApressFinancial database using T-SQL.

Chapter 8 ■ Database baCkups anD reCovery

256

trY It OUt: DetaChING aND reattaChING a DataBaSe USING t-SQL

1. the first test you will do is to check if there are any active connections before you try to
detach. there is a system-stored procedure called sp_who, which you can execute that lists
out the connections that are on the server and what database the connections are connected
to. Figure 8-22 shows the stored procedure in Query editor and a list of most of the
connections on my server at the time of running. notice that the last connection is connected
to the ApressFinancial database.

Figure 8-22. Server connections with ApressFinancial at the bottom

2. the connection in Figure 8-22 is from Query editor, which ran sp_who. the connection was
pointing to the ApressFinancial database. If I alter the database to master, then there
will be no ApressFinancial connections. you should be able to achieve the same goal and
remove all connections yourself as only you are using the database and should know where
the connections are.

Chapter 8 ■ Database baCkups anD reCovery

257

3. you can achieve removing all connections by placing the database in single-user mode
using t-sQL without needing to close your panes that have active connections. open up
a second tab with a connection to ApressFinancial and enter some random characters,
any characters. you should now have two, or more, connections to the ApressFinancial
database. you can now remove these connections and place the database into a single
connection mode. enter the following code and execute it:

ALTER DATABASE ApressFinancial
SET SINGLE_USER WITH ROLLBACK IMMEDIATE

4. as there should be only one connection at this point, you can proceed to detaching the
database. using the same Query editor pane as the SET SINGLE_USER command, enter the
sp_detach_db code as follows. once you have done so, execute the code. take note that you
are simulating explicitly moving this connection to a “safe” system database, away from the
database you wish to detach.

USE master
GO
sp_detach_db 'ApressFinancial'

5. the results you will see will be similar to the following:

Command(s) completed successfully.

6. now that the database has been detached, you need to reattach it, simulating a move

to a new server. enter the following code in a Query editor pane. replace the FILENAME
parameters with the path to where your database is located and ensure that the path is
all on one line.

CREATE DATABASE ApressFinancial
ON (FILENAME=N’C:\Program Files\Microsoft SQL Server\MSSQL12.APRESS_DEV1\
MSSQL\DATA\ApressFinancial.MDF')
FOR ATTACH

7. after executing the code, you should see the following message:

Command(s) completed successfully.

8. to change the database from SINGLE_USER to MULTI_USER, enter the following code:

ALTER DATABASE ApressFinancial
SET MULTI_USER

you have now successfully detached and reattached the database.

Chapter 8 ■ Database baCkups anD reCovery

258

Producing SQL Script for the Database
This section demonstrates a different method of backing up the structure of the database and the tables and indexes
contained within it by using T-SQL commands to complete this.

Note ■ only the structure will be generated as t-sQL commands; no data will be backed up—only the schema that is
needed to re-create the actual database can be scripted here.

The usefulness of this procedure is limited and is really helpful only for keeping structure backups or producing
an empty database. However, it is useful to know rather than going through the process of copying the database with
all the data when the data are not required.

This method tends to be used to keep the structure within a source repository such as Visual SourceSafe. It is also
useful for setting up empty databases when moving from development to testing or into production.

trY It OUt: prODUCING the DataBaSe SQL

1. ensure that sQL server Management studio is running and that you have expanded the
server so that you can see the ApressFinancial database. right-click and select
tasks ➤ Generate scripts. after the initial wizard introduction screen, click next to see the
Choose objects screen shown in Figure 8-23 that allows the database to be scripted. there
are two options for scripting: either the entire database, the default, and the option desired;
or the ability to script just part of the database. Click next.

Figure 8-23. Scripting: Selecting the database

Chapter 8 ■ Database baCkups anD reCovery

259

Figure 8-24. Options for the script

2. on the set scripting options screen, there are a number of options about the scripting. It is
possible to script the database and save it to a file, or you can publish the script to a web
service. Figure 8-24 shows the default settings for saving the scripts to a file. you will see an
advanced button on the right, which lets you alter some scripting options. I will go through
this at the end of the exercise, but for purposes of this exercise, just accept the default
settings. Click next.

Note ■ the ability to publish to a web service allows for a database script to be sent to a remote server.

3. you are now presented with a summary screen, so simply click next.

4. the scripts are then prepared as shown in Figure 8-25, with any problems or errors listed
prior to saving the file. Clicking Finish closes the final wizard screen.

Chapter 8 ■ Database baCkups anD reCovery

260

Advanced Script Options

Figure 8-26 shows the list of options available to you within the wizard for saving the file, with a short description
of each detailed here. several of the options will exist for publishing to a web service, but of course the web
service option will have its own set of settings.

Figure 8-25. Generating the script

Chapter 8 ■ Database baCkups anD reCovery

261

Figure 8-26. The scripting options available

•	 ANSI Padding: ansI padding details how data are held when it doesn’t fill the size defined for the
data type.

•	 Append to File: If you set this to true, then sQL server will append the script to the file selected
instead of overwriting it.

Continue scripting on error: If there are any problems in producing the script, you can decide if •	
you wish to continue scripting.

Convert uDDts to base types: as part of sQL server, you can change the base data types, such •	
as int, to your own named type, so you could name a “copy” of int as myint. this is a bit more
advanced, but if you do this, then selecting true will convert myint back to int.

Generate script for Dependent objects: a very useful option; if there are any dependencies on •	
what you are wanting to script and you haven’t selected that object to script, then there will be
problems rebuilding the object later. selecting true means that these dependent objects will
also be scripted.

Include Descriptive headers: this includes a date-time stamp as well as a short descriptive •	
header of each object as it is reached within the script.

Chapter 8 ■ Database baCkups anD reCovery

262

Include If not eXIsts: If you select all the objects to be scripted and set this to •	 true, sQL server
will put a test around each object so that if that object is already in the database when the script
is run, it won’t be created. there will be no test for specific columns when scripting a table, but
there will be a test for the table itself.

Include system constraint names: there are constraints that are generated by sQL server •	
automatically as part of Declarative Management Framework. you will see this functionality in
Chapter 12. If you wish to keep the same names rather than generate new names, a value of
true will keep the name the same. this is ideal for transferring an exact replica of the database
from one location to another. It is not necessarily always needed to keep the same name.

Include unsupported statements: If you want to keep statements that are no longer supported, •	
then set this value to true. the unsupported statements such as those that have been
deprecated will be kept, but there will be a comment. this is ideal for when you are scripting
up or down a sQL server version so that you know what functionality you will need to consider
fixing before running on the target server.

schema qualify object names: Include the schema name in each object; it would be rare to have •	
this set to false, as you would normally want to keep the schema names.

script bindings: If a default value is defined for a column, then a value of •	 true will define the
column binding.

•	 Script Collation: If you wish the sQL server collation to be scripted, enable this option. this is
useful if you are unsure of the collation the script will then be run against.

•	 Script Defaults: In ApressFinancial tables, we have some default values that will be set on
columns when rows are added. setting this to true will set these defaults.

•	 Script DROP and CREATE: If you are generating a script where the objects may already exist in
the target server, then it might be better to drop the object before creating. a value of true will
generate within the t-sQL the DROP and then the CREATE.

script extended properties: extra properties can be placed on every sQL server object. these will •	
be scripted if you select true.

script for server version: a setting of •	 true will not script objects that are not supported on the
sQL server version you are generating the script for.

script for the database engine type: If you have objects in your database that are not available on •	
the target engine type, such as targeting sQL server express from a script built on sQL server
enterprise, then these objects will not be scripted.

script Logins: this scripts all Windows and sQL server authentication logins.•	

script object-Level permissions: each object will have permissions on who can do what. For •	
example, on a table, you can set up permissions on who can add, delete, or select the data. this
option includes these options.

script owner: this scripts the owner of the database if specified.•	

script statistics: this specifies whether to script the sQL server column and index statistics. It •	
avoids rebuilding them when re-creating the database using the script; however, it increases the
time taken to build the script as well as the size of the script.

Chapter 8 ■ Database baCkups anD reCovery

263

script use Database: between each object, this specifies whether to script a •	 USE database
statement. It’s ideal if used with scripting-dependent objects.

types of data to script: the default for this option is schema, which means that the script will •	
detail only the objects columns. you can just script the data within the database objects selected
where INSERT statements are generated, or you can generate both the schema and the data.
For large tables, this is not an ideal way to port database objects from a source to a target, but it
does give the ability if required.

script Change tracking: Change tracking allows for data modifications to be tracked within sQL •	
server where the data that existed before the change are kept. this allows you to see what
information has been altered. this is ideal for any tables that you need to audit changes or if you
want to know when and what changes have happened. this can also be achieved by creating a
trigger that writes the before image to your own built-in audit table.

script Check Constraints: this script checks constraints.•	

script Data Compression options: If you are using data compression, then setting this to •	 true will
also script the options that you have in effect.

script Foreign keys: any foreign keys are scripted.•	

script Full-text Indexes: If you have any full-text indexes, this indicates whether you want to •	
script them.

script Indexes: this specifies whether to script table and view indexes.•	

script primary keys: this dictates whether to script primary keys.•	

script triggers: For any trigger, this specifies whether you wish these to be within the script.•	

script unique keys: any unique keys are scripted.•	

Summary
You have seen a great deal in this chapter that is crucial to ensuring that your database is always secure. As a manager
drummed into me, the unexpected will always happen, but you must always be able to recover from it, no matter
what. Therefore, regular backups that are known to work and even the occasional “disaster recovery test” should be
done to ensure that you can restore when something unexpected and bad happens. No matter what your managing
director says, the data of a company are its most important asset, not the people. Without the data, a company cannot
function. If you cannot ensure that the data will be there, then the company will be in a very dangerous position.

You should now be comfortable in taking different backups and restores and knowing what is required to keep
your database secure.

This concludes your look at the different methods of backing up, restoring, moving, and scripting databases.
While this covers every way of ensuring your database structure and data will never be lost, you still need to maintain
the database on a regular basis. This is what you will take a look at in the next chapter.

265

Chapter 9

Database Maintenance

At this point, you have now created a backup and performed a restore of the example database. You have also covered
the different methods to back up and restore the database. However, there is no real plan for regular maintenance
and detection and reporting of problems in the database strategy. Any jobs for backup of the database or transaction
log that I have demonstrated so far are held as single units of work called steps. Not only that, but also there is nothing
in place that will look after the data and indexes held within the database to ensure that they are still functioning
correctly and that the data are still stored in the optimal fashion. Without a process that runs regularly, you would
need to perform all of this by hand regularly and check the results each time. What a waste of time, and boring to boot!

This chapter will demonstrate building an automatic maintenance plan and then checking on the plan after it has
run to ensure that all has gone well with it. This plan will perform regular backups and checks on the database and
keep it in optimum health. This chapter will then show you how to set up the ability to e-mail results.

To do this, you will use the Database Maintenance Plan Wizard, which will help you build an automated job to
monitor corruption within the database, optimize how the data are stored, and back up both the database and the
transaction logs. Finally, the wizard will generate a schedule for the job to process at regular intervals. You will also see
how to set up and configure SQL Server Database Mail so that errors can be mailed to a team monitoring the servers.

Some areas of this chapter, like the backup screens, are straightforward, as they were covered earlier in Chapter 8;
however, this now brings the whole maintenance of the database into one job.

Creating a Database Maintenance Plan
Now that the database is up and built and the tables are there, it really is time to start considering a whole database
maintenance plan before data are entered. This will cover securing your data, ensuring performance, and rectifying
database corruption through to ensuring that your database is performing as you expect it to be. Even though
corruption is rare in SQL Server, it can be caused when SQL Server loses power abruptly, for example, or through
hardware issues such as a motherboard failure or someone removing the network cable.

There are many areas of building a maintenance plan, and this section covers a lot of them. One or two areas are
only touched on, as they are quite advanced and will not be covered in this book. You will still need a little background
so that you can see how crucial this area is, and you can move on to those more advanced areas a bit later on.

A single maintenance plan can be built for one database or several databases, but I recommend one plan per
database. A single plan can be set up for system databases and all user databases by selecting those options at the
start of the Database Maintenance Plan Wizard. I also recommend one plan for each system database as well. The
logic behind these recommendations is that each user database will have its own needs, its own overnight routines,
and even its own people for callout when things go wrong, even if there is some sort of logical link between databases.
Even if you are a one-man band, each user database should still have a maintenance plan. Therefore, in keeping with
this, only the ApressFinancial database will be selected.

Once the plan has been built, it will be stored within SQL Server, but will have been built as a SQL Server
Integration Services (SSIS) job. This is a technique within SQL Server for running several tasks in sequence with
conditions, which also has the ability to work with errors that occur. SSIS could (and does) take up a whole book in
itself, but building the plan and seeing what is generated will demonstrate the very basics of what it can achieve.

Chapter 9 ■ Database MaintenanCe

266

Maintenance plans use extended stored procedures, which are disabled by default. This means that until
extended stored procedures are enabled, it is not possible to build a maintenance plan. To demonstrate how you can
enable this option via T-SQL, you will use a system-stored procedure in the first step to do this.

There are two methods to building a database maintenance plan: you can either use a wizard or select options
from a multi-tabbed screen.

There are a number of tasks that can be included in a maintenance plan:

•	 Check Database Integrity: This executes SQL Server database integrity checks on the data and
structure of the database, both physical and logical.

•	 Shrink Database: The transaction log is truncated and logically shrunk. The database is
also shrunk.

•	 Reorganize Index: As data are inserted and deleted, fragmentation of indexes can take place.
This reorganizes the index a bit like completing a disk defrag.

•	 Rebuild Index: Instead of just reorganizing the indexes, it is possible to drop and re-create
them.

•	 Update Statistics: Statistics are kept to aid the execution of queries. These can get out-of-date if
you don’t have the option set to keep these up-to-date, and this option can update them at this
point.

•	 Clean Up History: This removes historical information such as job history for a set
period of time.

•	 Execute SQL Server Agent Job: This executes a predefined SQL Server Agent job. At present,
there are no jobs in the database, so this option cannot be selected.

•	 Back Up Database (Full): As discussed earlier, this backs up the full database.

•	 Back Up Database (Differential): As discussed earlier, this backs up the changes since the last
full backup.

•	 Back Up Database (Transaction Log): As discussed earlier, this backs up just the
transaction log.

•	 Maintenance Cleanup Task: This cleans up any transient files left over after the task
has completed.

Let’s take a moment to look at options that are likely to be the most useful aside from the backups—the
reorganization and rebuild index options. If fragmentation is low—below 30%, typically—then you should perform
a reorganization. If fragmentation is greater, then it is best to reindex. Indexes exist on tables and views and
become more fragmented than whole pages of data on a high-data modification system. Like rebuilding indexes,
reorganization of indexes should be completed on a regular basis, probably weekly; however, if your batch window
allows you to perform this more frequently, then consider doing so. When rebuilding indexes, you can define with
a certain amount of free space to allow for increases and mid-index insertions on each index page. This is a bit like
inserting lines of text in a book. If you think you are going to do this, then leaving gaps at the end of the page allows for
these rows to be added. Failure to leave enough means shuffling data from that page through to the end of the book.

A maintenance plan can run within a SQL Server Agent job either as an ad hoc process or on a scheduled
basis. Depending on your overall application design, or even on your company standards, it may be that you have
dependencies on when a database maintenance plan can run. To clarify my point, it could be that you have processes
in the overall application that load data into your database. In ApressFinancial, this could be further details about
shares, such as details of new stocks or stock actions. In corporations, it could be data from other systems, such
as the orders system informing the inventory system a delivery of raw materials has been made. These processes
would generate some sort of triggering action to indicate that they were complete and the database could start its
maintenance. Over the years, I have used software called AutoSys, owned by Computer Associates, which schedules

Chapter 9 ■ Database MaintenanCe

267

these jobs. When a specific process completes, I use this completion to start my maintenance task. Therefore,
depending on how the whole application has been designed, a scheduled maintenance plan may be the correct
method or an ad hoc/on-demand plan should be generated. It is also very easy to switch between these two, so it is
not a decision that you are stuck with.

If a plan is scheduled, it should be timed for an appropriate time for the application. This could be at a quiet
time of your application or at specific times within any batch processing, but, depending on what you select, a
maintenance plan can be quite labor-intensive, such as rebuilding indexes and reorganizing your data. You could set
up a plan to run before batch processing, at the end, or even at both ends of the schedule. Depending on the actions
in the plan, it is also possible to alter the scheduling to occur when the CPU is idle. This option is ideal for heavily
used, large-volume, high-performance databases where no fixed time can be defined to run the schedule, or even if
you wish the process to run multiple times in a day when the server can execute the plan. One scheduling option that
can be very useful is to run when SQL Server Agent starts. If a server automatically reboots, as part of a scheduled
weekly reboot, or if the reboot occurs due to a Microsoft patching installation, then you may want to have a plan that
takes a backup of the database or a plan that verifies the integrity of the database post-reboot. You would create a
maintenance plan to complete those tasks and use the SQL Server Agent schedule option to accomplish this.

The main option of interest when rebuilding indexes is Sort Results in tempdb. You could be low on disk space
because when you built your database, you set it to grow no larger than a specific size. Couple this with a situation in
which your indexes are so fragmented that they take up more space than they will post-defragmentation. This could
be because you have a large number of gaps due to deletions of rows within the index or modifications on a clustered
index causing rows to be moved. When rebuilding indexes, this would, by default, be completed within the database
the rebuild is for. The “old” indexes are kept until the new indexes are built. If there is not enough space to store them,
it would not be possible to rebuild the index, unless you physically increased the size of the database. This is not a
simple process. Therefore, by using the option to rebuild the new indexes within tempdb, you do not need to increase
your database size. Also, tempdb will not be used as intensively. Therefore, it might also be faster to rebuild your
indexes within that database. This is an option you may use a great deal.

A maintenance task can also be synchronous or asynchronous where you have different tasks running at the
same time. This has the potential to make the maintenance plan complete in less time, but you have to be careful that
the right tasks run in the right sequence.

In the following exercise, I am going to demonstrate building a scheduled maintenance plan via a wizard.

trY It OUt: CreatING a DataBaSe MaINteNaNCe pLaN

1. this is a potentially two-stage process. First, configure the server to show advanced options. then
reconfigure the server and set it to true, as detailed by the number 1, the option Agent XPs.
enter and execute the following code:

sp_configure 'show advanced options', 1
GO
RECONFIGURE
GO
sp_configure 'Agent XPs', 1
GO
RECONFIGURE
GO

Chapter 9 ■ Database MaintenanCe

268

2. You should now see the following output, which is generated from the sp_configure
statements:

Configuration option 'show advanced options' changed from 0 to 1.
Run the RECONFIGURE statement to install.
Configuration option 'Agent XPs' changed from 0 to 1.
Run the RECONFIGURE statement to install.

3. From Object explorer, find the Management node and expand it. You should find Maintenance

plans. right-click and select the second option, Maintenance plan Wizard, as shown in
Figure 9-1. this starts the wizard. Once you have read the initial screen, click next.

Figure 9-1. Generating a maintenance plan via the wizard

4. enter a suitable name and description for the maintenance plan. it is possible to run tasks
under either separate schedules or one schedule. Choose separate schedules when you
want to space the tasks out or run them simultaneously. Choose a single schedule for the
entire plan when you want to run the tasks synchronously. the single schedule is the option
you want to take at this time as it is possible to break out certain tasks, and i will show
how this can be achieved later in the chapter. You will notice at the bottom of the screen, as
shown in Figure 9-2, that you can define a schedule for the plan. the default is for it to run
On Demand; however, it can run at specified times and days, and this is the option that you
want. Click the Change button found at the bottom right of the screen.

Chapter 9 ■ Database MaintenanCe

269

5. You will now see the screen shown in Figure 9-3, which is where you can define the schedule
times for the maintenance plan. the schedule type can be one of the options discussed prior
to the exercise. this plan will keep the default options, for the moment, of running weekly on
a sunday at midnight. Once the database development has progressed, this can always be
changed. Once done, click OK, and then click next when you return to the screen shown in
Figure 9-2.

Figure 9-2. Selecting the schedule for the maintenance plan

Chapter 9 ■ Database MaintenanCe

270

6. the next screen brings you to a set of choices of actions that you wish the plan to perform. in
your plan, you will be performing almost every action, with the exceptions of cleaning up the
history of the database and the differential backup option. You will add the option of cleaning
up the history later when showing how to modify a plan. select the options as shown in
Figure 9-4, and click next.

Figure 9-3. Defining the schedule

Chapter 9 ■ Database MaintenanCe

271

7. this then brings you to a summary of the options that have been selected. it is now possible
to move the options to a different order if you wish. as you can see in Figure 9-5, the back Up
Database (Full) option has been moved up to the start and the transaction log backup second.
this is in case any of the following options fail and cause corruption. You may wish to move
these options to the end if you have a good backup scheduled before this maintenance work.
this is a decision that you have to make as any restore may require a rerun of the commands
after the full backup. there is no recommended order. Once you have the order you want,
click next.

Figure 9-4. Options for the maintenance plan

Chapter 9 ■ Database MaintenanCe

272

8. the wizard then moves on and takes each task one at a time and gives you a screen
containing options available for that task. the first option you have is a full backup, as shown
in Figure 9-6, as this was the first option in the order defined. Most of this is very similar to
the backup you completed earlier. however, it is possible to select specific databases or all
databases as part of this plan. select the specific Databases option to be taken to a second
screen, where you can define which ones to back up.

Figure 9-5. Options order for the maintenance plan

Chapter 9 ■ Database MaintenanCe

273

9. When you choose to back up specific databases, Figure 9-7 appears. here you can
select—only for this task within the plan—which database or set of databases you want to
work with. it is best to have separate maintenance plans for each user database and one
separate maintenance plan for the system databases, as i mentioned earlier. this splits up
the workload not only into sizable, useful, and easy-to-understand units of work, but also into
logical components as each database may have a different maintenance plan. You will also
have different requirements for the system databases from the user-defined databases as
mentioned in Chapter 8. it is preferable not to select the all User Databases option because
sQL server will automatically begin running the maintenance plan on databases that may
have been added without your knowledge, and may not be under your “ownership.” For your
example, select the ApressFinancial database after clicking the “these databases” radio
button. Click OK. this will return you to the full backup screen, where you can click next. the
full list of choices is as follows:

all Databases: specifies all system and user databases•	

system Databases: ignores all user databases, such as •	 ApressFinancial

all User Databases: ignores any system-defined database, such as •	 master, model, and so on

these Databases: allows you to select which system and user databases you wish to use•	

Figure 9-6. Defining the database backup

Chapter 9 ■ Database MaintenanCe

274

10. the next option for the wizard is a transaction log backup. select the specific databases
option again and then ApressFinancial to back up its transaction log. Click next to move on
to the third item.

11. in the subsequent screen, which you see in Figure 9-8, you progress to the next task in the
ordered list, which is the check integrity task. this task instructs sQL server to perform a
special sQL server command that checks the integrity of the database to see that everything
is in a stable and noncorrupt state. it does this by running a sQL server command, DBCC
CHECKDB. Once you have selected ApressFinancial, the “include indexes” option is
automatically checked. Click next.

Figure 9-7. Selecting the database to use

Chapter 9 ■ Database MaintenanCe

275

12. DBCC is short for database console commands. the CHECKDB command runs three sub-DBCC
commands to simplify the process so that you don’t have to run the three commands
yourself. the first is DBCC CHECKALLOC, and this checks the space allocation of the database.
the second command is DBCC CHECKTABLE. this command will check that the pages of each
table are valid and not corrupt. the final command is DBCC CHECKCATALOG, and this checks
the consistency of the system metatables.

13. Moving on, you can define when to reduce the logical or physical size of your database through
the screen shown in Figure 9-9. the “return freed space to operating system” option will shrink
the database if it has space it is not fully using, and return that space back to the server. this
means that if you need the space again at some later stage, it has to be re-allocated.
also, if the server is shared, space you release may be allocated to another system.

Figure 9-8. Database integrity check

Chapter 9 ■ Database MaintenanCe

276

14. reducing the amount of physical space as described in the prior step will aid backup
times. be aware, though, that shrinking the database takes a fair amount of your server
resources, and it may be better to keep the space within the database unless you had a
one-off expansion. You don’t want to shrink the database for it to have to be expanded very
soon after shrinking the size. the shrinking of a database i have found not to be a common
exercise, but it exists in this example so you are aware of the option. after you select this
option, you will be given the opportunity to still leave a given percentage of space free for
database growth. Do not fully shrink the database to 0% of free space or your performance
will be worse, as the database will have to grow automatically.

15. Click next to bring up the Define reorganize index tag screen, shown in Figure 9-10. as data
are added, modified, and deleted, indexes, like tables, can also require reorganizing, which
you can do through this screen. again, this is like a hard drive defrag where there are gaps
or data out of order, and by reorganizing indexes you can ensure that sQL server is able to
access the data as fast as possible. this option, which should be completed at least weekly
for a high-data modification system, moves only index pages. there is also an option to
compact large objects. this option will compact any index that has a column that contains
large binary object data.

Figure 9-9. Shrinking the database

Chapter 9 ■ Database MaintenanCe

277

16. Click next to bring up the screen shown in Figure 9-11. this next screen deals with
individual rows of indexes. before you go on, note that there is no real point to reorganizing
and reindexing in the same maintenance plan. You should do only one or the other. Which
option you should choose comes down to the amount of fragmentation within an index.
Fragmentation and reorganization were discussed earlier. select the ApressFinancial
database in the Databases drop-down and the “sort results in tempdb” option.

Figure 9-10. Reorganizing the indexes

Chapter 9 ■ Database MaintenanCe

278

17. Move on to the Define Update statistics task screen, shown in Figure 9-12, by clicking next.
as has been mentioned before, as data are created, modified, and deleted, sQL server keeps
statistics on that data to aid data retrieval. these can become out-of-date either because
you have set up your database not to keep statistics updated automatically or because the
statistics naturally become out-of-date. therefore, you can re-create those statistics with the
plan. statistics are kept not only for indexes but also for data within individual columns.

Figure 9-11. The options for rebuilding an index

Chapter 9 ■ Database MaintenanCe

279

Tip ■ the auto Update statistics database option is normally on; although this does mean more processing for
sQL server, the increase is minimal and you’ll rarely notice any impact. some installations will have this switched off so
that statistics are updated via a scheduled task. this is sometimes the case when every nanosecond of response time is
required from the server, so it is worth checking the setting if you are unsure.

18. Clicking next will move you to the sQL server agent screen. sometimes there will be a
separate job or process to run that is outside of the possible actions within the wizard. this
could be to check that the database still meets the standards defined as you saw when you
checked whether the database met the ansi nULLs test. the jobs that are currently defined
within sQL server agent are listed in this dialog, as shown in Figure 9-13. select any jobs you
wish to run. there is a job within sQL server that removes the history of checking policies
already existing, and as you selected as one of the options that you wanted to define a job to
execute, you do have to select at least one job to proceed to the next screen. Click next.

Figure 9-12. Updating the database statistics

Chapter 9 ■ Database MaintenanCe

280

19. the Define Maintenance Cleanup task screen, shown in Figure 9-14, defines the cleanup
actions of the maintenance task when it runs. this is ideal to ensure that your maintenance
plans don’t take up unwanted and unnecessary space and are easy to view and monitor.
Click next.

Figure 9-13. Defining a process to run inside a SQL Server Agent job

Chapter 9 ■ Database MaintenanCe

281

20. the next task, illustrated in Figure 9-15, involves choosing where to write out the details of the
maintenance plan and each step’s success or failure. For the moment, place the output in a
report. Later in the chapter, you will see how to mail that report from sQL server. Click next.

Figure 9-14. Ensuring the maintenance task is cleaned up efficiently

Chapter 9 ■ Database MaintenanCe

282

21. similar to when you produced a script for the database, you will now see a summary of
what will be performed within the plan (see Figure 9-16). here you can review what will be
completed, and with the number of different options that will be performed, it is a good place
to complete a double-check. Clicking Finish produces the maintenance plan itself.

Figure 9-15. How to report the maintenance plan

Figure 9-16. Completing the plan

Chapter 9 ■ Database MaintenanCe

283

22. Once the plan is within msdb database, you should see the completed screen shown in
Figure 9-17.

Figure 9-17. Maintenance plan created successfully

You now have successfully built a maintenance plan. You may have several plans, one for a weekend, one for
pre-batch, and so on, all dependent on how you want to maintain your database. the important point is that you
back up your database.

the next step is to execute the plan.

Executing the Plan
Now that a plan has been built, the next step will be to execute the plan. For a maintenance plan to execute, SQL
Server Agent needs to be running. It is likely at this point in the book that it is not, as it will be defined to start
manually rather than automatically. This default exists for security reasons so that jobs cannot be built, deployed, and
then executed on your server without your prior knowledge. You may find that some corporations keep SQL Server
Agent stopped until required. It is possible to start SQL Server Agent within Management Studio for ad hoc starts of
the process, or you can start the service from Administrative Tools within the Control Panel. It is also possible to start
SQL Server Agent via a command prompt, therefore allowing you to put the start and stop into scheduling software.

In the following exercise, you will see how to start SQL Server Agent and then execute a maintenance plan
manually.

Chapter 9 ■ Database MaintenanCe

284

trY It OUt: eXeCUtING a DataBaSe MaINteNaNCe pLaN

1. You can start the sQL server agent service with one of two methods. the first and likely the
most common method will be to start the service within Windows rather than Management
studio by selecting Control panel app ➤ administrative tools ➤ services, as shown in
Figure 9-18.

Figure 9-18. Finding the Services option within the Control Panel

2. Double-click services, which displays Figure 9-19. scroll down until you see sQL server
agent and the instance name you want to define the sQL server agent starting action. in
your case, it will be APRESS_DEV1, but there will be one entry per sQL server instance on a
box. notice in Figure 9-19 that the status is blank and the startup type is set to manual. this
denotes that the service has not started and it will not start automatically.

Chapter 9 ■ Database MaintenanCe

285

3. highlight sQL server agent, right-click, and select properties. this will display a screen similar
to Figure 9-20. this screen is very similar to what you would see for any service listed within
the services window. the first tab indicates the service name, how the service starts, and the
current running state of the service. it is advisable to keep the startup type as manual. You will
return to this tab in a moment to start sQL server agent, but click the Log On tab.

Figure 9-19. Locating SQL Server Agent for the required SQL Server instance

Figure 9-20. The properties of SQL Server Agent

Chapter 9 ■ Database MaintenanCe

286

4. to start the sQL server agent service within sQL server, find the sQL server agent node
within Management studio, right-click, and select start, as demonstrated in Figure 9-21.

Figure 9-21. How to start from within Management Studio

Figure 9-22. The account for SQL Server Agent

5. When you were installing sQL server in Chapter 1, you had to make a decision on what
accounts should be used for certain processes. One of those processes was sQL server
agent, and you will see the account chosen. here you can alter which account you wish to
use. some companies wish you to use a separate Windows account rather than a Windows-
system-based account as was chosen during installation and shown in Figure 9-22. Keep
the account defined in Chapter 1 as this is the best option for the current setup. if you did not
start sQL server agent from within Management studio, move back to the General tab and
click start. Click OK to close the screen.

Chapter 9 ■ Database MaintenanCe

287

6. now that sQL server agent is running, you can execute the plan. if the plan had a scheduled
start date and time, it is possible to execute the plan outside of the maintenance plan
schedule rather than having to wait on the chosen time. Move back to Management studio,
where the maintenance plan created previously can now be found under the Management/
Maintenance plan nodes in Object explorer. right-click the nodes to bring up the pop-up
menu shown in Figure 9-23. selecting execute starts the plan immediately. Do so now.

Figure 9-23. Maintenance plan pop-up menu

7. While the plan is executing, the dialog box shown in Figure 9-24 is displayed.

Figure 9-24. Maintenance plan executing

Chapter 9 ■ Database MaintenanCe

288

8. in Figure 9-25, you can see the log that has been created for the maintenance plan once
that plan has been completed. You can view this log by selecting View ➤ history from the
same pop-up menu used to execute the plan. On the left, you can view other logs that are
generated within sQL server. notice in the figure that i have selected one of the steps that
has an error detailed in the selected row details section at the bottom of the screen. the
error is indicating that during an index re-org, the index required page level locking, which is
not enabled. You can also view the t-sQL that was executed.

Figure 9-25. Log file viewer showing the maintenance plan has run

Note ■ sQL server uses different levels of locking on data. as a very high-level, simple description, locking is where
sQL server stops other processes from performing an action on a set of data that is in use. there are different levels of
locking, from row locking to page locking to table locking. page locking is where locking is set at an 8K page of data.

Setting Up Database Mail
It would be better to be notified about jobs that have failed rather than having to monitor each job as it processes
manually. One of the ways to do this would be for the maintenance job to mail out results of its work. It is possible in
SQL Server to use SMTP mail to send out notifications from your server. This means that you don’t need to install a
MAPI client, such as Microsoft Outlook, because SMTP processing is contained within a Windows install. The fact that
you don’t need another product on the server has benefits in terms of making your server more stable. To supplement
stability, SMTP runs in a process outside SQL Server. Even if there are SMTP issues, SQL Server should not be affected
if the SMTP process stops for any reason.

On top of this, SQL Server comes with built-in system-stored procedures and functionality to use SMTP to send
out mail. These features are collectively called Database Mail.

Chapter 9 ■ Database MaintenanCe

289

The use of Database Mail has many positives for error notification, but it is not the total solution for monitoring
SQL Server or even the underlying server. The most extreme problem is that the server crashes, reboots, uses 100%
processing power, and runs out of memory, among other server-specific problems, all of which would stop an
e-mail being sent. Other tools need to be deployed on the server that are either third-party-based or where you can
write your own using .NET, Java, and so on. The very basic premise of these tools is that they “heartbeat” at regular
intervals—in other words, transmit at regular intervals notifications to a central separate server that the Windows
server is alive and performing well. The tool will have performed the necessary health checks about the server and
notify via the heartbeat if it notices an issue arising to the central server. The central server looks out for problems and
then it notifies the necessary person, who can then react to the issue. This tool is generally standardized company-
wide and not on a per-server basis.

This section will cover only how to set up and test Database Mail and will not cover the monitoring of the Windows
server. You will see how to implement Database Mail within the maintenance task created in the preceding section.

trY It OUt: SettING Up DataBaSe MaIL

1. to configure Database Mail, you need to create a mail profile for sQL server to use. sQL
server agent must be running to be able to create a mail profile. if sQL server agent is
not running (although from the maintenance plan example it is likely that it is running), as
denoted by a red circle with white cross or white circle with a red arrow, then highlight it,
right-click, and select start, as shown in Figure 9-26.

Figure 9-26. The Configure Database Mail pop-up menu option

2. Find the Database Mail node under the Management node. right-click and select Configure
Database Mail, as shown in Figure 9-27. by selecting Configure Database Mail, you start the
Database Mail Configuration Wizard. the first screen is a welcome screen. Click next to take
you past the welcome screen within the wizard.

Chapter 9 ■ Database MaintenanCe

290

3. Figure 9-28 shows the first screen of the configuration. this screen allows you to complete
one of three tasks. as there are no existing mail accounts set up via either sQL server or
the Windows Control panel’s Mail option, you require the first Configuration task option. if
you already have on your server a mail account you wish to use, then select the second
option. the third option lets you change the options if you already have Database Mail set
up. Click next.

Figure 9-27. Configure the database mailer

Figure 9-28. Create or manage a new profile and system parameters

Chapter 9 ■ Database MaintenanCe

291

4. Database Mail would normally be enabled via a system stored procedure, sp_configure
'Database Mail XPs'. if it is not enabled, then a helpful message is shown. if you see this
dialog, click Yes.

5. You should now be at the start of setting up a new profile, as shown in Figure 9-29,
where the profile name and description have been entered. Once you’re happy with your
description, click add to create a new sMtp account.

Figure 9-29. A New Profile screen with no profiles already existing

6. this brings you to the dialog shown in Figure 9-30, in which you need to specify your sMtp
details. the settings are similar to what you would use when setting up your mail account
within Outlook, Outlook express, or any other sMtp (or Mapi) e-mail client. recall, though,
that sQL server is using sMtp, so you don’t need Outlook or any other Mapi mail client
installed, and you need only the details you would use to connect to your sMtp server.
if you’re uncertain about any of the details that you need, contact your isp or your mail
administrator.

Chapter 9 ■ Database MaintenanCe

292

7. Clicking OK adds the details to the msdb database on the server and then adds the account
name in the new profile dialog, as shown in Figure 9-31. the mail account at this point,
though, has not been created within Windows. When you’re ready, click next.

Figure 9-30. A new mail account with SMTP details

Chapter 9 ■ Database MaintenanCe

293

8. You are now at the screen for the public and private profiles. a public profile is one that has
been created for any login to use in sending an e-mail from within sQL server. You will use
that option for simplicity, as shown in Figure 9-32. however, you should use a private profile
when you have decided on your sQL server implementation strategy, as its use is restricted
to specific roles within the database. private profiles are the more secure option and would
prevent someone from deliberately or inadvertently sending out a mass e-mail from your
server. the final action would be to make the profile the default, also known as global, mail
profile so that you don’t have to define the specific profile each time. if you do decide on a
public profile as part of your setup, then you could be opening your organization up to mass
mailings via a rogue piece of code if you define the profile as the default. select the public
profiles option with care.

Figure 9-31. SMTP account added to the profile

Chapter 9 ■ Database MaintenanCe

294

9. the last screen, shown in Figure 9-33, details the system parameters for mailing. these
are the same system parameters that you can alter through the third option that you saw in
Figure 9-28. the parameters include the following:

Account Retry Attempts: Determines the number of times to attempt to send •	
a mail before marking the mail as failed to deliver

Account Retry Delay (Seconds): Determines how long to wait before trying to •	
send a mail again

Maximum File Size (Bytes): Limits the size of mail that can be delivered to •	
prevent large files being sent out; if you’re sending out reports as well as
job notifications, you may want to set up two profiles—one with a larger
maximum file size than the other.

Prohibited Attachment File Extensions: Defines which file extensions are •	
prohibited; obviously, you don’t wish your database to send out dangerous
e-mails or even e-mails containing executables that are protected.

Figure 9-32. Private profile screen detailing private mail access only

Chapter 9 ■ Database MaintenanCe

295

Database Mail Executable Minimum Lifetime (Seconds): It’s always best to •	
shut down processes that are not required on a server to free up as many
resources as possible. This option defines the number of seconds that
Database Mail will continue to run while waiting on any new mails to process
before shutting down. If the number’s too low, resources will be used to start
and stop frequently, so don’t reduce this figure too much.

Logging Level: When an e-mail is sent, fails to send, or is queued to send, •	
these actions can be logged within the msdb database. Three possible
logging levels for Database Mail can be used to track these and other
scenarios:

Normal: Logs only any errors regarding sending your mail•	

Extended: Logs errors, warnings, and information about your mail•	

 Verbose: Logs everything Database Mail does; this is the best setting to •	
use when setting up Database Mail for the first time so that any errors
generated from this wizard or your first executions are logged. However,
the logging at this level is severe and not recommended to remain in
force for extended periods, as it creates a large msdb.

Figure 9-33. System parameters for Database Mail

Chapter 9 ■ Database MaintenanCe

296

12. providing everything has been created correctly, you should see a dialog similar to Figure 9-35.
no mail testing is completed at this point, so to do that part of the setup, click Close. the next
action will be to test out your setup.

Figure 9-34. The final Database Mail configuration screen, ready to process

10. When you’re done, click next.

11. You will now see a summary screen indicating the options selected, as shown in Figure 9-34.
When you click Finish, sQL server processes the wizard and adds the profile and the mail
account to sQL server.

Chapter 9 ■ Database MaintenanCe

297

13. now that your Database Mail is set up, send a test e-mail to check out your sMtp settings,
connection, and so on. From the Database Mail node, right-click, and select send test e-Mail
from the pop-up menu, as shown in Figure 9-36.

Figure 9-35. The account profile and details created successfully

Figure 9-36. The pop-up dialog to check for sending a test e-mail

14. this then shows you a dialog similar to the one in Figure 9-37, which has been populated
with the details of the test e-mail to send. if you have more than one profile, select each
profile in turn to test them out and ensure they’re working. Once completed, click Close.

Chapter 9 ■ Database MaintenanCe

298

Figure 9-37. Sending a test e-mail to check that everything is all okay

Modifying a Maintenance Plan
At this point, you have created a plan using the wizard, and you now have a working Database Mail account. In this
section, you will apply the account to the maintenance plan and send the mail when the plan runs.

It is possible to modify the plan and add or remove steps, change the description, or add further subplans. The
maintenance plan uses SQL Server Integration Services, which is commonly known as SSIS, to perform its duties.
SSIS uses steps shown in a flowchart to demonstrate which items are being dealt with. SSIS is outside the scope of this
book, so you won’t be looking any further at modifying the plan by drilling into it to see the steps. Instead, you will
alter only the reporting method. However, SSIS is an interesting area, especially if you want to move to the analysis of
data via Business Intelligence and working with data in cubes. SSIS is used heavily in this area to load the initial data
into a SQL Server database, which is then used to build a cube of data that is then “sliced and diced” to look at the data
in many different ways. But if you are interested in using SSIS to work with your data, then I recommend the
following books:

•	 Pro SQL Server 2012 Integration Services, by Francis Rodrigues and Michael Coles (Apress, 2012)

•	 SSIS Design Patterns, by Matt Masson et al. (Apress, 2012)

trY It OUt: SettING Up DataBaSe MaIL

1. the first step is to provide a specific operator within sQL server agent for the maintenance
plan. From Object explorer, select sQL server agent and highlight Operators. right-click and
from the menu select new Operator, as shown in Figure 9-38.

Figure 9-38. Creating an operator from SQL Server Agent

Chapter 9 ■ Database MaintenanCe

299

2. the new Operator screen is then shown, where you can enter how this operator will operate.
You are required to give a name and then one of three methods of notification. the operator
is for the maintenance plan, and the operator will have a “to” e-mail name. i have entered
my own e-mail address, as shown in Figure 9-39. Once you have entered your own e-mail
address, click OK to add the operator.

Figure 9-39. New Operator screen defining notifications

3. now find the plan generated earlier in the Maintenance plans node under the Management
node in your sQL server Object explorer. it may well be highlighted from your execution
earlier. right-click and select Modify, as demonstrated in Figure 9-40.

Figure 9-40. Modifying the existing plan

Chapter 9 ■ Database MaintenanCe

300

4. as partially shown in Figure 9-41, you are now presented with a new tab in sQL server
Management studio that shows a graphical representation of the maintenance plan. What
you will see is a simplistic ssis project.

Figure 9-41. The maintenance plan in graphical format

Note ■ in the bottom right of the screen, you will see a very faint graphic. this is a slider that will allow for zooming in
and out of the maintenance plan. You can also drag the steps around the screen to get a different layout.

5. as shown in Figure 9-42, to the right of the Manage Connections button on the plan toolbar is
a button to alter the reporting and logging options.

Figure 9-42. Managing the Maintenance Plan connections

Chapter 9 ■ Database MaintenanCe

301

6. You are now presented with the reporting and Logging dialog, as you can see in Figure 9-43.
it is possible to produce both a text and an e-mail version of the report. select the “send report
to an email recipient” option to use the sQL server agent operator created in the previous
section. Once complete, select OK.

Figure 9-43. Reporting and logging

7. Once you close and save the maintenance plan, you can now execute it. You should receive
an e-mail detailing either a success or a failure of the job and the steps within the job.

Summary
Having a positive, regularly run maintenance plan is required to ensure your database is working correctly and
performing as well as it has been designed to do. Ensuring that errors are found and dealt with by checking the
database integrity, that statistics are as up-to-date as possible, making sure that indexes are reorganized, and ensuring
that errors are logged and correctly reported will avoid problems occurring, as errors may occur at the worst possible
time in the life of the corporation.

As part of this maintenance plan, you will be notified of problems so that you can deal with them quickly and
efficiently. A database mail account is perfect for this, as it can notify you of problems in a process out of SQL Server.

303

Chapter 10

Data Insertion, Deletion,
and Transactions—Disk-Based

The database is now defined, has a backup and recovery plan in place, and logins to the server and users to the
database are defined, but you have not yet had to work with any data at this point. Within this chapter, you will learn
about data insertion and deletion. In Chapter 12, this will progress to retrieving and removing data.

Inserting data can be straightforward when data is simply placed into each column of a table, but in some
columns you may not want to add data, such as IDENTITY-based columns and those columns with a default value.
This chapter will cover these areas for disk-based tables although there is also relevance to in-memory based tables.
This chapter will also show how to work with IDENTITY values and some of the situations that can occur. Chapter 11
covers the differences and provides further information about in-memory based data actions.

We will then move on to see how to surround any data modifications with a transaction. A transaction will allow
you to complete one or more data modification actions so that they are either all applied or all rejected if there has
been a problem. Transactions have a danger element to them in that you can lock some data, which then stops other
code from executing. You will see this in action and the dangers associated with it. You will also read about best
practices with transactions.

The final section in the chapter covers removing data by deleting one or more rows, all the rows in the table, or
even the whole table itself. Transactions will also be covered within this section and we will discuss how a transaction
works when you remove all the rows in a table via a truncation. You will also see how to drop a table.

In this chapter, you will therefore see the following:

How to insert data•	

When a default value for a column is useful•	

What happens when you try to insert invalid data•	

Looking at when a value is not required in a column•	

•	 IDENTITY columns and the data generated

Transaction basics•	

Different methods of removing data•	

The first area you will look at is how to insert data into your tables.

Chapter 10 ■ Data InsertIon, DeletIon, anD transaCtIons—DIsk-BaseD

304

Inserting Data
You have now built your tables, set up the relationships, and backed up your solution, so you are ready to start
inserting your data. Not all the tables will be populated with data at this point. You will insert data in other tables later
on in the book when different functionality of SQL Server is being demonstrated. Although data are being inserted,
the database is still at the stage of being set up, as you are inserting static information at this point in the examples you
are building together. To clarify, static data are data that will not change once set up, although there may be further
additions to this data at periodic intervals, such as when a new share is created.

Not everyone who is allowed to access your database may, or should, be allowed to insert data directly into all
of the tables. Therefore, you need to know how to set up the security to grant permission to specific user logins for
inserting the data. The only people who really ought to be adding data directly to tables rather than using controlled
methods such as stored procedures in production, for example, are special accounts like dbo accounts or specific
accounts set up for production issues. In development, any developer should be able to insert data, but any login that
would be testing out the application should not have that authority. You will see the reasons for this when you look at
the security of adding data later in this chapter, and you will learn about alternative and more secure methods when
you look at stored procedures and views.

Once you have set up users correctly, it is time to demonstrate inserting data into SQL Server. It is possible to
insert data using SQL commands with T-SQL or through SQL Server Management Studio. Although both of these tools
will have the same final effect on the database, each works in its own unique way.

When inserting data, you don’t necessarily have to populate every column. You take a look at when it is
mandatory and when it is not. There are many different ways to avoid inserting data into every column. This chapter
will demonstrate the various different methods you can use to avoid having to use NULL values and default values. By
using these methods, you are reducing the amount of information necessary to include with a record insertion. This
method of inserting data uses special commands within SQL Server called constraints. You will see how to build a
column constraint through T-SQL in Query Editor as well as in SQL Server Management Studio.

The T-SQL INSERT Statement Syntax
Before it is possible to insert data using T-SQL code, you need to be familiar with the INSERT statement and its
structure. The INSERT statement is very simple and straightforward in its most minimal form, which is all that is
required to insert a record.

INSERT [INTO]
 {table_name|view_name}
 [{(column_name,column_name,...)}]
 {VALUES (expression, expression, ...)}

You are required to start all data-based statements with the type of action you are trying to perform, which for the
moment is the statement INSERT. The next part of the statement, INTO, is optional. It serves no purpose, but you will
find some developers do use it to ensure their statement is more readable. The next part of the statement deals with
naming the table or the view that the insertion has to place the data into. If the name of the table or view is the same as
that of a reserved word or contains spaces, you have to surround that name with square brackets or double quotation
marks, although, as mentioned earlier in the book, it is best to try to avoid names with spaces. However, if you do need
to, it is better to use square brackets because there will be times you wish to set a value such as Acme’s Rockets to
column data, which can be added easily by surrounding it with double quotation marks.

I cannot stress enough that, really, there is nothing to be gained by using reserved words for table, view, or
column names. Deciding on easy-to-use and unambiguous object names is part of a good design.

Column names are optional, but it is best practice to list them to help to have reliable code, as this ensures that
data are inserted only into the columns into which you want it to be inserted. Therefore, it will be necessary to place
the column names in a comma-delimited list. The list of column names must be surrounded by parentheses: ().
The only time that column names are not required is when the INSERT statement is inserting data into every column

Chapter 10 ■ Data InsertIon, DeletIon, anD transaCtIons—DIsk-BaseD

305

that is within the table in the same order as the column names are laid out in the table. However, this is a potentially
dangerous scenario. If you build an INSERT statement that you then save and use later, you expect the columns to be in
a specific order because that is the way they have always been. If someone then comes along and adds a new column,
or perhaps alters the order, your query or stored procedure will either not work or give erroneous results, as values will
be added to the wrong columns. Therefore, I recommend that you always name every column in anything but a query,
which is built, run once, and thrown away.

The VALUES keyword, which precedes the actual values to be entered, is mandatory when you are inserting
values. SQL Server needs to know that the following list is a list of values, not a list of columns. Therefore, you have
to use the VALUES keyword, especially if you omit the list of columns as explained previously. Later in the chapter,
I demonstrate when the VALUES keyword is not mandatory, and that is when you are building a query to define the
values you are going to insert into your table. For the moment, though, I will be demonstrating only when you are
inserting data with values.

You will have a comma-separated list surrounded by parentheses covering the values of data to insert. There has
to be a column name for every value to be entered. To clarify, if there are ten columns listed for data to be entered,
then there must be ten values to enter.

Finally, it is possible to insert multiple rows of data from the one INSERT statement. You can do this by
surrounding each row you want to add with its own separate parentheses: (). You will see this in action later in the
chapter. As with a single-row addition, it is necessary to have the same number of columns either as the table you
are inserting into, if you are not defining the columns in the INSERT statement, or as the INSERT statement if you are
defining the list. Now that the INSERT statement is clear, it’s time to move on and use it.

INSERT SQL Statement
The first method of inserting data is to use the INSERT SQL statement as described previously. This example will
insert one record into the ShareDetails.Shares table using Query Editor. When inserting the data, the record will be
inserted immediately without any opportunity to roll back changes, as this statement does not use any transaction
processing. You will also see with this example how Query Editor can aid you as a developer in building the SQL
statement for inserting a row. Let’s dive straight in and create the row.

trY It OUt: INSertING Data USING t-SQL

1. ensure that you have a Query editor window open, connected to your ApressFinancial
database, and that you are logged in with an account that has insert permissions on the
ShareDetails.Shares table. this will be any member of the administrator’s or database
owner’s role including FAT-BELLY-Sony\MSmith, who we gave dbo rights to in Chapter 4.

2. right-click against the ShareDetails.Shares table and select script table as ➤ Insert
to ➤ new Query editor Window.

3. this will bring up the following code. sQl server covers itself concerning the use of reserved
words, spaces in names, and so on, by surrounding every object name with square brackets.
It also fully qualifies the table name with the database name and schema owner—in this
case, ShareDetails. Moving to the values, you can see the column name repeated so that
when altering the VALUES section, if the table has a large number of columns, you know
which column you are working with. the final part in the jigsaw is an indication of the data
type and length to aid you as well.

Chapter 10 ■ Data InsertIon, DeletIon, anD transaCtIons—DIsk-BaseD

306

USE [ApressFinancial]
GO
INSERT INTO [ShareDetails].[Shares]
 ([Description]
 ,[StockExchangeTicker]
 ,[CurrentPrice])
 VALUES
 (<Description, varchar(50),>
 ,<StockExchangeTicker, varchar(50),>
 ,<CurrentPrice, numeric(18,5),>)
GO

4. You need to insert a command at the top of this code, just to ensure that Query editor has a
setting to allow double quotes to be used to surround strings. this was covered in Chapter 5
when discussing database options. to cover yourself, though, you can always place the
following code at the start of queries where quotation marks will be used. there is one
hidden downfall that will be covered at the end. notice as well that a GO command is included
at the end of the SET command. this is because you want this command to take place in its
own batch. some commands need their own batch, while others don’t. some that do need
their own batch are transaction-based commands, as you will see later in the book. Insert
these two lines as the first two lines of your code.

SET QUOTED_IDENTIFIER OFF
GO

5. By altering the code within the Query editor pane, you will see that the next section of code
actually inserts the data into the ShareDetails.Shares table. notice that no GO command
is included at the end of this code. It is not necessary because there is only one INSERT
statement and no other statements that need to form part of this same batch. the GO
command is implicit.

SET QUOTED_IDENTIFIER OFF
GO
USE [ApressFinancial]
GO
INSERT INTO [ShareDetails].[Shares]
 ([Description]
 ,[StockExchangeTicker]
 ,[CurrentPrice])
 VALUES
 ("ACME'S HOMEBAKE COOKIES INC",
 'AHCI',
 2.34125)

Chapter 10 ■ Data InsertIon, DeletIon, anD transaCtIons—DIsk-BaseD

307

6. now that all the information has been entered into the Query editor pane, it is time to execute
the code. press F5, or click the execute button on the toolbar. You should then see the
following result, which indicates that there has been one row of data inserted into the table:

 (1 row(s) affected)

after executing the code, the first record of information is placed into the database in the ShareDetails.Shares
table. It is simple and straightforward. all the columns have been listed, and a value has been inserted. Because
the name had a single quotation mark within it, it is simpler to surround the name with double quotation marks.
however, to make sure that this string was not seen as an identifier, you have to switch that option off.

sQl server Management studio has the ability to create template scripts for several t-sQl statements.
templates, which you saw earlier in the book, hold parameter placeholders that require modification to build up
the whole statement. template scripts differ from actual templates, as the information created within Query editor
for these templates is for one statement only. therefore, what you are actually seeing is the template for a
one-line script.

When using the scripting options within Query editor, it is possible to build the script as you have just seen for
inserting a record into the ShareDetails.Shares table and save the t-sQl within a new Query editor pane, to
a file, or even to the clipboard. this would then allow the data to be reinserted instantaneously should the table
be deleted. to an extent, scripting to files or a clipboard is not as useful as scripting to a Query editor pane. By
scripting to files or a clipboard, you would need to move back into these files to make the necessary changes
for data insertion. as you saw, when the script is placed in the Query editor pane, the table and the columns are
listed, but obviously the values need to be altered. this would have to be completed in a file or a clipboard by
reopening these contents and making modifications after the event.

the scripting template does build the whole INSERT statement and lists all the columns as well as—in the
VALUES section of the statement—the name of the column and its data type definition. From there, it is easier to
know what value is expected within the INSERT statement line.

the example mentions that using SET QUOTED_IDENTIFIER OFF does have one hidden downfall: in many cases,
when using t-sQl statements, it is possible to surround reserved words with double quotation marks, rather than
square brackets; however, with the QUOTED_IDENTIFIER set to OFF, you will be able to surround reserved words
only with square brackets. If you had QUOTED_IDENTIFIER set to ON, then you could not have put ACME'S in the
name; the code would have to have been written with two single quotation marks. therefore, the code would
have had to look like the following:

INSERT INTO [ApressFinancial].[ShareDetails].[Shares]
 ([ShareDesc]
 ,[ShareTickerId]
 ,[CurrentPrice])
 VALUES
 ('ACME''S HOMEBAKE COOKIES INC',
 'AHCI',
 2.34125)

I tend to run with SET QUOTED_IDENTIFIER set to OFF. now that you know how to construct an INSERT statement,
it is time to look at how you need not define all the columns within a table.

Chapter 10 ■ Data InsertIon, DeletIon, anD transaCtIons—DIsk-BaseD

308

As you have just seen in your first example, you specified every column in the table within the INSERT statement.
You are now probably wondering whether you have to specify every column every time a record is inserted into a
table. The answer is not necessarily, and it depends on how your table columns are defined. The following sections
look at two methods for inserting rows of data without specifying a value for each column: using default values and
allowing a NULL value.

Default Values
One way to avoid entering a value for each column is to set a column or a set of columns with a default value. You set
up the CustomerDetails.Customers table to have a default value when creating the tables in Chapter 5. Default values
are used when a large number of INSERTs for a column would have the same value entered each time. Why have the
overhead of passing this information, which would be the column name plus the value, through to SQL Server, when
SQL Server can perform the task quickly and simply for you? Network traffic would be reduced and accuracy ensured
as the column information would be completed directly by SQL Server. Do note, though, that a default value is not a
mandatory value that will always be stored in a column. It is just a value that you think is the best value to use in the
event that no other value is supplied. If you do pass a value, then the default value will be overridden, as you would
expect.

Although it has been indicated that default values are best for a large number of INSERTs, it can also be argued
that this need not be the case. Some people feel that all that is required is a significant number of rows to be altered
from a default value setting for the use of default values to be a disadvantage. It does come down to personal
preference as to when you think setting a default value will be of benefit. However, if there are times when you wish
a column to have an initial value when a row is inserted with a specific value, then it is best to use a default value.

In the next section’s example, where you’ll build up your next set of INSERT statements, I will demonstrate how
a default value will populate specific columns. When creating the CustomerDetails.Customers table, you created
a column that is set up to be populated with a default value: the DateOpened column. In this column, you call a SQL
Server reserved function, GETDATE(). This function gets the date and time from the operating system and returns it to
SQL Server. By having this within a column default value, it is then inserted into a record when a row is added.

Using NULL Values
Another way to avoid filling in data for every column is to allow NULL values in the columns. You did this for some
columns when defining the tables. Ensuring that each column’s Allow Nulls option is checked can ensure this is true
for all your columns. If you take a look at Figure 10-1, you’ll see that one of the columns in the ShareDetails.Shares
table, StockExchangeTicker, does allow a NULL value to be entered into the column.

Figure 10-1. NULLs selected on a column

Chapter 10 ■ Data InsertIon, DeletIon, anD transaCtIons—DIsk-BaseD

309

Therefore, the previous example could have placed data only in the Description and CurrentPrice fields if
you had wanted, as ShareId is an IDENTITY column and is auto-filled. If the ShareDetails.Shares record had been
inserted only with those two columns, the statement would have looked like the following T-SQL:

SET QUOTED_IDENTIFIER OFF
GO
INSERT INTO [ApressFinancial].[ShareDetails].[Shares]
 ([Description]
 ,[CurrentPrice])
 VALUES
 ("ACME'S HOMEBAKE COOKIES INC",
 2.34125)

Figure 10-2 shows what the data would have looked like had you used the preceding T-SQL instead of the code in
the previous example.

As you can see in Figure 10-2, the column that had no data entered has a setting of allowing a NULL. A NULL setting
is a special setting for a column. The value of NULL requires special handling within SQL Server or applications that
will be viewing this data. What this value actually means is that the information within the column is unknown; it is
not a numeric or an alphanumeric value. Therefore, because you don’t know if it is numeric or alphanumeric, you
cannot compare the value of a column that has a setting of NULL to the value of any other column, and this includes if
that other also had a NULL value.

Note ■ one major rule involving NULL values: a primary key cannot contain any NULL values.

In the following exercise, you will use SQL Server Management Studio to see the effects of not populating a field
defined as NOT NULL. The exercise also demonstrates how to edit rows of data using SSMS and how there can be
dangers in this approach. You will see what happens to the IDENTITY values when an insertion has a problem and is
not inserted. It is important to see these effects, so you need to see errors being generated.

When using SQL Server Management Studio, it is not always immediately apparent what data are valid in each
column or if a column is NULL or NOT NULL. If you enter invalid data or leave a column empty, when in fact it should
have data (in other words, it isn’t set to accept NULL values), you will receive an error message. An IDENTITY column
is protected.

Editing data within SSMS can be quick and easy but has the potential of some trouble when entering data, as
demonstrated in the next example. SQL Server provides the ability to edit data by displaying an editable grid, not
dissimilar to basic Excel. A new toolbar will be displayed, providing you with the options to let you work with the data.
You will see this in the following exercise and how you can use this toolbar to access the underlying T-SQL that is used
to provide the data for the grid. Once the toolbar is visible, by individually clicking the first four buttons, you can see
your Management Studio display alter to show more and different information. You will be able to toggle the visibility
of a pane diagramming the tables and relationships, the selection criteria, the SQL, and finally the results. This toolbar
comes into its own when working with data, as you are seeing, but also when building views; you will see the toolbar
again in Chapter 11. When you use the grid for working with data, as you will do when developing a system, then you
may find these buttons useful, especially the SQL button.

Figure 10-2. Insert with NULL shown in SQL Server Management Studio

Chapter 10 ■ Data InsertIon, DeletIon, anD transaCtIons—DIsk-BaseD

310

trY It OUt: NULL VaLUeS aND SQL SerVer MaNaGeMeNt StUDIO

1. ensure that sQl server Management studio is running and that you are logged in with an
account that allows the insertion of records. any of your users can do this.

2. expand the ApressFinancial node in object explorer so you can see the CustomerDetails.
Customers table. right-click this table and select edit top 200 rows.

3. In the main pane on the right, you should now see a grid similar to Figure 10-3. this grid
would usually show all the rows of data that are within the table, but as this table contains
no data, the grid is empty and ready for the first record to be entered. notice that a star
appears on the far left-hand side. the star is the record marker and denotes which record the
grid is actually pointing to and working with for insertion. It will change to an arrow shortly.
the arrow denotes which record you are viewing. When the marker changes to a pencil, it
denotes that you are writing data in that row, ready for updating the table—perhaps not so
relevant in this instance, but very useful when several records are displayed.

4. It is a simple process to enter the information into the necessary columns as required. the
first column, CustomerId, is protected, as this is an IDENTITY column. try entering Mr into
the CustomerTitleId column. When you try moving to another cell, you will see something
similar to the message shown in Figure 10-4 that informs you that Title is expecting a
tinyint data type, which is stored as a byte, hence the message showing as it does.

5. Change the value in Title to 1, which is of the correct data type, a tinyint.

Figure 10-4. Invalid data type error message

Figure 10-3. No data held within the table

Chapter 10 ■ Data InsertIon, DeletIon, anD transaCtIons—DIsk-BaseD

311

6. although the data have not been entered, I want to demonstrate what happens when all
of the data that are mandatory have not been filled into the row. press the down arrow to
indicate that you have finished creating this customer and wish to create the next. You will
see a new error message indicating that some columns that have to be populated aren’t, as
shown in Figure 10-5. I wanted to create a row that was full of NULL values, but I can’t. the
error message indicates that CustomerFirstName has not been set up to allow a NULL value,
and you need to put some data in there. You will be notified of only one column at a time, as
the error message does not list out every column. If every column were listed, sQl server
would be exposing some of your table structure, which could be a security risk.

Note ■ You will see that this error message says INSERT fails. this is important to note and will be clarified in step 9.

7. Clicking ok allows you back into the grid where the whole row can be populated with the
correct information. notice that you can miss out placing any data in OtherInitials,
AddressLine2, and AddressLine3, as well as a few other columns, as these columns allow
NULL values.

8. now populate your grid, completing all the required columns (see Figure 10-6), and click the
down arrow. Your grid should resemble Figure 10-6. the red circle with the white exclamation
mark denotes that although the record is in the database, sQl server has not refreshed the
grid. this is important as the CustomerId number has been generated by sQl server and is
therefore not displayed in the grid. so let’s fix this so you can see the value.

Figure 10-5. Trying to insert a row with NULL when NULLs are not allowed

Figure 10-6. The populated grid

Chapter 10 ■ Data InsertIon, DeletIon, anD transaCtIons—DIsk-BaseD

312

9. Figure 10-7 shows the toolbar that is displayed when you edit or display data within ssMs.
If you do not see the menu, then from the ssMs menu, you can select View ➤ toolbars ➤
Query Designer.

 10. let me go through each button with a short description of each one before you progress:

show Details: shows the tables and any relationships.•	

show Criteria: Details the columns used in the sQl to produce the results grid; you can •	
select or deselect columns as required.

show sQl: Displays the underlying sQl that was created to produce the results grid.•	

show results: this is the grid that is displayed when the sQl is executed.•	

Change type: It is possible to change a query from an •	 INSERT to a DELETE or one of
other several options.

execute: runs the underlying sQl.•	

Verify sQl: Checks that the sQl is valid; if you alter the sQl, then click this button prior •	
to executing to ensure that any changes are correct.

add Group By: this is a method to allow you to group results.•	

add table: If you would like your query to deal with more than one table, then you do •	
this via this button.

add new Derived table: It is possible to build a table of data temporarily within a •	
query and use the results from that table within the main query. the table of data that
temporarily exists is a derived table.

11. Click the execute button (red exclamation mark) on the Query Designer toolbar to refresh
the grid. the point to notice is that this is the first record entered and that the CustomerId is
set to 2, as you can see in Figure 10-8. It is not 1 because of the “insert fails” message from
step 5. sQl server has attempted to insert a row, and therefore an IDENTITY value has been
generated and then discarded when the insertion failed. You may also notice how valuable
using defaults as initial values for columns can be. If you scroll to the right, you will see
where the DateOpened column has the date the record was inserted. Where the real benefit
of using default values comes in is in ensuring that specific columns are populated with the
correct default values. as soon as you move off from the new row, the default values are
inserted and ready to be modified. there is now a record of when the record was added, ideal
for auditing. once you are happy, close the editor.

Figure 10-7. The Query Designer toolbar displayed when using the grid

Figure 10-8. Data post refresh showing identity value

Chapter 10 ■ Data InsertIon, DeletIon, anD transaCtIons—DIsk-BaseD

313

Note ■ By having an IDENTITY column, every time a record is entered or an attempt is made to enter a record and
all the data entered are of valid data types—whether this is through sQl server Management studio or an INSERT
statement—the column value within the table will be incremented by the Identity Increment amount that you defined
when the table was created.

now that you have seen how ssMs deals with NULL values and invalid data and how it is possible to modify the
data in a table, the next exercise will demonstrate how the same set of problems works using t-sQl in Query
editor.

trY It OUt: NULL VaLUeS aND t-SQL

1. open up a Query editor window and enter the following code. this code will replicate the first
part of the previous example in which you entered the wrong data type.

USE ApressFinancial
GO
INSERT INTO CustomerDetails.Customers (Title) VALUES ('Mr')

2. now execute this by pressing F5 or clicking the execute button on the toolbar. this code
will generate an error because, once again, this is the wrong data type. (note that this error
message specifies the expected data type tinyint.)

Msg 245, Level 16, State 1, Line 3

Conversion failed when converting the varchar value 'Mr' to data type tinyint.

3. Change the code to replicate your second attempt at entering a row where the data type for
the title is now correct, but you are still missing other values.

USE ApressFinancial
GO
INSERT INTO CustomerDetails.Customers (Title) VALUES (1)

4. now execute this by pressing F5 or clicking the execute button on the toolbar. this code
will generate a different error, informing you this time that you didn’t allow a NULL into the
CustomerFirstName column, and therefore you have to supply a value.

Msg 515, Level 16, State 2, Line 3

Cannot insert the value NULL into column 'FirstName', table

'ApressFinancial.CustomerDetails.Customers'; column does not allow nulls.

INSERT fails.

The statement has been terminated.

Chapter 10 ■ Data InsertIon, DeletIon, anD transaCtIons—DIsk-BaseD

314

5. this final example will work successfully. however, note that the LastName is before that
of the FirstName column. this demonstrates that it is not necessary to name the columns
within the insertion in the same order as they are defined within the table. You can place the
columns in any order you desire.

INSERT INTO CustomerDetails.Customers
(Title,LastName,FirstName,
OtherInitials,AddressLine1,TownOrCity,USState,ZipCode,
AccountType,ClearedBalance,UnclearedBalance)
VALUES (3,'Lomas','Aubrey',NULL,'11c Clerkenwell',
4,8,0,2,437.97,-10.56)

6. execute the code. this time you should see the following results, indicating the record has
been inserted successfully:

 (1 row(s) affected)

7. now let’s go back and view the data to see what has been entered. Find the
CustomerDetails.Customers table in object explorer again. right-click the table and select
select top 1000 rows. the table now has two rows with a gap in what you want the ideal
ascending sequence to be, as you see in Figure 10-9.

Note ■ there is a different gap because, using t-sQl, you have attempted to insert a row. When using ssMs,
it is validating the data first. Depending on the number of attempts you have made, you may have a different gap.

Figure 10-9. Second customer inserted

Chapter 10 ■ Data InsertIon, DeletIon, anD transaCtIons—DIsk-BaseD

315

that is all there is to it. It’s just as simple as using sQl server Management studio, but you did get more
informative error messages. You now have a slight problem in that already there are two gaps in the table, which
may be acceptable and once you go live may be the norm; however, it would be useful at this early stage to have
no gaps. this can be remedied easily within Query editor, which you will do in the next section.

DBCC CHECKIDENT
The DBCC commands can be used for many different operations, from checking the integrity of the database, as you
saw in Chapter 8 when building a database maintenance plan, to working with data and tables, such as working
with IDENTITY columns.

If you find that when testing out IDENTITY columns, you receive a number of errors and the identity number
has jumped up further than you wished, it is possible to reset the seed of the IDENTITY column so that Query Editor
starts again from a known point. The syntax for this command is very simple:

DBCC CHECKIDENT ('table_name'[,{NORESEED |{RESEED[,new_reseed_value]}}])

The following elaborates on the three areas of the syntax that may need explanation:

The name of the table that you wish to reset the identity value for is placed in single quotation •	
marks.

You can then use •	 NORESEED to display what SQL Server believes the current identity value
should be—in other words, what the current maximum identity value is within the IDENTITY
column. Although rare, SQL Server can jump and skip a very large range of values with the
potential of generating a gap. A smaller jump as you have just seen is more common when you
have an issue. It is unusual for this to be a problem for you, but if it is, then don’t use IDENTITY
and generate the value yourself.

The final option is the one you are interested in. You can reseed a table automatically by •	
simply specifying the RESEED option with no value. This will look at the table defined and will
reset the value to the current maximum value within the table. Or, optionally, you can set the
column of the table to a specific value by separating the value and the option RESEED by a comma.

Resetting the seed for an IDENTITY column, though, does have a danger, which you need to be aware of. If you
reset the point to start inserting values for the IDENTITY column prior to the greatest number on the given table, you
will find that there is the potential of an error being produced. To clarify this point, when a value that already exists is
generated from an INSERT after resetting the IDENTITY column value, you will receive an error message informing you
that the value already exists. To give an example, you have a table with the values 1, 2, 5, 6, 7, and 8, and you reset the
IDENTITY value back to 2. You insert the next record, which will correctly get the value 3, and the insertion will work.
This will still work the same with the next insertion, which will receive the value 4. However, come to the next record
and there will be an attempt to insert the value 5, but that value already exists; therefore, an error will be produced.
However, if you had reset the value to 8—the last value successfully entered—then everything would have been okay.

As you do not have the value 1 for the first row in the CustomerDetails.Customers table, it would be nice to
correct this. It also gives a good excuse to demonstrate CHECKIDENT in action. The code that follows will remove the
erroneous record entry and reset the seed of the IDENTITY column back to 0, to a value indicating that no records
have been entered. You will then reenter the customer information via T-SQL. Enter the following code into Query
Editor and execute it. The first line removes the record from CustomerDetails.Customers, and the second line resets
the identity. For now, don’t worry about the record deletion part, as deleting records is covered in detail later in the
chapter in the “Deleting Data” section. When inserting the first customer, Noel Morgala, I have demonstrated how
through the use of the keyword NULL it is possible to place a NULL value into a field via T-SQL. In this example, it is
superfluous as the two columns defined with a value of NULL did not need to be mentioned in the columns listed,
and therefore a value would remain undefined such as the DateClosed column. SQL Server has inserted a NULL value
for DateClosed.

Chapter 10 ■ Data InsertIon, DeletIon, anD transaCtIons—DIsk-BaseD

316

DELETE FROM CustomerDetails.Customers
DBCC CHECKIDENT('CustomerDetails.Customers',RESEED,0)
INSERT INTO CustomerDetails.Customers
(Title,LastName,FirstName,
OtherInitials,AddressLine1,TownOrCity,USState,ZipCode
AccountType,ClearedBalance,UnclearedBalance)
VALUES (1,'Morgala','Noel',NULL,'87 Winnie Way',4,8,112,,0,NULL,NULL)
INSERT INTO CustomerDetails.Customers
(Title,LastName,FirstName,
OtherInitials,AddressLine1,TownOrCity,USState,ZipCode,
AccountType,ClearedBalance,UnclearedBalance)
VALUES (2,'Lomas','Aubrey',NULL,'11c Clerkenwell',2654,0,0,2,437.97,-10.56)

When the code is run, you should see the following information output to the Query Results pane:

(2 row(s) affected)

Checking identity information: current identity value '4', current column value '0'.

DBCC execution completed. If DBCC printed error messages, contact your system administrator.

(1 row(s) affected)

(1 row(s) affected)

Column Constraints
A constraint is essentially a check that SQL Server places on a column to ensure that the data to be entered in the
column meet specific conditions. You first saw a constraint when creating a primary key in Chapter 6. This can keep
out data that are erroneous, and therefore avoid data inconsistencies. Constraints are used to keep database integrity
by ensuring that a column receives data only within certain parameters.

You have already built a non-key-based constraint on the CustomerDetails.Customers table for the default value
for the column DateAdded. If you go to Object Explorer, right-click, select Script Table As ➤ Create To, and put the
output in a new query window, you will see the following line from that output. So a constraint is used for setting a
default value.

ADD CONSTRAINT [DF_Customers_DateOpened]
DEFAULT (getdate()) FOR [DateOpened]

Constraints are used to not only insert default values, but also validate data as well as primary keys. However,
when using constraints within SQL Server, you do have to look at the whole picture, which is the user graphical system
with the SQL Server database in the background. If you are using a constraint for data validation, some people will
argue that perhaps it is better to check the values inserted within the user front-end application rather than in SQL
Server. This has some merit, but what also has to be kept in mind is that you may have several points of entry to your
database. This could be from the user application, a web-based solution, or other applications if you are building
a central database. Many people will say that all validation, no matter what the overall picture is, should always be
placed in one central place, which is the SQL Server database. Then there is only one set of code to alter if anything
changes. It is a difficult choice and one that you need to look at carefully.

You have two ways to add a constraint to a table. You saw the first when creating a default value as you built a
table via SQL Server Management Studio in Chapter 5.

Chapter 10 ■ Data InsertIon, DeletIon, anD transaCtIons—DIsk-BaseD

317

To build a constraint via code, you need to use the ALTER TABLE command, no matter what type of constraint
this is. The ALTER TABLE command can cover many different alterations to a table, but in this instance, the example
concentrates on just adding a constraint. This makes the ALTER TABLE statement easy, as the only real meat
to the clause comes with the ADD CONSTRAINT syntax. The next example will work with the CustomerDetails.
CustomerProducts table, and you will see three different types of constraints added, all of which will affect insertion
of records. It is worth reiterating the adding of a default value constraint again, as this will differ from the DateAdded
column on the CustomerDetails.Customers table. Once the constraints have been added, you will see them all in
action and how errors are generated from erroneous data input.

trY It OUt: aLterING a taBLe FOr a DeFaULt VaLUe IN QUerY eDItOr

although all the examples deal with the CustomerDetails.CustomerProducts table, each constraint being
added to the table will be created one at a time, followed by a discussion of each point.

1. ensure that Query editor is running. In the Query editor pane, enter the following code, which
will add a primary key to the CustomerDetails.CustomerProducts table. this will place the
CustomerFinancialProductId column as the key, which will be clustered.

USE ApressFinancial
GO
ALTER TABLE CustomerDetails.CustomerProducts
ADD CONSTRAINT PK_CustomerProducts
PRIMARY KEY CLUSTERED
(CustomerFinancialProductId) ON [PRIMARY]
GO

2. next you add a CHECK constraint on the AmountToCollect column.

ALTER TABLE CustomerDetails.CustomerProducts
WITH NOCHECK
ADD CONSTRAINT CK_CustProds_AmtCheck
CHECK (AmountToCollect > 0)
GO

3. the CustomerDetails.CustomerProducts table is once again altered, and a new constraint
called CK_CustProds_AmtCheck is added. this constraint will ensure that for all records
inserted into the CustomerDetails.CustomerProducts table from this point on, the amount
to collect must be greater than 0. notice as well that the NOCHECK option is included. this
indicates that any records already inserted will not be checked for this constraint. at this
point of your example, this table is empty, but if there were invalid data and invalid data
existed, then the constraint would ignore those rows and apply the constraint from the point
of implementation onward.

4. For the third constraint, add a DEFAULT value constraint as shown in the following code. this
will insert a value of 0 in the Renewable column if no value is entered specifically into this
column. this signifies that the premium collected is a one-off collection as a 0 indicates a
false.

Chapter 10 ■ Data InsertIon, DeletIon, anD transaCtIons—DIsk-BaseD

318

ALTER TABLE CustomerDetails.CustomerProducts WITH NOCHECK
 ADD CONSTRAINT DF_CustProd_Renewable
 DEFAULT (0)
 FOR Renewable

5. execute the three batches of work by pressing F5 or clicking the execute button on the
toolbar. You should then see the following result:

The command(s) completed successfully.

6. there are two methods to check that the code has worked before adding in any data.

Move to object explorer in Query editor. this isn’t refreshed automatically, so you do •	
need to refresh it. You should then see the three new constraints added—two under
the Constraints node and one under the keys node—as well as a display change in the
Columns node, as shown in Figure 10-10.

another method is to move to sQl server Management studio, find the •	
CustomerDetails.CustomerProducts table, right-click it, and select Design. this
brings you into the table Designer, where you can navigate to the necessary column to
check out the default value—in this case, Renewable. also notice the yellow key against
the CustomerFinancialProductId signifying that this is now a primary key, as shown
in Figure 10-11.

Figure 10-10. CustomerDetails.CustomerProducts table details

Chapter 10 ■ Data InsertIon, DeletIon, anD transaCtIons—DIsk-BaseD

319

7. Move to the table Designer toolbar, and click the Manage Check Constraints button, shown in
Figure 10-12.

Figure 10-11. Default value constraint on column Renewable

Figure 10-12. Table Designer toolbar with Manage Check Constraints button

Chapter 10 ■ Data InsertIon, DeletIon, anD transaCtIons—DIsk-BaseD

320

8. this will display the Check Constraints dialog box, shown in Figure 10-13, where you will
see the AmountToCollect column constraint displayed. You can add a further constraint by
clicking the add button. Do so now.

9. this check will ensure that the LastCollection date is greater than the value entered
in another column. here you want to ensure that the LastCollection date is equal to or
after the LastCollected date. recall that LastCollection defines when you last took the
payment, and LastCollected defines when the last payment should be taken.

10. the expression you want to add, which is the test the constraint is to perform, is not a value
or a system function like GETDATE(), but rather a test between two columns from a table,
albeit the same table you are working with. this is as simple as naming the columns and
the test you wish to perform. also, at the same time, change the name of the constraint to
something meaningful. Your check constraint should look something like what appears in
Figure 10-14.

Figure 10-13. Check Constraints screen with current constraint

Chapter 10 ■ Data InsertIon, DeletIon, anD transaCtIons—DIsk-BaseD

321

11. Click Close. this adds the constraint to the list, although it has not yet been added to the
table. It is not until the table is closed that this will happen, so do that now. Click Yes on the
screen that is displayed, which is asking you if you wish to save.

12. now it’s time to test the constraints to ensure that they work. First of all, you want to check
the AmountToCollect constraint. enter the following code, which will fail, because the
amount to collect is a negative amount:

INSERT INTO CustomerDetails.CustomerProducts
(CustomerFinancialProductId,CustomerId,FinancialProductId,AmountToCollect,
Frequency,LastCollected,LastCollection,Renewable)
VALUES (1,1,1,-100,0,'24 Aug 2014','24 Aug 2017',0)

13. execute the code in Query editor. You will see the following result. Instantly, you can see
that the constraint check (CK_CustProds_AmtCheck) has cut in and the record has not been
inserted.

Msg 547, Level 16, State 0, Line 1

The INSERT statement conflicted with the CHECK constraint

"CK_CustProds_AmtCheck". The conflict occurred in database

"ApressFinancial", table "CustomerDetails.CustomerProducts",

column 'AmountToCollect'.

The statement has been terminated.

Figure 10-14. LastCollection constraint in the Check Constraints dialog box

Chapter 10 ■ Data InsertIon, DeletIon, anD transaCtIons—DIsk-BaseD

322

14. You alter this now to have a positive amount, but change the LastCollection so that you
break the CK_CustProd_LastColl constraint. By removing the Renewable column and value,
you can also check that the default value is entered. enter the following code:

INSERT INTO CustomerDetails.CustomerProducts
(CustomerFinancialProductId,CustomerId,FinancialProductId,AmountToCollect,
Frequency,LastCollected,LastCollection)
VALUES (1,1,1,100,0,'24 Aug 2014','23 Aug 2014')

15. execute the preceding code. You will see the following error message:

Msg 547, Level 16, State 0, Line 1

The INSERT statement conflicted with the CHECK constraint

" CK_CustProdsStillToCollect". The conflict occurred in database

"ApressFinancial", table "CustomerDetails.CustomerProducts".

The statement has been terminated.

adding a constraint occurs through the ALTER TABLE statement as you have just done. however, the ADD
CONSTRAINT command is quite a flexible command and can achieve a number of different goals.

the preceding example uses ADD CONSTRAINT to add a primary key, which can be made up of one or more
columns (none of which can contain a NULL value), and also to insert a validity check and a set of default values.
the only option not covered in the example is the addition of a foreign key, but this is very similar to the addition
of a primary key.

the first constraint added is the primary key, which you saw in Chapter 5. the second constraint definition builds
a column check to ensure that the data entered is valid for INSERT and UPDATE statements.

ADD CONSTRAINT constraint_name CHECK (constraint_check_syntax)

the syntax for a CHECK constraint is a simple true or false test. When adding in a constraint for checking the
data, the information to be inserted is valid (true) or invalid (false) when the test is applied. as you will see, using
mathematical operators to test a column against a single value or a range of values will determine whether the
data can be inserted.

notice in the example that the ADD CONSTRAINT command is preceded with a WITH NOCHECK option on the ALTER
TABLE statement. as mentioned in step 2 of the exercise, this informs sQl server that any existing data in the
table will not be validated when it adds the table alteration with the constraint, and that only data modified or
inserted after the addition of the constraint will be checked. If you do wish the existing rows to be checked, then
you would use the WITH CHECK option. the advantage of this is that the existing data are validated against that
constraint, and if the constraint was added to the table successfully, then you know your data are valid. If any
error was generated, then you know that there were erroneous data and that you need to fix that data before
being able to add the constraint. this is just another method of ensuring that your data are valid.

Chapter 10 ■ Data InsertIon, DeletIon, anD transaCtIons—DIsk-BaseD

323

Finally, for adding a default value, the ADD CONSTRAINT syntax is very simple.

ADD CONSTRAINT constraint_name
DEFAULT default_value
FOR column_to_receive_the_value

the only part of the preceding syntax that requires further explanation is the default_value area. default_
value can be a string, a numeric, NULL, or a system function (for example, GETDATE(), which would insert the
current date and time). so the default value does not have to be fixed; it can be dynamic.

Inserting Several Records at Once
It is now necessary to enter a few more customers so that a reasonable amount of data is contained within the
CustomerDetails.Customers table to work with later in the book. You need to do the same with several other tables
as well, such as TransactionDetails.TransactionTypes, CustomerDetails.CustomerTransactions, and so on. This
section will prove that no extra or specialized processing is required when inserting several records. When working
with data, there may be many times that several records of data are inserted at the same time. This could be when
initially populating a table or when testing. In this sort of situation, where you are repopulating a table, it is possible to
save your query to a text file, which can then be reopened in Query Editor and executed without having to reenter the
code. This is demonstrated at the end of the upcoming example.

