

http://www.dummies.com
http://www.dummies.com
http://www.dummies.com
http://www.dummies.com/cheatsheet/oracle12c

by Chris Ruel and Michael Wessler

Oracle® 12c

Oracle® 12c For Dummies®

Published by: John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030-5774, www.wiley.com
Copyright © 2014 by John Wiley & Sons, Inc., Hoboken, New Jersey
Published simultaneously in Canada
No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or
by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permit-
ted under Sections 107 or 108 of the 1976 United States Copyright Act, without the prior written permis-
sion of the Publisher. Requests to the Publisher for permission should be addressed to the Permissions
Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-
6008, or online at http://www.wiley.com/go/permissions.
Trademarks: Wiley, For Dummies, the Dummies Man logo, Dummies.com, Making Everything Easier, and
related trade dress are trademarks or registered trademarks of John Wiley & Sons, Inc. and may not be
used without written permission. Oracle is a registered trademark of Oracle and/or its affiliates. All other
trademarks are the property of their respective owners. John Wiley & Sons, Inc. is not associated with any
product or vendor mentioned in this book.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR MAKE NO
REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF
THE CONTENTS OF THIS WORK AND SPECIFICALLY DISCLAIM ALL WARRANTIES, INCLUDING WITH-
OUT LIMITATION WARRANTIES OF FITNESS FOR A PARTICULAR PURPOSE. NO WARRANTY MAY BE
CREATED OR EXTENDED BY SALES OR PROMOTIONAL MATERIALS. THE ADVICE AND STRATEGIES
CONTAINED HEREIN MAY NOT BE SUITABLE FOR EVERY SITUATION. THIS WORK IS SOLD WITH THE
UNDERSTANDING THAT THE PUBLISHER IS NOT ENGAGED IN RENDERING LEGAL, ACCOUNTING, OR
OTHER PROFESSIONAL SERVICES. IF PROFESSIONAL ASSISTANCE IS REQUIRED, THE SERVICES OF
A COMPETENT PROFESSIONAL PERSON SHOULD BE SOUGHT. NEITHER THE PUBLISHER NOR THE
AUTHOR SHALL BE LIABLE FOR DAMAGES ARISING HEREFROM. THE FACT THAT AN ORGANIZA-
TION OR WEBSITE IS REFERRED TO IN THIS WORK AS A CITATION AND/OR A POTENTIAL SOURCE
OF FURTHER INFORMATION DOES NOT MEAN THAT THE AUTHOR OR THE PUBLISHER ENDORSES
THE INFORMATION THE ORGANIZATION OR WEBSITE MAY PROVIDE OR RECOMMENDATIONS IT
MAY MAKE. FURTHER, READERS SHOULD BE AWARE THAT INTERNET WEBSITES LISTED IN THIS
WORK MAY HAVE CHANGED OR DISAPPEARED BETWEEN WHEN THIS WORK WAS WRITTEN AND
WHEN IT IS READ.

For general information on our other products and services, please contact our Customer Care
Department within the U.S. at 877-762-2974, outside the U.S. at 317-572-3993, or fax 317-572-4002. For tech-
nical support, please visit www.wiley.com/techsupport.
Wiley publishes in a variety of print and electronic formats and by print-on-demand. Some material
included with standard print versions of this book may not be included in e-books or in print-on-demand.
If this book refers to media such as a CD or DVD that is not included in the version you purchased, you
may download this material at http://booksupport.wiley.com. For more information about Wiley
products, visit www.wiley.com.
Library of Congress Control Number: 2013949553
ISBN 978-1-118-74531-1 (pbk); ISBN 978-1-118-74527-4 (ebk); ISBN 978-1-118-74530-4 (ebk);
ISBN 978-1-118-74543-4 (ebk)
Manufactured in the United States of America
10 9 8 7 6 5 4 3 2 1

http://www.wiley.com
http://www.wiley.com/go/permissions
http://www.wiley.com/techsupport
http://booksupport.wiley.com
http://www.wiley.com

Contents at a Glance
Introduction... 1

Part I: Getting Started with Oracle 12c.......................... 5
Chapter 1: Discovering Databases and Oracle 12c... 7
Chapter 2: Understanding Oracle Database Architecture... 17
Chapter 3: Preparing to Implement Oracle... 49

Part II: Implementing an Oracle Database.................... 67
Chapter 4: Creating Your Database.. 69
Chapter 5: Connecting to the Database... 93
Chapter 6: Understanding the Language of Databases: SQL..................................... 115
Chapter 7: Loading Data into Your Database.. 135

Part III: Caring for and Feeding an Oracle Database..... 153
Chapter 8: Keeping the Database Running.. 155
Chapter 9: Tuning an Oracle Database for Performance... 185
Chapter 10: Securing and Auditing Your Database.. 215
Chapter 11: Facilitating Backup and Recovery... 237
Chapter 12: Troubleshooting an Oracle Database... 273
Chapter 13: Managing Your Database with Enterprise Manager.............................. 301

Part IV: Advanced Oracle Technologies....................... 313
Chapter 14: Advanced Features.. 315
Chapter 15: Using High-Availability Options... 351

Part V: The Part of Tens.. 373
Chapter 16: Ten Oracle Installation Do’s... 375
Chapter 17: Ten Database Design Do’s.. 383

Appendix A: Installing Oracle 12c on Linux................ 391

Index... 401

Table of Contents
Introduction.. 1

About This Book... 1
Who Are You?... 2
Icons in This Book.. 2
Beyond the Book.. 3
Where to Go from Here.. 3

Part I: Getting Started with Oracle 12c........................... 5

Chapter 1: Discovering Databases and Oracle 12c 7
Discovering Databases... 7

Defining a database.. 8
Examining how databases work.. 10
Finding the right database for the job... 12

Choosing Oracle... 13
Oracle as a database.. 13
What is the “c” in Oracle 12c?... 13

Keeping a Database Safe and Sound.. 15
DBA responsibilities... 15
Common tasks... 16

Chapter 2: Understanding Oracle Database Architecture 17
Defining Databases and Instances.. 18
Deconstructing the Oracle Architecture... 18
Walking Down Oracle Memory Structures.. 19
Trotting around the System Global Area... 20

Shared pool.. 20
Database buffer cache.. 23
Redo log buffer.. 25
Large pool.. 26
Java pool.. 27
Streams pool.. 27

Program Global Area.. 27
Managing Memory.. 28

Managing memory automatically... 29
Following the Oracle Processes.. 30

Background processes... 31
User and server processes.. 33

Oracle 12c For Dummies vi
Getting Physical with Files.. 35

Data files: Where the data meets the disk... 35
Control files... 37
Redo log files... 38
Moving to the archives.. 40
Server and initialization parameter files.. 41

Applying Some Logical Structures... 42
Tablespaces... 43
Segments.. 44
Extents.. 45
Oracle blocks... 46

Pluggable Databases.. 47

Chapter 3: Preparing to Implement Oracle . 49
Understanding How an Oracle Database Fits into a

System’s Architecture.. 49
Client-server applications.. 50
Multi-tier applications.. 51
Component configurations.. 53

Verifying System Requirements.. 55
User and directory requirements... 55
Hardware requirements... 59
Software requirements... 60
Storage requirements... 62
Other requirements.. 64

Part II: Implementing an Oracle Database..................... 67

Chapter 4: Creating Your Database . 69
Feeling at Home in Your Environment... 69

Finding the Oracle software owner.. 70
Oracle versions... 71
Getting to home base... 71
ORACLE_BASE... 72
ORACLE_HOME... 72
ORACLE_SID.. 73
PATH... 73
Setting your environment with oraenv ... 74

Configuring an Instance... 74
Using PFILE and SPFILES.. 75
Setting parameters in the pfile and spfile.. 76

Creating Your Oracle Database.. 78

vii Table of Contents

Using the Database Configuration Assistant (DBCA)
to Create Databases.. 79

Taking database control.. 79
Taking the DBCA steps... 80
Sharing (a) memory.. 90

Doing a Post-Creation Check-Up... 91

Chapter 5: Connecting to the Database . 93
Starting and Stopping the Database... 93

Environmental requirements.. 94
Starting the database... 96
Stopping the database.. 100

Connecting to the Database Instance.. 103
Local versus remote connections... 104
Communication flow... 104
Setting up tnsnames.ora.. 105
Configuring the database listener with listener.ora....................... 106
Starting and stopping the database listener................................... 108
Testing the connection.. 111
Oracle Net Configuration Assistant.. 112

Sidestepping Connection Gotchas... 112

Chapter 6: Understanding the Language of Databases: SQL 115
Learning the Basics of SQL.. 116

SQL calling environments.. 116
SQL statement clauses... 117
Case sensitivity in the database... 118
Viewing your objects and data with the

DESCRIBE and SELECT statements... 119
Add to your data with the INSERT statement................................. 122
Changing data with the UPDATE statement.................................... 123
Removing data with the DELETE statement.................................... 125

Using the Data Dictionary.. 126
Programming with PL/SQL.. 130

Types of PL/SQL programs.. 130
PL/SQL block structure.. 131
Calling PL/SQL programs... 132

Chapter 7: Loading Data into Your Database . 135
Making Tablespaces... 136
Understanding Users and Schemas.. 141
Creating Database Objects.. 146

Object types.. 146
Object creation methods... 149

Oracle 12c For Dummies viii
Part III: Caring for and Feeding an Oracle Database.... 153

Chapter 8: Keeping the Database Running . 155
Doing Your Database Chores.. 155

Making way, checking space... 156
Monitoring space in your segments... 160
Checking users.. 164
Checking backups... 167
Checking batch jobs... 168
Reviewing audit logs... 169
Maintaining logs.. 169

Automating Chores with the Oracle Scheduler.. 170
Scheduler objects... 170
Creating your first Scheduler job.. 171

Using Oracle Data Pump.. 175
Data Pump Export... 177
Data Pump Import... 179

Creating Oracle Directories... 181
Using Data Pump with a Parameter File.. 181

Chapter 9: Tuning an Oracle Database for Performance 185
Tuning Costs... 186
Tuning Basics.. 187

Asking questions... 187
Pinpointing the problem.. 188

Tuning Tools... 188
Oracle documentation... 188
Oracle Support.. 189
Oracle user groups... 189
Training classes.. 190
Licensed tools... 190

Tuning the Database before Something Goes Wrong.............................. 192
Pre-installation planning and preparation....................................... 192
Selecting software... 193
The hard part.. 193

Tuning after a Problem Arises.. 195
Tell me, what is your problem?.. 196

Tuning SQL.. 197
Generating an Explain Plan.. 197
Displaying and reading the SQL statement output......................... 198

Tuning the Database.. 205
Installing STATSPACK.. 206
Taking snapshots with STATSPACK... 209
Interpreting STATSPACK output... 211
Scheduling snapshots.. 213

ix Table of Contents

Chapter 10: Securing and Auditing Your Database 215
Staying Authentic with Authentication.. 215

User authentication.. 216
Password authentication... 216
Operating system authentication... 220

Granting Privileges... 221
Granting and revoking system privileges.. 222
Object privileges... 224

Creating Roles... 226
Oracle-supplied roles... 227
The SYSDBA role... 227

Auditing: Oracle’s Big Brother.. 228
Getting ready to audit.. 229
Enabling and disabling audits with unified audit policies............. 230
Auditing system privileges.. 231
Auditing objects.. 232
Verifying an audit.. 233
Viewing audit information... 235
Turning off audits... 235

Chapter 11: Facilitating Backup and Recovery 237
Understanding Threats to Your Database... 237

Instance failure.. 238
Losing files... 238
Dropped objects... 238
Media failure.. 239
Corruption... 239
User error.. 240

Finding Files with Recovery Manager.. 240
Starting RMAN... 240
Configuring RMAN.. 242
RMAN catalog.. 244

Backup File Types with RMAN.. 247
Backing up with backup sets... 248
Making copies.. 253

Viewing Backup Information... 254
Putting It in the Archives... 256

Turning archiving on and off... 256
Archive logs... 257
Enabling archiving.. 258
Enabling the Fast Recovery Area.. 259

Maintaining the Archives... 260
Recovering Your Oracle Database... 261

Verifying the problem.. 262
Complete recovery... 263
Incomplete recovery.. 268
Recovering your database with copies.. 270

Oracle 12c For Dummies x
Chapter 12: Troubleshooting an Oracle Database 273

Troubleshooting with System Methodology... 273
Identifying the real problem.. 274
Performing basic system checks.. 275
Performing basic database checks... 282
Analyzing error messages.. 285
Developing and applying a solution... 287

Troubleshooting Using Oracle Database Logs... 290
Database log infrastructure... 291
Database alert log... 293
Trace and dump files.. 295
Listener log.. 296

Benefiting from Other Diagnostic Utilities.. 297
Oracle Enterprise Manager and Database Express 12c................. 297
Remote Diagnostic Agent... 298
Database diagnostic scripts.. 299

Chapter 13: Managing Your Database with Enterprise Manager . . 301
Getting to Know the Enterprise Manager Family..................................... 301

EM Database Express... 302
EM Cloud Control.. 302

Configuring EM Database Express with the DBCA................................... 303
Navigating EM Database Express... 304

Dashboard... 304
Configuration page... 306
Storage page.. 308
Security page... 309
Performance page... 309

Creating and Managing EM Database Express Users............................... 310

Part IV: Advanced Oracle Technologies....................... 313

Chapter 14: Advanced Features . 315
Flashing Back.. 316

Flashing your query back.. 316
Flashing your table back.. 318
Flashing your database back... 322

Compressing Data for Purging, Retention, and Archiving....................... 327
Basic compression.. 327
Advanced compression... 329

Flashback Data Archive... 331
Oracle Database Replay... 332

Using Database Replay... 333
Replaying the workload... 335

xi Table of Contents

Multitenant Architecture and Pluggable Databases................................ 337
Creating a multitenant database environment............................... 338
Navigating a multitenant architecture... 339
Starting and stopping pluggable databases.................................... 342
Creating new PDBs... 343
Unplugging and plugging in your PDBs.. 348

Chapter 15: Using High-Availability Options . 351
Gathering Real Application Clusters.. 352
Exploring RAC Architecture.. 353

Hardware considerations for RAC.. 353
Software considerations for RAC.. 356

Preparing for a RAC Install.. 358
Tools for managing a RAC installation... 359
Oracle RAC application for high availability................................... 363

Understanding Oracle Data Guard... 364
Data Guard architecture.. 365
Physical standby database.. 367
Logical standby database.. 369
Performing switchover and failover operations............................. 370

Part V: The Part of Tens... 373

Chapter 16: Ten Oracle Installation Do’s . 375
Know the Documentation.. 375
Observe the Optimal Flexible Architecture.. 376
Configure Your Profile... 377
Write Your Own Documentation.. 378
Set umask... 378
Become Oracle.. 379
Stage It.. 379
Patch It... 380
Mind the User and Group IDs.. 381
Back It Up... 382

Chapter 17: Ten Database Design Do’s . 383
Constrain Your Data... 383
Spread Out Your IO.. 384
Know Basic Data Modeling Skills.. 385
Use Naming Conventions... 385
Watch Your Roles and Privileges... 386
Axe Ad Hoc Queries... 386
Enforce Password Security... 387
Avoid Having Too Many Cooks in the Kitchen... 387
Package Code.. 388
Test Recovery Strategies... 389

Oracle 12c For Dummies xii
Appendix A: Installing Oracle 12c on Linux................. 391

Setting Up the Operating System.. 391
Checking your operating system version.. 392
Checking your kernel version... 393
Checking your OS packages.. 393
Creating Linux OS groups and users.. 394

Creating the Oracle Software Owner... 395
Configuring the Linux Kernel Parameters... 395

Creating the ORACLE_BASE directory... 396
Configuring the Oracle user environment....................................... 396
Installing the Oracle 12c database software................................... 397

Index.. 401

Introduction

W
elcome to the exciting world of Oracle 12c database administration!
Few things are as exciting as starting a new journey, and you cer-

tainly have a thrilling ride ahead of you. Luckily, the authors of this book,
your guides in this adventure, can help smooth out any bumps in the road
and point out the things you want to see. With decades of combined Oracle
experience managing hundreds of databases for many clients, we hope to
make understanding the Oracle database a fun, enlightening experience.

Oracle is a large company with a diverse portfolio of software and hardware.
It seems like every other week Oracle releases some new product or acquires
another company. Don’t let the overwhelming nature of the big picture dis-
courage you. This book imparts the fundamental knowledge of database
administration. An Oracle career is a constant learning process. Establishing
a solid understanding of the building blocks behind the database engine will
vault you into a successful Oracle career.

The foundation of almost all of Oracle’s products is the database, and Oracle
databases are the best in the world. Understanding how Oracle databases
work and how to manage them successfully is the first step to opening an
awful lot of doors. Starting at this level is key. After reading this book, you
will be well on your way to an interesting career filled with challenges and
plenty of opportunity.

Every year we see companies grow and accumulate data at a staggering rate,
and that rate is accelerating. Relational database theory first came out in
the early 1970s, and database design and technology continue to evolve and
become more powerful every year. Oracle is at the forefront of this evolution,
and the knowledge of Oracle 12c that you gain from this book puts you in
the driver’s seat for your database career. Hop into your high-performance
Oracle ride for an exciting journey!

About This Book
Oracle 12c For Dummies focuses on the tenets of Oracle database adminis-
tration in the Oracle 12c environment. Not only do we cover many of the
features released with the 12c version of the database, but we also explain

2 Oracle 12c For Dummies

the fundamental building blocks database administration. Many of these con-
cepts and techniques apply to past versions of Oracle and almost certainly
to future releases. Our goal is to make you a smarter and more functional DBA
by explaining Oracle technology from the perspective of folks who manage
Oracle software for a living.

	 Sometimes we refer to directories and file locations on both Linux/UNIX and
Windows. Essentially the two can be interchanged with a couple of things
in mind. For example, here is an ORACLE_BASE value that you might come
across on Linux/UNIX:

$ORACLE_BASE: /u01/app/oracle

In Windows, /u01 is much like a drive letter. They call it a mount point in
Linux/UNIX.

Also, variables in Linux/UNIX are frequently prefixed with a dollar sign.
Furthermore, the slashes are in opposite directions for each operating
system. On Linux/UNIX, you use a forward slash, /. In Windows, you use a
back slash, \. Lastly, Windows encapsulates the variable in percent signs.
The same previous setting might look like this in Windows:

%ORACLE_BASE%: C:\app\oracle

We give examples of both environments throughout this book.

Who Are You?
People who find themselves needing or wanting a skill set for Oracle data-
bases come from all backgrounds. You might be an application developer, a
system administrator, or even a complete newbie. Many of the folks that we
come across in this industry became a database administrator (DBA) by acci-
dent. One day, your company finds itself without a DBA, and the next thing
you know, that’s you! One trick is to be ready. Above all else, learn on your
own and think rather than just react.

Icons in This Book
You see these icons throughout this book. They’re a heads-up for different
situations. These are items we wished someone told us when we were learn-
ing Oracle.

3 Introduction

	 Warnings, if not heeded, will cause you to lose data or maybe even your job.

	 Remembering these bits of information can help you in the long run. And even
the short run. Even on a brief walk.

	 Tips can save you time, energy, resources, or your weekend. We realize all
these items are in short supply.

	 Technical Stuff icons indicate things we think are interesting and want to
share with you, but you can skip them if you’d rather get straight to the
nitty-gritty.

Beyond the Book
We’ve provided additional information about Oracle online to help you on
your way:

	 ✓	Cheat Sheet: Check out www.dummies.com/cheatsheet/oracle12c
to grab some handy reminders for syntax and commands you’ll use on a
regular basis. We also include some tips for items to monitor to ensure
you don’t get caught by surprise.

	 ✓	Online articles: On several of the pages that open each of this book’s
parts, you’ll find links to what the folks at For Dummies call Web Extras,
which expand on some concept we’ve discussed in that particular sec-
tion. You’ll find them at www.dummies.com/extras/oracle12c.
There we’ve provided information to help you upgrade databases with
the Database Upgrade Assistant (DBUA), gather database statistics to
improve performance, and use Automatic Storage Management (ASM).

Where to Go from Here
Dive in and get started! Keep an open mind and try not to get overwhelmed.
Like any skilled profession, it isn’t always easy, but you can do it. We think
you’ll find it rewarding. This book is written so you can avoid the “too-much-
information” reaction. Look at each section as a piece of a big puzzle, and
you will soon see how everything starts to take shape. And remember to
have fun!

http://www.dummies.com/cheatsheet/oracle12c
http://www.dummies.com/extras/oracle12c

4 Oracle 12c For Dummies

Part I
Getting Started with Oracle 12c

Oracle
12c

getting started
with

	 For Dummies can help you get started with lots of subjects. Visit www.dummies.com
for more great content online.

http://www.dummies.com

In this part . . .
	 ✓	 New to databases? New to Oracle? Find out how databases and

Oracle fit into the modern IT infrastructure in Chapter 1.
	 ✓	 A solid foundation is the best way to start any project. Chapter 2

helps you understand the architecture behind the Oracle soft-
ware, which goes a long way toward helping you be a success-
ful database administrator.

	 ✓	 Chapter 3 shows you how an Oracle database fits in a typical IT
application environment. You also find out about the require-
ments you need to meet before installing Oracle database.

Chapter 1

Discovering Databases
and Oracle 12c

In This Chapter
▶	Defining databases
▶	Getting to know Oracle databases
▶	Identifying when using Oracle 12c is appropriate
▶	Understanding database administration

W
elcome to the exciting world of databases, specifically Oracle 12c.
Oracle is a recognized hardware and software giant on par with

Microsoft in terms of size and influence. Oracle Corporation made its repu-
tation and initial wealth with database technology and is still a recognized
leader in databases. Many information technology (IT) professionals would
agree Oracle databases provide the most advanced and capable means of
storing, accessing, and managing data in the world today. As you read this
book, you find out why many professionals hold that belief.

In this chapter, we explain what databases are, how they work, and why
they’re a core component of any computer system. Next, we introduce Oracle
databases and guide you on when to use Oracle 12c. Finally, we examine
database administration and what a database administrator’s (DBA) role
entails.

Discovering Databases
Since the earliest days of information technology (that’s data processing for
you old-timers), data has been at the heart of everything computers do.
Users input data; and programs process, analyze, and perform calculations
on the data. Then data output occurs. Notice a common theme? Everything
relates to data! As technology increasingly becomes a part of daily life, you
can expect almost every aspect of your life to have a data element associated
with it.

8 Part I: Getting Started with Oracle 12c

Data comes from different sources in various formats. Every year, new types
of data are created as technology evolves. Consider this partial list of data
sources:

	 ✓	Order information from your favorite online shopping application

	 ✓	Trouble ticket information entered into a computer by a person in a
call center

	 ✓	Financial data including calculations for interest, taxes, and investments
generated by banks and investment companies

	 ✓	Multidimensional scans captured by complex medical imaging equipment

	 ✓	Inventory data captured by tracking products by their RFID tags and
point of sale information

	 ✓	Images, videos, and audio files uploaded to social media and video
sharing websites

The amount of data in the world is growing at an explosive rate. Consider
the number of online sales transactions every day in addition to the Twitter
tweets and Facebook posts from smartphones. Additionally, almost every
retail sale is tied to an automated sales tracking and inventory control
system. Almost anything you do that involves interaction, communication, or
commerce generates data.

The size and number of data elements created are also increasing as technol-
ogy evolves. Pictures, sound files, and videos take far more space on com-
puter disk storage than simple text data (letters and numbers). Scientific and
medical devices, such as satellite images and MRI scans, are common exam-
ples of how large data is generated rapidly and are part of peoples’ lives.

Defining a database
All this data needs to reside somewhere; specifically, within a database.
Databases are complex software programs that catalog and provide access to
data. Although the data is usually stored on a disk storage system, the data-
base software manages how that data is stored and managed.

Businesses use databases to store their data because the size and complexity
of their data often exceed what can be stored on a spreadsheet. Most busi-
ness and scientific activities, and many social activities involving technology
will require the creation, access, updating, or deleting of data at some level.
It is database software that allows these activities occur in a fast, efficient
manner.

9 Chapter 1: Discovering Databases and Oracle 12c

Databases provide these primary functions:

	 ✓	Storage: Data must be kept within a computer system, usually disk stor-
age, so that the data is available when needed. Disk storage technologies
can vary, but they must be fast and large and are often expensive and
complex.

	 ✓	Organization: Data must be stored in a logical manner on disk so it can
be found quickly and efficiently. Compare an organized desk and file
cabinet with a child’s messy bedroom; where would you prefer to work?

	 ✓	Access: Finding the requested data in a fast and efficient manner and
returning that data to the requestor is a key function of databases.

	 ✓	Security: A database determines who can access the data and what they
can do with that data. Security must be established and enforced.

	 ✓	Adding, updating, and deleting: After data is added to the database, it
can be modified and deleted. The database software manages the com-
plex rules for how data is manipulated.

	 ✓	Safekeeping: Databases keep data safe and available when failures
occur such as a disk drive crashing. Backup and recovery are the pro-
cesses used by databases to ensure data is not permanently lost if there
is a failure.

Here’s the general process:

	 1.	 You open the database and enter your data.

	 2.	 The database determines how best to store and catalog that data in a
secure manner on the computer system’s disk storage.

	 3.	 When you (or a computer application) want to access, update, or delete
that data, the database checks your security permissions and then
implements your request in the fastest manner based on the rules that
have been defined.

	 Databases can look more like full operating systems (OSs) than simple appli-
cations you start and stop. Advanced databases (such as Oracle) have users,
detailed security privileges, network configuration settings, performance
tuning for memory, CPU, and disk options, and robust backup and disaster
recovery (DR) options.

10 Part I: Getting Started with Oracle 12c

Examining how databases work
Databases have evolved over the years but have stabilized into the relational
model. A relational database management system (RDBMS) stores data in
logical structures called tables. A table is a logical container of similar data.
A table definition is the set of rules or characteristics for each row of data
stored in table. When data is loaded into a database, it is loaded as rows
within one or more tables based on the characteristics of the data.

Each row of unique data exists only once in a table. For example, there will
only be one row of data for each individual customer in a table. Each row is
identified by its primary key, which is a unique identifier for that specific row.
This uniqueness is a fundamental component of the relational aspect of data-
bases. In Figure 1-1, each customer exists as a single row in the CUSTOMER
table as identified by its unique primary key (CUST_ID) and is defined by col-
umns specific to that table.

Tables are joined together by connecting the primary key of one table to a
related table where it is defined as a foreign key. You implement relationships
between tables by joining a row of one table to one or more rows in another
table. (Remember: This is a relational database).

Figure 1-2 shows how a customer stored in a CUSTOMER table is joined to an
ORDER table via the foreign key relationship.

	

Figure 1-1:
Defining

rows in the
CUSTOMER

table.
	

11 Chapter 1: Discovering Databases and Oracle 12c

	

Figure 1-2:
Establishing
relationships

between
CUSTOMER
and ORDER

tables.
	

The CUSTOMER table contains a single row for each customer, and each
customer has a unique primary key identifier. The ORDER table stores all
the orders for the company and each order is identified by its primary key
ORDER_ID. A customer may have zero (new customer), one, or many (repeat
customer) orders, and each order must have a customer. (You can’t have
an order without a customer.) Each row in the ORDER table is tied to the
CUSTOMER table by the CUST_ID column which acts as the foreign key join-
ing the ORDER and CUSTOMER table.

Databases have hundreds or even thousands of tables, keys, and relation-
ships, and tables can have millions of rows of data consuming gigabytes or
even terabytes of disk storage. To speed access when searching for a specific
row of data, an index is created on one or more columns in a table. Indexes
work similarly to the indexes in a book. On a daily basis, it is common for
thousands of rows of data to be inserted, updated, or deleted within the data-
base. The RDBMS software, managed by the database administrator (DBA),
supports the overall management, functioning, and performance of the data-
base. We talk about DBAs in the upcoming “Keeping a Database Safe and
Sound” section.

Structured Query Language (SQL) is the language used to query (SELECT),
create (INSERT), modify (UPDATE), and remove (DELETE) data in a database.
SQL is the core language that DBAs and database application developers
work in; you need a working knowledge of SQL to effectively manage a data-
base. SQL is further defined as data manipulation language (DML) for que-
rying, creating, modifying, and removing data and data definition language
(DDL) for changing database and table structure. Oracle offers a program-
ming extension of SQL called PL/SQL used to implement application logic
within an Oracle database.

12 Part I: Getting Started with Oracle 12c

	 Oracle gained a big advantage early in the database market by successfully
implementing row locking inside tables. That is, when one or more people
update the same row in a database at the same time, the RDBMS software
ensures that everyone’s changes are made without conflicts and the data is
visible with read consistency throughout the life of the transaction. Not all
database vendors handled this issue cleanly.

Finding the right database for the job
The traditional saying, “If all you have is a hammer, everything looks like a
nail,” is appropriate to the selection of IT toolsets. Whether people are stor-
ing the addresses, phone numbers, and e-mails for a family reunion or they’re
maintaining an online shopping application, they need a data store. The size,
complexity, and scope of that data store determines whether a database is
even necessary and, if so, what characteristics (and vendor) of the database
are appropriate.

The data requirements for people and businesses vary greatly in size, com-
plexity, and importance. Different technologies exist based on these factors
to meet users’ data needs.

	 ✓	Small, individual, or limited-use data stores, such as address informa-
tion, are best served by a Microsoft Excel spreadsheet or a Microsoft
Access database because both are inexpensive and easy to use.

	 ✓	Small or medium size data stores, such as those found at small or
medium sized businesses, could make good use of Microsoft SQL Server,
Oracle MySQL, or Oracle Enterprise or Standard Edition. These imple-
mentations are commonly small, less complex databases where keeping
costs low is an important factor.

	 ✓	Medium to large data stores, such as those found at medium and large
businesses, are commonly the realm of Microsoft SQL Server, IBM DB2,
and Oracle Enterprise Edition. This medium to large database market is
what many people think of as a typical database environment.

	 ✓	Large and extremely large data stores, such as those found at large and
multinational businesses, are commonly served by Oracle Enterprise
Edition and IBM DB2. The large and complex database environments are
special creatures and require very specialized software and hardware.

Review your current computer system environment and projected future
needs to make the best decision for your mission. Vendors might try to
upsell you on their product, so do your homework before making a decision.
However, understand that as your data requirements change, your data-
base environment might require change. We often see systems that started
as small, departmental desktop applications grow until the old software is
no longer functional. The result is an upgrade to a larger-scaled database
system, and that system is often Oracle.

13 Chapter 1: Discovering Databases and Oracle 12c

Choosing Oracle
Many seasoned IT people agree that Oracle makes the most advanced and
reliable databases in the world. Your authors happen to agree with that
opinion, too. Oracle offers several databases targeted for different uses and
audiences at varying price points, including Oracle Enterprise Edition, Oracle
Standard Edition, Oracle Berkley DB, Oracle NoSQL, and MySQL. (This book
focuses on Oracle Enterprise Edition, Release 12c, although what you learn
will be relevant to previous versions of Oracle.) Additionally, Oracle offers
a programming extension of SQL called PL/SQL, which is used to implement
application logic within an Oracle database.

Oracle as a database
Oracle databases are extremely advanced and sophisticated software com-
ponents that are state of the art for RDBMS. Many features and options are
available, and we guide you through the features you need for most imple-
mentations. The highly advanced features, such as Real Application Clusters
(RAC), remote data replication, and engineered solutions such as Exadata,
are for customers who require the cutting edge of technology for specialized
implementations. Visit www.oracle.com for more details on these advanced
technologies.

The sophistication and technological advancement that make Oracle data-
bases so great can also make them very complex. Skilled DBAs devote their
entire careers to learning the finer points of Oracle databases — it’s a never-
ending (but often rewarding) process.

Fortunately, Oracle understands that not everyone wants to commit them-
selves to learning the complexities of Oracle databases. Therefore, Oracle
provides a robust, web-based administration tool, Enterprise Manager, where
you manage and monitor your databases and the environment supporting
them. Leveraging Enterprise Manager to make your job easier is a theme you
can find throughout this book.

What is the “c” in Oracle 12c?
Following on the success of the previous Oracle database, release 11g (g is
for grid), the most recent Oracle database release is 12c; the c stands for
cloud computing, but what is that?

http://www.oracle.com

14 Part I: Getting Started with Oracle 12c

Cloud computing is an architecture where services (such as databases, appli-
cations, development environments, or even server infrastructure) are avail-
able over the network to the consumer (user). The cloud service provider
supplies the product and bills the consumer based on usage. For example,
say you wanted to use a type of computer server but you didn’t want the
overhead of buying and maintaining physical computer hardware and soft-
ware. A cloud provider could sell you access to that computer server hosted
in their cloud. You would pay the cloud service provider a fee based on your
usage and the provider would give you access to the servers in their cloud.
You get the benefits of having access to the cloud based server without the
hassle and costs of buying and maintaining your own servers.

Cloud architecture allows consumers to choose only the services they need
and pay for only what they use. Benefits to the consumer include lower cost,
not having to provide their own IT service, and generally faster delivery of
services than if they built the computing environment themselves.

Oracle 12c is engineered to run on the cloud and be accessible as a service.
Through virtualization and multi-tenant architecture, each database applica-
tion can appear to have its own private database but, in reality, the system is
a shared database environment. The use of shared resources and virtualiza-
tion is a method used by companies and database providers to reduce costs.
However, there is no requirement that Oracle 12c must run in the cloud;
you may run Oracle 12c just like you run other versions of Oracle without
the cloud.

Oracle just does databases, right?
Wrong! At one point in time, if any Oracle prod-
uct came into an IT shop, it got passed straight
to the DBAs for implementation because it had
to be database related. Those times are long
gone, and understanding the history of Oracle is
important so you’re not confused by the myriad
of Oracle products.

Oracle Corporation started as a database
software company but, through remarkable
success and a series of acquisitions of other
companies, now has a bunch of products.
The acquisition of Sun Microsystems yielded
SPARC UNIX server hardware, the Solaris
operating system, storage systems, and the
Java programming language. The purchase
of BEA Systems provided the well-respected
WebLogic Java application server. Other

purchases, such as PeopleSoft and Siebel,
provided Oracle with new applications
software.

Today, Oracle products include (but are not
limited to) databases, operating systems (Linux
and Solaris), database and web application
server hardware, disk and tape storage devices,
web and application server software, Business
Intelligence (BI) software, Java programming
language and supporting software, and multiple
business applications. As you design your next
computer system, you likely will have the option
to have most, if not all, the components supplied
by Oracle. You can consider the pros and cons
of that (end-to-end support versus vendor com-
mitment, for example), based on your mission
requirements.

15 Chapter 1: Discovering Databases and Oracle 12c

Keeping a Database Safe and Sound
The person who installs and configures a database, manages user access and
accounts, ensures space for database objects, and (we hope) makes backups,
among many other responsibilities, is the database administrator, or DBA.

Medium to large IT shops have one or more DBAs, sometimes even a large
team of DBAs. Smaller IT shops may have a person working as a DBA part-
time but doing system administration or application development as well.
Regardless of whether you’re a full-time or part-time DBA, you need to under-
stand the responsibilities and common tasks involved with the care and feed-
ing of a database.

	 Try not to confuse the DBA with the application developer. The process of
defining tables, columns, relationships, and rules is application design, data
modeling, and ultimately application development. The DBA is peripherally
involved with these tasks, but they’re typically the application developers’
responsibilities.

DBA responsibilities
A DBA has multiple responsibilities around which individual tasks are cre-
ated to support. Work comes in the form of technical, non-technical, data-
base-centric, and business-centric tasks, but they generally relate to a set of
core areas. As a DBA, you have to

	 ✓	Protect the data. You are the gatekeeper and protector of the data you
are entrusted to defend. Data must be protected from theft, damage, and
destruction. Protecting the data encompasses both security and backup
and recovery. This responsibility commonly comes in the form of estab-
lishing, testing, and monitoring backups and implementing security poli-
cies and technologies.

	 ✓	Provide access to the data. You must ensure that the data is available
to those users and programs which are authorized to access it. Speedy,
quick access is necessary because if a query takes too long to execute
and the user gives up, it might as well never finish. Data must be accessi-
ble as well; if the database is shutdown or otherwise unavailable, it does
the users no good. Providing access to the data involves performance
tuning and High Availability (HA).

	 ✓	Maintain the software. You are responsible for ensuring the general
maintenance and housekeeping of the database is kept up to date.
Databases must be monitored for errors, ensuring there is enough space
to grow as new data is loaded, and monitor processing jobs for success.
Furthermore, there is always a new version of software to upgrade to or
apply a patch (often after hours). These are generally mundane items

16 Part I: Getting Started with Oracle 12c

and much of it can be automated via scripts or Enterprise Manager, but
they still are your responsibility.

	 ✓	Support the business. Databases do not exist in isolation. They are part
of an overall business objective, and that business objective is usually
evolving. New application code is being generated requiring developer
assistance, audits of your processes are being conducted, and users
always have miscellaneous issues. The most common example is apply-
ing a new application release to the database or implementing new tech-
nology to enable a new business capability. These efforts periodically
correspond to database maintenance, but they are in support of moving
the business objectives forward, and the wise DBA supports these efforts.

Common tasks
Life as a DBA varies based on the nature of the business and the IT environ-
ment. Here’s how the core responsibilities can manifest themselves within a
common task:

	 ✓	Protect the data by

	 •	Reviewing output logs and messages to ensure the previous night’s
backups ran successfully.

	 •	Responding to questions about user access and database auditing
procedures. (This task also falls under support the business.)

	 •	Researching and applying Critical Patch Update (CPU) patches to
ensure security and vulnerability fixes are made. (This task also
falls under maintain the software.)

	 ✓	Provide access to the data by checking Enterprise Manager and your
cell phone texts for alerts showing down databases or listeners, which
would impact user access to the databases.

	 ✓	Maintain the software by using Enterprise Manager and log files to
search for database alerts, errors, and space usage threshold concerns.

	 ✓	Support the business by

	 •	Reviewing output logs and messages to ensure the previous night’s
application batch jobs and processes completed.

	 •	Checking e-mail and responding to any application or user issues.

	 •	Applying application updates to development, test, and production
databases to provide additional functionality and bug fixes for users.

Database administration is a respected profession in the IT field. Many
people make a comfortable living as an Oracle DBA. Some would say Oracle
wouldn’t be where it is today if not for the legions of dedicated Oracle profes-
sionals worldwide.

Chapter 2

Understanding Oracle
Database Architecture

In This Chapter
▶	Structuring memory
▶	Checking the physical structures
▶	Applying the irreducible logic of the logical structures

U
nderstanding the Oracle architecture is paramount to managing a data-
base. If you have a sound knowledge of the way Oracle works, it can

help all sorts of things:

	 ✓	Troubleshooting

	 ✓	Recovery

	 ✓	Tuning

	 ✓	Sizing

	 ✓	Scaling

As they say, that list can go on and on. That’s why a solid knowledge of the
inner workings of Oracle is so important.

In this chapter, we break down each process, file, and logical structure.
Despite the dozens of different modules in the database, you should come
away with a good understanding of what they are, why they’re there, and
how they work together. This chapter is more conceptual than it is hands-on,
but it gives you a solid base for moving forward as you begin working with
Oracle.

18 Part I: Getting Started with Oracle 12c

Defining Databases and Instances
In Oracle speak, an instance is the combination of memory and processes
that are part of a running installation. The database is the physical compo-
nent or the files. You might hear people use the term database instance to
refer to the entire running database. However, it’s important to understand
the distinction between the two.

Here are some rules to consider:

	 ✓	An instance can exist without a database. Yes, it’s true. You can start
an Oracle instance and not have it access any database files. Why would
you do this?

	 •	This is how you create a database. There’s no chicken-or-egg
debate here. You first must start an Oracle instance; you create the
database from within the instance.

	 •	An Oracle feature called Automatic Storage Management uses an
instance but isn’t associated with a database.

	 ✓	A database can exist without an instance but would be useless. It’s just
a bunch of magnetic blips on the hard drive.

	 ✓	An instance can access only one database. When you start your
instance, the next step is to mount that instance to a database. An
instance can mount only one database at a time.

	 ✓	You can set up multiple instances to access the same set of files or one
database. Clustering is the basis for the Oracle Real Application Clusters
feature. Many instances on several servers accessing one central data-
base allows for scalability and high availability.

Deconstructing the Oracle Architecture
You can break down the Oracle architecture into the following three
main parts:

	 ✓	Memory: The memory components of Oracle (or any software, for that
matter) are what inhabit the RAM on the computer. These structures
exist only when the software is running. For example, they instantiate
when you start an instance. Some of the structures are required for a
running database; others are optional. You can also modify some to
change the behavior of the database, whereas others are static.

19 Chapter 2: Understanding Oracle Database Architecture

	 ✓	Processes: Again, Oracle processes exist only when the instance is
running. The running instance has some core mandatory processes,
whereas others are optional, depending on what features are enabled.
These processes typically show up on the OS process listing.

	 ✓	Files and structures: Files associated with the database exist all the time
as long as a database is created. If you install only the Oracle software,
no database files exist. The files show up as soon as you create a data-
base. As with memory and process, some files are required, whereas
others are optional. Files contain your actual database objects: the
things you create as well as the objects required to run the database.
The logical structures are such things as tables, indexes, and programs.

Maybe you could say that the Oracle architecture has two-and-a-half parts.
Because files contain the structures, we lump those two together.

The following sections get into more detail about each of these main
components.

Walking Down Oracle Memory Structures
Oracle has many different memory structures for the various parts of the
software’s operation.

Knowing these things can greatly improve how well your database runs:

	 ✓	What each structure does

	 ✓	How to manage it

In most cases, more memory can improve your database’s performance.
However, sometimes it’s best to use the memory you have to maximize
performance.

	 For example, are you one of those power users who likes to have ten pro-
grams open at once, constantly switching between applications on your desk-
top? You probably know what we’re talking about. The more programs you
run, the more memory your computer requires. In fact, you may have found
that upgrading your machine to more memory seems to make everything run
better. On the other hand, if you are really a computer nerd, you might go
into the OS and stop processes that you aren’t using to make better use of the
memory you have. Oracle works in much the same way.

20 Part I: Getting Started with Oracle 12c

Trotting around the System Global Area
The System Global Area (SGA) is a group of shared memory structures. It
contains things like data and SQL. It is shared between Oracle background
processes and server processes.

	 The SGA is made up of several parts called the SGA components:

	 ✓	Shared pool

	 ✓	Database buffer cache

	 ✓	Redo log buffer

	 ✓	Large pool

	 ✓	Java pool

	 ✓	Streams pool

The memory areas are changed with initialization parameters.

	 ✓	You can modify each parameter individually for optimum tuning (only
for the experts).

	 ✓	You can tell Oracle how much memory you want the SGA to use (for
everyone else).

	 Say you want Oracle to use 1GB of memory. The database actually takes that
1GB, analyzes how everything is running, and tunes each component for opti-
mal sizing. It even tells you when it craves more.

Shared pool
Certain objects and devices in the database are used frequently. Therefore,
it makes sense to have them ready each time you want to do an operation.
Furthermore, data in the shared pool is never written to disk.

The shared pool itself is made up of four main areas:

	 ✓	Library cache

	 ✓	Dictionary cache

	 ✓	Server Result cache

	 ✓	Reserved Pool

21 Chapter 2: Understanding Oracle Database Architecture

A cache is a temporary area in memory created for a quick fetch of informa-
tion that might otherwise take longer to retrieve. For example, the caches
mentioned in the preceding list contain precomputed information. Instead of
a user having to compute values every time, the user can access the informa-
tion in a cache.

The library cache
The library cache is just like what it’s called: a library. More specifically, it is
a library of ready-to-go SQL statements.

	 Each time you execute a SQL statement, a lot happens in the background. This
background activity is called parsing. Parsing can be quite expensive in terms
of processing power.

During parsing, some of these things happen:

	 ✓	The statement syntax is checked to make sure you typed everything
correctly.

	 ✓	The objects you’re referring to are checked. For example, if you’re
trying to access a table called EMPLOYEE, Oracle makes sure it exists in
the database.

	 ✓	Oracle makes sure that you have permission to do what you’re trying
to do.

	 ✓	The code is converted into a database-ready format. The format is
called byte-code or p-code.

	 ✓	Oracle determines the optimum path or plan. This is by far the most
expensive part.

Every time you execute a statement, the information is stored in the library
cache. That way, the next time you execute the statement not much has to
occur (such as checking permissions).

The dictionary cache
The dictionary cache is also frequently used for parsing when you execute
SQL. You can think of it as a collection of information about you and the data-
base’s objects. It can check background-type information.

The dictionary cache is also governed by the rules of the Least Recently
Used (LRU) algorithm: If it’s not the right size, information can be evicted.
Not having enough room for the dictionary cache can impact disk usage.
Because the definitions of objects and permission-based information are
stored in database files, Oracle has to read disks to reload that information
into the dictionary cache. This is more time-consuming than getting it from
the memory cache. Imagine a system with thousands of users constantly
executing SQL . . . an improperly sized dictionary cache can really hamper
performance.

22 Part I: Getting Started with Oracle 12c

	 Like the library cache, you can’t control the size of the dictionary cache
directly. As the overall shared pool changes in size, so does the dictionary
cache.

The server result cache
The server result cache has two parts:

	 ✓	SQL result cache: This cache lets Oracle see that the requested data —
requested by a recently executed SQL statement — might be stored in
memory. This situation lets Oracle skip the execution part of the, er,
execution, for lack of a better term, and go directly to the result set if
it exists.

		 What if your data changes? Well, we didn’t say this is the end-all-per-
formance-woes feature. The SQL result cache works best on relatively
static data (like the description of an item on an e-commerce site).

		 Should you worry about the result cache returning incorrect data? Not
at all. Oracle automatically invalidates data stored in the result cache if
any of the underlying components are modified.

	 ✓	PL/SQL function result cache: The PL/SQL function result cache stores
the results of a computation. For example, say you have a function that
calculates the value of the dollar based on the exchange rate of the
Euro. You might not want to store that actual value since it changes
constantly. Instead, you have a function that calls on a daily or hourly
rate to determine the value of the dollar. In a financial application, this
call could happen thousands of times an hour. Therefore, instead of the
function executing, it goes directly to the PL/SQL result cache to get
the data between the rate updates. If the rate does change, Oracle re-
executes the function and updates the result cache.

The reserved pool
When Oracle needs to allocate a large chunk (over 5 KB) of contiguous
memory in the shared pool, it allocates the memory in the reserved pool.
Dedicating the reserved pool to handle large memory allocations improves
performance and reduces memory fragementation.

Least Recently Used algorithm
If the library cache is short on space, objects are thrown out. Statements
that are used the most stay in the library cache the longest. The more often
they’re used, the less chance they have of being evicted if the library cache is
short on space.

The library cache eviction process is based on what is called the Least
Recently Used (LRU) algorithm. If your desk is cluttered, what do you put
away first? The stuff you use the least.

23 Chapter 2: Understanding Oracle Database Architecture

You can’t change the size of the library cache yourself. The shared pool’s
overall size determines that. If you think too many statements are being
evicted, you can boost the overall shared pool size if you’re tuning it
yourself. If you’re letting Oracle do the tuning, it grabs free memory from
elsewhere.

Database buffer cache
The database buffer cache is typically the largest portion of the SGA. It has
data that comes from the files on disk. Because accessing data from disk is
slower than from memory, the database buffer cache’s sole purpose is to
cache the data in memory for quicker access.

The database buffer cache can contain data from all types of objects:

	 ✓	Tables

	 ✓	Indexes

	 ✓	Materialized views

	 ✓	System data

	 In the phrase database buffer cache, the term buffer refers to database blocks.
A database block is the minimum amount of storage that Oracle reads or
writes. All storage segments that contain data are made up of blocks. When
you request data from disk, at minimum Oracle reads one block. Even if you
request only one row, many rows in the same table are likely to be retrieved.
The same goes if you request one column in one row. Oracle reads the entire
block, which most likely has many rows, and all columns for that row.

Heap area
There aren’t a lot of interesting things to say
about the heap area within the context of this
book. Basically, the heap area is a bunch of
smaller memory components in the shared
pool. Oracle determines their sizes and tunes
them accordingly.

Only the nerdiest of Oracle DBAs search the
dark nether-regions of the Internet for heap

area information. It’s not readily available from
Oracle in the documentation, and the informa-
tion you do find may or may not be accurate.
If all I have done was make you more curious,
look at the dynamic performance view in the
database called V$SGASTAT to get a list of all
the other heap area memory component names.

24 Part I: Getting Started with Oracle 12c

It’s feasible to think that if your departments table has only ten rows, the
entire thing can be read into memory even if you’re requesting the name of
only one department.

Buffer cache state
The buffer cache controls what blocks get to stay depending on available
space and the block state (similar to how the shared pool decides what SQL
gets to stay). The buffer cache uses its own version of the LRU algorithm.

	 A block in the buffer cache can be in one of three states:

	 ✓	Free: Not currently being used for anything

	 ✓	Pinned: Currently being accessed

	 ✓	Dirty: Block has been modified but not yet written to disk

Free blocks
Ideally, free blocks are available whenever you need them. However, that
probably isn’t the case unless your database is so small that the whole thing
can fit in memory.

	 The LRU algorithm works a little differently in the buffer cache than it does
in the shared pool. It scores each block and then times how long it has been
since it was accessed. For example, a block gets a point each time it’s touched.
The higher the points, the less likely the block will be flushed from memory.
However, it must be accessed frequently or the score decreases. A block has to
work hard to stay in memory if the competition for memory resources is high.

Giving each block a score and time prevents this type of situation from aris-
ing: A block is accessed heavily at the end of the month for reports. Its score
is higher than any other block in the system. That block is never accessed
again. It sits there wasting memory until the database is restarted or another
block finally scores enough points to beat it out. The time component ages it
out very quickly after you no longer access it.

Pinned blocks
A block currently being accessed is a pinned block. The block is locked (or
pinned) into the buffer cache so it cannot be aged out of the buffer cache
while the Oracle process (often representing a user) is accessing it.

Dirty blocks
A modified block is a dirty block. To make sure your changes are kept across
database shutdowns, these dirty blocks must be written from the buffer
cache to disk. The database names dirty blocks in a dirty list or write queue.

25 Chapter 2: Understanding Oracle Database Architecture

You might think that every time a block is modified, it should be written to
disk to minimize lost data. This isn’t the case — not even when there’s a
commit (when you save your changes permanently)! Several structures help
prevent lost data.

Furthermore, Oracle has a gambling problem. System performance would
crawl if you wrote blocks to disk for every modification. To combat this,
Oracle plays the odds that the database is unlikely to fail and writes blocks
to disk only in larger groups. Don’t worry; it’s not even a risk against lost
data. Oracle is getting performance out of the database right now at the pos-
sible expense of a recovery taking longer later. Because failures on properly
managed systems rarely occur, it’s a cheap way to gain some performance.
However, it’s not as if Oracle leaves dirty blocks all over without cleaning up
after itself.

Block write triggers
What triggers a block write and therefore a dirty block?

	 ✓	The database is issued a shutdown command.

	 ✓	A full or partial checkpoint occurs — that’s when the system periodically
dumps all the dirty buffers to disk.

	 ✓	A recovery time threshold, set by you, is met; the total number of dirty
blocks causes an unacceptable recovery time.

	 ✓	A free block is needed and none are found after a given amount of
searching.

	 ✓	Certain data definition language (DDL) commands. (DDL commands are
SQL statements that define objects in a database. You find out more
about DDL in Chapter 6.)

	 ✓	Every three seconds.

	 ✓	Other reasons. The algorithm is complex, and we can’t be certain with
all the changes that occur with each software release.

The fact is the database stays pretty busy writing blocks in an environment
where there are a lot changes.

Redo log buffer
The redo log buffer is another memory component that protects you from your-
self, bad luck, and Mother Nature. This buffer records every SQL statement
that changes data. The statement itself and any information required to recon-
struct it is called a redo entry. Redo entries hang out here temporarily before
being recorded on disk. This buffer protects against the loss of dirty blocks.

26 Part I: Getting Started with Oracle 12c

	 Dirty blocks aren’t written to disk constantly.

Imagine that you have a buffer cache of 1,000 blocks, and 100 of them are
dirty. Then imagine a power supply goes belly up in your server, and the
whole system comes crashing down without any dirty buffers being written.
That data is all lost, right? Not so fast. . . .

The redo log buffer is flushed when these things occur:

	 ✓	Every time there’s a commit to data in the database

	 ✓	Every three seconds

	 ✓	When the redo buffer is 1/3 full

	 ✓	Just before each dirty block is written to disk

Why does Oracle bother maintaining this whole redo buffer thingy when
instead, it could just write the dirty buffers to disk for every commit? It
seems redundant.

	 ✓	The file that records this information is sequential. Oracle always
writes to the end of the file. It doesn’t have to look up where to put the
data. It just records the redo entry. A block exists somewhere in a file.
Oracle has to find out where, go to that spot, and record it. Redo buffer
writes are very quick in terms of I/O.

	 ✓	One small SQL statement could modify thousands or more database
blocks. It’s much quicker to record that statement than wait for the I/O
of thousands of blocks. The redo entry takes a split second to write,
which reduces the window of opportunity for failure. It also returns your
commit only if the write is successful. You know right away that your
changes are safe. In the event of failure, the redo entry might have to be
re-executed during recovery, but at least it isn’t lost.

Large pool
We’re not referring to the size of your neighbor’s swimming pool. Not every-
one uses the optional large pool component. The large pool relieves the
shared pool of sometimes-transient memory requirements.

These features use the large pool:

	 ✓	Oracle Recovery Manager

	 ✓	Oracle Shared Server

	 ✓	Parallel processing

	 ✓	I/O-related server processes

27 Chapter 2: Understanding Oracle Database Architecture

Because many of these activities aren’t constant and allocate memory only
when they’re running, it’s more efficient to let them execute in their own space.

	 Without a large pool configured, these processes steal memory from the
shared pool’s SQL area. That can result in poor SQL processing and constant
resizing of the SQL area of the shared pool. Note: The large pool has no LRU.
Once it fills up (if you size it too small) the processes revert to their old behav-
ior of stealing memory from the shared pool.

Java pool
The Java pool isn’t a swimming pool filled with coffee (Okay, we’re cutting off
the pool references.) The Java pool is an optional memory component.

Starting in Oracle 8i, the database ships with its own Java Virtual Machine
(JVM), which can execute Java code out of the SGA. In our experience, this
configuration is relatively rare. In fact, we see this where Oracle-specific tools
are installed.

	 However, don’t let that discourage you from developing your own Java-based
Oracle applications. The fact is, even though Oracle has its own Java con-
tainer, many other worthwhile competing alternatives are out there.

Streams pool
The streams pool is used only if you’re using Oracle Streams functionality.
Oracle Streams is an optional data replication technology where you repli-
cate (reproduce) the same transactions, data changes, or events from one
database to another (sometimes remote) database. You would do this if you
wanted the same data to exist in two different databases. The streams pool
stores buffered queue messages and provides the memory used to capture
and apply processes. By default, the value of this pool is zero and increases
dynamically if Oracle Streams is in use.

Program Global Area
The Program Global Area (PGA) contains information used for private or
session-related information that individual users need.

	 Again, PGA used to be allocated out of the shared pool. In Oracle 9i, a memory
structure called the instance PGA held all private information as needed. This
alleviated the need for the shared pool to constantly resize its SQL area to
meet the needs of individual sessions. Because the amount of users constantly

28 Part I: Getting Started with Oracle 12c

varies, as do their private memory needs, the instance PGA was designed for
this type of memory usage.

The PGA contains the following:

	 ✓	Session memory

	 •	Login information

	 •	Information such as settings specific to a session (for example,
what format to use when dates are displayed)

	 ✓	Private SQL area

	 •	Variables that might be assigned values during SQL execution

	 •	Work areas for processing specific internal SQL actions: sorting,
hash-joins, bitmap operations

	 •	Cursors

Managing Memory
You have basically three ways to manage the memory in your instance:

	 ✓	Automatically by letting Oracle do all the work

	 ✓	Manually by tuning individual parameters for the different memory areas

	 ✓	Combination of automatic and manual by using your knowledge of how
things operate, employing Oracle’s advice infrastructure, and letting
Oracle take over some areas

	 First, a quick note on Oracle automation. Through the last several releases of
Oracle, the database has become more automated in areas that were previ-
ously manual and even tedious at times. This isn’t to say that soon it will take
no special skill to manage an Oracle database. Exactly the opposite: When
more mundane operations are automated, it frees you up as the DBA to focus
on the more advanced features.

We’ve had great success implementing automated features for clients. It frees
up our resources to focus on things such as high availability and security,
areas that require near full-time attention. Thank goodness we don’t have to
spend hours watching what SQL statements are aging out of the shared pool
prematurely, resulting in performance problems.

	 We recommend that you manage memory automatically in Oracle 12c. For
that reason, we cover only automatic management in this chapter.

29 Chapter 2: Understanding Oracle Database Architecture

Managing memory automatically
When you create your database, you can set one new parameter that takes
nearly all memory tuning out of your hands: MEMORY_TARGET. By setting
this parameter, all the memory areas discussed earlier in this chapter are
automatically sized and managed. After you type show parameter memory_
target in SQL*Plus (the SQL command-line interface available in Oracle), you
see this output on the screen:

NAME TYPE VALUE
------------------------------------ ----------- ------------------------------
memory_target big integer 756M

Automatic memory management lets you take hold of the amount of memory
on the system and then decide how much you want to use for the database.

	 It’s never obvious what value you should choose as a starting point. Answer
these questions to help set the value:

	 ✓	How much memory is available?

	 ✓	How many databases will ultimately be on the machine?

	 ✓	How many users will be on the machine? (If many, we allocate 4MB per
user for process overhead.)

	 ✓	What other applications are running on the machine?

	 Before the users get on the machine, consider taking no more than 40 percent
of the memory for Oracle databases. Use this formula:

(GB of memory × .40) / Number of Eventual Databases = GB for MEMORY_
TARGET per database

For example, if your machine had 8GB of memory and will ultimately house
two databases similar in nature and only 100 users each, we would have this
equation: (8 × .40) / 2 = 1.6GB for MEMORY_TARGET per database.

To help determine whether you have enough memory, Oracle gives you some
pointers if you know where to look. It’s called the Memory Target Advisor.
Find it from the command line in the form of the view V$MEMORY_TARGET_
ADVICE. As seen in Figure 2-1, find it in the Database Control home page by
clicking Advisor Central➪Memory Advisors➪Advice.

30 Part I: Getting Started with Oracle 12c

	

Figure 2-1:
MEMORY_

TARGET
offers

advice.
	

Whatever you choose for the MEMORY_TARGET setting isn’t all the memory
Oracle uses. That’s why you should have an idea of how many sessions there
will be before you make the final determination.

For instance, this parameter covers only memory used by the SGA and PGA.
Every single session that connects to the database requires memory associ-
ated with its OS or server process. This memory requirement adds up. One
of our clients has nearly 3,000 simultaneous connections eating up about
16GB of memory outside the SGA and PGA. The client’s machine has 64GB of
memory, and the MEMORY_TARGET is set at 16GB.

Following the Oracle Processes
When you start and initiate connections to the Oracle instance, many pro-
cesses are involved, including

	 ✓	The component of the Oracle instance that uses the Oracle programs

	 ✓	Code to gain access to your data

31 Chapter 2: Understanding Oracle Database Architecture

There are no processes when the Oracle instance is shut down. Some of the
processes are mandatory, and others are optional depending on the features
you’ve enabled. It can also depend on your OS.

Three types of processes are part of the instance:

	 ✓	Background processes are involved in running the Oracle software
itself.

	 ✓	Server processes negotiate the actions of the users.

	 ✓	User processes commonly work outside the database server itself to run
the application that accesses the database.

Background processes
In Oracle 12c, you can have over 200 background processes. We say “over
200” because it varies by operating system. If this sounds like a lot, don’t
be scared. Many are multiples of the same process (for parallelism and
taking advantage of systems with multiple CPUs). Table 2-1 shows the most
common background processes.

	 By default, no processes have more than one instance of their type started.
More advanced tuning features involve parallelism. To see a complete list of
all the background processes on your OS, query V$BGPROCESS.

Table 2-1	 Common Background Processes
Background
Process Name

Description

PMON The process monitor manages the system’s server processes.
It cleans up failed processes by releasing resources and rolling
back uncommitted data.

SMON The system monitor is primarily responsible for instance recov-
ery. If the database crashes and redo information must be
read and applied, the SMON takes care of it. It also cleans and
releases temporary space.

DBWn The database writer’s sole job is taking dirty blocks from
the dirty list and writing them to disk. There can be up to 20
of them, hence the n. It starts as DBW0 and continues with
DBW1, DBW2, and so on. After DBW9, it continues with DBWa
through DBWj. An average system won’t see more than a few
of these.

(continued)

32 Part I: Getting Started with Oracle 12c

Table 2-1 (continued)
Background
Process Name

Description

LGWR The log writer process flushes the redo log buffer. It writes the
redo entries to disk and signals a completion.

CKPT The checkpoint process is responsible for initiating check
points. A check point is when the system periodically dumps
all the dirty buffers to disk. Most commonly, this occurs when
the database receives a shutdown command. It also updates
the data file headers and the control files with the check point
information so the SMON know where to start recovery in the
event of a system crash.

ARCn Up to 30 archiver processes (0–9, a–t) are responsible for copy-
ing filled redo logs to the archived redo storage area. If your
database isn’t running in archive mode, this process shuts
down.

CJQ0 The job queue coordinator checks for scheduled tasks within
the database. These jobs can be set up by the user or can be
internal jobs for maintenance. When it finds a job that must be
run it spawns the following goodie.

J000 A job queue process slave actually runs the job. There can be
up to 1,000 of them (000–999).

DIA0 The diagnosability process resolves deadlock situations and
investigates hanging issues.

VKTM The virtual keeper of time sounds like a fantasy game character
but simply provides a time reference within the database.

LREG The listener registration process, which registers database
instance and dispatcher information with the Oracle listener
process. This allows incoming user connections to get from the
listener to the database.

MMON The manageablity monitor process supports the Automatic
Workload Repository (AWR) by capturing statistics, monitoring
threasholds, and taking snapshots. This is related to perfor-
mance tuning and troubleshooting.

MMNL The manageability monitor lite’s job is to write Active Session
History (ASH) statistics from ASH buffer in the SGA to disk. This
is related to performance tuning and troubleshooting.

Other background processes exist, as you can tell by the “over 200” number
we stated at the beginning of this section. However, those described in
Table 2-1 are the most common, and you will find them on almost all Oracle
installations. When you engage some of Oracle’s more advanced functional-
ity, you’ll see other processes.

33 Chapter 2: Understanding Oracle Database Architecture

It’s very easy to see these background processes if you have an Oracle instal-
lation available on Linux or UNIX. In Figure 2-2, the ps –ef|grep ora_ portion
lists the background processes. This situation works very well because all
background processes begin with ora_.

User and server processes
Because user and server processes are intertwined, we discuss the two
together. However, they are distinct and separate processes. As a matter
of fact, they typically run on separate machines. A very simple example:
When you start SQL*Plus on a Windows client, you get a user process called
sqlplus.exe. The user process represents a user’s session in the database.
When a connection is made to the database on a Linux machine, you get a
connection to a process named something like oracle<database_name> or
ora_S000_<database_name>.

	

Figure 2-2:
The Oracle

background
process list.

	

34 Part I: Getting Started with Oracle 12c

The server process serves and exists on the database server. It does anything
the user requests of it. It is responsible for reading blocks into the buffer
cache. It changes the blocks if requested. It can create objects.

	 Server processes can be one of two types:

	 ✓	Dedicated

	 ✓	Shared

The type depends on how your application operates and how much memory
you have. You’re first presented with the choice of dedicated or shared when
you create your database with Oracle’s Database Configuration Assistant
(DBCA). However, you can change it one way or the other later on.

Dedicated server architecture
Each user process gets its own server process. This is the most common
Oracle configuration. It allows a server process to wait on you. If the
resources can support dedicated connections, this method also is the most
responsive. However, it can also use the most memory. Even if you’re not
doing anything, that server process is waiting for you.

Not that it’s a bad thing. Imagine, though, 5,000 users on the system sitting
idle most of the time. If your applications can’t use connection pools (similar
to shared server processes), your database probably won’t survive and per-
form adequately for more than a day.

Shared server architecture
Just as the name implies, the server processes are shared. Now, instead of a
server process waiting on you hand and foot, you have only one when you
need it.

Think of a server process as a timeshare for Oracle. It’s more cost-effective
(in terms of memory), and you almost always have one available when you
need it (provided the infrastructure is properly configured).

	 On a system with 5,000 mostly idle users, you might be able to support them
with only 50 server processes. You must do these things for this to work
properly:

	 ✓	 Make sure the number of concurrent database requests never exceeds
the number of shared servers configured.

	 ✓	 Make sure users don’t hold on to the processes for long periods.
This works best in a fast transaction-based environment like an
e-commerce site.

35 Chapter 2: Understanding Oracle Database Architecture

	 ✓	 Have a few extra CPU cycles available. All the interprocess communica-
tion seems to have small CPU cost associated with it over dedicated
server processes.

The fact is shared server configurations are less common in today’s environ-
ment where memory is cheap. Most applications these days get around the
problems associated with too many dedicated servers by using advanced
connection pooling on the application server level.

	 You should know about some other limitations: DBA connections must have a
dedicated server. Therefore, a shared server environment is actually a hybrid.
Shared servers can coexist with a dedicated server.

Many different types of files are required (and optional) to run an Oracle
database:

	 ✓	Data files

	 ✓	Control files

	 ✓	Redo log files

	 ✓	Archive log files

	 ✓	Server and initialization parameter files

Knowing what each of these files does greatly increases your database man-
agement success.

Getting Physical with Files
Many types of files are created with your database. Some of these files are for
storing raw data. Some are used for recovery. Some are used for housekeep-
ing or maintenance of the database itself. In the next few sections, we take a
look at the various file types and what they’re responsible for storing.

Data files: Where the data meets the disk
Data files are the largest file types in an Oracle database. They store all the
actual data you put into your database as well as the data Oracle requires to
manage the database. Data files are a physical structure: They exist whether
the database is open or closed.

36 Part I: Getting Started with Oracle 12c

Data files are also binary in nature. You can’t read them yourself without
starting an instance and executing queries. The data is stored in an organized
format broken up into Oracle blocks.

Whenever a server process reads from a data file, it does so by reading at the
very least one complete block. It puts that block into the buffer cache so that
data can be accessed, modified, and so on.

It’s also worth noting that the data file is physically created using OS blocks.
OS blocks are different from Oracle blocks. OS blocks are physical, and their
size is determined when you initially format the hard drive.

	 You should know the size of your OS block. Make sure that it’s equal to, or
evenly divisible into, your Oracle block.

Most of the time Oracle data files have an extension of .DBF (short for data-
base file). But the fact of the matter is that file extensions in Oracle don’t
matter. You could name it .XYZ, and it would function just fine.

	 We feel it is best practice to stick with .DBF because that extension is used in
95 percent of databases.

In every data file, the very first block stores the block header. To be spe-
cific, depending on your Oracle block size, the data file header block may be
several blocks. By default, the header block is 64k. Therefore, if your Oracle
block size is 4k, then 16 header blocks are at the beginning of the file. These
header blocks are for managing the data file’s internal workings. They contain

	 ✓	Backup and recovery information

	 ✓	Free space information

	 ✓	File status details

Lastly, a tempfile is a special type of database file. Physically, it’s just like
a regular data file, but it holds only temporary information. For example, a
tempfile is used if you perform sorts on disk or if you’re using temporary
tables. The space is then freed to the file either immediately after your opera-
tion is done or as soon as you log out of the system.

Figure 2-3 shows that by executing a simple query against V$TEMPFILE and
V$DATAFILE you can see a listing of the data files in your database.

37 Chapter 2: Understanding Oracle Database Architecture

	

Figure 2-3:
Data files

listed.
	

Control files
The control file is a very important file in the database — so important that
you have several copies of it. These copies are placed so that losing a disk on
your system doesn’t result in losing all of your control files.

	 Typically, control files are named with the extension .CTL or .CON. Any exten-
sion will work, but if you want to follow best practice, those two are the most
popular.

Control files contain the following information:

	 ✓	Names and locations of your data files and redo log files

	 ✓	Recovery information

	 ✓	Backup information

	 ✓	Checkpoint information

	 ✓	Archiving information

	 ✓	Database name

	 ✓	Log history

	 ✓	Current logging information

Control files contain a host of other internal information as well. Typically,
control files are some of the smaller files in the database. It’s difficult to tell
you how big they are because it varies depending on the following:

	 ✓	How many files your database has

	 ✓	How much backup information you’re storing in them

	 ✓	What OS you’re using

38 Part I: Getting Started with Oracle 12c

	 As mentioned earlier, it’s important that you have several copies of your con-
trol files. If you were to lose all of your control files in an unfortunate failure, it
is a real pain to fix.

Redo log files
Redo log files store the information from the log buffer. They’re written to by
the Log Writer (LGWR). Again, you can’t read these binary files without the
help of the database software.

Typically, redo log files are named with the extension .LOG or .RDO. It can be
anything you want, but best practice indicates one of those two extensions.
Also, redo log files are organized into groups and members. Every database
must have at least two redo log groups.

Redo log files contain all the information necessary to recover lost data in
your database. Every SQL statement that you issue changing data can be
reconstructed by the information saved in these files.

	 Redo log files don’t record select statements. If you forget what you selected,
you’re just going to have to remember that on your own!

	 The optimal size for your redo log files depends on how many changes you
make to your database. The size is chosen by you when you set up the data-
base and can be adjusted later. When the LGWR is writing to a redo log file, it
does so sequentially. It starts at the beginning of the file and once it is filled
up, it moves on to the next one. This is where the concept of groups comes in.
Oracle fills each group and moves to the next. Once it has filled all the groups,
it goes back to the first. You could say they are written to in a circular fashion.
If you have three groups, it would go something like 1,2,3,1,2,3, . . . and so on.

Each time a group fills and the writing switches, it’s called a log switch opera-
tion. These things happen during a log switch operation:

	 ✓	The LGWR finishes writing to the current group.

	 ✓	The LGWR starts writing to the next group.

	 ✓	A database check point occurs.

	 ✓	The DBWR writes dirty blocks out of the buffer cascade.

How fast each group fills up is how you determine its size. By looking at all
the things that occur when a log switch happens, you might agree that it
is a fairly involved operation. For this reason, you don’t want frequent log
switches.

39 Chapter 2: Understanding Oracle Database Architecture

	 The general rule is that you don’t want to switch log files more often than
every 15–30 minutes. If you find that happening, consider increasing the size
of each group.

	 Because these redo log files may be involved in recovery operations, don’t
lose them. Similar to control files, redo log files should be configured with mir-
rored copies of one another. And, as with control files, each member should
be on a separate disk device. That way, if a disk fails and the database goes
down, you still have recovery information available. You should not lose
any data.

Each copy within a group is called a member. A common configuration might
be three groups with two members apiece, for a total of six redo log files. The
group members are written to simultaneously by the log writer.

	 ✓	How many groups are appropriate? The most common configuration
we come across is three. You want enough that the first group in the list
can be copied off and saved before the LGWR comes back around to use
it. If it hasn’t been copied off, the LGWR has to wait until that operation
is complete. This can severely impact your system. Thankfully, we rarely
see this happen.

	 ✓	How many members are appropriate? It depends on how paranoid you
are. Two members on two disks seems to be pretty common. However,
it isn’t uncommon to see three members on three disks. More than that
and you’re just plain crazy. Well, not really. It’s just that the more mem-
bers you have, the more work the LGWR has to do. It can impact system
performance while at the same time offering very little return.

We commonly get this question: “If my disks are mirrored at the hardware
level, do I need more than one member on each group? After all, if a disk fails,
I have another one right there to pick up the slack.”

Unfortunately, you get different answers depending on who you ask. Ask us,
and we’ll recommend at least two members for each group:

	 ✓	Oracle still recommends two members for each group as a best practice.

	 ✓	Depending on how your hardware is set up, you may have the same disk
controller writing to your disk mirrors. What if that controller writes
corrupt gibberish? Now both your copies are corrupted. Separating
your members across two different disks with different controllers is the
safest bet.

40 Part I: Getting Started with Oracle 12c

Moving to the archives
Archive log files are simply copies of redo log files. They’re no different from
redo log files except that they get a new name when they’re created.

	 Most archive log files have the extension .ARC, .ARCH, or .LOG. We try to use
.ARC as that seems most common.

Not all databases have archive log files. It depends on whether you turn on
archiving. By turning on archiving, you can recover from nearly any type of
failure providing two things:

	 ✓	You have a full backup.

	 ✓	You haven’t lost all copies of the redo or archive logs.

There is a small amount of overhead with database archiving:

	 ✓	 I/O cost: The ARCn process has to copy each redo log group as it fills up.

	 ✓	 CPU cost: It takes extra processing to copy the redo logs via the ARCn
process.

	 ✓	 Storage cost: You have to keep all the archive logs created between
each backup.

Relatively speaking, each of these costs is small in terms of the return you
get: recovering your database without so much as losing the dot over an i.
We typically recommend that, across the board, all production databases
archive their redo logs.

Sometimes, archiving isn’t needed, such as in a test database used for testing
code. You can easily just copy your production database to revive a broken
test. We’re not recommending not archiving on test databases. Sometimes
the test database is important enough to archive. We’re just saying that
sometimes you can get by without incurring the extra overhead.

You should keep archive log files for recovery between each backup. Say
you’re doing a backup every Sunday. Now say that your database loses files
due to a disk failure on Wednesday. The recovery process would be restoring
the lost files from the last backup and then telling Oracle to apply the archive
log files from Sunday all the way up to the failure on Wednesday. It’s called
rolling forward, and we talk about it in Chapter 8.

	 Like control files and redo log files, it’s best practice to have more than one
copy of each of your archive log files. They should go to two different desti-
nations on different devices, just like the others. You can’t skip over a lost
archive log.

41 Chapter 2: Understanding Oracle Database Architecture

Server and initialization parameter files
Server and initialization parameter files are the smallest files on your system:

	 ✓	PFILE, or parameter file, is a text version that you can read and edit with
a normal text editor.

	 ✓	SPFILE, or server parameter file, is a binary copy that you create for the
database to use after you make changes.

	 Typically, these files end with an .ORA extension. Personally, we have never
seen anything but that. It’s best practice for you to continue the tradition.

PFILEs and SPFILEs have information about how your running database is
configured. This is where you configure the following settings:

	 ✓	Memory size

	 ✓	Database and instance name

	 ✓	Archiving parameters

	 ✓	Processes

	 ✓	Over 1,900 other parameters

Wait, what was that? Over 1900 parameters to configure and tweak? Don’t be
frightened. The fact is 99 percent of your database configuration is done with
about 30 of the main parameters. The rest of the parameters are for uncom-
mon configurations that require more expert adjustment. As a matter of fact,
of those 1,900, over 1,600 are hidden. Sorry if we scared you a little there. We
just want you to have the whole picture.

Whenever you start your database, the very first file read is the parameter
file. It sets up all your memory and process settings and tells the instance
where the control files are located. It also has information about your
archiving status.

	 In Chapter 4, we cover how the PFILEs and SPFILEs are located under the
directory where you installed the database software. This directory is called
the ORACLE_HOME:

	 ✓	Linux/UNIX: $ORACLE_HOME/dbs

	 ✓	Windows: %ORACLE_HOME%\database

It should have a specific naming structure. For example, if your database
name is dev12c, the files would be named as follows:

	 ✓	The PFILE would be called initdev12c.ora.

	 ✓	The SPFILE would be called spfiledev12c.ora.

42 Part I: Getting Started with Oracle 12c

By naming them this way and putting them in the appropriate directory,
Oracle automatically finds them when you start the database. Else, you have
to tell Oracle where they are every time you start the database; that just isn’t
convenient.

	 We recommend you keep the PFILE and SPFILE in the default locations with
the default naming convention for ease of administration.

Applying Some Logical Structures
After you know the physical structures, you can break them into more logical
structures. All the logical structures that we talk about are in the data files.
Logical structures allow you to organize your data into manageable and, well,
logical, pieces.

Without logical breakdown of the raw, physical storage, your database would

	 ✓	Be difficult to manage

	 ✓	Be poorly tuned

	 ✓	Make it hard to find data

	 ✓	Require the highly trained and special skill set of a madman

Figure 2-4 shows the relationship of logical to physical objects. The arrow
points in the direction of a one-to-many relationship.

	

Figure 2-4:
The rela-
tionship

between
logical and

physical
structures

in the
database.

	

43 Chapter 2: Understanding Oracle Database Architecture

Tablespaces
Tablespaces are the first level of logical organization of your physical storage.

	 Every 12c database should have the following tablespaces:

	 ✓	SYSTEM: Stores the core database objects that are used for running the
database itself.

	 ✓	SYSAUX: For objects that are auxiliary and not specifically tied to the
core features of the database.

	 ✓	UNDO: Stores the rollback or undo segments used for transaction recovery.

	 ✓	TEMP: For temporary storage.

Each tablespace is responsible for organizing one or more data files.
Typically, each tablespace might start attached to one data file, but as the
database grows and your files become large, you may decide to add storage
in the form of multiple data files.

So what’s the next step to getting your database up and running? You create
some areas to store your data. Say your database is going to have sales,
human resources, accounting data, and historical data. You might have the
following tablespaces:

	 ✓	SALES_DATA

	 ✓	SALES_INDEX

	 ✓	HR_DATA

	 ✓	HR_INDEX

	 ✓	ACCOUNTING_DATA

	 ✓	ACCOUNTING_INDEX

	 ✓	HISTORY_DATA

	 ✓	HISTORY_INDEX

	 Separating tables and indexes both logically and physically is common in a
database.

	 ✓	Because tablespaces must have at least one data file associated with
them, you can create them so data files are physically on separate
devices and therefore improve performance.

44 Part I: Getting Started with Oracle 12c

	 ✓	You can harden our databases against complete failure. Tablespaces
can be backed up and recovered from one another independently. Say
you lose a data file in the SALES index tablespace. You can take only the
SALES_INDEX tablespace offline to recover it while human resources,
accounting, and anyone accessing historical data is none the wiser.

We discuss actual tablespace creation in Chapter 7.

	 Keep in mind that when deciding on the logical organization, it pays to sit
down and map out all the different activities your database will support. If
possible, create tablespaces for every major application and its associated
indexes.

If your database has especially large subsets of data, sometimes it pays to
separate that data from your regular data as well. For example, say you’re
storing lots of still pictures. Those pictures probably never change. If
you have a tablespace dedicated to them, you can make it read only. The
tablespace is taken out of the checkpointing process. You can also back it
up once, and then do it again only after it changes. That reduces the storage
required for backups, plus it speeds up your backup process.

Segments
Segments are the next logical storage structure after tablespaces. Segments
are objects in the database that require physical storage and include the
following:

	 ✓	Tables

	 ✓	Indexes

	 ✓	Materialized views

	 ✓	Partitions

These object examples are not segments and don’t store actual data:

	 ✓	Views

	 ✓	Procedures

	 ✓	Synonyms

	 ✓	Sequences

The latter list of objects don’t live in a tablespace with segments. They’re
pieces of code that live in the SYSTEM tablespace.

45 Chapter 2: Understanding Oracle Database Architecture

	 Whenever you create a segment, specify what tablespace you want it to be
part of. This helps with performance.

For example, you probably want the table EMPLOYEES stored in the
HR_DATA tablespace. In addition, if you have an index on the LAST_NAME
column of the EMPLOYEES table, you want to make sure it is created in
the HR_INDEXES tablespace. That way, when people are searching for and
retrieving employee information, they’re not trying to read the index off the
same data file that the table data is stored in.

Extents
Extents are like the growth rings of a tree. Whenever a segment grows, it gains
a new extent. When you first create a table to store items, it gets its first
extent. As you insert data into that table, that extent fills up. When the extent
fills up, it grabs another extent from the tablespace.

	 When you first create a tablespace, it’s all free space. When you start creating
objects, that free space gets assigned to segments in the form of extents. Your
average tablespace is made up of used extents and free space.

When all the free space is filled, that data file is out of space. That’s when
your DBA skills come in and you decide how to make more free space avail-
able for the segments to continue extending.

Extents aren’t necessarily contiguous. For example, when you create an
items table and insert the first 1,000 items, it may grow and extend several
times. Now your segment might be made up of five extents. However, you
also create a new table. As each table is created in a new tablespace, it starts
at the beginning of the data file. After you create your second table, your
first table may need to extend again. Its next extent comes after the second
extent. In the end, all objects that share a tablespace will have their extents
intermingled.

	 This isn’t a bad thing. In years past, before Oracle had better algorithms for
storage, DBAs spent a lot of their time and efforts trying to coalesce these
extents. It was called fragmentation. It’s a thing of the past but we still see
people getting all up in arms about it. Don’t get sucked in! Just let it be. Oracle
12c is fully capable of managing such situations.

I also want to mention situations where you have multiple data files in a
tablespace. If a tablespace has more than one data file, the tablespace auto-
matically creates extents in a round-robin fashion across all the data files.
This is another Oracle performance feature.

46 Part I: Getting Started with Oracle 12c

Say you have one large table that supports most of your application. It lives
in a tablespace made of four data files. As the table extends, Oracle allocates
the extents across each data file like this:

1,2,3,4,1,2,3,4,1,2,3,4 . . . and so on

This way, Oracle can take advantage of the data spread across many physical
devices when users access data. It reduces contention on segments that have
a lot of activity.

Oracle blocks
We’ve mentioned Oracle blocks at least twice before. We had to mention
them when talking about the buffer cache and data files. Here in this section
we can fill in a little more information.

	 An Oracle block is the minimum unit that Oracle will read or write at any
given time.

Oracle usually reads and writes more than one block at once, but that’s up to
Oracle these days. You used to have more direct control of how Oracle man-
aged its reads and writes of blocks, but now functionality is automatically
tuned. You can tune it manually to a certain extent, but most installations are
best left to Oracle.

Regardless, blocks are the final logical unit of storage. Data from your tables
and indexes are stored in blocks. The following things happen when you
insert a new row into a table:

	 ✓	Oracle finds the segment.

	 ✓	Oracle asks that segment if there’s any room.

	 ✓	The segment returns a block that’s not full.

	 ✓	The row or index entry is added to that block.

If no blocks are free for inserts, the segment grabs another free extent from
the tablespace. By the way, all this is done by the server process to which
you’re attached.

Oracle blocks also have a physical counterpart just like the data files do.
Oracle blocks are made up of OS blocks. It is the formatted size of the mini-
mum unit of storage on the device.

47 Chapter 2: Understanding Oracle Database Architecture

	 Oracle blocks should be evenly divisible by your OS block size. Oracle blocks
should never be smaller than your OS block size. We discuss Oracle block
sizing more in Chapter 4.

Pluggable Databases
Now that you have a good understanding of the pieces and parts of data-
bases and instances, we’ve saved the best for last as we throw a new concept
at you in an attempt to muddy the waters. Welcome to pluggable databases.
New in Oracle 12c is an optional architecture where you have one or more
smaller subsets of schemas, data tables, indexes, and data dictionaries
running as Pluggable Databases (PDB) inside a larger, superset Container
Database (CDB).

