

®

Oracle Essbase
& Oracle OLAP:
The Guide to Oracle’s
Multidimensional
Solution

About the Authors
Michael Schrader, Director, Business Intelligence and Performance Management
Architecture at Oracle Corporation, is an internationally recognized expert in the fields
of data warehousing; extract, transform, and load (ETL); business intelligence (BI);
online analytical processing (OLAP); enterprise performance management (EPM); and
database administration. He has more than 30 years of IT experience, specializing in
Oracle since 1987. Michael graduated with an MBA from Ohio University and a
Master’s degree in Data Processing from the University of Denver. He is a certified
Oracle Professional DBA (OCP) (Oracle 7, 8, 8i, 9i, 10g, and 11g).

Michael is a frequent speaker at major Oracle and BI conferences, such as
Oracle OpenWorld, Independent Oracle Users Group (IOUG) Collaborate, Oracle
Development Tools User Group (ODTUG), and the BI & PM Conference; as well as
regional conferences, such as the Rocky Mountain Oracle Users Group (RMOUG).
He has written articles for the Journal of Management Excellence, produced the
white paper Understanding an OLAP Solution from Oracle for Oracle Corporation,
and coauthored Oracle Data Warehousing Unleashed (Sams, 1997).

Dan Vlamis has been developing OLAP applications since 1986, when he graduated
from Brown University with a Bachelor’s degree in Computer Science. He worked
with Express at Information Resources, Inc. (IRI), where he led the back-end team
that wrote Oracle Sales Analyzer in Express. In 1992, he left IRI and moved to the
Kansas City area, where he founded Vlamis Software Solutions, Inc., which has led
more than 200 OLAP implementations. Dan has been a frequent speaker at major
Oracle conferences such as Oracle OpenWorld, IOUG Collaborate, and ODTUG for
over a decade. As an Oracle Business Intelligence, Warehousing, and Analytics
(BIWA) board member, he chaired BIWA Summit 2008. Dan was a contributing
author to Oracle8i Data Warehousing (Oracle Press, 2001). Recognized by Oracle as
an Oracle ACE, he is often featured in Oracle Magazine. Dan is a customer advisory
board member for Oracle BI and OLAP-related products, and he consults with
Oracle Product Management regularly. Dan enjoys covering BI and OLAP through
his blog at www.vlamis.com/blog and can be reached at dvlamis@vlamis.com.

Mike Nader has been working in the BI and EPM space for more than a decade,
starting in logistics and distribution in the client sector, and moving to Hyperion
(in Connecticut) in 2000. He has worked with Essbase for the past nine years in a
variety of roles, which span both Hyperion Solutions and Oracle. These include
curriculum development, technical instruction, product management (as part of
Hyperion’s engineering organization), and technical field strategy. Mike has also
worked on a number of field services engagements with Essbase and surrounding
technologies. He has been certified in Essbase since version 6 and has been on the
committees to write the certification exams since version 7.x. Mike is also a recognized

www.vlamis.com/blog

expert on Oracle’s Smart View Office integration. Currently, Mike is the Global
Domain Expert for Essbase and Analytics with Oracle’s Enterprise Performance
Management and Business Intelligence team.

Chris Claterbos has been an Oracle DBA since 1984. Over the past 24 years, he has
also been a data architect, developer, and project manager for numerous companies.
He has managed numerous data warehouse and BI implementations. His most recent
work includes several Oracle Express and Oracle OLAP-based analysis systems.
Chris speaks and teaches at several national conferences every year, including IOUG
Collaborate and Oracle OpenWorld. He has participated in several software beta
programs, including the betas for Oracle Database 10g and Oracle Database 11g,
and also serves on advisor boards, such as the IOUG Conference Committee. He
was a contributing author to Oracle8i Data Warehousing (Oracle Press, 2001). Chris
is currently Consulting Manager for Vlamis Software Solutions, Inc., specializing
in data warehousing and BI implementations, using Oracle Business Intelligence
editions, Oracle OLAP, Java JDeveloper BI Beans and ADF, Oracle Warehouse
Builder, and related products. Chris regularly contributes to the Vlamis Software blog
at www.vlamis.com/blog and can be reached at claterbos@vlamis.com.