In the next example, you will learn how to insert several rows. The work will be completed in batches. There is
no transaction processing surrounding these INSERTs, and therefore each insertion will be treated as a single unit of
work, which either completes or fails.

Note ■ a transaction allows a number of INSERTs or modifications to be treated as one unit, and if any insertion fails
within the transaction, all the units will be returned to their original value and no insertions will take place. transactions
will be discussed in more detail in the upcoming “transactions” section.

trY It OUt: INSert SeVeraL reCOrDS at ONCe

1. ensure that sQl server Query editor is up and running. In the Query editor window, enter the
following code. In this example, several customers will be added through only one INSERT
statement.

INSERT INTO CustomerDetails.Customers
(Title,FirstName,OtherInitials,
LastName,AddressLine1,AddressLine2,TownOrCity,USState,ZipCode,
ClearedBalance,UnclearedBalance)
VALUES (1,'Bernie','I','McGee','35 Baldrick Ave','West Hampstead',
18651,0,0,6653.11,0.00),
(3,'Jane','L','Harper','122 West Drive','Tuala',
185111,14,111,53.11,27.50),
(12,'Mark',NULL,'Vernon-Smith','4155b Fredericks Street','London',
157,0,97,-751,900.00)

Chapter 10 ■ Data InsertIon, DeletIon, anD transaCtIons—DIsk-BaseD

324

2. now just execute the code in the usual way, pressing F5 or clicking the execute button. You
will see the following output in the results pane. this indicates that three rows of information
have been inserted into the database, one at a time.

(3 row(s) affected)

Inserting data using named-value pairs of the column in the table with a corresponding value in the VALUES
expression is straightforward and the simplest method of data insertion. excluding columns where a value is
not mandatory has benefits of reducing the columns required but also creating the ability to insert a NULL value,
which denotes a special condition that is useful when interrogating the data at a later stage. You will use the
methods shown in this section of the book on many occasions, but also take time to see the section on “Inserting
Data” section later on where you will see how to use data in one or more tables to insert into the required table.

It is also possible to attempt to insert data and, if there is a problem, for the insertion not to occur and the attempt
to be rolled back. this can be achieved via a transaction.

Transactions
A transaction is a method through which developers can define a unit of work logically or physically that, when it
completes, leaves the database in a consistent state. A transaction forms a single unit of work, which must pass the
ACID test before it can be classified as a transaction. The ACID test is an acronym for atomicity, consistency, isolation,
and durability:

•	 Atomicity: In its simplest form, all data modifications within the transaction must be both
accepted and inserted successfully into the database, or none of the modifications will be
performed.

•	 Consistency: Once the data has been successfully applied, or rolled back to the original state,
all the data must remain in a consistent state, and the data must still maintain its integrity.

•	 Isolation: Any modification in one transaction must be isolated from any modifications in any
other transaction. Any transaction should see data from any other transaction either in its
original state or once the second transaction has completed. It is impossible to see the data in
an intermediate state.

•	 Durability: Once a transaction has finished, all data modifications are in place and can
be modified only by another transaction or unit of work. Any system failure (hardware or
software) will not remove any changes applied.

Transactions within a database are a very important topic, but also one that requires a great deal of
understanding. This chapter covers the basics of transactions only. To really do justice to this area, you would have
to deal with some very complex and in-depth scenarios, covering all manner of areas such as triggers, nesting
transactions, and transaction logging, which are beyond the scope of this book. However, you will see more on
transactions in Chapter 12.

Chapter 10 ■ Data InsertIon, DeletIon, anD transaCtIons—DIsk-BaseD

325

Transaction Basics
A transaction can be placed around any data manipulation, whether it is an update, insertion, or deletion, and
can cater to one row or many rows, and also many different commands. A transaction is required only when data
manipulation occurs such that changes will be either committed to the table or discarded. A transaction could cover
several UPDATE, DELETE, or INSERT commands, or indeed a mixture of all three. However, there is one very large
warning that goes with using transactions (see the “Caution” note).

Caution ■ Be aware that when creating a transaction, you will be keeping a hold on the whole table, pages of data,
or specific rows of information in question. Depending on how your sQl server database solution is set up to lock data
during updates, you could be stopping others from updating any information, and you could even cause a deadlock, also
known as a deadly embrace. If a deadlock occurs, sQl server will choose one of the deadlocks and kill the process; there
is no way of knowing which process sQl server will select. keep your transactions short and, when dealing with multiple
tables within a transaction, keep the same order of table access as you would find in other transactions.

A deadlock is where two separate data manipulations, in different transactions, are being performed at the same
time. However, each transaction is waiting for the other to finish the update before it can complete its update. Neither
manipulation can be completed because each is waiting for the other to finish. Then a deadlock occurs, and it can
(and will) lock the tables and database in question. So, for example, transaction 1 is updating the customers table
followed by the customer transactions table. Transaction 2 is updating the customer transactions table followed by the
customers table. A lock would be placed on the customers table while those updates were being done by transaction 1.
A lock would be placed on the customer transactions table by transaction 2. Transaction 1 could not proceed because
of the lock by transaction 2, and transaction 2 could not proceed due to the lock created by transaction 1. Both
transactions are “stuck.” So it is crucial to keep the order of table updates the same, especially where both could be
running at the same time.

It is also advisable to keep transactions as small and as short as possible and, under no circumstances, hold onto
a lock for more than a few seconds. You can do this by keeping the processing within a transaction to as few lines of
code as possible, and then either roll back (that is, cancel) or commit the transaction to the database as quickly as
possible within code. With every second that you hold a lock through a transaction, you are increasing the potential
of trouble happening. In a production environment, with every passing millisecond that you hold onto a piece of
information through a lock, you are increasing the chances of someone else trying to modify the same piece of
information at the same time and the possibility of the problems that would then arise.

There are two parts that make up a transaction: the start of the transaction and the end of the transaction, where
you decide if you want to commit the changes or revert to the original state. You will now look at the definition of the
start of the transaction, and then the T-SQL commands required to commit or roll back the transaction. The basis of
this section is that only one transaction is in place and that you have no nested transactions. Nested transactions are
much more complex and should be dealt with only once you are proficient with SQL Server. The statements you are
going through in the upcoming text assume a single transaction; the COMMIT TRAN section changes slightly when
the transaction is nested.

Transaction Commands
A transaction, as I just mentioned, has two parts: the command that denotes the start of the transaction and the
command that denotes the end. The end can be to commit the data or to roll back the changes, just as I have
discussed. Let’s take a quick look at these commands.

Chapter 10 ■ Data InsertIon, DeletIon, anD transaCtIons—DIsk-BaseD

326

BEGIN TRAN
The T-SQL command, BEGIN TRAN, denotes the start of the transaction processing. From this point on, until the
transaction is ended with either COMMIT TRAN or ROLLBACK TRAN, any data modification statements will form part of
the transaction.

It is also possible to suffix the BEGIN TRAN command with a name of up to 32 characters in length. If you name
your transaction, it is not necessary to use the name when issuing a ROLLBACK TRAN or a COMMIT TRAN command. The
name is there for clarity of the code only.

COMMIT TRAN
The COMMIT TRAN command commits the data modifications to the database permanently, and there is no going back
once this command is executed. This function should be executed only when all changes to the database are ready to
be committed.

ROLLBACK TRAN
If you wish to remove all the database changes that have been completed since the beginning of the transaction—say,
for example, because an error had occurred—then you could issue a ROLLBACK TRAN command.

So, if you were to start a transaction with BEGIN TRAN and then issue an INSERT that succeeds, and then perhaps
an UPDATE that fails, you could issue a ROLLBACK TRAN to roll back the transaction as a whole. As a result, you roll
back not only the UPDATE changes, but also, because they form part of the same transaction, the changes made by the
INSERT, even though that particular operation was successful.

To reiterate, keep transactions small and short. Never leave a session with an open transaction by having a BEGIN
TRAN with no COMMIT TRAN or ROLLBACK TRAN. Ensure that you do not cause a deadly embrace.

If you issue a BEGIN TRAN, then you must issue a COMMIT TRAN or ROLLBACK TRAN transaction as quickly as
possible; otherwise, the transaction will stay around until the connection is terminated.

Locking Data
The whole area of locking data—how locks are held and how to avoid problems with them—is a very large, complex
area and not for the fainthearted. However, it is necessary to be aware of locks and at least have a small amount of
background knowledge about them so that when you design your queries, you stand a chance of avoiding problems.

The basis of locking is to allow one transaction to update data, knowing that if it has to roll back any changes, no
other transaction has modified the data since the first transaction did.

To explain this with an example, let’s say you have a transaction that updates the CustomerDetails.Customers
table and then moves on to update the TransactionDetails.Transactions table, but hits a problem when updating
the latter. The transaction must be safe in the knowledge that it is rolling back only the changes it made and not
changes made by another transaction. Therefore, until all the table updates within the transaction are either
successfully completed or have been rolled back, the transaction will keep hold of any data inserted, modified,
or deleted.

However, one problem with this approach is that SQL Server may not just hold the data that the transaction
has modified. Keeping a lock on the data that has just been modified is called row-level locking. On the other hand,
SQL Server may be set up to lock the database, which is known as database-level locking, found in areas such as
backups and restores. The other levels in between are row, page, and table locking, so you could lock a large resource,
depending on the task being performed.

This is about as deep as I will take this discussion on locks so as not to add any confusion or create a problematic
situation. SQL Server handles locks automatically, but it is possible to make locking more efficient by developing an
effective understanding of the subject and then customizing the locks within your transactions.

Chapter 10 ■ Data InsertIon, DeletIon, anD transaCtIons—DIsk-BaseD

327

Deleting Data
Deleting data can be considered very straightforward. As you read this next section, you will see how easy it can be.
However, mistakes made when deleting data are very hard to recover from. Therefore, you must treat deleting data
with the greatest of care and attention to detail, and especially test any joins and filtering via a SELECT statement
before running the delete operation.

Deleting data without the use of a transaction is almost a final act: the only way to get the data back is to reenter
it, restore it from a backup, or retrieve the data from any audit tables that had the data stored in them when the
data was created. Deleting data is not like using the recycle bin on a Windows machine: unless the data are within a
transaction, they are lost. Keep in mind that even if you use a transaction, the data will be lost once the transaction is
committed. That’s why it’s very important to back up your database before running any major data modifications or
have audit tables that record the actions and data on the overlying table.

This section of the chapter will demonstrate the DELETE T-SQL syntax and then show how to use this within Query
Editor. It is also possible to delete records from the results pane within SQL Server Management Studio, which will
also be demonstrated.

However, what about when you want to remove all the records within a table, especially when there could be
thousands of records to remove? You will find that the DELETE statement takes a very long time to run, as each row
to delete is logged in the transaction log, thus allowing transactions to be rolled back. Luckily, there is a command
for this scenario, called TRUNCATE, which is covered in the section “Truncating a Table” later in the chapter. However,
caution should be exercised when using this command, and you’ll see why later.

First of all, it is necessary to learn the simple syntax for the DELETE statement for deleting records from a table.
Really, things don’t come much simpler than this.

DELETE Syntax
The DELETE statement is very short and sweet. To run the command, simply state the table you wish to delete records
from, as shown here:

DELETE
[FROM] tablename
WHERE where_condition

The FROM condition is optional, so your syntax could easily read as follows:

DELETE tablename
WHERE where_condition

The only area that really needs to be mentioned is that records can be deleted from only one table at a time,
although when looking for rows to delete, you can join to several tables, as you can with SELECT and UPDATE and will
see demonstrated in Chapter 12. If you are joining to other tables, then you do need to name the table you are deleting
from. I realize that we have not yet covered how to join two tables, but, for reference, the syntax when you are deleting
from one table but using at least one other table to join as part of the filtering would be as follows:

DELETE
[FROM] tablename
JOIN tablename2 ON (join condition would be placed here)
... (for further joins if required)
[WHERE where_condition]

The WHERE clause can become optional as the filtering could be done by joining two tables. You will see why this
can work in Chapter 12.

Chapter 10 ■ Data InsertIon, DeletIon, anD transaCtIons—DIsk-BaseD

328

Before Demonstrating the DELETE Statement
At the moment, there is very little data in your database and to demonstrate deleting data in the following section
could mean that you have no data left for the remainder of the book. This is a minor inconvenience as it would be
possible to reinsert the data that has already been generated after you have completed the data selection. However,
deleting the data that currently exist is not ideal. Having a much larger set of data would be much better. Finally,
having a larger set of data will be useful for the remainder of the book.

One method to insert data is to write INSERT statements one row at a time. You can also use SQL Server
Management Studio in both methods demonstrated earlier. However, an easier method is to use a tool to generate
data. I use a tool from a company called Red Gate, which has a random data generator called SQL Data Generator,
which is one of many useful database tools by Red Gate (www.red-gate.com). By using this tool, I have generated SQL
statements for the tables within ApressFinancial, and this script can be found along with the other code from the
book at www.apress.com. The code will also be available from my web site, www.fat-belly.com. Please run in this
code before proceeding further in the book. The SQL will be marked as “BulkInsert” for Chapter 10.

Using the DELETE Statement
Imagine that you’re at the ATM and you are transferring money from your savings account to your checking account.
During that process, a transaction built up of many actions is used to make sure that your money doesn’t credit one
system and debit the other. If an error occurs, the entire transaction will roll back, and no money will move between
the accounts.

Let’s take a look at what happens if you were to run this statement:

BEGIN TRAN
 DELETE CustomerDetails.Customers

When this code runs, SQL Server opens a transaction and then tentatively deletes all the records from the
CustomerDetails.Customers table. The records are not actually deleted until a COMMIT TRAN statement is issued. In
the interim, though, SQL Server will place a lock on the rows of the table, or if this was a much larger table, SQL Server
may decide that a table lock (locking the whole table to prevent other modifications) is better. Because of this lock, all
users trying to modify data from this table will have to wait until a COMMIT TRAN or ROLLBACK TRAN statement has been
issued and completed. If one is never issued, users will be blocked until SQL Server decides to give up and chooses
one of the processes as the “deadlock victim,” kills their data modification attempt, and rolls back their transaction.
This problem is one of a number of issues frequently encountered in applications when analyzing performance issues.
Therefore, never have a BEGIN TRAN without a COMMIT TRAN or ROLLBACK TRAN.

So, time to start deleting records while using a transaction. In the following exercise, it is a series of three short
steps, in which you will see how to delete records with a rollback, when leaving the transaction incomplete and open,
and finally a deadlock scenario.

http://www.red-gate.com/
http://www.apress.com/
http://www.fat-belly.com/

Chapter 10 ■ Data InsertIon, DeletIon, anD transaCtIons—DIsk-BaseD

329

trY It OUt: DeLetING reCOrDS

1. enter the following commands in an empty Query editor pane. they remove all the records
from your table within a transaction, prove the point by trying to list the rows, and then roll
back the changes so that the records are put back into the table. the SELECT is retrieving
data, and the COUNT(*) is just counting the rows.

BEGIN TRAN
 SELECT COUNT(*) FROM TransactionDetails.Transactions
 DELETE TransactionDetails.Transactions
 SELECT COUNT(*) FROM TransactionDetails.Transactions
ROLLBACK TRAN
SELECT COUNT(*) FROM TransactionDetails.Transactions

2. execute the code. You should see the results displayed in Figure 10-15. notice that the
number of records in the TransactionDetails.Transactions table before the delete is
1,000, and then after the delete the record count is tentatively set to zero. Finally, after the
rollback, it’s set back to 1,000.

You will see more on the DELETE statement in Chapter 12 when the WHERE clause is introduced to filter results.

It is useful to demonstrate transactions further by looking at an “open transaction” where you have started a
transaction but neither committed nor rolled back the transaction. this can be achieved by using two Query
editors within sQl server Management studio, by keeping a transaction open by not committing or rolling back
in one Query editor and retrieving data in the second Query editor. From the previous example, you saw that there
are 1,000 transactions in the TransactionDetails.Transactions table, as shown in Figure 10-15.

Figure 10-15. Deletion of all rows that were then rolled back

Chapter 10 ■ Data InsertIon, DeletIon, anD transaCtIons—DIsk-BaseD

330

3. In one query window, enter and execute the following code. this will start a transaction, show
the number of records in the table, and then delete the rows. You will see the number of rows
for each action in Figure 10-16.

BEGIN TRAN
 SELECT COUNT(*) FROM TransactionDetails.Transactions
 DELETE TransactionDetails.Transactions

4. now open up a second query pane, enter the following code, and then execute it:

USE ApressFinancial
go
SELECT COUNT(*) FROM TransactionDetails.Transactions

5. You will not see a record count displayed immediately. In fact, you will not see a record
count of the TransactionDetails.Transactions table for quite some time. the query will
continue to run as shown in Figure 10-17 until you close the transaction in the first Query
editor. In a production environment, by keeping an open transaction, you can prevent any
other t-sQl code from executing while the transaction is open. this is because in the first
query pane you have an open transaction that is keeping a lock on the table until you decide
whether to roll back the transaction or to commit the transaction. keep the transaction open
and the second query running for the moment.

6. When a database stops responding to queries such as the scenario you currently have, there
are tools available that can help track and monitor problems. as a developer, the quickest
method is to run a system-stored procedure (a stored procedure is simply a program stored
in sQl server) called sp_who. sp_who lists the current connections to the database and what
each connection is performing. It can also display where there is a block in progress. If you
open a third query pane, type sp_who, and execute it, you will see something similar to
Figure 10-18.

Figure 10-16. Deleting the rows but the transaction is still open

Figure 10-17. Transaction still running due to lock

Chapter 10 ■ Data InsertIon, DeletIon, anD transaCtIons—DIsk-BaseD

331

7. line 36 denotes the open transaction query pane. there are two SELECT statements
running against ApressFinancial by connection FAT-BELLY-SONY\RobinDewson in my
Management studio, and they are the two rows 39 and 40. row 40 showing as runnable is
from the execution of sp_who. row 39 showing as “suspended” will be the code in the open
transaction. the second SELECT in row 39 cannot complete until the first query has completed;
therefore, row 39 is blocked until that time. notice the seventh column (the blk column) of row
39 in Figure 10-18. this is the numerical process ID, known as the spID, of the process that is
stopping spID 52 (line 36) from completing. the name blk is short for block.

Note ■ In the scenario just discussed, the second column is the process spID, and it is the process spID that
you would need to know if you get to the position of needing to “kill” a process.

8. return to the first query pane and roll back the transaction using the following command.
execute only the following command, not the whole text in that query; you have to execute
the code in the same Query editor that you ran the BEGIN TRAN. You will then see that the
command completed successfully in the first query pane, and a record count of 1,000 is
shown in the second query pane. If you look at Figure 10-19, you will see how I have placed
the code in Query editor and highlighted the rollback tran code only, which I can then
execute.

rollback tran

Figure 10-19. rollback tran highlighted to execute the code only with result of execution

Figure 10-18. A list of processes including the “suspended” AWAITING COMMAND

Chapter 10 ■ Data InsertIon, DeletIon, anD transaCtIons—DIsk-BaseD

332

Tip ■ If you highlight code such as Figure 10-19, you are indicating the only section of code you want to run. sQl
server will not run un-highlighted code. Do take care as you can highlight too much code and you won’t get the results
expected; however, it is very useful.

this third section will show a deadlock. to demonstrate a deadlock is not as easy as a real-life running example.
a deadlock in a section of code can happen once and then not happen again for a number of attempts. It can
occur every time, but the majority of incidences will be down to timing of code execution. however, the following
steps will show a deadlock and how sQl server can deal with a deadlock. You will need two query panes again.

9. In the first query pane, enter and execute the following code:

BEGIN TRAN
 SELECT COUNT(*) FROM TransactionDetails.Transactions
 DELETE ShareDetails.SharePrices

10. In the second query pane, enter and execute the following code. the first statement is setting
a lock timeout of three seconds. this means that sQl server will wait on a deadlock within
this connection for three seconds. If the deadlock is not resolved in that time, then sQl
server will terminate this transaction.

SET LOCK_TIMEOUT 3000
BEGIN TRAN
 DELETE TransactionDetails.Transactions
 DELETE ShareDetails.SharePrices
rollback tran

11. three seconds is a very short period of time and much shorter than you would see in a
production environment. the amount of time to set in a production environment could vary.
If you move to the code within the transaction, the deletion of the TransactionDetails.
Transactions table can proceed as there will be no lock on that table from the first query;
however, when sQl server tries to delete the rows from ShareDetails.SharePrices, it
cannot proceed as the first transaction has a lock. sQl server will wait three seconds and
then kill the transaction of the code in the second query pane.

12. When the transaction is killed, sQl server produces an error message along with any
information messages. the information message shows that it did delete the rows from the
TransactionDetails.Transactions table, as you will see the informational message that
1,000 rows had been affected. You will then see the details concerning the lock timeout and
that the code had been terminated. the transaction will be rolled back.

(1000 row(s) affected)

Msg 1222, Level 16, State 51, Line 4

Lock request time out period exceeded.

The statement has been terminated.

Chapter 10 ■ Data InsertIon, DeletIon, anD transaCtIons—DIsk-BaseD

333

13. rollback the transaction in the first query pane.

rollback tran

although you have touched only on deleting rows from tables, you have seen how incorrect coding where a
transaction is left open can cause an application to look as if it has stopped responding.

Truncating a Table
All delete actions caused by DELETE statements are recorded in the transaction log. Each time a record is deleted, a
record is made of that fact. If you are deleting millions of records before committing your transaction, your transaction
log can grow quickly. Recall from earlier in the chapter the discussions about transactions; now think about this a bit
more. What if the table you are deleting from has thousands of records? That is a great deal of logging going on within
the transaction log. But what if the deletion of these thousands of records is, in fact, cleaning out all the data from the
table to start afresh? Or perhaps this is some sort of transient table? Performing a DELETE would seem to have a lot
of overhead when you don’t really need to keep a log of the data deletions anyway. If the action failed for whatever
reason, you would simply retry removing the records a second time. This is where the TRUNCATE TABLE command
comes into its own.

By issuing a TRUNCATE TABLE statement, you are instructing SQL Server to delete every record within a table,
without any logging or transaction processing taking place. In reality, minimal data are logged about what data pages
have been deallocated and therefore removed from the database. This is in contrast to a DELETE statement, which will
deallocate and remove the pages from the table only if it can get sufficient locks on the table to do this. The deletion
of the records with TRUNCATE TABLE can be almost instantaneous and a great deal faster than using the DELETE
command. This occurs not only because of the differences with what happens with the transaction log, but also
because of how the data are locked at the time of deletion. Let’s clarify this point before progressing.

When a DELETE statement is issued, SQL Server will lock each row that is to be deleted so that no modifications or
other DELETE statements can attempt to work with that row. Deleting hundreds or thousands of rows is a large number
of actions for SQL Server to perform, and it will take time to locate each row and place a lock against it. However, a
TRUNCATE TABLE statement locks the whole table. This is one action that will prevent any data insertion, modification,
or deletion from taking place.

Note ■ a TRUNCATE TABLE statement will delete data from a table with millions of records in only a few seconds,
whereas using DELETE to remove all the records on the same table would take several minutes.

The syntax for truncating a table is simple:

TRUNCATE TABLE [{database.schema_name.}]table

Caution ■ Use the TRUNCATE TABLE statement with extreme caution. there is no going back after the transaction is
committed outside of a transaction; you cannot change your mind. also, every record is removed: you cannot use this
command to selectively remove some of the records. If you are within a transaction, you can still use the ROLLBACK command.

Chapter 10 ■ Data InsertIon, DeletIon, anD transaCtIons—DIsk-BaseD

334

One “side effect” to the TRUNCATE TABLE clause is that it reseeds any identity columns. For example, say that you
have a table with an identity column that is currently at 2,000,000. After truncating the table, the first inserted piece
of data will produce the value 1 (if the seed is set to 0). If you issue a DELETE command to delete the records from the
table, the first piece of data inserted after the table contents have been deleted will produce a value of 2,000,001, even
though this newly inserted piece of data may be the only record in the table!

One of the limitations with the TRUNCATE TABLE command is that you cannot issue it against tables that have
foreign keys referencing them. For example, the Customers table has a foreign key referencing the Transactions table.
If you try to issue the following command, you will receive the following error message:

TRUNCATE TABLE CustomerDetails.Customers

Msg 4712, Level 16, State 1, Line 1

Cannot truncate table 'CustomerDetails.Customers' because it is being referenced

by a FOREIGN KEY constraint.

Dropping a Table
Another way to quickly delete the data in a table is to just delete the table and re-create it. Don’t forget that if you do
this, you will need to also re-create any constraints, indexes, and foreign keys; therefore you don’t tend to drop main
tables but ancillary tables and even temporary tables. When you drop a table, SQL Server will deallocate the table,
which is minimally logged. To drop a table in SQL Server, issue the following command:

DROP TABLE table_name

As with TRUNCATE TABLE, DROP TABLE cannot be issued against a table that has a foreign key referencing it. In this
situation, either the foreign key constraint referencing the table or the referencing table itself must first be dropped
before it is possible to drop the original table.

Summary
This chapter has demonstrated how to add and remove data by looking at the INSERT and DELETE statements.

There are different ways the INSERT statement can be executed. An INSERT can be flexible in the data you need to
insert into a table, such as the order of columns, when there are default values, and even inserting multiple rows. How
tables are defined can aid insertions through the use of NULLs and constraints, so table design does form part of data
manipulation.

The use of transactions for inserting and deleting data should be part of a large proportion of your coding so
that you ensure consistency of your data. A transaction is not always required, but when one is used, ensure that you
process your data against the tables in the same order to avoid deadlocks.

How to delete all the rows within a table using the DELETE statement was demonstrated.Finally, the removal of
every record within a table was also shown, along with dire warnings if you get it wrong. Really, use the TRUNCATE
TABLE command only in development or with the utmost, extreme care within production.

335

Chapter 11

Selecting and Updating Data
from Disk-Based Tables

In this chapter, you will see details on how to retrieve data correctly and professionally in a production environment,
and this chapter will lay the foundation for the more advanced T-SQL found in the forthcoming chapters. This chapter
also sets the stage for selecting and updating data in in-memory tables. There are a great many similarities between
disk-based and in-memory tables. You’ll learn more about in-memory tables in Chapter 13.

Up until now, you have witnessed a “lazy” method in that you have returned data from every column and every
row in whatever tables you have been querying. This chapter will detail why that is not ideal, and it will demonstrate
the correct methods. You will also see how to change column headings so that they provide more meaningful names
for non-IT people. Then you will see how to reduce the data brought back by filtering for only the rows you want. The
final sections in this chapter on retrieving data will introduce you to how to use some basic string functions, how to
order the data, and how to find data when you are not quite sure of all the information.

It is also possible to create a table by selecting data from another table. You’ll learn how to do that as well.
Creating one table from another is ideal if you need to keep a temporary copy of certain data.

As I have mentioned many times throughout this book, securing your data is just as crucial, if not more so, as the
design and creation of your database. You will see how to tighten up security so that a user can select data from only
one specific table.

You will then move on to updating and deleting your data. You will see how transactions are involved in each of
these processes, and you’ll learn how to delete an entire table of data quickly, without using the traditional DELETE
statement.

To summarize, in this chapter, you will see the following:

How to retrieve data•	

How to specify and limit the data returned•	

How to retrieve the data in a specific order•	

How to create a new table•	

How to update the data•	

How to update only specific data•	

A bit more on transactions with updates•	

How to update data with more than one table involved in the search•	

Chapter 11 ■ SeleCting and Updating data from diSk-BaSed taBleS

336

Retrieving Data
Although you have seen how to retrieve data a few times prior to this section, those examples have been at a basic
level and contained limited details. In this first part of the chapter, I will detail good practice as well as different and
more professional methods of retrieving and displaying data from your database. Many ways of achieving this are
available, from using SQL Server Management Studio to using T-SQL statements, and as you would expect, they will
all be covered here.

The aim of retrieving data is to get the data back from SQL Server using the fastest retrieval manner possible.
You can retrieve data from one or more tables through joining tables together within the query syntax; all of these
methods will be demonstrated.

The simplest method of retrieving data is using SQL Server Management Studio, and you will look at this method
first. With this method, you don’t need to know any query syntax: it is all done for you. However, this leaves you with a
limited scope for further work.

You can alter the query built up within SQL Server Management Studio to cater to work that is more complex,
but you would then need to know the SELECT T-SQL syntax; again, this will be explained and demonstrated. This can
become very powerful very quickly, especially when it comes to selecting specific rows to return.

The results of the data can also be displayed and even stored in different media, such as a file. It is possible to
store results from a query and send these to a set of users, if so desired.

Initially, the data returned will be in the arbitrary order stored within SQL Server. This is not always suitable, so
another aim of this chapter is to demonstrate how to return data in the order that you desire. Ordering the data is an
important part of retrieving meaningful results, and this alone can aid the understanding of query results from raw
data.

Starting with the simplest of methods, let’s look at SQL Server Management Studio and how easy it is to retrieve
rows. I partially covered this earlier in Chapter 10 when inserting rows and when looking at transactions when
deleting rows.

Using SQL Server Management Studio to Retrieve Data
The first area that we’ll go over is the simplest form of data retrieval, but it is also the most limited. Retrieving data
using SQL Server Management Studio is a very straightforward process, as no knowledge of SQL is required in
the initial stages. You saw this for the first time in Chapter 10. Regardless of whether you want to return all rows or
just specific rows, using SQL Server Management Studio makes this whole task very easy. This first example will
demonstrate how flexible SQL Server Management Studio is in retrieving all the data from the CustomerDetails.
Customers table. I will be using the data generated from Red Gate’s SQL Data Generator that was used in Chapter 10.
You can download the INSERTs from www.apress.com or from www.fat-belly.com.

trY It OUt: retrIeVING Data WIthIN SQL SerVer MaNaGeMeNt StUDIO

1. ensure that SQl Server management Studio is running. navigate to the ApressFinancial
database and click the tables node to expand and list the tables within your database. find
the CustomerDetails.Customers table, right-click it to bring up the pop-up menu, and
select Select top 1000 rows. the value of 1,000 is arbitrary and is set in the options menu.
this instantly opens up a new Query editor window pane like the one shown in figure 11-1,
which shows all the rows that are in the CustomerDetails.Customers table. But how did
SQl Server get this data? let’s find out (the secret may already be there, depending on the
options set for SQl Server).

http://www.apress.com/
http://www.fat-belly.com/

Chapter 11 ■ SeleCting and Updating data from diSk-BaSed taBleS

337

2. above the results, you will see the SELECT t-SQl statement used to return the data. the
SELECT statement is returning the top 1,000 rows and then defining the columns to display.

3. You can alter the number next to the top clause if you want to return a smaller or a greater
number of rows, and then re-execute the query. for this first time, alter this number to 3, and
you should see something similar to figure 11-2. this will return a maximum of three rows.

Figure 11-1. CustomerDetails.Customers table retrieving data

Figure 11-2. Three rows are returned

Chapter 11 ■ SeleCting and Updating data from diSk-BaSed taBleS

338

if you entered a value of 100 and you had only 20 rows in your table, you would get only 20 rows returned.
You would perhaps use this when you didn’t know the number of rows within a table, but were interested only
in a maximum number of 100 even if there were more. this would be when you wanted to look at just a small
selection of content in columns within a table.

Now that you know how to return data from SQL Server Management Studio, let’s look in more detail at using
T-SQL, as well as at the T-SQL statement you will probably use most often: SELECT.

Using the SELECT Statement to Retrieve Data
If you wish to retrieve data for viewing from SQL Server using T-SQL statements, then the SELECT statement is the
statement you need to use. This is quite a powerful statement, as it can retrieve data in any order, from any number
of columns, and from any table that you have the authority to retrieve data from. It can also perform calculations on
that data during data retrieval and can even include data from other tables! If the user does not have the authority
to retrieve data from a table, then the user will receive an error message informing them that permission is denied.
SELECT has a lot more power than even the functions mentioned so far, but for the moment, let’s concentrate on the
fundamentals.

The SELECT Statement
Let’s take some time to inspect the simple syntax for a SELECT statement. Square brackets indicate that the phrases are
optional, and curly brackets show that at least one of the items must be selected, but there are choices available.

SELECT [ALL | DISTINCT]
[TOP expression [PERCENT] [WITH TIES]]
 {
 *
 | { table_name | view_name | alias_name }.*
 | { column_name | [] expression | $IDENTITY | $ROWGUID }
 [[AS] column_alias]
 | column_alias = expression
 } [,...n]
[FROM table_name | view_name alias_name]
[WHERE filter_condition]
[ORDER BY ordering_criteria]

The following list breaks down the SELECT syntax, explaining each option. More explanation will be given
throughout the chapter as well.

•	 SELECT: Required; this informs SQL Server that a SELECT instruction is being performed. In
other words, you want to return just a set of columns and rows to view.

•	 ALL | DISTINCT: Optional; if you want to return either all of the rows or only distinct, or
unique, rows. Normally, you do not specify either of these options.

•	 TOP expression/PERCENT/WITH TIES: Optional; you can return the top number of rows, which
will be in an arbitrary order unless you order the rows with an ORDER BY clause. You can
also add the word PERCENT to the end, which will mean that the top n percent of rows will be
returned. WITH TIES can be used only with an ORDER BY. If you specify you want to return TOP
10 rows, and the 11th row has the same value as the 10th row on those columns that have been
defined in the ORDER BY, then the 11th row will also be returned. It’s the same for subsequent
rows, until you get to the point that the values differ.

Chapter 11 ■ SeleCting and Updating data from diSk-BaSed taBleS

339

•	 *: Optional; by using the asterisk, you are instructing SQL Server to return all the columns
from all the tables included in the query. This is not an option that should be used on large
amounts of data or over a network. Particularly if the network is busy or there are a large
number of columns, you really should not use this against production data. By using this,
you are bringing back more information than is required. In essence, by using *, you are not
in control of the column data you are returning. Wherever possible, you should name the
columns instead.

•	 table_name.* | view_name.* | alias_name.*: Optional; similar to *, but you are defining
which table, if the SELECT is working on more than one table, that all the columns will display
from. When working with more than one table, this is known as a JOIN, and this option will be
demonstrated in Chapter 11 when you take a look at joins, as well as at the end of this chapter.

•	 column_name: Optional but recommended; this option is where you name the columns that
you wish to return from a table. When naming the columns, it is always a good idea to prefix
the column names with their corresponding table names or table aliases (more on table
aliases shortly). This becomes mandatory when you are using more than one table in your
SELECT statement and in instances where there may be columns within different tables that
share the same name (preferred to using the alternative *, as discussed previously).

•	 expression: Optional; you don’t have to return columns of rows within a SELECT. You can
return a value, a variable, or an expression. If you are using SELECT for an expression, then you
won’t require the FROM keyword.

•	 $IDENTITY: Optional; will return the value from the IDENTITY column.

•	 $ROWGUID: Optional; will return the value from the ROWGUID column.

•	 AS: Optional; you can change the column header name when displaying the results by using
the AS option.

•	 Column_alias: Optional; you can give a column name an alias. This is ideal when a column
name will form output that is sent to a user. You will see this in Chapter 13 when looking at
views.

•	 FROM table_name | view_name: Required when selecting data from a data source, optional if
you are using SELECT with an expression; you will see SELECT with expressions in Chapter 11.

•	 WHERE filter_condition: Optional; if you want to retrieve rows that meet specific criteria,
you need to have a WHERE condition specifying the criteria to use to return the data. The
WHERE condition tends to contain the name of a column on the left-hand side of a comparison
operator, such as =, <, >, and either another column within the same table, or another table, a
variable, or a static value on the other side. There are other options that the WHERE condition
can contain, where more advanced searching is required, but on the whole, these comparison
operators will be the main constituents of the condition.

•	 ORDER BY ordering_criteria: Optional; the data will be returned arbitrarily from the table if
no ORDER BY expression is specified. Ascending (ASC) or descending (DESC) is defined for each
column, not defined just once for all the columns within the ORDER BY. Sorting is completed
once the data has been retrieved from SQL Server but before any statement such as TOP. You
can also use this expression to return a specific number of rows and subsequent rows after that
to enable you to paginate your data and reduce the amount of data returned from a query. You
will see this in action later in this chapter.

Keep in mind that when building a SELECT statement, you do not have to name all the columns. In fact, you
should retrieve only the columns that you do wish to see; this will reduce the amount of information sent over the
network. There is no need to return information that will not be used.

Chapter 11 ■ SeleCting and Updating data from diSk-BaSed taBleS

340

Naming the Columns
When building a SELECT statement, it is not necessary to name every column if you don’t want to see every column.
You should return only the columns you need. It is very easy to slip into using * to return every column, even when
running one-off queries. Try to avoid doing this at all costs; typing out every column name takes time, but when you
start dealing with more complex queries and a larger number of rows, the few extra seconds are worth it.

Now that you know not to name every column unless required, and to avoid using *, what other areas do you
need to be aware of? First of all, it is not necessary to name columns in the same order in which they appear in the
table—it is quite acceptable to name columns in any order that you wish. There is no performance hit or gain from
altering the order of the columns, but you may find that a different column order might be better for any future
processing of the data.

When building a SELECT statement and including the columns, and if the final output is to be sent to a set of
users, the column names within the database may not be acceptable. For example, if you are sending the output to
the users via a file, then they will see the raw result set. Or if you are using a tool such as Crystal Reports to display
data from a SELECT statement within a SQL Server–stored procedure, then naming the columns would help. The
column names are less user-friendly, and some column names will also be confusing for users; therefore, it would
be ideal to alter the names of the column headings. Replacing the SQL Server column headings with the new desired
alias column headings, in either quotation marks or in square bracket delimiters, is easily accomplished with the AS
keyword. There is more on this in the next section.

Now that you know about naming the columns, let’s take a look at how the SQL statement can return data.

The First Searches
This example will revolve around the CustomerDetails.Customers table, making it possible to demonstrate how all of
the different areas mentioned previously can affect the results displayed.

trY It OUt: the FIrSt Set OF SearCheS

1. ensure that Query editor is running and that you are within the ApressFinancial database.
in the Query editor pane, enter the following SQl code:

SELECT * From CustomerDetails.Customers

2. execute the code using f5 or the execute button on the toolbar. You should then see
something like the results shown in figure 11-3.

Figure 11-3. Customers table listing all columns (some not shown)

Chapter 11 ■ SeleCting and Updating data from diSk-BaSed taBleS

341

3. this is a simple SELECT statement returning all the columns and all the rows from the
CustomerDetails.Customers table, as you have just seen. let’s now take it to the next
stage, where specific column names will be defined in the query, which is a much cleaner
solution that results in less traffic over a network.

4. in this instance, you would like to return a customer’s first name, last name, and the current
account balances from the CustomerDetails.Customers table. this would mean naming
FirstName, LastName, and ClearedBalance as the column names in the query. the code will
read as follows:

SELECT firstname,lastname,clearedbalance
FROM CustomerDetails.Customers

5. now execute this code, which will return the results shown in figure 11-4. as you can see,
not every column is returned.

6. as you have seen from the examples so far, the column names, although well named from a
design viewpoint, are not exactly suitable if you had to give this data to a set of users.

7. Using the same query as before, a couple of minor modifications are required to give the
columns aliases. the first alias is in quotes, as it contains a space. notice the last column
also does not have AS specified, because this keyword is optional.

SELECT FirstName As 'First Name',LastName AS 'Surname',
ClearedBalance Balance
FROM CustomerDetails.Customers

8. execute this code and the displayed output changes—it has much friendlier column names,
as you see in figure 11-5.

Figure 11-4. Specific columns returned

Chapter 11 ■ SeleCting and Updating data from diSk-BaSed taBleS

342

the first SELECT statement demonstrates the fact that in most SQl Server instances, your choice of using upper-
or lowercase doesn’t matter to your queries; however, some language installations are case-sensitive. When
installing SQl Server, if you chose a SQl collation sequence that was case-sensitive, as denoted by CS within
the suffix of the collation name—SQL_Latin1_General_Cp437_CS_AS, for instance—then the first SELECT query
would generate an error. the collation sequence for SQl Server was chosen in Chapter 1 when you installed the
application. Changing a collation sequence within SQl Server is a very difficult task that requires rebuilding parts
of SQl Server, so this book won’t move into that area.

Tip ■ it is strongly recommended, and considered best practice, that you use the correct casing when using queries.
not only does this avoid confusion, but it also means that if you do switch to a case-sensitive installation, it will not be
necessary to alter the query.

let’s return to the first query in step 1. this query will select all columns and all rows from the CustomerDetails.
Customers table, ordered according to how the database sees it. as you can see in figure 11-3, it has quite
plainly done this.

in the second and third query examples, the results have been reduced to just three columns: the customer’s
first and last names and the cleared balance amounts. all the rows are still being returned. notice in the previous
example that after two of the three columns, there is an AS keyword. this signifies that the following literal is to
be used as the column heading; note that if you wish to use two words separated by spaces, you must surround
these words by identifiers, whether they be quotation marks, as in your example, or square brackets.

Now that the basics of the SELECT statement have been covered, we will next look at how to display output in
different manners within Query Editor.

Figure 11-5. Friendly column names

Chapter 11 ■ SeleCting and Updating data from diSk-BaSed taBleS

343

Varying the Output from a SELECT Query
There are different ways of displaying the output: as a grid, as you have seen; as a straight text file; still within a Query
Editor results pane; or as pure text within a results pane. You may have found the results in the previous exercise
laid out in a different format than you’ve seen previously, depending on how you initially set up Query Editor. In the
results of the examples so far, you have seen the data as a grid. This next section will demonstrate tabular text output,
otherwise known as Results in Text, as well as outputting the data to a text file. Let’s get going with the first option,
Results in Text.

trY It OUt: pUttING the reSULtS IN teXt aND a FILe

1. You should still be in Query editor. from the Query menu option, select results to ➤ results
in text, or press Ctrl+t. figure 11-6 shows the other options available from the results to
menu.

2. if you run the same query as that in step 5 of the preceding example (the code is detailed
again here), you will be able to see the difference. once the code is entered, execute it.

SELECT FirstName As 'First Name',LastName AS 'Surname',
ClearedBalance Balance
FROM CustomerDetails.Customers

3. examine the output, which should resemble figure 11-7. as you can see, the output has
changed a great deal. no longer is the output shown in a nice grid in which the columns
have been shrunk to a more manageable size, but rather each column’s data take up, and
are displayed to, the maximum number of characters that each column can contain. this
obviously stretches out the display, but from here you can see easily how large each column
is supposed to be.

Figure 11-6. Sending the results to different places

Figure 11-7. Results as text

Chapter 11 ■ SeleCting and Updating data from diSk-BaSed taBleS

344

4. there will be times, though, when users require output to be sent to them. for example,
they may wish to know specific details from a set of rows, and so you would build a query
and save the results to a file to send to them. or perhaps they want output to perform some
analysis of data within a microsoft excel spreadsheet.

5. to send output to a file, go to the Query menu and select results to ➤ results to file, or press
Ctrl+Shift+f. Specify sending results to a file and rerun the code. once the code has been executed,
a Save results dialog box like the one shown in figure 11-8 will appear: this could show any folder
location—in this case, it shows the folder for results i have set up on my computer.

6. So now that you know how to save to different locations, move back to displaying the output to a grid by
pressing Ctrl+d.

Figure 11-8. Locating where to save the results

Chapter 11 ■ SeleCting and Updating data from diSk-BaSed taBleS

345

Note ■ Before you move on, a question: have you noticed that when you type a query, SQl Server tries to provide you
with options about what you may want to use next in your query? this is known as intelliSense. SQl Server intelligently
tries to sense what you may want to include next. You will find that intelliSense is a very useful tool when building
queries, especially, i find, with SELECT queries. if you find it annoying, you can turn it off from Options ➤ Text Editor
➤ Transact-SQL/ ➤ IntelliSense.

You now know how to return data, but what happens if you don’t want every row, and you want to select which
rows to display? We’ll look at that next.

Limiting a Search: The Use of WHERE
You have a number of different ways to limit the search of rows within a query. Some of the most basic revolve around
the three basic relational operators: <, >, and = (less than, greater than, and equal to). There is also the keyword NOT,
which could be included with these three operators. However, NOT does not work as in other programming languages
that you may have come across, and this will be demonstrated within the example in this section so you know how to
use the NOT operator successfully.

All of these operators can be found in the SELECT statement’s WHERE condition, which is used to reduce the
number of rows returned within a query.

Note ■ You may come across some legacy code in which you will find that the WHERE condition is used to join two
tables together to make the results look as if they came from one table. for some databases, this is the “standard” way to
join two tables; however, with SQl Server, the WHERE condition should be used purely as a filter method.

The first exercise will look at how to filter information from your queries so as to reduce the output to records that
you are interested in.

trY It OUt: the Where StateMeNt

1. the requirement for this section is to find the current share price for toland’s irish Whisky.
this stock has a single quotation mark in its name, which would cause issues in the WHERE
condition if you surrounded the description in single quotation marks. to circumvent this
problem, set QUOTED_IDENTIFIER to OFF and then use double quotation marks. then restrict
the SELECT statement so that only the specific record comes back by using the WHERE
condition, as can be seen in the following code:

SET QUOTED_IDENTIFIER OFF
SELECT Description,CurrentPrice
 FROM ShareDetails.Shares
 WHERE Description = "Toland's Irish Whisky"

Chapter 11 ■ SeleCting and Updating data from diSk-BaSed taBleS

346

2. execute this code, and you will see that the single record for the share is returned, as shown
in figure 11-9.

Figure 11-10. Shares output using the WHERE condition to filter

Figure 11-9. The results of limiting the search

5. the same results can be achieved by using the BETWEEN conditional operator rather than
the mathematical operators. the following code will achieve the same results as above.
the BETWEEN operator indicates to SQl Server to take the two values and find any values
including and between them.

SET QUOTED_IDENTIFIER OFF
SELECT Description,CurrentPrice
 FROM ShareDetails.Shares
WHERE Description BETWEEN 'Mackrel Fisheries'
AND "Toland's Irish"

3. You have seen WHERE in action using the equals sign; it is also possible to use the other
relational operations in the WHERE statement. the next query demonstrates how SQl Server
takes the WHERE condition and starts returning rows after the given point. this query provides
an interesting set of results. enter the code as detailed here:

SET QUOTED_IDENTIFIER OFF
SELECT Description,CurrentPrice
 FROM ShareDetails.Shares
 WHERE Description >= 'Mackrel Fisheries'
AND Description <= "Toland's Irish"

4. once done, execute the code and check the results, which should resemble figure 11-10.
notice that toland’s irish Whisky was within the results in step 2, but the value in the “less
than or equal to” condition is not listed. there is no row with that exact value within the
ShareDetails.Shares table. there is a row with most of the text, but not an exact match,
and therefore the row is not included. You will come back to this scenario shortly.

Chapter 11 ■ SeleCting and Updating data from diSk-BaSed taBleS

347

6. let’s now bring another option into the WHERE statement that allows you to avoid returning
specific rows. this can be achieved in one of two ways: the first is by using the less than and
greater than signs; the second is by using the NOT operator. enter the following code, which
will return all rows except lomas ambulances. run both sets of code at once. this will return
two sets of output, known as multiple result sets. i realize there are a lot of rows returned;
you will see one method of reducing this in the next section.

SET QUOTED_IDENTIFIER OFF
SELECT Description,CurrentPrice
 FROM ShareDetails.Shares
 WHERE Description <> "Lomas Ambulances"

SELECT Description,CurrentPrice
 FROM ShareDetails.Shares
 WHERE NOT Description = "Lomas Ambulances"

7. executing this code will produce the output shown in figure 11-11.

Figure 11-11. Multiple output and the use of exclusion

Chapter 11 ■ SeleCting and Updating data from diSk-BaSed taBleS

348

8. i mentioned in Chapter 10 that you would return to the WHERE condition for DELETE
statements. filtering for deletions is the same as filtering for SELECT statements. Before
executing a DELETE, i tend to build a SELECT statement, check that the data to delete is
correct, and then switch the SELECT to a DELETE. the DELETE code here has two WHERE
conditions to limit the number of deletions to one year of data and to where the price is
greater than 6 trillion.

DELETE
FROM ShareDetails.SharePrices
WHERE PriceDate BETWEEN '1 Jan 2012' and '3 Jan 2012'
AND Price > 23.00

As you have seen, it is possible to limit the number of rows to be returned via the WHERE condition; you can
return rows up to a certain point, after a certain point, or even between two points with the use of an AND or BETWEEN
expression. It is also possible to exclude rows that are not equal to a specific value or range of values by using the NOT
expression or the <> operator.

When the SQL Server data engine executes the T-SQL SELECT statement, it is the WHERE condition that is dealt with
before any ordering of the data, or before any limitation placed on it concerning the number of rows to return. The
data are inspected, where possible using an index, to determine whether a row stored in the relevant table matches
the selection criteria within the WHERE condition and, if it does, to return it. If an index cannot be used, then a full table
scan will be performed to find the relevant information.

Table scans can present a large performance problem within your system, although sometimes they are the
fastest way to read the data, and you will find that if a query has to perform a table scan, then data retrieval could be
very slow, depending on the size of the table being scanned. If the table is small with only a small number of rows,
then a table scan is likely to retrieve data more quickly than the use of an index will. However, table scanning and
the speed of data retrieval will be the biggest challenge you face as a SQL Server developer. With data retrieval, it is
important to bear in mind that whenever possible, if you are using a WHERE condition to limit the rows returned, you
should try to specify the columns from an index definition. By doing this, you will be giving the query the best chance
for optimum performance.

As discussed in Chapter 6, getting the index right is crucial to fast data manipulation and retrieval. If you find you
are forever placing the same columns in a WHERE condition, but those columns do not form part of an index, perhaps
this is something that should be revisited to see whether any gain can come from having the columns be part of an
index.

For any table, ensuring that the WHERE condition is correct is important. As has been indicated previously, from
a speed perspective using an index will ensure a fast return of data. This gains greater importance with each table
added, and even more importance as the size of each table grows.

Finally, by ensuring the WHERE condition filters out the correct rows, you will ensure that the required data are
returned, the right results are displayed, and smaller amounts of data are sent across the network, as the processing is
done on the server and not on the client. Having the appropriate indexing strategy helps with this as well.

It is also possible to return a specific number of rows, or a specific percentage of the number of rows, as you saw
when displaying rows in SQL Server Management Studio. These statements are discussed next, with a short code
example demonstrating each in action.

TOP (n)
This option, found within the SELECT statement itself, will return a specific number of rows from the SELECT statement,
and is very much like the SET ROWCOUNT function that you will see shortly. In fact, the TOP (n) option is the preferred
option to use when returning a set number of rows, as opposed to SET ROWCOUNT. The reason behind this is that
TOP (n) applies only to the query statement that includes it; however, by using SET ROWCOUNT n, you are altering all
executions until you reset SQL Server to act on all rows through SET ROWCOUNT 0.

Chapter 11 ■ SeleCting and Updating data from diSk-BaSed taBleS

349

Although it is possible to use TOP (n) without any ORDER BY statement, it is common to combine TOP with
ORDER BY. When no order is specified, the rows returned are arbitrary, and if you want consistent results, ordering
will provide this. If you are not concerned about which rows are returned, then you can bypass using ORDER BY.
TOP (n) will still return and display the top n rows in an arbitrary order. You will see that the n for number of rows is
surrounded by parenthesis, which for a SELECT statement are optional, but become mandatory for other statements,
so I like to always use them for the sake of consistency.

Any WHERE statements and ORDER BY statements within the SELECT statement are dealt with first, and then
from the resultant rows the TOP (n) function comes into effect. This then allows the correct number of rows to be
displayed, as opposed to finding the number of rows from the TOP (n) function first, then filtering the rows using the
WHERE statement, as the filter could make the number of rows remaining from the ones initially selected to be zero.
Thus, it’s best to save TOP (n) for last.

The use of WHERE and ORDER BY will be demonstrated with the following example.

trY It OUt: tOp (N)

1. in Query editor, enter the following code into a new Query editor pane:

SELECT TOP (3) *
FROM ShareDetails.Shares
WHERE CurrentPrice > 20
ORDER BY Description

2. once entered, execute the code. it returns a result set, as shown in figure 11-12, with three
rows of data. SQl Server looked for rows where the CurrentPrice was greater than 20, then
ordered the results, and finally displayed the top three of the result set.

Figure 11-12. Top three rows after filter and sort

You could run the code in step 1 without the ORDER BY, which will show you a different three rows returned.

TOP (n) PERCENT
TOP (n) PERCENT is very similar to the TOP (n) clause, with the exception that instead of working with a precise
number of rows, a percentage of the number of possible result rows will be returned. Keep this in mind, as it is not a
percentage of the total number of rows within the table. Also, the number of rows is rounded up; therefore, as soon as
the percentage moves over to include another row, SQL Server will include this extra row.

You will see more of this option in Chapter 13, which discusses the building of views.

Chapter 11 ■ SeleCting and Updating data from diSk-BaSed taBleS

350

SET ROWCOUNT n
SET ROWCOUNT n is a totally separate statement from the SELECT statement and can be used with other statements
within T-SQL. This statement will limit or reset the number of rows that will be processed for the session in which
the statement is executed. It is better to use TOP. The reason is that in future releases, SET ROWCOUNT will not affect the
number of rows inserted, deleted, or updated in a T-SQL statement.

Note ■ Caution should be exercised if you have any statements that also use a TOP statement, which is described next.

The SET ROWCOUNT n statement stops the processing of the SELECT statement once the number of rows defined
has been reached. The difference between SET ROWCOUNT n and SELECT TOP (n) is that the latter will perform one
more internal instruction than the former. Processing halts immediately when the number of rows processed through
SET ROWCOUNT is reached. However, by using the TOP statement, all the rows are returned internally, the TOP (n) rows
are selected from that group internally, and these are then passed for display. Returning a limited number of rows is
useful when you want to look at a handful of data to see what values could be included, or perhaps you wish to return
a few rows for data sampling.

You can set the number of rows to be affected by altering the number, n, at the end of the SET ROWCOUNT
statement. This setting will remain in force only within the query window in which the statement is executed, or
within the stored procedure in which the statement is executed. It will also remain in force in that query window until
you alter the value again. This is not a temporary setting per se.

To reset the session so that all rows are taken into consideration, you would set the ROWCOUNT number to 0.

trY It OUt: Set rOWCOUNt

1. in Query editor, enter the following code into a new Query editor pane:

SET ROWCOUNT 3
SELECT * FROM ShareDetails.Shares
SET ROWCOUNT 0
SELECT * FROM ShareDetails.Shares

2. once it is entered, execute it. You should see two result sets, as shown in figure 11-13. the
first will return three rows from the ShareDetails.Shares table. the second result set will
return all rows from ShareDetails.Shares.

Chapter 11 ■ SeleCting and Updating data from diSk-BaSed taBleS

351

Figure 11-13. Limiting the output via ROWCOUNT

3. the final example will combine ROWCOUNT and TOP (n) in an example showing how these
two statements can alter your results. enter the following code:

SET ROWCOUNT 3
SELECT TOP (2) *
FROM ShareDetails.Shares
WHERE CurrentPrice > 20
ORDER BY Description

SET ROWCOUNT 2
SELECT TOP (3) *
FROM ShareDetails.Shares
WHERE CurrentPrice > 20
ORDER BY Description

SET ROWCOUNT 0
SELECT TOP (3) *
FROM ShareDetails.Shares
WHERE CurrentPrice > 20
ORDER BY Description

4. When you execute the code, you should see three result sets, as shown in figure 11-14.

Chapter 11 ■ SeleCting and Updating data from diSk-BaSed taBleS

352

5. the first result set is limited by the TOP (2) expression within the SELECT. as long as the
ROWCOUNT statement has a value that is the same as or greater than the TOP expression,
two rows will be returned. looking at the second result set, you can see that the ROWCOUNT
statement is in control of the number of rows returned this time. finally, the third result set
returns the number of rows from the TOP expression.

String Functions
A large number of system functions are available for manipulating data. This section looks purely at the string
functions available for use within a T-SQL statement; later in the book, you will look at some more functions that are
available. Following are the functions that are used in the next example:

•	 LTRIM/RTRIM: These have similar functionality. If you have a string with leading spaces, and
you wish to remove those leading spaces, you would use LTRIM so that the returned varchar
value would have a nonspace character as its first value. If you have trailing spaces, you would
use RTRIM. You can use this function only with a data type of varchar or nvarchar, or with a
data type that can be implicitly converted to these two data types, or with a data type that can
be converted to varchar or nvarchar using the CAST SQL Server function.

•	 CAST: This specialized function converts one data type to another data type. This is not
specifically a string function, as you can cast from a string to a numeric; however, casting
into a string is more common as it can be used to cast a number into a string, which is then
concatenated into several strings.

•	 LEFT/RIGHT: This function returns the leftmost or rightmost characters from a string. Passing
in a second parameter to the function will determine the number of characters to return from
whichever side of the string. The LEFT and RIGHT functions accept any data type except text or
ntext expressions to perform the string manipulation, implicitly converting any noncharacter
data type or varchar or nvarchar and returning a varchar or nvarchar data type as a result.

It is possible to do more than just return columns. Columns can have further functionality applied to them. In the
following example, some basic string functions will be shown.

Figure 11-14. Three results sets demonstrating ROWCOUNT and TOP (N)

Chapter 11 ■ SeleCting and Updating data from diSk-BaSed taBleS

353

trY It OUt: StrING FUNCtIONS

1. enter the code that follows into an empty Query editor window. alter the output to text
format by pressing Ctrl+t. notice the use of the + operator within the SELECT query. this will
concatenate the strings defined within the query into one single string value.

Note ■ Unlike with some programming languages, you cannot use the & character, as this has a totally different
meaning in SQl Server. it is used for bitwise operations.

SELECT FirstName + ' ' + LastName +
' has a cleared balance of $' +
CAST (ClearedBalance AS varchar(40))
FROM CustomerDetails.Customers
WHERE FirstName = 'Aubrey'

2. execute this code, which produces the output shown in figure 11-15.

Figure 11-15. Concatenating results

3. as you can see, it’s a bit unwieldy. the Name column heading goes far wider than is required, as
denoted by the width of the hyphens. there is a complex way of getting this right, but a much
simpler method is to use the LEFT statement. the sum of the width of the three columns gives
this column width that is displayed in the output; by using the LEFT statement, it is possible to
achieve something better. Clear the Query editor pane and enter the following code:

SELECT LEFT(FirstName + ' ' + LastName +
' has a cleared balance of $' +
CAST (ClearedBalance AS varchar(40)),50)
FROM CustomerDetails.Customers
WHERE FirstName = 'Aubrey'

4. execute the preceding code. this produces the results shown in figure 11-16. What the
preceding query has done is to reduce the output to the first 50 characters, starting from the left.

Chapter 11 ■ SeleCting and Updating data from diSk-BaSed taBleS

354

5. the best way to adjust the column width is to remove all trailing spaces rather than
guesstimating how wide to make the string; this can be achieved via the RTRIM statement.
the following code does this, although the output in the text layout doesn’t. this is because
SQl Server still doesn’t know what the maximum size of the concatenation will be, and it has
to believe that the maximum number of characters of the sum of the two columns could still
be displayed. however, in truth, the amount of data returned will be minimal. therefore, this
is a great method of reducing the amount of data passed over a network.

SELECT RTRIM(FirstName + ' ' + LastName +
' has a cleared balance of $' +
CAST (ClearedBalance AS varchar(40)))
FROM CustomerDetails.Customers
WHERE FirstName = 'Aubrey'

In all of the examples thus far, rows are returned in an arbitrary order. You look now at how this can be changed.

Order! Order!
Of course, retrieving the rows in any order SQL Server desires may not always be what you want. It is possible to
change the order in which rows are returned, however. This is achieved through the ORDER BY clause, which is part of
the SELECT statement. The ORDER BY clause can have multiple columns, with some in ascending order and others in
descending order if you wish.

If you should find that you are repeatedly using the same columns within an ORDER BY clause, or that the query is
taking some time to run, you should consider setting the columns within the query as an index. (Indexes were covered
in Chapter 6.)

Ordering the data will of course increase processing time, but it is a necessity if you want to display the data in the
correct order. Ordering on varchar columns also takes longer than on numeric columns.

The ORDER BY clause also has the option to allow you to paginate your data, which is ideal if you are creating a
SELECT statement to return rows to display on a screen. There are two options that are required: OFFSET and FETCH
NEXT. The first option determines the number of rows to skip before returning data, and the latter option determines
the number of rows to return. You will see a demonstration of this in the following section, and it will be demonstrated
in action in Chapter 17 as well.

Note ■ ordering takes place after the filtering of rows but before the TOP statement, so you could still be ordering a
large set of rows before returning the top few you may need.

Let’s now take a look at building a query that uses an ORDER BY clause.

Figure 11-16. Concatenating results and reducing the width

Chapter 11 ■ SeleCting and Updating data from diSk-BaSed taBleS

355

trY It OUt: aLterING the OrDer

1. Clear the query window in Query editor and set the display option back to showing a grid
by selecting, from the Query menu, results to ➤ results to grid. once complete, enter the
following code into the Query editor pane. this will return the data in the ascending (the
default) order of the cleared balance of your customers for those customers who have a
cleared balance value.

SELECT LEFT(FirstName + ' ' + LastName,50) AS 'Name',
ClearedBalance Balance
FROM CustomerDetails.Customers
WHERE ClearedBalance IS NOT NULL
ORDER BY Balance

2. execute the code; this will produce the results shown in figure 11-17.

Figure 11-17. Altering the order by balance and ignoring NULL values

3. You can also complete the same query, but with the cleared balance in descending order
rather than ascending order. this is simply done by placing DESC after the column name.
Change your code as detailed here:

SELECT LEFT(FirstName + ' ' + LastName,50) AS 'Name',
ClearedBalance Balance
FROM CustomerDetails.Customers
WHERE ClearedBalance IS NOT NULL
ORDER BY Balance DESC

4. execute the code; this will produce the results shown in figure 11-18.

Chapter 11 ■ SeleCting and Updating data from diSk-BaSed taBleS

356

5. to paginate your data, there are three elements that have to be included in your SELECT
statement.

the first element is the order BY clause. this is so that SQl Server will know that the order in •	
which the data will be returned will be as constant as possible. the caveat of “as possible” is
because data may be added to the table between calls to display the paginated data.

the second element is the offSet clause, which determines the number of rows to skip •	
before returning the data.

the final element is the number of rows to return.•	

6. to return the first four rows from CustomerDetails.Customers, the OFFSET would be 0 and
FETCH NEXT would have a value of 4. enter this code:

SELECT LEFT(FirstName + ' ' + LastName,50) AS 'Name',
ClearedBalance Balance
FROM CustomerDetails.Customers
WHERE ClearedBalance IS NOT NULL
ORDER BY Balance
OFFSET 0 ROWS
FETCH NEXT 4 ROWS ONLY

7. now execute the code. figure 11-19 shows the first four rows returned.

Figure 11-19. Using OFFSET and FETCH NEXT to return rows

Figure 11-18. Making the order in descending sequence

Chapter 11 ■ SeleCting and Updating data from diSk-BaSed taBleS

357

8. to return the next set of four rows, enter the following code. You may think that hard-coding
the number for the starting position is not the correct method because the OFFSET will
increase with each call. You would thus use a locally defined variable.

SELECT LEFT(FirstName + ' ' + LastName,50) AS 'Name',
ClearedBalance Balance
FROM CustomerDetails.Customers
WHERE ClearedBalance IS NOT NULL
ORDER BY Balance
OFFSET 4 ROWS
FETCH NEXT 4 ROWS ONLY

9. When you execute the foregoing code, you will see results similar to those in figure 11-20.

Figure 11-20. Using OFFSET and FETCH NEXT to return subsequent rows

The LIKE Operator
It is possible to use more advanced techniques for finding rows when a mathematical operation doesn’t quite fit. For
example, say someone is trying to track down a customer, but doesn’t know the customer’s full name, or does know
the first part of the surname but doesn’t know how to spell the full name.

Suppose you know that the surname ends in “Smith” but you cannot recall the first part of the surname. So how
would this be put into a query? There is a keyword that you can use as part of the WHERE statement, called LIKE. This
will use pattern matching to find the relevant rows within a SQL Server table using the information provided.

The LIKE operator can come with one of four operators, which are used alongside string values that you want
to find. Each of the four specifiers is detailed in the following list. They can be used together, and using one does not
exclude using any others.

•	 %: This would be placed at the end and/or the beginning of a string. The best way to describe
this is through an example; if you were searching the customers who had the letter “a” within
their surname, you would search for “%a%”, which would look for the letter “a,” ignoring
any letters before and after the letter “a”, and just checking for that letter within the surname
column.

•	 _: This looks at a string, but only for a single character before or after the position of the
underscore. Therefore, looking in the first name column for “_a” would return any customer
who has two letters in his or her first name where the second letter is an “a.” In the example,
no rows would be returned. However, if you combined this with the % sign and searched for
“_a%,” then you would get back Jason Atkins, Ian McMahon, and Ian Prentice. You would not
get back Vic McGlynn, because “a” is not the second letter.

Chapter 11 ■ SeleCting and Updating data from diSk-BaSed taBleS

358

•	 []: This lets you specify a number of values or a range of values to look for. For example, if you
were looking in the customer’s first name for the letters “c-f,” you would use LIKE "%[c-f]%".

•	 [^...]: Similar to the preceding option, this one lists those items that do not have values
within the range specified.

Note ■ LIKE is not case-sensitive unless you have the SQl Server instance set to a collation that is case-sensitive.

The best way to learn how to use LIKE is to see an example.

trY It OUt: the LIKe OperatOr

1. We are going to try to find mark Vernon-Smith via the LastName column. You know the name
ends with Smith and the surname is hyphenated. the code that follows will search all of the
customer rows looking for anything prefixing -Smith.

SELECT FirstName + ' ' + LastName
FROM CustomerDetails.Customers
WHERE LastName LIKE '%-Smith'

2. execute the code; this will give the results shown in figure 11-21.

Figure 11-21. Using the LIKE operator

3. You can also go to extremes using the LIKE operator—for example, seeing which customers
have the letter “q” anywhere in their name. the code for this is shown here:

SELECT FirstName + ' ' + LastName AS [Name]
FROM CustomerDetails.Customers
WHERE FirstName + ' ' + LastName LIKE '%q%'

4. When you execute this, you should get the results shown in figure 11-22: 13 customers are
returned, as they have a “q” somewhere in their name.

Chapter 11 ■ SeleCting and Updating data from diSk-BaSed taBleS

359

5. Why would you want to go to such lengths of concatenating the names? Would it not have
been possible to use the name alias, which is a combination of the first name and last name
columns? Well, unfortunately not—the code you might expect to use would look something
like the following. enter this code:

SELECT FirstName + ' ' + LastName AS [Name]
FROM CustomerDetails.Customers
WHERE [Name] LIKE '%q%'

6. execute this code. instead of the success messages that you have become used to, an error
message will be returned. You can search only on real column names, not on aliases.

Msg 207, Level 16, State 1, Line 3

Invalid column name 'Name'.

Note ■ there may be times when you’ll want to take data from a table in one database on one server and insert it
into another table in another database on another server. a typical scenario might be when data have been inadvertantly
deleted, but you have a backup on another database. By using a SELECT statement and many string actions, it is possible
to build up a result set of INSERT statements. You can then store these to a text file, which you can use to run against in
another database. a short code example would be:

SELECT "INSERT (Column1) VALUES ("'+column1+"'") FROM Table1

Figure 11-22. Using LIKE to search for customers with “q” in their name

Chapter 11 ■ SeleCting and Updating data from diSk-BaSed taBleS

360

Creating Data: SELECT INTO
It’s time now to start getting into a more advanced area of SELECT. It is possible to create a new table within a database
by using the INTO keyword, like that found in INSERT INTO, within a SELECT statement, provided, of course, you have
the right database permissions to create tables in the first place.

First, it is necessary to clarify the syntax of how the SELECT INTO statement is laid out; you simply add the INTO
clause after the column names, but before the FROM keyword. Although the following section of code shows just one
table name, it is possible to create a new table from data from one or more tables.

SELECT *|column1,column2,...
INTO new_tablename
FROM tablename

The INTO clause is crucial to the success of the creation of the new table. The SELECT statement will fail if there is a
table already in existence with the same name for the same table owner. This will be demonstrated within the example
in this section. You tend to use the SELECT INTO statement to create a temporary table in tempdb, although you can
use it to build a table in your database.

The table generated will consist of the columns returned from the built SELECT statement, whether that is all the
columns from the table mentioned within the FROM statement or just a subset. The new table will also contain only the
rows returned from the SELECT statement. To clarify, this statement is creating a new table using the structure within
the SELECT statement. There will be no keys, constraints, relationships, or in fact any other facet of SQL Server, except
a new table. Hence, creating tables using SELECT INTO should be done with care.

Two tables can exist with the same name within a database, providing that they have different schemas. The
tables in ApressFinancial all have the database owner as their owner, but it is possible for a CustomerDetails.
Customers table to exist for an owner like MSmith.

Note ■ although possible, having two tables of the same name but with different owners is not recommended, as it
causes confusion.

Let’s look at the INTO statement in action.

trY It OUt: SeLeCt INtO

1. in an empty Query editor window, enter the following code:

SELECT FirstName + ' ' + LastName AS [Name],
ClearedBalance,UnclearedBalance
INTO CustTemp
FROM CustomerDetails.Customers

2. execute the code. this will return the following message in the results pane:

 (1000 row(s) affected)

3. if you now move to object explorer on the left-hand side (if object explorer is no longer there,
press f8) and complete a refresh, you should see a new table in the expanded tables node,
called dbo.CustTemp, as shown in figure 11-23.

Chapter 11 ■ SeleCting and Updating data from diSk-BaSed taBleS

361

You should use the INTO clause with care. for instance, in this example, security has not been set up for the
table, and you are also creating tables within your database that have not been through any normalization or
development life cycle. it is also very easy to fill up a database with these tables if you are not careful. however,
it is a useful and handy method for taking a backup of a table and then working on that backup while testing out
any queries that might modify the data. do ensure, though, that there is enough space within the database before
building the table if you do use this technique.

Note ■ it is best to avoid using SELECT INTO in a production environment unless you really do need to keep the table
permanently. also take note that the table in the previous “try it out” exercise was placed in the CustomerDetails
schema. You may want to create a special schema for tables created using SELECT INTO if they are not permanent
additions to your database. You may find, though, that it is better to use the temporary database, tempdb, as a place to
put tables created using SELECT INTO, especially if they are going to exist for only a short period of time. the ”try it out”
code would then read as follows:
SELECT CustomerFirstName + ' ' + CustomerLastName AS [Name],

ClearedBalance,UnclearedBalance

INTO CustomerDetails.CustTemp

FROM CustomerDetails.Customers

Updating Data
Now that data has been inserted into your database, and you have seen how to retrieve this information, it is time to
look at how to modify the data, referred to as updating the data.

Ensuring that you update the right data at the right time is crucial to maintaining data integrity. You will find
that when updating data, and also when removing or inserting data, it is best to group this work as a single, logical
unit within a transaction, thereby ensuring that if an error does occur, it is still possible to return the data back to its
original state. You were first introduced to transactions in Chapter 10, and I will be building on this knowledge to
cover nesting of transactions.

First of all, let’s take a look at the syntax for the UPDATE statement.

Figure 11-23. New table created with SELECT INTO

Chapter 11 ■ SeleCting and Updating data from diSk-BaSed taBleS

362

The UPDATE Statement
The UPDATE statement will update columns of information on rows within a single table that are returned from a
query that can include selection and join criteria. The syntax of the UPDATE statement has similarities to the SELECT
statement, which makes sense, as it has to look for specific rows to update, just as the SELECT statement looks for rows
to retrieve. You will also find that before doing updates, especially more complex updates, you will need to first build
up a SELECT statement and then transfer the JOIN and WHERE details into the UPDATE statement. The syntax that follows
is in its simplest form. Once you become more experienced, the UPDATE statement can made just as complex and
versatile as the SELECT statement.

UPDATE
 [TOP (expression) [PERCENT]]
 [[server_name . database_name . schema_name .
 | database_name .[schema_name] .
 | schema_name .]
table_or_viewname
 SET
 { column_name = { expression | DEFAULT | NULL }
 | column_name { .WRITE (expression , @Offset , @Length) }
 | @variable = expression
 | @variable = column = expression [,...n]
 } [,...n]
 [FROM { <table_source> } [,...n]]
 [WHERE { <search_condition>]

The first set of options you know from the SELECT statement. The tablename clause is simply the name of the
table on which to perform the UPDATE. Moving on to the next line of the syntax, you reach the SET clause. It is in this
clause that any updates to a column take place. One or more columns can be updated at any one time, but each
column to be updated must be separated by a comma.

When updating data in a column, there are four choices that can be made. Updates can be achieved through the
following:

A direct value setting•	

A section of a value setting provided that the recipient column is •	 varchar, nvarchar, or
varbinary

The value from a variable•	

A value from another column, even from another table•	

You can even have mathematical functions or variable manipulations included in the right-hand clause; you can
also have concatenated columns or manipulate the contents through STRING, DATE, or any other function. The update
will be successful as long as the result’s left-hand side and right-hand side both have the same data type. As a result,
you cannot place a character value into a numeric data-type field without converting the character to a numeric value.

If you are updating a column with a value from another column, the only value that it is possible to use is the
value from the same row of information in that other column, provided this column has an appropriate data type.
When I say “same row,” remember that when tables are joined together, this means that values from these joined
tables can also be used, as long as they are within the same row of information. Also, the expression could be the
result of a subquery.

Note ■ a subquery is a query that sits inside another query. You look at subqueries in Chapter 16.

Chapter 11 ■ SeleCting and Updating data from diSk-BaSed taBleS

363

The FROM table source clause will define the table(s) being used to find the data with which you will perform the
update on the table that is defined next to the UPDATE statement. Like SELECT statements, it is possible to create JOIN
statements; however, you must define the table you are updating within the FROM clause.

Finally, the WHERE condition is exactly as it is in the SELECT statement, and can be used in exactly the same way.
Note that omitting the WHERE clause will mean the UPDATE statement will affect every row in the table.

Updating Data within Query Editor
To demonstrate the UPDATE statement, the first update to the data will be to change the name of a customer, replicating
when someone changes his or her name due to marriage, for example. This uses the UPDATE statement in its simplest
form, by locating a single record and updating a single column.

trY It OUt: UpDatING a rOW OF Data

1. ensure that Query editor is running and that you are logged in with an account that can
perform updates. in the Query editor pane, enter the following UPDATE statement:

USE ApressFinancial
GO
UPDATE CustomerDetails.Customers
SET LastName = 'Mather'
WHERE CustomerId = 7

2. it is as simple as that! now that the code is entered, execute it, and you should then see a
message like this:

(1 row(s) affected)

3. now enter a SELECT statement to check that Customer id 7 is now anne mather. for your
convenience, here’s the statement, and the results are shown in figure 11-24.

SELECT FirstName + ' ' + LastName
FROM CustomerDetails.Customers
WHERE CustomerId = 7

Figure 11-24. Updating the surname of one customer

4. now here’s a little trick that you should know, if you haven’t stumbled across it already. if you
check out figure 11-25, you will see that the UPDATE code is still in the Query editor pane, as
is the SELECT statement. no, you aren’t going to perform the UPDATE again! if you highlight
the line with the SELECT statement by holding down the left mouse button and dragging the
mouse, then only the highlighted code will run when you execute the code again.

Chapter 11 ■ SeleCting and Updating data from diSk-BaSed taBleS

364

5. Upon executing the highlighted code, you should see only the values returned for the SELECT
statement, as you saw previously, and no results saying that an update has been performed.

Updating Data from a Variable or Another Column

it is also possible to update data using information from another column within the table, or with the value from a
variable. this next example will demonstrate how to update a row of information using the value within a variable,
as well as a column from the same table. notice how although the row will be found using the LastName column,
the UPDATE statement will also update that column with a new value. to define a variable, you have to use the
DECLARE statement, and any variable name needs to start with one @ sign for local variables and two @@ signs for
global variables. a local variable is a variable that has a lifetime of the query that contains it; a global variable has
a lifetime of the query that contains it, as well as any other query while the declaration query is active. You will
see more on these in Chapter 16. enter the following code and then execute it:

SELECT FirstName,LastName,ClearedBalance,UnclearedBalance
FROM CustomerDetails.Customers
WHERE lastname = 'Booth'

DECLARE @ValueToUpdate VARCHAR(30)
SET @ValueToUpdate = 'Prentice'
UPDATE CustomerDetails.Customers
 SET LastName = @ValueToUpdate,
 ClearedBalance = ClearedBalance + UnclearedBalance ,
 UnclearedBalance = 0
 WHERE LastName = 'Booth'

SELECT FirstName,LastName,ClearedBalance,UnclearedBalance
FROM CustomerDetails.Customers
WHERE lastname = 'Prentice'

You should then see the output shown in figure 11-26.

Figure 11-25. How to execute only specific code

Chapter 11 ■ SeleCting and Updating data from diSk-BaSed taBleS

365

Updating a Column with Different Data Types

now let’s move on to updating columns in which the data types don’t match. SQl Server does a pretty good job
when it can to ensure the update occurs, and these following examples will demonstrate how well SQl Server
copes with updating an integer data type with a value in a varchar data type.

1. the first example will demonstrate an instance in which a varchar value will successfully
update a column defined as int. enter the following code:

SELECT FirstName,LastName,ClearedBalance,UnclearedBalance
FROM CustomerDetails.Customers
WHERE lastname = 'Prentice'

DECLARE @ValueToUpdate VARCHAR(30)
SET @ValueToUpdate = '1422.26'
UPDATE CustomerDetails.Customers
 SET ClearedBalance = @ValueToUpdate
 WHERE LastName = 'Prentice'

SELECT FirstName,LastName,ClearedBalance,UnclearedBalance
FROM CustomerDetails.Customers
WHERE lastname = 'Prentice'

2. execute the code; you should see the output shown in figure 11-27, where the
ClearedBalance becomes 1422.26. SQl Server has performed an internal data conversion
(known as an implicit data type conversion) and has come up with a money data type from
the value within varchar, as this is what the column expects, and therefore SQl Server can
successfully update the column.

Figure 11-26. Showing the values of the customer before and after the update

Figure 11-27. Showing the values of the customer before and after the update

Chapter 11 ■ SeleCting and Updating data from diSk-BaSed taBleS

366

3. however, in this next example, the data type that SQl Server will come up with is a numeric data
type. When you try to update an integer-based data type, bigint, with this value, which you can
find in the AddressId column, the UPDATE does not take place. enter the following code:

SELECT FirstName,LastName,ClearedBalance,UnclearedBalance
FROM CustomerDetails.Customers
WHERE lastname = 'Prentice'

DECLARE @ValueToUpdate VARCHAR(30)
SET @ValueToUpdate = 'Invalid'
UPDATE CustomerDetails.Customers
 SET ClearedBalance = @ValueToUpdate
 WHERE LastName = 'Prentice'

SELECT FirstName,LastName,ClearedBalance,UnclearedBalance
FROM CustomerDetails.Customers
WHERE lastname = 'Prentice'

4. now execute the code. notice when you do that SQl Server generates an error message
informing you of the problem. hence, never leave data conversions to SQl Server to perform;
convert the data explicitly. try to get the same data type updating the same data type. You
can look at how to convert data further with the CAST statement in Chapter 16.

(1 row(s) affected)

Msg 235, Level 16, State 0, Line 7

Cannot convert a char value to money. The char value has incorrect syntax.

Updating data can be very straightforward, as the preceding examples have demonstrated. Where at all possible,
use a unique identifier—for example, the CustomerId—when trying to find a customer, rather than a name.
there can be multiple rows for the same name or other type of criteria, but by using a unique identifier, you can
be sure of using the right record every time. to place this in a production scenario, say you had a Windows-based
graphical system that allowed you to find details of customers by their name, address, or account number. once
you found the right customer, instead of keeping those details in order to find other related rows, you would keep
a record of the unique identifier value instead.

Let us now return to the UPDATE statement and how it works. First of all, SQL Server will filter out from the table
the first row that meets the criteria of the WHERE statement. The data modifications are then made, and SQL Server
moves on to try to find the second row that matches the WHERE statement. This process is repeated until all the rows
that meet the WHERE condition are modified. Therefore, if using a unique identifier, SQL Server will update only one
row, but if the WHERE statement looks for rows that have a LastName of Dewson, multiple rows could be updated (Robin
and Julie). Thus, choose your row selection criteria for updates carefully.

But what if you didn’t want the update to occur immediately? There will be times when you will want to perform
an update and then check that the update is correct before finally committing the changes to the table. Or when doing
the update, you’ll want to check for errors or unexpected data updates. This is where transactions come in, and these
are covered next.

Chapter 11 ■ SeleCting and Updating data from diSk-BaSed taBleS

367

Updating Data: Using Transactions
Now, what if, in the first update query of this chapter, you made a mistake or an error occurred? For example,
say you chose the wrong customer or, even worse, omitted the WHERE statement, and therefore all the rows were
updated. These are unusual but not uncommon errors. More common errors could result when more than one data
modification has to take place successfully, and the first one succeeds but a subsequent modification fails. By using a
transaction, you would have had the chance to easily correct any mistakes, and could then revert to a consistent state.
Of course, this next example is nice and simple, but by working through it, the subject of transactions will hopefully
become a little easier to understand and appreciate.

trY It OUt: USING a traNSaCtION

1. make sure Query editor is running for this first example, which will demonstrate COMMIT
TRAN in action. there should be no difference from an UPDATE without any transaction
processing, as it will execute and update the data successfully. however, this should prove
to be a valuable exercise, as it will also demonstrate how to name a transaction. enter the
following code:

SELECT 'Before',ShareId, Description,CurrentPrice
 FROM ShareDetails.Shares
 WHERE ShareId = 3
BEGIN TRAN ShareUpd
UPDATE ShareDetails.Shares
 SET CurrentPrice = CurrentPrice * 1.1
 WHERE ShareId = 3
SELECT 'During',ShareId, Description,CurrentPrice
 FROM ShareDetails.Shares
 WHERE ShareId = 3
ROLLBACK TRAN
SELECT 'After',ShareId, Description,CurrentPrice
 FROM ShareDetails.Shares
 WHERE ShareId = 3

2. notice in the preceding code that ROLLBACK TRAN does not use the name associated with
BEGIN TRAN. the label after BEGIN TRAN is simply that, a label, and it performs no function.
it is therefore not necessary to then link up with a similarly labeled ROLLBACK TRAN.

3. execute the code. figure 11-28 shows the results, which list out the Shares table before and
after the update within the transaction, as well as the value after the rollback, to show that
the data change has not been committed to the table. this is a straightforward test of your
code before update.

Chapter 11 ■ SeleCting and Updating data from diSk-BaSed taBleS

368

4. however, if instead your code was as shown below, where within the UPDATE statement you
forgot the ShareId filter in the WHERE expression, commented out with two dashes (–), you
can see how building your code in a transaction with a ROLLBACK becomes important and
would help you to avoid a potentially catastrophic error.

SELECT 'Before',ShareId,Description,CurrentPrice
 FROM ShareDetails.Shares
 WHERE ShareId = 3
BEGIN TRAN ShareUpd
UPDATE ShareDetails.Shares
 SET CurrentPrice = CurrentPrice * 1.1
-- WHERE ShareId = 3
SELECT 'Within the transaction',ShareId,Description,CurrentPrice
 FROM ShareDetails.Shares
ROLLBACK TRAN
SELECT 'After',ShareId,Description,CurrentPrice
 FROM ShareDetails.Shares
 WHERE ShareId = 3

one final point to note: in Chapter 10, i said, “in reality, minimal data are logged about what data pages have been
deallocated and therefore removed from the database.” this was followed by the cautionary note that there was
no going back on a TRUNCATE outside of a transaction. however, there is the ability to roll back a TRUNCATE within a
transaction. a TRUNCATE indicates within the transaction log the data pages that are to be deallocated within SQl Server.
however, the deallocation has not happened and will not happen until the end of the transaction. therefore, if you have a
TRUNCATE TABLE command within a transaction, by issuing a ROLLBACK you can roll back a table truncation.

