OCA

Oracle Certified Associate
Java’ SE 8 Programmer |

STUDY GUIDE

Covers 100% of exam objectives, including developing Java
applications, becoming proficient in Java data types,
mastering operators and decision control structures,
understanding encapsulation, class inheritance,

polymorphism, and much more...

Includes interactive online learning environment and study
tools with:

+ 3 custom practice exams

+ More than 200 Electronic Flashcards

+ Searchable key term glossary

OCA: Oracle®

Certified Associate Java®

SE 8 Programmer |
Study Guide

Exam 1Z20-808

OCA: Oracle®

Certified Associate Java®

SE 8 Programmer |
Study Guide

Exam 1Z20-808

Jeanne Boyarsky
Scott Selikoff

Senior Acquisitions Editor: Kenyon Brown

Development Editor: Alexa Murphy

Technical Editors: Ernest Friedman-Hill, Matt Dalen
Production Editor: Rebecca Anderson

Copy Editor: Liz Welch

Editorial Manager: Pete Gaughan

Vice President and Executive Group Publisher: Richard Swadley
Associate Publisher: Jim Minatel

Production Manager: Kathleen Wisor

Media Supervising Producer: Rich Graves

Book Designers: Judy Fung and Bill Gibson

Proofreader: Scott Klemp, Word One New York

Indexer: Ted Laux

Project Coordinator, Cover: Patrick Redmond

Cover Designer: Wiley

Cover Image: ©Getty Images Inc./Jeremy Woodhouse
Copyright © 2015 by John Wiley & Sons, Inc., Indianapolis, Indiana
Published simultaneously in Canada

ISBN: 978-1-118-95740-0
ISBN: 978-1-118-95741-7 (ebk.)
ISBN: 978-1-118-95742-4 (ebk.)

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or
by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permit-
ted under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior written
permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the
Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-
8600. Requests to the Publisher for permission should be addressed to the Permissions Department, John
Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online
athttp://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or war-
ranties with respect to the accuracy or completeness of the contents of this work and specifically disclaim
all warranties, including without limitation warranties of fitness for a particular purpose. No warranty
may be created or extended by sales or promotional materials. The advice and strategies contained herein
may not be suitable for every situation. This work is sold with the understanding that the publisher is not
engaged in rendering legal, accounting, or other professional services. If professional assistance is required,
the services of a competent professional person should be sought. Neither the publisher nor the author
shall be liable for damages arising herefrom. The fact that an organization or Web site is referred to in this
work as a citation and/or a potential source of further information does not mean that the author or the
publisher endorses the information the organization or Web site may provide or recommendations it may
make. Further, readers should be aware that Internet Web sites listed in this work may have changed or
disappeared between when this work was written and when it is read.

For general information on our other products and services or to obtain technical support, please contact
our Customer Care Department within the U.S. at (877) 762-2974, outside the U.S. at (317) 572-3993 or
fax (317) 572-4002.

Wiley publishes in a variety of print and electronic formats and by print-on-demand. Some material
included with standard print versions of this book may not be included in e-books or in print-on-demand.
If this book refers to media such as a CD or DVD that is not included in the version you purchased, you
may download this material at http://booksupport.wiley.com. For more information about Wiley
products, visit www .wiley.com.

Library of Congress Control Number: 2014954685

TRADEMARKS: Wiley, the Wiley logo, and the Sybex logo are trademarks or registered trademarks of
John Wiley & Sons, Inc. and/or its affiliates, in the United States and other countries, and may not be used
without written permission. Oracle and Java are registered trademarks of Oracle America, Inc. All other
trademarks are the property of their respective owners. John Wiley & Sons, Inc. is not associated with any
product or vendor mentioned in this book.

10987654321

Dear Reader,

Thank you for choosing OCA: Oracle Certified Associate Java SE 8 Programmer I Study
Guide. This book is part of a family of premium-quality Sybex books, all of which are
written by outstanding authors who combine practical experience with a gift for teaching.

Sybex was founded in 1976. More than 30 years later, we’re still committed to producing
consistently exceptional books. With each of our titles, we’re working hard to set a new
standard for the industry. From the paper we print on, to the authors we work with, our
goal is to bring you the best books available.

I hope you see all that reflected in these pages. I’'d be very interested to hear your com-
ments and get your feedback on how we’re doing. Feel free to let me know what you
think about this or any other Sybex book by sending me an email at contactus@wiley
.com. If you think you’ve found a technical error in this book, please visit http://sybex
.custhelp.com. Customer feedback is critical to our efforts at Sybex.

Best regards,

v

Chris Webb
Associate Publisher
Sybex, an Imprint of Wiley

To the programmers on FIRST robotics team 694.
—Jeanne
To my wife and the two little bundles of joy she is carrying.

—Scott

Acknowledgments

Jeanne and Scott would like to thank numerous individuals for their contribution to this
book. Thank you to Developmental Editor Alexa Murphy for teaching us about Wiley’s
publishing process and making the book better in so many ways. Thank you to Ernest
Friedman-Hill for being our Technical Editor as we wrote our first book. Ernest pointed
out many subtle errors in addition to the big ones. And thank you to Matt Dalen for being
our Technical Proofer and finding the errors we managed to sneak by Ernest. This book
also wouldn’t be possible without many people at Wiley, including Jeff Kellum, Kenyon
Brown, Pete Gaughan, Rebecca Anderson, and so many others.

Jeanne would personally like to thank Chris Kreussling for knowing almost a decade
ago that she would someday write a book. Erik Kariyev motivated her to write her first
table of contents ever. Countless CodeRanch.com moderators warned Jeanne about how
much work writing a book is to get her to the point where she was ready. Michael Ernest
gave her extra advice on the Wiley process. Bert Bates let Jeanne dip her toe in by contrib-
uting to his Java 7 book and she learned a ton in the process. Scott was a great co-author
and was available to bounce ideas off of or remind her to follow her own advice. Finally,
Jeanne would like to thank all of the new programmers at CodeRanch.com and FIRST
robotics team 694 for the constant reminders of how new programmers think.

Scott could not have reached this point without the help of a small army of people, led
by his perpetually understanding wife Patti, without whose love and support this book
would never have been possible. Professor Johannes Gehrke of Cornell University always
believed in him and knew he would excel in his career. Jeanne’s patience and guidance
as co-author was invaluable while Scott adjusted to the learning curve of writing a book.
Matt Dalen has been a wonderful friend and sounding board over the last year. Joel
McNary introduced him to CodeRanch.com and encouraged him to post regularly, a step
that changed his life. Finally, Scott would like to thank his mother and retired teacher
Barbara Selikoff for teaching him the value of education and his father Mark Selikoff, for
instilling in him the benefits of working hard.

About the Authors

Jeanne Boyarsky has worked as a Java developer for over 12 years at a bank in New York
City where she develops, mentors, and conducts training. Besides being a senior moderator
at CodeRanch.com in her free time, she works on the forum codebase. Jeanne also men-
tors the programming division of a FIRST robotics team, where she works with students
just getting started with Java.

Jeanne got her Bachelor of Arts in 2002 and her Master’s in Computer Information
Technology in 2005. She enjoyed getting her Master’s degree in an online program
while working full time. This was before online education was cool! Jeanne is also a
Distinguished Toastmaster and a Scrum Master. You can find out more about Jeanne at
www . coderanch.com/how-to/java/BioJeanneBoyarsky.

Scott Selikoff is a professional software consultant, author, and owner of Selikoff
Solutions, LLC, which provides software development solutions to businesses in the
tri-state New York City area. Skilled in a plethora of software languages and platforms,
Scott specializes in database-driven systems, web-based applications, and service-oriented
architectures.

A native of Toms River, NJ, Scott achieved his Bachelor of Arts from Cornell University
in Mathematics and Computer Science in 2002, after 3 years of study. In 2003, he received
his Master’s of Engineering in Computer Science, also from Cornell University.

As someone with a deep love of education, Scott has always enjoyed teaching others new
concepts. He’s given lectures at Cornell University and Rutgers University, as well as confer-
ences including The Server Side Java Symposium. Scott lives in New Jersey with his loving
wife and two very playful dogs, a Siberian husky named Webby and standard poodle named
Georgette. You can find out more about Scott at www. 1inkedin.com/in/selikoff.

Jeanne and Scott are both moderators on the CodeRanch.com forums and can be reached
there for questions and comments. They also co-author a technical blog called Down
Home Country Coding at www.selikoff.net.

Contents at a Glance

Introduction xxi
Assessment Test xxx1
Chapter 1 Java Building Blocks 1
Chapter 2 Operators and Statements 51
Chapter 3 Core Java APIs 101
Chapter 4 Methods and Encapsulation 165
Chapter 5 Class Design 233
Chapter 6 Exceptions 299
Appendix A Answers to Review Questions 333
Appendix B Study Tips 353

Index 367

Contents

Introduction xxi
Assessment Test xXxXX1
Chapter 1 Java Building Blocks 1
Understanding the Java Class Structure 2

Fields and Methods 2

Comments 4

Classes vs. Files S

Writing a main() Method 6

Understanding Package Declarations and Imports 9
Wildcards 10
Redundant Imports 11
Naming Conflicts 12
Creating a New Package 13
Code Formatting on the Exam 16

Creating Objects 16
Constructors 17
Reading and Writing Object Fields 18
Instance Initializer Blocks 18
Order of Initialization 19

Distinguishing Between Object References and Primitives 20
Primitive Types 20
Reference Types 24
Key Differences 25

Declaring and Initializing Variables 25
Declaring Multiple Variables 26
Identifiers 27

Understanding Default Initialization of Variables 29
Local Variables 29
Instance and Class Variables 30

Understanding Variable Scope 31

Ordering Elements in a Class 34

Destroying Objects 36
Garbage Collection 36
finalize() 38

Benefits of Java 39

Summary 40

Exam Essentials 41

Review Questions 42

xvi

Chapter

Chapter

Contents

2

3

Operators and Statements

Understanding Java Operators
Working with Binary Arithmetic Operators
Arithmetic Operators
Numeric Promotion
Working with Unary Operators
Logical Complement and Negation Operators
Increment and Decrement Operators
Using Additional Binary Operators
Assignment Operators
Compound Assignment Operators
Relational Operators
Logical Operators
Equality Operators
Understanding Java Statements
The if-then Statement
The if-then-else Statement
The switch Statement
The while Statement
The do-while Statement
The for Statement
Understanding Advanced Flow Control
Nested Loops
Adding Optional Labels
The break Statement
The continue Statement
Summary
Exam Essentials
Review Questions

Core Java APIs

Creating and Manipulating Strings
Concatenation
Immutability
The String Pool
Important String Methods
Method Chaining

Using the StringBuilder Class
Mutability and Chaining
Creating a StringBuilder
Important StringBuilder Methods
StringBuilder vs. StringBuffer

51

52
53
53
55
57
57
58
60
60
62
63
64
65
66
67
68
72
76
78
80
86
87
87
88
90
92
92
94

101

102
102
104
105
105
110
111
112
113
114
117

Chapter

q

Contents

Understanding Equality
Understanding Java Arrays
Creating an Array of Primitives
Creating an Array with Reference Variables
Using an Array
Sorting
Searching
Varargs
Multidimensional Arrays
Understanding an ArrayList
Creating an ArrayList
Using an ArrayList
Wrapper Classes
Autoboxing
Converting Between array and List
Sorting
Working with Dates and Times
Creating Dates and Times
Manipulating Dates and Times
Working with Periods
Formatting Dates and Times
Parsing Dates and Times
Summary
Exam Essentials
Review Questions

Methods and Encapsulation

Designing Methods
Optional Specifiers
Return Type
Method Name
Parameter List
Optional Exception List
Method Body
Working with Varargs
Applying Access Modifiers
Private Access
Default (Package Private) Access
Protected Access
Public Access
Designing Static Methods and Fields
Calling a Static Variable or Method
Static vs. Instance
Static Variables

xvii

117
119
119
121
123
124
125
126
126
129
129
130
134
136
136
138
138
138
142
145
148
151
151
152
153

165

166
168
169
170
171
171
171
172
173
173
175
176
180
181
182
183
185

xviii

Chapter

Contents

5

Static Initialization
Static Imports
Passing Data Among Methods
Overloading Methods
Creating Constructors
Default Constructor
Overloading Constructors
Final Fields
Order of Initialization
Encapsulating Data
Creating Immutable Classes
Writing Simple Lambdas
Lambda Example
Lambda Syntax
Predicates
Summary
Exam Essentials
Review Questions

Class Design

Introducing Class Inheritance
Extending a Class
Applying Class Access Modifiers
Creating Java Objects
Defining Constructors
Calling Inherited Class Members
Inheriting Methods
Inheriting Variables
Creating Abstract Classes
Defining an Abstract Class
Creating a Concrete Class
Extending an Abstract Class
Implementing Interfaces
Defining an Interface
Inheriting an Interface
Interface Variables
Default Interface Methods
Static Interface Methods
Understanding Polymorphism
Object vs. Reference
Casting Objects
Virtual Methods
Polymorphic Parameters

Polymorphism and Method Overriding

186
187
188
191
196
197
199
202
202
205
207
208
209
211
214
215
216
218

233

234
235
237
237
238
244
246
257
259
260
262
263
266
267
269
273
274
278
279
281
282
284
285
287

Chapter

Appendix

Appendix

Index

6

A

Contents

Summary
Exam Essentials
Review Questions

Exceptions

Understanding Exceptions
The Role of Exceptions
Understanding Exception Types
Throwing an Exception

Using a try Statement
Adding a finally Block
Catching Various Types of Exceptions
Throwing a Second Exception

Recognizing Common Exception Types
Runtime Exceptions
Checked Exceptions
Errors

Calling Methods That Throw Exceptions
Subclasses
Printing an Exception

Summary

Exam Essentials

Review Questions

Answers to Review Questions

Chapter 1: Java Building Blocks
Chapter 2: Operators and Statements
Chapter 3: Core Java APIs

Chapter 4: Methods and Encapsulation
Chapter 5: Class Design

Chapter 6: Exceptions

Study Tips

Studying for the Test

Creating a Study Plan

Creating and Running Sample Applications
Taking the Test

Understanding the Question

Applying Process of Elimination

Optimizing Your Time

Getting a Good Night’s Rest

xix

288
289
291

299

300
300
302
304
305
307
309
311
313
314
317
317
318
319
321
323
324
325

333

334
336
339
342
346
349

353

354
354
355
359
359
362
364
366

367

Introduction

Java, “born” in 1995, is now just about 20 years old. As with anything 20 years old, there
is a good amount of history and variation between versions of Java. Over the years, the cer-
tification exams have changed to cover different topics. The names of the exams have even
changed. This book covers the Java 8 Oracle Certified Associate (OCA) exam.

If you read about “the exam” on the Web, you may see information about the older
names for the exam. We’ve showed the changes in name. Here’s what happened. Sun
Microsystems used to have two exams. The SCJP (Sun Certified Java Programmer) was
meant for programmers and the SCJA (Sun Certified Java Associate) was meant for those
who wanted broader knowledge. When Oracle bought Sun Microsystems, they changed all
the names from Sun to Oracle, giving us the OCJP and OCJA.

@ - @ :

Renamed

Then Oracle made two strategic decisions with Java 7. They decided to stop updating the
OCJA exam. They also decided to cover more on in the programmer space and split it into
two exams. Now you first take the OCAJP (Oracle Certified Associate Java Programmer),
also known as Java Programmer I, or OCA. That’s what this book is about. Then you
take the OCPJP (Oracle Certified Professional Java Programmer), also known as Java
Programmer II, or OCP. There’s also an upgrade exam in case you took an older version of
the SCJP or OCPJP and want to upgrade. Most people refer to the current exams as OCA
8, OCP 8, and the Java 8 upgrade exam. We mention when a topic is split between the
OCA and OCP so you know which parts are more advanced.

We try to keep the history to a minimum in this book. There are some places on the
exam where you need to know both an “old way” and a “new way” of doing things. When
that happens, we will be sure to tell you what version of Java introduced it. We will also let
you know about topics that are not on the exam anymore in case you see questions in the
older free online mock exams.

xxii Introduction

The OCA Exam

All you need to do to earn the Oracle Certified Associate Java SE 8 Programmer certifica-
tion is to pass the exam! That’s it.

Oracle has a tendency to fiddle with the length of the exam and the passing score once
it comes out. Since it’s pretty much a guarantee that whatever we tell you here will become
obsolete, we will give you a feel for the range of variation. The OCA exam has varied
between 60 and 90 questions since it was introduced. The score to pass has varied between
60 percent and 80 percent. The time allowed to take the exam has varied from two hours
to two-and-a-half hours.

Oracle has a tendency to “tweak” the exam objectives over time as well. They do make
minor additions and removals from what is covered on the exam. Although this tends to
affect the OCP exam more than the OCA exam, there are a few topics that were added to
the OCA for Java 8. It wouldn’t be a surprise for Oracle to make changes.

Although there will likely be minor changes to the scope of the exam, it certainly isn’t
a secret. We’ve created a book page on our blog: www.selikoff.net/oca. If there are any
changes to the topics on the exam after this book is published, we will note them there.

That book page also contains a link to the official exam page so that you can check the
length and passing score that Oracle has chosen for the moment.

Scheduling the Exam

The exam is administered by Pearson VUE and can be taken at any Pearson VUE testing
center. To find a testing center or register for the exam, go to www. pearsonvue.com. Choose
IT and then Oracle. If you haven’t been to the test center before, we recommend visiting in
advance. Some testing centers are nice and professionally run. Others stick you in a closet
with lots of people talking around you. You don’t want to be taking the test with someone
complaining about their broken laptop nearby!

At this time, you can reschedule the exam without penalty until up to 24 hours before.
This means that you can register for a convenient time slot well in advance, knowing that
you can delay if you aren’t ready by that time. Rescheduling is easy and can be done on the
Pearson VUE website. This may change, so check the rules before paying.

The Day of the Exam

When you go to take the exam, remember to bring two forms of ID, including one that is
government issued. See Pearson’s list of what is acceptable ID at http://www.pearsonvue
.com/policies/1S.pdf. Try not to bring too much extra with you as it will not be allowed

Introduction Xxiii

into the exam room. While you will be allowed to check your belongings, it is better to
leave extra items at home or in the car.

You will not be allowed to bring paper, your phone, and so forth into the exam room
with you. Some centers are stricter than others. At one center, tissues were even taken away
from us! Most centers allow keeping your ID and money. They watch you taking the exam,
though, so don’t even think about writing notes on money.

The exam center will give you writing materials to use during the exam. These are used
as scratch paper during the exam to figure out answers and keep track of your thought pro-
cess. The exam center will dispose of them at the end. Notice how we said “writing materi-
als” rather than “pen and paper.” Some centers still give pen and paper. Most give a small
erasable board and a dry erase marker. If you have a preference to which you receive, call
the testing center in advance to inquire.

Finding Out Your Score

In the past, you would find out right after finishing the exam if you passed. Now you have
to wait nervously until you can check your score online.

If you go onto the Pearson VUE website, it will just have a status of “Taken” rather
than your result. Oracle uses a separate system for scores. You’ll need to go to http://
certview.oracle.com to find out whether you passed and your score. It doesn’t update
immediately upon taking the test, but we haven’t heard of it taking more than an hour. In
addition to your score, you’ll also see objectives for which you got a question wrong and
instructions on how to get a hardcopy certificate.

At some point, you’ll get an electronic certificate and some more time after that you’ll
receive your printed certificate. Sound vague? It is. The times reported to receive certificates
vary widely.

Exam Questions

The OCA exam consists of multiple-choice questions. There are typically five or six possi-
ble answers. If a question has more than one answer, the question specifically states exactly
how many correct answers there are. This book does not do that. We say “choose all that
apply” to make the questions harder. This means the questions in this book are generally
harder than those on the exam. The idea is to give you more practice so you can spot the
correct answer more easily on the real exam.

Note that exam questions will sometimes have line numbers that begin with numbers
higher than 1. This is to indicate that you are looking at a code snippet rather than a com-
plete class. We follow this convention as well to get you used to it.

If you read about older versions of the exam online, you might see references to drag-
and-drop questions. These questions had you do a puzzle on how to complete a piece of

XXiv Introduction

code. There was also a bug in the exam software that caused your answers to get lost if you
reviewed them again. Luckily, these are no longer on the exam.

Getting Started

We recommend reading Appendix B, “Study Tips,” before diving into the technical mate-
rial in this book. Knowing how to approach studying will help you make better use of your
study time.