Dave Collins began his career some 25 years ago at Arthur Andersen & Company,
as a Program Manager for the company’s worldwide budgeting application. The
application was hosted via Comshare, a time-sharing and software provider. Dave
joined Comshare, working as a consultant, instructor, and sales engineer. The
move to Comshare also provided an introduction to Essbase. Dave also worked at
several partners specializing in Essbase implementations and education, and then
joined Hyperion. Today, as a Director, Analytics at Oracle, Dave is responsible for
assisting in strategic opportunities and sales readiness globally.

Floyd Conrad has been working in the finance and accounting field for more
than 20 years, and with Oracle’s Hyperion Enterprise Performance Management
System as a customer, consultant, and sales consultant for more than 15 years. He
is a certified Oracle Hyperion Planning Professional. In his current role as Senior
Director of Performance Management, Floyd is responsible for leading the team of
Integrated Business Planning Experts, and assisting in strategic opportunities and
global product sales support. Additionally, Floyd acts as a conduit between the
global field sales organization and Development and Marketing.

Mitch Campbell is a Global Domain Expert for Business Intelligence at Oracle.
He has more than ten years of experience with decision support systems, Essbase,
and many BI reporting tools. As part of the Technical Strategy team for the Oracle
Global Business Unit for Enterprise Performance Management, Mitch works with
strategic accounts and global pre-sales product readiness, and acts as a liaison
with the Product Management and Engineering organizations at Oracle.

www.vlamis.com/blog

About the Contributors
John Baker is Director of Analytics for Oracle’s Enterprise Performance Management
and BI Global Business Unit, specializing in Essbase. With a background in both IT
and accounting, John worked with Essbase for more than ten years in various roles in
the UK, before joining the global team. He has helped numerous prospects realize
the value of Essbase and supported some of the largest Essbase implementations for
several high-profile clients.

Andy Lathrop is a Solution Specialist for Oracle’s Crystal Ball Global Sales Unit.
Andy enjoys using, communicating, and teaching Crystal Ball’s unique decision-
support capabilities, which are useful across many industries and applications. Andy
also has experience in discrete event simulation and marketing return on investment
analysis, as well as mathematics and computer science, teaching at the college
level. Prior to joining Oracle, Andy worked in the Army Corps of Engineers,
Accenture, and the nonprofit sector. He holds Bachelor’s and Master’s degrees in
Operations Research from the U.S. Military Academy and the Colorado School of
Mines, respectively.

Tim Tow, Applied OLAP, Inc. Founder and President, is highly respected in the
Oracle Essbase community for his prolific contributions to public forums as well
as his Essbase blog. He was designated as an Oracle ACE Director based on his
contributions to the community and his extensive knowledge of the Oracle Essbase
APIs. Tim also serves as the Treasurer of the Oracle Development Tools User Group
and a member of its Board of Directors.

About the Technical Editors
Denis Desroches, Consulting Solution Specialist, is a Principal, Enterprise Planning,
with Oracle Corporation. Since 1993, Denis has supported organizations with the
selection, implementation, and knowledge acquisition of scorecard, performance
management, and activity-based management solutions. He has spoken about these
topics throughout the world on numerous occasions, and is a coauthor of Scorecard
Best Practices: Design, Implementation, and Evaluation (Wiley, 2007). Previously,
Denis was a Professor of Mathematics and Business Systems at Seneca College of
Applied Arts and Technology in Toronto, Ontario. He has a Bachelor’s degree in
Mathematics from the University of Waterloo and a Bachelor’s degree in Education
from the University of Western Ontario.

John Paredes is the president of OLAP World, Inc, incorporated in 1998, and
dedicated to helping companies benefit from BI systems. He has more than 15 years
of experience developing analytical systems based on Express/Oracle OLAP. John is
the author of The Multidimensional Data Modeling Toolkit: Making Your Business

Intelligence Applications Smart with Oracle OLAP (OLAP World Press, 2009).
He holds a Bachelor’s degree in Electrical Engineering from Rice University and
a Master’s degree in Statistics from Yale University.