Nested Transactions
Let’s look at one last example before moving on. It is possible to nest transactions inside one another. I touch on this
enough for you to have a good understanding of nested transactions, but this is not complete coverage, as it can get
very complex and messy if you involve save points, stored procedures, triggers, and so on. However, I believe that
you have now covered a good amount of the T-SQL syntax, and it is at this point in the book that nested transactions
become relevant. As a developer, you will find that you will have to work with nested transactions, but always keep
in mind that, whether it is a nested transaction or a single transaction, you should keep the amount of time that
the transaction is active to as short a period as possible, and you should update tables in the same order in all
transactions. The aim of this section is to give you an understanding of the basic but crucial points of how nesting
transactions work.

Figure 11-28. Updating with a transaction label and a ROLLBACK TRAN

Chapter 11 ■ SeleCting and Updating data from diSk-BaSed taBleS

369

Nested transactions can occur in a number of different scenarios. For example, you could have a transaction in
one set of code in a stored procedure, which calls a second stored procedure that also has a transaction. You will look
at a simpler scenario in which you keep the transactions in just one set of code.

What you need to be clear about is how the ROLLBACK and COMMIT TRAN statements work in a nested transaction.
First of all, let’s see what I mean by nesting a simple transaction. The syntax is shown here, and you can see that two
BEGIN TRAN statements occur before you get to a COMMIT or a ROLLBACK:

BEGIN TRAN
 Statements
 BEGIN TRAN
 Statements
 COMMIT|ROLLBACK TRAN
COMMIT|ROLLBACK TRAN

As each transaction commences, SQL Server increments a running count of transactions it holds in a system
variable called @@TRANCOUNT. Therefore, as each BEGIN TRAN is executed, @@TRANCOUNT increases by 1. As each COMMIT
TRAN is executed, @@TRANCOUNT decreases by 1. It is not until @@TRANCOUNT is at a value of 1 that you can actually
commit the data to the database. The code that follows might help you to understand this a bit more.

Enter and execute this code, and take a look at the output, which should resemble Figure 11-29. The first BEGIN TRAN
increases @@TRANCOUNT by 1, as does the second BEGIN TRAN. The first COMMIT TRAN marks the changes to be committed, but
does not actually perform the changes because @@TRANCOUNT is 2. It simply creates the correct BEGIN/COMMIT TRAN nesting
and reduces @@TRANCOUNT by 1. The second COMMIT TRAN will succeed and will commit the data, as @@TRANCOUNT is now 1.

BEGIN TRAN ShareUpd
 SELECT '1st TranCount',@@TRANCOUNT
 BEGIN TRAN ShareUpd2
 SELECT '2nd TranCount',@@TRANCOUNT
 COMMIT TRAN ShareUpd2
 SELECT '3rd TranCount',@@TRANCOUNT
COMMIT TRAN -- It is at this point that data modifications will be committed
SELECT 'Last TranCount',@@TRANCOUNT

Note ■ after the last COMMIT TRAN, @@TRANCOUNT is at 0. any further instances of COMMIT TRAN or ROLLBACK TRAN will
generate an error.

Figure 11-29. Showing the @@TRANCOUNT

Chapter 11 ■ SeleCting and Updating data from diSk-BaSed taBleS

370

If within the code there is a ROLLBACK TRAN, then the data will immediately be rolled back no matter where
you are within the nesting, and @@TRANCOUNT will be set to 0. Therefore, any further ROLLBACK TRAN or COMMIT TRAN
instances will fail, so you do need to have error handling, which you will look at in Chapter 16

Try to avoid nesting transactions where possible, especially when one stored procedure calls another stored
procedure within a transaction. It is not “wrong,” but it does require a great deal of care.

Now that updating data has been completed, the only area of data manipulation left is row deletion, which you
will look at now.

Using More Than One Table
The SELECT, UPDATE, and DELETE statements have dealt with and covered only the retrieval of data from one table.
However, it is possible to have more than one table being used to retrieve data; you must keep in mind that the more
tables included in the query, the more detrimental the effect on the query’s performance. However, it is sometimes
faster to build one query that joins to more than one table than to have several “one table” statements. If you are
joining tables using an index, you will usually be fine as long as you do not have too many joins. A good rule of thumb
is that as long as you are joining tables together using an index, until you start to have many joins, you should be okay.
At all times, though, you should review your T-SQL. There is an aid called a query plan that you saw in Chapter 6 and
will see in Chapter 17. I would like to cover a bit more about other areas before I take you through a couple of basic
query plans.

When you include subsequent tables, there must be a link of some sort between the two tables, known as a join.
A join will take place between at least one column in one table and a column from the joining table. The columns
involved in the join do not have to be included in any key within the tables involved in the join. However, this is quite
uncommon, and if you do find you are joining tables, then there is a high chance that a relationship exists between
them, which would mean you do require a primary key and a foreign key. This was covered in Chapter 3.

It is possible that one of the columns on one side of the join is actually a concatenation of two or more columns.
As long as the end result is one column, this is acceptable. Also, the two columns that are being joined do not have to
have the same name, as long as they both have similar data types. For example, you can join a char with a varchar.
What is not acceptable is that one side of the JOIN names a column and the other side names a variable or a literal that
is really a filter that would be found in a WHERE statement. For example, you would not join LastName to Dewson.

Joining two tables together can be relatively straightforward, but it can also become quite complicated. Let’s
consider the various types of joins:

•	 INNER JOIN: The most basic join condition is a straight join between two tables, which is
called an INNER JOIN. An INNER JOIN joins the two tables, and where there is a join of data
using the columns from each of the two tables, then the data are returned. For example, if you
are joining two tables on the share ID, and there is a share in the shares table that has no price,
then you would see output only where there is a share with a share price. The share without a
price would not be returned. You will see this in action in this chapter.

•	 OUTER JOIN: It is possible to return all the rows from one table where there is no join. This is
known as an OUTER JOIN. Depending on which table you want the rows always to be returned
from, this will be either a LEFT OUTER JOIN or a RIGHT OUTER JOIN. Taking the shares
example, you could use an OUTER JOIN so that even when there is no share price, you can still
list the share. This example will also be demonstrated later in this chapter.

•	 CROSS JOIN: The final type of join is the scariest and most dangerous join. If you wish for every
row in one table to be joined with every row in the joining table, then you would use a CROSS
JOIN. So, if you had 10 rows in one table and 12 rows in the other table, you would see returned
120 rows of data (10×12). As you can imagine, this type of join just needs two small tables to
produce even a large amount of output.

Chapter 11 ■ SeleCting and Updating data from diSk-BaSed taBleS

371

You might hear of one further join called a self join. This uses one of the foregoing techniques, but the join would
be between two elements of the same table. This occurs when there is some reference identifier in a table that can be
used to find another row in the same table, such as an ID called a parent ID.

Although not the most helpful of syntax demonstrated within the book, the syntax for joining two tables is as
follows:

FROM tablea
 [FULL[INNER|OUTER|CROSS]] JOIN tableb
{ON tableb.column1 = tablea.column2 {AND|OR tableb.column...}}

The best way to look at the syntax is within a described example. I will use two tables to demonstrate the inner
join in this example: ShareDetails.Shares and ShareDetails.SharePrices.

Joining two tables could not be simpler. All the columns in both tables are available to be returned through the
query, so I can list the columns desired as normal. However, if there are two columns of the same name, they must be
prefixed with the name, or the alias name, of the table from which the information is derived.

Note ■ it is recommended that whenever a join does take place, regardless of whether the column name is unique, all
columns be prefixed with the table or alias name. this saves time if the query is expanded to include other tables, but it
also clarifies exactly where the information is coming from.

trY It OUt: JOINING tWO taBLeS

1. the first join you will look at is the INNER JOIN. this is where you have two tables and want
to list all the values where there is a join. in this case, you want to list all the shares where
there is a share price, and you want to see every share price for that share. notice that
you don’t need to define the word INNER. this is presumed if nothing else is specified. also
take note that, like with columns, you have defined aliases for the table names. this makes
prefixing columns easier. You are joining the two tables on ShareId, as this is the linking
column between the two tables. enter the following code:

SELECT s.ShareId, s.Description,sp.Price,sp.PriceDate
 FROM ShareDetails.Shares s
 JOIN ShareDetails.SharePrices sp ON sp.ShareId = s.ShareId
 WHERE s.ShareId < 8
 AND sp.PriceDate BETWEEN '1 Jan 2012' AND '3 Jan 2012'

2. once you have executed the code, you should see the output that appears in figure 11-30.
there is no output for ShareIds 4 and 6 as they have no share price between the dates
specified in the WHERE.

Chapter 11 ■ SeleCting and Updating data from diSk-BaSed taBleS

372

3. You can take this a stage further and filter the rows to list only the share price row that
matches the CurrentPrice in the ShareDetails.Shares table. this could be done by
filtering the data on a WHERE statement, and from a performance perspective it would be
better, as neither of these columns are within an index and there could be a large number of
rows for ShareDetails.SharePrices for each share as time goes on; for this example, it
demonstrates how to add a second column for the join.

SELECT s.Description,sp.Price,sp.PriceDate
 FROM ShareDetails.Shares s
 JOIN ShareDetails.SharePrices sp ON sp.ShareId = s.ShareId
 AND sp.Price < s.CurrentPrice
WHERE s.ShareId < 8
 AND sp.PriceDate BETWEEN '1 Jan 2012' AND '3 Jan 2012'

4. execute the preceding code, which returns the rows shown in figure 11-31. as you can see,
an INNER JOIN is very straightforward.

5. You can combine more than one table using multiple joins and with a mixture of join types.
in the next example, a request has been made where, for each customer, all transactions
that involved a share and the current price for that share are returned. this involves joining
the CustomerDetails.Customers table to the TransactionDetails.Transactions table,
and then joining with the ShareDetails.Shares table. from the customer table, you will
retrieve the first and last names of the customer; you will retrieve the transaction id and the
transaction total amount from the transaction details table, and finally the share description
and the current share price from the shares table. enter the query details here, execute, and
you should see the results, as shown in figure 11-32.

Figure 11-30. First inner join

Figure 11-31. Inner join with multiple join columns

Chapter 11 ■ SeleCting and Updating data from diSk-BaSed taBleS

373

SELECT c.FirstName,c.LastName,t.TransactionId,t.Amount,
 s.ShareId,s.Description, s.CurrentPrice
 FROM CustomerDetails.Customers c
 JOIN TransactionDetails.Transactions t ON t.CustomerId = c.CustomerId
 JOIN ShareDetails.Shares s ON s.ShareId = t.RelatedShareId
 JOIN ShareDetails.SharePrices sp ON sp.ShareId = s.ShareId
 WHERE s.ShareId < 8
 AND sp.PriceDate BETWEEN '1 Jan 2012' AND '3 Jan 2012'

Joining Tables with an Outer Join

the next join to look at is an OUTER JOIN—more specifically, a LEFT OUTER JOIN. in this instance, i want to
return all the rows in the left table, regardless of whether there is any data in the right table. the left table in this
case is the ShareDetails.Shares table, as it is the left named table of the two i am concerned with.

1. enter the following code:

SELECT s.ShareId,s.Description,sp.Price,sp.PriceDate
 FROM ShareDetails.Shares s
 LEFT OUTER JOIN ShareDetails.SharePrices sp ON sp.ShareId = s.ShareId
 WHERE sp.PriceDate IS NULL

2. once you execute this code, you should see the “missing share,” as shown in figure 11-33.
Where no data exist in the ShareDetails.SharePrices table, the values are displayed as
NULL.

Figure 11-32. Multiple table join

Figure 11-33. Left outer join

Chapter 11 ■ SeleCting and Updating data from diSk-BaSed taBleS

374

3. Similar to the earlier multiple table join, you can mix in another type of join. in the code here,
you will see the code from the INNER JOIN example, but you also need to know where the
share price is not being updated. this can be found by completing a LEFT OUTER JOIN on the
ShareDetails.SharePrices, but listing only where the SharePrice was NULL. a NULL value
from the LEFT OUTER JOIN will show that there is no SharePrice row, and therefore it will
be evident that the system is possibly not collecting share prices. this is something that, as a
business owner, you would need to be rectified so that you could provide the customers with
an up-to-date valuation. enter the following code:

SELECT c.FirstName,c.LastName,t.TransactionId,t.Amount,
 s.ShareId,s.Description, s.CurrentPrice,
 sp.Price
 FROM CustomerDetails.Customers c
 JOIN TransactionDetails.Transactions t
 ON t.CustomerId = c.CustomerId
 JOIN ShareDetails.Shares s
 ON s.ShareId = t.RelatedShareId
 LEFT OUTER JOIN ShareDetails.SharePrices sp
 ON sp.ShareId = s.ShareId
 WHERE sp.Price IS NULL

4. execute the code, and you will see that there are only 13 rows returned, as shown in
figure 11-34.

the next example is a RIGHT OUTER JOIN. here i expect the table on the right to return rows where there are
no entries on the table in the left. in the example, such a scenario does not exist, as it would break referential
integrity; however, i can swap the tables around, which shows the same results as the first LEFT OUTER JOIN
example. take note that you don’t have to alter the column order after the ON, as it is the table definition that
defines the left and right tables.

Figure 11-34. Multiple joins with a left outer showing a NULL price

Chapter 11 ■ SeleCting and Updating data from diSk-BaSed taBleS

375

5. enter the following code:

SELECT s.Description,sp.Price,sp.PriceDate
 FROM ShareDetails.SharePrices sp
 RIGHT OUTER JOIN ShareDetails.Shares s ON sp.ShareId = s.ShareId
WHERE sp.PriceDate BETWEEN '1 Jan 2012' and '3 Jan 2012'

6. executing this code gives you the results shown in figure 11-35.

if you want a LEFT OUTER JOIN and a RIGHT OUTER JOIN to be available at the same time, then you need to
choose the FULL OUTER JOIN. this returns rows from both the left and right tables if there are no matching rows
in the other table. So, to clarify, if there is a row in the left table but no match in the right table, the row from the
left table will be returned with NULL values in the columns from the right table, and vice versa. this time you are
going to break referential integrity and insert a share price with no share. You will then delete the row to keep
referential integrity intact.

7. enter the following code:

SELECT s.Description,sp.Price,sp.PriceDate
 FROM ShareDetails.SharePrices sp
 FULL OUTER JOIN ShareDetails.Shares s ON sp.ShareId = s.ShareId
 WHERE s.Description IS NULL
 OR sp.Price IS NULL

Figure 11-35. Right outer join

Chapter 11 ■ SeleCting and Updating data from diSk-BaSed taBleS

376

8. once the preceding code has been executed, you will see the results that appear in
figure 11-36. notice that you have a row from the ShareDetails.Shares table when there
is no share price, and vice versa.

Working with a CROSS JOIN

the final demonstration is with a CROSS JOIN. this is a Cartesian join between the ShareDetails.Shares and
ShareDetails.SharePrices tables. a CROSS JOIN cannot have any filtering on it; therefore, it cannot include
a WHERE statement. as you are joining every row with every row, there is no need to provide an ON statement,
because there is no specific row-on-row join. due to the vast amount of data, to make it easier for you to scroll
through i have put a TOP 4000 clause in the query and ordered the results by ShareId and SharePriceId. this
will then allow you to see that for every SharePrice there are 1,000 share rows.

1. enter the following code:

SELECT TOP 100 s.ShareId,sp.SharePriceId,
s.Description,sp.Price,sp.PriceDate
 FROM ShareDetails.SharePrices sp
 CROSS JOIN ShareDetails.Shares s
WHERE sp.PriceDate BETWEEN '1 Jan 2012' and '3 Jan 2012'
ORDER BY ShareId,SharePriceId

Figure 11-37. Cross join

Figure 11-36. Full outer join

Chapter 11 ■ SeleCting and Updating data from diSk-BaSed taBleS

377

2. the preceding code, when executed, generates a large amount of output. figure 11-37
shows only a snippet of the output.

it will be rare that you write a CROSS JOIN, and, given the dangerous nature of these joins, you should restrict the
number of rows returned where possible. You should also ensure testing of any CROSS JOIN is completed on a
test database prior to running against a production database instance.

Summary
This chapter has taken a look at how to retrieve data on a set of tables in the simplest form. Later in this book you will
return to retrieving data with more complex language as well as work with data from more than one table within the
single query. You should also be comfortable with getting information from tables using different searching, filtering,
and ordering criteria.

Updating data can go wrong, and does, especially when you are working in a live environment and you wish
to update data that is in flux. In such a scenario, getting the correct rows of information to update and then actually
updating them is akin to a fine art.

Therefore, surrounding any of your work with a transaction will prevent any costly and potentially irreversible
mistakes from taking place, so always surround data modifications or deletions with a transaction. With data inserts, it
is not quite so critical that you surround your work with a transaction, although it is still recommended. For example,
if you are inserting data within a test environment and the data insertion is easily removed if you have part of the
insertion wrong, then perhaps it’s not overly critical to use a transaction. However, to be safe, really and truly, I still
recommend that you use a transaction.

Updating columns within a table is very straightforward. As long as the data type defined for the column being
updated is the same as, or is compatible with, the data type of the column, variable, or static value that is being used
to update this column, then you will have no problem. For example, you can update a varchar column with char data
type values. However, it is not possible to update an integer column with a varchar value that has a noninteger value
without converting the varchar value to an integer. But don’t be fooled, you can update a varchar with an integer or
numeric data type.

Finally you saw how to join two or more tables and the different methods you can use to achieve the desired
results. Joining tables will become a staple of your coding diet, and, although only SELECT statements were
demonstrated with joins, you can use the same techniques for DELETE and UPDATE. For these statements, you would
use the joins to either create the ability to filter the data or to return values for updating the data. You will see more
about joins throughout this book.

So, where can you go from here? The next chapter will look at views of data.

379

Chapter 12

Working with In-Memory Tables

In Chapter 7 you were introduced to how to build an in-memory table and the choice of either using schema-only
storage or also storing the data on disk. The aim of this chapter is to move forward and look at how to work with that
data outside of stored procedures, as well as at the performance improvements in-memory-based data can provide.
You will also see how in-memory tables use a concurrency model that tries to ensure that processes work as quickly as
possible. You’ll look at the overheads this model provides and compare it to a model that locks data so that only one
process can work with a row of data. You will also look at how to merge data from a source location to a target location.

In this chapter you will be looking at

The •	 INSERT, UPDATE, DELETE, and SELECT statements

Locking of data within tables for disk-based and in-memory-based tables•	

What happens when two processes try to modify the same row of data•	

The five different types of isolation levels and how data being modified is read in each type•	

Speed comparison between disk-based, •	 SCHEMA_AND_DATA, and SCHEMA_ONLY tables

How to merge data from a source table in to a target table•	

Unsupported functionality•	

Now it’s time to get started and look at DML-based statements.

INSERT, UPDATE, DELETE, and SELECT Statements
The most efficient way to work with in-memory tables is to execute natively compiled code. Natively compiled code is
found in stored procedures that only access in-memory tables, and you will see this in action in Chapter 15. However,
you can still access in-memory tables using ad-hoc T-SQL statements, which will have the benefits that come from
holding the data within memory along with other in-memory table benefits. Ad-hoc T-SQL statements are INSERT,
UPDATE, DELETE, and SELECT DML statements executed within a query editor within SSMS; DML statements executed
from code within a program such as .NET, Java, or Excel; or any DML statements executed within tools such as SQL
Server Integration Services, to name a few examples of where DML can reside.

It is possible to execute T-SQL statements that are defined to execute against both in-memory and disk-based
tables in just one statement, although performance will be impacted to match that of the slowest component.
In other words, if the data from the disk-based table has to be read from disk, as it is not being read for data retained
in memory, then performance will be impacted while reading the data from disk. Similarly, when writing data, if the
data is disk based, this will be the slowest component. There is a caveat for in-memory tables though. If you have a
SCHEMA_AND_DATA-based in-memory table that is being modified, then any data modification will have a performance
gain resulting from the difference in locking from a disk-based table. However, there will still be disk I/O involved, as
the data will be saved to disk. SCHEMA_ONLY-based tables will be the fastest tables for data modifications, as there is no
disk element for writing to disk, although there would be transaction-log I/O for both types of in-memory tables.

Chapter 12 ■ Working With in-MeMory tables

380

I will come back to this subject shortly, but before I can demonstrate any speed differences and more on how you
interact with in-memory tables, it is necessary to discuss locking and isolation levels.

Locking and Isolation Levels
It is necessary for a developer to know how their code interacts with data and the database when other code that is
also interacting is executing. You need to know what will happen when one process is writing data while another is
reading or writing data within the same table. It is also necessary to know if one process is going to wait for another
process to complete some or all of its task. For example, if you have a process reading from the CustomerDetails.
Customers table and another process altering rows within that table, you need to know what your process is going to
do. Will it read the updated data? Will it wait until the process altering the data completes? These questions can be
answered based on the isolation level used. One question that cannot be answered is whether a locked transaction
will time out and fail, as that will come from a parameter called querytimeout.

By default SQL Server adopts a pessimistic locking model for disk-based tables. What this means is that processes
writing data will stop (block) processes reading data, and processes reading data will block processes writing data.
This may sound very restrictive, and you are probably wondering how you can have many processes running at the
same time against data, but it works well and has advantages over optimistic locking, which will be discussed in a
moment. Pessimistic locks should be held by your code for a very short period of time for several reasons, from fast
and efficient processes acquiring and releasing locks through to processes waiting for that lock to be released. To put
this sentence into practice, when working with data you need to make your code as efficient as possible while working
with the data in as minimal and speed-efficient a manner as you can. You achieve this by writing queries that identify
the rows of data to work with as quickly as possible through joins and WHERE clauses and through the use of indexes.
Achieving efficient code comes through knowledge and practice.

Pessimistic locking does mean that the data you start your process with can be guaranteed to be what is expected
at the end; you know that another process has not altered the expected result while your process is running (unless
you specifically tell your query or session that you wish to work with modified data, which you can do and will see
within the chapter). While locks are acquired and released and other processes wait on the locks being released,
delays and performance issues result.

In-memory tables take a different approach and adopt an optimistic locking model, which means that locks are
almost non-existent and really only exist when writing to the transaction log. An optimistic locking model achieves
the ACID consistency via a technique called row versioning, which I mentioned in Chapter 7. This technique is where
every modification creates a new version of a row, and the previous versions are also kept as part of the table data.
This allows for reads to happen to a row of data even if another transaction is modifying the same row, as the read
operation will be able to take the data from the correctly timestamped committed version of the row. So, by using
optimistic locking, also known as optimistic concurrency, read operations will be faster.

Writing operations are also not required to wait for an exclusive (X) lock on the row, page, or table of data as the
writing operation is simply creating a new row version. However, if you have two transactions trying to modify the
same row, SQL Server will roll back all but one of transactions so that one update succeeds. Figure 12-1 demonstrates
a flow update of a table’s row versioning and adds perspective to the discussion. Table A starts with 1 row and
therefore is known as version 1. An UPDATE then occurs, generating row version 2. Three simultaneous transactions try
to access Row 1 at the same time. All three transactions will read Row 1 and retrieve that data. However, only one will
succeed with its update. Although the figure demonstrates the first transaction as being the successful transaction and
generating row version 3, it could be any of the transactions. SQL Server decides which are the best processes to kill
based on information about the transactions.

Chapter 12 ■ Working With in-MeMory tables

381

You are therefore wondering why optimistic concurrency is not used in all scenarios with the locking benefits.
The overhead with optimistic concurrency is the requirement to hold the row versions, as well as a higher risk—albeit
that risk could be rare—of modification failures. If you have highly modified data through UPDATEs to the same row
then there will be a number of versions held. Each version not only requires storage in either disk or within memory
but there is also an overhead when reading optimistic data, as searches will also include looking at the row versions.

Note ■ For in-memory tables, when there are 16 row versions (known as deltas), and when the 17th delta is to be
added, data is consolidated and to reduce the number of deltas, therefore reducing the required space.

Figure 12-1. Optimistic row versioning with multiple transactions

Chapter 12 ■ Working With in-MeMory tables

382

Before I take you through the isolation levels there are three terms you need to understand:

Dirty read: If you have a transaction that executes an •	 UPDATE and then a SELECT is executed
within the same transaction—or in another transaction that will read the row that has been
updated—the SELECT will read the updated value.

Non-repeatable read: When the same or a separate transaction performs a •	 DELETE, INSERT,
or UPDATE that alters a row to then be included in your SELECT’s WHERE criteria, the initial read
cannot be exactly repeated.

Phantom read: If a transaction performs an •	 INSERT and then the same transaction performs
a SELECT, the SELECT will include the inserted row.

There are five isolation levels that can either exist permanently for a database or be altered during a session or via
locking hints during the execution of a statement. Isolation levels implement different combinations of the three read
levels just described. In-memory tables cannot implement the READ UNCOMMITTED isolation level.

To define a session transaction level you would use the following command followed by one of the following
options. You can define transaction levels for tables via a table hint, which you will see in the try it out section:

SET TRANSACTION ISOLATION LEVEL

•	 READ UNCOMMITTED – Can read any data, and will read data that is being modified or inserted
within a transaction in another process via dirty reads. Non-repeatable and phantom reads
will also occur.

•	 READ COMMITTED – SQL Server default. There will be no dirty reads. Depending on a database-
level setting concerning snapshot isolation (which cannot be altered for a statement, session, or
locking hint), determines how non-repeatable and phantom reads are implemented.

•	 READ_COMMITTED_SNAPSHOT – OFF (Default) – Locks are used to lock the data

•	 READ_COMMITTED_SNAPSHOT – ON – Row versions are used

•	 REPEATABLE READ – Any data read within a transaction will be locked until the transaction
completes, therefore preventing any other transaction from reading or modifying that data.
Data can be inserted by other transactions, resulting in phantom reads. Non-repeatable reads
will not occur.

•	 SNAPSHOT – No dirty, non-repeatable, or phantom reads. Data modified within a transaction will
be read as it was stored prior to the transaction committing. This isolation level, in essence, takes
a logical snapshot of the tables prior to execution at the start of each transaction.

•	 SERIALIZABLE – Rarely used. No dirty, non-repeatable, or phantom reads are allowed. Within a
transaction, at the start, the data that will be used within the transaction will be locked so that
no other transaction can access or modify the data until it completes.

In-memory tables can have only three of these transaction levels due to optimistic concurrency—repeatable
read, snapshot, and serializable—although all three will guarantee the read committed snapshot isolation level. This
means that when working with in-memory tables only the rows that existed at the time the transaction started will be
available to be read. If you only require when working with in-memory tables that you don’t need repeatable reads
or phantom reads, then when available use SNAPSHOT isolation. SNAPSHOT isolation is less resource intensive and
therefore will aid performance.

Taking you back for a moment to the first section in this chapter concerning DML statements and in-memory
tables, it is necessary when working with in-memory tables to define a table-locking hint within the query. This
requirement means that when defining a table L you have to suffix the definition with a WITH (locking_hint), such
as WITH (SNAPSHOT).

Chapter 12 ■ Working With in-MeMory tables

383

Now that you have an overview of how concurrency works with transaction levels in SQL Server, it’s time to see
them in action with the TransactionDetails.Transactions in-memory table.

trY It OUt: ISOLatION LeVeLS

1. open up two Query editor windows and ensure they are connected to the apressFinancial
database. each query window will have a transaction, and when executing the following code
you will be running part of the transaction.

2. in the first query window enter the following code and execute. This will keep an open
transaction and should NOT be done except in controlled circumstances, and definitely
should not be done in production.

SET TRANSACTION ISOLATION LEVEL READ COMMITTED
GO
begin tran
-- will return 48033.07880
SELECT CustomerId, TransactionId, Amount
 FROM TransactionDetails.Transactions
 WITH (SNAPSHOT)
 WHERE CustomerId = 1
 AND TransactionId = 836

UPDATE TransactionDetails.Transactions WITH (SNAPSHOT)
 SET Amount = 234.56
 WHERE CustomerId = 1
 AND TransactionId = 836

-- will return 234.56
SELECT CustomerId, TransactionId, Amount
 FROM TransactionDetails.Transactions
 WITH (SNAPSHOT)
 WHERE CustomerId = 1
 AND TransactionId = 836

3. you should see an output of two results as shown in Figure 12-2. Within this transaction the
value has been altered.

Figure 12-2. Transaction 1 showing the update in-flight

Chapter 12 ■ Working With in-MeMory tables

384

4. in the second query window enter the following code. this will return the non-dirty,
repeatable, non-phantom row.

-- will return 48033.07880
SELECT CustomerId, TransactionId, Amount
 FROM TransactionDetails.Transactions
 WITH (SNAPSHOT)
 WHERE CustomerId = 1
 AND TransactionId = 836

5. once the code is executed, you should see the original value, as shown in Figure 12-3.

Figure 12-3. The original row-version value

6. now complete the first transaction and perform a rollback, checking that the value is
back as it was.

rollback tran
-- will return 48033.07880
SELECT CustomerId, TransactionId, Amount
 FROM TransactionDetails.Transactions
 WITH (SNAPSHOT)
 WHERE CustomerId = 1
 AND TransactionId = 836

7. now, to demonstrate that SNAPSHOT will not read any phantom rows, alter the UPDATE query
to be an INSERT. enter all the code but don’t execute any at this point. you will need two
query windows.

8. the first query will look for the inserted row.

9. the second query will insert the row and demonstrate its existence.

10. in the first query, execute up to the comment STOP HERE.

SET TRANSACTION ISOLATION LEVEL READ COMMITTED
GO
begin tran
-- will return no row
SELECT CustomerId, TransactionId, Amount
 FROM TransactionDetails.Transactions
 WITH (SNAPSHOT)
 WHERE CustomerId = 1
 AND Amount = 101.32

-- STOP HERE
-- STOP HERE

Chapter 12 ■ Working With in-MeMory tables

385

11. now execute the second query up to the comment STOP HERE. this will show that the row
doesn’t exist; it will then INSERT the row and show that the row now exists. the output will
be shown in Figure 12-4.

SET TRANSACTION ISOLATION LEVEL READ COMMITTED
GO
begin tran

INSERT INTO TransactionDetails.Transactions
(CustomerId, TransactionType, DateEntered, Amount,RelatedProductId)
VALUES(1,1,GETDATE(),101.32,1)

SELECT CustomerId, TransactionId, Amount
 FROM TransactionDetails.Transactions
 WITH (SNAPSHOT)
 WHERE CustomerId = 1
 AND Amount = 101.32

-- STOP HERE
-- STOP HERE

Figure 12-4. The row has been inserted and is showing in transaction 2

12. now return to the first query and run the SELECT statement again. because the transaction
has started, and because for in-memory tables READ COMMITTED means READ COMMITTED
SNAPSHOT (and therefore there is no locking), the row will still not be showing.

-- will return no row
SELECT CustomerId, TransactionId, Amount
 FROM TransactionDetails.Transactions
 WITH (SNAPSHOT)
 WHERE CustomerId = 1
 AND Amount = 101.32

ROLLBACK TRAN

Chapter 12 ■ Working With in-MeMory tables

386

13. Finally, in the second transaction complete the code with a ROLLBACK TRAN.

rollback tran

you can change the example to execute against the disk-based TransactionDetails.Transactions_old table.
What you will find is that in the first query with the UPDATE statement, the query performs the SELECT when
the UPDATE transaction is still in flight. When you reach step 4, this query will hang until you receive a query
timeout, until you cancel the query, or until you perform a ROLLBACK TRAN or COMMIT TRAN in the first query. this
demonstrates the difference between optimistic and pessimistic locking, as the database for disk based will be
defined as a default of READ COMMITTED SNAPSHOT OFF.

you will see more on isolation levels in Chapter 15, when you will see in-memory stored procedures
demonstrated. i mentioned that i would take a look at performance differences between in-memory and disk-
based tables. in the following example, it is an unscientific but useful method that demonstrates the speed
differences between disk-based and in-memory operations. i say unscientific as this is a very clean situation with
only one process running on very small amounts of data and no contention.

the example takes the in-memory and disk-based tables TransactionDetails.Transactions and
TransactionDetails.Transactions_old and creates three new clean and empty tables. one is in-memory
SCHEMA_ONLY, one is in-memory SCHEMA_AND_DATA, and one is disk based. the indexes differ for this example
from the original table definitions because of the speed of inserts; due to the speed that row inserts will occur
you cannot get uniqueness on the date and time easily. otherwise the table definitions are the same. the main
point to note in the following example is the speed differences between SCHEMA_ONLY and the other two tables. i
would like to demonstrate before i discuss the results.

trY It OUt: SpeeD teSt OF taBLeS

1. First of all, create the three tables and indexes. enter the code and execute.

CREATE TABLE [TransactionDetails].[Transactions_SCHEMAONLY]
(
 [TransactionId] [int] IDENTITY(1,1) NOT NULL,
 [CustomerId] [int] NOT NULL,
 [TransactionType] [smallint] NOT NULL,
 [DateEntered] [datetime] NOT NULL,
 [Amount] [numeric](18, 5) NOT NULL,
 [ReferenceDetails] [nvarchar](50)
 COLLATE Latin1_General_CI_AS NULL,
 [Notes] [varchar](4000) COLLATE Latin1_General_CI_AS NULL,
 [RelatedShareId] [int] NULL,
 [RelatedProductId] [int] NOT NULL,
 CONSTRAINT [TransactionsSCHEMAONLY_primaryKey]
 PRIMARY KEY NONCLUSTERED
(
 [TransactionId] ASC
)

Chapter 12 ■ Working With in-MeMory tables

387

) WITH (MEMORY_OPTIMIZED = ON , DURABILITY = SCHEMA_ONLY)
GO
CREATE TABLE [TransactionDetails].[Transactions_SCHEMADATA]
(
 [TransactionId] [int] IDENTITY(1,1) NOT NULL,
 [CustomerId] [int] NOT NULL,
 [TransactionType] [smallint] NOT NULL,
 [DateEntered] [datetime] NOT NULL,
 [Amount] [numeric](18, 5) NOT NULL,
 [ReferenceDetails] [nvarchar](50)
 COLLATE Latin1_General_CI_AS NULL,
 [Notes] [varchar](4000) COLLATE Latin1_General_CI_AS NULL,
 [RelatedShareId] [int] NULL,
 [RelatedProductId] [int] NOT NULL,
 CONSTRAINT [TransactionsSCHEMADATA_primaryKey]
 PRIMARY KEY NONCLUSTERED
(
 [TransactionId] ASC
)
) WITH (MEMORY_OPTIMIZED = ON , DURABILITY = SCHEMA_AND_DATA)
GO
CREATE TABLE [TransactionDetails].[Transactions_DiskBased](
 [TransactionId] [int] IDENTITY(1,1) NOT NULL,
 [CustomerId] [int] NOT NULL,
 [TransactionType] [smallint] NOT NULL,
 [DateEntered] [datetime] NOT NULL,
 [Amount] [numeric](18, 5) NOT NULL,
 [ReferenceDetails] [nvarchar](50) NULL,
 [Notes] [varchar](4000) NULL,
 [RelatedShareId] [int] NULL,
 [RelatedProductId] [int] NOT NULL)
GO
CREATE NONCLUSTERED INDEX IX_Transactions_DiskBased
ON TransactionDetails.Transactions_DiskBased
 (
 TransactionId
) WITH(STATISTICS_NORECOMPUTE = OFF, IGNORE_DUP_KEY = OFF,
 ALLOW_ROW_LOCKS = ON, ALLOW_PAGE_LOCKS = ON) ON [PRIMARY]
GO

2. the next step is to speed test all three tables as an INSERT. there will be 100,000 rows of
data with the same values entered. this is achieved by placing a number after the
GO statement.

3. the first run will be to insert data into the disk-based tables using INSERT. once the
code is entered, execute it. it will display two rows of two times.

Note ■ the example inserts 100,000 rows. Whether you should reduce this down to a smaller number (like 10,000)
will depend on several factors. i have a fast computer, hence the large number.

Chapter 12 ■ Working With in-MeMory tables

388

SELECT GETDATE()
GO
INSERT INTO TransactionDetails.Transactions_DiskBased
(CustomerId, TransactionType, DateEntered, Amount,
 RelatedProductId)
VALUES (1,1,'2014-11-05 23:22:11',100,1)
GO 100000
SELECT GETDATE()
GO

4. Figure 12-5 shows the times required for disk-based inserts, which in my system was 2
minutes 16 seconds.

Figure 12-7. SCHEMA_ONLY-based timings

Figure 12-5. Disk-based timings

5. the next test i ran was the SCHEMA_AND_DATA INSERT. in this instance it took 50 seconds.

Figure 12-6. SCHEMA_AND_DATA-based timings

6. the final test is for SCHEMA_ONLY. this final test flew and only took 21 seconds.

Chapter 12 ■ Working With in-MeMory tables

389

7. the next test is to use SELECT on the data to check speeds of data retrievals. these results
are from my machine, and of course your timings may differ. this test will return multiple
results sets, so to see the data you will have to scroll the results-set grids’ scrollbar rather
than the inner results’ scroll bar. the code is below; once entered, execute it.

SELECT 'Disk Based',GETDATE()
GO
SELECT * FROM TransactionDetails.Transactions_DiskBased
order by dateentered
GO
SELECT 'SCHEMA_AND_DATA',GETDATE()
GO
SELECT * FROM TransactionDetails.Transactions_SCHEMADATA
order by dateentered
GO
SELECT 'SCHEMA_ONLY Based',GETDATE()
GO
SELECT * FROM TransactionDetails.Transactions_SCHEMAONLY
order by dateentered
GO
SELECT 'Final',GETDATE()
GO

8. the results from the SELECT statement on my machine are below in Figure 11-8.

Figure 12-8. SELECT statement timing

Chapter 12 ■ Working With in-MeMory tables

390

the timings you see will be different and will be based on a number of factors, just as they
will be in production. however, they do prove the point that disk based is slower, followed by
the faster SCHEMA_AND_DATA, with the fastest being SCHEMA_ONLY. you may find in some of
your tests that disk-based and SCHEMA_AND_DATA have similar timings, especially on small
amounts of data and on a system that has only one process running. as mentioned within
this chapter, the concurrency model will define larger differences in speed as well as other
factors, such as the pressures on the database system as a whole and its resources. another
thing to note is that the sQl is interpreted rather than natively compiled, which also has a
speed-performance impact. natively compiled code will be discussed in Chapter 15.

the final area that i want to look at in this chapter is the MERGE statement and disk- and
in-memory-based tables.

MERGE Statement
When you have a table that could have an INSERT, UPDATE, or DELETE statement based on data from a source table, you
can combine them into one statement called a MERGE rather than having three different statements—one statement
dealing with each scenario. The MERGE allows you to join the data from the source table with the target table and,
based on whether there is a match or not, allows you to perform an INSERT, UPDATE, or a DELETE. You can further refine
the action based on more filtering, if required. The basics of a MERGE statement are:

MERGE [INTO] target_table [[AS] alias]
USING <source_table>
ON <matching_search_criteria>
[WHEN MATCHED [AND <clause_search>] THEN <statement_actions>]
[WHEN NOT MATCHED [AND TARGET] [AND <clause_search>] THEN <statement_actions>]
[WHEN NOT MATCHED [AND SOURCE] [AND <clause_search>] THEN <statement_actions>]

Note ■ the MERGE statement has to end with a semicolon ;

The target table can be any disk-based table; however, the source table can be disk or in-memory based.
It is not possible to use a MERGE statement to add data to in-memory tables. The ON criteria is the same as when
performing a JOIN between two tables, as that is what is happening within the MERGE. There is no concept of INNER
or OUTER JOIN, as MERGE exists with the WHEN MATCHED and WHEN NOT MATCHED conditions, and MATCHED is similar to
an INNER JOIN and WHEN NOT MATCHED is similar to an OUTER JOIN. The statement actions are where you indicate
what happens when the matching conditions are met. This will be an INSERT, UPDATE, or DELETE. A MERGE is best
understood within an example, and the following one will create a row that is a known row that doesn’t exist within
the TranactionDetails.Transactions_old table. This will be within a transaction that is rolled back so that you
can try other scenarios.

Chapter 12 ■ Working With in-MeMory tables

391

trY It OUt: MerGe StateMeNt

1. the code in this example is defined over several steps and is explained at each logical point.
step 9 will execute the code. First of all, start the transaction and insert the row that will be
merged into the source table. this will demonstrate the MERGE WHEN NOT MATCHED.

BEGIN TRAN

INSERT INTO TransactionDetails.Transactions
(CustomerId, TransactionType, DateEntered, Amount, RelatedShareId,RelatedProductId)
values (1,1,GETDATE(),1876.11,1,1)

2. now do a SELECT on the table that will be the target table to show the transactions that
currently exist; therefore, the results will be without the new row. your data may differ from
the data below, but in essence the row above won’t exist.

SELECT TransactionId, CustomerId, Amount
 FROM TransactionDetails.Transactions_old
 WHERE CustomerId = 1

3. once the code is executed, one sees the rows found in Figure 12-9. there is no transaction
with an amount for 1876.11.

Figure 12-9. The existing transactions in the table

4. the next step is the MERGE statement. First, define the table you are merging into. i have
given it an alias of target for ease of identification.

MERGE INTO TransactionDetails.Transactions_old target

5. then define the source table. this is the in-memory table, which has to have the isolation
level defined. the code also defines the join to get unique rows.

USING TransactionDetails.Transactions source WITH (SNAPSHOT)
 ON (target.CustomerId = source.CustomerId
 AND target.TransactionId = source.TransactionId)

Chapter 12 ■ Working With in-MeMory tables

392

6. if the row is matched, update the amount value. in this exercise there will be no row found,
and so the statement won’t be executed; however, you can alter the example so that the
source table does give a match.

WHEN MATCHED THEN
 UPDATE
 SET target.Amount = source.Amount

7. When not matched, insert the new row from the source table to the target table.
this is the statement that will be executed:

WHEN NOT MATCHED THEN
 INSERT (CustomerId, TransactionType,
 DateEntered,Amount,
 RelatedShareId,
 RelatedProductId)
 VALUES (source.CustomerId, source.TransactionType,
 source.DateEntered, source.Amount,
 source.RelatedShareId,
 COALESCE(source.RelatedProductId,1))

8. Finally, SELECT from the target table to show the new row inserted:

SELECT TransactionId, CustomerId, Amount
 FROM TransactionDetails.Transactions_old
 WHERE CustomerId = 1

ROLLBACK TRAN

9. now execute the whole code and you will see that the new row did not exist in Figure 12-9
earlier, and that after the MERGE it does exist, as you can see in Figure 12-10 with transaction
id 1047. as mentioned, your data may differ from the figure, but the main point is that the
new row exists.

Figure 12-10. The row has been inserted and is showing in the SELECT

Chapter 12 ■ Working With in-MeMory tables

393

In-Memory Table Unsupported Functionality
Not all T-SQL statements and commands are supported within interpreted SQL against an in-memory table.
As mentioned in Chapter 7 and discussed further in this chapter, how data is stored within an in-memory table differs
from how it is done in a disk-based table, and the data is not replaced but rather a new version of a row is created.
When a TRUNCATE TABLE statement is executed, SQL Server marks pages of data for deletion as a fast method of
removing the data. In-memory tables don’t hold data within pages and therefore this is not possible. If you require a
transient table then you could use a SCHEMA_ONLY defined table, which instead of having a TRUNCATE TABLE statement
executed, is dropped and recreated.

In Chapter 17 you will look at functionality where, instead of working with data in a set-based fashion, you will
work a row at a time using functionality called cursors. Cursors can hold their data staticly in such a way that when the
cursor is opened the data held within the cursor will not alter even if the underlying data in the tables alter. Cursors
can have a dynamic set of data, however, where, when the underlying data alters, the data in the cursor will also
change. Yet, dynamic or keyset cursors (a keyset cursor is where non-key data within the cursor can change, but not
the data within the defined key) are not available, and if a dynamic or keyset cursor is defined where an in-memory
table is part of the cursor, then the cursor will become a static cursor. This is an important note when migrating a
disk-based table to an in-memory table and you have cursors, as you may find a functionality change to your system.

T-SQL is developed to work with data, and the commands and statements are designed as such. Sometimes, though,
you need to extend that functionality by building specific functions or procedures that perform a lot more complex tasks
than T-SQL allows. To achieve this you can write .NET-based functionality known as CLR (common language runtime)
Modules; this functionality is available to in-memory tables, but you can not use the context connection. A context
connection is when the .NET CLR module executes in the same connection as the SQL Server function that calls it.

Finally, in Chapter 13 you will be introduced to a concept of a view. A view is where an object is created that
accesses one or more underlying tables to generate a set of columns from the table objects. Views can be indexed, but
if you have an indexed view then the tables included in the view definition cannot be in-memory optimized.

Summary
In this chapter you have seen how you can write ad-hoc DML statements against in-memory tables. These
are interpreted at run time and are therefore not as efficient as natively compiled code; however, there are still
performance gains to be had with in-memory. Performance gains come from the type of concurrency model that
in-memory uses, and although optimistic can give performance gains, it also has performance considerations.

A simple test demonstrated the speed differences between disk-based and in-memory-based tables and also how
SCHEMA_ONLY can provide quick, significant gains. The final example demonstrated how to merge data from a source
table into a target table and how you can insert, update, or delete data based on whether there was a match between
the data in the source table and that in the target table.

395

Chapter 13

Building a View

A view is a virtual table that, in itself, doesn’t contain any data or information. All it contains is the query that the user
defines when creating the view. A view is a named query that can be used against one or more tables. Views are used
as a security measure by restricting users to accessing only certain columns or rows from an underlying table, as a
method of joining data from multiple tables and presenting it as if that data resided in one table, and as a method of
returning summary data instead of detailed data.

Views can also be used to provide a method of accessing the underlying data in a manner that provides the end
user with a business-ready layout. For example, you will see within this chapter the building of a view that shows
customer details along with enriched transaction details, thus making it easier for anyone interrogating your data,
even someone who has no knowledge of the underlying data model, to access useful information.

Building a simple view is a straightforward process and can be completed in SQL Server Management Studio or
in a Query Editor pane using T-SQL within SQL Server. Each of these tools has two options to build a view, and this
chapter covers all four options so that you will become comfortable with building a view, no matter which tool is
currently at hand.

To give things a bit more bite in this chapter, I’ll also demonstrate a query within a query, known as a subquery,
along with how to create a subquery that will create a column in a result set.

Finally, having an index on a view can speed up data retrieval, but it can also create performance problems, just
as indexes on tables can create performance problems. Building an index on a view is not quite as straightforward as
building an index on a table.

The aim of this chapter is to:

Make you aware of what a view is•	

Inform you as to how views can improve a database’s security•	

Show how to encrypt your view so that the source tables accessed cannot be seen•	

Demonstrate building a view using•	

Management Studio View Designer•	

An existing view•	

A Query Editor pane and T-SQL•	

Show how to join two tables within a view•	

Demonstrate subqueries within a view•	

Build an index on a view and give the reasons you would or would not do this•	

Chapter 13 ■ Building a View

396

Why a View?
There will be times when you’ll want to group together data from more than one table, or perhaps allow users to see
only specific information from a particular table, where some of the columns may contain sensitive or even irrelevant
data. A view can take one or more columns from one or more tables and present this information to a user, without
the user accessing the actual underlying tables. A view protects the data layer while allowing access to the necessary
data. All of these scenarios can be seen as the basis and reason for building a view rather than using another method
of data extraction. Views are similar to queries in Microsoft Access. Because a view represents data as if it were
another table—a virtual table, in fact—it is also possible to create a view of a view.

Let’s take a look at how a view works. In our example, there is a customer table that holds information about your
customers, such as their first names, last names, account numbers, and balances. There will be times when you’ll
want your users to have access to only the first and last names, but not to the other sensitive data. This is where a view
comes into play. You would create a view that returns only a customer’s first and last name but no other information,
hiding from sight his or her financially sensitive data.

Creating a view can give a user enough information to satisfy a query he or she may have about data within a
database without that user having to know any T-SQL commands. A view actually stores the query that creates it, and
when you execute the view, the underlying query is the code that is being executed. The underlying code can be as
complex as required, but the view leaves the end user with a simple SELECT * statement to run with perhaps a small
amount of filtering via a simple WHERE clause. Similar to retrieving data from a table, you should name your columns
as you would like to see them to be returned from the view and not use the SELECT * format to return all columns.

Using a view, in addition to retrieving data, you can also modify the data that are being displayed, delete data,
and in some situations, insert new data. There are several rules and limitations for deleting, modifying, and inserting
data from multitable views, some of which will be covered in the “Indexing a View” section later in this chapter.

However, a view is not a tool for processing data like a stored procedure is. A view is able to hold only one query
at a time. Therefore, a view is more like a query than a stored procedure. With views, you can include tables from
databases that are running on different servers just as you can with stored procedures or queries within Query Editor.
Providing the user ID has the necessary security credentials, it is possible to include tables from several databases.

So to summarize, a view is a virtual table created by a stored SQL statement that can span multiple tables. Views can
be used as a method of security within your database, and they provide a simpler front end to a user querying the data.

Later in the chapter, you will see how to build a view and how all of these ideas are put into practice. Before we
get to that, let’s look in more depth at how a view can be used as a security vehicle

Note ■ when there is frequently more than one table to retrieve data from, creating a view is quite often a sensible
solution, even more so when you want to use views as a method of simplifying the database schema and abstracting the
database data into a presentation layer for users.

Using Views for Security
Security is always an issue when building your database. So far, this book has covered the different database-provided
roles, when to use them, how to set up different types of roles, and how useful they are. By restricting all users from
accessing or modifying the data directly in the tables, you will then force everyone to use views and stored procedures
to complete any data task. (There will be more on stored procedures in the next chapter.)

However, by taking a view on the data and assigning which role can have select access, update access, and so
on, you are protecting not only the underlying tables, but also particular columns of data. This is all covered in the
discussions involving security in this chapter, along with how to lock down direct access to the tables.

Security encompasses not only the protection of data, but also the protection of your system. At some point
as a developer, you will build a view and then someone else will come along and remove or alter a column from an
underlying table that was used in the view. This causes problems; however, this chapter will show you how to get
around this problem and secure the build of a view so that this sort of thing doesn’t happen.

Chapter 13 ■ Building a View

397

Imagine that you have a table holding specific security-sensitive information alongside general information—an
example would be where you perhaps work for the licensing agency for driver’s licenses, and alongside the name and
address, there is a column to define the number of fines that have had to be paid. As you can see, this is information
that should not be viewed by all employees within the organization. So, what do you do?

The simplest answer is to create a view on the data where you exclude the columns holding the sensitive data. In
this way, you can restrict access on the table to the bare minimum of roles or logins, and leave either a view or a stored
procedure as the only method of data retrieval allowed. Thus, the information returned is restricted to only those
columns that a general user is allowed to see.

It is also possible to place a WHERE clause within a view to restrict the rows returned. This could be useful when
you don’t wish all employee salaries to be listed; perhaps excluding the salaries of the top executives would be
advised!

All of these methods give you, as a developer, a way of protecting the physical data in the base tables behind the
views. Combine this with what you learned about roles and restricting table access, and you can really tighten the
security surrounding your data. With more and more companies embracing initiatives like Sarbanes-Oxley, where
security should be so tight a company can be defined as having secure data, views are a great method of moving
toward this goal.

Another method of securing views is to encrypt the view definition, which we will explore next.

Encrypting View Definitions
As well as restricting access to certain tables or columns within a database, views also give you the option of
encrypting the SQL query that is used to retrieve the data. Once a view is built and you are sure that it is functioning
correctly, you would release that view to production; it is at this point that you would add the final area of security—
you would encrypt the view.

The most common situation in which you will find views encrypted is when the information returned by the
view is of a privileged nature. To expand further, not only are you using a view to return specific information, but also
you don’t wish anyone to see how that information was returned, for whatever reason. You would therefore encrypt
the SQL code that makes up the view, which would mean that how the information was being returned would not be
visible.

There is a downside to encrypting a view: once the process of encryption is completed, it is difficult to get back
the details of the view. There are tools on the Internet that can decrypt an encrypted view. When you encrypt a view, the
view definition is not processed via encryption algorithms, but is merely obfuscated—in other words, changed so that
prying eyes cannot see the code. These tools can return the obfuscation back to the original code. Therefore, if you
need to modify the view, you will find that it is awkward. Not only will you have to use a tool, but you will also have to
delete the view and recreate it, as it will not be editable. So, if you build a view and encrypt it, you should make sure
that you keep a copy of the source somewhere. This is why it is recommended that encrypted views be used with care
and really should be utilized only in production, or, at worst, in user testing.

Always keep a copy of the original view, before encryption, in the company’s source-control system—for
example, Visual SourceSafe—and make sure that regular backups are available

Now that I have touched upon the security issues behind views, it is time to start creating views for the database
solution that you are building.

Views and In-memory Tables
Views can be built against an in-memory table in the same way that views can be built against disk-based tables.
However, views are not natively compiled, which means that you cannot place a view into a natively compiled stored
procedure. A view against an in-memory table can be used by other views, by standard stored procedures, and by
ad-hoc SQL, but not by natively compiled code.

Chapter 13 ■ Building a View

398

Creating a View: SQL Server Management Studio
The first task for you is to create a view using SQL Server Management Studio. This is perhaps the simplest solution,
as it allows you to use drag-and-drop to build the view. This may be the slowest method for creating a new view, but
it does give you the greatest visual flexibility for building the view and setting up its presentation, and this may also be
the best method for dealing with views that already exist and require only minor modifications.

View Designer can aid you in the design of a view or the modification of any view already built. For example, it
can assist if you are trying to build a complex view from a simple view, or it can even be used as a trial-and-error tool
while you are gaining your T-SQL knowledge. When you open View Designer, you are initially presented with a modal
dialog where you can select the tables and/or views that you want to use within the view you are creating. You can add
further tables or views at any point, so a base set of tables or views is a good place to start. Once a table is added, the
beginnings of a SELECT statement are created. At any point, you can build a view using either SQL or tables.

There are four separate parts to View Designer, each of which can be switched on or off for viewing via the toolbar
buttons on top. Take a look at these toolbar buttons, shown in Figure 13-1.

An overview of the buttons, working left to right, is as follows:

The first button brings up the top pane—the diagram pane—where you can see the tables •	
involved and their relationship to each other in the view.

The next button accesses the criteria pane, where you can filter the information you want to •	
display.

The third button accesses the SQL pane, where you will see the •	 SELECT statement, the columns
involved, the JOINs, and finally the WHERE filter critera.

The fourth button accesses the Results pane. If you execute the view, the data returned will be •	
displayed.

The fifth button will execute the query in the view.•	

The sixth button verifies the SQL, ideal if you are building a view via the SQL designer rather •	
than the other panes in View Designer as you can check that the SQL you are entering is valid.

The seventh button will add a new column to the column selector where data can be “grouped •	
by.” You will see GROUP BY in Chapter 16.

The penultimate button allows further tables to be added via a table modal dialog selector.•	

Finally, the last button is the same as Query Editor, where a derived table can be added.•	

However, enough of the background—let’s take a look at how View Designer works. In this example, you will be
making a view of ShareDetails.Shares.

Figure 13-1. View toolbar buttons

Chapter 13 ■ Building a View

399

trY It OUt: CreatING a VIeW IN SQL SerVer MaNaGeMeNt StUDIO

1. ensure that SQl Server Management Studio is running and that the ApressFinancial
database is expanded.

2. Find the Views node and right-click it—this displays the pop-up menu shown in Figure 13-2.
From there, select new View.

3. the next screen you will see is View designer, with a modal dialog box on top presenting
a list of tables that you can add to make the view. the background is pretty empty at the
moment (move the dialog box around if you need to). it is within View designer that you will
see all of the information required to build a view. there are no tables in the view at this time,
so View designer has nothing to show. For those of you who are familiar with access, you will
see that View designer is similar to the access Query designer, only a bit more sophisticated!

4. You want to add your table, so move back to the modal dialog box, shown in Figure 13-3,
select ShareDetails.Shares, shown as Shares (ShareDetails) on the screen, click add,
and then click Close to remove the dialog box.

Figure 13-2. Creating a new view

Figure 13-3. Selecting the tables for your view

Chapter 13 ■ Building a View

400

5. take a moment to see how View designer has changed, as illustrated in Figure 13-4. notice
that the background Query designer area has been altered, the ShareDetails.Shares table
has been added, and the beginnings of a SELECT statement now appear about two-thirds of
the way down the screen. You will see the ShareDetails.Shares table listed in the top part
of Query designer (the diagram pane) with no check marks against any of the column names,
indicating that there are not yet any columns within the view.

6. what you want is a view that will display the share description, the stock market ticker id,
and the current price. You will also need the ShareId for the next exercise. if you wanted all
the columns displayed, you would click the check box next to * (All Columns), but for this
example, just place checks against all four columns, as shown in Figure 13-5. notice as you
check the boxes how the two areas below the table pane alter. the middle grid pane lists all
the columns selected and gives you options for sorting and giving the column an alias name.
the bottom part is the underlying query of the columns selected. the finished designer will
look as shown in Figure 13-5.

Figure 13-4. The basic view

Chapter 13 ■ Building a View

401

7. You are going to change the details in the column grid now to enforce default sorting criteria
and to give the columns aliases. this means that if a user does just SELECT * from the view,
then he or she will receive the data in the order defined by the view’s query by default.
(Of course they can change the order of the sort when defining the query used from the view).
it also means that some of the column names will have been altered from those of the
underlying table when the output is returned. You want to ensure that the shares come out
from the view in ascending name order. Move to the Sort Type column and click in the row
that corresponds to Description. Select ascending, as shown in Figure 13-6.

Figure 13-5. The view with the columns selected

Figure 13-6. Placing an order on the data

Chapter 13 ■ Building a View

402

8. in the next column, Sort Order, if you were defining more than one column to sort, you
would define the order to sort the columns in. the value 1 is likely to have been automatically
entered when you selected the Description to be sorted in ascending sequence. if you have
more than one column, you can alter the sort order, as it is not enforced by the order in which
you select your columns.

9. You still need to add aliases to give the column names more meaning, similar to using the
AS clause you saw in Chapter 11; aliases can be found in the second column of the grid.
notice the fourth column name listed (fourth row down), CurrentPrice. to make this column
more user-friendly, you make the name Latest Price, with a space. Be aware that having
a column alias include a space is acceptable, but if you give a column an alias with a space
and that column is then specifically named when displaying the data, the column name will
require square brackets around it. You will see this in a moment. when you type this and
tab out of the column, it becomes [Latest Price], as you see in Figure 13-7; SQl Server
places the square brackets around the name because of the space.

10. to the right of the Sort Order is the column that allows you to define a filter for the view so
that you can restrict what a user can see. although sort orders can be changed by the t-SQl
that calls the view, filters placed within the view cannot return more data than the view
allows. So, for example, if you had a view that returned salaries, you could place a filter so
that salaries of those people that should not be returned, such as a doctor, could be restricted
within the view. in this example, you will list only those shares that have a current price—in
other words, where CurrentPrice is greater than 0, as shown in Figure 13-8.

Figure 13-7. Alias with identifier

Figure 13-8. Filtering the data

Chapter 13 ■ Building a View

403

11. notice the SQl pane, which now has the filter within it as well as the sorting order. also take
a look at the diagram pane and how the table display has been altered, as you can see in
Figure 13-9. the diagram pane indicates the columns that are defined in an ORDER BY and
the columns that are filtered.

12. Moving back to the t-SQl in the SQl pane, what about the TOP (100) PERCENT clause?
where did that come from? First of all, if you specify an order in a view, then by default SQl
Server will place the TOP (100) PERCENT clause within the SQl, just as you saw in Chapter
11. it can be used if the table is very large and you don’t want to allow users to return all
the data on a production system, as it would tie up resources. You can also remove that
clause from the SQl pane if you want; this will unlink your query from the designer and the
properties window, but you would also need to remove the ORDER BY. the ORDER BY is here
only because of the TOP clause.

Once SQl Server determines which rows are in the top n percent of rows to return, SQl
Server is free to return those n percent rows in a random order. if the user of the view
required a specific order, then an ORDER BY would be required when using the view (if the
view did not already contain an ORDER BY clause). a final point to notice is how the column
aliases are defined. the physical column is named, followed by AS and then the alias.

Note ■ the AS when defining aliases is optional.

SELECT TOP (100) PERCENT ShareId, Description,
StockExchangeTicker, CurrentPrice AS [Latest Price]
FROM ShareDetails.Shares
WHERE (CurrentPrice > 0)
ORDER BY Description

13. if you wish to remove the TOP clause, it is better to do this within the properties window,
shown in Figure 13-10 and usually found on the right of SQl Server Management Studio.
however, you also need to remove the sorting as mentioned a moment ago. (if the properties
window is not there, it can be found by selecting View ➤ properties window from the menu
or by pressing F4). within the properties window, you can remove the TOP clause by setting
top Specification to no. You can also define whether this view is read-only by setting update
Specification to no.

Figure 13-9. The table with the view options applied

Chapter 13 ■ Building a View

404

14. You do need to change some of the properties in the view definition, as shown in
Figure 13-11.

•	 Description: it is very useful to give the view a description.

•	 Schema: like a table, a view should belong to a schema. this can be an existing schema, or,
if you have a view traversing more than one table, you may need a schema to cater to that
scenario. in our example, it fits into the ShareDetails schema.

Figure 13-10. The properties of a view

Chapter 13 ■ Building a View

405

15. although the definition for the view is complete, you need to test it out. First, close the
properties window. By executing the query with the execute button (the one sporting the red
exclamation point), you will see the results in the results pane.

16. now that the view is complete, it is time to save it to the database. Clicking the Close
button will bring up a dialog box asking whether you want to save the view, just as you saw
in Chapter 5 when building a table. Click Yes to bring up the Choose name dialog box, in
which you give the view a name. You may find while starting out that there is a benefit to
prefixing the name of the view with something like vw_ so that you know when looking at
the object that it’s a view. Many organizations do use this naming standard; however, it is
not compulsory, and SQl Server Management Studio makes it clear what each object is, but
it can be useful when looking at the t-SQl. the naming standard comes from a time when
tools did not make it clear what object belonged to which group of object types. Once you
have the name you wish, as shown in Figure 13-12, click OK.

Figure 13-11. Populated properties of a view

Figure 13-12. Naming the view

Chapter 13 ■ Building a View

406

17. You will be presented with a warning dialog box, as shown in Figure 13-13, that is the same information
as in step 8. Click OK to save the view. this will bring you back to SQl Server Management Studio,
where you will see the view saved.

You have now created your first view on the database. However, this method of building a view is a bit slow and
cumbersome for something so simple. What if you wanted to combine two tables, or a view and another table?

Creating a View by Using a View
Creating a view that uses another view is as straightforward as building a view based on a table. The downside of
building a view using another view is that it cannot be indexed for faster execution. Therefore, depending on what
the T-SQL of the final view is, data retrieval may not be as fast as it could be with an index. Also, by having a view
within a view, you are adding increased complexity when debugging or profiling its performance. Therefore, consider
including the T-SQL from the selected view within this new view.

In this example, you will build a view of share prices using the vw_CurrentShares view created previously. In
reality, you would use the ShareDetails.Shares table along with ShareDetails.SharesPrices for the reasons just
discussed.

trY It OUt: CreatING a VIeW USING a VIeW

1. From SQl Server Management Studio Object explorer, find Views, right-click, and select new
View. the add table dialog box comes up as before.

2. From the tables tab, select SharePrices(ShareDetails) and click add.

3. Move to the Views tab; there should be only one view, shown in Figure 13-14, as that is all
you have created. Select the view, click add, and then click Close.

Figure 13-13. ORDER BY warning when saving a view

Chapter 13 ■ Building a View

407

4. View designer will now look similar to Figure 13-15, with one table and one view.

5. an INNER JOIN is required between the table and the view to provide the link, so that for
each share you get only the share prices. it is very easy to link the two tables together by
dragging a column from one table to a column in another table. this is very similar to how
the relationships are built in database diagram designer, as you saw earlier in this book.

First of all, click the ShareId column in the vw_CurrentShares view. Keeping the mouse
button pressed, drag the mouse pointer from the vw_CurrentShares view over to the
ShareId column in the ShareDetails.SharePrices table and then release it. View designer
should now look like Figure 13-16. You have not really created a relationship in the truest
sense of the word—this is simply the relationship between the columns for the purpose of
this query. You can see one gray line, which shows which fields are used for the join. You can
also achieve the same result by entering the t-SQl in the SQl pane in View designer.

Figure 13-14. Adding a view

Figure 13-15. With more than one object, how the basic view looks

Chapter 13 ■ Building a View

408

6. Select Price and PriceDate from the ShareDetails.SharePrices table and Description
from the vw_ShareDetails view, as shown in Figure 13-17. ShareId should already be
selected in the SharePrices table from the drag-and-drop join in the previous step. if it is
not selected, then select it now.

7. the final step to this view creation is to build the sort orders. You want the result to be in the
order of ascending description, but you want the most recent price first and the first price
last. Figure 13-18 shows the criteria pane with these options.

Figure 13-18. Sorting with ascending and descending columns

Figure 13-16. The view with the JOIN completed

Figure 13-17. How the view with a JOIN looks

Chapter 13 ■ Building a View

409

8. Moving to the SQl pane, note that the code shows the columns, as well as the INNER JOIN
of the two ShareId columns, and finally the ordering of the data for the TOP clause.

SELECT TOP (100) PERCENT ShareDetails.SharePrices.ShareId,
ShareDetails.SharePrices.PriceDate, ShareDetails.SharePrices.Price,
ShareDetails.vw_ShareDetails.Description
FROM ShareDetails.SharePrices
INNER JOIN ShareDetails.vw_ShareDetails
 ON ShareDetails.SharePrices.ShareId =
 ShareDetails.vw_ShareDetails.ShareId
ORDER BY ShareDetails.vw_ShareDetails.Description,
ShareDetails.SharePrices.Price DESC

9. execute the code within the view’s code window by pressing the execute button, and you
should then see the results, part of which are displayed in Figure 13-19.

10. assign the view to the ShareDetails schema in the view’s properties window and supply a description,
as shown in Figure 13-20; then click the Close button and save the view as vw_SharePrices.

Figure 13-19. View test results

Chapter 13 ■ Building a View

410

Now that you have built views using the designer, it’s time to build one with T-SQL.

Creating a View Using T-SQL Syntax
Very quickly, you will find that creating a view using T-SQL is the better way forward. It is just as fast as building a
view using the designer. To reiterate a point that I have made a few times, as a developer, knowing the T-SQL syntax is
very useful for migrating changes from your development server to your production server, as well as for having the
flexibility to build objects within your code in .NET and so on.

As with previous chapters, the next section will look at the full syntax and then the more usual syntax you will use
when building a view.

The CREATE VIEW Syntax
The CREATE VIEW syntax is very simple and straightforward. The syntax for a view is very similar to the syntax for
a table, although there are three interesting options that can also be attributed to the view. Here is the syntax for
building a view:

CREATE VIEW [schema_name.]view_name
WITH {ENCRYPTION | SCHEMABINDING | VIEW_METADATA}
AS
SELECT_statement
[WITH CHECK OPTION]

Taking a look at the first section of the syntax, you will notice that the name of the view can be prefixed with the
name of the schema; however, the schema name is optional. Provided that you are in the correct database and are
logged in with the ID you want to create the view for, the schema_name option is not required, especially if the logon
has the desired schema as its default, because the options will be assumed from the connection details. However, it
may not be a similar login that executes the scripts later in your application’s life, and the login used might not have
the same default schema. It is best to define the view with the schema name for clarity. For production views, rather

Figure 13-20. Setting the view schema

Chapter 13 ■ Building a View

411

than for views used purely by a single SQL Server user, it is recommended that they be built by the database owner. If
the view is built by another, then when someone tries to execute the view, that user will need to prefix the name of the
view with the login of the person who created it.

Following on from these options, you build the query, typically formed with a SELECT statement that makes up
the view itself. As you saw in the previous example, the SELECT statement can cover one or many tables or views, many
columns, and as many filtering options using the WHERE statement as you need. You cannot reference any temporary
variable or temporary table within a view, or create a new table from a view by using the INTO clause. To clarify, it is
not possible to have SELECT column INTO new_table.

The ENCRYPTION option will take the view created and encrypt the schema contained so that the view is secure
and no one can see the underlying code or modify the contents of the SELECT statement within. However (I know I
keep repeating this, but it is so important), do keep a backup of the contents of the view in a safe place in development
in case any modifications are required.

Tip ■ encrypting views may seem like a good idea so as to hide even further the schema of your database from
potential users; however, use encrypted views with caution, and always keep a backup of the source in a safe and
secure environment. people have been known to keep a printout of the view just in case the source became corrupt. use
encrypted views sparsely, and only when really required.

The SCHEMABINDING option ensures that any column referenced within the view cannot be dropped from the
underlying table without dropping the view built with SCHEMABINDING first. This, therefore, keeps the view secure with
the knowledge that there will be no runtime errors when columns have been altered or dropped from the underlying
table, and ensures the view is not altered in line with those changes. If you try to remove a column from the table that
is contained within a schema-bound view, for example, then you will receive an error. There is one knock-on effect
when using SCHEMABINDING: all tables or other views named within the SELECT statement must be prefixed with the
name of the schema of the table or view, even if the owner of these objects is the same as the schema of the view.
There is a section on this later in this chapter.

The final option for the view is VIEW_METADATA. When working with views using C#, Java, Excel, and so on, you
can request for the metadata of the view to be returned. Without this option, the metadata will be that of the base
tables within the view. To hide this information and display the column names from the view instead, build your view
with the VIEW_METADATA option.

Let’s go back to the two options that will be used less often, the first being the WITH CHECK option. If the view is
being used as the basis of completing insertions or updates, then any modification should fit within the criteria of the
view. To clarify this, if you have a view with a WHERE filter where the share price is greater than 0 and you try to alter
a share price to a negative amount using the view rather than the base tables, the modification will fail. However, a
change in price to a positive amount would be allowed. You will see this option in use in the next example.

Note ■ even with WITH CHECK OPTION defined, if the data are modified directly in the table, it won’t be verified against
any views defined with the underlying tables, although, of course, the data will be added to the table. also, if the view
uses TOP, then WITH CHECK OPTION cannot be used.

The final possible option, VIEW_METADATA, exposes the view’s metadata if you are calling the view via ODBC, OLE
DB, and so on—in other words, from a program that is external to SQL Server.

Now that you are aware of the basic syntax for creating a view, the next example will take this knowledge and
build a new view for the database.

Chapter 13 ■ Building a View

412

Creating a View with CREATE VIEW and SELECT
Creating views by using T-SQL code in a Query Editor pane is, in my experience, the fastest and best option. This can
be a faster method for building views than using SQL Server Management Studio, especially as you become more
experienced with T-SQL commands. This section will demonstrate the T-SQL syntax required to create a view.

The SELECT statement forms the basis for most views, so this is where most of the emphasis is placed when
developing a view. By getting the SELECT statement correct and retrieving the required data, it can then be easily
transformed into a view. This is how the view in the following example is created, so let’s look at building a view using
T-SQL and a Query Editor pane. In the following example, you will create a view that returns a list of transactions for
each customer, along with some customer information.

trY It OUt: CreatING a VIeW IN a QUerY eDItOr paNe

1. Open Query editor. First of all, let’s get the t-SQl correct. You need to link two tables:
the CustomerDetails.Customers table to get the name and address, and the
TransactionDetails.Transactions table so you can get a list of transactions for the
customer. as the view will be used as an updateable view, it is not possible to have a TOP
clause, and because there is no TOP clause, you cannot have an ORDER BY. the code is as
follows:

SELECT c.CustomerId,c.FirstName,c.OtherInitials,
t.DateEntered,t.Amount,t.ReferenceDetails
FROM CustomerDetails.Customers c
JOIN TransactionDetails.Transactions t
 ON t.CustomerId = c.CustomerId
WHERE DateEntered >= '1 Jan 2012'

2. Once done, execute the code and check that the results are returned.

3. You can now wrap the CREATE VIEW statement around your code, and, because you want
to ensure that the view will update only data that match the WHERE filter, you will also add
the WITH CHECK OPTION at the end. execute the following code to store the view in the
ApressFinancial database:

CREATE VIEW CustomerDetails.vw_CustTrans
AS
SELECT c.CustomerId,c.FirstName,c.OtherInitials,
tt.Description,t.DateEntered,t.Amount,t.ReferenceDetails
FROM CustomerDetails.Customers c
JOIN TransactionDetails.Transactions t ON t.CustomerId = c.CustomerId
JOIN TransactionDetails.TransactionTypes tt ON
 tt.TransactionTypeId = t.TransactionType
WHERE DateEntered >= '1 Jan 2012'
WITH CHECK OPTION

Chapter 13 ■ Building a View

413

4. it is now possible to test the view to ensure that updates will occur only on data returned
via the WHERE filter. the first test is to use the view to attempt to update a row where the
DateEntered for a transaction is altered to be prior to January 1, 2012. For safety i have
surrounded the code within a transaction.

BEGIN TRAN
UPDATE CustomerDetails.vw_CustTrans
 SET DateEntered = '1 Dec 1900'
 WHERE CustomerId = 1
ROLLBACK TRAN

5. execute the foregoing code, and you should receive an error similar to the following,
indicating that you are amending data that break the WITH CHECK option.

Msg 550, Level 16, State 1, Line 2

The attempted insert or update failed because the target view

either specifies WITH CHECK OPTION or spans a view that specifies

WITH CHECK OPTION and one or more rows resulting from the operation

did not qualify under the CHECK OPTION constraint.

The statement has been terminated.

6. a simple change to the code would be to alter the date entered to equal to or later than
January 1, 2012, in which case the update will run. do surround the code with a transaction
and rollback so that the data remain the same for the remainder of the book.

BEGIN TRAN
UPDATE CustomerDetails.vw_CustTrans
 SET DateEntered = '1 Feb 2013'
 WHERE CustomerId = 1
ROLLBACK TRAN

7. execute the foregoing code, and you should receive a message indicating that a number of
rows have been updated. i have 1 rows updated.

(1 row(s) affected)

this view is a straightforward view with no ENCRYPTION or SCHEMABINDING options. the remainder of the SELECT
statement syntax is very easy to follow.

Chapter 13 ■ Building a View

414

Now that you have created a basic view using T-SQL, let’s go a little deeper with an example incorporating
SCHEMABINDING.

Binding Columns in a View with SCHEMABINDING
The following example will bind the columns used in the view to the actual tables that lie behind the view, so that
if any column contained within the view is modified, an error message will be displayed and the changes will be
canceled. The error received will be shown so that you can see for yourself what happens.

First of all, you need to build the view before going on to discuss the background. This view is going
to list products for customers, therefore linking the Customers.CustomerProducts and CustomerDetails.
FinancialProducts tables.

trY It OUt: CreatING a VIeW WIth SCheMaBINDING

1. Open a new Query editor pane and connect it to the ApressFinancial database. You can
then create the t-SQl that will form the basis of your view.

SELECT c.FirstName + ' ' + c.LastName AS CustomerName,
c.CustomerId, fp.ProductName, cp.AmountToCollect, cp.Frequency,
cp.LastCollected
FROM CustomerDetails.Customers c
JOIN CustomerDetails.CustomerProducts cp ON cp.CustomerId = c.CustomerId
JOIN CustomerDetails.FinancialProducts fp ON
 fp.ProductId = cp.FinancialProductId

2. test out that the SELECT t-SQl works as required by executing it. the results you get
returned should look similar to Figure 13-21.

Figure 13-21. Testing schema binding in T-SQL

Chapter 13 ■ Building a View

415

3. You now need to create the CREATE VIEW. First of all, you are completing a test to see
whether the view already exists within the system catalogs. if it does, then you DROP it. then
you define the view using the WITH SCHEMABINDING clause. the other change to the t-SQl
is to prefix the tables you are using with the name of the schema that the tables come from.
this is to ensure that the schema binding is successful and can regulate when a column is
dropped.

IF EXISTS(SELECT TABLE_NAME FROM INFORMATION_SCHEMA.VIEWS
 WHERE TABLE_NAME = N'vw_CustFinProducts'
 AND TABLE_SCHEMA = N'CustomerDetails')
 DROP VIEW CustomerDetails.vw_CustFinProducts
GO
CREATE VIEW CustomerDetails.vw_CustFinProducts
WITH SCHEMABINDING
AS
SELECT c.FirstName + ' ' + c.LastName AS CustomerName,
c.CustomerId, fp.ProductName, cp.AmountToCollect, cp.Frequency,
cp.LastCollected
FROM CustomerDetails.Customers c
JOIN CustomerDetails.CustomerProducts cp ON
 cp.CustomerId = c.CustomerId
JOIN CustomerDetails.FinancialProducts fp ON
 fp.ProductId = cp.FinancialProductId

4. Once done, execute the code. You should then see the following message:

The command(s) completed successfully.

5. now that your vw_CustFinProducts view is created, which you can check by looking in SQl
Server Management Studio Object explorer, it is possible to demonstrate what happens if you
try to alter a column used in the view so as to affect one of the underlying tables. enter the
following code and then execute it:

ALTER TABLE CustomerDetails.Customers
ALTER COLUMN FirstName nvarchar(100)

6. You will then see in the results pane two error messages: the first shows that an alteration
has been attempted on the CustomerDetails.Customers table, has been disallowed, and
names the view stopping this, and the second shows that the alteration failed.

Msg 5074, Level 16, State 1, Line 1

The object 'vw_CustFinProducts' is dependent on column 'FirstName'.

Msg 4922, Level 16, State 9, Line 1

ALTER TABLE ALTER COLUMN FirstName failed because one or more objects access this column.

Chapter 13 ■ Building a View

416

Caution ■ You will find that in most cases when building views the SCHEMABINDING option is a good option to have on
a view, ensuring that a view that works today will always work. Otherwise, it would be only when someone deliberately
removed your view from the system to complete table changes and then didn’t correctly put it back that you would find
that a view had stopped working. herein lies yet another scenario for keeping the code of encrypted views at hand: if you
have encrypted views, along with SCHEMABINDING, and someone wants to alter an underlying table, you had better have
the code available!

Indexing a View
Views can be indexed just as tables can be indexed. Rules in choosing columns to make indexes on a view are similar
to those for a table. There are also some major requirements you need to meet before you can index a view. I will show
you these first so that you are aware of which views can be indexed and what you have to do with your view.

When building indexes on views, the first index to be created must be a unique clustered index. Once such an
index has been built, additional nonclustered indexes on this view can then be created. This can also be taken further,
in that if you have a view with subsequent indexes on it, and you drop the unique clustered index, then all of the other
indexes will automatically be dropped. Also, if you drop the view, as you would expect, the indexes are also dropped.

The view that the index is to build on must contain only tables and cannot contain views. The tables must all
come from one database, and the view must also reside in that database and have been built with the SCHEMABINDING
option.

As you saw when creating your database, certain options can be switched on or off. The following options must
be set to ON while creating an index. These options need to be set to ON only for that session and would therefore
precede the CREATE INDEX statement.

SET ANSI_NULLS ON
SET ANSI_PADDING ON
SET ANSI_WARNINGS ON
SET CONCAT_NULL_YIELDS_NULL ON
SET ARITHABORT ON
SET QUOTED_IDENTIFIER ON

On top of this, the NUMERIC_ROUNDABORT option must be set to OFF.

SET NUMERIC_ROUNDABORT OFF

Finally, the view itself cannot have text, ntext, or image columns defined in it (don’t forget, though, that these
three data types are being deprecated, so you should be avoiding creating tables with these contained within them
anyway). In Chapter 16, you’ll learn how to group data through a clause called GROUP BY. If you have grouping within
your view, the columns used to group data are the only columns that can be in the first index.

Although these requirements seem like they could be quite restrictive, the upside is that indexing views also
comes with major speed implications. If a view has no index, every time that the view is executed the data behind the
view, including any joins, are rebuilt and executed. However, as the first index is a clustered index, this is similar to
a clustered table index, and the data will be retrieved at index-creation time and stored in that order. Also, like table
indexes, when the data are modified, then the index will receive the updates as well. Therefore, if SQL Server can use
the clustered index, there will be no need to run the query again.

SQL Server will use any indexes that you have on the tables when building the views. Indexing a view is most
beneficial when the data in the underlying tables are not changing frequently and when the view is executed often.
Keep in mind that a view is taking information from other tables and is not a table itself, and therefore any updates to
the underlying tables will not be reflected in the view until the view is rerun.

Chapter 13 ■ Building a View

417

By placing an index on a view, the columns named within the index are stored within the database, as are all of
the columns defined for the view, along with the data rows. Therefore, any changes to the raw data within the native
tables will also be reflected in the data stored for the view. Keep in mind the performance issues with this. Every data
change in the tables used in the views requires SQL Server to evaluate the effect the change has on the view. This
requires more processing by SQL Server, causing a slowdown in performance. Temper this perceived gain of using an
index with the downside of the extra processing required to keep the data up to date in two places for the table and
two places for the index for those columns involved in the view.

Now that you are aware of the pros and cons of building indexes on views, and how they differ from indexes for
tables, it is time to build an index on your view.

The aim of this index is to locate a row in the view quickly. You want to be able to find all the products for a
customer based on his or her customer ID. Building the index is very quick and very simple, especially since you
already know the basics from building indexes earlier in the book.

trY It OUt: INDeXING a VIeW

1. the view you want to index is vw_CustFinProducts, which was created with
SCHEMABINDING. the unique clustered index will be on the CustomerId and ProductName, as
you know that this will be unique. in a Query editor pane, enter the following code:

CREATE UNIQUE CLUSTERED INDEX ix_CustFinProds
ON CustomerDetails.vw_CustFinProducts (CustomerId,ProductName)

2. execute this code. when you do, you might get an error as follows; however, as long as no
options have been altered for your SSMS and you have followed the book, this error should
not be seen:

Msg 1935, Level 16, State 1, Line 1

Cannot create index. Object 'vw_CustFinProducts' was created with the

following SET options off: 'ANSI_NULLS, QUOTED_IDENTIFIER'.

3. as was mentioned when discussing the options required to index a view, you may not have
these two options set to ON. You would therefore have to recreate the view. From Object
explorer, right-click vw_CustFinProducts and select Script View as ➤ drOp and Create to
➤ new Query editor window, as shown in Figure 13-22.

Figure 13-22. Scripting the view

Chapter 13 ■ Building a View

418

4. this brings up the code in a new Query editor pane. Modify the two SET options. executing
the code should be successful.

USE [ApressFinancial]
GO
DROP VIEW [CustomerDetails].[vw_CustFinProducts]
GO
SET ANSI_NULLS ON
GO
SET QUOTED_IDENTIFIER ON
GO
CREATE VIEW [CustomerDetails].[vw_CustFinProducts]
 WITH SCHEMABINDING
AS
CREATE VIEW [CustomerDetails].[vw_CustFinProducts]
WITH SCHEMABINDING
AS
SELECT c.FirstName + ' ' + c.LastName AS CustomerName,
c.CustomerId, fp.ProductName, cp.AmountToCollect, cp.Frequency,
cp.LastCollected
FROM CustomerDetails.Customers c
JOIN CustomerDetails.CustomerProducts cp ON cp.CustomerId = c.CustomerId
JOIN CustomerDetails.FinancialProducts fp ON
 fp.ProductId = cp.FinancialProductIdGO

5. You can then move back to your pane with the CREATE INDEX statement and execute it.
executing that code should be successful now even if you had the error before.

the index on a view has now been successfully created. as you can see, there are a number of restrictions, but
not to the point that no index can exist. You just have to think about what you are doing, and if you have a query in
your view that contains an item from the preceding list and you wish to create an index, you’ll just have to find a
way around it.