Next, make sure you have downloaded version 8 of the JDK. If you learned Java some
time ago, you might have version 7 or even earlier. There have been both big and small
changes to the language. You could get a question wrong if you study with the wrong
version.

Also, please check our book page to make sure Oracle hasn’t changed the objectives.
For example, if Oracle decided that lambdas weren’t on the exam, you’d want to know that
before studying. We will post any updates that you should know about at www. selikoff
.net/oca.

Getting Help

Both of the authors are moderators at CodeRanch.com. CodeRanch.com is a very large
and active programming forum that is very friendly toward Java beginners. It has a forum
just for this exam called OCAJP. It also has a forum called Beginning Java for non-exam-
specific questions. As you read the book, feel free to ask your questions in either of those
forums. It could be you are having trouble compiling a class or that you are just plain con-
fused about something. You’ll get an answer from a knowledgeable Java programmer. It
might even be one of us.

Who Should Buy This Book

If you want to become certified as a Java programmer, this book is definitely for you. If you
want to acquire a solid foundation in Java and your goal is to prepare for the exam, this
book is also for you. You’ll find clear explanations of the concepts you need to grasp and
plenty of help to achieve the high level of professional competency you need in order to suc-
ceed in your chosen field.

Introduction XXV

This book is intended to be understandable to anyone who has a tiny bit of Java knowl-
edge. If you’ve never read a Java book before, we recommend starting with a book that
teaches programming from the beginning and then returning to this study guide.

This book is for anyone from high school students to those beginning their program-
ming journey to experienced professionals who need a review for the certification.

How This Book Is Organized

This book consists of six chapters, plus supplementary information: a glossary, this intro-
duction, three appendices, and the assessment test after the introduction. You might have
noticed that there are more than six exam objectives. We split up what you need to know to
make it easy to learn and remember. Each chapter begins with a list of the objectives that
are covered in that chapter.

The chapters are organized as follows:

= Chapter 1, “Java Building Blocks,” covers the basics of Java such as scoping variables
and how to run a program. It also includes calling methods and types of variables.

= Chapter 2, “Operators and Statements,” focuses on the core logical constructs such as
conditionals and loops. It also talks about the meaning and precedence of operators.

= Chapter 3, “Core Java APIs,” introduces you to array, ArrayList, String, String-
Builder, and various date classes.

= Chapter 4, “Methods and Encapsulation,” explains how to write methods, including
access modifiers. It also shows how to call lambdas.

= Chapter 5, “Class Design,” adds interfaces and superclasses. It also includes casting
and polymorphism.

= Chapter 6, “Exceptions,” shows the different types of exception classes and how to use
them.

At the end of each chapter, you’ll find a few elements you can use to prepare for the
exam:

Summary This section reviews the most important topics that were covered in the chapter
and serves as a good review.

Exam Essentials This section summarizes highlights that were covered in the chapter. You
should be readily familiar with the key points of each chapter and be able to explain them
in detail.

Review Questions Each chapter concludes with at least 20 review questions. You should
answer these questions and check your answers against the ones provided in Appendix A.

XXvi Introduction

If you can’t answer at least 80 percent of these questions correctly, go back and review the
chapter, or at least those sections that seem to be giving you difficulty.

/L The review questions, assessment test, and other testing elements

NING included in this book are not derived from the real exam questions, so
don’t memorize the answers to these questions and assume that doing so
will enable you to pass the exam. You should learn the underlying topic,
as described in the text of the book. This will let you answer the questions
provided with this book and pass the exam. Learning the underlying topic
is also the approach that will serve you best in the workplace—the ultimate
goal of a certification.

To get the most out of this book, you should read each chapter from start to finish
before going to the chapter-end elements. They are most useful for checking and reinforcing
your understanding. Even if you’re already familiar with a topic, you should skim the chap-
ter. There are a number of subtleties to Java that you could easily not encounter even when
working with Java, even for years.

Free Online Learning Environment

This book provides a free online interactive learning environment and test bank with sev-
eral additional elements. The online test bank includes:

Sample Tests All of the questions in this book, including the 20-question assessment test
at the end of this introduction and over 130 questions that make up the Review Question
sections for each chapter. In addition, there are three 60-question Practice Exams to test
your knowledge of the material. The online test bank runs on multiple devices.

Electronic Flashcards Over 200 questions in flashcard format (a question followed by a
single correct answer). You can use these to reinforce your learning and provide last-minute
test prep before the exam.

Glossary The key terms from this book and their definitions are available as a fully
searchable PDF.

OTE comprehensive study tool package.

%’ Go to www.sybex.com/go/ocajavase8 to register and gain access to this

Introduction XXVii

Conventions Used in This Book

This book uses certain typographic styles in order to help you quickly identify important
information and to avoid confusion about the meaning of words, such as onscreen prompts.
In particular, look for the following styles:

» T[talicized text indicates key terms that are described at length for the first time in a
chapter. (Italics are also used for emphasis.)

= A monospaced font indicates code or command-line text.

= Ttalicized monospaced text indicates a variable.

In addition to these text conventions, which can apply to individual words or entire
paragraphs, a few conventions highlight segments of text:

A note indicates information that’s useful or interesting. It is often some-
JTE thing to pay special attention to for the exam.

Sidebars

A sidebar is like a note but longer. The information in a sidebar is useful, but it doesn’t fit
into the main flow of the text.

@ Real World Scenario

Real World Scenario

A real world scenario describes a task or an example that’s particularly grounded in the
real world. Although interesting, the scenario will not show up on the exam.

OCA Exam Objectives

OCA: Oracle Certified Associate Java SE 8 Programmer I Study Guide: Exam 120-808
has been written to cover every OCA exam objective. The following table provides a break-
down of this book’s exam coverage, showing you the chapter where each objective or
sub-objective is covered:

xXviii Introduction

Exam Objective

Chapter

m Java Basics
Define the scope of variables
Define the structure of a Java class

Create executable Java applications with a main method; run a Java program
from the command line, including console output

Import other Java packages to make them accessible in your code

Compare and contrast the features and components of Java such as platform
independence, object orientation, encapsulation, etc.

m Working with Java Data Types

Declare and initialize variables (including casting of primitive data types)
Differentiate between object reference variables and primitive variables
Know how to read or write to object fields

Explain an Object’s Lifecycle (creation, “dereference by reassignment,” and
garbage collection)

Develop code that uses wrapper classes such as Boolean, Double, and Integer
m Using Operators and Decision Constructs

Use Java operators, including parentheses to override operator precedence
Test equality between Strings and other objects using == and equals ()

Create if and if/else and ternary constructs

Use a switch statement

m Creating and Using Arrays

Declare, instantiate, initialize, and use a one-dimensional array

Declare, instantiate, initialize, and use multi-dimensional array

Introduction

XXix

Exam Objective

Chapter

m Using Loop Constructs

Create and use while loops

Create and use for loops including the enhanced for loop
Create and use do/while loops

Compare loop constructs

Use break and continue

m Working with Methods and Encapsulation

Create methods with arguments and return values, including overloaded
methods

Apply the static keyword to methods and fields

Create and overload constructors, including impact on default constructors
Apply access modifiers

Apply encapsulation principles to a class

Determine the effect upon object references and primitive values when they
are passed into methods that change the values

m Working with Inheritance
Describe inheritance and its benefits

Develop code that demonstrates the use of polymorphism, including
overriding and object type versus reference type

Determine when casting is necessary

Use super and this to access objects and constructors

Use abstract classes and interfaces

m Handling Exceptions

Differentiate among checked exceptions, unchecked exceptions, and Errors

Create a try-catch block and determine how exceptions alter normal
program flow

XXX Introduction

(continued)
Exam Objective Chapter
Describe the advantages of Exception handling 6
Create and invoke a method that throws an exception 6
Recognize common exception classes (such as NullPointerException, Arith- 6
meticException, ArraylndexOutOfBoundsException, ClassCastException)
m Working with Selected Classes from the Java API
Manipulate data using the StringBuilder class and its methods 3
Creating and manipulating Strings 3
Create and manipulate calendar data using classes from java.time.LocalDate- 3
Time, java.time.LocalDate, java.time.LocalTime, java.time.format.DateTime-
Formatter, java.time.Period
Declare and use an ArrayList of a given type 3
Write a simple Lambda expression that consumes a Lambda Predicate 4

expression

Introduction XXXi

Assessment Test

1. What is the result of the following class? (Choose all that apply)
: public class _C {

private static int $;

public static void main(String[] main) {
String a_b;
System.out.print($);
System.out.print(a_b);

I

Compiler error on line 1.

Compiler error on line 4.
Compiler error on line 5.
Compiler error on line 6.
Onull

1

2

3

4

5

6

7

A

B. Compiler error on line 2.
Cc

D

E

F.

G. nullnull

2. What is the result of the following code?
String s1 = "Java";
String s2 = "Java";
StringBuilder sbl = new StringBuilder();
sbl.append("Ja").append("va");
System.out.println(sl == s2);
System.out.println(sl.equals(s2));
System.out.println(sbl.toString() == sl);
System.out.println(sbl.toString().equals(sl));
true is printed out exactly once.
true is printed out exactly twice.

A

B

C. trueis printed out exactly three times.
D. true is printed out exactly four times.
E

The code does not compile.

3. What is the output of the following code? (Choose all that apply)

1: dnterface HasTail { int getTailLength(); }
2: abstract class Puma implements HasTail {

3 protected int getTailLength() {return 4;}
4: }

5: public class Cougar extends Puma {

xxxii

Introduction
6: public static void main(String[] args) {
7. Puma puma = new Puma();
8: System.out.println(puma.getTailLength());
9: }
10:

11: public int getTailLength(int length) {return 2;}
12: }

2

4

The code will not compile because of line 3.

The code will not compile because of line 3.

The code will not compile because of line 7.

The code will not compile because of line 11.

ePmMmMOooO®p

The output cannot be determined from the code provided.

What is the output of the following program?
1: public class FeedingSchedule {

2: public static void main(String[] args) {
3 boolean keepGoing = true;

4 int count = 0;

5 int x = 3;

6: while(count++ < 3) {

7 inty = (1 + 2 * count) % 3;

8 switch(y) {

9 default:

10: case 0: x -= 1; break;

11: case 1: x += 5;

12: }

13: }

14: System.out.println(x);

15: } }

A. 4

B. 5

C. 6

D. 7

E. 13

F. The code will not compile because of line 7.

Introduction

What is the output of the following code snippet?
13: System.out.print("a");

14: try {

15: System.out.print("b");

16: throw new IllegalArgumentException();
17: } catch (RuntimeException e) {

18: System.out.print("c");

19: } finally {

20: System.out.print("d");

21: }

22: System.out.print("e");

abe

abce

abde

abcde

The code does not compile.

Mmoo >

An uncaught exception is thrown.

What is the result of the following program?
public class MathFunctions {
public static void addToInt(int x, int amountToAdd) {
X = X + amountToAdd;
}
public static void main(String[] args) {
int a = 15;
int b = 10;
MathFunctions.addToInt(a, b);
System.out.println(a); 1}

1:

2

3

4

5

6

7

8

9:

A. 10
B. 15

C. 25

D. Compiler error on line 3.
E. Compiler error on line 8.
F

None of the above.

What is the result of the following code?
int[] array = {6,9,8};
List<Integer> list = new ArrayList<>();

XxXxiii

XXXiV

Introduction

list.add(array[0]);
list.add(array[2]);
list.set(l, array[1]);
list.remove(0);

System.out.println(list);

A
B.
C.
D
E

(8]

[9]

Something like [Ljava.lang.String;@160bc7c0
An exception is thrown.

The code does not compile.

8. What is the output of the following code?

1
2
3
4
5:
6
7
8
9

=
N

IoMmMOUOwWS®EL

:
10:
11:

: public class Deer {

public Deer() { System.out.print("Deer"); }
public Deer(int age) { System.out.print("DeerAge"); }
private boolean hasHorns() { return false; }
public static void main(String[] args) {
Deer deer = new Reindeer(5);
System.out.println(","+deer.hasHorns());

}

class Reindeer extends Deer {
public Reindeer(int age) { System.out.print("Reindeer"); }
public boolean hasHorns() { return true; }

-

DeerReindeer, false
DeerReindeer,true

ReindeerDeer, false
ReindeerDeer,true

DeerAgeReindeer, false
DeerAgeReindeer,true

The code will not compile because of line 7.

The code will not compile because of line 12.

9. Which of the following statements are true? (Choose all that apply)

mmo o ® >

Checked exceptions are intended to be thrown by the JVM (and not the programmer).
Checked exceptions are required to be caught or declared.

Errors are intended to be thrown by the JVM (and not the programmer).

Errors are required to be caught or declared.

Runtime exceptions are intended to be thrown by the JVM (and not the programmer).

Runtime exceptions are required to be caught or declared.

Introduction XXXV

10. Which are true of the following code? (Choose all that apply)

1.

import java.util.*;

public class Grasshopper {
public Grasshopper(String n) {
name = n;

public static void main(String[] args) {
Grasshopper one = new Grasshopper("gl");

1

2

3

4:

5: 1}
6:

7

8 Grasshopper two = new Grasshopper("g2");
9

: one two;
10: two = null;
11: one = null;

13: private String name; }
Immediately after line 9, no grasshopper objects are eligible for garbage collection.
Immediately after line 10, no grasshopper objects are eligible for garbage collection.

Immediately after line 9, only one grasshopper object is eligible for garbage collection.

Immediately after line 11, only one grasshopper object is eligible for garbage collection.

A
B
Cc
D. Immediately after line 10, only one grasshopper object is eligible for garbage collection.
E
F. The code compiles.

G

The code does not compile.

What is the output of the following program?

1: public class FeedingSchedule {

2: public static void main(String[] args) {
3 int x = 5, j = 0;

4 OUTER: for(int i=0; i<3;)

5: INNER: do {

6: Tty X+

7 if(x > 10) break INNER;

8 X += 4

9: JH+;

10: } while(j <= 2);

11: System.out.println(x);

12: } }

A. 10

B. 12

C. 13

D. 17

E. The code will not compile because of line 4.
F. The code will not compile because of line 6.

XXXVi Introduction

12. What is the result of the following program?
: public class Egret {

private String color;

public Egret() {

this("white");

public Egret(String color) {

1

2

3

4

5: }
6

7 color = color;
8

9

}
public static void main(String[] args) {
10: Egret e = new Egret();
11: System.out.println("Color:" + e.color);
12: }
13: }
A. Color:
B. Color:null
C. Color:White
D. Compiler error on line 4.
E. Compiler error on line 10.
F. Compiler error on line 11.

13. What is the output of the following program?
1: public class BearOrShark {
2 public static void main(String[] args) {
3 int luck = 10;
4 if((luck>10 ? luck++: --luck)<10) {
5 System.out.print("Bear");
6 } if(luck<10) System.out.print("Shark");
71}
A. Bear
B. Shark
C. BearShark
D. The code will not compile because of line 4.
E. The code will not compile because of line 6.
F

The code compiles without issue but does not produce any output.

14. Assuming we have a valid, non-null HenHouse object whose value is initialized by the
blank line shown here, which of the following are possible outputs of this application?
(Choose all that apply)

1: class Chicken {}
2: dinterface HenHouse { public java.util.List<Chicken> getChickens(); }
3: public class ChickenSong {

15.

16.

Introduction XXXVii

4 public static void main(String[] args) {

5 HenHouse house = ______________

6: Chicken chicken = house.getChickens().get(0);
7 for(int i=0; i<house.getChickens().size();

8 chicken = house.getChickens().get(i++)) {
9: System.out.println("Cluck");
10: } 1}
The code will not compile because of line 6.

The code will not compile because of lines 7-8.

The application will compile but not produce any output.
The application will output Cluck exactly once.

The application will output Cluck more than once.

Mmoo ®w >

The application will compile but produce an exception at runtime.

Which of the following statements can be inserted in the blank line so that the code will
compile successfully? (Choose all that apply)

public interface CanSwim {}

public class Amphibian implements CanSwim {}

class Tadpole extends Amphibian {}

public class FindAllTadPole {

public static void main(String[] args) {

List<Tadpole> tadpoles = new ArrayList<Tadpole>();
for (Amphibian amphibian : tadpoles) {

tadpole = amphibian;

11}

A. CanSwim
B. Long

C. Amphibian
D. Tadpole
E. Object

What individual changes, if any, would allow the following code to compile? (Choose all
that apply)
: public interface Animal { public default String getName() { return null; } }
: dinterface Mammal { public default String getName() { return null; } }
: abstract class Otter implements Mammal, Animal {}

The code compiles without issue.

Remove the default method modifier and method implementation on line 2.

1

2

3

A

B. Remove the default method modifier and method implementation on line 1.

(¢

D. Remove the default method modifier and method implementation on lines 1 and 2.
E

Change the return value on line 1 from null to "Animal".

xxxviii Introduction

F. Override the getName () method with an abstract method in the Otter class.

G. Override the getName () method with a concrete method in the Otter class.

17. Which of the following lines can be inserted at line 11 to print true? (Choose all that

apply)

10: public static void main(String[] args) {

11: // INSERT CODE HERE

12: }

13: private static boolean test(Predicate<Integer> p) {

14: return p.test(5);

15: }
System.out.println(test(i -> i == 5));
System.out.println(test(i -> {i == 5;}));
System.out.println(test((i) -> i == 5));
System.out.println(test((int i) -> i == 5);
System.out.println(test((int i) -> {return i == 5;}));
System.out.println(test((i) -> {return i == 5;}));

mmo o ® >

18. Which of the following print out a date representing April 1, 2015? (Choose all that apply)
System.out.println(LocalDate.of (2015, Calendar.APRIL, 1));
System.out.println(LocalDate.of (2015, Month.APRIL, 1));
System.out.println(LocalDate.of (2015, 3, 1));
System.out.println(LocalDate.of (2015, 4, 1));

System.out.println(new LocalDate(2015, 3, 1));

System.out.println(new LocalDate(2015, 4, 1));

Mmoo w >

19. Bytecode is in a file with which extension?
.bytecode

.bytes

.class

.exe

.javac

mmo o ®w >

.java

20. Which of the following are checked exceptions? (Choose all that apply)
Exception

IllegalArgumentException

IOException

NullPointerException

NumberFormatException

mmo o ® >

StackOverflowError

Introduction XXXix

Answers to Assessment Test

1. E. Option E is correct because local variables require assignment before referencing
them. Option D is incorrect because class and instance variables have default values
and allow referencing. a_b defaults to a null value. Options A, B, and C are incorrect
because identifiers may begin with a letter, underscore, or dollar sign. Options F and
G are incorrect because the code does not compile. If a_b was an instance variable, the
code would compile and output 0null. For more information, see Chapter 1.

2. C. String literals are used from the string pool. This means that s1 and s2 refer to the
same object and are equal. Therefore, the first two print statements print true. The
third print statement prints false because toString() uses a method to compute the
value and it is not from the string pool. The final print statement again prints true
because equals() looks at the values of String objects. For more information, see
Chapter 3.

3. C, D, E. First, the method getTailLength() in the interface HasTail is assumed to be
public, since it is part of an interface. The implementation of the method on line 3 is
therefore an invalid override, as protected is a more restrictive access modifier than
public, so option C is correct. Next, the class Cougar implements an overloaded ver-
sion of getTaillLength(), but since the declaration in the parent class Puma is invalid,
it needs to implement a public version of the method. Since it does not, the declaration
of Puma is invalid, so option D is correct. Option E is incorrect, since Puma is marked
abstract and cannot be instantiated. The overloaded method on line 11 is declared
correctly, so option F is not correct. Finally, as the code has multiple compiler errors,
options A, B, and G can be eliminated. For more information, see Chapter 5.

4. C. The code compiles and runs without issue; therefore, option F is incorrect. This type
of problem is best examined one loop iteration at a time:
= The loop continues as count loop expression evaluates to @ < 3, which is true,
with y taking a new value of 1. The value of y is set to:
y=(L+2*1) %3
(1+2) %3

[
70

=0
= The first case block is called and the value of x is then set to:
Xx=3-1=2
= The loop continues as count loop expression evaluates to 1 < 3, which is true,
with y taking a new value of 2. The value of y is set to:
y=(1L+2*2) %3
(1 +4) %3

[
70

1
N

x|

Introduction

= The default block is called and the value of x is set to:
Xx=2-1=1

= The loop continues as the count loop expression evaluates to 2 < 3, which is true,
with y taking a new value of 3. The value of y is set to:
y=(1+2*3)%3

(1 +6) %3

=7%

=1

= The second case block is called and the value of x is then set to:
x=1+5=6

= The loop ends as the count loop expression evaluates to 3 < 3, with y also taking a
new value of 4. The most recent value of x, 6, is output, so the answer is option C.
For more information, see Chapter 2.