The Container Database acts as a root database instance and each of the
Pluggable Databases run within that single Container Database as tenants. We
call this a multi-tenancy architecture where one CDB contains multiple tenant
PDBs. Each PDB contains only the schemas, database, indexes, and mini split
data dictionary to remain self-contained within the larger supporting CDB.
For example, we could have separate PDBs for our sales, Human Resources,
and new products departments withing our larger CDB. This breaks a previ-
ous database “rule” where now we have multiple databases (the PDBs) inside
a single database instance (the CDB).

Why in the world would you want to do this? Well, the first reason is to be
cool kid within your group of Oracle friends. The reason you tell your boss is
you are supporting the cloud in 12c via multi-tenancy; he may not know what
that means but he’ll put it in his report to his boss. Seriously, think about the
benefits of off-loading rudunant physical structures and overhead memory
and background processes to a larger CDB rather supporting multiple copies
for each PDB. This allows you to consolidate more databases as PDB tenants
into a CDB while consuming few resources. In very larger environments such
as data center consolidation or where server resources are constrained,
these saves are very useful.

Also consider the pluggable part of PDBs; you can create them easily by clon-
ing exiting PDB copies and you can move them between CDBs (unplug and
plug) as needed to support migrations, upgrades, and testing. The pluggable
architecture gives you a high degree of granular control of your PDBs. The
self-contained architecture of the PDBs make this pluggable flexibility pos-
sible and is a great potential benefit as you manage multiple databases.

48 Part I: Getting Started with Oracle 12c

Chapter 3

Preparing to Implement Oracle
In This Chapter
▶	Implementing Oracle
▶	Verifying system requirements
▶	Planning server and disk configuration
▶	Taking care of post-software-installation setup

B
efore you create databases and store your data, you need to plan
your steps, which will make your implementation much easier. First

and foremost, you need to determine your overall database architecture.
Databases don’t exist as standalone entities; they’re part of an information
system, and you need to understand how that system is laid out. This chapter
looks at two of the most common implementation methods and helps you
determine which method is right for you.

After you determine the right overall implementation plan, you need to make
sure that your target environment meets the necessary requirements to
host Oracle. This chapter not only looks at obvious requirements, such as
server hardware and software, but it also looks at less reviewed (yet critical)
requirements, such as user, configuration, and storage considerations. This
chapter gives you the knowledge to make good judgments of where and how
you implement your Oracle database.

Understanding How an Oracle Database
Fits into a System’s Architecture

Oracle databases don’t simply exist in isolation; they act as part of a com-
puter system. Before installing the Oracle software and configuring your
database, you need to know how your database fits into the overall system
architecture. Some systems are more complex than others, but most fall into
the following basic categories:

50 Part I: Getting Started with Oracle 12c

	 ✓	Client-server

	 ✓	Multi-tier

	 ✓	Component configurations

	 Knowing which category your database fits into will make a big difference
during your system setup because you’ll know the specific needs of your
database.

Client-server applications
Client-server applications (sometimes called two-tier applications) are those
in which the user’s workstation has the application program installed and,
during execution, the program accesses data stored on a remote database
server. Although you have some wiggle room here, the workstation handles
the presentation and application logic, and the database server acts as a data
store. Figure 3-1 shows how a client-server configuration works.

	

Figure 3-1:
A client-

server
application.

	

In Figure 3-1, the workstation (client-tier) handles the application logic and
presentation to the user. Application logic may be implanted via many differ-
ent languages, but common examples include PowerBuilder, MS Visual Basic,
Java applications, and even some versions of Oracle Forms and Reports.
When these client-side applications need data, they access the database via
ODBC (Open Database Connectivity), JDBC (Java Database Connectivity), or
Oracle Net by using client-side tnsnames.ora files. These database communi-
cation protocols allow connectivity from any client to any database, includ-
ing Oracle.

On the database tier, the database stores the data and, via users, roles, and
permissions, it provides that data to the application in response to SQL que-
ries and data manipulation language (DML) statements (which are simply

51 Chapter 3: Preparing to Implement Oracle

SQL statements that manipulate, or change, the data). Depending on whether
you’re using a fat or thin client, some of the application logic and processing
may be off-loaded to the database tier. Processing on the database server
often makes sense because a database server can do much more intensive
processing and number-crunching than even the largest workstation. Data
processing is commonly executed via database procedures, functions, and
packages, which process the data into a smaller result set to be returned to
the client for presentation to the user.

Many people have claimed that client-server is dead. If it is, why are so many
client-server applications still out there? Sure, the client-server architecture
is older, and many newer applications exist in the multi-tier world. However,
a simple client-server application still meets the immediate needs of a busi-
ness in many situations. Also, the client-server application may be an exist-
ing legacy application that does its job — so, the business has no need to
upgrade. Regardless, although we don’t recommend developing new, large-
scale systems on this model, we can’t deny that client-server applications
still exist in many organizations. Lastly, as a reader of this book, you may not
be here to implement a new system. You may be here because you have to
understand Oracle and how it works in an existing client-server application
environment.

Multi-tier applications
Multi-tier applications are the current industry standard and compose mul-
tiple web, application, and database servers providing content to thin clients
with presentation via a web browser. Ever wonder what’s behind the scenes
when you log in to a web application for online purchases or banking? Well, it
looks something like Figure 3-2.

	

Figure 3-2:
Multi-tier

architecture.
	

52 Part I: Getting Started with Oracle 12c

In Figure 3-2, the client-tier is merely a web browser accessing a web
server. Displaying content to the user is the primary purpose of the client
in this architecture; no actual processing occurs at this layer within the
browser. Presentation occurs most commonly via HTML (HyperText Markup
Language), but it can also be within a Java applet or an ActiveX component
and use JavaScript for more dynamic formatting and content.

Communication from the browser to the web server occurs via HTTP
(HyperText Transfer Protocol) or HTTPS for secure (encrypted) data. Web
servers conceptually act as web listeners; they receive requests from brows-
ers and return formatted result sets with little processing on their own. Once
on the web server, the browser request is parsed and sent to the appropriate
application server for processing. The application server component may be
on the same physical server as the web server, or it may be on another physi-
cal server. By far, the most common web server is Apache, or one of its com-
mercial derivatives, with over 50 percent of the market share according to
http://news.netcraft.com/archives/web_server_survey.html.

At the application server level, the user request is processed using the rele-
vant application logic. One very common method is to use a Java application
server, such as Tomcat, Orion, or Glassfish. In this case, the program logic
is executed inside a Java Virtual Machine (JVM), which acts as the runtime
environment for the program code.

Another popular tool is Oracle Fusion Middleware (OFM). Within OFM, the
program may run as Oracle Forms, Reports, Discoverer, or even Java via
Oracle Containers for J2EE (OC4J). Regardless of the product, it’s within the
application server component that the application logic is executed.

During processing on the application server, it’s common to need database
access to query, create, update, or delete data. The application server com-
municates with the database server via protocols, such as JDBC or Oracle Net,
to access the data. During this time, the application server is accessing the
database on behalf of the user making the application request. Rather than
connecting as a named, distinct user such as JSMITH, the application server
connects using a generic web account (such as WEB_USER). Multiple simul-
taneous connections from the application server to the database form a con-
nection pool that allows any database connection to access data for a request.
Connection pooling is a performance benefit because only a few database con-
nections can service thousands of requests on behalf of many users.

When logged into the database instance, the generic web user queries or
executes DML on behalf of the application server, which is processing an
actual user request. The connection pooled web user doesn’t have schema
ownership into the database; it has only those permissions needed to access
or update data on behalf of the application server. During this time, normal

http://news.netcraft.com/archives/web_server_survey.html

53 Chapter 3: Preparing to Implement Oracle

database roles, permissions, and grants are used. Additionally, database pro-
gram logic implemented in PL/SQL via procedures, functions, and packages is
often executed.

After the data result set is generated on the database-tier, it’s passed back to
the application server for more processing. Next, the results are relayed back
through the web server and across the network for presentation to the user
via their web browser.

Sounds complicated with all the various components? You may think so at
first, but good reasons exist for breaking the system into web, application,
and database components:

	 ✓	You can use components from different vendors in a “best of breed”
configuration. For example, you can use a free Apache web server
instance coupled with Tomcat or Glassfish for a cheap application
server component. Then tie that to the power of the Oracle database,
and you have a solid system at lower costs!

	 ✓	As more users come online, you can add more web, application, or
database server instances to boost your processing power. Rather than
buying bigger servers, just buy smaller servers.

	 ✓	After you have a series of multiple servers, you gain fault tolerance. This
is called clustering. If a web server crashes or the application server
needs maintenance, no problem — the redundant servers will pick up
the workload.

Hopefully, these benefits show why multi-tier system architectures are the
industry standard and have surpassed client-server systems.

Component configurations
In client-server and multi-tier systems, the Oracle database was the core
of the system because it holds the data. Existing as the primary data store
for the entire system is the most common use of an Oracle database, but
it’s not the only time you’ll have to install Oracle. For example, often, these
databases are in a supporting role, acting as secondary data stores for
larger Commercial Off-The-Shelf (COTS) applications. In these cases, Oracle
databases act as repositories storing specialized data for use within a larger
system. During installation of the larger system, the Oracle database is
installed as a supporting component.

One common example of an Oracle repository you may be familiar with is
Oracle Designer. You can use this Oracle developer tool to design, create,

54 Part I: Getting Started with Oracle 12c

and store application code (among other things), and it resides on the user’s
desktop. When the user starts Oracle Designer, it prompts for an Oracle
repository to connect to, and the user specifies that information. It is within
that repository that all the objects to be used by the Designer desktop are
stored. In this case, Designer is following the client-server model described in
the section “Client-server applications,” earlier in this chapter.

Oracle Internet Directory (OID) is a more current example of Oracle acting as
a subcomponent within a multi-tiered environment. OID is the Oracle imple-
mentation of an LDAP (Lightweight Directory Access Protocol). LDAPs are
hierarchically defined (not relational) data-stores (not databases) that allow
systems quick lookup access of data. A common example is an e-mail address
book, which doesn’t contain a lot of updates or deeply layered data — it’s
just a need for quick lookups of a piece of data, which is the core use of
an LDAP.

Another common LDAP use is to store users and their credentials so that
web application servers can simply look up a person to see whether she is
authorized to access a system. After all, you don’t want to allow just anyone
into your system! This credential verification creates a need for the Oracle
Fusion Middleware products (OFM), and an LDAP is the solution. And, of
course, with Oracle being a database company first and foremost, it opted to
put its LDAP implementation inside an Oracle database, which is OID. (See
Figure 3-3.)

Figure 3-3 shows how a specialized Oracle database can provide authentica-
tion via OID/LDAP for a larger system that also happens to use Oracle for the
backend database where traditional customer data is stored. The OID is just
a necessary component in a larger system.

	

Figure 3-3:
A

component
architecture
with Oracle

Internet
Directory.

	

55 Chapter 3: Preparing to Implement Oracle

The idea of this section isn’t to make you an authority on Oracle Designer or
OID. Rather, it’s to show you that Oracle is more than just “the database” for
large applications; Oracle also appears in critical support roles. Your Oracle
installation may be for one of these support components, but don’t discount
the importance of such a database. Without the supporting Oracle compo-
nent database, the overall system would not be functional.

Verifying System Requirements
Oracle databases are very good at storing and accessing data, but a little
prep work helps them to run even better. Before installing the Oracle soft-
ware, you need to do some homework to ensure that your server can support
the software. We cover a basic Linux installation in Appendix A, but read and
understand this chapter before jumping to the software installation.

Each release of Oracle databases is better than the previous one, but each
version also has minor updates to the installation requirements. Oracle does
a good job of documenting these updates for the myriad versions it supports.
This information can be found on the documentation website at

www.oracle.com/technology/documentation/database.html

Pay particular interest to the Installation Guide and Quick Installation Guide
for your operating system (OS).

	 You can avoid many of the installation problems people experience by just
spending a few minutes reviewing the Oracle Installation Guide for your spe-
cific OS and meeting those requirements. A quick review of this guide before
installing a new version can save you hours troubleshooting issues because
you’re not making mistakes that Oracle has already documented.

User and directory requirements
On UNIX- and Linux-based systems, the software is installed and configured
as a specific user and group. In most cases, the user is called oracle, the pri-
mary group oinstall, and the secondary group dba. Here’s a sample of how
this user is defined:

$ id
uid=501(oracle) gid=501(oinstall) groups=501(oinstall),502(dba))

http://www.oracle.com/technology/documentation/database.html

56 Part I: Getting Started with Oracle 12c

	 On Windows systems, the software should be installed as a member of the
Local Administrators group for the machine.

It’s common to have multiple versions of Oracle running on the same
machine simultaneously. To avoid chaos, you need to organize how and
where each version is installed. The framework commonly used to organize
and install Oracle software is called Optimal Flexible Architecture (OFA). As
the DBA, you can use this organizational hierarchy to install the Oracle soft-
ware based on software versions and common directories used by all versions.

Key to the OFA is the directory environment variables ORACLE_BASE and
ORACLE_HOME:

	 ✓	ORACLE_BASE is where you can find common software used by all
Oracle software versions; it’s the base of underlying Oracle code trees.

	 ✓	ORACLE_HOME is a subdirectory and denotes the location where a spe-
cific version of Oracle database software is installed, often associated
with one or more database instances.

Here’s the hierarchy:

/directory name/app/oracle/product/version number/actual software_version_number

Table 3-1 describes each level of the hierarchy.

Table 3-1	 OFA Hierarchy
Level Description
directory name Base directory, file system, or drive name.
app Directory name denoting application software

will be located in this tree.
oracle Owner of the software and is defined as

ORACLE_BASE.
product Holding directory for software trees.
version number Directory with unique version number contain-

ing the actual software installation. Defined as
ORACLE_HOME.

57 Chapter 3: Preparing to Implement Oracle

Here’s an example of how this hierarchy may exist on UNIX or Linux:

/u01/app/oracle/product/12.1.0

And on Windows:

d:\app\oracle\product\12.1.0

When you install the database software with the Oracle installation tool
(Oracle Universal Installer), it guides you through identifying these locations,
but, you need to understand why each location is defined so you can better
organize your software installations. We introduce the Oracle Universal
Installer in Appendix A.

In the ORACLE_BASE directory, an Oracle Inventory directory is created as
oraInventory. Within this directory, Oracle logs a record of all Oracle software
that has been installed, patched, and removed from the server. This informa-
tion is used so that the Oracle Universal Installer (OUI) and the OPatch utility
can track software dependencies during installation and patching operations.
The Oracle Inventory is managed automatically by the OUI and OPatch utilities.

Underneath ORACLE_BASE is an admin directory with named subdirecto-
ries for each Oracle database, as well as backup, config tool logs, the Fast
Recovery Area, and product directories:

$ ls $ORACLE_BASE
admin backup cfgtoollogs diag fast_recovery_area product

Of particular importance, under each ORACLE_BASE/admin/database name
subdirectory is directories for auditing, Data Pump configuration files, con-
figuration, and Oracle Security Wallet files:

$ ls $ORACLE_BASE/admin/*
/u01/app/oracle/admin/db01:
adump dpdump pfile xdb_wallet

/u01/app/oracle/admin/dev12c:
adump dpdump pfile xbd_wallet

Table 3-2 shows you directories for auditing, Data Pump, configuration, and
Oracle wallets.

58 Part I: Getting Started with Oracle 12c

Table 3-2	 Database admin Directories
Directory Purpose
adump Audit file location. Can generate many files, but are generally

not very large.
dpdump Location for Data Pump utility.
pfile Location for database startup configuration files.
xdb_wallet Oracle wallets storage area. These are security devices.

In previous versions of Oracle, bdump, cdump, and udump directories
appeared underneath each database admin directory storing alert, trace, and
core dump files. However, starting in Oracle 11g and continuing so in 12c,
these directories appear in trace, alert, and incident subdirectories under the
$ORACLE_BASE/diag/rdbms/database name directory. In Figure 3-3, you see
the location of key trace and alert files.

Table 3-3	 Trace and Alert File Locations
Directory Purpose
alert Location of the ever-important activity log file for your data-

base (XML Format).
cdump Location of core dump files.
trace Location of database or user-generated trace files reflecting

an error event. Replaces bdump and udump directories.
incident Location of additional trace files (Plain Text Format).

Oracle manages software installations based on their ORACLE_HOME direc-
tories. Multiple ORACLE_HOME directories can exist on a server, each cor-
responding to a different version of the database. Different versions can
generally coexist without conflict as they only share the Oracle Inventory,
oratab file, and database listener process. This separation of the software
into different directories allows this separation and management to occur.
Here’s an example of multiple ORACLE HOME directories:

$ ls -1 $ORACLE_BASE/product
12.1.0
11.1.0
10.2.0

59 Chapter 3: Preparing to Implement Oracle

In the preceding example, you see multiple ORACLE_HOME directories
installed into different directories. Defining your environment variable settings
to point to a specific ORACLE_HOME determines which one you’re using.

Database files (data, index, control, redo) are preferably stored in separate
file systems allocated specifically for this purpose and separated by database
names:

/u02/oradata/dev12c
/u03/oradata/dev12c
/u04/oradata/dev12c

The oracle user in group dba needs to be able to read, write, and execute to
the ORACLE_BASE and ORACLE_HOME directories, subdirectories, and files,
as well as the database files themselves. If other users on this server need to
execute programs on the server side, such as SQL*Plus or export/import or
SQL*Loader, they need execute permissions on corresponding executables
and, in some cases, libraries.

Hardware requirements
Oracle software requires a minimum amount of memory, virtual memory,
CPU speed, and disk space to install successfully. If you lack these require-
ments, at best, the software will run slowly; at worst, it may not even install
at all.

	 Don’t forget to consider what other software is executing on the machine, too,
both now and in the foreseeable future. It does little good to meet the data-
base requirements and then add more software that will consume hardware
resources beyond what the server can support.

Several vital server requirements to check include the following:

	 ✓	Memory: The working area for programs as they execute, memory is key
to fast performance. The kind you care about here is Random Access
Memory (RAM), and it’s measured in megabytes (MB) or, more com-
monly, gigabytes (GB). Oracle database SGAs are memory pools. Having
large amounts of memory available allows you to have larger SGAs. The
more memory you have available, the more options you have when man-
aging the ever important SGA.

	 ✓	Virtual memory: When a program or data is being executed, it’s stored
in memory. When that same program isn’t actively being executed but
will be momentarily, it’s stored in virtual memory (for MS Windows) or
swap (for UNIX/Linux operating systems). This system administrator-
defined disk area operates as a slower extension of memory. Generally,
virtual memory is sized to between 3⁄4 to twice the size of installed
memory.

60 Part I: Getting Started with Oracle 12c

	 ✓	CPU speed: The clock speed of your CPU (central processing unit)
is important. If the CPU is old (and slow) and is laboring just to keep
the OS running, then adding an Oracle database isn’t a good idea.
Additionally, if so many other programs are running and consuming the
CPU, you can have problems trying to run Oracle. For as much hype as
you hear about CPU speeds, a better solution than having one fast CPU
is having multiple CPUs; even if they are a little slower, more CPUs are
better than fewer.

	 ✓	Disk: The disk is where the Oracle database software is stored — essen-
tially on your hard drive. The disk is only where your Oracle software
itself is installed; it’s not where your actual database files will exist with
all your data. Oracle software installations take only a few gigabytes, but
actual databases can take terabytes.

Like most software, a minimum value is listed by the vendor but more is
generally better. Table 3-4 lists the minimum hardware requirements for 12c
databases.

Table 3-4	 Minimum Hardware Requirements
Operating System RAM Virtual Memory/Swap CPU Disk
Windows 2GB 2 times RAM 550

MHz
6GB

Linux 2GB 1 to 2 times RAM 550
MHz

6GB

	 When identifying where you’re going to install the software, make sure that
you allow space for growth — don’t just go with the minimum hardware
requirements. After you install the software, you may have patches to apply
(which take space), and log files will grow as the software runs; you don’t
want to run out of space!

Software requirements
Your OS version must meet the Oracle requirements. Being close isn’t
good enough. Oracle 12c is currently supported to operate on the following
requirements in these specific Windows and Linux operating environments:

61 Chapter 3: Preparing to Implement Oracle

	 ✓	Windows Server 2008 x64 — Standard, Enterprise, Datacenter, Web, and
Foundation editions

	 ✓	Windows Server 2008 R2 x64 — Standard, Enterprise, Datacenter, Web,
and Foundation editions

	 ✓	Windows 7 x64 — Professional, Enterprise, and Ultimate editions

	 ✓	Oracle Enterprise LINUX 5.0 and 6.0

	 ✓	Red Hat Enterprise LINUX 5.0 and 6.0

	 ✓	SUSE LINUX Enterprise Server 11.0 SP2

	 Oracle is also supported on multiple UNIX operating environments, such as
Sun Solaris, HP HP-UX, and IBM AIX. Obtain the most current information about
kernel requirements on the Oracle Technology Network at the following URL:

www.oracle.com/technetwork/indexes/documentation/index.html

Also consider that an OS has software bug fixes applied to it in the form of
patches, which create a patch level. Patches aren’t a negative reflection of
any particular operating system; they’re simply part of the software develop-
ment lifecycle. Oracle requires a specific minimum patch level per OS for the
database software to even install.

It’s common to have the system administrator apply software patches before
the Oracle installer will execute. Hopefully, your system administrator rou-
tinely applies patches as they become available so that your OS is relatively
current. Keep in mind that often a server needs to be restarted for the OS
patches to take effect. The ramification is that if you need a patch applied,
you may have to schedule time for a server to be restarted, which, depending
on your organization’s policies, may take several days or weeks.

How do you know what patches need to be applied? One way is to check
the Oracle Documentation Installation and Configuration Guide as it lists
the minimum requirements. Sometimes, though, the requirements change
faster than the documentation, and you need to check the Release Notes for
detailed updates. These notes appear on the Oracle website under Installing
and Upgrading for your specific OS version (www.oracle.com/pls/db121/
homepage) or on the software installation media.

	 An easier method is to let the Oracle Universal Installer (executed via the run-
Installer program) check for you. With the –executeSysPrereqs option flag,
the OUI program runs checks on the OS for version, patching, and hardware
requirements prior to installing any software. It makes sure that at least the
minimum requirements are met before software is installed, thus reducing
problems during installation. The OUI is also a great way to generate a list

http://www.oracle.com/technetwork/indexes/documentation/index.html
http://www.oracle.com/pls/db121/homepage
http://www.oracle.com/pls/db121/homepage

62 Part I: Getting Started with Oracle 12c

of necessary patches so that you can have your system administrator install
them. To run the OUI, execute it like so:

$ runInstaller -executeSysPrereqs
Starting Oracle Universal Installer...

Checking Temp space: must be greater than 500 MB. Actual 27861 MB Passed
Checking swap space: must be greater than 150 MB. Actual 3924 MB Passed
Checking monitor: must be configured to display at least 256 colors

Storage requirements
Your ORACLE_HOME directory hosts your software files and binaries. When
installed, the ORACLE_HOME doesn’t grow excessively except for when
patches are applied. The ORACLE_BASE grows some during logging opera-
tions and even more if trace and core dump files are generated. However, it’s
the actual database files that can take lots of space and grow rapidly.

	 Database files (data, index, redo, and temp) should be stored separately from
the installation files and binaries for management, growth, and performance
reasons.

Many smaller databases are installed on whatever disk space is available on
the server (called internal drives). Cramming multiple, smaller databases onto
internal drives is often not optimal for several reasons:

	 ✓	You have negative performance impacts when database files are on non-
dedicated disks.

	 ✓	Internal disks are often not as fast or flexible as external disk solutions.

	 ✓	You need to consider special backup and recovery issues because these
files have different backup requirements than other files. (See Chapter 8.)

Despite these issues, many people still cram their databases onto internal
disks until their databases grow too large.

	 One downside of having a large or medium-sized database is that it takes a
lot of disk space. Often the database will be larger than the internal disk that
comes with your server, so you need another option, such as storing your
database on a large disk farm or disk storage array attached to your database
server.

Storage arrays can be complex devices, but they offer many benefits. Using
attached storage allows your database to grow because the storage admin-
istrator can allocate more space as needed. The reading and writing of data
is often buffered in memory on the array to increase performance. Advanced
configurations of disk mirroring and stripping are also available.

63 Chapter 3: Preparing to Implement Oracle

In addition to internal drives or attached storage, Oracle provides you three
choices when determining what kind of disk to store your Oracle database
files on:

	 ✓	Raw devices: These unformatted (uncooked) disk partitions don’t have
an existing file system structure. While they’re necessary for some
advanced Oracle configurations and offer a performance improvement,
they’re difficult to manage and administer. Many people feel those nega-
tives outweigh the benefits.

Disk optimization basics
Planning and configuring storage for a large database is an art and science, but everyone should
understand a few basic concepts. First, not all data files are accessed equally. Some types of files
are read/written to far more often than others. Classify your files into either high- or low-utilization
categories and then isolate the high-utilization files onto separate disks. The idea is not to have
all your high-utilization files on the same physical disk; spreading them out over multiple disks
balances the read/write operations to reduce contention and improve performance. Not all disks
are the same speed, so make sure that your high-utilization files are on the fastest disks you have.

A second key item deals with disk redundancy and RAID levels. Redundancy Array of Inexpensive/
Independent Disks is a categorization of how your data is spread across multiple disks. Striping is
data written across multiple disks to speed up read/write access because there is less contention
on an individual disk. Mirroring is maintaining multiple redundant copies of data on multiple disks
so that if one disk fails, the data is still available (providing fault tolerance). Parity is a mathematical
technique of maintaining special bits of data to re-create data if a disk is lost. The following table
shows the most common RAID levels in use today.

RAID Level Description Benefit
0 Striping with no mirroring or parity Performance benefit only
1 Mirroring with no striping Improved fault tolerance
0+1 Striping and mirroring Improved fault tolerance and performance
5 Striping with parity over multiple

disks
Performance and fault tolerance without
doubling needed disk space

Other RAID levels exist, but most times people use RAID 0+1 or RAID 5. You can achieve the best
performance and fault tolerance with RAID 0+1, but it comes at the price of doubling your storage
requirements because you’re writing your data twice (mirroring). RAID 5 provides improved per-
formance and fault tolerance while using less disk space, but the benefits aren’t as pronounced
due to the overhead of maintaining parity bits.

64 Part I: Getting Started with Oracle 12c

	 ✓	Automatic Storage Management (ASM): A step up from raw devices,
with ASM, Oracle manages the disk for you. It uses partitioned disks,
but Oracle sets up the disk groups and spreads the data across them to
improve performance by balancing disk Input/Output (I/O) operations.
The idea is to offload the work of managing the disks from the system
administrator and place it in control of Oracle.

	 ✓	File system: The opposite of raw devices, these formatted (cooked)
disk partitions have traditional mount points and directories like most
people would expect. This disk is by far the most common type of disk
configuration because it’s easy to use, intuitive, and standard for most
servers. Although raw and ASM-based systems offer benefits, traditional
file systems are still the de facto standard.

	 Planning the storage for your database is one of the most critical factors for
your database. If you get it right, performance will be fast, and management
of the database growth will be simple. Mess it up or don’t pay attention to it,
and you’ll have slow performance, and management will be difficult. You can
almost always add more memory or CPUs if you need them, but if a large data-
base is stored incorrectly, fixing it can be a large undertaking.

Other requirements
Oracle databases don’t operate in isolation merely for the edification on the
DBA; they operate to support a computer system, which in turn meets a busi-
ness need. Identifying the details of the computer system the database must
support will likely identify some unique requirements.

The following sections describe common examples of additional require-
ments and questions to ask yourself, the application team, or other infra-
structure personnel before installation.

Oracle version
What version of Oracle is needed for this system? It’s common to use the
newest version of the database available, but is the application software cer-
tified for that version? Often times, a Commercial Off-The-Shelf (COTS) soft-
ware package may not be tested and certified by the vendor to run with the
latest version of a database. Although it may work fine, you don’t know until
it’s tested. Plus, many organizations are mandated to operate only in vendor-
supported configurations. Running a vendor supported configuration means
you use a certain version of Oracle database to support the application soft-
ware, even if it’s not the most recent release.

Oracle patches
Oracle software comes as a base release, such as 12.1.0.1.1, but then you’re
expected to apply patches to get a more stable and secure version, such as
12.1.0.1.2. These patches typically come in the form of Oracle Security Patch

65 Chapter 3: Preparing to Implement Oracle

Updates (SPUs) or Patch Set Updates (PSUs), which are released quarterly
(January, April, July, and October).

These patches may fix both software bugs and security vulnerabilities.
Oracle expects you to install the base version of the software first, and then
apply whatever is the most recent SPU patch (such as July SPU 2013). You
don’t have to apply previous SPU patches; the fixes are cumulative, so the
most recent SPU will do.

Although SPUs are the most common patch, sometimes Oracle provides what
are commonly referred to as one-off patches. These patches fix only a spe-
cific bug and are included in future Oracle versions or non-security related
patches.

	 SPU in this book refers to what was formally called a CPU (Critical Patch
Update). Consider the terms interchangeable.

	 Oracle patches are commonly applied using the OPatch (opatch) utility. This
is an Oracle-provided, Perl-based program that applies patches but also runs
dependency and conflict checks between your patches and can undo (roll-
back) patches. This utility stores a log of all patches applied in the oraInven-
tory directory located in ORACLE_BASE. The opatch utility is a critical part of
databases, and the rollback feature is great, but the wise DBA will still run a
good backup of the software and databases before running any patch!

Network connectivity
Who is connecting to the database and how? Connecting to the database has
more to it than just updating the local tnsnames.ora files with the connection
information.

If you’re operating in the two-tier client/server model, people will be con-
necting to the database directly by using OracleNet protocol (sometimes still
called SQL*Net) and connecting on port 1521 or 1526. If you’re operating in
a multi-tiered web architecture, the application server is connecting to the
database on behalf of the users, probably via JDBC.

	 While the default port for Oracle to listen on is 1521 (formerly 1526 in older
versions), it is best to change this to a non-default port for security reasons.
After all, anyone with the Oracle documentation will know what port to flood
if they want to cause trouble for you. Choosing a non-default port is one more
thing a hacker has to figure out. In essence, don’t make it easy for them. See
Chapter 5 for more on changing ports.

The question is, are these communication ports open on the firewalls for the
users or application servers to access the database? Getting firewall ports
open for users requires coordination with the network staff and security,
which can sometimes be an issue.

66 Part I: Getting Started with Oracle 12c

Security
You need to follow any company wide security procedures for before, during,
and after installation, and verify these procedures have been followed. Know
whether an audit trail is required and, if so, completed. For example, is your
company bound by any regulatory compliance such as Sarbanes-Oxley or
HIPPA?

Many organizations have additional security procedures that need to be
applied. You should consider these procedures before installation, as well as
any impact they may have on the end product. It’s not uncommon to have to
uninstall some components, lock accounts, or change file and directory per-
missions after the installation.

Application
The database holds data, but it also contains PL/SQL packages, procedures,
users, and grants/privileges to control access and processing of that data.
Via SQL scripts and data loads, the DBA will load these objects and data into
the finished database itself. You generally have either a client-based applica-
tion or a web application server that accesses the database. The DBA and
other application administrators will compile, install, and configure these
components to access the database.

Automated batch jobs or programs may also be part of the build process. If
the application is part of a commercial package, these steps are likely well
documented along with any special requirements that need to be met. In
cases of a home-grown application, the application developers and architects
will develop the documentation and then provide the DBA with the proper
steps to execute the application configuration. When you’re done, don’t
forget to test and validate that the system works properly before turning it
over to the users.

Backups
No planning session would be complete without consideration for database
backups. The size and activity level of the database, sensitivity of the data,
and availability and recovery requirements all drive the type and frequency
of backups. In some cases, these backups take the form of traditional cold
and hot backup scripts written in-house or downloaded off the web. In
many other cases, you’re using Oracle’s preferred backup utility, Recovery
Manager, to schedule and run various backups. And, of course, you need to
store these backups somewhere or write them to tape or other media. (For
more on backup methodology, see Chapter 8.)

	 One final note on backups: Planning and executing backups isn’t enough; you
need to actually test them to ensure that they work as planned before relying
on them!

Part II
Implementing an
Oracle Database

	 Visit www.dummies.com/extras/oracle12c to see how to upgrade an
existing database with the Database Upgrade Assistant.

http://www.dummies.com/extras/oracle12c

In this part . . .
	 ✓	 The first step to using any Oracle database is creating one,

which you find out how to do in Chapter 4.
	 ✓	 After you create your database, you need to connect to it to

use it. You also need to tell the application users how to con-
nect to the database. Chapter 5 covers the different ways to
connect to a database.

	 ✓	 As soon as you’re in your database, what’s next? You need to
speak the language of SQL. Chapter 6 is a primer for getting
started in the SQL language.

	 ✓	 Storing your data in Oracle is a big part of the job of any DBA.
You find out the basics for putting data in the right place in
Chapter 7.

Chapter 4

Creating Your Database
In This Chapter
▶	Familiarizing yourself with the Oracle environment
▶	Configuring an Instance
▶	Using the Database Configuration Assistant to create databases
▶	Post database creation checkup

C
reating a database takes a lot of work. Thankfully, a graphical tool called
the Database Configuration Assistant (DBCA) helps you point and click

your way to victory. However, as its name implies, it only assists. Just like
any software wizard-type tool, it can’t cover every option; it can’t explain
everything. It does cover up some of the ugly syntax and other required activ-
ities (like creating directories and setting permissions) commonly forgotten
by someone new to Oracle. It truly is a wonderful tool . . . as long as you
know what options to use and what values are appropriate for the questions
that it asks you.

With that said, this chapter goes over some of the details necessary to make
the right decisions up front when creating a database. Doing so saves you
from having to go back and do things twice . . . or even three times. In addi-
tion, when you understand why you make certain choices, it helps you create
a robust and scalable database that serves you for a long time to come.

Feeling at Home in Your Environment
You should get familiar with a few things before working in your Oracle
environment:

	 ✓	Oracle software owner

	 ✓	Oracle version

	 ✓	Oracle base

70 Part II: Implementing an Oracle Database

	 ✓	Oracle home

	 ✓	Oracle SID (instance/database name)

	 ✓	Path

Knowing how to find and work with these, you will better be able to manage
not only your database but also databases and Oracle installations on other
machines.

If Oracle was properly installed, these items should be relatively similar
across most installations. Furthermore, if they’re not similar, understanding
what they are and how to find their values makes it easier for you to adapt.

	 Some slight differences exist between Oracle installations on Windows versus
a Linux/UNIX environment. We point out some of those differences as well.

Finding the Oracle software owner
	 The Oracle software owner is a user on the operating system.

Linux/UNIX
On Linux/UNIX, you typically create a new user to own the installation files.
Most commonly, this user is called oracle.

In addition, you create two OS groups:

	 ✓	oinstall should be the user’s primary group. This group will contain any
users whom you would like to allow the ability to install and patch the
Oracle software.

	 ✓	dba contains any users whom you would like to have the power to
manage the database in its entirety. Be very careful who you put into
these groups — they could wreak havoc on your system and/or have
access to all your data.

Windows
Windows has gone a long way to simplify running complex software on
their system, and Oracle developed its software to play along. Installing
Oracle on Windows only requires that the user be a member of the Local
Administrators group on the machine where Oracle is installed.

71 Chapter 4: Creating Your Database

	 Consider these tips, however, which include more creation:

	 ✓	You don’t have to create a user specifically to own the software in
Windows, but we do it anyway because Oracle runs on Windows
through a series of services. This way you can start those services as a
specific owner.

	 ✓	If you use the Windows task scheduler, consider using the Oracle soft-
ware account to run the jobs. Jobs are easier for people to identify when
they’re owned by a named account.

	 ✓	In Windows, you may sometimes want to map a drive for Oracle to use.
It’s easier if you assign it to a central Oracle management account so it
isn’t removed by someone else or forgotten about if passwords change.

	 You don’t have to create any groups on Windows, but during the installation
it creates a group on its own called ORA_DBA. This group behaves much the
same way as the dba group on Linux/UNIX, so be careful who you add to it.

Oracle versions
This book is about Oracle 12c, but you may have to deal with environments
that have multiple versions of Oracle installed. This issue with multiple
versions is especially evident when you’re upgrading your database from
one release to the next. You may also encounter it when you’re testing new
releases against existing applications.

When you upgrade a database to the same machine, you install the new ver-
sion of Oracle in parallel with the existing one. It’s important to know how to
change the environments around and tell which one is active. You find out
how to do so on both Windows and Linux/UNIX in the later section “Setting
your environment with oraenv.”

Getting to home base
On systems where Oracle is installed, an important part of managing the
Oracle installation is understanding environment variables. Environment
variables tell

	 ✓	The OS what software to run

	 ✓	Oracle where to store certain files

	 ✓	Oracle what database you want to connect to

72 Part II: Implementing an Oracle Database

	 The four most important variables are

	 ✓	ORACLE_BASE

	 ✓	ORACLE_HOME

	 ✓	ORACLE_SID

	 ✓	PATH

ORACLE_BASE
ORACLE_BASE is the top directory where all Oracle files on the machine are
going to exist. If you have multiple versions of Oracle on the same machine,
the ORACLE_BASE is likely the same.

	 Unless you have extraordinary circumstances and want everything to stay
separate, we recommend having your ORACLE_BASE be the same for all
installations.

Here are a few common ORACLE_BASE settings:

/opt/oracle

/u01/app/oracle

/app/oracle

Oracle documentation uses /u01/app/oracle in most examples, so we stick
with that here.

	 Keep the following advice in mind when setting ORACLE_BASE:

	 ✓	Don’t install anything else under ORACLE_BASE.

	 ✓	Choose a mount point that’s not used for any other major OS or other
third-party software.

	 ✓	The final directory in the ORACLE_BASE should be oracle.

When you create your database, Oracle creates a series of directories under-
neath the ORACLE_BASE and uses them for management, logging, and trou-
bleshooting.

ORACLE_HOME
ORACLE_HOME is where you have Oracle installed. Not only that, but it tells
your session which Oracle installation you want to use.

73 Chapter 4: Creating Your Database

If you have multiple Oracle installations on the same machine, set this vari-
able to the location of the one that you want to work with.

Typically, ORACLE_HOME values contain the major release number of the
Oracle version installed in the directory. It’s created as a subdirectory off
ORACLE_BASE. For example:

/u01/app/oracle/product/12.1.0

/u01/app/oracle/product/11.2.0

/opt/oracle/product/9.2.0

$ORACLE_BASE/product/12.1.0

The last example shows how you should use your ORACLE_BASE to define
your ORACLE_HOME.

ORACLE_SID
ORACLE_SID is simply set to the name of the database that you want to con-
nect to. If the database doesn’t exist, set it to the name of the database you’re
about to create.

Limit your ORACLE_SID to 8 characters beginning with a letter. Also, on some
operating systems, ORACLE_SID is case sensitive. We recommend sticking
with lowercase.

	 You can change the ORACLE_SID within your session if you’re moving around
to different databases. Just be very careful and note which database you’re
connecting to. I’d be lying if I said the authors of this book have never made
that mistake.

PATH
The PATH variable is typically already set for all sessions on the system.
However, when you’re using Oracle, you have to add to the path. You simply
have to remember to put ORACLE_HOME/bin in front of your path.

ORACLE_HOME/bin is where the Oracle binaries are located. It contains tools
such as the DBCA, SQL*Plus, and Data Pump.

By putting ORACLE_HOME/bin in front of your path, you can execute these
tools without always having to

	 ✓	Be in the ORACLE_HOME/bin directory.

	 ✓	Type the full path every time to want to launch a tool.

74 Part II: Implementing an Oracle Database

The OS checks your PATH locations sequentially to find the tool you’re
trying to launch. By putting your ORACLE_HOME/bin first, you guarantee not
launching some other software package that has a tool with the same name
as one of your Oracle tools.

Setting your environment with oraenv
All the environment settings are stored in your OS user profile on Linux/
UNIX. That way, the appropriate parameters are configured every time you
log in to the system to use the database.

	 If you’re constantly switching your environment to connect to different data-
bases and different Oracle versions, it might suit you to create a script where
you name your various environments and then run the script and input your
choice.

Oracle provides a script to change the environment on Linux/UNIX installa-
tions: oraenv. (Windows has no such handy little script.) You simply run the
script, and it asks what database you want to connect to. Then it sets the rest
of your environment accordingly.

This output asks whether you want to set the environment for the dev12c
database. That happens to be the first database created on the machine by
default. We override the default by choosing prod12c and it set the environ-
ment accordingly.

 [oracle@classroom ~]$ oraenv
ORACLE_SID = [dev12c] ? prod12c
The Oracle base for ORACLE_HOME=
/u01/app/oracle/product/12.1.0/db_1 is /u01/app/oracle

	 In Windows, all the environment settings are also set in the registry. You can
override them by setting variables from the DOS command line or by setting
system-level environment variables. Of course, if you’re lucky enough to have
only one environment and one database on your machine, you only have to
mess with this once, when setting Oracle up. For most people, that doesn’t
seem to be the case.

Configuring an Instance
Certain files in the database can completely change the way your database
behaves. They can influence everything from performance and tuning as well
as troubleshooting. Maintaining and configuring these files are a major com-
ponent of database administration.

75 Chapter 4: Creating Your Database

Using PFILE and SPFILES
These are the files that set up your database operating environment:

	 ✓	PFILE

	 ✓	SPFILES

In Chapter 2, we talk a bit about PFILE and SPFILES. In this section, we go
through many of the common parameters you find in these files. The param-
eter file is the first file read when you start your database; the parameters
within it configure how your database operates.

First, take a look at an example of a PFILE and some of the commonly set
parameters:

*.audit_file_dest=’/u01/app/oracle/admin/dev12c/adump’
*.audit_trail=’db’
*.compatible=’12.0.0.0.0’
*.control_files=’/u01/app/oracle/oradata/dev12c/control01.ctl’,
 ‘/u02/app/oracle/oradata/dev12c/control02.ctl’,
 ‘/u03/app/oracle/oradata/dev12c/control03.ctl’
*.db_block_size=8192
*.db_domain=’lfg.com’
*.db_name=’dev12c’
*.db_recovery_file_dest=’/u01/app/oracle/fast_recovery_area’
*.db_recovery_file_dest_size=4815m
*.diagnostic_dest=’/u01/app/oracle’
*.memory_target=1280m
*.open_cursors=300
*.processes=300
*.undo_tablespace=’UNDOTBS1’

	 The parameters have a * in front of them because you can use the parameter
file to set parameters in more than one Oracle instance. In a file that serves
multiple Oracle instances, you may see the instance name in front of some
of the parameters, denoting that particular parameter only applies to one
instance.

Follow these steps to see the parameters that are modified in an existing
Oracle database:

	 1.	 Log in to SQL*Plus as a SYSDBA.

	 2.	 Type create pfile from spfile; (including the semicolon).

		 The command dumps a text version of your SPFILE.

76 Part II: Implementing an Oracle Database

After you create your PFILE, you want to turn it into an SPFILE. Essentially,
you do the reverse of what you did before:

	 1.	 Log in to SQL*Plus as a SYSDBA.

	 2.	 Type create spfile from pfile; (including the semicolon).

		 You get a file called spfileORACLE_SID.ora in the same directory as your
PFILE, where ORACLE_SID is your instance_name.

Setting parameters in the pfile and spfile
Whether you use PFILES or SPFILES determines how you set your param-
eters. This next section explains the common parameters in Oracle 12c and
how they’re configured in the files themselves.

	 With a new database, you always start with a PFILE. If you end up wanting to
use an SPFILE, you create it from the PFILE (shown at the end of the chapter).

The first thing you need to do is find your PFILE. For whatever reason,
despite all the other similarities, Linux/UNIX and Windows store it in different
locations.

Find your PFILE on Windows, where ORACLE_SID is your instance name:

ORACLE_HOME\database\initORACLE_SID.ora

Find your PFILE on Linux/UNIX, where ORACLE_SID is your instance name:

ORACLE_HOME/dbs/initORACLE_SID.ora

These parameters are some of the most commonly customized. Most param-
eters suit most databases at their default value.

	 The * means to apply the parameter to all instances that read this file.

	 ✓	audit_file_dest: This parameter tells Oracle where to put auditing infor-
mation on the file system. All connections to the database as SYSDBA
are audited and put into this directory. Furthermore, if you’re auditing
other operations in the database, those audit records may be dumped
here as well.

	 ✓	audit_trail: This tells Oracle where you want audit records written.
Audit records are written to the database or the file system. They can be
in text format or XML. Records written to the database are stored in the
AUD$ system table. The valid values for this parameter follow:

	 •	db: Normal audit records written to the AUD$ table

	 •	os: Normal audit records written to the audit_file_dest directory

77 Chapter 4: Creating Your Database

	 •	db_extended: Audit records written to the AUD$ table in extended
format, including SQLTEXT and bind variable values

	 •	xml: XML-formatted normal audit records written to the database

	 •	xml, extended: Normal auditing and includes all columns of the
audit trail, including SqlText and SqlBind values in XML format to
the database

	 ✓	compatible: Set it to force the database to behave like a version ear-
lier than Oracle 12c. In Oracle 12c, you can set it back as far as 10.0.0.
However, it can be set back only before the database is created or
before upgrading from an earlier version. After you migrate this param-
eter to 12.1.0 and open the database, you can no longer go back. The
parameter is useful for testing before an upgrade is complete. Most of
the time you find it set on the latest version for your software. If you try
using a feature from a database version later than what you’ve config-
ured, it results in an Oracle error.

	 ✓	control_files: Just what is says. It tells the instance where to look for the
control files during the startup phase. If the instance doesn’t find even
one of them, you can’t mount your database. Notice in the parameters
listing that the control files are spread across three different mount
points.

	 ✓	db_block_size: This parameter is really the only one you can’t easily
change without recreating the database, so choose it carefully. It tells
the database what block size you want your Oracle blocks to be format-
ted on disk. We discuss block size in the upcoming “Taking the DBCA
steps” section.

	 ✓	db_domain: If you want your network domain to be part of your data-
base name for identification purposes, fill in the domain name here.
This won’t be your actual database name, but an alias to identify it from
other databases with the same name that might exist in another domain.

	 ✓	db_name: The database name. Choose this name carefully. Although
you can change it, doing so is a pain. The name can be up to eight alpha-
numeric characters. Avoid the urge to use special characters other than
#, $, and _.

	 ✓	db_recovery_file_dest: This sets what’s known as the Fast Recovery
Area. The area can hold files such as

	 •	Backups

	 •	Archive log files

	 •	Control files

	 •	Redo log files

	 ✓	db_recovery_file_dest_size: This determines how much space is dedi-
cated to your Flash Recovery Area. If it fills up, you get an error message
and the database could come to a halt — especially if you’re storing

78 Part II: Implementing an Oracle Database

archive log files here. If archive log files can’t be written, redo log files
can’t be overwritten. User sessions hang until the situation is resolved.

	 ✓	diagnostic_dest: This location is known as the Automatic Diagnostic
Repository (ADR) home. It contains files that Oracle support may use to
resolve issues with your database. This parameter was new in 11g. You
can use a new tool called ADRCI to access the files in this directory. It
contains

	 •	Trace files

	 •	Core files

	 •	Alert logs

	 •	Incident files

	 ✓	memory_target: This parameter sets the memory that the Oracle
instance is allowed to use for all System Global Area (SGA) and program
global area activities described in Chapter 2. It doesn’t include memory
consumed by server and user processes.

	 ✓	open_cursors: Limits the number of open SQL cursors a session
can have.

	 ✓	processes: Limits the number of OS users’ processes that can connect to
the instance.

	 ✓	undo_tablespace: This parameter tells the instance to which tables it
will write its transaction undo. It must be an undo type tablespace.

Creating Your Oracle Database
You can create a database one of four ways:

	 ✓	Manually with SQL commands: If you’re on an ancient release like
Oracle 8i, we recommend manual SQL commands; the DBCA wasn’t as
good back then. However, with Oracle 9i and up, it has really become a
robust and useful tool. Furthermore, with more features being added to
the database, the manual method isn’t a laundry list of scripts. Back in
the day, you had to run only an SQL command and two scripts. Not any-
more. There are upwards of a dozen creation scripts depending on what
features you want to install.

	 ✓	With the graphical tool called Database Configuration Assistant
(DBCA): We recommend Database Configuration Assistant (DBCA) to
make your Oracle database. This recommendation is especially impor-
tant for beginners. If you use DBCA to create the database, you don’t
have to make the PFILE; the DBCA creates it for you. You may want to
alter your setting later, however.

79 Chapter 4: Creating Your Database

	 ✓	A combination of SQL commands and DBCA: Even old-timers like us
prefer DBCA or SQL and DBCA. Using SQL to create the database gives
you control over every aspect of the creation, but it also leaves open a
lot of areas for mistakes and accidental omissions.

	 ✓	Cloning an existing database: This book doesn’t cover the topic
because it’s a more advanced topic for, uh, smarties?

Using the Database Configuration
Assistant (DBCA) to Create Databases

Launch the Database Configuration Assistant (that’s right; you’re in charge)
from the command line of the operating system where the database resides.

	 The DBCA walkthrough in this chapter chooses the Advanced and Custom
Database option (versus General Purpose or Data Warehouse options). This
option is for when you really want to get your hands dirty and have complete
control. We like this option for a few reasons:

	 ✓	You don’t have to install the features that you aren’t going to use. They
just take up more space and give you more things to manage.

	 ✓	You can specify a lot more options that the other templates don’t allow.

	 ✓	Customizing isn’t that hard. You’re reading the book, right? It’ll be easy.

The only drawback to the Custom Database method is the time it takes while
creating the data files. How much time? We’ve seen it take anywhere from 2
to 30 minutes. It depends on

	 ✓	The number of CPUs your system has

	 ✓	What features you select

Taking database control
Oracle Enterprise Manager is an option you can choose during database
creation. Don’t get too attached to this invaluable resource. Take some time
to get to know the basic SQL commands for managing your database. I’ve
seen Enterprise Manager crash where the only thing left was a blinking SQL
prompt. A well-rounded DBA knows how to manage her database both ways.

80 Part II: Implementing an Oracle Database

Taking the DBCA steps
	 If you’re ever unsure about an option on the DBCA screen, click the Help

button. It does a good job of explaining what each item does.

One of the things we have noticed in Oracle 12c is that Oracle has done a
good job of speeding up the Help function. In past versions, it took forever to
load. Also, in 12c, the look and feel has changed a lot to be more consistent
with the Oracle Universal Installer.

The DBCA has a lot of screens with all kinds of information. The following
steps take you through creating a database with the Database Configuration
Assistant:

	 1.	 Log in as the Oracle software owner.

	 2.	 Go to a command prompt.

	 3.	 Type dbca.

		 You see a splash screen, as shown in Figure 4-1, and another screen with
options.

	 4.	 Select the Create a Database option.

		 You are presented with the option of using a default configuration or an
advanced one.

	 5.	 Select the Advanced option.

	 6.	 Click Next.

		 You see the output shown in Figure 4-2. Optional database templates are
shown:

	 •	General Purpose

	 •	Data Warehouse

	 •	Custom Database

Database Configuration Assistant
Not only does this tool create databases, but
it also lets you delete and modify them and
create database templates. The top in the title
bar reads 1 of 13 steps. We kid you not that in

Oracle 9i it was 1 of 8 steps, and in 10g it was
1 of 12 steps. This is what we mean: Creating
the database with the DBCA is the way to go as
Oracle gets heavier with features.

81 Chapter 4: Creating Your Database

	

Figure 4-1:
The

Database
Configuration

Assistant
welcomes

you.
	

		 The first two include the data files. You supply a few custom settings,
and it unzips the database from the Oracle installation directory. Use
these options only when you’re new to Oracle and aren’t sure what to do
with some of the more advanced parameters. You should select Custom
here; we go over all the options in the rest of the steps.

	 7.	 Select the Custom Database option.

		 Click Show Details if you want to see the features, parameters, and files
chosen by default for each type of database.

	 8.	 Click Next.

		 A screen asks you to choose the database name.

	 9.	 Fill in these fields:

	 •	Global Database Name: Your database name with your network
domain attached. If you don’t want to attach your network domain,
leave this field blank. Doing so just sets the initialization param-
eter db_domain. It helps uniquely identify your database on the
network. For example, you might have a database named prod in
two different domains. A global database name allows that without
confusing some of the Oracle networking features.

	 •	SID: This is the short name for your database. It equates to your
environment variable ORACLE_SID.

82 Part II: Implementing an Oracle Database

	

Figure 4-2:
Database

creation
options

require lots
of steps.

	

	 10.	 Click Next.

		 You’re asked whether you want to manage your database with Oracle
Enterprise Manager, as shown in Figure 4-3. (You can read more about
Oracle Enterprise Manager in Chapter 13.)

		 You can configure this two ways:

	 •	Configure Enterprise Manager (EM) Database Express: Database
Express is a management package that runs locally on the data-
base machine and has many of the features of Cloud Control.
However, it controls only one database. We caution you only
when configuring Database Express. If you’re setting up Oracle on
a machine with limited resources, you’re going to feel Database
Express, if you know what we mean. The good news is, in 12c,
Database Express is much better in resources usage than prior ver-
sions (known then as Database Console).

	 •	Register with Enterprise Manager (EM) Cloud Control: An Oracle
software package that typically runs on its own server elsewhere
on your network. It can manage many databases, many versions
of Oracle, servers, application servers, and even other non-Oracle
software, such as Microsoft SQL server, and firewalls. You must
have the Grid Control Management Agent installed to get this
option.

83 Chapter 4: Creating Your Database

	

Figure 4-3:
Your

database
management

options.
	

	 11.	 Select the Configure Enterprise Manager (EM) Database Express
option.

	 12.	 Click Next to continue.

	 13.	 Set the database credentials (passwords).

		 You have two choices here. You can set the passwords individually for
the users that are created with the database or set the same password
for all users. We ask that you select Use the same administrative pass-
word for all accounts to keep things simple for now. Fill in the Password
and Confirm Password text boxes.

		 Here are some good password practices:

	 •	Use different password for each user. If this is a test database,
it may not matter that much. Even if you want to keep it simple
now and make all the passwords the same, you can easily go back
change them later.

	 •	Set the same password for everyone. If this is production, it’s in
your best interest to have separate passwords for all the users.

	 14.	 Click Next.

		 You’re asked whether you want to register your database with a listener.
If you do, choose the correct listener and click Next.

84 Part II: Implementing an Oracle Database

	 15.	 Select an option for how you want to store your files.

		 The screen has a drop-down list for you to select how you want to store
your files:

	 •	File System: All your data files are put into formatted drives
attached to your computer.

	 •	Automatic Storage Management (ASM): Don’t choose this now. ASM
has some great benefits but isn’t as easy to set up as the DBCA
leads you to believe.

	 16.	 Select a place to store your files:

	 •	File Locations from Template: This option doesn’t let you make any
changes. Oracle chooses where to put the files.

	 •	Common Location: This option activates the grayed-out field. You
choose type or browse for a location to store the files.

		 Separating files across multiple mount points is a best practice for per-
formance and protection. If you create a test database or other nonpro-
duction database, it’s okay to put them all in one place if you have the
space.

	 17.	 Choose File Locations from Template and click Next.

		 You’re in the Fast Recovery Area (FRA) configuration. The FRA is a stor-
age area that resides on disk which can house backups, archive logs
files, control files, and redo log files.

	 18.	 Choose to configure the FRA.

		 Doing so simplifies the storage of backups and archive log files. We don’t
typically use it for the control or redo files; we manually separate those
files ourselves.

	 19.	 Determine what FRA space you have available and increase it
accordingly.

		 The default value is about 5GB. This might be okay for the archive
log files of small databases. However, an FRA of this size fills up very
quickly. You can resize the FRA anytime without taking down the
database.

	 20.	 Choose to archive later and click Next.

		 Archiving adds drain on the system while creating the database. It’s
easy enough to enable later on.

85 Chapter 4: Creating Your Database

		 You’re asked what features you want to install on the screen. Depending
on what software you installed, not all are available. Luckily, you can
add later. Click the Help button if you want a more detailed description:

	 •	Oracle Text: This indexing feature allows custom indexing of large
text-type documents. It can index pages of data. It also allows
advanced searching against rich media objects.

	 •	Oracle OLAP: This is Oracle’s business intelligence tool.

	 •	Oracle Spatial: This mapping tool is for geospatial mapping.

	 •	Oracle Label Security: Label security is for securing data in a way
that gives users levels of access to restricted data.

	 •	Sample Schemas Tab: This is a bunch of test data that you can use
for training or trying new features. We usually install this on test
and training databases. It includes several schemas with varying
degree of complexity.

	 •	Oracle Database Vault: Basically, this option locks down the data-
base to extreme measure, disallowing activities we take for granted
in a normal system. It protects your database against your own
people, in essence. It significantly creates more management over-
head. However, in a system that must remain ultra-secure, it’s the
price you pay.

	 •	Oracle JVM: This is the Oracle Java Container for running Java out
of the database.

	 •	Oracle Multimedia: This feature extends Oracle’s capabilities to
offer better support for multimedia data.

	 •	Oracle Application Express: This is the kind of a development envi-
ronment that allows you to develop applications in a web-based
framework. It runs on top of the database and allows creating
hosted applications that can be quite robust.

Filing that away
We could buy the argument that it’s okay to put
files in the same location if later on you were
going to separate your application data files
accordingly. Also, it’s relatively easy to move
them. The other possibility is that you’re going to

use a large chunk of storage on a SAN (a high-
speed storage area network) that presents its
storage to you as one location, and then you’ll
manage the performance in the background by
spreading the files across many disks.

86 Part II: Implementing an Oracle Database

		 If you’re testing to get a basic environment up and running, deselect
everything. However, if you’re going to work with one or more of these
options, install them. Remember that they take space and time during
the database creation process — some more so than others.

	 21.	 Click Next.

		 Figure 4-4 shows the screen where you begin choosing the initialization
parameters discussed earlier in the chapter. The Memory tab has two
options: Typical Settings and Custom Settings.

	 22.	 Select the Typical Settings option.

		 Because we’re talking Oracle 12c, selecting Typical Settings sets the
memory target as one large chunk and lets Oracle figure out where
everything goes.

	 23.	 Click the Sizing tab.

	 24.	 Select the block size.

		 If you get this wrong, your only option is to re-create your database (if
the performance problems haven’t gotten you fired).

	

Figure 4-4:
Choosing
database

initialization
parameters.

	

87 Chapter 4: Creating Your Database

		 Keep the following details in mind as you decide on your block size:

	 •	If you’re creating a database that will have many users with smaller
quick transactions, go with a block size of 4k.

	 •	If you’re creating a data warehouse-type database with large SQL
queries that retrieve heaps of data at once for analysis, choose the
largest block size you can. The largest block size you can choose is
OS dependent.

	 •	If you’re somewhere in the middle of the first two, go with 8k.

	 •	Make sure the block size is divisible evenly by the OS block size or
OS I/O size. You don’t want your OS to read a minimum of 8k but
choose a 4k block size. That would waste 4k for every read.

	 25.	 Click the Character Set tab.

		 You can change the character set after creating the database, but it’s
time consuming and tedious. Select a character set that will house all
the characters that your application may use.

	 •	Database Character Set: For all the standard-language columns in
your database. Also encompasses the character set that Oracle
messages will display in, and the characters you may use in pro-
gram code.

	 •	National Character Set: For special datatypes that may house data
only used in your applications. For example, what if you work at
a primarily English-speaking university and the Greek department
wants to create an application to storage indexable, searchable
Greek manuscripts? No programming or database message will be
displayed in Greek.

	 •	Unicode Character Sets: Select this option if you’re going to support
multiple languages.

	 26.	 Click the Connection Mode tab.

		 You have two options:

	 •	Dedicated Server Mode

	 •	Shared Server Mode

		 We discuss this in Chapter 2. Most current systems use dedicated server
connections. In most cases, we recommend starting that way. If memory
is constantly running short (while at the same time supporting thou-
sands of users), investigate shared server configuration.

		 The All Initialization Parameters button lets you adjust all parameters
discussed earlier in the chapter (as well as others we didn’t); see
Figure 4-5 for the All Initialization Parameters screen. By default, the
screen shows only what Oracle considers basic parameters. Oracle con-
siders some parameters advanced. You don’t need them, but if you’re
curious, click the Show Advanced Parameters button.

88 Part II: Implementing an Oracle Database

	

Figure 4-5:
The All

Initialization
Parameters

page lets
you make

adjustments.
	

	 27.	 Breathe.

		 You’re almost done.

	 28.	 Click the Customize Storage Button to make storage adjustments.

		 Now is a good time to make sure the files spread across multiple mount
points. Click each menu: Controlfile, Tablespaces, Datafiles, and Redo
Log Groups. Change the directories (on the right) so they’re not all in
the same place.

		 As you can see in Figure 4-6, the screen lists the file and storage objects.
The screen currently shows the Controlfile choices.

		 About file locations: In the past, we’ve encountered problems with some
directories not being there when you change where the files are created.
Sometimes Oracle complains about permissions.

		 Make sure the permissions on the directories where you store your files
are set for the Oracle user to read and write. For example, if you move a
control file to /u01/oradata/dev12c and that directory isn’t there, some
systems give an error and the database creation stops.

		 We create all the directories where files are going to go ahead of time.
This might resolve some headaches when you launch the actual data-
base creation.

89 Chapter 4: Creating Your Database

	

Figure 4-6:
The storage

configura-
tion page

lists file and
storage
objects.

	

	 29.	 Click the Close button when you are finished adjusting any files.

	 30.	 Decide if you want to save your decisions as a template for future use.

		 If you think you may create a similar database again, this step is a good
idea. You can give it a name and a description.

	 31.	 Save everything you did in a set of scripts and decide where you want
them.

		 It’s a good idea to keep these around just in case. Also, if you’re curious
about all the scripting work you just avoided by using the DBCA, have
a look.

	 32.	 Decide whether you want to create the database now.

	 33.	 Click Next to go to the summary screen.

	 34.	 Click Finish.

		 A screen shows all the options you just chose and the parameters you set.

		 The creation status screen appears. A status bar and options also
appear. You can watch it go through everything until it’s done.

90 Part II: Implementing an Oracle Database

		 When the database is complete, a screen shows the details. A Password
Management button lets you unlock or change the passwords of the
users that were created as part of the options you installed. All users
except SYS, SYSTEM, DBSNMP, and SYSMAN are locked.

		 If you installed the sample schemas, this is a good place to unlock them
and reset their passwords.

	 35.	 Click Exit then Close to close the DBCA.

Sharing (a) memory
Personally, we think a “typical” memory option is a bit of a misnomer.
Nothing is typical about memory settings. It all depends on

	 ✓	The amount of memory you have

	 ✓	The number of databases on the machine

	 ✓	The number of users you’re expecting

	 ✓	The amount of memory your users require

Also, it is quite common to give yourself a starting point and then go from
there. Oracle suggests using 40 percent of your memory for the shared and
private areas of your database. This is an interesting choice. What if this
machine were destined to house ten databases? Hmmm. . . .

Think about how the memory on this machine is going to be shared. These
points might help you decide:

	 ✓	Never start with the combination of shared and private memory areas
of all your databases on the machine consuming more than half the
memory. Therefore, if you have 8GB of memory and will have two data-
bases, both memory_target parameters combined shouldn’t exceed 4GB.
This setup gives plenty of room for error.

		 The reason for this is to make sure you have plenty of room for other
processes on the system to run. For each database you add, you may
need to go back and resize your memory components to make sure they
all fit and there’s enough left-over memory for the day to day opera-
tions of the system. This is not a hard and fast rule; we are giving you an
example of leaving half the memory available because it is a relatively
safe approach. If you know your system and its memory better, you can
be more liberal with your memory usage.

	 ✓	If your database is going to be extremely large, figure out how many
users will have server sessions at once. Take that number and multiply it
by 8MB. Add 2GB for your OS and then add 20 percent more of the avail-
able memory. Split what is left over amongst the rest of the databases.

91 Chapter 4: Creating Your Database

This still might not be right for you, so Chapter 11 discusses tuning and per-
formance management. Ultimately, the memory you need boils down to moni-
toring and adjusting. We wanted to give you a starting point. It is one of the
most common user questions yet is difficult to quantify without real applica-
tion environment data.

Doing a Post-Creation Check-Up
When everything is complete, we recommend that you log in to your data-
base for the first time and check everything out.

	 ✓	Look in the directories where the files were supposed to go.

	 ✓	Check your initialization parameters.

	 ✓	Perform a backup if this is a soon-to-be production database. That
way you don’t have to create the entire database again if something
goes wrong.

10g memories
If you were on Oracle 10g, the Custom option
on the Memory tab gives you a choice. You
can set separate shared and private areas. It
still gives you the typical 40 percent option, but
it then sets the two in the background. If you
were back in Oracle 9i, you’d have to set all the

memory areas yourself. Man, how did we get by
back in 2001? If you want to set everything your-
self, or you want to see what it looked like in 9i
just for the fun of it, select Custom and change
the drop-down list to Manual Shared Memory
Management. Ah, the memories. . . .

92 Part II: Implementing an Oracle Database

Chapter 5

Connecting to the Database
In This Chapter
▶	Starting and stopping the database
▶	Connecting to the database instance
▶	Avoiding pitfalls

Y
ou can’t use a database until it’s running and you connect to it. In this
chapter, we cover how to make that happen. First, we cover the setup

of your DBA environment so you can log in to the database and begin your
startup work. Next, we cover the various startup modes and states that a
database can be in depending on your type of work. Furthermore, shutting
down a database can happen in several ways. We cover all the options so
that you can start up and shut down with the proper parameters.

You can connect locally or remotely to a database with Oracle Net. We exam-
ine the role of the database listener process and how to configure, start, and
stop it. Next, we show how to set up client-side connections to the database.
Finally, we cover a few common problems you might encounter when setting
up Oracle Net.

Starting and Stopping the Database
Before users connect to a database instance to do work, it obviously must be
running. Starting up entails allocating the database instance memory, start-
ing the database processes, and opening the control and database files in
a mode accessible and appropriate for the users. Depending on the type of
work being done, there are several states a database can be in for the users
or DBA to access. Alternatively, sometimes you need to shut down a data-
base instance for a multitude of reasons. When you have to do a shutdown,
though, what happens to users logged in and doing work? When performing
a shutdown, you can handle existing users and the state of their work in sev-
eral ways.

94 Part II: Implementing an Oracle Database

Environmental requirements
Before starting or stopping an Oracle database instance, a few environmental
requirements must be met. These environment requirements get you logged
in to the server as the correct user with the right environment variables so
that you can do your DBA work.

Log in to the database server
Log in to the server where the database resides to do your key database
administrator (DBA) work. Yes, you can do some of this via Enterprise
Manager but only after you’ve set up your environment and created your
database in the first place.

	 Most critical DBA work occurs on the database server itself because it pro-
vides the most flexibility and is the simplest for starting DBAs.

Log in as the Oracle DBA account
You should be in the operating system DBA account that owns the Oracle
software to start and stop the database. Commonly this is the oracle user
account and is in the DBA group:

$ id
uid=501(oracle) gid=501(oinstall) groups=501(oinstall),502(dba))

The oracle user is in groups oinstall and dba.

Set up your environment variables
Many environment variables exist for your oracle user, and we cover them
in detail in Chapter 4. However, at a minimum you want to have these
variables set:

	 ✓	ORACLE_BASE

	 ✓	ORACLE_HOME

	 ✓	ORACLE_SID

$ echo $ORACLE_BASE
/u01/app/oracle
$ echo $ORACLE_HOME
/u01/app/oracle/product/12.1.0/dbhome_1
$ echo $ORACLE_SID
dev12c

95 Chapter 5: Connecting to the Database

	 Be sure to verify the ORACLE_BASE, ORACLE_HOME, and ORACLE_SID vari-
ables before you do any type of DBA work. It is very easy to define the wrong
ORACLE_HOME, in which case you work with the wrong database software.
Worse yet, it’s even easier to incorrectly define ORACLE_SID and stop the
wrong database! If it occurs frequently, you’re making what we refer to as a
“career-limiting move.”

Start SQL*Plus as a DBA
The command-line interface into Oracle databases is SQL*Plus. To do serious
DBA work such as startup or shutdown, you need to be logged in as SYSDBA.

To log in this way, you must be the oracle operating system user as
described earlier in this chapter. Then start SQL*Plus with the “/ as
sysdba” option:

$ sqlplus “/ as sysdba”

SQL*Plus: Release 12.1.0.1.0 - Production on Sun May 19 07:46:53 2013

Copyright (c) 1982, 2013, Oracle. All rights reserved.

Connected to:
Oracle Database 12c Enterprise Edition Release 12.1.0.1.0 - 64bit Production
With the Partitioning, OLAP, Advanced Analytics and Real Application Testing
options

SQL>

	 An alternative: When you’re in SQL*Plus, issue connect as sysdba to log in
as SYSDBA, provided you’re on the database server as the oracle operating
system user.

SQL> connect / as sysdba
Connected.
SQL>

When you’re connected as SYSDBA, you can begin your DBA work.

Database parameter file
Before starting the database, you must have a parameter file listing all the
different runtime parameters, such as SGA configuration. This is covered in
detail in Chapter 4, so we don’t rehash the details here. However, we assume
you have your SPFILE created and in a default location so that Oracle can find
it. If it isn’t in a default location, or you want to use a different parameter file,
you may use the pfile=’PATH TO SPFILE/FILENAME’syntax with your startup
commands.

96 Part II: Implementing an Oracle Database

	 Improper environment setup is a common error and is something you should
correct before beginning your database work. Doing so will save you time and
frustration troubleshooting unnecessary errors.

Starting the database
You don’t actually start a database per se; you start the instance.

A database is defined as the actual data, index, redo, temp, and control files
that exist on the files system. The instance consists of the processes (PMON,
SMON, DBWR, LGWR, and others) and the SGA (memory pool) that access
and process data from the database files. The instance is what accesses the
database, and it is the instance that users connect to. Thus, it is the instance
(not the database) that you actually start.

Are we splitting hairs here? Not in this case; you need to understand the rela-
tionship between the instance and the database to understand startup and
shutdown.

As an Oracle instance starts, it proceeds through various states until it and
the database are fully open and accessible to users. At each state, different
components are started and opened. Furthermore, at each state you may per-
form different types of DBA or user work. You may specify your startup com-
mand to take the database instance into a specific state depending on what
you need to do.

In ascending order, during startup the database instance goes through
these states:

NOMOUNT

	 ✓	Read Parameter File

	 ✓	Allocate SGA

	 ✓	Start Background Processes

	 ✓	Only SGA and Background Processes Running

	 ✓	Used for CREATE DATABASE (only SYS can access)

	 ✓	Specified by STARTUP NOMOUNT

MOUNT

	 ✓	Read Parameter File

	 ✓	Allocate SGA

	 ✓	Start Background Processes

	 ✓	Open and Read Control File

97 Chapter 5: Connecting to the Database

	 ✓	SGA and Background Processes Running and Control Files Open
	 ✓	Used for database maintenance and recovery operations (only SYS can

access)
	 ✓	Specified by STARTUP MOUNT

OPEN

	 ✓	Read Parameter File
	 ✓	Allocate SGA
	 ✓	Start Background Processes
	 ✓	Open and Read Control File
	 ✓	Open All Database Files
	 ✓	SGA and Background Processes Running, Control Files Open, All

Database Files Open
	 ✓	Default OPEN state for database and is accessible by users and applications
	 ✓	Specified by STARTUP or STARTUP OPEN

Unless you’re performing specialized maintenance, the default is as follows:

	 ✓	STARTUP with the parameter file read
	 ✓	Background processes and SGA started
	 ✓	Control files open and read
	 ✓	All database files open

In this open state, users access the database normally.

Here’s what it looks like when starting the database into the default OPEN mode.
Because we’re using the default parameter file, we don’t need to specify one.

$ sqlplus “/ as sysdba”

SQL*Plus: Release 12.1.0.1.0 - Production on Sun May 19 09:59:12 2013

Copyright (c) 1982, 2013, Oracle. All rights reserved.

Connected to an idle instance.
SQL> startup
ORACLE instance started.

Total System Global Area 789172224 bytes
Fixed Size 2148552 bytes
Variable Size 557844280 bytes
Database Buffers 218103808 bytes
Redo Buffers 11075584 bytes
Database opened.
SQL>

98 Part II: Implementing an Oracle Database

	 Although we normally go straight to the fully open mode, you can increment
the modes. For example, you could do database maintenance with the data-
base in MOUNT mode and, once done, issue ALTER DATABASE OPEN to take
the database to open mode so users can start work.

That’s what’s done here:

SQL> startup mount
ORACLE instance started.

Total System Global Area 789172224 bytes
Fixed Size 2148552 bytes
Variable Size 570427192 bytes
Database Buffers 205520896 bytes
Redo Buffers 11075584 bytes
Database mounted.
SQL> alter database open;

Database altered.

SQL>

Note that you can only go forward to a more open state; you can’t move to a
more restrictive state without issuing a shutdown.

In most cases, when you open a database you want it open for every user.
Sometimes, however, you want to block all or some users even though the
database is in the OPEN state.

To do this, put the database in RESTRICTED SESSION mode via one of
these ways:

	 ✓	STARTUP RESTRICT

	 ✓	ALTER SYSTEM ENABLE RESTRICTED SESSION
SQL> startup restrict;
ORACLE instance started.

Total System Global Area 789172224 bytes
Fixed Size 2148552 bytes
Variable Size 570427192 bytes
Database Buffers 205520896 bytes
Redo Buffers 11075584 bytes
Database mounted.
Database opened.
SQL>
SQL> alter system enable restricted session;

System altered.

99 Chapter 5: Connecting to the Database

	 ✓	When the database is OPEN, you must grant users CREATE SESSION to
connect.

	 ✓	When the database is RESTRICTED, users must have CREATE SESSION
and they also must have RESTRICTED SESSION to connect.

The only backdoor is if the user was already logged in when an ALTER
SYSTEM ENABLE RESTRICTED SESSION was issued; then the user can remain
logged in. Therefore, you should kill all user sessions after putting the data-
base in RESTRICTED mode to kick them out. If they don’t have RESTRICTED
SESSION, they get this Oracle error when they try to log in:

$ sqlplus barb/test123

SQL*Plus: Release 12.1.0.1.0 - Production on Sun May 19 11:26:41 2013

Copyright (c) 1982, 2013, Oracle. All rights reserved.

ERROR:
ORA-01035: ORACLE only available to users with RESTRICTED SESSION privilege

Why would you want to do this (other than just to frustrate your users)?
Although frustrating users is the secret pleasure of every administrator
(especially security administrators), some valid technical reasons exist.
Major data, table, or application updates often need a stable system with no
updates or locks to contend with so they can process successfully. Some
database maintenance operations also require a restricted session.

If you need to allow in a subset of users or perhaps the application user pro-
cessing a database job, you may grant them RESTRICTED SESSION:

SQL> grant restricted session to barb;

Grant succeeded.

SQL> connect sdeas/test123
Connected.

	 Revoke the RESTRICTED SESSION from any non-DBA user once the user’s
work is done. Also, don’t forget to take the instance out of restricted session.

SQL> alter system disable restricted session;

System altered.

Starting up database instances isn’t terribly difficult, and most times you use
the default STARTUP command to take the database instance to the OPEN
state. Only occasionally does the situation require a RESTRICTED SESSION.

100 Part II: Implementing an Oracle Database

If the database startup seems to take a few minutes, it may be because of
a large SGA during which time memory is being allocated. Or there may be
many database files to open.

If the database crashed or a SHUTDOWN ABORT occurred prior to the
startup, database instance recovery is occurring, which can take time. If this
occurs, leave your screen with the STARTUP command open; let it run. View
the alert log with another window. We cover the alert log in Chapter 12. If
more severe errors occur (such as media recovery), they appear both on the
startup screen and in the alert log file. Of course, you can prevent many of
these issues if you stop the database in a clean manner. Carry on to the
next topic.

Stopping the database
Just as there is an order of events to starting a database instance, there is
also an order for how a database instance is stopped. Ideally, this is what
happens during a database shutdown:

	 ✓	New connections to the database are denied.

	 ✓	Existing transactions are either committed or rolled back with proper
updates to online redo log files.

	 ✓	User sessions are terminated.

	 ✓	Database file headers are updated and files are closed.

	 ✓	SGA is shut down.

	 ✓	Background processes are terminated.

It is preferable for all the steps to occur naturally during shutdown, which
ensures that

	 ✓	All transactions are neatly committed or rolled back.

	 ✓	Online redo log files are properly updated.

	 ✓	All files are closed properly without corruption.

	 If the preceding steps don’t occur during shutdown because of a server or
database instance crash or SHUTDOWN ABORT, the cleanup operations must
occur during startup in a phase called instance recovery.

During instance recovery, Oracle won’t open a database instance until it’s
satisfied that all transactions are accounted for and all data files are opened.
If it can’t complete these tasks, error messages appear and the DBA must
address them. Instance recovery is successful most of the time, but it may
take several minutes to process the cleanup.

101 Chapter 5: Connecting to the Database

Shutdown types
When a database needs to be shut down, several methods exist to do so with
varying effects on current users and their transactions.

SHUTDOWN [NORMAL]

	 ✓	New connections to the database are denied.

	 ✓	Existing transactions continue normally until either they roll back or
commit.

	 ✓	Users log out normally on their own.

	 ✓	After the last user logs out, database file headers are updated and files
are closed.

	 ✓	SGA is shut down.

	 ✓	Background processes are terminated.

	 ✓	Specified by the SHUTDOWN or SHUTDOWN NORMAL command.

SHUTDOWN TRANSACTIONAL

	 ✓	New connections to the database are denied.

	 ✓	Existing transactions continue normally until they either roll back or
commit.

	 ✓	After an existing transaction is completed, user sessions are terminated.

	 ✓	Database file headers are updated and files are closed.

	 ✓	SGA is shut down.

	 ✓	Background processes are terminated.

	 ✓	Specified by the SHUTDOWN TRANSACTIONAL command.

SHUTDOWN IMMEDIATE

	 ✓	New connections to the database are denied.

	 ✓	Existing transactions are rolled back.

	 ✓	User sessions are terminated.

	 ✓	Database file headers are updated, and files are closed.

	 ✓	SGA is shut down.

	 ✓	Background processes are terminated.

	 ✓	Specified by the SHUTDOWN IMMEDIATE command.

102 Part II: Implementing an Oracle Database

SHUTDOWN ABORT

	 ✓	New connections to the database are denied.

	 ✓	Existing transactions are not rolled back.

	 ✓	User sessions are terminated.

	 ✓	SGA is shut down.

	 ✓	Background processes are terminated.

	 ✓	Specified by the SHUTDOWN ABORT command.

	 ✓	Instance recovery is required on startup.

Shutdown decisions
When do you use each shutdown type?

	 ✓	Generally, SHUTDOWN IMMEDIATE is what you want because it cleanly
commits or rolls back existing transactions, terminates user sessions
when they are complete, and then closes the database in a clean manner.

	 ✓	Don’t use SHUTDOWN NORMAL very often because even one user still
logged in (after he’s left for the day) can hang the shutdown.

	 ✓	SHUTDOWN TRANSACTIONAL doesn’t buy you much because it forces
you to wait on users to finish their transactions. If you want to wait, you
can just enter SHUTDOWN NORMAL. However, if you want to force them
off the database instance, you use SHUTDOWN IMMEDIATE. There are
times SHUTDOWN TRANSACTIONAL is useful, but it’s not as common as
you might think. This method is most commonly used in clustered envi-
ronments.

		 Here’s how a typical SHUTDOWN IMMEDIATE executes. Keep in mind
that you must be logged in as SYSDBA to run the shutdown command.
SQL> shutdown immediate;
Database closed.
Database dismounted.
ORACLE instance shut down.
SQL> exit

	 ✓	Use SHUTDOWN ABORT only when you have to. It essentially crashes
the database and expects instance recovery to pick up the pieces. You
may have to do that if the system is hung, but it shouldn’t be your first
choice (unless you want to do real database recovery sometime). If you
can issue commands on the database instance, issue an ALTER SYSTEM
SWITCH LOGFILE to force a checkpoint to close file headers and flush
the online redo logs before issuing the SHUTDOWN ABORT. Forcing a
check point allows for an easier instance recovery during the
next startup.

103 Chapter 5: Connecting to the Database

	 Before you issue any commands changing the running state of the instance,
make sure you’re connecting to the correct instance. On Linux, if the instance
is not started yet, type the following at the command line:

$ echo $ORACLE_SID

If the instance is already running and you want to shut it down or restrict it,
type this:

$ sqlplus / as sysdba

SQL> select instance_name from v$instance;
INSTANCE_NAME

dev12c

Connecting to the Database Instance
A database instance isn’t much good if you can’t connect to it. Establishing a
reliable, persistent, and secure connection to the database from the client is
essential.

Oracle has established a network architecture of protocols, processes, utili-
ties, and configuration files to support communication into the database.
Oracle Net (formally called SQL*Net or Net8) is the Oracle networking
protocol.

Oracle Net is supported by

	 ✓	DBA-managed listener processes

	 ✓	Client- and server-side configuration files

	 ✓	Command-line utilities

	 ✓	Optional GUI administration tools

Additionally, connections can come into the database via several lighter-
weight non-Oracle protocols such as ODBC or JDBC. However, even these
non-Oracle protocols use the same underlying server-side Oracle compo-
nents as Oracle Net connections. For these reasons, we focus on the Oracle
specific components.

104 Part II: Implementing an Oracle Database

Local versus remote connections
Connections into the database can be one of two kinds:

	 ✓	Local (bequeath): A local connection originates from the same server
the database is on and doesn’t use the database listener process. When
you connect to SQL*Plus as “/ as sysdba”, you’re connecting locally.

	 ✓	Remote: All other connections from outside the database server or
those from the server using the listener are remote connections. The
easy way to determine whether a user is connecting remotely is if you
have @TNS_ALIAS in the connect screen. For example, sqlplus scott@
dev12c indicates a remote connection to the dev12c database.

Communication flow
Connections to an Oracle database typically come across from a client
located away from the database; over a network infrastructure; to the data-
base server; through a database listener process; and, finally, into the data-
base itself.

On the client side, the program calling the database references tnsnames.
ora to find the database server host and protocol to send the request to.
The request then leaves the client and goes onto the network utilization
OracleNet. The default port for Oracle Net communications is 1521, although
that’s configurable. Over this Oracle Net protocol is where database commu-
nications traffic flows between the client and database server.

	 After a client’s communication request reaches the database server host, it’s
handed off to the listener. The database listener is a separate Oracle software
process on the database server that listens for incoming requests on the
defined OracleNet port (1521). When it gets a request, the listener identifies
which database instance is targeted for that request and establishes a connec-
tion to that database instance. On the server side, the listener uses the listener.
ora file to make this determination. When the connection is established and the
session begins, the listener steps out of the picture and allows communication
between the database and client. Each client session has a dedicated server pro-
cess on the server side. Within this dedicated server process, the user’s session
code is executed. Figure 5-1 represents the communication flow.

The client contains the client application and tnsnames.ora file. It communi-
cates to the database server over Oracle Net on port 1521. On the database
server, a listener process is configured by way of the listener.ora file. The
listener routes the incoming request to the target database instance (either
dev11g or db01) and establishes the initial connection handshake between
the database instance and client.

105 Chapter 5: Connecting to the Database

	

Figure 5-1:
Communica-

tion
flowchart.

	

Setting up tnsnames.ora
You must provide the address or location of the database you’re trying to
connect to. This information is often stored in the tnsnames.ora text file,
which exists on the client you’re connecting from. Other methods of locating
your database exist such as referencing an Oracle Internet Directory (OID),
but tnsnames.ora is the most common method for clients.