Summary
This chapter should give you the confidence, when building your own view, of knowing which options and features
of views you wish to use. I have covered what a view is, how views can improve a database’s security, how to encrypt
your view, how to build a view using SQL Server Management Studio and a Query Editor pane, how to join two tables
within a view, and how to index a view.

Creating a view, when there is more than one table to retrieve data from on a regular basis, is quite often a
sensible solution, even more so when you wish to use views as a method of simplifying the database schema and
abstracting the database data into a more presentable form for users.

Encrypting views may seem like a good idea in order to hide the schema of your database even further from
potential users; however, do use encrypted views with caution, and always keep a backup of the source in a safe and
secure environment. People have been known to keep a printout of the view just in case the source becomes corrupt.
Use encrypted views sparsely, and only when really required.

Having seen three different methods by which to build a view, you should have a feel for which method best suits
you and your style of working. You may find that as time moves on, the tool used alters, as do the methods within
that tool. Never discount any tool or option within SQL Server or banish it to the annals of history: always keep each

Chapter 13 ■ Building a View

419

option and tool in mind, for one day that area may be your savior. When starting out, switch between each method for
building a view so that you are fully conversant with each method.

You will find that in most cases when building views, the SCHEMABINDING option will be good to have on a view,
ensuring that a view that works today will always work. It would be only when someone deliberately removes your
view from the system to complete table changes, and then doesn’t correctly put it back, that you would find that a view
has stopped working. Herein lies yet another scenario for keeping the code of encrypted views at hand: if you have
encrypted views, along with SCHEMABINDING, and someone wishes to alter an underlying table, then you had better
have the code available!

Finally, being aware of the differences between indexes on tables and indexes in views is crucial to a successful
and well-performing view. If you are unsure, then try out the view with and then without an index within your
development environment.

421

Chapter 14

Stored Procedures, Functions,
and Security

Now that you know how to build queries written as single executable lines of T-SQL statements, it is time to look at
how to place these into a stored procedure or a function within SQL Server, allowing them to be run as often as they
are required without the need to be retyped every time. This also allows code to be written that can accept input
parameters, return a status, return rows of data, and, most important, allow you to improve the security of your
database. You will see all of this and more in this chapter.

Note ■ Chapter 15 will look at specifics of natively compiled stored procedures and working with in-memory tables.
This chapter will look at working with disk-based tables, although much of the chapter is relevant to both types of tables.

Stored procedures and functions are two different types of objects that provide different, yet similar, functionality.
You will see these differences within the examples, but the main point is that a stored procedure is a set of code that
runs as its own unit of work, while a function, which also runs as its own unit of work, is executed within the context
of another unit of work. When I discuss functions later in this chapter, you will learn more about both the similarities
and differences between these two types of objects.

Although you may save queries on a disk drive somewhere, you have not stored them within SQL Server itself up
to this point, nor have you saved them as multiple units of work. Often, however, you need to execute multiple queries
in series from SQL Server. To do this, you must employ stored procedures or functions. SQL Server assumes that a
stored procedure or a function will be run more than once. Therefore, when it is executed for the first time, a query
plan is created for it detailing how best to execute the query. It is also possible, just like with any other database object,
to assign security to a stored procedure or a function so that only specific users can run it, lending added security as
compared to a one-time-only query saved to a hard drive.

The aim of this chapter is to build a simple stored procedure for disk-based tables that will insert a single row
into a table. I will then cover error handling and controlling the flow of execution within the procedure. Once a
stored procedure that has several steps has been built, you will see how you can use tools within SQL Server to debug
your code. You will then move on to building a user-defined function and invoking it. You will look at some system
functions later, in a later chapter.

ChapTer 14 ■ STored proCedureS, FunCTionS, and SeCuriTy

422

Therefore, this chapter will do the following:

Describe what a stored procedure is•	

Explain the advantages of a stored procedure over a view•	

Cover the basic syntax for creating a stored procedure•	

Show how to set values within variables•	

Control the flow through a stored procedure•	

Look at the differences between a function and a stored procedure•	

Cover the basic syntax for creating a T-SQL user-defined function•	

First, let’s take a look at what a stored procedure is.

What Is a Stored Procedure?
In simplest terms, a stored procedure is a collection of compiled T-SQL statements and commands that are directly
accessible by SQL Server. The code placed within a stored procedure is executed as one single unit, or batch, of work.
The benefit of this is that network traffic is greatly reduced, because multiple T-SQL statements are not forced to travel
over the network individually. Only the name of the stored procedure to execute and the parameters to it need to be
transmitted. In addition to executing SELECT, UPDATE, INSERT, or DELETE statements, stored procedures are able to call
other stored procedures, use statements that control the flow of execution, create temporary tables using different
commands, and perform aggregate functions or other calculations.

Any developer with access rights to create objects within SQL Server can build a stored procedure. There are also
hundreds of system stored procedures, all of which start with a prefix of sp_, within SQL Server.

Caution ■ under no circumstances should you attempt to modify any system stored procedure that belongs to SQL
Server, as this could corrupt not only your database, but also other databases, requiring you to perform a full restore.

There is little point in building a stored procedure just to run a set of T-SQL statements only once; conversely, a
stored procedure is ideal for when you want to run a set of T-SQL statements many times. The reasons for choosing
a stored procedure are similar to those that would persuade you to choose a view rather than letting users directly
access table data. Stored procedures also supply benefits; for example, SQL Server will always cache a stored
procedure plan in memory, and it is likely to remain in cache for reuse, whereas ad hoc SQL plans created when
running ad hoc T-SQL may or may not be stored in the procedure cache. The latter may lead to the bloating of the
procedure cache with lots of very similar plans for similar batches, as SQL Server won’t match plans that use the same
basic code but have different parameter values, for example.

Stored procedures give your application a single proven interface for accessing or manipulating your data. This
means that you retain data integrity, make the correct modifications or selections to the data, and ensure that users of
the database do not need to know structures, layouts, relationships, or related processes required to perform a specific
function. You can also validate any data input and ensure that the data brought into the stored procedure are correct.

Just like with views and tables, you can grant very specific execute permission for users of stored procedures (the
only permission available on a stored procedure is EXECUTE). Once you have worked with stored procedures a bit, I
will go through the security of each object from a list of tables, views, and stored procedures and review how secure or
insecure each can be.

ChapTer 14 ■ STored proCedureS, FunCTionS, and SeCuriTy

423

To prevent access to the source code, you can encrypt stored procedures, although this really ought to be used
only sparingly. The code itself isn’t actually encrypted; it is only obfuscated, which means it is possible to decrypt the
code if required. Therefore, it doesn’t provide total prevention of viewing the code, but it does stop stray eyes. It also
limits what can be seen when using a tool called SQL Server Profiler, which can profile the performance of stored
procedures, code, and so on; thus, encryption can cause difficulty when checking out the source of any problems.
Therefore, to reiterate, you need to carefully justify any encryption you want to do.

Creating a Stored Procedure
Now that you know what a stored procedure is, it is time to create your own. Once the syntax has been covered, you
will build a stored procedure in Management Studio that will return a set of rows and multiple sets of rows, and then
you will move on to look at controling the flow through your stored procedure.

The first task, though, is to take a look at the syntax.

CREATE PROCEDURE Syntax
You must begin a stored procedure with a CREATE PROCEDURE statement. The CREATE PROCEDURE syntax offers a great
many flexible options and extends T-SQL with some additional commands. The syntax generally appears as follows:

CREATE PROCEDURE procedure_name
[{ @parameter_name} datatype [= default_value] [OUTPUT]] , [,...n]
[{ WITH [RECOMPILE | ENCRYPTION | RECOMPILE, ENCRYPTION |EXECUTE AS clause] }
AS
[BEGIN]
 statements
[END]

Now let’s break it down. First of all, it is necessary to inform SQL Server which action you want to perform.
Obviously, you want to create a stored procedure, so you need to supply a CREATE PROCEDURE statement.

The next part of the syntax is to give the procedure a name. It would be advisable, just as it is with any SQL Server
object, to adhere to a naming standard. Everyone has their own standard within their installation, but if you prefix
the name with sp_, a very common naming convention, then you will know what that object is. However, this is not
something I recommend, for two reasons. The first is that stored procedures prefixed by sp_ are seen as system stored
procedures, and, therefore, if you name your stored procedures similarly, confusion will occur. For example, if you
create a stored procedure with sp_ as the prefix and then Microsoft releases a system stored procedure with that same
name, even more confusion will occur. I have seen user-created stored procedures with a double underscore in their
name, such as sp__, which is where a developer has expanded the functionality of a system stored procedure, in this
case sp_who. This is valid. The second reason I do not recommend using sp_ is that you can hit some unnecessary
compile locks because of system stored procedure lookups. If you name your stored procedure with a prefix of
sp_, then SQL Server checks the master database for the stored procedure first. Therefore, do avoid this naming
convention.

Many people adopt a different naming convention whereby the prefix defines what the stored procedure will do;
for example, an update would have a prefix of up, a deletion dt, and a selection sl. There are many different prefixes
you could use, including prefixing the name of the stored procedure with the system name. Some large systems
are split into subsystems but share the same database. One example is when you have one database for your whole
company but there are subsystems for purchasing, sales, and so on. Once you have decided on your standard, you
should stick with it.

ChapTer 14 ■ STored proCedureS, FunCTionS, and SeCuriTy

424

Some procedures may require information to be provided in order for them to do their work; this is achieved
by passing in a parameter. For example, passing in a customer number to a stored procedure would provide the
necessary information to allow creation of a list of transactions for a statement. More than one parameter can be
passed in—all you do is separate them with a comma.

Any parameter defined must be prefixed with an @ sign. Not all procedures will require parameters, so this is
optional; however, if you do want to pass in parameters to a stored procedure, name the parameters and follow
them with the data type and, where required, the length of the data to pass in. For example, the following specifies a
parameter of name L_Name, with a data type of varchar of length 50:

@L_Name varchar(50)

You can also specify a default parameter value in the event that a user does not provide one at execution time.
The value specified must be a constant value, like 'DEFAULT' or 24031964, or it can be NULL. It is not possible to define
a variable as a default value, since the procedure cannot resolve this when the procedure is built. For example, if your
application is commonly, but not exclusively, used by the marketing department, you could make the department
parameter variable optional by setting a default of 'marketing':

@department varchar(50) = 'marketing'

Thus, in this example, if you were from marketing, you would not need to provide the department input. If you were
from information services, however, you could simply provide a value for a department that would override the default.

It is also possible to return a value, a number of values, or even a table of data from a stored procedure by using a
parameter to pass the information out. The parameter would still be defined as if it were for input, with one exception
and one extra option. First of all, the exception: It is not possible to define a default value for this parameter. If you try
to do so, no errors will be generated, but the definition will be ignored. The extra syntax option that is required is to
suffix the parameter with the keyword OUTPUT. This must follow the data type definition:

@calc_result varchar(50) OUTPUT

You are not required to place OUTPUT parameters after the input parameters; they can be intermixed.
Conventionally, however, try to keep the OUTPUT parameters until last, as it will make the stored procedure easier to
understand.

Tip ■ output parameters can also be used as input parameters, and therefore they can be used to pass a value in as
well as return a value.

Before continuing, one last thing about parameters needs to be discussed having to do with executing the
procedure and working with the defined parameters. When it comes to executing a stored procedure that has input
parameters, there are two ways to run it.

The first method is to name the stored procedure and then pass the input values for the parameters in the same
order that they are defined. SQL Server will then take each comma-delimited value set and assign it to the defined
variable. However, this makes an assumption that the order of the parameters does not change, and that any default
value-defined parameters are also set with a value.

The second, and preferred, method of executing a stored procedure is to name the parameter and follow this
with the value to pass in. You are then ensuring that, at execution time, it doesn’t matter what order in which the
stored procedure has named the parameters, because SQL Server will be able to match the parameter defined with
the parameter defined within the stored procedure. You then don’t need to define a value for parameters that already
have default values. Also, if the stored procedure needs to be expanded, for backward compatibility, for instance, any
new parameters can be defined with default values, therefore removing the need to change every calling code. Finally,
when you call a stored procedure from code, such as .NET, Excel, and so forth, each parameter has to be named.

ChapTer 14 ■ STored proCedureS, FunCTionS, and SeCuriTy

425

There will be examples of each of the two different methods of passing in values to parameters within this
chapter.

Next come two options that define how the stored procedure is built. First of all, just as a reminder, a stored
procedure, when first run without an existing plan in the procedure cache, is compiled into an execution plan, which
is an internal data structure in SQL Server that describes how it should go about performing the operations requested
within the stored procedure. SQL Server stores the compiled code for subsequent executions, which saves time and
resources. If there is an existing plan in the procedure cache, then SQL Server will use this.

However, the RECOMPILE option in a stored procedure dictates to SQL Server that every time the stored procedure
is run, the whole procedure is recompiled. Typically, when a parameter can greatly affect the number of rows
returned, you may want to add the RECOMPILE option to the stored procedure to force the optimizer to produce the
best plan every time (i.e., you want to avoid reusing a plan that may not be very good for certain parameter values).

The second of the two options is the ENCRYPTION keyword. It is possible to encrypt—well, obfuscate at least—a
stored procedure so that the contents of the stored procedure cannot be viewed easily. Keep in mind that ENCRYPTION
does not secure the data, but rather protects the source code from inspection and modification. Both ENCRYPTION and
RECOMPILE are preceded by the WITH keyword and can be employed together when separated by a comma:

CREATE PROCEDURE sp_do_nothing
 @nothing int
 WITH ENCRYPTION, RECOMPILE
AS
 SELECT something FROM nothing

The keyword AS defines the start of the T-SQL code, which will be the body of the stored procedure. AS has
no other function, but is mandatory within the CREATE PROCEDURE command as it defines the end of all variable
definitions and procedure creation options. Once the keyword AS is defined, you can then start creating your
T-SQL code.

It is then possible to surround your code with a BEGIN...END block. I tend to do this as a matter of course so that
there is no doubt where the start and end of the procedure lie.

There is one option not covered, and that is EXECUTE AS, which I will cover later in the chapter.

Returning a Set of Rows
One method of achieving output from a stored procedure is to return a set of rows, also known as a result set.
This result set may contain zero, one, or many rows as a single batch of output. It is also possible to return more than
one result set and then process them one result set at a time. This is not common but does happen, and there can
be some small performance gains from doing this. Returning a result set is achieved through the use of the SELECT
statement within a stored procedure—what is selected is returned as the output of the stored procedure.

In this chapter, you will see both single and multiple result sets of data returned and how these look within
Query Editor.

Creating a Stored Procedure: Management Studio
Now that you have seen some of the merits of a stored procedure over other methods of working with data, it is time
to create the first stored procedure in this chapter. This stored procedure will be built within SQL Server Management
Studio and will insert a customer into the CustomerDetails.Customers table from the information passed to it. This
is also the first part in the overall security solution. By using a stored procedure to enter the data into the underlying
table, you will be in control of what data are entered, as the data can be validated and verified. You can also remove all
access to the table and leave the stored procedure to serve as the only method of inserting data (you would also have
stored procedures that update, delete, and retrieve data). You will look at this toward the end of the chapter.

ChapTer 14 ■ STored proCedureS, FunCTionS, and SeCuriTy

426

The first exercise uses a template of a stored procedure as the basis of the code. Templates are either “out of the
box” templates of code that exist as part of the SQL Server installation or are code templates that can be built either
in-house or externally and provide the basis of functionality within SQL Server. There are templates for many areas of
SQL Server that can be accessed within SQL Server Management Studio from View ➤Template Explorer. Templates
are ideal for reminding you of syntax or as a starting point for building a SQL Server object to a company standard.
I personally find templates to be not as flexible as I would like, but this is a personal choice and many people do find
them useful, especially for infrequent or complex tasks.

trY It OUt: CreatING a StOreD prOCeDUre USING SQL
SerVer MaNaGeMeNt StUDIO

1. navigate to the ApressFinancial database, expand the programmability node, and
right-click Stored procedures. From the pop-up menu, select new Stored procedure.

2. This opens a Query editor pane with code from a basic stored procedure template—the
template called Create Stored procedure (new Menu), to be exact. you can alter the
procedure by changing the template options, by selecting from the Query toolbar the Specify
Values for Template parameters button (the rightmost button), by pressing Ctr+Shift+M, or
by just writing the code from scratch. as you have chosen to create a stored procedure via
the object explorer menu option, you will use the template this time. Figure 14-1 shows the
template options that can be changed.

3. The first three options, shown in Figure 14-2, are not part of the stored procedure syntax;
they are extra options used within the comments of the stored procedure. The first option,
author, is very useful because it will probably be a dbo account that adds the stored
procedure to the database, and therefore it will be hard to track who the actual creator of the
stored procedure was. it may be that only one account “releases” all the code to production
for deployment. The second option, Create date, is not quite as relevant, as this can be found
by interrogating system views. The description option is excellent and should form part of

Figure 14-1. A stored procedure’s blank template

ChapTer 14 ■ STored proCedureS, FunCTionS, and SeCuriTy

427

every stored procedure, as it will allow a short description of what the stored procedure is
trying to achieve. never go into too much detail in a description, because not everyone has
good discipline in updating the comments when the stored procedure changes. however,
a short “you are trying to achieve” set of text is perfect.

4. you can now move to the template options that form part of the CREATE PROCEDURE syntax.
The first option is the name. i have called this apf_insCustomer to define that it’s a stored
procedure in the ApressFinancial system and that the stored procedure is inserting a row
in the CustomerDetails.Customers table. Then you can insert two parameters, as this is
what the template is set up for. The first two parameters will be used to populate FirstName
and LastName. you will look at the rest in a moment. The parameter values do not have to
be the same name as the columns they will be working with, but it is best to have similar
names. The data type and data length should be defined with the same type and length
as the columns they will be used for. Failure to do this could lead to problems with data
truncation if you make the parameter columns’ length too long, for example. also remove the
values in the default options. your template options should now look similar to what you see
in Figure 14-3.

Figure 14-2. First set of template options filled in

Figure 14-3. The remaining parameters

ChapTer 14 ■ STored proCedureS, FunCTionS, and SeCuriTy

428

5. Click oK. The code will now look like the following:

-- ==
-- Template generated from Template Explorer using:
-- Create Procedure (New Menu).SQL
--
-- Use the Specify Values for Template Parameters
-- command (Ctrl-Shift-M) to fill in the parameter
-- values below.
--
-- This block of comments will not be included in
-- the definition of the procedure.
-- ==
SET ANSI_NULLS ON
GO
SET QUOTED_IDENTIFIER ON
GO
-- ===
-- Author: Robin Dewson
-- Create date: 20th Sept 2014
-- Description: This is to insert a customer
-- ===
CREATE PROCEDURE apf_insCustomer
 -- Add the parameters for the stored procedure here
 @FirstName varchar(5) = ,
 @LastName varchar(50) =
AS
BEGIN
 -- SET NOCOUNT ON added to prevent extra result sets from
 -- interfering with SELECT statements.
 SET NOCOUNT ON;

 -- Insert statements for procedure here
 SELECT @FirstName, @LastName
END
GO

6. you can now define the remaining parameters and fix up the two parameters already defined,
as they currently have an equal sign and no value. The equal sign should be removed from
the parameters. The code with the remaining parameters is shown here:

CREATE PROCEDURE CustomerDetails.apf_InsertCustomer
 -- Add the parameters for the procedure here
 @CustTitle int,
 @FirstName varchar(50) ,
 @CustInitials varchar(10),
 @LastName varchar(50),
 @AddressLine1 varchar(50),
 @AddressLine2 varchar(50),
 @AddressLine3 varchar(50),
 @TownOrCity int,
 @ZipCode varchar(20),

ChapTer 14 ■ STored proCedureS, FunCTionS, and SeCuriTy

429

 @USState tinyint,
 @AccountTypeId int,
 @ClearedBalance money

7. There are a couple of points to make before you progress. First of all, the parameters can be
in any order, although it is best to group parameters together. put all the input parameters first,
and then specify the output parameters. you will see output parameters later in this chapter.
you could also group together parameters used for table modification and then parameters
used within the stored procedure that are discarded once you are finished with them within
your stored procedure. Finally, within the “discarded group,” group together parameters that
are optional and have a default value assigned if no value is passed to the stored procedure.
personally, i group the parameters in a logical order. This can mean that the main key
parameters are first, such as Customerid, or that i group them in order, such as first name,
surname, address, as you would see within a screen. optional parameters tend to be toward
the end, and finally the output parameters are last. The second point is that parameters like
@CustTitle, @TownOrCity, @USState, and @AccountTypeId in this example are showing the
numerical reference values that would come from values defined in a graphical front end.
you may be wondering why the stored procedure is not generating these values from other
information passed. For example, why is the stored procedure not producing the title id from
Mr., Miss, etc.? it is likely that the operator using the front end had a combobox with a list of
possible values to choose from, with ids corresponding to titles. The combobox would have
been generated using the Title key value and display value. in the case of the town or city, the
id would link back to an external address database, so rather than holding the whole town or
city, you could receive just the id selected when the operator used the address lookup.

8. Moving on to the remaining section of the stored procedure, it will take the values of the
parameters and use these values for the relevant columns. The remaining code for the stored
procedure is as follows:

AS
BEGIN

 INSERT INTO CustomerDetails.Customers (Title, FirstName,
 OtherInitials,LastName,AddressLine1,AddressLine2,
 AddressLine3, TownOrCity,ZipCode,USState,AccountType,ClearedBalance)
 VALUES (@CustTitle, @FirstName, @CustInitials, @LastName,
 @AddressLine1,@AddressLine2,@AddressLine3,@TownOrCity,
 @ZipCode, @USState, @AccountTypeId,@ClearedBalance)

END
GO

9. When you execute the preceding code, provided you have made no typing mistakes,
you should see the following output:

Command(s) completed successfully.

10. This will have added the stored procedure to the database. you can check this. Move back to
object explorer, right-click Stored procedures, and select refresh. after the refresh, expand
the Stored procedures node, and you should see the stored procedure in object explorer, as
shown in Figure 14-4.

ChapTer 14 ■ STored proCedureS, FunCTionS, and SeCuriTy

430

11. you have completed your first developer-built stored procedure within the system. inserting
data using the stored procedure will now be demonstrated so you can see the procedure
in action. To execute this stored procedure, you need to specify its name and pass the data
in with parameters. There are two ways you can progress, as mentioned earlier. The first
method is to pass the data across in the same order as the parameters defined within the
stored procedure, as follows:

CustomerDetails.apf_InsertCustomer 1,'Steve',NULL,'Nicklin',
'645 Hyde Park',NULL,NULL,7545,'W1A 1AA',0,1,0

12. if you execute this, you should see the following output:

(1 row(s) affected)

13. however, as mentioned earlier, there is a downside to this method: if someone alters the
stored procedure and places a new parameter in the middle of the existing list or changes
the order of the parameters, or perhaps you don’t know the order of the parameters, then
you are at risk for errors. The preferred method is to name the parameters and the values
as shown in the next example. notice as well that the order has changed:

CustomerDetails.apf_InsertCustomer @CustTitle=1,@FirstName='James',
@CustInitials='A',@LastName='McVey',
@AddressLine1='127 Rothsbury Avenue',@AddressLine2='Teguise Coast',
@AddressLine3=NULL,@TownOrCity=94511,@ZipCode='121100',
@USState=0,@AccountTypeId=2,@ClearedBalance=0

14. again, if you execute this, you should see the same results:

(1 row(s) affected)

You can check that the two customers have been entered correctly if you want. Let’s take a look at two different
methods for executing procedures next.

Figure 14-4. Object Explorer with the stored procedure listed

ChapTer 14 ■ STored proCedureS, FunCTionS, and SeCuriTy

431

Different Methods of Execution
There are two different methods of executing a stored procedure. The first is to just call the stored procedure, as you
saw in the preceding example. The second method is to use the EXEC(UTE) command. Both have the end result of
invoking the stored procedure, but which is better for you to use depends on the particular situation.

•	 No EXEC: It is possible to call a stored procedure without prefixing the stored procedure name
with the EXEC(UTE) statement. However, the stored procedure call must be the first statement
within a batch of statements if you want to execute this statement.

•	 With EXEC: As I have just indicated, if the stored procedure call is the second or subsequent
statement within a batch, then you must prefix the stored procedure with the EXEC(UTE)
statement. On top of this, if you are calling a stored procedure within another stored
procedure, then you will need to prefix that call with the EXEC(UTE) statement.

Returning Results
A stored procedure is built for more than inserting, updating, or deleting data. It is also used to return data from
a return value, a value in a parameter, a value within a single column of a single row, known as a scalar value, or finally
in one or more record sets. In the following sections, you will see each of these types of stored procedures.

The first area you will look at is returning a value. This value could be an error code or a specific value denoting
a piece of information.

Using RETURN
One reason for returning a value from a stored procedure is to indicate an error; this is done with the RETURN
statement. This statement immediately stops a stored procedure and passes control back out of it. Therefore, any
statements after the RETURN statement will not be executed.

It is not compulsory to have a RETURN statement within your code; it is necessary only when you want to either
return an error code or exit from a stored procedure without running any further code from that point. A logical
RETURN is performed at the end of a stored procedure, returning a value of 0.

By default, 0 is returned if no value is specified after the RETURN statement, which means that the stored
procedure was successful. Any other integer value could mean that an unexpected result occurred and that you
should check the return code. It is also possible to return the number of rows affected by the stored procedure.
Notice that the word “error” wasn’t mentioned, as it may be valid for a nonzero return code from a stored procedure.

In this example, you will create a stored procedure that will return two output parameters back to the calling
procedure or code, indicating both the cleared and uncleared balances of a specific customer.

The stored procedure will also use RETURN to indicate whether the customer ID passed to the stored procedure
finds no rows. Note that this is not an error, as the stored procedure code will be working as expected.

You are probably wondering when to use output parameters and when to use RETURN. Output parameters are
used to return information to a calling set of code and can handle any data type. On the other hand, a RETURN can
return only an integer numeric value and is used more often for indicating success or failure.

ChapTer 14 ■ STored proCedureS, FunCTionS, and SeCuriTy

432

trY It OUt: USING retUrN aND OUtpUt paraMeterS

1. Template explorer contains a template set up for output parameters. navigate to this
template, shown in Figure 14-5, and double-click it. The Template explorer can be found from
the View ➤ Template explorer menu option and then under the Stored procedure node.

2. This will open up a new Query editor pane with the basics of the relevant stored procedure,
which is shown, reformatted, in the following code block. Take a moment to peruse this
code. First of all, the first batch within the template sets up checks to see whether the stored
procedure already exists by checking the system tables, and if it does exist, the code deletes
the procedure through the DROP PROCEDURE command. after running DROP PROCEDURE, just
like after dropping any object, all of the permissions associated with that object are lost when
you recreate it, as discussed earlier. The template then demonstrates the building of the
stored procedure with an example of how to execute the stored procedure at the end.

-- ===
-- Create stored procedure with OUTPUT parameters
-- ===
-- Drop stored procedure if it already exists
IF EXISTS (
 SELECT *
 FROM INFORMATION_SCHEMA.ROUTINES
 WHERE SPECIFIC_SCHEMA = N'<Schema_Name, sysname, Schema_Name>'
 AND SPECIFIC_NAME = N'<Procedure_Name, sysname, Procedure_Name>'
)
 DROP PROCEDURE <Schema_Name, sysname, Schema_Name>.<Procedure_Name,
 sysname, Procedure_Name>
GO

CREATE PROCEDURE <Schema_Name, sysname, Schema_Name>.
<Procedure_Name, sysname, Procedure_Name>
 <@param1, sysname, @p1> <datatype_for_param1, , int> =
 <default_value_for_param1, , 0>,
 <@param2, sysname, @p2> <datatype_for_param2, , int> OUTPUT
AS
 SELECT @p2 = @p2 + @p1
GO

Figure 14-5. Template Explorer with the OUTPUT stored procedure

ChapTer 14 ■ STored proCedureS, FunCTionS, and SeCuriTy

433

-- ===
-- Example to execute the stored procedure
-- ===
DECLARE <@variable_for_output_parameter, sysname, @p2_output>
<datatype_for_output_parameter, , int>

EXECUTE <Schema_Name, sysname, Schema_Name>.
<Procedure_Name, sysname, Procedure_Name> <value_for_param1, , 1>,
<@variable_for_output_parameter, sysname, @p2_output> OUTPUT

SELECT <@variable_for_output_parameter, sysname, @p2_output>
GO

3. now that you have seen the code, it is time to update the template parameters. again,

you will find that the template is not ideal for the final solution, as you have only one
input parameter and two output parameters. This stored procedure will belong to the
CustomerDetails schema. The input parameter is a single-integer input parameter for
the customer id, followed by the first of the two output parameters, which will be used for
cleared balances. once you have entered these settings, as shown in Figure 14-6, click oK.

Note ■ you have to enter the output parameter twice in Template explorer.

Figure 14-6. Template values for the OUTPUT stored procedure

ChapTer 14 ■ STored proCedureS, FunCTionS, and SeCuriTy

434

4. Let’s look at the code that was generated. The first section of code checks whether
the stored procedure exists. if it does, then at execution it is deleted by using the DROP
PROCEDURE statement.

-- ===
-- Create stored procedure with OUTPUT parameters
-- ===
-- Drop stored procedure if it already exists
IF EXISTS (
 SELECT *
 FROM INFORMATION_SCHEMA.ROUTINES
 WHERE SPECIFIC_SCHEMA = N'CustomerDetails'
 AND SPECIFIC_NAME = N'apf_CustBalance'
)
 DROP PROCEDURE CustomerDetails.apf_CustBalance
GO

5. Move on to the second section, which creates the contents of the stored procedure; i will
go through each part of it in turn. This stored procedure takes three parameters: an input
parameter of @CustomerId and two output parameters that will be passed back to either
another stored procedure or a program, perhaps written in C#, for example. don’t worry—it
is possible to use Query editor to see the value of the output parameter, but retrieving the
values in a development language will be demonstrated in Chapter 19. When defining
parameters in a stored procedure, there is no need to specify that a parameter is set for
input, as this is the default; however, if you do need to define a parameter as an output
parameter, you will have to insert OUTPUT as a suffix to each parameter. you will need to tidy
up the code built by the template.

Tip ■ if you define an OUTPUT parameter but do not define a value within the stored procedure, it will have a
value of NULL.

CREATE PROCEDURE CustomerDetails.apf_CustBalance
 @CustomerId int,
 @ClearedBalance money OUTPUT, @UnclearedBalance money OUTPUT
AS

6. Take a look at the next section of code, which is very similar to what i have covered several
times earlier in the book in that variables have values assigned to them:

BEGIN
SELECT @ClearedBalance = ClearedBalance, @UnclearedBalance = UnclearedBalance
 FROM CustomerDetails.Customers
 WHERE CustomerId = @CustomerId

ChapTer 14 ■ STored proCedureS, FunCTionS, and SeCuriTy

435

7. The final section of the stored procedure returns a value from a system global variable, @@
ROWCOUNT. you’ll look at this variable in the next chapter; it returns the number of rows
returned in the previous T-SQL statement. From this, the calling code can tell whether
there have been problems and can then decide whether to ignore any values in the OUTPUT
parameter.

 RETURN @@ROWCOUNT
END
GO

8. This completes the stored procedure definition. The template continues defining how to
execute the stored procedure. The first part of this section defines the variables that hold the
output values and the return value. Then the code moves to the EXECUTE section of code.
When a value is returned from a stored procedure, it is set on the left-hand side of the stored
procedure call and is not a parameter value. Then the stored procedure is defined with the
three parameters. note that each output parameter has to have the OUTPUT keyword after it.
The final section of the code is a SELECT statement that displays the values returned and the
output parameter.

-- ===
-- Example to execute the stored procedure
-- ===
DECLARE @ClearedBalance Money, @UnclearedBalance Money
DECLARE @RetVal int

EXECUTE @RetVal=CustomerDetails.apf_CustBalance 2,
@ClearedBalance OUTPUT,
@UnclearedBalance OUTPUT

SELECT @RetVal AS ReturnValue, @ClearedBalance AS ClearedBalance,
@UnclearedBalance AS UnclearedBalance
GO

9. now that the template has been altered with the changes that are required, execute the
whole template code. This will create the stored procedure and run the example at the end
to demonstrate the procedure. of course, you can run this section of code as many times
as you want because the whole scenario, from dropping and losing the stored procedure
through to recreating the stored procedure, is all there, ready for you. The stored procedure
will pass back output parameter values to the @ClearedBalance and @UnclearedBalance
variables defined within the execution batch and will send the return value to the @RetVal
variable. From there, once the variables are set, the values can be printed out using a SELECT
statement. This will produce the output shown in Figure 14-7 in the results pane.

Figure 14-7. Results after running the OUTPUT stored procedure

ChapTer 14 ■ STored proCedureS, FunCTionS, and SeCuriTy

436

10. if you run the stored procedure with a customer number that is not in the database, you will
see NULL values in the two output parameters and a return value of 0. The code to see this is
here:

DECLARE @ClearedBalance Money, @UnclearedBalance Money
DECLARE @RetVal int

EXECUTE @RetVal=CustomerDetails.apf_CustBalance 8653568,
@ClearedBalance OUTPUT,
@UnclearedBalance OUTPUT

SELECT @RetVal AS ReturnValue, @ClearedBalance AS ClearedBalance,
@UnclearedBalance AS UnclearedBalance
GO

You have now built two very basic stored procedures in which you are performing an INSERT and a SELECT. Next
you will look at returning multiple result sets.

Returning Multiple Result Sets
As mentioned earlier, although it is not common, it is possible to return multiple result sets to your calling program.
You will see how to handle this in Chapter 19. In the ApressFinancial database, you may want to return every share
with the share details and the price movement of each share price for analysis. You could call two stored procedures,
one for each set of data, or you could call one stored procedure that completes both actions. There is nothing
new from a SQL Server viewpoint, but here you will create a stored procedure to be used when you call the stored
procedure from an example in Chapter 19.

trY It OUt: retUrNING MULtIpLe reSULt SetS

1. From an empty Query editor, create the following stored procedure. notice that there are two
SELECT statements. once you have entered the code, execute it so that the stored procedure
is created.

CREATE PROCEDURE ShareDetails.AllShareDetails @ShareId int
AS
BEGIN

SELECT ShareId, Description, StockExchangeTicker
 FROM ShareDetails.Shares
 WHERE ShareId = @ShareId

SELECT SharePriceId, ShareId, Price, PriceDate
 FROM ShareDetails.SharePrices
 WHERE ShareId = @ShareId
 ORDER BY PriceDate DESC
END

2. Test the stored procedure by entering and executing the following code:

ShareDetails.AllShareDetails 1

ChapTer 14 ■ STored proCedureS, FunCTionS, and SeCuriTy

437

3. your results should be similar to those in Figure 14-8.

Controlling the Flow
When working on a stored procedure, there will be times when it is necessary to control the flow of execution through
it. The main control of flow is handled with an IF...ELSE statement. You can also control the flow with a
WHILE...BREAK statement.

Note ■ The GOTO statement can also control the flow of a stored procedure. you can use this statement to jump to a
label within a stored procedure, but this can be a dangerous practice and really is something that should be avoided.
For example, it might be better to nest the stored procedure calls.

Controlling the flow through a stored procedure will probably be required when a procedure does anything more
than work with one T-SQL statement. The flow will depend on your procedure taking an expression and making a true
or false decision, and then taking one of two separate actions depending on the answer from the decision.

IF . . . ELSE
At times, a logical expression will need to be evaluated that results in either a true or false answer. This is where an
IF...ELSE statement is needed. You have come across this statement a few times within this chapter. There are many
ways of making a true or false condition, and most of the possibilities involve relational operators such as <, >, =, and
NOT; however, these can be combined with string functions, other mathematical equations, comparisons between
values in local variables, or even system-wide variables. It is also possible to place a SELECT statement within an
IF...ELSE block, as long as a single value is returned.

A basic IF...ELSE statement block would perhaps look like the following:

IF A=B
 Statement when True
ELSE
 Statement when False

Figure 14-8. Results after running the OUTPUT stored procedure

ChapTer 14 ■ STored proCedureS, FunCTionS, and SeCuriTy

438

IF...ELSE statements can also be nested and would look like the following. This example also shows you how to
include a SELECT statement within an IF decision:

IF A=B
 IF (SELECT ClearedBalance FROM Customers WHERE CustomerId = 1) > $20000
 Statement2 when True
 ELSE
 Statement2 when False
ELSE
 Statement when False

As you can see, there is only one statement within each of the IF...ELSE blocks. If you want to have more than
one line of executable code after the IF or the ELSE, you must include another control-of-flow statement, the
BEGIN...END block.

BEGIN . . . END
If you want to execute more than one statement in the IF or ELSE code block, you need to batch the statements up.
To batch statements together within an IF...ELSE block, you must surround them with a BEGIN and END block. If you
try to have more than one statement after the IF, the second and subsequent statements will run no matter what the
setting of the IF statement is.

So if you have the following code, then the SELECT 2 statement would run no matter what value you have for
@VarTest. See the following:

DECLARE @VarTest
SET @VarTest = 2
IF @VarTest=1
SELECT 1
SELECT 2

If you want SELECT 2 to run only when @VarTest is 1, then you would use the following code, thus placing the
code you want to run within the BEGIN...END block:

DECLARE @VarTest
SET @VarTest = 2
IF @VarTest=1
BEGIN
 SELECT 1
 SELECT 2
END

If you use an ELSE statement after a second or subsequent statement after an IF that has no BEGIN...END block,
you would get an error message. Therefore, the only way around this is to use BEGIN...END.

ChapTer 14 ■ STored proCedureS, FunCTionS, and SeCuriTy

439

WHILE . . . BREAK Statement
The WHILE...BREAK statement is a method of looping around the same section of code from zero to multiple times
based on the answer from a Boolean test condition, or until explicitly instructed to exit by the BREAK statement.
The syntax for this command is as follows:

WHILE Boolean_expression
 { sql_statement | statement_block }
 [BREAK]
 { sql_statement | statement_block }
 [CONTINUE]
 { sql_statement | statement_block }

The code defined for the WHILE statement will execute as long as the Boolean expression returns a value of True.
You can have other control-of-flow statements such as an IF...ELSE block within your WHILE block. This is where
BREAK and CONTINUE could be used if required. You may want to test a condition and, if it returns a particular result,
BREAK the loop and exit the WHILE block. The other option that can be used is the CONTINUE statement. This moves
processing straight to the WHILE statement again and will stop any execution of code that is defined after it. The best
way to illustrate these concepts is to show a simple example of these three options in action.

trY It OUt: WhILe . . . BreaK

1. The first option demonstrates how to build a WHILE loop and then test the value of a variable.
if the test returns True, you will break out of the loop; if it returns False, you will continue
processing. Within the example, there are two SELECT statements, one before and one
after an IF...ELSE statement. in this example, the first SELECT will show the values of the
variables, but the IF test will either stop the loop via BREAK or move the code back to the
WHILE statement via the CONTINUE statement. either of these actions will mean that the
second SELECT will not execute.

DECLARE @LoopCount int, @TestCount int
SET @LoopCount = 0
SET @TestCount = 0
WHILE @LoopCount < 20
BEGIN
 SET @LoopCount = @LoopCount + 1
 SET @TestCount = @TestCount + 1
 SELECT @LoopCount, @TestCount
 IF @TestCount > 10
 BREAK
 ELSE
 CONTINUE
 SELECT @LoopCount, @TestCount
END

2. When the code is executed, you don’t actually make it around the 20 loops due to the value
of @TestCount causing the break. also, the CONTINUE statement causes the execution to
move to the END statement and therefore it skips the SELECT statement and continue with the
next iteration of the loop. The output is partially shown in Figure 14-9.

ChapTer 14 ■ STored proCedureS, FunCTionS, and SeCuriTy

440

3. if you change the code to remove the ELSE CONTINUE statement, the second SELECT
statement will be executed. The two rows changed have been highlighted. you are not going
to execute the two lines because they have been commented out by prefixing the code with
two hyphens (--).

DECLARE @LoopCount int, @TestCount int
SET @LoopCount = 0
SET @TestCount = 0
WHILE @LoopCount < 20
BEGIN
 SET @LoopCount = @LoopCount + 1
 SET @TestCount = @TestCount + 1
 SELECT @LoopCount, @TestCount
 IF @TestCount > 10
 BREAK
-- ELSE
-- CONTINUE
 SELECT @LoopCount, @TestCount
END

a snapshot of some of the output from this is shown in Figure 14-10.

Figure 14-10. WHILE with BREAK only

Figure 14-9. WHILE with BREAK and CONTINUE

ChapTer 14 ■ STored proCedureS, FunCTionS, and SeCuriTy

441

The third statement you will look at in this section is the CASE statement. While not a control-of-flow statement
used in your stored procedure, it also can be used to control the execution flow.

CASE Statement
When a query has more than a plain true or false answer—in other words, when there are several potential
answers—you should use the CASE statement.

A CASE statement forms a decision-making process within a SELECT or an UPDATE statement. It is possible to
set a value for a column within a result set based on a CASE statement and the resultant value. Obviously, with this
knowledge, you realize that a CASE statement cannot form part of a DELETE statement.

Several parts of a CASE statement can be placed within a stored procedure to control the statement executed,
depending on each scenario. Two different syntaxes exist for the CASE statement depending on how you want to test
a condition or what you want to test. Let’s take a look at all the parts of the first CASE statement syntax:

CASE expression
WHEN value_matched THEN
 statement
[[WHEN value_matched2 THEN]
 [Statement2]]
...
...
...
[[ELSE]
 [catch_all_code]
END

First, you need to define the expression that is to be tested. This could be the value of a variable, a column value
from within the T-SQL statement, or any valid expression within SQL Server. This expression is then used to determine
the values to be matched in each WHEN clause.

You can have as many WHEN clauses as you want within the CASE condition, and you do not need to cover every
condition or possible value that could occur. Once a condition is matched, only the statements within the appropriate
WHEN block will be executed. Of course, only the WHEN conditions that are defined will be tested. However, you can
cover yourself for any value within the expression that has not been defined within a WHEN statement by using an ELSE
condition. This is used as a catch-all statement. Any value not matched would drop into the ELSE condition, and from
there you could deal with it.

The second syntax is used for computing a value depending on the condition. See the following:

CASE
 WHEN Boolean_expression THEN result_expression
 [...n]
 [
 ELSE else_result_expression
]
END

As just indicated, CASE statements can be part of SELECT, UPDATE, or INSERT statements, therefore possibly
working on multiple rows of data. As each row is retrieved from the table, the CASE statement kicks in, and instead
of the column value being returned, it is the value from the decision-making process that is inserted instead. This
happens after the data have been retrieved and just before the rows returned are displayed in the results pane. The
actual value is initially returned from the table and is then validated through the CASE statement; once this is done,
the value is discarded if no longer required.

Now that you are familiar with CASE statements, you can look at them in action.

ChapTer 14 ■ STored proCedureS, FunCTionS, and SeCuriTy

442

trY It OUt: USING the CaSe StateMeNt

1. The first example will demonstrate the first CASE syntax, where you will take a column and
test for a specific value. The results of this test will determine which action will be performed.

SELECT Description,
CASE CreditType
WHEN 0 THEN 'Debiting the account'
WHEN 1 THEN 'Crediting the account'
END
FROM TransactionDetails.TransactionTypes

2. execute this code, and you should see the output shown in Figure 14-11.

3. a customer can have a positive or a negative ClearedBalance. The CASE statement that
follows will demonstrate this by showing either in Credit or overdrawn. in this case, you
want to use the second CASE syntax. you cannot use the first syntax, as you have an operator
included within the test and you are not looking for a specific value. The code is defined as
follows:

SELECT CustomerId,
CASE
WHEN ClearedBalance < 0 THEN 'OverDrawn'
WHEN ClearedBalance > 0 THEN 'In Credit'
ELSE 'Flat'
END, ClearedBalance
FROM CustomerDetails.Customers

Figure 14-11. Simple CASE statement output

ChapTer 14 ■ STored proCedureS, FunCTionS, and SeCuriTy

443

4. execute the code. This produces output similar to what you see in Figure 14-12.

Bringing It All Together
Now that you have seen the control-of-flow statements, you can bring all of this together in the most complex set
of code so far. The aim of this stored procedure is to take a “from” and “to” date, which can be over any period, and
return the movement of a particular customer’s transactions that have affected the cash balance. This mimics your
bank statement when it says whether you have spent more than you have deposited.

In the following example, you will be returning a value that will later be used as a “scalar” value within Chapter 19.

Note ■ in this example, you are performing a loop around rows of data within a table. This example demonstrates
some of the functionality just covered with decisions and control of flow. SQL Server works best with sets of data, rather
than with a row at a time. however, there will be times that row-by-row processing like this happens. in SQL Server, you
have the option to write .neT-based stored procedures, and this example would certainly be considered a candidate for
this treatment. This example works with one row at a time, and you would have a running total of a customer’s balance
so that you could calculate interest to charge or to pay.

trY It OUt: BrINGING It aLL tOGether

1. First of all, let’s create the stored procedure. enter the CREATE PROCEDURE statement in an
empty Query editor pane, and then name the procedure with the three input parameters.

CREATE PROCEDURE CustomerDetails.apf_CustMovement @CustId bigint,
@FromDate datetime, @ToDate datetime
AS
BEGIN

2. you then need three internal variables. This stored procedure will return one row of
transactions at a time while you are still within the date range. as you move through each
row, you need to keep a running balance of the amounts for each transaction. you know
that the data in the TransactionDetails.Transactions_old table have an ascending
TransactionId as each transaction is entered, so the next transaction from the one returned

Figure 14-12. Searched CASE statement output

ChapTer 14 ■ STored proCedureS, FunCTionS, and SeCuriTy

444

must have a higher value. Therefore, you can store the transaction id in a variable called
@LastTran and use that in filtering. once the variables are declared, you then set them to an
initial value. you use @StillCalc as a test for the WHILE loop. This could be any variable,
as you are using the CONTINUE and BREAK statements to determine when you should exit
the loop.

DECLARE @RunningBal money, @StillCalc Bit, @LastTran bigint

SELECT @StillCalc = 1, @LastTran = 0, @RunningBal = 0

3. Tell the loop to continue until you get no rows back from the SELECT statement. once you get
no rows, you will know that there are no more transactions in the date range.

WHILE @StillCalc = 1
BEGIN

4. a more complex SELECT statement will return one row where the TransactionId is greater
than the previous TransactionId returned; the transaction would affect the customer’s
cash balance, and the transaction occurred between the two dates passed in. if there is a
transaction, then you add or subtract the value from the @RunningBal variable. use a CASE
statement to decide whether you need to make the value a negative value for adding to
the variable.

 SELECT TOP 1 @RunningBal = @RunningBal + CASE
 WHEN tt.CreditType = 1 THEN t.Amount
 ELSE t.Amount * -1 END,
 @LastTran = t.TransactionId
 FROM CustomerDetails.Customers c
 JOIN TransactionDetails.Transactions_old t ON
 t.CustomerId = c.CustomerId
 JOIN TransactionDetails.TransactionTypes tt ON
 tt.TransactionTypeId = t.TransactionType
 WHERE t.TransactionId > @LastTran
 AND tt.AffectCashBalance = 1
 AND DateEntered BETWEEN @FromDate AND @ToDate
 ORDER BY DateEntered

5. if you get a row returned, then you continue the loop. once you get no rows returned,
you know that there are no further transactions in the date range.

 IF @@ROWCOUNT > 0
 -- Perform some interest calculation here...
 CONTINUE
 ELSE
 BREAK
 END

 SELECT @RunningBal AS 'End Balance'
END
GO

ChapTer 14 ■ STored proCedureS, FunCTionS, and SeCuriTy

445

6. you can now create the stored procedure and test it. The example is going to check whether
customer id 1 has had a positive or a negative movement on his or her cash balance in
the month of august 2011. The code to find this out follows. First of all, you insert some
TransactionDetails.Transactions records to test it out. you also prefix the stored
procedure with an EXEC(UTE) statement, as this is part of a batch of statements.

INSERT INTO TransactionDetails.Transactions_old
(CustomerId,TransactionType,DateEntered,Amount,RelatedProductId)
 VALUES (1,1,'1 Aug 2015',100.00,1),
 (1,1,'3 Aug 2015',75.67,1),
 (1,2,'5 Aug 2015',35.20,1),
 (1,2,'6 Aug 2015',20.00,1)
EXEC CustomerDetails.apf_CustMovement 1,'1 Aug 2015','31 Aug 2015'

7. execute the preceding code, which should return a value that you expect, as shown in
Figure 14-13.

Security
Now that you have tables, views, and stored procedures established, the current system is so secure that nobody has
access to any data once a login has been granted to ApressFinancial. The only people that have access are database
owners. This is very restrictive, and you need to be able to give the right database users the correct access. In the
following section, I will discuss further areas of security, building on the foundations laid in Chapter 4.

Security Gains
The two worst-case scenarios from a security standpoint are that all database users are database owners or that all
database users are granted full access rights to all objects. In this section of the chapter, I will cover security, what is
best practice, and how to implement this.

Here is a quick reminder of some terminology before you proceed:

•	 Windows user id/account: An account used to log on to a Windows computer

•	 Windows group: A group of users that can be created in some Windows editions and on
networks that allow Windows accounts to be grouped for simplifying tasks

•	 Server login: Allows you to connect to the server

•	 Database user account: Allows a server login to connect to a database

•	 Principal: A name given to a collection of security-based items; examples of a principal are
application roles, database users, a Windows login, and a Windows group.

Figure 14-13. Complex stored procedure output

ChapTer 14 ■ STored proCedureS, FunCTionS, and SeCuriTy

446

First of all, here is a quick summary of the current security settings from earlier in the book. In Chapter 4, you
created two Windows accounts, MSmith and NMorgala, as well as two Windows groups, Apress_Product_Controllers
and Apress_Client_Information. MSmith was then added to Windows group Apress_Product_Controllers. The
Windows group was added as a server login to SQL Server, which allows anyone in that Windows group to log on to
SQL Server. This same process was completed for the MSmith Windows account as part of the examples in that chapter.
Both Apress_Product_Controllers and MSmith were added as database users to the ApressFinancial database,
although MSmith was added as a database owner. So at the moment, MSmith as a database owner has full access to the
ApressFinancial database. At present, only your account and MSmith have any access to the data, stored procedures,
views, and so on, as no further access has been granted at any point throughout the book.

To prove MSmith has full access, log on to Windows as MSmith, then start SQL Server Management Studio, open
a Query Editor window, and, within a transaction, update a table. The example code I used to prove MSmith’s access
was as follows:

BEGIN TRAN
UPDATE CustomerDetails.CustomerProducts
SET AmountToCollect = 300
WHERE CustomerFinancialProductId = 1
ROLLBACK TRAN

You can see the Windows groups and MSmith in Figure 14-14 in the Permissions page of the Database
Properties screen.

Figure 14-14. ApressFinancial database users and effective permissions

ChapTer 14 ■ STored proCedureS, FunCTionS, and SeCuriTy

447

So now you know how the security is currently defined within the database. You can now correct any errors and
implement the correct security model. MSmith should not be a database owner, as it is not a developer- or database
administrator–based account.

The first security consideration is to define who can create, modify, or drop objects in your database. Objects are
tables, views, stored procedures, and so on as well as database users, roles, and so forth. This is the most dangerous
area of a database, as users can accidently or maliciously perform these actions and potentially destroy your
database. Hackers look for ways to access a SQL Server database to complete these actions. This can occur by users
in the database owner role giving all database users the database owner role. Under no circumstances should you
implement this. Only developers (or, in larger corporations, those who release code to production) should be given
the database owner role.

The next security consideration is data access and how this should be implemented. There are two schools of
thought on how to achieve this. The first school of thought is that all data access, regardless of whether it is to insert,
update, delete, or view data, should be done through stored procedures or views. This means that there is no direct
table access. A stored procedure should be written for each action on each table or tables. Some advantages of having
all-encompassing stored procedures are as follows:

Data integrity is strictly controlled via the stored procedures. The stored procedures will •	
enforce referential data integrity on top of any relationships you have between tables by
ensuring that data in columns fit into the overall database design, and that all data returned
either internally in the stored procedure or externally to the executing connection are valid, in
a defined format, and contain only the required information.

User accounts less familiar with your data model can work with your data in a safe manner. •	
If someone new joins a team or if you have a separate team of people who maintain
your database data, allowing you and your team to develop further enhancements, the
maintenance team doesn’t need to know the underlying data structures or design. Correcting
any issues or enhancing the data can all be controlled via stored procedure access.

It is a lot harder for hackers to see the database design and structure and, therefore, •	
to maliciously alter your database.

However, some of the downsides include the following:

Ad hoc data corrections may not have a stored procedure available at the time the correction •	
is required.

Changes to the database design, as you enhance your system, can mean changing a large •	
number of related stored procedures.

You may find that you build a system in which one stored procedure calls another stored •	
procedure, which in turn calls another stored procedure, and so on. This is known as nested
procedures, and it could be that within the nesting you find it difficult to follow and perform
the right actions in the right order.

Stored procedures may have a large number of optional parameters with default values so as •	
to fit every access path.

The second school of thought is that the application knows its data the best and thus all data access should be via
direct T-SQL. The GUI would build up T-SQL statements and send them to SQL Server for action and the results would
be sent back to the GUI to take further. Some advantages of this school of thought include the following:

The GUI can build the specific code required to perform the necessary action. Optional data •	
requirements can be included or omitted in the T-SQL statement as required.

The development code, if built well, can implement object-oriented techniques, and this can •	
help build solid T-SQL based on the data held.

ChapTer 14 ■ STored proCedureS, FunCTionS, and SeCuriTy

448

Modifications to the data structure in the database could mean that one alteration in the •	
development code that would permeate all database changes.

All data validation and business rules are held outside of the database, and this can aid •	
development time.

And some of the disadvantages include the following:

Extra code has to be written to stop SQL injection attacks. An SQL injection is where a hacker •	
builds T-SQL statements, which can then be passed to the database and reveal data or schema
to the hacker, who can then hack your database further. This can happen from a text box
where a hacker can insert a code terminator that would terminate the code you are building
and then execute the hacker’s code.

A larger amount of code is being passed over the network, and this will result in some •	
performance reduction, depending on the network.

Changes to the database schema can also mean a deployment of the application to reflect those changes.
These lists are not exhaustive, and different developers will have different views and reasons for each method of

proceeding. I just wanted to present to you that there is no right or wrong answer. What you have to decide is what is
right for you and what is right for the development you are working on. I tend to adopt a mixed-approach strategy in
most of my development, where I will have stored procedures and direct T-SQL. I use T-SQL where the code required
can alter on each request, such as the columns to return or the tables to work with, and I use stored procedures
wherever else I can. If I do have to use T-SQL, I will also try to use views as much as possible before I use direct table
access.

However, at this point, non-database owners can do nothing, so it is time to take a look at how you can grant and
revoke access to database users.

Granting and Revoking Permissions
It is possible to give or bar a specific principal access rights to specific objects. Within the following section, you will
see how you can grant and revoke rights to an object and how these actions can secure access to specific objects.

Note ■ Granting and revoking extends beyond database objects to many other areas. you would then replace the term
objects with the term securables, as you saw in Chapter 4, when adding Windows groups to SQL Server and giving them
access rights to the ApressFinancial database.

GRANT
To give a principal a specific permission on an object requires a GRANT statement, and removing permission
necessitates a REVOKE statement. The first statement you will use will be the GRANT statement. This gives specifically
defined permissions on a specific object to a specific principal. The generic format of the GRANT statement is as
follows:

GRANT { [PRIVILEGES] }
 | permission [(column [,...n])] [,...n]
 [ON [class ::] securable] TO principal [,...n]
 [WITH GRANT OPTION] [AS principal]

ChapTer 14 ■ STored proCedureS, FunCTionS, and SeCuriTy

449

This statement alters depending on the object you are applying the GRANT to. However, let’s take a moment to
look at the options:

•	 PRIVILEGES: This keyword is optional and exists due to ISO compliance and is non-functional
on permissions.

•	 permission: The permission you will be granting; permissions include EXECUTE, SELECT,
INSERT, DELETE, and UPDATE.

•	 column: The name or list of the column(s) that you will be granting privileges on; the list has to
be surrounded by parentheses.

•	 ON securable: Optional; the securable object you are granting privileges on; this could be the
table, stored procedure, or view.

•	 TO principal: The security principal that is receiving the privilege; this could be a database
user or an application role.

•	 WITH GRANT OPTION: Optional; you can allow the principal defined in the statement to grant
this permission to other principals. This is something you need to take care with as you could
allow that principal to grant the privilege to another principal that you have no control over.

•	 AS principal: Optional; it is possible to grant an object permission to a specific principal, but
that principal derives its permissions from a different principal.

The GRANT statement covers a large range of objects, from granting a principal the ability to create a database
through to the ability to insert data into tables, execute stored procedures, and even deal with specific columns within
a table. One example: You give access to the CustomerDetails.Customers table to several principals but grant to
only one principal the ability to see the customer balance amounts within that table. You will see this in action in the
example shortly.

REVOKE
Of course, you need the ability to revoke any privileges. Revoking privileges is ideal when you no longer wish a
user/principal to have access to a specific securable/object. This can happen when you have given an object too much
access. Revoking privileges tends to be used less than granting privileges once a system is live, as part of the go-live
would be to have the right privileges granted at that time.

The format for this statement is as follows:

REVOKE [GRANT OPTION FOR]
 {
 [PRIVILEGES]
 |
 permission [(column [,...n])] [,...n]
 }
 [ON [class ::] securable]
 { TO | FROM } principal [,...n]
 [CASCADE] [AS principal]

ChapTer 14 ■ STored proCedureS, FunCTionS, and SeCuriTy

450

The options are as follows:

•	 GRANT OPTION FOR: If you have granted permission and included the WITH GRANT option, you
can revoke the ability to pass on privileges.

•	 PRIVILEGES: The keyword is included for ISO compliance and has no effect on permissions.

•	 permission: The permission you wish to revoke

•	 ON securable: The securable object that you are revoking the permission on

•	 TO | FROM principal: The security principal that you are revoking the privilege from

•	 CASCADE: If you granted permission on an object to a principal using the WITH GRANT
option, and this principal granted permission to another principal and so on, then by using
the CASCADE option, the privilege will be revoked for the principal mentioned plus all the
principals down the chain.

•	 AS principal: Optional; it works for REVOKE much as it does for GRANT, but revokes instead of
grants.

In the following example, you will allow the Apress_Product_Controllers database user access to execute two
procedures and return data from one table, but the user will be unable to see the value from a column.

trY It OUt: SeCUrING YOUr DataBaSe

1. First of all, you should remove the MSmith database user from the database. if you recall in
Chapter 4, MSmith was added and then given the db_owner server role. This allowed MSmith
to create tables and to insert, update, and delete data, among several other database actions.

DROP USER [FAT-BELLY-SONY\MSmith]

2. if you switch the user to MSmith within Windows, you can still connect to SQL Server. MSmith
still has a server login. however, if you try to expand the ApressFinancial database and see
what tables exist they will still be displayed, but you are unable to expand a specific table to see
the columns contained. if MSmith tries to run a query against the ApressFinancial database,
you will find that the user cannot do this. Figure 14-15 shows that no columns can be seen and
shows the error message you will receive when MSmith tries to execute some T-SQL.

Figure 14-15. MSmith has lost all ability to work within the ApressFinancial database

ChapTer 14 ■ STored proCedureS, FunCTionS, and SeCuriTy

451

3. The next step is to give the database user Apress_Product_Controllers access to the
objects in the ApressFinancial database that is required for the user to complete the work.
The first action will be to give access to execute permissions on securable stored procedure
CustomerDetails.apf_CustMovement using the properties screen. Find the stored
procedure, right-click, and select properties from the menu. From the screen that appears,
select the permissions page from the menu on the left. This should display Figure 14-16,
where no explicit permissions have been granted.

4. To add Apress_Product_Controllers, click the Search button on the right side of the page.
This will bring up the search dialog box as shown in Figure 14-17, where you can select the
user or role you wish to give the privilege to.

Figure 14-16. Permissions page for the stored procedure

ChapTer 14 ■ STored proCedureS, FunCTionS, and SeCuriTy

452

5. Click the Browse button. This will display the possible objects that meet the search
criteria, which should be similar to Figure 14-18. you will see the two user groups of
Apress_Client_Information and Apress_Product_Controllers. you will also see the
application role Banking Transactions, as well as the database role public and the user
“guest.” Select Apress_Product_Controllers and click oK. This will add this user to the
search dialog. Click oK twice to return you to the properties page.

Figure 14-17. Searching for a user or a role

Figure 14-18. The roles and users that can be chosen

ChapTer 14 ■ STored proCedureS, FunCTionS, and SeCuriTy

453

6. The permissions page will now resemble Figure 14-19. The user has been added in the top
half of the page, and the potential permissions for the principal to be given for this object are
listed at the bottom of the page.

7. There are five possible options, but the option required is execute. This will then give this
user the ability to execute the stored procedure. Select execute under the Grant column, as
shown in Figure 14-20, and click oK to apply the changes. The other options are as follows:

 • Alter: Selecting this option would allow the principal to alter the code.

 • Control: Similar to owning a securable/object, by granting this the principal would have
similar permissions. however, you can then deny specific actions.

 • Take ownership: at present this object is owned by the account that created it. it is
possible to take ownership of the object. This option is more likely to be set on schemas
than on stored procedures.

 • View definition: allows the user to see the metadata of the object; in this case, you
would be able to see the contents of the stored procedure.

Figure 14-19. The user added and the potential permissions that can be granted

ChapTer 14 ■ STored proCedureS, FunCTionS, and SeCuriTy

454

8. The permission is now applied, which you can check by switching to MSmith and executing
the following code:

EXEC CustomerDetails.apf_CustMovement 1,'1 Aug 2015','31 Aug 2015'

9. you can achieve the same permissions via T-SQL using the GRANT statement:

GRANT EXECUTE ON CustomerDetails.apf_CustMovement
TO [FAT-BELLY-SONY\Apress_Product_Controllers]

Figure 14-20. Execute permission selected

ChapTer 14 ■ STored proCedureS, FunCTionS, and SeCuriTy

455

Figure 14-21. Adding the Windows group to the table properties

10. The final demonstration will be to grant Apress_Product_Controllers the ability to perform
a SELECT on the CustomerDetails.Customers table, but without being able to retrieve data
from the ClearedBalance column. First of all, highlight the CustomerDetails.Customers
table, right-click, and select properties. Choose the permissions option. Then add the
Apress_Product_Controllers user using the same steps as in the previous parts of this
exercise. your permissions page should now look like Figure 14-21.

ChapTer 14 ■ STored proCedureS, FunCTionS, and SeCuriTy

456

12. Find the ClearedBalance column and click deny. For all other columns in the list, you
need to click the Grant column. This will then deny this principal from accessing the
ClearedBalance column but will allow it to SELECT from all the others. you should see
something like Figure 14-23. Click oK, which will return you to the permissions page. you can
click oK, or click Cancel and then execute the following T-SQL statement instead:

GRANT SELECT ON CustomerDetails.Customers (CustomerId,
Title, FirstName, OtherInitials, LastName,AddressLine1,
AddressLine2,AddressLine3,TownOrCity,ZipCode,USState,
AccountType, UnclearedBalance, DateOpened,DateClosed)
TO [FAT-BELLY-SONY\Apress_Product_Controllers]

Figure 14-22. Columns that could be granted or denied permissions

11. if you now click the Select permission within the Grant column, it will enable the Column
properties button on the right-hand side. if you click this button, you will see the Column
permissions screen, as shown in Figure 14-22.

ChapTer 14 ■ STored proCedureS, FunCTionS, and SeCuriTy

457

13. you can test out this permission by switching to MSmith one last time and executing the
following code examples. The first is to perform a SELECT against CustomerDetails.
Customers and return the FirstName and LastName, as follows:

SELECT FirstName, LastName
FROM CustomerDetails.Customers

14. The next example will try to retrieve the ClearedBalance. This will give an error. See the
following:

SELECT FirstName, LastName, ClearedBalance
FROM CustomerDetails.Customers

15. The final example is to demonstrate that it is not possible for MSmith to delete a row from
the table:

DELETE FROM CustomerDetails.Customers WHERE CustomerId = 2

User-Defined Functions
As you have seen, a stored procedure takes a set of data, completes the work as required, and then finishes. It is not
possible to take a stored procedure and execute it within, for example, a SELECT statement. This is where user-defined
functions (UDFs) come into play. There are two methods of creating UDFs: through T-SQL and through .NET. However
you create them, stored functions take a set of inputs and produce output that a query invoking a particular function
can further use. UDFs are similar to stored procedures, but it is their ability to be used within a query that provides
their power. You have already seen a few system-defined functions within this book, including GETDATE(), which gets
today’s date and time and returns it within a query, such as SELECT GETDATE().

Figure 14-23. Access to ClearedBalance denied, but all other columns granted

ChapTer 14 ■ STored proCedureS, FunCTionS, and SeCuriTy

458

Functions come in two types, scalar and table-valued, and you will see both of these demonstrated in the final
sections of this chapter.

Scalar Functions
The first function that is covered is a scalar function. A scalar function can return only a single value. The GETDATE()
function that you are familiar with, shown in Chapter 5 when giving a column a default value, is a scalar function.
The following shows the basic syntax to define a scalar function:

CREATE FUNCTION [schema_name.] function_name
([{ @parameter_name data_type [= default] [READONLY] } [,...n]])
RETURNS return_data_type
 [WITH <function_option> [,...n]]
 [AS]
 BEGIN
 function_body
 RETURN scalar_expression
 END

Note that zero, one, or more parameters can be passed into the function. Prefix each parameter in the definition
with the local variable definition @ sign and define the data type. Every parameter can be modified within the
function as part of the function’s execution, unless you place the keyword READONLY after the data type when defining
the function. As with stored procedures, it is possible to call a function and omit specifying one or more of that
function’s parameters. Any parameters that you omit must have been previously defined with default values. In that
case, you can call the function with the keyword DEFAULT in the location that such a parameter is expected. The use of
default values is demonstrated within the example that follows in the upcoming “Try It Out” section.

The RETURNS clause in a function definition defines the type of data that will be returned. All data types, with the
exception of the timestamp data type, can be returned.

The contents of a function are similar to a stored procedure, with the exceptions already discussed. You must
place a RETURN statement when you want the function to complete and return control to the calling code.

Table-Valued Functions
A table-valued function lets you return a table of data rather than a single value. You can use a table-valued function to
replace the list of tables in the FROM clause of a SELECT statement. The basic syntax for a table-valued function follows.
Most of the syntax is similar to that of scalar functions; however, this time you’re returning a TABLE data type, and the
data to return is defined in terms of a SELECT statement.

CREATE FUNCTION [schema_name.] function_name
([{ @parameter_name parameter_datatype [= default] [READONLY] } [,...n]]
RETURNS TABLE
 [WITH <function_option> [,...n]]
 [AS]
 RETURN [(] select_stmt [)]

A table function is not built in this chapter, but will be completed in Chapter 19, as I want to show more advanced
T-SQL with this functionality, and you need to read Chapter 16 before I can do that.

Note ■ it is also possible to define a stored procedure so as to receive a TABLE data type as an input-only parameter.

ChapTer 14 ■ STored proCedureS, FunCTionS, and SeCuriTy

459

Considerations When Building Functions
Functions must be robust. If an error is generated within a function, whether it is from invalid data being passed in
or from errors in the logic, then the function will stop executing at that point, and the T-SQL calling the function will
cancel. A function must also not alter any external resource such as a table, and it must not execute a system function
that alters resources, such as a function that sends an e-mail. Finally, you need to know whether a function can be
used in computed columns.

Once a column is added to a table, it is possible to apply a function to it in order to get a computed column.
For example, you may have a table that is holding customer orders. Within that table, there are two columns called
NetValue and LocalTax. You could then have a third column called GrossValue, which is a computation of NetValue
+ Tax + LocalTax. The value of Tax would come from a user-defined function that computes the gross tax for where
the order originated. Either the GrossValue column would have an expression of the gross value of the order using
the data from the two columns and the function, or the function would complete all the work. Either way, the value is
computed within the column directly and is not set by the user.

The computed column would then have a property called IsComputed (set by SQL Server) defined for it. An
important point to note is that by default, if a column is a computed column, it won’t physically exist within the table,
but rather is recalculated each time it is used. If you need the value to be defined once and not be recalculated when
any other column value is altered that is used in the computation, then you need to set the Is Persisted option
to Yes within the T-SQL you write. When building your table using the designer, you have to set the Is Persisted
property to Yes within the Table Designer and then set the value within your INSERT or UPDATE statement. There are, of
course, valid scenarios for having the column computed each time, but you have to be aware that there will be a small
performance overhead with this. By defining the column with the PERSISTED keyword, the value will be stored in the
table and will change only when a value in one of the columns used to perform the calculation alters. So, there is a
trade-off with space and speed.

However, not all functions can be assigned to a column to make it computed. Once a function has been built,
you can check its suitability by using the OBJECTPROPERTY function to check whether it is deterministic. If a function is
deterministic (defined shortly), then it is a candidate for being used to generate a computed column.

The syntax is as follows:

SELECT OBJECTPROPERTY(OBJECT_ID('schema.object'), 'property')

Note ■ The property value to check whether a function is deterministic is IsDeterministic. if you call the function
and it returns the same value every time, then you can define the function as being deterministic. GETDATE() is not
deterministic, because it returns a different value each time.

Similar to checking your function properties, there are properties assigned to a column when it is created
that are useful when the column is a computed column. The values of the properties can be checked by using the
COLUMNPROPERTY function once the function has been added to a column, thus making it a computed column.

If you want to use COLUMNPROPERTY, the function call syntax is as follows:

SELECT COLUMNPROPERTY (OBJECT_ID(‘schema.table’),

‘columnname’, ‘property’)

ChapTer 14 ■ STored proCedureS, FunCTionS, and SeCuriTy

460

Here are five properties of interest that you can determine the value of when inspecting a computed column:

•	 IsDeterministic: If the column will have the same value every time you call the associated
function with the same values, it is deterministic.

•	 IsPrecise: The column can be either precise or imprecise. For example, an exact number is
precise, but a floating-point number is imprecise.

•	 IsSystemVerified: If SQL Server can determine the values of the first two properties, this
property will be set to true; otherwise, it will be set to false.

•	 SystemDataAccess: This is true if any system information is accessed, such as information
from system catalogs or views.

•	 UserDataAccess: This is true if any user data from the local instance of SQL Server are used.

In the following exercise, you will build a scalar function to calculate an amount of interest either gained or lost
based on an amount, an interest rate, and two dates. Once the function is built, you will then see a simple usage of the
function and check its deterministic value. In Chapter 18, when your T-SQL knowledge is advanced, you will then use
this function against the TransactionDetails.Transactions_old table to calculate interest for every
transaction entered.

trY It OUt: a SCaLar FUNCtION tO CaLCULate INtereSt

1. The first part of creating a function is to define its name, including the schema it will belong
to, and then the parameter values that will be coming into it. The following function will
calculate the amount of interest from a defined rate, and will use two dates for the number of
days the interest shall be for. The first parameter (the interest rate) has a default value of 10,
meaning 10%.

CREATE FUNCTION TransactionDetails.fn_IntCalc
(@InterestRate numeric(6,3)=10,@Amount numeric(18,5),
 @FromDate Date, @ToDate Date)

2. next, you need to define what data type is to be returned. in this instance, it is a numeric data
type with up to five decimal places. This granularity may not be required for your purposes,
but it is defined here so that in an audit situation, accurate global summation of interest
can be accrued (recall the earlier example about interest). The following is the return type
definition:

RETURNS numeric(18,5)

3. include the following EXECUTE AS clause to specify that the function will execute in the
same security context as the calling code does. This security context is determined by
the AS CALLER clause. it is possible to alter the security context of EXECUTE AS to another
account. doing so is ideal when you want to ensure that no matter what the account is that
is connected, the function can be called. Conversely, you can set up a function so that only
specific accounts can execute the code:

WITH EXECUTE AS CALLER

ChapTer 14 ■ STored proCedureS, FunCTionS, and SeCuriTy

461

4. now that the preliminaries have been dealt with, you can move on to building the remainder
of the function. a local variable that will hold the interest is defined using the same data type
and size as the RETURNS definition. Then the variable is set using the calculation required for
calculating the interest. here is the resulting code:

AS
BEGIN
 DECLARE @IntCalculated numeric(18,5)
 SELECT @IntCalculated = @Amount *
 ((@InterestRate/100.00) * (DATEDIFF(d,@FromDate, @ToDate) / 365.00))

5. Finally, the RETURN statement returns the calculated value, taking into account whether a
NULL value is being returned.

 RETURN(ISNULL(@IntCalculated,0))
END
GO

6. you can now test the function by executing it against a set of values. The interest rate default
value demonstrates how to specify default parameter values when invoking a function. The
results are shown in Figure 14-24.

SELECT TransactionDetails.fn_IntCalc(DEFAULT,2000,'Mar 1 2015','Mar 10 2015')

Figure 14-24. Inline function results for interest

7. it is now possible to check if the function is deterministic using the OBJECTPROPERTY
function. This returns a value of 0, or FALSE, because this function returns a different value
each time. Therefore, this function could not be used as a computed column.

SELECT OBJECTPROPERTY(OBJECT_ID('TransactionDetails.fn_IntCalc'),
 'IsDeterministic')
GO

In Chapter 18, where you’ll see more advanced T-SQL, this function will be updated to calculate interest for
customer transactions. in that chapter you will also see how to build an inline table-valued function.

ChapTer 14 ■ STored proCedureS, FunCTionS, and SeCuriTy

462

Summary
In this chapter, you have encountered stored procedures and functions, which are collections of T-SQL statements
compiled and ready to be executed by SQL Server. You have learned the advantages of a stored procedure over an ad
hoc query, encountered the basic CREATE PROCEDURE and CREATE FUNCTION syntaxes, and created some simple stored
procedures and functions.

The basics of building a stored procedure are very simple and straightforward. Therefore, building a stored
procedure within Query Editor may be as attractive as using a template. As stored procedures are sets of T-SQL
statements combined together, you will tend to find that you first build up your query and then at the end surround it
with a CREATE PROCEDURE statement.

You have also seen an inline T-SQL-based function. To reiterate, it is possible to also have functions that are
written using .NET code, which provides you with more possibilities regarding functionality and other processing
abilities.

Probably the largest area of code creation outside of data manipulation and searching will be through
control-of-flow statements. You will look at other areas, such as error handling, in later chapters.

463

Chapter 15

Natively Compiled Stored Procedures

Now that disk-based stored procedures have been covered it’s time to look at natively compiled stored procedures.
These procedures are built to execute against in-memory tables as quickly and as efficiently as possible. For the most
part, the functionality available in standard stored procedures exists within natively compiled stored procedures, but
there are important differences that this chapter will go through.

The aim of the chapter is to cover the differences that exist between creating a natively compiled stored
procedure and creating a standard stored procedure, as well as to show the speed differences between natively
compiled code found within a stored procedure and natively compiled code found outside of a stored procedure.

In this chapter you will see discussed:

What a natively compiled stored procedure is•	

How a natively compiled stored procedure differs from a standard stored procedure•	

The syntax of a natively compiled stored procedure•	

What options and mandatory arguments need to be used when creating a stored procedure•	

A demonstration of creating a stored procedure•	

The performance of a natively compiled stored procedure compared to interpreted SQL•	

How to ensure optimum performance from a natively compiled stored procedure•	

What Is a Natively Compiled Stored Procedure?
A natively compiled stored procedure is similar to the standard SQL procedure that you saw in Chapter 14 in that it is
a set of instructions grouped together in a program that executes against tables. It can be executed once or many times
and can accept parameter inputs and return values or sets of data. However, natively compiled stored procedures are
built, are stored, and work differently than standard procedures.

First of all, a natively compiled procedure is natively compiled. What this means is that when the stored procedure
is created or when the database or SQL Server is started, SQL Server compiles natively compiled procedures to native
computer code and generates a DLL, similar to compiling a .NET class library. When the compilation occurs as part of
the compilation process, SQL Server generates the query plan, which is held alongside the C code DLL. Therefore, the
query execution plan is based on the data within the tables at that time. Although the code is C based, this is not of a
concern to you as you will not be required to look at the DLL code. By becoming a DLL, the code is executed outside
of the SQL Server engine in its own OLTP in-memory engine. As in-memory tables are also compiled as DLL’s, all
in-memory interaction is done at the machine-level code base and will execute in its own engine, thus giving the
fastest interactions.

Chapter 15 ■ Natively Compiled Stored proCedureS

464

Standard SQL Server stored procedures allow for the ability to be recompiled (using RECOMPILE) if a developer
feels that the underlying data profile alters between executions. This is not possible with natively compiled stored
procedures, and if the profile of the data does change then you will need to drop and recreate the natively compiled
stored procedure. This isn’t ideal, and you may find that creating a standard stored procedure that you can RECOMPILE
is the better option. You will be sacrificing performance, however, and therefore you should try to keep natively
compiled stored procedures.

Many of the standard T-SQL statements and functions are available within natively compiled stored procedures.
However, you cannot access disk-based tables, and to achieve this access you would need to create a standard
procedure. You also cannot have an EXISTS if you want to test whether a row exists; you also cannot have CASE
statements, which are similar to inline IF statements. You will see CASE and EXISTS in Chapters 16 and 17. You also
cannot have an OUTER JOIN, and an INNER JOIN and CROSS JOIN are only supported on SELECT statements. It is not
possible to access temporary tables (local or global), and you need to put the data into a table data type. The table
data type is also covered in Chapter 17. Finally, you cannot have an OR or a NOT within a search predicate. This means
you cannot have WHERE a=2 OR b=4, for example.

You can get around some of these limitations; however they are not included here as they do slow down
processing, and you may find that the extra work required to achieve this functionality and the complexities it brings
may not be justifiable over a standard stored procedure. Keep in mind that the aim of natively compiled stored
procedures is speed.

There are a number of other restrictions not covered in this chapter but that are mentioned in later chapters.
For example, some further restrictions are that you cannot have subqueries, and you cannot have a TOP clause
over 8192 rows if you use a constant (however, if the TOP clause uses a variable, that value can be greater than 8192).
This number of 8192 does reduce when there are joins.

Some restrictions are due to reasons of speed, and others I would hope will be included in future releases.
Let’s now take a look at the syntax for a natively compiled stored procedure.

CREATE PROCEDURE and Syntax
The CREATE PROCEDURE statement for natively compiled stored procedures has a number of similarities to a standard
stored procedure, but there is some extra functionality, as well as different mandatory arguments to be used.
Let’s first take a look at the syntax:

CREATE PROCEDURE [schema_name.] procedure_name
[{ @parameter_name} datatype [NULL | NOT NULL]
[= default_value] [OUTPUT] [READONLY]] , [,...n]
WITH NATIVE_COMPILATION, SCHEMA_BINDING, EXECUTE AS clause
AS
BEGIN ATOMIC WITH (set_option [,...n])
 statements
[END]

As with standard SQL procedures, you create the stored procedure with an optional schema name and then a
procedure name. If no schema name is defined then the procedure will be created with the user’s default schema name.

With standard stored procedures parameters can, by default, accept NULL and non-null values. With natively
compiled stored procedures the parameters can be defined so that a value must always be passed with a non-null
value by using the NOT NULL option. If neither option is defined, the default is that the parameter will be defined
as NULL. When executing a natively compiled stored procedure avoid using named parameters and use position
parameters, as this will provide a performance gain. Also avoid implicit casting of data types. If a stored procedure
expects a VARCHAR as the data type, then pass in a VARCHAR rather than an INT, which is then cast.

Chapter 15 ■ Natively Compiled Stored proCedureS

465

The arguments that are the most crucial though are WITH NATIVE_COMPILATION, SCHEMA_BINDING, and EXECUTE AS.
All three of these are mandatory for natively compiled stored procedures. WITH NATIVE_COMPILATION tells SQL Server
that this is not a standard stored procedure and is required to be compiled as a DLL. Every natively compiled stored
procedure is required to be bound to the schema of the tables accessed. This ensures that if the underlying table
schema cannot be altered as that would affect the stored procedure. Finally, you must define the execution context of
the stored procedure, although it has to be one of EXECUTE AS OWNER, EXECUTE AS SELF, or EXECUTE AS user. It is not
possible to define a natively compiled procedure as EXECUTE AS CALLER.

As opposed to the option BEGIN keyword used with standard SQL procedures, there is a mandatory
BEGIN ATOMIC WITH (set options) for a natively compiled stored procedure. This keyword states that the code in
the block will either succeed as a complete transaction or will fail and roll back as a complete transaction. In Chapter
10 there was a discussion about a transaction being ACID and atomic, and that’s what this keyword is ensuring.
The main difference between an atomic block and a transaction is that this is a complete transaction within either
an explicit or implicit transaction. To give clarity on this, if you have a transaction that calls an atomic block of code,
then when the atomic block of code starts, a transaction savepoint is created. The atomic block of code executes, and
as long as that succeeds then the savepoint is committed. A savepoint is when, within a transaction, a point in time is
saved for the transaction to allow for a rollback if a problem arises, in which case the rollback rolls the changes back
to where they stood at the savepoint. You must still COMMIT TRAN or ROLLBACK TRAN the main transaction though,
otherwise the transaction count will be greater than 0. Keep in mind that if the natively compiled stored procedure is
the only code executed, this will become the complete transaction, and you won’t need to surround a call to a natively
compiled stored procedure with a transaction.

When defining an atomic block you also have to define the session settings, including the
TRANSACTION ISOLATION LEVEL and the LANGUAGE. Isolation levels were discussed in Chapter 12. The language
setting is required because the natively compiled stored procedure is executed as C code externally to SQL Server
and is not aware of whether date and formatting options have been changed since compilation. Therefore, it has to
make its own determination of how to deal with these changes. There are three other natively compiled– specific
optional settings to be aware of, although any session setting is available to be defined, such as NOCOUNT, ANSI_NULLS,
and IDENTITY_INSERT. Those three settings are as follows:

•	 DATEFIRST – This is a language override where you can say which numerical definition is the first
day of the week, starting with 1 as Monday. So if the language default is that 7, Sunday, is the first
day of the week, you can use this to indicate that 2, Tuesday, is the first day of the week instead.

•	 DATEFORMAT - Allows you to override the LANGUAGE format for dates. If a language format default
is YYYY/MM/DD, then you can use this setting to alter the format to YYYY/DD/MM, for example.

•	 DELAYED_DURABILITY – ON (default) or OFF.

DELAYED_DURABILITY is how SQL Server deals with committed transactions and the data modified in them. By
default, how a transaction commits follows a set of steps. The transaction starts, rows are modified, the transaction is
committed, the transaction log records are written to disk, the transaction is signaled as complete, control is returned
to the client issuing the implicit or explicit transaction, and processing continues. This process can be sped up by
passing control back to the client when the transaction issues a COMMIT TRAN statement by setting DELAYED_DURABILITY
to ON. The transaction is still written to the transaction log; however, if there is a failure and the transaction log rows
are not written, the client will assume that the data has been successfully written. Having a delay in the durability not
only returns processing back to the client and therefore reduces the time the client is waiting, especially if there are
transaction log waits, but also how the transaction log is flushed to disk alters so that larger blocks of data can be written,
therefore potentially increasing the amount of data throughput. In addition, as the transaction is complete, any locks on
the rows of data will be released earlier, which means there will be less blocking. Any data waiting on a lock will read the
modified version of the committed transaction whether the data has been written to the transaction log or not. Of course
the downside of delayed durability, as indicated, is that you can suffer data loss. In most systems this can be a problem;
however, there may be situations in which data loss is not a major issue. For example, in the ApressFinancial system,
recoding share price movements so that you can see the latest share price may not need to be recorded for posterity.
As long as the next transaction can read the data, that’s all that matters. In this instance a natively compiled stored
procedure could set the DELAYED_DURABILITY to ON.