D. The code starts running and prints a and b on lines 13 and 15. Line 16 throws an
exception, which is caught on line 17. After line 18 prints ¢, the finally block is run
and d is printed. Then the try statement ends and e is printed on line 22. For more
information, see Chapter 6.

B. The code compiles successfully, so options D and E are incorrect. The value of a
cannot be changed by the addToInt method, no matter what the method does, because
only a copy of the variable is passed into the parameter x. Therefore, a does not change
and the output on line 9 is 15. For more information, see Chapter 4.

B. The array is allowed to use an anonymous initializer because it is in the same line as
the declaration. The ArrayList uses the diamond operator allowed since Java 7. This
specifies the type matches the one on the left without having to re-type it. After adding
the two elements, list contains [6, 8]. We then replace the element at index 1 with 9,
resulting in [6, 9]. Finally, we remove the element at index 0, leaving [9]. Option C
is incorrect because arrays output something like that rather than an ArraylList. For
more information, see Chapter 3.

A. The code compiles and runs without issue, so options G and H are incorrect. First,
the Reindeer object is instantiated using the constructor that takes an int value. Since
there is no explicit call to the parent constructor, the default no-argument super ()

is inserted as the first line of the constructor. The output is then Deer, followed by
Reindeer in the child constructor, so only options A and B can be correct. Next,

the method hasHorns () looks like an overridden method, but it is actually a hidden
method since it is declared private in the parent class. Because the hidden method is
referenced in the parent class, the parent version is used, so the code outputs false,
and option A is the correct answer.

B, C. Only checked exceptions are required to be handled (caught) or declared. Run-
time exceptions are commonly thrown by both the JVM and programmer code.
Checked exceptions are usually thrown by programmer code. Errors are intended to be

10.

1.

12.

13.

14.

Introduction xli

thrown by the JVM. While a programmer could throw one, this would be a horrible
practice. For more information, see Chapter 6.

C, D, F. Immediately after line 9, only Grasshopper gl is eligible for garbage collection
since both one and two point to Grasshopper g2. Immediately after line 10, we still
only have Grasshopper gl eligible for garbage collection. Reference one points to gl
and reference two is null. Immediately after line 11, both Grasshopper objects are eli-
gible for garbage collection since both one and two point to null. The code does com-
pile. Although it is traditional to declare instance variables early in the class, you don’t
have to. For more information, see Chapter 1.

B. The code compiles and runs without issue; therefore, options E and F are incorrect.
This type of problem is best examined one loop iteration at a time:

= On the first iteration of the outer loop 1 is 0, so the loop continues.

= On the first iteration of the inner loop, 1 is updated to 1 and x to 6. The if-then
statement branch is not executed, and x is increased to 10 and j to 1.

= On the second iteration of the inner loop (since j = 1and 1 <= 2), i is updated
to 2 and x to 11. At this point, the if-then branch will evaluate to true for the
remainder of the program run, which causes the flow to break out of the inner
loop each time it is reached.

= On the second iteration of the outer loop (since i = 2), i is updated to 3 and x to
12. As before, the inner loop is broken since x is still greater than 10.

= On the third iteration of the outer loop, the outer loop is broken, as 1 is already
not less than 3. The most recent value of x, 12, is output, so the answer is option B.
For more information, see Chapter 2.

B. Line 10 calls the constructor on lines 3=5. That constructor calls the other construc-
tor. However, the constructor on lines 6-8 assigns the method parameter to itself,
which leaves the color instance variable on line 2 set to its default value of null. For
more information, see Chapter 4.

C. The code compiles and runs without issue, so options D and E are correct. Remem-
ber that only one of the right-hand ternary expressions will be evaluated at runtime.
Since luck is not less than 10, the second expression, --luck, will be evaluated, and
since the pre-increment operator was used, the value returned will be 9, which is less
than 10. So the first if-then statement will be visited and Bear will be output. Notice
there is no else statement on line 6. Since luck is still less than 10, the second if-then
statement will also be reached and Shark will be output; therefore, the correct answer
is option C. For more information, see Chapter 2.

D, E, F. The code compiles without issue, so options A and B are incorrect. If house
.getChickens() returns an array of one element, the code will output Cluck once, so
option D is correct. If house.getChickens() returns an array of multiple elements, the
code will output Cluck once for each element in the array, so option E is correct. Alter-
natively, if house.getChickens() returns an array of zero elements, then the code will

xlii

15.

16.

17.

18.

19.

20.

Introduction

throw an IndexOutOfBoundsException on the call to house.getChickens().get(0);
therefore, option C is not possible and option F is correct. The code will also throw an
exception if the array returned by house.getChickens() is null, so option F is possible
under multiple circumstances. For more information, see Chapter 2.

A, C, E. The for-each loop automatically casts each Tadpole object to an Amphibian
reference, which does not require an explicit cast because Tadpole is a subclass of
Amphibian. From there, any parent class or interface that Amphibian inherits from is
permitted without an explicit cast. This includes CanSwim, the interface Amphibian
implements, and Object, which all classes extend from, so options A and E are correct.
Option C is also correct since the reference is being cast to the same type, so no explicit
cast is required. Option B is incorrect, since Long is not a parent of Amphibian. Option
D is incorrect as well, although an explicit cast to Tadpole on the right-hand side of the

expression would be required to allow the code to compile. For more information, see
Chapter 5.

D, F, G. The code does not compile, since a class cannot inherit two interfaces that
both define default methods with the same signature, unless the class implementing
the interfaces overrides it with an abstract or concrete method. Therefore, option A is
incorrect and options F and G are correct. The alternate approach is to make the
getName () method abstract in the interfaces, because an interface may inherit two
abstract methods with the same signature. The change must be made to both inter-
faces, though, so options B and C are incorrect if taken individually, and option D is
correct since the changes are taken together. For more information, see Chapter 5.

A, C, F. The only functional programming interface you need to memorize for the
exam is Predicate. It takes a single parameter and returns a boolean. Lambda expres-
sions with one parameter are allowed to omit the parentheses around the parameter
list, making options A and C correct. The return statement is optional when a single
statement is in the body, making option F correct. Option B is incorrect because a
return statement must be used if braces are included around the body. Options D and
E are incorrect because the type is Integer in the predicate and int in the lambda.
Autoboxing works for collections not inferring predicates. If these two were changed
to Integer, they would be correct. For more information, see Chapter 4.

B, D. The new date APIs added in Java 8 use static methods rather than a constructor
to create a new date, making options E and F incorrect. The months are indexed start-
ing with 1 in these APIs, making options A and C incorrect. Option A uses the old
Calendar constants which are indexed from 0. Therefore, options B and D are correct.
For more information, see Chapter 3.

C. Files with the .java extension contain the Java source code and are compiled to
files with the .class extension that contain the bytecode. For more information, see
Chapter 1.

A, C. Option A is the exception base class, which is a checked exception. Options B,
D, and E extend RuntimeException directly or indirectly and therefore are unchecked
exceptions. Option F is a throwable and not an exception, and so should not be caught
or declared. For more information, see Chapter 6.

OCA: Oracle®

Certified Associate Java®

SE 8 Programmer |
Study Guide

Exam 1Z20-808

Java Building Blocks

OCA EXAM OBJECTIVES COVERED IN THIS
CHAPTER:

v/ Java Basics

Define the scope of variables
Define the structure of a Java class

Create executable Java applications with a main method; run
a Java program from the command line; including console
output

Import other Java packages to make them accessible in your
code

Compare and contrast the features and components of Java
such as platform independence, object orientation, encapsu-
lation, etc.

v Working with Java Data Types

Declare and initialize variables (including casting or primitive
types)

Differentiate between object reference variables and primi-
tive variables

Know how to read or write to object fields

Explain an Object’s Lifecycle (creation, “dereference by
reassignment” and garbage collection

Welcome to the beginning of your journey to become certified
on Java. We assume this isn’t the first Java programming book
you’ve read. Although we do talk about the basics, we do so
only because we want to make sure you have all the terminology and detail you’ll need for

the OCA exam. If you’ve never written a Java program before, we recommend you pick up
an introductory book on any version of Java—something like Head First Java, 2nd Edition
(O’Reilly Media, 2005); Java for Dummies (For Dummies, 2014), or Thinking in Java, 4th
Edition (Prentice Hall, 2006). (It’s okay if the book covers an older version of Java—even
Java 1.3 is fine.) Then come back to this certification study guide.

This chapter covers the fundamentals of Java. You’ll see how to define and run a Java
class, and learn about packages, variables, and the object life cycle.

Understanding the Java Class Structure

In Java programs, classes are the basic building blocks. When defining a class, you describe
all the parts and characteristics of one of those building blocks. To use most classes, you
have to create objects. An object is a runtime instance of a class in memory. All the various
objects of all the different classes represent the state of your program.

In the following sections, we’ll look at fields, methods, and comments. We’ll also explore
the relationship between classes and files.

Fields and Methods

Java classes have two primary elements: methods, often called functions or procedures in
other languages, and fields, more generally known as variables. Together these are called the
members of the class. Variables hold the state of the program, and methods operate on that
state. If the change is important to remember, a variable stores that change. That’s all classes
really do. It’s the programmer who creates and arranges these elements in such a way that
the resulting code is useful and, ideally, easy for other programmers to understand.

Other building blocks include interfaces, which you’ll learn about in Chapter 5, “Class
Design,” and enums, which you’ll learn about when you start studying for the OCP exam.

Understanding the Java Class Structure 3

The simplest Java class you can write looks like this:

1: public class Animal {
2: }

Java calls a word with special meaning a keyword. The public keyword on line 1 means
the class can be used by other classes. The class keyword indicates you’re defining a class.

Animal gives the name of the class. Granted, this isn’t a very interesting class, so add your
first field:

1: public class Animal {
2: String name;
3t}

The line numbers aren’t part of the program; they’re just there to make the
TE code easier to talk about.

On line 2, we define a variable named name. We also define the type of that variable to
be a String. A String is a value that we can put text into, such as "this s a string".
String is also a class supplied with Java. Next you can add methods:

: public class Animal {
String name;

public String getName() {
return name;

public void setName(String newName) {
name = newName;

1
2
3
4
5: }
6
7
8: }
9: }
On lines 3-5, you’ve defined your first method. A method is an operation that can be
called. Again, public is used to signify that this method may be called from other classes.
Next comes the return type—in this case, the method returns a String. On lines 6-8 is
another method. This one has a special return type called void. void means that no value at
all is returned. This method requires information be supplied to it from the calling method;
this information is called a parameter. setName has one parameter named newName, and it
is of type String. This means the caller should pass in one String parameter and expect
nothing to be returned.
The full declaration of a method is called a method signature. In this example, can you
identify the return type and parameters?

public int numberVisitors(int month)

4 Chapter 1 = Java Building Blocks

The return type is int, which is a numeric type. There’s one parameter named month,
which is of type int as well.

Comments

Another common part of the code is called a comment. Because comments aren’t execut-
able code, you can place them anywhere. Comments make your code easier to read. You
won’t see many comments on the exam—the exam creators are trying to make the code
difficult to read—Dbut you’ll see them in this book as we explain the code. And we hope you
use them in your own code. There are three types of comments in Java. The first is called a
single-line comment:

// comment until end of line

A single-line comment begins with two slashes. Anything you type after that on the
same line is ignored by the compiler. Next comes the multiple-line comment:

/* Multiple
* line comment

*/

A multiple-line comment (also known as a multiline comment) includes anything
starting from the symbol /* until the symbol */. People often type an asterisk (*) at the
beginning of each line of a multiline comment to make it easier to read, but you don’t have
to. Finally, we have a Javadoc comment:

/**
* Javadoc multiple-line comment
* @author Jeanne and Scott

*/

This comment is similar to a multiline comment except it starts with /**. This special
syntax tells the Javadoc tool to pay attention to the comment. Javadoc comments have a
specific structure that the Javadoc tool knows how to read. You won’t see a Javadoc com-
ment on the exam—just remember it exists so you can read up on it online when you start
writing programs for others to use.

As a bit of practice, can you identify which type of comment each of these five words is
in? Is it a single-line or a multiline comment?

/*

* [/ anteater
*/

// bear

/] /] cat

Understanding the Java Class Structure 5

// [* dog */
/* elephant */
/*

* /* ferret */
*/

Did you look closely? Some of these are tricky. Even though comments technically aren’t
on the exam, it is good to practice to look at code carefully.

Okay, on to the answers. anteater is in a multiline comment. Everything between /*
and */ is part of a multiline comment—even if it includes a single-line comment within
it! bear is your basic single-line comment. cat and dog are also single-line comments.
Everything from // to the end of the line is part of the comment, even if it is another type
of comment. elephant is your basic multiline comment.

The line with ferret is interesting in that it doesn’t compile. Everything from the first /*
to the first */ is part of the comment, which means the compiler sees something like this:

/*xx
We have a problem. There is an extra */. That’s not valid syntax—a fact the compiler is
happy to inform you about.

Classes vs. Files

Most of the time, each Java class is defined in its own *. java file. It is usually public,
which means any code can call it. Interestingly, Java does not require that the class be
public. For example, this class is just fine:

1: class Animal {
2: String name;
3: }
You can even put two classes in the same file. When you do so, at most one of the classes
in the file is allowed to be public. That means a file containing the following is also fine:

1: public class Animal {

2: private String name;
3: }

4: class Animal2 {

5: }

If you do have a public class, it needs to match the filename. public class Animal2
would not compile in a file named Animal.java. In Chapter 5, we will discuss what non-
public access means.

6 Chapter 1 = Java Building Blocks

Writing a main() Method

A Java program begins execution with its main() method. A main() method is the
gateway between the startup of a Java process, which is managed by the Java Virtual
Machine (JVM), and the beginning of the programmer’s code. The JVM calls on the
underlying system to allocate memory and CPU time, access files, and so on.

The main() method lets us hook our code into this process, keeping it alive long enough
to do the work we’ve coded. The simplest possible class with a main() method looks like
this:

1: public class Zoo {
2: public static void main(String[] args) {

3:

4: }

5:}
This code doesn’t do anything useful (or harmful). It has no instructions other than

to declare the entry point. It does illustrate, in a sense, that what you can put in a main()

method is arbitrary. Any legal Java code will do. In fact, the only reason we even need a

class structure to start a Java program is because the language requires it. To compile and
execute this code, type it into a file called Zoo.java and execute the following;:

$ javac Zoo.java
$ java Zoo

If you don’t get any error messages, you were successful. If you do get error messages, check
that you’ve installed a Java Development Kit (JDK) and not a Java Runtime Environment
(JRE), that you have added it to the PATH, and that you didn’t make any typos in the example.
If you have any of these problems and don’t know what to do, post a question with the error
message you received in the Beginning Java forum at CodeRanch (www.coderanch.com/
forums/f-33/java).

To compile Java code, the file must have the extension .java. The name of the file must
match the name of the class. The result is a file of bytecode by the same name, but with
a .class filename extension. Bytecode consists of instructions that the JVM knows how
to execute. Notice that we must omit the .class extension to run Zoo.java because the
period has a reserved meaning in the JVM.

The rules for what a Java code file contains, and in what order, are more detailed than
what we have explained so far (there is more on this topic later in the chapter). To keep
things simple for now, we’ll follow a subset of the rules:

= Each file can contain only one class.

= The filename must match the class name, including case, and have a .java extension.

Writing a main() Method 7

Suppose we replace line 3 in Zoo.java with System.out.println("wWelcome!");. When
we compile and run the code again, we’ll get the line of output that matches what’s between
the quotes. In other words, the program will output Welcome!.

Let’s first review the words in the main() method’s signature, one at a time. The key-
word public is what’s called an access modifier. It declares this method’s level of exposure
to potential callers in the program. Naturally, public means anyplace in the program.
You’ll learn about access modifiers in Chapter 4, “Methods and Encapsulation.”

The keyword static binds a method to its class so it can be called by just the class name,
as in, for example, Zoo.main(). Java doesn’t need to create an object to call the main()
method—which is good since you haven’t learned about creating objects yet! In fact, the
JVM does this, more or less, when loading the class name given to it. If a main() method
isn’t present in the class we name with the .java executable, the process will throw an error
and terminate. Even if a main() method is present, Java will throw an exception if it isn’t
static. A nonstatic main() method might as well be invisible from the point of view of the
JVM. We’ll see static again in Chapter 4.

The keyword void represents the return type. A method that returns no data returns
control to the caller silently. In general, it’s good practice to use void for methods that
change an object’s state. In that sense, the main() method changes the program state
from started to finished. We will explore return types in Chapter 4 as well. Excited for
Chapter 4 yet?

Finally we arrive at the main() method’s parameter list, represented as an array of java.
lang.String objects. In practice, you can write String[] args, String args[] or String...
args; the compiler accepts any of these. The variable name args hints that this list contains
values that were read in (arguments) when the JVM started. You can use any name you like,
though. The characters [] are brackets and represent an array. An array is a fixed-size list of
items that are all of the same type. The characters ... are called varargs (variable argument
lists). You will learn about String in Chapter 2, “Operators and Statements.” Arrays and
varargs will follow in Chapter 3, “Core Java APIs.”

Let’s see how to use the args parameter. First we modify the Zoo program to print out
the first two arguments passed in:

public class Zoo {
public static void main(String[] args) {
System.out.println(args([0]);
System.out.println(args[1]);
1}

args[0] accesses the first element of the array. That’s right: array indexes begin with 0
in Java. To run it, type this:

$ javac Zoo.java
$ java Zoo Bronx Zoo

8 Chapter 1 = Java Building Blocks

The output is what you might expect:

Bronx
Z00

The program correctly identifies the first two “words” as the arguments. Spaces are used
to separate the arguments. If you want spaces inside an argument, you need to use quotes
as in this example:

$ javac Zoo.java
$ java Zoo "San Diego" Zoo

Now we have a space in the output:

San Diego
Z00

All command-line arguments are treated as String objects, even if they represent
another data type:

$ javac Zoo.java
$ java Zoo Zoo 2

No matter. You still get the values output as Strings. In Chapter 2, you’ll learn how to
convert Strings to numbers.

Z00
2

Finally, what happens if you don’t pass in enough arguments?

$ javac Zoo.java
$ java Zoo Zoo

Reading args[0] goes fine and Zoo is printed out. Then Java panics. There’s no sec-
ond argument! What to do? Java prints out an exception telling you it has no idea what
to do with this argument at position 1. (You’ll learn about exceptions in Chapter 6,
“Exceptions.”)

ZooException in thread "main"
java.lang.ArrayIndexOutOfBoundsException: 1
at mainmethod.Zoo.main(Zoo.java:7)

To review, you need to have a JDK to compile because it includes a compiler. You do not
need to have a JDK to run the code—a JRE is enough. Java class files run on the JVM and
therefore run on any machine with Java rather than just the machine or operating system
they happened to have been compiled on.

Understanding Package Declarations and Imports 9

Understanding Package Declarations
and Imports

Java comes with thousands of built-in classes, and there are countless more from developers
like you. With all those classes, Java needs a way to organize them. It handles this in a way
similar to a file cabinet. You put all your pieces of paper in folders. Java puts classes in
packages. These are logical groupings for classes.

We wouldn’t put you in front of a file cabinet and tell you to find a specific paper.
Instead, we’d tell you which folder to look in. Java works the same way. It needs you to tell
it which packages to look in to find code.

Suppose you try to compile this code:

public class ImportExample {
public static void main(String[] args) {
Random r = new Random(); // DOES NOT COMPILE
System.out.println(r.nextInt(10));

The Java compiler helpfully gives you an error that looks like this:

Random cannot be resolved to a type

This error could mean you made a typo in the name of the class. You double-check and
discover that you didn’t. The other cause of this error is omitting a needed import state-
ment. Import statements tell Java which packages to look in for classes. Since you didn’t tell
Java where to look for Random, it has no clue.

Trying this again with the import allows you to compile:

import java.util.Random; // dimport tells us where to find Random
public class ImportExample {
public static void main(String[] args) {
Random r = new Random();
System.out.println(r.nextInt(10)); // print a number between 0 and 9

}

Now the code runs; it prints out a random number between 0 and 9. Just like arrays,
Java likes to begin counting with 0.

Java classes are grouped into packages. The import statement tells the compiler which
package to look in to find a class. This is similar to how mailing a letter works.