Note this “client” can be a user’s workstation, a web application server, or
even another database server.

Here is a sample tnsnames.ora file that can be found in ORACLE_HOME_
DIRECTORY/network/admin:

dev12c =
 (DESCRIPTION =
 (ADDRESS_LIST =
 (ADDRESS = (PROTOCOL = TCP)(HOST = orasvr01)(PORT = 1521))
)
 (CONNECT_DATA =
 (SERVICE_NAME = dev12c)
)
db01 =
 (DESCRIPTION =
 (ADDRESS_LIST =
 (ADDRESS = (PROTOCOL = TCP)(HOST = orasvr02)(PORT = 1521))
)
 (CONNECT_DATA =
 (SERVICE_NAME = db01)
)

This particular tnsnames.ora contains 2 TNS (Transport Network Substrate)
aliases, one for dev12c and one for db01. When connecting to a database
instance, you actually specify the TNS alias (not database name). For exam-
ple, sqlplus barb@dev12c uses dev12c as the alias. The TNS alias can be any
name (such as dev12c or something more generic like dev or trainingdb); it
doesn’t have to be the actual database name. That flexibility means you can
have a generic alias and not hardcode the database name.

106 Part II: Implementing an Oracle Database

Under HOST you specify either the DNS host name or the IP address of the
server containing the database instance. Again, try to avoid hardcoded
values such as IP address and use DNS names if possible.

PORT is the port the server-side listener process is listening on. It’s also the
port you connect across the network on for your OracleNet traffic (thus the
firewalls must be open on that port).

SERVICE_NAME is the service name of the database instance you’re attempt-
ing to connect to. You can also use SID, although Oracle is promoting the use
of SERVICE_NAME instead.

The tnsnames.ora file is text based, and you can edit it by hand. After making
changes, it’s not necessary to restart the database or listener process.

Configuring the database
listener with listener.ora
The key file to the listener process is the listener.ora configuration file. This
file identifies two things:

	 ✓	Each database it will listen for

	 ✓	On what ports (default 1521)

The file is located in ORACLE_HOME/network/admin.

Here’s a sample listener.ora file:

listener.ora Network Configuration File: /u01/app/oracle/product/12.1.0/
dbhome_1/network/admin/lis

tener.ora
Generated by Oracle configuration tools.

SID_LIST_LISTENER =
 (SID_LIST =
 (SID_DESC =
 (GLOBAL_DBNAME = db01)
 (ORACLE_HOME = /u01/app/oracle/product/11.1.0/db_1)
 (SID_NAME = db01)
)
 (SID_DESC =
 (GLOBAL_DBNAME = dev12c)
 (ORACLE_HOME = /u01/app/oracle/product/12.1.0/dbhome_1)
 (SID_NAME = dev12c)
)
)

107 Chapter 5: Connecting to the Database

LISTENER =
 (DESCRIPTION_LIST =
 (DESCRIPTION =
 (ADDRESS = (PROTOCOL = TCP)(HOST = orasvr01)(PORT = 1521))
)
 (DESCRIPTION =
 (ADDRESS = (PROTOCOL = IPC)(KEY = EXTPROC1521))
)
)

In the preceding code, you see two main sections: SID_LIST_LISTENER and
LISTENER. The SID_LIST_LISTENER section identifies each database instance
that the listener will service connections for. It lists the global database
name, ORACLE_HOME, and SID.

As you need more databases, simply add the following section and then cus-
tomize the relevant information:

 (SID_DESC =
 (GLOBAL_DBNAME = dev12c)
 (ORACLE_HOME = /u01/app/oracle/product/12.1.0/dbhome_1)
 (SID_NAME = dev12c)
)

The LISTENER section identifies what host the database exists on and what
port it accepts connections on:

 (DESCRIPTION =
 (ADDRESS = (PROTOCOL = TCP)(HOST = orasvr01)(PORT = 1521))
)

Here you see the listener will listen on the HOST (server) orasvr01, and the
port is 1521. Requests on other ports will not be acknowledged.

You can add more databases, even if they’re different database versions to
the listener.ora. If you have multiple database versions, run your listener
with the highest version of the database software you have. You can also add
additional LISTENER processes (if you want to listen on multiple ports, for
example).

	 You should be aware of one configuration option we don’t necessarily recom-
mend: Shared Servers (also known as Multi-Threaded Servers, or MTS). With
this method, each user connection uses a shared process rather than a dedi-
cated server process on the database server. In theory, having connections
share a server-side process reduces memory use and is good for systems with
lots of concurrent users. However, we’ve never seen it provide a noticeable
benefit, and we wouldn’t consider it a common configuration.

108 Part II: Implementing an Oracle Database

Note that this is different from connection pooling with application servers,
which we do recommend. What we outline in the earlier “Communication
flow” section is the dedicated server mode, which is more common, provides
better performance, and is required for DBA connections.

The sqlnet.ora file is one additional configuration file. It can be client or
server side, usually located with the listener.ora or tnsnames.ora file. The
sqlnet.ora file is a special options file where you can add parameters to the
Oracle Net architecture. This file can exist both on servers to impact the lis-
tener process and on clients to influence TNS settings. For example, you can

	 ✓	Add commands to force increased tracing, logging options, or encryption.

	 ✓	Tell the listener to add a domain name to each database.

	 ✓	Direct the listener to look up connection information in an LDAP instead
of a tnsnames.ora file.

Here is a simple sqlnet.ora file:

$ more sqlnet.ora
NAMES.DIRECTORY_PATH=TNSNAMES

The setting simply tells the client to use the tnsnames.ora file instead of any
other resource (such as an LDAP).

	 If you’re experiencing connection issues and your tnsnames.ora and listener.
ora files look fine, don’t forget the sqlnet.ora. There may be a forgotten setting
there causing issues.

Starting and stopping
the database listener
The database listener process reads the listener.ora and sqlnet.ora files for
its configuration; the DBA manages it by using the lsnrctl command-line util-
ity. You can use the utility to do these things to the listener:

	 ✓	Start

	 ✓	Stop

	 ✓	Check status

There is no direct relationship between the listener process and the database
itself; the processes operate independently. That means you can start the lis-
tener before or after the database.

109 Chapter 5: Connecting to the Database

	 However, remember that the listener must be started before the database can
service remote connections.

To start the listener, issue the lsnrctl start command:

[oracle@orasvr01 dbs]$ lsnrctl start

LSNRCTL for Linux: Version 12.1.0.1.0 - Production on 19-MAY-2013 12:10:44
Copyright (c) 1991, 2013, Oracle. All rights reserved.
Starting /u01/app/oracle/product/12.1.0/dbhome_1/bin/tnslsnr: please wait...

TNSLSNR for Linux: Version 12.1.0.1.0 – Production
System parameter file is
/u01/app/oracle/product/12.1.0/dbhome_1/network/admin/listener.ora
Log messages written to
/u01/app/oracle/diag/tnslsnr/orasvr01/listener/alert/log.xml
Listening on: (DESCRIPTION=(ADDRESS=(PROTOCOL=tcp)(HOST=192.168.1.66)

(PORT=1521)))
Listening on: (DESCRIPTION=(ADDRESS=(PROTOCOL=ipc)(KEY=EXTPROC1521)))

Connecting to (DESCRIPTION=(ADDRESS=(PROTOCOL=TCP)(HOST=192.168.1.66)
(PORT=1521)))

STATUS of the LISTENER

Alias LISTENER
Version TNSLSNR for Linux: Version 12.1.0.1.0 - Production
Start Date 19-MAY-2013 12:10:44
Uptime 0 days 0 hr. 0 min. 0 sec
Trace Level off
Security ON: Local OS Authentication
SNMP OFF
Listener Parameter File
/u01/app/oracle/product/12.1.0/dbhome_1/network/admin/listener.ora
Listener Log File
/u01/app/oracle/diag/tnslsnr/orasvr01/listener/alert/log.xml
Listening Endpoints Summary...
 (DESCRIPTION=(ADDRESS=(PROTOCOL=tcp)(HOST=192.168.1.66)(PORT=1521)))
 (DESCRIPTION=(ADDRESS=(PROTOCOL=ipc)(KEY=EXTPROC1521)))
(DESCRIPTION=(ADDRESS=(PROTOCOL=tcps)(HOST=orasvr01)(PORT=5500))(Security=(my_

wallet_directory=/u01/app/oracle/admin/dev12c/xdb_wallet))
(Presentation=HTTP)(Session=RAW))

Services Summary...
Service “dev12c” has 1 instance(s).
 Instance “dev12c”, status READY, has 1 handler(s) for this service...
Service “dev12cXDB” has 1 instance(s).
 Instance “dev12c”, status READY, has 1 handler(s) for this service...
Service “prod12c” has 1 instance(s).
 Instance “prod12c”, status READY, has 1 handler(s) for this service...

110 Part II: Implementing an Oracle Database

Service “prod12cXDB” has 1 instance(s).
 Instance “prod12c”, status READY, has 1 handler(s) for this service...
The command completed successfully

If you need to stop the listener, you can issue the lsnrctl stop command:

$ lsnrctl stop

LSNRCTL for Linux: Version 12.1.0.1.0 - Production on 19-MAY-2013 12:10:40
Copyright (c) 1991, 2013, Oracle. All rights reserved.
Connecting to (DESCRIPTION=(ADDRESS=(PROTOCOL=TCP)(HOST=192.168.1.66)

(PORT=1521)))
The command completed successfully
$

	 After changing the listener.ora file, you must restart the listener process. You
can do this via the stop and start commands. An easier method is the lsn-
rctl reload command. It effectively restarts the listener process without the
explicit stop and start.

To determine what databases the listener is configured to service requests,
you can read the listener.ora configuration file. Or, more easily, you can issue
the lsrnctl status command:

$ lsnrctl status
LSNRCTL for Linux: Version 12.1.0.1.0 - Production on 19-MAY-2013 12:13:09
Copyright (c) 1991, 2013, Oracle. All rights reserved.
Connecting to (DESCRIPTION=(ADDRESS=(PROTOCOL=TCP)(HOST=192.168.1.66)

(PORT=1521)))
STATUS of the LISTENER

Alias LISTENER
Version TNSLSNR for Linux: Version 12.1.0.1.0 - Production
Start Date 19-MAY-2013 12:10:44
Uptime 0 days 0 hr. 2 min. 25 sec
Trace Level off
Security ON: Local OS Authentication
SNMP OFF
Listener Parameter File /u01/app/oracle/product/12.1.0/dbhome_1/network/admin/

listener.ora
Listener Log File /u01/app/oracle/diag/tnslsnr/orasvr01/listener/alert/

log.xml
Listening Endpoints Summary...
 (DESCRIPTION=(ADDRESS=(PROTOCOL=tcp)(HOST=192.168.1.66)(PORT=1521)))
 (DESCRIPTION=(ADDRESS=(PROTOCOL=ipc)(KEY=EXTPROC1521)))
 (DESCRIPTION=(ADDRESS=(PROTOCOL=tcps)(HOST=orasvr01)(PORT=5500))(Security=(my_

wallet_directory=/u01/app/oracle/admin/dev12c/xdb_wallet))
(Presentation=HTTP)(Session=RAW))

Services Summary...

111 Chapter 5: Connecting to the Database

Service ”dev12c” has 1 instance(s).
 Instance ”dev12c”, status READY, has 1 handler(s) for this service...
Service ”dev12cXDB” has 1 instance(s).
 Instance ”dev12c”, status READY, has 1 handler(s) for this service...
Service ”prod12c” has 1 instance(s).
 Instance ”prod12c”, status READY, has 1 handler(s) for this service...
Service ”prod12cXDB” has 1 instance(s).
 Instance ”prod12c”, status READY, has 1 handler(s) for this service...
The command completed successfully
$

This code shows listening for connections for the dev12c and prod12c
databases.

Logs for the listener process are stored in the listener.log file. Depending on
database setup, the listener.log may be in one of these two spots:

	 ✓	In ORACLE_HOME/network/admin

	 ✓	Under the ADR infrastructure in ADR_BASE/diag/tnslsnr tree

For more information on this file, see Chapter 12.

Testing the connection
The best way to test a connection is via the application, but that isn’t always
possible. Preferably, you’re on the client tier and actually go through the
same network path as the client applications. If you don’t do that, you may
not be executing a valid test.

To execute a connectivity test, follow these steps to determine whether you
can connect to the database instance:

	 1.	 Go to the client tier.

	 2.	 See whether Oracle client software such as SQL*Plus and tnsnames.
ora is installed.

	 3.	 Execute a sqlplus username@tns_alias, such as sqlplus mwhalen@
dev12c.

	 4.	 Enter the password to connect to the database.

	 Using the tnsping utility is an even faster method that doesn’t require a pass-
word. This utility connects over the network via the listener and establishes a
handshake. It then terminates the connection and reports the results, which
you see here:

112 Part II: Implementing an Oracle Database

$ tnsping dev12c

TNS Ping Utility for Linux: Version 12.1.0.1.0 - Production on 19-MAY-2013
12:20:07

Copyright (c) 1997, 2013, Oracle. All rights reserved.
Used parameter files:
/u01/app/oracle/product/12.1.0/dbhome_1/network/admin/sqlnet.ora

Used TNSNAMES adapter to resolve the alias
Attempting to contact (DESCRIPTION = (ADDRESS = (PROTOCOL = TCP)(HOST =

localhost)(PORT = 1521)) (CONNECT_DATA = (SERVER = DEDICATED)
(SERVICE_NAME = dev12c)))

OK (20 msec)

Testing connections is a good verification step for the DBA. If problems
occur, it lets you catch them first instead of relying on users to report
them later.

Oracle Net Configuration Assistant
It’s important to understand how the listener works and what different files
control the communication process; that’s why we explain those parts first in
this chapter.

Many DBAs simply copy the same template files from one server to the next,
making only minor changes. However, Oracle does provide a GUI database
assistant tool called Oracle Net Configuration Assistant to preconfigure
tnsnames.ora and listener.ora for you on the server side. It can also be exe-
cuted on the client side. It walks you through generating your configuration
files and even tests the connection for you.

	 We encourage you to test the Oracle Net Configuration Assistant and see
whether it’s easy for you, but we caution you to understand the files them-
selves. Through that understanding, you can better fix problems and gotchas.

Sidestepping Connection Gotchas
Setting up connections to an Oracle database doesn’t have to be difficult,
but sometimes initial setup can be tough. Most of the time, you, as the DBA,
review the configuration and figure out the issue. In other cases, you need to
work with the network people to trace connections or open firewalls. In still
other cases, you work with the application experts and determine who the
client application is attempting to connect to the database.

113 Chapter 5: Connecting to the Database

	 Many people fall into several gotchas:

	 ✓	Remember to start the listener. This sounds obvious, but it’s not
uncommon to start the database and forget to start the listener process.
Scripting these steps helps eliminate these errors.

	 ✓	Keep open the firewall on the listener port. It is common to have a
firewall separating the database server from the users or web applica-
tion servers. That means Oracle Net traffic may be blocked; in fact, you
should assume that you need to have the firewall opened until proven
otherwise. Using the tnsping utility can help you test these connections.

	 ✓	Watch out for multiple tnsnames.ora files. On users’ workstations,
multiple installations of Oracle client software are likely to have mul-
tiple tnsnames.ora files. That becomes a problem when an update
to tnsnames.ora is necessary, but not all the tnsnames.ora files are
updated. This issue manifests itself in some applications working and
others that don’t. Either have one common file or a script to update all
the files.

	 ✓	Copy and paste existing entries and change only the key parameters.
Because tnsnames.ora is a text file, it invites people to edit it by hand.
That’s fine, but it’s easy to transpose a number (1512, for instance), mis-
spell a server name, or insert an extra parenthesis somewhere. Also,
avoid using IP addresses for host information unless you really need to.
Use the DNS server name instead and you won’t have to worry about the
IP address changing without warning.

None of these errors is insurmountable, but checking these items may save
you some time.

	 Although we use the default port of 1521 in many of our examples, best prac-
tice says to modify this port. If you listen with your database on the default
port, you make your system more vulnerable to hackers. Choose an unused
port that no one has common knowledge of.

114 Part II: Implementing an Oracle Database

Chapter 6

Understanding the Language
of Databases: SQL

In This Chapter
▶	Learning the basics of SQL
▶	Using the data dictionary
▶	Programming with PL/SQL

C
ommunicating with most relational databases is done with Structured
Query Language, or just SQL for short. SQL can be used against many

types of relational databases, not just Oracle. However, most databases have
their own little differences with SQL. As a budding Oracle database adminis-
trator (DBA), you should have a good grasp on the SQL language.

SQL can be very simple to learn. In fact, some people say that it’s one of the
easiest programming languages. You will see in this chapter that to begin
functioning as an Oracle DBA, the basic commands aren’t difficult. With that
said, keep in mind that this chapter is meant only as a high-level introduction
to the fundamentals of SQL. The SQL language is very large and powerful.
And although most of your DBA tasks won’t require you to know the more
advanced SQL features, you should continue your learning beyond what this
chapter offers.

The second part of this chapter focuses on the data dictionary, which is the
key component to understanding how your database is organized and how
it runs. All good DBAs have a strong understanding of the data dictionary.
Understanding the data dictionary will keep you secure, tune, troubleshoot,
and configure your database.

Last, we take a look at the PL/SQL programming language. PL/SQL is SQL
with more traditional programming constructs. Some say the PL stands for
Procedural Language, and others might say Programming Language. Either
way, PL/SQL extends the SQL language to be more powerful. It’s not always
a focus of DBAs, but often more a focus for developers. However, as a DBA,
understanding at least some PL/SQL will go a long way to making you a suc-
cessful DBA.

116 Part II: Implementing an Oracle Database

Learning the Basics of SQL
The first step to learning SQL is to understand the different types of commands.

	 ✓	Data Manipulation Language (DML) statements manage data within
schema objects.

	 ✓	Data Definition Language (DDL) statements create or alter structures
(not data) in the database.

	 ✓	Data Control Language (DCL) statements manage security in the
database.

	 ✓	Transaction Control Language (TCL) statements manage transactions in
the database.

You can see that SQL can be broken down into different areas. This chapter
focuses mostly on DML and TCL within the context of SQL. In Chapter 7, we
touch on DDL and DCL.

SQL calling environments
There are many environments in which you can use to execute your SQL
statements. The Oracle database is typically delivered with two:

	 ✓	SQL*Plus: Command line

	 ✓	SQL*Developer: A more graphically enhanced environment

So as to not confuse matters any more than we have to, we focus on the
SQL*Plus environment. That way, we can direct our attention toward the
commands themselves and not the other fancy features that SQL*Developer
offers, which can be distracting. After you become familiar with the SQL lan-
guage, you may decide that exploring a more powerful environment can lead
to better productivity.

SQL*Plus comes installed on the database server itself or as part of the
Oracle client installation. Again, to keep things simple, we show using the
SQL*Plus environment directly on the server. As a DBA, you may find that
this is also where a lot of your work will be done.

Follow these steps to connect to your database with SQL*Plus in a UNIX/
Linux environment:

	 1.	 Open a terminal to your OS as the Oracle software owner.

	 2.	 Set your environment with oraenv, as shown in Chapter 4.

	 3.	 Type <sqlplus> and press Enter.

117 Chapter 6: Understanding the Language of Databases: SQL

	 4.	 Type your username and press Enter.

	 5.	 Type your password and press Enter.

For the examples in this chapter, we use the provided demo schema, HR.
This schema should be installed if you selected it as part of the database cre-
ation. Here is an example of what you see as a result of following the above
login procedure:

 [oracle@orasvr01 admin]$. oraenv
ORACLE_SID = [dev] ? dev12c
The Oracle base remains unchanged with value /u01/app/oracle
[oracle@orasvr01 admin]$ sqlplus

SQL*Plus: Release 12.1.0.1.0 Production on Fri Jun 28 19:23:27 2013

Copyright (c) 1982, 2013, Oracle. All rights reserved.

Enter user-name: hr
Enter password:
Last Successful login time: Fri Jun 28 2013 18:32:41 -04:00

Connected to:
Oracle Database 12c Enterprise Edition Release 12.1.0.1.0 - 64bit Production
With the Partitioning, OLAP, Advanced Analytics and Real Application Testing

options

SQL>

SQL statement clauses
Your SQL statements can be broken into sections called clauses. Not all state-
ments contain all the clauses. It depends on what you’re trying to do. See
Table 6-1 for the basic architecture of the SQL SELECT clauses.

Table 6-1	 SELECT Statement Clauses
Clause Description
SELECT Contains the columns and operators to display the data
FROM Contains one or more tables from which the data originates
WHERE Determines what data will be returned or restricted
GROUP BY Groups the data according to certain values
ORDER BY Orders the output of the data based on specified columns

118 Part II: Implementing an Oracle Database

The only mandatory clauses in a statement are SELECT and FROM. The rest
are optional, as you will see throughout the chapter as we discuss the other
clauses.

Case sensitivity in the database
SQL commands themselves are called key words. For example, some key
words are

	 ✓	SELECT

	 ✓	FROM

	 ✓	TABLE

	 ✓	WHERE

	 ✓	CREATE

	 ✓	DELETE

You may notice that we frequently use uppercase when writing key words.
You don’t have to, though. As a matter of fact, all SQL commands are case-
insensitive. The reason we use uppercase is because typing key words in
uppercase is common in the SQL language and makes them a little easier
to read.

Additionally, object names aren’t case-sensitive. However, we often use low-
ercase when typing object names in statements. Again, this is only to help
make things easier to read. The fact is all object names and attributes are
converted to uppercase when they’re stored in the database.

The only thing that is truly case-sensitive in your database is the data.
Whatever you store in the database goes in and comes out with the specified
case during the operations themselves. Of course, you can influence this one
way or the other, which we will show later when we talk about functions.

	 Even though object names are case-insensitive, you can technically force them
to be case-sensitive by putting the names in double quotes (“ ”). However, that
practice is highly discouraged because you could end up with three different
objects in the database with essentially the same name: for example, EMP,
emp, Emp. That is confusion that no one needs.

119 Chapter 6: Understanding the Language of Databases: SQL

Viewing your objects and data with the
DESCRIBE and SELECT statements
Perhaps the most common statements you will run as a DBA are the
DESCRIBE and SELECT commands. After all, a big part of your job will be
researching what is in the database and analyzing the current conditions.

For the examples in this chapter, we start out using objects in the HR (demo)
schema. In the next section, we start using the data dictionary.

Say you want to get some information about the jobs in your company.

	 1.	 Open a terminal to your OS as the Oracle software owner.

	 2.	 Set your environment with oraenv, as shown in Chapter 4.

	 3.	 Type <sqlplus> and press Enter.

	 4.	 Type <hr> and press Enter.

	 5.	 Type <your password> and press Enter.

	 6.	 Type <DESCRIBE jobs> and press Enter.

		 The following output appears:
SQL> DESCRIBE jobs
 Name Null? Type
 ----------------------------- -------- --------------------
 JOB_ID NOT NULL VARCHAR2(10)
 JOB_TITLE NOT NULL VARCHAR2(35)
 MIN_SALARY NUMBER(6)
 MAX_SALARY NUMBER(6)

	 7.	 To see the job_id and job_title, type
<SELECT job_id, job_title FROM jobs;>

		 and press Enter.

		 You should see the following output:
SQL> select job_id, job_title from jobs;

JOB_ID JOB_TITLE
---------- -----------------------------------
AD_PRES President
AD_VP Administration Vice President
AD_ASST Administration Assistant
FI_MGR Finance Manager
FI_ACCOUNT Accountant
AC_MGR Accounting Manager
AC_ACCOUNT Public Accountant
SA_MAN Sales Manager

120 Part II: Implementing an Oracle Database

SA_REP Sales Representative
PU_MAN Purchasing Manager
PU_CLERK Purchasing Clerk
ST_MAN Stock Manager
ST_CLERK Stock Clerk
SH_CLERK Shipping Clerk
IT_PROG Programmer
MK_MAN Marketing Manager
MK_REP Marketing Representative
HR_REP Human Resources Representative
PR_REP Public Relations Representative

19 rows selected.

The DESCRIBE command allows you to see the table structure. This includes
the column names, the data types, and whether the columns are allowed to
be empty (null). This information can be very important when constructing
various SQL statements. For example, if you were inserting a row, you would
need to supply values for job_id and job_title because they are NOT NULL.

The SELECT statement is very simple. Notice that it was typed all on one line.
SQL doesn’t really care how you break up statements line by line, as long as
you don’t break words in half.

	 Break up SQL statements by clause. For longer, more complex statements,
you may use many line breaks. These breaks can help make statements easier
to read.

Here are two SELECT statements and their output:

SQL> select *
 2 from jobs
 3 where job_title = ‘President’;

JOB_ID JOB_TITLE MIN_SALARY MAX_SALARY
---------- ----------------------------------- ---------- ----------
AD_PRES President 20080 40000

SQL> select *
 2 from jobs
 3 where job_title like ‘P%’;

JOB_ID JOB_TITLE MIN_SALARY MAX_SALARY
---------- ----------------------------------- ---------- ----------
AD_PRES President 20080 40000
AC_ACCOUNT Public Accountant 4200 9000
PU_MAN Purchasing Manager 8000 15000
PU_CLERK Purchasing Clerk 2500 5500
IT_PROG Programmer 4000 10000
PR_REP Public Relations Representative 4500 10500

6 rows selected.

121 Chapter 6: Understanding the Language of Databases: SQL

Note that instead of using a list of columns, we use an asterisk (*). That tells
the SELECT clause is to return all the columns, as opposed to what we show
earlier where we select just two columns.

Notice the use of the WHERE clause. The WHERE clause restricts what data is
returned. In this example, we use the WHERE clause in two ways:

	 ✓	As an equality (=): You search for exactly what you want to find.

	 ✓	As a fuzzy search (LIKE): You can use wild cards to complete search
terms. Oracle uses the percent sign as a wild card symbol.

The use of the % symbol specifies that we want to select all rows that begin
with capital P and then have anything after them. Often, on operating sys-
tems, you see an asterisk used as a wild card. That’s not the case inside an
SQL statement, though; instead, use a percent sign (%).

Adding to our SELECT statement, you see

SQL> select lower(job_id), upper(job_title) title, max_salary
 2 from jobs
 3 where job_title like ‘P%’
 4 and max_salary < 14000
 5 order by max_salary ASC;

LOWER(JOB_ TITLE MAX_SALARY
---------- ----------------------------------- ----------
pu_clerk PURCHASING CLERK 5500
ac_account PUBLIC ACCOUNTANT 9000
it_prog PROGRAMMER 10000
pr_rep PUBLIC RELATIONS REPRESENTATIVE 10500

We added some functions to our columns in the SELECT clause. Functions
take and input to produce an output: in this case, job_id and the job_title. We
used the character functions UPPER and LOWER. Can you guess what they
do? In this case, it’s pretty obvious. Oracle has dozens of functions for you
to use to act on your data in all kinds of ways. In this case, we demonstrate
how it is not necessarily important how your data is stored; you can display
it however you want.

Notice the names of the columns for job_id and job_title in the output. job_id
seems to be a mix of our function and the column_name. That’s because
Oracle automatically uses whatever you type in the SELECT clause for your
column heading. On the second column, job_title, we use an “alias” to make
the output is a little prettier. An alias comes after the column construct but
before the comma. In this example, title is the alias. The alias will always
default to uppercase unless you put double quotes (“ ”) around it. You also
need to use double quotes if your alias is more than one word. For example

122 Part II: Implementing an Oracle Database

SQL> select upper(job_title) “Job Title”
 2 from jobs
 3 where job_title like ‘P%’;

Job Title

PRESIDENT
PUBLIC ACCOUNTANT
PURCHASING MANAGER
PURCHASING CLERK
PROGRAMMER
PUBLIC RELATIONS REPRESENTATIVE

The use of the AND statement is a construct of the WHERE clause. The AND
statement allows us to use multiple conditions to restrict our data.

Last, the ORDER BY clause sorts the output on the column specified, either
numerically or alphabetically, depending on the data type. By default, it sorts
in ascending order. We added the ASC (ascending) key word for clarification.
We could have used DESC instead to order the results in descending numeric
order of max_salary.

Add to your data with the INSERT statement
To add rows to your database, you use the INSERT statement. An INSERT
statement acts on one table at a time. The INSERT statement has three
clauses, of which one is optional:

	 ✓	INSERT clause

	 ✓	Column clause (optional)

	 ✓	VALUES clause

Here’s how you would insert a new row into the jobs table:

	 1.	 For the INSERT clause, type
<INSERT INTO jobs>

		 and press Enter.

	 2.	 For the columns clause, type
<(job_id, job_title)>

		 and press Enter.

123 Chapter 6: Understanding the Language of Databases: SQL

	 3.	 For the VALUES clause, type
<VALUES (‘TRN_MGR’,’TRAINING MANAGER’);>

		 and press Enter.

		 You see
SQL> INSERT INTO jobs
 2 (job_id, job_title)
 3 VALUES (‘TRN_MGR’,’TRAINING MANAGER’);

1 row created.

After you add one row to your table, the results appear as follows:

SQL> SELECT *
 2 FROM jobs
 3 WHERE job_id = ‘TRN_MGR’;

JOB_ID JOB_TITLE MIN_SALARY MAX_SALARY
---------- ----------------------------------- ---------- ----------
TRN_MGR TRAINING MANAGER

The salary columns are empty. Remember when we describe the table ear-
lier? Those columns didn’t have a constraint on them specifying that they
cannot be null. Therefore, we left them out as an example. In the next exer-
cise, we show you how to fix that.

	 Single quotes (‘ ’) must be used around character fields. Anything that con-
tains characters (such as a, b, or c) needs to have single quotes around it if
you’re talking about data. Numeric fields can be left without quotes.

Changing data with the UPDATE statement
If you have data which you want to modify, use the UPDATE statement. The
UPDATE statement acts on columns. Here are the clauses of the UDPATE
statement:

	 ✓	UPDATE clause

	 ✓	SET clause

	 ✓	WHERE clause

The first two clauses are required. Technically, the last clause is optional
albeit highly recommended.

124 Part II: Implementing an Oracle Database

Because we “forgot” the salary information in our INSERT statement, here’s
how to fix it with an UPDATE statement:

	 1.	 Type
<UPDATE jobs>

		 and press Enter.

	 2.	 Type
<SET min_salary = 10000, max_salary = 20000>

		 and press Enter.

	 3.	 Type
<WHERE job_id = ‘TRN_MGR’;>

		 and press Enter.

		 You see
SQL> UPDATE jobs
 2 SET min_salary = 10000, max_salary = 20000
 3 WHERE job_id = ‘TRN_MGR’;

1 row updated.

And the results are

SQL> SELECT *
 2 FROM jobs
 3 WHERE job_id = ‘TRN_MGR’;

JOB_ID JOB_TITLE MIN_SALARY MAX_SALARY
---------- ----------------------------------- ---------- ----------
TRN_MGR TRAINING MANAGER 10000 20000

	 Always consider using a WHERE clause with an UPDATE statement, or else
you update all the rows.

	 Use your WHERE clause with your UDPATE statement to form a SELECT state-
ment. That way, you can verify that your WHERE clause is acting on the cor-
rect data before you run your update. (This would also apply to a DELETE
statement.)

If you like what you see, you have to make your changes permanent. Type
<COMMIT;> and then press Enter.

You see:

SQL> commit;

Commit complete.

125 Chapter 6: Understanding the Language of Databases: SQL

And, your changes cannot be easily undone.

Removing data with the DELETE statement
The last DML-type statement to talk about is the DELETE statement. The
DELETE statement allows you to remove rows from tables. DELETE acts on
one table at a time. You should also carefully consider using a WHERE clause
with your DELETE statement, or else all your rows will be removed.

The DELETE statement has two clauses:

	 ✓	DELETE clause

	 ✓	WHERE clause

Here’s how to remove the last rows we just added to the database for the
TRN_MGR job_id:

	 1.	 Type
<DELETE FROM jobs>

		 and press Enter.

	 2.	 Type
<WHERE job_id = ‘TRN_MGR’;>

		 and press Enter.

You see

SQL> DELETE FROM jobs
 2 WHERE job_id = ‘TRN_MGR’;

1 row deleted.

And the results appear as follows:

SQL> SELECT *
 2 FROM jobs
 3 WHERE job_id = ‘TRN_MGR’;

no rows selected

There are no longer any rows in the table for the job_id TRN_MGR.
Additionally, all the columns were removed. To remove just one of the
values, use an UPDATE statement and set the column to empty (null).
DELETE always acts on all columns; it removes rows.

126 Part II: Implementing an Oracle Database

Oops! We did not mean to DELETE the TRN_MGR row! Luckily, we did not
COMMIT our change yet. We can easily undo this change with a ROLLBACK
statement:

SQL> ROLLBACK;

Rollback complete.

SQL> SELECT *
 2 FROM jobs
 3 WHERE job_id = ‘TRN_MGR’;

JOB_ID JOB_TITLE MIN_SALARY MAX_SALARY
---------- ----------------------------------- ---------- ----------
TRN_MGR TRAINING MANAGER 10000 20000

	 As long as you have not issued a COMMIT in your session, you can rollback
any changes to the last COMMIT within your session. Also, until you commit
your data, no one else in the database can see it.

	 Leaving data un-committed for long periods of time can cause locking prob-
lems in your database. Data that has been changed and not committed holds
a lock on the row(s) in question. You should commit your changes as soon as
possible.

The last section about DML was very brief; we encourage you to seek out fur-
ther training on SQL. (Try SQL For Dummies, 8th Edition, by Allen G. Taylor.)

Using the Data Dictionary
Learning the in and out of the data dictionary is perhaps one of the most
important things you can do to become a top-notch Oracle DBA. The data dic-
tionary is a collection of tables and views inside the database that hold all the
information about the current and past state of the database. Data in the data
dictionary is modified only by Oracle itself through the running processes of
the database. Oracle records millions of bits of information for which you can
use to tune, secure, and troubleshoot the database. It may take years for you
to master. Understanding the Oracle data dictionary is one of the measuring
sticks between a junior or senior DBA.

The data dictionary can be broken into the categories noted in Table 6-2.

127 Chapter 6: Understanding the Language of Databases: SQL

Table 6-2	 Categories of Data Dictionary Objects
Prefix Type Description
USER_ View Objects owned by current user
ALL_ View All objects to which current user has access
DBA_ View All objects in the database
V$ View Dynamic performance view. Populated from memory

and control files
GV$ View Like V$, but, for multiple instances in a cluster envi-

ronment
X$ Table Internal tables containing cryptic but often useful

data

Of the dictionary view types listed in Table 6-2, as a DBA, you will spend most
of your time reading the DBA_ and V$ views. These views provide the most
useful and most easily interpreted data. In fact, users who aren’t DBAs often
will not have access to the DBA_ and V$ views. On the other hand, all users
have ACCESS to the USER_ and ALL_ views. Keeping the DBA_, V$, and X$
views hidden is an important part of database security. Some information in
those views could be used by people to gain access to data in which they are
not allowed.

Oracle 12c has thousands of data dictionary views in the database. We can’t
give you an exact number because it depends on what options you install and
configure. In the database we’re using for demonstration purposes, there are
approximately three thousand.

Most, but not all, DBA_ and V$ views have names that are somewhat intui-
tive. For example, Table 6-3 has a sampling of useful views in the database.

Table 6-3	 Useful Data Dictionary Views
Name Contents
DBA_TABLES Information about all tables
DBA_USERS Information about all users
DBA_AUDIT_TRAIL Information about captured audits
V$DATABASE Information about the current database configuration
V$CONTROLFILE Information about the current database control files

128 Part II: Implementing an Oracle Database

Despite the vast amount of data dictionary objects available to you, getting
information about them is relatively easy with a little bit of practice. The
Oracle documentation is going to be the definitive source of all information,
listing the different views and describing the contents of the various col-
umns. You can get the documentation for the view at

http://docs.oracle.com/cd/E16655_01/server.121/e17615/
toc.htm

With a little bit of know-how and common sense, you can also get a lot of the
information yourself. As we mention earlier, many of the views have names
that are self-explanatory. With that information, you can look inside the data-
base to see what views are available. There is actually a view of the views:

SQL> describe dictionary
 Name Null? Type
 ----------------------------- -------- --------------------
 TABLE_NAME VARCHAR2(128)
 COMMENTS VARCHAR2(4000)

You can sometimes find what you are looking for with a little bit of common
sense and cleverness. Say you’re looking for information about indexes:

SQL> SELECT table_name
 2 FROM dictionary
 3 WHERE table_name like ‘DBA%INDEX%’;

TABLE_NAME
--
DBA_INDEXES
DBA_INDEXTYPES
DBA_INDEXTYPE_ARRAYTYPES
DBA_INDEXTYPE_COMMENTS
DBA_INDEXTYPE_OPERATORS
DBA_PART_INDEXES
DBA_XML_INDEXES

7 rows selected.

As we mention earlier, getting familiar with the data dictionary is paramount.
You might hear there’s no need to worry about the data dictionary because
all the GUI tools give you the information that you need. The fact is those GUI
tools do read from the data dictionary views. However, don’t let that give
you a false sense of security. More than once, we’ve seen where the GUI tools
have failed or gone offline. If you’re not comfortable navigating the data dic-
tionary by SQL, it could be the end of your DBA job in an emergency.

http://docs.oracle.com/cd/E16655_01/server.121/e17615/toc.htm
http://docs.oracle.com/cd/E16655_01/server.121/e17615/toc.htm

129 Chapter 6: Understanding the Language of Databases: SQL

We would also advise you that despite the availability of the GUI tools, a DBA
who is efficient at querying the data dictionary with SQL can often get accu-
rate answers more quickly than someone using a tool like Database Express.
As senior DBAs, we both agree that we actually prefer the data dictionary
over Enterprise Manager for many of the day-to-day tasks.

Last, if you want very specific reports generated on a schedule, there is no
better way than to write your own reports and schedule to run as a script
through a scheduler, such as Windows Task Scheduler or UNIX/Linux crontab.
Then, after generating the report, the script can send the results out via e-mail.
You may like to have reports that are not canned in Enterprise Manager, such
as Users with Failed Login’s due to Wrong Password in the Last 24 Hours:

SQL> SELECT USERNAME, USERHOST, TIMESTAMP, ACTION_NAME, RETURNCODE
 2 FROM dba_audit_trail
 3 WHERE username = ‘HR’
 4 ORDER BY timestamp;

USERNAME USERHOST TIMESTAMP ACTION_NAME RETURNCODE
-------- --------------- --------- ------------ ----------
HR orasvr01 06-JUN-13 LOGON 0
HR orasvr01 08-JUN-13 LOGON 1017
HR orasvr01 09-JUN-13 LOGOFF 0
HR orasvr01 16-JUN-13 LOGON 0
HR orasvr01 17-JUN-13 LOGON 0
HR orasvr01 17-JUN-13 LOGOFF 0
HR orasvr01 18-JUN-13 LOGOFF 0
HR orasvr01 28-JUN-13 LOGON 0
HR orasvr01 28-JUN-13 LOGON 1017
HR orasvr01 28-JUN-13 LOGOFF 0

10 rows selected.

Or, Tables Created by User HR in the Last 100 Days:

SQL> SELECT object_name, created
 2 FROM dba_objects
 3 WHERE created > sysdate - 100
 4 AND object_type = ‘TABLE’
 5 AND owner = ‘HR’;

OBJECT_NAME CREATED
--------------- ---------
REGIONS 09-MAY-13
LOCATIONS 09-MAY-13
JOB_HISTORY 09-MAY-13
JOBS 09-MAY-13
EMPLOYEES 09-MAY-13
DEPARTMENTS 09-MAY-13
COUNTRIES 09-MAY-13

7 rows selected.

130 Part II: Implementing an Oracle Database

Programming with PL/SQL
PL/SQL is an SQL with more powerful programmatic contructs built around
your code. For example, PL/SQL offers

	 ✓	Looping control

	 ✓	Variables

	 ✓	If/then constructs

	 ✓	Error handling

Normal SQL really doesn’t have any of this. Normal SQL is good to use in
code that acts on specific data in the “now.” It can’t make any data-driven
decisions. You have to know what that data is — and how you want it to look.

PL/SQL is also more secure than regular SQL. As it stands, when users exe-
cute SQL, they have to have permissions on the underlying objects in which
the data lives. However, with PL/SQL, named programs execute with the per-
missions of the owner. That way, the owner of the data could write a program
to manage the data. The owner then gives access to the program to the user,
not the underlying objects. For example, say you have a program that pulls a
user’s salary history for them to view. You don’t want the user to be able to
select on the employee salary table. And without a PL/SQL program, that’s
what you’d have to do. You can code it so that when the program runs, the
program pulls in the connected user as a variable and collects the salary his-
tory for that user only.

PL/SQL is often the primary domain of application developers. As a DBA,
however, you should also be familiar with the basic premises of the code and
be able to read how the code functions. Even though DBAs may not be appli-
cation developers, you will be called upon to help troubleshoot code or tune
code that may be in the form of PL/SQL programs.

Furthermore, Oracle has provided the DBAs with hundreds of built-in pro-
grams written in PL/SQL to facilitate actions in the database. In some cases,
these programs will be required for you to do your job. Understanding how
PL/SQL functions will help you better understand how to use these built-in
features.

Types of PL/SQL programs
PL/SQL programs come in many forms. PL/SQL programs are also sometimes
referred to as “program units.” See table 6-4 for a listing of the common types
of PL/SQL constructs you’ll come across.

131 Chapter 6: Understanding the Language of Databases: SQL

Table 6-4	 Type of PL/SQL Program Units
Name Description
ANONYMOUS BLOCK Un-named program that runs from the command line
PROCEDURE Stored, named program that performs a tasks
FUNCTION Program that takes input, acts upon it, and produces

output
PACKAGE Group of named procedures and/or functions which

are related by task
TRIGGER Program acts upon outcome of some other action;

fires automatically

PL/SQL block structure
PL/SQL programs are built on the block structure. That is, they can be broken
down into specific parts of the program based on function. The parts of the
PL/SQL block differ slightly based on the type of program unit, but they all
have similar characteristics. Here is a breakdown of the parts of a PL/SQL
program unit:

	 ✓	Declarative: This section contains the name of the unit (if it’s named)
and any variables. The variables are named, typed, and optionally initial-
ized in the section. The program unit would not be named if it is coded
as an anonymous block. An anonymous block is used when you are often
writing a program for a one-time use.

	 ✓	Body: This is the section that holds the meat of the program. It contains
the functionality and the business logic needed to process the variables
and data. You will see things like loops and if/then statements in this
section.

	 ✓	Exception: This section defines and handles any errors that come up
during the processing of the body. If an error is properly handled, often
the program can continue running. Or, at the very least, output a mean-
ingful message to the end user. If an error is encountered and is not han-
dled by the exception section, often the program aborts with a default
error message.

	 ✓	End: The end section doesn’t contain anything. It just signifies that the
program is at the end of its processing. And in a package of many proce-
dures, the end section separates it from the next procedure in the list.

132 Part II: Implementing an Oracle Database

Calling PL/SQL programs
PL/SQL procedures, functions and packages are called in a couple of different
ways. You can use the EXECUTE command, or you can call the program as
part of another block. Triggers, as described in Table 6-4, on the other hand,
are not called from the command line. They automatically execute only after
some other process completes. For example, you might want a trigger to
fire every time someone updates the salary column of the employees table.
Then, perhaps that trigger shoots an e-mail to the HR manager to report the
change.

The DESCRIBE command can also work against PL/SQL programs. This can
prove helpful if you don’t know the arguments or variables that the proce-
dure may take for input. For example, say you have a procedure that gets the
salary for an employee based on first and last name input. The procedure is
called get_sal.

SQL> DESCRIBE get_sal
PROCEDURE get_sal
 Argument Name Type In/Out Default?
 ------------------------------ ----------------------- ------ --------
 P_LAST_NAME VARCHAR2 IN
 P_FIRST_NAME VARCHAR2 IN

The procedure takes to IN arguments of VARCHAR2 type.

Here’s how you would execute the procedure with the EXECUTE command,
using the employee Mike Whalen:

SQL> EXECUTE get_sal(‘Whalen’,’Mike’)

Mike, Whalen - Makes: $8300

PL/SQL procedure successfully completed.

As we mention earlier, Oracle has a plethora of pre-supplied packages, pro-
cedures, and functions for managing the database. To get a complete list, go
to the following section of the documentation that outlines all the Oracle-
supplied program units:

http://docs.oracle.com/cd/E16655_01/appdev.121/e17602/
toc.htm

Table 6-5 offers some example Oracle-supplied programs.

http://docs.oracle.com/cd/E16655_01/appdev.121/e17602/toc.htm
http://docs.oracle.com/cd/E16655_01/appdev.121/e17602/toc.htm

133 Chapter 6: Understanding the Language of Databases: SQL

Table 6-5	 Example Oracle-Supplied Programs
Name Description
DBMS_SCHEDULER Manages the internal database scheduler
DBMS_STATS Gathers statistics on users, objects, system, and

whole database
SYSDATE Outputs current time and date of system
UTL_MAIL Utility for e-mail with features, such as attach-

ments, Cc, and Bcc
DBMS_METADATA Function for pulling object DDL out of database

among other tasks
DBMS_DATAPUMP API Manages Data Pump within a PL/SQL program

134 Part II: Implementing an Oracle Database

Chapter 7

Loading Data into Your Database
In This Chapter
▶	Making tablespaces
▶	Understanding users and schemas
▶	Understanding database object types

I
t’s no secret that databases hold data: typically, lots of it. However, data
isn’t just loose in the database; data lives in structures, which are owned

by users. Furthermore, this isn’t a random collection of data and objects; it
supports a specific application.

In this chapter, we focus less on the actual data itself and more on the
structures that hold the data and control access to that data. We explain
tablespaces and their role in object storage. Objects must have an owner,
and we explain how users have schemas that contain objects. Database
objects that a user can own include — but are not limited to — tables,
indexes, and views.

A database application includes the tables, indexes, PL/SQL code, and other
objects executing the program logic inside the database. Depending on the
application’s size and nature, building an application structure within a data-
base can be complex.

	 Here is the general order of operations for building an application environment:

	 1.	 Create the tablespaces that will contain the tables and indexes for the
application.

	 2.	 Create the database account for who will own the database objects for
the application.

	 3.	 Create the objects (tables, indexes, packages, and so on) in the applica-
tion owner’s schema.

	 4.	 Create any synonyms for object names to simplify access.

	 5.	 Create database roles to control access to the application schema
owner’s objects.

	 6.	 Load the data into the tables and generate indexes.

136 Part II: Implementing an Oracle Database

	 7.	 Create the application users and grant those users access roles so they
can access the application objects.

The exact build instructions for an application environment should come
from the vendor, or you should create them with the application developers.
The requirements should be defined before the production environment is
built — although in the “real world,” the requirements are often subject to
change.

In this chapter, we give you knowledge and tools to perform the steps for
building an application environment.

Making Tablespaces
Database objects are logically contained within tablespaces. A tablespace is
a logical storage container that houses physical data files in which database
tables and indexes are stored.

In a database, tablespaces are created in two ways:

	 ✓	By default for internal database structures

	 ✓	By the database administrator (DBA) to store user objects

For example, a data tablespace has one or more database files on the OS’s
file system. Within that tablespace, one or more data table is created, and the
data is stored in the tablespace’s corresponding data files. In Figure 7-1, you
can see a graphical example of a tablespace and its contents.

	

Figure 7-1:
The data

tablespace
hierarchy.

	

137 Chapter 7: Loading Data into Your Database

Figure 7-1 includes the following:

	 ✓	Logical tablespace: This stores data tables for the user.

	 ✓	Physical data file: You can add data files as necessary.

	 ✓	Database objects: Here you can see objects from different users.

	 Multiple users can store their objects in the same tablespace. Tablespaces are
available to any user with objects in the database although organizing differ-
ent users in different tablespaces is better for performance and manageability.
Also, try to separate data and index objects into separate tablespaces (and
thus database files) to reduce disk contention as index and table segments for
the same object are accessed.

As you add objects and tables grow, Oracle manages the size of these things:

	 ✓	Segments are any objects requiring storage.

	 ✓	Extents are the unit of storage Oracle uses to allocate space for
segments.

Oracle tracks the growth of segments and extents and knows where each
object is stored. This segment management is covered in greater detail in
Chapter 10.

These standard tablespaces are listed with their corresponding data files:

SYS@dev12c> SELECT TABLESPACE_NAME, FILE_NAME FROM DBA_DATA_FILES
 2 ORDER BY TABLESPACE_NAME;

TABLESPACE_NAME FILE_NAME
---------------- ---
EXAMPLE /u01/app/oracle/oradata/dev12c/example01.dbf
MY_DATA /u01/app/oracle/oradata/dev12c/my_data01.dbf
SYSAUX /u01/app/oracle/oradata/dev12c/sysaux01.dbf
SYSTEM /u01/app/oracle/oradata/dev12c/system01.dbf
UNDOTBS1 /u01/app/oracle/oradata/dev12c/undotbs01.dbf
USERS /u01/app/oracle/oradata/dev12c/users01.dbf

6 rows selected.

The EXAMPLE tablespace is for Oracle demo objects, and MY_DATA con-
tains a demo table. SYSAUX and SYSTEM are for internal database objects.
UNDOTBS1 is for undo (rollback) objects. USERS is the default tablespace for
objects created by users who didn’t specify a tablespace when they created
objects.

138 Part II: Implementing an Oracle Database

	 To see each tablespace, space available, type, and extent management, go to
Enterprise Manager Database Express and choose Storage➪Tablespaces.
Figure 7-2 shows this data.

	

Figure 7-2:
Tablespace

manage-
ment.

	

From the Tablespaces management screen, you can choose Actions➪Create to
create a tablespace for storing application data tables, as shown in Figure 7-3.

	

Figure 7-3:
The Create

Tablespace
General
options.

	

139 Chapter 7: Loading Data into Your Database

Then follow these steps:

	 1.	 On the General options screen, type a tablespace name.

		 In this example, the tablespace name is MY_DATA.

	 2.	 Select the tablespace type:

	 •	Permanent for normal objects, such as tables and indexes.

	 •	Temporary for temp storage typically used for processing data.
Data disappears from objects either after a commit or a session
logs out.

	 •	Undo for storing undo segments.

		 Do not select the Set as Default check box for this example unless you
want this tablespace to be the default tablespace for all users.

	 3.	 Select the Smallfile radio button (for data files less than 32GB).

		 These files are easier to manage than bigfiles.

	 4.	 Select the Online radio button so the tablespace is available
immediately.

	 5.	 Click the right arrow to go to the next screen.

	 6.	 On the Add Datafiles option screen, enter this name for your file:
/u01/app/oracle/oradata/dev12c/my_data01.dbf

		 Set the remaining options as follows:

	 •	File Size: Leave File Size set at its default 100M.

	 •	Reuse Existing File: You should only check this box, for example,
if you are re-creating the tablespace over an old one that was
dropped.

	 •	Auto Extend: Allows the data file to grow if more space is needed.
Leave this check box selected.

	 •	Increment: Tells Auto Extend how much to grow at a time. Leave
this set at default 100M.

	 •	Maximum File Size: This allows the data file to grow to a specified
size up to 32GB. Change that to 8G.

		 Figure 7-4 shows an added data file and filename for my_data01.dbf.

	 7.	 Click the right arrow to go to the next screen.

	 8.	 On the Space options screen (see Figure 7-5):

	 a.	Leave Block Size set as Database Default.

	 b.	For Extent Allocation, select the Automatic radio button. This is best
for databases that have normal, regular growth.

140 Part II: Implementing an Oracle Database

	

Figure 7-4:
Adding the
MY_DATA

data file.
	

	

Figure 7-5:
MY_DATA

storage
options.

	

	 9.	 Click the right arrow to go to the next screen.

		 From the Logging options screen, you choose whether you want opera-
tions logged on the tablespace. You almost always want to choose
logging. The only time you may not want logging is if this tablespace is
going to store objects that are part of a load process, where every night
they are batch-loaded, and then the data is moved to other tablespaces
for long-term storage. Without logging, you compromise recoverability.
The Force Logging check box sets that even if someone tries to skip log-
ging on an operation in this tablespace, Oracle will not allow the logging
to be skipped.

141 Chapter 7: Loading Data into Your Database

	 10.	 Leave Logging selected and Force Logging unselected.

	 11.	 Click the right arrow to go to the next screen.

	 12.	 On the Segments option screen, choose a Segment Space Management
and Compression option:

	 •	Automatic: For ease of management, let Oracle manage the extent
and segment growth.

	 •	Manual: Manually specify the size of each unit of allocation.

	 •	Compression: Choose from None (no compression), Basic (SELECT
friendly compression, no so DML friendly), and OLTP (DML
friendly, extra, licensed feature).

	 13.	 Click the Show SQL button to see the actual SQL being executed:
CREATE SMALLFILE TABLESPACE “MY_DATA” DATAFILE
‘/u01/app/oracle/oradata/dev12c/my_data01.dbf’
SIZE 100M AUTOEXTEND ON NEXT 100M MAXSIZE 8G
LOGGING DEFAULT NOCOMPRESS ONLINE
EXTENT MANAGEMENT LOCAL AUTOALLOCATE

	 14.	 When you’re satisfied with your options, click OK.

		 The tablespace is created.

	 15.	 Repeat Steps 1 through 14 to create the index tablespace.

		 If you name the second tablespace ACME_INDEX, you have these
options when it’s created:
TABLESPACE_NAME FILE_NAME
--------------- --
SYSTEM /u01/app/oracle/oradata/dev12c/system01.dbf
SYSAUX /u01/app/oracle/oradata/dev12c/sysaux01.dbf
UNDOTBS1 /u01/app/oracle/oradata/dev12c/undotbs01.dbf
USERS /u02/app/oracle/oradata/dev12c/users01.dbf
MY_DATA /u01/app/oracle/oradata/dev12c/my_data01.dbf
MY_INDEX /u01/app/oracle/oradata/dev12c/my_index01.dbf
6 rows selected.

Now you have tablespaces and are ready to start creating users and objects.

Understanding Users and Schemas
Users not only access data in a database, but they own the objects that con-
tain the data. The set of objects owned by a user is its schema. Not all users
own objects, so schemas may be empty.

142 Part II: Implementing an Oracle Database

	 Other users can access or execute objects within a user’s schema after the
schema owner grants privileges. It’s common practice to have one user own
all of an application’s objects (tables, indexes, views, and so on) and then pro-
vide access to those objects to all the application users within the database.
This is done via database grants, roles, and synonyms.

For example, assume you have the ACME application. You’d create a user called
ACME_OWN and create all objects as ACME_OWN. Then you’d create a database
role called ACME_USER and grant SELECT, UPDATE, EXECUTE for the objects
in ACME_OWN’s schema to that role. Application users would be granted the
ACME_USER role so they could access the ACME_OWN’s objects. This way, one
user owns the objects, but the actual database or application users access the
data. This separation improves both security and manageability.

	 Users fall into one of two categories:

	 ✓	Application owners whose schemas contain multiple objects

	 ✓	Application users with few or no objects

The syntax for each user creation is the same, but grants and privileges for
each are what separate the two categories.

Here’s the simple syntax for creating a user:

CREATE USER <USERNAME>
IDENTIFIED BY “<PASSWORD>”
TEMPORARY TABLESPACE <TEMPORARY TABLESPACE>
DEFAULT TABLESPACE <DEFAULT TABLSPACE>;

	 For username, use something descriptive (such as DATABASE TITLE_OWN)
for the owner of objects for the application. If a connection pooled web
user (as explained in Chapter 3) is going to access the application, a name
appended with _WEB is appropriate. Normal application users should be
descriptive, such as first name, last initial; an example is VICKYB.

The password for the user should have the following characteristics:

	 ✓	Be more than eight characters

	 ✓	Include numbers and special characters

	 ✓	Not be based on dictionary words

	 ✓	Use uppercase and lowercase characters

Placing the password in double quotation marks (“ ”) allows special charac-
ters without disrupting the SQL syntax.

143 Chapter 7: Loading Data into Your Database

Two tablespaces need to be identified when creating a user: temporary and
default:

	 ✓	The TEMPORARY tablespace is where temporary segments are created.
TEMP is the standard.

	 ✓	The DEFAULT tablespace is where tablespace objects (such as tables or
indexes) are created if you omit the TABLESPACE storage clause during
the object create statement. Ideally, every table or index creation state-
ment lists a tablespace. If a tablespace is missing, these objects go to
the tablespace defined as DEFAULT. Generally, the USERS tablespace is
defined as DEFAULT.

A user needs system privileges to be able to connect to the database
and create objects. Granting the CREATE SESSION privilege or CONNECT
role allows a user to log in to the database. Giving a user the RESOURCE
role enables the user to create database objects. Roles and privileges are
explained in greater detail in Chapter 9.

In the following steps, you create a user with SQL*Plus and grant the neces-
sary roles and privileges to connect to the database:

	 1.	 In SQL*Plus, type the following to create a user:
SYS@dev12c> create user acme_own
 2 identified by “acme_own2013!”
 3 temporary tablespace temp
 4 default tablespace users;

User created.

		 In this example, the user is schema owner ACME_OWN. The default
tablespace is defined as USERS although the TABLESPACE storage
clause is expected to specify ACME_DATA when objects are created.
We also create a role to hold the necessary privileges that this user will
need.

	 2.	 Grant the user CONNECT and RESOURCE roles so that the user can log
in to the database and create objects:
SYS@dev12c> grant connect to acme_own;

Grant succeeded.

SYS@dev12c> grant resource to acme_own;

Grant succeeded.

144 Part II: Implementing an Oracle Database

	 3.	 Create a new role:
SYS@dev12c> create role acme_user;

Role created.

SYS@dev12c> grant create session to acme_user;

Grant succeeded.

		 In this example, ACME_USER is created. That user will receive object
grants from the ACME_OWN account as objects are created.

	 4.	 Grant the appropriate INSERT, UPDATE, DELETE, and EXECUTE privi-
leges for each object to the second role.

		 This lets you grant the role that has the grants to each application user.
Each application user then has access to the ACME_OWN objects. This
saves you from having to individually grant each user access to each
object.

	 5.	 Grant CREATE SESSION to the first role.

		 When users receive the role, they can log in to the database.

You can create individual application users by using SQL*Plus. Use
Enterprise Manager Database Express to create users:

	 1.	 Choose Security➪Users to get to the Create User screen shown in
Figure 7-6.

	 2.	 Enter the username, profile, and password.

		 VICKYB has DEFAULT profile and password authentication. The pass-
word you type appears as asterisks; you have to enter it twice to ensure
you don’t mistype it.

	

Figure 7-6:
The Create

User
screen.

	

145 Chapter 7: Loading Data into Your Database

	 3.	 Click the right arrow to go to the Tablespaces screen. (See Figure 7-7.)

		 Choose the new MY_DATA tablespace as VICKYB’s default tablespace.

		 Accept the Temporary Tablespace — TEMP tablespace default.

	

Figure 7-7:
The user
creation

tablespace
selection.

	

	 4.	 Click the right arrow to go to the next screen.

		 The Privilege screen appears. On the left are system privileges or roles.
Roles are denoted by a check mark. Figure 7-8 shows the new user with
the CONNECT role.

	

Figure 7-8:
The user
creation
privilege
screen.

	

	 5.	 When you finish choosing roles and privileges, click OK.

		 The user is created.

If you need more application users, follow these steps:

	 1.	 From the main Security screen, select the user you want to use as a
template.

	 2.	 Click the CREATE LIKE button.

146 Part II: Implementing an Oracle Database

		 This will take you back into the Create User wizard with the options
already selected to reflect the user you are copying.

	 3.	 Create a new user with the same roles and privileges but with a differ-
ent username and password.

		 At this point, you have an application schema owner account and a data-
base role; grant object privileges to this role as you create objects. You
also have an application user with a role. After the application objects
are built and access has been granted to that role, the application user
can access the objects.

Creating Database Objects
Multiple object types exist in a database, and it’s important to know what’s
available. Periodically, Oracle adds new object types to extend functionality.
New options within each object type are regularly added as well.

	 The multitude of objects in Oracle grows with every release, and the options
available for each object grow even faster. To get the most up-to-date listing
of syntax and options, visit the Oracle Database SQL Language Reference 12c
documentation at

http://docs.oracle.com/cd/E16655_01/server.121/e17209/
toc.htm

After you decide what type of objects to create, you need to know how to
create them. The most common object creation methods are

	 ✓	Via SQL*Plus with scripts or command line statements

	 ✓	Via a GUI tool, such as Enterprise Manager Cloud Control

	 ✓	Via Oracle-supplied SQL*Developer

Object types
The guts of a database are its objects; and tables are at the core because they
contain the rows of data. However, other objects within the database are
important. The following objects are common in an Oracle database.

Table
A table contains rows of data and is the core of the database. Tables are com-
posed of column names, each with a defined data type. Data is loaded into
the table as rows.

http://docs.oracle.com/cd/E16655_01/server.121/e17209/toc.htm
http://docs.oracle.com/cd/E16655_01/server.121/e17209/toc.htm

147 Chapter 7: Loading Data into Your Database

	 Create specific constraints on each column of data to restrict data. Create pri-
mary keys on one or more columns to enforce uniqueness for each row.
Foreign keys generate relationships between rows in one table and rows in
other tables.

Tables are contained within a tablespace and may be split between multiple
tablespaces (partitioning) to improve performance and manageability.

View
A view is a SQL statement that joins one or more tables to form a logical rep-
resentation of data. Rather than the user or program unit issuing a complex
statement on multiple tables, the view allows that data to already be joined.
That way, the user can select from the view to achieve the same result. Views
provide the benefits of reduced complexity and improved performance when
created as materialized views, in which data is already selected and stored.

Index
An index is an internal mechanism that allows fast access to selected rows
within a table. Just as you look in a book’s index to find a topic, a database
index is a pointer to selected data within data tables.

You can use multiple types of indexes depending on the nature of the table
and data:

	 ✓	B*Tree indexes are the default and most common.

	 ✓	Bitmap indexes are used for data with low cardinality or low levels of
uniqueness, such as a YES/NO column.

	 ✓	Function-based indexes exist on functions on SQL statements. For
example, if you want to search for LAST_NAME in uppercase, you might
create an uppercase function-based index.

	 Indexes are key to fast data access, but they come at a cost. The index must
be updated every time data is inserted, updated, or deleted — and those are
all performance hits. Indexes also consume disk space and are commonly
stored in tablespaces separate from the corresponding data tablespaces.
Bottom line: Index enough to speed up common searches, but, not so much as
to slow down data modifications.

Like rows of data, you may partition indexes into multiple tablespaces to
improve performance and manageability.

Procedure
A procedure is a PL/SQL program unit that executes program code to process
rows of data. Application and business logic exist as procedures within a
database.

148 Part II: Implementing an Oracle Database

A procedure can

	 ✓	Stand alone within a schema

	 ✓	Be part of a package

	 ✓	Be an anonymous PL/SQL block

Function
A function is a PL/SQL program unit that executes and returns a value to
the program unit that called it. Conceptually, an Oracle function isn’t unlike
functions in other programming languages. Functions typically accept input
parameters from the calling program, perform some type of processing on
that input, and return a value to the calling program unit.

Functions come in two ways:

	 ✓	Oracle provides many useful built-in functions: for example, time, date,
and mathematical functions.

	 ✓	The user can write customized functions.

A function can exist in the following ways:

	 ✓	Stand alone within a schema

	 ✓	As part of a package

	 ✓	As an anonymous PL/SQL block

Package
A package is a group of related PL/SQL procedures and functions that form
a larger program unit. A package typically has procedures and functions
related to a specific business purpose; that way, the functionality is con-
tained to that package. A package contains two things:

	 ✓	A package spec, or header, which lists the publicly exposed program
units

	 ✓	The package body, which holds the actual PL/SQL program code for
each contained procedure or function

Trigger
A trigger is a PL/SQL program unit that is executed when a table is updated,
inserted, or deleted, or when other database events occur. Here’s a common
trigger example:

Assume an insert on the sales table. Delete the appropriate amount on the
inventory table; if it drops to a certain level, then order new inventory.

149 Chapter 7: Loading Data into Your Database

Database link
A connection from one database to another is a database link. It allows a user
or program unit to select or modify data from another Oracle database. The
link specifies a Transport Network Substrate (TNS; described in Chapter 5)
alias to connect to a remote database. For example, if you execute

SELECT * FROM CUSTOMER@ROLLING_MEADOWS_DB;

You select all the data from the CUSTOMER table in the ROLLING_
MEADOWS_DB database.

Synonym
A synonym in a database is just what it is in everyday life: a different name for
the same thing. Synonyms can be

	 ✓	Private: The name is available only to the owner of that synonym.

	 ✓	Public: The name is more common and provides a short name for all
users within a database so they don’t have to list the schema owner for
each object in their queries.

By default, objects are accessed by SCHEMA_OWNER.OBJECT_NAME. For
example, ACME_OWN.CUSTOMER is the customer table for ACME_OWN
and is how any other application user must access that table: for instance,
SELECT * FROM ACME_OWN.CUSTOMER. A public synonym allows you to
drop the ACME_OWN from the query.

Object creation methods
As a DBA, you’re expected to create objects, but you seldom create them
from scratch. Typically, the application developer or software vendor pro-
vides SQL scripts with the DDL and DML for the objects to be created. You
simply log in via SQL*Plus and run the scripts provided.

	 SQL scripts are the recommended method for these reasons:

	 ✓	A script isn’t subject to typos.

	 ✓	A script can be versioned, controlled, and re-executed as necessary.

We cover many of the fine points of SQL and SQL*Plus in Chapter 6.

Odds are that if you’re creating multiple objects by hand, typing directly into
SQL*Plus, something is wrong with your overall development process. Rarely
is it okay to create ad hoc objects.

150 Part II: Implementing an Oracle Database

	 The easiest way to create objects is with a tool, such as SQL*Developer.
SQL*Developer enables you to hand-code the SQL to create objects or use var-
ious wizards if you’re not yet comfortable with the SQL language. The nice
thing is that if you use a wizard, you can always see the SQL it created to help
you learn.

The next section runs through some examples using SQL*Developer on
Linux. First, launch SQL*Developer and get connected to your database with
the HR demo schema. This example uses the Oracle software installed on our
database server, and we are connecting to our local database, dev12c.

	 1.	 Open a terminal window and navigate to sqldeveloper under your
ORACLE_HOME directory.

	 2.	 Log in as your Oracle software owner, oracle.

	 3.	 From this point, type
cd $ORACLE_HOME/sqldeveloper

	 4.	 Launch the SQL*Developer tool by typing the following.
./sqldeveloper.sh

	 5.	 Connect to your database by clicking the (+) sign under the
Connections tab on the right side of the screen.

	 6.	 In the wizard that appears, give your connection a name and then fill
in the username and password.

	 7.	 Select the Save Password check box.

	 8.	 Change the SID to dev12c, as shown in Figure 7-9.

	

Figure 7-9:
Creating a

SQL*
Developer

Connection.
	

151 Chapter 7: Loading Data into Your Database

	 9.	 Click the Test button. If everything works, click Save.

	 10.	 Click the Connect button to open a connection to the database.

To create a database table in a schema, follow these steps:

	 1.	 Open the drop-down menu from the plus sign (+) next to your con-
nected username.

	 2.	 Right-click Tables and choose New Table from the context menu.

		 The Create Table screen appears.

	 3.	 Fill in your column information.

		 Figure 7-10 shows a DEPT table with two columns.

	 4.	 (Optional) Click the DDL tab to see the code generated in the back-
ground.

	 5.	 Click OK to create the table.

	 6.	 From the Connections panel, right-click Indexes and choose New
Index from the context menu.

		 The Create Index screen appears, as shown in Figure 7-11.

	

Figure 7-10:
Creating the
DEPT table.

	

152 Part II: Implementing an Oracle Database

	

Figure 7-11:
Creating an

index on the
DEPT table.

	

	 7.	 Fill in the appropriate values:

	 •	Name: Enter <DEPT_NAME_IDX>.

	 •	Table: Choose DEPT from the drop-down list.

	 •	Type: Select the Normal and the Unique options.

		 The DEPT_NAME column is automatically selected because it’s the only
un-indexed column in the table. If that’s not what you want, you can
select DEPT_NAME and then click the red X button to remove it from the
column list. You can then add the appropriate columns.

	 8.	 (Optional) Click the DDL tab to see the code being generated.

	 9.	 Click OK to create the new index.

Part III
Caring for and Feeding an

Oracle Database

	 Visit www.dummies.com/extras/oracle12c to read about a focused
approach to managing the statistics in a database.

http://www.dummies.com/extras/oracle12c

In this part . . .
	 ✓	 A big part of your job as an Oracle database administrator is

handling the day-to-day activities that keep the database
healthy. Chapter 8 introduces the common tasks of a DBA.

	 ✓	 Tuning an Oracle database can be one of the most challenging
aspects of being a DBA. Chapter 9 introduces you to the tools
and techniques at your disposal for tackling performance
problems.

	 ✓	 Making sure your data is secure is a job of utmost importance.
Chapter 10 covers the basic Oracle security model and how
you can use it in your environment.

	 ✓	 Chapter 11 explains why backup and recovery need to be high
on your priority list.

	 ✓	 As with any complex software system, problems are bounds to
pop up. In Chapter 12, we cover some of the basic tools you
can use to find and eliminate common problems.

	 ✓	 One tool that may be of interest to you as a new DBA is Oracle
Enterprise Manager. Chapter 13 overviews how to use and
navigate this handy tool.

Chapter 8

Keeping the Database Running
In This Chapter
▶	Performing daily common tasks
▶	Automating jobs via the Oracle Scheduler
▶	Using Oracle Data Pump

I
n most instances, managing an Oracle database is a full-time job. That’s
why some people have the job title Oracle database administrator (DBA).

A DBA must keep on top of a plethora of activities to make sure the database
runs smoothly and doesn’t let people down when they most need it.

The 12c Oracle database needs less attention in areas that were traditionally
very hands-on. However, each release has new features that require the cod-
dling and care that more mature features do not require. Besides basic care
and feeding, you might be asked to do some things on a regular basis: for
example, loading data or scheduling jobs.

In this chapter, we investigate some of the daily maintenance tasks you will
find yourself doing, how to use the Oracle Scheduler, and how to load and
unload data by using Oracle Data Pump.

Doing Your Database Chores
The following sections identify some of the common activities you as DBA
might perform. All databases are different. Each DBA has unique tasks and
common management responsibilities. You might discover that not all the
common tasks in these sections apply to you. However, we think most of
them do.

On the other hand, you might do something every day that’s unique to your
environment (and maybe everyone else’s too). We can’t possibly cover such
unique tasks. Still, this chapter’s guidelines get you started on the road
toward a well-maintained, reliable database.

156 Part III: Caring for and Feeding an Oracle Database

Making way, checking space
A lot of areas in the database require you to check on space for growth
and shrinkage. Most people need to watch out for growth. In our experi-
ence, most databases grow, not shrink, over time. With the business use of
unstructured data (such as image, sound, and movie files) and more online
activity than ever, you can expect storage requirements to increase.

Some environments are severely restricted regarding how much space is
available. If that’s the case for you, identify database resources that allow
you to reclaim valuable space. Also, avoiding extraneous, empty blocks of
storage in the database helps performance.

Chapter 7 explains that when you create a brand-new tablespace, you choose
a file for that tablespace to store its data. A tablespace is just a logical pointer
to a file or files on the operating system. The file is the physical component of
storage in Oracle. Everything is ultimately stored in a file.

Say you create a tablespace called MY_DATA by typing

<create tablespace my_data
datafile ‘/u01/app/oracle/oradata/dev12c/my_data01.dbf’
size 10M;>

When this tablespace is created, Oracle allocates 10MB of space from the
operating system. The OS sees this space as used. However, if you look in the
database, this space is free. Essentially, the space disappears from the OS
and appears in the database.

	 Again, when you create a tablespace, the system administrator sees that the
space on the system has shrunk; to the DBA, the database has grown. (We’re
beating this to death because this distinction is important.)

Imagine that you have 100GB of space available on the OS, and you create
a 99GB tablespace. Someone looking on the OS side would start sounding
alarms: New space must be purchased! But the DBA can calm any fears by
saying, “Don’t worry. That 99GB is still free, but Oracle owns it now. The OS
can’t see it.” DBAs do this because it is bad for tables and indexes to run out
of space, so DBAs err on the side of having too much space.

Before you jump into adding space, how much space is actually unused in
your database? Too often people add space to a system that has plenty of
free space available.

157 Chapter 8: Keeping the Database Running

	 You can monitor available real estate in a tablespace a couple of ways:

	 ✓	Use the Enterprise Manager Database Express (EM Express) web-based
management tool.

	 ✓	Query the data dictionary.

Although we recommend the EM Express tool, we show you both ways so
you have a better understanding of how this process works.

Enterprise Manager Database Express
The EM Express web-based management tool provides an easy way to
check space.

	 1.	 Log in to EM Express as a DBA user, such as SYSTEM.

		 The URL is typically https://yourservername.com:5500/em.

	 2.	 Click the Storage tab.

	 3.	 Click the Tablespaces link in the Storage section.

		 A screen similar to Figure 8-1 appears.

A lot of information is available in this window:

	 ✓	Name: By row, which tablespace contains information/data.

	 ✓	Size: The amount of space that the tablespace has access to on the file
system. It doesn’t mean that much space is unused. It’s the total amount
of used and free space in megabytes (MB).

	 ✓	Free Space: The amount of space, in megabytes, you’ve used creating
objects and inserting/loading data.

	

Figure 8-1:
Tablespace

usage
screen in

EM Express
looks like

this.
	

158 Part III: Caring for and Feeding an Oracle Database

	 ✓	Used (%): A graphical representation of how much space is used. Nice
for reports and showing to people who prefer pictures.

	 ✓	Auto Extend: Setting to allow space to be added automatically as
needed.

	 ✓	Maximum Size: The maximum size the tablespace can grow.

	 ✓	Status: A graphical representation of whether the tablespace is online
or offline.

	 ✓	Type: A graphical representation of the tablespace type; either perma-
nent, undo, or temporary.

	 ✓	Group Name: Storage group if assigned; often, this is null.

	 ✓	Auto Storage Management: Indicator of whether automatic storage
management is enabled for a tablespace.

	 ✓	Directory: The directory where the data files for the corresponding
tablespace are located.

	 To see the data file(s) and their size allocation, click the plus sign (+) under
each tablespace name to expose this valuable information.

SQL
If EM Express isn’t available in your environment, a couple of SQL queries
can get you the same information.

	 1.	 Log in to SQL*Plus.

	 2.	 Type the following code:
< select tablespace_name, bytes
from dba_data_files;>

		 With this code you get the tablespace name, its associated data files,
and their sizes. You see something like this:
TABLESPACE_NAME BYTES
--------------- --------------
UNDOTBS1 267,386,880
SYSAUX 1,200,553,984
USERS 101,777,408
SYSTEM 891,289,600
MY_DATA 10,485,760

		 The query sums the bytes and groups by tablespace_name in case the
tablespaces have more than one data file.

	 3.	 To get the free space available, type
< select tablespace_name, sum(bytes) bytes
from dba_free_space
group by tablespace_name;>

159 Chapter 8: Keeping the Database Running

		 You see something like this:
TABLESPACE_NAME BYTES
--------------- --------------
SYSAUX 264,503,296
UNDOTBS1 255,524,864
USERS 33,226,752
SYSTEM 6,422,528
MY_DATA 10,420,224

		 This information tells you how much available space remains in your
tablespaces that you can use for creating objects and loading data.

	 4.	 Take those numbers and calculate your percentages.

		 If you’re clever with SQL, you can do it all in one query. EM Express
makes your work very easy here.

We’d love to say managing available space as simple as that. Alas, more goes
into space management whether you use EM Express or SQL. You see, the
preceding steps give you a rough estimate of the space you have available.
It’s a pretty good estimate, but it’s not exact. Will it get you through the night
knowing you have enough space for batch jobs to run? Yes, probably.

	 Beware the false numbers caused by the following situations:

	 ✓	When you create a tablespace, the OS considers the disk space allo-
cated, even though within the database that space may not yet contain
any objects. (Similarly, misrepresentations can happen within the data-
base, where you can allocate extents, but the space doesn’t contain any
objects.)

		 For example, when you create a table, by default it creates an extent that
is 64k. That 64k is reserved for rows, so it no longer shows up in your
free space allocation table. What if you took a 10MB tablespace and cre-
ated 150 new tables with 64k initial extents? No data, just empty tables.
Your free space view would tell you that only 0.1MB of that 10MB is left,
yet you haven’t put any data into the table

	 ✓	Autoextensible data files (described in Chapter 7). A data file might say
it’s 10MB, but if it reaches that, it automatically grows up to the maxi-
mum size specified in the autoextend clause.

	 For a query that shows your tablespace sizes more accurately, type the following:

< select tablespace_name, file_name, bytes, autoextensible, maxbytes
from dba_data_files;>

160 Part III: Caring for and Feeding an Oracle Database

You see something like this:

TABLESPACE_NAME BYTES AUT MAXBYTES
--------------- -------------- --- ---------------
USERS 101,777,408 YES 3.460E+10
UNDOTBS1 267,386,880 YES 3.460E+10
SYSAUX 1,200,553,984 YES 3.460E+10
SYSTEM 891,289,600 YES 3.460E+10
MY_DATA 10,485,760 NO 0

	 In this example, the AUT column stands for autoextensible. If the AUT column
shows YES, the MAXBYTES column tells you how big the data file can auto-
matically grow. This detail is important when you’re deciding whether to
add space.

Monitoring space in your segments
Segments are objects that take up space in the database. Segments are
objects that, when created, allocated one or more extents from the free space
in your tablespaces. The two most common database segments are

	 ✓	Tables

	 ✓	Indexes

Tables are what hold data, and indexes are access pointers to data elements
within a table. Management of space for tables and indexes are very similar,
so we focus on table management; however, the same concepts and tech-
niques apply for index space management.

Before putting any data in a table, Oracle goes to the tablespace where
it lives and allocates an extent. You can call this a used extent because it
belongs to an object. The remaining space in the tablespace is free extents
you can use when objects grow or new objects are created.

As you start putting data into that table, the extent that was allocated upon
creation begins to fill up. When the extent reaches capacity, the table goes out
to the tablespace and grabs another extent. This cycle continues until either
you stop adding data or the tablespace runs out of free space. If the tablespace
runs out of free space, the process requesting the space generates an error
message and either fails or temporarily suspends until space is added.

To get a better idea of how objects grow, consider these guidelines:

	 ✓	When you first create an object, the default extent size is 64k.

	 ✓	The object continues to grow on 64k extents until it has 16 extents.

	 ✓	The 17th extent is 1MB.

161 Chapter 8: Keeping the Database Running

	 ✓	The object continues to grow in 1MB extents for the next 63 extents (a
total of 64, including the first 1MB extent).

	 ✓	The 81st extent is 8MB.

	 ✓	After 8MB extents, the last size Oracle uses is 64MB extents.

	 Knowing how your segments grow can help you predict space requirements.
This skill is important to have when monitoring storage.

If you constantly insert data into your table, you’ve got it covered. However,
that isn’t always the case. Some tables grow and shrink. To be specific, they
grow, but the shrinking, if necessary, is up to you.

Understanding how the objects in your application are used comes in handy.
Consider these examples:

	 ✓	What tables grow?

	 ✓	What tables, if any, shrink over time?

	 ✓	What tables receive inserts and are never added to again except
for reads?

	 ✓	What tables are under constant manipulation (INSERT, UPDATE,
DELETE)?

Tables that stay the same are easy. You don’t have to worry much about
those tables unless you want to tune them for performance. We cover how
to monitor a table’s growth (in the earlier section “Making way, checking
space”), so any tables that grow without getting any rows deleted are cov-
ered . . . unless, again, you want to tune them for performance (but that’s
another topic).

Growing and shrinking tables
A table that fits this category might be loaded every night and then deleted
from throughout the day, like a batch processing table. For example, con-
sider an ORDERS table that’s batch loaded at night from all the orders that
were taken from a website; as the orders are processed the next day, rows
are deleted one by one. At the end of the day, all the rows are gone. What do
you need to monitor for this table?

You should be most concerned with how big the table gets each day after
the batch load. Businesses want orders to increase. What about the deletes?
Should you shrink the table at the end of the day before the next batch load
to free up space? Absolutely not. Although it’s small, the growth of an object
is overhead on the system processing. By leaving it the same size day to day,
you know the space will be constantly reused. It’s kind of like recycling. You
mainly want to monitor this type of object for growth.

162 Part III: Caring for and Feeding an Oracle Database

What about a table that you add to and delete from on a frequent basis? Say
for every 1 million rows inserted in a week, 30 percent are deleted. This table
can present an interesting challenge.

Take a quick look at how rows are inserted to better understand how objects
grow and use space:

	 ✓	You have a new table with one 64k extent.

	 ✓	Your block size is 4k, so that extent is 16 blocks.

	 ✓	You start inserting data; 100 rows fit in a block.

	 ✓	By default, Oracle fills blocks to 90 percent full and then stops (so you can
update the row later and have it grow). For example, some fields are left
null until a later date, and then you fill them in. You don’t want the block
to get filled too easily by an update; otherwise Oracle has to move the row
to a new block that fits it. This rows migration degrades performance.

	 ✓	When all the blocks are filled in the free extents, the table allocates a
new extent, and the process starts over.

What if you start deleting rows at the same time you’re inserting? Will Oracle
reuse the space where you deleted the row? It depends. Again, Oracle has a
built-in feature that sacrifices space in favor of performance. Oracle inserts a
row into a block that was once full, but only if the deletions bring the block to
40 percent full.

	 Oracle doesn’t want to manage a block that teeters between full, not full, full,
not full, and so on. Although Oracle has reduced the performance overhead
that comes with managing blocks and which ones you can insert data into,
managing block storage still has a cost associated with it. Imagine you have a
table with 10,000 blocks and you’re constantly inserting and deleting from that
table. Oracle could spend all the CPU cycles managing what blocks can have
inserts and which can’t if there were only a one-row difference between full
and not-full blocks.

That’s why Oracle uses the 40-percent rule. A block takes all the inserts it
can until it’s 90 percent full, but the block can’t get back in line until it’s been
reduced to 40 percent full.

Again, what if you insert 1 million rows a week and delete 30 percent of them?
What if the 30 percent that you delete are randomly selected and spread
evenly across the blocks? Over time, those blocks never get down to 40 per-
cent full. After a year, you may have a table that is 10GB with 3GB of empty
row space that won’t be reused.

163 Chapter 8: Keeping the Database Running

Shrinking tables
You must determine whether you can release an object’s space after evalu-
ating the object’s usage pattern. Determining whether you can release an
object’s space requires a little arithmetic. Before you can decide whether to
make room in a table, you need to analyze the table to gather statistics.

When we say analyze, we mean analyze. The ANALYZE command gets the nec-
essary statistics to do this computation; DBMS_STATS doesn’t get those stats.

This example uses the emp table. To analyze the table appropriately, take
these steps:

	 1.	 Log in to SQL*Plus and type
< analyze table emp compute statistics;>

		 You see this:
Table analyzed.

	 2.	 Run a query against the USER_TABLES view by typing
<select table_name, avg_space, blocks
from user_tables
where table_name = ‘EMP’>

		 You see something like this:
TABLE_NAME AVG_SPACE BLOCKS
------------------------------ ---------- ----------
EMP 3264 4528

		 The AVG_SPACE column shows the average amount of free space
per block.