Chapter 15 ■ Natively Compiled Stored proCedureS

466

Note ■ DELAYED_DURABILITY is not solely for natively compiled stored procedures, but can also be set via the
ALTER DATABASE command and set for the database.

There has been a fair amount of discussion, so let’s now take a look at our first natively compiled procedures.
In Chapter 12 you saw three INSERT timed examples, one against disk based, one against SCHEMA_AND_DATA, and one
against SCHEMA_ONLY. The two stored procedures within the following example will show timings for natively compiled
stored procedures against in-memory tables. Just to remind you, disk-based tables took 2 minutes 16 seconds,
SCHEMA_AND_DATA took 50 seconds, and SCHEMA_ONLY took just 21 seconds.

trY It OUt: Create NatIVeLY COMpILeD StOreD prOCeDUre

1. First of all, define the Create proCedure with the execution context of owner.

CREATE PROCEDURE dbo.apf_InsertDataSpeedTest
 WITH NATIVE_COMPILATION, SCHEMABINDING, EXECUTE AS OWNER
 AS

2. Now define the atomic block of code. the isolation level will at the SNAPSHOT isolation level,
and the language will be US_ENGLISH.

 BEGIN ATOMIC
 WITH (TRANSACTION ISOLATION LEVEL = SNAPSHOT, LANGUAGE = N'us_english')

3. the code within the stored procedure will be the same as the interpreted t-SQl defined in
Chapter 12 for the SChema_aNd_data table.

 SELECT GETDATE()

 DECLARE @i INT = 1;

 WHILE @i <= 100000
 BEGIN;
 INSERT INTO TransactionDetails.Transactions_SCHEMADATA
 (CustomerId, TransactionType, DateEntered, Amount,
 RelatedProductId)
 VALUES (1,1,GETDATE(),100,1);
 SET @i += 1;
 END;
 SELECT GETDATE()
END

4. once the code is entered, execute it to create the procedure in the database. Now that the
stored procedure is defined, it can be executed.

EXEC apf_InsertDataSpeedTest

Chapter 15 ■ Natively Compiled Stored proCedureS

467

5. once it is executed you will see start and end times for inserting 100,000 rows. Figure 15-1
shows the times on my computer. recall that this took 50 seconds when the SQl was run as
interpreted. in this instance it took just over 2 seconds.

Figure 15-1. SCHEMA_AND_DATA-based timings

6. the second stored procedure will be very similar to the stored procedure just defined, but
will point to the SChema_oNly table. enter and execute the following code to create the
stored procedure:

CREATE PROCEDURE dbo.apf_InsertDataSpeedTest2
 WITH NATIVE_COMPILATION, SCHEMABINDING, EXECUTE AS OWNER
 AS
 BEGIN ATOMIC
 WITH (TRANSACTION ISOLATION LEVEL = SNAPSHOT, LANGUAGE = N'us_english')
 SELECT GETDATE()

 DECLARE @i INT = 1;

 WHILE @i <= 100000
 BEGIN;
 INSERT INTO TransactionDetails.Transactions_SCHEMAONLY
 (CustomerId, TransactionType, DateEntered, Amount,
 RelatedProductId)
 VALUES (1,1,GETDATE(),100,1);
 SET @i += 1;
 END;
 SELECT GETDATE()
END

7. once the procedure is created it can be executed.

EXEC apf_InsertDataSpeedTest2

Chapter 15 ■ Natively Compiled Stored proCedureS

468

as expected, using natively compiled code is significantly faster for inserting data. you will see similar gains for
other scenarios.

Natively compiled stored procedures are best for dealing with larger data sets rather than for using very small
sets of data. the more data to be dealt with, the bigger the performance gain you are likely to see. you have seen
this yourself with the exercise just performed. to recap the points within the chapter, to get the best performance
gains from natively compiled procedures:

Work with larger sets of data and avoid small sets of data•	

use positional parameters rather than named parameters•	

avoid implicit casting•	

execute frequently•	

Summary
Although this is a short chapter, there are some major points that have been covered. You have seen the differences
between natively compiled and standard stored procedures, not just in syntax but also in that a natively compiled
stored procedure generates a DLL. You have also seen the performance differences in the two types of in-memory
tables, as well as against interpreted SQL. Natively compiled stored procedures are perfect in situations where there
are a reasonable number of rows and where the profile of the data doesn’t change.

Figure 15-2. SCHEMA_ONLY-based timings

8. in this instance it was almost instantaneous, with it taking only a couple of hundredths
of a second, as you can see in Figure 15-2.

469

Chapter 16

Essentials for Effective Coding

Now that you know how to build and work with SQL Server objects, and how to insert, update, and delete data as well
as retrieve it, you can move on to more of the T-SQL essentials required to complete your programming knowledge.

The most important area covered by this chapter is probably error handling. After all, no matter how good
your code is, if it cannot cope when an error occurs then it will be hard to keep the code stable and reliable. There
will always be times that the unexpected happens, from strange input data to something going wrong on the server.
However, error handling is not the only area of interest to us. You will be looking at methods to perform aggregations
of data and to group data together. Finally, there will be times that you want to hold data either in a variable or in a
table and have it exist for only a short period of time. This is quite a great deal to cover, but this chapter and the next
will be the stepping stones that move you from novice to professional developer.

This chapter will therefore look at the following:

Having a method of storing information temporarily using variables•	

Storing rows of information in a nonpermanent table•	

Aggregating values•	

Organizing output data into groups of relevant information•	

Returning unique and distinct values•	

Looking at and using system functions•	

Handling errors, e.g., creating your own errors, trapping errors, and making code secure•	

Variables
Sometimes you’ll need to hold a value or work with a value that does not come directly from a column. Or perhaps
you’ll need to retrieve a value from a single row of data and a single column that you want to use in a different part of a
query. It is possible to do this via a variable.

You can declare a variable at any time within a set of T-SQL instructions, whether it is ad hoc or a stored
procedure or a trigger. However, a variable has a finite lifetime. To inform SQL Server that you want to use a variable,
use the following syntax:

DECLARE @variable_name datatype[, @variable_name2 datatype]

All variables have to be preceded with an @ sign, and as you can see from the syntax, more than one variable
can be declared, although multiple variables must be separated by a comma or be placed on a new line with a new
DECLARE statement. Code can be held on more than one line within the editor, just like all other T-SQL syntax, such
as having DECLARE on line 1 and then the variables on line 2. All variables can hold a NULL value, and there is not an

Chapter 16 ■ essentials for effeCtive Coding

470

option to say that the variable cannot hold a NULL value. By default, then, when a variable is declared, it will have
an initial value of NULL. It is also possible to assign a value at the time of declaration. You’ll see this in the first set of
the following code. To assign a value to a variable, you can use a SET statement or a SELECT statement. It is standard
to use SET to set a variable value when you are not working with any tables. This is useful when you want to set the
values of multiple variables at the same time. It is also useful when you want to check the system variables @@ERROR or
@@ROWCOUNT following some other DML statements. You will see these system variables later within this chapter. Let’s
take a look at some examples to see more of how to work with variables and their finite lifetime.

trY It OUt: DeCLarING aND WOrKING WIth VarIaBLeS

1. in this example, you will define two variables; in the first, you will place the current date and
time using the system function GETDATE(), and in the second, you will set the value of the
variable @CurrPriceInCents to the value from a column within a table, with a mathematical
function tagged on. once these two have been set using SET and SELECT, you will then list
them out, which can be done only via a SELECT statement.

DECLARE @MyDate datetime=GETDATE(), @CurrPriceInCents money
SELECT @CurrPriceInCents = CurrentPrice * 100
 FROM ShareDetails.Shares
 WHERE ShareId = 2
SELECT @MyDate,@CurrPriceInCents

2. execute the code, and you will see something like the results shown in figure 16-1. the first

column shows your current date and time.

Figure 16-1. Working with a local variable

3. if you change the query into two batches, the variables in the second batch will not exist,
and when you try to execute all of the code at once, you will get an error. enter the code as it
appears here:

DECLARE @MyDate datetime= GETDATE(), @CurrPriceInCents money
SELECT @CurrPriceInCents = CurrentPrice * 100
 FROM ShareDetails.Shares
 WHERE ShareId = 2GO
SELECT @MyDate,@CurrPriceInCents

Chapter 16 ■ essentials for effeCtive Coding

471

4. the error returned when this code is executed is shown here. You are being informed that
sQl server doesn’t know about the first variable in the last statement. this is because sQl
server is parsing the whole set of t-sQl before executing, rather than one batch at a time.

Msg 137, Level 15, State 2, Line 6
Must declare the scalar variable "@MyDate".

5. remove the GO statement so that you can see one more example of how variables work.

You also need to remove the WHERE statement in the example so that you return all rows
from the ShareDetails.Shares table. the value that will be assigned to the variable
@CurrPriceInCents will be the last value returned from the query of data. the code you
want to execute is as follows. the two lines have been retained in the query, but they have
now been prefixed with two dashes: --. this indicates to sQl server that the lines of code
have been commented out and should be ignored.

DECLARE @MyDate datetime= GETDATE(), @CurrPriceInCents money
SELECT @CurrPriceInCents = CurrentPrice * 100
 FROM ShareDetails.Shares
--WHERE ShareId = 2
--GO
SELECT @MyDate,@CurrPriceInCents

6. if you look at the results that this produces, as shown in figure 16-2, you can see that
the value in the second column is from the last row in the set of data returned from the
ShareDetails.Shares table.

Figure 16-2. Variables and batches

Note ■ recall from previous chapters that the query as detailed in step 4 will retrieve a value in any order; it will not
necessarily be the last row inserted into the physical table, but rather it will be the last row built in the set of data.

Chapter 16 ■ essentials for effeCtive Coding

472

Temporary Tables
There are two types of temporary tables: local and global. These temporary tables are created in tempdb and not
within the database you are connected to. They also have a finite lifetime. Unlike with a variable, the length of time
such a table can “survive” can vary.

 1. A local temporary table survives until the connection it was created within is dropped.
This can happen when the stored procedure that created the temporary table completes,
or when the Query Editor window is closed. A local temporary table is defined by prefixing
the table name by a single hash mark: #. The scope of a local temporary table is the
connection that created it only.

 2. A global temporary table is defined by prefixing the table name by a double hash mark: ##. The
scope of a global temporary table differs significantly. When a connection creates the table, it is
then available to be used by any user and any connection, just like a permanent table. A global
temporary table will be “deleted” only when all connections to it have been closed.

Recall that SELECT...INTO allows a permanent table to be built from data from either another table or tables,
or from a list of variables. You could make this table more transient by defining the INTO table so as to reside within
tempdb. However, it will continue to exist within tempdb until either it is dropped or SQL Server is stopped and
restarted. This is slightly better, but not perfect for when you just want to build an interim table between two sets of
T-SQL statements.

The need for a temporary table could arise for a number of reasons. Building a single T-SQL statement that returns
information from a number of tables can get complex, and perhaps could not even be ideally optimized for returning
the data quickly. Splitting the query into two may make the code easier to maintain and perform better. To give an
example, as your customers “age,” they will have more and more transactions against their account IDs. It may be that
when working out any interest to accrue, the query will take a long time to run, as there are more and more transactions.
It might be better to create a temporary table of just the transactions you are interested in, and then use this temporary
table in code that then calculates the interest, rather than trying to complete all the work in one pass of the data.

When it comes time to work with a temporary table, such a table can be built either by using the CREATE TABLE
statement or by using the SELECT...INTO command. From a performance perspective, you will find defining a
temporary table and then populating it faster than using a SELECT...INTO. If you define a table, SQL Server will know
each column’s data type from the definition; however, with a SELECT...INTO, SQL Server has to calculate what data
each column holds from the data itself and then decide on the data type. Let’s take a look at temporary tables in action.

trY It OUt: teMpOrarY taBLeS

the first example will create a local temporary table based on the CREATE TABLE statement. You will populate
the table with some data and then retrieve the data. You will next open up a different Query editor pane and try to
retrieve data from the table to show that it is local. also of interest here is how you can use a SELECT statement
in conjunction with an INSERT statement to add the values. provided that the number of columns returned in
the SELECT statement matches either the number of columns within the table or the number of columns in the
INSERT column list, using a SELECT statement is a great way of populating tables, especially temporary tables.

1. first, create the temporary table. for the moment, just enter the code; don’t execute it.

CREATE TABLE #SharesTmp
(ShareDesc varchar(50),
Price numeric(18,5),
PriceDate datetime)

Chapter 16 ■ essentials for effeCtive Coding

473

2. next, you want to populate the temporary table with information from the
ShareDetails.Shares and the ShareDetails.SharePrices tables. Because you are
populating every column within the local temp table, you don’t need to list the columns within
the local temp table in the INSERT INTO table part of the query. then, use the results from a
SELECT statement to populate many rows in one set of t-sQl. You can execute the code now
if you want, but when you get to the third part in a moment, run the SELECT * from the same
Query editor window.

INSERT INTO #SharesTmp
SELECT s.Description,sp.Price,sp.PriceDate
 FROM ShareDetails.Shares s
 JOIN ShareDetails.SharePrices sp ON sp.ShareId = s.ShareId

3. the final part is to prove that there are data in the table.

SELECT * FROM #SharesTmp

4. When the code is executed, you should see the output that appears in figure 16-3.

Figure 16-3. A local temporary table

5. open up a fresh Query editor, keeping the current connection and Query editor open, and
then try to execute the following code:

SELECT * FROM #SharesTmp

6. now instead of returning a set of results like those shown in figure 16-3, you will get an
error message similar to that here. this is because the temporary table is a local temporary
table and is available only from the connection that created it.

Msg 208, Level 16, State 0, Line 1
Invalid object name '#SharesTmp'.

7. if you change the whole query to now work with a global temporary table, you will see a

different end result. to ensure you are starting afresh, clear all the Query editors or execute
the following DROP TABLE command in the first Query editor:

DROP TABLE #SharesTmp

Chapter 16 ■ essentials for effeCtive Coding

474

Note ■ it is good practice to DROP a temporary table when you have finished using it rather than letting sQl server
drop the table when the connection closes. if you leave Query editor open, then the temporary table will continue to exist
in tempdb. if you generate one or more large temporary tables, you can find that you have no tempdb database space left
and your database will stop processing when it requires space in tempdb to perform some other work.

8. enter the following code, taking note of the double hash marks, in one of the Query editors:

CREATE TABLE ##SharesTmp
(ShareDesc varchar(50),
Price numeric(18,5),
PriceDate datetime)
INSERT INTO ##SharesTmp
SELECT s.Description,sp.Price,sp.PriceDate
 FROM ShareDetails.Shares s
 JOIN ShareDetails.SharePrices sp ON sp.ShareId = s.ShareId
SELECT * FROM ##SharesTmp

9. When you execute the code, you should see the same results as you did with the first query
(refer back to figure 16-3).

10. Move to a new Query editor pane, ensuring that you leave the previous Query editor pane
open. then enter the following SELECT statement:

SELECT * FROM ##SharesTmp

11. When this is executed, you will see the same results again, as shown originally in figure 16-3.

it is not until the first Query editor pane that defined the global table is closed or until a DROP TABLE ##SharesTmp
is executed that the table will disappear.

Aggregations
An aggregation is where SQL Server performs a function on a set of data to return one aggregated value per grouping
of data. This will vary from counting the number of rows returned from a SELECT statement through to figuring out
maximum and minimum values. Combining some of these functions with the DISTINCT function, discussed later in
the “Distinct Values” section, can provide some useful functionality. An example might be when you want to show the
highest value for each distinct share to demonstrate when the share was worth the greatest amount.

Let’s dive straight in by looking at different aggregation types and working through examples of each.

COUNT/COUNT_BIG
COUNT/COUNT_BIG is probably the most commonly used aggregation, and it finds out the number of rows returned
from a query. You use this for checking the total number of rows in a table, or more likely the number of rows returned
from a particular set of filtering criteria. Quite often this is used to cross-check the number of rows from a query in
SQL Server with the number of rows an application is showing to a user.

The syntax is COUNT(*) or COUNT_BIG(*). There are no columns defined, as it is rows that are being counted.

Chapter 16 ■ essentials for effeCtive Coding

475

Note ■ the difference between these two functions is that COUNT returns an integer data type and COUNT_BIG
returns a bigint data type.

trY It OUt: COUNtING rOWS

1. this example will count the number of rows in the ShareDetails.Shares table. in the
example, you will see an asterisk between the brackets. this is the normal method,
although you could have a number or a column; however, i find these confusing. there is no
performance difference. You will likely find that you use COUNT either to ensure a table has
the number of rows you expect or to populate a variable. if you find you are returning the
count as a result set outside of a stored procedure, you should name the column with an
alias, as demonstrated in the example:

SELECT COUNT(*) AS 'Number of Rows'
FROM ShareDetails.Shares

2. execute the code, and you will see the results shown in figure 16-4.

Figure 16-4. Using COUNT()

3. of course, you could add a filter, such as the following, which counts the number of
customers who do not have an uncleared balance pending to clear.

SELECT COUNT_BIG(*) AS 'Number of Rows'
FROM CustomerDetails.Customers
WHERE UnclearedBalance IS NULL

4. execute the code, and you will now see a count of 710, shown in figure 16-5, as expected.

Figure 16-5. COUNT_BIG with a filter

Chapter 16 ■ essentials for effeCtive Coding

476

SUM
If you have numeric values in a column, it is possible to aggregate them into a sum. One scenario for this is to add
the transaction amounts in a bank account to see how much the balance has changed. This could be daily, weekly,
monthly, or over any time period required. For example, a negative amount would show that more has been taken out
of the account than has been put in.

The syntax can be shown as SUM(column1|@variable|Mathematical function). The summation does not have
to be of a column, but could include a math function. One example would be to sum up the cost of purchasing shares,
in which case you would multiply the number of shares bought by the cost paid.

trY It OUt: SUMMING VaLUeS

1. You can do a simple SUM to add up the amount of money that has passed through the account
as a deposit. the transaction type for this from the TransactionDetails.Transactions
table is those instances where the column TransactionType has a value of 1.

SELECT SUM(Amount) AS 'Amount Deposited'
 FROM TransactionDetails.Transactions
 WHERE CustomerId = 1
 AND TransactionType = 1

2. executing this code adds up two rows you inserted for customer 1. the result is 175.67,

as shown in figure 16-6.

Figure 16-6. SUMming values

MAX/MIN
Within a set of data, it is possible to get the minimum and maximum values of a specific column of data. This is useful
if you want to see values such as the smallest share price or the greatest portfolio value. In other scenarios outside
of the example, you might want to find the maximum number of sales of each product in a period of time, or the
minimum sold, so that you can see if some days are quieter than others.

Chapter 16 ■ essentials for effeCtive Coding

477

trY It OUt: MaX aND MIN

1. in this example, you will see how to find the maximum and minimum values for a share with
one statement. enter the following code:

SELECT MAX(Price) MaxPrice,MIN(Price) MinPrice
FROM ShareDetails.SharePrices
WHERE ShareId = 1

2. executing the code produces the results shown in figure 16-7.

Figure 16-7. Find the maximum and minimum

Figure 16-8. Finding the average

AVG
As you might expect, the AVG aggregation returns the average value of a column of data for the filtered rows. All of the
values are added and then divided by the number of rows that formed the underlying result set.

trY It OUt: aVeraGING It OUt

1. this last aggregation example will produce an average value for the share prices found for
share id 1. enter the following code:

SELECT AVG(Price) AvgPrice
FROM ShareDetails.SharePrices
WHERE ShareId = 1

2. once you have executed the code, you should see the results shown in figure 16-8.

Now that you have taken a look at aggregations, you can move on to looking at grouping data. Aggregations, as
you have seen, are useful but limited. In the next section, I will show you how you can expand these aggregations so
that they are used with groups of data.

Chapter 16 ■ essentials for effeCtive Coding

478

Grouping Data
Using aggregations works well when you want just a single row of results for a specific filtered item. If you want to
find the average price of several shares, you may be thinking you need to provide a SELECT AVG() for each share. This
section will demonstrate that this is not the case. By using GROUP BY, you can instruct SQL Server to group the data to
return and provide a summary value for each grouping of data. To clarify, as you will see in the upcoming examples,
you could remove the WHERE ShareId=1 statement, which would then allow you to group the results by each
different ShareId.

The basic syntax for grouping follows. (

GROUP BY [ALL] (column1[,column2,...])

The option ALL is a bit like an OUTER JOIN. If you have a WHERE statement as part of your SELECT statement, any
grouping filtered out will still return a row in the results, but instead of aggregating the column, a value of NULL will be
returned. I tend to use this as a checking mechanism. I can see the rows with values and the rows without values, and
visually this will tell me that my filtering is correct.

When working with GROUP BY, the main point that you have to be aware of is that any column defined in the
SELECT statement that does not form part of the aggregation must be contained within the GROUP BY clause and be in
the same order as the SELECT statement. Failure to do this will mean that the query will give erroneous results, and in
many cases, will use a lot of resources in giving these results.

trY It OUt: GrOUp BY

1. this first example will demonstrate how to find maximum and minimum values for every
share that has a row in the ShareDetails.SharePrices table where the share Description
is greater than Julies pantry. the code is as follows:

SELECT sp.ShareId, s.Description,MIN(Price) MinPrice, Max(Price) MaxPrice
 FROM ShareDetails.SharePrices sp
 LEFT JOIN ShareDetails.Shares s ON s.ShareId = sp.ShareId
 WHERE s.Description > 'Julies Pantry'
 GROUP BY sp.ShareId, s.Description

2. When the code is executed, you will see the nine shares listed with their corresponding
minimum and maximum values, as shown in figure 16-9.

Chapter 16 ■ essentials for effeCtive Coding

479

3. if you want to include all rows where there is no Price, as it has been removed by the WHERE
clause, then you would use the ALL option with GROUP BY:

SELECT sp.ShareId, s.Description,MIN(Price) MinPrice, Max(Price) MaxPrice
 FROM ShareDetails.SharePrices sp
 LEFT JOIN ShareDetails.Shares s ON s.ShareId = sp.ShareId
 WHERE s.Description > 'Julies Pantry'
 GROUP BY ALL sp.ShareId, s.Description

4. When you execute the code, the Price row that is outside of the filtering returns a NULL

value. the other rows return details as shown in figure 16-10.

Figure 16-9. Max and min of a group

Figure 16-10. A JOIN with a max and min and group by all

Chapter 16 ■ essentials for effeCtive Coding

480

HAVING
When using the GROUP BY clause, it is possible to supplement your query with a HAVING clause. The HAVING clause is
like a filter, but it works on aggregations of the data rather than on the rows of data prior to the aggregation. Hence,
it has to be included with a GROUP BY clause. It will also include the aggregation you want to check. The code would
therefore look as follows:

GROUP BY column1[,column2...]
HAVING [aggregation_condition]

The aggregation_condition would be where you place the aggregation and the test you want to perform. For
example, my bank charges me if I have more than 20 nonregular items pass through my account in a month. In this
case, the query would group by customer ID, counting the number of nonregular transactions for each calendar month.
If the count were less than or equal to 20 items, then you would like this list to not include the customer in question. To
clarify this, the query code would look something like the following if you were running this in August 2014:

SELECT CustomerId,COUNT(*)
FROM CustomerBankTransactions
WHERE TransactionDate BETWEEN '1 Aug 2014' AND '31 Aug 2014'
GROUP BY CustomerId
HAVING COUNT(*) > 20

trY It OUt: haVING

1. in the following example, you will use the MIN aggregate function to remove rows where the
minimum share price is less than $10. this query is taken from the GROUP BY ALL example
shown earlier. although you have kept the ALL option within the GROUP BY statement, it is
ignored, as it is followed by the HAVING clause, which supercedes it.

SELECT sp.ShareId, s.Description,MIN(Price) MinPrice, Max(Price) MaxPrice
 FROM ShareDetails.SharePrices sp
 LEFT JOIN ShareDetails.Shares s ON s.ShareId = sp.ShareId
WHERE s.Description > 'Julies Pantry'
 GROUP BY ALL sp.ShareId, s.Description
HAVING MIN(Price) < 10

2. the results of the executed code will return 11 values, as you see in figure 16-11, and will
ignore the shares that have a MinPrice value of NULL that would be returned by the ALL
statement.

Chapter 16 ■ essentials for effeCtive Coding

481

even if you changed the HAVING scenario to including amounts greater than $10, the shares with a Description
of less than or equal to Julies pantry would still be ignored due to HAVING overriding the GROUP BY ALL. not only
that, but NULL, as you know, is a “special” value and is neither less than nor greater than any value.

Distinct Values
With some of the tables in these examples, multiple entries will exist for the same value. To clarify, in the
ShareDetails.SharePrices table, there can be multiple entries for each share as each new price is stored. There may
be some shares with no price, of course. But what if you want to see a listing of shares that do have prices, but you
want to see each share listed only once? This is a simple example, and you will see more complex examples later on
when I cover how to use aggregations within SQL Server. That aside, the example that follows serves its purpose well.

The syntax is to place the keyword DISTINCT after the SELECT statement and before the list of columns. The
following list of columns is then tested for all the rows returned, and for each set of unique distinct values, one row
will be listed.

trY It OUt: DIStINCt VaLUeS

1. You have to join the ShareDetails.Shares and ShareDetails.SharePrices tables again
so that you know you are returning only rows that have a share price. You had that code in
the JOIN section earlier in the chapter, in step 2 of the “temporary tables” exercise. it is
replicated here, and you can execute it if you want:

SELECT s.Description,sp.Price,sp.PriceDate
 FROM ShareDetails.Shares s
 JOIN ShareDetails.SharePrices sp ON sp.ShareId = s.ShareId

Figure 16-11. When you want to have only certain aggregated rows

Chapter 16 ■ essentials for effeCtive Coding

482

2. as you know, this returns multiple rows for each share. placing DISTINCT at the start of the
column list doesn’t make any difference, because there are different prices and different
price dates.

SELECT DISTINCT s.Description,sp.Price,sp.PriceDate
 FROM ShareDetails.Shares s
 JOIN ShareDetails.SharePrices sp ON sp.ShareId = s.ShareId

3. to get a list of shares that have a value, it is necessary to remove the last two columns and
list only the ShareDesc column.

SELECT DISTINCT s.Description
 FROM ShareDetails.Shares s
 JOIN ShareDetails.SharePrices sp ON sp.ShareId = s.ShareId

4. When you execute this code, you will see the desired results, as partly shown in figure 16-12.

Figure 16-12. Finding unique values

Functions
To bring more flexibility to your T-SQL code, you can use a number of functions with the data from variables and
columns. This section does not include a comprehensive list, but it does contain the most commonly used functions
and the functions you will come across early in your development career. They have been split into three categories:
date and time, string, and system functions. There is a short explanation for each, with some code demonstrating each
function in an example with results.

Chapter 16 ■ essentials for effeCtive Coding

483

Date and Time
The functions in the first set involve either working with a variable that holds a date and time value or using a system
function to retrieve the current date and time.

DATEADD()
If you want to add or subtract an amount of time to a column or a variable, then display a new value in a rowset or set
a variable with that new value, use DATEADD(). The syntax for DATEADD() is as follows:

DATEADD(datepart, number, date)

The datepart option applies to all of the date functions and details what you want to add, from milliseconds to
years. These are defined as reserved words and therefore are not surrounded by quotation marks. There are a number
of possible values, as listed in Table 16-1.

Table 16-1. Potential values for datepart

datepart Definition Meaning

isowk, isoww ISO week is a numbering system used to give every week in the calendar a unique, ascending
number. An ISO week starts on a Monday, and Week 1 is the week containing the first
Thursday of that year. For example, in 2008, the first Thursday occurred on January 3, so
Week 1 ran from December 31, 2007 through January 6, 2008.

tz Timezone offset

ns Nanosecond

mcs Microsecond

ms Millisecond

ss, s Second

mi, n Minute

hh Hour

dw, w Weekday

wk, ww Week

dd, d Day

dy, y Day of year

mm, n Month

qq, q Quarter

yy, yyyy Year

For the second parameter of the datepart function, to add, use a positive value, and to subtract, use a negative value.
The final parameter can be a value, a variable, or a date-type column holding the date and time you want to change.

Chapter 16 ■ essentials for effeCtive Coding

484

trY It OUt: DateaDD()

1. in this example, you will set a local variable to a date and time. once the variable is set, you
will add four hours to the value and display the results. enter the code here and then execute
it, which should return results as shown in figure 16-13.

DECLARE @OldTime datetime
SET @OldTime = '24 March 2015 3:00 PM'
SELECT DATEADD(hh,4,@OldTime)

Figure 16-14. Subtracting hours from a date

Figure 16-13. Adding hours to a date

2. to do the reverse, you will take the same variable and subtract six hours. the results should
appear as shown in figure 16-14.

DECLARE @OldTime datetime
SET @OldTime = '24 March 2015 3:00 PM'
SELECT DATEADD(hh,-6,@OldTime)

DATEDIFF()
To find the difference between two dates, use the function DATEDIFF(). The syntax for this function is as follows:

DATEDIFF(datepart, startdate, enddate)

The first option contains the same options as for DATEADD(), and startdate and enddate are the two days you
want to compare. A negative number shows that the enddate is before the startdate.

Chapter 16 ■ essentials for effeCtive Coding

485

trY It OUt: DateDIFF()

You will set two local variables to a date and time. then, by using the DATEDIFF() function, you will find the
difference in milliseconds. enter the following code:

DECLARE @FirstTime datetime, @SecondTime datetime
SET @FirstTime = '24 March 2015 3:00 PM'
SET @SecondTime = '24 March 2015 3:33PM'
SELECT DATEDIFF(ms,@FirstTime,@SecondTime)

figure 16-15 shows the results after executing this code.

Figure 16-15. The difference between two dates in milliseconds

Figure 16-16. The day name of a date

DATENAME()
Returning the name of the part of the date is great for using with things such as customer statements. Changing the
number 6 to the word June makes for more pleasant reading.

The syntax is as follows:

DATENAME(datepart, datetoinspect)

You will also see this in action in DATEPART().

trY It OUt: DateNaMe()

in this example, you will set one date and time and then return the day of the week. You know this to be a
thursday by checking a calendar. enter the following code:

DECLARE @StatementDate datetime
SET @StatementDate = '24 March 2015 3:00 PM'
SELECT DATENAME(dw,@StatementDate)

figure 16-16 shows the results after executing this code.

Chapter 16 ■ essentials for effeCtive Coding

486

DATEPART()
If you want to achieve returning part of a date from a date variable, column, or value, you can use DATEPART() within a
SELECT statement.

As you may be expecting by now, the syntax has datepart as the first option, and then datetoinspect as the
second option, which returns the numerical day of the week from the date inspected.

DATEPART(datepart, datetoinspect)

trY It OUt: Datepart()

1. in this example, you need to set only one local variable to a date and time. after that, you will
find the day of the month. in this instance, the variable will have the value set at the time of
the definition. enter the following code:

DECLARE @WhatsTheDay datetime = '24 March 2015 3:00 PM'
SELECT DATEPART(dd, @WhatsTheDay)

figure 16-17 shows the results after executing this code.

Figure 16-18. Finding and concatenating to provide a useful date

Figure 16-17. Finding part of a date

2. to produce a more pleasing date and time for a statement, you can combine DATEPART()
and DATENAME() to have a meaningful output. the function CAST(), which you will look at in
detail shortly, is needed here, as it is a data type conversion function.

DECLARE @WhatsTheDay datetime = '24 March 2015 3:00 PM'
SELECT DATENAME(dw, @WhatsTheDay) + ', ' +
CAST(DATEPART(dd,@WhatsTheDay) AS varchar(2)) + ' ' +
DATENAME(mm,@WhatsTheDay) + ' ' +
CAST(DATEPART(yyyy,@WhatsTheDay) AS char(4))

3. When this is executed, it will produce the more meaningful date shown in figure 16-18.

Chapter 16 ■ essentials for effeCtive Coding

487

FORMAT()
The next example in this section on dates demonstrates a function that allows you to format locale-aware dates and
numbers. Be aware that this function will not be available on SQL Server installations that do not have the .NET CLR
installed. It does not have to be enabled, just installed. The FORMAT() function in SQL Server is similar to the function
found in Excel and .NET.

trY It OUt: FOrMat()

1. this example will return a date that is in the Us format and reformat it to display as it should
in the UK. enter the following code:

DECLARE @MyDate DATETIME
SELECT @MyDate = 'Jun 1 2015'
SELECT FORMAT(@MyDate, 'dd MMM yyyy', 'en-GB') AS UKDate

2. execute the code, and you will see the date alter its format to display in the UK format, as
shown in figure 16-19.

DATEFROMPARTS() / SMALLDATETIMEFROMPARTS()
There may be times when you have either a date or a part of a date in three variables or columns holding the year,
month, and day, or a combination in which one or more of these are derived and the others are supplied. It is possible
to convert these three values into a valid date using DATEFROMPARTS(). You can then expand this with other functions
if required.

If you want to build a time as well as a date, then you can use the SMALLDATETIMEFROMPARTS() function to
achieve this.

Figure 16-19. Format with a locale

Chapter 16 ■ essentials for effeCtive Coding

488

trY It OUt: DateFrOMpartS() aND SMaLLDatetIMeFrOMpartS()

1. this example will create five variables and define a value for each. the variable names in
the example denote what each will be used for. the first SELECT statement will change the
integers into a valid date and then format the value to show the day, the full month name,
and the year. the second example appends to this the time based on the 24-hour clock.
Begin the first example by using this code:

DECLARE @Year int=2015, @Month int=12, @Day int=30

DECLARE @Hour int=14, @Minute int=45

SELECT FORMAT(DATEFROMPARTS(@Year,@Month,@Day),
'dd MMMM yyyy','en-GB')

SELECT FORMAT(SMALLDATETIMEFROMPARTS(@Year,@Month,@Day,
@Hour,@Minute),'dd MMMM yyyy hh:mm tt','en-GB')

2. When you execute this code, you will see two results, as shown in figure 16-20.

Figure 16-20. Showing dates from parts with formatting

3. if you enter an invalid value—for example, if you set the day to a value of 40—an error
would be thrown that would be the same as that here.

Msg 289, Level 16, State 1, Line 4
Cannot construct data type date, some of the arguments have values which are not valid.

TIMEFROMPARTS()
Similar to DATEFROMPARTS(), there is a TIMEFROMPARTS() function that will return a time up to fractions of a second
from separate variables or values. The function takes five parameters, with the first four being hour, minute, seconds,
and fractions of a second. The fifth parameter determines the precision of the fraction portion of the time. If you had a
precision of 2, then the fraction number would be defined in 1/100ths.

Chapter 16 ■ essentials for effeCtive Coding

489

trY It OUt: tIMeFrOMpartS()

1. this example will create five variables and define a value for each. the variable names in the
example denote what each will be used for. the precision in this example is set to 1/100ths,
and therefore a value of 5 is 5/100ths.

DECLARE @Hour int=14, @Minute int=45, @Seconds int=22
DECLARE @Fractions int=2

SELECT FORMAT(CONVERT(datetime,TIMEFROMPARTS
(@Hour,@Minute,@Seconds,@Fractions,2)),
'hh:mm:ss:ffff tt','en-GB')

2. When you execute this code, you will see the result shown in figure 16-21.

Figure 16-21. Showing times with fractions and precision from parts, with formatting

DATETIME2FROMPARTS()
It is possible to combine the previous two functions to take a date and time set of values and return a datetime2
data type.

trY It OUt: DatetIMe2FrOMpartS()

1. this example will create seven variables and set a value for each. the variable names should
denote what each will be used for. in this example, you will see what happens when the
precision is less than the fractions of a second. a precision of zero denotes that there are no
fractions to be displayed. enter the following code:

DECLARE @Year int=2015, @Month int=6, @Day int=22
DECLARE @Hour int=23, @Minute int=45, @Seconds int=22
DECLARE @Fractions int=231

SELECT FORMAT(DATETIME2FROMPARTS(@Year,@Month,@Day,@Hour,
@Minute,@Seconds,@Fractions,0),
'hh:mm:ss:ffff tt','en-GB')

Chapter 16 ■ essentials for effeCtive Coding

490

2. When you execute this code, an error is generated. the precision parameter defined in the
function must be able to cope with the precision value presented in the fractions parameter.
truncation, which you might expect in this example, does not occur. the error you would
see follows:

Msg 289, Level 16, State 5, Line 5
Cannot construct data type datetime2, some of the arguments have
values which are not valid.

3. Correct the code by altering the @Precision variable to 3, and when the code is executed

with the correction, you should see the output as shown in figure 16-22.

Figure 16-22. Showing datetime2 data type from date and time parts, with formatting

DATETIMEOFFSETFROMPARTS()
There will be times when you have a date and a time and you have to apply an offset to it. One example would be
when you are working with different time zones, or when you want to add to a date and time a length of time for a
response queue estimate before a response to a query is sent. Adding an hour and minute offset to a date and time will
provide you with this functionality. The DATETIMEOFFSETFROMPARTS() function still has the ability to work in fractions
and precision, keeping it in alignment with the other “from parts” functions.

trY It OUt: DatetIMeOFFSetFrOMpartS()

1. this example will create nine variables and define a value for each. the variable names in
the example denote what each will be used for. in this example, you are adding 3 hours and
12 minutes to the time. this will cause the day portion to move to the next day. enter the
following code:

DECLARE @Year int=2015, @Month int=6, @Day int=22
DECLARE @Hour int=23, @Minute int=45, @Seconds int=22
DECLARE @HourOffset int=3, @MinuteOffset int=12
DECLARE @Fractions int=0

SELECT DATETIMEOFFSETFROMPARTS(@Year,@Month,@Day,
@Hour,@Minute,@Seconds,@Fractions,@HourOffset, @MinuteOffset,0)

2. When you execute this code, you will see the result shown in figure 16-23.

Chapter 16 ■ essentials for effeCtive Coding

491

3. You can also move the offset backward by having negative hour and minute offsets. in
the following example, you are moving the date and time back in time. You could use this
functionality to check the date and time of a delivery, represented by the values in the
variables, against a date and time retrieved from variables or columns, so as to check if you
have met your target.

DECLARE @Year int=2015, @Month int=6, @Day int=22
DECLARE @Hour int=23, @Minute int=45, @Seconds int=22
DECLARE @HourOffset int=-6, @MinuteOffset int=-50
DECLARE @Fractions int=0

SELECT DATETIMEOFFSETFROMPARTS(@Year,@Month,@Day,
@Hour,@Minute,@Seconds,@Fractions,
@HourOffset, @MinuteOffset,0)

4. if you execute the foregoing code, you should see a result as shown in figure 16-24.

Figure 16-23. Showing a date and time moved for an offset

Figure 16-24. Showing a time offset that is in the past

EOMONTH()
Knowing the last day of the month can be more important than knowing the first day of the month, as months vary in
the number of days they have. By knowing the last day of the month, you can work backward or even add one day to get
the first day of the next month. This is achieved in SQL Server using EOMONTH(), which can also have a date offset option.

Chapter 16 ■ essentials for effeCtive Coding

492

trY It OUt: eOMONth()

1. this example will use EOMONTH() to find the last day of february 2012. it will use January as
the month and then add one month to this date, demonstrating how you can find the last date
of the next month. enter the following code.

SELECT EOMONTH('Jan 12 2016',1)

2. When you execute this code, you will see the result shown in figure 16-25, showing the end

of the month of february 2016 to be the 29th, as it is a leap year.

Figure 16-25. Determine the end of the month from a date

GETDATE()/SYSDATETIME()
GETDATE() is a great function for returning the exact date and time from the system. You have seen this in action when
setting up a table with a default value, as well as at a couple of other points in this book. There are no parameters.
If you need accuracy to nanoseconds and further, then use SYSDATETIME().

String
This next section will look at some functions that can act on character-based types, such as varchar and char.

ASCII()
ASCII() converts a single character to the equivalent ASCII code.

Chapter 16 ■ essentials for effeCtive Coding

493

trY It OUt: aSCII()

1. this example will return the asCii code of the first character within a string. if the string has
more than one character, then only the first will be taken.

DECLARE @StringTest char(10)
SET @StringTest = ASCII('Robin ')
SELECT @StringTest

2. executing the code, you will see the asCii value of the letter “r” returned, as shown in

figure 16-26.

CHAR()
The reverse of ASCII() is the CHAR() function, which takes a numeric value within the ASCII character range and
turns it into an alphanumeric character.

trY It OUt: Char()

1. in this example, you will define a local variable. notice that the variable is a character-based
data type. You will then place the ASCII() value of “r” into this variable. from there, you will
convert back to a CHAR(). there is an implicit conversion from a character to a numeric. if the
conversion results in a value greater than 255—the last value for an asCii character—then
NULL is returned. enter the following code:

DECLARE @StringTest char(10)
SET @StringTest = ASCII('Robin ')
SELECT CHAR(@StringTest)

2. executing the code, you will see an “r,” as shown in figure 16-27.

Figure 16-27. Changing a number to a character

Figure 16-26. An ASCII value

Chapter 16 ■ essentials for effeCtive Coding

494

3. the same result could be derived using a data type that is expected that is numeric-based.

DECLARE @StringTest int
SET @StringTest = ASCII('Robin ')
SELECT CHAR(@StringTest)

LEFT()
When it is necessary to return the first n left characters from a string-based variable, you can achieve this through the
use of LEFT(), replacing n with the number of characters you want to return.

trY It OUt: LeFt()

1. in this example, you will take the first three characters from a local variable. here you are
taking the first three characters from robin, to return rob:

DECLARE @StringTest char(10)
SET @StringTest = 'Robin '
SELECT LEFT(@StringTest,3)

2. as expected, you should get the results shown in figure 16-28 when you execute the code.

LOWER()
To change alphabetic characters within a string to ensure that all characters are in lowercase, you can use the
LOWER() function.

Figure 16-28. The first LEFT characters

Chapter 16 ■ essentials for effeCtive Coding

495

trY It OUt: LOWer()

1. the LOWER() example will combine this function along with another string function, LEFT().
like all these functions, they can be combined together to perform several functions at once.

DECLARE @StringTest char(10)
SET @StringTest = 'Robin '
SELECT LOWER(LEFT(@StringTest,3))

2. as you can see, this results in displaying rob in lowercase, as shown in figure 16-29.

LTRIM()
There will be times when leading spaces will occur in a string and you’ll want to remove them. LTRIM() will trim these
spaces on the left.

trY It OUt: LtrIM()

1. to prove that leading spaces are removed by the LTRIM() function, you have to change the
value within the local variable. on top of that, you have to put a string prefixing the variable to
show that the variable has had the spaces removed.

DECLARE @StringTest char(10)
SET @StringTest = ' Robin'
SELECT 'Start-'+LTRIM(@StringTest),'Start-'+@StringTest

2. this produces two columns of output, as shown in figure 16-30: the first with the variable
trimmed and the second showing that the variable did have the leading spaces.

Figure 16-30. Removing spaces from the left

Figure 16-29. Changing letters to lowercase

Chapter 16 ■ essentials for effeCtive Coding

496

RIGHT()
The opposite of LEFT() is, of course, RIGHT(), and this function returns the characters from the right-hand side.

trY It OUt: rIGht()

1. Keep the variable used in LTRIM(), as it will allow you to return bin, which are the three
characters on the right-hand side of the variable.

DECLARE @StringTest char(10)
SET @StringTest = ' Robin'
SELECT RIGHT(@StringTest,3)

2. the results should appear as shown in figure 16-31.

RTRIM()
When you have a CHAR() data type, no matter how many characters you enter, the variable will be filled with spaces on
the right, known as being right-padded,. To remove these, use RTRIM. This changes the data from a fixed-length CHAR()
to a variable-length value.

trY It OUt: rtrIM()

1. this example wants no spaces after robin; you will remove the space padding within the first
column returned using the following code. the second column has the spaces trimmed.

DECLARE @StringTest char(10)
SET @StringTest = 'Robin'
SELECT @StringTest+'-End',RTRIM(@StringTest)+'-End'

2. the results are as expected, as shown in figure 16-32.

Figure 16-31. Returning a number of characters starting from the right

Figure 16-32. Removing spaces from the right

Chapter 16 ■ essentials for effeCtive Coding

497

STR()/CONCAT()
Some data types have implicit conversions. You will see later how to do explicit conversions, but a simple conversion
that will take any numeric value and convert it to a variable-length string can be done with STR(), which you will look
at next. However, SQL Server sometimes has to decide which way the conversion has to go. You will see this problem
in the first example in the “Try It Out” exercise. If you want to concatenate two values into a string, then, as you will
see in the second example, you will invoke the STR() function. However, you will see that this also causes a little bit
more work to be done within the code in order to achieve the desired results. To concatenate two values, you can use
the CONCAT() function, similar to the function found in Excel.

trY It OUt: Str()

1. the first example demonstrates that you cannot add a number, 82, to a string.

SELECT 'A'+82

2. When the preceding code is executed, you will see the following error:

Msg 245, Level 16, State 1, Line 1
Conversion failed when converting the varchar value 'A' to data type int.

3. Changing the example to include the STR() function will convert this numeric to a string of

varying length, such as varchar().

SELECT 'A'+STR(82)

4. instead of an error, you now see the desired result, which appears in figure 16-33. however,
it isn’t really desirable, as there are spaces between the letter and the number. leading zeros
are translated to spaces.

Figure 16-33. Changing a number to a string

5. By including an LTRIM() invocation, you can remove those spaces.

SELECT 'A'+LTRIM(STR(82))

6. this code now produces the correct results, as you see in figure 16-34.

Chapter 16 ■ essentials for effeCtive Coding

498

7. a cleaner set of code that removes the need for the LTRIM and STR functions would be to use
the CONCAT function. the code here demonstrates how simple the code can be:

SELECT CONCAT('A',82)

8. this will produce the results in figure 16-35.

SUBSTRING()
As you have seen, you can take a number of characters from the left and from the right of a string. To retrieve a number
of characters that do not start with the first or last character, you need to use the function SUBSTRING(). This has three
parameters: the variable or column, which character to start the retrieval from, and the number of characters to return.

trY It OUt: SUBStrING()

1. define the variable you want to return a substring from. once complete, you can then take
the variable, inform sQl server you want to start the substring at character position 3, and
return the next 2 characters.

DECLARE @StringTest char(10)
SET @StringTest = 'Robin '
SELECT SUBSTRING(@StringTest,3,2)

2. and you have the desired result, as shown in figure 16-36.

Figure 16-34. Changing a number to a string and removing leading spaces

Figure 16-35. Using CONCAT to concatenate mixed data types

Figure 16-36. Returning part of a string from within a string

Chapter 16 ■ essentials for effeCtive Coding

499

UPPER()
The final string example is the reverse of the LOWER() function; it changes all characters to uppercase.

trY It OUt: Upper()

1. after the declared variable has been set, you then use the UPPER() function to change the
value to uppercase.

DECLARE @StringTest char(10)
SET @StringTest = 'Robin '
SELECT UPPER(@StringTest)

2. execute the foregoing code and, as you can see from figure 16-37, robin becomes roBin.

Figure 16-37. Changing the case of a string to uppercase

System Functions
System functions are functions that provide extra functionality outside of the boundaries that can be defined as
string-, numeric-, or date-related. Three of these functions will be used extensively throughout your code, and
therefore you should pay special attention to CASE, CAST, and ISNULL.

CASE WHEN...THEN...ELSE...END
The first function is for when you want to test a condition. WHEN that condition is true, THEN you can do further
processing; ELSE if it is false, then you can do something else. What happens in the WHEN section and the THEN section
can range from another CASE statement to providing a value that sets a column or a variable.

The CASE WHEN statement can be used to return a value or, if on the right-hand side of an equality statement, to
set a value. Both of these scenarios are covered in the following examples.

Chapter 16 ■ essentials for effeCtive Coding

500

trY It OUt: CaSe

1. this example will use a CASE statement to add up customers’ TransactionDetails.
Transactions for the month of august. if the TransactionType is 0, then this is a debit;
if it is a 1, then it is a Credit. By using the SUM aggregation, you can add up the amounts.
Combine this with a GROUP BY where the TransactionDetails.Transactions are split
between Credit and debit, and you will get two rows in the results set: one for debits and one
for credits.

SELECT CustomerId,
CASE WHEN CreditType = 0 THEN 'Debits' ELSE 'Credits' END
AS TranType,SUM(Amount)
 FROM TransactionDetails.Transactions t
 JOIN TransactionDetails.TransactionTypes tt ON
 tt.TransactionTypeId = t.TransactionType
 WHERE t.DateEntered BETWEEN '1 Jan 2012' AND '4 Jan 2012'
 GROUP BY CustomerId,CreditType

2. When the code is run, you should see the results that are partly shown in figure 16-38.

IIF()
If you have used Excel or Access, among some other tools, you have quite possibly met IIF() when coding. IIF(),
also known as an inline IF, is very similar to the CASE statement demonstrated in the previous example. Where CASE
can have many choices, IIF() has only two choices. The syntax is as follows:

IIF(boolean_test_condition, true_value, false_value)

Figure 16-38. Using a CASE decision with an aggregation

Chapter 16 ■ essentials for effeCtive Coding

501

trY It OUt: IIF()

1. to demonstrate the similarity, but also the reduction in the amount you have to code, i will
take the example from the CASE statement and alter that to become an IIF() statement.

SELECT CustomerId,
IIF(CreditType = 0,'Debits','Credits') 'Debit/Credit',SUM(Amount)
 FROM TransactionDetails.Transactions t
 JOIN TransactionDetails.TransactionTypes tt ON
 tt.TransactionTypeId = t.TransactionType
 WHERE t.DateEntered BETWEEN '1 Jan 2012' AND '4 Jan 2012'
 GROUP BY CustomerId,CreditType

2. figure 16-39 will have similar output as that in figure 16-38; the alias for the Debit/Credit

column has been altered to show that a different set of code has been run.

CHOOSE()
The ability to return a value based on a separate value can be useful. A good explanation example would be that a
number with a range of one through seven could be used as the basis of determining the day name of the week. There
is a function that already does this, as demonstrated earlier in the chapter with DATENAME(). In the ApressFinancial
database, it might have been possible to use CHOOSE() for the transaction types to denote a debit or a credit type.
However, for only two choices, IIF() is a better option. CHOOSE() is good for cases in which there are three or more
possible options for the testing value and you need to translate it to a new value.

There is a large caveat here, and that is that you should not necessarily replace tables that have a few rows using
a CHOOSE() statement. Having the data in a table gives a number of advantages, including a single point for the data
and the ability to join the data; if you have to add any new data, you can simply add it to the table rather than having to
alter one or more stored procedures and functions.

I have yet to be convinced of using CHOOSE() instead of a cross-reference table, unless you have the CHOOSE()
choices within a user-defined function. So, for example, you would place the following example as a user-defined
function to return the choice value rather than using the TransactionDetails.TransactionTypes table.

Figure 16-39. CASE statement converted to an IIF()

Chapter 16 ■ essentials for effeCtive Coding

502

trY It OUt: ChOOSe()

1. this example demonstrates how you could move the TransactionDetails.
TransactionTypes table functionality into a CHOOSE() statement. although this works and
demonstrates the use of the CHOOSE() statement, it should also demonstrate that it is not
always appropriate to take data from a table and replace the logic and functionality that
having said data in a table provides.

SELECT CustomerId,
CHOOSE(TransactionType,'DEBIT','CREDIT','Share Purchase',
'Dividend','Share Transfer','Interest') as 'Types',
SUM(Amount)
 FROM TransactionDetails.Transactions t
 WHERE t.DateEntered BETWEEN '1 Jan 2012' AND '4 Jan 2012'
 GROUP BY CustomerId,TransactionType

2. When you execute the code, you will see the results shown in figure 16-40, which are similar
to the results in figures 16-38 and 16-39.

CAST()/CONVERT()
These are two functions used to convert from one data type to another. The main difference between them is that
CAST() is ANSI SQL–92 compliant, but CONVERT() has more functionality.

The syntax for CAST() is as follows:

CAST(variable_or_column AS datatype)

This is different than the syntax for CONVERT(), which is as follows:

CONVERT(datatype,variable_or_column)

Not all data types can be converted between each other, such as converting a datetime to a text data type,
and some conversions need neither a CAST() nor a CONVERT(). There is a grid in “Books Online” that provides the
necessary information.

If you want to CAST() from numeric to decimal or vice versa, you need to use CAST(); otherwise, you will
lose precision.

Figure 16-40. CHOOSE returning transaction types instead of your using a table

Chapter 16 ■ essentials for effeCtive Coding

503

trY It OUt: CaSt()/CONVert()

1. the first example will use CAST to move a number to a char(10).

DECLARE @Cast int
SET @Cast = 1234
SELECT CAST(@Cast as char(10)) + '-End'

2. executing this code results in a left-filled character variable, as shown in figure 16-41.

Figure 16-42. Changing the data type of a value using the non-ANSI standard

Figure 16-41. Changing the data type of a value

3. the second example completes the same conversion, but this time you use the
CONVERT() function.

DECLARE @Convert int
SET @Convert = 5678
SELECT CONVERT(char(10),@Convert) + '-End'

4. as you can see from figure 16-42, the only change is in the value output.

ISDATE()
Although ISDATE() is a function that works with dates and times, this system function takes a value in a column or a
variable and confirms whether it contains a valid date or time. The value returned is 0, or false, for an invalid date, or
1 for true if the date is okay. The formatting of the date for testing within the ISDATE() function has to be in the same
regional format as you have set previously with SET DATEFORMAT or SET LANGUAGE. If you are testing in a European
format but have your database set to the US format, you will get a false value returned.

Chapter 16 ■ essentials for effeCtive Coding

504

trY It OUt: ISDate()

1. the first example demonstrates where a date is invalid. there are only 30 days in september.

DECLARE @IsDate char(15)
SET @IsDate = '31 Sep 2015'
SELECT ISDATE(@IsDate)

2. execute the code, and you should get the results shown in figure 16-43.

3. the second example is a valid date.

DECLARE @IsDate char(15)
SET @IsDate = '30 Sep 2015'
SELECT ISDATE(@IsDate)

4. this time when you run the code, you will see a value of 1, as shown in figure 16-44,
denoting a valid entry.

5. You can then combine this code with a CASE statement to test whether a variable is a valid
date; if it is, you can then format the date as you wish. You could also display something if
the date is invalid. in the following exercise, a char() data type is tested as to whether it is a
date. if it is, it is then converted from a char() to a date data type and formatted.

DECLARE @IsDate char(15)
SET @IsDate = '30 Sep 2015'
SELECT CASE WHEN ISDATE(@IsDate) = 1
 THEN FORMAT(CONVERT(DATE,@IsDate),'MMM dd yyyy', 'en-GB')
 ELSE 'Invalid Date'
 END AS 'DateOutput'

Figure 16-44. Showing that a value is a valid date

Figure 16-43. Testing whether a value is a valid date and showing it is invalid

Chapter 16 ■ essentials for effeCtive Coding

505

6. the code checks if the value is a date. When it is, the value will be converted and formatted.
You should see the date in the month, day, year format, as shown in figure 16-45.

ISNULL()
Many times thus far, you have seen NULL values within a column of returned data. As a value, NULL is very useful.
However, you may want to test whether a column contains a NULL value. If there were a value, you would retain it,
but if there were a NULL, you would convert it to a value. This function could be used to convert a NULL value in an
aggregation, for example. The syntax is as follows, where the first parameter is the column or variable to test for a NULL
value, and the second option defines what to change the value to if there is indeed a NULL value:

ISNULL(value_to_test,new_value)

This change occurs only in the results and doesn’t change the underlying data that the value came from.

trY It OUt: ISNULL()

1. in this example, you will define a char() variable of ten characters in length and then set the
value explicitly to NULL. the example will also work without the second line of code, which
is simply there for clarity. the third line tests the variable, and as it is NULL, it changes it to a
date. note, though, that a date is more than ten characters, so the value is truncated.

DECLARE @IsNull char(10)
SET @IsNull = NULL
SELECT ISNULL(@IsNull,GETDATE())

2. as expected, when you execute the code, you get the first ten characters of the relevant date,
as shown in figure 16-46.

Figure 16-46. Changing a NULL value to a different value in the results

Figure 16-45. Checking whether the value is a valid date and formatting it

Chapter 16 ■ essentials for effeCtive Coding

506

ISNUMERIC()
This system function tests the value within a column or variable and ascertains whether it is numeric. The value
returned is 0, or false, for an invalid number, or 1 for true if the value can be converted to a numeric value.

Note ■ Currency symbols such as £ and $ will also return 1 for a valid numeric value.

trY It OUt: ISNUMerIC()

1. the first example to demonstrate ISNUMERIC() defines a character variable and contains
alphabetic values. this test fails, as shown in figure 16-47.

DECLARE @IsNum char(10)
SET @IsNum = 'Robin '
SELECT ISNUMERIC(@IsNum)

Figure 16-47. Checking whether a value is a number and finding out it is not

Figure 16-48. Finding out if a value is numeric

2. this second example places numbers and spaces into a char field. the ISNUMERIC() test
ignores the spaces, provided that there are no further alphanumeric characters.

DECLARE @IsNum char(10)
SET @IsNum = '1234 '
SELECT ISNUMERIC(@IsNum)

3. figure 16-48 shows the results of running this code.

Chapter 16 ■ essentials for effeCtive Coding

507

TRY_CONVERT()
As you have seen in the last few examples, you can test whether data fit certain data types; you can also cast from one
data type to another. However, it is possible to be in a situation where you cannot cast the data to the relevant data
type. In the previous example, an error would be received if you tried to convert the data to a data type where the data
would not be valid. Using TRY...CONVERT(), you can attempt to cast the data, and if the conversion is not possible, a
NULL value is returned.

One example of where TRY...CONVERT() would be better than a straight conversion is where data that are valid
in one system are transferred and not valid in another; for instance, where one system for a date can hold a specific
date, a date range, or a date length such as three months while another system cannot. Another example is where
mnemonics are stored for a number, like M for million. The receiving system could then use TRY_CONVERT() to place
the data in one of three columns depending on the scenario. By using TRY...CONVERT() and the CASE statement, you
could fulfill the three tests on the date and populate the relevant column in your system. The example you will see will
demonstrate this.

trY It OUt: trY_CONVert()

1. this first example will try to convert “3 months” to a date. this will fail and therefore will
return a NULL value.

DECLARE @InputDate char(15)
SET @InputDate = '3 Months'
SELECT TRY_CONVERT(DATE,@InputDate) AS OutputDate

2. executing this code results in a NULL value, as this is not a valid date, as shown in figure 16-49.

Figure 16-49. Trying to convert an invalid date to a valid date

3. it is possible to extend the code so that it attempts to convert the data to a valid data type,
and if it is unable to convert, to use a default data value. the code here shows one method
of combining IIF() with TRY_CONVERT. i have placed the three different settings that can be
used to test the code.

DECLARE @InputDate char(15), @DateValue date, @DateRange date
DECLARE @Default varchar(15)
-- SET @InputDate = '3 Sep 2015'
-- SET @InputDate = '
0
3'
SET @InputDate = 'Rubbish'

Chapter 16 ■ essentials for effeCtive Coding

508

SELECT @DateValue = TRY_CONVERT(DATE,@InputDate),
 @DateRange = IIF(TRY_CONVERT(int,@InputDate) IS NULL,NULL,
 DATEADD(d,CONVERT(int,@InputDate),'30 Dec 2016')),
 @Default = IIF(TRY_CONVERT(DATE,@InputDate) IS NULL,
 IIF(TRY_CONVERT(int,@InputDate) IS NULL,@InputDate,
 NULL),NULL)
SELECT @DateValue, @DateRange, @Default

4. executing the three different tests will give the results shown in figure 16-50.

PARSE/TRY_PARSE()
CAST and CONVERT are ideal for general conversion, but for specific conversions from string to a number or a datetime,
PARSE is the preferred option. From other data types, you should use CONVERT/TRY_CONVERT. PARSE is similar to
CONVERT, and, as you might expect, TRY_PARSE is similar to TRY_CONVERT, in that you can test the variable, and if the
cast fails, then a NULL value is returned. It is possible to include culture information as part of the parsing so that the
conversion takes the defined locale into consideration.

trY It OUt: parSe() aND trY_parSe()

1. the first example will try to parse “KJ” to an integer. this will fail and return an error, as it
assumes that the incoming value is of a valid data type.

DECLARE @InputNumber char(2)
SET @InputNumber = 'KJ'
SELECT PARSE(@InputNumber as int) AS OutputNumeric

2. execute the code and you should see the following:

Msg 9819, Level 16, State 1, Line 3
Error converting string value 'KJ' into data type int using culture ''.

Figure 16-50. A test result for each of the TRY_CONVERT tests

Chapter 16 ■ essentials for effeCtive Coding

509

3. the next example will try to parse “KJ” to an integer, which would be the better solution
if there is a chance that data type is involved. this will fail, but this time it will return a
NULL value.

DECLARE @InputNumber char(2)
SET @InputNumber = 'KJ'
SELECT TRY_PARSE(@InputNumber as int) AS OutputNumeric

4. execute the code, and you should see a better result, as shown in figure 16-51.

Figure 16-51. Trying to parse a string variable to a number

Even though the many system functions have been demonstrated, several of which allow you to test data to try to
avoid an unexpected error, you can never plan for every eventuality. In the following section, you will see how to work
with errors when they do occur.

RAISERROR
Before you learn about handling errors, you need to be aware of what an error is, how it is generated, the information
it generates, and how to generate your own errors when something is wrong. The T-SQL command RAISERROR allows
you as a developer to have the ability to produce your own SQL Server error messages when running queries or stored
procedures. You are not tied to using just the error messages that come with SQL Server; you can set up your own
messages and your own level of severity for those messages. It is also possible to determine whether the message is
recorded in the Windows error log.

However, whether you want to use your own error message or a system error message, you can still generate an
error message from SQL Server as if SQL Server itself raised it. Enterprise environments typically experience the same
errors on repeated occasions, since they employ SQL Server in very specific ways depending on their business model.
With this in mind, attention to employing RAISERROR can have big benefits by providing more meaningful feedback as
well as suggested solutions for users. You will see a second method for generating an error later in this chapter.

By using RAISERROR, SQL Server acts as if SQL Server raised the error, as you have seen within this book.
RAISERROR can be used in one of two ways; looking at the syntax will make this clear:

RAISERROR ({msg_id|msg_str} {,severity,state}
 [,argument [,...n]])
 [WITH option [,...n]]

You can either use a specific msg_id or provide an actual output string, msg_str, either as a literal or as a
local variable defined as string-based, containing the error message that will be recorded. The msg_id references
system- and user-defined messages that already exist within the SQL Server error messages table.

Chapter 16 ■ essentials for effeCtive Coding

510

When specifying a text message in the first parameter of the RAISERROR function instead of a message ID, you may
find that the following is easier to write than creating a new message:

RAISERROR('You made an error', 10, 1)

The next two parameters in the RAISERROR syntax are numerical and relate to how severe the error is and provide
information about how the error was invoked. Severity levels range from 1 at the innocuous end to 25 at the fatal end.
Severity levels of 2 to 14 are generally informational. Severity level 15 is for warnings, and levels 16 or higher represent
errors. Severity levels from 20 to 25 are considered fatal and require the WITH LOG option, which means that the error
is logged in the Windows Application Event Log and in the SQL error log and the connection is terminated; quite
simply, the stored procedure stops executing. The connection referred to here is the connection within Query Editor,
or the connection made by an application using a data access method like ADO.NET. Only for a most extreme error
would you set the severity to this level; in most cases, you would use a number between 1 and 19.

The last parameter of the function specifies state. Use a 1 here for most implementations, although the legitimate
range is from 1 to 127. You may use this to indicate which error was thrown by providing a different state for each
RAISERROR invocation in your stored procedure. SQL Server does not act on any legitimate state value, but the
parameter is required.

A msg_str can define parameters within the text. By placing the value, either statically or via a variable, after
the last parameter that you define, msg_str replaces the message parameter with that value. This is demonstrated
in an upcoming example. If you do want to add a parameter to a message string, you have to define a conversion
specification. The format is as follows:

% [[flag] [width] [. precision] [{h | l}]] type

The options are as follows:

•	 flag: A code that determines justification and spacing of the value entered:

•	 - (minus): Left-justify the value

•	 + (plus): The value shows a + or a – sign.

•	 0: Prefix the output with zeros

•	 #: Preface any nonzero with a 0, 0x, or 0X, depending on the formatting

(blank): Prefix with blanks•	

•	 width: The minimum width of the output

•	 precision: The maximum number of characters to be used from the argument

•	 h: Character types:

•	 d or i: Signed integer

•	 o: Unsigned octal

•	 s: String

•	 u: Unsigned integer

•	 x or X: Unsigned hex

To place a parameter within a message string where the parameter needs to be inserted, put a •	
% sign followed by one of the following options: d or i for a signed integer, p for a pointer, s for
a string, u for an unsigned integer, x or X for an unsigned hexadecimal, and o for an unsigned
octal. Note that float, double, and single are not supported as parameter types for messages.
You will see this in the upcoming examples.

Chapter 16 ■ essentials for effeCtive Coding

511

Finally, there are three options that could be placed at the end of the RAISERROR message. These are the WITH options:

•	 LOG places the error message within the Windows error log.

•	 NOWAIT sends the error directly to the client.

•	 SETERROR resets the error number to 50000 within the message string only.

When using any of these last WITH options, do take the greatest of care, as their misuse can create more problems
than they solve. For example, you may unnecessarily use LOG a great deal, filling up the Windows Application Event
Log and the SQL error log, which can lead to further problems.

There is a system stored procedure, sp_addmessage, that can create a new global error message for use by
RAISERROR by defining the @msgnum to be added. The syntax for adding such a message is as follows:

sp_addmessage [@msgnum =]msg_id,
[@severity =] severity , [@msgtext =] 'msg'
 [, [@lang =] 'language']
 [, [@with_log =] 'with_log']
 [, [@replace =] 'replace']

The parameters in this system stored procedure are as follows:

•	 @msgnum: The number of the message is typically greater than 50000.

•	 @severity: A number in the range of 1 to 25

•	 @lang: Use this if you need to define the language of the error message. Normally, this is left empty.

•	 @with_log: Set to TRUE if you want to write a message to the Windows error log.

•	 @replace: Set to 'replace' if you are replacing an existing message and updating any of the
preceding values with new settings.

Note ■ any message added will be specific for that database rather than for the server.

It is time to move to an example that will set up an error message to be used when a customer is overdrawn.

trY It OUt: raISerrOr

1. first of all, you will want to add a new user-defined error message. to do this, you will use
sp_addmessage. You can now add any new sQl server message that you want. any user-defined
error message number must be greater than 50000, so the first error message would normally
be 50001.

sp_addmessage @msgnum=50001,@severity=1,
@msgtext='Customer is overdrawn'

2. You can then perform a RAISERROR to see the message displayed. notice that you have to

define the severity again. this is mandatory, but it would be better if it were optional so you
could always default to the severity defined.

RAISERROR (50001,1,1)

Chapter 16 ■ essentials for effeCtive Coding

512

3. When this is executed, you will see the following output:

Customer is overdrawn
Msg 50001, Level 1, State 1

4. this is not the friendliest of messages, as it would be better to perhaps give out the customer
number as well. You can do this via a parameter. in the code that follows, you will replace the
message just added so as to include a parameter where you are formatting with flag 0, which
means you are prefixing the output with zeros. then you will include the number 10, which
is the degree of precision, which means the number will be ten digits; and finally you will
indicate that the message will be unsigned by using the option u.

sp_addmessage @msgnum =50001,@severity=1,
@msgtext='Customer is overdrawn. CustomerId= %010u',@replace='replace'

5. You can then change the RAISERROR so that you add on another parameter. You are hard-
coding the customer number as customer number 243, but you could use a local variable.

RAISERROR (50001,1,1,243)

6. executing the code now produces output that is much better and more informative for

debugging, if required.

Customer is overdrawn. CustomerId= 0000000243
Msg 50001, Level 1, State 1

now that you know how you can raise your own errors if scenarios crop up that need them, you can take a look at
how sQl server deals with errors. You do come back to RAISERROR when looking at these two next options.

Error Handling
When working with T-SQL, it is important to have some sort of error handling to cater to those times when something
goes wrong. Errors can be of different varieties; for example, you might expect at least one row of data to be returned
from a query, but you receive no rows. However, what I am discussing here is when SQL Server informs you there is
something more drastically wrong. You have seen some errors throughout this book, and even in this chapter. There
are two methods of error catching you can employ in such cases. The first uses a system variable, @@ERROR.

@@ERROR
This is the most basic method of error handling. It has served SQL Server developers well over the years, but it can
be cumbersome. When an error occurs, such as you have seen as you have gone through this book creating and
manipulating objects, a global variable, @@ERROR, is set with the SQL Server error message number. Similarly, if you try
to do something with a set of data that is invalid, such as dividing a number by zero or exceeding the number of digits
allowed in a numeric data type, then SQL Server will set this variable for you to inspect.

Chapter 16 ■ essentials for effeCtive Coding

513

The downside is that the @@ERROR variable setting lasts only for the duration of the next statement following the
line of code that has been executed; therefore, when you think there might be problems, you need to either pass the
data to a local variable or inspect it straightaway. The first example demonstrates this.

trY It OUt: USING @@errOr

1. this example tries to divide 100 by zero, which results in an error. You then list out the error
number, and then again list out the error number. enter the following code and execute it:

SELECT 100/0
SELECT @@ERROR
SELECT @@ERROR

2. it is necessary in this instance to check both the results and the Messages tabs. the first

tab is the Messages tab, which shows you the error encountered. as expected, you see the
“divide by zero error encountered” message.

Msg 8134, Level 16, State 1, Line 1
Divide by zero error encountered.
(1 row(s) affected)
(1 row(s) affected)

3. Moving to the results tab, you should see three result sets, as shown in figure 16-52. the first,
showing no information, would be where sQl server would have put the division results had
it succeeded. the second result set is the number from the first SELECT @@ERROR. notice the
number corresponds to the msg number found in the Messages tab. the third result set shows a
value of 0. this is because the first SELECT @@ERROR worked successfully and therefore set the
system variable to 0. this demonstrates the lifetime of the value within @@ERROR.

Figure 16-52. Showing @@ERROR in multiple statements

Chapter 16 ■ essentials for effeCtive Coding

514

4. When you use the RAISERROR function, it also sets the @@ERROR variable, as you can see in
the following code. however, the value will be set to 0 using the preceding example. this is
because the severity level was below 11.

RAISERROR (50001,1,1,243)
SELECT @@ERROR

5. When the code is executed, you can see that @@ERROR is set to 0, as shown in figure 16-53.

Figure 16-54. With a higher severity, the message number is set

6. By changing the severity to 11 or above, the @@ERROR setting will now be set to the message
number within the RAISERROR.

RAISERROR (50001,11,1,243)
SELECT @@ERROR

7. the preceding code produces the same message as shown within the RAISERROR example,

but as you can see in figure 16-54, the error number setting now reflects the value placed in
the msgnum parameter.

Figure 16-53. When severity is too low to set @@ERROR

Although @@ERROR is a useful tool, it would be better to use the next error-handling routine to be demonstrated,
TRY...CATCH with THROW.

TRY...CATCH and THROW
It can be said that, no matter what, any piece of code has the ability to fail and generate some sort of error. For the
vast majority of this code, you will want to trap any error that occurs, check what the error is, and deal with it as best
you can. As you saw previously, this could be done one statement at a time using @@ERROR to test for any error codes.
Improved functionality exists whereby a set of statements can try to execute, and if any statement has a runtime
error, it will be caught. This is known as a TRY...CATCH block. If you find an error within your code where you were
expecting something—such as a specific value or a range of values, for example—then it is possible to generate an

Chapter 16 ■ essentials for effeCtive Coding

515

error with a THROW statement. In essence, TRY...CATCH and THROW are greatly improved and more flexible versions of
RAISERROR and @@ERROR. There is one slight catch, and that is that a THROW statement must be preceded with a line of
code that is terminated with a semicolon.

Surrounding a single batch of code with the ability to execute that code and to then catch any errors and try to
deal with them has been around for quite a number of years in languages such as C++. Thankfully, you see this within
SQL Server as well. You can use TRY...CATCH with a transaction; however, you have to take care where to place the
BEGIN TRANSACTION along with the ROLLBACK and COMMIT TRANSACTION statements. You will see an instance of this
within the examples.

The syntax for TRY...CATCH is pretty straightforward. There are two “blocks” of code. The first block, BEGIN TRY,
is where there is one or more T-SQL statements that you want to try to run. If any of the statements has an error, then
no further processing within that block will be done, and processing will switch to the second block, BEGIN CATCH.

BEGIN TRY
 { sql_statement | statement_block }
END TRY
BEGIN CATCH
 { sql_statement | statement_block }
END CATCH

It is possible to generate your own error via a RAISERROR, as you saw earlier, or you can execute a THROW statement
either within or outside a TRY or CATCH block. A RAISERROR within a TRY...CATCH will work as it would outside a TRY...
CATCH; that is to say that it will set the error details, and then if the severity is 10 or lower, processing will continue. If
the severity is in the range of 11 to 19, then the RAISERROR would pass execution to the CATCH block. A severity of 20 or
above would stop execution immediately and close the connection, and processing would not pass to the CATCH block.
Rather than using RAISERROR, you can THROW an error that will always move the execution of the code to the CATCH
block of code. This allows you as a developer to do cleanup actions when an error has occurred, such as to roll back a
transaction or do any other actions you want to perform to help you with any investigation.

TRY...CATCH blocks can be nested. This gives you several advantages. The first is that you can pass any error
up through the nested levels with a rethrow. This is achieved by issuing the THROW statement with no parameters in
each CATCH block in the nesting. You will sometimes hear this called “bubbling up the error.” There are advantages to
bubbling, as it allows a controlled way of getting out of a difficult situation; however, it can also lead to confusion if you
rethrow every exception. So when you rethrow an error, ensure that this is the action you want to do.

Nesting allows you to surround a stored procedure call with a TRY...CATCH. This will then allow for any error that
is thrown in the called stored procedure to be caught in the calling stored procedure.

Within the TRY...CATCH block, it is possible to retrieve error information. The system functions that can be used
to find useful debugging information are detailed here:

•	 ERROR_LINE(): The line number that caused the error or performed the RAISERROR or the
THROW statement; this is physical rather than relative (i.e., you don’t have to remove blank lines
within the T-SQL to get the correct line number, unlike in some software that does require this).

•	 ERROR_MESSAGE(): The text message

•	 ERROR_NUMBER(): The number associated with the message

•	 ERROR_PROCEDURE(): If you are retrieving this within a stored procedure or trigger, the name of
it will be contained here. If you are running ad hoc T-SQL code, then the value will be NULL.

•	 ERROR_SEVERITY(): The numeric severity value for the error

•	 ERROR_STATE(): The numeric state value for the error

Chapter 16 ■ essentials for effeCtive Coding

516

Not all errors are caught within a TRY...CATCH block, unfortunately. Those that aren’t caught are compile errors
or errors that occur when deferred name resolution takes place and the name created doesn’t exist. To clarify these
two points, when T-SQL code is either ad hoc or within a stored procedure, SQL Server compiles the code, looking for
syntax errors. However, not all code can be fully compiled, and often is not compiled until the statement is about to be
executed. If there is an error, then this will terminate the batch immediately. The second error that will not be caught
is one resulting when you have code that references a temporary table, for example, in which case the table won’t exist
at runtime and column names won’t be able to be checked. This is known as deferred name resolution, and if you try
to use a column that doesn’t exist, this will also generate an error, thus terminating the batch.

There is a great deal more to TRY...CATCH blocks in areas that are quite advanced, but now that you know the
basics, let’s look at some examples demonstrating what I have just discussed.

trY It OUt: trY...CatCh...thrOW

1. Your first example is a simple error where you have defined an integer local variable. Within
your error-handling block, after outputting a statement to demonstrate that you are within
that block, you try to set a string to the variable. this is a standard error and immediately
moves the execution to the CATCH block; the last SELECT is not executed.

DECLARE @Probs int
BEGIN TRY
 SELECT 'This will work'
 SELECT @Probs='Not Right'
 SELECT 10+5,
 'This will also work, however the error means it will not run'
END TRY
BEGIN CATCH
 SELECT 'An error has occurred at line ' +
 LTRIM(STR(ERROR_LINE())) +
 ' with error ' + LTRIM(STR(ERROR_NUMBER())) + ' ' + ERROR_MESSAGE()
END CATCH

2. When you run the code, you will see the first statement and then the SELECT statement that

executes when the error is caught. system functions are used to display relevant information,
which appears in figure 16-55.

Figure 16-55. An error is caught

Chapter 16 ■ essentials for effeCtive Coding

517

3. the second example demonstrates nesting TRY...CATCH blocks and how execution can
continue within the outer block when an error arises within the second block. Keep the same
error and see the error message in the second catch block. once this is executed, processing
continues, and this code will now work.

DECLARE @Probs int
BEGIN TRY
 SELECT 'This will work'
 BEGIN TRY
 SELECT @Probs='Not Right'
 SELECT 10+5,
 'This will also work, however the error means it will not run'
 END TRY
 BEGIN CATCH
 SELECT 'The second catch block'
 END CATCH
 SELECT 'And then this will now work'
END TRY
BEGIN CATCH
 SELECT 'An error has occurred at line ' +
 LTRIM(STR(ERROR_LINE())) +
 ' with error ' + LTRIM(STR(ERROR_NUMBER())) + ' ' + ERROR_MESSAGE()
END CATCH

4. as expected, you see three lines of output, as shown in figure 16-56. the code in the outer

CATCH block doesn’t run, as the error is handled within the inner block.

Figure 16-56. An error is caught in a nested batch

Chapter 16 ■ essentials for effeCtive Coding

518

5. the foregoing example could be modified so that in the inner CATCH block the error is thrown
to the outer catch block. the outer catch block would then hold all the rollback processing,
error logging, and so on.

DECLARE @Probs int
BEGIN TRY
 SELECT 'This will work'
 BEGIN TRY
 SELECT @Probs='Not Right'
 SELECT 10+5,
 'This will also work, however the error means it will not run'
 END TRY
 BEGIN CATCH
 THROW
 END CATCH
 SELECT 'The THROW means this is skipped'
END TRY
BEGIN CATCH
 SELECT 'An error has occurred at line ' +
 LTRIM(STR(ERROR_LINE())) +
 ' with error ' + LTRIM(STR(ERROR_NUMBER())) + ' ' + ERROR_MESSAGE()
 IF @@TRANCOUNT > 0
 ROLLBACK TRAN
END CATCH

6. after you execute the foregoing code and the error occurs, control will be passed to the inner

catch block, which will then THROW the error to the next nesting level. in this example, control is
passed to the outer block of code, where the error is listed. a test is then performed to roll back
any open transactions as part of the cleanup exercise. You can see the output in figure 16-57.

Figure 16-57. An error is thrown to the outer catch

7. this time, you can see how your t-sQl code can be successfully precompiled and execution
begun. then when you try to display results from a temporary table that doesn’t exist, the
CATCH block does not fire, as execution terminates immediately.

DECLARE @Probs int
BEGIN TRY
 SELECT 'This will work'
 BEGIN TRY
 SELECT * FROM #Temp
 END TRY

Chapter 16 ■ essentials for effeCtive Coding

519

 BEGIN CATCH
 SELECT 'The second catch block'
 END CATCH
 SELECT 'And then this will now work'
END TRY
BEGIN CATCH
 SELECT 'An error has occurred at line ' +
 LTRIM(STR(ERROR_LINE())) +
 ' with error ' + LTRIM(STR(ERROR_NUMBER())) + ' ' + ERROR_MESSAGE()
END CATCH

8. When the code is run, you see the following output in the Messages tab, detailing how one

row has been returned, which comes from the first SELECT statement. You then see the sQl
server error. looking at figure 16-58, you see just the first SELECT statement output.

(1 row(s) affected)
Msg 208, Level 16, State 0, Line 5
Invalid object name '#Temp'.

Figure 16-58. What happens when SQL Server terminates execution

9. the next example demonstrates how to throw an error from an inner exception handler to an
outer handler. You would normally see this in nested stored procedures, but for simplicity it
will be demonstrated in the following simplified example.

BEGIN TRY
 SELECT 'Outer level'
 BEGIN TRY
 SELECT 'Inner level';
 THROW 51200, 'Inner level throw', 1
 END TRY
 BEGIN CATCH
 SELECT 'Inner Catch with re-throw';
 THROW
 END CATCH
END TRY
BEGIN CATCH
 SELECT 'Outer Catch';
 THROW
END CATCH

Note ■ remember that the statement previous to a THROW must be terminated by a semicolon.

Chapter 16 ■ essentials for effeCtive Coding

520

10. the inner throw will be passed to the inner catch, which will rethrow the error to the outer
catch, which in turn throws the error to the outermost calling code, which in this instance is
the end of the code, which finally lists the error. You can see this tracked in the output from
the foregoing executed code in the results in figure 16-59.

Figure 16-59. What happens when SQL Server terminates execution

11. the error itself is placed in the Messages tab, which is shown here.

 (1 row(s) affected)
 (1 row(s) affected)
 (1 row(s) affected)
 (1 row(s) affected)
 Msg 51200, Level 16, State 1, Line 5
 Inner level throw

error handling and having the ability to control errors will lead to code that is more robust, and when an error
occurs it can be tracked in a more constructive fashion and handled in a controlled manner. remembering to use
a semicolon in the statement prior to a THROW may seem odd; however, this is simply Microsoft trying to take you
down the route of statement termination via a delimiter.

Summary
The text for this chapter is not the most fluid, but the information will be very useful as you start using SQL Server. The
functions demonstrated here are the most common and most likely ones you will use, and this is why they have been
demonstrated. Each section you have read contains a great deal of useful and pertinent information, and rereading
the chapter and maybe even trying out different ideas based on the basics demonstrated here will give you a stronger
understanding of what is happening. The main areas of focus were error handling and joining tables to return results.
In addition, looking at some of the system predefined functions and how useful they can be is important, as you will use
some of these functions many number of times when coding. Take time to fully understand what is happening and how
you can use these two features.

521

Chapter 17

Advanced T-SQL and Debugging

By now, you really are becoming proficient in SQL Server and writing code to work with the data and the objects
within the database. Already you have seen some T-SQL code and encountered some scenarios that have advanced
your skills as a T-SQL developer. You can now look at more advanced areas of T-SQL programming to round out your
knowledge and really get you going with queries that do more than the basics.

This chapter will cover the occasions when you need a query within a query, known as a subquery. This is ideal
for producing a list of values to search for, or for producing a value from another table to set a column or a variable
with. It is also possible to create a transient table of data to use within a query, known as a common table expression.
You will look at both subqueries and common table expressions in this chapter.

From there, you will explore how to take a set of data and pivot the results, just as you can do within Excel. You
will also take a look at different types of ranking functions, where you can take your set of data and attach rankings to
rows or groups of rows of data.

Finally, you will see how to deal with varchar(max) and varbinary(max) data types when loading large text,
images, movies, and so on.

Creating a SEQUENCE
Chapter 5 introduced sequences as an alternative to IDENTITY columns. Now in this section, sequences will be
discussed in more detail. A sequence is held in its own object with a separate node under Programmability within
SSMS. This helps to logically break the link between a sequence and its assignment to a specific table. Creating a
sequence is more in tune with programming functions, such as a stored procedure, as you will see when looking at the
syntax.

The syntax for the SEQUENCE object is very basic, with a number of options that can be attached to the sequence
creation. The syntax is as follows:

CREATE SEQUENCE [schema_name .] sequence_name
 [AS [built_in_integer_type | user-defined_integer_type]]
 [START WITH <constant>]
 [INCREMENT BY <constant>]
 [{ MINVALUE [<constant>] } | { NO MINVALUE }]
 [{ MAXVALUE [<constant>] } | { NO MAXVALUE }]
 [CYCLE | { NO CYCLE }]
 [{ CACHE [<constant>] } | { NO CACHE }]

Chapter 17 ■ advanCed t-SQL and debugging

522

The CREATE SEQUENCE has a number of options; the only mandatory option is the sequence_name. The options
are as follows

•	 schema_name: The schema that the sequence belongs to

•	 sequence_name: The name you want to call the sequence

•	 AS: Although optional, I would recommend defining the data type to avoid confusion. If not
defined, though, the data type will be bigint. Valid base data types are tinyint, smallint,
int, bigint, decimal, and numeric. Any user-defined type based on one of these base data
types could also be assigned.