10 Chapter 1 = Java Building Blocks

Imagine you are mailing a letter to 123 Main St., Apartment 9. The mail carrier first brings
the letter to 123 Main St. Then she looks for the mailbox for apartment number 9. The
address is like the package name in Java. The apartment number is like the class name in
Java. Just as the mail carrier only looks at apartment numbers in the building, Java only
looks for class names in the package.

Package names are hierarchical like the mail as well. The postal service starts with the
top level, looking at your country first. You start reading a package name at the begin-
ning too. If it begins with java or javax, this means it came with the JDK. If it starts with
something else, it likely shows where it came from using the website name in reverse. From
example, com.amazon.java8book tells us the code came from amazon.com. After the web-
site name, you can add whatever you want. For example, com.amazon.java8.my.name also
came from amazon.com. Java calls more detailed packages child packages. com.amazon
.java8book is a child package of com.amazon. You can tell because it’s longer and thus
more specific.

You’ll see package names on the exam that don’t follow this convention. Don’t be
surprised to see package names like a.b.c. The rule for package names is that they are
mostly letters or numbers separated by dots. Technically, you’re allowed a couple of other
characters between the dots. The rules are the same as for variable names, which you’ll see
later in the chapter. The exam may try to trick you with invalid variable names. Luckily, it
doesn’t try to trick you by giving invalid package names.

In the following sections, we’ll look at imports with wildcards, naming conflicts with
imports, how to create a package of your own, and how the exam formats code.

Wildcards

Classes in the same package are often imported together. You can use a shortcut to import
all the classes in a package:

import java.util.*; // imports java.util.Random among other things
public class ImportExample {
public static void main(String[] args) {
Random r = new Random();
System.out.println(r.nextInt(10));

In this example, we imported java.util.Random and a pile of other classes. The * is a
wildcard that matches all classes in the package. Every class in the java.util package is
available to this program when Java compiles it. It doesn’t import child packages, fields, or
methods; it imports only classes. (Okay, it’s only classes for now, but there’s a special type
of import called the “static import” that imports other types. You’ll learn more about that
in Chapter 4.)

You might think that including so many classes slows down your program, but it doesn’t. The
compiler figures out what’s actually needed. Which approach you choose is personal preference.

Understanding Package Declarations and Imports 1

Listing the classes used makes the code easier to read, especially for new programmers. Using the
wildcard can shorten the import list. You'll see both approaches on the exam.

Redundant Imports

Wait a minute! We’ve been referring to System without an import and Java found it just
fine. There’s one special package in the Java world called java.lang. This package is
special in that it is automatically imported. You can still type this package in an import
statement, but you don’t have to. In the following code, how many of the imports do you
think are redundant?

: import java.lang.System;
: import java.lang.*;
¢ import java.util.Random;
¢ import java.util.*;

public static void main(String[] args) {
Random r = new Random();
System.out.println(r.nextInt(10));
}
10: }

1
2
3
4
5: public class ImportExample {
6
7
8
9

The answer is that three of the imports are redundant. Lines 1 and 2 are redundant
because everything in java.lang is automatically considered to be imported. Line 4 is also
redundant in this example because Random is already imported from java.util.Random.

If line 3 wasn’t present, java.util.* wouldn’t be redundant, though, since it would cover
importing Random.

Another case of redundancy involves importing a class that is in the same package as the
class importing it. Java automatically looks in the current package for other classes.

Let’s take a look at one more example to make sure you understand the edge cases for
imports. For this example, Files and Paths are both in the package java.nio.file. You
don’t need to memorize this package for the OCA exam (but you should know it for the
OCP exam). When testing your understanding of packages and imports, the OCA exam
will use packages you may never have seen before. The question will let you know which
package the class is in if you need to know that in order to answer the question.

What imports do you think would work to get this code to compile?

public class InputImports {
public void read(Files files) {
Paths.get("name");

12 Chapter 1 = Java Building Blocks

There are two possible answers. The shorter one is to use a wildcard to import both at
the same time:

import java.nio.file.*;
The other answer is to import both classes explicitly:

import java.nio.file.Files;
import java.nio.file.Paths;

Now let’s consider some imports that don’t work:
import java.nio.*; // NO GOOD - a wildcard only matches
//class names, not "file.*Files"

import java.nio.*.*; // NO GOOD - you can only have one wildcard
//and it must be at the end

import java.nijo.files.Paths.*; // NO GOOD - you cannot import methods
//only class names

Naming Conflicts

One of the reasons for using packages is so that class names don’t have to be unique across
all of Java. This means you’ll sometimes want to import a class that can be found in mul-
tiple places. A common example of this is the Date class. Java provides implementations

of java.util.Date and java.sql.Date. This is another example where you don’t need to
know the package names for the OCA exam—they will be provided to you. What import
could we use if we want the java.util.Date version?

public class Conflicts {
Date date;
// some more code

The answer should be easy by now. You can write either import java.util.*; or
import java.util.Date;. The tricky cases come about when other imports are present:

import java.util.*;
import java.sql.*; // DOES NOT COMPILE
When the class is found in multiple packages, Java gives you the compiler error:

The type Date is ambiguous

In our example, the solution is easy—remove the java.sql.Date import that we don’t
need. But what do we do if we need a whole pile of other classes in the java.sql package?

import java.util.Date;
import java.sql.*;

Understanding Package Declarations and Imports 13

Ah, now it works. If you explicitly import a class name, it takes precedence over any
wildcards present. Java thinks, “Okay! The programmer really wants me to assume use of
the java.util.Date class.”

One more example. What does Java do with “ties” for precedence?

import java.util.Date;

import java.sql.Date;

Java is smart enough to detect that this code is no good. As a programmer, you’ve
claimed to explicitly want the default to be both the java.util.Date and java.sql.Date
implementations. Because there can’t be two defaults, the compiler tells you:

The import java.sql.Date collides with another import statement

If You Really Need to Use Two Classes with the Same Name...

Sometimes you really do want to use Date from two different packages. When this hap-
pens, you can pick one to use in the import and use the other’s fully qualified class name
(the package name, a dot, and the class name) to specify that it’s special. For example:

import java.util.Date;

public class Conflicts {
Date date;
java.sql.Date sqlDate;

Or you could have neither with an import and always use the fully qualified class name:

public class Conflicts {
java.util.Date date;
java.sql.Date sqlDate;

Creating a New Package

Up to now, all the code we’ve written in this chapter has been in the default package. This
is a special unnamed package that you should use only for throwaway code. You can tell
the code is in the default package, because there’s no package name. On the exam, you’ll
see the default package used a lot to save space in code listings. In real life, always name
your packages to avoid naming conflicts and to allow others to reuse your code.

14 Chapter 1 = Java Building Blocks

Now it’s time to create a new package. The directory structure on your computer is
related to the package name. Suppose we have these two classes:

C:\temp\packagea\ClassA.java

package packagea;
public class ClassA {
}

C:\temp\packageb\ClassB.java

package packageb;
import packagea.ClassA;
public class ClassB {
public static void main(String[] args) {
ClassA a;
System.out.println("Got it");

When you run a Java program, Java knows where to look for those package names. In this
case, running from C:\temp works because both packagea and packageb are underneath it.

Compiling Code with Packages

You'll learn Java much more easily by using the command line to compile and test
your examples. Once you know the Java syntax well, you can switch to an integrated
development environment (IDE) like Eclipse. An IDE will save you time in coding. But
for the exam, your goal is to know details about the language and not have the IDE hide
them for you.

Follow this example to make sure you know how to use the command line. If you have
any problems following this procedure, post a question in the Beginning Java forum at
CodeRanch (www.coderanch.com/forums/f-33/java). Describe what you tried and what
the error said.

Windows Setup
Create the two files:

= C:\temp\packagea\ClassA.java
= C:\temp\packageb\ClassB.java

Then type this command:

cd C:\temp

Understanding Package Declarations and Imports

Mac/Linux Setup

Create the two files:

= /tmp/packagea/ClassA.java
= /tmp/packageb/ClassB.java
Then type this command:

cd /tmp

To Compile

Type this command:

javac packagea/ClassA.java packageb/ClassB.java

If this command doesn’t work, you’ll get an error message. Check your files carefully for
typos against the provided files. If the command does work, two new files will be created:

packagea/ClassA.class and packageb/ClassB.class.

To Run

Type this command:
java packageb.ClassB
If it works, you'll see Got 1t printed. You might have noticed we typed ClassB rather than

ClassB.class. In Java you don’t pass the extension when running a program.

Class Paths and JARs

You can also specify the location of the other files explicitly using a class path. This tech-
nique is useful when the class files are located elsewhere or in special JAR files. A JAR
file is like a zip file of mainly Java class files. This goes beyond what you’ll need to do on
version 8 of the exam, although it appears on older versions.

On Windows, you type the following:

java -cp ".;C:\temp\someOtherlLocation;c:\temp\myJar.jar" myPackage.MyClass
And on Mac OS/Linux, you type this:

java -cp ".:/tmp/someOtherLocation:/tmp/myJar.jar" myPackage.MyClass

The dot indicates you want to include the current directory in the class path. The rest of
the command says to look for loose class files (or packages) in someOtherLocation and
within myJar.jar. Windows uses semicolons to separate parts of the class path; other
operating systems use colons.

Finally, you can use a wildcard (*) to match all the JARs in a directory. Here's an example:
java -cp "C:\temp\directoryWithJars*" myPackage.MyClass

This command will add all the JARs to the class path that are in directoryWithJars. It
won't include any JARs in the class path that are in a subdirectory of directoryWithJars.

15

16 Chapter 1 = Java Building Blocks

Code Formatting on the Exam

Not all questions will include the imports. If the exam isn’t asking about imports in the
question, it will often omit the imports to save space. You’ll see examples with line numbers
that don’t begin with 1 in this case. The question is telling you, “Don’t worry—imagine

the code we omitted is correct; just focus on what I’'m giving you.” This means when you
do see the line number 1 or no line numbers at all, you have to make sure imports aren’t
missing. Another thing the exam does to save space is to merge code on the same line. You
should expect to see code like the following and to be asked whether it compiles. (You’ll
learn about ArrayList in Chapter 3—assume that part is good for now.)

6: public void method(ArrayList list) {

7: Aif (list.disEmpty()) { System.out.println("e");
8: } else { System.out.println("n");

9: } }

The answer here is that it does compile because the code starts below the imports. Now,
what about this one? Does it compile?
1: public class LineNumbers {
public void method(ArrayList list) {
if (list.isEmpty()) { System.out.println("e");
} else { System.out.println("n");
A

aa W N

For this one, you would answer “Does not compile.” Since the code begins with line 1,
you don’t get to assume that valid imports were provided earlier. The exam will let
you know what package classes are in unless they’re covered in the objectives. You’ll
be expected to know that ArrayList is in java.util—at least you will once you get to
Chapter 3 of this book!

You’ll also see code that doesn’t have a main() method. When this happens, assume
the main() method, class definition, and all necessary imports are present. You’re just
being asked if the part of the code you’re shown compiles when dropped into valid sur-
rounding code.

Creating Objects

Our programs wouldn’t be able to do anything useful if we didn’t have the ability to create
new objects. Remember that an object is an instance of a class. In the following sections,
we’ll look at constructors, object fields, instance initializers, and the order in which values
are initialized.

Creating Objects 17

Constructors

To create an instance of a class, all you have to do is write new before it. For example:

Random r = new Random();

First you declare the type that you’ll be creating (Random) and give the variable a name
(r). This gives Java a place to store a reference to the object. Then you write new Random()
to actually create the object.

Random() looks like a method since it is followed by parentheses. It’s called a construc-
tor, which is a special type of method that creates a new object. Now it’s time to define a
constructor of your own:

public class Chick {
public Chick() {
System.out.println("in constructor");

There are two key points to note about the constructor: the name of the constructor
matches the name of the class, and there’s no return type. You’ll likely see a method like
this on the exam:

public void Chick() { } // NOT A CONSTRUCTOR

When you see a method name beginning with a capital letter and having a return type,
pay special attention to it. It is #zot a constructor since there’s a return type. It’s a regular
method that won’t be called when you write new Chick().

The purpose of a constructor is to initialize fields, although you can put any code in
there. Another way to initialize fields is to do so directly on the line on which they’re
declared. This example shows both approaches:

public class Chicken {
int numEggs = 0;// initialize on line
String name;
public Chicken() {
name = "Duke";// initialize in constructor

Y3

For most classes, you don’t have to code a constructor—the compiler will supply a “do
nothing” default constructor for you. There’s one scenario that requires you to declare a
constructor that you’ll learn about in Chapter 5.

18 Chapter 1 = Java Building Blocks

Reading and Writing Object Fields

It’s possible to read and write instance variables directly from the caller. In this example, a
mother swan lays eggs:

public class Swan {
int numberEggs;// instance variable
public static void main(String[] args) {
Swan mother = new Swan();
mother.numberEggs = 1; // set variable
System.out.println(mother.numberEggs); // read variable

}

Reading a variable is known as getting it. The class gets numberEggs directly to print it
out. Writing to a variable is known as setting it. This class sets numberEggs to 1.

In Chapter 4, you’ll learn how to protect the Swan class from having someone set a nega-
tive number of eggs.

You can even read and write fields directly on the line declaring them:

1: public class Name {

2: String first = "Theodore";
3: String last = "Moose";

4: String full = first + last;
5:

{

Lines 2 and 3 both write to fields. Line 4 does both. It reads the fields first and last. It
then writes the field full.

Instance Initializer Blocks

When you learned about methods, you saw braces ({}). The code between the braces is
called a code block. Sometimes this code is called being inside the braces. Anywhere you
see braces is a code block.

Sometimes code blocks are inside a method. These are run when the method is called.
Other times, code blocks appear outside a method. These are called instance initializers. In
Chapter 5, you’ll learn how to use a static initializer.

How many blocks do you see in this example? How many instance initializers do
you see?

3: public static void main(String[] args) {
4 { System.out.println("Feathers"); }
5: }

6: { System.out.println("Snowy"); }

Creating Objects 19

There are three code blocks and one instance initializer. Counting code blocks is easy:
you just count the number of pairs of braces. If there aren’t the same number of open ({)
and close (}) braces, the code doesn’t compile. It doesn’t matter that one set of braces is
inside the main() method—it still counts.

When counting instance initializers, keep in mind that it does matter whether the braces
are inside a method. There’s only one pair of braces outside a method. Line 6 is an instance
initializer.

Order of Initialization

When writing code that initializes fields in multiple places, you have to keep track of the
order of initialization. We’ll add some more rules to the order of initialization in Chapters 4
and 5. In the meantime, you need to remember:

» Fields and instance initializer blocks are run in the order in which they appear in
the file.

= The constructor runs after all fields and instance initializer blocks have run.

Let’s look at an example:

public class Chick {
private String name = "Fluffy";
{ System.out.println("setting field"); }
public Chick() {
name = "Tiny";
System.out.println("setting constructor");
}
public static void main(String[] args) {
Chick chick = new Chick();
10: System.out.println(chick.name); } }

O 00 N O U b W N

Running this example prints this:

setting field
setting constructor
Tiny

Let’s look at what’s happening here. We start with the main() method because that’s
where Java starts execution. On line 9, we call the constructor of Chick. Java creates a new
object. First it initializes name to "Fluffy" on line 2. Next it executes the print statement
in the instance initializer on line 3. Once all the fields and instance initializers have run,
Java returns to the constructor. Line 5 changes the value of name to "Tiny" and line 6 prints
another statement. At this point, the constructor is done executing and goes back to the
print statement on line 10.

20 Chapter 1 = Java Building Blocks

Order matters for the fields and blocks of code. You can’t refer to a variable before it has
been initialized:
{ System.out.println(name); } // DOES NOT COMPILE
private String name = "Fluffy";

You should expect to see a question about initialization on the exam. Let’s try one more.
What do you think this code prints out?
public class Egg {
public Egg() {
number = 5;
}
public static void main(String[] args) {
Egg egg = new Egg();
System.out.println(egg.number);
}

private int number = 3;
{ number = 4; } }

If you answered 5, you got it right. Fields and blocks are run first in order, setting
number to 3 and then 4. Then the constructor runs, setting number to 5.

Distinguishing Between Object
References and Primitives

Java applications contain two types of data: primitive types and reference types. In this
section, we’ll discuss the differences between a primitive type and a reference type.

Primitive Types

Java has eight built-in data types, referred to as the Java primitive types. These eight data
types represent the building blocks for Java objects, because all Java objects are just a com-
plex collection of these primitive data types. The exam assumes you are well versed in the
eight primitive data types, their relative sizes, and what can be stored in them.

Distinguishing Between Object References and Primitives 21

Table 1.1 shows the Java primitive types together with their size in bytes and the range of
values that each holds.

TABLE 1.1 Java primitive types

Keyword Type Example
boolean true or false true
byte 8-bit integral value 123
short 16-bit integral value 123

int 32-bit integral value 123
long 64-bit integral value 123
float 32-bit floating-point value 123.45f
double 64-bit floating-point value 123.456
char 16-bit Unicode value 'a'

There’s a lot of information in Table 1.1. Let’s look at some key points:
= float and double are used for floating-point (decimal) values.
= A float requires the letter f following the number so Java knows it is a float.
= byte, short, int, and long are used for numbers without decimal points.

= Each numeric type uses twice as many bits as the smaller similar type. For example,
short uses twice as many bits as byte does.

You won’t be asked about the exact sizes of most of these types. You should know that
a byte can hold a value from —128 to 127. So you aren’t stuck memorizing this, let’s look
at how Java gets that. A byte is 8 bits. A bit has two possible values. (These are basic com-
puter science definitions that you should memorize.) 28is2x2=4x2=8x2=16x2=
32x2=64x2=128 x 2 =256. Since 0 needs to be included in the range, Java takes it
away from the positive side. Or if you don’t like math, you can just memorize it.

The number of bits is used by Java when it figures out how much memory to reserve for
your variable. For example, Java allocates 32 bits if you write this:

int num;

22 Chapter 1 = Java Building Blocks

@ Real World Scenario

What Is the Largest int?

You do not have to know this for the exam, but the maximum number an int can hold is
2,147,483,647. How do we know this? One way is to have Java tell us:
System.out.println(Integer.MAX_VALUE);

The other way is with math. An int is 32 bits. 23?is 4,294,967,296. Divide that by 2 and
you get 2,147,483,648. Then subtract 1 as we did with bytes and you get 2,147,483,647. It's
easier to just ask Java to print the value, isn't it?

There are a few more things you should know about numeric primitives. When a number
is present in the code, it is called a literal. By default, Java assumes you are defining an int
value with a literal. In this example, the number listed is bigger than what fits in an int.
Remember, you aren’t expected to memorize the maximum value for an int. The exam will
include it in the question if it comes up.

long max = 3123456789; // DOES NOT COMPILE

Java complains the number is out of range. And it is—for an int. However, we don’t
have an int. The solution is to add the character L to the number:

long max = 3123456789L; // now Java knows it 1is a long

Alternatively, you could add a lowercase 1 to the number. But please use the uppercase L.
The lowercase | looks like the number 1.

Another way to specify numbers is to change the “base.” When you learned how to
count, you studied the digits 0-9. This numbering system is called base 10 since there are
10 numbers. It is also known as the decimal number system. Java allows you to specify dig-
its in several other formats:

= octal (digits 0-7), which uses the number 0 as a prefix—for example, 017

» hexadecimal (digits 0-9 and letters A—F), which uses the number 0 followed by x or X
as a prefix—for example, OxFF

= binary (digits 0-1), which uses the number 0 followed by b or B as a prefix—for exam-
ple, 0b10

You won’t need to convert between number systems on the exam. You’ll have to recog-
nize valid literal values that can be assigned to numbers.

Distinguishing Between Object References and Primitives

23

Converting Back to Binary

Although you don’t need to convert between number systems on the exam, we'll look at
one example in case you're curious:

System.out.println(56); /] 56
System.out.println(0bll); /] 3

System.out.println(017); // 15
System.out.println(0x1F); // 31

First we have our normal base 10 value. We know you already know how to read that, but
bear with us. The rightmost digit is 6, so it's “worth” 6. The second-to-rightmost digit is
5, so it’s “worth” 50 (5 times 10.) Adding these together, we get 56.

Next we have binary, or base 2. The rightmost digitis 1 and is “worth” 1. The second-to-
rightmost digit is also 1. In this case, it's “worth” 2 (1 times 2) because the base is 2. Add-
ing these gets us 3.