	 3.	 Use the following formula to calculate the amount of empty space in
the emp table:

		 (AVG_SPACE – (DB_BLOCK_SIZE × FREE_SPACE)) × TAB_BLOCKS

		 For this example, the formula looks like this:

		 (3623 – (8192 × .10)) × 4528 = 11066432 (approximately 11MB)

	 4.	 Decide whether there’s enough space to make it worthwhile to shrink
the object.

	 5.	 To enable Oracle to move rows around in the table type, issue this
SQL command:
<alter table emp enable row movement;>

		 You see this:
Table altered.

164 Part III: Caring for and Feeding an Oracle Database

	 6.	 Issue this SQL command to do the shrink:
<alter table emp shrink space;>

		 You see this:
Table altered.

	 7.	 Re-analyze the table and re-execute the query to check the statistics.
<select table_name, avg_space, blocks
from user_tables
where table_name = ‘EMP’>

		 You should see something like this:
TABLE_NAME AVG_SPACE BLOCKS
------------------------------ ---------- ----------
EMP 933 2979

		 As you can see, the AVG_SPACE is about 10 percent of the block size.
This is normal for default block space organization.

	 Check things like the Flash Recovery Area. Any day that produces a lot of
archive logs or large backup files can quickly overcome the allocated space. If
you don’t have something like Enterprise Manager 12c watching this, you can
encounter problems such as a hung database or failing backups. These situa-
tions can have dire consequences on your database system.

Checking users
Knowing what is going on within the database is part of your job as a DBA.
You should regularly log in to your database to understand who is using it,
what normal usage looks like, and whether anything unusual is occurring.
Developing a baseline understanding of your database usage greatly helps
you in your other DBA responsibilities.

If you check on your users on a regular basis, you’ll be able to recognize the
most active users. You can also find the following issues:

	 ✓	Stale and abnormally long sessions

	 ✓	Login abuse, such as people sharing accounts and unauthorized logins

Finding stale sessions
Stale sessions have been logged in to the system for a long time, and no one
has done anything with them. Getting rid of stale sessions can help control
resource usage.

165 Chapter 8: Keeping the Database Running

	 Everyone’s system is different, so you have to rely on some of your knowledge
to decide whether the absence of activity is abnormal. To get a list of logged-in
users and the last time they issued a command, connect to the database as a
DBA user and type the following:

<select sid, serial#, username, last_call_et
from v$session
where username is not null;>

You might see something like this:

SID SERIAL# USERNAME LAST_CALL_ET
--- ------- ---------------- ------------
 12 9853 SYSMAN 3
 14 6552 HR 0
 56 42 DBSNMP 6
112 59271 SYSTEM 160
 65 23451 MPYLE 743160
 98 8752 CRM 1
 32 4551 CRM 3
 45 16554 HR 36
119 9812 KHANR 36522

MPYLE and KHANR are the two potentially bothersome accounts in this
example. The LAST_CALL_ET column output data has the number of seconds
since there was any activity. MPYLE has been inactive for over eight days!
KHANR is a little less alarming at about 10 hours, but nonetheless, that would
most likely require some explanation.

Note that the command uses the WHERE clause USERNAME IS NOT NULL.
Oracle internal processes show up in this list as unnamed users, and you
don’t want those getting in the way of evaluation. Also, this example includes
identification columns SID and SERIAL#. Together, these two columns
uniquely identify a session within the database.

	 If you see a session you want to get rid of, type the following:

<alter system kill session ‘65,23451’;>

You should see this:

System altered.

166 Part III: Caring for and Feeding an Oracle Database

	 Before you go killing sessions that have long periods of inactivity, check with
application folks to determine whether a connection is part of a connection
pool that just hasn’t been used for a while. Usually, removal is safe if it isn’t an
application ID or if you can identify the user. Do your research!

Policing for login abuse and unauthorized logins
People everywhere are abusing their login privileges, and such abuse is a sig-
nificant security problem. Unfortunately, it’s usually people higher up in the
application chain of command who tend to have more privileges giving out
their login ID to subordinates to help with work. In other cases, co-workers
decide to share a login ID because an account became locked or someone
forgot his or her password.

	 Track this abuse down by comparing the database login ID with the OS login
ID. Oracle tracks both. Type the following to see all the users connected with
both IDs:

<select sid, serial#, username, osuser, program
from v$session
where username is not null;>

You might see something like this:

 SID SERIAL# USERNAME OSUSER PROGRAM
---------- ---------- ---------- ---------- -----------------
 112 3741 MPYLE MPYLE sqlplusw.exe
 122 3763 MPYLE RKHAN sqlplusw.exe
 115 9853 SYSMAN oracle OMS
 122 35878 HR HRAPP sqlplus@classroom
 124 4 DBSNMP oracle emagent@classroom

MPYLE has given his login ID to RKHAN (or at least the evidence suggests
that). Evaluate this information carefully and do a thorough investigation.
Take appropriate measures if there’s been a violation of your security policy.

Releasing the bug
We had a client system that had over 3,000 con-
nected sessions regularly. While evaluating the
sessions, we discovered that 1,200 sessions had
never issued a single command after logging in
and setting a date format. It turned out to be an
application bug that created multiple sessions

for each application operation — one of them a
session to set the date format. Of course, it did
no good to set a session date format and log in
to another session to do the work. Regardless,
the client fixed the bug. The fix released nearly
6GB of memory from the OS!

167 Chapter 8: Keeping the Database Running

Checking backups
Checking your backups should be a regular part of your daily routine.
Checking backups includes these things:

	 ✓	Ensuring the database backups completed successfully and
without errors.

		 From an Oracle DBA’s standpoint, you need to make sure the entire
backup process is logged and no errors were detected. A common mis-
take is for the DBA to setup a database backup, but not monitor the
output logs to confirm it was successful.

	 ✓	Following up occasionally with appropriate personal about OS backups.

	 ✓	Checking regularly to ensure the system admin is moving the database
backup from disk to tape.

	 Too many environments put system backups on the back burner because they
were scheduled jobs; no alerting was in place. If you subscribe to this meth-
odology, you could be signing up for a heap of trouble. Be sure to verify that
your backups are running without errors. It would be extremely embarrassing
and potentially career-limiting to discover you’ve “lost” a database because,
as the DBA, you ignored e-mailed error messages for months.

Keep these backup tips in mind:

	 ✓	Oracle Recovery Manager has a LOG option that you can pass in with
your backup script. This option forces RMAN to log the details for every
step of the backup as it runs. This shell script example logs the output
of your RMAN backup on Linux/UNIX:
#/usr/bin/ksh

Environment Settings
export ORACLE_BASE=/u01/app/oracle
export ORACLE_HOME=$ORACLE_BASE/product/12.1.0
export ORACLE_SID=dev12c
export BAK_DATE=`date ‘+%d%b%Y_%H_%M’`
export PATH=$ORACLE_HOME/bin:$PATH

Run Backup
rman target / cmdfile=full_hot_backup.rmn
log=full_hot_backup_${ORACLE_SID}_${BAK_DATE}.log

Check Error Code
Export ECODE=$?

if [$ECODE -gt 0]; then
 mailx –s “RMAN BACKUP FAILED!” dba@yourcompany.com
else echo “RMAN BACKUP SUCCESSFUL”
fi

168 Part III: Caring for and Feeding an Oracle Database

		 The simple script, which you might schedule in cron, runs a backup
script of your choice (called full_hot_backup.rmn) and logs the output
to a file with the database name and date attached.

		 After the backup completes, the script checks whether RMAN exited
cleanly. It does this by checking a mechanism called an error code. Well-
written programs have this mechanism. If the environment variable $?
has a value of non-zero, something failed.

		 I have an if-then section that sends an e-mail if that backup failed. Of
course, if there’s a failure, you have to find out why and fix it. Either
way, implementing a notification similar to the example helps you
tighten your backup and recovery planning.

	 ✓	Make sure the backup is usable. This task is important for all backups
but is especially important if you store any backups to tape. Make sure
those backups can be restored from tape and then actively recovered
to a database. For obvious reasons, you don’t necessarily have to do
this with your production database. You can do the restore to a differ-
ent database. A common DBA task is to refresh test database images
with production backup copies; this process is a good way to test your
production backups. Either way, as reliable as you would like to think
tapes can be, you need to test them. What if one of the tape’s heads is
going bad and writing corrupt blocks? Silent corruption of backups is a
rare but serious problem encountered by DBAs. Testing your backups
helps you to practice your recovery strategies and validate your overall
backup and recovery posture.

	 ✓	At the very least, date and save this backup log in a directory on the
system. If you want to go one step further, have it e-mailed to you every
day when the backup completes. If you need to use a backup from a spe-
cific date, saving the log files for those backups helps you confirm the
backup is valid.

	 ✓	Look at the backup log for errors. Imagine how you’d feel if you experi-
enced a failure and had to tell your boss that you can’t recover because
the backup’s been failing for six months. It’s surprising how often we
run into situations like this while helping clients with their backup and
recovery strategies.

Checking batch jobs
Almost all companies we have worked for have some sort of nightly batch
jobs that run against the database. They range from loading data to generat-
ing reports to some sort of data processing. They might be scheduled by
you or someone else. Either way, we find it common that the DBA is the one
responsible for monitoring them and ensuring their success. If you think
about it, they’re on your turf because you’re in charge of the database.

169 Chapter 8: Keeping the Database Running

Whether you or someone else developed the scripts, the scripts, like RMAN,
should have some sort of logging and notification system in place. Such
a system makes it easier for you to identify a problem when it occurs. By
having status e-mails generated and sent out, you’re all but forced to keep
up with the results. If your e-mail program allows filtering, you can send the
notifications to separate folders for each batch job. Just remember to check
them. Again, we’re trying to help you cover all the bases that an Oracle DBA
might commonly have on his or her plate.

Reviewing audit logs
What’s the use of auditing in the database if you aren’t doing anything with
the information? You should develop some ideas on what types of informa-
tion you’re looking for. Additionally, regularly back up and purge the audit
logs (whether they’re in the database or the OS). This way, they aren’t taking
up space and they are easier to search when looking for potential problems.

	 Many companies are required to comply with various auditing and compli-
ance laws, policies, and guidelines. These requirements specify what activities
are logged, how often the logs are reviewed and by whom, and how long the
logs are retained. Be sure you’re aware of the requirements for your company
and can prove to an auditor that you’re in compliance.

Maintaining logs
Oracle generates all kinds of logs for various components. Depending on
what features you enabled in the database, there may be more or fewer.
Some logs (alert and listener, for example) should be regularly:

	 ✓	Checked to identify errors

	 ✓	Renamed with a timestamp added

	 ✓	Trimmed down in size so they do not grow excessively large

	 ✓	Backed up so they can be reviewed later if necessary

	 If certain logs grow too large, they can cause problems in the database where
either the database suspends or activity is not logged.

Oracle database logs contain valuable information that frequently helps
identify problems. When a problem is encountered, one of the first things a
DBA does is review the appropriate database logs for errors and background
information. In addition to Oracle’s logs, don’t hesitate to look at items such
as Windows Event view or the message logs on Linux/UNIX systems. They
also contain valuable information for the operating system and server hard-
ware which support the Oracle database.

170 Part III: Caring for and Feeding an Oracle Database

Automating Chores with
the Oracle Scheduler

With the use of the Oracle Scheduler, you can run almost any type of pro-
gram with a robust resource-management and scheduling system. The
Scheduler is intended to help you create and automatically run many of your
administrative tasks managed from within the database. Oracle Scheduler is
implemented via the DBMS_SCHEDULER database package and is a replace-
ment for the old DMBS_JOB package.

The Scheduler can run these programs:

	 ✓	PL/SQL stored procedures

	 ✓	PL/SQL anonymous blocks

	 ✓	Java stored programs

	 ✓	Local and remote external programs such as shell scripts and executables

You can schedule jobs that are

	 ✓	Timed-based: A job can run simply from wall-clock time. It can repeat on
a schedule based on hours, days, months, and so on.

	 ✓	Event-based: The results of certain conditions or events in the environ-
ment can cause a job to run. This trigger is useful when you have to wait
for other processes to finish before a job is run.

	 ✓	Dependency-based: You can set up dependency such as success or
failure. Depending on the outcome of one job, one or more dependant
scenarios can be executed.

Scheduler objects
The Scheduler can use a number of objects to run jobs. Not all of them are
mandatory. These objects specify job parameters, timing, execution win-
dows, and resource limits.

	 ✓	Programs: Programs are the actual code that the Scheduler will run.
They identify the execution code, arguments, and job type.

	 ✓	Schedules: The job schedules are just what you think. They contain
parameters such as when and how often. A schedule should be created
by the DBA and then shared for many jobs.

171 Chapter 8: Keeping the Database Running

	 ✓	Jobs: When a job object is created, it contains the executable and the
schedule required to run the job. You can enable the job for it to begin
the task based on the parameters. Jobs are categorized as any of the
following:

	 •	Database jobs run out of the database from PL/SQL commands.

	 •	External jobs run off the operating system from external executables.

	 •	Chain (Dependency) jobs run based on status of other jobs.

	 •	Detached jobs run to simply kick off another job in a new process.

	 •	Lightweight are simple jobs that exist only for their immediate
execution. They aren’t stored as schema objects. They’re used for
quick, low-overhead applications.

	 ✓	Windows: Helps schedule jobs for certain times, which can help con-
trol resource usage. When a window becomes active, certain resource
directives are enabled that might restrict a job from overwhelming the
system.

Creating your first Scheduler job
The Oracle Scheduler example in this section creates a simple job that runs
a stored PL/SQL procedure. The procedure selects a count of the number of
users on the system and inserts that number into a table with a timestamp. It
runs every five minutes.

Follow these steps to schedule a job for the first time:

	 1.	 Log in to SQL*Plus as the SYS user.

	 2.	 Give the intended job creator the ability to create jobs:
<grant create job to hr;>

		 You should see this:
Grant succeeded.

		 This example job is created and run by HR.

	 3.	 Let HR see the V$SESSION table:
<grant select on v_$session to hr;>

		 You should see this:
Grant succeeded.

		 The _ in V_$SESSION isn’t a typo! V$SESSION is a synonym for
V_$SESSION. For the grant to work, you have to give the view name.

172 Part III: Caring for and Feeding an Oracle Database

	 4.	 Log in to SQL*Plus as the job creator and make a table to hold
the data:
< create table user_count (
number_of_users NUMBER(4),
time_of_day TIMESTAMP
)
TABLESPACE users;>

		 You see this:
Table created.

	 5.	 Create a stored procedure:
< CREATE OR REPLACE PROCEDURE insert_user_count AS
 v_user_count NUMBER(4);
BEGIN
 SELECT count(*)
 INTO v_user_count
 FROM v$session
 WHERE username IS NOT NULL;

 INSERT INTO user_count
 VALUES (v_user_count, systimestamp);
 commit;

END insert_user_count;
/ >

		 The stored procedure gathers the number of users and inserts them into
the table with a timestamp. You should see this:
Procedure created.

	 6.	 Create a program for the job:
< BEGIN
DBMS_SCHEDULER.CREATE_PROGRAM (
 program_name => ‘PROG_INSERT_USER_COUNT’,
program_action => ‘INSERT_USER_COUNT’,
program_type => ‘STORED_PROCEDURE’);
END;
/>

		 You see this:
PL/SQL procedure successfully completed.

	 7.	 Enable the program:
<exec dbms_scheduler.enable(‘PROG_INSERT_USER_COUNT’)>

		 You see this:
PL/SQL procedure successfully completed.

173 Chapter 8: Keeping the Database Running

	 8.	 Create a schedule for the job to run:
< BEGIN
DBMS_SCHEDULER.CREATE_SCHEDULE (
 schedule_name => ‘my_weekend_5min_schedule’,
 start_date => SYSTIMESTAMP,
 repeat_interval => ‘FREQ=MINUTELY; INTERVAL=5; BYDAY=SAT,SUN’,
 end_date => SYSTIMESTAMP + INTERVAL ‘30’ day,
 comments => ‘Every 5 minutes’);
END;
/>

		 This example job runs every five minutes. You see this:
PL/SQL procedure successfully completed.

	 9.	 Create your job with the program and schedule you defined:
< BEGIN
DBMS_SCHEDULER.CREATE_JOB (
 job_name => ‘my_user_count_job’,
 program_name => ‘prog_insert_user_count’,
 schedule_name => ‘my_weekend_5min_schedule’);
END;
/>

		 You see this:
PL/SQL procedure successfully completed.

	 10.	 Enable your job so it runs within the defined schedule:
< exec dbms_scheduler.enable(‘my_user_count_job’)>

		 You see this:
PL/SQL procedure successfully completed.

		 The job runs at the specified start time (at SYSTIMESTAMP). If you
choose a calendar date in the future, it doesn’t start until then.

	 11.	 After the job’s been running for 17 minutes, type the following to see
your USER_COUNT table:
< select *
from user_count;>

		 You see this:
NUMBER_OF_USERS TIME_OF_DAY
--------------- ---------------------------------
 14 09-AUG-13 02.15.14.118495 PM
 14 09-AUG-13 02.00.14.137300 PM
 13 09-AUG-13 02.05.14.120116 PM
 13 09-AUG-13 02.10.14.120680 PM

174 Part III: Caring for and Feeding an Oracle Database

	 When you have the job running, you can get details about the success or fail-
ure by querying the following views:

USER_SCHEDULER_JOB_RUN_DETAILS
USER_SCHEDULER_JOB_LOG

These views show information only about your jobs. To get information on
the recent runs of our job, log in as the job creator and type

< select job_name, status, run_duration, cpu_used
from USER_SCHEDULER_JOB_RUN_DETAILS
where job_name = ‘MY_USER_COUNT_JOB’;>

You see this:

JOB_NAME STATUS RUN_DURATION CPU_USED
-------------------- ---------- --------------- ------------------
MY_USER_COUNT_JOB SUCCEEDED +000 00:00:00 +000 00:00:00.01
MY_USER_COUNT_JOB SUCCEEDED +000 00:00:00 +000 00:00:00.01
MY_USER_COUNT_JOB SUCCEEDED +000 00:00:00 +000 00:00:00.00
MY_USER_COUNT_JOB SUCCEEDED +000 00:00:00 +000 00:00:00.01

Disabling a job
You can disable a job after it’s completed. That way, if necessary, you can
easily re-enable it later. To disable your job, type the following:

<exec dbms_scheduler.disable(‘my_user_count_job’)>

You should see this:

PL/SQL procedure successfully completed.

Removing the job
If your job is no longer needed, you can remove just the job and leave the
program out there, or you can remove both. Same goes for the schedule you
created.

If you no longer need this particular job, you can remove it by typing

<exec dbms_scheduler.drop_job(‘my_user_count_job’)>

You should see this:

PL/SQL procedure successfully completed.

If you no longer need your program, you can remove it by typing

<exec dbms_scheduler.drop_program(‘prog_insert_user_count’)>

175 Chapter 8: Keeping the Database Running

You should see this:

PL/SQL procedure successfully completed.

If you no longer need a particular schedule, remove it by typing

<exec dbms_scheduler.drop_schedule(‘my_weekend_5min_schedule’)>

You should see this:

PL/SQL procedure successfully completed.

	 The job schedule you created can be used for multiple jobs; be careful when
removing your schedule to ensure you aren’t impacting more than what you
expect.

Using Oracle Data Pump
Oracle Data Pump is one tool we use constantly to move data within data-
bases and between databases.

	 Data Pump is modeled after Oracle’s Export/Import tools that were available
prior to Oracle 10g. Export/Import is still available, but Data Pump has taken
the tasks traditionally done by Export/Import and added a lot more options
and flexibility.

Data Pump is useful for

	 ✓	Moving data from one schema to another

	 ✓	Moving data from one version of Oracle to another

	 ✓	Moving data from one OS to another

	 ✓	Creating logical backups

You can use Data Pump to transport an entire database from one instance to
another. This capability includes new Oracle 12c pluggable databases as well
as older nonpluggable databases. You can use this to move a database to a
new server environment or to upgrade to a higher database version.

Like the older Export/Import utilities, you must run Data Pump from the com-
mand line. That makes it easy to script and schedule automated jobs. Data
Pump is controlled by a series of parameters and files.

176 Part III: Caring for and Feeding an Oracle Database

	 You should be familiar with these files:

	 ✓	Dump file: This file is created during a Data Pump Export. It’s the import
file when you do a Data Pump Import. It’s binary so you can’t open it to
see anything useful.

	 ✓	Parfile: This optional file lists the parameters that control the Data
Pump Import or Export. You create this text-based file yourself.

	 ✓	Log file: This output is for all Data Pump Import and Export jobs unless
you specify otherwise. You can name it yourself or let it have a default
name. It’s useful for getting jobs statistics and for troubleshooting.

You can interactively do these things with Data Pump jobs:

	 ✓	Start

	 ✓	Stop

	 ✓	Pause

	 ✓	Restart

	 ✓	Kill

The result is that you can start a job from the command line, detach from
it to do something else (while it’s still running), and re-attach later to check
progress or make changes. When a Data Pump job runs into a problem, it
automatically suspends itself; that way you have a chance to fix the problem
before the job fails altogether. This can be a real time-saver. Prior to Data
Pump, if an Export/Import job ran into a problem, it would fail immediately,
sometimes wasting hours of time.

In our experience, Data Pump Export is significantly faster than traditional
exports on large jobs. If you have a small job, like one or two small tables or
a small schema, it doesn’t really seem to make a difference. But on large jobs,
the difference is phenomenal.

	 In one example, a job took around 12 hours to dump out about 200GB with
the old Export tool. When we upgraded from 9i to 11g and converted to Data
Pump, it took only 45 minutes. Part of the reason is that Data Pump can be
easily parallelized. Parallelizing Data Pump means starting multiple processes
that run simultaneously to split up the job. The only way to parallelize tra-
ditional exports is to manually split the workload into multiple jobs. That
manual splitting was tedious and time-consuming.

177 Chapter 8: Keeping the Database Running

Data Pump Export
The command-line program expdb launches Data Pump Export. All Data
Pump Export jobs are estimated at the beginning so you see the estimate
before it runs the actual export. Remember that estimates may not always be
completely accurate.

	 From the OS command line, launch Data Pump Export and have it show a list
of the parameter:

<expdp help=y>

You see something like this:

Export: Release 12.1.0.1.0 - Production on Sat Jul 20 06:56:47 2013

Copyright (c) 1982, 2013, Oracle and/or its affiliates. All rights reserved.

The Data Pump export utility provides a mechanism for transferring data objects
between Oracle databases. The utility is invoked with the following command:

 Example: expdp scott/tiger DIRECTORY=dmpdir DUMPFILE=scott.dmp

You can control how Export runs by entering the ‘expdp’ command followed
by various parameters. To specify parameters, you use keywords:

 Format: expdp KEYWORD=value or KEYWORD=(value1,value2,...,valueN)
 Example: expdp scott/tiger DUMPFILE=scott.dmp DIRECTORY=dmpdir SCHEMAS=scott
 or TABLES=(T1:P1,T1:P2), if T1 is partitioned table
...output snipped...

You can see that Data Pump lists all the parameters you have to choose from
and gives a brief explanation of each.

	 You can specify parameters at two locations:

	 ✓	On the command line

	 ✓	In a parameter file

Go over some of the more useful parameters in detail:

	 ✓	COMPRESSION: This parameter allows you to compress the output of
Data Pump while the job is running. This trick is handy when space is at
a premium. This parameter degrades the performance of the export, but
that’s to be expected.

178 Part III: Caring for and Feeding an Oracle Database

	 ✓	CONTENT: This specifies what type of data you want to get. Do you want
just object definitions? Do you want just the data? Both? Determine what
you want to export and specify accordingly.

	 ✓	DIRECTORY: This specifies the directory where you want the dump file
to go. This is an Oracle Object directory, not a simple path on the OS.
We show you how to create a directory later in this chapter.

	 ✓	DUMPFILE: This parameter names the dump file to be output. You can
also have Data Pump number the files if you like. This numbering is
handy when you use parallelism or have Data Pump break the job into
multiple files of manageable size. To have Data Pump number the files,
use the %U argument:
DUMPFILE=my_dp_exp_%U.dmp

		 Data Pump starts with 1 and numbers the files to 99. What if you need
more than 99 files? Try something like this:
DUMPFILE= my_dp_exp_seta_%U.dmp, my_dp_exp_set_b_%U.dmp

		 You can have it dump to multiple files, which is especially useful when
you’re parallelizing the output.

	 ✓	ESTIMATE: This parameter estimates your job size but won’t run it.
Very handy when space is at a premium. This parameter stops the job
after estimating.

	 ✓	EXCLUDE: You can exclude certain objects from the export. For exam-
ple, say you want everything but the HR and OE schemas as well as all
views and functions. EXCLUDE can have multiple entries. You can
say this:
EXCLUDE=SCHEMAS:”’HR’,’OE’”
EXCLUDE=VIEW,FUNCTION

	 ✓	INCLUDE: Mutually exclusive with EXCLUDE, use this parameter if you
want to get a specific type of object. When the list is small, this can be
very useful:
INCLUDE=VIEWS, TRIGGERS

	 ✓	FILESIZE: You can break your Data Pump Export into multiple files,
which aids file management. For example, if you have a 200GB export to
do, you might not want a 200GB dump file to manage afterward. Instead,
use this parameter to break it into 4GB chunks or something similar.

	 ✓	FLASHBACK_TIME: If you want to dump the data from a time other than
the present, you can use this parameter to specify a date and time. As
long as your database still has the old data in its undo retention space,
this parameter can be very useful.

	 ✓	NETWORK_LINK: You can connect from one database to export to
another by setting up a database link and specifying it with this
parameter.

179 Chapter 8: Keeping the Database Running

	 ✓	PARALLEL: To help speed up your dump, you can parallelize it. Try dif-
ferent values to find the most efficient number of processes across dif-
ferent systems. At the very least, you should be able to parallelize by the
number of CPUs you have while recalling the capabilities of the storage
media to which you’re writing.

	 ✓	SCHEMAS: This parameter gives a list of schemas to Data Pump and
tells it what to get. By default, Data Pump exports the schema that’s log-
ging in to do the job.

	 ✓	TABLES: This restricts the export to a list of tables.

	 ✓	TABLESPACES: This parameter restricts the export to a list of
tablespaces only.

Data Pump Import
The command-line program impdb launches Data Pump Import. From the
OS command line, launch Data Pump Import and have it show a list of the
parameters:

<impdp help=y>

You see something like this:

Import: Release 12.1.0.1.0 - Production on Sat Jul 20 06:54:52 2013

Copyright (c) 1982, 2013, Oracle and/or its affiliates. All rights reserved.

The Data Pump Import utility provides a mechanism for transferring data objects
between Oracle databases. The utility is invoked with the following command:

 Example: impdp scott/tiger DIRECTORY=dmpdir DUMPFILE=scott.dmp

You can control how Import runs by entering the ‘impdp’ command followed
by various parameters. To specify parameters, you use keywords:

 Format: impdp KEYWORD=value or KEYWORD=(value1,value2,...,valueN)
 Example: impdp scott/tiger DIRECTORY=dmpdir DUMPFILE=scott.dmp
...output snipped...

Like Data Pump Export, Import lists the parameters that can be used with
the import portion of Data Pump. Many of these parameters behave the same
way they do when you’re using Data Pump Export.

180 Part III: Caring for and Feeding an Oracle Database

Take a closer look at some the Data Pump Import parameters:

	 ✓	CONTENT: If you have a full content export file, you can choose to
import only the metadata. For example, you might want to create all
the tables with no rows. Obviously, if you didn’t include the rows in the
export dump file, you can’t tell Data Pump Import to put them in!

	 ✓	ESTIMATE: This parameter estimates the size of the Data Pump Import.

	 ✓	DIRECTORY: This one tells Data Pump Import where it can find the
dump file. It doesn’t have to be the same place it was dumped, but you
must move the file to the new location. This parameter might be useful
when moving the file to another machine or OS.

	 ✓	DUMPFILE: A complete listing of all the files created by Data Pump
Export.

	 ✓	EXCLUDE: This works much like Data Pump Export but tells Data Pump
Import what to leave from the dump file.

	 ✓	INCLUDE: This parameter is another way of controlling what objects are
put into the target database.

	 ✓	FLASHBACK_SCN, FLASHBACK_TIME: Use these parameters with the
Data Pump Import tool only when connecting through a NETWORK_
LINK. Data Pump Import can connect directly to a remote database
across a database link and write the data directly into the target system.
Use these parameters to pull data from the past.

	 ✓	NETWORK_LINK: You can connect from one database and import into
another by setting up a database link and specifying it with this param-
eter. No files are created when this method is used. This parameter is
very handy for logical recovery and cloning.

	 ✓	PARALLEL: This helps speed up your import.

	 ✓	REMAP_SCHEMA: This parameter is handy for copying the objects/data
from one schema to another.

	 ✓	REMAP_TABLESPACE: Moves the objects into a new tablespace. By
default, they go into the same tablespace they came from. This param-
eter is useful when used in conjunction with remap_schema and while
moving data from one database to another.

	 ✓	SCHEMAS: This parameter gives a list of schemas to Data Pump to tell it
what to import. By default, Data Pump imports everything in the file. In
essence, you can have a full export but then pick and choose what you
want to import.

	 ✓	TABLES: As with SCHEMAS, you can choose from your dump file what to
import.

	 ✓	TABLESPACES: You can choose what tablespaces you want import from
the dump file.

181 Chapter 8: Keeping the Database Running

Creating Oracle Directories
An Oracle directory is required for Data Pump. A directory is basically a
portal to a location on the operating system.

Directories are controlled by both system and object privileges. You need
a system privilege, CREATE DIRECTORY, to create one. If your user doesn’t
own the directory, you need READ and/or WRITE object privileges on the
directory to use it.

To create a directory, log in to the database as a user with appropriate privi-
leges and type the following:

create directory my_data_pump_dir as ‘/u01/app/oracle/dumpfiles’;

You should see this:

Directory created.

Using Data Pump with a Parameter File
A parameter file is a text file listing the parameters for the Data Pump Export
or Import and setting the chosen values. Data Pump Export and Import
parameter files are constructed the same way.

Follow these steps to run a Data Pump Export with this parameter file:

	 1.	 Type the parameter file into a text editor and save it to a directory.

		 This example is a parameter file that exports the DEPARTMENTS and
EMPLOYEES tables of the HR schema:
File: /u01/app/oracle/scripts/datapump/my_data_pump_parfile.par
DIRECTORY=my_data_pump_dir
DUMPFILE=my_data_pump_dumpfile.dmp
LOGFILE=my_data_pump_logfile.log
SCHEMAS=HR
TABLES=EMPLOYEES, DEPARTMENTS
COMPRESSION=ALL

	 2.	 Open a command-line prompt and go to the directory where your
parameter file is saved.

182 Part III: Caring for and Feeding an Oracle Database

	 3.	 Launch Data Pump Export with your parameter file:
<expdp parfile=my_data_pump_parfile.par>

		 You should see this:
Export: Release 12.1.0.1.0 - Production on Sat Jul 20 06:51:40 2013

Copyright (c) 1982, 2013, Oracle and/or its affiliates. All rights
reserved.

Username:

	 4.	 Enter the username and give the password for the user you want to
export with.

		 You should see something like this:
Connected to: Oracle Database 12c Enterprise Edition Release 12.1.0.1.0 -

64bit Production
With the Partitioning, OLAP, Advanced Analytics and Real Application

Testing options
Starting “SYS”.”SYS_EXPORT_SCHEMA_01”: /******** AS SYSDBA parfile=my_

data_pump_parfile.par
Estimate in progress using BLOCKS method...
Processing object type SCHEMA_EXPORT/TABLE/TABLE_DATA
Total estimation using BLOCKS method: 128 KB
...output snipped...
. . exported “HR”.”DEPARTMENTS” 5.437 KB 27 rows
. . exported “HR”.”EMPLOYEES” 8.726 KB 107 rows
Master table “SYS”.”SYS_EXPORT_SCHEMA_01” successfully loaded/unloaded
**
Dump file set for SYS.SYS_EXPORT_SCHEMA_01 is:
 /u01/app/oracle/dumpfiles/MY_DATA_PUMP_FILE.DMP
Job “SYS”.”SYS_EXPORT_SCHEMA_01” successfully completed at 06:52:25

	 5.	 Create the user and the tablespace.

		 Make sure both users have the same privileges.

	 6.	 Create a parameter file that imports the data into a new user in its
own tablespace.

		 In this example, HR2 is imported to its own tablespace, HR2_DATA.

		 Because this export is only a partial piece of the HR data model, you
exclude constraints and triggers; they have dependent objects that
aren’t in the export dump file. You don’t have to exclude them, but you
get an error in the log file as Data Pump tries to create them.

183 Chapter 8: Keeping the Database Running

		 Such a parameter file might look like this:
File: /u01/app/oracle/scripts/datapump/my_HR2_data_pump_parfile.par
DIRECTORY=my_data_pump_dir
DUMPFILE=my_data_pump_file.dmp
LOGFILE=my_HR2_data_pump_logfile.log
EXCLUDE=CONSTRAINT
EXCLUDE=TRIGGER
REMAP_SCHEMA=HR:HR2
REMAP_TABLESPACE=EXAMPLE:HR2_DATA

	 7.	 Run the import:
<impdp parfile=my_hr2_data_pump_parfile.par>

		 You should see something like this:
Import: Release 12.1.0.1.0 - Production on Sat Jul 20 07:00:17 2013

Copyright (c) 1982, 2013, Oracle and/or its affiliates. All rights
reserved.

Username: / as sysdba

Connected to: Oracle Database 12c Enterprise Edition Release 12.1.0.1.0 -
64bit Production

With the Partitioning, OLAP, Advanced Analytics and Real Application
Testing options

Master table “SYS”.”SYS_IMPORT_FULL_01” successfully loaded/unloaded
Starting “SYS”.”SYS_IMPORT_FULL_01”: /******** AS SYSDBA parfile=my_hr2_

data_pump_parfile.par
Processing object type SCHEMA_EXPORT/USER
Processing object type SCHEMA_EXPORT/TABLE/TABLE
Processing object type SCHEMA_EXPORT/TABLE/TABLE_DATA
. . imported “HR2”.”DEPARTMENTS” 5.437 KB 27 rows
. . imported “HR2”.”EMPLOYEES” 8.726 KB 107 rows
...output snipped...
Job “SYS”.”SYS_IMPORT_FULL_01” successfully completed at 07:02:53

By default, the log file is created in the same directory as your dump file. The
log file is a text file that any text editor can read.

If the user is someone other than the schema you’re exporting or importing,
you need one of these two things:

	 ✓	DBA privileges

	 ✓	The DATAPUMP_EXP_FULL_DATABASE and DATAPUMP_IMP_FULL_
DATABASE roles

If you’re working as an administrator in a container database (CDB), you also
need the CDB_DBA role.

184 Part III: Caring for and Feeding an Oracle Database

Chapter 9

Tuning an Oracle Database
for Performance

In This Chapter
▶	Knowing the tuning tools and techniques
▶	Tuning before a problem occurs
▶	Tuning after a problem occurs
▶	Tuning SQL
▶	Tuning the database

T
uning an Oracle database is one of the most challenging activities you
encounter as a database administrator. Heck, we could probably write

an entire book on the tools Oracle provides and the methodologies you can
use when tackling a database performance issue. Knowing the tools and tech-
niques will get you a long way, but the problems DBAs uncover also require
an understanding of basic computer functionality and cooperation with other
members of the infrastructure management team within your organization.

In this chapter, we explore the tuning methods an experienced database
administrator might employ. We introduce you to concepts of performance
tuning and provide some fundamental techniques that will allow you to take
advantage of what Oracle has to offer before you even begin to install and
configure the software. We also review the features within the Oracle software
designed to help you tackle performance-related problems in the database.

However, tuning a database doesn’t come naturally for a lot of people, and
the process can take some time to master. The information in this chapter is
helpful when you begin your career as an Oracle database administrator, but
you’ll want to seek out more information to perfect your performance-tuning
skills. Practice and further education both help you become more adept and
efficient. A number of tools that are available from third-party vendors can
also help you.

Many aspects of performance tuning contribute to its difficulty, but the tools
and techniques discussed here help make the process less painful and, when
successful, quite rewarding.

186 Part III: Caring for and Feeding an Oracle Database

Tuning Costs
There’s a saying in the motor racing industry that goes something like,
“Speed costs, so how fast do you want to spend?” This saying might also
apply to database tuning. Don’t despair though. We focus mostly on the tools
that Oracle offers as standard features within its software stack. However,
we also discuss the “for pay” features. If you can get your company to spring
for them, paid tools can sometimes make up the expense quickly. Rather
than have a performance problem costing your company revenue, it might
be worth your while to spend some money up front to have the right tools in
your hands to make performance problems go away.

Are we saying that a good database administrator should be able to tune a
database with just the free stuff? Well, to an extent, yes. The more experi-
ence you have, the better you can take advantage of what is at hand. An
experienced carpenter can probably build a deck by using a rock instead of
a hammer, but having an actual hammer would make the job go faster and
reduce the fatigue he or she would experience. See Table 9-1 for a cost-
comparative list of resources that you can use when tuning your database.

Table 9-1	 Cost Comparison of Tuning Resources
Tuning Resource Example or Where to

Find This Resource
Cost

Oracle Documentation docs.oracle.com Free
Oracle Non-Licensed Tools STATSPACK Free
Oracle Support support.oracle.com $ (The cost is

normally included
with license.)

Oracle Training Oracle University $
Third-Party Tools Quest TOAD $
Oracle Licensed Tools Tuning pack $$
Specialized Consultants Outside Contractor $$$

There’s a saying that claims, “Time is money.” It’s good to keep in mind when
considering which database-tuning resources to have on hand.

Also, keep in mind that hearing someone say, “The database is slow. Can
you fix it?” can be frustrating when the person reporting the problem has no
idea whether the issue lies in the database or in one of the other layers of the
complex software stack. No one wants to spend hours looking for a problem
that doesn’t exist, but many tuning efforts are spent proving that the problem
is indeed not within the database. This fact goes for newbies and experienced

187 Chapter 9: Tuning an Oracle Database for Performance

administrators alike. We have a combined 30+ years of experience working in
the Oracle software stack, and we still dread hearing the proclamation that
the database is slow.

The good news is that, as you practice the tuning techniques, you get better
and faster at finding the cause of performance issues — even those not
within the database.

Tuning Basics
Having the right approach and a good plan helps reduce the time spent iden-
tifying and fixing a database performance problem. Just like tackling any kind
of problem in life, learning from the experience of others and furthering your
education make you more successful. Valuable practices can save you time
and effort tackling your database performance problems.

Asking questions
When a performance problem is brought to your attention (by self-discovery
or by others), you need an accurate scope of the issue. Understanding the
issue might involve talking to different people within the application stack.
Some questions you might ask are

	 ✓	How is this problem presenting itself to you or others?

	 ✓	When did the problem start? Did it begin suddenly, or has it been wors-
ening over time?

	 ✓	What is the impact of this problem for you or the company? Is the issue
isolated or company-wide?

	 ✓	Has anything changed in the environment recently?

	 ✓	Is there a workaround to use while the problem is researched?

Knowing the answers to these questions helps you prioritize the issue and pos-
sibly engage others to help find the cause. (Remember: The problem might not
be in the database.) Issues can be very impactful of a company’s bottom line;
therefore, scramble all resources that can contribute to the solution.

	 Don’t try to do all the work by yourself — while you look for the issue on the
database, make sure others are searching for it outside of the database. If you
focus on the database while no one is seeking the issue elsewhere and you
then discover the database is not the problem, valuable time is lost.

188 Part III: Caring for and Feeding an Oracle Database

Pinpointing the problem
Familiarize yourself with the entire technology stack that supports the appli-
cation to help you pinpoint where bottlenecks exist. A problem related to the
database could be many things:

	 ✓	High CPU consumption

	 ✓	High IO consumption

	 ✓	Poorly performing SQL commands

	 ✓	Database design issues

	 ✓	Hardware problems

	 ✓	Application problems

	 ✓	Software bug

Unfortunately, the list goes on.

Tuning Tools
Knowing what tools are available and how to use them will greatly improve
your tuning proficiency. Have you ever tried to turn a screw with a pair of
pliers? Using the wrong tool or not knowing the proper tool for the job can
make any task difficult or impossible. You have a variety of tools at your dis-
posal when tuning an Oracle database.

Oracle documentation
Oracle provides a vast and comprehensive set of documentation for the
database. If you visit the Oracle documentation website (http://docs.
oracle.com), you see documentation for versions going back to 8.1.7 (last
time we checked). This documentation, organized into books and sections
according to topic, is free to anyone on the Internet. You also see an entire
book dedicated to tuning. Some sections of the documentation are dedicated
to helping you use specific Oracle-provided tools.

	 Just because you see a tool in the free documentation set, that doesn’t mean
you’re licensed to use it. Check with your Oracle sales rep to find out what
your license covers.

http://docs.oracle.com
http://docs.oracle.com

189 Chapter 9: Tuning an Oracle Database for Performance

At first, navigating the documentation site can be intimidating. However,
with practice, you will get to know the locations of your favorite sections,
including SQL tuning, instance tuning, recovery tuning, and everything else in
between.

	 On the home page of the documentation set for each specific version is a
Master Book List link. Use this link to jump to entire books on such topics as
performance tuning or backup and recovery.

Oracle Support
Oracle Support isn’t an anonymous group that meets Tuesday nights in a
local church basement. Rather, it’s a website (support.oracle.com) that
contains a vast amount of resources. Knowing how to efficiently search
through all the information available is half the battle. The search bar allows
you to input search strings just like any website. You can type descriptions of
specific problems, the names of features, error messages, and so on. The list
is lengthy.

Articles and documents written (and for the most part tested) by the Oracle
technical staff are available. Because there are so many Oracle software
users in this world, you’ll rarely encounter a problem that hasn’t already
been encountered by someone else.

To use official Oracle Support, you need a customer service identifier, com-
monly referred to as a CSI number. Without this number, you can’t use the
support website. When you purchase the Oracle software you intend to use,
you should also consider paying for support. Last we checked, this is not a
requirement, but we cannot stress how important having Oracle Support is.
Even the most seasoned and respected Oracle professionals in the industry
can’t overcome every problem encountered. And, if the problem you encoun-
ter is a bug, you can’t obtain a patch for your bug without Oracle Support.

Oracle user groups
You’ve certainly heard someone say, “There’s no sense in reinventing the
wheel.” It’s true; many of the problems you encounter have already been
encountered by someone else. Getting help or advice from other like-minded
individuals can be a very cost-effective and expedient way to solve a problem.

http://support.oracle.com

190 Part III: Caring for and Feeding an Oracle Database

We’re active participants in both local and national Oracle user groups. User
groups are Oracle clubs. Depending on your locality, they may be large or
small. Some user groups are regional; they might be associated with a city,
a town, or a particular part of the country. You can join national and inter-
national groups. There are even virtual groups (such as forums on the web)
that can be valuable resources if you’re a member. Some user groups are
free, some are cheap, and some may cost hundreds of dollars to join.

Beyond hobnobbing with your Oracle buddies, often these user groups have
regularly scheduled technical sessions. These sessions can range from how
to use a new feature to how to solve a particular performance problem. The
best example is Oracle’s annual bash, Oracle Open World. You can sit in on
literally thousands of sessions, many delivered by the foremost experts in
the industry.

	 If you need to pay to become a member of a particular user group, ask your
supervisor at work whether the cost is covered under training expenses.

Training classes
Although not always cheap, training classes can be some of the most valu-
able methods to gain proficiency in database tuning. We categorize this as
active tuning. Understanding the fundamentals of setting up your database
and using the tools provided is key to being a successful Oracle professional.

Training classes can be free if provided by your local user group. However,
they may not be as comprehensive and hands-on as attending a full, multi-
day course. Sometimes these can seem expensive up front. The average cost
is probably in the $2,000–$4,000 range, and you may need to cover travel
expenses as well if the class is not local. However, dollar for dollar, getting
your hands dirty with actual classroom exercises and labs is often the most
bang for your buck when you’re a new database administrator.

	 Before you attend a class, ask your peers or those you know from your local
user groups about the course instructor. Unfortunately, not all classes and
instructors are created equal. Although getting any experience when you’re a
new DBA can be valuable, having a top-notch and well-established instructor
can be worthwhile.

Licensed tools
Oracle offers a wide variety of licensable tools that you can use to tune your
database. Of the available tuning tools, foremost are the Diagnostic and
Tuning packs for Oracle Enterprise Manager. These packs contain all kinds of
devices and advisories for tuning your database.

191 Chapter 9: Tuning an Oracle Database for Performance

Most of the licensed tools are built around data that is readily available in
the database, and a very experienced database administrator can make quick
use of the metadata to gather the information for tuning a particular prob-
lem. However, that isn’t necessarily the quickest approach to solving every
pending issue. Although Oracle internally provides most, if not all, of the
information to help you fix a performance problem, compiling and analyzing
the information can take a considerable amount of time — even for the most
seasoned database administrators.

Table 9-2 lists some of the tools included with the Oracle Diagnostic and
Tuning packs for Oracle 12c Enterprise Manager Cloud Control.

Table 9-2	 Tools Available with Diagnostic and Tuning Packs
Name Pack Description
Automatic Database
Diagnostics Monitor
(ADDM)

Diagnostic This tool provides focused analysis
of activities the database is spending
most time on to determine the root
causes of problems.

Automatic Workload
Repository (AWR)

Diagnostic At regular intervals, the database takes
a snapshot of its workload information
and stores it for analysis of past
activity.

Active Session
History (ASH)

Diagnostic Similar to AWR, this tool stores infor-
mation specific to sessions, such as
past SQL executed and performance
metric history.

Monitoring and
Alerting

Diagnostic You get a comprehensive set of moni-
toring and notification features.

Real Time Monitoring Tuning This tool enables graphical analysis of
real-time performance database activ-
ity within Enterprise Manager. (A pic-
ture really is worth a thousand words.)

SQL Tuning Advisor Tuning This advisor automates the SQL tuning
process by comprehensively explor-
ing all the possible ways of tuning SQL
statements. This tool also provides
action plans to remediate issues.

SQL Access Advisor Tuning This advisor recommends design and
parameter changes to emphasize more
throughput and better performance.

192 Part III: Caring for and Feeding an Oracle Database

Although they come with the database, you are not allowed to use the tools
without a license. If you do, you run the risk of being in violation of your
license agreement with Oracle. You can talk to your Oracle Sales rep about
getting licensed to use these tools. Licensed tools allow you to reduce the
time it takes to find and solve problems. They are pieces of software, just like
the database, therefore, Oracle charges you for them.

Tuning the Database before
Something Goes Wrong

Benjamin Franklin thought an ounce of prevention was worth a pound of
cure. At today’s prices, a pound of cure comes with a pretty hefty price tag,
so preparation and planning are paramount to any software installation. A
properly executed Oracle database installation and configuration lay the
groundwork for an environment that is void of underlying systemic issues
that can contribute to performance-related problems.

Pre-installation planning and preparation
Planning the installation of your database software or a new database is an
important step in performance tuning. Poor planning can lead to problems
that can’t be surmounted easily by the tools at your disposal. For example,
if you’re going to have a database that has a very high IO requirement, you
need a solid storage foundation underneath the database that can handle the
workload. If you don’t, no amount of SQL tuning can overcome the physical
shortage of resources needed.

Table 9-3 provides a short list of details to consider before beginning an
Oracle installation.

Table 9-3	 Planning Your Oracle Installation
Item Considerations
Number of users Concurrency, CPU/cores, memory
High transaction workload
type

CPU, memory, database parameters, recovery time

High read workload type Parallelism, SSDs, SAN, spindles, file organization
High availability Clustering, redundancy
Ad hoc querying Reporting tools, materializing data, indexing,

ETL/batch jobs

193 Chapter 9: Tuning an Oracle Database for Performance

The answers you gain by understanding what the application and database
are going to support can help you design a system capable of handling your
workload. These concepts are not new. Apply what you’ve experienced in
any major undertaking to the Oracle-related task at hand.

Selecting software
Another area that can help you put your best foot forward when preparing
and planning an Oracle installation is careful selection of the software ver-
sion. The best guideline is to go with the latest version available. However,
here are a couple of caveats to consider:

	 ✓	Latest is not always greatest. Some people say you should never buy
the first year of a new model of car. As with anything super-new, you can
sometimes fall victim to undiscovered glitches and bugs. With Oracle,
our approach is simply be wary of using brand-new versions of Oracle
without at least one patch set update (PSU). PSUs from Oracle come out
every three months. Therefore, you won’t have to wait long before fixes
become available.

	 ✓	If you have third-party packaged software, make sure you’re using
an approved or certified version of Oracle. Even though Oracle 12c
patchset “X” might be available, make sure that if your database is going
to support another software vendor’s packaged application, it’s certi-
fied by the vendor to work with Oracle. Unfortunately, it is common for
software vendors’ certification to fall behind the latest software version
of Oracle. This can be frustrating. However, more frustrating is when
you’re trying to make a software package work on one version of the
database when it has been tuned for another.

After you settle on a version of the Oracle software to use, make sure you
have the latest maintenance packs, Patch Set Updates (PSU), or Security
Patch Updates (SPU) applied. Each update can contain fixes that improve the
performance of the database engine.

The hard part
As you can probably imagine, the hardware is an important part of any soft-
ware installation. Everyone has different backgrounds and familiarity with
computer hardware. Your experience may be simply using your computer
at home or your laptop at work. Or, you may have a background in system
administration.

Because the hardware selection is such an important part of the configura-
tion, be sure to assess your ability to make hardware recommendations. If
you aren’t up to speed on the latest hardware trends or how to appropriately
size a server or system, make sure you have someone available who is.

194 Part III: Caring for and Feeding an Oracle Database

	 There is no shame in asking for help with hardware selection. Many compa-
nies these days have experts on staff whose job it is to help make these deci-
sions. It’s better to do the job right the first time by asking for help than
having to go back and do it again.

There is no shortage of vendors wanting to sell hardware to your company.
In our experience, most hardware vendors also have experts on staff who are
well-versed in helping spec out an Oracle system. These experts can talk to
you about the features and differences of the gear they can provide.

	 Make sure that you understand the budget as well. Most often, Oracle licens-
ing is calculated by CPU socket/core. Although a hardware vendor may want
to set you up with 64 CPUs of processing power, make sure you can afford to
run Oracle on that configuration. With that said, don’t let budget alone deter-
mine your hardware. That’s a sure-fire way to head down the road to failure.

Server and storage vendors want to spend your money. However, they also
want you to be happy with the product you’re getting. Talk to a technical
expert from the vendor (or someone within your company) about the pur-
pose of the system. Aspects of the hardware selection may gravitate from
one configuration to another depending on whether you’re supporting some-
thing like a data warehouse or a system that needs to process transactions
quickly. Configurations can affect CPU, disk, memory, and network resources.
Also discuss high availability, scalability, and redundancy. To get answers to
all these questions, you also may have to coordinate with the project owners
and application experts. The sooner you, as a database administrator, get
included in the project planning the better off you’ll be in the long run.

	 Often, database administrators are left out in the cold when a project kicks off.
Many people see a database as a black box data store. That is absolutely not
the case. Despite the performance-related issues that can arise, failing to use
all the other features Oracle offers de-values the investment you’re making.

Lastly, and this is often an overlooked part of the hardware selection pro-
cess, don’t forget about lower region systems that will support the produc-
tion application environment:

	 ✓	Development: This region is where all the initial coding and new or
updated coding should take place. It’s where the application developers
get to try out new things. You want an isolated system that’s as close to
identical as possible to production in terms of software configuration.
Often, the hardware for this environment is of lesser capability to
save costs.

	 ✓	Testing: This region should be closer to prod in configuration. (We
explain the prod region in the upcoming Table 9-4.) It really should not
be used for developing new code. It should have realistic volumes of
data and have an identical configuration for hardware and software,
from the database to the application servers.

195 Chapter 9: Tuning an Oracle Database for Performance

The two preceding suggestions are the very minimum you should employ. In
fact, some companies have many more levels of lower regions before they get
to the production environment. Table 9-4 lists some of the other regions you
may come across or have to configure in your environment.

Table 9-4	 Database Regions
Name Use
Development Develop new code and features.
UAT (User Acceptance
Testing)

This testing is done by the end user and soft-
ware design team.

IAT (Integration Acceptance
Testing)

Test to make sure changes don’t break anything
in the rest of the software stack

Pre-prod The environment is an exact copy of production.
This is the final stop before code is deployed.

Prod This is the production operating environment.
Failover This is a copy of production to support high

availability or disaster recovery.
Demo It acts as a subset of dummy data for demon-

strating application feature to customers.
Training This is a subset of dummy data used for training

purposes.

Tuning after a Problem Arises
Unfortunately, no matter how much preparation and configuration you do
before you deploy your database, someday a performance problem will
arise. Performance tuning is one of the more difficult tasks for DBAs whether
they’re new or seasoned. Entire books, week-long training classes, and large
pieces of software have been written to help you deal with the inevitable per-
formance problems that will arise.

In the following sections, we focus primarily on what you have available out
of the box from Oracle after you’ve installed the database. Heck, we don’t
even have enough pages to cover that in its entirety. However, we get you
started in the right direction so you have the correct fundamentals on which
to build your tuning resume.

196 Part III: Caring for and Feeding an Oracle Database

Tell me, what is your problem?
Even though it’s not funny, the running joke about a database performance
problem always seems to start with, “A guy walks into a bar and says, ‘My
database is slow. . . .’”

When a guy, I mean a user, comes up to the DBA and makes a comment like
that, what exactly does that mean? Often, the database is blamed for issues
that could be related to something else entirely. The database always seems
to get a bad rap. As a DBA, your first task is to see whether the database actu-
ally has a problem.

First, collect some basic information from the user:

	 ✓	When did this problem start?

	 ✓	Are you the only one experiencing it?

	 ✓	Can you replicate the problem at will, or is it intermittent?

	 ✓	Can you show me how to replicate the problem?

	 ✓	Does it happen only during certain times of the day?

	 ✓	What is the impact of this problem to the business?

After you get some of the above questions answered, see whether you can
verify the problem. If you can’t verify it at your desk, it may be something that
would make a trip to the user’s desk worthwhile to see the problem in person.
After all, you may find that he has 100 programs open on his machine, which
is slowing down everything he does. Or, you may note that he is operating in
a different building, on a different part of the WAN, or off of a wireless connec-
tion, which could explain a perceived problem with the database.

If you can’t replicate the problem in person or explain why he is experiencing
the problem, one of the next steps to take is to ask for some help. We don’t
necessarily mean from other DBAs (although that never hurts); we mean
from other infrastructure teams. For example, you might engage the system
administrators to check the database server or the application servers for
overloading, or you might engage the storage team to look at the filers or SAN
(Storage Area Network) where the data resides.

The reason you want to engage these other teams early is often times a
performance problem can be crippling to the business. It’s better to involve
them now to start working on the issue rather than after two hours trying
to solve it yourself. They may come back and say everything looks like busi-
ness as usual or they may see some increase in resource consumption.
Sometimes, they can trace resource hogs to individual user processes on the
system. If that sort of red flag can be identified, you’ll head in the right direc-
tion sooner. When you have something to focus on, you can start employing
some of the tools at your disposal to fix the problem.

197 Chapter 9: Tuning an Oracle Database for Performance

Tuning SQL
The biggest bang you are going to get in terms of performance tuning is by
having good SQL. Badly written SQL is predominantly the cause for most per-
formance problems in a database. Writing good SQL from the get go when a
new application is being developed can save you buckets of money and time
later on. Unfortunately, as a DBA, most of the situations you find yourself in
are on pre-existing systems where the SQL is already in place.

Generating an Explain Plan
Say you have narrowed a performance problem down to a specific SQL state-
ment in the database. Through questioning the user and testing the problem
yourself, you’ve been able to replicate the issue with a specific SQL state-
ment. One of the tools provided with the database that you first want to
become familiar with is Explain Plan. Explain Plan does just what it says. It
shows you the execution of the SQL statement and explains what each step
of the plan is doing.

The Explain Plan is generated by using the SQL command EXPLAIN PLAN
FOR. As a simple example, say you have the following SQL statement, which
is taking a long time to execute:

SELECT first_name, last_name
FROM emp
WHERE last_name = ‘Hopkins’;

Here is how you generate an Explain Plan for the preceding statement:

EXPLAIN PLAN FOR
SELECT first_name, last_name
FROM emp
WHERE last_name = ‘Hopkins’;

You see this output after generating the Explain Plan:

Explained.

After the SQL statement is explained, by default the plan is stored in the data
dictionary table called the PLAN_TABLE$. There is a public synonym, PLAN_
TABLE, that allows all users to have access to this internal table. We were
specific to say “by default” because there are other methods to store execu-
tion plans, but for the purposes of this book we use the default method.

198 Part III: Caring for and Feeding an Oracle Database

Displaying and reading the
SQL statement output
You can pull out the information in the PLAN_TABLE in a number of ways.
There is a lot of information to be displayed. Displaying all of it is not always
useful. One simple method is to run an Oracle-supplied script to read and
format the information. This method displays only the most recent Explain
Plan. The script is stored in the $ORACLE_HOME/rdbms/admin directory.
The script is named utlxpls. From SQL in the same session where you ran the
EXPLAIN, type this:

SQL> @?\rdbms\admin\utlxpls

	 A shortcut to specifying ORACLE_HOME is the “?” as shown in the preceding
statement.

The explained output of your SQL statement looks similar to this:

PLAN_TABLE_OUTPUT
--
Plan hash value: 3956160932
--
| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |
--
| 0 | SELECT STATEMENT | | 1 | 15 | 40335 (2)| 00:00:02 |
|* 1 | TABLE ACCESS FULL| EMP | 1 | 15 | 40335 (2)| 00:00:02 |
--

Predicate Information (identified by operation id):

 1 - filter(“LAST_NAME”=’Hopkins’)

Although it takes some experience to read the fine details in the EXPLAIN
PLAN output, a few things jump out:

	 ✓	The use of a full table scan (TABLE ACCESS FULL EMP)

	 ✓	The Predicate Information (1 – filter(“LAST_NAME”=’Hopkins’). This is
your where clause.

	 ✓	The number 1 matching the Predicate Information back to the operation.
The number indexes this back to the step in the section above. In this
example, it seems simple, but, if you have an Explain Plan with dozens of
lines, this can be very helpful.

Another bit of information you may note is the value for COST. In the preced-
ing case, the COST is 40335. Although the cost in and of itself doesn’t neces-
sarily mean anything at face value, you can use it to compare the changes
that you make to the execution plan. Typically, the lower the cost is, the
better your plan is. Statements with many different operations have costs

199 Chapter 9: Tuning an Oracle Database for Performance

associated with each step. By looking at the cost of each step, you can deter-
mine what stage of the execution is the most expensive (resource-wise, not
money-wise). Then you can focus your tuning on that stage. Most of the time,
as you make changes and lower the cost, you’re making moves in the right
direction.

Here’s a more complex example of an execution plan:

explain plan for
SELECT first_name, last_name, department_name
FROM emp join departments using (department_id)
WHERE last_name = ‘Hopkins’;

Explained.

Elapsed: 00:00:00.09
SQL> @?\rdbms\admin\utlxpls

PLAN_TABLE_OUTPUT
--

Plan hash value: 3338584009

--
| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |
--
0	SELECT STATEMENT		1	34	40336 (2)	00:00:02
1	NESTED LOOPS					
2	NESTED LOOPS		1	34	40336 (2)	00:00:02
* 3	TABLE ACCESS FULL	EMP	1	18	40335 (2)	00:00:02
* 4	INDEX UNIQUE SCAN	DEPT_ID_PK	1		0 (0)	00:00:01
5	TABLE ACCESS BY INDEX ROWID	DEPARTMENTS	1	16	1 (0)	00:00:01
--

Predicate Information (identified by operation id):

 3 - filter(“EMP”.”LAST_NAME”=’Hopkins’)
 4 - access(“EMP”.”DEPARTMENT_ID”=”DEPARTMENTS”.”DEPARTMENT_ID”)

200 Part III: Caring for and Feeding an Oracle Database

In this example, you see five operations. By looking at the height operation
(Step 5) and working back, you can see that the cost looks like this:

Step 5 = 1

Step 4 = 0

Step 3 = 40335

Step 2 = 40336

Step 1 = 40336

 Total = 40336

Notice how the cost of all the steps adds up. Also notice how the cost of Step
3 is by far the most expensive. With that said, a DBA would want to focus his
tuning efforts on Step 3.

If you don’t have the Explain Plan information at your fingertips or people
to consult about making the correct tuning decisions, you can try using the
Oracle utility called the SQL Tuning Advisor. You can use this built-in tool
to provide suggestions or recommendations about certain SQL statements.
Although it may not always give perfect advice, just like anything else, having
it in your toolbox of tuning techniques is beneficial.

In Chapter 6, we talk about how it can be useful for the DBA to have an
understanding of PL/SQL; this is where it can help. Running the SQL Tuning
Advisor requires several steps:

Are indexes always the answer?
Are indexes always going to fix performance
problems? In short, no. For example, a sea-
soned DBA will look at the nearby example
and see that the full table scan is causing the
performance issue. An index can often fix a full
table scan. Because you’re searching on last_
name, indexing last_name may help. However,
your task isn’t always that simple. In this case,
because this is a list of employees for the

company, you can be pretty confident that last_
name is fairly unique. Therefore, an index might
be preferable. However, what if instead of last_
name, the search was on department_id? That
may not be very unique, and an index wouldn’t
be desirable. (We don’t index the word oracle
in this book, for example, because it occurs too
many times.)

201 Chapter 9: Tuning an Oracle Database for Performance

	 1.	 Use PL/SQL and the internal package DBMS_SQL_TUNE to create a
tuning task. Type this:
DECLARE
 l_sql VARCHAR2(500);
 l_sql_tune_task_id VARCHAR2(100);

BEGIN

 l_sql := ‘SELECT first_name, last_name, department_name ‘ ||
 ‘FROM emp JOIN departments USING (department_id) ‘ ||
 ‘WHERE last_name = ‘’Hopkins’’’;

 l_sql_tune_task_id := DBMS_SQLTUNE.create_tuning_task (
 sql_text => l_sql,
 user_name => ‘HR’,
 scope => DBMS_SQLTUNE.scope_comprehensive,
 time_limit => 60,
 task_name => ‘emp_dept_tuning_task’,
 description => ‘Tuning task for an EMP to

DEPARTMENT join query.’);
 DBMS_OUTPUT.put_line(‘l_sql_tune_task_id: ‘ || l_sql_tune_task_id);
END;
/

		 You should see the following:
PL/SQL procedure successfully completed.

		 In the preceding command, note the TIME_LIMIT of 60. That limits
the processing time to 60 seconds. You may not always want to run
something like this for long periods in your database, because it incurs
system overhead. This is a good example of where it can be useful to have
a copy of your production system elsewhere for testing and tuning —
if you use that little trick, you won’t have to be as concerned about over-
head. Either way, pay attention to this limit, you may have to adjust it up
if you don’t have enough time to tune a complex statement. For a state-
ment such as the preceding one, which is pretty simple, this limit should
suffice.

	 2.	 Execute the tuning advisor with your task by typing this:
EXEC DBMS_SQLTUNE.execute_tuning_task(task_name => ‘emp_dept_tuning_task’);

		 Because of the limit of 60 seconds provided in the task creation, this
step may take up to 60 seconds to complete. During this time, your
prompt won’t come back.

		 When it completes, you should see this:
PL/SQL procedure successfully completed.

202 Part III: Caring for and Feeding an Oracle Database

		 If you’ve set a longer time and are getting impatient, you can open
another SQL window to make sure that the task is still executing by
typing
SELECT task_name, status, execution_start
FROM dba_advisor_log WHERE owner = ‘HR’;

		 You see something like the following:
TASK_NAME STATUS EXECUTION_START
------------------------------ --------------- --------------------
emp_dept_tuning_task EXECUTING 19-JUL-2013 15:35:42

	 3.	 When the execution is complete, you can view the results by running
the BMS_SQLTUNE.report_tuning_task procedure. Type the following:
SELECT
DBMS_SQLTUNE.report_tuning_task(‘emp_dept_tuning_task’) AS recommendations
FROM dual;

		 For the sake of space, we’ve snipped some sections from the output that
follows, but you see something like this:
RECOMMENDATIONS

GENERAL INFORMATION SECTION
--
Tuning Task Name : emp_dept_tuning_task
Tuning Task Owner : HR
Workload Type : Single SQL Statement
Scope : COMPREHENSIVE
Time Limit(seconds): 60
Completion Status : INTERRUPTED
Started at : 07/19/2013 15:21:39
Completed at : 07/19/2013 15:22:43

--
Error: ORA-13639: The current operation was interrupted because it timed

out.
--

--
Schema Name: HR
SQL ID : 47uvvzcuu5mdg
SQL Text : SELECT first_name, last_name, department_name FROM emp JOIN
 departments USING (department_id) WHERE last_name = ‘Hopkins‘

RECOMMENDATIONS
--
--

203 Chapter 9: Tuning an Oracle Database for Performance

FINDINGS SECTION (1 finding)
--

1- Index Finding (see explain plans section below)
--
 The execution plan of this statement can be improved by creating one or

more indices.

 Recommendation (estimated benefit: 99.98%)
 --
 - Consider running the Access Advisor to improve the physical schema

design or creating the recommended index.
 create index HR.IDX$$_03170001 on HR.EMP(“LAST_NAME“);

 Rationale

 Creating the recommended indices significantly improves the execution

plan of this statement.
 However, it might be preferable to run Access Advisor using a

representative SQL workload as opposed to a single statement.
 This will allow you to get comprehensive index recommendations, which

takes into account index maintenance overhead and additional
space consumption.

...output snipped...

		 The latter part of the report shows the before and after execution plans.
In this case, you’ve seen the before when you were generating execution
plans. Go ahead and add the index, regenerate the execution plan, and
see whether you’ve made an improvement.

		 Before you add the index, note that the recommendations give the SQL
to add the index:
 Recommendation (estimated benefit: 99.98%)
 --
 - Consider running the Access Advisor to improve the physical schema

design
 or creating the recommended index.
 create index HR.IDX$$_03170001 on HR.EMP(“LAST_NAME”);

		 You don’t have to follow the exact naming conventions Oracle chooses.
Sometimes they’re a little awkward. We use some that are more readable
and relevant to us, and you can too.

		 Also note that Oracle gives a warning:
RECOMMENDATIONS
--
 account index maintenance overhead and additional space consumption.

204 Part III: Caring for and Feeding an Oracle Database

		 As we mention earlier, adding an index isn’t always a perfect solution.
Here Oracle is warning you that even though adding the index may help
performance, it also has overhead associated with it in the form of space
and maintenance (inserts, updates, deletes). This is the sort of thing
that over time a seasoned DBA becomes keen to notice.

	 4.	 Add the index with your own name by typing this:
CREATE INDEX emp_last_name_idx ON emp(last_name);

		 You should see something like the following:
Index created.

	 5.	 Take a look at the execution plan. Type the following:
explain plan for
SELECT first_name, last_name, department_name
FROM emp join departments using (department_id)
WHERE last_name = ‘Hopkins’;

Explained.

Elapsed: 00:00:00.09

		 And then type
@?\rdbms\admin\utlxpls

		 You should see output like this:
PLAN_TABLE_OUTPUT
--
Plan hash value: 1505300146

--
| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |
--
0	SELECT STATEMENT		1	34	5 (0)	00:00:01
1	NESTED LOOPS					
2	NESTED L		1	34	5 (0)	00:00:01
3	TABLE ACCESS BY INDEX ROWID BATCHED	EMP	1	18	4 (0)	00:00:01
* 4	INDEX RANGE SCAN	EMP_LAST_NAME_IDX	1		3 (0)	00:00:01
* 5	INDEX UNIQUE SCAN	DEPT_ID_PK	1		0 (0)	00:00:01
6	TABLE ACCESS BY INDEX ROWID	DEPARTMENTS	1	16	1 (0)	00:00:01
--

Predicate Information (identified by operation id):

 4 - access(“EMP”.”LAST_NAME”=’Hopkins’)
 5 - access(“EMP”.”DEPARTMENT_ID”=”DEPARTMENTS”.”DEPARTMENT_ID”)

205 Chapter 9: Tuning an Oracle Database for Performance

Now that you’ve added the index, a few things are evident:

	 ✓	The cost of the plan dropped from 40336 to 5.

	 ✓	There are now six steps.

	 ✓	The full table scan is gone. Instead you see the use of your new index.

Although each system performs differently, we found that after making the
index change in our test system, the execution time dropped from eight sec-
onds to less than one second.

Often one of the tough parts about tuning a database is having a solid under-
standing of the application and the data. The issue might not always be obvi-
ous. Sometimes engaging other application and data experts helps. Explain
to them your findings and what you propose. They may be able to help you
come to a conclusion. Also, if the data is part of a packaged third-party appli-
cation, sometimes opening a ticket with the vendor is the way to go.

Tuning the Database
Tuning SQL is just one aspect of Oracle performance management. The
database itself can also be configured and tuned for better performance. It
is typical that SQL tuning will give you the best performance advantages out
of the gate, but it isn’t always possible. For example, you may run a pack-
aged vendor application in which you cannot change SQL. Although you may
submit performance Service Requests to the vendor in order to receive new
code, what can you do in the meantime to alleviate performance overhead?

To tune the database, you can employ various methods:

	 ✓	Oracle Instance Parameters: You can adjust these parameters to influ-
ence how the instance and the optimizer are configured to handle
memory, parallelism, and execution plan generation.

	 ✓	Oracle Infrastructure Features: Different editions of the database come
with features that can be implemented to overcome certain types of per-
formance problems. Some examples of these features are partitioning,
materialized views, object and system statistics, and SQL profiles.

	 ✓	Infrastructure Enhancements: These sorts of changes often require
interaction with other professionals in your organization to make
improvements to the underlying infrastructure that runs the database
(for example, server upgrades, SAN improvements, or network transmis-
sion speeds).

206 Part III: Caring for and Feeding an Oracle Database

One of the challenges you’ll encounter when coming up with methods to tune
the database is of course identifying the problems. Oracle and other software
vendors provide various tools that will holistically examine the database soft-
ware and configuration to make recommendations. As mentioned earlier in
this chapter, these sorts of tools can be expensive.

The following sections provide you with some examples of bare-bones, no-
cost approaches from which you can start building your skills. When you’re
comfortable with the fundamentals of tuning, you can better evaluate some
of the more expensive options on the market. We want to be careful and
not discourage you from considering some of the other licensed options.
Sometimes, no matter how experienced a DBA is, a tool can do the job better
and faster, which translates into money saved. However, before you go requi-
sitioning purchases, you should understand how tuning the database works.

Installing STATSPACK
STATSPACK is an Oracle supplied group of programs that allows you to slice
up the Oracle operating metrics into sections of time or periods for focused
analysis. You then look at the operational statistics and SQL captured during
these periods to identify bottlenecks and wait times. After you identify these
problems, you can then begin to research methods for tuning them out of the
database.

For some reason, as of Oracle 12c, Oracle no longer provides STATSPACK
documentation as part of the main Oracle documentation website. However,
Oracle still provides text-based documentation in the software install direc-
tory. We urge you to review this documentation if you have the desire for
more information. You can find the Oracle STATSPACK documentation here:

$ORACLE_HOME/rdbms/admin/spcdoc.txt

To install STATSPACK on a Linux server running Oracle, follow these steps:

	 1.	 From the server command prompt, start SQL*Plus and log in as
SYSDBA by typing
sqlplus / as sysdba

		 You see something like this:
SQL*Plus: Release 12.1.0.1.0 Production on Fri Jul 19 17:14:30 2013
Copyright (c) 1982, 2013, Oracle. All rights reserved.
Connected to:
Oracle Database 12c Enterprise Edition Release 12.1.0.1.0 - 64bit

Production
With the Partitioning, OLAP, Advanced Analytics and Real Application

Testing options

207 Chapter 9: Tuning an Oracle Database for Performance

	 2.	 Run the creation utility, which requires some inputs, by typing
SQL> @?/rdbms/admin/spcreate

		 You see something like this:
Choose the PERFSTAT user’s password

Not specifying a password will result in the installation FAILING

Enter value for perfstat_password:

		 For testing purposes, type the following password:
Perf$tat

		 You see something like the following:
Choose the Default tablespace for the PERFSTAT user

Below is the list of online tablespaces in this database which can
store user data. Specifying the SYSTEM tablespace for the user’s
default tablespace will result in the installation FAILING, as
using SYSTEM for performance data is not supported.

Choose the PERFSTAT users’s default tablespace. This is the tablespace
in which the STATSPACK tables and indexes will be created.

TABLESPACE_NAME CONTENTS STATSPACK DEFAULT TABLESPACE
------------------------------ --------- ----------------------------
MY_DATA PERMANENT
MY_INDEX PERMANENT
RMAN_DATA PERMANENT
SYSAUX PERMANENT *
USERS PERMANENT

Pressing <return> will result in STATSPACK’s recommended default
tablespace (identified by *) being used.

Enter value for default_tablespace:

		 Oracle recommends SYSAUX as the default tablespace for STATSPACK
objects. Type
SYSAUX

208 Part III: Caring for and Feeding an Oracle Database

		 You see something like this:
Choose the Temporary tablespace for the PERFSTAT user

Below is the list of online tablespaces in this database which can
store temporary data (e.g. for sort workareas). Specifying the SYSTEM
tablespace for the user’s temporary tablespace will result in the
installation FAILING, as using SYSTEM for workareas is not supported.

Choose the PERFSTAT user’s Temporary tablespace.

TABLESPACE_NAME CONTENTS DB DEFAULT TEMP TABLESPACE
------------------------------ --------- --------------------------
TEMP TEMPORARY *

Pressing <return> will result in the database’s default Temporary
tablespace (identified by *) being used.

Enter value for temporary_tablespace:

	 3.	 Accept the default TEMP tablespace by pressing Enter.

		 You see something like this:
... Creating PERFSTAT user

... Installing required packages

... Creating views

... Granting privileges

... output snipped...
Creating Package STATSPACK...

Package created.

No errors.
Creating Package Body STATSPACK...

Package body created.

No errors.

NOTE:
SPCPKG complete. Please check spcpkg.lis for any errors.

	 STATSPACK is very similar to a tool called the Automatic Workload Repository
(AWR). However, the AWR requires a license to the Diagnostic pack.

209 Chapter 9: Tuning an Oracle Database for Performance

Taking snapshots with STATSPACK
The way to use STATSPACK is to bracket the performance problem by get-
ting a snapshot before the issue begins and after the issue ends. This task
can be tricky. You may not be able to predict when the performance problem
occurs. Or, perhaps the problem already occurred, and you can’t repeat it
because you’re concerned about adding further overhead to the system or
the problem happens only on a pre-scheduled time, such as with a batch job.

First assume that the problem is something for which you can easily create
snapshots. For example, there is a report that runs at 3 p.m. every day.
Normally, the report runs in five minutes. However, the last few days, the
report has taken over an hour.

To get snapshots that bracket the report, you must take a snapshot right
before the report starts and another snapshot right after the report ends.
This effort ensures that the statistics the snapshot collects are specific to the
time period and any major operations that were occurring.

Here’s how to bracket an issue by using STATSPACK:

	 1.	 Log in to SQL*Plus from the operating system as the new PERFSTAT
user with the password you chose during installation and type
sqlplus perfstat

		 You see this:
SQL*Plus: Release 12.1.0.1.0 Production on Fri Jul 19 17:33:22 2013

Copyright (c) 1982, 2013, Oracle. All rights reserved.
Enter password:
Connected to:
Oracle Database 12c Enterprise Edition Release 12.1.0.1.0 - 64bit

Production
With the Partitioning, OLAP, Advanced Analytics and Real Application

Testing options

	 2.	 To take your beginning snapshot, type
exec statspack.snap

		 You see the following:
PL/SQL procedure successfully completed.

	 3.	 After the report finishes running, take another snapshot the same way
you did before by typing
exec statspack.snap

210 Part III: Caring for and Feeding an Oracle Database

		 You see this:
PL/SQL procedure successfully completed.

Next, you need to generate your STATSPACK report. The STATSPACK report
generates all the operational statistics during the time period between the
two snapshots so you can see where the system focused its time.

To generate your STATSPACK report:

	 1.	 Log in to SQL*Plus from the operating system as the new PERFSTAT
user with the password you chose during installation and type
sqlplus perfstat

		 You see this:
SQL*Plus: Release 12.1.0.1.0 Production on Fri Jul 19 17:37:41 2013

Copyright (c) 1982, 2013, Oracle. All rights reserved.
Enter password:
Connected to:
Oracle Database 12c Enterprise Edition Release 12.1.0.1.0 - 64bit

Production
With the Partitioning, OLAP, Advanced Analytics and Real Application

Testing options

	 2.	 Type
@?/rdbms/admin/spreport

		 You see something like the following:
~~~~~~~~~~~~~~~~

   DB Id    DB Name      Inst Num Instance
----------- ------------ -------- ------------
 3615982967 DEV12C              1 dev12c

Instances in this Statspack schema
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

 DB Id Inst Num DB Name Instance Host
----------- -------- ------------ ------------ ------------
 3615982967 1 DEV12C dev12c orasvr01

Using 3615982967 for database Id
Using 1 for instance number

211 Chapter 9: Tuning an Oracle Database for Performance

Specify the number of days of snapshots to choose from
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Entering the number of days (n) will result in the most recent
(n) days of snapshots being listed.  Pressing <return> without
specifying a number lists all completed snapshots.

Listing all Completed Snapshots
                                                       Snap
Instance     DB Name        Snap Id   Snap Started    Level Comment
------------ ------------ --------- ----------------- ----- ---------------
dev12c       DEV12C               1 19 Jul 2013 17:34     5
                                 11 19 Jul 2013 17:38     5

Specify the Begin and End Snapshot Ids
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Enter value for begin_snap:
Enter number 1 for the begin snap from the list shown above.

		 You see something like this:
Begin Snapshot Id specified: 1

Enter value for end_snap:

	 3.	 Enter number 11 from the preceding list.

		 Because you have only two snapshots at this time, this step is fairly
straightforward.

		 You see this:
Specify the Report Name
~~~~~~~~~~~~~~~~~~~~~~~
The default report file name is sp_1_11.  To use this name,
press <return> to continue, otherwise enter an alternative.

Enter value for report_name:

	 4.	 Enter a name for the report. For this example, type
test_report_snaps_1_11

		  After pressing Enter, your screen scrolls through a lot of information. 
Don’t worry about reading it at this time; it’s all going into the report 
you specified.

Interpreting STATSPACK output
The report you get from running spreport will most likely be more than 50 
pages, in text format, and saved in the directory you were in when you cre-
ated the report. Believe us when we say there is more information in there 
than most people will use. However, understanding a few key sections can 
give you a leg up on making use of the results.



212 Part III: Caring for and Feeding an Oracle Database 

Here are some of the key sections you should focus on when looking at the 
report output:

	 ✓	The First Page: This section contains all the relevant information about 
the state of the database for which the snapshot period applies. It con-
tains the length of time between snapshots, the number of logged in 
users, memory component sizes, and the database and instance names. 
It also includes some high-level metrics such as the instance memory 
efficiency percentages, number of physical reads and writes, and SQL 
parsing information. This section gives you a good overview of what  
was going on when the snapshots were taken in case you’re just the 
interpreter of the report and were not involved with the taking of the 
snapshots.

	 ✓	Top 5 Timed Events: This section is one of our favorites. It boils down 
to where the database spent most of its time and puts the information 
into five buckets. If you see any buckets that consume the lion’s share 
of the time, it can lead you down the first path for focused tuning. For 
example, if IO or CPU were in the 90 percent range, you may want to 
look at the SQL section, the file sections, or the memory-tuning sections 
and start looking for items to tune that fit those buckets.

	 ✓	SQL Sections: The SQL sections break down the top SQL statements by 
CPU, elapsed time, physical IO, buffer gets, reads, executions, parses, 
and shareable memory. These sections can help identify problem SQL 
that’s responsible for heavy use of resources during the snap period. A 
DBA or application developer can also look for specific SQL to identify 
that is part of the application. You can then attack and tune the SQL.

	 ✓	Tablespace and Datafile IO Stats: Finding what tablespaces and data 
files comprise most of your reads and writes can help you identify 
hot (heavily used) files and devices that may benefit from striping or 
other storage adjustments. You can also use this information to decide 
whether certain tablespaces may benefit from more separation of 
objects that may be getting concurrently accessed.

	 ✓	Memory Advisory Sections: The memory advisory sections contain 
Oracle’s self-evaluation of the different memory pools for things like the 
shared pool, buffer cache, and PGA. By looking at the findings Oracle 
has come up with, you can increase the memory areas to tune things 
such as IO, parsing, or sorting.

	 ✓	Init Parameter Section: This section lists the initialization parameters 
that were set to non-default values during the report period. You can 
look for anything which represents an anomaly or a value which can 
explain certain performance characteristics. When you’re comparing 
different reports over time, this section can also help identify instance 
configuration parameters that may have taken place. For example, if you 
have a report from a week ago when performance was good and a report 



213 Chapter 9: Tuning an Oracle Database for Performance

from today where performance was poor, a good way to start would be 
comparing the initialization parameters. Finding a difference is what we 
would call “low-hanging fruit” or “easy pickings” as a potential cause for 
bad performance.

Scheduling snapshots
The method for taking snapshots and generating reports is handy when 
you have a predictive performance issue or a situation where the problem 
is easily repeatable. You can take the snapshots and interpret the results. 
However, this method doesn’t let you look at the past or compare time peri-
ods easily. Say you have a weekend batch job take ten times longer than 
normal. You can’t wait until next weekend to take the snapshots. You would 
be better off to have these snapshots on Monday when you return to work.

To take advantage of snapshots and reports in this way, Oracle offers the 
built-in ability to schedule the snapshots to be taken at specific intervals. 
That is, you can keep a history of snapshots so you can go back a day, a 
week, or even a year (depending on your snap retention period) to analyze 
performance.

By default, the interval for automatic snapshots that Oracle provides is one 
hour. You can change this if you want by editing the job scheduler or the 
script that sets up the automatic snapshots. 

To use the default time of one hour to automatically schedule snapshots to 
be taken:

	 1.	 Log in to SQL*Plus from the operating system as the new PERFSTAT 
user with the password you chose during installation and type
sqlplus perfstat

		  You see this:
SQL*Plus: Release 12.1.0.1.0 Production on Fri Jul 19 17:37:41 2013

Copyright (c) 1982, 2013, Oracle.  All rights reserved.
Enter password:
Connected to:
Oracle Database 12c Enterprise Edition Release 12.1.0.1.0 - 64bit 

Production
With the Partitioning, OLAP, Advanced Analytics and Real Application 

Testing options



214 Part III: Caring for and Feeding an Oracle Database 

	 2.	 Type
@?/rdbms/admin/spauto

		  You see something like the following:
PL/SQL procedure successfully completed.

Job number for automated statistics collection for this instance
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Note that this job number is needed when modifying or removing
the job:

 JOBNO

 1
Job queue process
~~~~~~~~~~~~~~~~~
Below is the current setting of the job_queue_processes init.ora
parameter - the value for this parameter must be greater
than 0 to use automatic statistics gathering:

NAME                                 TYPE        VALUE
------------------------------------ ----------- --------------------------
job_queue_processes                  integer     1000

Next scheduled run
~~~~~~~~~~~~~~~~~~
The next scheduled run for this job is:

 JOB NEXT_DATE NEXT_SEC
---------- --------- --------
 1 19-JUL-13 19:00:00

		 This output shows that the next execution of an automatic snapshot will
occur at 19:00 hours and every hour thereafter.