•	 START WITH: The number the sequence starts with; 1 is the default.

•	 INCREMENT BY: Each time a sequence number is requested, this defines the increment from
the previous number. This can be a negative (for descending numbers) or positive, and the
default increment is 1.

•	 MINVALUE value|NO MINVALUE: This is used in conjunction with the CYCLE option. This will
define the minimum value if the sequence numbers exceed the MAXVALUE if defined, and the
CYCLE option is defined. The default is the minimum value for the data range for the data type
of the sequence.

•	 MAXVALUE value|NO MAXVALUE: This is used to define the maximum value of the sequence.
The default is the maximum value for the data type. If the sequence reaches the maximum
value, the next request for a number will generate an error if you have NOCYCLE defined or will
put the sequence to the MINVALUE if CYCLE is defined.

•	 CYCLE|NO CYCLE: When the maximum value for a sequence is reached, it can generate an error
if NO CYCLE is defined, or will set the sequence to MINVALUE if CYCLE is defined.

•	 CACHE|NO CACHE: Every time you want the next number in the sequence, SQL Server will
perform disk I/O to retrieve the value when using NO CACHE. It is possible to cache a range of
numbers in memory so that you retrieve the next value from memory, which is a great deal
faster. SQL Server will generate the numbers and write the last number to disk, holding the
numbers in memory for use. To achieve this, you would create the sequence with the CACHE
option, which is the default. The downside to CACHE is that if you need to restart the server or
the SQL Server windows process, then that range of numbers in memory will be lost and a gap
will exist. If that is not an issue and you are inserting a large number of rows, then CACHE would
be a good choice.

Once a sequence is created, you then retrieve the next value using the following:

NEXT VALUE FOR [schema_name.]sequence_name

Now that you know what a sequence is and the options available, it is time to build and alter a sequence.
A sequence will be built for the CustomerDetails.FinancialProducts table that already has data within it. You will
see valid insertions to the table, and then you will see what happens when a maximum is reached and how to progress
from that point.

Chapter 17 ■ advanCed t-SQL and debugging

523

trY It OUt: BUILDING aND USING a SeQUeNCe

1. First of all, it is useful to know what number the sequence will start at based on the
maximum value of ProductIds within the CustomerDetails.FinancialProducts table.

SELECT MAX(ProductId) + 1
 FROM CustomerDetails.FinancialProducts

2. next, the sequence is created within the CustomerDetails schema with a unique name.
the return value will be an integer and will start at 42, as product id 41 is my last financial
product id. For the moment, i am setting a max value of 44 and that each sequence will be
retrieved one at a time, no caching. execute the following code.

CREATE SEQUENCE CustomerDetails.SeqFinancialProducts
AS int
START WITH 42
MAXVALUE 44
NO CACHE

Note ■ You cannot use a local variable to define any values for options. it has to be a constant.

3. You should then see the sequence under the programmability node within Object explorer for
SQL Server, as shown in Figure 17-1.

Figure 17-1. The new sequence created and showing in Object Explorer

Chapter 17 ■ advanCed t-SQL and debugging

524

4. You can now test the sequence by inserting three rows of data. this will keep the sequence
number within the bounds of the max value. When you execute the code, all three rows
should insert successfully.

INSERT CustomerDetails.FinancialProducts(ProductId, ProductName)
 VALUES (NEXT VALUE FOR CustomerDetails.SeqFinancialProducts,
 'Life Insurance') ,
 (NEXT VALUE FOR CustomerDetails.SeqFinancialProducts,
 'Unit Trusts'),
 (NEXT VALUE FOR CustomerDetails.SeqFinancialProducts,
 'Investment Trusts')

5. the next insertion will fail. enter the following code for the next insertion.

INSERT CustomerDetails.FinancialProducts(ProductId, ProductName)
 VALUES (NEXT VALUE FOR CustomerDetails.SeqFinancialProducts,
 'Repurchase Agreements')

6. When you execute the code, you will see an error, as shown here:

Msg 11728, Level 16, State 1, Line 1
The sequence object 'SeqFinancialProducts' has reached its
minimum or maximum value. Restart the sequence object to allow
new values to be generated.

at this point, all further insertions will fail, which may be a valid scenario for your system;
however, if it is not, then you need to build your sequence with an alternative strategy in mind.

in the next section, you will see how to alter the sequence so that insertions can be
successfully completed going forward. this is achieved via the ALTER SEQUENCE command.

altering the Sequence

before you dive into altering the sequence, you need to know what the syntax is. it is very
similar to the CREATE SEQUENCE as it has the same options; however, there is a further option
called RESTART. RESTART on its own, which is the default, would reseed the sequence to the
lowest value for the data type, which would be -2,147,483,648 for the int data type. to restart
with a specific value, you add WITH and a constant value. You will see this in the following
exercise. the syntax follows, and then the exercise will use this syntax to alter the sequence:

ALTER SEQUENCE [schema_name.] sequence_name
 [RESTART [WITH <constant>]]

7. the first example will demonstrate cycling the sequence only. this will cause the sequence to
loop around to the beginning, and as there is no RESTART option you will see the data type’s
minimum value added for the new row.

ALTER SEQUENCE CustomerDetails.SeqFinancialProducts
CYCLE

Chapter 17 ■ advanCed t-SQL and debugging

525

8. insert the row of data that in the CREATE SEQUENCE example failed as the maximum was
reached. When you execute the code this time, it will succeed.

INSERT CustomerDetails.FinancialProducts(ProductId, ProductName)
 VALUES (NEXT VALUE FOR CustomerDetails.SeqFinancialProducts, 'Repurchase
 Agreements')

9. You can check the value given to the row from the sequence via the following code.

SELECT ProductId,ProductName
FROM CustomerDetails.FinancialProducts
ORDER BY ProductId

10. When you execute the code, you will see the row as shown in Figure 17-2.

11. as this was generated in error, you could modify the ProductId with an UPDATE; however, for
this example, let’s delete the row so it can be inserted correctly.

DELETE FROM CustomerDetails.FinancialProducts
WHERE ProductId < 0

12. You now need to alter the sequence to indicate the restart value of 1. You will also need to
CYCLE the sequence.

ALTER SEQUENCE CustomerDetails.SeqFinancialProducts
CYCLE
RESTART WITH 1

Figure 17-2. New row inserted with the minimum value

Chapter 17 ■ advanCed t-SQL and debugging

526

13. it is now possible to insert the row with the correct sequence value of 1 and then inspect the
table to see if the ProductId is 1.

INSERT CustomerDetails.FinancialProducts(ProductId, ProductName)
 VALUES (NEXT VALUE FOR CustomerDetails.SeqFinancialProducts,
 'Repurchase Agreements')

SELECT ProductId,ProductName
FROM CustomerDetails.FinancialProducts
ORDER BY ProductId

14. this time the correct sequence has been generated, but notice in Figure 17-3 that you now
have two rows with a ProductId of 1, which is what was desired with the alter sequence
in step 6.

if you wanted the sequence to carry on, then you would have, in step 6, set a new maximum value and set the
RESTART WITH value to the max value in the ProductId column and not CYCLEd the sequence. You can delete one
of the ProductId ones by executing the following code. i have deleted one of the rows.

DELETE TOP (1) FROM CustomerDetails.FinancialProducts where ProductId = 1

Subqueries
A subquery is a query embedded within another query or statement and can be used anywhere an expression is
allowed. It can be used to check or set a value of a variable or column, or used to test whether a row of data exists in a
WHERE clause.

Using Subqueries
Sometimes, you may want to set a column value based on data from another query. One example you have is the
ShareDetails.Shares table. .Imagine you have a column defined for MaximumSharePrice that holds the highest
price the share price had reached for that year. Rather than doing a test every time the share price moved, you could

Figure 17-3. Row now inserted with the restarted value

Chapter 17 ■ advanCed t-SQL and debugging

527

use the MAX function to get the highest share price, put that value into a variable, and then set the column via that
variable. Without the use of a subquery, with the exception of the ALTER TABLE, the code would be similar to that
defined here:

ALTER TABLE ShareDetails.Shares
ADD MaximumSharePrice money
GO
DECLARE @MaxPrice money
SELECT @MaxPrice = MAX(Price)
 FROM ShareDetails.SharePrices
 WHERE ShareId = 1
SELECT @MaxPrice
UPDATE ShareDetails.Shares
SET MaximumSharePrice = @MaxPrice
WHERE ShareId = 1

In the preceding code, if you wanted to work with more than one share, you would need to implement a loop
and process each share one at a time. However, you could also perform a subquery, which implements the same
functionality as shown in the code that follows. The subquery still finds the maximum price for a given share and
sets the column. Notice that this time you can update all shares with one statement. The subquery joins with the
main query via a WHERE clause so that as each share is dealt with, the subquery can take that ShareId and still get
the maximum value. If you want to run the following code, then you still need the ALTER TABLE statement used
previously, even if you did not run the preceding code.

Note ■ this type of subquery is called a correlated subquery.

SELECT ShareId,MaximumSharePrice
FROM ShareDetails.Shares
UPDATE ShareDetails.Shares
SET MaximumSharePrice =
 (SELECT MAX(Price)
 FROM ShareDetails.SharePrices sp
 WHERE sp.ShareId = s.ShareId)
FROM ShareDetails.Shares s
SELECT ShareId,MaximumSharePrice
FROM ShareDetails.Shares

You also came across a subquery way back in Chapter 8 when you were testing whether a backup had
successfully completed. The code is replicated here, with the subquery section highlighted in bold. In this instance,
instead of setting a value in a column, you are looking for a value to be used as part of a filtering criterion. Recall from
Chapter 8 that you know the last backup will have the greatest backup_set_id. You use the subquery to find this value
(as there is no system function or variable that can return this at the time of creating the backup). Once you have
this value, you can use it to reinterrogate the same table, filtering out everything but the last row for the backup just
created.

Note ■ don’t forget that for the FROM DISK option, you will have a different file name than the one in the following code.

Chapter 17 ■ advanCed t-SQL and debugging

528

declare @backupSetId as int
select @backupSetId = position
from msdb..backupset
where database_name=N'ApressFinancial'
and backup_set_id=(select max(backup_set_id)
 from msdb..backupset
 where database_name=N'ApressFinancial')
if @backupSetId is null
begin
 raiserror(N'Verify failed. Backup information for
 database ''ApressFinancial'' not found.', 16, 1)
end
RESTORE VERIFYONLY
FROM DISK = N'C:\Program Files\Microsoft SQL Server\
MSSQL11.APRESS_DEV1\MSSQL\Backup\ApressFinancial.bak'
WITH FILE = @backupSetId,
NOUNLOAD,
NOREWIND
GO

In both of these cases, you are returning a single value within the subquery, but this need not always be the
case. You can also return more than one value. One value must be returned when you are trying to set a value. This
is because you are using an equals (=) sign. It is possible in a WHERE clause to look for a number of values using the IN
clause.

IN
If you want to look for a number of values in your WHERE clause, such as a list of values from the ShareDetails.Shares
table where the ShareId is 1, 11, or 15, then you can use an IN clause. The code to complete this example would be as
follows:

SELECT *
 FROM ShareDetails.Shares
 WHERE ShareId IN (1,11,15)

Using a subquery, it would be possible to replace these numbers with the results from the subquery. The
preceding query could also be written using the code that follows. This example shows how it is possible to combine a
subquery and an aggregation to produce the list of ShareIds that form the IN:

SELECT *
 FROM ShareDetails.Shares
 WHERE ShareId IN (SELECT ShareId
 FROM ShareDetails.Shares
 WHERE CurrentPrice > (SELECT MIN(CurrentPrice)
 FROM ShareDetails.Shares)
 AND CurrentPrice < (SELECT MAX(CurrentPrice) / 3
 FROM ShareDetails.Shares))

Chapter 17 ■ advanCed t-SQL and debugging

529

Note ■ if a query starts becoming very complex, you may find that it starts performing badly. this book doesn’t look at
the performance of queries, although it has discussed indexes and how they can help your query perform better. always
take a step back and think, “Would this work better as two queries where the first query creates a subset of data?”
Writing a very complex query that processes all the data in one pass may not always be the best answer. Consider also
that a complex query can be difficult to figure out should you need to revise later.

Both of these examples replace what would require a number of OR clauses within the WHERE filter, such as you see
in this code:

SELECT *
 FROM ShareDetails.Shares
 WHERE ShareId = 1
 OR ShareId = 11
 OR ShareId = 15

These are just three different ways a subquery can work. The fourth way involves using a subquery to check
whether a row of data exists, which you will look at next.

EXISTS
EXISTS is a clause that is very similar to IN, in that it tests a column value against a subset of data from a subquery. The
difference is that EXISTS uses a join to join values from a column to a column within the subquery, as opposed to IN,
which compares against a comma-delimited set of values and requires no join.

Over time, your ShareDetails.Shares and ShareDetails.SharePrice tables will grow to quite large sizes. If you
wanted to shrink them, you could use cascading deletes so that when you delete from the ShareDetails.Shares table,
you would also delete all the SharePrice records. But how would you know which shares to delete? One way would be
to see what shares are still held within your TransactionDetails.Transactions table. You would do this via EXISTS,
but instead of looking for ShareIds that exist, you would use NOT EXISTS.

At present, you have no shares listed within the TransactionDetails.Transactions table, so you would see all
of the ShareDetails.Shares listed. You can make life easier with EXISTS by giving tables an alias, but you also have to
use the WHERE statement to make the join between the tables. However, you aren’t really joining the tables as such; a
better way of looking at it is to say you are filtering rows from the subquery table.

The final point to note is that you can return whatever you want after the SELECT statement in the subquery, but
it should be only one column or a value; it cannot be more than this. The subquery can be in the columns returned
and the single value returned, displayed along with the other columns. However, if subquery is in the WHERE condition,
then the value cannot be displayed.

Note ■ When using EXISTS, it is most common in SQL Server to use * rather than a constant like 1, as it simply returns
a true or false setting.

Chapter 17 ■ advanCed t-SQL and debugging

530

The following code shows EXISTS in action prefixed with a NOT:

SELECT *
 FROM ShareDetails.Shares s
 WHERE NOT EXISTS (SELECT *
 FROM TransactionDetails.Transactions t
 WHERE t.RelatedShareId = s.ShareId)

Note ■ both EXISTS and IN can be prefixed with NOT.

Tidying Up the Loose End
You have a loose end from a previous chapter that you need to tidy up. In Chapter 14, you built a scalar function
to calculate interest between two dates using a rate. It was called TransactionDetails.fn_IntCalc. When I
demonstrated this, you had to pass in the specific information; however, by using a subquery, it is possible to use this
function to calculate interest for customers based on their transactions. The following “Try it Out” exercise shows you
how to invoke the function with a subquery result as one of the arguments. The subquery computes the “to date” for
each transaction returned by the outermost SELECT statement.

trY It OUt: USING a SCaLar FUNCtION WIth SUBQUerIeS

1. in the first part of the query, you are returning some data from the TransactionDetails.
Transactions table:

SELECT t1.TransactionId, t1.DateEntered,t1.Amount,

2. the second part of the query is where it is necessary to compute the “to date” for calculating
the interest, as DateEntered will be used as the “from date.” to do this, it is necessary
to find the next transaction in the TransactionDetails.Transactions table. to do that,
you need to find the minimum DateEntered—using the minimum function—where that
minimum DateEntered is greater than that for the transaction you are on in the main query.
however, you also need to ensure you are doing this for the same customer as the SELECT
used previously. You need to make a join from the main table to the subquery joining on
the customer id. Without this, you could be selecting any minimum date entered from any
customer.

SELECT MIN(DateEntered)
 FROM TransactionDetails.Transactions t2
 WHERE t2.CustomerId = t1.CustomerId
 AND t2.DateEntered> t1.DateEntered) as 'To Date',

3. Finally, you can put the same query into the call to the interest calculation function. the final
part is where you are just looking for the transactions for customer id 1. the following is the
entire query. the outer query invokes the function. One of the arguments to the function is
the result of the subquery that computes each transaction’s “to date.”

Chapter 17 ■ advanCed t-SQL and debugging

531

SELECT t1.TransactionId, t1.DateEntered,t1.Amount,
TransactionDetails.fn_IntCalc(3,t1.Amount,t1.DateEntered,
(SELECT MIN(DateEntered)
FROM TransactionDetails.Transactions t2
WHERE t2.CustomerId = t1.CustomerId
AND t2.DateEntered> t1.DateEntered)) AS 'Interest Earned'
FROM TransactionDetails.Transactions t1
WHERE CustomerId = 1

4. Once you have the code together, you can then execute the query, which should produce
output as shown in Figure 17-4.

The APPLY Operator
It is possible to return a table as the data type from a function. The table data type can hold multiple columns and
multiple rows of data as you would expect, and this is one of the main ways it differs from other data types, such as
varchar, int, and so on. Returning a table of data from a function gives the code invoking the function the flexibility
to work with returned data as if the table permanently existed or was built as a temporary table.

To supply extensibility to this type of function, SQL Server provides you with an operator called APPLY, which
works with a table-valued function and joins data from the calling table(s) to the data returned from the function.
The function will sit on the right-hand side of the query expression, and, through the use of APPLY, can return data as
if you had a RIGHT OUTER JOIN or a LEFT OUTER JOIN on a “permanent” table. Before you see an example, you need to
be aware that there are two types of APPLY: a CROSS APPLY and an OUTER APPLY.

•	 CROSS APPLY: Returns only the rows that are contained within the outer table where the row
produces a result set from the table-valued function

•	 OUTER APPLY: Returns the rows from the outer table and the table-valued function regardless
of whether a join exists; this is similar to an OUTER JOIN, which you saw in Chapter 11. If no
row exists in the table-valued function, then you will see a NULL in the columns from that
function.

Figure 17-4. Using a subquery to call a function

Chapter 17 ■ advanCed t-SQL and debugging

532

CROSS APPLY
In your example, you will build a table-valued function that accepts a CustomerId as an input parameter and returns a
table of TransactionDetails.Transactions rows.

trY It OUt: taBLe FUNCtION aND CrOSS appLY

1. Similar to what you did in Chapter 14, you will create a function with input and output
parameters, followed by a query detailing the data to return. the difference in this example is
that a table of data will be returned rather than a single value. therefore, you need to name
the table using a local variable followed by the TABLE clause. You then need to define the
table layout for every column and data type. enter the following code, and then execute it to
create the function.

CREATE FUNCTION TransactionDetails.ReturnTransactions
(@CustId bigint) RETURNS @Trans TABLE
(TransactionId bigint,
CustomerId bigint,
TransactionDescription nvarchar(30),
DateEntered datetime,
Amount money)
AS
BEGIN
 INSERT INTO @Trans
 SELECT t.TransactionId, t.CustomerId, tt.Description,
 t.DateEntered, t.Amount
 FROM TransactionDetails.Transactions t
 JOIN TransactionDetails.TransactionTypes tt ON
 tt.TransactionTypeId = t.TransactionType
 WHERE CustomerId = @CustId
 RETURN
END
GO

2. now that you have the table-valued function built, you can call it and use CROSS APPLY to
return only the CustomerDetails.Customers rows where there is a customer number within
the table from the table-valued function. to clarify what is happening, for every row found in
the SELECT command that is retrieving customers from the CustomerDetails.Customers
table, the CustomerId is passed to the function created in the first step, the function returns
a table of data that has a name alias of Trans, and the table of data is then joined using
the CROSS APPLY clause to the CustomerDetails.Customers table to give the results. the
following code demonstrates this:

SELECT c. FirstName, LastName,
Trans.TransactionId,TransactionDescription,
DateEntered,Amount
FROM CustomerDetails.Customers AS c
 CROSS APPLY
 TransactionDetails.ReturnTransactions(c.CustomerId)
 AS Trans

Chapter 17 ■ advanCed t-SQL and debugging

533

3. the results from the preceding code are shown in Figure 17-5, where you can see that
only rows from the CustomerDetails.Customers table are displayed where there is a
corresponding row in the TransactionDetails.Transactions table.

OUTER APPLY
As mentioned previously, OUTER APPLY is very much like a RIGHT OUTER JOIN on a table, but you need to use OUTER
APPLY when working with a table-valued function.

For your example, you can still use the function you built for the CROSS APPLY. With the code that follows, you are
expecting those customers that have no rows returned from the table-valued function to be listed with NULL values.

trY It OUt: taBLe FUNCtION aND OUter appLY

1. enter the following code, which will perform an OUTER APPLY on the user-defined function
created in the previous example.

SELECT c. FirstName, LastName,
Trans.TransactionId,TransactionDescription,
DateEntered,Amount
FROM CustomerDetails.Customers AS c
 OUTER APPLY
 TransactionDetails.ReturnTransactions(c.CustomerId)
 AS Trans

Figure 17-5. Partial results of the CROSS APPLY from a table-valued function

Chapter 17 ■ advanCed t-SQL and debugging

534

2. When this is executed, you will see the output shown in Figure 17-6. Only part of the output
is shown.

Common Table Expressions
A common table expression (CTE) is a bit like a temporary table. It’s transient, lasting only as long as the query
requires it. Temporary tables are available for use during the lifetime of the session of the query running the code
or until they are explicitly dropped. The creation and use of temporary tables are a two- or three-part process:
table creation, population, and use. A CTE is built in the same code line as the SELECT, INSERT, UPDATE, or DELETE
statements that use it.

Using Common Table Expressions
As mentioned a CTE lasts only as long as the query that uses it. If you need a set of data to exist for this amount of time
only, then a CTE can be better in performance terms than a temporary table. Earlier in the book, you had a look at
temporary tables by defining a table in code and prefixing the name with a hash mark (#). The best way to understand
a CTE is to demonstrate an example with some code.

The first example code will build a temporary table and then use this within a query. The second example will
demonstrate how to complete the same task but by using a CTE and will show how simple the code can be. First of all,
it is necessary to download the Microsoft sample database AdventureWorks and install it on your system. The code
and installation instructions can be found on the CodePlex site, www.codeplex.com. I am using this database as it has
a good set of mixed and related data. This is also possible to achieve within the Red Gate SQL Data Generator software
but takes time, and as a developer, unless there is good reason to reinvent the wheel, don’t.

Within the AdventureWorks sample database, there are a number of products held in the Production.Product
table. For this example, let’s say you want to know the maximum list price of stock you’re holding over all the product
categories. Using a temporary table, this would be a two-part process, as follows:

USE AdventureWorks2014
GO
SELECT p.ProductSubcategoryID, s.Name,SUM(ListPrice) AS ListPrice
 INTO #Temp1
 FROM Production.Product p

Figure 17-6. OUTER APPLY from a table-valued function

http://www.codeplex.com/

Chapter 17 ■ advanCed t-SQL and debugging

535

 JOIN Production.ProductSubcategory s ON s.ProductSubcategoryID =
 p.ProductSubcategoryID
 WHERE p.ProductSubcategoryID IS NOT NULL
 GROUP BY p.ProductSubcategoryID, s.Name

SELECT ProductSubcategoryID,Name,MAX(ListPrice)
 FROM #Temp1
 GROUP BY ProductSubcategoryID, Name
HAVING MAX(ListPrice) = (SELECT MAX(ListPrice) FROM #Temp1)

DROP TABLE #Temp1

However, with CTEs, this becomes a bit simpler and more efficient. In the preceding code snippet, I have created
a temporary table. This table has no index on it, and therefore SQL Server will complete a table scan operation on it
when executing the second part. In contrast, the upcoming code snippet uses the raw AdventureWorks tables. There is
no creation of a temporary table, which would have used up processing time, and also existing indexes could be used
in building up the query, rather than a table scan.

The CTE is built up using the WITH keyword, which defines the name of the CTE you’ll be returning—in this case,
ProdList—and the columns contained within it. The columns returned within the CTE will take the data types placed
into it from the SELECT statement within the parentheses. Of course, the number of columns within the CTE has to
be the same as the table defined within the brackets. This table is built up, returned, and passed immediately into
the following SELECT statement outside of the WITH block, where the rows of data can then be processed as required.
Therefore, the rows returned between the brackets could be seen as a temporary table that is used by the statement
outside of the brackets.

WITH ProdList (ProductSubcategoryID,Name,ListPrice) AS
(
SELECT p.ProductSubcategoryID, s.Name,SUM(ListPrice) AS ListPrice
 FROM Production.Product p
 JOIN Production.ProductSubcategory s ON s.ProductSubcategoryID =
 p.ProductSubcategoryID
 WHERE p.ProductSubcategoryID IS NOT NULL
 GROUP BY p.ProductSubcategoryID, s.Name
)
SELECT ProductSubcategoryID,Name,MAX(ListPrice)
 FROM ProdList
 GROUP BY ProductSubcategoryID, Name
 HAVING MAX(ListPrice) = (SELECT MAX(ListPrice) FROM ProdList)

When the code is executed, the results should resemble the output shown in Figure 17-7.

Figure 17-7. CTE output

Chapter 17 ■ advanCed t-SQL and debugging

536

Recursive CTE
A recursive CTE is where an initial CTE is built and then the results from that are called recursively in a UNION
statement, returning subsets of data until all the data are returned. This gives you the ability to create data in a
hierarchical fashion, as you will see in the next example. An example of a recursive CTE would be where you have a
row of data that is linked to another row of data, such as a table that holds employee details (which is the example you
will build shortly). You would have the owner at the top, followed by the CEO, the board of directors, the people who
report to the board, and all the way down to the graduate intern. A recursive CTE would look at the results at each
level of the organization.

The basis of building a recursive CTE is to build your initial query just as you saw earlier, but then append to that
a UNION ALL statement with a join on the cte_name. This works so that in the “normal” CTE, data are created and built
with the cte_name, which can then be referenced within the CTE from the UNION ALL. The syntax that you can see here
demonstrates how this looks in its simplest form:

WITH cte_name (column_name [,...n])
AS
(
CTE_query_definition
UNION ALL
CTE_query_definition with a join on cte_name
)

As with all UNION statements, the number of columns must be the same in all queries that make up the recursive
CTE. The data types must also match up.

Caution ■ Care must be taken when creating a recursive Cte. it is possible to create a recursive Cte that goes into an
infinite loop. While testing the recursive Cte, you can use the MAXRECURSION option, as you will see in the next example.

The following example demonstrates a recursive query that will list every employee, their job titles, and the
names of their managers. This example has a number of complexities, which are needed to get that reporting
functionality to work because of the design of the AdventureWorks2014 schema. However, in many ways, this
complexity is a positive development, because you should be becoming very competent in understanding the
complexities required to use SQL Server. Where the AdventureWorks2014 database becomes quite complex is in how
it structures the hierarchy of employees and managers within the organization. To get the hierarchy, you need to use
a system function, GetAncestor. The GetAncestor function works alongside the hierarchyid data type to retrieve
the parent node of a hierarchical set of data. You’ll use GetAncestor in the following example to return the parent—in
this case, the manager—of the employee within the organization that you are inspecting. GetAncestor has a positive
number as the input parameter that determines how many nodes to move within the hierarchy. A parameter of 1
would mean that you want to return the parent of the hierarchy identifier you are inspecting; a parameter value of 2
would be the grandparent, and so on.

Each employee in the HumanResources.Employee table has a hierarchyid data type in a column called
OrganizationNode. The example can use the data in OrganizationNode with the GetAncestor function as I have just
described. The GetAncestor function will be passed with the parameter value of 1, indicating that we want the parent
of the employee, and by combining this returned value with a JOIN clause, the example can perform a join to find
that parent row. This then allows you to use this knowledge to build your recursive CTE to build up the organizational
hierarchy.

Chapter 17 ■ advanCed t-SQL and debugging

537

USE AdventureWorks2014
GO
WITH [EMP_cte]([BusinessEntityID], [OrganizationNode], [FirstName],
[LastName], [RecursionLevel]) -- CTE name and columns
AS (
SELECT e.[BusinessEntityID], e.[OrganizationNode], p.[FirstName],
p.[LastName], 0
FROM [HumanResources].[Employee] e
INNER JOIN [Person].[Person] p
ON p.[BusinessEntityID] = e.[BusinessEntityID]
WHERE e.[BusinessEntityID] = 2
UNION ALL
SELECT e.[BusinessEntityID], e.[OrganizationNode], p.[FirstName],
p.[LastName], [RecursionLevel] + 1 -- Join recursive member to anchor
FROM [HumanResources].[Employee] e
INNER JOIN [EMP_cte]
ON e.[OrganizationNode].GetAncestor(1) = [EMP_cte].[OrganizationNode]
INNER JOIN [Person].[Person] p
ON p.[BusinessEntityID] = e.[BusinessEntityID]
)
SELECT [EMP_cte].[RecursionLevel], [EMP_cte].[OrganizationNode].ToString() as
[OrganizationNode], p.[FirstName] AS 'ManagerFirstName', p.[LastName] AS
'ManagerLastName',
[EMP_cte].[BusinessEntityID], [EMP_cte].[FirstName], [EMP_cte].[LastName]
-- Outer select from the CTE
FROM [EMP_cte]
INNER JOIN [HumanResources].[Employee] e
ON [EMP_cte].[OrganizationNode].GetAncestor(1) = e.[OrganizationNode]
INNER JOIN [Person].[Person] p
ON p.[BusinessEntityID] = e.[BusinessEntityID]
ORDER BY [EMP_cte].[BusinessEntityID],[RecursionLevel],
[EMP_cte].[OrganizationNode].ToString()
OPTION (MAXRECURSION 25)

First, it is necessary to define the layout of the columns to return from the CTE, and you will find that layout
defined in the WITH expression. Moving to the first SELECT, this provides you with the top level of the CTE, which in
this case is the manager. You can check this by just running the SELECT on its own and looking at the single row.

You then need to use this data to move to the next level of the hierarchy. By completing an inner join on the CTE,
you take the data populated from the first SELECT that has the manager ID to get the next level of employees. The data
returned will then be populated in the CTE so that the recursive CTE can then use the level-two employees to find the
level-three employees. This process continues either until the whole structure is completed or until the maximum
recursion is reached. Now all the data are within the CTE, and the data in the CTE can be used just like any other
table to join against, which is what the SELECT after the recursive CTE does. A join is made to the necessary tables to
return the data until all the data are returned or until the number of recursions defined is exceeded. In the following
example, the number of recursions is defined as 25. CTEs are used not only as stand-alone expressions but also within
other functions, such as those used to pivot data. You’ll see pivot functions in action next. You can see a sample of the
output in Figure 17-8.

Chapter 17 ■ advanCed t-SQL and debugging

538

Pivoting Data
If you have ever used Excel, then you have probably had to pivot data results so that rows of information are pivoted
into columns of information. It is now possible to perform this kind of operation within SQL Server via a PIVOT
operator. Pivoted data can also be changed back using the UNPIVOT operator, where columns of data can be changed
into rows of data. In this section, you will see both of these in action. You will be using the AdventureWorks example
in this section. The table involved in this example is the SalesOrderDetail table belonging to the Sales schema.
This holds details of products ordered, the quantity requested, the price they are at, and the discount on the order
received.T–SQL code.

PIVOT
Before you see PIVOT in action, you need to look at the information that you will pivot. The following code lists three
products, and for each product, you will sum up the amount sold, taking the discount into account:

SELECT ProductID,UnitPriceDiscount,SUM(LineTotal)
 FROM Sales.SalesOrderDetail
 WHERE ProductID IN (776,711,747)
 GROUP BY ProductID,UnitPriceDiscount
 ORDER BY ProductID,UnitPriceDiscount

This produces one line of output for each product/discount combination, as you can see in the following results:

711 0.00 143788.908000
711 0.02 11421.237324
711 0.05 4384.931245
711 0.10 2679.760530
711 0.15 3131.779950
747 0.00 501788.197700
776 0.00 1198796.448000
776 0.02 23020.131792
776 0.35 32906.152500

Figure 17-8. Recursive CTE output demonstrating hierarchical employees

Chapter 17 ■ advanCed t-SQL and debugging

539

By using PIVOT, you can alter this data so that you can create columns for each of the products. Each row is
defined for the discount, giving a cross-reference of products to discount.

SELECT pt.Discount,ISNULL([711],0.00) As Product711,
 ISNULL([747],0.00) As Product747,ISNULL([776],0.00) As Product776
FROM
(SELECT sod.LineTotal, sod.ProductID, sod.UnitPriceDiscount as Discount
 FROM Sales.SalesOrderDetail sod) so
PIVOT
(
SUM(so.LineTotal)
FOR so.ProductID IN ([776], [711], [747])
) AS pt
ORDER BY pt.Discount

Before you execute this code, let’s take a look at what is happening. First of all, you need to create a subquery
that contains the columns of data that the PIVOT operator can use for its aggregation (it will also be used later for
displaying in the output). No filtering has been completed at this point—any columns not used in the aggregation
will be ignored. The code generates a table-valued expression with an alias of so. From this table, you then instruct
SQL Server to PIVOT the columns while completing an aggregation on a specific column—in your case, a SUM of the
LineTotal column from the table-valued expression. It is also at this point you define the columns to create via the
FOR clause—in your case, a column for each product of the three products. This is the equivalent to using GROUP BY for
the aggregation, and it’s also the equivalent of filtering data from the so table-valued expression. However, within the
so table-valued expression, there’s also a third column, UnitPriceDiscount. Without this, the output from the PIVOT
would produce one row with three columns—one for each product. So this table-valued expression with the PIVOT
operation produces a temporary result set, which you name pt. You can then use this temporary result set to produce
your output.

When you run the code, you should see output similar to what is shown in Figure 17-9.

UNPIVOT
The reverse of PIVOT is, of course, UNPIVOT, which will unpivot data by placing column data into rows. You can prove
this by unpivoting the data just pivoted using the preceding query. The code that follows will rebuild the pivot and
place the data into a temporary table. From that temporary table, you can unpivot the data.

Figure 17-9. Pivot data results

Chapter 17 ■ advanCed t-SQL and debugging

540

Note ■ although PIVOT aggregates multiple rows into a single row in the output, UNPIVOT does not reproduce the
original table-valued expression result because the rows have been aggregated. besides, NULL values in the input of
UNPIVOT disappear in the output, whereas there may have been original NULL values in the input before the PIVOT
operation and the original structure has been lost.

SELECT pt.Discount,ISNULL([711],0.00) As Product711,
 ISNULL([747],0.00) As Product747,ISNULL([776],0.00) As Product776
INTO #Temp1
FROM
(SELECT sod.LineTotal, sod.ProductID, sod.UnitPriceDiscount as Discount
 FROM Sales.SalesOrderDetail sod) so
PIVOT
(
SUM(so.LineTotal)
FOR so.ProductID IN ([776], [711], [747])
) AS pt
ORDER BY pt.Discount

UNPIVOT has similarities to PIVOT in that you build a table-valued expression—in this case, calling it up1—which
you then use as the basis of unpivoting. Once the table-valued expression is defined, you use UNPIVOT with the column
definitions of the columns to create, DiscountAppl and ProductID. Using IN defines the rows that will be produced
back from the UNPIVOT.

SELECT ProductID,Discount, DiscountAppl
 FROM (SELECT Discount, Product711, Product747, Product776
 FROM #Temp1) up1
UNPIVOT (DiscountAppl FOR ProductID
 IN (Product711, Product747, Product776)) As upv2
WHERE DiscountAppl <> 0
ORDER BY ProductID

When the preceding code (both sections) is executed, the data are unpivoted, as shown in Figure 17-10.

Now that you have pivoted data, you can take a look at how you can rank output.

Figure 17-10. Unpivoted data results

Chapter 17 ■ advanCed t-SQL and debugging

541

Table Variables
It is possible to define a variable as a table, and such a variable known as a table variable. Table variables have a local
scope and therefore can only be used in a similar fashion to a locally defined temporary table. The main benefit of a
table variable over a temporary table is in the lack of a need for recompiling. A temporary table can cause your stored
procedure of function to be recompiled at each execution, therefore slowing down the process of execution. A table
variable can still cause compilations, however they should occur less often.

Table variables are designed to be used for small data sets on the order of 10’s of rows. When SQL Server compiles
a function or stored procedure that contains a table variable, SQL Server will assume that the table variable has zero
rows. If you then put thousands of rows in the variable, then the procedure may be marked for re-compilation. You
can help this process along by using the RECOMPILE option on the query that uses the table variable.

Table variables can also be defined as in-memory table variables. Do this by using the WITH (MEMORY_OPTIMIZED
= ON) argument when declaring the table variable type, as well as when defining the indexes and bucket counts
as you would with an in-memory table. In-memory table variables should also have an index defined as part of the
complete table variable definition, whereas standard table variables cannot have an index defined.

You should still look at how large an in-memory table variable will become, as it will take up memory resources
like any other table that is held in memory. Another area to be aware of is that an in-memory table variable will be
compiled when the variable is defined within your code. If you have a stored procedure that uses an in-memory
table variable, and that procedure is executed frequently, then you may find that the recompilation at each variable
declaration outweighs the gains from the table’s being in-memory to begin with.

trY It OUt: taBLe VarIaBLeS

Let’s take a look at table value variables using a derivative of the #Shares temporary table example earlier. Follow
these steps:

1. Create the temporary table variable. Write a DECLARE statement and give the variable a type
of TABLE. You then define the table variable as you would a table. For example:

DECLARE @SharesTmp
TABLE(ShareDesc varchar(50),
Price numeric(18,5),
PriceDate datetime)

2. then use the table variable like any other table. reference it from INSERT, UPDATE, and
DELETE, SELECT statements. in this instance an INSERT will be used to populate the table:

INSERT INTO @SharesTmp
SELECT s.Description,sp.Price,sp.PriceDate
 FROM ShareDetails.Shares s
 JOIN ShareDetails.SharePrices sp ON sp.ShareId = s.ShareId
 WHERE s.ShareId = 1

3. You can then inspect the data using a SELECT. For example:

SELECT ShareDesc, Price, PriceDate
 FROM @SharesTmp

Chapter 17 ■ advanCed t-SQL and debugging

542

4. execute all three code statements and you will see the following output:

ShareDesc Price PriceDate
---------------------------- -------- -----------------------
ACME'S HOMEBAKE COOKIES INC 34.25148 2012-03-28 10:12:42.740
ACME'S HOMEBAKE COOKIES INC 6.62765 2012-03-27 06:47:46.900
ACME'S HOMEBAKE COOKIES INC 6.44350 2012-03-25 21.51:29.910
ACME'S HOMEBAKE COOKIES INC 32.04574 2012-03-12 19:57:07.630
ACME'S HOMEBAKE COOKIES INC 32.00452 2012-03-06 16:59:24.430
ACME'S HOMEBAKE COOKIES INC 30.16576 2012-03-06 01:09:36.260
ACME'S HOMEBAKE COOKIES INC 7.12997 2012-03-05 05:29:29.280

5. if you find that the profile of the data is sufficiently different from a table with zero rows
that a RECOMPILE would benefit the execution, you can add the RECOMPILE query hint to the
SELECT statement as in the following procedure example:

CREATE PROCEDURE ShareDetails.TableVariable
AS
BEGIN
 DECLARE @SharesTmp
 TABLE(ShareDesc varchar(50),
 Price numeric(18,5),
 PriceDate datetime)

 INSERT INTO @SharesTmp
 SELECT s.Description,sp.Price,sp.PriceDate
 FROM ShareDetails.Shares s
 JOIN ShareDetails.SharePrices sp ON sp.ShareId = s.ShareId
 WHERE s.ShareId = 1

 SELECT ShareDesc, Price, PriceDate
 FROM @SharesTmp RECOMPILE
END
GO
EXEC ShareDetails.TableVariable

6. next, convert the example to use in-memory tables. You know the number of rows that
will be in the table variable, 50 rows, from the previous output. this knowledge will aid the
decision on the hash bucket count definition. also, an in-memory table variable requires a
CREATE TYPE statement, and the resulting type defines the in-memory table. execute the
following code to add the type:

CREATE TYPE ShareDetails.SharesTmp
AS TABLE(ShareId int NOT NULL,
ShareDesc varchar(50),
Price numeric(18,5),
PriceDate datetime,

INDEX [IX_ShareId] HASH ([ShareId]) WITH (BUCKET_COUNT = 1)

)
WITH (MEMORY_OPTIMIZED = ON)

Chapter 17 ■ advanCed t-SQL and debugging

543

7. now that the type has been defined, the variable can be defined using the in-memory table
type. Following is an example, but don’t execute the code just yet.

DECLARE @SharesTmp ShareDetails.SharesTmp

8. insert data in to the variable and then list out the rows. You can now execute the variable
declaration and the code below. You should see the same results as from the disk-based
table variable.

INSERT INTO @SharesTmp
SELECT s.ShareId,s.Description,sp.Price,sp.PriceDate
 FROM ShareDetails.Shares s
 JOIN ShareDetails.SharePrices sp ON sp.ShareId = s.ShareId
 WHERE s.ShareId = 1

SELECT ShareId,ShareDesc, Price, PriceDate

 FROM @SharesTmp

Ranking Functions
With SQL Server, it’s possible to rank rows of data in your T-SQL code. Ranking functions give you the ability to
rank each row of data to provide a method of organizing the output in an ascending sequence. You can give each
row a unique number or each group of similar rows the same number. You may be wondering what is wrong with
other methods of ranking data, which might include IDENTITY columns. These types of columns do provide unique
numbers, but gaps can form. You are also tied into each row having its own number, when you may want to group
rows together.

So then, why not use GROUP BY? Well, yes, you can use GROUP BY, but what if the grouping was over more than one
column? In this case, processing the data further would require knowledge about those columns. Ranking functions
make it possible to provide a value that allows data to be ranked in the order required, and then that value can be used
for splitting the data into further groupings.

There are four ranking functions, which I’ll discuss in detail in upcoming sections:

•	 ROW_NUMBER: Allows you to provide sequential integer values to the result rows of a query

•	 RANK: Provides an ascending, nonunique ranking number to a set of rows, giving the same
number to a row of the same value as another; numbers are skipped for the number of rows
that have the same value.

•	 DENSE_RANK: This is similar to RANK, but each row number returned will be one greater than the
previous setting, no matter how many rows are the same.

•	 NTILE: This takes the rows from the query and places them into an equal (or as close to equal
as possible) number of specified numbered groups, where NTILE returns the group number
the row belongs to.

Note ■ these ranking functions can be used only with the SELECT and ORDER BY statements. Sadly, they can’t be used
directly in a WHERE or GROUP BY clause, but you can use them in a Cte or derived table.

Chapter 17 ■ advanCed t-SQL and debugging

544

The following code demonstrates a CTE with the ranking function ROW_NUMBER():

WITH OrderedOrders AS
(SELECT SalesOrderID, OrderDate,
ROW_NUMBER() OVER (order by OrderDate)as RowNumber
FROM Sales.SalesOrderHeader)
SELECT *
FROM OrderedOrders
WHERE RowNumber between 50 and 60

The syntax for ranking functions is shown as follows:

<function_name>() OVER([PARTITION BY <partition_by_list>]
ORDER BY <order_by_list>)

Taking each option as it comes, you can see how this can be placed within a SELECT statement—for example:

•	 function_name: Can be one of ROW_NUMBER, RANK, DENSE_RANK, and NTILE

•	 OVER: Defines the details of how the ranking should order or split the data

•	 PARTITION BY: Details which data the column should use as the basis of the splits

•	 ORDER BY: Details the ordering of the data

ROW_NUMBER
Your first ranking function, ROW_NUMBER, allows your code to guarantee an ascending sequence of numbers to give
each row a unique number. Until now, it has not been possible to guarantee sequencing of numbers, although an
IDENTITY-based column could potentially give a sequence, providing all INSERTs succeeded and no DELETEs took
place.

This function is ideal for giving your output a reference point—for example, “Please take a look at row 10 and
you’ll see. . .” Another use for this function is to break the data into exact chunks for scrolling purposes in GUI systems.
For example, if five rows of data are returned, row 1 could be displayed, and then Next would allow the application to
move to row 2 easily rather than using some other method.

The following is an example that shows how the ROW_NUMBER() function can provide an ascending number for
each row returned when inspecting. The ROW_NUMBER() function is nondeterministic, and since the ORDER BY within
the OVER function doesn’t produce a unique sequence of data (because there might be several people with the same
last name, for example), then you would need to find some other way to achieve uniqueness, if getting the same order
with each execution were mandatory.

Note ■ the following code and all code from this point is from the ApressFinancial database.

USE ApressFinancial
GO
SELECT ROW_NUMBER() OVER (ORDER BY LastName) AS RowNum,
 CONCAT(FirstName,' ',LastName) AS CustomerName,
 UnclearedBalance
 FROM CustomerDetails.Customers
 WHERE UnclearedBalance is not null

Chapter 17 ■ advanCed t-SQL and debugging

545

When you execute the code, you see the names in last name order, as shown in Figure 17-11.

It’s also possible to reset the sequence to give a unique ascending number within a section, or partition of data,
using the PARTITION BY option. This would be ideal if, for example, in the same marathon you had different races,
such as male, female, disabled male, disabled female, over 60, and so on. Using the category the runner is competing
within as the basis of the partition, no matter in which order the runners cross the line, you would still have the correct
order of finishing for each category.

The following example will reset the sequential number at each change of first letter in the last name of the
employees and will order the results in LastName descending order:

SELECT ROW_NUMBER() OVER (PARTITION BY SUBSTRING(LastName,1,1)
 ORDER BY LastName) AS RowNum,
 CONCAT(FirstName,' ',LastName) AS CustomerName,
 UnclearedBalance
 FROM CustomerDetails.Customers
 WHERE UnclearedBalance is not null
 ORDER BY LastName DESC

When you execute the code, as the first letter of the last name alters, you see the RowNum column, which contains
the value for ROW_NUMBER(), alter, as shown in Figure 17-12. However, you will also see a side effect that can happen
when you include an ORDER BY statement within the code, which is the row numbering can become random. This
occurs because the ordering of the results occurs after the data have been returned from the underlying table and the
sequencing has been applied.

Figure 17-11. Rows with row numbering

Chapter 17 ■ advanCed t-SQL and debugging

546

It is possible to see how SQL Server processes your query by inspecting the query plan diagram. If you click the
Include Actual Execution Plan button on your toolbar, this will display the query plan for the foregoing code once it is
executed. After clicking the button, if you execute the previous code, there will be a new tab called Execution Plan. By
selecting this tab, you will see something similar to Figure 17-13. A query plan works right to left; therefore the final
result is the icon that is known as the step on the far left. There are two Sort steps within the plan. The Sort on the right
is used to sort the data ready to be passed to the Segment and Sequence Project steps, and the Sort on the left is used
to order the data.

You can add the RowNum alias to specify the first column to the ORDER BY statement to be descending, as this will
correct the sequencing if this is required.

RANK
If a row of data is returned that contains the same values as another row as defined in the ORDER BY clause of your
statement, the keyword RANK will give these rows the same numerical value. An internal count is kept so that on a
change of value, you will see a jump in the value. For example, say you watch a sport like golf, and in a golf tournament
you’re following Tiger Woods, who wins the tournament on a score of 4 under par, but Lee Westwood, Luke Donald,
and Phil Mickelson are tied for second at 3 under par. Finally, Bubba Watson finishes his round at 2 under par. Tiger
would have the value 1; Lee, Luke, and Phil would have the value 2; and Bubba would have the value 5. This is exactly
what RANK does. This function would also be useful in applications that wanted to return different rankings of data but
show only the data from one rank at any one time on each page.

In the following example, the ROW_NUMBER() function is also used as it was in the previous example, enabling a
cross-check where the RANK function skips to the right number. The SUBSTRING has also been altered from the previous
example to look at the first two characters to enable a good demonstration of RANK. When you run the query, you’ll
find that there is one row with a LastName that starts Ab. RANK will assign this row the number 1. When the LastName
changes to Ac, the RANK will change to the value 2. After these two rows, you will see the RANK change to 4.

Figure 17-13. Query plan demonstrating ROW_NUMBER and ORDER BY DESC out of sequence

Figure 17-12. Rows with row numbering resetting on change of last name, first letter

Chapter 17 ■ advanCed t-SQL and debugging

547

SELECT ROW_NUMBER() OVER (PARTITION BY SUBSTRING(LastName,1,2)
 ORDER BY LastName) AS RowNum,
 RANK() OVER(ORDER BY SUBSTRING(LastName,1,2)) AS Ranking,
 CONCAT(FirstName,' ',LastName) AS CustomerName,
 UnclearedBalance
 FROM CustomerDetails.Customers
 WHERE UnclearedBalance is not null
 ORDER BY Ranking

Partial results are shown in Figure 17-14, where you can see in the Ranking column that the values remain static
when the values are the same, and then skip to the correct number on a change of value.

DENSE_RANK
DENSE_RANK gives each group the next number in the sequence and does not jump forward if there is more than one
item in a group. In the golf example from the previous section, for example, Bubba Watson would have a value of 3
instead of a value of 5 because his score is the third highest. The following code demonstrates DENSE_RANK:

SELECT ROW_NUMBER() OVER (PARTITION BY SUBSTRING(LastName,1,2)
 ORDER BY LastName) AS RowNum,
 DENSE_RANK() OVER(ORDER BY SUBSTRING(LastName,1,2)) AS Ranking,
 CONCAT(FirstName,' ',LastName) AS CustomerName,
 UnclearedBalance
 FROM CustomerDetails.Customers
 WHERE UnclearedBalance is not null
 ORDER BY Ranking

Figure 17-14. Ranking and row numbering

Chapter 17 ■ advanCed t-SQL and debugging

548

The results can be seen in Figure 17-15. Notice that this time, on change of the first two characters of the column
LastName, the Ranking becomes 3 when Ac becomes Ad, instead of moving to 4.

NTILE
Batching output into manageable groups has always been tricky. For example, if you have a batch of work that needs
cross-checking among a number of people, then GROUP BY has to be used, though this wouldn’t give an even split.
NTILE is used to give the split a more even, although approximated, grouping. The value in parentheses after NTILE
defines the number of groups to produce, so NTILE(25) would produce 25 groups of as close a split as possible of even
numbers

SELECT NTILE(10) OVER (ORDER BY LastName) AS BatchNumber,
 CONCAT(FirstName,' ',LastName) AS CustomerName,
 UnclearedBalance
 FROM CustomerDetails.Customers
 WHERE UnclearedBalance is not null
 ORDER BY BatchNumber

This produces 10 groups of 99 rows each. In Figure 17-16, you will see where the first batch ends and the second
batch commences.

Figure 17-15. Dense ranking and row numbering

Chapter 17 ■ advanCed t-SQL and debugging

549

Cursors
SQL Server works best with sets of data. So far in the book, this is what you have seen demonstrated. However, there
will be occasions when you need to work with a set of data a row at a time, and this is when you will need to work with
cursors. A cursor builds a set of data based on a SELECT statement, which can then be read a row at a time.

Cursors are quite powerful and avoid passing a large set of data across a network, to then be processed with a
development language such as .NET a row at a time, and then the resulting information passed back to SQL Server.
Cursors can also update the underlying table data a row at a time if this is required. They can also be navigated to
relative and specific positions within the set of data within the cursor. This can lead a SQL Server developer to think
that they are the answer to all problems, but there are downsides. Cursors can and almost always are slower than
using sets of data, and although they should not be avoided, they should not be approached lightly.

Let’s take a look at the syntax.
There are a number of options when declaring a cursor, and in this section you will see what each option will do.

The cursor declaration is as follows:

DECLARE cursor_name CURSOR [LOCAL | GLOBAL]
 [FORWARD_ONLY | SCROLL]
 [STATIC | KEYSET | DYNAMIC | FAST_FORWARD]
 [READ_ONLY | SCROLL_LOCKS | OPTIMISTIC]
 [TYPE_WARNING]
 FOR select_statement
 [FOR UPDATE [OF column_name [,...n]]]

The options are as follows:

•	 cursor_name: The name of the cursor that will then be referenced with the other cursor
statements

•	 LOCAL|GLOBAL: Similar to temporary tables, there are two scopes for cursors, the local
connection or the global connection. Local is the default.

•	 FORWARD ONLY|SCROLL: Forward indicates only that you are scrolling a row at a time from the
start of the cursor to the end. This is the default. The SCROLL option indicates that you can
move forward, backward, first, last, and to a specific position.

Figure 17-16. Batching output into groups of data

Chapter 17 ■ advanCed t-SQL and debugging

550

•	 STATIC|KEYSET|DYNAMIC|FAST FORWARD: If any of these options are defined, then the default
on the foregoing option is SCROLL.

•	 STATIC: A temporary copy of the data is placed into tempdb. Therefore within your cursor
or in an external process any updates to the base tables will be outside of the cursor. This
is ideal if you are running a cursor when modifications to the underlying tables could
occur and you don’t want to process the updates. STATIC is the default.

•	 KEYSET: All tables defined within a cursor that has the KEYSET option must have a unique
key. The unique key values are copied to tempdb. Data altered in nonkey value columns
are visible provided the changes are within the cursor. Changes made outside the cursor
are not visible. Changes to key values can result in a -2 @@FETCH_STATUS, row not found.

•	 DYNAMIC: While you are scrolling through a cursor fetching rows, the data within the
cursor are not static and any updates to the underlying tables would be reflected within
the cursor. You have to be aware that more rows could be added while you are scrolling
through, and you may also retrieve a row that you retrieved earlier if the values have been
altered so that they would be refound. For example, if you ordered the cursor to be in an
order of last updated and you updated the column with GETDATE(), you would retrieve the
row again as it would be placed at the end of the cursor.

•	 FAST FORWARD: A performance-enhanced, forward-only, read-only cursor

•	 READ ONLY|SCROLL LOCKS|OPTIMISTIC

•	 READ ONLY: The cursor is read-only and cannot be updated.

•	 SCROLL LOCKS: For update cursors, a lock is placed on the rows within the cursor to
ensure that updates succeed. This will block any other process that wants access to the
underlying data until the cursor lock is released with the DEALLOCATE command. This
can mean just the row being locked, but it can also mean that the whole table or multiple
tables are locked.

•	 OPTIMISTIC: If you believe that any rows that you update within the cursor will succeed,
you can select optimistic locking. What this means is that when the cursor is opened,
rows are not locked at this point, but when updated, the row is checked against the base
table. If the row has not been updated since the cursor was opened, then the update will
succeed. If the row has been updated, then the update will fail.

•	 TYPE WARNING: A warning message will be sent when a cursor is implicitly converted from one
type to another. Sometimes SQL Server will convert a cursor to another type of cursor. This
isn’t an error but a warning. An example would be where you define a cursor as KEYSET but
one of the tables does not have a unique index, the cursor would change to STATIC.

•	 FOR select_statement: The SELECT statement used to return the rows to build the cursor

•	 FOR UPDATE: If you want your cursor to be able to update the underlying tables, then you
would define the cursor with this option.

•	 OF column_name: If you want only some columns updated, then you would list them with the
OF option. Without this option defined, all columns within the cursor can be modified.

Chapter 17 ■ advanCed t-SQL and debugging

551

Once the cursor is declared, there are a number of steps that should be followed to work with your cursor
effectively. The steps in order are as follows:

 1. OPEN cursor_name: Once a cursor is declared, you do need to open it. If you don’t open
it, an error will occur when you try to read from it. The OPEN populates the cursor, not the
DECLARE.

 2. FETCH NEXT FROM cursor_name [INTO @variables]: Once the cursor is opened, you
then need to fetch each row from the cursor. If you want to work with the data, you would
retrieve from the cursor into local variables. To display the data only rather than work with
the values in variables, you can omit the variables and each row will be output. This is
useful if you are wishing to append information like a SELECT can output column values
for each row rather than working with the values. Note that you must fetch for the first time
before processing a row. The first row will not be automatically read.

 3. @@FETCH_STATUS: The SQL Server status of the cursor. This is used as the test while looping
around each cursor row until you reach the end. A value of 0 means that the row was
returned successfully; a value of -1 indicates you are at the end of the cursor; and a value of
-2 means that the cursor row was missing. You would see this value in an updatable cursor
and if the row expected was no longer there in the cursor.

 4. CLOSE cursor_name: Once you have finished with the cursor, close it to release locks. The
cursor remains and could be reopened and the data refetched if you wished.

 5. DEALLOCATE cursor_name: Releases the data structures and therefore the cursor allocation
and the used resources back to SQL Server

Now that you have the syntax for a cursor and the constituent parts of building code for a cursor, the next exercise
will see these parts brought together to create a forward-only cursor. The code will be broken out in steps and then
once complete will be executed. Finally, at the end, do keep the code handy as it will be used in the next section on
debugging.

trY It OUt: BUILDING aND rUNNING a CUrSOr

the first cursor option that you will see is a read-only, forward-only cursor. this will be modified in the subsequent
examples for other options.

1. the first section of code will define the variables to hold the data from each of the columns
of the cursor. there is also a local variable required to keep a running total of the amount
collected. the variable used for this is @TotalCollected and is initialized to 0.

DECLARE @FirstName varchar(50), @LastName varchar(50),
 @ProductName nvarchar(50), @Amount money,
 @LastCollect datetime

DECLARE @TotalCollected money = 0

2. the next step is to declare the cursor name and the SELECT statement to return the rows of
data for the cursor. the aim of the cursor is to return rows where there is a monthly amount
to collect from a customer, and the last amount collected was in March. hard-coded dates
are being used for simplicity, as a GETDATE() will differ depending on when you are reading
this exercise.

Chapter 17 ■ advanCed t-SQL and debugging

552

DECLARE FinProductsColl CURSOR
 FOR SELECT c.FirstName, c.LastName, f.ProductName,
 cp.AmountToCollect, cp.LastCollected
 FROM CustomerDetails.Customers c
 JOIN CustomerDetails.CustomerProducts cp
 ON cp.CustomerId = c.CustomerId
 JOIN CustomerDetails.FinancialProducts f
 ON f.ProductId = cp.FinancialProductId
 WHERE cp.Frequency = 2
 AND cp.LastCollected BETWEEN '1 Mar 2012' AND '31 Mar 2012'

3. Once the cursor is declared, it can be opened, ready for processing.

OPEN FinProductsColl

4. the first action against the cursor is to retrieve the first row and place the data from the
columns into local variables.

FETCH NEXT FROM FinProductsColl
INTO @FirstName, @LastName, @ProductName, @Amount, @LastCollect

5. You should then check the status of the FETCH to ensure that a row has been returned. While
a row is returned, loop around, and the loop is defined with the WHILE and BEGIN statements.

WHILE @@FETCH_STATUS = 0
BEGIN

6. now that you are confident you have a row, you can work with the data in the local variables
from the row of data from the cursor. in this instance, the cursor is totaling the amount collected.

SELECT @TotalCollected = @TotalCollected + @Amount

7. the local variable values are listed for display. a conversion from the money data type is
required so that it can be concatenated with the other information.

SELECT @FirstName, @LastName, @ProductName, @Amount,
 'Running total is ' + CONVERT(varchar(20),@TotalCollected)

8. at the end of the loop, the next row from the cursor set is retrieved and the values placed into
the local variables. the loop is closed with the END statement.

 FETCH NEXT FROM FinProductsColl
 INTO @FirstName, @LastName, @ProductName, @Amount, @LastCollect
END

9. Once the loop completes, when @@FETCH_STATUS is not zero, then you have finished
processing the cursor, you can list out how much has been collected. the cursor is then
closed and deallocated. this is the end of the code.

SELECT 'Total collected is ' + CONVERT(varchar(20),@TotalCollected)
CLOSE FinProductsColl
DEALLOCATE FinProductsColl

Chapter 17 ■ advanCed t-SQL and debugging

553

10. You can now execute the code, and the results that can be found at the end showing the total
collected are shown in Figure 17-17.

You can extend cursors to updatable cursors and other functionality, but you will mainly work
with forward-only, read-only cursors. Just to clarify, some developers are quite scathing
of cursors. Where possible, you should work with sets of data as this is how SQL Server
performs best, but there will be times when you will have to work on a row at a time. as long
as you are clear that set-based processing is not possible, then you should consider using a
cursor. however, it is worth looking at updatable cursors, which you will see next.

Working with an Updatable Cursor

this exercise will take the customer products that require money to be collected, total the
amount, and then update the underlying CustomerDetails.CustomerProducts table to
indicate that the money has been collected by updating the LastCollected column. the
code is surrounded by a transaction around the cursor and the updates, and the transaction
is rolled back so that the underlying data remain static, so that you can run this test multiple
times in case of a coding error. You can run it with a COMMIT if you want to complete a full
check; however, the code will prove that an update to the underlying data has taken place
and completed. the code is very close to that built in the read-only cursor, and i will break
where there is a change for you to note.

11. Start your code with the BEGIN TRAN and then the variable declarations. there is a new
variable that will hold the date and time the collection was made, which is called
@DateCollection and will hold a static value.

BEGIN TRAN

DECLARE @FirstName varchar(50), @LastName varchar(50),
 @ProductName nvarchar(50), @Amount money,
 @LastCollect datetime

DECLARE @TotalCollected money = 0, @DateCollected datetime = '1 Apr 2012'

Figure 17-17. The end results showing the grand total

Chapter 17 ■ advanCed t-SQL and debugging

554

12. this SELECT statement will use the same joins and filters as the cursor to ensure that
the same data are returned as the cursor. it will show the date and time defined for the
@DateCollected variable and a count of the number of rows. You could also use the
@@CURSOR_ROWS variable after the cursor is open; however, this SELECT is defined to
demonstrate that there are no smoke-and-mirrors in the example.

SELECT @DateCollected, COUNT(*)
 FROM CustomerDetails.Customers c
 JOIN CustomerDetails.CustomerProducts cp
 ON cp.CustomerId = c.CustomerId
 JOIN CustomerDetails.FinancialProducts f
 ON f.ProductId = cp.FinancialProductId
 WHERE cp.Frequency = 2
 AND cp.LastCollected BETWEEN '1 Mar 2012' AND '31 Mar 2012'
 AND cp.LastCollection > '1 Apr 2012'

13. the cursor has two new options at the end. FOR UPDATE shows that the underlying data
can be modified, but the cursor allows only one column, LastCollected, to be modified.
the code then moves on to open and work with the cursor. to reduce output, the SELECT
statement that outputs the variables from the cursor is commented out. i have put this in bold
for ease.

DECLARE FinProductsColl CURSOR
 FOR SELECT c.FirstName, c.LastName, f.ProductName,
 cp.AmountToCollect, cp.LastCollected
 FROM CustomerDetails.Customers c
 JOIN CustomerDetails.CustomerProducts cp
 ON cp.CustomerId = c.CustomerId
 JOIN CustomerDetails.FinancialProducts f
 ON f.ProductId = cp.FinancialProductId
 WHERE cp.Frequency = 2
 AND cp.LastCollected BETWEEN '1 Mar 2012' AND '31 Mar 2012'
 AND cp.LastCollection > '1 Apr 2012'
 FOR UPDATE
 OF LastCollected

OPEN FinProductsColl

FETCH NEXT FROM FinProductsColl
INTO @FirstName, @LastName, @ProductName, @Amount, @LastCollect

WHILE @@FETCH_STATUS = 0
BEGIN

 SELECT @TotalCollected = @TotalCollected + @Amount

-- SELECT @FirstName, @LastName, @ProductName, @Amount,
-- 'Running total is ' + CONVERT(varchar(20),@TotalCollected)

Chapter 17 ■ advanCed t-SQL and debugging

555

14. Moving to the next new section of code, you will find the update to one of the underlying
tables. to update within a cursor, you still define the table to modify but instead of finding the
row with a WHERE column = value, the faster method—and one that will update the same
row as you are at within the cursor—is to use CURRENT OF and then the name of the cursor.
the code then continues as the read-only cursor.

 UPDATE CustomerDetails.CustomerProducts
 SET LastCollected = @DateCollected
 WHERE CURRENT OF FinProductsColl

 FETCH NEXT FROM FinProductsColl
 INTO @FirstName, @LastName, @ProductName, @Amount, @LastCollect

END

15. before completing the code, do a quick test to see if the same number of rows now has the
@DateCollected date and time as there was at the start of the example.

SELECT COUNT(*)
 FROM CustomerDetails.Customers c
 JOIN CustomerDetails.CustomerProducts cp
 ON cp.CustomerId = c.CustomerId
 JOIN CustomerDetails.FinancialProducts f
 ON f.ProductId = cp.FinancialProductId
 WHERE cp.Frequency = 2
 AND cp.LastCollected = @DateCollected

16. the transaction is rolled back.

ROLLBACK TRAN

SELECT 'Total collected is ' + CONVERT(varchar(20),@TotalCollected)
CLOSE FinProductsColl
DEALLOCATE FinProductsColl

17. When you execute the foregoing code, you should see something similar to Figure 17-18,
where the number of rows should match in the first two result sets.

Figure 17-18. The test results from the updatable cursor

Chapter 17 ■ advanCed t-SQL and debugging

556

Let’s be clear: cursors are usually not the best way to work with your data, but there are times that you have to
work a row at a time, and although slower than working with sets, it may be the best option for what is required. Never
disregard cursors outright as some developers do.

Debugging Your Code
Now that you are at the point where you have the knowledge to build advanced T-SQL, you will be entering a stage of
development where you will need to debug your code. So why and when do you need to debug code?

Debugging code can occur during development, testing, and even post-release. When you are developing your
code, you may build a stored procedure a section at a time, checking that you have the information you expect at a
specific point in time. It may be that you want to check that variables have the correct information before, during, or
after execution. Or you may want to check that your CASE statements, loops, WHERE statements, etc. are all performing
as expected. This can always be achieved by displaying information via a SELECT or PRINT statement, but these
statements can be left behind in the stored procedure and inadvertently released to production. If you have the ability
to step through your code a line or a block at a time, and when the code is paused to have the ability to inspect values
in a transient way among many other features, this would eliminate code being released in error.

SQL Server has greatly improved the ability to debug your code over the years and is very close to how code is
debugged in Visual Studio. There are a number of options and windows that help you debug your code, which I will go
through before displaying an example of how to debug your code.

There are a number of requirements to make a good debugger. You need to see your code and at what point of
execution you are; be able to pause, or breakpoint, your code; be able to display and alter values of variables; and be
able to step your code so you can execute a line of code at a time. All of these tasks should be simple to perform.

You can debug database code within Visual Studio, but the ability to debug code within SQL Server using
Management Studio can help you to debug code in an easier fashion, because all of the work is being completed on
SQL Server. A number of options are available from several areas of SSMS, giving you, as a developer, a good level
of flexibility. The first area that is available is from the menu in SSMS when a code window is open. You can see the
options in Figure 17-19.

Figure 17-19. The Debug menu within SSMS

Chapter 17 ■ advanCed t-SQL and debugging

557

There are only three windows defined in the menu, but as you debug, then more windows become available,
which I will cover in the next section.

Debugging Windows
Debug windows are ideal for viewing information or performing actions against code being debugged. Each window
provides useful but specific information. The windows that are available (some only once debugging starts) are as
follows:

•	 Call Stack: If you have nested stored procedures or you call functions, then the Call Stack
window will show each object in a hierarchy. It will allow you to see via which route you reach
the point in code that you have breakpointed at. The Call Stack window is not available until
debugging starts, and can be found in tabs at the bottom of SSMS. You will see the tab in
Figure 17-20.

•	 Breakpoints: A breakpoint is an indicator in your code where you want SQL Server to pause
execution. You can have one or more breakpoints within your code, and these are ideal for
pausing your execution to inspect variables, check information, and generally decide how
you want to procede. Figure 17-20 shows the details of one breakpoint that you will set in the
forthcoming example. The columns Labels, Condition, and Hit Count are covered in a few
moments

Command: Allows for commands to be executed; these are explicit commands, such as •	
Debug.AddWatch and Debug.StepInto.

Output: When setting a breakpoint, it is also possible to write out information at that time. You •	
will see this in the forthcoming example, and output from the breakpoint will be placed in the
output window.

Immediate: Like the Command window, you can execute commands immediately, and you •	
can also run stored procedures and other code immediately.

Figure 17-20. The Breakpoints window

Chapter 17 ■ advanCed t-SQL and debugging

558

Autos: This will show the variables like the local window but only variables in the current •	
statement and the previous statement.

Locals: This will automatically display any locally defined variables and their current values.•	

Watch: If you have variables that you want to watch the values of as you process your code, •	
then you would add these to the Watch window so that they are available. You can also alter
the value of a variable within a Watch window if required to aid testing. You will see this in the
example.

Now that the windows have been covered, you can take a look at the options available to you to debug your code.

Debugging Options
The ability to be in control of code execution is a cornerstone of debugging code. In this section, you will see the
options available when debugging. A few of these options are available before you commence, as shown in
Figure 17-19, but others will become enabled once debugging starts. The options are as follows:

•	 Show Next Statement: Highlight the next statement to execute; this is ideal when looping.

•	 Step Into: If you have a statement that calls another stored procedure or function, this option
will step into the stored procedure where you can step through each line.

•	 Step Over: As an opposite to the Step Into option, the Step Over option will not step into the
stored procedure and will execute the stored procedure or function, but you will not step
through the code.

•	 Step Out: If you are in a lower-level stored procedure or function, by selecting this option, the
remaining code for the stored procedure or function will run and you will then break at the
line of code that called the stored procedure, ready to proceed to the next line.

•	 Toggle Breakpoint: Switch between a breakpoint being set, or removed on the line of code
you are paused at; you can set a breakpoint by clicking in the left-hand margin of the code
window.

•	 New Breakpoint: Define a function to breakpoint at; if you call the same function several times,
a breakpoint will occur at this point at each call.

•	 Delete All Breakpoints: Remove all the breakpoints in your code

•	 Clear All DataTips: A datatip is where you highlight a variable within code and pin it within
the code. This will then add a watch to the variable, but instead of being in a Watch window, it
will be inline within the code. Clear All DataTips will remove from your code any tips that you
have. A datatip is shown in Figure 17-21.

•	 Export DataTips: Once at least one datatip has been set, it can be exported so that any other
developers can take those tips and import them for their own debugging. Also you can export
the tips and store them in a source control system for debugging in the future.

•	 Import DataTips: Any exported datatips can be imported and used for debugging.

So you are now well on the way to starting to debug your code.

Figure 17-21. A datatip in code showing a value

Chapter 17 ■ advanCed t-SQL and debugging

559

Debugging Pop-Up Window
Once debugging starts, within the Query Editor window, a pop-up dialog becomes available. If you right-click in the
query window, a pop-up, as shown in Figure 17-22, will be displayed. This gives you a number of further options for
debugging based on the line of code the cursor is on. So although you may be breakpointed at one line of code, you
can move the cursor to a different line of code and right-click, and you will be acting on that line of code instead of the
breakpoint.

The options are as follows:

•	 Delete Breakpoint: Remove the breakpoint so that the code will continue when that line of
code is reached

•	 Disable Breakpoint: Keep the breakpoint for future debugging but disable the breakpoint

•	 Location...: Define a breakpoint by file, line, and character

•	 Condition...: Break when a condition is met or has altered; this is useful for when you want to
track a variable, but you are not sure where it is changed.

•	 Hit Count...: Break your code when the line highlighted is “hit” the number of times defined
when you click Hit Count; this can be useful for testing how a loop behaves in the middle of its
iterations.

•	 Filter...: It is possible to breakpoint on a different process and thread. This is good for when
you are calling code outside of your process.

•	 When Hit...: When the breakpoint is hit, output some information to the output window; you
will see this demonstrated in the following example.

•	 Edit Labels...: It is possible to label your breakpoint. By default, breakpoints have no label, but
by having the ability to label, you can have multiple breakpoints grouped and therefore make
tracking of the breaks easier to follow. This is a bit like labeling nested transactions.

•	 Export...: Breakpoints can be exported and stored with your stored procedures or code so that
they can exist for future debugging or as some sort of test evidence. Breakpoints are exported
as an XML file.

Figure 17-22. Debug options within Query Editor

Chapter 17 ■ advanCed t-SQL and debugging

560

Now that the options available for debugging your code have been covered, it is time to see debugging in action
and put some of this information into an example. This exercise will show only a small amount of what is possible
with debugging, as it would require a whole chapter to show everything in detail. You will see the fundamentals and
enough for many situations.

trY It OUt: DeBUGGING CODe

if you have closed the query window containing the forward-only, read-only cursor, then re-open the window as it
is going to be used in the upcoming steps to demonstrate debugging.

1. Scroll to the OPEN cursor command and ensure the cursor is on that line of code. Click in the
left-hand margin, and you should see a red dot, as shown in Figure 17-23. You should do the
same at the line of code that updates the @TotalCollected variable.

2. Click debug from the toolbar at the top of Management Studio. it is to the right of the execute
button, as shown in Figure 17-24. You can also press alt+F5.

3. the Query editor window should now change and look like Figure 17-25. a yellow line will be
on the first line of code that is to be executed, and a yellow cursor appears in the left-hand
margin. You will also see the windows described earlier appear at the foot of the screen.

Figure 17-23. The two breakpoints within the code

Figure 17-24. The Debug toolbar option before debugging starts

Chapter 17 ■ advanCed t-SQL and debugging

561

4. the first DECLARE is not highlighted, as that is just defining variables and has no code that
can be debugged. however, with the @TotalCollected variable, it is assigned a value and so
SQL Server will breakpoint here.

5. if you move to the Locals screen, as shown in Figure 17-26, you will see the variables
defined and each current value. Special attention is on @TotalCollected, as you will see in
the next step.

Figure 17-25. Debugging commenced with current line highlighted

Chapter 17 ■ advanCed t-SQL and debugging

562

6. Within the Locals window, you can alter the value a variable has; the Value column is a
toggle column between read and edit. Clicking the value twice will first highlight the value,
and then toggle you into edit mode. Once you have entered edit mode, alter the value to be
100, as shown in Figure 17-27. (be aware that the line you are paused at will set the value to
zero once you resume execution).

Figure 17-26. The Locals window showing the variables and their values

Figure 17-27. The Locals window with a value defined

Chapter 17 ■ advanCed t-SQL and debugging

563

Figure 17-28. Hitting the first breakpoint

7. now that you have the debugger started, and for your testing a value has been defined for
a local variable, it is time to run to the first breakpoint, as shown in Figure 17-28. there
are three ways to get to this point: either step a line at a time via F10, or press alt+F5, or
click the green arrow on the toolbar. thelatter two options will run every line up to the first
breakpoint, or to the end of execution if no breakpoint has been defined.

Chapter 17 ■ advanCed t-SQL and debugging

564

8. perform the same action (green button, aLt+F5, or F10) to reach the second breakpoint, as
shown in Figure 17-29.

Figure 17-29. The second breakpoint where a row from the cursor is being processed

9. notice in Figures 18-28 and 18-29 that the Locals window has values for the local variables
taken from the cursor row and that the @TotalCollected variable has increased by the
@Amount variable.

10. before moving on, rather than breakpointing each time you loop around the cursor to check
the value in the variable, you can output information to the Output window when this line of
code is hit. Move to the left-hand margin and right-click. this will display the pop-up window
as shown in Figure 17-30 and discussed earlier. Select the When Hit... option.

Chapter 17 ■ advanCed t-SQL and debugging

565

Note ■ the link of When hit... does not need to be a breakpoint line.

11. From the window that is displayed, you can enter relevant text. Within the window, you will
see some predefined variable options that you can put in the text, as shown in Figure 17-31.
enter the following text into the “print a message” text box. the “Continue execution” check
box will automatically select.

Function: $FUNCTION, Breakpoint hit - TotalCollected is {@TotalCollected}

Figure 17-30. Debug pop-up window

Figure 17-31. When Breakpoint Is Hit window with the required text to output

Chapter 17 ■ advanCed t-SQL and debugging

566

12. this will remove the breakpoint so that the code will not break each time it is hit.

13. press alt+F5 or click the green arrow. this will instruct the debugger to continue processing,
and as there are no more breakpoints, execution will complete.

14. if you look at the output window, you will see the information from the When hit... Only part
of the output is displayed here.

Function: 9781ch1415_ForwardReadonlyCursor.sql, Breakpoint hit –
TotalCollected is 2625.6224
Function: 9781ch1415_ForwardReadonlyCursor.sql, Breakpoint hit - TotalCollected is 5298.1525
Function: 9781ch1415_ForwardReadonlyCursor.sql, Breakpoint hit –
TotalCollected is 8372.6048
Function: 9781ch1415_ForwardReadonlyCursor.sql, Breakpoint hit –
TotalCollected is 10658.8615

This concludes the introduction and details about debugging and completes the chapter. Debugging is detective
work, so exactly what debugging statements you need will depend on the specific circumstances. It is a crucial tool for
a developer, and you can expect to use a debugger as much as any other area of SQL Server that you have seen.

Summary
The comparison of sequences with IDENTITY was explored and demonstrated, showing how sequences can be a
better and more flexible alternative. They are not a replacement for IDENTITY columns, and you should now have the
knowledge of when to use sequences instead of IDENTITY.

Subqueries are one of the most commonly used areas of T-SQL, but common table expressions are also useful,
so knowing these areas well will enable you to move forward at a rapid pace. Combine this knowledge with the
functionality especially when working with JOINs, and you should be able to see how powerful T-SQL can be at
working with time-based data.

Throughout the book, you have looked at set-at-a-time processing, but in this chapter, you saw how to work with
data a row at a time via cursors. Cursors are not something that should be avoided, but you need to take care and
know when to use a cursor, which is slower than set-at–a-time, and when not to.

One of the final areas you looked at was how to debug your code. Setting breakpoints and the ability to view
values within variables are “must-have” knowledge to give you the power to test your code. The ability to export
breakpoints and datatips will allow future testing to take place but will also allow others to help debug your code if
help is required.

One last piece of advice: If a query starts becoming very complex, you may find that it starts performing badly. We
won’t look at performance of queries within this book, although I have discussed indexes and how they can help your
query perform better. Always take a step back and think, “Would this work better as two queries, where the first query
creates a subset of data?” Writing the most complex of queries that process all the data in one pass of the data may not
always be the best answer.

You are coming to the end of the book, and you are well primed with T-SQL knowledge of what you can achieve
with stored procedures and functions. In Chapter 18, you will take a look at triggers, and all you have learned with
programming T-SQL can be applied there as well.

567

Chapter 18

Triggers

At times a modification to data somewhere within your database will require an automatic action on data elsewhere,
either in your database, another database, or elsewhere within SQL Server; a trigger is the object that will do this for
you. When a modification to your data occurs, SQL Server will fire a trigger, which is a specialized stored procedure
that will run, performing the actions that you desire. Triggers are most commonly used to perform business rules
validation, carry out cascading data modifications (changes on one table causing changes to be made on other tables),
and keep track of changes for each record (audit trail). You can also do any other processing that you require when
data on a specific table are modified, such as auditing. You actually have come across triggers when looking at
Declarative Management Framework earlier in the book. These specialized system triggers are built to ensure the
system’s integrity. You will see how these work by building your own DDL trigger later in this chapter.

The aim of this chapter is as follows:

Describe what a trigger is•	

Detail potential problems surrounding triggers•	

Show the •	 CREATE TRIGGER T-SQL syntax

Discuss when to use a constraint and when to use a trigger•	

Show the system tables and functions specific to triggers•	

Demonstrate the creation of a trigger through a template and straight T-SQL statements•	

Discuss •	 image data types and the problems that surround updating these columns and
firing a trigger

First of all, let’s see just what constitutes a trigger.

What Is a Trigger?
A trigger is a specialized database object similar to a stored procedure that will be executed either on a data modification,
known as a Data Manipulation Language (DML) trigger, or on a data model action, such as CREATE TABLE, known as
a Data Definition Language (DDL) trigger. DML triggers are pieces of code attached to a specific table that are set to
automatically run in response to an INSERT, DELETE, or UPDATE command. However, a DDL trigger is attached to an
action that occurs either within a database or within a server. The first part of the chapter will look at DML triggers,
followed by an investigation of DDL triggers. As a developer, you will use DML triggers mainly, and you will find DDL
triggers used mainly by database administrators to ensure that certain actions cannot happen or are reported.

SQL Server does not allow for a trigger to be defined for an in-memory table, although a trigger definition can
access an in-memory table and issue commands against it. One use for accessing in-memory tables could be in a
scenario where you have an in-memory table defined that holds key information from a wider, disk-based table.

Chapter 18 ■ triggers

568

For example, you might have a table that holds all the details of a share of stock, such as dividend date, last dividend
amount paid, listed stock exchange, share price, and and so forth. Then you might have an in-memory table that only
holds the internal share id, stock exchange ticker code, and the current share price. The in-memory table data
is updated when the share price alters, but the data can be read extremely fast if you want to just see the current
share price.

Note ■ Unlike stored procedures, you cannot manually make a trigger run, you cannot use parameters with triggers,
and you cannot use return values with triggers.

The DML Trigger
Triggers have many uses. Perhaps the most common for a DML trigger is to enforce a business rule. For example,
when a customer places an order, a trigger would check that they have sufficient funds or that you have enough stock;
if any of these checks fail, you can complete further actions or return error messages and roll back the update.

DML triggers can be used as a form of extra validation—for example, to perform complex checks on data that a
constraint could not achieve. Keep in mind that using constraints instead of triggers gives you better performance,
but triggers are the better choice when dealing with complex data validation. Another use for a DML trigger is to make
changes in another table based on what is about to happen within the original triggered table. For example, when you
add an order, you would create a DML trigger that would reduce the quantity of items in stock. Finally, DML triggers
can be used to create an automated audit trail that generates a change history for each record. Since the Sarbanes-
Oxley Act (SOX) of 2002, DML triggers for the purpose of logging changes over time are created more and more often.
Although triggers have a performance impact, they do ensure that auditing is completed automatically.

You can create separate triggers for any table modification action, or triggers that will fire on any combination of
table actions. This means that you cannot create a trigger for SELECT. Obviously, as no table modifications occur on a
SELECT statement, it is impossible to create such a trigger. There are three actions that can invoke triggers:

•	 INSERT trigger

•	 DELETE trigger

•	 UPDATE trigger

You can also have a combination of the three types of trigger actions, and you will find one trigger for each action
and a trigger for multiple actions within database developments. I prefer to have one trigger per action as this keeps
the code within the trigger optimized without my having to write code to figure out which of the actions have invoked
the trigger, and thus which code path to take.

Triggers can update tables within other databases if desired, and it is also possible for triggers to span servers as
well, so don’t think the scope of triggers is limited to the current database or server.

It is possible for a trigger to fire a data modification, which in turn will execute another trigger, which is known
as a nested trigger. For example, imagine you have Table A, which has a trigger on it to fire a modification within
Table B, which in turn has a trigger on it that fires a modification within Table C. If a modification is made to Table
A, then Table A’s trigger will fire, modifying the data in Table B, which will fire the trigger in Table B, thus modifying
data in Table C. This nesting of triggers can go up to 32 triggers deep before you reach the limit set within SQL Server;
however, if you start getting close to that sort of level, either you have a very complex system, or perhaps you have
been overly zealous with your creation of triggers!

It is also possible to switch off any nesting of triggers so that when one trigger fires, no other trigger can fire;
however, this is not usually the norm. Be aware that your performance will suffer greatly when you start using nested
triggers; use them only when necessary.

Chapter 18 ■ triggers

569

Note ■ there is one statement that will not fire a DELETE trigger while still removing rows. if you issue a TRUNCATE
TABLE statement, it is as if the table had been wiped without any data logging, and no DELETE triggers will fire.

As with stored procedures, do take care when building triggers: you don’t want to create a potentially endless
loop in which a trigger causes an update, which fires a trigger already fired earlier within the loop, thereby repeating
the process.

CREATE TRIGGER Syntax for DML Triggers
The creation of a trigger through T-SQL code can be quite complex if you use the full trigger syntax. However, the
reduced version that I cover here is much more manageable and easier to demonstrate. When building a trigger, you
can create it for a single action or for multiple actions. To expand on this, a trigger can be for the insertion of a record
only, or it can cover inserting and updating the record. Any combination is possible.