Then comes octal, or base 8. The rightmost digitis 7 and is “worth” 7. The second-to-
rightmost digit is 1. In this case, it's “worth” 8 (1 times 8) because the base is 8. Adding
these gets us 15.

Finally, we have hexadecimal, or base 16, which is also known as hex. The rightmost
“digit” is F and it's “worth” 15 (9 is “worth” 9, Ais “worth” 10, B is “worth” 11, and so
forth). The second-to-rightmost digit is 1. In this case, it's “worth” 16 (1 times 16) because
the base is 16. Adding these gets us 31.

The last thing you need to know about numeric literals is a feature added in Java 7. You

can have underscores in numbers to make them easier to read:

int millionl = 1000000;
int million2 = 1_000_000;

We’d rather be reading the latter one because the zeroes don’t run together. You can add
underscores anywhere except at the beginning of a literal, the end of a literal, right before a

decimal point, or right after a decimal point. Let’s look at a few examples:

double notAtStart = _1000.00; // DOES NOT COMPILE
double notAtEnd = 1000.00_; // DOES NOT COMPILE
double notByDecimal = 1000_.00; // DOES NOT COMPILE

double annoyingButLegal = 1_00_0.0_0; // this one compiles

24 Chapter 1 = Java Building Blocks

Reference Types

A reference type refers to an object (an instance of a class). Unlike primitive types that hold
their values in the memory where the variable is allocated, references do not hold the value
of the object they refer to. Instead, a reference “points” to an object by storing the memory
address where the object is located, a concept referred to as a pointer. Unlike other
languages, Java does not allow you to learn what the physical memory address is. You can
only use the reference to refer to the object.

Let’s take a look at some examples that declare and initialize reference types. Suppose
we declare a reference of type java.util.Date and a reference of type String:

java.util.Date today;
String greeting;

The today variable is a reference of type Date and can only point to a Date object. The
greeting variable is a reference that can only point to a String object. A value is assigned
to a reference in one of two ways:

= A reference can be assigned to another object of the same type.
= A reference can be assigned to a new object using the new keyword.
For example, the following statements assign these references to new objects:
today = new java.util.Date();
greeting = "How are you?";

The today reference now points to a new Date object in memory, and today can be used
to access the various fields and methods of this Date object. Similarly, the greeting refer-
ence points to a new String object, "How are you?". The String and Date objects do not
have names and can be accessed only via their corresponding reference. Figure 1.1 shows
how the reference types appear in memory.

FIGURE 1.1 Anobjectin memory can be accessed only via a reference.

A Date object

A Date reference
today day
29
R month
~ 7
year
2011

A String reference

reetin
g g A String object

How are you?

Y

Declaring and Initializing Variables 25

Key Differences

There are a few important differences you should know between primitives and reference
types. First, reference types can be assigned null, which means they do not currently refer
to an object. Primitive types will give you a compiler error if you attempt to assign them
null. In this example, value cannot point to null because it is of type int:

int value = null; // DOES NOT COMPILE
String s = null;

Next, reference types can be used to call methods when they do not point to null.
Primitives do not have methods declared on them. In this example, we can call a method on
reference since it is of a reference type. You can tell length is a method because it has ()
after it. The following line is gibberish. No methods exist on len because it is an int primi-
tive. Primitives do not have methods.

String reference = "hello";
int len = reference.length();
int bad = len.length(); // DOES NOT COMPILE

Finally, notice that all the primitive types have lowercase type names. All classes that
come with Java begin with uppercase. You should follow this convention for classes you
create as well.

Declaring and Initializing Variables

We’ve seen some variables already. A variable is a name for a piece of memory that stores
data. When you declare a variable, you need to state the variable type along with giving it a
name. For example, the following code declares two variables. One is named zooName and
is of type String. The other is named numberAnimals and is of type int.

String zooName;
int numberAnimals;

Now that we’ve declared a variable, we can give it a value. This is called initializing a
variable. To initialize a variable, you just type the variable name followed by an equal sign,
followed by the desired value:
zooName = "The Best Zoo";
numberAnimals = 100;

Since you often want to initialize a variable right away, you can do so in the same state-
ment as the declaration. For example, here we merge the previous declarations and initial-
izations into more concise code:

String zooName = "The Best Zoo";
int numberAnimals = 100;

26 Chapter 1 = Java Building Blocks

In the following sections, we’ll look at how to declare multiple variables in one-line and
legal identifiers.

Declaring Multiple Variables

You can also declare and initialize multiple variables in the same statement. How many
variables do you think are declared and initialized in the following two lines?

String sl, s2;
String s3 = "yes", s4 = "no";

Four String variables were declared: s1, s2, s3, and s4. You can declare many variables
in the same declaration as long as they are all of the same type. You can also initialize any
or all of those values inline. In the previous example, we have two initialized variables: s3
and s4. The other two variables remain declared but not yet initialized.

This is where it gets tricky. Pay attention to tricky things! The exam will attempt to trick
you. Again, how many variables do you think are declared and initialized in this code?

int i1, i2, i3 = 0;

As you should expect, three variables were declared: 11, 72, and 3. However, only one
of those values was initialized: 73. The other two remain declared but not yet initialized.
That’s the trick. Each snippet separated by a comma is a little declaration of its own. The
initialization of 73 only applies to 73. It doesn’t have anything to do with 71 or 72 despite
being in the same statement.

Another way the exam could try to trick you is to show you code like this line:

int num, String value; // DOES NOT COMPILE

This code doesn’t compile because it tries to declare multiple variables of different types
in the same statement. The shortcut to declare multiple variables in the same statement only
works when they share a type.

To make sure you understand this, see if you can figure out which of the following are
legal declarations. “Legal,” “valid,” and “compiles” are all synonyms in the Java exam
world. We try to use all the terminology you could encounter on the exam.

boolean bl, b2;
String s1 = "1", s2;
double d1, double d2;
int i1; dint 1i2;
int i3; 1i4;
The first statement is legal. It declares two variables without initializing them. The
second statement is also legal. It declares two variables and initializes only one of them.

The third statement is not legal. Java does not allow you to declare two different types
in the same statement. Wait a minute! Variables d1 and d2 are the same type. They are both

Declaring and Initializing Variables 21

of type double. Although that’s true, it still isn’t allowed. If you want to declare multiple
variables in the same statement, they must share the same type declaration and not repeat
it. double d1, d2; would have been legal.

The fourth statement is legal. Although int does appear twice, each one is in a separate
statement. A semicolon (;) separates statements in Java. It just so happens there are two
completely different statements on the same line. The fifth statement is not legal. Again,
we have two completely different statements on the same line. The second one is not a
valid declaration because it omits the type. When you see an oddly placed semicolon on the
exam, pretend the code is on separate lines and think about whether the code compiles that
way. In this case, we have the following:
int 11,
int 12;
int 1i3;
i4;// DOES NOT COMPILE

Looking at the last line on its own, you can easily see that the declaration is invalid.
And yes, the exam really does cram multiple statements onto the same line—partly to
try to trick you and partly to fit more code on the screen. In the real world, please limit
yourself to one declaration per statement and line. Your teammates will thank you for the
readable code.

Identifiers

It probably comes as no surprise that Java has precise rules about identifier names. Luckily,
the same rules for identifiers apply to anything you are free to name, including variables,
methods, classes, and fields.

There are only three rules to remember for legal identifiers:

= The name must begin with a letter or the symbol $ or _.
= Subsequent characters may also be numbers.

* You cannot use the same name as a Java reserved word. As you might imagine, a
reserved word is a keyword that Java has reserved so that you are not allowed to use it.
Remember that Java is case sensitive, so you can use versions of the keywords that only
differ in case. Please don’t, though.

Don’t worry—you won’t need to memorize the full list of reserved words. The exam will
only ask you about ones you’ve already learned, such as class. The following is a list of all
the reserved words in Java. const and goto aren’t actually used in Java. They are reserved
so that people coming from other languages don’t use them by accident—and in theory, in
case Java wants to use them one day.

28 Chapter 1 = Java Building Blocks

abstract assert boolean break byte
case catch char class const*
continue default do double else
enum extends false final finally
float for goto* if implements
import instanceof int interface long
native new null package private
protected public return short static
strictfp super switch synchronized this
throw throws transient true try
void volatile while

Prepare to be tested on these rules. The following examples are legal:

okidentifier
$0K2Identifier
_also0K1d3ntifi3r
__SStill0kbutKnotsonice$

These examples are not legal:

3DPointClass // identifiers cannot begin with a number
hollywood@vine // @ 1is not a letter, digit, $ or _
*Scoffee // * is not a letter, digit, $ or _

public // public is a reserved word

Although you can do crazy things with identifier names, you shouldn’t. Java has con-
ventions so that code is readable and consistent. This consistency includes CamelCase. In
CamelCase, each word begins with an uppercase letter. This makes multiple-word variable
names easier to read. Which would you rather read: Thisismyclass name or ThisIsMyClass
name? The exam will mostly use common conventions for identifiers, but not always. When
you see a nonstandard identifier, be sure to check if it is legal. If not, you get to mark the
answer “does not compile” and skip analyzing everything else in the question.

Understanding Default Initialization of Variables 29

@ Real World Scenario
Identifiers in the Real World

Most Java developers follow these conventions for identifier names:

= Method and variables names begin with a lowercase letter followed by CamelCase.

= (Class names begin with an uppercase letter followed by CamelCase. Don’t start any
identifiers with $. The compiler uses this symbol for some files.

Also, know that valid letters in Java are not just characters in the English alphabet. Java
supports the Unicode character set, so there are more than 45,000 characters that can
start a legal Java identifier. A few hundred more are non-Arabic numerals that may
appear after the first character in a legal identifier. Luckily, you don’t have to worry about
memorizing those for the exam. If you are in a country that doesn’t use the English alpha-
bet, this is useful to know for a job.

Understanding Default Initialization of
Variables

Before you can use a variable, it needs a value. Some types of variables get this value
set automatically, and others require the programmer to specify it. In the following
sections, we’ll look at the differences between the defaults for local, instance, and
class variables.

Local Variables

A local variable is a variable defined within a method. Local variables must be initialized
before use. They do not have a default value and contain garbage data until initialized. The
compiler will not let you read an uninitialized value. For example, the following code
generates a compiler error:

4: public int notValid() {

5: dnt y = 10;

6: 1int x;

7: dint reply = x + y; // DOES NOT COMPILE
8: return reply;

9

1}

30 Chapter 1 = Java Building Blocks

y is initialized to 10. However, because x is not initialized before it is used in the expres-
sion on line 7, the compiler generates the following error:

Test.java:5: variable x might not have been initialized
int reply = x + y;

A

Until x is assigned a value, it cannot appear within an expression, and the compiler will
gladly remind you of this rule. The compiler knows your code has control of what happens
inside the method and can be expected to initialize values.

The compiler is smart enough to recognize variables that have been initialized after their
declaration but before they are used. Here’s an example:

public int valid() {
int y = 10;
int x; // x is declared here
x = 33 // and initialized here
int reply = x + y;
return reply;

The compiler is also smart enough to recognize initializations that are more complex.
In this example, there are two branches of code. answer is initialized in both of them so
the compiler is perfectly happy. onlyOneBranch is only initialized if check happens to be
true. The compiler knows there is the possibility for check to be false, resulting in uninitial-
ized code, and gives a compiler error. You’ll learn more about the if statement in the next
chapter.

public void findAnswer(boolean check) {
int answer;
int onlyOneBranch;
if (check) {
onlyOneBranch = 1;
answer = 1;
} else {
answer = 2;
}
System.out.println(answer);
System.out.println(onlyOneBranch); // DOES NOT COMPILE

Instance and Class Variables

Variables that are not local variables are known as instance variables or class variables.
Instance variables are also called fields. Class variables are shared across multiple objects.

Understanding Variable Scope 31

You can tell a variable is a class variable because it has the keyword static before it. You’ll
learn about this in Chapter 4. For now, just know that a variable is a class variable if it has
the static keyword in its declaration.

Instance and class variables do not require you to initialize them. As soon as you declare
these variables, they are given a default value. You’ll need to memorize everything in table
1.2 except the default value of char. To make this easier, remember that the compiler
doesn’t know what value to use and so wants the simplest type it can give the value: null
for an object and 0/false for a primitive.

TABLE 1.2 Defaultinitialization values by type

Variable type Default initialization value
boolean false

byte, short, int, long 0 (in the type’s bit-length)
float, double 0.0 (in the type’s bit-length)
char "\u0eeo" (NUL)

All object references (everything else) null

Understanding Variable Scope

You’ve learned that local variables are declared within a method. How many local variables
do you see in this example?

public void eat(int piecesOfCheese) {
int bitesOfCheese = 1;

There are two local variables in this method. bitesOfCheese is declared inside the
method. piecesOfCheese is called a method parameter. It is also local to the method. Both
of these variables are said to have a scope local to the method. This means they cannot be
used outside the method.

Local variables can never have a scope larger than the method they are defined in.
However, they can have a smaller scope. Consider this example:

3: public void eatIfHungry(boolean hungry) {
4: if (hungry) {
5: dnt bitesOfCheese = 1;

32 Chapter 1 = Java Building Blocks

6: } // bitesOfCheese goes out of scope here
7: System.out.println(bitesOfCheese);// DOES NOT COMPILE
8: }

hungry has a scope of the entire method. bitesOfCheese has a smaller scope. It is only
available for use in the if statement because it is declared inside of it. When you see a set of
braces ({ }) in the code, it means you have entered a new block of code. Each block of code
has its own scope. When there are multiple blocks, you match them from the inside out.
In our case, the if statement block begins at line 4 and ends at line 6. The method’s block
begins at line 3 and ends at line 8.

Since bitesOfCheese is declared in such a block, the scope is limited to that block. When
the compiler gets to line 7, it complains that it doesn’t know anything about this bites0of-
Cheese thing and gives an error:

bitesOfCheese cannot be resolved to a variable

Remember that blocks can contain other blocks. These smaller contained blocks can ref-
erence variables defined in the larger scoped blocks, but not vice versa. For example:

16: public void eatIfHungry(boolean hungry) {
17: if (hungry) {

18: int bitesOfCheese = 1;

19: {

20: boolean teenyBit = true;

21: System.out.println(bitesOfCheese);

22: }

23: }

24: System.out.println(teenyBit); // DOES NOT COMPILE
25: }

The variable defined on line 18 is in scope until the block ends on line 23. Using it in the
smaller block from lines 19 to 22 is fine. The variable defined on line 20 goes out of scope
on line 22. Using it on line 24 is not allowed.

The exam may attempt to trick you with questions on scope. You’ll probably see a ques-
tion that appears to be about something complex and fails to compile because one of the
variables is out of scope. Let’s try one. Don’t worry if you aren’t familiar with if state-
ments or while loops yet. It doesn’t matter what the code does since we are talking about
scope. See if you can figure out on which line each of the five local variables goes into and
out of scope:

11: public void eatMore(boolean hungry, int amountOfFood) {
12: dint roomInBelly = 5;

13: if (hungry) {

14: boolean timeToEat = true;

15: while (amountOfFood > 0) {

16: int amountEaten = 2;

Understanding Variable Scope 33

17: roomInBelly = roomInBelly - amountEaten;
18: amountOfFood = amountOfFood - amountEaten;
19: }

20: }

21: System.out.println(amountOfFood);

22: %}

The first step in figuring out the scope is to identify the blocks of code. In this case, there
are three blocks. You can tell this because there are three sets of braces. Starting from the
innermost set, we can see where the while loop’s block starts and ends. Repeat this as we
go out for the if statement block and method block. Table 1.3 shows the line numbers that
each block starts and ends on.

TABLE 1.3 Blocks for scope

Line First line in block Last line in block
while 15 19
if 13 20
Method 1 22

You’ll want to practice this skill a lot. Identifying blocks needs to be second nature for
the exam. The good news is that there are lots of code examples to practice on. You can
look at any code example in this book on any topic and match up braces.

Now that we know where the blocks are, we can look at the scope of each variable.
hungry and amountOfFood are method parameters, so they are available for the entire
method. This means their scope is lines 11 to 22. roomInBelly goes into scope on line 12
because that is where it is declared. It stays in scope for the rest of the method and so goes
out of scope on line 22. timeToEat goes into scope on line 14 where it is declared. It goes
out of scope on line 20 where the if block ends. amountEaten goes into scope on line 16
where it is declared. It goes out of scope on line 19 where the while block ends.

All that was for local variables. Luckily the rule for instance variables is easier: they are
available as soon as they are defined and last for the entire lifetime of the object itself. The
rule for class (static) variables is even easier: they go into scope when declared like the other
variables types. However, they stay in scope for the entire life of the program.

Let’s do one more example to make sure you have a handle on this. Again, try to figure
out the type of the four variables and when they go into and out of scope.

1: public class Mouse {
2: static int MAX_LENGTH = 5;
3: int length;

34 Chapter 1 = Java Building Blocks

4 public void grow(int inches) {

5 if (length < MAX_LENGTH) {

6: int newSize = length + inches;
7 length = newSize;

8

9

10: }

In this class, we have one class variable (MAX_LENGTH), one instance variable (length),
and two local variables (inches and newSize.) MAX_LENGTH is a class variable because it has
the static keyword in its declaration. MAX_LENGTH goes into scope on line 2 where it is
declared. It stays in scope until the program ends. length goes into scope on line 3 where
it is declared. It stays in scope as long as this Mouse object exists. inches goes into scope
where it is declared on line 4. It goes out of scope at the end of the method on line 9.
newSize goes into scope where it is declared on line 6. Since it is defined inside the i f state-
ment block, it goes out of scope when that block ends on line 8.

Got all that? Let’s review the rules on scope:

= Local variables—in scope from declaration to end of block
» Instance variables—in scope from declaration until object garbage collected

= Class variables—in scope from declaration until program ends

Ordering Elements in a Class

Now that you’ve seen the most common parts of a class, let’s take a look at the correct
order to type them into a file. Comments can go anywhere in the code. Beyond that, you
need to memorize the rules in Table 1.4.

TABLE 1.4 Elementsofaclass

Element Example Required? Where does it go?

Package declaration package abc; No First line in the file

Import statements import java.util.*; No Immediately after the package
Class declaration public class C Yes Immediately after the import
Field declarations int value; No Anywhere inside a class

Method declarations void method() No Anywhere inside a class

Ordering Elements in a Class 35

Let’s look at a few examples to help you remember this. The first example contains one
of each element:

package structure; // package must be first non-comment
import java.util.*; // dimport must come after package
public class Meerkat { // then comes the class
double weight; // fields and methods can go in either order
public double getWeight() {
return weight; }
double height; // another field - they don't need to be together

}

So far so good. This is a common pattern that you should be familiar with. How about
this one?

/* header */

package structure;

// class Meerkat

public class Meerkat { }

Still good. We can put comments anywhere, and imports are optional. In the next
example, we have a problem:

import java.util.*;

package structure; // DOES NOT COMPILE
String name; // DOES NOT COMPILE
public class Meerkat { }

There are two problems here. One is that the package and import statements are
reversed. Though both are optional, package must come before import if present. The
other issue is that a field attempts declaration outside a class. This is not allowed. Fields
and methods must be within a class.

Got all that? Think of the acronym PIC (picture): package, import, and class. Fields and
methods are easier to remember because they merely have to be inside of a class.

You need to know one more thing about class structure for the OCA exam: multiple
classes can be defined in the same file, but only one of them is allowed to be public. The
public class matches the name of the file. For example, these two classes must be in a file
named Meerkat.java:

1: public class Meerkat { }
2: class Paw { }

A file is also allowed to have neither class be public. As long as there isn’t more than
one public class in a file, it is okay. On the OCP exam, you’ll also need to understand inner
classes, which are classes within a class.

36 Chapter 1 = Java Building Blocks

Destroying Objects

Now that we’ve played with our objects, it is time to put them away. Luckily, Java auto-
matically takes care of that for you. Java provides a garbage collector to automatically look
for objects that aren’t needed anymore.

All Java objects are stored in your program memory’s beap. The heap, which is also
referred to as the free store, represents a large pool of unused memory allocated to your
Java application. The heap may be quite large, depending on your environment, but there is
always a limit to its size. If your program keeps instantiating objects and leaving them on
the heap, eventually it will run out of memory.

In the following sections, we’ll look at garbage collection and the finalize() method.

Garbage Collection

Garbage collection refers to the process of automatically freeing memory on the heap by
deleting objects that are no longer reachable in your program. There are many different
algorithms for garbage collection, but you don’t need to know any of them for the exam.
You do need to know that System.gc() is not guaranteed to run, and you should be able to
recognize when objects become eligible for garbage collection.