One thing to consider when automatically creating snapshots is your reten-
tion interval. You need to think about how long you will reasonably ever
look back. One month? One year? Longer? We’ve had instances where going
back one year was not uncommon. This is especially evident when looking at
batch jobs that might run yearly.

If you have a retention schedule, eventually you’ll need to remove snapshots
that exceed this time period. Oracle provides a script for that called
?/rdbms/admin/spurge.

Running this script does three things: It lists all your snapshots, asks for
a beginning snapshot and ending snapshot, and deletes the range you
specify. Out of the box, there is no way to automate this. If you upgrade to
the Diagnostic pack, you can use AWR, which automatically schedules and
purges snapshots based on preconfigured settings.

Chapter 10

Securing and Auditing
Your Database

In This Chapter
▶	Verifying identities through authentication
▶	Granting privileges to users
▶	Creating roles
▶	Auditing the database

S
ecurity is an especially important concern when dealing with anything
relating to computers and the Internet. As an administrator of software

applications such as the Oracle database, you are concerned with security
because you want to protect your data. Security is vital because you don’t
want the wrong people looking at the data and because you need to protect
the data from being altered or corrupted. Being able to restrict and monitor
the users in the system helps you provide a safe and secure operating envi-
ronment for you and your customers or clients.

Staying Authentic with Authentication
Authentication is all about making sure your users are who they say they are.
This process begins well before users even try to access the database. You
need to set up a system or process that allows you to verify users’ identity.
You also need a method for users to access the system that both identifies
them and restricts their privileges to their required needs. Finally, we recom-
mend using a security mechanism such as a password or operating system
account so access isn’t open to anyone who tries.

216 Part III: Caring for and Feeding an Oracle Database

User authentication
After you set up your databases, the next step is to allow users access to the
data. You may have all sorts of users in your environment, from people who
need full access to the data and database (such as a DBA) to an application
that runs on a machine for users connecting from the Internet.

	

User authentication, the first step to protecting your data, means verifying that
a resource (user, program, another machine) trying to connect to your data-
base is authorized to do so.

You can establish the following by authenticating users:

	 ✓	Accountability: Having an accountability system forces users to take
responsibility for their actions. It helps track down the culprits when
problems occur.

	 ✓	Trust: A system of authentication allows you to operate within a realm
of trust. Make sure a potential user is qualified before she’s given data
access. Qualifications can be as simple as a one-hour training class or as
detailed as a full-blown, government-sponsored background investigation.

	 ✓	Proper privileges: You must restrict and grant access according to a
resource’s identity and qualifications. Different resources have different
types of access to accomplish different jobs. You can manage such restrict-
ing and granting of access through a system of varying roles and privileges.

	 ✓	Tracking mechanisms: Many databases need a Big Brother. When some-
thing goes wrong, a tracking mechanism can help you hunt down and
plug any security holes. It can also help you make sure resources in your
environment aren’t snooping.

Password authentication
Password protection is the most common way to protect data in computer
systems. This truth applies to bank ATMs, websites, and of course your
Oracle database. Password protection helps establish identity. Passing this
verification is the first step in showing you’re a trusted member of the club.

Nowadays when you create the database

	 ✓	Default accounts are locked.

	 ✓	SYS and SYSTEM passwords are chosen and set during database creation.

	 ✓	Password security is enhanced by forcing complex passwords.

With these measures, the database is fairly secure as soon as it’s created.
Chapter 5 covers user creation; this chapter expands on password security
options.

217 Chapter 10: Securing and Auditing Your Database

Enforcing password security with profiles
A password profile is a mechanism in the database that forces a user to follow
guidelines when creating or changing passwords. The guidelines help pro-
vide stronger security in the system by not allowing weak passwords.

	

The following are bad ideas for creating passwords, and neither you nor your
users should do any of these things. Otherwise, you’re opening the door to
uninvited guests. So don’t consider

	 ✓	Making the password the same as the username

	 ✓	Making password your password

	 ✓	Reusing the same password when the system asks you to change

Having to remember complex passwords is sometimes inconvenient, but
accept it as part of your responsibility. Otherwise, you may at some point
have to take the blame for someone guessing your password.

	

Password profiles prevent each of the problems in the preceding list.
Password profiles are a DBA tool, and they let you do the following:

	 ✓	Limit the number of times a password can be reused. If you want to give
your users a break, let them reuse the password twice — but that’s it.

	 ✓	Limit the amount of time before a password can be reused. Maybe you
let them reuse the password, but they have to wait 90 days to do so.

	 ✓	Limit failed login attempts. If this number is met, you can lock the
account until a security administrator unlocks it or for a certain period
of time.

Security past
In the past, Oracle has given you tools to imple-
ment very secure password authentication
methods, but Oracle has left the implementation
up to you almost entirely. With each release of
the database, Oracle has increased default
security in the system. Oracle has been non-
secure in the past. However, administrators
had to deal with access being nearly wide open

when software was installed and a database
was created. DBAs had to set and manage
authentication. Unfortunately, not all database
users knew what to configure and lock down.
Many internal accounts were created with high
levels of access with default passwords that
were easily found anywhere on the Internet.

218 Part III: Caring for and Feeding an Oracle Database

	 ✓	Assign a password lock time. If someone (or something) reaches the
limit you set for the failed login attempts setting, you can force a waiting
period before the user can try again. This setting can help against brute
force attacks, where a machine bombards your database with a pass-
word cracker.

	 ✓	Give passwords a time limit (or in Oracles terminology, a limited life
time). When this life time is met, the system asks the user to change his
password.

	 ✓	Have a password grace time. When the life time is reached, the user is
prompted with “You have X number of days to change your password.”

	 ✓	Check password complexity. A verification function

	 •	Makes sure the password and username are different.

	 •	Makes sure the new password differs from the previous by three
characters.

	 •	Ensures the password is made up of alphabetical, numeric, and
special characters.

You can create your own password verify function and attach it to a profile.
A password verify function is a program written in PL/SQL that examines
passwords when they’re chosen and accepts or rejects them based on cri-
teria. If you have special password requirements, you can write your own
password verify function and assign it to your password profile by using the
PASSWORD_VERIFY_FUNCTION attribute of the profile.

Oracle supplies a standard password verify function with the database. By
default, it ensures the following:

	 ✓	The password is not the same as the username (forward and backward).

	 ✓	The password is more than seven characters.

	 ✓	The password is not the same as the server name.

	 ✓	The password is not a common poor choice, such as welcome1, pass-
word, database, abcdefg.

To use Oracle’s provided password verify function, follow these steps:

	 1.	 Log in to the database using SQL*Plus as SYS.

	 2.	 Run the following:
$ORACLE_HOME/rdbms/admin/utlpwdmg.sql

		 This step creates the default password verify function and assigns it to
the DEFAULT profile. If you’re comfortable with PL/SQL, you can even
take Oracle’s example file and modify it to fit your needs.

219 Chapter 10: Securing and Auditing Your Database

Creating a password profile
To create a password profile, follow these steps:

	 1.	 Log in to the database via SQL*Plus as SYSTEM.

	 2.	 Create the profile and limit the failed login attempts, password lock
time, and password life time:
<CREATE PROFILE report_writer LIMIT
FAILED_LOGIN_ATTEMPTS 3
PASSWORD_LOCK_TIME 1/96
PASSWORD_LIFE_TIME 90;>

		 In this example, failed login attempts are limited to three, password
lock time is limited to 15 minutes, and password life time is limited to
90 days.

		 You see this:
Profile created.

	

	 The password lock time in the preceding code is 1/96. In Oracle time,
that is 15 minutes. The whole number 1 is 1 day, and 1/24 is one hour.
Divide 1/24 by 4 and you get 1/96 (or 15 minutes).

	 3.	 Assign the report writer user profile to a user:
<ALTER USER hr PROFILE report_writer;>

		 This example assigns the new profile to the HR user. You see this in
return:
User altered.

DEFAULT profile
What if you don’t give your users a profile? In that case, all users have the
DEFAULT profile.

By default in Oracle 12c, the DEFAULT profile limits the following:

	 ✓	FAILED_LOGIN_ATTEMPT = 10

	 ✓	PASSWORD_GRACE_TIME 7 (DAYS)

	 ✓	PASSWORD_LIFE_TIME 180 (DAYS)

	 ✓	PASSWORD_LOCK_TIME 1 (DAY)

	 ✓	PASSWORD_REUSE_MAX UNLIMITED

	 ✓	PASSWORD_VERIFY_FUNCTION NULL (no complexity enforced)

	 ✓	PASSWORD_REUSE_TIME UNLIMITED

220 Part III: Caring for and Feeding an Oracle Database

	

You can edit your profile or the DEFAULT profile. For example, to change the
failed login attempts setting to 3 on the DEFAULT profile, type the following:

<ALTER PROFILE default LIMIT
 FAILED_LOGIN_ATTEMPTS 3;>

You see this:

Profile altered.

Operating system authentication
You may not always want to require a user password. In those cases, operat-
ing system authentication can be useful and, if set up properly, offer some
security advantage over using a password. Use operating system authentica-
tion with caution though.

Operating system authentication recognizes a user as logged in to the OS and
waives the password requirement. Operating system authentication can be
especially useful when you have an application that requires a log in to the
database to run a program. Say a job runs every night to generate reports
and deposit them into a directory.

How will the user inside your batch job connect? You could embed a pass-
word in the program, but that isn’t secure. Instead, create an account in the
database that links to the OS user and configure it with OS authentication.
That way, you protect the OS user’s password and avoid a traditional user-
name/password combination for the user to log in to run the reports.

You’re safe as long as only authorized personnel know the OS user password.

Type this code to create an OS-authenticated user in Oracle for someone
named REPORTS:

<CREATE USER OPS$REPORTS IDENTIFIED EXTERNALLY;>

You see this:

User created.

Notice how the OS user is called REPORTS and the Oracle user is called
OPS$REPORTS.

	

The user prefix OPS$ must precede the OS username for the username to be
identified externally.

221 Chapter 10: Securing and Auditing Your Database

External identification means that instead of the user requiring a password in
the database, Oracle looks to the OS and matches the username (minus the
OPS$) to a user on the operating system. Oracle assumes that because the
user is logged in to the OS, the user must be authenticated. You can change
that prefix, OPS$, by revising the Oracle parameter OS_AUTHEN_PREFIX.

After setting up all the necessary privileges for that user (detailed later in this
chapter), the user can log in from the OS command line without a password:

<sqlplus />

Granting Privileges
After you create a user, you have to decide what types of things the user can
do in the database. You probably want to allow the user to be able to log in,
but you may need to limit whether the user can do any of the following tasks:

	 ✓	Accessing certain data

	 ✓	Starting and stopping the database

	 ✓	Creating tables, indexes, and views

	 ✓	Deleting data

	 ✓	Performing backups

You determine what a user can do via privileges. The database has two types
of privileges:

	 ✓	System privileges control what a user can do in the database. For exam-
ple, can they create tables, create users, and drop tablespaces? These
privileges apply mainly to adding or changing structures in the database.

	 ✓	Object privileges control how a user can access the actual data in the
database. For example, what data can he see, change, or delete? These
privileges apply primarily to rows in a table or view.

	 You manage all privileges with the GRANT and REVOKE commands. It’s
pretty clear from their names which one giveth and which one taketh away.
However, you form the commands depending on the type of privilege. For
example, when you give, you GRANT TO and when you take you REVOKE
FROM.

222 Part III: Caring for and Feeding an Oracle Database

Granting and revoking system privileges
System privileges are the first privileges any user needs. There are literally
hundreds of system privileges. This chapter lists the common ones that pro-
vide about 90 percent of the access that users need.

	

Before any user can do anything with the database, they need to be able to
connect, The CREATE SESSION privilege gives users access to the database.
Without this privilege, no other privileges matter.

Follow these steps to grant CREATE SESSION privileges to the user DTITILAH:

	 1.	 Log in to the database as the user SYSTEM.

	 2.	 Type the following:
<GRANT CREATE SESSION TO dtitilah;>

		 You see the following, which means DTITILAH can connect to the data-
base:
Grant succeeded.

	

What if the password for the user DTITILAH has been compromised? A quick
way to make sure that a user can no longer access the database, externally or
not, is to revoke the CREATE SESSION privilege from that user.

Revoke the CREATE SESSION from DTITILAH with these steps:

	 1.	 Log in to the database as SYSTEM.

	 2.	 Type the following:
<REVOKE CREATE SESSION FROM dtitilah;>

		 You see this:
Revoke succeeded.

		 When that user tries to connect, he sees this:
ERROR:
ORA-01045: user DTITILAH lacks CREATE SESSION privilege; logon denied

	 3.	 Address the security breach by finding out why the password was
compromised.

	 4.	 Re-grant the privilege by following the steps earlier in this section.

		 Processing continues as normal.

	 A user might also have these system privileges that allow them to create
objects in the database:

223 Chapter 10: Securing and Auditing Your Database

	 ✓	RESUMABLE allows jobs to be suspended and resumed when space
restrictions are met.

	 ✓	FLASHBACK ARCHIVE allows users to retrieve data from the past. See
Chapter 14 for more about flashback archiving.

	 ✓	CREATE JOB allows users to create jobs that can be run in the Oracle
Scheduler.

	 ✓	CREATE SYNONYM allows users to be able to create alias for objects for
easier access.

The following privileges apply commonly to developers:

	 ✓	CREATE TABLE

	 ✓	CREATE VIEW

	 ✓	CREATE SEQUENCE

	 ✓	CREATE PROCEDURE

	 ✓	CREATE TRIGGER

DBAs commonly have these privileges:

	 ✓	CREATE ANY TABLE creates tables in any user’s schema.

	 ✓	DROP ANY TABLE drops tables from any user’s schema.

	 ✓	CREATE TABLESPACE creates tablespace storage areas.

	 ✓	ALTER USER changes user characteristics.

	 ✓	DROP USER . . . uh, drops a user.

	 ✓	ALTER SYSTEM changes system operation parameters.

	 ✓	GRANT ANY OBJECT allows grantee to manage any object privilege
against any object in the database. Very powerful!

WITH ADMIN OPTION is another feature associated with system privileges.
You can use this option when granting a system privilege to allow the user
to grant the privilege to someone else. For example, say you’ve hired a new
DBA with the username RPLEW. You want the user MJAUST to connect to the
database with the CREATE SESSION privilege, but you also want him to be
able to grant that privilege to someone else.

To grant a system privilege WITH ADMIN OPTION, take these steps:

	 1.	 Log in to SQL*Plus as SYSTEM.

224 Part III: Caring for and Feeding an Oracle Database

	 2.	 Type the following:
<GRANT CREATE SESSION TO maust WITH ADMIN OPTION;>

		 You see this:
Grant succeeded.

		 Now MAUST can administer CREATE SESSION as well.

	 If WITH ADMIN OPTION is revoked, all users given that privilege by that
person retain the privileges. Act accordingly. It is not a cascading revoke like
the WITH GRANT OPTION.

Object privileges
Object privileges control data access and modification.

Understanding object privileges
You can grant only eight object privileges:

	 ✓	SELECT lets the recipient select rows from tables. See Chapter 7 for
more info.

	 ✓	INSERT lets the recipient insert rows into tables.

	 ✓	UPDATE lets the recipient change existing rows in tables.

	 ✓	DELETE lets the recipient remove existing rows from tables.

	 ✓	REFERENCES lets a user create a view on, or a foreign key to, another
user’s table. We share more details on foreign keys in Chapter 7.

	 ✓	INDEX lets one user create an index on another user’s table. You can
find more on indexes in Chapter 7.

	 ✓	ALTER lets one user change or add to the structure of another user’s
table.

	 ✓	EXECUTE lets the recipient run procedures owned by another user.

	 Keep these privilege tidbits in mind:

	 ✓	When you own an object, you automatically have all the privileges on
that object. In other words, you don’t have to be granted SELECT on
your own table.

	 ✓	Object privileges cannot be revoked from the owner of an object.

	 ✓	Whatever schema owns the object ultimately controls that object’s
privileges.

225 Chapter 10: Securing and Auditing Your Database

	 ✓	Without express permission, no one else can manage the object privi-
leges of said object — well, no one except a user who might have the
system privilege GRANT ANY OBJECT (usually reserved for DBAs).

	 ✓	Object privilege cannot be revoked by anyone but the person who
granted it except for someone with the GRANT ANY OBJECT privilege.
Not even the owner can revoke a privilege on her own object unless she
was the grantor.

Managing object privileges
In the following steps, the users MAGGIE, JASON, and MATT work in a data-
base that contains recipes. This example uses object privileges to allow them
to view and add more recipes.

	 1.	 Maggie logs in.

	 2.	 Maggie types the following:
<GRANT SELECT ON vegetarian_recipes TO jason;>

		 This lets user MAGGIE allow JASON to select from her VEGETARIAN_
RECIPES table. She sees this:
Grant succeeded.

Similar to WITH ADMIN OPTION of system privileges, object privileges have
something called WITH GRANT OPTION.

	 ✓	MAGGIE can allow JASON to be able to INSERT into her table and allow
JASON to pass on that privilege:
<GRANT SELECT ON vegetarian_recipes TO jason WITH GRANT OPTION;>

	 ✓	JASON can pass on that INSERT privilege to MATT:
<GRANT SELECT ON maggie.vegetarian_recipes TO matt;>

	 ✓	MAGGIE cannot revoke the INSERT privilege from MATT. She has to ask
JASON to do so.

	 ✓	If JASON refuses to revoke INSERT privileges for MATT, MAGGIE can
revoke the privilege from JASON and, in turn, revoke it from MATT.
It’s called a cascading revoke. Note that this is different from system
privileges.

	 ✓	MAGGIE can revoke the INSERT privilege from JASON and in the mean-
time automatically revoke them from MATT:
<REVOKE INSERT ON vegetarian_recipes FROM jason;>

		 She sees this:
Revoke succeeded.

226 Part III: Caring for and Feeding an Oracle Database

	 If a user wants to see what object privilege they have given out, she can query
the view USER_TAB_PRIVS.

For example, MAGGIE can see what privileges JASON has left on her objects:

<SELECT * FROM USER_TAB_PRIVS
WHERE GRANTEE = ‘JASON’;>

She sees something like this:

GRANTEE OWNER TABLE_NAME GRANTOR PRIVILEGE
---------- ---------- ------------------ ---------- ----------
JASON MAGGIE VEGETARIAN_RECIPES MAGGIE SELECT

Creating Roles
You can group privileges with database roles for ease of management.
Instead of an object owner individually granting privileges to one or more
users with similar job descriptions, the object owner can create a role and
grant the role instead.

For example, say you’re a DBA for a major retailer. Every day, new store
clerks are hired. The application allows them to do dozens of requirements,
including

	 ✓	INSERT into the SALES table

	 ✓	UPDATE the INVENTORY table

	 ✓	DELETE from the ORDERS table

Follow these steps to use a role to grant privileges:

	 1.	 Log in to SQL*Plus as HR.

	 2.	 Type the following:
<CREATE ROLE sales_clerk;>

		 This role is called SALES_CLERK, and you see this:
Role created.

	 3.	 Grant system and object privileges to the role:
<GRANT INSERT ON sales TO sales_clerk;>
<GRANT UPDATE ON inventory TO sales_clerk;>
<GRANT DELETE ON orders TO sales_clerk;>

		 And so on.

	 4.	 Grant the role to the employees:
<GRANT sales_clerk TO rob, nora, dan;>

227 Chapter 10: Securing and Auditing Your Database

		 The role is granted to new clerks ROB, NORA, and DAN. You see this:
Grant Succeeded.

	

Another nice thing about roles is dynamic privilege management, where
adding and removing privileges from a role immediately affects all users who
have the role.

All users need special access during a certain time (a few months, for exam-
ple), to be able to SELECT from the INVENTORY table. Instead of granting
it to possibly hundreds of clerks, grant the role and they will automatically
have it. It makes managing privileges much easier.

Oracle-supplied roles
Some roles come already created and set up by the database, making it easier
to manage certain tasks.

Here are some of the many roles supplied by Oracle when the database is
installed:

	 ✓	CONNECT includes the privileges needed to connect to the database.

	 ✓	RESOURCE includes many of the roles a developer might use to create
and manage an application, such as creating and altering many types of
objects including tables, view, and sequences.

	 ✓	EXP_FULL_DATABASE/IMP_FULL_DATABASE allows the grantee to do
logical backups of the database.

	 ✓	RECOVERY_CATALOG_OWNER allows grantee to administer Oracle
Recovery Manager catalog.

	 ✓	SCHEDULER_ADMIN allows the grantee to manage the Oracle job
scheduler.

	 ✓	DBA gives a user most of the major privileges required to administer a
database. These privileges can manage users, security, space, system
parameters, and backups.

The SYSDBA role
SYSDBA is the top dog of all roles. Anyone with this role can do anything they
want in the database. Obviously you want to be careful with some of these.
For example, be very particular about whom, if anyone, you give the SYSDBA
role. Those users should be fully trained, qualified Oracle administrators. If
they are not, they could irreparably damage your database. Also, if too many
people have this role, it destroys the chain of accountability in the database.

228 Part III: Caring for and Feeding an Oracle Database

	 Oracle-supplied roles are managed just like the roles you create.

Auditing: Oracle’s Big Brother
Just when users think it’s safe to do whatever they want in the database,
along comes auditing. No, really . . . being able to audit what happens in the
database is like having police on the streets. Auditing can

	 ✓	Protect you from people with prying eyes or malicious intentions.

	 ✓	Help you track down who’s responsible for certain actions in the
database.

	 ✓	Help analyze access data.

You can choose from many auditing options:

	 ✓	Users: Auditing can be turned on for everything a user does, from log-
ging in to what SQL statements he’s running.

	 ✓	Objects: Every action against an object can be audited.

	 ✓	System privileges: Specific SQL statements such as ALTER, DROP,
CONNECT, and CREATE can be audited.

	 ✓	Combination: Most likely, you will choose a combination of users,
objects, and system privileges to accomplish your auditing needs.

	

You will rarely audit everything in the database. Some overhead is involved.
Auditing can cost you in terms of the following:

	 ✓	CPU: Audit operations execute inside the database with each SQL state-
ment or connection you run. The more you audit, the more work there is
in the background for Oracle to do.

	 ✓	Storage: Oracle audits generate an audit trail for you to look at later.
Again, the more data being audited, the more information is generated.

	 ✓	Personnel: Viewing and analyzing the auditing information could be a
job in and of itself if you have a very large database with lots of users
and lots of auditing. Someone has to interpret the audit trail and deter-
mine how the data will be used. The audit trail itself has to be managed.
How long are you going to keep the info? Where will it go for long-term
storage? Who will clean it up when it is no longer needed?

Find out what your auditing requirements are. Sometimes companies are
bound by corporate guidelines. Or, you may be under the gun for industry
certifications such as Sarbanes-Oxley, which require a fair amount of auditing.

229 Chapter 10: Securing and Auditing Your Database

	 Although Oracle auditing can cover a lot of the bases, it may not meet all your
requirements. Make sure you can equate each one of your auditing require-
ments with Oracle auditing capability. In most cases, the database will have
you covered.

Getting ready to audit
Oracle 11g changed the amount of auditing turned on by default. In 12c, all
the following database actions are automatically audited by default:

ADMINISTER KEY
MANAGEMENT

ALTER ANY PROCEDURE

ALTER ANY SQL TRANSLATION
PROFILE

ALTER ANY TABLE

ALTER DATABASE

ALTER DATABASE LINK

ALTER PROFILE

ALTER ROLE

ALTER SYSTEM

ALTER USER

AUDIT SYSTEM

CREATE ANY JOB

CREATE ANY LIBRARY

CREATE ANY PROCEDURE

CREATE ANY SQL
TRANSLATION PROFILE

CREATE ANY TABLE

CREATE DATABASE LINK

CREATE DIRECTORY

CREATE EXTERNAL JOB

CREATE PROFILE

CREATE PUBLIC SYNONYM

CREATE ROLE

CREATE SQL TRANSLATION PROFILE

CREATE USER

DROP ANY PROCEDURE

DROP ANY SQL TRANSLATION PROFILE

DROP ANY TABLE

DROP DATABASE LINK

DROP DIRECTORY

DROP PROFILE

DROP PUBLIC SYNONYM

DROP ROLE

DROP USER

EXEMPT ACCESS POLICY

EXEMPT REDACTION POLICY

GRANT ANY OBJECT PRIVILEGE

GRANT ANY PRIVILEGE

230 Part III: Caring for and Feeding an Oracle Database

GRANT ANY ROLE

LOGMINING

LOGOFF

LOGON

PURGE DBA_RECYCLEBIN

SET ROLE

TRANSLATE ANY SQL

Furthermore, in 11g the database parameter AUDIT_TRAIL was set to DB.
This was a significant change over previous versions. Before, it was set to
NONE, meaning auditing was not turned on. Turning it on required restarting
the database; a tall order in a production system. Having the default param-
eter set to DB was convenient in case you forgot when you created the database.
However, in 12c, this parameter no longer has any effect for newly created data-
bases. It applies only to databases that are migrated from 11g to 12c.

Oracle 12c also changes the way default auditing is done in the database.
Prior to 12c, each user had to have his or her auditing enabled in a very gran-
ular fashion. In 12c, a new feature called Unified Auditing greatly simplifies
setting up and managing auditing in the database. It allows you to group not
only users and roles but also features, parameters, and applications in such a
way that configuring proper auditing can be done quickly and efficiently.

By default, in 12c the database is delivered with a basic policy that covers
some of the main audits that most DBAs would be concerned about. These
audits, however, are constrained to SYSTEM privileges primarily. If you think
about it, Oracle doesn’t have the intrinsic knowledge of your application.
Therefore, it is up to you to configure object level auditing if required in your
environment.

	 The AUDIT_TRAIL parameter no longer applies in newly created 12c data-
bases. If you migrated from 11g, all your audit entries go into the table SYS.
AUD$. Keep an eye on this internal table. Depending on your level of auditing,
it can grow very quickly. Consider creating a maintenance plan that has direc-
tives for either purging the table or moving the audit rows to more permanent
long-term storage (depending on your organization).

Enabling and disabling audits
with unified audit policies
You can do all the setup you want, but nothing is audited (except for
defaults) until you choose to do so. This benefits you because you can set
up, create, and configure your application and objects before you have
to manage an audit trail. You turn auditing on and off with the AUDIT or
NOAUDIT command.

231 Chapter 10: Securing and Auditing Your Database

	 Because Oracle 12c does a fair amount of default auditing, consider turning off
some before setting up your application. Then you can enable all the auditing
you want right before your application goes to production. Make that decision
based on your own business needs.

A unified audit policy is a named group of audit settings that audit a particu-
lar aspect of user behavior. The CREATE AUDIT POLICY statement creates
the policies. The policy can be as simple as auditing the activities of a single
user or an organized set of complex audit policies that use conditions to
affect specific audits.

You can also have more than one audit policy enabled in the database.
Policies can include both system-wide and object-specific audit options.
Most of the auditing that you will do for general activities (including standard
auditing) should use audit policies.

Auditing system privileges
With security being so important, Oracle 12c ships with some auditing turned
on automatically via the ORA_SECURECONFIG policy. Furthermore, it’s not
always users’ actions you want to audit but what they are trying to do. An
audit can be generated even when someone tries to do something he isn’t
allowed to do.

Auditing defaults
Default, preconfigured audits in 12c include the system privilege or statement
audits, including commands and actions such as CONNECT, ALTER, DROP,
CREATE, and so on.

For example, you might want to track who is creating tables in the database
or how often tables are created. This simple policy turns on auditing for any
CREATE TABLE statement, which generates an audit entry every time some-
one creates a table. Type the following:

CREATE AUDIT POLICY table_cre_policy
PRIVILEGES CREATE TABLE;

You see this:

Operation 229 succeeded.

To enable this policy for the user SHARDIN, type

<AUDIT POLICY table_cre_policy BY shardin;>

232 Part III: Caring for and Feeding an Oracle Database

You see this:

Audit succeeded.

To disable the policy for SHARDIN, type this:

<NOAUDIT POLICY table_cre_policy BY shardin;>

Auditing successful and unsuccessful attempts
The default is to audit both successful and unsuccessful attempts. You can
audit the statement if the user successfully executes the command; the audit
doesn’t happen if the command fails. This approach can be useful two ways:

	 ✓	If you audit only successful commands, you don’t have to sift through a
bunch of audit entries that show a user trying to get the correct syntax.

	 ✓	If you audit specifically the unsuccessful commands, you can catch
users trying to do things that they aren’t supposed to. For example,
suppose users are forbidden to drop tables that they don’t own. First,
you can prevent inappropriate drops by not giving them the DROP ANY
TABLE system privilege. Second, if they try to do it anyway, it generates
an error and audit the unsuccessful attempt.

This policy audits the DROP ANY TABLE command. Type the following:

<CREATE AUDIT POLICY drop_any_table_policy
PRIVILEGES DROP ANY TABLE;>

You see this:

Operation 229 succeeded.

To audit only unsuccessful attempts for the user JKOTAN, execute the following:

<AUDIT POLICY drop_any_table_policy BY jkotan WHENEVER NOT SUCCESSFUL;>

You see this:

Audit succeeded.

Auditing objects
Consider object auditing if you want to audit statements, such as SELECT,
INSERT, UPDATE, and DELETE. Object auditing can track

233 Chapter 10: Securing and Auditing Your Database

	 ✓	Actions against specific objects

	 ✓	Privileges on all or specific tables

	 Sifting through an audit trail of a database with thousands of audited objects
can be daunting. It’s also likely that some objects simply don’t need auditing.
If so, restrict your auditing to specific objects.

Furthermore, you can audit objects with these parameters:

	 ✓	When the operation is successful or when it fails

	 ✓	Just once per session or every time it is executed

	 If you audit an object just once per session, it is audited the first time the
user issues the statement. Every time after that, it is ignored. This cuts down
your audit trail but also keeps you from being 100 percent sure if said user is
responsible for later operations against a specific object in a session.

For example, if a user deletes a row from EMPLOYEES, the statement is
audited. If the user goes back later and deletes another row within the same
session, it will not be audited. You know what they say though: Where there’s
smoke, there’s fire!

To create an audit policy on SELECT against the HR.EMPLOYEES table, type
the following:

<CREATE AUDIT POLICY hr_emp_select
ACTIONS SELECT ON hr.employees;>

You see this:

Operation 229 succeeded.

To then audit each statement for the user DCOLLINS, type

<AUDIT POLICY hr_emp_select BY dcollins;>

You see this:

Audit succeeded.

Verifying an audit
After you turn on auditing in the database, keep track of the audits that you
enact so you know what you have done.

234 Part III: Caring for and Feeding an Oracle Database

Luckily, Oracle provides a few views in the database to help you keep track of
your actions:

	 ✓	To verify what system privileges you configured for auditing, use the
view AUDIT_UNIFIED_POLICIES.

	 ✓	To see what privileges are being audited by default for specific policies,
type
< SELECT POLICY_NAME, AUDIT_OPTION, AUDIT_OPTION_TYPE
FROM AUDIT_UNIFIED_POLICIES
where policy_name = ‘ORA_SECURECONFIG’
order by policy_name, AUDIT_OPTION;>

		 You see something like this:
POLICY_NAME AUDIT_OPTION AUDIT_OPTION_TYPE
-------------------- ----------------------------------- -----------------
ORA_SECURECONFIG ADMINISTER KEY MANAGEMENT SYSTEM PRIVILEGE
ORA_SECURECONFIG ALTER ANY PROCEDURE SYSTEM PRIVILEGE
ORA_SECURECONFIG ALTER ANY SQL TRANSLATION PROFILE SYSTEM PRIVILEGE
ORA_SECURECONFIG ALTER ANY TABLE SYSTEM PRIVILEGE
ORA_SECURECONFIG ALTER DATABASE SYSTEM PRIVILEGE
ORA_SECURECONFIG ALTER DATABASE LINK STANDARD ACTION
ORA_SECURECONFIG ALTER PROFILE STANDARD ACTION
ORA_SECURECONFIG ALTER ROLE STANDARD ACTION
ORA_SECURECONFIG ALTER SYSTEM SYSTEM PRIVILEGE
ORA_SECURECONFIG ALTER USER STANDARD ACTION
<output truncated for space...>

	 ✓	To see which users or roles have been enabled to be audited by policies
in the database, type
< SELECT *
FROM AUDIT_UNIFIED_ENABLED_POLICIES;>

		 You should see something like this:
USER_NAME POLICY_NAME ENABLED_ SUC FAI
--------- -------------------------- -------- --- ---
HR TABLE_POLICY BY YES YES
HR DROP_ANY_TABLE_FAIL_POLICY BY NO YES
OE HR_EMP_SELECT BY YES YES
ALL USERS ORA_SECURECONFIG BY YES YES

		 The last two columns, SUC and FAI, stand for SUCCESS or FAILURE.
You can capture an audit for SUCCESS or FAILURE or both. The policy
you created, DROP_ANY_TABLE_FAIL_POLICY, captures only the times
when a drop table fails.

235 Chapter 10: Securing and Auditing Your Database

Viewing audit information
After configuring for and turning on auditing, see what audit data is being
collected.

	 ✓	DBA_AUDIT_TRAIL shows all audit entries in the system.

	 ✓	DBA_AUDIT_OBJECT shows all audit entries in the system for objects.

	 ✓	DBA_AUDIT_STATEMENT shows audit entries for the statements
GRANT, REVOKE, AUDIT, NOAUDIT, and ALTER SYSTEM.

	 ✓	DBA_AUDIT_SESSION shows audit entries for the CONNECT and
DISCONNECT actions.

In 12c the unified audit trail simplifies viewing and reporting audit information.

To see all the audits captured for the HR user, type

<SELECT EVENT_TIMESTAMP, CLIENT_PROGRAM_NAME, ACTION_NAME,
UNIFIED_AUDIT_POLICIES
FROM UNIFIED_AUDIT_TRAIL
WHERE DBUSERNAME = ‘HR’
ORDER BY EVENT_TIMESTAMP DESC;>

You might see something like this:

EVENT_TIMESTAMP CLIENT_PROG ACTION_NAME UNIFIED_AUDIT_POLICY
---------------------------- ----------- --------------- --------------------
29-JUN-13 04.11.08.472263 PM sqlplus.exe CREATE TABLE TABLE_POLICY
29-JUN-13 04.10.23.333411 PM sqlplus.exe LOGON ORA_SECURECONFIG
29-JUN-13 04.06.03.025363 PM sqlplus.exe LOGOFF ORA_SECURECONFIG
29-JUN-13 04.01.04.588854 PM sqlplus.exe LOGON ORA_SECURECONFIG
29-JUN-13 01.58.25.908652 PM sqlplus.exe LOGOFF ORA_SECURECONFIG

Specific columns are selected. (There is so much information in this table
that we can’t possibly fit the whole table into this chapter.) This output
shows that the HR user created a table as well as the logon and logoff activ-
ity. Try your own queries to see what kind of information you can get.

Turning off audits
Turning off auditing is as easy at turning it on. You may have to use the audit
options to help remember what you have turned on.

236 Part III: Caring for and Feeding an Oracle Database

	 After you identify the audits you no longer need, use the NOAUDIT command
to turn off the audits for the users or roles.

Earlier, you turned on auditing for SELECT on the HR.EMPLOYEES table by
the user DCOLLINS. To turn off this audit, type the following:

<NOAUDIT POLICY hr_emp_select BY dcollins;>

You see this:

Noaudit succeeded.

Chapter 11

Facilitating Backup and Recovery
In This Chapter
▶	Knowing data integrity threats
▶	Protecting and backing up files
▶	Viewing backup information
▶	Understanding and maintaining archives
▶	Recovering your database

F
orget the Boy Scouts. DBAs need to be prepared for anything. In addi-
tion to handling the database’s security, DBAs must protect the data. All

kinds of threats are out there waiting to destroy or damage your information.
A database can experience loss and corruption from hardware crashes, soft-
ware bugs, failed processes, and, of course, human error. Depending on the
severity of the issue, failure to protect the data can cause you a bit of pain
and suffering at times. That’s not hyperbole: A lack of data integrity (or no
data integrity at all!) can lead to several problems, including the loss of busi-
ness revenue or even the loss of your job.

To safeguard your information (and to stay employed as a DBA), you need a
backup and recovery plan. However, there’s no singular button you can push
to make everything okay. Rather, creating a backup and recovery strategy
that addresses threats and minimizes data loss and corruption involves many
steps and tools, as we explain in this chapter.

Understanding Threats to Your Database
Before you can create guidelines to lower the risk of data loss and corruption
or take the steps to recover your information quickly, you have to under-
stand what you’re up against. A good backup and recovery plan can help
guard against the following threats.

238 Part III: Caring for and Feeding an Oracle Database

Instance failure
Instance failure occurs when Oracle, as a running program, crashes. The good
news here is Oracle has provided a recovery mechanism and can automati-
cally recover from instance failure. All you have to do is restart the database
instance. However, you might want to investigate what caused the instance
failure so you can prevent it from happening again.

Losing files
Losing files within the Oracle code tree can result in your database crash-
ing. The code tree has the files that you install when you put Oracle on your
system, including the database files, the patch sets and patches you apply,
and any other tools required to make your application run.

Make sure the code tree is part of the OS backup; it’s an often-overlooked
portion of a solid backup and recovery strategy. Sometimes the loss of a file
in the Oracle code tree can be restored quickly out of the OS backup instead
of doing an entire reinstallation.

	 Keep all the Oracle installation software handy in case you need to reinstall
it. Keeping it handy means having a hard copy of it ready to go rather than
storing it on the network. In the event of a disaster, you may not have access
to those network resources. Don’t rely on being able to download it from the
Oracle website. That could take hours depending on how busy the site is.

Dropped objects
Objects in the database are dropped by humans. Problems occur when some-
one drops an object that she either didn’t mean to drop or that she later
decides she wants back.

	 Unless DBAs are involved with application design, many times they’re simply
told what and when to remove something from the database. Always take a
Data Pump export of that object before you drop it. (See Chapter 8 for more
on Data Pump.)

239 Chapter 11: Facilitating Backup and Recovery

Media failure
Media failure occurs when a file or log required for the database to operate is
lost, including

	 ✓	Data files, which store the bulk of your data. Data files typically have an
extension of .dbf.

	 ✓	Control files, which store information about how your database is con-
figured. For example, are you in ARCHIVELOG mode? How many data
files are you allowed to have? You can find control files by checking
the initialization parameter control_files. Typically, these files have an
extension of .ctl or .con.

	 ✓	Parameter files, such as PFILE or SPFILE. If your database uses an
SPFILE, check the initialization parameter for spfile. Otherwise, by
default, the file is in $ORACLE_HOME/dbs for Linux/UNIX or $ORACLE_
HOME/database for Windows.

	 ✓	Archive logs, which are created when you turn on archiving in the
database. You can find the logs by checking the initialization parameter
log_archive_dest_n (with n being a number from 1–10). Else, look in at
the parameter db_recovery_file_dest to find them in the Fast Recovery
Area. Typically, archive logs have an extension of .arc.

We show you methods to recover these file types (which we also discuss in
Chapter 2) in the “Recovering Your Oracle Database” section, later in this
chapter.

Corruption
Corruption is one of the most elusive and difficult types of failure to deal
with. Figuring out why it occurred is often a considerable challenge. When
things are corrupted, rows become unreadable in the database and the rows
can report errors.

Corruption can be

	 ✓	Physical: Actual sectors on the disk are physically damaged.

	 ✓	Logical: Not physical damage, but data somehow went missing or is
unreadable.

	 ✓	Your data: The data itself is just wrong. For example, all your last_
names were updated to be the same as the first names.

	 ✓	In the data dictionary: This is corruption in the metadata that Oracle
uses to manage the database.

240 Part III: Caring for and Feeding an Oracle Database

	

You can use RMAN, Block Media Recovery, and Data Pump to help recover
from corruption problems. Fortunately, this type of failure is rare.

	

If you’re having corruption troubles in your database, consider contacting
Oracle Support for help. This is the type of issue where Oracle earns those
hefty support contracts.

User error
User error isn’t actually a type of failure, but it’s probably the most common
cause for recoveries. We mention it because you can protect against user
error (even your own in case you’re fallible).

	 Proper training, including training your users, can help reduce the chances of
user error.

Finding Files with Recovery Manager
Recovery Manager (RMAN, as we lovingly refer to it) is Oracle’s backup and
recovery solution to protect the files in your database. It can recover from
things like lost rows or lost objects, but its primary purpose is to restore and
recover lost files.

	 RMAN is Oracle’s replacement to Enterprise Backup Utility (EBU) from
Oracle 7. RMAN first reared its head in Oracle 8.0.x, but it was not well
received in its earliest versions. It was difficult to configure and use. RMAN
came of age with the release of Oracle 9.x. Further improvements in 10g and
11g have led it to become almost the de facto standard now for backup of
Oracle files. This trend has continued in 12c. The commands are more concise
and meaningful than in previous versions of RMAN. Repeated operations and
options can be preconfigured instead of being coded into every script. It’s fast,
efficient, and reliable. Most of all, it’s easy to learn and implement.

Starting RMAN
You have a number of ways to launch RMAN:

	 ✓	Launch the tool and then log in.

	 ✓	Launch the tool and login all at once.

	 ✓	Launch the tool and have all the output go to a log file. This option is
typically used when running RMAN as a scheduled task.

241 Chapter 11: Facilitating Backup and Recovery

Here is an example of probably the simplest way to get RMAN going:

	 1.	 Set your ORACLE_SID from the OS command line:

		 Windows:

<set ORACLE_SID=dev12c>

		 Linux/UNIX:

<. oraenv>
<dev12c>

		 This example uses dev12c for the ORACLE_SID. There will be no output
for setting your ORACLE_SID.

	 2.	 Launch RMAN:
<rman>

		 RMAN launches, as shown in Figure 11-1.

	

Figure 11-1:
Use

Recovery
Manager

to back up
and recover

files.
	

	 3.	 Connect to the database you want to back up:
RMAN> connect target /

		 You see something like this:
connected to target database: DEV12C (DBID=3615982967)
RMAN>

242 Part III: Caring for and Feeding an Oracle Database

	 You have to connect to RMAN as SYSDBA. However, don’t specify it. It is
included by default.

Configuring RMAN
You can preconfigure some parameters for RMAN. These parameters are pri-
marily for options that you want to use for all your backups and recoveries.
They can be overridden inside your scripts for one-off operations.

	 1.	 Launch RMAN.

	 2.	 View a list of these parameters by typing the following:
<show all;>

		 You see this:
using target database control file instead of recovery catalog
RMAN configuration parameters for database with db_unique_name DEV12C are:
CONFIGURE RETENTION POLICY TO REDUNDANCY 1; # default
CONFIGURE BACKUP OPTIMIZATION OFF; # default
CONFIGURE DEFAULT DEVICE TYPE TO DISK; # default
CONFIGURE CONTROLFILE AUTOBACKUP OFF; # default
CONFIGURE CONTROLFILE AUTOBACKUP FORMAT FOR DEVICE TYPE DISK TO ‘%F’; #

default
CONFIGURE DEVICE TYPE DISK PARALLELISM 1 BACKUP TYPE TO BACKUPSET; #

default
CONFIGURE DATAFILE BACKUP COPIES FOR DEVICE TYPE DISK TO 1; # default
CONFIGURE ARCHIVELOG BACKUP COPIES FOR DEVICE TYPE DISK TO 1; # default
CONFIGURE MAXSETSIZE TO UNLIMITED; # default
CONFIGURE ENCRYPTION FOR DATABASE OFF; # default
CONFIGURE ENCRYPTION ALGORITHM ‘AES128’; # default
CONFIGURE COMPRESSION ALGORITHM ‘BASIC’ AS OF RELEASE ‘DEFAULT’ OPTIMIZE

FOR LOAD TRUE ; # default
CONFIGURE RMAN OUTPUT TO KEEP FOR 7 DAYS; # default
CONFIGURE ARCHIVELOG DELETION POLICY TO NONE; # default
CONFIGURE SNAPSHOT CONTROLFILE NAME TO ‘/u01/app/oracle/product/12.1.0/

dbhome_1/dbs/snapcf_dev12c.f’; # default

Sometimes you want to see only one parameter. If so, just choose one param-
eter name and type this:

<show retention policy;>

You see this:

RMAN configuration parameters for database with db_unique_name DEV12C are:
CONFIGURE RETENTION POLICY TO REDUNDANCY 1; # default

243 Chapter 11: Facilitating Backup and Recovery

	 To change a parameter, copy what you see from the SHOW command and
change the value accordingly. For example, type

<CONFIGURE RETENTION POLICY TO recovery window of 3 days;>

And you see this:

new RMAN configuration parameters:
CONFIGURE RETENTION POLICY TO RECOVERY WINDOW OF 3 DAYS;
new RMAN configuration parameters are successfully stored

Take a closer look at some of the configuration parameters:

	 ✓	Retention Policy: Configuring a retention policy tells RMAN how long
you want to keep your backup information. For example, if you reuse
your backup tapes every two weeks, you can set your retention policy to
expire those backups after 14 days. That way, you can purge them from
RMAN to avoid cluttering the catalog of backup information that RMAN
stores. Retention policies can be set two ways:

	 •	Recovery Window specifies that after so many days the backup
information will expire.

	 •	Redundancy tells RMAN that after you get so many backups of your
files, they will expire. For example, if you set redundancy to 3, the
first one becomes obsolete after you take the fourth backup.

	 ✓	Backup Optimization: If you turn on backup optimization and a backup
fails halfway through, RMAN picks up where it left off when you restart
the backup. If this option is turned off, RMAN starts from the beginning.

	 ✓	Default Device Type: You can have RMAN back up files to disk or tape.
This parameter configures what the default method is when the option
is omitted from the backup command.

	 ✓	Control File Autobackup: You can configure RMAN to take a backup of
the control file and the spfile every time a backup runs. Also, if the data-
base is in archive log mode, it will take a backup of the control file any
time the database file structure changes, such as renaming or adding a
data file.

	 ✓	Control File Autobackup Format: This feature tells RMAN the name and
location you would like control file auto backups to take on.

	 ✓	Parallelism: On a machine with many backup devices, such as tapes or
disks as well as multiple CPUs, you can set this parameter to use more
resources in hopes of speeding up the backup. You can experiment with
this to find the optimal setting.

244 Part III: Caring for and Feeding an Oracle Database

	 ✓	Data File Backup Copies: This parameter tells RMAN how many copies
to make when backing up files. The more you have the safer you are
from losing a backup file. However, backups will take longer and require
more space.

	 ✓	Archive Log Backup Copies: This parameter is similar to data file
backup copies, but it applies to archive logs.

	 ✓	MAXSETSIZE: Use this parameter when backing up to tape to make sure
that the backup files don’t span multiple tapes. This way, losing one
tape won’t nullify an entire backup. Typically, this parameter is left to
unlimited when you’re backing up to disk.

	 ✓	Encryption for Database: Typically, the backup files created will con-
tain the character strings of data that reside in your data files. A clever
hacker can extract this data and perhaps make sense out of it. By turn-
ing on this parameter, all the data in the backup file will be garbled.

	 ✓	Encryption Algorithm: You can choose the level of encryption in Oracle.
The higher the encryption level, the longer it can take to back up the
database. Here are your choices:

	 •	AES128 AES 128-bit key

	 •	AES192 AES 192-bit key

	 •	AES256 AES 256-bit key

	 ✓	Compression Algorithm: As of Oracle version 11g, you can choose the
compression algorithm that RMAN uses to compress backups. You can
choose between these two:

	 •	High compression (BZIP2)

	 •	CPU efficiency (ZLIB)

	 ✓	Snapshot Control File Name: Tell RMAN where to put the control file
and what to name it when a snapshot of the control file is taken.

RMAN catalog
When setting up your RMAN environment, consider the recovery catalog. A
recovery catalog is a repository for all your RMAN configuration parameters,
backup operations, and metadata. The catalog can store backup information
indefinitely.

Selecting a catalog mode
RMAN provides two options for storing backup data:

245 Chapter 11: Facilitating Backup and Recovery

	 ✓	NOCATALOG mode stores backup data only in the control file for each
individual database. This is the default.

	 ✓	CATALOG mode stores backup data in both the control file and the
catalog.

Storing backup data in only the control file has some limitations:

	 ✓	By default, Oracle stores seven days of backup data in the control file.
The database parameter control file_record_keep_time can change the
length of time. Still, it isn’t recommended that you use your control file
for long backup retention periods. It causes control file growth, and if
you ever lose your control files, you’ve lost all your recovery informa-
tion. It’s doesn’t make recovery impossible, but it’s a real pain.

	 ✓	Limits the type of reporting you can do on your backups. You can query
only one database at a time, after which you have to manually aggregate
all the reports for multiple databases together.

	 Consider using a catalog if

	 ✓	You have a lot of databases to back up.

	 ✓	All the databases you back up are different versions of Oracle.

	 ✓	You want to save your backups more than 60 days.

	 ✓	You know what kind of reporting you want to do.

	 ✓	You can afford the resources it requires to keep and maintain a catalog
database.

Suppose that at the end of every week you want a report that sums up all the
backup information for 50 databases ranging from Oracle 8i to 12c. You want
that report to include things such as elapsed time, average piece size, com-
pression info, and backup type. A recovery catalog can easily generate that
report.

The recovery catalog has a set of views you can query, with SQL, to get
backup information. Getting historical backup information for multiple data-
bases is next to impossible to do without a recovery catalog because all the
backup information is stored separately in each database.

	 If you have only one or two databases to back up and want simple reports and
short retention policy, perhaps the recovery catalog is overkill. After all, it
has to go into its own database, be backed up, and be maintained just like any
other application. However, Oracle helps by providing a limited use license
for having an RMAN recovery catalog. That means you don’t have to have an
Oracle database license for the catalog on a separate machine as long as you
use the catalog only for RMAN.

246 Part III: Caring for and Feeding an Oracle Database

Creating the catalog
If you decide to create a catalog, it’s easy. Follow these steps for a Linux envi-
ronment (they’ll be almost identical for Windows):

	 1.	 Create a tablespace to hold the RMAN data by typing in SQL*Plus:
<create tablespace rman_data datafile
‘/u01/app/oracle/oradata/dev12c/rman_data01.dbf’ size 100M
autoextend on next 100M maxsize 2G;>

		 You see this:
Tablespace created.

	 2.	 Type the following to create the catalog owner:
<create user rmancat identified by rmancat
default tablespace rman_data
quota unlimited on rman_data;>

		 You see this:
User created.

	 3.	 Grant appropriate privileges:
<grant connect, recovery_catalog_owner to rmancat;>

		 You see this:
Grant succeeded.

	 4.	 From a terminal window, log in to the recovery catalog with the
owner and create the catalog:
<rman catalog rmancat@rcvcat>

		 You see output like this:
Recovery Manager: Release 12.1.0.1.0 - Production on Sun Jun 30 10:13:59

2013
Copyright (c) 1982, 2013, Oracle and/or its affiliates. All rights

reserved.
recovery catalog database Password:
connected to recovery catalog database

	 5.	 When you’re connected to the catalog database, create the catalog
repository:
<create catalog;>

		 You see this:
recovery catalog created

247 Chapter 11: Facilitating Backup and Recovery

	 6.	 Type the following to connect to both the target database and the
catalog:
<rman target / catalog rmancat@rcvcat >

	

	 Every time you back up a database, you need to connect to both the
target and the catalog.

		 You see this:
Recovery Manager: Release 12.1.0.1.0 - Production on Sun Jun 30 10:17:30

2013
Copyright (c) 1982, 2013, Oracle and/or its affiliates. All rights

reserved.
connected to target database: DEV12C (DBID=3615982967)
recovery catalog database Password:
connected to recovery catalog database

	

	 Don’t specify the password on the command line when you launch
RMAN. It is not a secure way to log in, because it can expose your pass-
word to other people on the system.

	 7.	 Connect to both the target and the catalog and type this:
<register database;>

	

	 Register any database that you will back up within the recovery catalog.

		 You see this:
database registered in recovery catalog
starting full resync of recovery catalog
full resync complete

		 Everything else in RMAN functions exactly the same whether or not you
use a catalog.

Backup File Types with RMAN
You can create backups with RMAN in two ways:

	 ✓	Backup sets are a special type of RMAN file.

	 ✓	Copies are block-for-block replicas of the files you’re backing up.
Although they’re made within RMAN via the COPY command, the end
result is the same as if you used an OS command.

Table 8-1 lists some key points of both.

248 Part III: Caring for and Feeding an Oracle Database

Table 8-1	 Backup Sets versus Copies
Backup Sets Copies
Must be restored with RMAN
before use

Block-for-block exact images of source
file

Can be any part of an incremental
strategy

Don’t have to be restored to be used

Can be compressed during the
backup

Can’t be compressed during the backup

Can be streamed to multiple devices
for parallelism (including tape)

Can be rolled forward by applying
incremental backups of source files

Can be into multiple, more manage-
able pieces

Can’t be split into multiple pieces

Can contain more than one data file Can be only the first level (0) of an
incremental strategy

Can be encrypted Can’t be streamed directly to tape or to
multiple devices

We tend to use backup sets. Being able to compress and stream directly to
tape while at the same time encrypting is a very good quality. However, using
copies can significantly reduce recovery time because they don’t have to be
restored. They can be used from disk in place. All you have to do is roll them
forward with whatever archive log files were generated between when the
copy was made and when the failure occurred.

Backing up with backup sets
RMAN makes backing up your database a breeze. The examples in this sec-
tion are hot backups to the Fast Recovery Area.

	 A hot backup is simply a backup while the database is running. You can do it at
any time, but you should usually pick a time when there is less activity. That
way, the hot backup won’t compete for resources.

Of course, figuring out what needs to be backed up is one of the first steps. You
need to know what files are out there and whether they’ve been backed up.

	 1.	 Launch RMAN as described in the “Finding Files with Recovery
Manager” section.

		 These examples don’t use a recovery catalog because it is discussed
earlier in this chapter. Just remember to connect to it if you choose to
use one. After you connect, the commands to do all the various types of
backups remain the same whether you’re connected to a catalog or not.

249 Chapter 11: Facilitating Backup and Recovery

	 2.	 Set your database to automatically back up the control file and spfile:
RMAN> show CONTROLFILE AUTOBACKUP;

	 3.	 If you see something like this, skip to Step 5:
RMAN configuration parameters for database with db_unique_name DEV12C are:
CONFIGURE CONTROLFILE AUTOBACKUP ON;

		 If your response reads as follows, go to Step 4.
CONFIGURE CONTROLFILE AUTOBACKUP OFF;

	 4.	 Type the following:
CONFIGURE CONTROLFILE AUTOBACKUP ON;

		 You should see this:
new RMAN configuration parameters:
CONFIGURE CONTROLFILE AUTOBACKUP ON;
new RMAN configuration parameters are successfully stored

	 5.	 Get a list of the data files in your database:
<report schema;>

		 You should see something like Figure 11-2.

	

Figure 11-2:
Running

the RMAN
REPORT

command.
	

250 Part III: Caring for and Feeding an Oracle Database

Backing up the database or tablespaces
You can back up the database and tablespaces in several ways:

	 ✓	Back up the whole database.

	 ✓	Back up one or more tablespaces.

	 ✓	Back up one or more data files.

To back up the whole database, type the following:

<backup database;>

The output should look something like this:

Starting backup at 30-JUN-2013 10:45:10
using target database control file instead of recovery catalog
allocated channel: ORA_DISK_1
channel ORA_DISK_1: SID=48 device type=DISK
channel ORA_DISK_1: starting full datafile backup set
channel ORA_DISK_1: specifying datafile(s) in backup set
input datafile file number=00002 name=/u01/app/oracle/oradata/dev12c/sysaux01.

dbf
input datafile file number=00001 name=/u01/app/oracle/oradata/dev12c/system01.

dbf
input datafile file number=00003 name=/u01/app/oracle/oradata/dev12c/undotbs01.

dbf
input datafile file number=00005 name=/u01/app/oracle/oradata/dev12c/rman_

data01.dbf
input datafile file number=00004 name=/u01/app/oracle/oradata/dev12c/users01.dbf
channel ORA_DISK_1: starting piece 1 at 30-JUN-2013 10:45:12
channel ORA_DISK_1: finished piece 1 at 30-JUN-2013 10:48:18
piece handle=/u01/app/oracle/fast_recovery_area/DEV12C/backupset/2013_06_30/o1_

mf_nnndf_TAG20130630T104511_8x0k3rlq_.bkp tag=TAG20130630T104511
comment=NONE

channel ORA_DISK_1: backup set complete, elapsed time: 00:03:06
Finished backup at 30-JUN-2013 10:48:18

Starting Control File and SPFILE Autobackup at 30-JUN-2013 10:48:18
piece handle=/u01/app/oracle/fast_recovery_area/DEV12C/autobackup/2013_06_30/

o1_mf_s_819456498_8x0k9lql_.bkp comment=NONE
Finished Control File and SPFILE Autobackup at 30-JUN-2013 10:48:19

To back up just one tablespace, type the following:

<backup tablespace users;>

To back up two tablespaces at the same time, type the following:

<backup tablespace system, users;>

251 Chapter 11: Facilitating Backup and Recovery

Naming your backups
You can give your backup a name. It’s called a tag. We name backups because
it is easy to see which is which when looking at a list. A tag can be an alpha-
numeric string up to 30 characters.

Type the following to back up your database and give it a name (database_
full_backup in this case):

<backup database tag=database_full_backup;>

Compressing your backups
As of Oracle 10g, you can compress your backups as they run. Compression
usually shows a significant reduction in space usage.

	

As of Oracle 11g, you can change your compression algorithm (discussed ear-
lier in the chapter) to help tune backup compression. Doing so can save time
or resources.

Our experience shows that any kind of compression can make the backup
take two to three times as long. To find out what works best for you, try dif-
ferent compressions and note the times.

Take a compressed backup of your entire database with this code:

<backup as compressed backupset database tag=compressed_full_bak;>

Incremental backups
You may want to consider an incremental backup, which copies only some
of the blocks based on when the last incremental was done and what blocks
have changed. Incremental backups come in three levels (0 and 1 differential
and 1 cumulative) published in Oracle 12c:

	 ✓	Differential copies only blocks that have changed since the last incre-
mental backup of any type. For example, if you do a level-1 differential
on Monday and a level-1 differential on Tuesday, the Tuesday backup
gets only the blocks changed since the level 1 on Monday.

	 ✓	Cumulative gets all blocks that were changed since the last level-0
backup, even if several level-1 differentials were taken since then.

	

Incremental backups conserve time and space when you’re designing a
backup strategy. You might consider an incremental strategy if your database
is extremely large and takes hours to go through a full backup.

252 Part III: Caring for and Feeding an Oracle Database

Because backups incur overhead on the system, if at all possible, don’t run
them when users are trying to access data. If your database is getting large
and the backup has run for five hours and is cutting into core business hours,
look at an incremental approach to your backups and/or increasing backup
job parallelism.

These are typical solutions that use incremental backups:

	 ✓	You schedule your full weekly backup for Sunday at 3:00 a.m. This
backup takes five hours to complete during the least amount of user
activity on the system. Your database is 400GB, and even though you
compress the backup it still takes 50GB of space.

	 ✓	You schedule a differential level-1 backup to run daily at 3:00 a.m.,
Monday through Saturday. This backup takes only 15 minutes and is
2GB in size after compression.

	 If your database is small, if it doesn’t take long to back up, and if the backup
doesn’t interfere with your operations, consider doing full backups every day
to reduce the complexity of your backup strategy. Keep things simple when
you can.

Block change tracking
Block change tracking just tracks what blocks have changed; when it comes
time to do an incremental backup, you can get the blocks that you need
instead of reading every single one. This technique speeds up incremental
backups tremendously.

Check to see whether your database has block change tracking enabled:

<select *
from v$block_change_tracking;>

If it does not, enable block change tracking:

<alter database enable block change tracking
 Using file <specify a file name here>;>

Put the file with the rest of your data files and name it something like block_
change_tracking.dbf. This feature has little overhead. The block change
tracking file is, on average, 1/30,000 the size of the data blocks to be tracked.
You can have a very large database before worrying about this file taking up
much space.

To do the weekly level-0 backup on Sunday, type the following:

<backup incremental level 0 as compressed backupset database tag=weekly_
level_0;>

253 Chapter 11: Facilitating Backup and Recovery

To do the daily level-1 backup, type the following:

<backup incremental level 1 as compressed backupset database tag=daily_level_1;>

Do the daily backup every day besides Sunday if you’re doing a weekly level
0 on Sunday. If you’re doing a monthly level 0 (for example, on the first of the
month), run the daily level 1 every other day of the month. Basically, if you’re
doing a level 0 on a given day, there’s no need to do a level 1.

	

To make sure you start your incremental backup strategy correctly, specify a
level 0. If you do not, RMAN will do a full backup, which won’t record the nec-
essary information to do incremental backups from there forward.

Making copies
If you want to incorporate copies into your backup strategy, the commands
are slightly different than with backup sets.

	 Copies are block or block images of the files in your database. Their main
advantage is that they don’t have to be restored and can immediately be
ready for action (making for quick database failure recovery). However, don’t
forget that they come at the cost of speed and space.

Make a copy of your entire database:

<backup as copy database;>

Many commands discussed in the backup sets sections are also available
with copies.

Make a copy of just one tablespace:

<backup as copy tablespace users;>

Make a backup of your tablespace users and give it a tag (users_copy in this
example):

<backup as copy tablespace users tag=users_copy;>

	 You can use copies as the level 0 of an incremental strategy. However, copies
can be only for the level-0 portion of the incremental strategy.

To make a level-0 copy for the first stage of an incremental backup strategy,
type the following:

<backup incremental level 0 as copy database tag=level0_copy;>

254 Part III: Caring for and Feeding an Oracle Database

Viewing Backup Information
Use the LIST command to see what backups you have stored. You can list the
following:

	 ✓	All your backups

	 ✓	Backups for certain tablespaces

	 ✓	Backups of certain data files as well as archive logs and copies

You have different outputs to choose from:

	 ✓	See a short listing called a summary.

	 ✓	See a fully detailed listing with the VERBOSE option.

The LIST command is very powerful. Use it to show small bits of information
about your backups, or all the information stored about your backups. Try
some of the following examples to get a feel for how the command works:

	 ✓	To see a summary list of the backups that contain the tablespace users,
type this:
< list backup of tablespace users summary;>

	 ✓	To see a summary of all your backups, type this:
<list backup summary;>

	 ✓	To see a verbose list of all your backups with the tag database_full_
backup, type this:
<list backup tag=database_full_backup;>

The LIST command is a little different if you want to see copies: You use the
COPY keyword.

	 ✓	To see copies of your database, type this:
<list copy of database;>

	 ✓	To see what data files copies you have for tablespace users, type this:
<list copy of tablespace users;>

You can find a lot of information in a VERBOSE listing. Figure 11-3 shows what
the output may look like if you list the backups of the tablespace users.

255 Chapter 11: Facilitating Backup and Recovery

	

Figure 11-3:
List backup
sets of the

USERS
tablespace

with the
VERBOSE

option.
	

If you take a closer look at Figure 11-3, you discover the following:

	 ✓	BS Key is a backup set key. Every backup must have a backup set key,
an ever-increasing unique identifier for each backup.

	 ✓	Type tells you more about what type of backup was taken, such as a full
or an incremental backup.

	 ✓	LV is short for level. When you’re doing incremental backups, they can
have multiple levels.

	 ✓	Size is the size for that particular backup.

	 ✓	Device Type indicates disk or tape for each backup set.

	 ✓	Elapsed Time is how long the backup set took to run.

	 ✓	Completion Time pretty much explains itself.

	 ✓	BP Key is the backup piece key. If you break the backup into multiple
pieces, each piece gets a unique identifier.

	 ✓	Status tells you if a backup is available for RMAN to immediately use.
You can make a backup unavailable if you remove the backup files (for
example, if you take the tape out of the drive and put in storage).

256 Part III: Caring for and Feeding an Oracle Database

	 ✓	Compressed tells whether or not the backup was compressed.

	 ✓	Tag is your backup’s name.

	 ✓	Piece Name is the actual file that is created to store the backup.

Putting It in the Archives
Archiving is the database’s ability to track all data changes. You can turn
archiving on or off.

	

Chapter 2 discusses the processes and files associated with archiving and
asserts that running in archive mode has processing and storage overhead. Is
this going to slow your database? Well, it depends on the following:

	 ✓	If you have a database with very few changes and is mostly read,
archiving barely has an impact.

	 ✓	If you have a database under a constant barrage of data changes and
batch loads, you might feel it a little.

	 Luckily, Oracle has designed archiving to cause minimal overhead. In the end,
the price is worth the peace of mind you have of having a 24/7 operation with
darn-near-guaranteed zero data loss.

Turning archiving on and off
With archiving off, you can take backups of the database only when it’s
closed (also called consistent backups). You do so by shutting down that
database and starting it in mount mode. As a result, no changes are allowed
to the data. This method allows you to take a consistent copy of the data as it
exists at that point in time. If you ever have to restore this backup, your data-
base will look exactly as it did when the backup was taken . . . even if it was a
year ago.

	

You might begin to see some inconveniences if you turn archiving off:

	 ✓	Inconveniences are unacceptable if your database requires 24/7 avail-
ability. You can’t just shut it down and disallow changes for as long as
your backup takes.

	 ✓	Even if you do consistent backups every day, what happens to the
changes that occur between backups? They’re lost if you have to restore
from a previous backup.

257 Chapter 11: Facilitating Backup and Recovery

With archiving turned on, you get the following benefits:

	 ✓	All data changes are tracked.

	 ✓	You can do backups with the database open and available to all users.

	 ✓	If you ever have to restore a backup that was taken the night before, you
can apply the archives that were tracked up until the point of failure.

	

In reality, archiving is a must for almost all live production databases. It’s rare
that you can afford to take the database offline for significant periods of time
or afford to lose data in the event that a backup has to be restored.

Archive logs
Besides the impact of the archiving process, you have to consider what to
do with all the archive log files being created. Again, your database size and
number of changes determine how much archive data you will create.

You have two choices for where to store the archive logs:

	 ✓	Fast Recovery Area: If you store the archive logs here, Oracle neatly
organizes them by database and date. This solution results in less work
and fewer parameters to configure.

	 ✓	LOG_ARCHIVE_DEST_n initialization parameter: This is actually 30
parameters. The n represents a number from 1 to 30. That’s right: You
can store up to 30 copies of your archive logs (but doing so would be
overkill). DBAs commonly have two, maybe three copies. Here’s an
example of how you might set the LOG_ARCHIVE_DEST_1 parameter in
your spfile:
alter system set log_archive_dest_1=’LOCATION=/u01/oradata/dev12c/archive’;

	 The bottom line is that you need to monitor the creation, storage, and backup
of the archive logs. It’s a fact of DBA life.

The good news is you need to keep the archive logs only for recovery between
backups. Does that mean if you back up every night, you can trash all archive
logs created prior to that backup? No. Do not trash them every day. We can’t
tell you how long to keep them, but consider the following situation:

It’s Wednesday. You’re taking a full backup of your database every night
and running in archive log mode. After the backup is complete, you
delete all the archive logs created prior to that backup. At noon, you have
a catastrophic disk failure and must restore backups from the previous
night (Tuesday). You discover that the backup tape from the previous
night had coffee spilled on it (tsk tsk) and is no longer good.

258 Part III: Caring for and Feeding an Oracle Database

See where we’re going with this?

	 ✓	You have to go back to the backup tape from two nights ago (Monday).

	 ✓	You restore that backup and find that you can’t roll forward to the time
that your disk failed today because you trashed all the archive logs after
each nightly backup.

	

Again, we recommend not only keeping archive logs for some time but also
including them as part of your backup.

With no other requirements, we tend to keep archive logs for at least 30 days.
This system gives us plenty of time to go back in the event that daily or even
weekly backups incur some sort of unfortunate mishap.

Look at it this way: If you back up archive logs, you can remove them from
the system to conserve space. Another reason to keep archive log backups: It
allows you to restore your database to periods from long ago.

	 Take this instance: We have a client who, in June, wanted a copy of the client’s
database restored to December 31 at 11:59:59 p.m. of the prior year. We knew,
from client conversations, that these operations were possible. Therefore
we keep all backups and all archive logs on tape and offsite indefinitely. We
requested the files (from querying the recovery catalog) and retrieved them
from long-term storage. We ended up restoring the database to a new server
to avoid interfering with the client’s current production database. Everyone
lived happily ever after.

Enabling archiving
If you haven’t already done so, enabling archiving is a simple process.
However, keep these things in mind:

	 ✓	You have to shut down and restart the database.

	 ✓	You must have enough space to store your archive logs.

Before you turn on archiving, decide where to store the archive log files. Use
the Fast Recovery Area (briefly mentioned in Chapter 4). We show you how
to do it here from the command line.

	 The database-creation steps in Chapter 4 give you the option to enable
archiving. If you haven’t read Chapter 4 or recently created a database, we
go through it here. Furthermore, in that chapter, we use the GUI Database
Configuration Assistant (DBCA). Here we do it from the command line.

259 Chapter 11: Facilitating Backup and Recovery

Enabling the Fast Recovery Area
Follow along to enable the Fast Recovery Area:

	 1.	 Open a command prompt to your operating system.

	 2.	 Log in to SQL*Plus as SYSDBA:
<sqlplus / as sysdba>

	 3.	 Configure how much space you want to dedicate to your Fast
Recovery Area:
<alter system set db_recovery_file_dest_size = 100G;>

		 This example dedicates 100GB. You should see this:
System altered.

	 4.	 Choose the destination:
<alter system set db_recovery_file_dest=
‘/u01/app/oracle/fast_recovery_area’;>

		 You should see this:
System altered.

		 Now Oracle automatically creates your archive logs under the Fast
Recovery Area. The archive process creates a folder for your database
and the subfolder for the date the archives were created. It organizes
them very nicely.

	 If you want to see how much of your Fast Recovery Area is used, log in to
SQL*Plus and query the view V$FLASH_RECOVERY_AREA_USAGE. It’s sort of a
misnomer. Oracle still hasn’t changed the name of this view from FLASH to FAST
even though they made the change in the documentation two versions ago.

After determining where you want to keep the archive logs, you can turn on
archiving. These steps walk you through the process:

	 1.	 Open a command prompt to your operating system.

	 2.	 Log in to SQL*Plus as SYSDBA:
<sqlplus / as sysdba>

	 3.	 Shut down the database:
<shutdown immediate>

		 You see this:
Database closed.
Database dismounted.
ORACLE instance shut down.

260 Part III: Caring for and Feeding an Oracle Database

	 4.	 Start the database in mount mode:
<startup mount>

		 You see something like this:
ORACLE instance started.

Total System Global Area 1336176640 bytes
Fixed Size 2287480 bytes
Variable Size 1258293384 bytes
Database Buffers 67108864 bytes
Redo Buffers 8486912 bytes
Database mounted.

	 5.	 Issue the command to enable archive mode:
<alter database archivelog;>

		 You should see this:
Database altered.

	 6.	 Open the database:
<alter database open;>

		 You should see this:
Database altered.

		 Now your database is in archive log mode, and archive log files should
show up in your Fast Recovery Area.

If you’re impatient and want to see them now, type the following:

<alter system archive log current;>

You see this:

System altered.

If you navigate to your Fast Recovery Area, you should see one of your
archive logs under a subdirectory with today’s date.

Maintaining the Archives
Archive logs are a fundamental part of your backup and recovery strategy.
However, they can take up a lot of space and need to be backed up. Luckily,
backing up your archive logs is no more difficult than backing up anything
else in your database. Furthermore, RMAN has some features to help you
reclaim that space the archives occupy.

261 Chapter 11: Facilitating Backup and Recovery

Make a backup of all your archive logs with this:

<backup archivelog all tag=archive_bak;>

This command backs up all the archive logs in your archive destination,
which can be a tall order depending on how often you issue this command.

	

Back up your archive logs at least once per day. Keep your archive logs for up
to 30 days.

Instead of backing up all archive logs every time, you might try backing up
only the ones created since the last backup. To do so, type this:

<backup archivelog all not backed up tag=archive_bak;>

You could issue that command every day as part of your backup strategy.
You could even do it several times a day just to be sure you get all of your
archive logs backed up as often as possible. When the archive logs are
backed up, you may not want them in the archive destination; they take up
space after all.

RMAN offers a convenient command to clean up any successfully backed-up
archives. If you want to back up all your archive logs and then delete the files
that were backed up, type this:

<backup archivelog all delete input tag=archive_bak;>

	 We favor the “delete input” clause of the command as part of an archive log
backup strategy:

	 ✓	It allows you to back up any archive logs that exist in your archive desti-
nation while at the same time freeing up space.

	 ✓	RMAN deletes the archive logs only if the backup was successful.

	 ✓	You don’t have to worry about coming up with a time formula that will
back up the archives every so often. Because it deletes the ones it suc-
cessfully backs up, you can specify “all” every time, ensuring that none
are missed.

	

Run an archive log backup command every time you do any database backup.
That way, you have everything you need to recover if there’s a failure.

Recovering Your Oracle Database
Many types of failures can befall your database. Oracle Recovery Manager
is a tool that can help you get back on your feet after many of these failures.

262 Part III: Caring for and Feeding an Oracle Database

Sometimes it is the only option, sometimes it is the best approach of several, and
sometimes it isn’t the right approach at all. This section focuses on the times
RMAN shines and helps you bring a dead or damaged database back to life.

	 RMAN can really help with two types of failures:

	 ✓	Media failure: Loss of files

	 ✓	User error: Mistakes that lead to damaged databases or data

Whether RMAN can always help you when it comes to user error depends on
what type of problem has been created. For example, if a user accidentally
removes a file or a tablespace, RMAN can help very easily. However, if a user
accidentally drops a table or corrupts data, RMAN can help, but it might
not be the quickest approach. If a user drops a table, it might be quicker to
retrieve it from the database Recyclebin or Flashback Database.

	 However, if the user has purged the Recyclebin or the Flashback Database
isn’t configured, Recovery Manager is your only choice.

RMAN can do two types of recoveries:

	 ✓	Complete: All files are brought back to the time the database failed. No
data is lost.

	 ✓	Incomplete: The database is recovered but stopped short of a full
recovery. There may be data loss. Sometimes this is what you want. For
example, if a user drops a table at 10:13 a.m. sharp, you do an incomplete
recovery to 10:12 a.m. to get the database back before the drop occurs.

Complete recovery is what usually happens. However, be prepared for
anything.

Verifying the problem
Finding out what went wrong with your database isn’t always an easy task.
Sometimes you get lucky (if you want to use the term lucky in the face of a
broken database). For example, maybe you know what happened:

	 ✓	A system administrator told you a disk croaked.

	 ✓	A user told you they dropped a table.

	 ✓	You caused the error and you know what happened and why.

These might not be the problem, however. Sometimes you’re presented with
sneaky problems, in which case you take on the role of a detective. Say you
start the database or access the data while the database is still open and get
an error similar to this one:

263 Chapter 11: Facilitating Backup and Recovery

ORA-01157: cannot identify/lock data file 4 - see DBWR trace file
ORA-01110: data file 4: ‘/u01/app/oracle/oradata/dev12c/users01.dbf’

You look for the file in the location that it gives. Lo and behold, it is gone (or
maybe the whole disk is gone). You had more than one file on that disk. Why
is Oracle telling you only that it can’t find one of your files? Because when
you start the database, Oracle reads the data file list in the control file. As
soon as it can’t find one in the list, it stops opening and presents the error.
Or, if the database is already open, Oracle tells you only about the error that
you’re experiencing as a result of your specific action. Unfortunately, this is
a little misleading; you might restore and recover the file only to find another
error just like it for a different data file.

	

You can do a couple of things when you see the error:

	 ✓	Query the dynamic performance view V$RECOVER_FILE to see a list
of all files that Oracle is having trouble with, the error, and the file
number(s) in question. Take that file number and plug it into the view
V$DATAFILE to get a list of the filenames that need recovery.

	 ✓	Oracle has a fancy tool called the Data Recovery Advisor. This tool
won’t work in all situations. It works when you have missing media, such
as loss of files.

Complete recovery
Complete recovery (as opposed to incomplete recovery) is always what you
want to shoot for. It means you recover every block and every transaction
that was ever committed into the database. You let Oracle take over and do
the recovery until the end of all the backup files and archive logs; don’t man-
ually intervene and stop it before it’s finished.

Complete recovery: One or more data files
If you see the “unable to identify/lock datafile” error, you need to do a couple
of things:

	 ✓	Know the extent of the damage. This knowledge helps so you only have
to do one recovery instead of two.

	 ✓	Determine whether the lost file is required for the instance to run (or if it
is an application data file). Required data files are SYSTEM, SYSAUX, and
UNDO. This is important for reducing your overall mean time to recovery
(MTTR). Oracle crashes only if you lose a required data file.

264 Part III: Caring for and Feeding an Oracle Database

	 If you determine that the lost files aren’t important to basic operation, you can
open the database (if it even went down) before you begin recovery. That
allows at least partial data access to some users. You may prefer that users
remain out of the system until you’re done.

What’s the first thing to do if Oracle 12c crashes? Go to the Data Recovery
Advisor (DRA). For the DRA to work, the database has to, at the very least, be
in NOMOUNT state. The database can’t be completely shut down. The DRA
can also be run with the database open, minimizing downtime.

In the following exercise, the USERS tablespace data file was lost while
the database was running. Because that data file is not a required data file
(system, sysaux, undo), you can do the recovery without even shutting down
the database.

	 1.	 Log in to your target with RMAN.

	 2.	 Type this:
<list failure;>

		 You see something like this:
List of Database Failures
=========================

Failure ID Priority Status Time Detected Summary
---------- -------- --------- -------------------- -------
722 HIGH OPEN 30-JUN-2013 11:25:20 One or more non-system

datafiles are missing

		 A non-system (critical) file is missing. What to do?

	 3.	 Ask the DRA what to do:
<advise failure;>

		 You see something like this:
Database Role: PRIMARY

List of Database Failures
=========================

Failure ID Priority Status Time Detected Summary
---------- -------- --------- -------------------- -------
722 HIGH OPEN 30-JUN-2013 11:25:20 One or more non-system

datafiles are missing

analyzing automatic repair options; this may take some time
allocated channel: ORA_DISK_1
channel ORA_DISK_1: SID=56 device type=DISK

265 Chapter 11: Facilitating Backup and Recovery

analyzing automatic repair options complete
Mandatory Manual Actions
========================
no manual actions available

Optional Manual Actions
=======================
1. If file /u01/app/oracle/oradata/dev12c/users01.dbf was unintentionally

renamed or moved, restore it

Automated Repair Options
========================
Option Repair Description
------ ------------------
1 Restore and recover datafile 4
 Strategy: The repair includes complete media recovery with no data loss
 Repair script: /u01/app/oracle/diag/rdbms/dev12c/dev12c/hm/

reco_3875560744.hm

		 Get a load of that! Not only does the DRA tell you exactly what you need
to do, but it also provides a script so you don’t have to write a single
line of code. If you open that script, it looks something like this:
 # restore and recover datafile
 sql ‘alter database datafile 4 offline’;
 restore (datafile 4);
 recover datafile 4;
 sql ‘alter database datafile 4 online’;

	 4.	 Type the following to have the DRA fix the problem:
<repair failure;>

		 You see something like this:
RMAN> repair failure;

Strategy: The repair includes complete media recovery with no data loss
Repair script: /u01/app/oracle/diag/rdbms/dev12c/dev12c/hm/reco_

3875560744.hm

contents of repair script:
 # restore and recover datafile
 sql ‘alter database datafile 4 offline’;
 restore (datafile 4);
 recover datafile 4;
 sql ’alter database datafile 4 online’;

Do you really want to execute the above repair (enter YES or NO)? YES
repair failure complete

266 Part III: Caring for and Feeding an Oracle Database

		 At the very end of an Advisor-based recovery, if the database was
closed, it asks whether you want to open the database. Most of the time
you will choose Yes. You might choose No if you want to spend more
time going over what happened before you release the database back to
the users.

If we had to nitpick about the DRA, here is what we’d say:

	 ✓	The DRA doesn’t say you can take data files offline and then open the
database for everyone else if the database is closed. It tells you that
the files can be offline and recovered if the database is already open. At
least it told you that they were non-system files.

	 ✓	If you have to restore the files to a new location, the DRA can’t take
over and do the whole recovery for you. Say you lost a disk and it ain’t
coming back. The DRA isn’t smart enough to choose a new location for
you and incorporate that into a repair script. It tells you what’s wrong
and what it suggests doing, which may help get you going in the right
direction, but it falls short after that.

Be realistic. How can you expect it to have every situation indexed for all
types of systems and environments?

Complete recovery: One or more control files
What if you manage to lose all your control files and your database crashes?

	

Control files are critical system files.

DRA to the rescue:

	 1.	 Log in to RMAN.

	 2.	 List failure.

	 3.	 Advise failure.

	 4.	 Repair failure.

If you’re lost, go to the earlier “Complete recovery: One or more data files”
section for the full steps.

But wait a minute . . . Why didn’t these steps open the database? Recovery
from losing all your control files is a little more involved than standard data
file recovery. (We suppose the DRA doesn’t want to continue with the recov-
ery without you getting a chance to check things out.)

Complete recovery without the DRA
We don’t want you to rest on your laurels too much, so we’re showing you a
recovery without the DRA. The DRA won’t help you in every situation. What if

267 Chapter 11: Facilitating Backup and Recovery

the file you need to restore has to go somewhere else? The DRA won’t know
where to put it.

Plus, it’s good to understand how to recover without the DRA. You might find
yourself in a non-12c database someday. The following method works all the
way back to the dawn of Recovery Manager (as far as we know).

This example has you losing a data file but being unable to put it back in the
same place. (By you, we mean RMAN.) You have to tell RMAN where to put
the file; then RMAN will restore it to the proper location.

	 ✓	You lost a disk with a data file on it.

	 ✓	The disk won’t be replaced, and you have to restore the data file else-
where.

	 ✓	You tell RMAN where to put the data file.

	 ✓	You tell RMAN to restore the data file.

	 ✓	You tell RMAN to recover the data file.

	 ✓	If the database was closed, you open it. If the database was open, you
online the data file.

This example using Oracle on Linux starts with the database closed; you
open it and then fix the error. To create this error, we simply renamed the
users01.dbf data file while the database was down.

	 1.	 Start the database and read this error:
ORA-01157: cannot identify/lock data file 4 - see DBWR trace file
ORA-01110: data file 4: ‘/u01/app/oracle/oradata/dev12c/users01.dbf’

	 2.	 See if that is the only missing file:
<select * from v$recover_file;>

	 3.	 Determine whether this is the only file affected and whether it is a
critical file.

		 You also determine that it must be restored to a different disk.