Note ■ although this chapter will demonstrate DML triggers on tables, a trigger can also be placed on a view as well,
so that when data is modified through a view, it too can fire a trigger if required. any underlying triggers will also fire,
of course.

Here is the syntax for creating a basic trigger:

CREATE TRIGGER [schema_name.]trigger_name
ON {table|view}
[WITH ENCRYPTION]
{
{{FOR {AFTER|INSTEAD OF} {[INSERT] [,] [UPDATE] [,] [DELETE]}
AS
[{IF [UPDATE (column)
[{AND|OR} UPDATE (column)]]]
COLUMNS_UPDATE()]
sql_statements}}

Let’s explore the options in this syntax more closely:

•	 CREATE TRIGGER schema_name.trigger_name: As ever, you need to inform SQL Server what
you are attempting to do, and in this instance, you want to create a trigger. The name for the
trigger must also follow the SQL Server standards for naming objects within a database, and a
trigger should also belong to a schema just like other objects.

•	 ON {table|view}: It is then necessary to give the name of the single table or view that
the trigger relates to, which is named after the ON keyword. Each trigger is attached to
one table only.

•	 [WITH ENCRYPTION]: As with views and stored procedures, you can encrypt the trigger using
the WITH ENCRYPTION options so that the code cannot be viewed by prying eyes.

Chapter 18 ■ triggers

570

•	 {FOR|AFTER|INSTEAD OF}:

The •	 FOR|AFTER trigger will run the code within the trigger after the underlying data is
modified. Therefore, if you have any constraints on the table for cascading changes, then
the table changes and these cascade changes will complete successfully before the trigger
fires. You specify either FOR or AFTER.

•	 INSTEAD OF: This is the most complex of the three options to understand as a trigger
defined with this option will run the T-SQL within the trigger rather than allow the data
modification to run. One example would be where you capture a DELETE action on the
data with an INSTEAD OF trigger, and that trigger in turn executes some code that updates
the target rows to indicate to your application that they are to be considered as deleted,
but they are not actually deleted.

•	 {[INSERT] [,] [UPDATE] [,] [DELETE]}: This section of the syntax determines on what
action(s) the trigger will execute. This can be an INSERT, an UPDATE, or a DELETE T-SQL
command. As mentioned earlier, the trigger can fire on one, two, or three of these commands,
depending on what you want the trigger to do. Therefore, at this point, you need to mention
which combination of commands, separated by a comma, you want to work with.

•	 AS: The keyword AS defines that the trigger code has commenced, just as the AS keyword
defines the start of a stored procedure. After all, a trigger is just a specialized stored procedure.

•	 [{IF UPDATE (column) [{AND|OR} UPDATE (column)]]: This option is a test to check
whether a specific column has been modified. This happens through the use of the UPDATE()
keyword. By placing the name of the column to test between the parentheses, a logical TRUE
or FALSE will be returned depending on whether the column has been updated. The deletion
of a record will not set the UPDATE test to TRUE or FALSE, as you are removing an item and
not updating it. An INSERT or an UPDATE will set the UPDATE test to the necessary value. This
function is demonstrated later in the chapter.

•	 COLUMNS_UPDATE(): This has functionality similar to UPDATE(), but instead of testing a specific
named column, it tests multiple columns in one test.

•	 sql_statements: At this point, you code the trigger just like any other stored procedure.

The main thought you must keep in mind when building a trigger is that a trigger fires after each statement that
modifies data is executed, but before the modification is made to rows in the table. Therefore, if you have an UPDATE
statement that updates many rows, the trigger will fire after all the UPDATE statement has completed, not when each of
the rows has been dealt with.

Note ■ Keep in mind that the FOR trigger executes before the underlying data is modified; therefore, a trigger can issue
a ROLLBACK for that particular action if so desired.

Now that you know how to create a trigger, you will learn which situations they best apply to, as opposed to
constraints.

Why Not Use a Constraint?
There is nothing stopping you from using a constraint to enforce a business rule, and in fact, constraints should be
used to enforce data integrity. Constraints also give you better performance than triggers. However, they are limited in
what they can achieve and what information is available to them to complete their job.

Chapter 18 ■ triggers

571

Triggers are more commonly used for the validation of business rules, or for more complex data validation,
which may or may not then go on to complete further updates of data elsewhere within SQL Server.

A constraint is able to validate only data that are within the table the constraint is being built for or a specified
value entered at design time. This is in contrast to a trigger, which can span databases, or even servers, and check
against any data set at design time or a data set built from data collected from other actions against any table. This can
happen if the necessary access rights are given to all objects involved.

However, constraints are the objects to use when you want to ensure that data forming a key are correct, or when
you need to enforce referential integrity through a foreign key constraint.

At times a fine line will exist between building a constraint and a trigger, when the trigger is meant to perform
a very simple validation task. In this case, if the decision deals with any form of data integrity, then use a constraint,
which will give you better performance than using a trigger. If the object to be built is for business rules and requires
complex validation, needs to handle multiple databases or servers, or requires advanced error handling, then build a
trigger. For example, a trigger must be used if you need a change on one table to result in an action (update, delete, etc.)
on a table that is located in another database. You might have this situation if you keep an audit trail (change history)
database separate from your production database. It is doubtful that you would want to use a trigger if you are doing
something simple, such as verifying that a date field contains only values within a certain range.

Deleted and Inserted Logical Tables
When a table is modified, whether this is by an insertion, an update, or deletion, any associated trigger to that action
will run. The trigger will take an exact copy of the row of data that is held in two system logical tables called DELETED
and INSERTED. When a record is inserted into a table within a database, a full copy of the insertion of the record is
placed into the INSERTED table. Every item of information placed into each column for the insertion is then available
for checking. If a deletion is performed, a full copy of the row of data is placed in the DELETED table. Finally, when an
update occurs on a row of data, a full copy of the row before the modification is placed in the DELETED table, and then
a copy of the row of data after the modification is placed in the INSERTED table.

The INSERTED and DELETED tables will hold one record from each table for each modification. Therefore, if you
perform an UPDATE that updates 100 rows, the DELETED logical table is populated with the 100 rows prior to the UPDATE.
The modification then takes place, and then the INSERTED table is populated with 100 rows. Finally, the trigger will
fire. Once the trigger has completed, the data for that table are removed from the relevant logical tables.

These tables are held within the tempdb temporary database, and therefore triggers will affect the performance
of the tempdb and will be affected by any other process utilizing tempdb. However, it is not possible to complete any
further processing on these tables, such as creating an index, as they are held in a version store, and the data can be
interrogated only via a SELECT statement and cannot be modified. You can access these tables only within a trigger to
find out which records have been inserted, updated, or deleted.

Note ■ there are two version stores within each instance of sQL server. this is an advanced topic, but in essence,
one version store holds versions of each row of data where you have online index build operations on them, and the
other index store is for rows of data where you don’t have online index build operations. these exist to reduce the amount
of i/O on the transaction log.

To check what columns have been modified, it would be possible to compare each and every column value
between the two tables to see what information had been altered. Luckily, as was discussed when you examined the
syntax, there is a function, UPDATE(), that can test whether a column has been modified.

Now that you are fully up to date as to what a DML trigger is and how it works, it is time to create and test the first
trigger within the database.

Chapter 18 ■ triggers

572

Creating a DML FOR/AFTER Trigger
The first trigger you will be looking at is a DML trigger to work with a customer record when a transaction occurs.
The following example will demonstrate how to create a trigger on a data insertion, but also what happens to that
INSERT when there is a problem in the trigger itself. As you are near the end of the book, the T-SQL within the trigger
will be more advanced than some of the code so far.

trY It OUt: CreatING a trIGGer IN QUerY eDItOr

the purpose of this example is to change a customer’s account balance when a financial transaction occurs
as defined by an INSERT in the TransactionDetails.Transactions_old table, the table originally created in
Chapter 5 prior to migration to an in-memory. You want to change the balance AFTER the row has been inserted
into the TransactionDetails.Transactions_old table. this is so you do not change the customer’s account
balance if later in the INSERT of the row a problem occurs and the INSERT does not complete.

1. First of all, it is necessary to give the trigger a meaningful name. then you define the
table that the trigger will be attached to, which in this case is the TransactionDetails.
Transactions_old table. the final part of the start of the trigger will then define the type of
trigger and on what actions the trigger will execute. this will be a FOR AFTER trigger on an
INSERT on the TransactionDetails.Transactions_old table. the first part of the code
looks as follows:

USE ApressFinancial
GO
CREATE TRIGGER TransactionDetails.trgInsTransactions
ON TransactionDetails.Transactions_old
AFTER INSERT
AS
BEGIN

2. it is now time to enter the remainder of the code for the trigger. You need to retrieve the
Amount and TransactionType from the INSERTED table to be able to use these in the
update of the CustomerDetails.Customers table. You can JOIN from the INSERTED table
to the TransactionDetails.TransactionTypes table to find out whether you are dealing
with a credit or a debit transaction. if it is a debit, then through the use of a subquery and
a CASE statement you can alter the Amount by multiplying it by -1 so that you are reducing
a customer’s balance. Notice the subquery includes a WHERE statement so that if you are
entering a transaction type that does not affect the cash balance, such as recording a share
movement, then the ClearedBalance will not be altered. the final action is to update the
customer’s balance, which you will do via an UPDATE statement. there is a great deal to take
in, so take time over the code. also, the two examples of running this trigger should clear up
any queries you might have.

UPDATE CustomerDetails.Customers
 SET ClearedBalance = ClearedBalance +
 (SELECT CASE WHEN CreditType = 0
 THEN i.Amount * -1
 ELSE i.Amount
 END

Chapter 18 ■ triggers

573

 FROM INSERTED i
 JOIN TransactionDetails.TransactionTypes tt
 ON tt.TransactionTypeId = i.TransactionType
 WHERE AffectCashBalance = 1)
 FROM CustomerDetails.Customers c
 JOIN INSERTED i ON i.CustomerId = c.CustomerId
END

3. execute the code to create the trigger in the database. You can test the trigger now
by inserting a cash withdrawal or deposit relating to the two transaction types you
currently have. You will list the customer balance before executing the INSERT into the
TransactionDetails.Transactions_old table, and then you will add the row and look
at the balance again to show that it has changed. enter the following code, which inserts a
withdrawal of $200 from CustomerId 1’s account:

SELECT ClearedBalance
 FROM CustomerDetails.Customers
 WHERE customerId=2

INSERT INTO TransactionDetails.Transactions_old (CustomerId,TransactionType,
Amount,RelatedProductId, DateEntered)
VALUES (2,4,200,1,GETDATE())

SELECT ClearedBalance
 FROM CustomerDetails.Customers
 WHERE customerId=2

4. execute the code. as you see in Figure 18-1, the results should show that the balance has
dropped by $200 as expected. You could also double-check that the transaction exists in the
TransactionDetails.Transactions_old table.

Figure 18-1. Balance reduction after trigger action

Chapter 18 ■ triggers

574

5. the next test simulates a noncash transaction that has been recorded. For example, if you
bought some shares, there would be the cash transaction removing the funds from your bank
account, TransactionType=4, which was executed in the previous step, and then a second
row entered on TransactionType=6, which is the equities product showing the addition of
shares and is shown in the code next. this is a simple accounting procedure of one debit
of cash and one credit of shares, and the credit of shares doesn’t affect the cash balance.
i want to demonstrate, though, what happens when a trigger fails, and to achieve this, the
CustomerDetails.Customers table needs to have its structure altered.

6. enter and execute the following code:

UPDATE CustomerDetails.Customers
SET ClearedBalance = 0
WHERE ClearedBalance IS NULL
GO
DROP INDEX IX_Customers_LastNameZip ON CustomerDetails.Customers
GO
ALTER TABLE CustomerDetails.Customers
ALTER COLUMN ClearedBalance money NOT NULL
GO
CREATE NONCLUSTERED INDEX IX_Customers_LastNameZip ON CustomerDetails.Customers
(
 LastName ASC,
 ZipCode ASC
)
INCLUDE (ClearedBalance) WITH (PAD_INDEX = ON,
STATISTICS_NORECOMPUTE = OFF, SORT_IN_TEMPDB = OFF,
DROP_EXISTING = OFF, ONLINE = OFF, ALLOW_ROW_LOCKS = ON,
ALLOW_PAGE_LOCKS = ON, FILLFACTOR = 90)
GO

7. enter the following code, which will simulate a noncash transaction:

SELECT ClearedBalance
 FROM CustomerDetails.Customers
 WHERE customerId=2

INSERT INTO TransactionDetails.Transactions_old (CustomerId,TransactionType,
Amount,RelatedProductId, DateEntered)
VALUES (2,6,200,1,GETDATE())

SELECT ClearedBalance
 FROM CustomerDetails.Customers
 WHERE customerId=2

Chapter 18 ■ triggers

575

8. Now execute the code. You will be presented with an error indicating that you cannot enter a
NULL value in the ClearedBalance column. this has occurred because the CASE statement
in the trigger will generate a NULL. Move to the results tab, where only the opening balance
is displayed, as shown in Figure 18-2. the trigger has a bug in that the subquery will attempt
to update a balance even when there is a NULL cash value to update, and the trigger has not
accounted for that scenario.

(1 row(s) affected)
Msg 515, Level 16, State 2, Procedure trgInsTransactions, Line 6
Cannot insert the value NULL into column 'ClearedBalance',
table 'ApressFinancial.CustomerDetails.Customers'; column does not
allow nulls. UPDATE fails.
The statement has been terminated.

Figure 18-2. Balance not updated

Figure 18-3. Transaction table listing

9. to reiterate, the INSERT statement into the TransactionDetails.Transactions_old
table is correct and would normally work. however, the trigger has a bug, so the
transaction did not insert the data and was rolled back. You can see this by inspecting the
TransactionDetails.Transactions_old table with the following code and the results
shown in Figure 18-3.

SELECT *
 FROM TransactionDetails.Transactions
 WHERE CustomerId=2
ORDER BY DateEntered DESC

10. You can change a trigger using the ALTER TRIGGER command. the changes to the code
occur in the subquery: you surround the single column you will have returned with an
ISNULL() test. if the result is NULL, then you transpose this with the value of 0 as the cash
balance is not to alter. the code you need to change is in bold.

Chapter 18 ■ triggers

576

ALTER TRIGGER TransactionDetails.trgInsTransactions
ON TransactionDetails.Transactions_old
AFTER INSERT
AS
UPDATE CustomerDetails.Customers
 SET ClearedBalance = ClearedBalance +
 ISNULL((SELECT CASE WHEN CreditType = 0
 THEN i.Amount * -1
 ELSE i.Amount
 END
 FROM INSERTED i
 JOIN TransactionDetails.TransactionTypes tt
 ON tt.TransactionTypeId = i.TransactionType
 WHERE AffectCashBalance = 1),0)
 FROM CustomerDetails.Customers c
 JOIN INSERTED i ON i.CustomerId = c.CustomerId

11. Once the changes have been completed, you can then execute the code to alter the
trigger. You can now rerun the test, which will add a row to the TransactionDetails.
Transactions_old table without altering the balance. if you want, you could also list the
TransactionDetails.Transactions_old table to prove that the INSERT succeeded this
time, as Figure 18-4 demonstrates.

SELECT ClearedBalance
 FROM CustomerDetails.Customers
 WHERE customerId=2

INSERT INTO TransactionDetails.Transactions_old (CustomerId,TransactionType,
Amount,RelatedProductId, DateEntered)
VALUES (2,6,200,1,GETDATE())

SELECT ClearedBalance
 FROM CustomerDetails.Customers
 WHERE customerId=2

Figure 18-4. Transactions table with no balance change

Chapter 18 ■ triggers

577

Checking Specific Columns
It is possible to check whether a specific column or set of columns has been updated via the UPDATE() or
COLUMNS_UPDATED() functions available within a trigger. This can reduce the amount of processing within the trigger
and therefore speed up your batch and transactions. Keep in mind that a trigger should be as quick and as short
as possible. Checking columns and performing specific T-SQL code only if a column is altered will reduce trigger
overheads. As you will see, only when an amount or type of transaction has altered do you really need to perform an
UPDATE on the CustomerDetails.Customers table.

The first statement you will look at is UPDATE().

Using UPDATE()
The UPDATE() function is a very simple yet powerful tool to a developer who is building a trigger. It is possible to
check against a specific column, or a list of columns, to see whether a value has been inserted or updated within
that column. It is not possible to check whether a value has been deleted from a column, because, quite simply, you
cannot delete columns; you can delete only whole rows of data. If you want to check more than one column at the
same time, place the columns one after another with either an AND or an OR depending on what you want to happen.
Each individual UPDATE() will return TRUE if a value has been updated. If there are a number of columns, each column
will have to be defined separately—for example:

IF UPDATE(column1) [AND|OR UPDATE(column2)]
You can use this function to deal with updates to the TransactionDetails.Transactions_old table. For example,

there will be times that a transaction record has been incorrectly inserted. The trigger you created previously would
have to be modified to deal with an UPDATE to alter the CustomerDetails.Customers ClearedBalance. The UPDATE
would remove the value within the DELETED table and then apply the value within the INSERTED table. However, what
if the alteration has nothing to do with any transaction that would alter the cash balance? For example, you were
changing the date entered. By simply checking each column as necessary, it is possible to see whether an update is
required to the CustomerDetails.Customers table. The two columns that are of interest within the trigger are Amount
and TransactionType.

trY It OUt: UpDate() FUNCtION

1. Within Query editor, let’s alter the trigger to deal with an UPDATE first of all before moving to
the UPDATE() function. this will let you see a demonstration of the saving. the first part of
the alteration is to tag an UPDATE to the AFTER statement.

ALTER TRIGGER TransactionDetails.trgInsTransactions
ON TransactionDetails.Transactions_old
AFTER INSERT,UPDATE
AS

2. then you need to deal with the undoing of the amount in the DELETED table row from the
CustomerDetails.Customers table. the actions on the ClearedBalance need to be the
opposite of the addition.

UPDATE CustomerDetails.Customers
 SET ClearedBalance = ClearedBalance -
 ISNULL((SELECT CASE WHEN CreditType = 0
 THEN d.Amount * -1
 ELSE d.Amount
 END

Chapter 18 ■ triggers

578

 FROM DELETED d
 JOIN TransactionDetails.TransactionTypes tt
 ON tt.TransactionTypeId = d.TransactionType
 WHERE AffectCashBalance = 1),0)
 FROM CustomerDetails.Customers c
 JOIN DELETED d ON d.CustomerId = c.CustomerId

3. the remainder of the trigger is the same. Once you have added in the following code, execute
it so that the trigger is altered:

UPDATE CustomerDetails.Customers
 SET ClearedBalance = ClearedBalance +
 ISNULL((SELECT CASE WHEN CreditType = 0
 THEN i.Amount * -1
 ELSE i.Amount
 END
 FROM INSERTED i
 JOIN TransactionDetails.TransactionTypes tt
 ON tt.TransactionTypeId = i.TransactionType
 WHERE AffectCashBalance = 1),0)
 FROM CustomerDetails.Customers c
 JOIN INSERTED i ON i.CustomerId = c.CustomerId

4. You can test that the trigger works by reducing the amount of a withdrawal—for me the
TransactionId number is 1002—which currently sits at a value of $200. the following code
will list the transactions for CustomerId=2 and the current cleared balance. You then alter
the amount of withdrawal from $200 down to $100. the final actions will list the tables to
prove the update to the TransactionDetails.Transactions_old and CustomerDetails.
Customers tables has succeeded.

SELECT *
 FROM TransactionDetails.Transactions_old
 WHERE CustomerId = 2
SELECT ClearedBalance
 FROM CustomerDetails.Customers
 WHERE CustomerId = 2
UPDATE TransactionDetails.Transactions_old
 SET Amount = 100
 WHERE TransactionId = 1002 –- Alter as required
SELECT *
 FROM TransactionDetails.Transactions_old
 WHERE CustomerId = 2
SELECT ClearedBalance
 FROM CustomerDetails.Customers
 WHERE CustomerId = 2

5. Once you execute the code, the transactions amount and cleared balances are altered, as
shown in Figure 18-5. so now you know the trigger has worked and will do these actions no
matter what happens to the TransactionDetails.Transactions_old table.

Chapter 18 ■ triggers

579

6. You are now going to alter the trigger to test the Amount and TransactionType columns.
if there is an update, you will complete the actions described previously; if not, then you will
skip this processing. You will prove which path the trigger takes by using the system function
RAISERROR, which you saw in the discussion of error handling in Chapter 16. each section of
the IF statement will have an appropriate RAISERROR.

7. to alter the trigger to update only the CustomerDetails.Customers table if Amount or
TransactionType is altered, you will need to add or alter the lines of code in bold here. if you
execute this code, you will have a RAISERROR saying this is what you have done. similarly, if
you don’t update the table, you will have an appropriate but different RAISERROR. the trigger
is defined in the following code with the alterations shown in bold. Once you have made the
same changes, execute the code to alter the trigger.

ALTER TRIGGER TransactionDetails.trgInsTransactions
ON TransactionDetails.Transactions_old
AFTER INSERT,UPDATE
AS
IF UPDATE(Amount) OR Update(TransactionType)
BEGIN
UPDATE CustomerDetails.Customers
 SET ClearedBalance = ClearedBalance -
 ISNULL((SELECT CASE WHEN CreditType = 0
 THEN d.Amount * -1
 ELSE d.Amount
 END
 FROM DELETED d
 JOIN TransactionDetails.TransactionTypes tt
 ON tt.TransactionTypeId = d.TransactionType
 WHERE AffectCashBalance = 1),0)

Figure 18-5. Transactions and balances

Chapter 18 ■ triggers

580

 FROM CustomerDetails.Customers c
 JOIN DELETED d ON d.CustomerId = c.CustomerId

UPDATE CustomerDetails.Customers
 SET ClearedBalance = ClearedBalance +
 ISNULL((SELECT CASE WHEN CreditType = 0
 THEN i.Amount * -1
 ELSE i.Amount
 END
 FROM INSERTED i
 JOIN TransactionDetails.TransactionTypes tt
 ON tt.TransactionTypeId = i.TransactionType
 WHERE AffectCashBalance = 1),0)
 FROM CustomerDetails.Customers c
 JOIN INSERTED i ON i.CustomerId = c.CustomerId
RAISERROR ('You have completed an update',10,1)
END
ELSE
RAISERROR ('Updates have been skipped',10,1)

8. You can now test out the example, which will not update the Amount or TransactionType but
will alter the DateEntered.

SELECT *
 FROM TransactionDetails.Transactions_old
 WHERE TransactionId=1002 –- Alter as required
SELECT ClearedBalance
 FROM CustomerDetails.Customers
 WHERE CustomerId = 2
UPDATE TransactionDetails.Transactions_old
 SET DateEntered = DATEADD(dd,-1,DateEntered)
 WHERE TransactionId = 1002 –- Alter as required
SELECT *
 FROM TransactionDetails.Transactions_old
 WHERE TransactionId=1002 -- Alter as required
SELECT ClearedBalance
 FROM CustomerDetails.Customers
 WHERE CustomerId = 2

9. Once you have run this code, you will see the results tab showing the DateEntered being
altered but the ClearedBalance not, as Figure 18-6 illustrates. however, at this point,
you don’t know if this is because you have removed and then readded the amount, giving a
null effect.

Chapter 18 ■ triggers

581

10. Moving to the Messages tab, you can see the RAISERROR that occurred when you skipped
updating the CustomerDetails.Customers table. there are also fewer “row(s) affected”
messages.

(1 row(s) affected)
(1 row(s) affected)
Updates have been skipped
(1 row(s) affected)
(1 row(s) affected)
(1 row(s) affected)

this brings us to the end of looking at the UPDATE() function. Let’s move on to COLUMNS_UPDATED().

Using COLUMNS_UPDATED()
Instead of working with a named single column, the COLUMNS_UPDATED() function can work with multiple columns.
It does this through the use of bit flags rather than naming columns, and therefore if you change the order of columns,
you can get into trouble. There are eight bits in a byte, and a bit can be either off (a value of 0) or on (a value of 1).

COLUMNS_UPDATED() checks the bits of a single byte, which is provided by SQL Server, to see whether a column
has been updated. It can do this by correlating a bit with a column in the underlying table. So to clarify, the
TransactionDetails.Transactions_old table has nine columns. The first column, TransactionId, would relate to
the first bit within the byte. The Amount column is the fifth column and therefore would relate to the fifth bit within the
byte. If the first bit is on (a value of 1), the TransactionId column has been updated. Similarly, if the fourth bit is on,
the Amount column has been updated.

Note ■ Confusingly, when talking about bits, the first bit is known as bit 0, the second bit is known as bit 1, and the
byte is made up of bits 0 through 7. therefore, the TransactionId column is bit 0, and the Amount column is bit 4.
You will use this convention from this point onward.

Figure 18-6. Details where updates have been skipped

Chapter 18 ■ triggers

582

The bit flag settings are based on the column order of the table definition. To test for a bit value, you use the
ampersand (&) operator to test a specific bit or multiple set of bits. Before you discuss how this works, inspect
Table 18-1. A bit value increases by the power of 2 as you progress down the bit settings, as you can see.

Table 18-1. Bit Settings and the Equivalent Decimal Value

Bit Value

0 1

1 2

2 4

3 8

4 16

5 32

6 64

7 128

Note ■ another point about bits is that they work from right to left. For example, 00000010 shows bit 1 is set and
therefore a value of 2.

Now if bits 2 and 4 are switched on within a byte—in other words, if they have a setting of true (00010100)—then
the value is 4 + 16, which equates to 20. Therefore, to test whether the third and fifth columns of the table have both
been altered, you would use the following syntax:

IF COLUMNS_UPDATE() & 20 = 20

This is a great deal to take in and understand, so I have included the following code to help you to understand
this further. Here you have a byte data type variable. You then set the variable to a value; in this case, you believe that
bits 0 and 1 will be set. By using the & operator, you can check this. To reiterate, slightly confusingly, it’s not the bit
position you have to test, but the corresponding bit value, so bit 0 has a value of 1.

DECLARE @BitTest varbinary
SET @BitTest = 3
SELECT @BitTest & 1,@BitTest & 2,@BitTest & 4,@BitTest & 8,@BitTest & 16

As a byte contains eight bits, COLUMNS_UPDATED() can test only the first eight columns on this basis. Obviously,
tables will contain more than eight columns, as you have seen with the TransactionDetails.Transaction table you
have just been using.

Once a table has more than eight columns, things change. Instead of being able to test COLUMNS_UPDATED() & 20 > 0
to check whether columns 3 or 5 have updated, it is necessary to SUBSTRING() the value first. Therefore, to test
columns 3 or 5, the code needs to read as follows:

IF (SUBSTRING(COLUMNS_UPDATED(),1,1) & 20) > 0

Chapter 18 ■ triggers

583

However, even this is not the correct solution, although you are almost there. It is necessary to substring the
COLUMNS_UPDATED() into eight-bit chunks for each set of eight columns. However, you need to involve the power()
function to get the correct value to test for. The syntax for the power() section of the test is as follows:

power(2,(column_to_test – 1))

Therefore, if you want to test whether column 9 has been updated, the statement would be as follows, where you
take the second set of eight columns using the SUBSTRING character 2, and then test the first column of the second set
of eight—in other words, column 8 + 1 = 9.

IF (SUBSTRING(COLUMNS_UPDATED(),2,1)=power(2,(1-1)))

The following tests columns 1, 4, and 10 to see whether any of them has changed:

IF (SUBSTRING(COLUMNS_UPDATED(),1,1)=power(2,(1-1))
OR SUBSTRING(COLUMNS_UPDATED(),1,1)=power(2,(4-1))
OR SUBSTRING(COLUMNS_UPDATED(),2,1)=power(2,(2-1)))

You can use this function to deal with updates to the TransactionDetails.Transactions_old table. For
example, there will be times that a transaction record has been incorrectly inserted. The trigger you created previously
would have to be modified to deal with an UPDATE that alters the customer’s ClearedBalance. The UPDATE would
remove the value within the DELETED table and then apply the value within the INSERTED table. However, what if
the alteration has nothing to do with any transaction that would alter the cash balance? For example, say you were
changing the date entered. By simply checking each column as necessary, it is possible to see whether an update is
required to the CustomerDetails.Customers table. The two columns that would interest the trigger are Amount and
TransactionType.

trY It OUt: COLUMNS_UpDateD()

the code here takes the same example as UPDATE() and converts it to use COLUMNS_UPDATED(). it is a two-line
change. the following test will see whether either the TransactionType or the Amount has altered by checking
the two column settings using the power() function.

1. alter the trigger, and then the example will follow the previous example to ensure you get the
same results. the changes are in bold. execute the code when you have made the changes.

ALTER TRIGGER TransactionDetails.trgInsTransactions
ON TransactionDetails.Transactions_old
AFTER UPDATE,INSERT
AS
 IF (SUBSTRING(COLUMNS_UPDATED(),1,1) = power(2,(3-1))
 OR SUBSTRING(COLUMNS_UPDATED(),1,1) = power(2,(5-1)))
BEGIN
UPDATE CustomerDetails.Customers
 SET ClearedBalance = ClearedBalance -
 ISNULL((SELECT CASE WHEN CreditType = 0
 THEN d.Amount * -1
 ELSE d.Amount
 END

Chapter 18 ■ triggers

584

 FROM DELETED d
 JOIN TransactionDetails.TransactionTypes tt
 ON tt.TransactionTypeId = d.TransactionType
 WHERE AffectCashBalance = 1),0)
 FROM CustomerDetails.Customers c
 JOIN DELETED d ON d.CustomerId = c.CustomerId

UPDATE CustomerDetails.Customers
 SET ClearedBalance = ClearedBalance +
 ISNULL((SELECT CASE WHEN CreditType = 0
 THEN i.Amount * -1
 ELSE i.Amount
 END
 FROM INSERTED i
 JOIN TransactionDetails.TransactionTypes tt
 ON tt.TransactionTypeId = i.TransactionType
 WHERE AffectCashBalance = 1),0)
 FROM CustomerDetails.Customers c
 JOIN INSERTED i ON i.CustomerId = c.CustomerId
RAISERROR ('You have completed an update ',10,1)
END
ELSE
RAISERROR ('Updates have been skipped',10,1)

2. Now test the change by entering the following to test the trigger.

SELECT *
 FROM TransactionDetails.Transactions_old
 WHERE TransactionId=1002
SELECT ClearedBalance
 FROM CustomerDetails.Customers
 WHERE CustomerId = 2
UPDATE TransactionDetails.Transactions_old
 SET DateEntered = DATEADD(dd,-1,DateEntered)
 WHERE TransactionId = 1002
SELECT *
 FROM TransactionDetails.Transactions_old
 WHERE TransactionId=1002
SELECT ClearedBalance
 FROM CustomerDetails.Customers
 WHERE CustomerId = 2

3. When the foregoing code is executed, you should have results similar to Figure 18-7, where
the balance of the customer remains constant but the DateEntered is reduced by a day.

Chapter 18 ■ triggers

585

Now that you have covered DML triggers, you can take a look at DDL triggers.

DDL Triggers
Checking whether an action has happened on an object within SQL Server either on a database or within the server
is not code that you will write every day. As more and more audit requirements are enforced on companies to ensure
that their data are safe and have not been amended, auditors are now also turning their attention to areas that
may cause that data to be altered. A DDL trigger is like a data trigger, as it can execute on the creation, deletion, or
modification of rows within system tables rather than on user tables. So how does this help you?

I am sure you can recall specific stories involving major institutions having a program running that removed
funds or stock. My favorite is one in which a developer wrote a program that calculated interest on clients’ accounts.
Obviously, there needed to be roundings, so the bank always rounded down to the nearest cent. However, all the
“down roundings” added up each month to a fairly substantial amount of money. Of course, auditors saw that the
data updates were correct, as the amount on the transaction table matched the amount in the client’s account. The
interest calculation stored procedure also passed QA at the time. However, once it was live, the developer altered the
stored procedure so that all the down roundings were added up in a local variable, and at the end of the process, the
amount was added to a “hidden” account. It was a simple stored procedure that never went wrong, and of course it
was obfuscated, so nobody by chance could see what the developer had done. They could, of course, see the code as
it is only obfuscated, but as it never went wrong, they had no need to. If the stored procedure needed an update, it
was the “old” correct code that went live, and the developer simply waited until the time was right and reapplied his
code. Auditors could not figure out why at a global level thousands of dollars could not be accounted for over time.
Of course, eventually they did, but if they had a DDL trigger so that they received an e-mail or some other notification
whenever a stored procedure was released, they could have immediately seen two releases of the stored procedure
and asked “Why?” within minutes. Our example will demonstrate this in action.

You have also seen some system DDL triggers as I mentioned at the start of the chapter with the Declarative
Management Framework. They are a great deal more complex than the trigger that will be demonstrated and also
interact with Management Studio to show what is happening, but in essence they are the same.

First of all, let’s look at database-scoped events, and then toward the end of the section, you will pull the
information together in a working example.

Figure 18-7. Using COLUMNS_UPDATED() within a trigger test results

Chapter 18 ■ triggers

586

DDL Database-Level Events
This section covers events that can force a DDL trigger to execute. Similar to DML triggers that can execute on one
or more actions, a DDL trigger can also be linked to one or more actions. However, a DDL trigger is not linked to a
specific user table and type of action. Therefore, one trigger could execute on any number of unrelated actions.
For example, the same trigger could fire on a stored procedure being created, a user login being dropped, and a table
being altered. I doubt if you will create many, if any, triggers like this, but it is possible. A DDL trigger that accepts
multiple events that occur can decide what to do with each event, from ignoring upward. However, catching every
event results in an overhead on every action.

There are two ways that you can create a trap for events that fire. It is possible to either trap these events
individually (or as a comma-separated list) or as a catchall. You will see how to do this once you have looked at what
events are available.

Database-Scoped Events
Table 18-2 lists some of the DDL database actions that can be trapped. The full list is comprehensive and covers every
database event there is. Many of the actions you will recognize from previous chapters, although the commands have
spaces between words rather than underscores.

DDL Statements with Server Scope
Database-level events are not the only events that can be trapped within a trigger; server events can also be caught.

Table 18-3 shows some of the DDL statements that have the scope of the whole server. Many of these you may not
come across for a while, if at all, so you will concentrate on database-scoped events.

Table 18-2. Possible Database-Scoped Events to Listen For

CREATE_TABLE ALTER_TABLE DROP_TABLE

CREATE_VIEW ALTER_VIEW DROP_VIEW

CREATE_FUNCTION ALTER_FUNCTION DROP_FUNCTION

CREATE_PROCEDURE ALTER_PROCEDURE DROP_PROCEDURE

CREATE_TRIGGER ALTER_TRIGGER DROP_TRIGGER

CREATE_EVENT_NOTIFICATION DROP_EVENT_NOTIFICATION

CREATE_INDEX ALTER_INDEX DROP_INDEX

CREATE_STATISTICS UPDATE_STATISTICS DROP STATISTICS

CREATE_USER ALTER_USER DROP_USER

CREATE_ROLE ALTER_ROLE DROP_ROLE

CREATE_APPLICATION_ROLE ALTER_APPLICATION_ROLE DROP_APPLICATION_ROLE

CREATE_SCHEMA ALTER_SCHEMA DROP_SCHEMA

GRANT_DATABASE DENY_DATABASE REVOKE_DATABASE

Chapter 18 ■ triggers

587

Note ■ it is not possible to have a trigger that fires on both server and database events; it’s one or the other.

The syntax for a DDL trigger is very similar to that for a DML trigger:

CREATE TRIGGER trigger_name
ON {ALL SERVER|DATABASE}
[WITH ENCRYPTION]
{
{{FOR |AFTER } {event_type,...}
AS
sql_statements}}

The main options that are different are as follows:

•	 ALL SERVER|DATABASE: The trigger fires either for the server or the database you are attached
to when creating the trigger.

•	 Event_type: This is a comma-separated list from either the database or server list of DDL
actions that can be trapped.

Note ■ You can also catch events that can be grouped together. For example, all table and view events can be defined
with a group, or this group can be refined down to just table events or view events. the only grouping you will look at is
how to catch every database-level event.

Dropping a DDL Trigger
Removing a DDL trigger from the system is not like removing other objects where you simply say DROP object_type
object_name. With a DDL trigger, you have to suffix this with the scope of the trigger.

DROP TRIGGER trigger_name ON {DATABASE|ALL SERVER}

Table 18-3. DDL Server-Scoped Statements You Can Listen For

CREATE_LOGIN ALTER_LOGIN DROP_LOGIN

CREATE_HTTP_ENDPOINT DROP_HTTP_ENDPOINT

CREATE_CERT ALTER_CERT DROP_CERT

GRANT_SERVER_ACCESS DENY_SERVER_ACCESS REVOKE_SERVER_ACCESS

Chapter 18 ■ triggers

588

EVENTDATA()
As an event fires, although there are no INSERTED and DELETED tables to inspect what has changed, you can use a
function called EVENTDATA(). This function returns an XML data type containing information about the event that
fired the trigger. The basic syntax of the XML data is as follows, although the contents of the function will be altered
depending on what event fired:

<SQLInstance>
 <PostTime>date-time</PostTime>
 <SPID>spid</SPID>
 <ComputerName>name</ComputerName>
</SQLInstance>

I won’t detail what each event will return in XML format; otherwise, you will be here for many pages. However,
in one of the examples that follow, you will create a trigger that will fire on every database event, trap the event data,
and display the details.

Database-level events have the following base syntax, different from the previously shown base syntax:

<SQLInstance>
 <PostTime>date-time</PostTime>
 <SPID>spid</SPID>
 <ComputerName>name</ComputerName>
 <DatabaseName>name</DatabaseName>
 <UserName>name</UserName>
 <LoginName>name</LoginName>
</SQLInstance>

The XML elements can be described as follows:

•	 PostTime: The date and time of the event firing

•	 SPID: The SQL Server process ID that was assigned to the code that caused the trigger to fire

•	 ComputerName: The name of the computer that caused the event to fire

•	 DatabaseName: The name of the database that caused the event to fire

•	 UserName: The name of the user who caused the event to fire

•	 LoginName: The login name of the user who caused the event to fire

It’s time to see a DDL trigger in action.

Chapter 18 ■ triggers

589

trY It OUt: DDL trIGGer

this first example will create a trigger that will execute when a stored procedure is created, altered, or dropped.
When it finds this action, it will check the time of day, and if the time is during the working day, then the action
will be disallowed and be rolled back. On top of this, you will raise an error listing the stored procedure. this will
allow you to see how to retrieve information from the EVENTDATA() function. the final action is to roll back the
changes if an action is happening during the working day and send an e-mail.

Note ■ if you are using sQL server express, then it is not possible to send e-mails as this is not available in
this edition.

1. enter and execute the following trigger, which will fire when a stored procedure is created,
modified, or dropped. Of course, enter your own e-mail address for the @recipients. also
alter the @profile_name if you used a different profile name in earlier in the book. Finally, the
@subject is split here for reading and should be either two strings or on one line.

CREATE TRIGGER trgSprocs
ON DATABASE
FOR CREATE_PROCEDURE, ALTER_PROCEDURE, DROP_PROCEDURE
AS
IF DATEPART(hh,GETDATE()) > 8 AND DATEPART(hh,GETDATE()) < 18
BEGIN
 DECLARE @Message nvarchar(max)
 SELECT @Message =
 'Completing work during core hours. Trying to release - '
 + EVENTDATA().value
 ('(/EVENT_INSTANCE/TSQLCommand/CommandText)[1]','nvarchar(max)')
 RAISERROR (@Message, 16, 1)
 ROLLBACK
EXEC msdb.dbo.sp_send_dbmail
 @profile_name = 'ApressFinancialDBMA',
 @recipients = 'robin@fat-belly.com',
 @body = 'A stored procedure change',
 @subject = 'A stored procedure change has been initiated and rolled back
during core hours'

END

2. You can now test the trigger. Depending on what time of day you run the code, the following
will either succeed or fail:

CREATE PROCEDURE Test1
AS
SELECT 'Hello all'

http://robin@fat-belly.com/

Chapter 18 ■ triggers

590

3. try running the preceding code between 9 a.m. and 5 p.m. so that it is possible to see the
creation fail. running the code in the afternoon provided me with the following error:

Msg 50000, Level 16, State 1, Procedure trgSprocs, Line 12
Completing work during core hours. Trying to release -
CREATE PROCEDURE Test1
AS
SELECT 'Hello all'
Mail (Id: 2) queued.
Msg 3609, Level 16, State 2, Procedure Test1, Line 1
The transaction ended in the trigger.
The batch has been aborted.

4. it is necessary to drop the preceding trigger so you can move on, unless of course you are
now outside of the prohibited hours and you want the trigger to remain.

DROP TRIGGER trgSprocs ON DATABASE

5. this next DDL trigger will not look for any specific event but instead this trigger will execute
on any action that occurs at the database. this will allow you to see the XML data generated
on any event you want to.

CREATE TRIGGER trgDBDump
ON DATABASE
FOR DDL_DATABASE_LEVEL_EVENTS
AS
 SELECT EVENTDATA()

6. this trigger can be tested by successfully creating the stored procedure you couldn’t in the
first example.

CREATE PROCEDURE Test1
AS
SELECT 'Hello all'

7. Check the results window. You should see results that you have not seen before. What is
returned is XML data, and the results window displays the data as partly shown in Figure 18-8.

Figure 18-8. Event data XML

Chapter 18 ■ triggers

591

8. if you click the row, a new Query editor pane opens after a few moments, and the XML data
are transposed into an XML document layout. each of the nodes can be inspected just like
the CommandText node was earlier.

<EVENT_INSTANCE>
 <EventType>CREATE_PROCEDURE</EventType>
 <PostTime>2014-09-07T18:53:00.623</PostTime>
 <SPID>55</SPID>
 <ServerName>FAT-BELLY-SONY\APRESS_DEV1</ServerName>
 <LoginName>FAT-BELLY-SONY\RobinDewson</LoginName>
 <UserName>dbo</UserName>
 <DatabaseName>ApressFinancial</DatabaseName>
 <SchemaName>dbo</SchemaName>
 <ObjectName>Test1</ObjectName>
 <ObjectType>PROCEDURE</ObjectType>
 <TSQLCommand>
 <SetOptions ANSI_NULLS="ON" ANSI_NULL_DEFAULT="ON"
 ANSI_PADDING="ON" QUOTED_IDENTIFIER="ON" ENCRYPTED="FALSE" />
 <CommandText>CREATE PROCEDURE Test1
AS
SELECT 'Hello all'
</CommandText>
 </TSQLCommand>
</EVENT_INSTANCE>

Summary
DML triggers should be seen as specialized and specific stored procedures set up to help your system with
maintaining data integrity, cascading updates throughout a system, or enforcing business rules. If you take out the fact
that there are two system tables, INSERTED and DELETED, and that you can check what columns have been modified,
then the whole essence of a trigger is that it is a stored procedure that runs automatically when a set data-modification
condition arises on a specific table.

DDL triggers will be built mainly for security or reporting of system changes to compliance departments and the
like. With the EventData() XML information available to a trigger, a great deal of useful information can be inspected
and used further.

Coding a trigger is just like coding a stored procedure with the full control of flow, error handling, and processing
that is available to you within a stored procedure object.

The aim of this chapter was to demonstrate how a trigger is fired and how to use the information that is available
to you within the system to update subsequent tables or to stop processing and roll back the changes.

The DML triggers built within this chapter have demonstrated how to use the logical tables, as well as how to
determine whether a column has been modified. The DDL triggers built have demonstrated how you can trap events
and determine what has been changed within either a database or a server.

593

Chapter 19

Connecting via Code

If you defined yourself as a pure database developer, you would only be writing T-SQL code building on your
knowledge gained within this book. However, some DBAs write code outside of the database to access data and execute
stored procedures, as well as many other tasks. This can be accomplished in many different programming languages
and tools. The aim of this chapter is to demonstrate how you can connect to SQL Server and accomplish working with
your data using Excel VBA, .NET, and Java, as these are the most common coding platforms that you are likely to use.
To be clear, the aim of this chapter is not to make you an expert or even quite proficient in these languages or tools but
to demonstrate basic code that provides you with a good start to expand on via Apress books or other media.

Each development tool has its own section, allowing you to jump straight to the relevant code you want to see
an example of and where you will see the ApressFinancial database accessed and data displayed in console output.
It will be assumed that each tool has been installed on your computer, although there will be links on my web site,
www.fat-belly.com, to the software used within the book, or if there is a later relevant version of the software that
should be used, post-publication of this book. Although there will be one example of working with the data in each
language within this chapter, every example demonstrated will be available in every language from my web site and
with the source code for this book.

Connecting to SQL Server can be achieved using the techniques and methods that have been described throughout
the book so far. SQL Server Management Studio is a tool written using a development language and provides the techniques
of connecting via Windows authentication or SQL Server authentication, which then uses role techniques to allow and
restrict what you can do. To this end, you could conceivably rewrite SSMS in one of many languages that you will see
demonstrated.

Before you get started in this chapter, there is one point I want to make clear. In each of the tools, there are
different ways you can achieve the same goal that is being demonstrated. From Excel through to Java, there is more
than one method to connect and work with SQL Server. However, what I demonstrate in each section is what I have
personally found to be the best and the most common method that is used for that technology and a good basis to
start your development from. If you use or find a different method that suits you better, I am happy to hear from you,
and I can investigate putting alternatives on my web site. However, these examples will be perfect for getting any
developer up and running but also provide a good base to progress. In this chapter, you will learn the following:

General application security•	

Working with Excel using the Data ribbon and then using VBA•	

Using Visual Studio to build a VB.NET and C# console application•	

Developing a solution using Eclipse, Java, and the SQL Java JDBC driver•	

The first step is to look at general application security.

http://www.fat-belly.com/

Chapter 19 ■ ConneCting via Code

594

General Application Security
Throughout the book, you have worked through examples of security and how you should consider and implement
different security measures, ensuring that your database is secured from inadvertent or rogue access. Measures
include authentication, roles, object permissions, and schemas. It is useful to summarize a few of the points again so
that they are fresh in your mind while developing an application and so that any areas missed can be addressed.

The first area would be to ensure that a Windows group exists purely for accessing the server and database. You can
then use this group for application-specific access to the correct objects. Bear in mind that your database solution may
have more than one application connecting to it. This could include a GUI-based solution for administrative tasks and an
Excel solution built to retrieve data for ad hoc reporting by some users. Having two Windows groups allows permissions to
be defined specifically for each application’s needs, one for modification access and one for read-only reporting access.

You should also consider having and using an application role within the database, as discussed in Chapter 4.
Building stored procedures or views to retrieve and update the data that will retrieved by the application and

grant execute permissions to these objects only to the Windows group or specific individuals if you are using SQL
Server authentication will protect the data. If a report is built from data of a highly sensitive nature, then you may wish
to give permission for the stored procedure or view to a specific individual to give the necessary granularity.

Whether some applications will build ad hoc T-SQL may be dependent on options selected in a GUI. The
T-SQL-built code is then verified within the application to ensure that it does not contain an SQL injection, and is
passed to the database for execution. This does not fit into the stored procedures or views model, and you therefore
need to ensure that the most granular level of access is defined to give this login the minimum rights required to
achieve its goal. Although the easiest and quickest way to provision SQL server is to allow all levels of permissions to
all users, this is actually the biggest mistake you can make.

An SQL injection is where ad hoc SQL is built within an application legitimately, but someone has appended or
replaced their own SQL via some area that allows user-entered information. This can happen via several methods, but
one method is where an application has a user-entry field and a value from that field is used as part of the query, quite
often used as part of the WHERE clause. If someone entered T-SQL code that would complete the WHERE clause in the
user-entry field that performed an UPDATE or DELETE, then this is where an SQL injection has occurred; someone has
injected destructive SQL into your SQL. You need to ensure that this sort of injection is blocked.

All of these security areas are database-based, but one area of security that is important is to hide the connection
details of the application’s connection to your database. This can be achieved via basic or complex encryption of the
details. Windows authentication does reduce the need to encrypt details, as this is quite a secure method, but if you
offer mixed-mode authentication, then you must encrypt any database user and password you use.

Never store a clear text user and password. There is example code on my web site, which you can use to encrypt
and decrypt a password, along with instructions on what you should change to ensure that the encryption values are
secure for you. The main point is that you should never store connection details anywhere as clear text. The details
within the book are clear text for ease of reading, although they are invalid outside the scope of this book.

Caution ■ do as i say, not as i do.

Now that the main security items have been refreshed and new application security issues addressed that need to
be considered when developing an application, it’s time to look at connecting to your data via different methods.

Chapter 19 ■ ConneCting via Code

595

Connecting with Excel or Excel Visual Basic for Applications (VBA)
The simplest and quickest tool in this chapter to access your data is Excel. By completing a handful of clicks, you can
connect to your database, choose a specific table, or execute a stored procedure, and the data will be returned and
placed within an Excel workbook and data displayed ready to send out. This is why Excel is a quick and easy tool and
used by so many users and developers for reporting purposes.

You can connect to SQL Server using several methods, but the two that this chapter will concentrate on are
through the Data ribbon and Visual Basic for Applications, commonly known as VBA. Using the Data ribbon, there
are also a number of different methods to connect to SQL Server from different options on the ribbon. These will be
demonstrated within the example shortly, but these first few statements show the flexibility of Excel and the security
dangers that can exist.

When saving the Excel workbook, the credentials used to access SQL Server are stored, allowing you or anyone
with the right tool on their computers the potential to refresh their data almost instantly if required. But keep in mind
the security implications: if you are using mixed-mode authentication, you could have someone who you don’t want
refreshing the data. In this instance, you would remove the data connection details.

By storing the connection details within the workbook, anyone who gains access to the Excel file could run
the code or even execute their own code by editing what was stored, as I just mentioned. If you have Windows
authentication, then you may have already locked down the tables so that the user trying to access your SQL Server
can’t. This is standard developer practice. With SQL Server/mixed-mode authentication, security becomes more
open, and anyone in the world could end up with your Excel sheet and potentially access your server and database.
If you must use authentication that is not Windows authentication, then you must lock down your database objects
tightly and, if possible, remove the connection details from the Excel sheet and get them provided either by a prompt
or some other external method. I realize that this is the third or fourth time I have mentioned this point in very quick
succession, but it can be the largest hole in your security if you don’t get it right.

It is now time to look at using Excel to connect to your database and work with your data. The exercise is split into
two parts, with the first part of the example using the Data ribbon and the second part using Excel VBA.

Using Excel with the Data Ribbon
The first example will use the Data ribbon. This is a ribbon that exists within Excel for connecting to external data
sources, and in the example you will be connecting to the ApressFinancial database. It’s time to dive into the next
“Try It Out” exercise.

trY It OUt: CONNeCtING VIa eXCeL 2013

1. Start excel 2013, create a new blank workbook, select the data ribbon, and then from the
options in the ribbon select Connections, as shown in Figure 19-1.

Figure 19-1. Selecting the Excel Connections option within the workbook

Chapter 19 ■ ConneCting via Code

596

3. You will now see a new dialog that lists connections that exist on your computer, as well
as connections that are known on the network. at this point, i have no known connections,
as shown in Figure 19-3. if a connection existed, you could highlight it and click add, or
you click “Browse for more...” to search for it. this scenario will exist after the end of the
exercise, when you will have created a connection for the workbook, and therefore you could
add this connection in a subsequent worksheet in which you were working with the data.
You also need to click “Browse for more...” to create a new connection.

Figure 19-2. Displaying any existing connections

2. this then displays a dialog that details all the connections that this excel workbook has
contained within it. at present there are no connections, and so the list is empty, as shown in
Figure 19-2. Click add.

Chapter 19 ■ ConneCting via Code

597

4. the next screen you will see is shown in Figure 19-4, where you can select a data source
that excel doesn’t know about, or in this instance you can click the new Source... button.
this is what is required, so click that button now.

Figure 19-3. Displaying the known local and network connections

Figure 19-4. Searching for other connections or creating a new source

Chapter 19 ■ ConneCting via Code

598

5. From the dialog that is displayed, you can select Microsoft SQL Server from the options, as
shown in Figure 19-5. once selected, click next.

Figure 19-5. Microsoft SQL Server data connection selected

Figure 19-6. Defining your SQL Server server and instance and connection method

6. the next dialog allows you to enter the database server and instance name. in Figure 19-6, you
will see i have entered my server and the APRESS_DEV1 instance name. i have also selected
Windows authentication. enter your details, and click next.

Chapter 19 ■ ConneCting via Code

599

Note ■ the main connection issues surround the server name being incorrectly typed. this should be the same value
as the connection dialog in SSMS.

7. if your connection is successful, the next dialog in the wizard lists the databases that are
found on the server. Select ApressFinancial, as shown in Figure 19-7.

Figure 19-7. Choosing the correct database

8. once the database is selected, you see a list of the tables and views that the account has
access to, as shown in Figure 19-8. as you are connecting to the database with your login,
which is a sysadmin server role, you will see all the objects. For this example, you will display
the data from the view vw_SharePrices. once you have chosen your table or view, click next.

Chapter 19 ■ ConneCting via Code

600

Tip ■ Figure 19-8 demonstrates why you must lock down tables and views correctly. the login being used can
access tables directly, which is something you may not want. For example, if FAT-BELLY-SONY\MSmith was connecting
to ApressFinancial via excel, then he would see only the CustomerDetails.Customers table and no views.

9. Figure 19-9 shows the .odc file that holds your database connection file name, and it allows you
to place a description against that file. this is the final dialog in the wizard; therefore, click Finish.

Figure 19-9. The file name and description for the connection

Figure 19-8. Tables and views that can be used to display data

Chapter 19 ■ ConneCting via Code

601

10. the wizard will close, and the connection will be added to the Workbook Connections
window, as shown in Figure 19-10. it is possible to have more than one connection in a
workbook, and therefore any further connections would also be listed here. highlight the
connection, and click properties.

Figure 19-10. All the connections defined for the Excel workbook

11. You should now see the screen as shown in Figure 19-11. the bottom half of the properties
concerns oLap (analysis Services systems). the default options on the Usage tab are
acceptable as you will not be refreshing the data on a timed basis or when the workbook
is opened.

Chapter 19 ■ ConneCting via Code

602

12. the three options of interest are as follows:

Enable background refresh • : the excel screen will retrieve the data in the background. You
will see a spinning world while the data is being brought back. the excel workbook can
accept input while the refresh is occurring.

 • Refresh every ...: the data can be refreshed while the workbook is open at specific periods
of time. if you enable this option, then you need to ensure that you are not putting an
unnecessary strain on SQL Server resources with a complex, long-running query.

 • Refresh data when opening the file: When the workbook is opened, then a refresh of the
data is performed. this is ideal for the start of the day to retrieve any changes completed
overnight.

13. Moving to the definition tab as shown in Figure 19-12, there is some useful information and
some warnings that i discussed prior to the exercise with the name of the connection and
“Command text” text box. Click oK, and then click Close to close the Connection window.

Figure 19-11. Usage options for the connection

Chapter 19 ■ ConneCting via Code

603

14. the options on the definition tab are as follows:

 • Connection type: the type of connection excel will use to connect itself with SQL Server; this
is a specific type for office applications. You will see different types in other sections within
the chapter.

 • Connection file: the file name and location storing the connection details

 • Connection string: the file connection string used by excel to connect to SQL Server

 • Command type: how you are accessing the data; if you were executing a t-SQL command,
you would alter this option to text. You will see these different command types within the
.net try-it-outs.

 • Command text: the command text you will be executing

Tip ■ the connection string will be useful to be aware of in the remaining examples as a reference point.

Figure 19-12. Definition details allowing new command text to be entered

Chapter 19 ■ ConneCting via Code

604

17. You are now presented with the import data screen as shown in Figure 19-15, where you can
define how the data is imported and where it is placed. Clicking properties would take you
back to Figure 19-11. Leave the options as they are, and click oK.

15. You should now be back at the excel workbook. it is possible to get back to the connection
dialog shown in Figure 19-3 by clicking the existing Connections icon, shown in Figure 19-13.
Click the icon.

Figure 19-13. The Existing Connections icon

16. Figure 19-14 shows the connections i have and the existing connection. highlight the top
connection, and click open.

Figure 19-14. Selecting the new connection for use

Chapter 19 ■ ConneCting via Code

605

Figure 19-16. Displaying some of the returned data within Excel

Figure 19-15. How to retrieve the data and where to place it

18. excel will now execute the code in the “Command text” text box from Figure 19-12, and
display the information based on the options in Figure 19-15. excel also adds a filter row and
coloring, as shown in Figure 19-16. there are options in the design ribbon that allow you to
modify the look and feel of the data. You can also move to the data ribbon for further options
such as removing duplicates.

You can now save the excel sheet and send it to your users, and as long as they have Windows authentication
logins to your server and they are users within your database, then they should be able to refresh your data.

Using Excel with the steps demonstrated in the previous exercise is in my opinion the simplest method to retrieve
data for your users. However, it is possible to take this a stage further so that Excel retrieves the data programmatically
and you have the ability to work with the information before placing it in Excel, and this is where VBA can be used.

Chapter 19 ■ ConneCting via Code

606

Using Excel with VBA
In the following exercise you will see how to build Excel VBA code in a module within a workbook. You will extract data
from the worksheet that will be used to insert a row in the database. By having the code in a module rather than a specific
sheet, code is available from all sheets, and this is what you will tend to find most often. You will also find that VBA code
is quite often initiated from an action, whether it is the Excel sheet opening, a value in a cell changing, or a button placed
on a sheet and being pressed. Within the following example, you will step through the code initially within VBA to insert
a customer, and then you will place a button on the sheet and call the routine to insert a second customer.

trY It OUt: CONNeCtING VIa eXCeL VBa

1. First of all, start Microsoft excel and enter data in to the first sheet within the workbook, as
shown in Figure 19-17. Column a details the parameters that the stored procedure will use.
this information is within the sheet for your reference only. Column B holds the values that
will be used for the insertion.

Figure 19-17. The values in the Excel sheet to insert a new customer

Note ■ don’t forget that this is downloadable from apress or from my web site, www.fat-belly.com.

http://www.fat-belly.com/

Chapter 19 ■ ConneCting via Code

607

2. You can get to the visual Basic editor (vB editor) by pressing alt+F11; however, there is a
developer ribbon within excel that would be better to have displayed. From excel click File
and then options, which opens up a dialog. Select Customize ribbon, and from the list box on
the right select developer, as shown in Figure 19-18. once complete, click oK.

Figure 19-18. Selecting the Developer ribbon from the Excel options

Figure 19-19. Visual Basic icon in the Developer ribbon

3. navigate to the developer ribbon so that it is the active ribbon. on the left, there is an icon
labeled visual Basic, as shown in Figure 19-19. Click this icon.

Chapter 19 ■ ConneCting via Code

608

4. excel will open up a new application, the vB editor, and you will see a new application on
your Windows toolbar. the editor should look like Figure 19-20.

Figure 19-20. The VB Editor IDE

5. if you have ever used visual Basic, then the editor is very much like it. on the left in the
project explorer, you will see the three sheets that exist within the workbook and the
workbook itself. these are macro areas for those specific areas. if you have code that is
specific to a sheet, then you would place the code in that sheet. this is not what is wanted in
the example, as the code you will be creating could come from any sheet.

6. a basic excel vBa project will have the basic functionality enabled. Connecting to SQL Server
is extended functionality and is required to be added. From the menu within the vB editor,
select tools ➤ references.

7. a dialog is displayed with a very long list of references. the references listed are extensions
that can be added to a vBa project. Scroll through the list until you find the reference
Microsoft activeX data objects Library, and find the latest version. on my system, this is
version 6.1. Select this as shown in Figure 19-21.

Chapter 19 ■ ConneCting via Code

609

8. there is one last action to perform before you start writing code, and that is to add a module
to the vB editor to write the code into. From the project explorer, ensure that it has the focus,
right-click, and from the pop-up menu select insert ➤ Module, as shown in Figure 19-22.

Figure 19-21. Microsoft ActiveX Data Objects 6.0 Library

Figure 19-22. Inserting a new module into your VBA project

Chapter 19 ■ ConneCting via Code

610

9. Finally you can now enter some code. First of all, you need to define a routine, as it is a
routine that will hold your code. You then have two variables defined, one to hold the ado
connection and one for holding any errors returned from executing the t-SQL code:

Sub InsertData()
 Dim dbConnection As New ADODB.Connection
 Dim anError As ADODB.error

10. the next statement is to define the connection string. one of two nonobvious parameters is
the provider, which defines the method of connection to the database, and in this instance
you are using the SQL Server–specific oLedB data provider. the final parameter defines that
you are using Windows authentication.

sConnString = "Provider=SQLOLEDB;" + _
 "server=FAT-BELLY-Sony\APRESS_DEV1;" + _
 "database=ApressFinancial;Integrated Security=sspi"

11. the default for vBa code is that you don’t need to define a variable before using it.

12. now that you have your connection string defined, open the connection between the vBa
code and SQL Server.

dbConnection.Open (sConnString)

13. the next step builds up the SQL to execute. this is achieved by building up a string
containing the stored procedure and each parameter.

 sSQL = "CustomerDetails.apf_InsertCustomer "
 sSQL = sSQL + "@CustTitle=" + IIf(Len(Trim(Str(Range("B1").Value)) > 0) _
 And Range("B1").Value <> Empty, Str(Range("B1").Value), "NULL")
 sSQL = sSQL + ", @FirstName=" + IIf(Len(Trim(Range("B2").Value) > 0) _
 And Range("B2").Value <> Empty, "'" + Range("B2").Value + "'", "NULL")
 sSQL = sSQL + ", @CustInitials=" + IIf(Len(Trim(Range("B3").Value) > 0) _
 And Range("B3").Value <> Empty, "'" + Range("B3").Value + "'", "NULL")
 sSQL = sSQL + ", @LastName=" + IIf(Len(Trim(Range("B4").Value) > 0) _
 And Range("B4").Value <> Empty, "'" + Range("B4").Value + "'", "NULL")
 sSQL = sSQL + ", @AddressLine1=" + IIf(Len(Trim(Range("B5").Value) > 0) _
 And Range("B5").Value <> Empty, "'" + Range("B5").Value + "'", "NULL")
 sSQL = sSQL + ", @AddressLine2=" + IIf(Len(Trim(Range("B6").Value) > 0) _
 And Range("B6").Value <> Empty, "'" + Range("B6").Value + "'", "NULL")
 sSQL = sSQL + ", @AddressLine3=" + IIf(Len(Trim(Range("B7").Value) > 0) _
 And Range("B7").Value <> Empty, "'" + Range("B7").Value + "'", "NULL")
 sSQL = sSQL + ", @TownOrCity=" + IIf(Len(Trim(Str(Range("B8").Value)) > 0) _
 And Range("B8").Value <> Empty, Str(Range("B8").Value), "NULL")
 sSQL = sSQL + ", @ZipCode=" + IIf(Len(Trim(Range("B9").Value) > 0) _
 And Range("B9").Value <> Empty, "'" + Range("B9").Value + "'", "NULL")
 sSQL = sSQL + ", @USState=" + IIf(Len(Trim(Str(Range("B10").Value)) > 0) _
 And Range("B10").Value <> Empty, Str(Range("B10").Value), "NULL")
 sSQL = sSQL + ", @AccountTypeId=" + IIf(Len(Trim(Str(Range("B11").Value)) > 0) _
 And Range("B11").Value <> Empty, Str(Range("B11").Value), "NULL")
 sSQL = sSQL + ", @ClearedBalance=0"

Chapter 19 ■ ConneCting via Code

611

14. a new line in vB/vBa is generated by the use of an underscore.

15. it is now possible to execute the SQL to insert the new customer:

dbConnection.Execute (sSQL)

16. once the code has been executed, it will either succeed or fail. a failure could be that a
parameter is incorrectly named, the stored procedure doesn’t exist, or the account running
the query does not have the permissions. if an error has occurred, then the errors collection
will be populated and you can inspect the collection count.

If dbConnection.Errors.Count > 0 Then

17. any errors come in a collection, and to navigate a collection, you need to use a For Each.
any errors found will be printed out to the immediate window for you to inspect. Close the
loop, close the If, and close the subroutine.

 For Each anError In dbConnection.Errors
 Debug.Print ("An error has occurred executing the following ")
 Debug.Print (sSQL)
 Debug.Print ("The error is...")
 Debug.Print (anError.Description)
 Next
 Else
 Debug.Print ("Record inserted")
 End If
End Sub

18. to see any output from the routine, whether it is the errors or that the record has been
successfully entered, you need to have the immediate window displayed, which is not
displayed by default. this is remedied by selecting from the menu in the vB editor, view ➤
immediate Window, as shown in Figure 19-23.

Figure 19-23. Displaying the Immediate window within the VB Editor

Chapter 19 ■ ConneCting via Code

612

19. Finally it’s time to run the code. the two requirements that enable you to avoid problems
with the code used here are to ensure that the excel sheet that has the data to insert has the
focus and that the routine in the vB editor has focus. Within the vB editor, you should have
the standard toolbar, and there is a run icon that looks the same as the execute button in
SSMS. it is highlighted in Figure 19-24. Click run or press F5.

Figure 19-24. Run button

Figure 19-25. A successful insertion of a new customer

20. providing you have no errors, you should see that the record is inserted, as shown in
Figure 19-25. any errors would be displayed in the same window.

21. one area where you may have problems is a typing error within the data in Figure 19-17
causing a type Mismatch error.

These are two of the most common methods of working with data in Excel. You will find many jobs that look for
Excel VBA, and some of these will look for SQL Server access. My experience is that this is a good set of skills to have
under your belt, and using Excel via the Developer ribbon is a quick method as a developer to get data out to your
users that they can then pivot.

Caution ■ always keep in mind that, although there is a link between the vBa code and excel sheet, the vB editor is a
different ide to excel and therefore all code needs to be saved in the vB editor. Saving the excel sheet will not save your
vBa code.

Excel is a good tool, and you have seen how simple it is to work with SQL Server. All other development tools are
just as straightforward to connect to SQL Server. The next tool you will look at is Visual Studio using VB.NET and C#.

Visual Studio
Although you can use Notepad or a third-party tool, the best way to develop a .NET solution is by using Visual Studio
or Visual Studio Express. Visual Studio full version (Professional and upward) comes with extra functionality over the
Express edition, as you would expect, but the Express edition is more than ample to get you started. Before working with
the examples, you can either download the relevant Express edition language of choice or follow the examples, or if you
have the full paid edition, you can set up the environment to replicate the development language you will use most.

Chapter 19 ■ ConneCting via Code

613

You can follow and work the examples using any edition. However, if you have the full edition, then when you
install you will be asked which language you wish to set Visual Studio to. I have the full edition, and this is what is
demonstrated within the examples; my language of choice is C#. This means that when Visual Studio starts and you
use it for new projects, the templates shown by default will be for Visual C#, as shown in Figure 19-26. If you download
the Express Edition, then you will want the Express Edition for Windows Desktop.

Figure 19-26. Template Explorer if you have chosen the Visual C# setup at install time

Note ■ at the time of writing the book, visual Studio 2010 professional was used.

If you have the Express edition, then things are a bit simpler. The number of templates is fewer, and the number
of default project types that can be built is fewer as the Express Editions are built for specific areas of development to
make them lightweight. Figure 19-27 shows the page that will be displayed when using Visual C# and you are creating
a new project (as you will see within the examples).

Chapter 19 ■ ConneCting via Code

614

Before I take you through some code, there is some terminology to go through first.

Terminology
This section has some of the basic terminology and what it means for .NET. This isn’t a full list, and in fact it is quite
limited, but these are terms that are good to know for the following examples.

•	 Class: A construct that allows you to create an object or reference methods that are
logically linked

•	 Module: An object similar to a class but more restricted than a class; it holds the code that can
be executed to achieve a goal.

•	 .NET libraries: A combination of one or more classes that are built as an executable that can be
used to extend functionality of another executable

•	 Imports (VB.NET)/using (C#): Statements commonly known as a namespace; they are
directives used in VB.NET or C# programs, respectively, to import a .NET reference library to
be used in that class. It works as a “code shortcut” so that you don’t have to qualify it each time
you want to use something from it.

Note ■ as readers may read just the section on the technology they want to use, you may see some information
repeated in each section.

VB.NET
The first language within Visual Studio that you will explore is VB.NET. In this example, you will build a console
application that will execute a stored procedure with a parameter as input. A console application is one that runs and
outputs information in a command prompt.

Figure 19-27. Visual C# Express new project template options

Chapter 19 ■ ConneCting via Code

615

trY It OUt: rUNNING a paraMeterIZeD StOreD prOCeDUre
USING VB.Net

1. Start visual Studio, and from the menu select File ➤ new ➤ project, or from visual Basic
express select new project from the Start page.

2. From the new project dialog, ensure the visual Basic templates node in the installed
templates explorer is expanded, and select Windows if you are using visual Studio. From
the list of templates in any visual Studio version, select Console application, as shown in
Figure 19-28 (taken from visual Studio professional). You may find your installed templates
slightly differ depending on the language chosen while installing visual Studio, and they will
differ in the express edition, but the Console application will be there.

Figure 19-28. Selecting Visual Basic Console Application

3. give the solution a name, in this instance ReturnAValue, and navigate to a location that you
want to hold your code. the solution name will prepopulate with the value in the name text
box; leave it as it is. You should have at the bottom of your new project dialog the values as
shown in Figure 19-29. Click oK.

Chapter 19 ■ ConneCting via Code

616

4. after a moment, visual Studio should look like Figure 19-30 no matter what edition you use.
the large screen on the left is the code window, and the explorer on the right is Solution
explorer, detailing the contents of your visual Studio solution.

Figure 19-29. Naming the Visual Basic Application

Figure 19-30. Visual Studio detailing the code for the Module1.vb

5. it is time to add the directives, mentioned earlier, to the code to qualify code used for the
access. add the System.Data and System.Data.SqlClient namespaces into the code in the
Module1.vb. Both of these namespaces live in the System.Data library. the code at the start
of Module1.vb should now look like Figure 19-31.

Chapter 19 ■ ConneCting via Code

617

6. after the SqlClient is imported, within the main subroutine you will test that one and only
one parameter is passed to your application. if this is not the case, then an error will be
printed to the console.

Imports System.Data.SqlClient
Module Module1
 Sub Main(ByVal args() As String)
 If args.Length <> 1 Then
 Console.WriteLine("Invalid arguments. You only need 1 argument")
 Return
 End If

7. the Sub statement defines a subroutine, which is a set of commands and statements
that perform a set of actions. the information between the curved brackets is known as
parameters. the Sub Main() in the following code is defined as the entry point for your
program and is the first line of code that will be executed. Using args() as the parameter
indicates that parameters can be passed into your program.

8. the next line of code will define a variable as a string, and the string will be the connection
details to SQL Server. the connection string will contain the name of the server, instance,
database, and that you are using Windows authentication.

Dim connectionString As String = _
 "Server=FAT-BELLY-Sony\APRESS_DEV1;" + _
 "Database=ApressFinancial;Trusted_Connection=True;"

9. if you want to use SQL Server authentication, then the connection string would be something
like the following with your own User and Pwd:

Dim connectionString As String = __
 "Server=FAT-BELLY-Sony\APRESS_DEV1;" + _
 "Database=ApressFinancial;Trusted_Connection=False;" + _
 "User=MySQLServerLogin;Pwd=T3st!t;"

Figure 19-31. Importing the SqlClient

Chapter 19 ■ ConneCting via Code

618

10. You now need to define a variable that will create and hold the connection object that has the
connection details within it. the connection is created but has not been opened at this point.

Dim databaseConnection As SqlConnection =
 New SqlConnection(connectionString)

11. it is now possible to open the connection between your code and the database so that you
can execute some t-SQL.

databaseConnection.Open()

12. to execute code, you need to create a variable that will hold an SQL command object. the
command object will hold the text to execute, which in this case is the parameter passed into
your program. the SQL command object also needs to know which connection object to use
as you could have multiple connections to different servers open.

Dim tsqlCommand = New _
 SqlCommand(args(0), databaseConnection)

13. a command object could be one of three different types: plain text, the name of a table, or
a stored procedure. in this instance, although you are executing a stored procedure, it could
also be plain text that is passed in.

tsqlCommand.CommandType = CommandType.Text

14. the SQL code can now be executed and the value returned. By using the ExecuteScalar
method, you are indicating to the SqlClient ado.net driver that you are interested only
in the first value returned. if the stored procedure returned more than one column of
information, all other columns would be ignored. the returned value is placed into a variable.
as you don’t know the type of data returned, even a NULL value, place it into an Object data
type, which can be tested and transposed as required.

Dim returnedValue As Object = tsqlCommand.ExecuteScalar()

15. the first test is to see if the value returned is a NULL value. if it is, then convert the value to a
string so that it can be displayed.

If IsDBNull(returnedValue) Then
 returnedValue = "NULL"
End If

16. You can now output the value to the command prompt console with instructions on how to
finish execution by pressing the enter key.

Console.WriteLine("The returned value is " + returnedValue.ToString())
Console.WriteLine("Press <ENTER> to continue")
Console.ReadLine()

Chapter 19 ■ ConneCting via Code

619

17. once you are finished, you close the connection. For efficiency, you can move the following
code to be placed immediately after the code in point 12.

databaseConnection.Close()

18. the final lines of code close the subroutine and the module. the code is now complete.

 End Sub
End Module

19. While testing and debugging the code within visual Studio, it is possible to define parameters
to be passed in at the time of execution. this is achieved by selecting the project menu and
then the name of the project, which in this case is returnavalue properties..., as shown in
Figure 19-32.

Figure 19-32. Navigate to the project properties

20. You are now presented with a screen with all of the properties of the project. You need to
move to the debug tab, as shown in Figure 19-33. You will also see in the figure a stored
procedure and value, which is the parameter to the stored procedure, in the Command Line
arguments text box. this is the value that will be passed in to the args() parameter in the
main subroutine. as there is only one parameter, you need to surround the information with
double quotation marks. once you are happy, click oK.

Chapter 19 ■ ConneCting via Code

620

21. the command-line arguments would be as follows:

"CustomerDetails.apf_CustClearedBalance 2"

22. there is a stored procedure to add to apressFinancial for this example. enter and execute the
following code:

CREATE PROCEDURE [CustomerDetails].[apf_CustClearedBalance]
 @CustomerId int
AS

BEGIN

SELECT ClearedBalance
 FROM CustomerDetails.Customers
 WHERE CustomerId = @CustomerId

END

23. You can now execute your code by pressing F5. a command prompt should be displayed, the
stored procedure executed, and the cleared balance returned, as shown in Figure 19-34.

Figure 19-33. Project properties with the command line entered

Chapter 19 ■ ConneCting via Code

621

24. What has happened is that visual Studio has executed your program, and because you are
outputting information to the console via the Console.WriteLine statement, visual Studio
will create a command-line console and output the information you have requested. What
follows is an alternative execution method.

25. You can also execute your code outside of visual Studio. You can do with this one of several
methods, but i will show you how to run the code from a command prompt. Within Windows
7, click the Windows Start button. then in the text box that is displayed above the Start
button, type cmd and press enter as shown in Figure 19-35, or in Windows 8 find the
Command prompt app.

Figure 19-34. Running the code and displaying the returned value

Figure 19-35. Starting the command prompt

26. From the command prompt, you can either run the code or navigate to where the code was
compiled by visual Studio. When building the solution, i gave you the name of the solution,
and then the project. the compiled code is then placed in the bin subfolder and then either
the Release or Debug subfolder. the following code will change the directory to my Debug
folder location.

Cd C:\Users\Robin\Documents\Visual Studio 2010\Projects\ReturnAValue\ReturnAValue\bin\Debug

Chapter 19 ■ ConneCting via Code

622

27. You can now run the executable with the parameter as before, as shown in the following code.

ReturnAValue.exe "CustomerDetails.apf_CustClearedBalance 2"

28. Figure 19-36 shows the change of directory, then the code being executed, and finally the
result displayed.

Figure 19-36. Running the code external to Visual Studio

29. press the enter key to complete the execution.

and that’s your first vB.net application complete.

You may still be a little daunted by the foregoing code, but I hope that is not the case. The main points to take
away are how to connect to SQL Server and to execute a stored procedure and return a value. If you have found this
interesting, then take a look at C#, which is next.

C#
Working with C# has similarities with working with VB.NET, in that you are using Visual Studio, and the logic for
achieving the results is the same. It is purely the syntax that differs, at least in the case of our example. Don’t be
fooled, though, into thinking that for more complex development this statement is true for all code, as it is not. There
are differences between the two languages when you are developing more intricate code, but I have avoided this by
keeping the examples simple.

Many VB.NET developers are those that have come from VBA or Visual Basic 6, but with C#, developers will have
many different backgrounds such as Java, C++, and Delphi, as well as any of the foregoing.

In the following example, you will use Visual Studio to build a C# console application that will run a
parameterized stored procedure called CustomerDetails.apf_CustBalance.

trY It OUt: rUNNING a paraMeterIZeD QUerY USING C#

1. Start visual Studio, and from the menu select File ➤ new ➤ project.

2. From the new project dialog, ensure the visual C# templates node in the installed templates
explorer is expanded, and select Windows. From the list of templates, select Console
application, as shown in Figure 19-37. You may find your installed templates slightly differ
depending on the language chosen while installing visual Studio.

Chapter 19 ■ ConneCting via Code

623

3. give the solution a name, in this instance RunAParameterizedStoredProcedure, and
navigate to a location that you want to hold your code. the solution name will prepopulate
with the value in the name text box; leave it as it is. You should have at the bottom of your
new project dialog the values similar to those as shown in Figure 19-38. Click oK.

Figure 19-37. Selecting Visual C# Console Application

Figure 19-38. Giving the application a name

4. after a moment, visual Studio should look like Figure 19-39. You will have an explorer on the
left, called toolbox, which is unpinned and therefore minimized. the middle screen is the
code window, and the explorer on the right is Solution explorer, detailing the contents of your
visual Studio solution.

Chapter 19 ■ ConneCting via Code

624

5. to access a SQL Server database, you need to load into the solution a .net library that has
code built that will perform the low-level link between your code and the database. visual
Studio will have completed this automatically with the type of project, and you can check this
in the references node in Solution explorer, which you can expand as shown in Figure 19-40.

Figure 19-39. Visual Studio detailing the code for Program.cs

Chapter 19 ■ ConneCting via Code

625

6. it is time to bring in the directives to the code to qualify code used for the access. add the
System.Data and System.Data.SqlClient namespaces into the code in Program.cs. Both
of these namespaces live in the System.Data library. the code at the start of Program.cs
should now look like Figure 19-41.

Figure 19-40. Visual Studio detailing the code for Program.cs

Figure 19-41. The full set of namespaces imported

Chapter 19 ■ ConneCting via Code

626

7. there are three variables that will be used to hold the returned values from the stored
procedure. good practice is to define them at the top of your code. in this instance, they are
required only within the Main method, and so they will be defined there. the code will now
look like the following:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Data;
using System.Data.SqlClient;

namespace RunAParameterizedStoredProcedure
{
 class Program
 {
 static void Main(string[] args)
 {
 string clearedBalance = "";
 string unClearedBalance = "";
 string returnValue = "";

8. the next stage is to define a variable with the connection details to the SQL Server database.
the following connection details are for a Windows authentication. For the Server parameter,
you have to define the server and the instance.

try
{
 string connectionString = @"Server=FAT-BELLY-Sony\APRESS_DEV1;" +
 "Database=ApressFinancial;Trusted_Connection=True;";

9. the @ sign is a C# indicator that allows \ to be included in the string. a \ in C# is an escape
character, and without the @ sign then you would need to place double \\ for a single \ to
exist in the string.

10. now that you have the connection string, you can create a new database connection that will
link your application to SQL Server using the connection settings. Like vB.net, the connection
is not yet open at this point.

SqlConnection databaseConnection = new SqlConnection(connectionString);

11. You can now open the connection between the two.

databaseConnection.Open();

Chapter 19 ■ ConneCting via Code

627

12. once the connection is open, you can execute the t-SQL code. in this instance, it will be the
CustomerDetails.apf_CustBalance stored procedure.

 SqlCommand tsqlCommand = new
SqlCommand("CustomerDetails.apf_CustBalance",databaseConnection);

13. this time, unlike the vB.net example, you will explicitly define the command as a stored
procedure, as you want to inspect the return value parameter, which is the first parameter.

tsqlCommand.CommandType = CommandType.StoredProcedure;
tsqlCommand.Parameters.Add("ReturnValue", SqlDbType.Int);
tsqlCommand.Parameters[0].Direction = ParameterDirection.ReturnValue;

14. the second parameter is the customer id, which is an input parameter.

tsqlCommand.Parameters.Add("@CustomerId", SqlDbType.Int);
tsqlCommand.Parameters[1].Direction = ParameterDirection.Input;
tsqlCommand.Parameters[1].Value = 2;

15. the stored procedure has two output parameters, one for the cleared balance and one for the
uncleared balance. these are defined next.

tsqlCommand.Parameters.Add("@ClearedBalance", SqlDbType.Money);
tsqlCommand.Parameters[2].Direction = ParameterDirection.Output;
tsqlCommand.Parameters.Add("@UnclearedBalance", SqlDbType.Money);
tsqlCommand.Parameters[3].Direction = ParameterDirection.Output;

16. as no data that form a result set are returned from the query, only parameter values, you
would execute the stored procedure as a nonquery.

tsqlCommand.ExecuteNonQuery();

17. once the code is executed, you can inspect the relevant parameters to retrieve the returned
values.

 clearedBalance = tsqlCommand.Parameters[2].Value ==
DBNull.Value ? "NULL" : tsqlCommand.Parameters[2].Value.ToString();
 unClearedBalance = tsqlCommand.Parameters[3].Value ==
DBNull.Value ? "NULL" : tsqlCommand.Parameters[3].Value.ToString();
 returnValue = tsqlCommand.Parameters[0].Value ==
DBNull.Value ? "NULL" : tsqlCommand.Parameters[0].Value.ToString();

18. it is now possible to close the connection as the values are held in local variables.

databaseConnection.Close();

Chapter 19 ■ ConneCting via Code

628

19. You then have some error handling code but also the ability to display the returned values.

}
catch (Exception exc)
{
 Console.WriteLine("Problems running the T-SQL" + exc.Message);
}
Console.WriteLine("The return values are " +
 "Cleared Balance = " + clearedBalance +
 " Uncleared Balance = " + unClearedBalance +
 " Returned Value = " + returnValue);

20. the final lines of code will hold the command prompt screen open until the enter key is
pressed.

Console.WriteLine("Press <ENTER> to finish....");
Console.ReadLine();

21. if you now press F5, this will execute the code. a command prompt should be displayed with
the results from Customer id 2, as shown in Figure 19-42.

Figure 19-42. The code executed and a command prompt displayed

22. You can achieve the same by executing the compiled exe. the location is based on the folder
location, the solution, and the project name when you created the project at the start of the exercise.

C:\Users\Robin\Documents\Visual Studio 2010\Projects\RunAParameterizedStoredProcedure\
RunAParameterizedStoredProcedure\bin\Debug\RunAParameterizedStoredProcedure.exe

So that’s Visual Studio with VB.NET and C# examples completed. Visual Studio and the .NET languages are
the best tools and environments to work with SQL Server as you might expect, as they are Microsoft technologies.
However, you can use non-Microsoft technologies, and in the next section you will see how another extremely popular
development language can be used via Java.

Chapter 19 ■ ConneCting via Code

629

Java
Java was one of the languages used as a base when Microsoft came to develop C# and is used quite widely for server-
side development within firms, especially financial firms. However, Java is more commonly connected to Oracle and
Sybase rather than SQL Server in my experience, but the combination of Java to SQL Server does exist. Part of the
reason was that connecting to SQL Server from Java had no specific driver and had to use a general ODBC driver. This
led to several issues, and therefore the take-up was low.