Fred Richards is a Senior Director for Oracle BI. Fred has 15 years experience
working with advanced analytic technologies, including EPM, analytics, OLAP,
and BI. He has built analytical applications to help run multibillion dollar
operations, and has marketed and managed BI software at Oracle, Hyperion
Solutions, Jinfonet Software, and MicroStrategy. Prior to his career in software,
Fred worked at ORBCOMM, the U.S. Department of Energy, Thermo Electron
Corporation, and Westinghouse Electric Corporation. Fred holds a Bachelor’s
degree in Mechanical Engineering from Vanderbilt University, and a Master’s
degree in Engineering and Policy and a J.D. from Washington University in
St. Louis. He is also a coinventor on nine patents related to the integration of
OLAP and telephone networks.

Michael Valianti, Principal Applied Engineer, OLAP Server, Oracle Corporation,
has served as an Applied Research and Performance Engineer for more than
12 years in Oracle OLAP option development. He works on strategic accounts
and major partner initiatives. Michael has contributed to benchmarks, case
studies, and white papers highlighting the speed, quality, and massive scalability
of the Oracle OLAP option.

Jameson White, Principal Applied Engineer, OLAP Server, Oracle Corporation,
has worked as both an Applied Engineer and Product Manager for more than
nine years in Oracle OLAP option development. He works directly with strategic
customers, partners, and other development groups, giving special attention to
the DBA aspects of the Oracle OLAP option. He also maintains a public blog
and wiki.

This page intentionally left blank

®

Oracle Essbase
& Oracle OLAP:
The Guide to Oracle’s
Multidimensional
Solution

Michael Schrader Dan Vlamis

Mike Nader Chris Claterbos

Dave Collins Floyd Conrad

Mitch Campbell

New York Chicago San Francisco
Lisbon London Madrid Mexico City Milan
New Delhi San Juan Seoul Singapore Sydney Toronto

Copyright © 2010 by The McGraw-Hill Companies, Inc. All rights reserved. Except as permitted under the United States
Copyright Act of 1976, no part of this publication may be reproduced or distributed in any form or by any means, or stored
in a database or retrieval system, without the prior written permission of the publisher.

ISBN: 978-0-07-162738-2

MHID: 0-07-162738-3

The material in this eBook also appears in the print version of this title: ISBN: 978-0-07-162182-3, MHID: 0-07-162182-2.

All trademarks are trademarks of their respective owners. Rather than put a trademark symbol after every occurrence of a
trademarked name, we use names in an editorial fashion only, and to the benefit of the trademark owner, with no
intention of infringement of the trademark. Where such designations appear in this book, they have been printed with
initial caps.

McGraw-Hill eBooks are available at special quantity discounts to use as premiums and sales promotions, or for use in
corporate training programs. To contact a representative please e-mail us at bulksales@mcgraw-hill.com.

Information has been obtained by Publisher from sources believed to be reliable. However, because of the possibility of
human or mechanical error by our sources, Publisher, or others, Publisher does not guarantee to the accuracy, adequacy,
or completeness of any information included in this work and is not responsible for any errors or omissions or the results
obtained from the use of such information.

Oracle Corporation does not make any representations or warranties as to the accuracy, adequacy, or completeness of any
information contained in this Work, and is not responsible for any errors or omissions.

TERMS OF USE

This is a copyrighted work and The McGraw-Hill Companies, Inc. (“McGraw-Hill”) and its licensors reserve all rights in
and to the work. Use of this work is subject to these terms. Except as permitted under the Copyright Act of 1976 and the
right to store and retrieve one copy of the work, you may not decompile, disassemble, reverse engineer, reproduce,
modify, create derivative works based upon, transmit, distribute, disseminate, sell, publish or sublicense the work or any
part of it without McGraw-Hill’s prior consent. You may use the work for your own noncommercial and personal use; any
other use of the work is strictly prohibited. Your right to use the work may be terminated if you fail to comply with these
terms.