	 4.	 Launch RMAN and take the data file offline:
<alter database datafile 4 offline;>

		 You see this:
using target database control file instead of recovery catalog
Statement processed

	 5.	 Open the database:
<alter database open;>

268 Part III: Caring for and Feeding an Oracle Database

	 6.	 Tell RMAN to restore to the correct location:
<run {
set newname for datafile 4 to ‘/u02/app/oracle/oradata/dev12c/users01.dbf’;
restore tablespace users;
switch datafile all;
recover tablespace users;
}>

		 In this case, it is disk u02, a different location. The output indicates that
the file is being restored and recovered in the new location:
executing command: SET NEWNAME

Starting restore at 30-JUN-2013 11:48:46
using target database control file instead of recovery catalog
channel ORA_DISK_1: SID=7 device type=DISK
channel ORA_DISK_1: restoring datafile 00004
input datafile copy RECID=12 STAMP=819457925 file name=/u01/app/oracle/

fast_recovery_area/DEV12C/datafile/o1_mf_users_8x0lp5mo_.dbf
destination for restore of datafile 00004: /u02/app/oracle/oradata/dev12c/

users01.dbf
channel ORA_DISK_1: copied datafile copy of datafile 00004
output file name=/u02/app/oracle/oradata/dev12c/users01.dbf RECID=13

STAMP=819460128
Finished restore at 30-JUN-2013 11:48:49
datafile 4 switched to datafile copy
Starting recover at 30-JUN-2013 11:48:49
using channel ORA_DISK_1
starting media recovery
...output snipped...
media recovery complete, elapsed time: 00:00:01
Finished recover at 30-JUN-2013 11:48:52

	 7.	 When the recovery finishes, alter the tablespace to put it back online:
<alter tablespace users online;>

		 Quite a few more steps without the DRA, isn’t it? Either way, it’s not too
difficult. If you haven’t already, make sure you set up a test database
and practice these and other scenarios. You’ll be a recovery expert in no
time at all.

Incomplete recovery
Incomplete recovery is usually a very unfortunate position to be in. Typically,
it means you will be losing data (hence incomplete). Also, the DRA cannot
help at all in this situation. In an incomplete recovery scenario, the database
has not actually failed. Someone has done something to put the database in a
state that requires you to go back in time.

269 Chapter 11: Facilitating Backup and Recovery

Here’s a situation where incomplete recovery may apply:

It is Sunday morning. You have taken a backup of your database last
night. You are in archive log mode.

At 1:00 p.m., Barry tells you he accidentally dropped a major table out of
the accounting schema around 11:45 a.m. Not only did he drop it, but he
purged it from the Recyclebin because he “knew it was the right one.” It
wasn’t. Assuming you have no other way to retrieve the table from a logi-
cal backup or re-create it, you decide incomplete recovery is your only
choice. You will take the database down to restore the backup from last
night. Then you will roll the database forward to 11:44 a.m. and open it.

Any transactions that occurred between 11:45 and 1:00 p.m. will be lost
and have to be manually re-entered.

A key piece of information is that Barry told you he dropped the table at
11:45 a.m.

	 Spend a few minutes doing some research to verify that the reported time is
truthful. If you roll forward too far, the table will be dropped again during the
recovery process, and you will have to start over.

Here are the steps to incomplete recovery:

	 1.	 Shut down the database.

	 2.	 Start up the database in mount mode.

	 3.	 Set the time for the restore to work from.

	 4.	 Restore the database.

	 5.	 Recover the database.

	 6.	 Open the database with RESETLOGS.

		 The control files won’t match the data files. You have to re-sync the con-
trol files with the data files.

	 7.	 Open a prompt to your OS command line.

	 8.	 Log in to your database with RMAN:
<rman target /

	 9.	 Put the database in mount mode:
<shutdown immediate>
<startup mount>

270 Part III: Caring for and Feeding an Oracle Database

	 10.	 Use the following RMAN command to recover your database to the
appropriate time (11:44 a.m. in this case):
RMAN> run {
set until time =
“to_date(‘30-JUN-2013:11:44:00’,’DD-MON-YYYY:HH24:MI:SS’)”;
restore database;
recover database;
sql “alter database open resetlogs”;
}

		 When the command completes, you should see something like this:
executing command: SET until clause

Starting restore at 30-JUN-2013 11:58:52
allocated channel: ORA_DISK_1
channel ORA_DISK_1: SID=20 device type=DISK
…output snipped…
Finished recover at 30-JUN-2013 12:02:56
sql statement: alter database open resetlogs

	 11.	 Make sure the table you were trying to recover has indeed been
recovered.

		 There’s nothing more embarrassing than telling everybody you recov-
ered data only to have someone else discover that the data still isn’t
there. If you discover it isn’t there, do the recovery again, going back a
little farther in time.

	 After any type of recovery, take a fresh, full backup immediately — just in
case. We recommend it as a best practice — especially for a RESETLOGS
recovery.

Recovering your database with copies
Copies allow for superfast recovery and fewer technical recoveries when
you’ve lost a disk and the file has to go to a different location.

	 Some DBAs would argue that it’s incorrect to use the copy in the place you
backed it up. Good DBAs subscribe to the mantra “Everything has its place;
everything in its place.” However, times are changing. For example, the popu-
larity of large storage area networks (SANs), where all your files go to the same
place, is growing. DBAs don’t have as much responsibility to organize, sepa-
rate, stripe, and label data, nor do they have as much time. The SAN does all
the protection and striping for you. Furthermore, Oracle has even released, in
essence, its own volume manager: Automatic Storage Management (ASM). ASM
can help you:

271 Chapter 11: Facilitating Backup and Recovery

	 ✓	Relax your regimented file and naming conventions.

	 ✓	Find more time to make better use of the features that Oracle has to
protect and manage data.

You get a call from a user who is getting the following error:

SQL> select *
 2 from emp;
from emp
 *
ERROR at line 2:
ORA-01116: error in opening database file 4
ORA-01110: data file 4: ‘/u02/app/oracle/oradata/dev12c/users01.dbf’
ORA-27041: unable to open file
Linux-x86_64 Error: 2: No such file or directory
Additional information: 3

After some investigation, you see that someone has removed the data file
from the USERS tablespace. This tablespace is critical and must be recovered
immediately. You decide to recover with RMAN using a COPY of the data file.

	 1.	 Log in to your target with RMAN.

	 2.	 Make sure you have a copy of your USERS tablespace data file:
<list copy of tablespace users;>

		 You should see something like this:
List of Datafile Copies
=======================

Key File S Completion Time Ckp SCN Ckp Time
------- ---- - -------------------- ---------- --------------------
19 4 A 30-JUN-2013 12:11:31 2365031 30-JUN-2013 12:11:30
 Name: /u01/app/oracle/fast_recovery_area/DEV12C/datafile/o1_mf_

users_8x0p5lyh_.dbf
 Tag: LEVEL0_COPY

12 4 A 30-JUN-2013 11:12:05 2356203 30-JUN-2013 11:12:05
 Name: /u01/app/oracle/fast_recovery_area/DEV12C/datafile/o1_mf_

users_8x0lp5mo_.dbf
 Tag: LEVEL0_COPY

7 4 A 30-JUN-2013 11:08:20 2355686 30-JUN-2013 11:08:20
 Name: /u01/app/oracle/fast_recovery_area/DEV12C/datafile/o1_mf_

users_8x0lh47j_.dbf
 Tag: USERS_COPY
6 4 A 30-JUN-2013 11:08:08 2355658 30-JUN-2013 11:08:08
 Name: /u01/app/oracle/fast_recovery_area/DEV12C/datafile/o1_mf_

users_8x0lgrkr_.dbf
 Tag: TAG20130630T110808

272 Part III: Caring for and Feeding an Oracle Database

5 4 A 30-JUN-2013 11:08:04 2355632 30-JUN-2013 11:08:03
 Name: /u01/app/oracle/fast_recovery_area/DEV12C/datafile/o1_mf_

users_8x0lgmrf_.dbf
 Tag: TAG20130630T110430

	 3.	 Take the tablespace offline (because the database is open):
< sql “alter tablespace users offline”;>

		 You see this:
sql statement: alter tablespace users offline

	 4.	 Switch to the copy:
<switch tablespace users to copy;>

		 You see something like this:
datafile 4 switched to datafile copy “/u01/app/oracle/fast_recovery_area/

DEV12C/datafile/o1_mf_users_8x0p5lyh_.dbf”

	 5.	 Recover the copy that was taken earlier:
<recover tablespace users;>

		 You see something like this:
Starting recover at 30-JUN-2013 12:21:52
allocated channel: ORA_DISK_1
channel ORA_DISK_1: SID=48 device type=DISK

starting media recovery
media recovery complete, elapsed time: 00:00:00

Finished recover at 30-JUN-2013 12:21:53

	 6.	 Alter the tablespace to put it back online:
<alter tablespace users online;>

		 You see this:
Statement processed

	

All done! Do you see how quick that was without having to restore the file? Of
course, you have to come to terms with it being in your Fast Recovery Area. If
that really bugs you, you can do one of the following:

	 ✓	You can rename the file and move it later when you have a maintenance
window.

	 ✓	When you take the copy, you can copy the file to an auxiliary area out-
side your Fast Recovery Area (where you don’t mind it being) in case
you have to use it.

Chapter 12

Troubleshooting an
Oracle Database

In This Chapter
▶	Using a system-level troubleshooting methodology
▶	Troubleshooting with Oracle database logs
▶	Employing other diagnostic utilities

N
o matter what the salespeople claim, any system made by mortal
beings will have issues and sometimes even break; that’s reality.

Worse yet, those same salespeople who claimed their system was perfect
aren’t around to fix it when it does break; that’s your job. Fortunately, this
chapter provides the information you need when problems arise.

Before jumping into database-specific diagnostic techniques, we give you a
method for troubleshooting at the system level. Remember: Oracle exists
as part of an overall information system. Here you explore the methods and
tools you need to operate at system level.

Oracle provides a wealth of information, almost an overload, in its multiple
log and trace files. Between the different files and tracing levels, odds
are good that the information you need to solve the problem is there
somewhere . . . if you know where to look for it. We provide that knowledge.

Just when you thought you couldn’t get any more information about your
Oracle database, we do just that via Oracle diagnostic tools and scripts.
We’re not showing tools that provide pointless data; rather, we explain tools
that provide fast, actionable information.

Troubleshooting with
System Methodology

If an Oracle crash hasn’t happened to you yet, it will happen sometime. When
it does, it won’t be at a convenient time.

274 Part III: Caring for and Feeding an Oracle Database

The problem is that people assume that because they have an Oracle-based
system, the problem must be with Oracle. It could be, but you don’t know
just yet. Oracle is simply a component of a larger system, and the root cause
and solution may not be Oracle-based. Even if you get an Oracle database
error message, the cause may be something outside of Oracle. We often
see people become so focused on the specific error message that they lose
awareness of the overall system environment hosting the database. Be sure
to look at the overall system supporting the database, not just the database
itself.

	 Don’t react to a problem report on face level. Apply a structured, repeat-
able pattern when addressing problems. We can’t stress this next statement
enough: Yours is a technical profession, and you’re paid to solve problems, not
simply to react and hope for a quick fix.

Everyone has a troubleshooting methodology tailored for their unique envi-
ronment, but we suggest the following as a start:

	 1.	 Identify the real problem. Determine and confirm what’s happening in
the system.

	 2.	 Perform basic system checks. Check the server, operating environment,
and connectivity for outright errors and performance degradation.

	 3.	 Perform basic database checks. Confirm that the database is running
and see whether you can log in to it.

	 4.	 Determine what your error messages mean.

	 5.	 Develop a solution and apply it. Confirm that the fix works and that
there aren’t unintended consequences.

With experience and time, you will modify these steps for your environment.
Depending on the situation, you may process some steps very fast — but
they’re still processed, not skipped.

Identifying the real problem
Before doing anything to fix the perceived problem, you need to know what
the real problem is. You can’t guess or assume. It’s far better to treat the real
cause of a problem, not just the symptoms.

People reporting problems get excited, miss key details, make assumptions,
and often inaccurately state the nature and severity of a problem; that’s
simply human nature. If you think otherwise, ask any cop or ER doctor about
the quality of the initial witness reports they receive. This is exacerbated
in computer work because many people who are reporting problems aren’t
technical and can’t articulate their problems very well.

275 Chapter 12: Troubleshooting an Oracle Database

	

You need to determine what system component has the problem and what is
specifically happening before you can develop and apply a fix. Ask the follow-
ing questions:

	 ✓	What: What specifically is happening? Have the user walk through what
he’s doing when the error occurs. Work directly with the person having
problems and monitor the issue in real time rather than getting second-
or third-hand information. Get screen shots or the error messages them-
selves.

	 ✓	Who: Who’s being impacted? Is it one or two users? Is it a specific sub-
classification of users? Is it everyone? Also, is it your production, test, or
development system? Never assume that because someone is excited,
it must be production. Trying to fix the wrong database will leave you
blushing with embarrassment.

	 ✓	Where: Are affected users spread over a wide geographic location, or
are they in a specific city or building?

	 ✓	When: How long has this been occurring, and has it occurred before?
Also, does it happen every time or just sometimes? If it happens only
occasionally, drill down into what’s being done prior to the error. If
it occurred only since a recent system change (such as a patch, an
upgrade, or a reboot), that can be a valuable clue. The question “What
has recently changed in the system?” is a great one to ask!

	 ✓	How bad: Is this a total loss of service where the company is stopped,
or is it just an annoyance on a seldom-used development system?

After asking these questions, you should know what’s happening, who it’s
happening to, how bad it is, and when it started. You should also have a
rough idea of what subsystem or components to start checking.

	 Keep a cool head when troubleshooting hot issues; be methodical and work in
a logical manner until the problem is fixed (and confirmed to be fixed). Other
people may become excited, stressed, or unprofessional, but you need to keep
your wits and professionalism as you work toward a solution. Don’t let your-
self be intimidated by irate users or management standing over your shoulder.

Performing basic system checks
You need to perform basic system checks to ensure the system is in a state
that can support a database. If the network is down, server is overloaded, or
disk system has run out of space, your database may be impacted and dis-
play database errors, but the root problem is system related.

	

Investigate these key areas:

276 Part III: Caring for and Feeding an Oracle Database

	 ✓	Network: Can you connect to the server or application?

	 ✓	Server utilization: What are the top processes on the server?

	 ✓	CPU utilization: Is the CPU maxed out?

	 ✓	Memory: How much memory is available?

	 ✓	Available disk space: Is there disk space available?

	 ✓	System event logs: Is anything being reported to the system?

You don’t need to be a system administrator to perform these checks.

Network
If you can’t connect to the database server, odds are good that your users
can’t either. You have two easy ways to check this:

	 ✓	Ping to test server connectivity.

	 ✓	Log in to the server as the Oracle user.

	

From the DOS or Linux command prompt, type ping SERVER NAME to see
whether the target server can be reached.

$ ping oralinux1
PING oralinux1 (192.168.2.121) 56(84) bytes of data.
64 bytes from oralinux1 (192.168.2.121): icmp_seq=1 ttl=64 time=0.020 ms
64 bytes from oralinux1 (192.168.2.121): icmp_seq=2 ttl=64 time=0.007 ms
64 bytes from oralinux1 (192.168.2.121): icmp_seq=3 ttl=64 time=0.007 ms

--- oralinux1 ping statistics ---
3 packets transmitted, 3 received, 0% packet loss, time 1999ms
rtt min/avg/max/mdev = 0.007/0.011/0.020/0.006 ms

In the preceding code, three ping packets were sent, and all three arrived
successfully. Depending on the ping version, you get back slightly different
output, but all outputs specify whether the server was reachable.

If the server comes back as unavailable, the problem is one of these things:

	 ✓	The server is shut down.

	 ✓	The network is down.

	 ✓	You’re prevented from pinging servers.

	

Sometimes security blocks the ping utility, so check whether it works before
problems occur so you know the test is valid.

277 Chapter 12: Troubleshooting an Oracle Database

After you confirm the server can be reached, try actually logging in as the
owner of the Oracle software if possible. Note that on some systems you
have to log in as yourself (for security-auditing purposes) and then switch
users to the Oracle software owner. This action confirms the server is not
only running but also able to support a login attempt.

Server utilization
If a program, process, or job is consuming all the resources on a server and
has been doing so for a long enough time, a database can

	 ✓	Slow down

	 ✓	Be rendered unusable

	 ✓	Be killed (in rare cases)

The processes themselves may be one of three things: valid, a competing
database (multiple databases can be on the same server), or an out-of-con-
trol, runaway process.

You must identify the programs that are running before you can determine
whether they’re valid or hurting the system. There are several graphical tools
to do this.

	 ✓	On Windows, use Windows Task Manager to see which applications are
running (under the Applications tab). For more detail, use the Processes
tab shown in Figure 12-1.

	 ✓	For Linux/UNIX, use the command top to display the top processes on a
server and their process ID (PID), as shown in Figure 12-2. The output is
text based and refreshed every few seconds.

Additionally, at the top of the screen is the machine’s load average. This
derived value reflects relative load on the server.

	 ✓	Values up to 3 are light and shouldn’t reflect performance problems.

	 ✓	Values in the teens reflect higher use of a busy system, and performance
may suffer.

	 ✓	Values above 20 indicate a busy system where performance is likely
impacted.

For Linux/UNIX, the uptime command helps you see system load:

$ uptime
 23:13:03 up 4 days, 10:27, 1 user, load average: 0.00, 0.00, 0.00

278 Part III: Caring for and Feeding an Oracle Database

	

Figure 12-1:
Windows

Task
Manager

has multiple
processes
executing

as multiple
users via the

Processes
tab.

	

	

Figure 12-2:
The top util-

ity shows
the top

processes.
	

279 Chapter 12: Troubleshooting an Oracle Database

System load values are the same as with the top command:

	 ✓	The leftmost value is the current load.

	 ✓	The middle value is the load 5 minutes previous.

	 ✓	The rightmost value is the load 15 minutes prior.

Another useful value is the time since the last server restart. Obviously if
users reported problems and you see the server recently rebooted a few min-
utes prior, the server reboot (or crash) is the likely culprit.

	 ✓	On UNIX Oracle Solaris systems, prstat is an alternative to top.

	 ✓	On HP-UX systems, the glance command is extremely useful.

CPU utilization
Servers may have single or multiple CPUs. Regardless, processing needs to
be available for the server to process application requests.

	

If a machine has a very high or complete CPU use, performance issues will
occur.

	 ✓	On Windows, the previously mentioned Windows Task Manager has
a Performance tab. That tab displays CPU use as a percentage and as
recent spikes; see Figure 12-3.

	 ✓	For Linux/UNIX systems, the previously described top command dis-
plays CPU utilization at the top of the screen.

Moonlighting
Have you ever noticed that the system time
examples in many technical books are often
late at night or very early in the morning, like
the 11:13 p.m. example regarding the uptime
command? Many, if not most, technical authors
are primarily consultants or otherwise actively

working in their field full time. The benefit to
you, the reader, is you get good, practical, and
current information. The negative for us, the
writers, is we don’t get a lot of sleep during
these projects!

280 Part III: Caring for and Feeding an Oracle Database

	

Figure 12-3:
The

Windows
Task

Manager
Perform-
ance tab

shows CPU
use.

	

Memory
If the server is lacking memory, system performance suffers or even stands
still. It isn’t desirable to run a server with little or no memory available. If you
find the server is consistently memory starved, either add more memory or
reduce the amount of memory allocated for programs.

	 ✓	To check memory on Windows, the Windows Task Manager
Performance tab provides the total memory on the machine and amount
available.

	 ✓	Linux/UNIX systems have multiple tools to check memory, but the top
utility provides this information rapidly.

Available disk space
Disk space is different than disk utilization. The frequency of reads and writes
on a disk is utilization and can be a major performance factor. Running out
of available disk space can bring your system to a halt and is the focus here
because you, as the DBA, can do something about it.

281 Chapter 12: Troubleshooting an Oracle Database

	 However, poor disk utilization won’t often bring your system to a complete
standstill without warning. Measuring and accurately interpreting disk utiliza-
tion, especially in large SAN environments, is outside the scope of this book.
You should work with your storage engineers to address that topic.

What can happen when a disk fills up? It depends on what’s writing to that
disk. At minimum, log files can’t be written to and tablespaces can’t be
expanded. At worst, archive log files can’t be successfully written, and the
database hangs. With other software, processes can spin high amounts of
CPU, and Java Virtual Machines can crash. Any one of these problems is
likely to generate a panicked call to your desk.

	

The quickest way to check for disk space is to see if any file systems are 100
percent full.

	 ✓	For Windows systems, the fastest way is to go to My Computer and
look at free space for each disk drive. Be sure to have the Details option
selected on the View tab to get the full information.

	 ✓	The df -m command helps Linux and Oracle Solaris users:
$ df -m
Filesystem 1M-blocks Used Available Use% Mounted on
/dev/sda3 8064 3587 4068 47% /
tmpfs 3957 1885 2072 48% /dev/shm
/dev/sda5 8064 208 7447 3% /home
/dev/sda6 8064 147 7508 2% /tmp
/dev/sda1 64310 17016 44028 28% /u01
/dev/sr0 2367 2367 0 100% /media/

 Oracle12cBeta

		 This code shows the file systems, their percentage used, percentage
free (available), and the actual amounts in megabytes. The df -k com-
mand can show the same info but listed in kilobytes. The –k flag is useful
because some versions of UNIX don’t support the -m flag.

	 ✓	On HP-UX UNIX systems, use bdf.

System event logs
If all else fails, listen to what the computer is telling you. As a DBA, you
should have at least read access to the system event logs on your server
and hopefully all servers that are part of the application. System event logs
record routine events on the server but also may list special error events
that could be the cause of your system problems. Sometimes the event
logs clearly list hardware issues, or that the file systems are full, or that the
machine just rebooted or crashed. All of these are good things to know when
you’re trying to track down a problem.

282 Part III: Caring for and Feeding an Oracle Database

The location of the event logs can vary, and often additional logs are beyond
the OS logs to review when you learn your system.

	 ✓	On Windows systems, go to Control Panel➪Administrative Tools➪Event
Viewer to see the system and application logs.

	 ✓	On Linux/UNIX systems, /var/adm/messages and /var/log/syslog are
quite valuable. The dmesg command can see the end of the most recent
system log file.

Much of this information may not make sense to a DBA who isn’t OS savvy;
however, seeing errors can be enough to seek the opinion of the system
administrator.

Performing basic database checks
If you’ve confirmed you can get to the server and that it should be able to
support an application database, perform three basic database checks:

	 ✓	Verify the database is running.

	 ✓	Verify Oracle Net functionality.

	 ✓	Perform a database connection.

Running database instance
You should check whether the database is actually running because, some-
times, databases crash, fail to startup, or for whatever reason are not running
when they should be running. Automated monitoring tools to detect if a data-
base is not running are plentiful, but every DBA should know how to check if
their database is indeed running.

	

Oracle database instances execute with different mandatory processes, such
as PMON.

	 ✓	On Windows systems, go to Control Panel➪Administrative Tools➪
Services to see whether the Oracle service has started. You can also
look under Windows Task Manager to find similar information.

	 ✓	On Linux/UNIX systems, simply check for the PMON process. Without
PMON, there’s no Oracle database instance running.
$ ps -ef|grep pmon
oracle 8885 1 0 Jul20 ? 00:04:51 ora_pmon_dev12c

		 The PMON process is for dev12c, which is a running Oracle database.
You could search for additional database processes, but if you know
PMON is, you can safely assume the rest of the database instance is run-
ning too.

283 Chapter 12: Troubleshooting an Oracle Database

After you confirm a working basic network infrastructure and a connectable
database server, you have to confirm the Oracle Net infrastructure is working
so users can connect to the database.

Oracle Net functionality
Execute tnsping from the DOS or Linux command prompt. It uses the Oracle
Net protocol to see whether it can connect to the database.

$ tnsping dev12c

TNS Ping Utility for Linux: Version 12.1.0.1.0 - Production on 02-AUG-2013
17:37:36

Copyright (c) 1997, 2013, Oracle. All rights reserved.

Used parameter files:
/u01/app/grid/12.1.0/network/admin/sqlnet.ora

Used TNSNAMES adapter to resolve the alias
Attempting to contact (DESCRIPTION = (ADDRESS_LIST = (ADDRESS = (PROTOCOL = TCP)

(HOST = oralinux1)(PORT = 1521))) (CONNECT_DATA = (SERVICE_NAME =
dev12c)))

OK (40 msec)

Note how the output from a tnsping specifies the host, port, and SID informa-
tion for that database. This information is valuable when troubleshooting
errors.

	 ✓	If the output for host, port, or SID doesn’t match what you know to be
correct, it is a clue.

	 ✓	If output for the tnsping doesn’t come back at all, it may be a network or
server failure.

	 ✓	Depending on the Oracle error returned, a tnsping test may suggest an
error with the database listener process.

Database connection
When you know the database is up and you can establish an Oracle Net com-
munications handshake, log in to see whether you can establish a database
session.

	 1.	 Identify the problem tier that users are reporting.

		 In a client-server application, this tier is the workstation.

		 In a multi-tier architecture, this tier is likely the web application server.

284 Part III: Caring for and Feeding an Oracle Database

	 2.	 From the tier where the problem exists, try logging in to the database
via SQL*Plus, preferably as a typical user, to mimic the connection
which is failing.

		 Here’s connecting as an application user to a remote database dev12c:
$ sqlplus dwilson@dev12c

SQL*Plus: Release 12.1.0.1.0 Production on Fri Aug 2 17:38:32 2013

Copyright (c) 1982, 2013, Oracle. All rights reserved.

Enter password:
Last Successful login time: Sat Jul 20 2013 11:05:24 -04:00

Connected to:
Oracle Database 12c Enterprise Edition Release 12.1.0.1.0 - 64bit

Production
With the Partitioning, OLAP, Advanced Analytics and Real Application

Testing options

SQL> show user
USER is “DWILSON”

The SQL*Plus attempt shows a successful connection to a remote database
as an application user. You want to force the use of the Oracle Net infrastruc-
ture in this test. The @dev12c denotes that you’ll use Oracle Net to connect
to the remote database rather than directly logging in if you’re already on the
same server.

If you logged in, you’re done with your basic database checks; you con-
firmed a user can connect to the database. On the other hand, you may have
encountered any of the following common errors:

	 ✓	You cannot archive the log file. If the archive dump destination is full,
or for any other reason the archiver processes can’t properly write the
archive log file, your login attempt fails. Oracle does this because even
a login generates archive log information and Oracle guarantees it will
track that information or it won’t perform the action.

		 Fix: Resolve that archiver problem.

	

	You can always log in on the server itself with / as sysdba to perform
maintenance.

	 ✓	The database is in a restricted session. The database may be running,
but if it’s in a restricted session, then only users with RESTRICTED
SESSION system privilege can log in. Generally, the database is in the
state because some form of database maintenance is occurring and the
DBA doesn’t want normal users in the system.

285 Chapter 12: Troubleshooting an Oracle Database

		 Fix: Determine why the database is in restricted session mode and
take it out of that mode if appropriate. Or you can grant RESTRICTED
SESSION to the user(s), but that usually defeats the purpose of having
restricted session.

	 ✓	The login simply hangs. Sometimes the login attempt hangs and doesn’t
immediately generate an error message. These can be tough to diagnose
because you’re not getting any feedback.

		 Fix: Try connecting from a different tier. Also try logging in from the
database server itself; see whether you can find where you can connect
from and generate an actionable log message. Also revalidate your net-
work, server, and system checks to confirm that they’re valid and then
search for error messages.

Performing basic database checks is a way to confirm there’s nothing obvi-
ously wrong with the database, such as it isn’t running or you can’t connect
to it. After you perform those checks, you can begin the more detailed prob-
lem and error log analysis.

Analyzing error messages
Ever hear the expression “hiding in plain sight”? That phrase often applies
when people see an Oracle error message. They see the message, but they
don’t actually read it and think about what it says. As a result, the most valu-
able clue you have isn’t fully maximized.

	 Avoid falling into that trap. Make the most of your error messages:

	 ✓	Slow down and read the error message — several times if necessary.
Think about what it’s saying. Don’t just rattle off ORA-1234 and the
description. Ask yourself what specific action is failing based on the
context of the error message and what is going on at the time of the mes-
sage.

	 ✓	Pretend you’re the application and ask what you were doing when the
error occurred. Then apply the text of the message to see which piece
or action is failing. Breaking down a larger process into individual steps
and performing each step to see where something breaks is an effective
troubleshooting technique.

	 ✓	Apply most of your focus on the first error message you receive. Often
a series of error messages occurs related to one event, but typically that
first message is the cause of the other messages.

	 ✓	Know the types of error messages and which components they relate to:

	 •	ORA denotes database or SQL errors.

	 •	TNS denotes database listener or Oracle Net communication
issues.

286 Part III: Caring for and Feeding an Oracle Database

	 •	HTTP is web related.

	 •	LDAP denotes details with your directory server, perhaps Oracle
Internet Directory.

		 The architecture of your system determines what components may gen-
erate errors. Know what components exist within the system and the
process flow so you can tell what part of the system is failing based on
the type of message.

	 ✓	Become familiar with normal messages versus extraordinary error
messages. Many harmless informational messages crop up for events
that aren’t errors — particularly when working with log files. Know what
your system logs look like during normal operations so that when real
errors occur, you can identify them easily.

	 ✓	Plug the error message into My Oracle Support (formerly Oracle
Metalink) and your favorite Internet search utilities to get more
detailed descriptions and possible fixes. Expect lots of irrelevant infor-
mation and false leads. But odds are good that your search results will
also include information that helps identify and fix the problem.

Knowing database and system anatomy
A firm understanding of Oracle database architecture and processes is key to
your ability to understand error messages and diagnostic output. Think of it
as database anatomy. You would flee if your doctor said “I don’t really under-
stand that heart stuff,” right? Similarly, what kind of DBA is clueless about
the SYSTEM tablespace? Even if you think you know it, a periodic review of
Chapter 2 is time well spent for any DBA.

Where in the overall system does your database fit, and what are the compo-
nents? If people are reporting an HTTP-404 error, you probably want to get
the web administrator involved because the problem may be a web server or
content. But if your database generates the HTML content via mod_plsql Web
Toolkit, it may actually be your database having issues. Not knowing that
would result in the problem being routed to the wrong people, further delay-
ing the fix. There simply is no substitute for knowing the specifics of how
your system works and being able to apply that knowledge.

Error system example
Look at this example of a common message that confuses people. Upon anal-
ysis, the cause is simple to identify.

ORA-01034: ORACLE not available.

ORA denotes a database message (versus TNS for a listener or HTTP for
a web error). What does Instance not available mean in terms of
databases? If you know database architecture, you know that an instance is
the memory and background processes for a database. Thus, the database
instance may not be running; you need to confirm that.

287 Chapter 12: Troubleshooting an Oracle Database

A quick ps –ef | grep pmon on the server shows no PMON process run-
ning, so now you have confirmed the database instance is down. A further
check using the uptime command shows the server was restarted 15 min-
utes ago; you can assume the database didn’t restart after a server crash
or reboot. At this point, you can check database logs to see whether the
instance tried to restart and failed or no attempt was made to restart. Based
on that, you can manually restart the database and get users back to work.

oerr utility
The oerr utility gets more information about an error message. This com-
mand-line utility is where you specify an error number and the oerr utility
provides the most likely problem causes and possible solutions. Although it
isn’t in-depth troubleshooting, it is very handy:

$ oerr ora 1034
01034, 00000, “ORACLE not available”
// *Cause: Oracle was not started up. Possible causes include the following:
// - The SGA requires more space than was allocated for it.
// - The operating-system variable pointing to the instance is
// improperly defined.
// *Action: Refer to accompanying messages for possible causes and correct
// the problem mentioned in the other messages.
// If Oracle has been initialized, then on some operating systems,
// verify that Oracle was linked correctly. See the platform
// specific Oracle documentation.

Developing and applying a solution
How do you fix a problem? Sometimes it is a simple command that is obvi-
ous even to the most inexperienced administrator. More commonly it is a
multi-step operation that may span both database and non-database areas.
Consider these guidelines as you develop and implement your plan.

For very simple and obvious fixes, you clearly aren’t going to apply every
step listed in the following exhaustive detail. However, you should review the
guidelines and see how they apply to what you’re doing.

	

Technical fixes and software patches don’t always work, which is outside your
control. However, planning the repair process is something you can control,
and it will better the odds of your success greatly.

Researching
You should understand what is happening and why. What is causing the prob-
lem and how is that best remedied?

288 Part III: Caring for and Feeding an Oracle Database

	 ✓	Review the error messages.

	 ✓	Read the documentation.

	 ✓	Search the Internet.

	 ✓	Talk to other administrators.

	 ✓	Get Oracle Support assistance.

	 It’s dangerous to apply a fix when you don’t know why something is occurring.
Only through understanding will you have the confidence that whatever fix
you apply is the right one and won’t cause further damage.

Develop the pseudo-code list of steps that you will need to perform based on
your research. This task may bring up more questions as it is developed, but
that’s good. The end product is a high-level plan for fixing the problem.

Planning
How will you specifically fix the problem? After creating your high-level plan,
make it technically detailed:

	 ✓	Identify the technical substeps for each high-level pseudo-code step.

	 ✓	Know what commands need to be issued and by which account.

	 ✓	Know the time necessary for each step to occur and dependencies
between steps.

	 ✓	If additional software or patches are required, make sure those needs
are addressed.

	 Have another administrator review your fix-planning steps to make sure you
haven’t skipped anything.

Ramifications
If you perform the fix, what are the side effects?

	 ✓	Will you have to restart and place the system in restricted session for a
complex fix, kicking off system users?

	 ✓	How long will the system be unavailable? Remember to leave yourself a
margin for error and unexpected issues.

	 ✓	When is the best downtime to impose a reduced impact on end users
while still having outside support if needed?

	 ✓	Can you perform the fix solo, from end to end, or do you need help from
other groups (such as networking or the system administrator)?

	 ✓	Does the fix void your software warranty or break other components?

289 Chapter 12: Troubleshooting an Oracle Database

		 Unfortunately, not all solutions are easy decisions and sometimes there
are downsides to a fix. Carefully weigh the benefits of a fix and the nega-
tives of the existing problem against the downsides of implementing
the fix. Be sure to include input from all affected parties to allow a more
informed decision.

	 Coordinating with other groups and the user community for a fix is often a big
hurdle when working on large, distributed, and complex systems. It’s helpful
to have management support as well as documented policies and procedures
to support coordination efforts.

Testing
Don’t tell me you’re trying something in production before testing it first! If
at all possible, re-create the problem in a test environment and apply the fix
there before doing it in production.

Testing accomplishes these things:

	 ✓	Ensures your steps are complete

	 ✓	Provides accurate timeframes for the total fix

	 ✓	Verifies your syntax with the opportunity to make mistakes

	 ✓	Confirms the problem is actually fixed

	 ✓	Verifies there are no unintended consequences

Many organizations are under mandate to test changes before going into
production, and that is generally a good policy. When you’re troubleshoot-
ing complex problems or operating on large amounts of data, testing is even
more important.

We’ve seen many ill-advised attempts at applying untested fixes that ended in
disastrous results. Don’t let that happen to you.

Fallback options
The fix doesn’t work and things go from bad to worse. You do have a fall-
back plan, right? A good administrator always has a workable fallback plan
for when things go wrong. Those who don’t, sooner or later, end up seeking
other employment opportunities.

	

Before performing nearly any technical fix, do these things:

	 ✓	Take another database backup or verify that your most recent backups
are valid and accessible.

	 ✓	If backups are stored offsite for disaster recovery, recall those backups.
You may need them before you start your maintenance operation.

290 Part III: Caring for and Feeding an Oracle Database

	 ✓	Consider taking multiple backup copies too, in case one copy is bad.
Parachutists jump with a backup chute; shouldn’t you?

After large amounts of data have been modified, can it be undone without
a backup? You may need to work with the application developers on data
changes. Also consider other items that need to be undone outside the data-
base. For example, a network change with DNS may require several hours to
take effect. If you push a change to thousands of client workstations, how do
you roll that back if necessary?

Support
Odds are good that you’ll be performing your maintenance over a weekend
or late at night. If so, are the other people available to perform their parts of
the fix?

	 ✓	Do you have everyone’s phone numbers?

	 ✓	Are they willing and able to help you at 3 a.m. when you discover a prob-
lem? Be sure to let them know you may require their assistance before
you start your work.

	 ✓	Are they authorized to make the change?

Verification
Who is going to test and confirm the fix actually worked? A test plan with tes-
ters or knowledgeable users is a good idea, particularly if data or application
changes are necessary.

	 ✓	Run through the plan first; otherwise you may discover broken parts of
the application unrelated to the problem you’re attempting to fix.

	 ✓	Make sure these testers are available when you’re done with your work.

Backup
After you’ve developed, tested, applied, and verified your technical fix,
what’s the final step before turning it over to the users? Often the final step is
performing a full database or system backup. The benefit is that if something
unrelated occurs and you need to restore, you don’t need to go through the
previous fix.

Troubleshooting Using
Oracle Database Logs

You need to dive into the Oracle logs themselves. Each database has a set of
directories where key log, trace, and dump files are stored.

291 Chapter 12: Troubleshooting an Oracle Database

Database log infrastructure
Using log files to diagnose a problem is often a daily task for the DBA so
knowing how Oracle manages this critical resource is important. Oracle log
file structure and management are referred to as the Automatic Diagnostic
Repository (ADR). ADR provides these log management capabilities:

	 ✓	Integrated log management not just for the database but other Oracle
products. Currently, Automatic Storage Management and listener also
write to the new log infrastructure.

	 ✓	Event logging in terms of incidents with included diagnostic data and
stored in zip files that can be reviewed and sent to Oracle Support. The
idea is to better compartmentalize error events and neatly package them
so they can be sent directly to Oracle Support.

	 ✓	Incident flood control to intelligently limit the creation and size of trace
files. If an event repeats at an extreme rate above a defined threshold,
only the occurrence of the event is logged.

	 It’s important to know where the key diagnostic files are located:

	 ✓	The location for the diagnostic subdirectories (diag) is the ADR_BASE
and is typically under the ORACLE_BASE.

	 ✓	The location of the base for the log subdirectories is the ADR_HOME and
is defined by database parameter DIAGNOSTIC_DEST.

	 ✓	The ADR_HOME is beneath the ADR_BASE location and is under the
database SID directory.

The structure for ADR_HOME for databases follows:

$ADR_BASE/diag/rdbms/DATABASE NAME/DATABASE SID

For example, here’s the following structure for the dev12c database:

$ ls $ORACLE_BASE/diag/rdbms/dev12c/dev12c
alert hm incpkg lck metadata metadata_pv sweep
cdump incident ir log metadata_dgif stage trace

The ADR_HOME location is the full path up to and including the second refer-
ence to dev12c.

You see this same information neatly stored within the database and can be
queried via V$DIAG_INFO:

292 Part III: Caring for and Feeding an Oracle Database

SQL> select name, value from v$diag_info;

NAME VALUE
----------- ---------------------------------

Diag Enabled TRUE
ADR Base /u01/app/oracle
ADR Home /u01/app/oracle/diag/rdbms/dev12c/dev12c
Diag Trace /u01/app/oracle/diag/rdbms/dev12c/dev12c/trace
Diag Alert /u01/app/oracle/diag/rdbms/dev12c/dev12c/alert
Diag Incident /u01/app/oracle/diag/rdbms/dev12c/dev12c/incident
Diag Cdump /u01/app/oracle/diag/rdbms/dev12c/dev12cl/cdump
Health Monitor /u01/app/oracle/diag/rdbms/dev12c/dev12c/hm
Default Trace File
 /u01/app/oracle/diag/rdbms/dev12c/dev12c/trace/dev12c_ora_23293.trc
Active Problem Count 0
Active Incident Count 0

11 rows selected.

Within each database directory are subdirectories where different files are
stored. Table 12-1 lists each primary directory and its purpose.

Table 12-1	 Database Trace and Log Directories
Directory Purpose
alert Stores very important XML-formatted alert log for database
cdump Core dump location of memory stack when a process fails
incident Subdirectories relating to individual events or incidents
trace Trace and dump files for background and user processes; also

contains text formatted alert log

This is a listing of each directory:

$ ls $ORACLE_BASE/diag/rdbms/dev12c/dev12c
alert hm incpkg lck metadata metadata_pv sweep
cdump incident ir log metadata_dgif stage trace
oralinux1> ls $ORACLE_BASE/diag/rdbms/dev12c/dev12c/alert
log.xml
$ ls $ORACLE_BASE/diag/rdbms/dev12c/dev12c/cdump
$ ls $ORACLE_BASE/diag/rdbms/dev12c/dev12c/incident
$ ls $ORACLE_BASE/diag/rdbms/dev12c/dev12c/trace
alert_dev12c.log dev12c_m000_23037.trc dev12c_ora_6593.trm
dev12c_aqpc_24310.trc dev12c_m000_23037.trm dev12c_ora_760.trc

293 Chapter 12: Troubleshooting an Oracle Database

These directories can get cluttered with many files and eat up disk space.

	 Have a process to clean up the trace, cdump, and incident directories so they
don’t fill up your disk and are easier to manage.

Database alert log
By far the most important file to review for a database is the alert log. This
file is where database-level errors are written and operations such as startup,
shutdown, and other events are logged. Oracle writes to this text-based file in
a chronological order when the database is running.

The alert log is in the alert subdirectory and is named log.xml.

	 ✓	Whenever a problem occurs, review the alert log file.

	 ✓	Review the alert log file daily (if you’re the DBA) to ensure errors are not
occurring undetected.

	

Many DBAs even write scripts to scan the alert log for errors and have e-mail
messages sent to them if key events are detected. Also, many DBAs copy off
their alert log weekly to prevent it from becoming excessively large.

Here’s a sample of an alert log file in XML format:

<msg time=’2013-07-19T13:22:18.955-04:00’ org_id=’oracle’ comp_id=’rdbms’
 msg_id=’opiexe:3292:2802784106’ type=’NOTIFICATION’ group=’admin_ddl’
 level=’16’ host_id=’oralinux1’ host_addr=’192.168.1.66’
 module=’sqlplus@oralinux1 (TNS V1-V3)’ pid=’24286’>
 <txt>Completed: CREATE DATABASE "dev12c"
MAXINSTANCES 8
MAXLOGHISTORY 1
MAXLOGFILES 16
MAXLOGMEMBERS 3
MAXDATAFILES 100
DATAFILE '/u01/app/oracle/oradata/dev12c/system01.dbf' SIZE 700M REUSE
 AUTOEXTEND ON NEXT 10240K MAXSIZE UNLIMITED
EXTENT MANAGEMENT LOCAL
SYSAUX DATAFILE '/u01/app/oracle/oradata/dev12c/sysaux01.dbf'
SIZE 550M REUSE AUTOEXTEND ON NEXT 10240K MAXSIZE UNLIMITED
SMALLFILE DEFAULT TEMPORARY TABLESPACE TEMP TEMPFILE '/u01/app/oracle/orada
ta/dev12c/temp01.dbf' SIZE 20M REUSE AUTOEXTEND ON NEXT 640K
MAXSIZE UNLIMITED
SMALLFILE UNDO TABLESPACE "UNDOTBS1" DATAFILE '
/u01/app/oracle/o
radata/dev12c/undotbs01.dbf' SIZE 200M REUSE AUTOEXTEND ON NEXT 5120K
MAXSIZE UNLIMITED
CHARACTER SET WE8MSWIN1252
NATIONAL CHARACTER SET AL16UTF16

294 Part III: Caring for and Feeding an Oracle Database

LOGFILE GROUP 1 ('/u01/app/oracle/oradata/dev12c/redo01.log') SIZE
50M,

GROUP 2 ('/u01/app/oracle/oradata/dev12c/redo02.log') SIZE 50M,
GROUP 3 ('/u01/app/oracle/oradata/dev12c/redo03.log') SIZE 50M
USER SYS IDENTIFIED BY USER SYSTEM IDENTIFIED BY
 </txt>
</msg>
<msg time=’2013-07-19T13:22:19.033-04:00’ org_id=’oracle’ comp_id=’rdbms’
 msg_id=’opiexe:3209:4222364190’ type=’NOTIFICATION’ group=’admin_ddl’
 level=’16’ host_id=’oralinux1’ host_addr=’192.168.1.66’
 module=’sqlplus@oralinux1 (TNS V1-V3)’ pid=’24311’>
 <txt>CREATE SMALLFILE TABLESPACE "USERS" LOGGING DATAFILE '/u0
1/app/oracle/oradata/dev12c/users01.dbf' SIZE 5M REUSE AUTOEXTEND ON NEXT
1280K MAXSIZE UNLIMITED EXTENT MANAGEMENT LOCAL SEGMENT SPACE MANAGEMENT AUTO
 </txt>
</msg>

This code shows routine messages for a database creation.

	 A text-formatted version is still available for people using command-line edi-
tors like vi or Notepad. It is in the trace subdirectory and has the standard
name format alert_SID.log (which is alert_dev12c.log in this example). Without
the XML tags, you can easily read it via a command-line utility.

Here’s the same information as the XML file, but without the tags:

Fri Jul 19 13:21:21 2013
CREATE DATABASE “dev12c”
MAXINSTANCES 8
MAXLOGHISTORY 1
MAXLOGFILES 16
MAXLOGMEMBERS 3
MAXDATAFILES 100
DATAFILE ‘/u01/app/oracle/oradata/dev12c/system01.dbf’ SIZE 700M REUSE

AUTOEXTEND ON NEXT 10240K MAXSIZE UNLIMITED
EXTENT MANAGEMENT LOCAL
SYSAUX DATAFILE ‘/u01/app/oracle/oradata/dev12c/sysaux01.dbf’ SIZE 550M REUSE

AUTOEXTEND ON NEXT 10240K MAXSIZE UNLIMITED
SMALLFILE DEFAULT TEMPORARY TABLESPACE TEMP TEMPFILE ‘/u01/app/oracle/oradata/

dev12c/temp01.dbf’ SIZE 20M REUSE AUTOEXTEND ON NEXT 640K MAXSIZE
UNLIMITED

SMALLFILE UNDO TABLESPACE “UNDOTBS1” DATAFILE ‘/u01/app/oracle/oradata/dev12c/
undotbs01.dbf’ SIZE 200M REUSE AUTOEXTEND ON NEXT 5120K MAXSIZE
UNLIMITED

CHARACTER SET WE8MSWIN1252
NATIONAL CHARACTER SET AL16UTF16
LOGFILE GROUP 1 (‘/u01/app/oracle/oradata/dev12c/redo01.log’) SIZE 50M,
GROUP 2 (‘/u01/app/oracle/oradata/dev12c/redo02.log’) SIZE 50M,
GROUP 3 (‘/u01/app/oracle/oradata/dev12c/redo03.log’) SIZE 50M
USER SYS IDENTIFIED BY USER SYSTEM IDENTIFIED BY
Database mounted in Exclusive Mode

295 Chapter 12: Troubleshooting an Oracle Database

Lost write protection disabled
Ping without log force is disabled.
Using default pga_aggregate_limit of 2560 MB
Fri Jul 19 13:21:28 2013
db_recovery_file_dest_size of 4815 MB is 0.00% used. This is a
user-specified limit on the amount of space that will be used by this
database for recovery-related files, and does not reflect the amount of
space available in the underlying filesystem or ASM diskgroup.
Successful mount of redo thread 1, with mount id 3622234653
Using SCN growth rate of 16384 per second
Assigning activation ID 3622234653 (0xd7e6ea1d)
Starting background process TMON
Fri Jul 19 13:21:28 2013
TMON started with pid=24, OS id=24298
Thread 1 opened at log sequence 1
 Current log# 1 seq# 1 mem# 0: /u01/app/oracle/oradata/dev12c/redo01.log
Successful open of redo thread 1

Here’s what an Oracle error looks like from a trace file:

*** KEWROCISTMTEXEC - encountered error: (ORA-06525: Length Mismatch for CHAR or
RAW data

ORA-06512: at “SYS.DBMS_STATS”, line 40111

	 Review and manage the alert log regularly so you can catch small issues
before they grow into large problems.

Trace and dump files
When a problem event occurs (such as a failed process or failed memory
allocation), log files for that event are written into the trace directory.

The format for the log filename is SID_process name_process ID.trc:

$ ls $ORACLE_BASE/diag/rdbms/dev12c/dev12c/trace
alert_dev12c.log dev12c_m000_23037.trc dev12c_ora_6593.trm
dev12c_aqpc_24310.trc dev12c_m000_23037.trm dev12c_ora_760.trc

Here are the contents of a trace file:

Trace file /u01/app/oracle/diag/rdbms/dev12c/dev12c/trace/dev12c_dbw0_24263.trc
Oracle Database 12c Enterprise Edition Release 12.1.0.1.0 - 64bit Production
With the Partitioning, OLAP, Advanced Analytics and Real Application Testing opt
ions
ORACLE_HOME = /u01/app/oracle/product/12.1.0
System name: Linux
Node name: oralinux1
Release: 2.6.39-400.17.2.el6uek.x86_64
Version: #1 SMP Wed Mar 13 12:31:05 PDT 2013

296 Part III: Caring for and Feeding an Oracle Database

Machine: x86_64
Instance name: dev12c
Redo thread mounted by this instance: 0 <none>
Oracle process number: 11
Unix process pid: 24263, image: oracle@oralinux1 (DBW0)

*** 2013-07-19 13:21:21.458
*** CLIENT ID:() 2013-07-19 13:21:21.458
*** SERVICE NAME:() 2013-07-19 13:21:21.458
*** MODULE NAME:() 2013-07-19 13:21:21.458
*** ACTION NAME:() 2013-07-19 13:21:21.458

2013-07-19 13:21:21.458540 :kjcipctxinit(): (pid|psn)=(11|1): initialised and
linked pctx 0x125d93038 into process list

	 The difference between a dump and a trace file: A trace is an ongoing log of a
problem event. The dump is the one-time dumping of information into a file
for a problem event. As a DBA, you should review these text files to diagnose
what is occurring.
If a process crashes, a core dump can be created in the cdump directory.
This is a binary trace file of the memory process and its contents at the time
of the crash. Although many people consider these to be “hands-off” for a
DBA to review, that isn’t necessarily the case. The Linux and UNIX strings
command can show the printable text of a binary file. If you opt to upload
the core file to any support organization, you may want to review it first for
username and password combinations because they are sometimes present
in clear text in these files.

Listener log
You may have to track connections into the database via the listener. Every
time a connection to the database occurs, that event (or failure) is stored in
the listener log. Chapter 5 goes into greater detail about the database listener
architecture.

	 Knowing where listener logs are generated is important to troubleshooting.
You can find the listener log under the ADR_BASE/diag/tnslsnr directory tree.
(In this example, it’s /u01/app/oracle/diag/tnslsnr/oralinux1/listener/trace/
listener.log.)

Here’s a sample log entry:

02-AUG-2013 17:38:48 * (CONNECT_DATA=(SERVICE_NAME=dev12c)
 (CID=(PROGRAM=sqlplus)(HOST=oralinux1)(USER=oracle))) *
 (ADDRESS=(PROTOCOL=tcp)(HOST=192.168.2.121)(PORT=21165))
 * establish * dev12c * 0

Key information is the time, host, and program for the incoming connections.

297 Chapter 12: Troubleshooting an Oracle Database

Here’s a Dell TOAD software utility user connecting, most likely from a user’s
workstation:

02-AUG-2013 11:57:45 * (CONNECT_DATA=(SERVICE_NAME=192.168.2.121)
 (CID=(PROGRAM=C:\Program?Files\Quest?Software\TOAD\TOAD.exe)
 (HOST=LPT-MPYLE)(USER=mpyle))) * (ADDRESS=(PROTOCOL=tcp)
 (HOST=192.168.2.170) (PORT=3108))
 * establish * 192.168.2.121 * 12514

Finally, an error is occurring:

TNS-12514: TNS:listener does not currently know of service
 requested in connect descriptor

	 You can search for the Transport Network Substrate (TNS) error code in the lis-
tener log to see what errors are occurring. This search is useful because there
will (hopefully) be far more connections than errors and, like the alert logs,
the listener log can grow large.

Benefiting from Other Diagnostic Utilities
As a DBA, you should be grounded in the fundamentals of how your database
works and where files are located.

Sometimes you’ll have only a command-line interface into your database
server and have to manually review log files. However, you also should know
several easier, faster methods:

	 ✓	Oracle Enterprise Manager and Database Express 12c

	 ✓	Remote Diagnostic Assistant (RDA)

	 ✓	Database diagnostic scripts

Oracle Enterprise Manager
and Database Express 12c
Graphical tools, such as Oracle Enterprise Manager and Database Express
12c, let you review alert messages and view incidents. These easy methods
of checking for critical errors let you avoid manually sifting through text
files. Depending on the graphical tools used, you can upload files to Oracle
Support in the form of a Service Request (SR). Some versions of Oracle GUI
software also combine log files in a central location for easier viewing and
management.

298 Part III: Caring for and Feeding an Oracle Database

The capabilities of each GUI tool and the location of each utility change from
release to release. Although these changes are a little frustrating at first,
Enterprise Manager and Database Express 12c are very intuitive, so you can
find what you need very quickly. For detailed information on these tools, see
Chapter 13.

Remote Diagnostic Agent
Oracle Remote Diagnostic Agent (RDA) is an Oracle Support utility that cap-
tures Oracle-related information on an entire server and stores the results
in a series of HTML files. RDA can be integrated with Oracle Configuration
Manager (OCM) and can query a myriad of Oracle components outside the
database, such as Oracle WebLogic or Enterprise Manager, in addition to
your database. The utility asks you a series of simple questions about your
environment and what components you want to investigate. Don’t worry
if you don’t know the answer to a question; you can accept the provided
default answer.

The intent is to capture data about the operating system, hardware, Oracle
software versions, database instances, listeners, and activities within the
database environment in an automated manner. You can view that informa-
tion as a series of static HTML pages to get fast graphical access to all Oracle-
related information for a given server.

	 Not only is graphical information useful to DBAs, but when you provide an
RDA to Oracle Support it gives an accurate picture of your database environ-
ment. In fact, one of the first things many Oracle Support analysts request is
an RDA of your server.

Oracle RDA comes as a tar or zip file available for download via the My
Oracle Support network. When downloaded, it executes on the server as
either a Perl or shell script. The output is a zip file that you can

	 ✓	Upload to Oracle Support as part of a Service Request

	 ✓	Unzip into a series of HTML files that you can navigate to find key information

In Figure 12-4, you see the main index page of the RDA output where you can
drill down into multiple useful areas.

RDAs are a great way to get a quick snapshot of a system even when there
are no problems (per se). For example, if you are consulting and need a quick
overview of a client’s system, the RDA is very handy. Or if you’re taking over
an existing database server, the RDA tells you exactly what’s on that server
and how it’s configured.

299 Chapter 12: Troubleshooting an Oracle Database

	

Figure 12-4:
The RDA

initial RDA_
Start page.

	

Database diagnostic scripts
Most old-school DBAs from the Oracle 7 days lived and died by their tool-
box of database scripts — and for good reason. Database scripts based on
internal database views and tables provided the raw information for what
was going on in a database. That raw data, coupled with a real understanding
of how the database and application worked, often made for a very skilled
administrator who could solve most problems. Toward that end, entire books
are dedicated to database scripts, and many websites make scripts available
for download.

Oracle provides a set of database scripts in every $ORACLE_HOME/rdbms/
admin directory. In it are core scripts necessary to create a database, build
the data dictionary, and other maintenance operations that aren’t very useful
for troubleshooting.

	 However, the $ORACLE_HOME/rdbms/admin directory also has useful scripts
such as utllockt.sql and utlrp.sql. Use them to search for database locks and
compile invalid database objects. We encourage you to become familiar with
the scripts in this directory and identify the ones that fit into your toolbox.

	 Many good third-party scripts exist both from books and Internet downloads.
We can’t validate everything out there, so use your own best judgment and
don’t run anything you don’t understand or trust. However, some good scripts
are available, so don’t be afraid to seek out good sources and test them first
on your development database.

300 Part III: Caring for and Feeding an Oracle Database

And if all else fails, write your own. Here’s one of our favorites we’ve used
many times to see what’s happening on a database and who is doing it:

SQL>get show_session_short.sql
 1 set linesize 180
 2 set pagesize 20
 3 col “Logon Time” format a11
 4 col “UNIX Proc” format a9
 5 col username format a15
 6 col osuser format a13
 7 col “Program Running” format a20
 8 col sid format 9999
 9 col “Connect Type” format a12
 10 col serial# format 9999999
 11 select s.username, osuser, status,
 12 to_char(logon_time,’fmHH:MI:SS AM’) as “Logon Time”,
 13 sid, s.serial#, p.spid as “UNIX Proc”
 14 from v$session s, v$process p
 15 where s.paddr = p.addr
 16 and s.username is not null
 17* order by status, s.username, logon_time
SQL>@show_session_short

USERNAME OSUSER STATUS Logon Time SID SERIAL# UNIX Proc
--------------- ------------- -------- ----------- ----- -------- ---------
SYSTEM oracle ACTIVE 11:39:11 PM 125 12 29062
SYS oracle ACTIVE 12:18:25 AM 119 829 31376
MWESSLER oracle ACTIVE 11:40:39 PM 124 54 29264
CRUEL oracle ACTIVE 11:41:19 PM 138 35 29359
MPYLE oracle INACTIVE 11:37:51 PM 135 13 28749
MWESSLER oracle INACTIVE 11:40:26 PM 129 24 29258
DWILSON oracle INACTIVE 11:40:49 PM 155 32 29273
CSARJENT oracle INACTIVE 11:40:59 PM 126 54 29275
DBSNMP oracle INACTIVE 11:41:29 PM 132 19 29357
APEX_WEB oracle INACTIVE 11:41:39 PM 131 55 29355
RMAN oracle INACTIVE 11:41:49 PM 127 323 29361

11 rows selected.

Although the script is useful, the actual point is to show you the power of a
simple script and what it can provide quickly.

Despite all the wiz-bang GUI tools and wonderful database advisors, many folks
still use database scripts for some, if not all, of their administrative work.

	

A toolbox of useful scripts coupled with modern Enterprise Manager tools
provides DBAs with the best capability to manage their databases.

Chapter 13

Managing Your Database with
Enterprise Manager

In This Chapter
▶	Meeting the Enterprise Manager family
▶	Configuring Database Express with the DBCA
▶	Navigating Database Express
▶	Creating Database Express users

Y
ou probably know lots of ways to manage your Oracle database. This
book offers a few ideas. You may have been approached by various soft-

ware companies with their own solutions. The most popular database man-
agement approaches follow:

	 ✓	Command line SQL and OS commands

	 ✓	Oracle Enterprise Manager (Database Express/Cloud Control)

	 ✓	Third-party software vendor tools

	 ✓	Any combination of these

What works best for you? Whatever you’re most comfortable with. Some
methods are better than others for specific tasks. Most people end up with
some sort of hybrid approach.

This chapter focuses on the Oracle Enterprise Manager method, gives you an over-
view of the tool’s unique features, and navigates many of its management pages.

Getting to Know the Enterprise
Manager Family

Oracle Enterprise Manager (EM) became available in Oracle 7 and has gone
through numerous changes since then. EM basically started as a desktop
client and evolved into the web-based application it is today.

302 Part III: Caring for and Feeding an Oracle Database

	 Oracle supports several current flavors of Enterprise Manager. We discuss EM
Database Express, but you should know the differences between these tools.

EM Database Express
Oracle Enterprise Manager Database Express is a web-based database man-
agement tool that is built inside each Oracle database. All the SQL commands
you normally type have been translated into a graphical point-and-click inter-
face. EM Database Express even supports RAC database management.

EM Database Express started shipping in Oracle 12c and above and serves as
the replacement for EM Database Control that shipped with 10g and 11g. This
lighter weight tool for just Oracle database management is the second major
shift in graphical-based management options that Oracle has offered since
Oracle 8i.

	

Some users find this method easier than learning SQL and typing commands.
However, if you have many databases, you might find this method tedious and
resource-consuming.

EM Cloud Control
EM Cloud Control offers everything in EM Database Express and much more.
Cloud Control is truly an enterprise level management suite, covering the
Oracle database plus server, network, and storage management. It can even
be used to manage non-Oracle databases. Covering Cloud Control would take
an entire book. We mention it because it is the source from which Database
Express has sprouted. The interface is similar when you’re working on indi-
vidual databases; it also acts as a central console for managing your entire
environment, including the following:

	 ✓	Oracle Software stacks

	 ✓	Windows and Linux operating systems

	 ✓	Microsoft SQL Server

	 ✓	Other software products

With regard to databases, EM Cloud Control can register and maintain Oracle
versions from 9i through 12c. As of this writing, Oracle has shipped 12c
Cloud Control Release 3. EM Cloud Control is installed on its own centralized
server in your enterprise. You can deploy the Oracle Management Agent to
all the hosts with software you want EM Cloud Control to manage. The install
and setup can be a little intimidating at first, but if you have a diverse envi-
ronment with many servers and versions of Oracle, it can be a lifesaver in the
long run.

303 Chapter 13: Managing Your Database with Enterprise Manager

Configuring EM Database Express
with the DBCA

The easiest way to set up EM Database Express is to configure it during data-
base creation with the Database Configuration Assistant (DBCA). Chapter 4
briefly describes this option. Figure 13-1 shows the DBCA asking whether
you want to configure your database with EM Database Express (for local
management).

	

Figure 13-1:
The

Database
Configura-

tion
Assistant
offers its

Enterprise
Manager

Options
screen.

	

	

We recommend EM Database Express because it is the easiest approach when
learning to be a DBA. When you let the DBCA set up the database for you, it
gathers the required answers for the installation while it takes you through
different steps.

When your database creation is complete, open a browser and log in to EM
Database Express to begin managing your database. Typically, this URL is
most common: https://hostname:5500/em.

	 You can log in with any username that has DBA, EM_EXPRESS_ALL, or EM_
EXPRESS_BASIC roles. Check the SYSDBA option if you want to do advanced
DBA activities. Just make sure your user has the SYSDBA privilege.

304 Part III: Caring for and Feeding an Oracle Database

Navigating EM Database Express
The EM Database Express main page, or the dashboard, gives you an idea of your
database’s overall health. Figure 13-2 shows the way it looks when you first log in.

All the major sections are listed and separated on the menu bar at the top
according to task. As shown is Figure 13-2, the sections are

	 ✓	Database name: Clicking this link always takes you to the main dash-
board of the database.

	 ✓	Configuration: This section provides information and actions against
initialization parameters, memory, database feature usage, and database
properties.

	 ✓	Storage: As you would assume, this section provides insight and tools to
manage database storage.

	 ✓	Security: This section is for managing users, role, privileges, and profiles.

	 ✓	Performance: You can click this link to get an overview of the perfor-
mance of the database. You see details such as I/O, CPU usage, top
sessions, locks, and so on. It contains anything that might help when
diagnosing performance problems on the system and tuning SQL in the
database.

	 Although EM Database Express is much faster with less overhead and is easier
to use than the 11g Database Control tool, it provides far less manageability.
We can only assume that Oracle engineers decided that Database Control
and Grid Control were so similar that it wasn’t worthwhile to keep updating
two tools. Most of the Database Control features have been removed from EM
Database Express in favor of providing those features in Cloud Control. Some
of the things we’re talking about are metrics, policies, alert notification, and
backup and recovery among others.

Dashboard
The dashboard is the landing page of EM Database Express when you first log
in. This page gives you a general overview of what is going on in your data-
base. It is also the gateway for the rest of the actions that can be launched
within EM Database Express.

One of the nice things about Oracle 12c is that the new EM Database Express
tool is much more lightweight and faster than the older Database Control
because it no longer requires an Oracle Application Server running in the
background to support it. It runs directly out of the database as opposed to
running in a separate Oracle Application Server container. This consumes far
fewer resources. The old iAS Container was always difficult to manage and
keep running at times.

305 Chapter 13: Managing Your Database with Enterprise Manager

	

Figure 13-2:
The EM

Database
Express

main page is
chock-full

of data.
	

The dashboard offers many panes of information (refer to Figure 13-2):

	 ✓	Status: This pane gives you an overview of the main characteristics
of the database, such as Version, Database Name, Oracle Home, Last
Backup, and so on.

	 ✓	Performance: In this pane, you find a simplified breakdown of resource
consumption between IO and CPU as well as time spent waiting. We say
“simplified” because if you choose Performance from the menu bar and
go to the performance hub, you get much more detailed information.
The dashboard just gives you a quick glance.

	 ✓	Incidents: If any problems have been detected and stored in the
Automatic Diagnostic Repository, you see them here.

	 ✓	Resources: This pane gives you an overview of the database/server
resource consumption for things like CPU, memory, or storage.

	 ✓	Running Jobs: Aptly named, this portlet gives you information about cur-
rently executing jobs in the database. These are named jobs, not run of
the mill SQL execution. Named jobs, which run from the Oracle scheduler,
can include statistics collection, backups, or application batch processes.

306 Part III: Caring for and Feeding an Oracle Database

	 ✓	SQL Monitor: This pane shows the most recent SQL statement execu-
tions. The statement IDs are active links that you can click to access the
SQL Monitor tool. On the SQL Monitor pane, you can watch the real-time
execution of SQL or analyze past SQL executions.

The Performance and SQL Monitor panes aren’t available unless you have
licensed the Diagnostic and Tuning packs, respectively.

Configuration page
The Configuration page allows you to monitor and make some adjustments to
initialization parameters and memory components. It also lets you view the
database feature usage and database properties.

Click the Configuration drop-down menu to access the following options:

	 ✓	Initialization Parameters

	 ✓	Memory

	 ✓	Database Feature Usage

	 ✓	Current Database Properties

Initialization Parameters
The Initialization Parameters page lets you make adjustments to the hun-
dreds of initialization parameters discussed in Chapter 4. To make a change,
you simply highlight the parameter and click the Set button at the top of the
page. This action opens the Set Initialization Parameter dialog box, as shown
in Figure 13-3.

	

Figure 13-3:
The Set

Initialization
Parameter
dialog box.

	

Note the exclamation point bubble next to the Scope line. If clicked, this
bubble warns you that changing this parameter requires a bounce of the
database. You can also tell by looking at the main initialization parameter
page. There is a column labeled Dynamic. If this column has a check mark,

307 Chapter 13: Managing Your Database with Enterprise Manager

you can change the parameter on the fly. If it does not have a check mark,
you have to restart the database if you want to change the parameter.

As we mention earlier, there are hundreds of parameters. On the Initialization
Parameter page, you can easily search and filter the list. On the upper right,
you see check boxes for the following:

	 ✓	Modified displays only parameters that are changed from default.

	 ✓	Basic displays only a subset of the database parameters that Oracle
deems as basic.

You can also enter parameter names, or even partial names, in the search
box to actively reduce and refine the list.

Memory
By choosing Memory from the Configuration drop-down menu, you’re taken
to the Memory Management page. This page breaks down all the memory
components and provides not only an overview of the current settings but
also some tuning advice. You can click the Configure Memory button at the
upper left to make changes. You may not be able to make all the changes
that you want without restarting the database. Notice that when you click
the Configure Memory button, all that happens is that EM Database Express
takes you back to the Initialization Parameter page with a filtered list of
memory related parameters!

Database Feature Usage
The Database Feature Usage pane gives you an overview of all the features
that are available in the database and whether Oracle has detected a use of
them. This information can be important to you as a DBA for a few reasons:

	 ✓	By seeing what has run, you can know whether you or your colleagues
are using any unlicensed features.

	 ✓	You can detect whether you’re using all the features you’re paying for.
Maybe the next time you renew your license, any unused features can be
dropped.

	 ✓	Knowing dates and times certain features were used can be useful when
auditing activities in the database.

Current Database Properties
The Current Database Properties pane gives you a quick overview of the
options that were chosen (or left at Default) during database creation. (See
Chapter 4.) Having a quick list of these can be handy to help answer ques-
tions about your environment. For example, if you ever have to open a sup-
port ticket with Oracle, this information will be relevant for them. Or, if you

308 Part III: Caring for and Feeding an Oracle Database

are installing a third-party software package into your database, the vendor
might have certain properties that must be set, or other requirements. You
can quickly look through this section to see how the database has been
configured.

Storage page
The Storage page lets you manage objects like tablespaces and data files
which are the backbone of the database storage. The page’s Storage drop-
down menu has the following options:

	 ✓	Tablespaces: Some of the features on this pane are covered in Chapter
7, where we talk about creating tablespaces. To manage your seg-
ments, you have to manage your storage containers, called tablespaces.
Management includes such tasks as growing by extending or adding
data files. It also includes shrinking. You can also perform other actions,
such as taking tablespaces offline (for recovery) or making them read
only.

	 ✓	Undo Management: When working with transactions and flashback tech-
nology in the database, undo management can be an important task. The
undo space is important to make sure you can roll back transactions
and use in the flashback features covered in Chapter 14. Although this
section in EM Database Express is more of an overview than a way of
making changes, it allows you to quickly see what kind of space you’re
using for undo and how far back your undo lets you go. It also incorpo-
rates the Undo Advisor for keeping on top of storage when you’re lever-
aging the flashback retention.

	 ✓	Redo Log Groups: Managing redo logs is done in this section. You
can create or drop groups, add members, see details about the log
sequences, and archive the status of the redo logs.

	 ✓	Archive Logs: This section lets you see the archive logs that have been
created along with their size and location. You can’t make any changes
in this section. Almost all archive log changes are done with initializa-
tion parameters.

		 Click the Configuration Button and choose the Initialization Parameters
option. Then, type archive in the search box on the right to bring up the
editable archive log parameters.

	 ✓	Control Files: This section lets you view the control file properties. You
also find a Backup to Trace button for backing up the control file to a
trace file.

		 Backing up the control file to a trace file creates the backup in the
diagnostic destination. You can view this location by looking at the
DIAGNOSTIC_DEST parameter. The name of the file is also displayed
after the backup completes.

309 Chapter 13: Managing Your Database with Enterprise Manager

Security page
The Security page allows you to create, drop, and alter users. It also allows
you to create and drop roles. Not only can you manage users and roles,
but you can also control the security and permissions of these users, as
described in Chapter 10.

We describe user management in more detail in the next section, “Creating
and Managing EM Database Express Users.” Even though the description
suggests these are users specific to EM Database Express, Database Express
users are all the same as normal database users.

The Security page also allows you to manage profiles. Profiles are attributes
that manage resource consumption and password protection in the data-
base. For example, profile settings determine how many times a password
can be reused and how long a password takes to expire. You can create dif-
ferent types of profiles in your database for different classes of users. You
might have one profile for web-based application users and another for batch
job users. Profiles allow you to control how resources are consumed and
passwords are managed by grouping users together.

Performance page
Although Chapter 9 gets you started with performance tuning, we purpose-
fully left out the EM Database Express component. The main reason is
because we want you to learn the fundamentals of performance tuning before
you jump into using the available tools. Understanding the fundamentals
takes you much further with such a difficult subject. Also, because this page
isn’t available unless you license the Diagnostic and Tuning packs, we don’t
want to provide you with a bunch of techniques you may not be able to use.

The Performance page is made up of two sections:

	 ✓	Performance hub (part of the Diagnostic pack)

	 ✓	SQL Tuning Advisor (part of the Tuning pack)

Performance hub
The performance hub is just want it sounds like: a central hub to give you a
360 degree view of what resource consumption is like on your system. Not
only does it display information about database resource consumption, but it
also contains some information about the operating system resource usage.
The performance of the overall operating system is every bit as important as
that of the database because on many systems you will have more than one
database. If the operating system itself has nothing more to give, trying to
tune at the database level may just be an exercise in futility.

310 Part III: Caring for and Feeding an Oracle Database

In any case, because this is a separately licensed option, we don’t get into
the nitty-gritty. If you have a strong understanding of the concepts in
Chapter 9, you can easily view and navigate the sections of the performance
hub to facilitate quicker performance problem diagnosis and resolution.

SQL Tuning Advisor
The SQL Tuning Advisor gives you real-time access to both running and past
SQL statements. It’s a graphical interface that paints pictures of the different
activities within the execution of a SQL statement. Like the performance hub,
this is a separately licensed tool. What it can do is help speed up the problem
diagnosis. It isn’t required to be a strong DBA. Again, however, sometimes
speed is worth paying for. The SQL Advisor lets you see execution plans at
the click of a button. It also lets you tune the statement like we do with the
internal package DBMS_SQLTUNE in Chapter 9. Again, speed is the name of
the game here. If you’re fortunate enough to have your company purchase
the licensing for this tool, it can certainly pay for itself.

Creating and Managing EM
Database Express Users

When you first create your database, two users are allowed to log in:

	 ✓	SYS

	 ✓	SYSTEM

	

However, creating your own users is the best practice. This way each person
can set up her own tasks and notifications, and you can more easily identify
who has made changes.

	 In Enterprise Manager Database Express, all users with the DBA or EM_
EXPRESS_ALL roles are super users. This means that they can do almost
anything in the tool including causing damage to the database. Therefore, be
very careful to whom you grant these roles and allow to access EM Database
Express.

	 1.	 Choose Security from the menu bar at the top of any page within
Enterprise Manager.

	 2.	 From the drop-down menu, choose Users.

		 Figure 13-4 shows the Users configuration page. You can see a Create
User button on top of that list.

311 Chapter 13: Managing Your Database with Enterprise Manager

	

Figure 13-4:
The Users
configura-
tion page

in EM
Database

Express.
	

	 3.	 Click the Create User button.

		 The Create User dialog box opens.

	 4.	 Fill in these fields:

	 •	Name

	 •	Password

	 •	Confirm Password

		 Leave everything else as default.

	 5.	 Click the Next arrow.

	 6.	 Leave the DEFAULT and TEMPORARY tablespaces with the default
values.

	 7.	 Click the Next arrow to complete your selection of privileges.

	 8.	 Choose the EM_EXPRESS_ALL role and move it to the right by clicking
the right arrow. Then click OK.

		 The user is created.

312 Part III: Caring for and Feeding an Oracle Database

Removing users is simple. On the Security page, click the user you want
to remove, click Actions in the upper-left corner of the Security page, and
choose Drop User from the drop-down list. Click OK when you’re satisfied
with your choice.

	

By clicking the Show SQL button in the Create User dialog box, you can see
the SQL that was generated by EM Database Express to create the user. (See
Figure 13-5.)

	

Figure 13-5:
Review the

SQL for user
creation in
Enterprise
Manager
Database

Express.	

	

When you remove a user via the Security page, the user is also removed
from the database. So, if the user created any objects outside of EM Database
Express, those objects are removed as well.

Part IV
Advanced Oracle

Technologies

	 Visit www.dummies.com/extras/oracle12c to find more about Oracle
Automatic Storage Management.

http://www.dummies.com/extras/oracle12c

In this part . . .
	 ✓	 As a DBA, you need to understand some of the more advanced

features of the database. Chapter 14 gets you started on some
of the more popular features in the database that are used by
advanced systems.

	 ✓	 Uptime and availability are important concepts to understand.
In Chapter 15, we cover how Oracle meets these requirements
in complex systems.

Chapter 14

Advanced Features
In This Chapter
▶	Flashing back
▶	Retaining, compressing, and archiving data
▶	Replaying the database
▶	Understanding multitenant and pluggable databases

O
racle RDBMS is an extremely large software package. What makes
Oracle one of the best database platforms out there is its rich feature

content. This chapter details features that you don’t use on most Oracle
enterprises from day to day. Regardless, most DBAs who are new to the sport
probably won’t start here; these features are for more advanced administra-
tion. We categorize some features as “advanced” because they’re used less
frequently and sometimes require a little extra knowledge to configure and
use than the day-to-day features.

Also, though not the case with all features in this chapter, advanced compo-
nents sometimes require extra licensing. We point out where that’s the
case — after all, you don’t want to be caught with your pants down in an
Oracle audit only to feel we’ve misled you. With that said, if you’re unsure
about licensing, you can always call your friendly local Oracle sales rep to
ask questions. Furthermore, there are also companies out there that can help
you do your own audit to identify the features you use.

In this chapter, we cover just few of the advanced features that we find par-
ticularly interesting. There are probably a hundred additional features we
would have liked to include, but we weren’t allowed to make this chapter
hundreds of pages long. We hope you find our choices useful.

316 Part IV: Advanced Oracle Technologies

Flashing Back
Have you ever wanted a time machine? No such thing exists. Or does it? The
Oracle time machine known as Flashback lets you rewind, fast forward, and
recover from situations with ease. Flashback can sound intimidating, but the
feature is simple. The following sections cover several types of Flashback:

	 ✓	Flashback Query

	 ✓	Flashback Table

	 ✓	Flashback Database

Flashing your query back
A feature called Flashback Query is one of the simplest and easiest to use
variations of the Oracle Flashback technology. Simply put, it allows you to
query a table at a point in the past. This means that, despite any updates,
inserts, and deletes that may have happened, you see the table as it existed
at the point in time you choose.

Here’s a quick demo with the example schema, HR:

	 1.	 Log in to SQL*Plus as the HR user.

	 2.	 Look at the data in your departments table.

	 3.	 Restrict the query to both minimize output and make the demo more
obvious. Type the following:
<select department_id, department_name
from departments where manager_id is null;>

		 You should see something like this:
DEPARTMENT_ID DEPARTMENT_NAME
------------- ------------------------------
 120 Treasury
 130 Corporate Tax
 140 Control And Credit
 150 Shareholder Services
 160 Benefits
 170 Manufacturing
 180 Construction
 190 Contracting
 200 Operations
 210 IT Support
 220 NOC
 230 IT Helpdesk
 240 Government Sales

317 Chapter 14: Advanced Features

 250 Retail Sales
 260 Recruiting
 270 Payroll

16 rows selected.

	 4.	 Modify the table by removing the rows selected in the preceding
output. To remove the rows, type
<delete from departments
where manager_id is null;>

		 You should see this:
16 rows deleted.

	 5.	 Commit your changes by typing
<commit;>

		 You should see this:
Commit complete.

	 6.	 Run the original query again.

		 You should see this:
no rows selected

		 The next step is where you use the magic of Flashback Query. Think of
the time before the delete occurred. In this example case, it was five
minutes ago.

	 7.	 Type something similar to the following to see the data as it existed
five minutes ago:
<select department_id, department_name
from departments
AS OF TIMESTAMP SYSDATE – 1/288
where manager_id is null;>

You see the rows as they existed in Step 2. The key is the AS OF TIMESTAMP
clause. For the target of the timestamp, you can see that the example uses
math on the SYSDATE function. SYSDATE represents the current time, right
now. Subtracting 1 from SYSDATE means yesterday. The example subtracts
the fraction 1/288, which means five minutes, from SYSDATE. To get that frac-
tion, the example uses the following formula:

24 (hours in a days) × 60 (minutes in an hour) = 1440 (minutes) in a day

So, 5 over 1440 is equal to 1 over 288.

318 Part IV: Advanced Oracle Technologies

You can also use an explicit timestamp instead of a SYSDATE function.
For example:

select department_id, department_name
from departments
AS OF TIMESTAMP TO_DATE(‘16-AUG-2013 20:04:00’,’DD-MON-YYYY HH24:MI:SS’)
where manager_id is null;

Here’s a neat trick. Suppose you accidentally deleted those rows and want to
insert them back into your table. You can use Flashback Query to do such a
thing. This is going to be much faster than doing an RMAN recovery to a point
in time.

To insert your deleted rows back into your table, type

< insert into departments
select *
from departments
AS OF TIMESTAMP TO_DATE(‘16-AUG-2013 20:04:00’,’DD-MON-YYYY HH24:MI:SS’)
where manager_id is null;>

You should see this:

16 rows created.

Query the table and, when you’re satisfied, commit your changes.

	 You can only flash back as far as your setting for the instance parameter
undo_retention. By default, this parameter is set to 15 minutes (900 seconds).
If the time you wish to go back to is further than your undo_retention, you
may not be able to see your data and will receive an error instead.

	 Before you take the previous tip and set your undo_retention to reflect a
month’s worth of time, consider that this will cause your UNDO tablespace to
grow because it has to store images of your old data. You should carefully bal-
ance a realistic undo_retention setting with space consumption.

Flashing your table back
Very similar to Flashback Query is Flashback Table. In fact, both are built on
the same underlying technology. Flashback Table is capable of flashing back
row changes or the entire table if it was accidentally dropped.

Keep the following requirements in mind:

	 ✓	Just like in the previous section, the UNDO_RETENTION parameter is
going to control how far back you can flash the table.

319 Chapter 14: Advanced Features

	 ✓	You need to use a feature called row movement that must be enabled on
any table you want to flash back rows. (The upcoming steps show you
how to enable row movement.)

	 ✓	If you want to be able to flash back a table from a drop, you need to have
your parameter RECYCLEBIN set to ON. This parameter is turned on
by default, but note that if it has been turned off it requires a database
bounce to turn it back on.

Consider the earlier example where we accidentally deleted some rows from
our table. They were very easy to recover because identifying them wasn’t
difficult. However, suppose you want to recover from an accidental update.
Updates are harder to recover from with Flashback Query. You can do it, but
you may be able to make it easier on yourself by flashing back the
entire table.

	 Flashback Table works on the entire table, not just certain rows, so make sure
that bringing the entire table back in time is not going to cause other problems.

To use Flashback Table, follow these steps:

	 1.	 You must have row movement enabled; to enable it, type
<alter table departments enable row movement;>

		 You should see this:
Table altered.

		 As a side note, you don’t have to enable row movement before you
change your data. You can do it after the fact.

	 2.	 See what your data looks like by typing
<select department_name, manager_id
from departments
where manager_id is not null;>

		 You should see something like this:
DEPARTMENT_NAME MANAGER_ID
------------------------------ ----------
Administration 200
Marketing 201
Purchasing 114
Human Resources 203
Shipping 121
IT 103
Public Relations 204
Sales 145
Executive 100
Finance 108
Accounting 205

11 rows selected.

320 Part IV: Advanced Oracle Technologies

		 To “mess up” the data, type the following:
< update departments
set manager_id = 205
where manager_id is not null;
commit;>

		 You shoud see something like this:
11 rows updated.
Commit complete.

	 3.	 Look at your data again by typing
<select department_name, manager_id
from departments
where manager_id is not null;>

		 You should see something like this:
DEPARTMENT_NAME MANAGER_ID
------------------------------ ----------
Administration 205
Marketing 205
Purchasing 205
Human Resources 205
Shipping 205
IT 205
Public Relations 205
Sales 205
Executive 205
Finance 205
Accounting 205

11 rows selected.

	 4.	 To flashback all the changes on the rows, type
<flashback table departments
to timestamp TO_DATE(‘16-AUG-2013 20:40:00’,’DD-MON-YYYY HH24:MI:SS’);>

		 You should see something like this:
Flashback complete.

	 5.	 Check your data again by typing
<select department_name, manager_id
from departments
where manager_id is not null;>

		 You should see something like this:

321 Chapter 14: Advanced Features

DEPARTMENT_NAME MANAGER_ID
------------------------------ ----------
Administration 200
Marketing 201
Purchasing 114
Human Resources 203
Shipping 121
IT 103
Public Relations 204
Sales 145
Executive 100
Finance 108
Accounting 205

11 rows selected.

The data is back where it was at the timestamp specified.

The next exercise helps you if you accidentally dropped your table. It utilizes
the feature we mentioned above called the Recyclebin. It functions much
like the Recycle Bin on a Windows desktop. You can restore an object to
what it looked like before it was dropped.

For this next example, you start by making a copy of the employees table to
work with. The reason you’re making a copy is that in the demo schema pro-
vided with the database there is a lot of referential integrity, which prevents
you from dropping tables in the first place (one of the many reasons referen-
tial integrity is such a good idea!).

	 1.	 To make a copy of your employees table, type
<create table emp as select * from employees;>

		 You see something like this:
Table created.