Let’s start with the first one. Java provides a method called System.gc (). Now you
might think from the name that this tells Java to run garbage collection. Nope! It meekly
suggests that now might be a good time for Java to kick off a garbage collection run. Java is
free to ignore the request.

The more interesting part of garbage collection is when the memory belonging to an
object can be reclaimed. Java waits patiently until the code no longer needs that memory.
An object will remain on the heap until it is no longer reachable. An object is no longer
reachable when one of two situations occurs:

= The object no longer has any references pointing to it.

= All references to the object have gone out of scope.

Objects vs. References

Do not confuse a reference with the object that it refers to; they are two different enti-

ties. The reference is a variable that has a name and can be used to access the contents
of an object. A reference can be assigned to another reference, passed to a method, or
returned from a method. All references are the same size, no matter what their type is.

An object sits on the heap and does not have a name. Therefore, you have no way to
access an object except through a reference. Objects come in all different shapes and
sizes and consume varying amounts of memory. An object cannot be assigned to another

Destroying Objects 37

object, nor can an object be passed to a method or returned from a method. It is the
object that gets garbage collected, not its reference.

The Heap

A Reference

name An Object

A reference may or may
not be created on the heap.
All references are the same
size, no matter what their
data type is, and are accessed
by their variable name. Objects are always on the heap.
They have no name and can only be
accessed via a reference. Objects vary in
size depending on their class definition.

Realizing the difference between a reference and an object goes a long way toward
understanding garbage collection, the new operator, and many other facets of the Java
language. Look at this code and see if you can figure out when each object first becomes
eligible for garbage collection:

1: public class Scope {

2: public static void main(String[] args) {
3 String one, two;

4 one = new String("a");

5: two = new String("b");

6 one = two;

7 String three = one;

8 one = null;

9: }1}

When you get asked a question about garbage collection on the exam, we recommend
you draw what’s going on. There’s a lot to keep track of in your head and it’s easy to make
a silly mistake trying to keep it all in your memory. Let’s try it together now. Really. Get a
pencil and paper. We’ll wait.

Got that paper? Okay, let’s get started. On line 3, we write one and two. Just the words.
No need for boxes or arrows yet since no objects have gone on the heap yet. On line 4,
we have our first object. Draw a box with the string "a" in it and draw an arrow from the
word one to that box. Line 5 is similar. Draw another box with the string "b" in it this time
and an arrow from the word two. At this point, your work should look like Figure 1.2.

38 Chapter 1 = Java Building Blocks

FIGURE 1.2 Yourdrawing after line 5

ong ——>

two ———> 'b"

On line 6, the variable one changes to point to "b". Either erase or cross out the arrow
from one and draw a new arrow from one to "b". On line 7, we have a new variable, so
write the word three and draw an arrow from three to "b". Notice that three points to
what one is pointing to right now and not what it was pointing to at the beginning. This
is why we are drawing pictures. It’s easy to forget something like that. At this point, your
work should look like Figure 1.3.

FIGURE 1.3 Yourdrawing after line 7

one a

two ——> b’

three

Finally, cross out the line between one and "b" since line 8 sets this variable to null.
Now, we were trying to find out when the objects were first eligible for garbage collection.
On line 6, we got rid of the only arrow pointing to "a", making that object eligible for
garbage collection. "b" has arrows pointing to it until it goes out of scope. This means "b"
doesn’t go out of scope until the end of the method on line 9.

finalize()

Java allows objects to implement a method called finalize() that might get called. This
method gets called if the garbage collector tries to collect the object. If the garbage collector
doesn’t run, the method doesn’t get called. If the garbage collector fails to collect the object
and tries to run it again later, the method doesn’t get called a second time.

In practice, this means you are highly unlikely to use it in real projects. Luckily, there
isn’t much to remember about finalize() for the exam. Just keep in mind that it might not
get called and that it definitely won’t be called twice.

With that said, this call produces no output when we run it:

public class Finalizer {
protected void finalize() {

Benefits of Java 39

System.out.println("Calling finalize");
3
public static void main(String[] args) {
Finalizer f = new Finalizer();

}l

The reason is that the program exits before there is any need to run the garbage collec-
tor. While fis eligible for garbage collection, Java has better things to do than take out the
trash constantly. For the exam, you need to know that this finalize() call could run zero
or one time. Now for a more interesting example:

public class Finalizer {
private static List objects = new ArrayList();
protected void finalize() {
objects.add(this); // Don't do this
3

Remember, finalize() is only run when the object is eligible for garbage collection. The
problem here is that by the end of the method, the object is no longer eligible for garbage
collection because a static variable is referring to it and static variables stay in scope until
the program ends. Java is smart enough to realize this and aborts the attempt to throw out
the object. Now suppose later in the program objects is set to null. Oh, good, we can
finally remove the object from memory. Java remembers already running finalize() on
this object and will not do so again. The lesson is that the finalize() call could run zero
or one time. This is the exact same lesson as the simple example—that’s why it’s so easy to
remember.

Benefits of Java

Java has some key benefits that you’ll need to know for the exam:

Object Oriented Java is an object-oriented language, which means all code is defined in
classes and most of those classes can be instantiated into objects. We’ll discuss this more
throughout the book. Many languages before Java were procedural, which meant there were
routines or methods but no classes. Another common approach is functional programming.
Java allows for functional programming within a class, but object oriented is still the main
organization of code.

Encapsulation Java supports access modifiers to protect data from unintended access
and modification. Most people consider encapsulation to be an aspect of object-oriented
languages. Since the exam objectives call attention to it specifically, so do we.

Platform Independent Java is an interpreted language because it gets compiled to
bytecode. A key benefit is that Java code gets compiled once rather than needing to be

40 Chapter 1 = Java Building Blocks

recompiled for different operating systems. This is known as “write once, run everywhere.”
On the OCP exam, you’ll learn that it is possible to write code that does not run every-
where. For example, you might refer to a file in a specific directory. If you get asked on the
OCA exam, the answer is that the same class files run everywhere.

Robust One of the major advantages of Java over C++ is that it prevents memory leaks.
Java manages memory on its own and does garbage collection automatically. Bad memory
management in C++ is a big source of errors in programs.

Simple Java was intended to be simpler than C++. In addition to eliminating pointers,
it got rid of operator overloading. In C++, you could write a + b and have it mean almost
anything.

Secure Java code runs inside the JVM. This creates a sandbox that makes it hard for Java
code to do evil things to the computer it is running on.

Summary

In this chapter, you saw that Java classes consist of members called fields and methods. An
object is an instance of a Java class. There are three styles of comment: a single-line com-
ment (//), a multiline comment (/* */), and a Javadoc comment (/** */).

Java begins program execution with a main() method. The most common signature for
this method run from the command line is public static void main(String[] args).
Arguments are passed in after the class name, as in java NameOfClass firstArgument.
Arguments are indexed starting with 0.

Java code is organized into folders called packages. To reference classes in other pack-
ages, you use an import statement. A wildcard ending an import statement means you want
to import all classes in that package. It does not include packages that are inside that one.
java.lang is a special package that does not need to be imported.

Constructors create Java objects. A constructor is a method matching the class name and
omitting the return type. When an object is instantiated, fields and blocks of code are
initialized first. Then the constructor is run.

Primitive types are the basic building blocks of Java types. They are assembled into
reference types. Reference types can have methods and be assigned to null. In addition to
“normal” numbers, numeric literals are allowed to begin with 0 (octal), Ox (hex), 0X (hex),
Ob (binary), or OB (binary). Numeric literals are also allowed to contain underscores as long
as they are directly between two other numbers.

Declaring a variable involves stating the data type and giving the variable a name.
Variables that represent fields in a class are automatically initialized to their correspond-
ing “zero” or null value during object instantiation. Local variables must be specifically
initialized. Identifiers may contain letters, numbers, $, or _. Identifiers may not begin with
numbers.

Scope refers to that portion of code where a variable can be accessed. There are three
kinds of variables in Java, depending on their scope: instance variables, class variables, and

Exam Essentials |

local variables. Instance variables are the nonstatic fields of your class. Class variables are
the static fields within a class. Local variables are declared within a method.

For some class elements, order matters within the file. The package statement comes first
if present. Then comes the import statements if present. Then comes the class declaration.
Fields and methods are allowed to be in any order within the class.

Garbage collection is responsible for removing objects from memory when they can
never be used again. An object becomes eligible for garbage collection when there are no
more references to it or its references have all gone out of scope. The finalize() method
will run once for each object if/when it is first garbage collected.

Java code is object oriented, meaning all code is defined in classes. Access modifiers
allow classes to encapsulate data. Java is platform independent, compiling to bytecode. It is
robust and simple by not providing pointers or operator overloading. Finally, Java is secure
because it runs inside a virtual machine.

Exam Essentials

Be able to write code using a main() method. A main() method is usually written as public
static void main(String[] args). Arguments are referenced starting with args[0]. Accessing
an argument that wasn’t passed in will cause the code to throw an exception.

Understand the effect of using packages and imports. Packages contain Java classes.
Classes can be imported by class name or wildcard. Wildcards do not look at subdirecto-
ries. In the event of a conflict, class name imports take precedence.

Be able to recognize a constructor. A constructor has the same name as the class. It looks
like a method without a return type.

Be able to identify legal and illegal declarations and initialization. Multiple variables can
be declared and initialized in the same statement when they share a type. Local variables
require an explicit initialization; others use the default value for that type. Identifiers may
contain letters, numbers, $, or _. Identifiers may not begin with numbers. Numeric literals
may contain underscores between two digits and begin with 1-9, 0, 0x, 0X, Ob, and 0B.

Be able to determine where variables go into and out of scope. All variables go into scope
when they are declared. Local variables go out of scope when the block they are declared
in ends. Instance variables go out of scope when the object is garbage collected. Class vari-
ables remain in scope as long as the program is running.

Be able to recognize misplaced statements in a class. Package and import statements are
optional. If present, both go before the class declaration in that order. Fields and methods
are also optional and are allowed in any order within the class declaration.

Know how to identify when an object is eligible for garbage collection. Draw a diagram
to keep track of references and objects as you trace the code. When no arrows point to a
box (object), it is eligible for garbage collection.

42 Chapter 1 = Java Building Blocks

Review Questions

1. Which of the following are valid Java identifiers? (Choose all that apply)
ASB

_helloWorld

true

java.lang

Public

1980_s

Mmoo ®w >

2. What is the output of the following program?
1: public class WaterBottle {

private String brand;

private boolean empty;

public static void main(String[] args) {
WaterBottle wb = new WaterBottle();
System.out.print("Empty = " + wb.empty);
System.out.print(", Brand = " + wb.brand);
I

Line 6 generates a compiler error.
Line 7 generates a compiler error.
There is no output.

Empty = false, Brand = null

Empty = false, Brand

MmO W>» ® N0 uswN

Empty = null, Brand = null

3. Which of the following are true? (Choose all that apply)
: short numPets = 5;
: int numGrains = 5.6;
: String name = "Scruffy";
: numPets.length();
: numGrains.length();
¢ name.length();

4

5

6

7

8

9

A. Line 4 generates a compiler error.
B. Line 5 generates a compiler error.
C. Line 6 generates a compiler error.
D. Line 7 generates a compiler error.
E

Line 8 generates a compiler error.

Review Questions

F. Line 9 generates a compiler error.

G. The code compiles as is.

4. Given the following class, which of the following is true? (Choose all that apply)
1: public class Snake {

2:

3: public void shed(boolean time) {
4

5 if (time) {

6:

7 }

8 System.out.println(result);

9:

10: }

11: }

If String result = "done"; is inserted on line 2, the code will compile.

If String result = "done"; is inserted on line 4, the code will compile.

A
B
C. If String result = "done"; is inserted on line 6, the code will compile.
D. IfString result = "done"; is inserted on line 9, the code will compile.
E

None of the above changes will make the code compile.

5. Given the following classes, which of the following can independently replace INSERT
IMPORTS HERE to make the code compile? (Choose all that apply)

package aquarium;
public class Tank { }

package aquarium.jellies;
public class Jelly { }

package visitor;
INSERT IMPORTS HERE
public class AquariumVisitor {
public void admire(Jelly jelly) { } }

import aquarium.*;

import aquarium.*.Jelly;
import aquarium.jellies.Jelly;
import aquarium.jellies.*;

import aquarium.jellies.Jelly.*;

Mmoo w >

None of these can make the code compile.

44 Chapter 1 = Java Building Blocks

6. Given the following classes, what is the maximum number of imports that can be removed
and have the code still compile?

package aquarium; public class Water { }

package aquarium;

import java.lang.*;

import java.lang.System;

import aquarium.Water;

import aquarium.*;

public class Tank {
public void print(Water water) {
System.out.println(water); } }

A. 0
B. 1
C. 2
D. 3
E. 4
F. Does not compile.

7. Given the following classes, which of the following snippets can be inserted in place of
INSERT IMPORTS HERE and have the code compile? (Choose all that apply)

package aquarium;
public class Water {
boolean salty = false;
}
package aquarium.jellies;
public class Water {
boolean salty = true;
}
package employee;
INSERT IMPORTS HERE
public class WaterFiller {
Water water;
}
A. import aquarium.*;
B. import aquarium.Water;
import aquarium.jellies.*;
C. import aquarium.*;
import aquarium.jellies.Water;

10.

Review Questions 45

D. dmport aquarium.*;
import aquarium.jellies.*;
E. dimport aquarium.Water;
import aquarium.jellies.Water;

F. None of these imports can make the code compile.

Given the following class, which of the following calls print out Blue Jay? (Choose all that
apply)
public class BirdDisplay {

public static void main(String[] name) {
System.out.println(name[1]);

[

java BirdDisplay Sparrow Blue Jay

java BirdDisplay Sparrow "Blue Jay"

java BirdDisplay Blue Jay Sparrow

java BirdDisplay "Blue Jay" Sparrow

java BirdDisplay.class Sparrow "Blue Jay"

java BirdDisplay.class "Blue Jay" Sparrow

ETMmMODO®P -~

Does not compile.

Which of the following legally fill in the blank so you can run the main() method from the
command line? (Choose all that apply)

public static void main(—)
A. String[] _names

B. String[] 123

C. String abc[]

D. String _Names[]

E. String... $n

F. String names

G. None of the above.

Which of the following are legal entry point methods that can be run from the command
line? (Choose all that apply)

A. private static void main(String[] args)

public static final main(String[] args)

public void main(String[] args)

public static void test(String[] args)

public static void main(String[] args)

public static main(String[] args)

O mMmDoOow

None of the above.

46 Chapter 1 = Java Building Blocks

11. Which of the following are true? (Choose all that apply)
An instance variable of type double defaults to null.
An instance variable of type int defaults to null.

An instance variable of type String defaults to null.
An instance variable of type double defaults to 0.0.
An instance variable of type int defaults to 0.0.

An instance variable of type String defaults to 0.0.

ePmMmo o>

None of the above.

12. Which of the following are true? (Choose all that apply)
A local variable of type boolean defaults to null.
A local variable of type float defaults to 0.

A local variable of type Object defaults to null.

A local variable of type boolean defaults to false.
A local variable of type boolean defaults to true.

A local variable of type float defaults to 0.0.

PmMmmo o>

None of the above.

13. Which of the following are true? (Choose all that apply)

An instance variable of type boolean defaults to false.
An instance variable of type boolean defaults to true.
An instance variable of type boolean defaults to null.
An instance variable of type int defaults to 0.

An instance variable of type int defaults to 0.0.

An instance variable of type int defaults to null.

PmMmoO o>

None of the above.

14. Given the following class in the file /my/directory/named/A/Bird.java:
INSERT CODE HERE
public class Bird { }

Which of the following replaces INSERT CODE HERE if we compile from /my/directory?
(Choose all that apply)

A. package my.directory.named.a;

B. package my.directory.named.A;
C. package named.a;

D. package named.A;

E. package a;

F. package A;

G.

Does not compile.

15.

16.

17.

18.

Review Questions

Which of the following lines of code compile? (Choose all that apply)
A. dint il = 1_234;

double d1 = 1_234_.0;

double d2 = 1_234._0;

double d3 = 1_234.0_;

double d4 = 1_234.0;

None of the above.

mmoDow

Given the following class, which of the following lines of code can replace INSERT CODE
HERE to make the code compile? (Choose all that apply)

public class Price {
public void admission() {
INSERT CODE HERE
System.out.println(amount);
I
int amount = 9L;
int amount = 0b101;
int amount = OXxE;
double amount = OxE;
double amount = 1_2_.0_0;

int amount = 1_2_;

PmMmMmooO®p

None of the above.

Which of the following are true? (Choose all that apply)
public class Bunny {
public static void main(String[] args) {
Bunny bun = new Bunny();

[

Bunny is a class.

bun is a class.

main is a class.

Bunny is a reference to an object.
bun is a reference to an object.

main is a reference to an object.

EPMmMOO®> -

None of the above.

Which represent the order in which the following statements can be assembled into a pro-
gram that will compile successfully? (Choose all that apply)

A: class Rabbit {}
B: dimport java.util.*;
C: package animals;

47

48

19.

20.

GmMmoowp

Chapter 1 = Java Building Blocks

A,B,C
B, C, A
C,B, A
B, A
C,A
A, C
A,B

Suppose we have a class named Rabbit. Which of the following statements are true?
(Choose all that apply)

1
2
3
4:
5:
6
7
8
9

10:
11:
12:

A.

public class Rabbit {
public static void main(String[] args) {

Rabbit one = new Rabbit();

Rabbit two = new Rabbit();

Rabbit three = one;

one = null;

Rabbit four = one;

three = null;

two = null;

two = new Rabbit();

System.gc();
i
The Rabbit object from line 3 is first eligible for garbage collection immediately
following line 6.
The Rabbit object from line 3 is first eligible for garbage collection immediately
following line 8.
The Rabbit object from line 3 is first eligible for garbage collection immediately
following line 12.
The Rabbit object from line 4 is first eligible for garbage collection immediately
following line 9.
The Rabbit object from line 4 is first eligible for garbage collection immediately
following line 11.

The Rabbit object from line 4 is first eligible for garbage collection immediately
following line 12.

What is true about the following code? (Choose all that apply)
public class Bear {

protected void finalize() {

System.out.println("Roar!");

21.

22.

Review Questions

public static void main(String[] args) {
Bear bear = new Bear();
bear = null;
System.gc();

finalize() is guaranteed to be called.
finalize() might or might not be called
finalize() is guaranteed not to be called.
Garbage collection is guaranteed to run.
Garbage collection might or might not run.

Garbage collection is guaranteed not to run.

@M MOUO®P -
(> -

The code does not compile.

What does the following code output?
1: public class Salmon {

2: dnt count;

3: public void Salmon() {

4 count = 4;

5: }

6: public static void main(String[] args) {
7: Salmon s = new Salmon();

8: System.out.println(s.count);

9: } 1}

A. 0

B. 4

C. Compilation fails on line 3.

D. Compilation fails on line 4.

E. Compilation fails on line 7.

F

Compilation fails on line 8.

Which of the following are true statements? (Choose all that apply)
Java allows operator overloading.

Java code compiled on Windows can run on Linux.

Java has pointers to specific locations in memory.

Java is a procedural language.

Java is an object-oriented language.

Mmoo ® >

Java is a functional programming language.

49

50

Chapter 1 = Java Building Blocks

23. Which of the following are true? (Choose all that apply)

A.

Mmoo w

javac compiles a .class file into a . java file.

javac compiles a . java file into a .bytecode file.
javac compiles a .java file into a .class file.

Java takes the name of the class as a parameter.

Java takes the name of the .bytecode file as a parameter.

Java takes the name of the .class file as a parameter.

Operators and
Statements

OCA EXAM OBJECTIVES COVERED IN THIS
CHAPTER:

v Using Operators and Decision Constructs

= Use Java operators; including parentheses to override opera-
tor precedence

= Create if and if/else and ternary constructs

= Use a switch statement

v Using Loop Constructs
= Create and use while loops
= Create and use for loops including the enhanced for loop
= Create and use do/while loops
= Compare loop constructs

= Use break and continue

Like many programming languages, Java is composed primar-
e ily of variables, operators, and statements put together in some
BELASTND logical order. In the previous chapter, we discussed variables
and gave some examples; in this chapter we’ll discuss the various operators and statements
available to you within the language. This knowledge will allow you to build complex func-
tions and class structures that you’ll see in later chapters.