THE WORK IS PROVIDED “AS IS.” McGRAW-HILL AND ITS LICENSORS MAKE NO GUARANTEES OR WAR-
RANTIES AS TO THE ACCURACY, ADEQUACY OR COMPLETENESS OF OR RESULTS TO BE OBTAINED
FROM USING THE WORK, INCLUDING ANY INFORMATION THAT CAN BE ACCESSED THROUGH THE
WORK VIA HYPERLINK OR OTHERWISE, AND EXPRESSLY DISCLAIM ANY WARRANTY, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. McGraw-Hill and its licensors do not warrant or guarantee that the functions contained
in the work will meet your requirements or that its operation will be uninterrupted or error free. Neither McGraw-Hill nor
its licensors shall be liable to you or anyone else for any inaccuracy, error or omission, regardless of cause, in the work or
for any damages resulting therefrom. McGraw-Hill has no responsibility for the content of any information accessed
through the work. Under no circumstances shall McGraw-Hill and/or its licensors be liable for any indirect, incidental,
special, punitive, consequential or similar damages that result from the use of or inability to use the work, even if any of
them has been advised of the possibility of such damages. This limitation of liability shall apply to any claim or cause
whatsoever whether such claim or cause arises in contract, tort or otherwise.

I dedicate this book to my father, Thomas Schrader. You are
missed and always in our thoughts. I wish to thank my mother,

Donna. And I wish to thank my wife, Donna, my two sons,
Michael and Adam, and my daughter, Rachael, for all of

their love and support. Thanks for all the insights on living.
—Michael Schrader

For my wife, Sally, and my two kids, Chris and Katherine.
This is the book that kept me up late all those nights.

—Dan Vlamis

To my wife, Dawn, and my dear friend, Kathy Horton.
I cannot thank you both enough for your help and

support through this process.

“Innocence dwells with Wisdom, but
never with Ignorance.” (William Blake)

—Mike Nader

I dedicate this book to my loving and understanding wife, Joyce.
—Chris Claterbos

To my wife, Laurie; daughter, Grace; and son, Evan for
their support and understanding through this effort.

To Kathy Horton, my manager, my mentor, my friend.
Thank you for motivating me to excel and for guiding

me through this process. We could not have done it
without you! Last, I would like to thank Jennifer Smith

for showing me how to use my voice.
“Is someone getting the best, the best,

the best, the best of you?” (Foo Fighters)
—Dave Collins

I would like to thank Kathy Horton for inspiring me to participate
in writing this book. I would also like to thank Phil Vaughan for his
patience during this process. I was told that I could thank my dog,

but since I don’t have one, I will thank my cat. So here it goes.
Socks, thanks for keeping me company during those late nights,

sitting between me and my laptop, and motivating me to
finish on time.

—Floyd Conrad

Dedicated to my wife, Elizabeth; my son,
Ethan; and my daughter, Grace

—Mitch Campbell

For Aaron and Zoë, thank you for your love and support.
—Jen Smith

Contents at a Glance

 1 Introduction to OLAP . 1

 2 OLAP Concepts and History . 21

 3 Design and Overall Methodology . 59

 4 Building an Oracle OLAP Analytic Workspace . 131

 5 Building Your Essbase Database . 219

 6 Reporting from an OLAP Application . 291

 7 Leveraging OLAP in Your Organization . 355

 8 Keeping It Running . 411

 9 Real-World Examples . 457

 Glossary . 473

 Index . 483

xi

This page intentionally left blank

Contents

FOREWORD . xix
ACKNOWLEDGMENTS . xxi
INTRODUCTION . xxiii

 1 Introduction to OLAP . 1
OLAP as a Component of Business Intelligence . 2

Enterprise Performance Management . 3
Data Warehousing . 3
Business Reporting . 3
Predictive Analytics and Data Mining . 4
OLAP . 4

Why OLAP? . 4
Business-Focused Multidimensional Data . 5
Business-Focused Calculations . 6
Trustworthy Data and Calculations . 7
Speed-of-Thought Analysis . 7
Flexible, Self-Service Reporting . 8

OLAP Primer . 9
OLAP System Components . 9
OLAP Types . 10
OLAP Products . 12
OLAP with a Data Warehouse . 12
Typical OLAP Applications . 13

Why Two OLAP Products from Oracle? . 13
Similarities Between Essbase and Oracle OLAP 13
Differences Between Essbase and Oracle OLAP 14

OLAP Business Case Studies . 15
Essbase Case Studies . 15
Oracle OLAP Case Studies . 17

xiii

xiv Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution

Architecting the Appropriate OLAP Solution . 18
Choosing the Solution That Meets Your Needs 19
Better Together . 19