	 2.	 “Accidentally” drop the new emp table by typing
<drop table emp>;

		 You see something like this:
Table dropped.

	 3.	 Query your Recyclebin to see what you can recover — type
< select object_name, original_name, operation, droptime
from user_recyclebin;>

322 Part IV: Advanced Oracle Technologies

		 You see something like this:
OBJECT_NAME ORIGINAL_NAME OPERATION DROPTIME
------------------------------ --------------- --------- ------------------
BIN$5BtB5dF6GmXgQ1ABqMC8yg==$0 EMP DROP 2013-08-

 16:21:02:12

		 Notice the funny name starting with BIN$. With the Recyclebin turned
on, what’s actually happening during a drop is the object is being
renamed. You can still query the original table by using this name! This
might be useful if you want to restore just a few rows rather than the
entire table. You can query those rows or do a “create table as select” to
store them in a new table altogether.

	 4.	 To undrop your table, type
< flashback table emp to before drop;>

		 You see this:
Flashback complete.

		 You can now query your table again.

Although flashing back the table to before a drop does put back all privileges
and indexes, the indexes keep the BIN$ name. We aren’t sure why Oracle
does this. You can give your indexes back the original name with a rename
command if you want.

Flashing your database back
You could argue that moving the database forward and back with Oracle
Recovery Manager with good backups is possible. However, restoring a large
database to a previous point is time-consuming and tedious. Also, if you
don’t go back far enough, you have to start over from the beginning.

You might want to flash back the database for these reasons:

	 ✓	Repeated testing scenarios: Say you have an application that you’re
testing in your development environment. Every time you run the appli-
cation, it changes your data. You want to reset the data to its original
values before the next test. Flashback is an excellent tool for this.

	 ✓	Logical Data Corruption: Perhaps someone accidentally ran the wrong
program in your production environment; you need to return to a point
before the mistake occurred. You could do this with a data recovery, but
Flashback is quicker and easier.

	 ✓	Deployment procedures: Perhaps you’re releasing a new version of your
code that updates all sorts of objects in your production schema with
both DDL and DML. You can easily roll it back if the application isn’t
working properly in target performance parameters.

323 Chapter 14: Advanced Features

Flashback Database works by recording extra information that allows you to
roll back transactions without doing a full database recovery. Not only that,
but it works very quickly. The Flashback Database has these quick features,
among others:

	 ✓	You can open the database in read only mode to see whether you went
back far enough.

	 ✓	Not far enough? Quickly roll back farther.

	 ✓	Too far? Roll forward again.

	 You can perform all these tasks with simple commands inside SQL*Plus or
Oracle Enterprise Manager. To do them with RMAN, you’re talking multiple full
restores and lots of time in between.

Configuring and enabling Flashback Database
Flashback Database works differently than the Flashback features we explore
earlier in the chapter. With Flashback Database, Oracle stores a file called a
flashback log. Flashback logs have the data to roll back blocks to a previous
time. Flashback logs are stored in the flash_recovery_area. Chapter 11 shows
how to configure the Flash Recovery Area.

Two variables come into play here:

	 ✓	 How far back do you want to go?

	 ✓	 How much data is changed in your database within that time period?

The farther back you go and the more changes you have, the more flashback
logs you generate. Be sure you have enough space to store those logs, or you
won’t be flashing anywhere.

	 If you’re considering implementing Flashback Database, you may need to
enlarge the parameter db_recovery_file_dest_size. How much you enlarge it
depends on the two variables: how far back and how much data? If you want a
good starting point, use this formula:

New Flash Recovery Area Size = Current Flash Recovery Area Size + Total
Database Size × 0.3

In essence, you’re trying to reserve roughly 30 percent of your total database
size in the Flash Recovery Area for flashback logs.

From then on, you can monitor how much space the flashback logs are con-
suming. We show you how to do that shortly.

324 Part IV: Advanced Oracle Technologies

After you configure the Flash Recovery Area, turn on the Flashback feature in
the database by following these steps:

	 1.	 Consider how far back you want to be able to flash back.

		 The default value is 24 hours (or 1,440 minutes). Say you want to be able
to flash back up to 48 hours.

	 2.	 Configure how far back you want to go with the parameter db_flash-
back_retention_target; to do so, log in to SQL as SYSDBA and type
<alter system set db_flashback_retention_target =2880;>

		 In this example, the time is set for 2,880 minutes (48 hours).

		 You should see the following for any amount of time you choose.
System altered.

	 3.	 Shut down your database and restart it in mount mode.

	 4.	 Put the database in flashback mode by typing this:
<alter database flashback on;>

		 You should see this:
Database altered.

	 5.	 Open the database by typing this:
<alter database open;>

		 You should see this:
Database altered.

		 Now that the database is in flashback mode, you can flash back to any
time within your Flashback window.

Rolling your database back
When the database must be flashed back, don’t worry. The process is rela-
tively easy.

	 Flashing back a database removes any change that occurred after the point in
time chosen to return. Don’t take this consideration lightly.

To see how far back you can go, type this:

< select oldest_flashback_time
from v$flashback_database_log;>

You should see something like this:

OLDEST_FLASHBACK_TIM

14-AUG-2013 06:34:03

325 Chapter 14: Advanced Features

db_flashback_retention_target should be about the limit of that time frame.
You may find it to be longer if space isn’t a concern and the database hasn’t
yet purged old flashback logs.

Say a user accidentally dropped the HR schema from your database about an
hour ago.

	 1.	 Shut down your database.

	 2.	 Restart it in mount mode.

	 3.	 Type the following, where 1 is the number of hours you want to flash
back:
< flashback database to timestamp sysdate - 1/24;>

		 You should see this:
Flashback complete.

	 4.	 Check the flashback before making it permanent:
< alter database open read only;>

		 You should see this:
Database altered.

	 5.	 If you’re satisfied with the result, go to Step 6. If you’re not satisfied
with the time, skip to Step 9.

	 6.	 Shut down the database.

	 7.	 Start the database in mount mode.

	 8.	 Open the database with Resetlogs:
< alter database open resetlogs;>

		 You should see this:
Database altered.

	 9.	 Restart the database in mount mode.

	 10.	 Type the following:
<recover database;>

		 You should see this:
Media recovery complete.

	 11.	 Start your database in mount mode.

		 If you want to flash back to a timestamp, go to Step 12. If you want to
flash back to a previously created restore point, go to Step 13.

326 Part IV: Advanced Oracle Technologies

		 For more on restore points, see the nearby “Using restore points”
sidebar.

	 12.	 Type the following:
<flashback database to timestamp
to_timestamp(‘14-AUG-2013 13:00:00’,’DD-MON-YYYY HH24:MI:SS’);>

		 You should see this:
Flashback complete.

	 13.	 Type the following if you want to flash back to a restore point:
<flashback database to restore point pre_deploy_15AUG2013;>

		 You should see this:
Flashback complete.

Using restore points
Flashing back a database is time based. Normally, you select a time and tell the database to go
back to that time within the Flashback window. However, another convenient feature is a restore
point — a named, easily identified point for locating a specific instance in the past.

Say you’re doing a code deployment and want to mark the time to which the database will be
returned if you have to back out the change. You could record the time, but Oracle may not get it
exact when you flash back. Buck the margin of error, which is plus or minus a few seconds, and
create a restore point — an exact time.

To create and name a restore point, follow these steps:

	 1.	 Log in to the database as SYS.

	 2.	 Type the following with your restore point name:
<create restore point pre_deploy_15AUG2013;

		 In this example, the restore point is called pre_deploy_15AUG2013. You should see this:
Restore point created.

		 Restore points come with a few other handy options:

	 •	 Get a list of all the restore points you created:
		 < select scn, time, name
		 From v$restore_point;>

			 You should see this:
 SCN TIME NAME
---------- ----------------------------------- ---------------------
 22783928 155-AUG-13 01.15.01.000000000 PM PRE_DEPLOY_15AUG2013

327 Chapter 14: Advanced Features

Compressing Data for Purging,
Retention, and Archiving

DBAs spend a lot of their time and effort compressing data for retention and
archiving. Compression is the act of taking data in your database and applying
processes that reduce its storage footprint. Because each year that goes by
results in more and more data in your database, without specific processes
in place, a database can quickly grow out of control, consuming all sorts of
resources and hindering performance. As a first-class database, Oracle gives
the DBA compression tools to make the jobs of removing data (purging) and
keeping data (retention and archiving) quicker and more efficient.

Basic compression
Basic compression in the database has been around since Oracle 9i. It is
called basic compression because it is very simple in what it does. However, it
is also limited in its uses. Basic compression works much like using a zipping
tool to compress a file on your operating system. In the database, objects can
be compressed.

Using basic compression to reduce your table sizes can afford you efficien-
cies in using of space (obviously), CPU (table scanning), and memory (buffer
cache usage). The greater efficiency means that tablespaces and backups
take up less space. Backups run more quickly as well.

	 	 •	 Create a restore point that’s guaranteed forever.

			 Be careful using this method: Your flashback logs grow until the restore point is dropped.
		 <create restore point pre_deploy_15AUG2013_g guarantee flashback

database;>

			 You should see this:
		 Restore point created.

	 	 •	 Drop the restore point when your code release succeeds:
		 drop restore point PRE_DEPLOY_15AUG2013;

			 You should see this:
		 Restore point dropped.

328 Part IV: Advanced Oracle Technologies

Be aware, though, that basic compression is primarily recommended for
objects with a low frequency of DML. It is preferred that the objects are prac-
tically read only. We say practically because some data isn’t 100 percent black
and white. For example, a person’s name rarely changes, so a list of employee
names is practically read only. A change may occur once in a while, but, it
so infrequently that compressing the data and incurring the overhead of a
change is negligible. Think of it this way, if you want to edit a compressed file
on your OS, what do you have to do first? You have to uncompress it. The
same is true with Oracle basic compression. DML on compressed files suffers
in terms of performance.

Here’s a compression example.

	 1.	 Log in to SQL*Plus as the user HR and make a copy of the demo table
employees called emp by typing
<create table emp as select * from employees;>

	 2.	 Check the size of this table by typing
< select segment_name, bytes
from user_segments
where segment_name = ‘EMP’;>

		 You see something like this:
SEGMENT_NAME BYTES
-------------- --------------------
EMP 65,536

	 3.	 Insert rows into emp by running the following statement until you see
“109568 rows created”:
< insert into emp select * from emp;>

	 4.	 Check the size of the emp table again by typing
< select segment_name, bytes
from user_segments
where segment_name = ‘EMP’;>

		 You see something like this:
SEGMENT_NAME BYTES
-------------- --------------------
EMP 18,874,368

	 5.	 Compress the rows by typing
<alter table emp move compress;>

		 You see this:
Table altered.

329 Chapter 14: Advanced Features

	 6.	 Check the size one more time by typing
< select segment_name, bytes
from user_segments
where segment_name = ‘EMP’;>

		 You see something like this:
SEGMENT_NAME BYTES
-------------- --------------------
EMP 9,437,184

As you can see, the table has reduced to about 50 percent of the original size.
Depending on the type and organization of your data, you may see varying
degrees of compression.

To see your tables compression details in the data dictionary, type

<select table_name, COMPRESSION, COMPRESS_FOR
from user_tables
where table_name = ‘EMP’;>

You see something like this:

TABLE_NAME COMPRESS COMPRESS_FOR
------------------------------ -------- ------------
EMP ENABLED BASIC

To remove compression from a table in case you need to update a lot of
data, type

<alter table emp move nocompress;>

You see this:

Table altered.

Advanced compression
After reading the preceding section about basic compression, the primary
thing to understand about advanced compression is it uses more highly
developed compression algorithms and data access policies so that the over-
head of issuing DML against your compressed objects is all but eliminated.
Well, the other important thing you need to be aware of is that advanced
compression is a licensed feature. Yes, that means you must pay extra for
it. Your Oracle sales rep can help you figure out what it will cost. One thing
you should consider, though, is the return on investment you can get from
advanced compression. You’ll require less storage, and many operations
will be improved. Calculating these returns will be an important part of your
decision process.

330 Part IV: Advanced Oracle Technologies

Using advanced compression is very simple. If you followed the demo in the
preceding section, you have an emp table in noncompressed format. You use
that emp table in the following steps to apply advanced compression:

	 1.	 To compress your emp table with advanced compression, type
<alter table emp move compress for all operations;>

		 You see something like this:
Table altered.

	 2.	 To check the new size of your emp table, type
<select segment_name, bytes
from user_segments
where segment_name = ‘EMP’;>

		 You see something like this:
SEGMENT_NAME BYTES
-------------- --------------------
EMP 9,437,184

	 3.	 Check the compression details in the data dictionary by typing
<select table_name, COMPRESSION, COMPRESS_FOR
from user_tables
where table_name = ‘EMP’;>

		 You see something like this:
TABLE_NAME COMPRESS COMPRESS_FOR
------------------------------ -------- ------------
EMP ENABLED ADVANCED.

		 Your table is enabled for all operations including DML with minimal per-
formance loss.

	 You may have noticed in the examples for both basic and advanced compres-
sion that we use the keyword MOVE in the commands. If you don’t use the
keyword MOVE, the table is not compressed, but all future data inserted into
the table will be compressed.

	 If you use the keyword MOVE and there are indexes on the table, those
indexes will become corrupt. This corruption occurs because you’re changing
the row location in the table when you proactively compress the data. To fix
this problem, after a MOVE compression action, rebuild the indexes. This is
one reason you may choose to compress the data for future operations now
and then move it later when you can incur downtime to rebuild the indexes.

331 Chapter 14: Advanced Features

Flashback Data Archive
Flashback Data Archive is a database mechanism that allows you to periodi-
cally or indefinitely store all row versions in a table over its lifetime. You can
then choose a time to view the data as it existed at a specific point in time.

Be aware that Flashback Data Archive is a licensed feature. The good news:
It is included with advanced compression, which makes the advanced com-
pression cost an even better value.

You don’t need to code complex triggers to move rows to history tables. You
also don’t need to code complex application logic to retrieve the data. The
archiving is completely transparent to developers and end users. Oracle has
sometimes referred to this feature as Oracle Total Recall. (No, that’s not a ref-
erence to some cheesy 1990s movie.)

When you enable Flashback Data Archive, the row versions are automatically
compressed to conserve space. You can also specify the retention period.

	 You can’t do certain operations (such as DROP or TRUNCATE) on tables
where you’ve enabled Flashback Data Archive. Furthermore, you can’t modify
historical data; this ensures the validity and consistency of the archive data.

Flashback Data Archive is a totally online operation. No downtime is required
to enable or use this feature. It’s enabled on a table-by-table basis. You can
also group objects according to retention periods for easier management.
Indexes aren’t maintained, but you can create your own index to facilitate
searching.

	 After the specified retention period expires, data is automatically purged
to conserve space. If space is a concern, you can set quotas to limit archive
growth. Also, to best organize your Flashback data, create tablespaces to
store Flashback data for specific retention periods.

If an archive quota is exceeded, new transactions are blocked. Keep an eye
on space usage and periodically check the alert log for space warnings.

Here’s how you might use a Flashback Data Archive:

	 1.	 Create a tablespace that holds data for a one-year retention period:
<create tablespace fbda_1yr datafile
‘/opt/oracle/oradata/dev12c/fdba_1yr_01.dbf’ size 100M
Autoextend on next 100M maxsize 10g;>

		 The tablespace in this example is named for documentation purposes.
You see this:
Tablespace created.

332 Part IV: Advanced Oracle Technologies

	 2.	 Create a Flashback Data Archive object in your tablespace with a one-
year retention and a 10GB space limit:
<create flashback archive FBDA1
Tablespace fbda_1yr quota 10G retention 1 year;>

	 3.	 Enable Flashback data archiving on the table to keep row history:
<alter table emp flashback archive FBDA1;>

		 You see this:
Table altered.

	 4.	 Query the table to see what it looked like:
<select *
From emp
As of timestamp sysdate – 180;>

		 In this case, you’re searching for emp 6 months prior. You see the row
images as they existed 180 days ago.

	 You can’t drop, truncate, or modify any historical rows in this table as long as
Flashback Data Archive is enabled.

To remove the Flashback Data Archive status, deleting all historical data,
type this:

<alter table EMP no flashback archive;>

You see this:

Table altered.

Oracle Database Replay
The Oracle Database Replay feature evolved as a solution for the need to be
able to do realistic application testing. Before Database Replay, if you wanted
to test any kind of changes against performance or workload, you had to buy
a third-party tool or do massive amounts of coding to fake a workload. In
most cases, neither method was truly representative of your real workload.
Also, making changes to a production environment without testing them can
be risky.

Database Replay is one more tool in your shed to cover all the bases.

333 Chapter 14: Advanced Features

In essence, Database Replay allows you to record your workload in real time
and then play it back. Furthermore, you could play it against

	 ✓	Another database

	 ✓	A different version of Oracle

	 ✓	A different OS

Database Replay captures the workload at below the SQL level. The workload
is stored in binary files. You can then transfer these files to a test environ-
ment, run the workload, analyze problems, fix problems, and test again.
The same workload is repeatable. In conjunction with a tool like Flashback
Database, you can repeatedly test changes in quick succession. Ultimately,
it helps reduce the chances of something breaking when environments are
changed.

	 Database Replay provides a mechanism to help with these kinds of situations:

	 ✓	Testing

	 ✓	Configuration changes

	 ✓	Upgrades

	 ✓	Downgrades

	 ✓	Application changes

	 ✓	Debugging

	 ✓	Storage, network, and interconnect changes

	 ✓	Platform changes

	 ✓	OS changes

	 ✓	Conversion to Real Application Clusters (RAC)

Using Database Replay
Here’s how to use Database Replay:

	 1.	 Log in to SQL*Plus as a user with the SYSDBA privilege.

		 Oracle requires a directory in which to write the replay files.

	 2.	 Create a directory to a location on the OS with plenty of space:
<create or replace directory capture_dir as
‘/u01/app/oracle/admin/devcdb/capture’;>

334 Part IV: Advanced Oracle Technologies

		 You see this:
Directory created.

	 3.	 Start a capture:
<exec dbms_workload_capture.start_capture (‘CAPTURE_DEMO’,’CAPTURE_DIR’);>

		 This example uses the name CAPTURE_DEMO.

		 Ideally, you restart the database before the capture begins so that you
can avoid catching any transactions in the middle. Of course, doing so
isn’t always an option when dealing with a production system.

		 You see this:
PL/SQL procedure successfully completed.

	 4.	 Execute your workload.

		 If it’s just normal application behavior, let it run for the amount of time
you want.

	 5.	 When the workload is complete or your time target has passed, stop
the capture process:
<exec dbms_workload_capture.finish_capture;>

		 You see this:
PL/SQL procedure successfully completed.

	 According to Oracle documentation, capturing a workload can add up to 4.5
percent of processing overhead to the system as well as 64K of memory over-
head for each session. Futhermore, if space runs out in the capture directory,
the capture will stop. All the captured data up to that point will still be useful.

The idea is we will use our capture to “replay” the workload. In our experi-
ence, the workload is usually replayed against a different database, such as a
test environment. However, this is not always the case.

If your database environment is one where lengthy maintenance windows can
occur (such as over a weekend), you might find yourself doing these things:

	 ✓	Enabling Flashback Database

	 ✓	Creating a restore point on Friday morning

	 ✓	Starting a workload capture for four hours from 8 a.m. to noon

	 ✓	Restricting the system and creating another restore point after the
employees go home on Friday evening

	 ✓	Restoring the database to the restore point Friday morning

	 ✓	Deploying database or application changes

	 ✓	Replaying your workload to test the changes

335 Chapter 14: Advanced Features

	 ✓	Flashing back the workload to Friday evening

	 ✓	Deploying database or application changes to take effect when the work-
ers come back Monday morning

Replaying the workload
Follow these steps to replay the workload:

	 1.	 Create a directory for the replay capture files:
<create or replace directory capture_dir as
‘/u01/app/oracle/admin/devcdb/capture’;>

		 You see this:
Directory created.

		 This example assumes the replay is taking place on another database. If
it’s on the same database, there is no need to create a directory
and move the capture files because they will already be in the correct
location.

	 2.	 Move the files from the capture directory on the source system to the
directory on the replay system.

	 3.	 Begin the replay process on the database:
<exec dbms_workload_replay.process_capture (‘CAPTURE_DIR’);>

		 You see this:
PL/SQL procedure successfully completed.

	 4.	 Initialize a replay session called REPLAY_DEMO:
<exec dbms_workload_replay.initialize_replay
 (‘REPLAY_DEMO_4’,’CAPTURE_DIR’);>

		 You see this:
PL/SQL procedure successfully completed.

	 5.	 Tell Oracle to prepare the replay files:
<exec dbms_workload_replay.prepare_replay ;>

		 You see this:
PL/SQL procedure successfully completed.

		 Start replay clients, which are processes that execute and manage the
workload. These processes are launched from the OS’s command line.

336 Part IV: Advanced Oracle Technologies

	 6.	 The following example starts a replay client with oracle as the
password:
<wrc system/oracle>

		 You see this:
Workload Replay Client: Release 12.1.0.1.0 - Production on Fri Aug 16

22:24:44 2013

Copyright (c) 1982, 2013, Oracle and/or its affiliates. All rights
reserved.

Wait for the replay to start (22:24:44)

	 7.	 Tell the database to start the replay:
<exec dbms_workload_replay.start_replay;>

		 You see this:
PL/SQL procedure successfully completed.

	 8.	 Check on the status while the replay runs:
<select id, name, status, duration_secs
 from dba_workload_replays;>

		 Basically, you’re querying the DBA_WORKLOAD_REPLAYS table. You
see this (or something like it):
 ID NAME STATUS DURATION_SECS
---------- -------------------- ----------- -------------
 10 REPLAY_DEMO IN PROGRESS 369

When everything is done, you should clean up the replay metadata.

	 1.	 Capture ID info on the source system:
<select id, name
 from dba_workload_captures;>

		 You might see something like this:
 ID NAME
---------- -----------------------------------
 4 CAPTURE_DEMO

	 2.	 Delete the capture information:
<exec dbms_workload_capture.delete_capture_info(4);>

		 You see this:
PL/SQL procedure successfully completed.

	 3.	 Find the replay id on the replay system:
<select id, name
 from dba_workload_replays;>

337 Chapter 14: Advanced Features

		 You might see something like this:
 ID NAME
---------- -----------------------------------
 10 REPLAY_DEMO

	 4.	 Delete the replay information:
<exec dbms_workload_capture.delete_replay_info(10);>

Multitenant Architecture
and Pluggable Databases

One of the most talked about new features of Oracle 12c is multitenant
databases. They have also come to be known as pluggable databases. If you
haven’t heard about the cloud, you must have been living under a rock for
the past several years. As you know by now, the c in 12c stands for cloud.
Serving up computing resources and applications in the cloud is all the rage
these days. Doing so reduces capital expenditures for corporations and has
immediate tax benefits as well. Therefore, companies have a lot of incentive
to take advantage of cloud computing.

One of the technologies that has really taken off with the cloud computing
revolution is virtualization. Using virtual machines carved out of larger physi-
cal machines and leveraging fractional licensing further reduces costs for
corporations. Oracle multitenant databases were developed to help compa-
nies take advantage of all these technologies and cost savings.

The Multitenant option of Oracle 12c is licensed. As usual, check with your
Oracle sales rep for costs. Again, though, make sure you’re aware of the
return on investment that this feature can bring you.

You need to be aware of the new types of databases that are now part of a
multitenant architecture:

	 ✓	Container Database (CDB): The primary database that contains multiple
plugged-in databases. Many operations can be performed at the con-
tainer level to reduce management costs. A database is created as either
a CDB or a non-CDB.

	 ✓	Pluggable Database (PDB): A set of schemas, objects, and non-schema
objects that can be plugged and unplugged from a container database.
The PDB appears to OracleNet and end users as a database in and of itself
but is actually managed within a container that may have many PDBs.

	 ✓	Seed Database (Seed PDB): A default PDB that the system uses as a
template to quickly provision other user-created PDBs. Internally, it’s
called PDB$SEED.

338 Part IV: Advanced Oracle Technologies

The Multitenant option helps you accomplish the following:

	 ✓	High consolidation density: Many databases can share memory and
background processes.

	 ✓	Provisioning: A database can be unplugged from one environment and
plugged into another or cloned with SQL commands in just a few sec-
onds. They can even be plugged across operating systems and chipsets.

	 ✓	Patching and upgrades: You can patch a database simply by unplugging
from one unpatched container and plugging it into another patched
container.

	 ✓	Manage many databases as one: You can do tasks such as backing up
and patching on the primary container database instead of the individ-
ual pluggable databases.

	 ✓	Resource management: The Oracle Resource Manager feature can work
at the pluggable database level for you to manage resource competition
among the databases in your environment.

One other thing worth mentioning is that a pluggable database is fully com-
patible with a non-CDB. In fact, Oracle has something it is calling the PDB/
non-CDB compatibility guarantee, which states that anything you would do in
a non-CDB would also work in a PDB. This compatibility guarantee is impor-
tant when it comes to certifying things like third-party vendor products to
work in a multitenant architecture.

Creating a multitenant
database environment
When creating a database, you must designate it as a CDB or non-CDB for it
to be able to support the multitenant architecture. The next set of examples
walks you through the steps to create a container database with the DBCA.
There is only one step that differentiates a CDB from a non-CDB when using
the DBCA.

Following the advanced path of creating a database, the first thing you may
notice is a check box for Create As Container Database on Step 4 of 13, as
shown in Figure 14-1.

You also can choose the number of PDBs created at this time. We choose
only one because we plan to show you how to add more at a later time. You
can also choose to create an empty container database with no pluggable
databases at the onset. The rest of the steps are pretty much the same as
when you create a non-CDB.

339 Chapter 14: Advanced Features

	

Figure 14-1:
Filling in the
information
for creating

a CDB.
	

Navigating a multitenant architecture
A big difference with working in a multitenant architecture is how you con-
nect to your databases. Because there is only one SGA and one set of back-
ground processes, simply connecting to an instance like you have been
taught for non-CDBs does not apply in quite the same way. You’re going to
want to be aware of some key new commands and data dictionary views.

First of all, how do you connect to the CDB and or PDBs? You connect to the
CDB the same way you used to do in the past. You can set your ORACLE_SID
and connect with SQL*Plus or RMAN as SYSDBA. Connecting to the pluggable
databases is where things differ. You can connect to a PDB in two ways:

	 ✓	You can connect to the CDB and then alter your session to set your envi-
ronment to a PDB.

	 ✓	You can set up Oracle Net to route you to a PDB through a service name
by using the TNSNAMES.ORA file.

340 Part IV: Advanced Oracle Technologies

To connect to a PDB through the CDB on Linux, follow these steps:

	 1.	 Open a terminal for a user with the required privileges to connect to
the database through SQL*Plus.

	 2.	 Set your environment to the CDB using the oraenv tool by typing
<. oraenv>

		 You see something like this:
[oracle@orasvr01 ~]$. oraenv
ORACLE_SID = [oracle] ? devcdb
The Oracle base remains unchanged with value /u01/app/oracle

	 3.	 Connect to the CDB just like you would any non-CDB by typing
<sqlplus / as sysdba>

		 You something like this:
SQL*Plus: Release 12.1.0.1.0 Production on Fri Aug 16 23:34:59 2013

Copyright (c) 1982, 2013, Oracle. All rights reserved.

Connected to:
Oracle Database 12c Enterprise Edition Release 12.1.0.1.0 - 64bit

Production
With the Partitioning, OLAP, Advanced Analytics and Real Application

Testing options

	 4.	 To see where in the multitenant architecture you’re connected, type
the new 12c command:
<show con_name>

		 You see something like this:
CON_NAME

CDB$ROOT

	 5.	 Get a list of your PDBs by querying one of the new data dictionary
views for supporting a multitenant environment by typing
<select name, open_mode
from v$pdbs;>

		 Alternatively, you can use this shortcut to get the same output:
SQL> show pdbs

		 You see something like this:
NAME OPEN_MODE
---------- ----------
PDB$SEED READ ONLY
DEVPDB1 READ WRITE

341 Chapter 14: Advanced Features

		 Note that the PDB$SEED is visible in read only mode. It is rare that you
would ever need to connect to this database — it is used primarily inter-
nally for optimization purposes when creating PDBs.

	 6.	 To connect to your PDB DEVPDB1 from within your CBD, type:
< alter session set container=devpdb1;>

		 You see something like this:
Session altered.

	 7.	 To show that you are now in the PDB container, type
<show con_name>

		 You see something like this:
CON_NAME

DEVPDB1

As we mention earlier, the other way to connect to your containers is directly
through Oracle Net. This method supports the guarantee that the multitenant
environment will be entirely compatible with non-CDB environments.

	 1.	 Make sure that the databases are listed with the listener on the server.
To do this, log in to the OS as the oracle software owner and type
<lsnrctl status>

		 You see something like this:
Service “devcdb” has 1 instance(s).
 Instance “devcdb”, status READY, has 1 handler(s) for this service...
Service “devpdb1” has 1 instance(s).
 Instance “devcdb”, status READY, has 1 handler(s) for this service...

		 This output shows that the CDB and PDB have service registered with
the listener.

	 2.	 Make sure there are TNS entries on the clients from which you want to
connect.

		 For example, you should have entries modeled after this example:
DEVPDB1 =
 (DESCRIPTION =
 (ADDRESS = (PROTOCOL = TCP)(HOST = orasvr01)(PORT = 1521))
 (CONNECT_DATA =
 (SERVER = DEDICATED)
 (SERVICE_NAME = devpdb1)
)
)

342 Part IV: Advanced Oracle Technologies

	 3.	 After you confirm the preceding configurations, you can connect from
your Oracle SQL*Plus client by typing
<sqlplus system@devpdb1>

		 You see something like this:
Last Successful login time: Fri Feb 01 2013 09:48:20 -04:00
Connected to:
Oracle Database 12c Enterprise Edition Release 12.1.0.1.0 - 64bit

Production
With the Partitioning, OLAP, Advanced Analytics and Real Application

Testing options
SQL>

Starting and stopping
pluggable databases
Because the instance architecture of pluggable databases is entirely different
from a non-container database, one would imagine that managing their state
of readiness is also different. Well, it’s true. We start by looking at the CDB
itself.

The first thing to remember is that because the CDB maintains the instance
for which all PDBs share, that instance must be up and open for people to be
able to connect to the PDBs. Starting and stopping the CDB is not different
from non-CDBs.

The next thing to remember is that when you start a CDB, all of its associ-
ated PDBs are left in MOUNT state, which means that, by default, they are
not opened with the CDB. As of this writing, 12cR1 doesn’t offer an option to
change this behavior. However, 12c does provide a new type of trigger that
will fire if it detects a CDB opening and will then open specified PDBs. See the
Oracle documentation for further information on setting this up.

After starting and opening a CDB, you can open any corresponding PDBs
like so:

SQL> alter pluggable database devpdb1 open;
Pluggable database altered.

Or:

SQL> alter pluggable database all open;
Pluggable database altered.

343 Chapter 14: Advanced Features

To close PDBs, you can essentially do the opposite of the preceding
commands:

SQL> alter pluggable database devpdb1 close;
Pluggable database altered.

Or:

SQL> alter pluggable database all close;
Pluggable database altered.

As we mention earlier, you can use the V$PDBS data dictionary view to get
information on the readiness of the PDBs.

Creating new PDBs
You can create new PDBs with traditional SQL or with the DBCA. You may
note that when launching the DBCA now, a new option appears on the main
screen: Manage Pluggable Databases. When you select this option, the DBCA
walks you through many different activities that you can exercise against a
PDB, such as

	 ✓	Create

	 ✓	Unplug

	 ✓	Delete

	 ✓	Configure

Because earlier steps show you how to do some of the CDB activity in the
DBCA, the next two activities walk you through how to create a new PDB
by using SQL from the SQL*Plus. We could say that it’s up to you to choose
which method you choose. However, using SQL offers one important benefit.
To use the DBCA, you must be on the server itself to launch the tool from OS
that houses the CDB. Using SQL from SQL*Plus, you can manage the PDBs
from anywhere on the network with simple SQL commands that you are
familiar with. You can also set up privileges to allow some user communities
to have a level of self-service access for provisioning PDB environments.

Create a new PDB by using the seed on Linux
This method copies the files for the seed to a new location and associates the
copied files with the new PDB, which we will call DEVPDB2. Although you have
many options for creating PDBs, this example is one of the simplest ways to get
up and running. Consult Oracle documentation for different options. Using this
method leaves you with a “virgin” PDB with no customizations.

344 Part IV: Advanced Oracle Technologies

	 1.	 Log in to your CDB using SQL*Plus as SYSDBA. To make sure you’re
in the correct location, type
<show con_name>

		 You should see something like this:
CON_NAME

CDB$ROOT

		 The out-of-the box file location for PDBs is in a subdirectory under
the oradata directory for the CDB. For this example, we follow that
approach.

	 2.	 Create a subdirectory for the new PDB under the CDB file location
from the OS oracle software owner by typing
<mkdir /u01/app/oracle/oradata/devcdb/devpdb2>

		 If this command succeeds, you get no output. You can list the new direc-
tory by typing
<ls –l /u01/app/oracle/oradata/devcdb |grep devpdb2>

		 You should see something like this:
drwxr-xr-x. 2 oracle oinstall 4096 Aug 17 01:56 devpdb2

	 3.	 Back in SQL*Plus as SYSDBA, create pluggable database command by
typing
<CREATE PLUGGABLE DATABASE devpdb2 ADMIN USER pdb2dba identified by

“oracle”
DEFAULT TABLESPACE USERS
DATAFILE ‘/u01/app/oracle/oradata/devcdb/devpdb2/users01.dbf’
SIZE 250M AUTOEXTEND ON
FILE_NAME_CONVERT=(
‘/u01/app/oracle/oradata/devcdb/pdbseed/’,
‘/u01/app/oracle/oradata/devcdb/devpdb2/’);>

		 You should see this:
Pluggable database created.

		 The new PDB is left in a mount state.

	 4.	 Show the new PDB and open it by typing
<show pdbs>
<alter pluggable database devpdb2 open;>

		 You should see this:
CON_ID CON_NAME OPEN MODE RESTRICTED
------- ------------------------------ ---------- ----------
 2 PDB$SEED READ ONLY NO
 3 DEVPDB1 READ WRITE NO
 4 DEVPDB2 MOUNTED
Pluggable database altered.

345 Chapter 14: Advanced Features

	 5.	 Verify the status by typing
<show pdbs>

		 You should see this:
CON_ID CON_NAME OPEN MODE RESTRICTED
------ ------------------------------ ---------- ----------
 2 PDB$SEED READ ONLY NO
 3 DEVPDB1 READ WRITE NO
 4 DEVPDB2 READ WRITE NO

Create a new PDB by cloning an existing PDB on Linux
This method copies the files for the new PDB from the existing DEVPDB1 to a
new location. We call the new PDB DEVPDB3. Again, you have many options
for creating PDBs, but this example is one of the simplest ways to get up
and running. Consult Oracle documentation for different options. Using this
method leaves you with a PDB with all customizations of the source PDB.

DEVPDB1 has been customized with a unique tablespace MY_DATA, within
which there is a table HR.EMP. These customizations carry over to the new
DEVPDB3.

	 1.	 Log in to your CDB using SQL*Plus as SYSDBA. To make sure you’re
in the correct location, type
<show con_name>

		 You should see something like this:
CON_NAME

CDB$ROOT

		 The out-of-the box file location for PDBs is in a subdirectory under
the oradata directory for the CDB. For this example, we follow that
approach.

	 2.	 Create a subdirectory for the new PDB under the CDB file location
from the OS oracle software owner by typing
<mkdir /u01/app/oracle/oradata/devcdb/devpdb3>

		 If this command succeeds, you get no output. You can list the new direc-
tory by typing
<ls –l /u01/app/oracle/oradata/devcdb |grep devpdb3>

		 You should see something like this:
drwxr-xr-x. 2 oracle oinstall 4096 Aug 17 02:18 devpdb3

	 3.	 The source PDB needs to be put into read only mode. Do this
by typing
<alter pluggable database devpdb1 close immediate;>

346 Part IV: Advanced Oracle Technologies

		 You should see this:
Pluggable database altered.

		 Then type
< alter pluggable database devpdb1 open read only;>

		 You should see this:
Pluggable database altered.

	 4.	 Run the clone command by typing
< CREATE PLUGGABLE DATABASE devpdb3 FROM devpdb1
FILE_NAME_CONVERT=(
‘/u01/app/oracle/oradata/devcdb/devpdb1/’,
‘/u01/app/oracle/oradata/devcdb/devpdb3/’);>

		 You should see this:
Pluggable database created.

		 The new PDB is left in a mount state.

	 5.	 Show all the PDBs and their status by typing
<show pdbs>

		 You should see this:
CON_ID CON_NAME OPEN MODE RESTRICTED
------ ------------------------------ ---------- ----------
 2 PDB$SEED READ ONLY NO
 3 DEVPDB1 READ ONLY NO
 4 DEVPDB2 READ WRITE NO
 5 DEVPDB3 MOUNTED

	 6.	 Open the source DEVPDB1 read write and open the new DEVPDB3 by
typing
<alter pluggable database devpdb1 close immediate;>
<alter pluggable database devpdb1 open;>
<alter pluggable database devpdb3 open;>

		 You see something like this for each command:
Pluggable database altered.

	 7.	 Show the new status of the PDBs by typing
<show pdbs>

		 You should see this:
CON_ID CON_NAME OPEN MODE RESTRICTED
------ ------------------------------ ---------- ----------
 2 PDB$SEED READ ONLY NO
 3 DEVPDB1 READ WRITE NO
 4 DEVPDB2 READ WRITE NO
 5 DEVPDB3 READ WRITE NO

347 Chapter 14: Advanced Features

		 The final check is to see that the custom tablespace and table are in the
new PDB.

	 8.	 Connect to the container database. One way to do this is through the
root CDB by typing
< alter session set container = devpdb3;>

		 You see this:
Session altered.

		 You can double-check your container by typing
<show con_name>

		 You see this:
CON_NAME

DEVPDB3

	 9.	 Check your tablespaces by typing
<select tablespace_name, file_name
from dba_data_files;>

		 You should see something like this:
TABLESPACE_NAME FILE_NAME
--------------- ---
SYSTEM /u01/app/oracle/oradata/devcdb/devpdb3/system01.dbf
SYSAUX /u01/app/oracle/oradata/devcdb/devpdb3/sysaux01.dbf
USERS /u01/app/oracle/oradata/devcdb/devpdb3/SAMPLE_SCHEMA_

 users01.dbf
EXAMPLE /u01/app/oracle/oradata/devcdb/devpdb3/example01.dbf
MY_DATA /u01/app/oracle/oradata/devcdb/devpdb3/my_data01.dbf

	 10.	 Check the HR.EMP table by typing
< select owner, table_name, tablespace_name
from dba_tables
where owner = ‘HR’
and table_name = ‘EMP’;>

		 You see something like this:
OWNER TABLE_NAME TABLESPACE_NAME
--------------- ------------------------------ ---------------
HR EMP MY_DATA

348 Part IV: Advanced Oracle Technologies

Unplugging and plugging in your PDBs
The activity we cover here focuses on the actual pluggable part of the
PDBs. You may want to move your PDBs around for a number of reasons.
For example:

	 ✓	Upgrades

	 ✓	Patching

	 ✓	Relocation to a different CDB

	 ✓	Testing

	 ✓	The sky’s the limit!

Unplugging your PDB
A PDB is unplugged by connecting to the root CDB and issuing the ALTER
PLUGGABLE DATABASE statement to specify an XML file that will contain
metadata about the PDB after it is unplugged. The XML file contains the
required information to enable a CREATE PLUGGABLE DATABASE statement
on a target CDB to plug in the PDB.

	 1.	 Log in to your CDB using SQL*Plus as SYSDBA. To make sure you’re
in the correct location, type
<show con_name>

		 You should see something like this:
CON_NAME

CDB$ROOT

	 2.	 Get a list of your PDBs by typing
<show pdbs>

		 You should see this:
CON_ID CON_NAME OPEN MODE RESTRICTED
------ ------------------------------ ---------- ----------
 2 PDB$SEED READ ONLY NO
 3 DEVPDB1 READ WRITE NO
 4 DEVPDB2 READ WRITE NO
 5 DEVPDB3 READ WRITE NO

		 Next you need to unplug DEVPDB3.

	 3.	 Close DEVPDB3 by typing
<alter pluggable database devpdb3 close immediate;>

349 Chapter 14: Advanced Features

		 You should see this:
Pluggable database altered.

	 4.	 Run the ALTER PLUGGABLE DATABASE statement with the UNPLUG
INTO clause and specify the PDB to unplug and the name and location
of the PDB’s XML metadata file by typing
<ALTER PLUGGABLE DATABASE devpdb3 UNPLUG INTO ‘/home/oracle/devpdb3.xml’;>

		 You should see this:
Pluggable database altered.

Plugging in your PDB
Before you plug in a PDB, you must meet some requirements:

	 ✓	The CDB must have the same endianness.

	 ✓	The CDB must have the same set of options installed.

	 ✓	The source CDB and the target CDB must have compatible character
sets and national character sets.

For simplicity purposes, we show you how to unplug and replug the
DEVPDB3 database into the same CDB root database:

	 1.	 Log in to your CDB using SQL*Plus as SYSDBA.

		 To make sure you are in the correct location, type
<show con_name>

		 You should see something like this:
CON_NAME

CDB$ROOT

		 Next you need to drop the existing DEVPDB3 database.

	 2.	 To drop DEVPDB3 in a manner that preserves the data files (because
they’re needed to plug in database), type
<drop pluggable database devpdb3 keep datafiles;>

		 You should see this:
Pluggable database dropped.

350 Part IV: Advanced Oracle Technologies

	 3.	 Run the DBMS_PDB.CHECK_PLUG_COMPATIBILITY function to deter-
mine whether the unplugged PDB is compatible with the CDB. Type
SET SERVEROUTPUT ON
DECLARE
 compatible CONSTANT VARCHAR2(3) :=
 CASE DBMS_PDB.CHECK_PLUG_COMPATIBILITY(
 pdb_descr_file => ‘/home/oracle/devpdb3.xml’)
 WHEN TRUE THEN ‘YES’
 ELSE ‘NO’
END;
BEGIN
 DBMS_OUTPUT.PUT_LINE(compatible);
END;
/

		 If all requirements are met, you see this:
YES

	 4.	 Check the existing PDBs by typing
<show pdbs>

		 You should see something like this:
CON_ID CON_NAME OPEN MODE RESTRICTED
------ ------------------------------ ---------- ----------
 2 PDB$SEED READ ONLY NO
 3 DEVPDB1 READ WRITE NO
 4 DEVPDB2 READ WRITE NO

	 5.	 Plug in the database using the metadata file by typing
<create pluggable database DEVPDB3 using
‘/home/oracle/devpdb3.xml’ NOCOPY TEMPFILE REUSE;>

		 You should see this:
Pluggable database created.

	 6.	 Check the status of your PDBs again by typing
<show pdbs>

		 You should see something like this:
CON_ID CON_NAME OPEN MODE RESTRICTED
------ ------------------------------ ---------- ----------
 2 PDB$SEED READ ONLY NO
 3 DEVPDB1 READ WRITE NO
 4 DEVPDB2 READ WRITE NO
 5 DEVPDB3 MOUNTED

	 7.	 Open your newly plugged in PDB by typing
<alter pluggable database devpdb3 open;>

		 You should see this:
Pluggable database altered.

Chapter 15

Using High-Availability Options
In This Chapter
▶	Using Real Application Clusters (RAC)
▶	Understanding Data Guard

A
 high-availability architecture combines hardware and software solutions
to help reduce the impact of outages during planned and unplanned

downtime. Your data’s availability is of utmost importance. However, the
level of availability varies by business. Some can deal with a little downtime
here and there with minor business interruptions. A minute of downtime
for others can cost tens of thousands of dollars. Luckily, Oracle helps you
harden against the forces out there that want to make your database unavail-
able. Hardening your database means protecting it against unplanned down-
time. Unplanned downtime can be caused by hardware failure or events like
fires, floods, user errors, etc.

	 Implementing a high-availability architecture may not be cost effective for
everyone. It can be expensive in terms of hardware and software licenses.
However, if downtime costs you thousands of dollars in short intervals, look
at some of Oracle’s high-availability options.

This chapter is about a couple of Oracle features that you can configure for
high availability. Each feature has its strengths and weaknesses. You some-
times can combine features to get the best result. And because licensing
Oracle options seems to change constantly and varies from site to site and
version to version, we’re deferring any questions about the licensing of these
features to your friendly Oracle sales rep.

Lastly, entire books and weeklong classes deal with these technologies. We
give an overview within this chapter. Unfortunately, we can’t prepare you for
an enterprise installation and configuration of these options. Consider this a
guide with tools that help you investigate.

352 Part IV: Advanced Oracle Technologies

Gathering Real Application Clusters
If you’ve visited Oracle’s websites in the last 12 years, you’ve seen the
marketing byline: “Unbreakable.” That tag line refers to the feature Real
Application Clusters (RAC). Of course, a lot of elements are involved, but RAC
has the spotlight.

RAC is Oracle’s database clustering solution. In a sense, it works on the
theory that there is strength in numbers. RAC lets you have parallel database
instance operating environments. These instances cooperate to share work
and back each other up in case one of them fails. RAC can help with both
planned and unplanned outages. It allows you to shift your processing
from server to server with little to no interruption to your end users and
applications.

Determining whether RAC is right for you is a big decision. Implementing RAC
requires lots of resources and money. However, sometimes spending a little
more up front can save you later.

Consider what RAC can offer:

	 ✓	Scalability: The technology is based on computers and resources that
team up as one. With RAC, you can purchase and license hardware as
you need it. Furthermore, you can plug in the new hardware as you go
without taking down your database. If you’ve exceeded your computing
capabilities for the server, seamlessly add one to your configuration.

	 ✓	Uptime: RAC can harden your computing environment against planned
and unplanned downtime. You can transparently remove portions of
the application for planned downtime (such as maintenance, patches,
and upgrades) with little to no interruption to end users. Furthermore, if
one of your environment’s computing resources fails, RAC automatically
transfers application connections to other resources in the framework.

	 ✓	Performance: Some might argue with this point, but you have to care-
fully define RAC’s performance capabilities:

	 •	Because RAC is a complicated environment, your application has
to be designed to best take advantage. If you ignore this fact, RAC
can actually hurt performance. Keep that in mind.

	 •	RAC can offer performance benefits when it comes to the divide-
and-conquer methodology. You can split large jobs across com-
puters. If you know an underpowered machine is limiting your
company, reconfiguring the job to run on multiple machines can
offer great benefits. It’s called parallel processing, and it’s part of
RAC fundamentals. RAC is a scaling out (horizontal) solution. This
means you add nodes to the cluster rather than having one server
replaced with another more powerful server, or scaling up (vertical).

353 Chapter 15: Using High-Availability Options

Exploring RAC Architecture
RAC works through a complex organization of hardware and software config-
urations. Mostly throughout this book we talk of Oracle databases as a single
set of files (the database) and a single set of memory and process compo-
nents (the instance) that work together for you to access and maintain your
data. That is the most typical configuration for an Oracle installation. In this
configuration, the database files can be mounted and accessed by only one
machine and one Oracle instance at a time.

With RAC, those files are sharable so many machines and instances can
access the same files. You can have (depending on certification and versions)
100 database instances accessing the same shared database. Just like you
might have two DBAs in your office:

	 ✓	One can vacation while the other works (read: high availability).

	 ✓	Both can work together on a large project to split the workload and
meet an aggressive timeline (read: performance).

	 ✓	Add a third person to meet workload requirements as the Oracle
responsibilities grow (read: scalability).

Many components are required in a RAC setup. To get a general idea of what
the architecture looks like, see Figure 15-1.

Hardware considerations for RAC
RAC has some special hardware requirements that single instance or non-
RAC database don’t have.

RAC versus OPS
RAC, which has been around for many years,
was previously known as the parallel server
option. Before we get flamed about when RAC
was RAC, we’re perfectly happy to admit that
before the RAC moniker, Oracle Parallel Server
(OPS) was far from the capabilities that RAC
has to offer. Oracle significantly hardened the

architecture, making it more accessible and
easier to set up. Oracle also focused on the
components of the environment that minimize
downtime. So, you could say that RAC is a new
breed of OPS that far surpasses prior capabili-
ties in usability and performance.

354 Part IV: Advanced Oracle Technologies

	

Figure 15-1:
This com-
mon RAC

architecture
shows some
of the major

required
components.

	

Nodes
A node is a server that runs an Oracle instance. A true RAC configuration has
at least two nodes.

The number of nodes in your RAC configuration depends on hardware and
software limitations. According to Oracle’s documentation and support web-
sites, Oracle software itself can support upwards of 100 nodes, but other
forces may limit you to fewer.

	 If you’re getting into lots of nodes (more than eight), check with all your hard-
ware and software vendors to see what your limit is.

Add nodes as you scale your cluster. You can add and remove them with
minimal or no service interruption to your application. This ensures high
availability. Typically, each node will have its own installation of the Oracle
software.

	 You can have one central, shared software directory for each node to use.
However, a configuration like this limits your high-availability capabilities.

For example, one advantage to installing the Oracle software on each node is
the ability to individually patch the nodes by taking them down one at a time.
This rolling patch avoids a complete application outage. You can’t apply all
patches this way. Check with patch documentation to be sure. On the other
hand, one central installation requires you to shut down the entire cluster to
apply the patch.

	 Each node should have its own Oracle software code tree if you want high
availability.

355 Chapter 15: Using High-Availability Options

Central storage
The following are some RAC configuration central storage requirements:

	 ✓	All your database files, control files, redo logs, archive logs, and spfile
should be on shared storage. This way, each of the nodes has access to
all the required files for data access, recovery, and configuration.

	 ✓	Attach the central storage to each node in the form of some high-
speed media. Lots of high-speed connections (fiber channel or iSCSI, for
example) are available from different storage vendors. Make sure the
storage and attachments are approved for Oracle RAC before making
your decisions. (For example, NFS mounting drives to each server isn’t
typically a certified configuration.) You can use almost any shared stor-
age configuration with decent education and testing results.

	 ✓	When choosing a storage vendor, consider your applications’ perfor-
mance needs. Your disk subsystem should be able to scale as easily as
your RAC nodes. As you add nodes, you may need to add physical disks
to support the increased demand on the storage subsystem. You should
be able to do this with little or no downtime.

	 ✓	The disk on the shared storage subsystem must be configured for
shared access. You may have up to four choices for this:

	 •	Raw file system (unformatted disks)

	 •	Oracle Cluster File System (OCFS) (available on Windows and
Linux only)

	 •	Oracle Automatic Storage Management (ASM) (an Oracle-supplied
volume manager of sorts for database-related files)

	 •	Third-party solution (such as Veritas)

You may have to combine options. For example, you might use Oracle ASM
for your database files, but you might want something other than ASM for
RMAN backup files.

Cluster interconnect
The cluster interconnect is a dedicated piece of hardware that manages all
the inter-instance communication. A lot of communication across instances
occurs in a RAC configuration: maintaining consistency, sharing lock informa-
tion, and transferring data blocks.

Oracle uses Cache Fusion for managing data transfer between nodes. Cache
Fusion requires an extremely reliable, private, high-speed network connect-
ing all the nodes.

356 Part IV: Advanced Oracle Technologies

	 Cache Fusion is a critical component for getting RAC to perform well. The
interconnect needs to be gigabit speeds or better.

When you have cluster communication performance issues, the intercon-
nect’s ability to provide the required bandwidth is questioned. It’s a neces-
sary expense to set up an RAC environment appropriately. Would you spend
thousands of dollars on a race car and then put street tires on it?

Network interfaces
Make sure you have the right network interfaces on the server for proper
communication. This includes multiple network interface cards:

	 ✓	One for the public or user connections to the machine

	 ✓	One for the private interconnect for the cluster to share information
across the nodes

	 At the very least, a RAC configuration should have two network interface cards:

	 ✓	One for the private network for cluster interconnect traffic

	 ✓	One for the public network

The public network is the connection for all cluster connections, from your
applications and end users (including you and the sys admin).

Software considerations for RAC
Before you set up RAC, investigate the software it needs to run smoothly.
Consider the following areas of software.

Operating system
Though nearly all popular OSs run an RAC installation, you need to

	 ✓	Verify that the OS is certified.

	 ✓	Make sure the right release and patchsets are confirmed as RAC
certified.

	 ✓	Ensure that your Oracle version is certified with your OS configuration.

	 The Oracles Support website (http://myoraclesupport.com) provides a
matrix to help you identify certified combinations.

Furthermore, an uncertified OS may be certified later. It can be complicated
at first, but getting this right to start with helps you a long way down the line.

http://myoraclesupport.com

357 Chapter 15: Using High-Availability Options

Clustering software
Arguably, clustering software is the most important piece of software.
Without clustering software, there is no cluster.

The software tracks cluster members such as databases, instances, listeners,
and nodes. Lots of other cluster components run on each of the nodes and
require maintenance for the clusterware to work properly. The clustering
software tracks these components and facilitates internode communication
and health.

Depending on your experience level with different types of clustering soft-
ware, you might choose one over the other. Oracle provides clustering
software in the form of Oracle Grid Infrastructure. Since Oracle 10g, Oracle
Clusterware is available for almost all the major operating systems.
Grid Infrastructure is the preferred software to use for clustering Oracle
databases.

Prior to Oracle 11gR2, Grid Infrastructure was referred to as Oracle
Clusterware.

	 If you go with third-party clustering software, make sure it’s certified by
Oracle for RAC. Veritas and Sun Cluster are examples of certified third-party
clustering software. However, make sure they’re certified for your OS.

Oracle database
The Oracle database software is nothing special when it comes to RAC. You
don’t need to download any special components or anything else to make an
Oracle database RAC ready. RAC is built into the database software. When
you go to install Oracle RDBMS on a cluster, it recognizes that a cluster exists
and asks whether you would like to do a cluster install. It’s as simple as that.

Optional software
You might want to use some optional pieces of software:

	 ✓	Oracle Agent: If you manage your database with Oracle Grid Control,
you need to install an agent on the cluster. Like the database software,
the agent recognizes that it’s being installed on a cluster and configures
itself appropriately.

	 ✓	Oracle ASM: This is the preferred storage mechanism for Oracle data-
base files in a RAC database. As of Oracle 11gR2, it is integrated with
the Grid Infrastructure software stack. It is required for the Oracle Grid
Infrastructure OCR and Voting disks, which are used for cluster node
management and consistency. For database files, you can continue to
use other shared file systems, such as raw or NFS.

358 Part IV: Advanced Oracle Technologies

Preparing for a RAC Install
Each OS has its own configuration for an RAC install. It’s virtually impossible
to cover everything here.

	 However, we can offer a few pieces of advice:

	 ✓	Thoroughly read the Oracle Grid Infrastructure installation and
deployment guide for your specific OS. What applies on one OS may
not fly on another.

	 ✓	Be consistent across all nodes when naming users, groups, group IDs,
and user IDs. Make sure the same user owns all the Oracle software
components.

		 For example, on Linux, oracle is typically an account that owns the
Oracle software installation. Create this user exactly the same way as
you go to all the nodes. Linux has at least two OS groups for Oracle
(dba and oinstall). These must be identical. For the users and groups,
this goes for the group ID (gid) and user ID (uid) as well. The gid and
uid maintain permissions at the OS level. If they’re not identical across
nodes, permissions won’t be maintained correctly, and the cluster won’t
function.

	 ✓	Set up the hosts file correctly. This goes for all RAC installations. The
clustering software uses the hosts file to install the software and main-
tain communications. The domain name server, or DNS, doesn’t substi-
tute for this. You can add the host configuration to the DNS if you want,
but make sure the hosts file is properly configured.

		 Here’s an example of what a two-node RAC host file may look like:
127.0.0.1 localhost.localdomain localhost

192.168.100.11 node1-priv.perptech.com node1-priv # node1 private
192.168.100.12 node2-priv.perptech.com node2-priv # node2 private

192.168.200.11 node1.perptech.com node1 # node1 public
192.168.200.12 node2.perptech.com node2 # node2 public

192.168.200.21 node1-vip.perptech.com node1-vip # node1 virtual
192.168.200.22 node2-vip.perptech.com node2-vip # node2 virtual

	 •	Each cluster node connects to another through a private high-
speed network (cluster interconnect).

	 •	The public IP used for all user communication to the nodes isn’t
related to the interconnect.

359 Chapter 15: Using High-Availability Options

	 •	Each cluster node also has a virtual IP address that binds to the
public NIC. If a node fails, the failed node’s IP address can be reas-
signed to another node so applications can keep accessing the
database through the same IP address. As of Oracle 11gR2, this is
done using a new cluster networking component called a SCAN.
SCAN stands for single-client-access-name. Three VIPs are assigned
on the network to a scan name (typically the name of your cluster),
and that one SCAN name is then used for all communication. The
three VIPs can float across the nodes to provide constant connec-
tivity and failover capabilities.

	 ✓	When using Oracle Grid Infrastructure, install it in a directory that’s
not a subset of your Oracle base. For example:
ORACLE_BASE=/u01/app/oracle
ORA_CRS_HOME=/u01/app/grid

		 You must set many permissions under the Grid Infrastructure home for
special root access. You don’t want those settings to interfere with the
database software installation.

	 ✓	When using Oracle Grid Infrastructure, correctly set the permissions
for the underlying storage devices that are used for the ASM disk
groups. If you don’t get the permissions right, you can’t complete the
installation or a node reboot may either cause the clustering services to
not rejoin the cluster or the node to continually reboot itself.

	 ✓	Configure the nodes in your cluster to be able to use the following:

	 •	rsh or ssh (ssh is recommend if you’re on 10gR1 or greater.)

	 •	rcp or scp (scp is recommend if you’re on 10gR1 or greater.)

	 •	User equivalence for nonpassword authentication

The communication and copying features are for software installation and
patching. They aren’t required for RAC to work after the fact if opening these
things is against company security policies.

Tools for managing a RAC installation
Oracle supplies several tools for managing a RAC installation. Some of the
tools are RAC specific, but others are also for non-RAC databases. All the
tools for both RAC and non-RAC databases become cluster aware when you
launch them in the presence of a clustered environment. This means that
they will see the cluster and all the nodes in it.

360 Part IV: Advanced Oracle Technologies

	 Cluster awareness is extremely handy because a lot of the things you do in
one node have to be done across many of the nodes. Cluster-aware tools help
you accomplish those tasks more easily.

Oracle Universal Installer for Grid Infrastructure
If you choose Oracle Grid Infrastructure as your clustering software, right off
the bat the Oracle Universal Installer (OUI) makes the software stack installa-
tion easy.

As long as you meet the following two criteria, the OUI begins by installing
the software from one node, and then it replicates across the entire cluster:

	 ✓	Correctly configure the hosts file across all the nodes.

	 ✓	Enable user-equivalence, ssh/rsh, and scp/rcp for the Oracle user across
all your nodes.

This way, you have to install the software only once. (You still have to run a
couple of configuration scripts on the remaining nodes after the initial install
on the primary node.)

	 Furthermore, if you ever want to add a node to the cluster, with OUI you can use
the primary node to clone the software across the network to the new node.

Oracle Universal Installer for other software
After you configure the cluster, the OUI is cluster aware for all installs there-
after. That means every time you go to install Oracle software, it asks you to
choose the nodes you want to do the install on. This option is very nice when
you do your database and agent installations. Furthermore, all patchsets that
you apply also give you the option of pushing out to all the nodes.

Of course, if you’re patching in a rolling method, you can apply it one node at
a time (hence, roll from one node to the next).

Database Configuration Assistant (DBCA)
You use the Database Configuration Assistant (DBCA) to create a database
in Chapter 4. When the DBCA is launched from a node in a cluster, it too is
automatically cluster aware. It begins the database creation and configura-
tion by asking on what nodes you want to perform operations. To create a
four-instance cluster across four nodes, you have to log on to only one of the
servers and do it all from the DBCA. This huge timesaver automatically sets
all the special initialization parameters for each node in each instance.

361 Chapter 15: Using High-Availability Options

Network Configuration Assistant (NETCA)
When it comes to managing listeners and tnsnames files, NETCA is also clus-
ter aware. If you need to add a listener or tnsnames entry, any action taken
on one node is automatically propagated with appropriate settings across
all the nodes. Configuring all the listener.ora and tnsnames.ora files across a
multimode cluster would take a week by hand.

Server Control (srvctl)
Server Control is probably your day-to-day main command-line tool for man-
aging your RAC environment.

	 To see an abbreviated list of all the things you can do with this tool, open a
command-line prompt on your OS and type this:

<srvctl>

You see something like this:

Usage: srvctl <command> <object> [<options>]
 command: enable|disable|start|stop|relocate|status|add|remove|modify|getenv|

setenv|unsetenv|config
 objects: database|instance|service|nodeapps|asm|listener
For detailed help on each command and object and its options use:
 srvctl <command> <object> -h

The server control utility lets you manage nearly all the resources across the
entire cluster from one session. Say you’re logged in to node1 and want to
shut down the instance prod31 on node3 for the database prod3. This is what
you’d type:

<srvctl stop instance –d prod3 –i prod31>

You should see this:

That’s right: You see nothing if it works correctly. If you get errors, research
appropriately.

You can use Server Control to do the following and any combination therein:

	 ✓	Stop all instances of a database.

	 ✓	Stop two of five instances for a database.

	 ✓	Start all instances.

	 ✓	Stop one or all listeners.

362 Part IV: Advanced Oracle Technologies

You can easily script Server Control into operating scripts. That’s one of its
big benefits. Tools such as SQL*Plus and the listener control utility (which
require an execution on each node for multinode operations and multiline
inputs) make for more complex scripts. With Server Control, everything is
contained in one line for whatever operation you want to accomplish.

Cluster Control (crsctl)
Cluster Control is another command-line tool that controls the cluster-spe-
cific resources. It can start and stop the cluster components on individual
nodes.

	 Type this to launch Cluster Control and get a list of the command options:

<crsctl>

You see something like this:

Usage: crsctl check crs - checks the viability of the Oracle Clusterware
 crsctl check cssd
 - checks the viability of Cluster Synchronization Services
 crsctl check crsd - checks the viability of Cluster Ready Services
 crsctl check evmd - checks the viability of Event Manager
 crsctl check cluster [-node <nodename>]
 - checks the viability of CSS across nodes
 crsctl set css <parameter> <value> - sets a parameter override
...output snipped...
 crsctl query crs activeversion - lists the Oracle Clusterware operating
If necessary any of these commands can be run with additional tracing by adding

a ‘trace’ argument at the very front.
Example: crsctl trace check css

	 We cut a large portion of the output because this tool has a lot of options.

Patching the OS is one situation when Cluster Control is useful. These com-
mands (which affect the operating state of the Grid Infrastructure) must be
run as root. Commands that just report on the state of the Grid Infrastructure
can be run as non-root users:

	 1.	 Stop all the cluster resources on that particular node with Server
Control.

	 2.	 Stop the cluster-specific components:
<crsctl stop crs>

		 You see this:

363 Chapter 15: Using High-Availability Options

Stopping resources.
Successfully stopped CRS resources
Stopping CSSD.
Shutting down CSS daemon.
Shutdown request successfully issued.

		 You might be required to reboot the node once or twice during the OS
maintenance; you don’t want the cluster to restart.

	 3.	 Prevent the cluster services on this node from restarting:
<crsctl disable crs>

	 4.	 Do all the reboot you want.

		 You don’t have to worry about the cluster services interfering.

	 5.	 Re-enable the cluster services:
<crsctl enable crs>

	 6.	 Restart the cluster services:
<crsctl start crs>

		 All the cluster resources start, including the database-related resources
on the node.

Oracle Interface Configuration Tool (OIFCFG)
If you need to change the cluster (changing server name or IP addresses, for
instance), you must use the Oracle Interface Configuration Tool (OIFCFG) to
reconfigure those changes in the internal cluster configuration.

	 Avoid making these types of changes. Put some thought into your network
naming and IP choice ahead of time.

Oracle RAC application
for high availability
RAC helps with high availability by providing redundancy in your environment —
specifically, redundant Oracle instances. One instance in a multi-instance
environment can be removed for OS, hardware, or Oracle software mainte-
nance without disrupting the application.

364 Part IV: Advanced Oracle Technologies

However, make sure your expectations meet what RAC can deliver:

	 ✓	RAC doesn’t cover all points of failure. It definitely helps harden against
node failure and instance failure. Unfortunately, it can’t help with SAN,
interconnect, or user error.

	 ✓	RAC isn’t typically considered a disaster-protection solution. If your
entire site is compromised by wind, fire, or water, RAC is going with it.

Understanding Oracle Data Guard
Data Guard is Oracle’s true disaster protection technology. In it, you have a
minimum of two databases:

	 ✓	A database called a primary

	 ✓	A database called a standby

The two databases are connected by a network that ships all transactions
from the primary and then applies them to the standby. In essence, you have
one active database and one database in constant recovery.

Extended RAC
New developments are happening in a move-
ment called Extended RAC. This RAC solution
can protect against total site loss while pro-
viding all the other RAC features. As network
transmission speeds increase over time, some
people think that RAC is possible with instances
in remote locations.

This configuration requires high-speed SAN
mirroring and a network transmission media
called dark fiber. Dark fiber is a private, direct
connection between two remote sites that
can handle multiple network transmissions at
once over the same cable by using varying light
frequencies.

At press time, Extended RAC appears to have
distance limitations. The further apart the sites,
the higher the latency. Latency turns into cluster
performance degradation. We’ve been unable
to find any definitive documentation on the
distance limits. Degradation appears to factor
heavily into your type of connection. Some sites
use repeaters to extend even further.

In the meantime, if you need a remote site con-
figured for disaster recovery, you may want to
consider Data Guard. It can offer a lot of the
features that Extended RAC does but at a frac-
tion of the cost with no real distance limits.

365 Chapter 15: Using High-Availability Options

Data Guard has options for multiple standby sites as well as an active-active
configuration. By active-active, we mean both/all sites are up, running, and
accessible. This is opposed to sites that have one active location and the
others must be started up when they are needed. See Figure 15-2 for a general
architectural layout.

Data Guard architecture
Start a description with the primary database is easy because it differs very
little from any other database you might have. The only difference is what it
does with its archived redo logs.

The primary database writes one set of archive redo logs to a Flash Recovery
Area or a local disk. However, you may configure one or more other destina-
tions in a Data Guard environment.

	

Figure 15-2:
This Data

Guard archi-
tecture has

one physical
and one log-
ical standby

database.
	

366 Part IV: Advanced Oracle Technologies

The LOG_ARCHIVE_DEST_n parameter may look like this for the configura-
tion in Figure 15-2:

LOG_ARCHIVE_DEST_10=’LOCATION=USE_DB_RECOVERY_FILE_DEST’
LOG_ARCHIVE_DEST_1=’SERVICE=PHYSDBY1 ARCH’
LOG_ARCHIVE_DEST_2=’SERVICE=LOGSDBY1 LGWR’

	 ✓	LOG_ARCHIVE_DEST_10 is configured to send archive redo logs to
the local Flash Recovery Area. One local destination is required for all
archive log mode databases.

	 ✓	LOG_ARCHIVE_DEST_1 is configured to ship the archive logs via the
archiver process (discussed in Chapter 2) to a remote site PHYSDBY1.
The service name for this remote site has an entry in the tnsnames.ora
file on the primary server.

	 ✓	LOG_ARCHIVE_DEST_2 is configured to ship the archive logs via the
LGWR process to a remote site named LOGSDBY1. The service name
for this remote site has an entry in the tnsnames.ora file on the primary
server as well.

Why the difference in ARCn versus LGWR shipping methods? That has some-
thing to do with protection modes. A Data Guard environment has three pro-
tection modes, as described in the following sections.

Maximum availability
The maximum availability protection mode compromises between perfor-
mance and data availability. It works by using the LGWR to simultaneously
write to redo logs on both the primary and standby sites. The performance
degradation comes in the form of processes having to wait for redo log
entries to be written at multiple locations. Sessions issuing commits have to
wait until all necessary information has been recorded in at least one standby
database redo log. If one session hangs due to its inability to write redo infor-
mation, the rest of the database keeps moving forward.

Maximum protection
The maximum protection mode is similar to maximum availability except that
if a session can’t verify that redo is written on the remote site, the primary
database shuts down.

	 Configure at least two standby sites for maximum protection mode. That way,
one standby site becoming unavailable won’t disrupt service to the entire
application.

This mode verifies that no data loss will occur in the event of a disaster at the
cost of performance.

367 Chapter 15: Using High-Availability Options

Maximum performance
The maximum performance protection mode detaches the log shipping
process from the primary database by passing it to the archive log process
(ARCn). By doing this, all operations on the primary site can continue with-
out waiting for redo entries to be written to redo logs or redo shipping. This
is opposed to log shipping modes that use the log writer to transfer transac-
tions. Using the log writer can slow the processing of the transaction because
it can be affected by the network availability or performance.

	 Maximum performance provides the highest level of performance on the pri-
mary site at the expense of data divergence. Data divergence occurs when the
two sites’ data starts to get out of sync. Archive redo data isn’t shipped until
an entire archive redo log is full. In a worst case scenario, an entire site loss
could result in the loss of an entire archive redo log’s worth of data.

Physical standby database
A physical standby database is a block-for-block copy of the primary site. It
is built off a backup of the primary site and is maintained by shipping and
applying archive logs to the standby site in the same way the transactions
were committed on the primary site.

Physical standby databases can’t be open for changes. You can stop recov-
ery on the physical standby site and open it for read-only transactions.
During this time, the standby site falls behind the primary site in terms of
synchronicity. All the transactions are saved until the standby site’s recovery
is reactivated after reporting operations are done.

	 If you want a standby site available for reporting operations, consider set-
ting up dual standby sites. That way, one can stay in recovery mode, and you
perhaps can open the other for reporting operations during the day and then
close it at night for catch-up. That way if you ever need to have a standby site
activated, you won’t have to wait for it to catch up first.

Here’s a high-level overview of the steps to configure a physical standby
database. In this example, the primary site name is prod_a and the standby
site name is prod_b:

	 1.	 Set various initialization parameters in the primary database to pre-
pare it for redo log shipping:

		 instance_name (different on each site)
instance_name = prod_a

368 Part IV: Advanced Oracle Technologies

		 db_name (same on each site)
db_name = prod

		 remote_archive_enable (enables sending of logs to remote site)
remote_archive_enable = true

		 log_archive_dest_1, 2

log_archive_dest_1 = ‘LOCATION=/u01/arch/prod’
log_Archive_dest_2 = ‘SERVICE=prod_b.world ARCH’

		 log_archive_format (tells primary how to name local and standby logs)
log_archive_format = arch_%S.arc

		 standby_file_management (makes adding data files easier)
standby_file_management = true

		 fal_client (tells primary where to re-ship “lost” archive logs)
fal_client = ‘prod_b.world’

		 Regarding Steps 1 and 6: Set all the parameters on both sites to facilitate
failover/switchover operations.

	 2.	 Create a standby copy of your primary control file by logging in to
SQL*Plus on the primary and typing the following:
<alter database create standby controlfile as
‘/u01/app/stdby_control.ctl’;>

		 You should see this:
Database altered.

	 3.	 Move this copy to the standby site and put it in the directory of your
choice.

	 4.	 Modify the initialization parameters on the prod_b instance to point to
the new control file.

		 You can rename it however you want.

	 5.	 Restore a backup of your primary site to the standby site.

		 You can do this with RMAN or traditional hot/cold backup methods. To
simplify things, put the files in the same locations on the standby site
as the primary. If you can’t do that, you have to rename the files after
you mount the database, or you need to use the following initialization
parameters on the standby site so the instance can convert the loca-
tions. Say the files were in /u01/app/oracle/oradata/prod on the primary
and /disk1/app/oracle/oradata/prod on the standby:
DB_FILE_NAME_CONVERT = ‘/u01/’, ‘/disk1/’

		 Oracle finds all instances of /u01 in your data filename and replaces
them with /u02.

369 Chapter 15: Using High-Availability Options

	 6.	 Set the initialization parameters on the standby site:

		 instance_name (different on each site)
instance_name = prod_b

		 db_name (same on each site)
db_name = prod

		 remote_archive_enable (enables receiving of logs on remote site)
remote_archive_enable = true

		 standby_archive_dest (tells standby database where to find logs)
standby_archive_dest = /disk1/arch/prod

		 log_archive_format (tells standby how to interpret log names, set same
as primary)
log_archive_format = arch_%S.arc

		 standby_file_management (makes adding data files easier)
standby_file_management = true

		 fal_server (tells standby where to search for “lost” archive logs)
fal_server = ‘prod_a.world’

	 7.	 Mount the standby database:
<alter database mount standby database;>

		 You should see this:
Database altered.

	 8.	 Start recovery on the standby database:
<recover managed standby database disconnect;>

		 You see this:
Media recovery complete.

	 9.	 Log out of the standby site.

		 Let the recovery run in the background.

Logical standby database
A logical standby database works by copying your primary site with a backup.
Then a process called SQL Apply takes the archive logs from the primary
site and extracts the SQL statements from them to apply them to the logical
standby database. During this time, the logical standby database is up and
open. It’s like having the best of both worlds. People can have updated data
with the primary site for reporting purposes.

370 Part IV: Advanced Oracle Technologies

	 Because the standby database will be up and open, you must protect the data
from being modified by anyone other than the SQL Apply services. If the data
is modified outside of this procedure, the standby database will diverge from
the primary. If you ever need to switch over to it for disaster recovery pur-
poses, it won’t match the primary.

	 To prevent replicated objects in the standby site from being modified, issue
the following command in the standby environment:

ALTER DATABASE GUARD STANDBY;

Another unique feature of a logical standby database: the ability to replicate
only certain objects. By default, all objects are replicated. However, you can
force SQL Apply processes to skip certain objects. In addition, you can con-
figure those skipped objects to allow modifications to them.

Performing switchover and
failover operations
You can switch processing to your standby site two ways:

	 ✓	Switchover is a planned switch that can occur if you want to do mainte-
nance on the primary site that requires it to be unavailable. This opera-
tion may require a few minutes of downtime in the application, but if you
have to do maintenance that lasts for an hour or more, the downtime
could be worthwhile. This operation is called a graceful switchover
because it turns the primary site into your standby and your standby
site into your primary. Also, you can easily switch back to the original
primary site without having to re-create it from scratch.

	 ✓	Failover occurs when the primary site has been compromised in some
way. Perhaps it was a total site loss, or maybe you discovered physi-
cal corruption in a data file. Not always, but usually after a failover, you
have to either completely re-create the primary site or recover it from
a backup and re-instate it. You usually perform a failover only when
you’ve determined that fixing the primary site will take long enough that
you prefer not to have an application outage for the entire time.

To perform a switchover, follow these steps:

	 1.	 On the current primary, log in to SQL*Plus and type the following:
<alter database commit to switchover to physical standby;>

371 Chapter 15: Using High-Availability Options

		 You should see this:
Database altered.

	 2.	 Shut down the primary database:
<shutdown immediate>

		 You should see this:
Database closed.
Database dismounted.
ORACLE instance shut down.

	 3.	 Start the primary database in nomount mode:
<startup nomount>

		 You should see something like this:
ORACLE instance started.
Total System Global Area 789172224 bytes
Fixed Size 2148552 bytes
Variable Size 578815800 bytes
Database Buffers 201326592 bytes
Redo Buffers 6881280 bytes

	 4.	 Mount the database as a standby:
<alter database mount standby database;>

		 You should see this:
Database altered.

	 5.	 Start recovery:
<recover managed standby database disconnect;>

		 You see this:
Media recovery complete.

	 6.	 Log in to SQL*Plus on the current standby and type the following:
<alter database commit to switchover to physical primary;>

		 You should see this:
Database altered.

	 7.	 Shut down the standby database:
<shutdown immediate>

		 You should see this:
Database closed.
Database dismounted.
ORACLE instance shut down.

372 Part IV: Advanced Oracle Technologies

	 8.	 Make sure all appropriate initialization parameters are set for this
database to behave properly as a primary.

	 9.	 Start it normally:
<startup>

		 You should see something like this:
ORACLE instance started.
Total System Global Area 789172224 bytes
Fixed Size 2148552 bytes
Variable Size 578815800 bytes
Database Buffers 201326592 bytes
Redo Buffers 6881280 bytes
Database mounted.
Database opened.

	 10.	 Make sure the users and applications can connect to and use the new
primary instance.

Part V
The Part of Tens

	

Discover ten great Internet resources for Oracle information at www.dummies.
com/extras/oracle12c.

http://www.dummies.com/extras/oracle12c
http://www.dummies.com/extras/oracle12c

In this part . . .
	 ✓	 Chapter 16 covers ten things you should definitely do when

installing Oracle.
	 ✓	 Put your designer thinking cap on for Chapter 17, which covers

ten things to do when designing your Oracle database.

Chapter 16

Ten Oracle Installation Do’s

I
n this chapter, we describe ten things you shouldn’t overlook when
installing Oracle. Getting off to a good start with a solid, proper installa-

tion is key to success. By recognizing the common pitfalls up front, you expe-
rience less heartache and pain later on. As the saying goes, a house must be
built on a solid foundation.

Know the Documentation
Every OS that runs Oracle has a corresponding documentation set. This
documentation covers installation prerequisites such as operating system
packages, kernel parameters, network configuration, and more.

Every operating system is different. Even if you think they’re the same, you’re
wrong. UNIX is UNIX, right? Wrong. HP-UX, AIX, and Solaris each have very
distinct prerequisites. Go to the Oracle documentation on the Internet and
download the latest and greatest installation guide for your OS. Read it thor-
oughly before you begin. We even recommend listing all the little things that
you have to check before you begin. For example:

	 ✓	What is the default operating shell of the OS (Korn, BASH, or CSH)?

	 ✓	What tools are used to view OS performance data?

	 ✓	What commands are used to list the storage on the server?

If you make this a practice, you will find far fewer problems during and after
installation.

Here’s the quickest way to get to the Oracle documentation:

	 1.	 Go to http://docs.oracle.com.

	 2.	 Select the version you’re interested in.

http://docs.oracle.com

376 Part V: The Part of Tens

		 You see all the product offerings here, including the database. At this
point, we’re focused on the database, so find the appropriate section.
Hint: It’s usually at the top!

	 3.	 When you enter the 12c documentation set, click the Installing and
Upgrading link to go to a subset of the documentation that focuses on
installation and upgrade topics.

		 You can also click the + on the left side of the screen to get a list of more
links for installing and upgrading.

	 4.	 Click the OS of your choice to enter the OS-specific installation guide.

Observe the Optimal Flexible
Architecture

The Optimal Flexible Architecture (OFA) is an Oracle guideline that lays out
how software and databases should be installed on a system. The OFA has
these main purposes:

	 ✓	Find Oracle files in explicit locations, even when on multiple devices.

	 ✓	Set up a software tree that allows easy patching and upgrades.

	 ✓	Mirror Oracle installations across all environments so they’re the same
or similar.

	 ✓	Keep separate Oracle files and installation types.

	 ✓	Facilitate routine management tasks.

	 ✓	Facilitate backup and recovery.

	 ✓	Manage and administer growth.

	 ✓	Facilitate layout for best performance.

	 We recommend you fully read and understand the Oracle documentation to
best implement the OFA.

There are many rules and guidelines for using Oracle — too many to cover
here. The Oracle documentation gives explicit examples and suggestions for
a variety of operating systems and storage. Furthermore, OFA has evolved
over the years. The main ideas remain, but some have been tweaked. For
each release of Oracle, don’t hesitate to refresh yourself. The Oracle installa-
tion guide (which we mention earlier) has a section for each OS and its rec-
ommended OFA guidelines.

377 Chapter 16: Ten Oracle Installation Do’s

Configure Your Profile
The profile applies more to UNIX-type environments. However, by learning
the key elements needed inside the profile, you can also see that they may
apply to Windows.

The profile is the program (for lack of a better word) that runs every time you
log in to your operating system. It is typically found in your home directory.
Depending on the shell you use, it might be named any of the following ways:

	 ✓	.profile

	 ✓	.kshrc

	 ✓	.bash_profile

By configuring this script, you can take better advantage of the operating
environment and your Oracle software. Different types of users also may
have different profiles. Furthermore, you may have multiple profiles depend-
ing on what you will do when you log in.

The profile sets up variables, execution paths, permissions, and sometimes
limits in your session. The Oracle documentation recommends specific set-
tings for your environment. Some are OS specific; others apply to almost all
Oracle installations.

Definitely include these elements in your profile:

	 ✓	Oracle base variable

	 ✓	Oracle home variable

	 ✓	Path variable

	 ✓	Default file-permission settings

	 ✓	Aliases

	 ✓	Library variables

Without a properly configured profile, you have to change these every time
you log in to the system. We want to say having a profile is a requirement,
but technically it’s not. However, you should make it part of your standard
practice.

378 Part V: The Part of Tens

Write Your Own Documentation
Although plenty of documentation is available for you on the Internet and
from Oracle itself, none of it is going to apply specifically to your installation.
Every system has its little ins and outs and configuration customizations that
differ slightly from what’s out there. Even if you follow the Oracle documenta-
tion to the letter, wading through it to install the software a second time (say,
on another machine) is sometimes tedious.

Call your documentation what you want:

	 ✓	Playbook

	 ✓	Cookbook

	 ✓	Cheatsheet

Creating a document with all the concise steps needed for your installation
(and patching, database creations, and backup strategies) and keeping it in a
shared, accessible location will help all future activities be more consistent,
efficient, and mistake free.

	 You may not always be at your company. You also may leave on good terms.
Making sure your replacements have everything they need to understand
what you did and why in the Oracle environment helps the transition go
more smoothly. Plus, you can take your documentation with you to help on
the next job!

Set umask
If you read and follow the Oracle documentation, setting the umask param-
eter should not be a problem. Linux/UNIX environments have an umask
setting.

	 Forgetting to properly set the umask parameter means a difficult, if not impos-
sible, Oracle installation. The result doesn’t typically affect the Oracle soft-
ware owner; instead, it affects the users who log in to the OS and try to use
the system.

umask sets the default permission modes on files and directories that are
added to the system. These permission modes can affect files copied to the
system during installation, as well as things like log files, which are created
as part of normal operation.

379 Chapter 16: Ten Oracle Installation Do’s

	 The Oracle-recommended umask is 022. This setting results in files being
read+write for the owner and read for all others. If you put the umask setting
in the profile, it sets each time you log in.

Become Oracle
On a production system, the Oracle database software should be installed by
a user specifically created for the task. This user is typically named oracle.
Imagine that. Now, this isn’t a hard and fast rule, but we recommend that you
seriously consider this — especially if you’re a beginner. This is the setup that
you find in most systems as well as training materials and documentation.

Naming the user oracle avoids this scenario: The Oracle software is installed
as another named user or by a user associated with a different software pack-
age. You don’t want John Smith installing the Oracle software stack under his
own ID. He may leave the company someday, leaving you with a problem.

	 It’s not best practice to let login IDs exist for people who no longer work at the
company, which is a security concern, not to mention confusing.

Set up a dedicated ID (we recommend oracle) to install software with. This
dedicated ID makes maintenance and training easier, and it eases personnel
transitions. This recommendation also comes from Oracle.

	 Some people have multiple versions of the database installed on the same
machine. This is okay. You can keep the versions separate by having separate
oracle owners. For example, you might have ora11g, ora12c, and so on.