Understanding Java Operators

A Java operator is a special symbol that can be applied to a set of variables, values, or
literals—referred to as operands—and that returns a result. Three flavors of operators are
available in Java: unary, binary, and ternary. These types of operators can be applied to
one, two, or three operands, respectively. For the OCA exam, you’ll need know a specific
subset of Java operators, how to apply them, and the order in which they should be applied.

Java operators are not necessarily evaluated from left-to-right order. For example, the
following Java expression is actually evaluated from right-to-left given the specific opera-
tors involved:

int y = 4;
double x = 3 + 2 * --y;

In this example, you would first decrement y to 3, and then multiply the resulting value
by 2, and finally add 3. The value would then be automatically upcast from 9 to 9.0 and
assigned to x. The final values of x and y would be 9.0 and 3, respectively. If you didn’t
follow that evaluation, don’t worry. By the end of this chapter, solving problems like this
should be second nature.

Unless overridden with parentheses, Java operators follow order of operation, listed in
Table 2.1, by decreasing order of operator precedence. If two operators have the same level
of precedence, then Java guarantees left-to-right evaluation. You need to know only those
operators in bold for the OCA exam.

TABLE 2.1 Order of operator precedence

Operator Symbols and examples

Post-unary operators expression++, expression--

Pre-unary operators ++expression, --expression

Working with Binary Arithmetic Operators 53

Operator Symbols and examples

Other unary operators +, -1

Multiplication/Division/Modulus * [, %

Addition/Subtraction +, -

Shift operators KL, 5>, 55>

Relational operators <, >, <=, >=,instanceof

Equal to/not equal to ==, 1=

Logical operators & A, |

Short-circuit logical operators &&, | |

Ternary operators boolean expression ? expressionl ¢ expres-
sion2

Assignment operators =, 4=, -3, %=, /=, %=, &=, M=, 1=, <K=, S>>, 500=

We’ll spend the first half of this chapter discussing many of the operators in this list as
well as how operator precedence determines which operators should be applied first. Note
that you won’t be tested on some operators, although we recommend that you be aware of
their existence.

Working with Binary Arithmetic
Operators

We’ll begin our discussion with binary operators, by far the most common operators in
the Java language. They can be used to perform mathematical operations on variables,
create logical expressions, as well as perform basic variable assignments. Binary operators
are commonly combined in complex expressions with more than two variables; therefore,
operator precedence is very important in evaluating expressions.

Arithmetic Operators

Arithmetic operators are often encountered in early mathematics and include addition
(+), subtraction (-), multiplication (*), division (/), and modulus (%). They also include the
unary operators, ++ and --, although we cover them later in this chapter. As you may have

54 Chapter 2 = Operators and Statements

noticed in Table 2.1, the multiplicative operators (*, /, %) have a higher order of precedence
than the additive operators (+, -). That means when you see an expression such as this:

int x =2 *5+ 3 * 4 - 8;
you first evaluate the 2 * 5and 3 * 4, which reduces the expression to the following:
int x = 10 + 12 - 8;

Then, you evaluate the remaining terms in left-to-right order, resulting in a value of x of
14. Make sure you understand why the result is 24 as you’ll likely see this kind of operator
precedence question on the exam.

Notice that we said “Unless overridden with parentheses...” prior to Table 2.1. That’s
because you can change the order of operation explicitly by wrapping parentheses around
the sections you want evaluated first. Compare the previous example with the following
one containing the same values and operators, in the same order, but with two sets of
parentheses:

int x =2 * ((5+3) *4-8);

This time you would evaluate the addition operator 10 + 3, which reduces the expres-
sion to the following:

int x =2 * (8 * 4 - 8);

You can further reduce this expression by multiplying the first two values within the
parentheses:

int x = 2 * (32 - 8);

Next, you subtract the values within the parentheses before applying terms outside the
parentheses:

int x = 2 * 24;

Finally, you would multiply the result by 2, resulting in a value of 48 for x.

All of the arithmetic operators may be applied to any Java primitives, except boolean
and String. Furthermore, only the addition operators + and += may be applied to String
values, which results in String concatenation.

Although we are sure you have seen most of the arithmetic operators before, the modu-
lus operator, %, may be new to you. The modulus, or remainder operator, is simply the
remainder when two numbers are divided. For example, 9 divided by 3 divides evenly and
has no remainder; therefore, the remainder, or 9 % 3, is 0. On the other hand, 11 divided
by 3 does not divide evenly; therefore, the remainder, or 11 % 3, is 2.

Be sure to understand the difference between arithmetic division and modulus. For inte-
ger values, division results in the floor value of the nearest integer that fulfills the operation,
whereas modulus is the remainder value. The following examples illustrate this distinction:

System.out.print(9 / 3); // Outputs 3
System.out.print(9 % 3); // Outputs 0

Working with Binary Arithmetic Operators 55

System.out.print(10 / 3); // Outputs 3
System.out.print(10 % 3); // Outputs 1

System.out.print(11 / 3); // Outputs 3
System.out.print(11 % 3); // Outputs 2

System.out.print(12 / 3); // Outputs 4
System.out.print(12 % 3); // Outputs 0

Note that the division results only increase when the value on the left-hand side goes
from 9 to 12, whereas the modulus remainder value increases by 1 each time the left-hand
side is increased until it wraps around to zero. For a given divisor y, which is 3 in these
examples, the modulus operation results in a value between 0 and (y - 1) for positive divi-
dends. This means that the result of a modulus operation is always 0, 1, or 2.

The modulus operation is not limited to positive integer values in Java
TE and may also be applied to negative integers and floating-point integers.

For a given divisor y and negative dividend, the resulting modulus value

is between and (-y + 1) and 0. For the OCA exam, though, you are not

required to be able to take the modulus of a negative integer or a floating-
point number.

Numeric Promotion

Now that you understand the basics of arithmetic operators, it is vital we talk about primi-
tive numeric promotion, as Java may do things that seem unusual to you at first. If you
recall in Chapter 1, “Java Building Blocks,” where we listed the primitive numeric types,
each primitive has a bit-length. You don’t need to know the exact size of these types for the
exam, but you should know which are bigger than others. For example, you should know
that a long takes up more space than an int, which in turn takes up more space than a
short, and so on.

You should memorize certain rules Java will follow when applying operators to data

types:
Numeric Promotion Rules

1. If two values have different data types, Java will automatically promote one of the val-
ues to the larger of the two data types.

2. If one of the values is integral and the other is floating-point, Java will automatically
promote the integral value to the floating-point value’s data type.

56

Chapter 2 = Operators and Statements

Smaller data types, namely byte, short, and char, are first promoted to int any time
they’re used with a Java binary arithmetic operator, even if neither of the operands is
int.

After all promotion has occurred and the operands have the same data type, the result-
ing value will have the same data type as its promoted operands.

The last two rules are the ones most people have trouble with, and the ones likely to trip

you up on the exam. For the third rule, note that unary operators are excluded from this
rule. For example, applying ++ to a short value results in a short value. We’ll discuss unary
operators in the next section.

Let’s tackle some examples for illustrative purposes:

What is the data type of x * y?
int x = 1;
long y = 33;

If we follow the first rule, since one of the values is long and the other is int, and long
is larger than 1int, then the int value is promoted to a long, and the resulting value is
long.

What is the data type of x + y?

double x = 39.21;

float y = 2.1;

This is actually a trick question, as this code will not compile! As you may remember
from Chapter 1, floating-point literals are assumed to be double, unless postfixed with
an f, as in 2. 1f. If the value was set properly to 2.1f, then the promotion would be
similar to the last example, with both operands being promoted to a double, and the
result would be a double value.

What is the data type of x / y?

short x = 10;

short y = 3;

In this case, we must apply the third rule, namely that x and y will both be promoted
to int before the operation, resulting in an output of type int. Pay close attention to

the fact that the resulting output is not a short, as we’ll come back to this example in
the upcoming section on assignment operators.

What is the data type of x * y / z?

short x = 14;

float y = 13;

double z = 30;

In this case, we must apply all of the rules. First, x will automatically be promoted to
int solely because it is a short and it is being used in an arithmetic binary operation.

Working with Unary Operators 57

The promoted x value will then be automatically promoted to a float so that it can be
multiplied with y. The result of x * y will then be automatically promoted to a double,
so that it can be multiplied with z, resulting in a double value.

Working with Unary Operators

By definition, a unary operator is one that requires exactly one operand, or variable, to
function. As shown in Table 2.2, they often perform simple tasks, such as increasing a
numeric variable by one, or negating a boolean value.

TABLE 2.2 Javaunary operators

Unary operator Description

+ Indicates a number is positive, although numbers are assumed
to be positive in Java unless accompanied by a negative unary
operator

- Indicates a literal number is negative or negates an expression
++ Increments a value by 1
-- Decrements a value by 1

! Inverts a Boolean's logical value

Logical Complement and Negation Operators

The logical complement operator, !, flips the value of a boolean expression. For example,
if the value is true, it will be converted to false, and vice versa. To illustrate this, compare
the outputs of the following statements:

boolean x = false;

System.out.println(x); // false

x = !x;

System.out.println(x); // true

Likewise, the negation operator, -, reverses the sign of a numeric expression, as shown
in these statements:

double x = 1.21;

58 Chapter 2 = Operators and Statements

System.out.println(x); // 1.21

X = -X;
System.out.println(x); // -1.21
X = -X;

System.out.println(x); // 1.21

Based on the description, it might be obvious that some operators require the variable
or expression they’re acting upon to be of a specific type. For example, you cannot apply
a negation operator, -, to a boolean expression, nor can you apply a logical complement
operator, !, to a numeric expression. Be wary of questions on the exam that try to do this,
as they’ll cause the code to fail to compile. For example, none of the following lines of code
will compile:

int x = !5; // DOES NOT COMPILE
boolean y = -true; // DOES NOT COMPILE
boolean z = !0; // DOES NOT COMPILE

The first statement will not compile due the fact that in Java you cannot perform a
logical inversion of a numeric value. The second statement does not compile because you
cannot numerically negate a boolean value; you need to use the logical inverse operator.
Finally, the last statement does not compile because you cannot take the logical comple-
ment of a numeric value, nor can you assign an integer to a boolean variable.

OTE operator or numeric values with boolean expressions or variables. Unlike
some other programming languages, in Java 1 and true are not related in
any way, just as 0 and false are not related.

é’ Keep an eye out for questions on the exam that use the logical complement

Increment and Decrement Operators

Increment and decrement operators, ++ and --, respectively, can be applied to numeric
operands and have the higher order or precedence, as compared to binary operators. In
other words, they often get applied first to an expression.

Increment and decrement operators require special care because the order they are
applied to their associated operand can make a difference in how an expression is pro-
cessed. If the operator is placed before the operand, referred to as the pre-increment opera-
tor and the pre-decrement operator, then the operator is applied first and the value return
is the new value of the expression. Alternatively, if the operator is placed after the operand,
referred to as the post-increment operator and the post-decrement operator, then the origi-
nal value of the expression is returned, with operator applied after the value is returned.

Working with Unary Operators 59

The following code snippet illustrates this distinction:

int counter = 0;
System.out.println(counter); // Outputs 0
System.out.println(++counter); // Outputs 1
System.out.println(counter); // Outputs 1
System.out.println(counter--); // Outputs 1
System.out.println(counter); // Outputs 0

The first pre-increment operator updates the value for counter and outputs the new
value of 1. The next post-decrement operator also updates the value of counter but outputs
the value before the decrement occurs.

One common practice in a certification exam, albeit less common in the real world, is to
apply multiple increment or decrement operators to a single variable on the same line:
int x = 3;
inty = ++#x * 5 / x-- + --x;

System.out.println("x is " + x);
System.out.println("y is " + y);

This one is more complicated than the previous example because x is modified three
times on the same line. Each time it is modified, as the expression moves from left to right,
the value of x changes, with different values being assigned to the variable. As you’ll recall
from our discussion on operator precedence, order of operation plays an important part in
evaluating this example.

So how do you read this code? First, the x is incremented and returned to the expression,
which is multiplied by 5. We can simplify this:

inty =4 *5 / x-- + --x; // x assigned value of 4

Next, x is decremented, but the original value of 4 is used in the expression, leading to
this:
inty =4 *5/ 4+ --x; [/ x assigned value of 3

The final assignment of x reduces the value to 2, and since this is a pre-increment opera-
tor, that value is returned to the expression:

inty =4 *5 /4 +2; [/ x assigned value of 2

Finally, we evaluate the multiple and division from left-to-right, and finish with the addi-
tion. The result is then printed:
x is 2
y is 7

60 Chapter 2 = Operators and Statements

Using Additional Binary Operators

We’ll now expand our discussion of binary operators to include all other binary operators
that you’ll need to know for the exam. This includes operators that perform assignments,
those that compare arithmetic values and return boolean results, and those that compare
boolean and object values and return boolean results.

Assignment Operators

An assignment operator is a binary operator that modifies, or assigns, the variable on
the left-hand side of the operator, with the result of the value on the right-hand side of
the equation. The simplest assignment operator is the = assignment, which you have seen
already:

int x = 1;

This statement assigns x the value of 1.

Java will automatically promote from smaller to larger data types, as we saw in the pre-
vious section on arithmetic operators, but it will throw a compiler exception if it detects
you are trying to convert from larger to smaller data types.

Let’s return to some examples similar to what you saw in Chapter 1 in order to show
how casting can resolve these issues:

int x = 1.0; // DOES NOT COMPILE

short y = 1921222; // DOES NOT COMPILE

int z = 9f; // DOES NOT COMPILE

long t = 192301398193810323; // DOES NOT COMPILE

The first statement does not compile because you are trying to assign a double 1.0 to an
integer value. Even though the value is a mathematic integer, by adding .0, you’re instruct-
ing the compiler to treat it as a double. The second statement does not compile because the
literal value 1921222 is outside the range of short and the compiler detects this. The third
statement does not compile because of the f added to the end of the number that instructs
the compiler to treat the number as floating-point value. Finally, the last statement does not
compile because Java interprets the literal as an int and notices that the value is larger than
int allows. The literal would need a postfix L to be considered a long.

Casting Primitive Values

We can fix the examples in the previous section by casting the results to a smaller data
type. Casting primitives is required any time you are going from a larger numerical data
type to a smaller numerical data type, or converting from a floating-point number to an
integral value.

int x = (int)l.0;
short y = (short)1921222; // Stored as 20678

Using Additional Binary Operators 61

int z = (int)9l;
long t = 192301398193810323L;

Overflow and Underflow

The expressions in the previous example now compile, although there’s a cost. The sec-
ond value, 1,921,222, is too large to be stored as a short, so numeric overflow occurs
and it becomes 20,678. Overflow is when a number is so large that it will no longer fit
within the data type, so the system “wraps around” to the next lowest value and counts
up from there. There's also an analogous underflow, when the number is too low to fit in
the data type.

This is beyond the scope of the exam, but something to be careful of in your own code.
For example, the following statement outputs a negative number:

System.out.print(2147483647+1); // -2147483648

Since 2147483647 is the maximum int value, adding any strictly positive value to it will
cause it to wrap to the next negative number.

Let’s return to one of our earlier examples for a moment:

short x = 10;
short y = 3;
short z = x * y; // DOES NOT COMPILE

Based on everything you have learned up until now, can you understand why the last
line of this statement will not compile? If you remember, short values are automatically
promoted to int when applying any arithmetic operator, with the resulting value being of
type int. Trying to set a short variable to an int results in a compiler error, as Java thinks
you are trying to implicitly convert from a larger data type to a smaller one.

There are times that you may want to override the default behavior of the compiler. For
example, in the preceding example, we know the result of 10 * 3 is 30, which can easily
fit into a short variable. If you need the result to be a short, though, you can override this
behavior by casting the result of the multiplication:

short x = 10;
short y = 3;
short z = (short)(x * y);

By performing this explicit cast of a larger value into a smaller data type, you are
instructing the compiler to ignore its default behavior. In other words, you are telling the
compiler that you have taken additional steps to prevent overflow or underflow. It is also
possible that in your particular application and scenario, overflow or underflow would
result in acceptable values.

62 Chapter 2 = Operators and Statements

Compound Assignment Operators

Besides the simple assignment operator, =, there are also numerous compound assignment
operators. Only two of the compound operators listed in Table 2.1 are required for the
exam, += and -=. Complex operators are really just glorified forms of the simple assignment
operator, with a built-in arithmetic or logical operation that applies the left- and right-hand
sides of the statement and stores the resulting value in a variable in the left-hand side of the
statement. For example, the following two statements after the declaration of x and z are
equivalent:

int x = 2, z = 3;
X = x *z; [/ Simple assignment operator
X *= z; // Compound assignment operator

The left-hand side of the compound operator can only be applied to a variable that is
already defined and cannot be used to declare a new variable. In the previous example, if x
was not already defined, then the expression x *= z would not compile.

Compound operators are useful for more than just shorthand—they can also save us
from having to explicitly cast a value. For example, consider the following example, in
which the last line will not compile due to the result being promoted to a long and assigned
to an int variable:

long x = 10;
int y = 5;
y =y * x; // DOES NOT COMPILE
Based on the last two sections, you should be able to spot the problem in the last line.

This last line could be fixed with an explicit cast to (int), but there’s a better way using the
compound assignment operator:

long x = 10;
int y = 5;
y *= %

The compound operator will first cast x to a long, apply the multiplication of two long
values, and then cast the result to an int. Unlike the previous example, in which the com-
piler threw an exception, in this example we see that the compiler will automatically cast
the resulting value to the data type of the value on the left-hand side of the compound
operator.

One final thing to know about the assignment operator is that the result of the assign-
ment is an expression in and of itself, equal to the value of the assignment. For example, the
following snippet of code is perfectly valid, if not a little odd looking:

long x = 5;
long y = (x=3);
System.out.println(x); // Outputs 3

System.out.println(y); // Also, outputs 3

Using Additional Binary Operators 63

The key here is that (x=3) does two things. First, it sets the value of the variable x to be
3. Second, it returns a value of the assignment, which is also 3. The exam creators are fond
of inserting the assignment operator = in the middle of an expression and using the value of
the assignment as part of a more complex expression.

Relational Operators

We now move on to relational operators, which compare two expressions and return a
boolean value. The first four relational operators (see Table 2.3) are applied to numeric
primitive data types only. If the two numeric operands are not of the same data type, the
smaller one is promoted in the manner as previously discussed.

TABLE 2.3 Relational operators

< Strictly less than

<= Less than or equal to

> Strictly greater than

>= Greater than or equal to

Let’s look at examples of these operators in action:
int x = 10, y = 20, z = 10;
System.out.println(x < y); // Outputs true
System.out.println(x <= vy); // Outputs true
System.out.println(x >= z); // Outputs true
System.out.println(x > z); // Outputs false

Notice that the last example outputs false, because although x and z are the same
value, x is not strictly greater than z.

The fifth relational operator (Table 2.4) is applied to object references and classes or
interfaces.

TABLE 2.4 Relational instanceof operator

a instanceof b True if the reference that a points to is an instance of
a class, subclass, or class that implements a particular
interface, as named in b

The instanceof operator, while useful for determining whether an arbitrary object is a
member of a particular class or interface, is out of scope for the OCA exam.

64 Chapter 2 = Operators and Statements

Logical Operators

If you have studied computer science, you may have already come across logical operators
before. If not, no need to panic—we’ll be covering them in detail in this section.

The logical operators, (&), (|), and (*), may be applied to both numeric and boolean data
types. When they’re applied to boolean data types, they’re referred to as logical operators.
Alternatively, when they’re applied to numeric data types, they’re referred to as bitwise
operators, as they perform bitwise comparisons of the bits that compose the number. For
the exam, though, you don’t need to know anything about numeric bitwise comparisons, so
we’ll leave that educational aspect to other books.

You should familiarize with the truth tables in Figure 2.1, where x and y are assumed to
be boolean data types.

FIGURE 2.1 Thelogical true tablesfor&, |, and
X &y x|y x My
(AND) (INCLUSIVE OR) (EXCLUSIVE OR)
y = y = y = y = y = y =
true false true false true false
X = X = X =
true | false true true false | true
true true true
X = false | false X = true | false X = true | false
false false false

Here are some tips to help remember this table:
= AND is only true if both operands are true.
= Inclusive OR is only false if both operands are false.

= Exclusive OR is only true if the operands are different.