Conclusion . 20
References . 20

 2 OLAP Concepts and History . 21
Common OLAP Themes . 22

Multidimensional View of Information . 23
From Data Source to Multidimensional Data 32
New Results from Existing Data . 39
Ad Hoc Analysis: Having a Conversation with Your Data 40
Summary of Common OLAP Themes . 43

The History of Oracle OLAP . 43
Why a Multidimensional Database? . 45
1960s to 1985—Glory Days of Mainframe Express 45
1985 to 1990—A New C-Based Engine . 46
1990 to 1996—Express Goes GUI . 47
1995 to 1997—Oracle Buys and Markets Express 47
1998 to 2001—Integrating Express into the Oracle Database 48
2002 to 2003—Oracle9i OLAP . 48
2004 to 2006—Oracle OLAP 10g . 49
2007 to 2009—Oracle OLAP 11g . 50
2009 and Beyond . 50

The History of Essbase . 50
Why Essbase? . 51
1992 to 1994—Essbase Is Born . 54
1994 to 1998—APIs and the Essbase Web Gateway 55
1998 to 2003—New Reporting Options for Essbase 55
2003 to 2007—Aggregate Storage and Hybrid Architecture 56
2007 to Present—Essbase Powers Oracle EPM and BI 56

Conclusion . 57
References . 58

 3 Design and Overall Methodology . 59
General Design Principles . 60

Design Is an Iterative Process . 61
User Requirements Drive Design . 62
What’s Left Out Is as Important as What Goes In 63
Dimension Types Offer Convenience . 65
Data Types Improve Data Quality . 66
Different Uses Require Different Views of the Data 66
User Access and Security Needs Planning . 67
Allow Areas for Training and Testing . 67

Designing an Oracle OLAP Analytic Workspace . 67
Determining Dimensions from User Requirements 67
Relating Oracle OLAP Data to a Star Dimensional Model 68
Mapping Relational Data to Multidimensional Objects 68
Determining Dimensions of Cubes . 69
Designing Oracle OLAP Cubes . 73
Summary of the Oracle OLAP Design Process 81

Designing an Essbase Database . 81
Identifying Data Sources . 82
Defining the Outline . 83
Validating the Outline with Business Users . 86
Enhancing the Outline . 87
Choosing a Data Storage Model . 98
Considering Partition Strategies . 102
Summary of the Essbase Design Process . 108

OLAP Architectures . 108
Oracle OLAP Architecture and Components 108
Essbase Architecture and Components . 114
End-User Tools . 127

Conclusion . 129
References . 129

 4 Building an Oracle OLAP Analytic Workspace . 131
Oracle OLAP Demonstration Overview . 132
From Source to Cubes with Analytic Workspace Manager 134

Getting Started with Analytic Workspace Manager 134
Preparing the Data . 137
Creating an Analytic Workspace . 141
Creating and Populating Dimensions . 145
Creating and Populating Cubes . 164
Summary of the Cube-Building Process . 186

Adding Business-Savvy Calculations to Cubes . 186
Creating a Share Calculation . 186
Creating a Percent Different Prior or Parallel Period Calculation 189
Creating a Moving Average Calculation . 192
Creating Custom Calculated Measures . 194
Managing Calculated Measures . 196

Advanced Topics . 197
Managing Workspaces with OLAP Worksheet 197
Working with Cube-Organized Materialized Views 204
Managing Security of Cubes and Dimensions 208
Creating Advanced Cubes for Typical Business Purposes 211
Using SQL with OLAP . 214

Conclusion . 217

Contents xv

xvi Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution

 5 Building Your Essbase Database . 219
Demonstration Overview . 220
From Source to Database with Essbase Studio . 222

Overview of Essbase Studio . 222
Mapping Data Sources . 224
Modeling the Data Source . 227
Building Dimensions (Hierarchies) . 231
Modeling the Essbase Database . 239
Deploying the Essbase Database . 245
Summary of the Database Building Process . 250
Calculating the Essbase Database . 252
Validating the Essbase Database . 254