Stage It
If you download the software from the Oracle website, you don’t need it on
DVD for installation. We recommend keeping a hard copy somewhere for
recovery reasons, but that’s about it.

	 Even if you bought the installation DVDs, copy the material to the hard drive
before the installation.

	 ✓	The install is faster if the Oracle Universal Installer is reading from hard
disk as opposed to DVD.

	 ✓	You don’t have to worry about someone else in the server room ejecting
the disk and it disappearing forever.

380 Part V: The Part of Tens

	 ✓	Having a copy of the software helps if you want to add a feature that you
hadn’t installed at first. It’s easier to find the copy in a staging area than
hunting down the disk.

	 ✓	If the Oracle binary files are corrupt or lost due to some sort of disk fail-
ure and you need to reinstall a portion of the code tree, it’s right there.
Sometimes downloading it can take some time. Having it readily avail-
able is the best thing to do.

	 You can get software from Oracle two ways:

	 ✓	Order it from the Oracle store.

	 ✓	Download it from the Oracle website.

Both copies are identical. The downloadable software isn’t a trial version.
Anyone can download and use it, provided you contact an Oracle sales rep
and pay for it.

Patch It
You just downloaded and installed your brand-new Oracle database. Now
we’re telling you it needs to be patched. What?! Whether you order the DVDs
or download the software, you’re probably not getting the most recent ver-
sion. If you’re licensed for Oracle — and you should be — log in to the Oracle
Support website and search for the most recent patchsets to apply to your
database.

	 1.	 Go to the Oracle Support website at http://support.oracle.com.
	 2.	 Enter your login ID.
		 If you don’t have one, click the Register button and follow those

instructions.
	 3.	 Enter your customer support identifier (CSI).
		 You get this when you purchase support from an Oracle sales

representative.
		 When you log in, you see tabs across the top of the page.
	 4.	 Click the Patches and Updates tab.
	 5.	 Click Product or Family.
	 6.	 Enter the following information:
	 •	Your product (RDBMS Server)
	 •	Your release
	 •	Your OS
	 •	On the left, options to customize your search

http://support.oracle.com

381 Chapter 16: Ten Oracle Installation Do’s

	 We recommend being on the latest, greatest maintenance release of the Oracle
software — but make sure the software is compatible with or supported by
your application.

Many times we’ve discovered a client with an older version of Oracle. When
we recommend a patch, the client announces it has some third-party soft-
ware vendor who certifies only on a certain patch level.

Despite the problems with third-party software, there are benefits to being
on the latest Oracle patchset:

	 ✓	Oracle keeps creating patches to fix bugs in the release as long as your
patch level is supported. Otherwise, you’re out of luck.

	 ✓	Quarterly Oracle security patches are usually available for the most
recent patchsets only.

	 ✓	The patchsets are maintenance releases in essence. This means that
bugs found in previous releases are fixed.

	 Despite all the good things about being on the latest Oracle patchset, read the
patchset documentation before you apply the patch; specifically, check the
known issues section. Unfortunately, sometimes bugs are introduced with a
patchset. Make sure that any new issues don’t affect the functionality your
application works with.

Mind the User and Group IDs
This bit of advice pertains more to Linux/UNIX operating systems. When a
group or user is created on Linux/UNIX, that group or user is assigned a user
ID number. All file ownership and permissions are based on this number.
By default, the OS chooses the first available number. This isn’t where
problems occur.

	 Problems occur when you install Oracle on multiple servers — especially sys-
tems using Oracle RAC or DataGuard. Due to file sharing, if the user and group
IDs don’t match across the systems, they’re not going to function properly.
Furthermore, if you’re shipping Oracle files across the network (transportable
tablespaces or cloning, for instance), you’ll have problems reading these files
when they arrive.

The best practice is to specifically assign a number to your Oracle user and
its associated groups when they’re created. Document this number in your
company’s Oracle operating procedures manual. If you have multiple DBAs
or Oracle installers, use the same ID numbers across all systems.

382 Part V: The Part of Tens

Back It Up
You finally configured your OS, set up all the Oracle users and groups,
configured your profile, staged the software (and its patches), installed
Oracle, patched Oracle, and created your first database. Unlike the guide-
lines in Chapter 11, here we are specifically referring to the software binary
directories . . . not your database.

	 Now back up your work! Also, test your backup to make sure it’s usable. We
have seen people lose jobs because they never tested a backup and were
unable to recover something.

Besides just creating a backup at the end, you could do multiple backups as
you go: after the OS prerequisites are done, after Oracle is installed, after the
patch, and so on. That way, you can easily go back without completely start-
ing over.

Chapter 17

Ten Database Design Do’s

I
n this chapter, we focus on some of the mistakes and shortcomings
we’ve seen in Oracle databases over the years. Most of these are honest

mistakes due to inexperience with Oracle or databases in general and can
easily be overcome. After all, if it weren’t for issues like these, DBAs like you
wouldn’t have anything to do!

Constrain Your Data
Constraints enforce rules against your data. Oracle offers some of these built-
in constraints:

	 ✓	Primary keys identify a column or columns in the table whose data for
the values stored is unique and non-null.

	 ✓	Foreign keys enforce something called referential integrity.

	 ✓	Check constraints are customizable constraints that check the data
entered into a column.

	 ✓	Not Null constraints disallow an empty column to be empty.

	 ✓	Unique constraints are a column or group of columns whose values
together are unique for the row.

Constraints are a very useful and almost required feature in any database.
Odd as it may seem, some software vendors don’t natively include a system
of constraints in the database software. This situation requires develop-
ers to code their own constraints in the application. This approach can be
extremely difficult and a nightmare to maintain. Not to mention the fact that
they will be enforced only through the application itself. Anybody gaining
access via a tool such as SQL*Plus won’t be required to obey the application
constraints.

384 Part V: The Part of Tens

In some Oracle databases, the designer or primary developers came from
a database that required the constraints to be created and managed in the
application. Make sure you don’t fall victim to this situation: Use the built-in
Oracle constraints.

Spread Out Your IO
When laying the files down on your system, you should make sure to evenly
balance the files across the available disks. Some people might argue that
their hands are tied.

For systems using local storage inside the server, buy as many smaller disks
as possible so you can balance your IO (input/output). These days, it seems
that manufacturers are offering ever-larger devices for storage, which makes
your job difficult. Keep in mind that when you work with the storage/server
vendor, the machine is for storing and retrieving data. By having several loca-
tions to store your data, you get more tuning capabilities.

The rules for storing Oracle files can be broken down in an infinite number of
ways. Here are some basics:

	 ✓	Separate tables and indexes across different drives.

	 ✓	Store your redo log groups and members separately.

	 ✓	Store extraneous data unrelated to application data separately.

	 ✓	Store table partitions separately.

	 ✓	Store system files separately.

	 ✓	Store the Oracle binaries on their own device.

	 ✓	Store backups separately.

	 ✓	Use storage performance tiering to separate your data (high-value
data on the fast/expensive disks; low-value data on the slower/
cheaper disks).

You can break down your storage system even further depending on your data
access behavior. By using the Oracle data dictionary and available monitoring
tools, you can fine-tune the storage layout for your specific application.

385 Chapter 17: Ten Database Design Do’s

Know Basic Data Modeling Skills
Data normalization is how you lay out your application storage needs in your
tables. Before you begin designing a database from scratch, know the rules of
normalization.

Some developers fall victim to data normalization shortcomings because of
previous experience with other databases. For example, we’ve seen people
design data models based on their experience with Microsoft Excel or
Lotus Notes. These flat file-type databases have different rules for design.
Normalization is a set of rules designed for relational type databases. Spend
some quality time with an Oracle data-modeling book or class before you get
too far in an application design project.

Use Naming Conventions
This topic boils down to good data-modeling skills. When you’re creating
objects in your system, it’s important to follow rules. If you do your research
or take a class on data modeling, you know the guidelines. Best practice is to
adhere to those as best as possible. However, the most important thing is to
follow some sort of documented, repeatable guidelines everyone can easily
understand.

	 Avoid these common mistakes:

	 ✓	Don’t use keywords. Don’t name your table table.

	 ✓	Don’t let the system give default names. This happens often with con-
straints. Take the time to come up with something descriptive.

	 ✓	Don’t use quotes with column names and table names. Many over-
the-counter developer tools do this. The problem is that you can end
up with objects that have mixed-case names. Next thing you know, you
have different tables named EMP, emp, and emP.

Create a document that outlines the standard practices your company will use.
This table will aid in the training of new hires and make sure the IT department
is on the same page when working collaboratively on an application.

386 Part V: The Part of Tens

Watch Your Roles and Privileges
Make sure you don’t fall to temptation and take the easy way out when con-
figuring object access. Don’t grant everything to everybody because the
design team doesn’t want to put a system of roles and privileges in place.
Taking the easy way is especially tempting when you need to meet a project
deadline and a developer is dead in the water.

Do your best to come up with different roles for your developers, application
users, and application owners. This effort makes management and security
much easier down the road. Chapter 10 deals with configuring roles and priv-
ileges in your database. That chapter is very important not only for security
but manageability.

Always question people when they ask for privileges. Most of the time people
ask for way more than they need.

	 Did you know that poor role and privilege design can also add to performance
problems? It’s true. Every time someone runs a SQL statement, all the privi-
leges for the person and objects involved have to be examined. When people
have more privileges than they need, more internal rows have to be examined
when Oracle is figuring out what they’re allowed to do. Examining these privi-
leges may add only milliseconds to SQL execution, but as numbers of users
executing SQL compound over time, the extra overhead of examining privi-
leges takes away from memory and CPU resources.

Axe Ad Hoc Queries
Okay, getting rid of ad hoc queries is difficult advice to swallow. Dozens of
companies offer tools that show managers how easy it is to go into a data-
base and design all kinds of fancy reports with graphs and colors. They
promise increased revenue and efficient information transfer. The problem is
that these products are marketed to managers, not the technical team.

We aren’t saying that there is no place for a tool like this. Quite the opposite.
After all, the whole point of having a database is to serve up data. However,
having some control over what type of reports are allowed is going to make
the DBA, the system administrator, and the end users happier overall.

	 If you allow unsolicited ad hoc queries in your database to run any time, in
any form, you’re asking for trouble. Not only can they run slowly, but the
entire database can become unusable during their execution.

In an ideal world, reports are designed, qualified, and approved before
they’re run. A team of developers can work with DBAs and managers to list
information needs. Those can be skillfully and efficiently transformed into

387 Chapter 17: Ten Database Design Do’s

canned reports available at the click of a button. They can be scheduled to
run at specific times to avoid impacting the system.

Enforce Password Security
When you create a user in Oracle, you’re forced to set a password. This is
good. However, not until 11g did Oracle force you to make sure that pass-
word was secure. During database creation, Oracle asks whether you want
to revert to the pre-11g security requirements, which were minimal. Luckily,
in 12c, Oracle doesn’t ask you anymore. Instead, it forces you to use a more
secure approach out of the gate. In any case, if you’re new to a system, one
of the first things we recommend is an overview of the password security
system.

Oracle password profiles remedy the following common problems easily:

	 ✓	Lack of password complexity

	 ✓	No regular password expiration schedule

	 ✓	Reusable passwords

	 ✓	Shared logins

	 ✓	Default passwords

Implementing password security through a user profile is extremely easy.
Unfortunately, one of the side effects is that the users will hate you for it!
People seem to hate having to remember a password that’s something other
than their username. However, don’t let the moaning of your colleagues sway
you. Strong passwords are critical. You don’t want your company being the
next one vilified on CNN because of a security breach.

Avoid Having Too Many
Cooks in the Kitchen

Make sure that only company-approved people have access to the DBA role
on the database. Not only does having unapproved DBAs threaten security,
it also reduces accountability. Tracing problems is much easier when the
source isn’t a group of dozens of users. Most problems we encounter are due
to user error because someone did something with a privilege without under-
standing all the consequences.

388 Part V: The Part of Tens

Again, expect resistant users. Every company has that person who’s been
with the team for 20 years and knows the business and application inside and
out. He has always had DBA access. The problem is that he hasn’t had any
formal Oracle training or experience.

Do what you have to do to convince management that few people should
have the keys to the kingdom. Also, make sure those people who do have
the keys are trained and accountable for the actions they take. If you pres-
ent your case correctly, people should be thanking you. You’re removing
untrained people from the pool of people who are going to have the finger
pointed at them when problems occur. Think of it this way: As a DBA, you do
not want root access. Sure, that is at times inconvenient, but, you also don’t
want your name in the hat when problems occur on the OS and blame is
being assigned.

Package Code
SQL is the primary language for accessing and manipulating Oracle data. You
can embed it in applications or store it in the database in the form of stored
procedures.

	 Not all SQL needs to be stored in the database, but consider designing the
application so the bulk of the business processes is made up of stored code.

Unless the developers are trained to take advantage of Oracle’s stored proce-
dure mechanisms, you don’t have the best, most efficient database possible.

	 ✓	Stored code enforces security. A stored procedure can be encrypted
(wrapped, in Oracle terms). Users can run procedures without access
to the base objects with which the code works. Stored procedures are
executed with the owner’s permissions, not the user who is calling it.
When you store code, a user does not need a privilege to UPDATE or
DELETE from a table. The user just needs access to the procedural code
that does the UPDATE or DELETE for them. That way, he or she cannot
access the table outside the program to modify the data. Heck, the user
can’t even see the table.

	 ✓	Stored code performs better. It is precompiled in the database and
can be stored in memory without parsing and compiling. This situation
decreases CPU usage and increases system scalability. Stored code is
easier to maintain because it’s in one place. If you’re adding functional-
ity or changing business rules, the application can immediately take
advantage of the changes without releasing a new version.

389 Chapter 17: Ten Database Design Do’s

Test Recovery Strategies
With a little training, it’s easy to design a backup process for your system.
Testing is a key element to a robust backup and recovery strategy. However,
running an error-free backup every night doesn’t mean you can recover with it.

Now, we don’t want to be doomsday preachers. Using RMAN and getting
backups with no errors mean you have a significant chance of recovery. But
what if you need those backups and they don’t work? You could be, as they
say, caught with your pants down. You might even be out of a job.

This advice about testing extends to training. Do you know what commands
to issue for a recovery? Do you know the fastest way to recover given the
specific type of failure? Will you use RMAN or Flashback Database?

Testing your recovery strategy checks the backup itself and lets you practice
for situations where a speedy recovery is required. You don’t want to spend
an hour reading the Oracle documentation when you’re in a pinch. Know how
to reduce the liability of your skill set by testing and practice.

Also, harkening back to the preceding chapter, document your recovery pro-
cess. You may not be the custodian of the databases forever. Someone will
come along after you. Giving other people a leg up preserves your legacy.
Or, you can think of it purely selfishly: What if you have to do a recovery and
you haven’t practiced for over a year? How much of your time is going to be
spent figuring out the right commands to run? How will you get the backups
from tape? If you have a playbook laid out, you can significantly reduce your
mean time to recovery.

390 Part V: The Part of Tens

Appendix A

Installing Oracle 12c on Linux
In This Appendix
▶	Setting up the operating system
▶	Installing the Oracle software

T
o get you started, this appendix shows you how to install the Oracle 12c
software on Linux, which is a readily available, free operating system.

This chapter gives you the necessary steps to install Oracle on the many fla-
vors of Linux, as well as some Unix systems. The examples in this appendix
use Oracle Enterprise Linux 6 (OEL6.4).

	 This Oracle installation can test most of the features discussed in this book,
with the exception of Oracle clustering covered in Chapter 15. We recommend
having at least 2GB of memory and 10GB of free hard disk space.

Setting Up the Operating System
Linux environments have some stringent installation prerequisites. This
appendix goes over the basic prerequisites as specified in the documentation
set Oracle Database Quick Installation Guide for 12c Release 1 (12.1) for
Linux x86.

To view this documentation set, follow these steps:

	 1.	 Go to http://docs.oracle.com.

	 2.	 Click Oracle Database documentation, 12c Release 1 (12.1).

	 3.	 Click the + next to the Installing and Upgrading folder.

	 4.	 Click Linux Installation Guides.

		 The Quick Installation Guide for Linux x86, on the right, is the document
you want.

The next section assumes you can complete the required tasks logged in as
the user root.

http://docs.oracle.com

392 Oracle 12c For Dummies

Checking your operating system version
Oracle is certified to run on only particular versions of Linux. If you have
trouble with your database and need Oracle support, those support folks
may insist that you be on a certified version of Linux before they help you.
Furthermore, running on a certified version of Oracle with the necessary set
of patches eliminates many frustrating problems that can bring your installa-
tion to a halt.

	 Oracle can be a little tough to install, but if you carefully follow the directions
and meet the prerequisites, the installation usually runs well. Because the pre-
requisites change from release to release, always review the Oracle documen-
tation first to prevent headaches.

Here are the supported versions of Linux for Oracle 12c:

	 ✓	Oracle Enterprise Linux 5

	 ✓	Oracle Enterprise Linux 6

	 ✓	Red Hat Enterprise Linux 5

	 ✓	Red Hat Enterprise Linux 6

	 ✓	SUSE Enterprise Linux 11

To see what version of Linux you’re on, follow these steps:

	 1.	 Open a command prompt on your OS.

	 2.	 Type
<cat /proc/version>

		 You should see something like this:
Linux version 2.6.39-400.17.2.el6uek.x86_64
 (mockbuild@ca-build44.us.oracle.com)
 (gcc version 4.4.7 20120313 (Red Hat 4.4.7-3) (GCC)) #1 SMP

	 3.	 Type
<cat /etc/oracle-release>

		 You should see something like this, which shows you whether you’re
running a version on which Oracle 12c is certified:
Oracle Linux Server release 6.4

393 Appendix A: Installing Oracle 12c on Linux

Checking your kernel version
The kernel is essentially the core operating version of Linux OS. It’s kind of
akin to a Service Pack in Windows. For Oracle to be certified, you also need
to be on a certified kernel version.

Oracle Linux 6 with the Unbreakable Enterprise kernel’s required kernel ver-
sion is 2.6.39 or later. To see your kernel version, type

<uname –r>

You should see something like this:

2.6.39-400.17.2.el6uek.x86_64

	 If you don’t like command line interface for these checks, you can choose
System➪About This Computer (via the Gnome GUI desktop) to find your
kernel release information and memory, processor, and disk specifics on one
screen.

Checking your OS packages
Packages are modular pieces of the OS that you can install to activate certain
features. For Oracle to run on Linux, it requires particular packages. These
packages vary from release to release of Oracle, so reviewing the Oracle doc-
umentation specific to the version you are attempting to install is critical.

Both Oracle Linux 6 and Red Hat Enterprise Linux 6 require the following
packages (or later versions) be installed:

	 ✓	binutils-2.20.51.0.2-5.11.el6 (x86_64)

	 ✓	compat-libcap1-1.10-1 (x86_64)

	 ✓	compat-libstdc++-33-3.2.3-69.el6 (x86_64 and i686)

	 ✓	gcc-4.4.4-13.el6 (x86_64)

	 ✓	gcc-c++-4.4.4-13.el6 (x86_64)

	 ✓	glibc-2.12-1.7.el6 (x86_64 and i686)

	 ✓	glibc-devel-2.12-1.7.el6 (x86_64 and i686)

	 ✓	ksh

	 ✓	libgcc-4.4.4-13.el6 (x86_64 and i686)

	 ✓	libstdc++-4.4.4-13.el6 (x86_6464 and i686)

	 ✓	libstdc++-devel-4.4.4-13.el6 (x86_64 and i686)

	 ✓	libaio-0.3.107-10.el6 (x86_64 and i686)

394 Oracle 12c For Dummies

	 ✓	libaio-devel-0.3.107-10.el6 (x86_64 and i686)

	 ✓	libXext-1.1 (x86_64 and i686)

	 ✓	libXtst-1.0.99.2 (x86_64 and i686)

	 ✓	libX11-1.3 (x86_64 and i686)

	 ✓	libXau-1.0.5 (x86_64 and i686)

	 ✓	libxcb-1.5 (x86_64 and i686)

	 ✓	libXi-1.3 (x86_64 and i686)

	 ✓	sysstat-9.0.4-11.el6 (x86_64)

To see whether a required package is installed, use RedHat Package Manager
(rpm). For example, to check the make package, type

rpm –q make

You should see something like this:

make-3.81-20.el6.x86_64

If you find some packages not installed or that don’t meet the required ver-
sion, get them from the Linux distribution installation media or the appropri-
ate Linux vendor’s download site.

Creating Linux OS groups and users
Linux best practices entail creating specific groups and users to install, own,
and maintain the Oracle software.

Oracle requires two OS groups for the software:

	 ✓	dba controls what users can do on the database server using OS
authentication.

	 ✓	oinstall controls which users are allowed to modify the Oracle software.
Software modification includes installs, upgrades, and patching.

To perform the commands that follow, log in to the Linux computer as a
Linux super user (root).

To create the groups, type

<groupadd dba><enter>
<groupadd oinstall><enter>

These commands have no output if the groups add successfully. If errors
occur, review the details and fix as appropriate.

395 Appendix A: Installing Oracle 12c on Linux

	 Do not add any users to Linux groups unless they’re approved database
administrators (DBAs). Members of these groups can see almost any data they
want or damage the database and Oracle installation.

Creating the Oracle Software Owner
On a Linux installation of Oracle, best practice is to create a special user
to own the Oracle software. Although you can name the user whatever you
want, the best practice is to typically call that user oracle or some name with
ora in it (such as ora12c):

useradd –c “Oracle Software Owner” –d /home/oracle –m –g oinstall
–s /usr/bin/ksh –G dba oracle

This command creates

	 ✓	A user called oracle

	 ✓	With the primary group oinstall

	 ✓	In a secondary group dba

	 ✓	With a home directory /home/oracle

	 ✓	With korn shell as the default shell

After you create this user, change its password to something that you will
remember, but not something too easy (such as “oracle”).

To change the password for the user oracle, type

<password oracle>

It prompts you for the new password.

Configuring the Linux Kernel Parameters
The Linux OS has a set of kernel parameters that control how memory and
processes function on the system. Installing Oracle typically involves adjust-
ing these parameters. The parameters are found in the /etc directory in the
sysctl.conf file.

Edit the sysctl.conf file (make a backup first!) and modify the following
parameters to have the specified values:

396 Oracle 12c For Dummies

fs.aio-max-nr = 1048576
fs.file-max = 6815744
kernel.shmall = 2097152
kernel.shmmax = 536870912
kernel.shmmni = 4096
kernel.sem = 250 32000 100 128
net.ipv4.ip_local_port_range = 9000 65500
net.core.rmem_default = 262144
net.core.rmem_max = 4194304
net.core.wmem_default = 262144
net.core.wmem_max = 1048586

	 If one of the parameters doesn’t exist, add it just as it looks here. To make the
changes take effect, type the following command:

/sbin/sysctl –p

Creating the ORACLE_BASE directory
The ORACLE_BASE directory serves as the starting point for all your Oracle
installation files. Choosing this directory carefully is important. Ideally, it will
be on its own drive or mount point.

A typical ORACLE_BASE might be /u01/app/oracle.

	 1.	 Create the ORACLE_BASE directory:
mkdir /u01/app/oracle

	 2.	 Change the ownership of the directory so that the owner is oracle,
and the group is oinstall:
chown -R oracle:oinstall /u01/app/oracle

	 3.	 Change the permissions on the directory:
chmod -R 775 /u01/app/oracle

		 Now the owner can read, write, and execute; all other users can read
and execute recursively.

Configuring the Oracle user environment
When you create the user oracle, the user has the korn shell. The korn shell
is controlled by a .profile file in the user’s home directory.

To set up the user’s (oracle) environment, follow these steps:

	 1.	 Log in to an OS terminal window as the user oracle.

		 You are in the home directory /home/oracle.

397 Appendix A: Installing Oracle 12c on Linux

	 2.	 Edit the .profile file and add the following lines.
export PATH=/usr/kerberos/sbin:/usr/kerberos/bin:
 /usr/local/sbin:/usr/local/bin:/sbin:/bin:/usr/sbin:/usr/bin:.
export ORACLE_BASE=/u01/app/oracle
export ORACLE_HOME=/u01/app/oracle/product/12.1.0
export ORACLE_SID=dev12c
export LD_LIBRARY_PATH=$ORACLE_HOME/lib
export PATH=$ORACLE_HOME/bin:$PATH

		 If the file already exists, make sure to add the lines to the bottom of
the file.

	 3.	 Save and exit the .profile file.

	 4.	 Run the following command to make the changes take effect:
<. .profile>

		 There is no output.

	 5.	 See whether the changes worked:
<env |grep ORA>

		 You should see something like this:
ORACLE_SID=dev12c
ORACLE_BASE=/u01/app/oracle
ORACLE_HOME=/u01/app/oracle/product/12.1.0

		 Congratulations! You’re ready to install the software.

Installing the Oracle 12c
database software
The following steps walk you through a quick start installation of the Oracle
12c database software. The steps at this point are almost identical across all
operating systems, so your skills will translate very easily from OS to OS.

	 1.	 Download the software from the Oracle website at

www.oracle.com/technetwork/database/enterprise-
edition/downloads/index.html

		 Be sure to read and understand the license agreement and then click
Accept to continue the download.

		 You can order the software from the Oracle store, but we recommend
downloading it because it’s free for development use and the same thing
you would get from the store. You can always burn it to DVD later.

	 2.	 Copy the files to the database server’s hard drive.
	 3.	 Create a directory to hold the software.

http://www.oracle.com/technetwork/database/enterprise-edition/downloads/index.html
http://www.oracle.com/technetwork/database/enterprise-edition/downloads/index.html

398 Oracle 12c For Dummies

		 Choose something like one of these:
	 •	/u01/app/oracle/stage
	 •	/u01/app/oracle/software/stage
		 Unzip your downloaded files into the directory you created. After unzip-

ping, you should see a folder named database.
	 4.	 Open a terminal window and go to the software directory.
	 5.	 Type cd to change directory to the database directory and execute the

runInstaller program:
<./runInstaller>

		 It might take a minute or two, depending on your machine speed. You’re
welcomed by the screen shown in Figure A-1.

	 6.	 (Optional) Enter your e-mail and Oracle Support information to allow
automated notifications from Oracle and set up the configuration man-
ager. Then click Next to continue.

		 This option establishes a link between your system and Oracle Support.
Although there are many benefits to this, some companies or govern-
ment agencies are barred from doing this.

	 7.	 (Optional) Download software updates.
		 You can provide your Oracle Support credentials to download the latest

security patches and bug fixes.

	

Figure A-1:
The Oracle

Universal
Installer

screen
welcomes

you.
	

399 Appendix A: Installing Oracle 12c on Linux

		 Downloading the updates ensures you have all the features in this book.
	 8.	 Select Install Database Software Only and then click Next.
		 You can create a starter database with your installation or just install

the Oracle software binaries. We recommend not creating a starter data-
base when you first install the software.

		 Getting the software installed is a big enough milestone. After you make
sure the software installed correctly, go to Chapter 4 and create the
database yourself. This gives you more control and the opportunity to
understand the database creation process. If you let the installer do it,
many of the steps are behind the scenes.

	 9.	 Determine the type of database installation you want to perform.
		 You may choose between a simple, single instance database installation

or the more complex (and capable) Real Application Cluster (RAC) data-
base installations. For simplicity with your first 12c install, select the
single instance option.

	 10.	 Select the product language to install.
		 Verify English is selected (our assumption) and then click Next.
	 11.	 Identify the database edition you want to install.
		 Three versions of Oracle database software are available, each targeted

(and priced) for different corporate audiences. For your company, you
want to carefully determine which installation version meets your busi-
ness needs and license restrictions. Because this is just a development
database for you to learn on, select Enterprise Edition so you’ll have the
complete set of options available.

	 12.	 Enter the ORACLE_BASE and ORACLE_HOME directory information.
		 If your environment variables properly configured before running the

installer, the values will populate for you. Otherwise, you may manually
enter your ORACLE_BASE and ORACLE_HOME full Linux path names.

	 13.	 Identify the oraInventory directory and oraInventory group owner
and then click Next.

		 The oraInventory directory stores metadata about the Oracle software
you installed. This is valuable information when doing future installations
or applying patches to ensure you don’t encounter software conflicts.

	 14.	 Select privileged operating system groups and then click Next.
		 This screen determines the group file permissions for various administra-

tive tasks. As you gain more experience and your environment grows, you
may fine-tune these parameters. For your first Oracle install, the defaults of
group dba are fine for all options except database operator, which is group
oper. (See Figure A-2.) Oper is optional and many people do not use it.

		 The installer will quickly run pre-installation checks to ensure your
install will be successful. Assuming no problems were identified, the
installer automatically advances to the next screen after the prerequisite
checks are completed.

400 Oracle 12c For Dummies

	

Figure A-2:
Select
group

dba for all
options
except

database
operator,
which is

group oper.
	

	 15.	 Review the summary screen to confirm the install options selected
and then click Install.

		 This is your last chance to verify your installation locations and param-
eters before the installation.

		 The total time to install depends on the speed of the machine, network,
options selected, and of course if problems are encountered. Be patient
if a step seems to stall for a few minutes. For a small install on a fast
machine with no network latency, the install can be as fast as 10 minutes.

	 16.	 If problems occur, diagnose and correct the issue, and then select
Retry to continue.

		 Assuming the installation didn’t encounter any errors, or you were able
to fix the errors that did occur, you should now be at a screen stating
the installation was successful.

	 17.	 Click Close.

		 You should have a fully functioning database software code tree.

Note you have not built any databases yet; see how to do that in Chapter 4.

Index
• Symbols •
% (Used) field, EM Express Tablespace usage

screen, 158
/ (forward slash), Linux/UNIX, 2
\ (back slash), Windows, 2
“ ” (double quotes), 121, 142
‘ ’ (single quotes), 123

• A •
accessing data

database administrator role in, 15–16
overview, 9

Active Session History (ASH), 191
active tuning, 190
ad hoc queries, 386–387
ADDM (Automatic Database Diagnostics

Monitor), 191
ADR (Automatic Diagnostic Repository), 78, 291
adump directory, 58
Agent software, 357
alert directory, 58
alert log

defined, 292
troubleshooting, 293–295

All Initialization Parameters screen, DBCA,
87–88

ALL_ category, data dictionary, 127
ALTER privilege, 224
ALTER SYSTEM privilege, 223
ALTER SYSTEM SWITCH LOGFILE command,

102
ALTER USER privilege, 223
AND statement, SQL, 122
ANONYMOUS BLOCK program,

PL/SQL, 131
Apache web server, 52
app level, OFA hierarchy, 56
application developer, 15
.ARC file extension, 40
.ARCH file extension, 40
architecture

archive log files, 40
clustering, 18

control files, 37–38
data files, 35–37
files and structures, 19
high-availability, 351, 352–364, 364–372
instances, 18
logical structures, extents, 45–46
logical structures, Oracle blocks, 46–47
logical structures, overview, 42
logical structures, segments, 44–45
logical structures, tablespaces, 43–44
memory, 18, 28–30
Optimal Flexible Architecture, 56–59, 376
parameter files, 41–42
pluggable databases, 47
processes, background, 31–33
processes, details, client, 19
processes, overview, 30–31
processes, server, 33–35
processes, user, 33
Program Global Area, 27–28
redo log files, 38–39
server parameter files, 41–42
System Global Area, database buffer cache,

23–25
System Global Area, Java pool, 27
System Global Area, large pool, 26–27
System Global Area, overview, 20
System Global Area, redo log buffer, 25–26
System Global Area, shared pool, 20–23
System Global Area, streams pool, 27

Archive Log Backup Copies parameter,
RMAN, 244

archive log process (ARCn), 32, 367
archive logs files

defined, 40
media failure, 239
storage options, 257–258

Archive Logs section, Database Express
Storage page, 308

archiving
archive logs, 40, 239, 257–258
enabling, 258
Fast Recovery Area, 257, 259–260
maintaining archives, 260–261
overview, 256–261

402 Oracle 12c For Dummies

archiving (continued)
rolling forward, 40
turning on/off, 256–257

ARCn background process, 32, 367
ASH (Active Session History), 191
ASM (Automatic Storage Management),

64, 84, 270
audit_file_dest parameter, 76
audit_trail parameter, 76
auditing

enabling and disabling, 230–231
objects, 232–233
overview, 228–229
preparing for, 229–230
reviewing audit logs, 169
system privileges, 231–232
turning off, 235–236
verifying audit, 233–234
viewing audit, 235

authentication
operating system, 220–221
overview, 215
password, 216–220
user, 216

Auto Extend field, EM Express Tablespace
usage screen, 158

Auto Storage Management field, EM Express
Tablespace usage screen, 158

Automatic Database Diagnostics Monitor
(ADDM), 191

Automatic Diagnostic Repository (ADR),
78, 291

Automatic Storage Management (ASM),
64, 84, 270

Automatic Workload Repository (AWR), 191

• B •
B*Tree indexes, 147
back slash (\), Windows, 2
background processes

ARCn, 32, 367
CJQ0, 32
CKPT, 32
DBWn, 31
DIA0, 32
J000, 32
LGWR, 32
LREG, 32
MMNL, 32

MMON, 32
PMON, 31
SMON, 31
VKTM, 32

Backup Optimization parameter, RMAN, 243
backup sets, RMAN

compressing backups, 251
database and tablespaces, 250
hot backup, 248–249
incremental backups, 251–253
naming backups, 251

backups. See also Recovery Manager
checking, 167–168
Oracle installation, 382
testing recovery strategies, 389
threats to database, 237–240

basic database checks
connection, 283–285
database instances, 282–283
Oracle Net functionality, 283

basic system checks
CPU utilization, 279–280
disk space, 280–281
memory, 280
network, 276–277
overview, 275–276
server utilization, 277–279
system event logs, 281–282

batch jobs, 168–169
Bitmap indexes, 147
block change tracking, 252–253
block write triggers, 25
body, package, 148
Body section, PL/SQL program unit, 131
brute force attacks, 218
buffer cache

dirty block, 24–25
free blocks, 24
pinned block, 24

byte-code (p-code), 21

• C •
cache, 21
Cache Fusion, 355–356
calling environments, SQL, 116–117
cascading revoke, 225
case sensitivity, SQL, 118
CATALOG mode, 245
CDB (Container Database), 47, 183, 337

403403 Index

cdump directory, 58, 292
central processing unit (CPU)

auditing and, 228
clock speed, 60
troubleshooting, 279–280

central storage, Real Application
Clusters, 355

chain (dependency) jobs, 171
checkpoints, 25
CJQ0 background process, 32
CKPT background process, 32
clauses, SQL statements

FROM, 117
GROUP BY, 117
ORDER BY, 117, 122
SELECT, 117
WHERE, 117, 121, 124, 125

client-server applications (two-tier
applications), 50–51

cloning existing database, 79
cloud computing, 13–14
Cloud Control, Enterprise Manager, 302
Cluster Control (crsctl), 362–363
cluster interconnect, Real Application

Clusters, 355–356
clustering. See also Real Application Clusters

defined, 18
software, 357

code tree, 238
Commercial Off-The-Shelf (COTS)

applications, 53, 64
Common Location option, DBCA, 84
communication flow, 104–105
compatible parameter, 77
complete recovery

control files, 266
data files, 263–266
defined, 262
without Data Recovery Advisor, 266–268

component configurations, 53–55
compressing data

advanced compression, 329–330
basic compression, 327–329

Compression Algorithm parameter,
RMAN, 244

.CON file extension, 37
Configuration page, Database Express

Current Database Properties pane,
307–308

Database Feature Usage pane, 307
Initialization Parameters pane, 306–307
Memory Management pane, 307

configuring
Flashback Database, 323–324
instances, 74–78
kernel parameters, Linux, 395–396
Oracle profile, 377
Oracle user environment for Linux, 396–397
Recovery Manager, 242–244

CONNECT role, 227
connecting to database instance

avoiding pitfalls, 112–113
communication flow, 104–105
listener process, 108–111
listener.ora configuration file, 106–108
local connection, 104
Oracle Net Configuration Assistant, 112
overview, 103
remote connection, 104
testing connection, 111–112
tnsnames.ora text file, 105–106
troubleshooting, 283–285

connection pool, 52
constraints, 147, 383–384
Container Database (CDB), 47, 183, 337
CONTENT parameter

Data Pump Export, 178
Data Pump Import, 180

Control File Autobackup format parameter,
RMAN, 243

control files
media failure, 239
overview, 37–38

Control Files section, Database Express
Storage page, 308

control_files parameter, 77
copies

recovering database with, 270–272
Recovery Manager, 248, 253

corruption, 239–240
cost, performance tuning, 186–187
COTS (Commercial Off-The-Shelf)

applications, 53, 64
CPU (central processing unit)

auditing and, 228
clock speed, 60
troubleshooting, 279–280

CPU (Critical Patch Update) patches, 16
CREATE ANY TABLE privilege, 223
CREATE AUDIT POLICY statement, 231
CREATE DIRECTORY privilege, 181
CREATE JOB privilege, 223
CREATE SESSION, 144
CREATE SESSION privilege, 143

404 Oracle 12c For Dummies

CREATE SYNONYM privilege, 223
CREATE TABLESPACE privilege, 223
creating database

cloning existing database, 79
configuring instances, 74–78
with Database Configuration Assistant,

78–91
environment variables, 71–74
Oracle software owner, 70–71
Oracle versions, 71
post-creation check-up, 91
setting environment with oraenv script, 74
with SQL commands, 78–79

Critical Patch Update (CPU) patches, 16
crsctl (Cluster Control), 362–363
.CTL file extension, 37
cumulative incremental backups, 251–252
Current Database Properties pane, Database

Express Configuration page, 307–308

• D •
dark fiber, Extended RAC, 364
dashboard, Database Express, 304–306
Data Control Language (DCL) statements, 116
Data Definition Language (DDL) statements,

11, 25, 116
data dictionary

corruption, 239
SQL, 126–129

Data File Backup Copies parameter,
RMAN, 244

data files
media failure, 239
overview, 35–37

Data Guard
overview, 364–365
primary database, 365–367
standby database, 365, 367–372

Data Manipulation Language (DML)
statements, 11, 50–51, 116

data normalization, 385
Data Pump

Data Pump Export, 177–179
Data Pump Import, 179–180
overview, 175–176
using with parameter file, 181–183

Data Pump Export
COMPRESSION parameter, 177
CONTENT parameter, 178
DIRECTORY parameter, 178

DUMPFILE parameter, 178
ESTIMATE parameter, 178
EXCLUDE parameter, 178
FILESIZE parameter, 178
FLASHBACK_TIME parameter, 178
INCLUDE parameter, 178
NETWORK_LINK parameter, 178
PARALLEL parameter, 179
SCHEMAS parameter, 179
TABLES parameter, 179
TABLESPACES parameter, 179

Data Pump Import
CONTENT parameters, 180
DIRECTORY parameter, 180
DUMPFILE parameter, 180
ESTIMATE parameter, 180
EXCLUDE parameter, 180
FLASHBACK_SCN parameter, 180
FLASHBACK_TIME parameter, 180
INCLUDE parameter, 180
NETWORK_LINK parameter, 180
overview, 179
PARALLEL parameter, 180
REMAP_SCHEMA parameter, 180
REMAP_TABLESPACE parameter, 180
SCHEMAS parameter, 180
TABLES parameter, 180
TABLESPACES parameter, 180

Data Recovery Advisor (DRA) tool
recovering control files, 266
recovering data files, 263–266

database administrator (DBA)
ALTER SYSTEM privilege, 223
ALTER USER privilege, 223
versus application developer, 15
checking backups, 167–168
checking batch jobs, 168–169
CREATE ANY TABLE privilege, 223
CREATE TABLESPACE privilege, 223
creating directories, 181
DROP ANY TABLE privilege, 223
DROP USER privilege, 223
finding stale sessions, 164–166
GRANT ANY OBJECT privilege, 223
limiting amount of, 387–388
maintaining logs, 169
monitoring space in segments, 160–164
policing for login abuse and unauthorized

logins, 166
responsibilities, 15–16
reviewing audit logs, 169

405405 Index

using EM Express to check available space,
157–158

using Oracle Data Pump, 175–180,
181–183

using Oracle Scheduler, 170–175
using SQL queries to check available space,

158–160
database blocks

defined, 23
dirty blocks, 24–25
free blocks, 24
pinned blocks, 24

database buffer cache, SGA
block write triggers, 25
buffer cache, 24–25
overview, 23–24

Database Character Set, DBCA, 87
Database Configuration Assistant (DBCA)

configuring Database Express with, 303
creating database, 80–90
Database Character Set, 87
Enterprise Manager and, 79–80
overview, 69
Real Application Clusters, 360
server process, 34
sharing memory, 90–91

Database Express
Configuration page, 306–308
configuring with Database Configuration

Assistant, 303
creating and managing users, 310–312
dashboard, 304–306
overview, 302
Performance page, 309–310
Security page, 309
Storage page, 308

Database Feature Usage pane, Database
Express Configuration page, 307

database instance, 282–283. See also
connecting to database instance

database jobs, 171
database logs

alert log, 292–295
dump file, 176, 296
infrastructure, 291–293
listener log, 296–297
trace file, 295–296
troubleshooting with, 290–297

Database Replay feature, 332–337

databases. See also creating database;
specific entries beginning with database

choosing, 12
data sources, 7–8
database administrator, 15–16
defined, 8–9
Oracle, 13–14
relational database management system,

10–12
db value, audit_trail parameter, 76
db_block_size parameter, 77
db_domain parameter, 77
db_extended value, audit_trail parameter, 77
db_name parameter, 77
db_recovery_file_dest parameter, 77
db_recovery_file_dest_size parameter, 77–78
DBA (database administrator)

ALTER SYSTEM privilege, 223
ALTER USER privilege, 223
versus application developer, 15
checking backups, 167–168
checking batch jobs, 168–169
CREATE ANY TABLE privilege, 223
CREATE TABLESPACE privilege, 223
creating directories, 181
DROP ANY TABLE privilege, 223
DROP USER privilege, 223
finding stale sessions, 164–166
GRANT ANY OBJECT privilege, 223
limiting amount of, 387–388
maintaining logs, 169
monitoring space in segments, 160–164
policing for login abuse and unauthorized

logins, 166
responsibilities, 15–16
reviewing audit logs, 169
using EM Express to check available space,

157–158
using Oracle Data Pump, 175–180, 181–183
using Oracle Scheduler, 170–175
using SQL queries to check available space,

158–160
dba group, 70
DBA_ category, data dictionary, 127
DBCA (Database Configuration Assistant)

configuring Database Express with, 303
creating database, 80–90
Database Character Set, 87
Enterprise Manager and, 79–80

406 Oracle 12c For Dummies

DBCA (continued)
overview, 69
Real Application Clusters, 360
server process, 34
sharing memory, 90–91

.DBF file extension, 36
DBMS_DATAPUMP API program, PL/SQL, 133
DBMS_METADATA program, PL/SQL, 133
DBMS_SCHEDULER program, PL/SQL, 133
DBMS_STATS program, PL/SQL, 133
DBWn background process, 31
DCL (Data Control Language) statements, 116
DDL (Data Definition Language) statements,

11, 25, 116
Declarative section, PL/SQL program unit, 131
dedicated server architecture, 34
dedicated server mode, 108
default auditing, 230, 231–232
Default Device Type parameter, RMAN, 243
DEFAULT profile, user, 219–220
DEFAULT tablespace, 143
DELETE privilege, 224
DELETE statement, 125–126
Demo region, hardware, 195
dependency (chain) jobs, 171
DESCRIBE command

PL/SQL programs and, 132
SQL, 119–122

detached jobs, 171
Development region, hardware, 194
DIA0 background process, 32
diagnostic scripts, 299–300
diagnostic utilities

diagnostic scripts, 299–300
Enterprise Manager and Database Express

12c, 297–298
Remote Diagnostic Agent, 298–299

diagnostic_dest parameter, 78
dictionary cache, SGA shared pool, 21–22
differential incremental backups, 251–252
directories

adump, 58
alert, 58
cdump, 58, 292
creating, 181
dpdump, 58
incident, 58
Oracle installation requirements, 55–59
Oracle Internet Directory, 54–55, 105
oraInventory, 57
pfile, 58

system requirements, 55–59
xdb_wallet, 58

Directory field, EM Express Tablespace usage
screen, 158

directory name level, OFA hierarchy, 56
DIRECTORY parameter

Data Pump Export, 178
Data Pump Import, 180

dirty blocks, 24–25
disabling

auditing, 230–231
Oracle Scheduler jobs, 174

disk
Automatic Storage Management (ASM), 64
defined, 60
file system, 64
optimization basics, 63
raw devices, 63

disk space, checking availability, 280–281
DML (Data Manipulation Language)

statements, 11, 50–51, 116
documentation, Oracle installation, 378
double quotes (“ ”), 121, 142
dpdump directory, 58
DRA (Data Recovery Advisor) tool

recovering control files, 266
recovering data files, 263–266

drive letter, Windows, 2
DROP ANY TABLE privilege, 223
DROP USER privilege, 223
dropped objects, 238
dump file, 176, 296
DUMPFILE parameter

Data Pump Export, 178
Data Pump Import, 180

dynamic privilege management, 227

• E •
EM (Enterprise Manager). See also Database

Express
Cloud Control, 82, 302
Database Express 12c, 297–298
overview, 301–302

EM Express (Enterprise Manager Database
Express), 157–158. See also Database
Express

enabling
auditing, 230–231
Flashback Database, 323–324

Encryption Algorithm parameter, RMAN, 244

407407 Index

Encryption for Database parameter,
RMAN, 244

End section, PL/SQL program unit, 131
Enterprise Manager Database Express (EM

Express), 157–158. See also Database
Express

Enterprise Manager (EM). See also Database
Express

Cloud Control, 82, 302
Database Express 12c, 297–298
overview, 301–302

environment variables
ORACLE_BASE, 72
ORACLE_HOME, 72–73
ORACLE_SID, 73
overview, 71–72
PATH, 73–74

environmental requirements
logging in as Oracle DBA account, 94
logging into database server, 94
parameter file, 95–96
setting up environment variables, 94–95
SQL*Plus command-line interface, 95

error messages, analyzing, 285–287
ESTIMATE parameter

Data Pump Export, 178
Data Pump Import, 180

Exadata, 13
Exception section, PL/SQL program unit, 131
EXCLUDE parameter

Data Pump Export, 178
Data Pump Import, 180

EXECUTE command, 132
EXECUTE privilege, 224
EXP_FULL_DATABASE/IMP_FULL_DATABASE

role, 227
Explain Plan, 197
extents, 45–46, 137
external identification, 221
external jobs, 171

• F •
Failover region, hardware, 195
Fast Recovery Area, 77, 257, 259–260
file extensions

.ARC, 40

.ARCH, 40

.CON, 37

.CTL, 37

.DBF, 36

.LOG, 38, 40

.RDO, 38
File Locations from Template option, DBCA,

84
file system, 64
File System, 84
files. See also names of specific files

losing, 238
structures and, 19

FILESIZE parameter, Data Pump Export, 178
Flashback

Flashback Data Archive, 331–332
Flashback Database, 322–326
Flashback Query, 316–318
Flashback Table, 318–322
Oracle Database Replay feature, 332–337
overview, 316

FLASHBACK ARCHIVE privilege, 223
Flashback Data Archive, 331–332
Flashback Database

configuring and enabling, 323–324
overview, 322–323
rolling database back, 324–326

Flashback Query, 316–318
Flashback Table, 318–322
FLASHBACK_SCN parameter, Data Pump

Import, 180
FLASHBACK_TIME parameter

Data Pump Export, 178
Data Pump Import, 180

foreign keys, table, 10, 147
forward slash (/), Linux/UNIX, 2
fragmentation, 45
Free Space field, EM Express Tablespace

usage screen, 157
FROM clause, SQL SELECT statement, 117
FUNCTION program, PL/SQL, 131
Function-based indexes, 147

• G •
GB (gigabytes), 59
Global Database Name field, DBCA, 81
GRANT ANY OBJECT privilege, 223
GROUP BY clause, SQL SELECT statement,

117
group IDs, 381
Group Name field, EM Express Tablespace

usage screen, 158
groups, 38–39
GV$ category, data dictionary, 127

408 Oracle 12c For Dummies

• H •
hardware

Oracle installation, 59–60
performance tuning, 193–195
Real Application Clusters, 353–356

header (spec), package, 148
heap area, 23
high-availability architecture

Data Guard, 364–372
overview, 351
Real Application Clusters, 352–364

HTTP (HyperText Transfer Protocol), 52

• I •
IAT (Integration Acceptance Testing) region,

hardware, 195
IBM DB2, 12
incident directory, 58
incident log, 292
INCLUDE parameter

Data Pump Export, 178
Data Pump Import, 180

incomplete recovery, 262, 268–270
incremental backups

block change tracking, 252–253
cumulative, 251–252
differential, 251–252

index, database, 11
INDEX privilege, 224
information technology (IT), 7
Infrastructure Enhancements, 206
Infrastructure Features, 206
initialization parameters, DBCA, 86–87
Initialization Parameters pane, Database

Express Configuration page, 306–307
input/output (I/O), balancing, 384
INSERT privilege, 224
INSERT statement, SQL, 122–123
installing Oracle

backups, 382
configuring profile, 377
documentation, 375–376, 378
group IDs, 381
Optimal Flexible Architecture, 376
owners, 379
patching, 380–381
staging, 379–380
umask parameter, 378–379
users, 381

instance failure, 238
instance PGA, 27
instance recovery, 100
instances

configuring, 74–78
defined, 18

Integration Acceptance Testing (IAT) region,
hardware, 195

internal drives, 62
I/O (input/output), balancing, 384
IT (information technology), 7

• J •
J000 background process, 32
Java Database Connectivity (JDBC), 50
Java pool, SGA, 27
Java Virtual Machine (JVM), 27, 52
JDBC (Java Database Connectivity), 50
job schedules, Oracle Scheduler, 170
jobs, Oracle Scheduler

creating, 171–174
defined, 171
disabling, 174
removing, 174–175

JVM (Java Virtual Machine), 27, 52

• K •
kernel, Linux

checking version, 393
configuring parameters, 395–396

key words, SQL, 118

• L •
large pool, SGA, 26–27
LDAP (Lightweight Directory Access

Protocol), 54
Least Recently Used (LRU) algorithm, 21–23
LGWR (Log Writer), 38
LGWR background process, 32
library cache, SGA shared pool, 21
Lightweight Directory Access Protocol

(LDAP), 54
lightweight jobs, 171
Linux. See also Linux/Unix

configuring Oracle user environment,
396–397

409409 Index

installing Oracle 12c database software,
397–400

minimum hardware requirements, 60
ORACLE_BASE directory, 396
OS, checking kernel version, 393
OS, checking packages, 393–394
OS, configuring kernel parameters,

395–396
OS, groups and users, 394–395
OS, setting up, 391
OS, verifying, 392
software owner, 395

Linux/UNIX
checking CPU utilization, 279
checking database instances, 282
checking disk space, 281
checking event logs, 282
checking memory, 280
connecting to database with SQL*Plus,

116–117
dba group, 70
forward slash, 2
identifying running programs, 277
mount point, 2
OFA hierarchy, 57
oinstall group, 70
variables, 2

listener log, 296–297
listener process, 108–111
listener.ora configuration file, 106–108
local connection, 104
.LOG file extension, 38, 40
log files

Data Pump, 176
maintaining, 169

log switch operation, 38
Log Writer (LGWR), 38
LOG_ARCHIVE_DEST_n initialization

parameter, 257
logical corruption, 239
logical standby database, Data Guard, 369–370
logical structures

extents, 45–46
Oracle blocks, 46–47
overview, 42
segments, 44–45
tablespaces, 43–44

login abuse, 166
LREG background process, 32
LRU (Least Recently Used) algorithm, 21–23

• M •
maintaining software, 15–16
maximum availability protection mode, Data

Guard, 366
maximum performance protection mode,

Data Guard, 367
maximum protection mode, Data Guard, 366
Maximum Size field, EM Express Tablespace

usage screen, 158
MAXSETSIZE parameter, RMAN, 244
MB (megabytes), 59
mean time to recovery (MTTR), 263
media failure, 239
megabytes (MB), 59
memory

defined, 18
managing automatically, 29–30
overview, 28
troubleshooting, 280

Memory Management pane, Database
Express Configuration page, 307

Memory Target Advisor, 29–30
memory_target parameter, 78
Microsoft Access database, 12
Microsoft Excel spreadsheet, 12
Microsoft SQL Server, 12
mirroring, 63
MMNL background process, 32
MMON background process, 32
Monitoring and Alerting, 191
mount points, Linux/UNIX, 2
MOUNT state, database instances, 96–97
MTS (Multi-Threaded Servers) configuration

option, 107
MTTR (mean time to recovery), 263
multitenant database architecture, 337–342
Multi-Threaded Servers (MTS) configuration

option, 107
multi-tier applications, 51–53

• N •
Name field, EM Express Tablespace usage

screen, 157
naming conventions, 385
National Character Set, DBCA, 87
Network Configuration Assistant

(NETCA), 361

410 Oracle 12c For Dummies

NETWORK_LINK parameter
Data Pump Export, 178
Data Pump Import, 180

networks
Real Application Clusters, 356
troubleshooting, 276–277

NOCATALOG mode, 245
nodes, Real Application Clusters, 354
NOMOUNT state, database instances, 96

• O •
object privileges

ALTER, 224
defined, 221
DELETE, 224
EXECUTE, 224
INDEX, 224
INSERT, 224
managing, 225–226
REFERENCES, 224
SELECT, 224
UPDATE, 224

objects
auditing, 232–233
creation methods, 149–152
database link, 149
dropped, 238
indexes, 147
packages, 148
procedures, 147–148
synonyms, 149
tables, 146–147
triggers, 148
views, 147

OC4J (Oracle Containers for J2EE), 52
OCM (Oracle Configuration Manager), 298
ODBC (Open Database Connectivity), 50
oerr utility, 287
OFA (Optimal Flexible Architecture)

ORACLE_BASE directory environment
variable, 56–59

ORACLE_HOME directory environment
variable, 56–59

overview, 376
OFM (Oracle Fusion Middleware), 52, 54
OID (Oracle Internet Directory), 54–55, 105
OIFCFG (Oracle Interface Configuration

Tool), 363
oinstall group, 70
one-off patches, 65

OPatch (opatch) utility, 57, 65
Open Database Connectivity (ODBC), 50
OPEN state, database instances, 97
open_cursors parameter, 78
operating systems (OSs)

authentication, 220–221
Linux, checking kernel version, 393
Linux, checking packages, 393–394
Linux, configuring kernel parameters,

395–396
Linux, groups and users, 394–395
Linux, setting up, 391
Linux, verifying, 392
Real Application Clusters, 356, 358–359

Optimal Flexible Architecture (OFA)
ORACLE_BASE directory environment

variable, 56–59
ORACLE_HOME directory environment

variable, 56–59
overview, 376

Oracle
blocks, 46–47
overview, 13–14

Oracle Application Express feature, DBCA, 85
Oracle ASM, 357
Oracle Configuration Manager (OCM), 298
Oracle Containers for J2EE (OC4J), 52
Oracle Data Pump

Data Pump Export, 177–179
Data Pump Import, 179–180
overview, 175–176
using with parameter file, 181–183

Oracle Database Replay feature, 332–337
Oracle Database Vault feature, DBCA, 85
Oracle Designer, 53–54
Oracle documentation website, 188–189
Oracle Enterprise Edition, 12
Oracle Fusion Middleware (OFM), 52, 54
Oracle Instance Parameters, 206
Oracle Interface Configuration Tool

(OIFCFG), 363
Oracle Internet Directory (OID), 54–55, 105
Oracle JVM feature, DBCA, 85
Oracle Label Security feature, DBCA, 85
oracle level, OFA hierarchy, 56
Oracle Multimedia feature, DBCA, 85
Oracle MySQL, 12
Oracle Net Configuration Assistant, 112
Oracle Net functionality, 283
Oracle Net protocol, 65, 102, 283
Oracle OLAP feature, DBCA, 85

411411 Index

Oracle Scheduler
job schedules, 170
jobs, 171
overview, 170
programs, 170
windows, 171

Oracle software owner, 70–71, 379
Oracle Spatial feature, DBCA, 85
Oracle Standard Edition, 12
Oracle Support website, 189
Oracle Text feature, DBCA, 85
Oracle Universal Installer (OUI), 57, 61, 360
Oracle user groups, 189–190
ORACLE_BASE directory environment

variable, 56–59, 72, 396
ORACLE_HOME directory environment

variable, 56–59, 72–73
ORACLE_SID directory environment variable,

73
Oracle-supplied roles, 227
oraenv script, 74
oraInventory directory, 57
ORDER BY clause, SQL SELECT statement,

117, 122
organizing data, 9
OS blocks, 36
os value, audit_trail parameter, 76
OSs (operating systems)

authentication, 220–221
Linux, checking kernel version, 393
Linux, checking packages, 393–394
Linux, configuring kernel parameters,

395–396
Linux, groups and users, 394–395
Linux, setting up, 391
Linux, verifying, 392
Real Application Clusters, 356, 358–359

OUI (Oracle Universal Installer), 57, 61, 360
owner, software, 70–71, 379, 395

• P •
package code, 388
PACKAGE program, PL/SQL, 131
PARALLEL parameter

Data Pump Export, 179
Data Pump Import, 180

Parallelism parameter, RMAN, 243
parameter file (PFILE)

defined, 41–42
media failure, 239

overview, 75–76
setting parameters, 76–78

parameters
UNDO_RETENTION, 319
undo_tablespace, 78

parameters, Data Pump Export
COMPRESSION, 177
CONTENT, 178
DIRECTORY, 178
DUMPFILE, 178
ESTIMATE, 178
EXCLUDE, 178
FILESIZE, 178
FLASHBACK_TIME, 178
INCLUDE, 178
NETWORK_LINK, 178
PARALLEL, 179
SCHEMAS, 179
TABLES, 179
TABLESPACES, 179

parameters, Data Pump Import
CONTENT, 180
DIRECTORY, 180
DUMPFILE, 180
ESTIMATE, 180
EXCLUDE, 180
FLASHBACK_SCN, 180
FLASHBACK_TIME, 180
INCLUDE, 180
NETWORK_LINK, 180
PARALLEL, 180
REMAP_SCHEMA, 180
REMAP_TABLESPACE, 180
SCHEMAS, 180
TABLES, 180
TABLESPACES, 180

parameters, Recovery Manager
Archive Log Backup Copies, 244
Backup Optimization, 243
Compression Algorithm, 244
Control File Autobackup format, 243
Data File Backup Copies, 244
Default Device Type, 243
Encryption Algorithm, 244
Encryption for Database, 244
MAXSETSIZE, 244
Parallelism, 243
Retention Policy, 243
Snapshot Control File Name, 244

parfile, 176
parity, 63
parsing, 21

412 Oracle 12c For Dummies

partitioning, 147
password verify function, PL/SQL, 218
passwords

authentication, 216–220
enforcing security, 387

Patch Set Updates (PSUs), 65, 193
patching, 380–381
PATH environment variable, 73–74
p-code (byte-code), 21
PDBs (pluggable databases)

creating, 343–347
defined, 337
overview, 47
plugging in, 349–350
starting and stopping, 342–343
unplugging, 348–349

Performance page, Database Express
performance hub, 309–310
SQL Tuning Advisor, 310

performance tuning
Active Session History tool, 191
asking questions, 187
Automatic Database Diagnostics Monitor

tool, 191
Automatic Workload Repository tool, 191
cost, 186–187
database, 205–214
hardware, 193–195
identifying problem, 188, 195–197
Monitoring and Alerting tool, 191
Oracle documentation website, 188–189
Oracle Support website, 189
Oracle user groups tool, 189–190
overview, 185
pre-installation preparation, 192–193
Real Time Monitoring tool, 191
selecting software, 193
SQL, 197–205
SQL Access Advisor tool, 191
SQL Tuning Advisor tool, 191
training classes, 190

permanent tablespaces, 139
personnel, auditing, 228
PFILE (parameter file)

defined, 41–42
media failure, 239
overview, 75–76
setting parameters, 76–78

pfile directory, 58

PGA (Program Global Area)
defined, 27
private SQL area, 28
session memory, 28

physical corruption, 239
physical standby database, Data Guard,

367–369
pinned blocks, 24
PL/SQL

ANONYMOUS BLOCK program, 131
block structure, 131
calling programs, 132
DBMS_DATAPUMP API program, 133
DBMS_METADATA program, 133
DBMS_SCHEDULER program, 133
DBMS_STATS program, 133
defined, 11
FUNCTION program, 131
overview, 130
PACKAGE program, 131
password verify function, 218
PROCEDURE program, 131
SYSDATE program, 133
TRIGGER program, 131
UTL_MAIL program, 133

PL/SQL function result cache, 22
pluggable databases (PDBs)

creating, 343–347
defined, 337
overview, 47
plugging in, 349–350
starting and stopping, 342–343
unplugging, 348–349

PMON background process, 31
post-creation check-up, 91
Pre-prod region, hardware, 195
primary database, Data Guard, 365–367
primary keys, table, 10, 147
private synonym, 149
privileges

managing, 386
object, 224–226
overview, 221–222
system, 222–224

PROCEDURE program, PL/SQL, 131
processes

background, 31–33
defined, 19
overview, 30–31

413413 Index

server, 34–35
user, 33

processes parameter, 78
Prod region, hardware, 195
product level, OFA hierarchy, 56
profiles, password, 217–220
Program Global Area (PGA)

defined, 27
private SQL area, 28
session memory, 28

programs, Oracle Scheduler, 170
protecting data, 15–16
protection modes, Data Guard

maximum availability, 366
maximum performance, 367
maximum protection, 366

PSUs (Patch Set Updates), 65, 193
public synonym, 149

• Q •
quotes

double, 121, 142
single, 123

• R •
RAC (Real Application Clusters)

Extended RAC, 364
hardware, 353–356
installing, 358–363
versus Oracle Parallel Server, 353
overview, 352
software, 356–357

RAID (Redundancy Array of Inexpensive/
Independent Disks), 63

RAM (Random Access Memory), 59
raw devices, 63
RDA (Remote Diagnostic Agent), 298–299
RDBMS (relational database management

system), 10–12
.RDO file extension, 38
Real Application Clusters (RAC)

Extended RAC, 364
hardware, 353–356
installing, 358–363
versus Oracle Parallel Server, 353
overview, 352
software, 356–357

Real Time Monitoring, 191

recovery catalog, RMAN
CATALOG mode, 245
creating, 246–247
defined, 244
NOCATALOG mode, 245

Recovery Manager (RMAN)
Archive Log Backup Copies parameter, 244
archiving, 256–261
Backup Optimization parameter, 243
backup sets, 248–253
Compression Algorithm parameter, 244
configuring, 242–244
Control File Autobackup format parameter,

243
copies, 248, 253
Data File Backup Copies parameter, 244
Default Device Type parameter, 243
Encryption Algorithm parameter, 244
Encryption for Database parameter, 244
LIST command, 254
MAXSETSIZE parameter, 244
overview, 240
Parallelism parameter, 243
recoveries, 261–272
recovery catalog, 244–247
Retention Policy parameter, 243
Snapshot Control File Name parameter, 244
starting, 240–242
testing recovery strategies, 389
VERBOSE listing, 254–256

RECOVERY_CATALOG_OWNER role, 227
RECYCLEBIN parameter, Flashback

Table, 319
redo entry, 25
redo log buffer, SGA, 25–26
redo log files, 38–39
Redo Log Groups section, Database Express

Storage page, 308
Redundancy Array of Inexpensive/

Independent Disks (RAID), 63
REFERENCES privilege, 224
relational database management system

(RDBMS), 10–12
REMAP_SCHEMA parameter, Data Pump

Import, 180
REMAP_TABLESPACE parameter, Data Pump

Import, 180
Remember icon, 3
remote connection, 104
remote data replication, 13

414 Oracle 12c For Dummies

Remote Diagnostic Agent (RDA), 298–299
reserved pool, 22
RESOURCE role, 227
restore points, 326–327
RESTRICTED SESSION mode, 97–98
RESTRICTED SESSION system privilege,

284–285
RESUMABLE privilege, 223
Retention Policy parameter, RMAN, 243
RMAN (Recovery Manager)

Archive Log Backup Copies parameter, 244
archiving, 256–261
Backup Optimization parameter, 243
backup sets, 248–253
Compression Algorithm parameter, 244
configuring, 242–244
Control File Autobackup format parameter,

243
copies, 248, 253
Data File Backup Copies parameter, 244
Default Device Type parameter, 243
Encryption Algorithm parameter, 244
Encryption for Database parameter, 244
LIST command, 254
MAXSETSIZE parameter, 244
overview, 240
Parallelism parameter, 243
recoveries, 261–272
recovery catalog, 244–247
Retention Policy parameter, 243
Snapshot Control File Name parameter, 244
starting, 240–242
testing recovery strategies, 389
VERBOSE listing, 254–256

roles
managing, 386
Oracle-supplied, 227
overview, 226–227
SYSDBA, 227–228

ROLLBACK statement, 126
rolling forward, archiving, 40
row locking, tables, 12
row movement feature, Flashback

Table, 319
rows, table, 12, 147

• S •
Sample Schemas Tab, DBCA, 85
SAN (storage area network), 196, 270
SCHEDULER_ADMIN role, 227
schemas, 141–146
SCHEMAS parameter

Data Pump Export, 179
Data Pump Import, 180

security
authentication, 215–221
creating roles, 226–228
database role in, 9
enforcing password security, 387
privileges, 221–226

Security page, Database Express, 309
Security Patch Updates (SPUs), 64–65
Seed Database (Seed PDB), 337
segments

defined, 137
monitoring space in, 160–164
overview, 44–45

SELECT clause, SQL SELECT statement, 117
SELECT privilege, 224
SELECT statement, SQL, 119–122
server, troubleshooting, 277–279
Server Control (srvctl), 361–362
server parameter file (SPFILE)

defined, 41
overview, 76
setting parameters, 76–78

server processes
dedicated server architecture, 34
shared server architecture, 34–35

server result cache, SGA shared pool, 22
Service Request (SR), 297
SGA (System Global Area)

database buffer cache, 23–25
Java pool, 27
large pool, 26–27
memory_target parameter, 78
overview, 20
redo log buffer, 25–26
shared pool, 20–23
streams pool, 27

415415 Index

shared pool, SGA
dictionary cache, 21–22
Least Recently Used algorithm, 22–23
library cache, 21
overview, 20–21
reserved pool, 22
server result cache, 22

shared server architecture, 34–35
Shared Servers configuration option, 107
SHUTDOWN ABORT command, 102
SHUTDOWN command, 101–102
SHUTDOWN IMMEDIATE command, 101–102
SHUTDOWN TRANSACTIONAL command,

101–102
single quotes (‘ ’), 123
Size field, EM Express Tablespace usage

screen, 157
SMON background process, 31
Snapshot Control File Name parameter,

RMAN, 244
snapshots

scheduling with STATSPACK, 213–214
taking with STATSPACK, 209–211

software
Oracle installation requirements, 60–62
performance tuning, 193
Real Application Clusters, 356–357

spec (header), package, 148
special options file, 108
SPFILE (server parameter file)

defined, 41
overview, 76
setting parameters, 76–78

SPUs (Security Patch Updates), 64–65
SQL (Structured Query Language)

calling environments, 116–117
case sensitivity, 118
data dictionary, 126–129
defined, 11
DELETE statement, 125–126
DESCRIBE statement, 119–122
INSERT statement, 122–123
overview, 115–116
performance tuning, 197–205
PL/SQL, 130–133
SELECT statement, 119–122
statement clauses, 117–118
UPDATE statement, 123–124
using queries to check available space,

158–160
SQL Access Advisor, 191

SQL Apply process, 369
SQL commands, 78–79
SQL result cache, 22
SQL Tuning Advisor, 191
SQL*Plus

connecting to database with, 116–117
creating user, 143–144
start as DBA, 95

sqlnet.ora file, 108
SR (Service Request), 297
srvctl (Server Control), 361–362
staging Oracle, 379–380
stale sessions, 164–166
standby database, Data Guard

defined, 365
logical, 369–370
physical, 367–369
switchover and failover operations, 370–372

starting/stopping database
environmental requirements, 94–96
instances, 96–100
overview, 93
pluggable databases, 342–343
SHUTDOWN ABORT command, 102
SHUTDOWN command, 101–102
SHUTDOWN IMMEDIATE command, 101–102
SHUTDOWN TRANSACTIONAL command,

101–102
statement clauses, SQL, 117–118
statement output, SQL, 198–205
statements

Data Control Language, 116
Data Definition Language, 11, 25, 116
Data Manipulation Language, 11, 50–51, 116
Structured Query Language, 117–126
Transaction Control Language, 116

STATSPACK
installing, 206–209
interpreting output, 211–213
scheduling snapshots, 213–214
taking snapshots with, 209–211

Status field, EM Express Tablespace usage
screen, 158

stopping database. See starting/stopping
database

storage
auditing, 228
overview, 9
requirements for Oracle installation, 62–64

storage area network (SAN), 196, 270
Storage configuration page, DBCA, 89

416 Oracle 12c For Dummies

Storage page, Database Express
Archive Logs section, 308
Control Files section, 308
Redo Log Groups section, 308
Tablespaces section, 308
Undo Management section, 308

stored code, 388
streams pool, SGA, 27
striping, 63
Structured Query Language (SQL)

calling environments, 116–117
case sensitivity, 118
data dictionary, 126–129
defined, 11
DELETE statement, 125–126
DESCRIBE statement, 119–122
INSERT statement, 122–123
overview, 115–116
performance tuning, 197–205
PL/SQL, 130–133
SELECT statement, 119–122
statement clauses, 117–118
UPDATE statement, 123–124
using queries to check available space,

158–160
supporting business, database administrator

role in, 15–16
SYSAUX tablespace, 43
SYSDATE program, PL/SQL, 133
SYSDBA role, 227–228
system event logs, 281–282
System Global Area (SGA)

database buffer cache, 23–25
Java pool, 27
large pool, 26–27
memory_target parameter, 78
overview, 20
redo log buffer, 25–26
shared pool, 20–23
streams pool, 27

system methodology, troubleshooting
analyzing error messages, 285–287
basic database checks, 282–285
basic system checks, 275–282
identifying problem, 274–275
overview, 273–274
planning repair process, 287–290

system privileges
WITH ADMIN OPTION feature, 223–224
ALTER SYSTEM, 223
ALTER USER, 223
auditing, 231–232

connecting to database and creating
objects, 143–144

CREATE ANY TABLE, 223
CREATE DIRECTORY, 181
CREATE JOB, 223
CREATE SYNONYM, 223
CREATE TABLESPACE, 223
defined, 221
DROP ANY TABLE, 223
DROP USER, 223
FLASHBACK ARCHIVE, 223
GRANT ANY OBJECT, 223
granting and revoking, 222–224
RESUMABLE, 223

system requirements
application, 66
backups, 66
directory, 55–59
hardware, 59–60
network connectivity, 65
Oracle patches, 64–65
Oracle version, 64
security, 66
software, 60–62
storage, 62–64
user requirements, 55–56

SYSTEM tablespace, 43

• T •
table definition, 10
tables

defined, 10
growing and shrinking, 161–162
overview, 146–147
shrinking, 163–164

TABLES parameter
Data Pump Export, 179
Data Pump Import, 180

Tablespace usage screen, EM Express, 157
tablespaces, 43–44, 136–141
TABLESPACES parameter

Data Pump Export, 179
Data Pump Import, 180

Tablespaces section, Database Express
Storage page, 308

TCL (Transaction Control Language)
statements, 116

Technical Stuff icon, 3
TEMP tablespace, 43
tempfile, 36

417417 Index

TEMPORARY tablespace, 139, 143
testing

database connection, 111–112
recovery strategies, 389

Testing region, hardware, 194
threats to database

corruption, 239–240
dropped objects, 238
instance failure, 238
losing files, 238
media failure, 239
overview, 237
user error, 240

Tip icon, 3
TNS (Transport Network Substrate) alias,

105, 149
tnsnames.ora text file, 105–106
tools, performance tuning

Active Session History, 191
Automatic Database Diagnostics

Monitor, 191
Automatic Workload Repository, 191
Monitoring and Alerting, 191
Oracle documentation website, 188–189
Oracle Support website, 189
Oracle user groups, 189–190
Real Time Monitoring, 191
SQL Access Advisor, 191
SQL Tuning Advisor, 191
training classes, 190

trace file
defined, 292
location, 58
troubleshooting, 295–296

training classes, database tuning, 190
Training region, hardware, 195
Transaction Control Language (TCL)

statements, 116
Transport Network Substrate (TNS) alias,

105, 149
TRIGGER program, PL/SQL, 131
troubleshooting

diagnostic utilities, 297–300
overview, 273
system methodology, 273–290
using database logs, 290–297

two-tier applications (client-server
applications), 50–51

Type field, EM Express Tablespace usage
screen, 158

• U •
UAT (User Acceptance Testing) region,

hardware, 195
umask parameter, Oracle, 378–379
unauthorized logins, 166
Undo Management section, Database Express

Storage page, 308
UNDO tablespace, 43
UNDO_RETENTION parameter, Flashback

Table, 319
undo_tablespace parameter, 78
Unicode Character Sets, DBCA, 87
unified audit policies, 230–231
Unix/Linux. See also Linux

checking CPU utilization, 279
checking database instances, 282
checking disk space, 281
checking event logs, 282
checking memory, 280
connecting to database with SQL*Plus,

116–117
dba group, 70
forward slash, 2
identifying running programs, 277
mount point, 2
OFA hierarchy, 57
oinstall group, 70
variables, 2

unplugging pluggable databases, 348–349
UPDATE privilege, 224
UPDATE statement, SQL, 123–124
Used (%) field, EM Express Tablespace usage

screen, 158
used extent, 160
User Acceptance Testing (UAT) region,

hardware, 195
user authentication, 216
user error, 240
user groups, 189–190
user processes, 33
USER_ category, data dictionary, 127
users

Database Express, 310–312
Oracle, 381
requirements for Oracle installation, 55–56
schemas and, 141–146

Users configuration page, Database Express,
311

UTL_MAIL program, PL/SQL, 133

418 Oracle 12c For Dummies

• V •
V$ category, data dictionary, 127
variables

environment, 71–74
Linux/UNIX, 2
Windows, 2

version number level, OFA hierarchy, 56
versions, Oracle, 71
views, data dictionary, 127
virtual memory, 59
VKTM background process, 32

• W •
Warning icon, 3
WHERE clause

SQL DELETE statement, 125
SQL SELECT statement, 117, 121
SQL UPDATE statement, 124

Windows
back slash, 2
checking CPU utilization, 279–280

checking database instances, 282
checking disk space, 281
checking event logs, 282
checking memory, 280
drive letter, 2
identifying running programs, 277–278
installing Oracle, 70–71
minimum hardware requirements, 60
OFA hierarchy, 57
variables, 2

windows, Oracle Scheduler, 171
WITH ADMIN OPTION feature, system

privileges, 223–224

• X •
X$ category, data dictionary, 127
xdb_wallet directory, 58
xml, extended value, audit_trail

parameter, 77
xml value, audit_trail parameter, 77

About the Author
Chris Ruel lives in Indianapolis, Indiana, and works as an Oracle DBA for a
large financial investment company. He graduated from Wabash College in
1997 and has been working with Oracle ever since. His background has varied
from 4 years of training to 10 years as an Oracle consultant. Occasionally, he
can be seen speaking at local Oracle related events (Oracle Tech Days). He
served as an Oracle University Instructor from 2000-2004, traveling the coun-
try teaching Oracle’s DBA curriculum. Chris is certified in Oracle 8i-11g. He is
also a RAC Certified Expert and has his Security+ certification.

When not working on Oracle, Chris enjoys working on old German cars
(mostly BMW and Mercedes). He is also a big fan of Formula 1 auto racing,
grilling out with his friends, and watching the Indianapolis Colts play football.

Michael Wessler received his bachelor’s degree in computer technology
from Purdue University in West Lafayette, Indiana. He is an Oracle Certified
Database Administrator for Oracle 10g, 8i, and 8 and an Oracle Certified Web
Administrator for 9iAS. Michael also holds a CISSP security certification. He
has administered Oracle databases on Windows and various flavors of UNIX
and Linux, including clustered Oracle Parallel Server (OPS) environments. He
also performs database and SQL/PLSQL tuning for applications. Michael has
worked in many IT shops ranging from small dot-com start-ups to large gov-
ernment agencies and corporations. Currently, Michael is an IT supervisor
within the U.S. government.

In addition to Oracle DBA consulting, Michael works extensively as an Oracle
web application server administrator and web application architect. He man-
ages multiple web applications for the U.S. government and consults at vari-
ous government agencies and in the private sector. Michael also frequently
lectures on Oracle web technologies and teaches Oracle Performance Tuning
classes. Michael is the author of Oracle DBA on UNIX and Linux and coauthor
of Oracle 11g For Dummies, Oracle Application Server 10g: J2EE Deployment
and Administration, Oracle Unleashed, Second Edition, UNIX Primer Plus,
Third Edition, COBOL Unleashed, UNIX Unleashed, Fourth Edition, and High
Availability: Successful Implementation for the Data-Driven Enterprise. Michael
has also authored internal works on Oracle Exadata, Oracle Exalogic, cloud
computing, and big data analytics.

Dedication
Chris Ruel: I dedicate this book to my parents who raised me well. If it wasn’t
for them, I don’t know what I would be doing today. My dad always said that I
would be digging ditches when he scolded me for not applying myself.

Michael Wessler: For my Dad, Jon Wessler. Thanks for always having a level
head and keeping me (usually) pointed in the right direction. And now I can
also thank you for being such a great Grandpa to my son, Garrick.

Author’s Acknowledgments
Chris Ruel: A special thanks to the Wiley team, Constance and Brian; all my
former co-workers at PTI in Indianapolis, IN; and Marshall Pyle for making
sure the technical portion of this book did not get lost in 2:30 a.m. ramblings
before deadlines. In addition, I’d like to thank my current co-workers who
may find their names here and there in code examples . . . except for one who
requested (as it were) to remain nameless. Lastly, I cannot forget the rest of
the editors who, due to the amount of red ink on my review documents, must
have thought I never graduated grammar school. Believe me, it’s not that,
I just have a bad babit of not froofreading what I typped.

Michael Wessler: I would like to thank my wonderful wife, Angela, for her end-
less support while I’m writing these projects. I know she must cringe when
I say, “Good news, I have a new project”, but she never lets on and works extra
hard to watch our son as I sit in front of the computer for hours. I’d also like to
recognize my brother, Dan Wilson, for getting me started in the Oracle world
and helping me along the way: Thank you. Finally, I’d like to thank my co-
author Chris Ruel and the Wiley team for another great experience!

Publisher’s Acknowledgments

Acquisitions Editor: Constance Santisteban
Project Editor: Brian H. Walls
Copy Editor: Virginia Sanders
Technical Editor: Marshall Pyle
Editorial Assistant: Anne Sullivan
Sr. Editorial Assistant: Cherie Case

Project Coordinator: Kristie Rees
Cover Image: ©iStockphoto.com/Sirgunhik

http://www.Dummies.com/go/mobile
http://www.Dummies.com/go/iphone/apps

	Contents at a Glance
	Table of Contents
	Introduction
	About This Book
	Who Are You?
	Icons in This Book
	Beyond the Book
	Where to Go from Here

	Part I: Getting Started with Oracle 12c
	Chapter 1: Discovering Databases and Oracle 12c
	Discovering Databases
	Choosing Oracle
	Keeping a Database Safe and Sound

	Chapter 2: Understanding Oracle Database Architecture
	Defining Databases and Instances
	Deconstructing the Oracle Architecture
	Walking Down Oracle Memory Structures
	Trotting around the System Global Area
	Program Global Area
	Managing Memory
	Following the Oracle Processes
	Getting Physical with Files
	Applying Some Logical Structures
	Pluggable Databases

	Chapter 3: Preparing to Implement Oracle
	Understanding How an Oracle Database Fits into a System’s Architecture
	Verifying System Requirements

	Part II: Implementing an Oracle Database
	Chapter 4: Creating Your Database
	Feeling at Home in Your Environment
	Configuring an Instance
	Creating Your Oracle Database
	Using the Database Configuration Assistant (DBCA) to Create Databases
	Doing a Post-Creation Check-Up

	Chapter 5: Connecting to the Database
	Starting and Stopping the Database
	Connecting to the Database Instance
	Sidestepping Connection Gotchas

	Chapter 6: Understanding the Language of Databases: SQL
	Learning the Basics of SQL
	Using the Data Dictionary
	Programming with PL/SQL

	Chapter 7: Loading Data into Your Database
	Making Tablespaces
	Understanding Users and Schemas
	Creating Database Objects

	Part III: Caring for and Feeding an Oracle Database
	Chapter 8: Keeping the Database Running
	Doing Your Database Chores
	Automating Chores with the Oracle Scheduler
	Using Oracle Data Pump
	Creating Oracle Directories
	Using Data Pump with a Parameter File

	Chapter 9: Tuning an Oracle Database for Performance
	Tuning Costs
	Tuning Basics
	Tuning Tools
	Tuning the Database before Something Goes Wrong
	Tuning after a Problem Arises
	Tuning SQL
	Tuning the Database

	Chapter 10: Securing and Auditing Your Database
	Staying Authentic with Authentication
	Granting Privileges
	Creating Roles
	Auditing: Oracle’s Big Brother

	Chapter 11: Facilitating Backup and Recovery
	Understanding Threats to Your Database
	Finding Files with Recovery Manager
	Backup File Types with RMAN
	Viewing Backup Information
	Putting It in the Archives
	Maintaining the Archives
	Recovering Your Oracle Database

	Chapter 12: Troubleshooting an Oracle Database
	Troubleshooting with System Methodology
	Troubleshooting Using Oracle Database Logs
	Benefiting from Other Diagnostic Utilities

	Chapter 13: Managing Your Database with Enterprise Manager
	Getting to Know the Enterprise Manager Family
	Configuring EM Database Express with the DBCA
	Navigating EM Database Express
	Creating and Managing EM Database Express Users

	Part IV: Advanced Oracle Technologies
	Chapter 14: Advanced Features
	Flashing Back
	Compressing Data for Purging, Retention, and Archiving
	Flashback Data Archive
	Oracle Database Replay
	Multitenant Architecture and Pluggable Databases

	Chapter 15: Using High-Availability Options
	Gathering Real Application Clusters
	Exploring RAC Architecture
	Preparing for a RAC Install
	Understanding Oracle Data Guard

	Part V: The Part of Tens
	Chapter 16: Ten Oracle Installation Do’s
	Know the Documentation
	Observe the Optimal Flexible Architecture
	Configure Your Profile
	Write Your Own Documentation
	Set umask
	Become Oracle
	Stage It
	Patch It
	Mind the User and Group IDs
	Back It Up

	Chapter 17: Ten Database Design Do’s
	Constrain Your Data
	Spread Out Your IO
	Know Basic Data Modeling Skills
	Use Naming Conventions
	Watch Your Roles and Privileges
	Axe Ad Hoc Queries
	Enforce Password Security
	Avoid Having Too Many Cooks in the Kitchen
	Package Code
	Test Recovery Strategies

	Appendix A: Installing Oracle 12c on Linux
	Setting Up the Operating System
	Creating the Oracle Software Owner
	Configuring the Linux Kernel Parameters

	Index
	About the Author

P —
Oracle 12¢