Finally, we present the conditional operators, & and | |, which are often referred to as
short-circuit operators. The short-circuit operators are nearly identical to the logical opera-
tors, & and |, respectively, except that the right-hand side of the expression may never be
evaluated if the final result can be determined by the left-hand side of the expression. For
example, consider the following statement:

boolean x = true || (y < 4);

Referring to the truth tables, the value x can only be false if both sides of the expression
are false. Since we know the left-hand side is true, there’s no need to evaluate the right-hand
side, since no value of y will ever make the value of x anything other than true. It may help
you to illustrate this concept by executing the previous line of code for various values of y.

Using Additional Binary Operators 65

A more common example of where short-circuit operators are used is checking for null
objects before performing an operation, such as this:

if(x != null && x.getValue() < 5) {
// Do something

In this example, if x was null, then the short-circuit prevents a NullPointerException
from ever being thrown, since the evaluation of x.getValue() < 5 is never reached.
Alternatively, if we used a logical &, then both sides would always be evaluated and when x
was null this would throw an exception:

if(x != null & x.getValue() < 5) { // Throws an exception if x is null
// Do something

Be wary of short-circuit behavior on the exam, as questions are known to alter a vari-
able on the right-hand side of the expression that may never be reached. For example, what
is the output of the following code?

int x = 6;
boolean y = (x >= 6) || (++x <= 7);
System.out.println(x);

Because x >= 6 is true, the increment operator on the right-hand side of the expression
is never evaluated, so the output is 6.

Equality Operators

Determining equality in Java can be a nontrivial endeavor as there’s a semantic difference
between “two objects are the same” and “two objects are equivalent.” It is further compli-
cated by the fact that for numeric and boolean primitives, there is no such distinction.

Let’s start with the basics, the equals operator == and not equals operator !=. Like the
relational operators, they compare two operands and return a boolean value about whether
the expressions or values are equal, or not equal, respectively.

The equality operators are used in one of three scenarios:

1. Comparing two numeric primitive types. If the numeric values are of different data
types, the values are automatically promoted as previously described. For example,
5 == 5.00 returns true since the left side is promoted to a double.

Comparing two boolean values.

Comparing two objects, including null and String values.

66 Chapter 2 = Operators and Statements

The comparisons for equality are limited to these three cases, so you cannot mix and
match types. For example, each of the following would result in a compiler error:

boolean x = true == 3; // DOES NOT COMPILE
boolean y = false != "Giraffe"; // DOES NOT COMPILE
boolean z = 3 == "Kangaroo"; // DOES NOT COMPILE

Pay close attention to the data types when you see an equality operator on the exam.
The exam creators also have a habit of mixing assignment operators and equality opera-
tors, as in the following snippet:

boolean y = false;
boolean x = (y = true);
System.out.println(x); // Outputs true

At first glance, you might think the output should be false, and if the expression was
(y == true), then you would be correct. In this example, though, the expression is assign-
ing the value of true to y, and as you saw in the section on assignment operators, the
assignment itself has the value of the assignment. Therefore, the output would be true.

For object comparison, the equality operator is applied to the references to the objects,
not the objects they point to. Two references are equal if and only if they point to the same
object, or both point to null. Let’s take a look at some examples:

File x = new File("myFile.txt");

File y = new File("myFile.txt");

File z = x;

System.out.println(x == vy); // Outputs false
System.out.println(x == z); // Outputs true

Even though all of the variables point to the same file information, only two, x and z,
are equal in terms of ==. In this example, as well as during the OCA exam, you may be pre-
sented with classnames that are unfamiliar, such as File. Many times you can answer ques-
tions about these classes without knowing the specific details of these classes. In particular,
you should be able to answer questions that indicate x and y are two separate and distinct
objects, even if you do not know the data types of these objects.

In Chapter 3, “Core Java APIs,” we’ll continue the discussion of object equality by intro-
ducing what it means for two different objects to be equivalent. We’ll also cover String
equality and show how this can be a nontrivial topic.

Understanding Java Statements

Java operators allow you to create a lot of complex expressions, but they’re limited in the
manner in which they can control program flow. For example, imagine you want a sec-
tion of code to only be executed under certain conditions that cannot be evaluated until

Understanding Java Statements 67

runtime. Or suppose you want a particular segment of code to repeat once for every item in
some list.

As you may recall from Chapter 1, a Java statement is a complete unit of execution in
Java, terminated with a semicolon (;). For the remainder of the chapter, we’ll be introduc-
ing you to various Java control flow statements. Control flow statements break up the flow
of execution by using decision making, looping, and branching, allowing the application to
selectively execute particular segments of code.

These statements can be applied to single expressions as well as a block of Java code.

As described in the previous chapter, a block of code in Java is a group of zero or more
statements between balanced braces, ({}), and can be used anywhere a single statement is
allowed.

The if-then Statement

Often, we only want to execute a block of code under certain circumstances. The if-then
statement, as shown in Figure 2.2, accomplishes this by allowing our application to execute
a particular block of code if and only if a boolean expression evaluates to true at runtime.

FIGURE 2.2 The structure of an if-then statement

if k
itkeyword Parentheses (required)

)

if(booleanExpression) {

. Curly braces required for block
// Branch 1if true of multiple statements, optional
for single statement

For example, imagine we had a function that used the hour of day, an integer value from
0 to 23, to display a message to the user:

if(hour0fDay < 11)
System.out.println("Good Morning");

If the hour of the day is less than 11, then the message will be displayed. Now let’s say
we also wanted to increment some value, morningGreetingCount, every time the greeting
is printed. We could write the if-then statement twice, but luckily Java offers us a more
natural approach using a block:

if(hour0fDay < 11) {
System.out.println("Good Morning");
morningGreetingCount++;

68 Chapter 2 = Operators and Statements

The block allows multiple statements to be executed based on the if-then evaluation.
Notice that the first statement didn’t contain a block around the print section, but it easily
could have. For readability, it is considered good coding practice to put blocks around the
execution component of if-then statements, as well as many other control flow statements,
although it is not required.

Watch Indentation and Braces

One area that the exam writers will try to trip you up is on if-then statements without
braces ({}). For example, take a look at this slightly modified form of our example:

if(hour0fDay < 11)
System.out.println("Good Morning");

morningGreetingCount++;

Based on the indentation, you might be inclined to think the variable morningGreeting-
Count is only going to be incremented if the hourOfDay is less than 11, but that’s not what
this code does. It will execute the print statement only if the condition is met, but it will
always execute the increment operation.

Remember that in Java, unlike some other programming languages, tabs are just
whitespace and are not evaluated as part of the execution. When you see a control flow
statement in a question, be sure to trace the open and close braces of the block and
ignore any indentation you may come across.

The if-then-else Statement

Let’s expand our example a little. What if we want to display a different message if it is 11
a.m. or later? Could we do it using only the tools we have? Of course we can!
if(hour0fDay < 11) {

System.out.println("Good Morning");
}
if(hour0fDay >= 11) {

System.out.println("Good Afternoon");

This seems a bit redundant, though, since we’re performing an evaluation on hour0OfDay
twice. It’s also wasteful because in some circumstances the cost of the boolean expression
we’re evaluating could be computationally expensive. Luckily, Java offers us a more useful
approach in the form of an if-then-else statement, as shown in Figure 2.3.

Understanding Java Statements 69

FIGURE 2.3 The structure of an if-then-else statement

if ki
it keyword Parentheses (required)

S

if(booleanExpression) {<

// Branch if true w

— Curly braces required for block
} else {<« of multiple statements, optional
for single statement
// Branch if false 1
Optional else statement

}<

Let’s return to this example:

if(hour0fDay < 11) {
System.out.println("Good Morning");

} else {
System.out.println("Good Afternoon");

Now our code is truly branching between one of the two possible options, with the
boolean evaluation happening only once. The else operator takes a statement or block of
statement, in the same manner as the if statement does. In this manner, we can append
additional if-then statements to an else block to arrive at a more refined example:

if(hour0fDay < 11) {
System.out.println("Good Morning");

} else if(hourOfDay < 15) {
System.out.println("Good Afternoon");

} else {
System.out.println("Good Evening");

In this example, the Java process will continue execution until it encounters an if-then
statement that evaluates to true. If neither of the first two expressions are true, it will
execute the final code of the else block. One thing to keep in mind in creating complex

70 Chapter 2 = Operators and Statements

if-then-else statements is that order is important. For example, see what happens if we
reorder the previous snippet of code as follows:

if(hour0fDay < 15) {

System.out.println("Good Afternoon");
} else if(hourOfDay < 11) {

System.out.println("Good Morning"); // UNREACHABLE CODE
} else {

System.out.println("Good Evening");

For hours of the day less than 11, this code behaves very differently than the previous set
of code. See if you can determine why the second block can never be executed regardless of
the value of hourOfDay.

If a value is less than 11, then it must be also less than 15 by definition. Therefore, if the
second branch in the example can be reached, the first branch can also be reached. Since
execution of each branch is mutually exclusive in this example—that is, only one branch
can be executed—if the first branch is executed, then the second cannot be executed.
Therefore, there is no way the second branch will ever be executed, and the code is deemed
unreachable.

Verifying the if Statement Evaluates to a Boolean Expression

Another common place the exam may try to lead you astray is by providing code where
the boolean expression inside the if-then statement is not actually a boolean expres-
sion. For example, take a look at the following lines of code:

int x = 1;
if(x) { // DOES NOT COMPILE

3

This statement may be valid in some other programming and scripting languages, but not
in Java, where 0 and 1 are not considered boolean values. Also, be wary of assignment
operators being used as if they were equals == operators in if-then statements:

int x = 1;
if(x = 5) { // DOES NOT COMPILE

Understanding Java Statements n

Ternary Operator

Now that we have discussed if-then-else statements, we can briefly return to our discus-
sion of operators and present the final operator that you need to learn for the exam. The
conditional operator, ? :, otherwise known as the ternary operator, is the only operator
that takes three operands and is of the form:

booleanExpression ? expression : expression,

The first operand must be a boolean expression, and the second and third can be any
expression that returns a value. The ternary operation is really a condensed form of an if-
then-else statement that returns a value. For example, the following two snippets of code
are equivalent:

int y = 10;
final int x;
if(y > 5) {
x =2 *y;
} else {
x =3 *y;

Compare the previous code snippet with the following equivalent ternary operator code
snippet:

int y = 10;
int x = (y >5) 2 (2 *y): (3*y);

Note that it is often helpful for readability to add parentheses around the expressions in
ternary operations, although it is certainly not required.

There is no requirement that second and third expressions in ternary operations have
the same data types, although it may come into play when combined with the assignment
operator. Compare the following two statements:

System.out.println((y > 5) ? 21 : "Zebra");
int animal = (y < 91) ? 9 : "Horse"; // DOES NOT COMPILE

Both expressions evaluate similar boolean values and return an int and a String,
although only the first line will compile. The System.out.println() does not care that the
statements are completely different types, because it can convert both to String. On the
other hand, the compiler does know that "Horse" is of the wrong data type and cannot be
assigned to an int; therefore, it will not allow the code to be compiled.

12 Chapter 2 = Operators and Statements

Ternary Expression Evaluation

As of Java 7, only one of the right-hand expressions of the ternary operator will be evalu-
ated at runtime. In a manner similar to the short-circuit operators, if one of the two right-
hand expressions in a ternary operator performs a side effect, then it may not be applied
at runtime. Let’s illustrate this principle with the following example:

int y = 1;

int z = 1;

final int x = y<10 ? y++ : z++;
System.out.println(y+","+z); // Outputs 2,1

Notice that since the left-hand boolean expression was true, only y was incremented.
Contrast the preceding example with the following modification:

inty = 1;

int z = 1;

final int x = y>=10 ? y++ : z++;

System.out.println(y+","+z); // Outputs 1,2

Now that the left-hand boolean expression evaluates to false, only z was incremented.

In this manner, we see how the expressions in a ternary operator may not be applied if
the particular expression is not used.

For the exam, be wary of any question that includes a ternary expression in which a vari-
able is modified in one of the right-hand side expressions.

The switch Statement

We now expand on our discussion of if-then-else statements by discussing a switch
statement. A switch statement, as shown in Figure 2.4, is a complex decision-making struc-
ture in which a single value is evaluated and flow is redirected to the first matching branch,
known as a case statement. If no such case statement is found that matches the value, an
optional default statement will be called. If no such default option is available, the entire
switch statement will be skipped.

Supported Data Types

As shown in Figure 2.4, a switch statement has a target variable that is not evaluated until
runtime. Prior to Java 5.0, this variable could only be int values or those values that could
be promoted to int, specifically byte, short, char, or int. When enum was added in Java
5.0, support was added to switch statements to support enum values. In Java 7, switch

Understanding Java Statements 13

statements were further updated to allow matching on String values. Finally, the switch
statement also supports any of the primitive numeric wrapper classes, such as Byte, Short,
Character, or Integer.

FIGURE 2.4 The structure of a switch statement

switch keyword
Parentheses (required)

)

switch(variableToTest) {<«——— Beginning curly brace (required)

case constantExpressiony:

switch statement may // Branch for case;;
contain 0 or more break; <
case branches
case constantExpression;: Optional break
// Branch for case;;
break; <

Optional default that may
appear anywhere within
switch statement

default:
// Branch for default
} <«<——— Ending curly brace (required)

Data types supported by switch statements include the following:
= dntand Integer
= byte and Byte
= short and Short
= char and Character
= dntand Integer
= String
= enum values

For the exam, we recommend you memorize this list. Note that boolean and long, and
their associated wrapper classes, are not supported by switch statements.

Compile-time Constant Values

The values in each case statement must be compile-time constant values of the same data
type as the switch value. This means you can use only literals, enum constants, or final

74 Chapter 2 = Operators and Statements

constant variables of the same data type. By final constant, we mean that the variable
must be marked with the final modifier and initialized with a literal value in the same
expression in which it is declared.
Let’s look at a simple example using the day of the week, with 0 for Sunday, 1 for
Monday, and so on:
int dayOfWeek = 5;
switch(dayOfWeek) {
default:
System.out.println("Weekday");
break;
case 0:
System.out.println("Sunday");
break;
case 6:
System.out.println("Saturday");
break;

With a value of dayOfWeek of 5, this code will output:
Weekday

The first thing you may notice is that there is a break statement at the end of each case
and default section. We’ll discuss break statements in detail when we discuss loops, but
for now all you need to know is that they terminate the switch statement and return flow
control to the enclosing statement. As we’ll soon see, if you leave out the break statement,
flow will continue to the next proceeding case or default block automatically.

Another thing you might notice is that the default block is not at the end of the switch
statement. There is no requirement that the case or default statements be in a particular
order, unless you are going to have pathways that reach multiple sections of the switch
block in a single execution.

To illustrate both of the preceding points, consider the following variation:
int dayOfWeek = 5;
switch(dayOfWeek) {
case 0:
System.out.println("Sunday");
default:
System.out.println("Weekday");
case 6:
System.out.println("Saturday");
break;

Understanding Java Statements 75

This code looks a lot like the previous example except two of the break statements have
been removed and the order has been changed. This means that for the given value of day-
OfWeek, 5, the code will jump to the default block and then execute all of the proceeding
case statements in order until it finds a break statement or finishes the structure:

Weekday
Saturday

The order of the case and default statements is now important since placing the
default statement at the end of the switch statement would cause only one word to be
output.

What if the value of dayOfWeek was 6 in this example? Would the default block still be
executed? The output of this example with dayOfWeek set to 6 would be:

Saturday

Even though the default block was before the case block, only the case block was exe-
cuted. If you recall the definition of the default block, it is only branched to if there is no
matching case value for the switch statement, regardless of its position within the switch
statement.

Finally, if the value of dayOfWeek was 0, all three statements would be output:

Sunday

Weekday
Saturday

Notice that in this last example, the default is executed since there was no break state-
ment at the end of the preceding case block. While the code will not branch to the default
statement if there is a matching case value within the switch statement, it will execute the
default statement if it encounters it after a case statement for which there is no terminat-
ing break statement.

The exam creators are fond of switch examples that are missing break statements!
When evaluating switch statements on the exam, always consider that multiple branches
may be visited in a single execution.

We conclude our discussion on switch statements by acknowledging that the data type
for case statements must all match the data type of the switch variable. As already dis-
cussed, the case statement value must also be a literal, enum constant, or final constant
variable. For example, given the following switch statement, notice which case statements
will compile and which will not:

private int getSortOrder(String firstName, final String lastName) {

String middleName = "Patricia";
final String suffix = "JR";
int id = 0;

switch(firstName) {
case "Test":
return 52;

76 Chapter 2 = Operators and Statements

case middleName: // DOES NOT COMPILE
id = 5;
break;

case suffix:
id = 0;
break;

case lastName: // DOES NOT COMPILE
id = 8;
break;

case 5: // DOES NOT COMPILE
id = 7;
break;

case 'J': // DOES NOT COMPILE
id = 10;
break;

case java.time.DayOfWeek.SUNDAY: // DOES NOT COMPILE
id=15;
break;

}

return 1id;

The first case statement compiles without issue using a String literal and is a good
example of how a return statement, like a break statement, can be used to exit the switch
statement early. The second case statement does not compile because middleName is not a
final variable, despite having a known value at this particular line of execution. The third
case statement compiles without issue because suffix is a final constant variable.

In the fourth case statement, despite lastName being final, it is not constant as it is
passed to the function; therefore, this line does not compile as well. Finally, the last three
case statements don’t compile because none of them have a matching type of String; the
last one is an enum value.

The while Statement

A repetition control structure, which we refer to as a loop, executes a statement of code
multiple times in succession. By using nonconstant variables, each repetition of the state-
ment may be different. For example, a statement that iterates over a list of unique names
and outputs them would encounter a new name on every execution of the loop.

Understanding Java Statements 77

The simplest such repetition control structure in Java is the while statement, described
in Figure 2.5. Like all repetition control structures, it has a termination condition, imple-
mented as a boolean expression, that will continue as long as the expression evaluates to
true.

FIGURE 2.5 The structure of a while statement

while keyword)
Parentheses (required)

S

while(booleanExpression) {

Curly braces required for block
// Body of multiple statements, optional
for single statement

As shown in Figure 2.5, a while loop is similar to an if-then statement in that it is
composed of a boolean expression and a statement, or block of statements. During execu-
tion, the boolean expression is evaluated before each iteration of the loop and exits if the
evaluation returns false. It is important to note that a while loop may terminate after its
first evaluation of the boolean expression. In this manner, the statement block may never
be executed.

Let’s return to our mouse example from Chapter 1 and show a loop can be used to
model a mouse eating a meal:
int roomInBelly = 5;

public void eatCheese(int bitesOfCheese) {
while (bitesOfCheese > 0 && roomInBelly > 0) {
bitesOfCheese--;
roomInBelly--;
}

System.out.println(bitesOfCheese+" pieces of cheese left");

This method takes an amount of food, in this case cheese, and continues until the mouse
has no room in its belly or there is no food left to eat. With each iteration of the loop, the
mouse “eats” one bite of food and loses one spot in its belly. By using a compound boolean
statement, you ensure that the while loop can end for either of the conditions.

78 Chapter 2 =« Operators and Statements

@ Real World Scenario

Infinite Loops

Consider the following segment of code:

int x = 2;

int y = 5;

while(x < 10)
y+ts

You may notice one glaring problem with this statement: it will never end! The boolean
expression that is evaluated prior to each loop iteration is never modified, so the expres-
sion (x < 10) will always evaluate to true. The result is that the loop will never end, cre-
ating what is commonly referred to as an infinite loop.

Infinite loops are something you should be aware of any time you create a loop in your
application. You should be absolutely certain that the loop will eventually terminate
under some condition. First, make sure the loop variable is modified. Then, ensure that
the termination condition will be eventually reached in all circumstances. As you'll see
in the upcoming section “Understanding Advanced Flow Control,” a loop may also exit
under other conditions such as a break statement.

The do-while Statement

Java also allows for the creation of a do-while loop, which like a while loop, is a
repetition control structure with a termination condition and statement, or block of
statements, as shown in Figure 2.6. Unlike a while loop, though, a do-while loop guaran-
tees that the statement or block will be executed at least once.

FIGURE 2.6 The structure of a do-while statement

do keyword
do { =
{ Curly braces required for block
of multiple statements, optional
// Body for single statement
v

} while (booleanExpression); «————— Semicolon (required)

T

while keyword

Parentheses (required)

Understanding Java Statements 19

The primary difference between the syntactic structure of a do-while loop and a while
loop is that a do-wh1ile loop purposely orders the statement or block of statements before
the conditional expression, in order to reinforce