Using Essbase Features . 254
Creating Drill-Through Reports . 254
Leveraging Lineage Tracking . 258
Creating Custom Load Rules . 259
Creating Member Formulas and Calculation Scripts 272
Using Essbase Query Languages for Reports 279

Automating Processes . 285
Using ESSCMD . 285
Using MaxL . 285

Conclusion . 290

 6 Reporting from an OLAP Application . 291
User Discovery . 292

Identifying the Consumers of OLAP Reports 293
Gathering Information About Your Users . 293
Discussing the Reporting Needs of Your Users 294

Types of Reports . 296
Basic Report . 296
Compound Report . 297
Dashboard Report . 297
Production Reports . 298
Interactive Management Reports . 300
Ad Hoc Spreadsheet Reports . 300
Custom Microsoft Office Reports . 301

Desirable Functionality in Web-Based OLAP Reporting 302
Creating the Skeleton of a Report . 304
Adding Functionality to a Report . 308

Desirable Functionality in Desktop-Based Reporting 314
Integrated Database Connection . 314
Powerful Ad Hoc Analysis Features . 315
Easy Report-Creation Tools . 319
Visualization . 323

Understanding Deployment Options . 333
Fitting in with Enterprise Standards . 333
Web-Based Deployment Options . 334
Desktop-Based Deployment Options . 334

Third-Party Reporting Applications . 339
Third-Party Reporting Tools for Oracle OLAP 339
Third-Party Reporting Tools for Essbase . 347

Conclusion . 353
References . 353

 7 Leveraging OLAP in Your Organization . 355
Performance Management Applications Leveraging Essbase 356

Oracle Hyperion Planning . 357
Oracle Hyperion Profitability and Cost Management 373
Oracle Hyperion Enterprise Performance Management Architect . . . 379
Architecture of Performance Management Applications 380

Oracle Crystal Ball with Essbase . 382
Crystal Ball and Monte Carlo Simulation Methods 383
Crystal Ball Analysis . 384
Crystal Ball with Planning Models . 390
Crystal Ball Decision Optimizer . 390

Oracle Smart Space with Essbase . 391
Smart Space Desktops . 391
Smart Space Gadgets . 392
Software Development Kit . 397

Oracle Application Express for Oracle OLAP . 399
Java Development . 402

Using Oracle BI Beans with Oracle OLAP . 402
Connecting Java Applications to Essbase . 408

Conclusion . 410
References . 410

 8 Keeping It Running . 411
Oracle OLAP Care and Maintenance . 412

Configuring and Tuning Oracle OLAP . 412
Backing Up Oracle OLAP . 420
Troubleshooting Oracle OLAP . 422

Essbase Care and Maintenance . 430
Optimizing Essbase . 430
Backing Up Essbase . 446

Conclusion . 455
References . 455

Contents xvii

xviii Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution

Oracle-Regular / Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution/ Schrader et al. / 182-2 / Front Matter

 9 Real-World Examples . 457
Oracle OLAP Examples . 458

Accelerating a Data Warehouse . 458
Analyzing Projections . 460
Analyzing Financial Data . 462

Essbase Examples . 464
Replacing the Excel Workbook . 465
Enhancing an ERP System . 467
Replacing Custom SQL Reports . 468

Conclusion . 470
OLAP as a Cornerstone of BI . 470
References . 472

 Glossary . 473

 Index . 483

Oracle-Regular / Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution/ Schrader et al. / 182-2 / Front Matter

Foreword

e have seen tremendous consolidation in the high-technology industry
in recent years. Mergers and acquisitions strengthen the product
offerings of a company, but they also sometimes bring together products
that, on the face of it, seem either to duplicate a solution or to present
no possibility of working together.

In 2007, Oracle already owned a well-respected, multidimensional solution—
Oracle OLAP—when Oracle’s acquisition of Hyperion Solutions brought another
leading multidimensional product—Essbase—into the Oracle fold. Oracle OLAP and
Oracle Essbase address the same business need: to provide business analysts with the
tools they need to analyze and report on shared data in a way that is meaningful to
people in the line of business. Both products ensure that all stakeholders are working
from the same set of data by pulling the shared data from data sources managed by
the IT department. Yet even with this seeming duplication of purpose, Oracle is firmly
committed to both products. Why?