Connecting to a SQL Server database can be achieved through a Java ODBC connection, which over time
has been improved, or you can connect through the Microsoft driver known as SQLJDBC. = This will need to
be downloaded from Microsoft and extracted for this section of the chapter. If you are connecting via Windows
authentication, as demonstrated in the example, you will also require an authorization library. This will also be part of
the demonstration in the following example.

Tip ■ i will have on my web site links to the locations to download the latest software.

Java and C# have a number of similarities, such as the use of the semicolon as an end-of-line delimiter, the use
of namespaces known as packages in Java, the syntax, and statement structures, allowing the learning curve between
C# and Java to be less than if you switched to other languages. However, one difference between these two languages
surrounds accessing and retrieving data. Sadly all data retrieved is returned as a record set, and therefore you have to
read around the record set even to retrieve a scalar value.

Like .NET you can use an integrated development environment to build your solutions, or you can use Notepad
and a command-line prompt to compile and run your code. There are several IDEs around, such as NetBeans, but in
this book I will use Eclipse.

The following example will connect to the ApressFinancial database, call a new stored procedure called
CustomerDetails.apf_CustClearedBalance, which accepts the customer ID as an input parameter, and return the
cleared balance as a scalar value. To run this example, you need to have done the following:

Downloaded and installed a Java runtime•	

Downloaded and extracted Eclipse•	

Downloaded and extracted the SQLJDBC driver•	

trY It OUt: retUrNING a SCaLar VaLUe USING JaVa WIth eCLIpSe

1. First of all, the stored procedure to return a scalar value needs to be built, if you have not already
built the stored procedure when looking at the examples for other development languages in this
chapter. enter and execute the following code in SQL Server Management Studio.

CREATE PROCEDURE CustomerDetails.apf_CustClearedBalance
 @CustomerId int
AS
BEGIN
 SELECT ClearedBalance
 FROM CustomerDetails.Customers
 WHERE CustomerId = @CustomerId
END

Chapter 19 ■ ConneCting via Code

630

2. eclipse should have been downloaded and extracted somewhere on your computer.
the location doesn’t really matter as it is self-contained. i have a specific folder for my
downloads, and within this i have my eclipse installation, as shown in the code here. Find
your location and start eclipse.

C:\Users\Robin\Downloads\eclipse-standard-luna-R-win32-x86_64\eclipse\eclipse.exe

3. eclipse should start and ask for the name of a workspace. this is just somewhere for the
projects in your solution to be stored. the location doesn’t matter, but the final folder i have
called ReturnAScalarValue. the full path i used follows, and you can see in Figure 19-43
how this looks. Click oK.

C:\Users\Robin\Workspace\ReturnAScalarValue

Figure 19-43. Defining the workspace for the Java project

4. You are now presented with eclipse opened and a Welcome tab, as shown in Figure 19-44.
Close this tab by clicking the cross next to Welcome.

Chapter 19 ■ ConneCting via Code

631

5. You are now presented with an empty development environment not too dissimilar to visual
Studio and SQL Server Management Studio. at the moment, you have an empty workspace
and therefore you need to create a Java project to build the example. From the menu, select
File ➤ new ➤ Java project, as demonstrated in Figure 19-45.

Figure 19-44. The Welcome screen that can be closed

Figure 19-45. Creating a new Java project

6. this will start a new Java project wizard, where you need to enter a project name and select
the Java runtime engine (Jre) to use. i have used the same name as the workspace, but
this is not mandatory. the example also uses the 1.7 Jre version. the name and the default
options, which are the options you should use, are shown in Figure 19-46. Click next.

Chapter 19 ■ ConneCting via Code

632

7. You can develop for earlier and later versions. if you develop for a Java version prior to 1.5,
be sure you use the version-appropriate Jar file mentioned in the following paragraph.
Click next.

8. the next stage of the wizard is to inform eclipse of other projects you want to use and the
order of how those projects would be built, but for this example you need to let eclipse
know of any external libraries to use when compiling the code. if you are using a Jre of 1.5
or above, then you would need to add sqljdbc4.jar in the next step, otherwise it will be
sqljdbc.jar. You will have downloaded and extracted these earlier.

9. to add the relevant jar, select the Libraries tab and click add external Jars..., navigate to
where sqljdbc4.jar exists, select it, and click oK. it should now be loaded and visible, as
shown in Figure 19-47. Click Finish.

Figure 19-46. Ability to enter details for a new Java project

Chapter 19 ■ ConneCting via Code

633

10. You now have an eclipse ide with a few items in package explorer, which is similar to
visual Studio Solution explorer. You now need to add a class for your program code. From
the project returnaScalarvalue in package explorer, right-click, select new, and then Select
Class, as shown in Figure 19-48.

Figure 19-47. Adding the SQL JDBC library

Figure 19-48. Selecting the option to create a new class

Chapter 19 ■ ConneCting via Code

634

11. You are now presented with the new Java Class window. the source folder will remain the
same, and the package will remain blank. in the name field, name the class “main” as this is
the main program. You can call it by a different name if you wish, but you should select the
first option from the check boxes within “Which method stubs would you like to create?”.
the third option should already be selected. Figure 19-49 shows the class i generated. When
you are happy, click Finish.

Figure 19-49. Detailing the new Java class and indicating that it is the main point of entry

12. a new file is added to package explorer, but before you start entering code, there is one more
library that needs to be added, and this library allows for a Windows authentication connection
to your SQL Server database. it is not possible to add this prior to this point, as it forms part of
the runtime environment and a class is required to exist before you can add the library.

13. From the toolbar in eclipse, you will see a bug-like icon, which is the run as debug option.
Click the black down-pointing arrow next to open the drop-down menu shown in Figure 19-50.
From the menu, select debug Configuration...

Chapter 19 ■ ConneCting via Code

635

14. You will now see a screen where you can define configuration details for your package. as
you are building a Java application, either highlight Java application from the options on the
left and click the new icon from the toolbar above the options, as shown in Figure 19-51, or
just double-click the Java application option. You will now have a debug configuration for
your package.

Figure 19-50. Creating the debug configuration

Figure 19-51. Defining that the debug configuration is a Java application

15. Within the configuration, you can define runtime arguments. You can also define a runtime
change to your CLASSPATH within Windows if you need eclipse at runtime to find libraries
external to eclipse. For this package, you need to select the arguments tab and add the
following path to the virtual machine (vM) arguments, as shown in Figure 19-52, which is the
path where sql_auth.dll resides. this .dll is part of the SQLJdBC download. Click apply
and then click Close.

-Djava.library.path=C:\Users\Robin\Downloads\JDBCDriver\sqljdbc_4.0\enu\auth\x64

Chapter 19 ■ ConneCting via Code

636

Note ■ a virtual machine (vM) is a platform-independent execution environment that is used to run your Java code.

16. You are now ready to start entering the code for the application. eclipse should look
something like Figure 19-53, with the main.java class open, ready for coding.

Figure 19-52. Detailing the virtual machine arguments for the Windows authentication .dll

Figure 19-53. The start of your Java code

Chapter 19 ■ ConneCting via Code

637

17. the first line of code will be inserted as the first line prior to the public class main line. the
import statement is used to import a Java package into your class, similar to using an import
in .net. this will import the SQL package that is used to build the SQL code statements.

import java.sql.*;

18. Within the main class, you will define three variables for the returned data, the database
connection, and the SQL to execute. these variables are added to the main Java class and
the main() method.

public class main {
 /**
 * @param args
 */
 public static void main(String[] args) {
 // TODO Auto-generated method stub

 ResultSet returnedData = null;
 Connection databaseConnection = null;
 PreparedStatement prepStatement = null;

19. the main() method is the default way to start a Java application.

20. the code used to access and work with SQL Server is surrounded with a try...catch block.
after this is defined, you define your connection string to your SQL Server, the instance,
the database, and that you are using Windows authentication. the first option defines that
Jre should use the SQL Server JdBC driver.

try {
String connString = "jdbc:sqlserver://FAT-BELLY-Sony\\" +
 "APRESS_DEV1;databaseName=ApressFinancial;" +
 "integratedSecurity=true";

21. Moving to the next line, you are required to inform the Jre to dynamically load the JdBC
driver at runtime. this is the sqljdbc4.jar.

Class.forName("com.microsoft.sqlserver.jdbc.SQLServerDriver");

22. the dot notation name is the full package name for the driver. once you start building
larger Java applications, you will develop a package hierarchy, which traditionally but not
mandatorily will start with com, then your organization, the top-level package, and then down
through the project hierarchy.

23. the next step is to create a database connection using the connection string defined in step 15.

databaseConnection = DriverManager.getConnection(connString);

Chapter 19 ■ ConneCting via Code

638

24. You now define the stored procedure to execute with a ? at the end for the input parameter.
if you had more than one parameter, you would separate each parameter with a comma.

String sqlToExecute = "CustomerDetails.apf_CustClearedBalance ?";

25. it is possible to execute code against a database using one of two methods. For this example,
i will use the prepareStatement method against the connection, which takes the SQL and
prepares it for parameters and then to execute against SQL Server.

prepStatement = databaseConnection.prepareStatement(sqlToExecute);

26. now that you have the prepared statement built, you can define the values for the
parameters. You would use one of several methods, depending on the data type to pass
across. as CustomerId is an integer, you need to use setInt and then define the parameter
number, in this case 1, and then the value. i have chosen to output the value from
CustomerId 2.

prepStatement.setInt(1, 2);

27. once the parameters are defined, you can execute the query against the database.

returnedData = prepStatement.executeQuery();

28. if you recall, Java returns either no data or a data record set of data. the next steps are to
loop around the data, output the returned value, and print the result to the console. any errors
will be caught in the catch. the final actions are to clean up and to remove the memory used
for the record set, the prepared SQL, and finally the connection.

while (returnedData.next()) {
 System.out.println("The return value was " + returnedData.getString(1));
}
}
catch (Exception e) {
 e.printStackTrace();
}
finally {
 if (returnedData != null)
 try {
 returnedData.close();
 }
 catch(Exception e) {}

 if (prepStatement != null)
 try {
 prepStatement.close();
 }

Chapter 19 ■ ConneCting via Code

639

 catch(Exception e) {}
 if (databaseConnection != null)
 try {
 databaseConnection.close();
 }
 catch(Exception e) {}
}
}
}

29. Your code is now complete, and all the options to execute the code have been defined. You
can now step through your code by clicking the debug icon you saw earlier at the start of the
exercise, which will start the main class. a dialog will appear saying you will be switching
modes. Click oK. Your code should now run through, and you will see eclipse now looking like
Figure 19-54, with the result of the stored procedure call in the Console window.

Figure 19-54. Eclipse in Debug mode

eclipse is now in debug mode, as indicated in the top right of the screenshot, where the debug toolbar button
is highlighted. You can switch back to Java mode by clicking the toolbar button next to debug. You can also put
breakpoints in the bar to the left of the code and step through the code as you can with visual Studio.

Chapter 19 ■ ConneCting via Code

640

As you will have noticed, there is a great deal of similarity between Java with Eclipse and either VB.NET or C#
with Visual Studio. There are differences, of course, but there are a lot of similarities, and therefore if you know one
technology, picking up the other from a “server side” of development is not difficult.

Note ■ Client-side development differs greatly between Java and .net, and i believe .net is by far the superior
tool to use.

Summary
So you are now at the end of the book and should be feeling confident in working with SQL Server from installation
through developing for it. This chapter saw the final piece of the jigsaw, where you could now connect and execute
code against a SQL Server database from one of several different languages and tools.

Excel is an excellent basic reporting tool and ideal for retrieving results quickly and efficiently in a well-formatted
manner to your users. If you combine this with VBA code, you can perform a huge range of actions, and there are
companies that purely use Excel with VBA as their interaction with a database. It’s not perfect in some respects, but
users love Excel, and as a developer you can get a front end built and ready in minutes.

However, many of you will turn to .NET and Visual Studio. This is my tool of choice for developing solutions
against SQL Server and is the tool that is tuned most efficiently to work with the data. .NET is a powerful complex
framework that provides you as a developer with an almost unending set of tools to perform high-performance,
low-latency, multithreaded tasks from server to client side, and it is a route that I recommend you explore if you want
to become more than a pure SQL Server developer.

Finally you were introduced to Java. For me Java is a very mature language and is found everywhere. Knowing
Java is a good basis to move into mobile computing—for example, game development or one of a thousand different
avenues. However, it is not so well tuned for SQL Server, which is why you more often find Java used with Oracle or
Sybase. However, Microsoft is putting time and effort into this language as it can run on more than Windows, such as
Linux, and being able to connect to SQL Server via the Linux operating system opens up a whole new world.

Taking all of these languages and working through examples of each should give you a flavor of what is possible
and how you can move forward. Remember that every “Try It Out” exercise is available for download for each
development language.

Good luck with SQL Server—it is a wonderful database gaining in strength and functionality all the time, and as
a SQL Server developer, using the skills learned in this book as a good grounding, you will be able to build database
solutions that can reach around the globe.

A���������
ADD CONSTRAINT command, 322
AdventureWorks2014 database, 536
AdventureWorksDW database, 45
AdventureWorks sample database, 534
ALTER command, 186
ALTER TABLE command

ADD CONSTRAINT syntax, 317
DateAdded column, 317
default value in Query Editor

ADD CONSTRAINT command, 322
AmountToCollect column, 317
AmountToCollect constraint, 321
CHECK constraint, 317
Check Constraints dialog box, 320
CK_CustProd_LastColl constraint, 322
CK_CustProds_AmtCheck, 317, 321
CustomerDetails.CustomerProducts table, 317–318
CustomerFinancialProductId column, 317–318
DEFAULT value constraint, 317
GETDATE() function, 320
LastCollection constraint, 320–322
Manage Check Constraints button, 319
NOCHECK option, 317
Object Explorer, 318
primary key, 317
Renewable column, 319
SSMS, 318
Table Designer toolbar, 319

ALTER TABLE statement, 151
American National Standards Institute (ANSI), 26
AmountToCollect column constraint, 317, 320
AmountToCollect constraint, 321
Analysis Services, 9
ANSI. See American National Standards Institute (ANSI)
ANSI-92 SQL standard, 2
Application security, 594
ASCII() function, 492

Atomicity, consistency, isolation,
and durability (ACID) test, 324

Attaching database
definition, 249
SSMS

locate database files, 252–253
login, 254
options, 252
pagefile.sys file, 254
tempfiles folders, 254

T-SQL
ATTACH_REBUILD_LOG, 255
CREATE DATABASE command, 255
execution, 257
FILENAME parameters, 257
msdb databases, 254
server connections, 256
SET SINGLE_USER command, 257
straightforward, 255

Authentication mode
Administrators group, 22
mixed mode, 23
Windows authentication mode

account type, 20
failed login, 21
logins, 22
trusted connection, 19
Users Accounts screen, 20

AutoSys, 266

B���������
BEGIN…END block, 425
BEGIN…END statement, 438
BEGIN TRAN command, 326
B-Tree, 165–166
Buffer cache, 215
Bulk-Logged Recovery model, 212
Business Intelligence (BI) system, 3, 48

Index

641

C���������
Candidate key, 55
CASE statement

ClearedBalance, 442
decision-making process, 441
parts and syntax, 441
searched output, 443
simple statement output, 442
specific value, 442
value computation, 441
WHEN clause, 441

CAST()/CONVERT() function, 502
CAST string function, 352
CHAR() function, 493
CHECK constraint, 317, 322
CHOOSE() statement, 501
@ClearedBalance variable, 435
Client Tools Connectivity, 10
Clustered index, 168
COLUMNPROPERTY function, 459
COLUMNS_UPDATED() function

bit value, 582
power() function, 583

COMMIT TRAN command, 326, 328
Common table expression (CTE)

AdventureWorks sample database, 534
recursive, 536
temporary table, 534

CONCAT() function, 497
Constraints, 304
Correlated subquery, 527
COUNT/COUNT_BIG, 474
CREATE DATABASE command, 255
CREATE INDEX syntax

ASC keyword, 181
CLUSTERED/NONCLUSTERED keyword, 180
column keyword, 181
CREATE keyword, 180
DESC keyword, 181
DROP_EXISTING clause, 182
DROP_EXISTING keyword, 181
IGNORE_DUP_KEY keyword, 181
INDEX keyword, 180
index_name keyword, 180
ON filegroup, 181
ON table keyword, 180
SORT_IN_TEMPDB keyword, 181
UNIQUE keyword, 180
view object, 180

CREATE PROCEDURE statement
AS keyword, 425
BEGIN_END block, 425
ENCRYPTION, 425
execution, parameters, 424

execution, procedure cache, 425
naming convention, 423
naming parameters, 424
OUTPUT parameters, 424
RECOMPILE option, 425
@ sign parameter, 424
sp_ prefix, 423
syntax, 423, 425

CREATE VIEW
encrypting view, 411
ENCRYPTION option, 411
Query Editor pane, 412–413
SCHEMABINDING

customers product, 414
knock-on effect, 411
T-SQL, 414
vw_CustFinProducts view, 415
WITH SCHEMABINDING clause, 415

SELECT statement, 411–412
T-SQL syntax, 410
VIEW_METADATA option, 411
WITH CHECK OPTION, 411–413

CTE. See Common table expression (CTE)
CurrentPrice field, 309
CustomerDetails.CustomerProducts table, 317
CustomerDetails.Customers table, 171, 175, 308, 314,

323, 425
CustomerFirstName column, 313

D���������
Database backups

attaching database (see Attaching database)
considerations, 218
detaching database (see Detaching database)
disaster-recovery scenarios, 211
failure, 215
in-memory tables, 216
manual backup (see Manual SQL Server backup)
nonproduction system, 211
offline, 216
offsite location, 211
recovery models, 212
restoring database (see Restoring database)
strategy decisions, 213
transaction log (see Transaction log)
T-SQL (see Transact SQL (T-SQL))
types, 212

Database design and creation
building relationships (see Database relationship)
definitions, 44
documentation, 51
external and ignored information, 54
financial program, 50
normalization (see Normalization)

■ index

642

pre-built
AdventureWorks and AdventureWorksDW, 48
master, 46
model, 47
msdb, 48
tempdb database, 46

recorded information
customer addresses, 52–53
customers, 52–53
financial products, 52–53
financial transaction, 54
shares, 52
stock share, 54
transactions, 52

SQL Server Management Studio
Autogrowth, 71–72
Database Files list box, 67
dropping database (see Dropping database)
Filegroup, 70
Full-Text Indexing, 69
general settings, 68
model system database, 71
Object Explorer, 66, 76
Options page, 72, 74
primary data file, 69
PRIMARY filegroup, 71
query pane (see Quary pane)
recovery model (see Recovery model)
register, 65
secondary data files, 69
selecting New Database, 67
start up, 65
transaction log file, 70

system type
BI/OLAP, 49
OLTP, 48

T-SQL scripts
ALTER DATABASE statement, 78
CONTAINMENT = NONE argument, 77
CREATE DATABASE command, 78
CREATE DATABASE T-SQL statement, 77
Customer database, 77
GO statements, 78
IF statement, 78
Invoicing database, 77
master database, 76
NULL values, 78
SET ALLOW_SNAPSHOT_ISOLATION OFF, 81
SET ANSI_NULL_DEFAULT OFF, 78
SET ANSI_NULLS OFF, 79
SET ANSI_PADDING OFF, 79
SET ANSI_WARNINGS OFF, 79
SET ARITHABORT OFF, 79
SET AUTO_CLOSE OFF, 79
SET AUTO_SHRINK OFF, 79

SET AUTO_UPDATE_STATISTICS_ASYNC OFF, 81
SET AUTO_UPDATE_STATISTICS ON, 80
SET CONCAT_NULL_YIELDS_NULL OFF, 80
SET CURSOR_CLOSE_ON_COMMIT OFF, 80
SET CURSOR_DEFAULT GLOBAL, 80
SET DATE_CORRELATION_OPTIMIZATION

OFF, 81
SET DB_CHAINING OFF, 83
SET DISABLE_BROKER, 81
SET HONOR_BROKER_PRIORITY OFF, 82
SET MULTI_USER, 82
SET NUMERIC_ROUNDABORT OFF, 80
SET PAGE_VERIFY CHECKSUM, 83
SET PARAMETERIZATION SIMPLE, 82
SET QUOTED_IDENTIFIER OFF, 80
SET READ_COMMITTED_SNAPSHOT OFF, 82
SET RECOVERY FULL, 82
SET RECURSIVE_TRIGGERS OFF, 81
SET TRUSTWORTHY OFF, 81
USE statement, 76

Database diagramming
default diagram, 190
documentation, 189
modification, 195
physical and logical attributes, 189
SQL server designer, 190
toolbar, 193
useful and easy tool, 189

Database Engine Tuning Advisor (DTA), 174
Database-level locking, 326
Database maintenance

database mail
account profile and details, 296–297
configuration, 289–290
error notification, 289
final configuration screen, 296
mail profile, 289
MAPI client, 288
new profile and system parameters, 290
pop-up menu option, 289
profile name and description, 291
public and private profiles, 293–294
SMTP account addition, 292–293
SMTP account details, 291–292
SMTP mail, 288
sp_configure, 291
system parameters, 294
test e-mail, 297

planning
ad hoc/on-demand plan, 267
ANSI NULLS test, 279
AutoSys, 266
Auto Update Statistics database option, 279
back up database (differential), 266
back up database (full), 266

■ index

643

back up database (transaction log), 266
check database integrity, 266
cleaning up the history, 270
clean up history, 266
database backup, 272–273
database corruption, 265
database selection, 273–274
database shrinking, 275–276
DBCC CHECKDB, 274
execution, 287
extended stored procedures, 266
integrity check, 275
log file viewer, 288
maintenance cleanup task, 266, 280–281
management studio, 286
modification, 298
Object Explorer, 268
options, 271
options order, 272
plan completion, 282–283
pop-up menu option, 287
rebuilding index, 266, 277–278
reorganizing index, 266, 276–277
reports, 281–282
schedules, 268
server configuration and reconfiguration, 267
services option, 284
shrink database, 266
single maintenance plan, 265
sp_configure statements, 268
SQL Server Agent, 285–286
SQL Server Agent job, 266, 279–280
SSIS, 265
synchronous/asynchronous task, 267
tempdb, 267
transaction log backup, 274
updating statistics, 266, 278–279
wizard, 268

Database relationship
candidate key, 55
foreign/referencing key, 55
primary key, 55
referential integrity, 56–57
types

foreign key, 60
many-to-many relationship, 59
one-to-many relationship, 58
one-to-one relationship, 57

unique constraint, 56
Data Definition Language (DDL) trigger

database-level events, 586
database-scoped events, 586
server scope, 586

Declarative Management Framework, 585
down roundings, 585
dropping, 587
EVENTDATA(), 588
hidden account, 585

Data Directories tab, 14
Data insertion

column constraints
ALTER TABLE command (see ALTER TABLE

command)
database integrity, 316
data validation, 316
DateAdded column, 316
non-key-based constraint, 316

DBCC CHECKIDENT, 315
INSERT SQL statement (see INSERT SQL statement)
multiple records insertion, 323
T-SQL INSERT statement syntax, 304

Data Manipulation Language (DML) trigger
automated audit trail, 568
columns checking

COLUMNS_UPDATED() function
(see COLUMNS_UPDATED() function)

UPDATE() (see UPDATE() function)
constraints, 570
creation of, 569
data validation, 568
deleted and inserted tables, 571
FOR/AFTER trigger

ALTER TRIGGER command, 575
balance reduction, 573
financial transaction, 572
noncash transaction, 574
NULL value, 575
TransactionDetails.Transactions_old

table, 575–576
UPDATE CustomerDetails.Customers, 572

SOX, 568
TRUNCATE TABLE T-SQL command, 569

Data Quality Client, 10
Data Quality Services, 9
Data ribbon

Excel 2013
code execution, 605
connection details display, 596
connection options selection, 595
database selection, 599
Definition tab, 602
existing connections icon, 604
filename and description, 600
Import Data screen, 604–605
local and network connections, 596–597
Microsoft SQL Server selection, 598
new connection selection, 604

■ index

644

Database maintenance (cont.)

new source creation, 597
server and instance name, 598
tables and views, 599–600
usage options, 601–602
workbook connections window, 601

Excel VBA code
Developer ribbon, 607
Immediate window, 611
Microsoft ActiveX Data Objects Library, 608
new module insertion, 609
record insertion, 612
Run button, 612
SQL Server–specific OLEDB data provider, 610
values and insertions, 606
variables, 610
VB Editor, 608

DateAdded column, 316
DateClosed column, 315
DATEDIFF() function, 485
DATEFROMPARTS(), 487
DATENAME(), 485
DateOpened column, 308, 312
DATEPART(), 486
DATETIME2FROMPARTS(), 489
DATETIMEOFFSETFROMPARTS() function, 490
Debugging

Breakpoint hit function, 565
breakpoints, 557
Call Stack window, 557
code development, 556
commands, 557
debug toolbar options, 560
first breakpoint, 563
Locals screen, 561
local window, 558
options, 558
output window, 557
pop–up window, 564
Query Editor window, 559
second breakpoint, 564
SSMS, 556
two breakpoints, 560
Watch window, 558

Declarative Management Framework (DMF)
conditions, 117
facets, 117
policies, 117
policy management

condition creation, 118–119
evaluation window, 123
object browser, 120
online database, 119
policy creation, 118
properties, 121–122
testing, 122

DECLARE statement, 469
DEFAULT value constraint, 317
DELETE statement

BEGIN TRAN statement, 328
COMMIT TRAN statement, 328
data selection, 328
deleting records

BEGIN TRAN, 331
COUNT(*) function, 329
rollback tran code, 331
rolled back, 329, 332
SELECT statements, 331
ShareDetails.SharePrices, 332
sp_who lists, 330
transaction, 330
TransactionDetails.Transactions table, 329

ROLLBACK TRAN statement, 328
SQL Data Generator, 328

Deleting data
DELETE statement (see DELETE statement)
DROP TABLE statement, 334
TRUNCATE TABLE statement, 333

Denormalization, 64
Description field, 309
Detaching database

definition, 249
SSMS

eliminating connections, 251
Object Explorer, 250
Query Editor pane, 250

T-SQL
ATTACH_REBUILD_LOG, 255
CREATE DATABASE command, 255
execution, 257
FILENAME parameters, 257
msdb databases, 254
server connections, 256
SET SINGLE_USER command, 257
straightforward, 255

Distributed Replay Client, 10
Distributed Replay Controller, 10
DML. See Data Manipulation Language (DML)
DROP command, 186
DROP CONSTRAINT command, 185
DROP_EXISTING clause, 182
DROP INDEX statement, 185
Dropping database

Delete Object dialog, 85
failed database deletion, 86
sa account, 87
sysadmin, 87
technical details, 87

DROP PROCEDURE command, 432
DROP TABLE statement, 334
Dynamic Management View (DMV), 188

■ index

645

E���������
Encrypt stored procedures, 423
EOMONTH(), 491
Error handling

aggregation
AVG, 477
COUNT/COUNT_BIG, 474
definition, 474
distinct values, 481
grouping data, 478
HAVING clause, 480
MAX/MIN data, 476
SUM, 476

@@ERROR
error number, 513
message number, 514
Messages tab, 513
multiple statements, 513
Results tab, 513
severity, 514
variable setting, 513–514

functions
ASCII(), 492
career development, 482
CASE statement, 499–500
CAST()/CONVERT(), 502
CHAR(), 493
CHOOSE(), 501
DATEADD(), 483
DATEDIFF(), 484
DATEFROMPARTS()/

SMALLDATETIMEFROMPARTS(), 487
DATENAME(), 485
DATEPART(), 486
DATETIME2FROMPARTS(), 489
DATETIMEOFFSETFROMPARTS(), 490
EOMONTH(), 491
FORMAT(), 487
GETDATE()/SYSDATETIME(), 492
ISDATE(), 503
ISNULL(), 505
ISNUMERIC(), 506
LEFT(), 494
LOWER(), 494
LTRIM(), 495
PARSE/TRY_PARSE(), 508
RIGHT(), 496
RTRIM(), 496
STR()/CONCAT(), 497
SUBSTRING(), 498
TIMEFROMPARTS(), 488
TRY_CONVERT(), 507
UPPER(), 499

RAISERROR command
developer, 509
error message, 509
msg_str, 510
parameters, 510, 512
severity level, 510–511
sp_addmessage, 511
syntax, 509
user-defined error

message, 511
WITH options, 511

temporary tables
creation, 472
DROP TABLE command, 473
local and global types, 472–473
name prefixing, 472
populate, 473
Query Editor, 473–474
SELECT INTO statement, 472
transactions, 472
T-SQL statement, 472

TRY CATCH and THROW
block, 514–515
bubbling up error, 515
debugging information, 515
deferred name resolution, 516
foregoing executed code, 520
inner exception handler, 519
Message tab, 520
nested batch, 517
outer catch block, 518
SELECT statement, 519
standard error, 516
stored procedure, 515
syntax, 515
TRANSACTION statement, 515

variable
batches, 471
code execution, 470–471
data query, 471
finite lifetime, 469
GETDATE() and @CurrPriceInCents, 470
local variable, 470
syntax, 469

@@ERROR variable, 181, 470
EVENTDATA()function, 588
EXEC(UTE) command, 431

F���������
FILESTREAM tab, 15
FirstName column, 314
Foreign key, 59
Foreign/referencing key, 55

■ index

646

Full Recovery model, 212
Full-text index files, 255
Full text search, 9

G���������
GetAncestor function, 536
GETDATE() function, 308, 320, 458
GO command, 306
GO statements, 78
GRANT statement, 448
GrossValue column, 459

H���������
HAVING clause, 480
HumanResources.Employee table, 536

I���������
IDENTITY column, 309–310, 313, 315
IF…ELSE statement, 437
IGNORE_DUP_KEY option, 181
IIF() function, 500–501
Indexes

altering index, 186
ClearedBalance column, 188
covering index, 172
creation

B-Tree structure, 179
column selection, 177
CREATE INDEX syntax (see CREATE

INDEX syntax)
CustomerDetails.Customers table, 175
fill factor, 178–179
indexes/keys dialog box, 175–176
IX_Customers_LastNameZip, 176
Manage Indexes and

Keys button, 175
ORDER BY clause, 177
pad index, 178–179
Query Editor, 182
statistics, 179

data in order, 172
definition, 167
dropping index, 185
low-maintenance columns, 171, 187
performance review, 174
primary and foreign keys, 171
query plan, 188
range of information, 172
small table, 174
specific records, 172
table scan, 168
too many columns, 174

types
clustered index, 168
nonclustered index, 169
primary and secondary XML, 168

uniqueness, 170
unsuitable columns, 173
unsuitable data, 173

In-memory tables
cost-based processing, 197–198
creation, 203–204
database backups, 216
definition, 199
DELETE statement, 379
vs. disk-based tables, 199–200
filegroup, 202–203
hardware requirements, 202
hash index

definition, 200
hash bucket, 201–202
SCHEMA_AND_DATA tables, 202

INSERT statement, 379
locking model

ApressFinancial database, 383
disk-based timings, 388
GO statement, 387
isolation level, 382
non-dirty row, 384
non-phantom row, 384
optimistic locking, 380
pessimistic locking, 380
querytimeout, 380
READ COMMITTED SNAPSHOT, 385
REPEATABLE READ isolation, 382
repeatable row, 384
ROLLBACK TRAN, 386
row versioning, 380–381
row-version value, 384–385
SCHEMA_AND_DATA-based timings, 388
SELECT statement, 389–390
SERIALIZABLE isolation, 382
SNAPSHOT isolation, 382
table creation, 386–387
TransactionDetails.Transactions, 386
transaction level, 380
transaction value, 383

MERGE statement
code execution, 391
row insertion, 392
SELECT statement, 391
source table, 391
target table, 390, 392

migration
IX_CustTransDate index, 206
IX_Transactions_TType index, 208–209
Migration Optimization Advisor, 205–206

■ index

647

new and old table, 210
nonclustered index, 208
options, 207
progress screen, 209
TransactionDetails.Transactions table, 206

operating system, 202
SELECT statement, 379
TRUNCATE TABLE statement, 393
UPDATE statement, 379

INSERT SQL statement, 304, 328
default values, 308
NULL values

column selection, 308
ShareDetails.Shares table, 308
SSMS (see SQL Server Management Studio (SSMS))
StockExchangeTicker, 308
T-SQL, 313

Query Editor, 305
T-SQL

code execution, 307
GO command, 306
NULL value, 308
SET command, 306
SET QUOTED_IDENTIFIER OFF, 307
ShareDetails.Shares table, 305
template scripts, 307
transaction-based commands, 306
VALUES, 305

INSERT statement, 304, 328
Integration Services, 10
ISDATE() function, 503
IsDeterministic property, 460
ISNULL() function, 505
ISNUMERIC() function, 506
IsPrecise property, 460
IsSystemVerified property, 460
IX_Customers_LastNameZip, 176

J, K���������
Java, scalar value

cleared balance, 629
code execution, 629
code insertion, 636
connection string, 637
debug configuration, 634–635
Debug mode, 639
Eclipse installation, 630
Java Runtime Engine, 631
main() method, 637
new Java class, 634
Package Explorer, 633
prepareStatement method, 638
project creation, 631

record set, 638
sqljdbc.jar, 632
SQL JDBC library, 632
virtual machine, 636
welcome screen, 630
workspace, 630

Java Runtime Engine (JRE), 631–632

L���������
LastCollection constraint, 320–322
LastName column, 314
LEFT() function, 494
LEFT string function, 352
LIKE operator

case sensitivity, 358
customer row search, 358
customers with q, 359
error message, 359
pattern matching, 357
string operators, 357–358

Local area network (LAN), 26
Local system account, 18
Logical log truncation, 213
Logical modeling, 61
LOWER() function, 494
LTRIM() FUNCTION, 495

M���������
Manual SQL Server backup

Check Media Set Name option, 222
checksum processing, 222
compression level, 223
database dialog box, 220
default destination, 219
destination folder, 221
directory set, 219
Erase All Existing Backup Sets option, 222
expiry date, 219
file name and suffix, 221
full, differential, and transaction log options, 220
Media Options tab, 221
New Media Set, 222
Options tab, 223
output, 224
penultimate area, 223
reliability, 222
second and subsequent backups, 222
SQL Server Express Edition, 224
SSMS, 220
transaction log, 222

Master Data Services (MDS), 11
MaximumSharePrice, 526
Media set, 227

■ index

648

In-memory tables (cont.)

model database, 47
msdb database, 218–219
MSmith database

ApressFinancial database, 450
Apress_Product_Controllers access, 451
ClearedBalance access, 457
Column Permission screen, 456
db_owner server role, 450
permission execution, 454
potential permission, 453
roles and search, 452
row deletion, 457
SELECT statement, 457
user search, 452
Windows group, 455

N���������
Natively compiled stored procedure

CREATE PROCEDURE statement
BEGIN keyword, 465
DELAYED_DURABILITY, 465
execution, 466
SCHEMA_AND_DATA table, 466–467
SCHEMA_ONLY table, 467–468
session setting, 465
SNAPSHOT isolation level, 466
standard stored procedures, 464
WITH NATIVE_COMPILATION, 465

definition, 463
limitations, 464
T-SQL statements and functions, 464

Native mode configuration, 16
Nested transactions, 325, 368–370
Nested trigger, 568
Nonclustered index, 169, 187
Normalization

denormalization, 64
logical modeling

avoid repeating values/columns, 62
information storage, 62
unique identifier, 62

normal forms
first normal form, 62
second normal form, 63
third normal form, 63

O���������
OBJECTPROPERTY function, 459
Online Analytical Processing (OLAP) system, 48
Online Transaction Processing (OLTP) system, 48
Oracle, 2
ORDER BY clause

DESC option, 355
execution, 355

NULL values, 355
OFFSET and FETCH NEXT options, 354, 356–357

P���������
PARSE/TRY_PARSE() function, 508
PIVOT data, 538
Primary key, 55

Q���������
Query pane

COLLATE, 89
containment, 89
CREATE DATABASE command, 88
database name, 89
DROP command, 90
Execute Query toolbar button, 88
FILEGROWTH, 89
file name, 89
FILENAME, 89
initial size, 89
logical name, 89
LOG ON keyword, 89
model database, 90
New Query selection, 88
ON keyword, 89
ON parameter, 90
T-SQL script, 88
T-SQL statement, 90
USE command, 90

R���������
RAISERROR T-SQL command

example, 512
parameters, 510

Ranking functions
column grouping, 543
DENSE_RANK, 543, 547
NTILE, 543, 548
RANK, 543, 546
ROW_NUMBER

ascending number, 544
data breaking, 544
Execution Plan, 546
IDENTITY-based column, 544
LastName descending order, 545
name order, 545
numbering resetting, 545
sequential integer values, 543

READONLY keyword, 458
RECOMPILE option, 425
Recovery model

Auto Close, 74
Auto Create Statistics, 74

■ index

649

Auto Shrink, 75
Auto Update Statistics, 75
Bulk-Logged, 74
Full, 74
Simple, 74

Recursive CTE, 536
Red Gate Software, 3
Renewable column, 317
Reporting Services, 10, 15
RESEED option, 315
Restoring database

definition, 235
point in time

execution, 245
NORECOVERY mode, 245
Options page, 247–248
STOPAT option, 245, 249
tail-log backup, 244
Timeline button, 246–247
TransactionDetails.TransactionHistory

table, 245, 249
transaction log, 248–249

SSMS
existing database, 236
Files page, 238
General page, 236
General tab, 237–238
location alteration, 239
msdb, 236
Object Explorer, 237
Options page, 239–240
output, 240
prompt message, 237
replication settings, 236
RESTORE WITH NORECOVERY, 237
RESTORE WITH RECOVERY, 236
RESTORE WITH STANDBY, 237
restrict access, 236
ShareDetails.Shares table, 237
tail-log backup, 237
Timeline button, 236

T-SQL
checksums, 241
KEEP_REPLICATION, 242
MOVE, 242
NORECOVERY, 242
RECOVERY, 242
REPLACE, 242
RESTART, 242
RESTRICTED_USER, 242
STANDBY, 242
STOPAT, 242
STOPATMARK, 242
STOPBEFOREMARK, 242

syntax, 241
transaction log, 242

Retrieving data
definition, 336
joining tables

CROSS JOIN, 370, 376–377
definition, 370
FULL OUTER JOIN, 375–376
INNER JOIN, 370–371
LEFT OUTER JOIN, 373
multiple join columns, 372–373
NULL value, 374
parent ID, 371
RIGHT OUTER JOIN, 374–375
ShareDetails.Shares, 372
syntax, 371

LIKE operator (see LIKE operator)
search limitation

BETWEEN condition, 346
DELETE condition, 348
multiple results set, 347
SET ROWCOUNT n, 350
table scans, 348
TOP (n) option, 348
TOP (n) PERCENT, 349
T-SQL SELECT statement, 348
WHERE condition, 345–346

SELECT INTO statement
FROM statement, 360
Query Editor, 360
table creation, 361
temporary table, 360

SELECT statement
ALL DISTINCT option, 338
AS option, 339
asterisk, 339
calculations, 338
Column_alias, 339
column name, 339–340
CustomerDetails.Customers table, 340, 342
execution, 341
expression, 339
friendly column names, 341–342
FROM table name, view

name option, 339
IDENTITY option, 339
ORDER BY clause (see ORDER BY clause)
ORDER BY expression, 339
Query Editor, 340, 343–344
ROWGUID column, 339
SELECT option, 338
syntax, 338
table, view/alias name.* option, 339
TOP/PERCENT/WITH TIES option, 338
WHERE condition, 339

■ index

650

Recovery model (cont.)

SSMS
CustomerDetails Customers table, 336–337
SELECT T-SQL statement, 337
straightforward process, 336
three rows, 337

string functions
CAST, 352
LEFT functions, 352–353
LTRIM/RTRIM, 352
output, 353
RIGHT functions, 352
RTRIM statement, 354

updating data (see Updating data)
RIGHT() function, 496
RIGHT string function, 352
ROLLBACK command, 333
ROLLBACK TRAN command, 326
@@ROWCOUNT variable, 470
Row-level locking, 326
RTRIM() function, 496

S���������
sa login, 23
Sarbanes-Oxley Act (SOX) of 2002, 568
Scalar function, 458
SCHEMABINDING, 414
Security

advantages, 447
ApressFinancial database, 446
data access, 447
database (see MSmith database)
data control, 447
data integrity, 447
disadvantages, 448
GRANT statement, 448
mixed approach strategy, 448
MSmith, 446
object detection, 447
permission, 422
REVOKE statement, 449
settings, 446
T-SQL, GUI, 447

Security and compliance
application roles

banking application, 109
client data, 108
database selection, 110
permission settings, 111
Sales Order application, 108
types, 110

database roles, 107–108
database user account

login screen, 115–116
MSmith, 115

properties, 114
table creation, 116–117

data encryption, 124
DMF (see Declarative Management

Framework (DMF))
fixed server roles, 106–107
schemas, 111

customer details, 112
definition, 112
Object Explorer, 112–113
Query Editor window, 112

server login
ApressFinancial database, 101, 103–104
Apress_Product_Controllers group, 100
computer management, 94
database users, 106
FAT-BELLY-SONY local domain, 97
login access, 101
login status, 102
New Group screen, 95–96
new login creation, 98
password policies, 103
Select User/Group dialog box, 99–100
server language, 104–105
Windows group, 94

SELECT function, 537
SELECT…INTO command, 472
SELECT statement, 478
SELECT T-SQL statement, 337
SET command, 306
SET NUMERIC_ROUNDABORT OFF, 416
SET QUOTED_IDENTIFIER OFF, 307
SET SINGLE_USER command, 257
ShareDetails.SharePrices, 332
ShareDetails.Shares table, 172, 471
ShareId column, 172, 309
Simple Recovery model, 212
SMALLDATETIMEFROMPARTS() function, 487
sp_attach_db stored procedure, 255
sp_configure system stored procedure, 226
SQL Client Connectivity SDK, 10
SQL Data Generator, 328
SQL Server

ANSI-92 standard, 2
Azure, 3
banking and financial transactions, 3
Business Intelligence (BI), 3
Developer edition, 3
Enterprise edition, 3
Express edition, 3
installation

administrative rights, 4
authentication mode, 13
Data Directories tab, 14–15
default instances, 11

■ index

651

distributed replay client, 16–17
error and usage report settings, 17
Feature Selection screen, 8–9, 11
FILESTREAM tab, 15
Installation Center, 5
Microsoft .NET 3.5 Framework, 4
naming instances, 11
Reporting Service database, 15–16
service account selection, 12
Setup Role screen, 7–8
system configuration check, 5–6
tools, 4
trial version, 4
warning messages, 6–7

Microsoft Access, 2
Oracle, 2
security

authentication mode (see Authentication mode)
sa login, 23
services accounts, 18

Standard edition, 3
Sybase, 2
Web edition, 3

SQL Server Database Engine Services, 9
SQL Server Integration

Services (SSIS), 265
SQL Server Management Studio (SSMS)

analysis database, 37
attaching database (see Attaching database)
backward/forward navigation, 38
Central Management

Servers, 30
columns selection, 400–401
combobox, 28
Connection Properties tab, 28
connection time-out, 28
Database Engine Query, 37
Debug menu option, 35–36
detaching database (see Detaching database)
filtering data, 402
graphical interface, 29
GUI tool, 26
identifier, alias, 402
Internet and Cloud computing, 26
LAN, 26
naming view, 405
New Server Registration dialog box, 30
NULL values

CustomerId number, 311
Execute button, 312
invalid data type, 310
NOT NULL, 309
Query Designer toolbar, 312

Object Explorer, 31–32
ORDER BY warning, 406
Query Editor, 26

data manipulation, 38
toolbar options, 39
T-SQL, 38

Registered Servers explorer, 29
restoring database (see Restoring database)
retrieving data, 336
server connection, 27
ShareDetails.Shares, 399
Sort Type columns, 401
sqlcmd, 40
sqlservr.exe, 25
stored procedure

ApressFinancial database, 426
blank template, 426
code, 428
CustomerDetails Customers table, 425
Object Explorer, 429
options filled template, 426–427
parameters, 427–429
passing data, 430

toolbar buttons, 398
Tools menu options, 36
TOP (100) PERCENT clause, 403
T-SQL, 26
view creation, 399
View Designer, 398
View menu options, 33
view properties, 403–405
Visual Studio, 29
WAN, 26

SQL Server Replication, 9
SSMS. See SQL Server Management Studio (SSMS)
Stored procedures

advantage, 422
conditional commands, 445
creation (see CREATE PROCEDURE statement)
data integrity, 422
definition, 422
encryption, 423
error handling and flow control, 421
execution methods, 431
flow control

BEGIN END block, 438
CASE statement (see CASE statement)
complex output, 445
customer's transaction, 443, 445
decision making, 437
IF ELSE statement, 437
@LastTran, 444
SELECT statement, 444
WHILE BREAK statement, 439

■ index

652

SQL Server (cont.)

OUTPUT parameters
contents creation, 434
customer number, 436
DROP PROCEDURE command, 432
generated codes, 434
multiple result set, 436
printed values, 435
return values, 435
table checking, DROP PROCEDURE

command, 433
Template Explorer, 432
template values, 433

query plan, 421
result set, rows, 425
RETURN statement, 431
security (see Security)
sp prefix, 422
SSMS (see SQL Server Management Studio (SSMS))

STR()/CONCAT() function, 497
String functions

CAST, 352
LEFT functions, 352–353
LTRIM/RTRIM, 352
output, 353
RIGHT functions, 352
RTRIM statement, 354

Subqueries
EXISTS clause, 529
IN clause, 528
scalar function, 530
ShareDetails.Shares table

ALTER TABLE code, 527
backup_set_id, 528
MaximumSharePrice, 526
value setting, 527

SUBSTRING() function, 498
SystemDataAccess property, 460

T���������
Tables

ALTER TABLE statement, 151
column definitions

default values, 135
IDENTITY values, 136
unique identifier, 136

data types
bigint, 131
binary, 134
bit, 134
char/nchar, 130
cursor, 135
date, 132
datetime, 132
datetime2, 133

datetimeoffset, 133
decimal/numeric, 131
float, 132
geography, 133
geometry, 133
hierarchyid, 133
image, 131
int, 131
money, 132
real, 132
rowversion, 134
smalldatetime, 133
smallint, 131
smallmoney, 132
sql_variant, 135
text/ntext, 131
time, 133
tinyint, 131
uniqueidentifier, 134
varbinary, 134
varchar/nvarchar, 130
xml, 135

definition, 127
partial address details, 128
primary key, 154
Query Editor

CREATE TABLE syntax, 149
CustomerDetails.Customers table, 147
error messages, 148
Object Explorer, 148
schema_name option, 149
schemaname.tablename, 147
T-SQL code, 148

relationship
adding tables and columns, 158
building, 156
check existing data, 161
columns selection, 158
database/application, 164
Delete and Update rules, 161
foreign key description, 159
Foreign Key Relationships dialog box, 157
INSERT And UPDATE specification, 160
partitioning, 164
save changes, 160
T-SQL, 162

remaining tables, 153
sequences, 137
SQLCMD, 149
SQL Server Management Studio

AccountType and CustomerBalance, 141
Allow Nulls check box option, 139
Column Properties section, 139–140
Customers table, 143
data type, 139

■ index

653

delete, 146
design mode, 145
edit top 200 rows, 145
full-text index, 146
Memory Optimization Advisor, 146
new table, 145
Object Explorer, 144
OtherInitials column, 141
policies/facets, 146
PowerShell scripts, 146
properties, 146
refresh, 146
renames, 146
reports, 146
schema owner, 143
scripting options, 145
select TOP 1000 rows, 145
storage, 146
Table Properties dialog window, 144–145
Tables node, 138
view dependencies, 145

Table variables, 541
TIMEFROMPARTS() function, 488
TransactionDetails.fn_IntCalc, 530
TransactionDetails.Transactions table, 182–183
TransactionDetails.TransactionTypes table, 182–183
Transaction log

buffer cache, 215
checkpoint, 214
committing process, 214
database crash, 232
execution, 234
LOG command, 233
log file, 214
logical log truncation, 213
media set, 234
NORECOVERY/STANDBY command, 233
NO TRUNCATE command, 233
Options page, 234–235
Query Editor pane, 234
rolling back, 214
truncating, 215
T-SQL (see Transact SQL (T-SQL))
wraparound file, 214

Transactions
ACID test, 324
BEGIN TRAN, 326
COMMIT TRAN, 326
data locks, 326
data manipulation, 325
deadlock, 325
deadly embrace, 325
definition, 324
nested transactions, 325
ROLLBACK TRAN, 326

Transact SQL (T-SQL), 26
ANSI padding, 261
attaching database (see Attaching database)
BACKUP DATABASE code, 225
BACKUP DATABASE command

backup_device, 226
BLOCKSIZE, 226
CHECKSUM, 226
COMPRESSION, 226
CONTINUE_AFTER_ERROR, 226
COPY_ONLY, 227
database_name | @database_name_var, 226
DESCRIPTION, 226
DIFFERENTIAL, 226
EXPIREDATE, 226
file_or_filegroup, 226
FORMAT, 227
INIT, 227
MEDIADESCRIPTION, 227
MEDIANAME, 227
MEDIAPASSWORD, 227
MIRROR TO, 226
NAME, 227
NO_CHECKSUM, 226
NOFORMAT, 227
NOINIT, 227
NOREWIND, 227
NOSKIP, 227
NOUNLOAD, 227
PASSWORD, 227
RETAINDAYS, 226
REWIND, 227
SKIP, 227
STATS [= percentage], 227
STOP_ON_ERROR, 226
UNLOAD, 227

change tracking, 263
check constraints, 263
continue scripting, error, 261
convert UDDTs, 261
database engine type, 262
database selection, 258
data compression, 263
descriptive headers, 261
detaching database (see Detaching database)
differential database backup

Management Studio, 229
Media Options page, 229–230
msdb database, 231
new query window, 230
results, 232
TO DISK and NAME options, 230–231

DROP and CREATE script, 262
extended properties, 262
filegroups, 225
foreign keys, 263

■ index

654

Tables (cont.)

FULL DATABASE BACKUP, 228
full-text indexes, 263
generate script, 261
If NOT EXISTS, 262
INSERT SQL statement, 263

code execution, 307
GO command, 306
NULL values, 313
SET command, 306
SET QUOTED_IDENTIFIER OFF, 307
ShareDetails.Shares table, 305
template scripts, 307
transaction-based commands, 306
VALUES, 305

INSERT statement syntax, 304
logins, 262
Management Studio, 224
object-level permissions, 262
primary keys, 263
restoring database

checksums, 241
KEEP_REPLICATION, 242
MOVE, 242
NORECOVERY, 242
RECOVERY, 242
REPLACE, 242
RESTART, 242
RESTRICTED_USER, 242
STANDBY, 242
STOPAT, 242
STOPATMARK, 242
STOPBEFOREMARK, 242
syntax, 241
transaction log, 242

restoring database (see Restoring database)
schema qualify object names, 262
script bindings, 262
script collation, 262
script defaults, 262
script generation, 259–260
script owner, 262
server version, 262
Set Scripting Options screen, 259
source repository, 258
SQL Server Express, 224
statistics, 262
Summary screen, 259
system constraint names, 262
table and view indexes, 263
transaction log backup

database crash, 232
execution, 234
LOG command, 233
media set, 234

NORECOVERY/STANDBY command, 233
NO TRUNCATE command, 233
Options page, 234–235
Query Editor pane, 234

triggers, 263
unique keys, 263
unsupported statements, 262
USE DATABASE script, 263
web service, 260–261

Triggers
definition, 567
DLL (see Data Definition Language (DLL) trigger)
DML (see Data Manipulation Language (DML))

TRUNCATE command, 327
TRUNCATE TABLE statement, 333
Try/Catch command, 181
TRY_CONVERT() function, 507
T-SQL. See Transact SQL (T-SQL)
T-SQL code

APPLY operator
CROSS APPLY, 532
data types, 531
OUTER APPLY, 533

CTE (see Common table expression (CTE))
cursors

cursor_name, 549
development language, 549
DYNAMIC option, 550
fast forward option, 550
forward/SCROLL option, 549
KEYSET option, 550
local/global connection, 549
OF option, 550
optimistic locking, 550
read-only, forward-only cursor, 550–551
scroll locks, 550
SELECT statement, 550
STATIC option, 550
type warning, 550
updatable cursor, 553
update option, 550
working principle, 551

debugging (see Debugging)
PIVOT data, 538
pivoting data, 538
ranking function (see Ranking functions)
sequence

ALTER sequence, 524
CREATE SEQUENCE, 522
CustomerDetails.FinancialProducts table, 522
Object Explorer, 523

subquery (see Subqueries)
table variable, 541
UNPIVOT data, 539

■ index

655

U���������
@UnclearedBalance variable, 435
UNION statement, 536
UNPIVOT data, 539
UPDATE() function, 571

AFTER statement, 577
ClearedBalance, 577
CustomerDetails.Customers table, 577
DateEntered, 580
RAISERROR, 579
TransactionId number, 578
transactions and balances, 579

Updating data
Query Editor

numeric data type, 366
row data information, 363
SELECT statement, 363–364
varchar data type, 365
variable/column information, 364–365
WHERE condition, 366

transaction
common errors, 367
data execution, 367
nested transaction, 368
ROLLBACK TRAN, 367–368
TRUNCATE, 368

UPDATE statement
column information, 362
FROM table source clause, 363
syntax, 362
tablename clause, 362

UPPER() function, 499
UserDataAccess property, 460
User-defined functions (UDFs)

COLUMNPROPERTY function, 459
creation, 457
GrossValue, 459
interest rate default value, 461
OBJECTPROPERTY function, 459
scalar function, 458, 460
table-valued function, 458

V���������
VALUES keyword, 305
@VarTest, 438
View building

CREATE VIEW (see CREAT VIEW)
database security, 396–397
data layer protection, 396
definition, 395
encryption, 397
execution, 409
indexing view

CREATE INDEX statement, 416, 418
definition, 416
Query Editor pane, 417
scripting, 417
SET NUMERIC_ROUNDABORT OFF, 416
SET options, 418
SQL Server, 416

INNER JOIN, 407–408
Microsoft Access, 396
query editor pane, 395
SELECT * statement, 396
ShareDetails schema, 410
share prices, 406, 408
sorting, 408
SSMS (see SQL Server Management Studio (SSMS))
TOP clause, 409
underlying data model, 395

Visual Basic for Applications (VBA)
data ribbon (see Data ribbon)
save function, 595
storage function, 595

Visual Studio Express
C#

cleared and uncleared balance, 627
command prompt, 628
console application, 622–623
customer ID, 627
folder location, 628
name text box, 623
Program.cs, 623–625
return value parameter, 627
Server parameter, 626
@ sign, 626
variables, 626

terminology, 614
VB.NET

code execution, 620, 622
command prompt, 621
connection string, 617
console application, 614–615
Debug folder location, 621
Module1.vb, 616
NULL value, 618
project properties, 619
returned value, 620
SqlClient, 616
SQL command object, 618
Sub statement, 617

Visual C# setup, 613

W, X, Y, Z���������
WHERE clause, 172
WHILE…BREAK statement, 439
Wide area network (WAN), 26

■ index

656

Beginning SQL Server for
Developers

Fourth Edition

Robin Dewson

Beginning SQL Server for Developers

Copyright © 2015 by Robin Dewson

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material
is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval,
electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.
Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material
supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the
purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the
Copyright Law of the Publisher’s location, in its current version, and permission for use must always be obtained from
Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations are
liable to prosecution under the respective Copyright Law.

ISBN-13 (pbk): 978-1-4842-0281-4

ISBN-13 (electronic): 978-1-4842-0280-7

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with every
occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an editorial fashion
and to the benefit of the trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified
as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication, neither
the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may
be made. The publisher makes no warranty, express or implied, with respect to the material contained herein.

Managing Director: Welmoed Spahr
Lead Editor: Jonathan Gennick
Technical Reviewer: Rodney Landrum
Editorial Board: Steve Anglin, Louise Corrigan, Jim DeWolf, Jonathan Gennick, Robert Hutchinson,

Michelle Lowman, James Markham, Matthew Moodie, Jeff Olson, Jeffrey Pepper, Douglas Pundick,
Ben Renow-Clarke, Gwenan Spearing, Steve Weiss

Coordinating Editor: Jill Balzano
Copy Editors: Ann Dickson and April Rondeau
Compositor: SPi Global
Indexer: SPi Global
Artist: SPi Global
Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com, or visit
www.springeronline.com. Apress Media, LLC is a California LLC and the sole member (owner) is Springer
Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Special Bulk Sales–eBook
Licensing web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this text is available to readers at
www.apress.com/9781484202814. For detailed information about how to locate your book’s source code, go to
www.apress.com/source-code/.

http://orders-ny@springer-sbm.com
http://www.springeronline.com
http://rights@apress.com
http://www.apress.com
http://www.apress.com/bulk-sales
www.apress.com/9781484202814
http://www.apress.com/source-code/

As always I dedicate this book to my wonderful family. To my three kids, Cameron, Ellen, and Scott,
who have been brilliant and wonderful and whom I am very, VERY proud of in many ways. And they

are such great kids because they have what can only be termed the best mother kids can have, right there,
helping, loving, and, yes, screaming at them when needed. Julie, I love you more than

I love my Irn-Bru, rugby, and lemon meringue pie . . . and you know how much
that means to me! It is to them this book is wholly dedicated.

—Robin Dewson

vii

Contents

About the Author ��� xix

About the Technical Reviewer ��� xxi

Acknowledgments ��� xxiii

Introduction �� xxv

Chapter 1: Overview and Installation ■ ��1

Why Should I Use SQL Server? ��1

SQL Server Editions ���2

The Example ��3

Installation ���4

Install ��� 4

Setup Role ��� 7

Choosing the Features to Install �� 8

Naming the Instance�� 11

Service Accounts ��� 12

Authentication Mode�� 13

Defining the Data Directories��� 14

FILESTREAM Options ��� 15

Creating the Reporting Services Database �� 15

Distributed Replay Options �� 16

Security ���18
Services Accounts ��� 18

Looking at the Authentication Mode �� 19

The sa Login �� 23

Summary ���24

■ Contents

viii

Chapter 2: SQL Server Management Studio ■ ��25

A Quick Overview of SSMS ��25

Query Editor ��38

sqlcmd ���40

Summary ���41

Chapter 3: Database Design and Creation ■ ���43

Defining a Database ��44

Prebuilt Databases Within SQL Server ��45

master ��� 46

tempdb �� 46

model ��� 47

msdb �� 48

AdventureWorks/AdventureWorksDW ��� 48

Choosing the Database System Type ��48

OLTP ��� 48

BI/OLAP �� 49

Example System Choice �� 50

Gathering the Data ��50

Determining the Information to Store in the Database ��52

Financial Products ��� 53

Customers ��� 53

Customer Addresses �� 53

Shares ��� 54

Transactions �� 54

External and Ignored Information ��54

Building Relationships ���54

Using Keys ��� 55

Creating Relationships ��� 56

More on Foreign Keys �� 59

■ Contents

ix

Normalization ��61

Assign Each Entity a Unique Identifier ��� 62

Store Only Information That Directly Relates to That Entity ��� 62

Avoid Repeating Values or Columns �� 62

Normal Forms �� 62

Denormalization��� 64

Creating the Sample Database ��65

Creating a Database in SQL Server Management Studio �� 65

Dropping the Database in SQL Server Management Studio �� 84

Creating a Database in a Query Pane �� 88

Summary ���91

Chapter 4: Security and Compliance ■ ���93

Logins ��93

Server Logins and Database Users ���106

Roles ���106

Fixed Server Roles ��� 106

Database Roles �� 107

Application Roles ��� 108

Schemas��111

Before You Can Proceed with Your Solution ��113

Declarative Management Framework ���117

Encryption ���124

Summary ���125

Chapter 5: Defining Tables ■ ���127

What Is a Table? ��127

SQL Server Data Types ��129

Table Data Types �� 130

Program Data Types ��� 135

■ Contents

x

Columns As More Than Simple Data Repositories���135

Default Values �� 135

Generating IDENTITY Values �� 136

Uniqueidentifiers for an Identity �� 136

Sequences Instead of IDENTITY ��137

The Use of NULL Values ��� 137

Creating a Table in SQL Server Management Studio ���138

Creating a Table Through Query Editor ��147

Creating a Table: Using SQLCMD ���149

The ALTER TABLE Statement ���151

Defining the Remaining Tables ��153

Setting a Primary Key ��154

Creating a Relationship ���155

Check Existing Data on Creation�� 161

Enforce Foreign Key Constraints ��� 161

Choosing Delete and Update Rules �� 161

Building a Relationship via T-SQL ��162

Relationships: Database or Application ���164

Partitioning ��164

Summary ���166

Chapter 6: Creating Indexes and Database Diagramming ■ ���167

What Is an Index? ��167

Types of Indexes �� 168

Uniqueness �� 170

Determining What Makes a Good Index ��170

Using Low-Maintenance Columns ��� 171

Using Primary and Foreign Keys�� 171

Finding Specific Records ��� 172

Using Covering Indexes ��� 172

■ Contents

xi

Looking for a Range of Information ��� 172

Keeping the Data in Order ��� 172

Determining What Makes a Bad Index ��173

Using Unsuitable Columns ��� 173

Choosing Unsuitable Data �� 173

Including Too Many Columns ��� 174

When There Are Too Few Records in the Table �� 174

Reviewing Your Indexes for Performance��174

Creating an Index ��175

Creating an Index with the Table Designer �� 175

Indexes and Statistics ��� 179

The CREATE INDEX Syntax ��� 180

Creating an Index in Query Editor �� 182

Dropping an Index ���185

Altering an Index ���186

Included Columns ��187

When an Index Does Not Exist ���188

Diagramming the Database ���189

Database Diagramming Basics �� 189

The SQL Server Database Diagram Designer �� 190

The Default Database Diagram �� 190

The Database Diagram Toolbar �� 193

Modifying Your Database Using Database Diagram Designer ��� 195

Summary ���196

Chapter 7: In-Memory Tables ■ ��197

Cost-Based Processing ���197

What Is an In-Memory Table? ��199

Differences to Disk-Based Tables �� 199

■ Contents

xii

In-Memory Indexes and the Hash Index ��200

Hash Buckets ��� 201

General Index Points �� 202

Operating System and Hardware Requirements ���202

Database Requirements Prior to Table Creation ��202

Creating an In-memory Table Using SQL ���203

Migrating to an In-Memory Table ��204

Summary ���210

Chapter 8: Database Backups and Recovery ■ ���211

Backup Strategies ���212

Recovery Models ��� 212

Types of Backups ��� 212

Backup Strategy Decisions �� 213

Transaction Logs ���214

When Problems May Occur ���215

In-Memory Table Backup and Restore ��216

Backups: Taking a Database Offline ��216

Backing Up the Data ��218

Backup Considerations �� 218

Performing a Manual SQL Server Backup ��� 219

Backing Up the Database Using T-SQL �� 224

Transaction Log Backup Using T-SQL �� 232

Restoring a Database ��235

Restoring Using SQL Server Management Studio ��� 236

Restoring Using T-SQL ��� 241

Restoring to a Point in Time ��� 244

■ Contents

xiii

Detaching and Attaching a Database ��249

Detaching and Attaching Using SQL Server Management Studio �� 250

Detaching and Attaching Using T-SQL ��� 254

Producing SQL Script for the Database ���258

Summary ���263

Chapter 9: Database Maintenance ■ ���265

Creating a Database Maintenance Plan ��265

Executing the Plan ���283

Setting Up Database Mail ��288

Modifying a Maintenance Plan ��298

Summary ���301

Chapter 10: Data Insertion, Deletion, and Transactions—Disk-Based ■ ��������������������������303

Inserting Data ��304

The T-SQL INSERT Statement Syntax��� 304

INSERT SQL Statement �� 305

DBCC CHECKIDENT �� 315

Column Constraints ��� 316

Inserting Several Records at Once �� 323

Transactions ��324

Transaction Basics ��� 325

Transaction Commands ��� 325

Locking Data �� 326

Deleting Data ���327

DELETE Syntax ��� 327

Before Demonstrating the DELETE Statement ��� 328

Using the DELETE Statement ��� 328

Truncating a Table �� 333

Dropping a Table �� 334

Summary ���334

■ Contents

xiv

Chapter 11: Selecting and Updating Data from Disk-Based Tables ■ �������������������������������335

Retrieving Data ��336

Using SQL Server Management Studio to Retrieve Data ��� 336

Using the SELECT Statement to Retrieve Data �� 338

Limiting a Search: The Use of WHERE ���345

TOP (n) ��� 348

TOP (n) PERCENT ��� 349

SET ROWCOUNT n �� 350

String Functions ��352

Order! Order! ���354

The LIKE Operator ��357

Creating Data: SELECT INTO ��360

Updating Data ��361

The UPDATE Statement �� 362

Updating Data within Query Editor �� 363

Updating Data: Using Transactions �� 367

Nested Transactions �� 368

Using More Than One Table ���370

Summary ���377

Chapter 12: Working with In-Memory Tables ■ ��379

INSERT, UPDATE, DELETE, and SELECT Statements ���379

Locking and Isolation Levels ���380

MERGE Statement ���390

In-Memory Table Unsupported Functionality ���393

Summary ���393

Chapter 13: Building a View ■ ��395

Why a View? ��396

Using Views for Security �� 396

Encrypting View Definitions ��� 397

■ Contents

xv

Views and In-memory Tables ��397

Creating a View: SQL Server Management Studio���398

Creating a View by Using a View ���406

Creating a View Using T-SQL Syntax ���410

The CREATE VIEW Syntax ��� 410

Creating a View with CREATE VIEW and SELECT�� 412

Binding Columns in a View with SCHEMABINDING �� 414

Indexing a View ���416

Summary ���418

Chapter 14: Stored Procedures, Functions, and Security ■ ��421

What Is a Stored Procedure? ���422

Creating a Stored Procedure ���423

CREATE PROCEDURE Syntax �� 423

Returning a Set of Rows �� 425

Creating a Stored Procedure: Management Studio ��� 425

Different Methods of Execution ��� 431

Returning Results ��431

Using RETURN �� 431

Returning Multiple Result Sets �� 436

Controlling the Flow ��437

IF � � � ELSE ��� 437

BEGIN � � � END ��� 438

WHILE � � � BREAK Statement ��� 439

CASE Statement��� 441

Bringing It All Together ��443

Security ���445

Security Gains �� 445

Granting and Revoking Permissions �� 448

■ Contents

xvi

User-Defined Functions ���457

Scalar Functions �� 458

Table-Valued Functions ��� 458

Considerations When Building Functions �� 459

Summary ���462

Chapter 15: Natively Compiled Stored Procedures ■ ��463

What Is a Natively Compiled Stored Procedure? ���463

CREATE PROCEDURE and Syntax ���464

Summary ���468

Chapter 16: Essentials for Effective Coding ■ ��469

Variables ��469

Temporary Tables ��472

Aggregations ���474

COUNT/COUNT_BIG �� 474

SUM ��� 476

MAX/MIN �� 476

AVG �� 477

Grouping Data ���478

HAVING ��480

Distinct Values ���481

Functions ���482

Date and Time �� 483

String ��� 492

System Functions �� 499

RAISERROR ��509

Error Handling ���512

@@ERROR ��� 512

TRY���CATCH and THROW �� 514

Summary ���520

■ Contents

xvii

Chapter 17: Advanced T-SQL and Debugging ■ ��521

Creating a SEQUENCE ��521

Subqueries ��526

Using Subqueries ��� 526

IN ��� 528

EXISTS ��� 529

Tidying Up the Loose End �� 530

The APPLY Operator ���531

CROSS APPLY ��� 532

OUTER APPLY ��� 533

Common Table Expressions ���534

Using Common Table Expressions ��� 534

Recursive CTE �� 536

Pivoting Data ���538

PIVOT ��� 538

UNPIVOT ��� 539

Table Variables ��541

Ranking Functions ���543

ROW_NUMBER ��� 544

RANK �� 546

DENSE_RANK ��� 547

NTILE ��� 548

Cursors ��549

Debugging Your Code ��556

Debugging Windows �� 557

Debugging Options �� 558

Debugging Pop-Up Window ��� 559

Summary ���566

■ Contents

xviii

Chapter 18: Triggers ■ ��567

What Is a Trigger? ��567

The DML Trigger ��568

CREATE TRIGGER Syntax for DML Triggers��� 569

Why Not Use a Constraint? �� 570

Deleted and Inserted Logical Tables �� 571

Creating a DML FOR/AFTER Trigger ��� 572

Checking Specific Columns ��� 577

DDL Triggers ��585

DDL Database-Level Events ��� 586

Dropping a DDL Trigger �� 587

EVENTDATA() ��� 588

Summary ���591

Chapter 19: Connecting via Code ■ ��593

General Application Security ���594

Connecting with Excel or Excel Visual Basic for Applications (VBA) ��595

Using Excel with the Data Ribbon �� 595

Using Excel with VBA ��� 606

Visual Studio ���612

Terminology ��� 614

VB�NET ��� 614

C# �� 622

Java ���629

Summary ���640

Index ���641

xix

About the Author

Robin Dewson has been hooked on programming ever since he bought his first computer in 1980, a Sinclair ZX80.
His first major application of his own was a Visual FoxPro program that could be used to run a Fantasy League system.
It was at this point he met up with a great help in his PC development life, Jon Silver at Step One Technologies,
where in return for training he helped Jon with some other Visual FoxPro applications. From there, realizing that the
marketplace for Visual FoxPro was limited, he decided to learn Visual Basic and SQL Server.

Starting out with SQL Server 6.5, Robin soon moved to SQL Server 7 and Visual Basic 5, and became involved in
developing several applications for clients both in the UK and in the United States. From there, he has moved through
each version of SQL Server through to the current one. Robin now specializes in databases and C# in both client and
server side coding. Robin can be contacted at robin@fat-belly.com or at www.fat-belly.com.

https://robin@fat-belly.com
www.fat-belly.com

xxi

About the Technical Reviewer

Rodney Landrum went to school to be a poet and a writer. And then he graduated,
so that dream was crushed. He followed another path, which was to become a
professional in the fun filled world of Information Technology. He has worked as a
systems engineer, UNIX and network admin, data analyst, client services director,
and finally as a database administrator. The old hankering to put words on paper,
while paper still existed, got the best of him, and in 2000, he began writing technical
articles, some creative and humorous, some quite the opposite. In 2010 he wrote
The SQL Server Tacklebox, a title his editor disdained, but a book closest to the true
creative potential he sought; he wanted to do a full book without a single screen
shot. He promises his next book will be fiction or a collection of poetry, but that has
yet to transpire.

xxiii

Acknowledgments

In every book there are so many people to thank either for helping with the book, or helping me in my role: Here,
much like an Oscar-winning speech (without the tears), are my expressions of thanks to all those who helped: To
Andrew and all at Host-It.co.uk, my ISP who give excellent support with the websites I run. Some great friends
including Jane Harper and Mark Smith, Mark and Trudy Mather and the Harper family for making rugby on a
Saturday so enjoyable. Many work colleagues including Anthony “Jock” Jawad, Aubrey Lomas, Harry Toland, Jason
Oates, Steve Nicklin, James McVey, Andy Bennett, Richard Barclay, Ian Phillips, Guy Batey, Darren Skinner, the
great Noel Morgala, Syed Yasir Shah, Yao Wu, and the rest of the team at Nomura; and Ian Howell and Nick Sharp
for some great evenings out, Robert McMillan (Toad), a great mate from college with whom I got back in touch after
many years—each in their own way have helped me over the months and years. Also thanks to Sams Species Reptile
Sanctuary samsspecies.yolasite.com, especially to Sally Shapter for being a brilliant person with reptiles and their
rescue and then safe keeping, Northampton Reptile Centre, especially Sam Shapter, Lois, and Ant Hook and Gary
Rolfe for their time with my dragons and chameleon. Also thanks to “Guinness” John Mason and Richard Lowther for
their help, input, and time with the www.rolling-maul.com and www.hospital-pass.com websites. Of course all the
people at Apress and my long time friend Jonathan Gennick, and the others who have helped like Jill Balzano, a great
person to keep me motivated and say the right things. And the book would be nothing without the brilliantly talented
technical editor Rodney Landrum.

Then, of course, there are my mum and late dad who put up with not watching television while I commandeered
it for my personal computer in 1980 and onward. I owe them so much and love them to bits. Without them I wouldn’t
be doing what I am doing today and I might be stuck in a job I didn’t enjoy as much as I do this.

—Robin Dewson

www.rolling-maul.com
www.hospital-pass.com

	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: Overview and Installation
	Why Should I Use SQL Server?
	SQL Server Editions
	The Example
	Installation
	Install
	Setup Role
	Choosing the Features to Install
	Naming the Instance
	Service Accounts
	Authentication Mode
	Defining the Data Directories
	FILESTREAM Options
	Creating the Reporting Services Database
	Distributed Replay Options

	Security
	Services Accounts
	Looking at the Authentication Mode
	Windows Authentication Mode
	Administrators on a Machine
	Mixed Mode

	The sa Login

	Summary

	Chapter 2: SQL Server Management Studio
	A Quick Overview of SSMS
	Query Editor
	sqlcmd
	Summary

	Chapter 3: Database Design and Creation
	Defining a Database
	Prebuilt Databases Within SQL Server
	master
	tempdb
	model
	msdb
	AdventureWorks/AdventureWorksDW

	Choosing the Database System Type
	OLTP
	Backups
	Indexes
	In-memory data

	BI/OLAP
	Example System Choice

	Gathering the Data
	Determining the Information to Store in the Database
	Financial Products
	Customers
	Customer Addresses
	Shares
	Transactions

	External and Ignored Information
	Building Relationships
	Using Keys
	Primary Key
	Foreign/Referencing Key
	Candidate/Alternate Key
	A Unique Constraint Instead of a Primary Key

	Creating Relationships
	Relationships and Referential Integrity
	Types of Relationships
	One-to-One
	One-to-Many
	Many-to-Many

	More on Foreign Keys

	Normalization
	Assign Each Entity a Unique Identifier
	Store Only Information That Directly Relates to That Entity
	Avoid Repeating Values or Columns
	Normal Forms
	First Normal Form
	Customers
	Shares

	Second Normal Form
	Third Normal Form

	Denormalization

	Creating the Sample Database
	Creating a Database in SQL Server Management Studio
	Dropping the Database in SQL Server Management Studio
	Creating a Database in a Query Pane

	Summary

	Chapter 4: Security and Compliance
	Logins
	Server Logins and Database Users
	Roles
	Fixed Server Roles
	Database Roles
	Application Roles

	Schemas
	Before You Can Proceed with Your Solution
	Declarative Management Framework
	Encryption
	Summary

	Chapter 5: Defining Tables
	What Is a Table?
	SQL Server Data Types
	Table Data Types
	Char/nchar
	Varchar/nvarchar
	Text/ntext
	image
	int
	bigint
	smallint
	tinyint
	decimal/numeric
	float
	real
	money
	smallmoney
	date
	datetime
	datetime2
	smalldatetime
	datetimeoffset
	time
	hierarchyid
	geometry
	geography
	rowversion
	uniqueidentifier
	binary
	varbinary
	bit
	xml

	Program Data Types
	cursor
	table
	sql_variant

	Columns As More Than Simple Data Repositories
	Default Values
	Generating IDENTITY Values
	Uniqueidentifiers for an Identity

	Sequences Instead of IDENTITY
	The Use of NULL Values

	Creating a Table in SQL Server Management Studio
	Creating a Table Through Query Editor
	Creating a Table: Using SQLCMD
	The ALTER TABLE Statement
	Defining the Remaining Tables
	Setting a Primary Key
	Creating a Relationship
	Check Existing Data on Creation
	Enforce Foreign Key Constraints
	Choosing Delete and Update Rules

	Building a Relationship via T-SQL
	Relationships: Database or Application
	Partitioning
	Summary

	Chapter 6: Creating Indexes and Database Diagramming
	What Is an Index?
	Types of Indexes
	Clustered
	Nonclustered

	Uniqueness

	Determining What Makes a Good Index
	Using Low-Maintenance Columns
	Using Primary and Foreign Keys
	Finding Specific Records
	Using Covering Indexes
	Looking for a Range of Information
	Keeping the Data in Order

	Determining What Makes a Bad Index
	Using Unsuitable Columns
	Choosing Unsuitable Data
	Including Too Many Columns
	When There Are Too Few Records in the Table

	Reviewing Your Indexes for Performance
	Creating an Index
	Creating an Index with the Table Designer
	Indexes and Statistics
	The CREATE INDEX Syntax
	IGNORE_DUP_ KEY
	DROP_ EXISTING

	Creating an Index in Query Editor

	Dropping an Index
	Altering an Index
	Included Columns
	When an Index Does Not Exist
	Diagramming the Database
	Database Diagramming Basics
	The SQL Server Database Diagram Designer
	The Default Database Diagram
	The Database Diagram Toolbar
	Modifying Your Database Using Database Diagram Designer

	Summary

	Chapter 7: In-Memory Tables
	Cost-Based Processing
	What Is an In-Memory Table?
	Differences to Disk-Based Tables

	In-Memory Indexes and the Hash Index
	Hash Buckets
	General Index Points

	Operating System and Hardware Requirements
	Database Requirements Prior to Table Creation
	Creating an In-memory Table Using SQL
	Migrating to an In-Memory Table
	Summary

	Chapter 8: Database Backups and Recovery
	Backup Strategies
	Recovery Models
	Types of Backups
	Backup Strategy Decisions
	Transaction Log Backups
	Frequency of a Backup

	Transaction Logs
	When Problems May Occur
	In-Memory Table Backup and R estore
	Backups: Taking a Database Offline
	Backing Up the Data
	Backup Considerations
	Performing a Manual SQL Server Backup
	Backing Up the Database Using T-SQL
	Transaction Log Backup Using T-SQL

	Restoring a Database
	Restoring Using SQL Server Management Studio
	Restoring Using T-SQL
	Restoring a Database
	Restoring a Transaction Log

	Restoring to a Point in Time

	Detaching and Attaching a Database
	Detaching and Attaching Using SQL Server Management Studio
	Detaching and Attaching Using T-SQL

	Producing SQL Script for the Database
	Summary

	Chapter 9: Database Maintenance
	Creating a Database Maintenance Plan
	Executing the Plan
	Setting Up Database Mail
	Modifying a Maintenance Plan
	Summary

	Chapter 10: Data Insertion, Deletion, and Transactions—Disk-Based
	Inserting Data
	The T-SQL INSERT Statement Syntax
	INSERT SQL Statement
	Default Values
	Using NULL Values

	DBCC CHECKIDENT
	Column Constraints
	Inserting Several Records at Once

	Transactions
	Transaction Basics
	Transaction Commands
	BEGIN TRAN
	COMMIT TRAN
	ROLLBACK TRAN

	Locking Data

	Deleting Data
	DELETE Syntax
	Before Demonstrating the DELETE Statement
	Using the DELETE Statement
	Truncating a Table
	Dropping a Table

	Summary

	Chapter 11: Selecting and Updating Data from Disk-Based Tables
	Retrieving Data
	Using SQL Server Management Studio to Retrieve Data
	Using the SELECT Statement to Retrieve Data
	The SELECT Statement
	Naming the Columns
	The First Searches
	Varying the Output from a SELECT Query

	Limiting a Search: The Use of WHERE
	TOP (n)
	TOP (n) PERCENT
	SET ROWCOUNT n

	String Functions
	Order! Order!
	The LIKE Operator
	Creating Data: SELECT INTO
	Updating Data
	The UPDATE Statement
	Updating Data within Query Editor
	Updating Data: Using Transactions
	Nested Transactions

	Using More Than One Table
	Summary

	Chapter 12: Working with In-Memory Tables
	INSERT, UPDATE, DELETE, and SELECT Statements
	Locking and Isolation Levels
	MERGE Statement
	In-Memory Table Unsupported Functionality
	Summary

	Chapter 13: Building a View
	Why a View?
	Using Views for Security
	Encrypting View Definitions

	Views and In-memory Tables
	Creating a View: SQL Server Management Studio
	Creating a View by Using a View
	Creating a View Using T-SQL Syntax
	The CREATE VIEW Syntax
	Creating a View with CREATE VIEW and SELECT
	Binding Columns in a View with SCHEMABINDING

	Indexing a View
	Summary

	Chapter 14: Stored Procedures, Functions, and Security
	What Is a Stored Procedure?
	Creating a Stored Procedure
	CREATE PROCEDURE Syntax
	Returning a Set of Rows
	Creating a Stored Procedure: Management Studio
	Different Methods of Execution

	Returning Results
	Using RETURN
	Returning Multiple Result Sets

	Controlling the Flow
	IF . . .  ELSE
	BEGIN . . .  END
	WHILE . . . BREAK Statement
	CASE Statement

	Bringing It All Together
	Security
	Security Gains
	Granting and Revoking Permissions
	GRANT
	REVOKE

	User-Defined Functions
	Scalar Functions
	Table-Valued Functions
	Considerations When Building Functions

	Summary

	Chapter 15: Natively Compiled Stored Procedures
	What Is a Natively Compiled Stored Procedure?
	CREATE PROCEDURE and Syntax
	Summary

	Chapter 16: Essentials for Effective Coding
	Variables
	Temporary Tables
	Aggregations
	COUNT/COUNT_BIG
	SUM
	MAX/MIN
	AVG

	Grouping Data
	HAVING
	Distinct Values
	Functions
	Date and Time
	DATEADD( )
	DATEDIFF( )
	DATENAME( )
	DATEPART( )
	FORMAT( )
	DATEFROMPARTS( ) / SMALLDATETIMEFROMPARTS( )
	TIMEFROMPARTS( )
	DATETIME2FROMPARTS( )
	DATETIMEOFFSETFROMPARTS( )
	EOMONTH( )
	GETDATE( )/SYSDATETIME( )

	String
	ASCII( )
	CHAR( )
	LEFT( )
	LOWER( )
	LTRIM( )
	RIGHT( )
	RTRIM( )
	STR( )/CONCAT( )
	SUBSTRING( )
	UPPER( )

	System Functions
	CASE WHEN...THEN...ELSE...END
	IIF( )
	CHOOSE( )
	CAST( )/CONVERT( )
	ISDATE( )
	ISNULL( )
	ISNUMERIC( )
	TRY_CONVERT( )
	PARSE/TRY_PARSE( )

	RAISERROR
	Error Handling
	@@ERROR
	TRY...CATCH and THROW

	Summary

	Chapter 17: Advanced T-SQL and Debugging
	Creating a SEQUENCE
	Subqueries
	Using Subqueries
	IN
	EXISTS
	Tidying Up the Loose End

	The APPLY Operator
	CROSS APPLY
	OUTER APPLY

	Common Table Expressions
	Using Common Table Expressions
	Recursive CTE

	Pivoting Data
	PIVOT
	UNPIVOT

	Table Variables
	Ranking Functions
	ROW_NUMBER
	RANK
	DENSE_RANK
	NTILE

	Cursors
	Debugging Your Code
	Debugging Windows
	Debugging Options
	Debugging Pop-Up Window

	Summary

	Chapter 18: Triggers
	What Is a Trigger?
	The DML Trigger
	CREATE TRIGGER Syntax for DML Triggers
	Why Not Use a Constraint?
	Deleted and Inserted Logical Tables
	Creating a DML FOR/AFTER Trigger
	Checking Specific Columns
	Using UPDATE()
	Using COLUMNS_UPDATED()

	DDL Triggers
	DDL Database-Level Events
	Database-Scoped Events
	DDL Statements with Server Scope

	Dropping a DDL Trigger
	EVENTDATA()

	Summary

	Chapter 19: Connecting via Code
	General Application Security
	Connecting with Excel or Excel Visual Basic for Applications (VBA)
	Using Excel with the Data Ribbon
	Using Excel with VBA

	Visual Studio
	Terminology
	VB.NET
	C#

	Java
	Summary

	Index