For someone with a background in both Oracle OLAP and Oracle Essbase, the
answer to this question is apparent. However, it soon became clear that the answer is
not as obvious to those without knowledge of both products, both inside and outside
Oracle. An explanation was in order, and we needed people with expert product
experience to relay the message. That is the purpose of this book.

We are very pleased to have an expert team leading the writing effort. Michael
Schrader has 30 years BI experience, specializing in Oracle BI solutions since 1987.
He has an Oracle Essbase and Oracle OLAP background. He is the coauthor of
Oracle Data Warehousing with Bonnie O’Neil, and has presented at numerous major
conferences, including Collaborate, Oracle OpenWorld, and the Gartner Business
Intelligence Summit.

W

xix

xx Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution

Oracle-Regular / Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution/ Schrader et al. / 182-2 / Front Matter

The Oracle OLAP experts include Dan Vlamis and Chris Claterbos. Dan is the founder
of Vlamis Software Solutions, which specializes in Oracle BI solutions such as Oracle OLAP
and the Oracle Business Intelligence Suite. Both Dan and Chris are regular speakers at
Collaborate and Oracle OpenWorld. They are also very active in the Oracle BI user groups.

The Oracle Essbase experts include Mike Nader, Dave Collins, Mitch Campbell, and
Floyd Conrad. They are all Global Domain Experts for Essbase at Oracle. They are well
known for their presentations at Collaborate, Oracle OpenWorld, and Oracle X-Week.

All of the contributors are the best of the best, and we are very fortunate to have them
provide their expert insight.

This book will help you to understand the multidimensional solutions offered by Oracle.
It is a valuable resource for anyone participating in the design and implementation of an
OLAP solution from Oracle.

—John Kopcke
Senior Vice President, Business Intelligence and
Performance Management Oracle Corporation

Oracle-Regular / Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution/ Schrader et al. / 182-2 / Front Matter

Acknowledgments

his book is result of many thousands of hours of work by many
talented people. I wish to express my gratitude to a few of them.
First, I would like to acknowledge and thank Kathy Horton. Kathy
managed a global team of domain experts that represent the BI and
EPM product offering, including the Essbase authors. She was an

inspiration and encouraged participation in this book project. Without Kathy’s
efforts, this book project would not have gotten off the ground. Secondly, I would
like to acknowledge and thank our professional writer Jen Smith. She has been
fantastic to work with, and her suggestions were great. Thirdly, I would like to
acknowledge and thank our technical reviewers Denis Desroches, Fred Richards,
Jameson White, and Michael Valianti. The book was significantly improved with
their input. Fourthly, I would like to acknowledge and thank several material
contributors including John Baker, Andy Lathrop, and Tim Tow. Thanks for the
expert insights! Fifthly, I wish to acknowledge and thank the Oracle Press team,
particularly Meghan Riley and Lisa McClain. Thanks for the patience. Finally,
I would like to acknowledge and thank our author team members. They are an
incredible group of highly skilled people. Thanks you to all who have helped us
bring this book to a reality.

—Michael Schrader

T

xxi

This page intentionally left blank

Oracle-Regular / Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution/ Schrader et al. / 182-2 / Front Matter

Introduction

f you are interested in multidimensional analysis and in introducing
online analytical processing (OLAP) technology into your organization,
this book is for you. As suggested by the title, the primary purpose
of this book is to differentiate Oracle OLAP and Oracle Essbase, and
help you choose the right product for your organization. However,

while the focus is on Oracle products, you will also find general information
about OLAP.

We explain what OLAP is and why it is important. Real-world case studies
highlight Oracle products, but can also help you envision how OLAP in general
enhances business intelligence in an organization. We introduce general OLAP
concepts and design principles before showing how they map to Oracle products.
Product-specific information includes architecture, application design, application
building, and maintenance considerations. We also cover end-user analysis tools,
reporting tools, and other front-end applications that can leverage OLAP data.

You do not need to have a technical background to understand the concepts we
cover in this book. OLAP benefits everyone in the organization, and we try to make the
information in this book accessible to all. Whether you work in the IT department or in
the line of business, such as finance, sales, research, or marketing, you stand to gain a
better understanding of OLAP concepts in general and Oracle’s OLAP solutions in
particular.

Because this book is intended for people in a wide variety of roles, including
DBAs, architects, planners, business analysts, and potential consumers of OLAP
results—from salespeople to CEOs to marketing managers—the level of detail in the
book varies from high-level overview down to technical details. Most chapters
begin with introductory material suitable for anyone, and then delve into technical
product details.

I

xxiii

xxiv Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution

Oracle-Regular / Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution/ Schrader et al. / 182-2 / Front Matter

For nontechnical people, we encourage you to focus on the introductory content
in the chapters and skim or skip the more detailed sections. You should gain enough
knowledge about OLAP to help you understand and contribute to the design and
implementation of an OLAP system. For example, you will develop the vocabulary
necessary to be able to communicate effectively with the project team handling the
design and implementation details. You can also be an effective contributor on the
user committee that determines OLAP reporting needs.

If you have a technical background, you will likely be most interested in the
architecture, design, and implementation sections of the book. While you should not
expect to be able to build a production-level OLAP system using this book alone, we
do give you an overall picture of what you can do with Oracle’s OLAP products, how
to go about designing an OLAP system, and the steps you will go through to build
your solution. We also provide some tips and recommendations for optimizing your
implementation. When you are ready to begin your implementation, we encourage
you to use the many resources available to you.

How to Use This Book
How you use this book depends on what you want to get out of it. The following list
summarizes the learning goals for this book:

 Learn about OLAP technology. ■

Discover which Oracle solution is right for your organization. ■

Understand the overall process for designing and building an OLAP system. ■

Learn about ways to analyze and report on OLAP data. ■

Understand how you can leverage your OLAP investment. ■

Expand your technical knowledge and expertise. ■

After you identify your goals, read the matching sections that follow. Each
section tells you which chapters contain the information you need.

Learn About OLAP Technology
If your goal is to learn about OLAP technology and how you can use OLAP data,
read Chapters 1 and 2. The first few sections of Chapter 1 explain how OLAP fits in
with business intelligence implementations and describe OLAP technology. The
case studies provide concrete examples of the value that Oracle’s OLAP solutions

bring to an organization. The first section of Chapter 2 describes the key concepts
that underlie OLAP technology, and summarize how Oracle Essbase and Oracle
OLAP implement those concepts.

Discover Which Oracle Solution Is Right for Your Organization
If you are trying to choose between Oracle Essbase and Oracle OLAP, the second part
of Chapter 1 should help. It outlines the similarities and differences between the
products, offers some case studies, and talks about using OLAP with a data warehouse.
This entire chapter is also a good resource to share with others in your organization as
you begin your implementation, so that they can understand the benefits OLAP brings
to an organization and support your efforts. You may also be interested in the real-world
examples presented in Chapter 9.

Understand the Steps to Design and Build an OLAP System
If your goal is to understand the steps involved in designing and building an OLAP
system using one of Oracle’s OLAP products, read Chapter 3 and then either
Chapter 4 or Chapter 5, depending on which Oracle product you are considering
implementing. Chapter 3 starts with general design principles, and then provides
design advice for Oracle OLAP and Oracle Essbase. It also contains information
about the architecture and components of each product. Chapter 4 walks through
building an Oracle OLAP analytic workspace. Chapter 5 demonstrates how to build
an Essbase database.

In both Chapters 4 and 5, we expand on product-specific implementation details
introduced in Chapter 2. These chapters use a tutorial style to give you an overall
sense of the process and provide a structure for introducing the product interfaces.

Learn About Ways to Analyze and Report on OLAP Data
Chapter 6 is concerned with the requirements of the business users that analyze and
consume OLAP data. The chapter provides a framework for identifying who the end
users are and what they need in terms of OLAP reports and ad hoc analysis capabilities.
It also describes the type of reports that are available via web-based and desktop-
based reporting.

Understand How You Can Leverage Your OLAP Investment
You can use other Oracle products as front-end tools for Oracle Essbase and Oracle
OLAP. Chapter 7 offers an introduction to these tools.

Expand Your Technical Knowledge and Expertise
Database administrators may find Chapter 8 of some interest. It covers the care and
maintenance of Oracle OLAP and Oracle Essbase.

Introduction xxv

xxvi Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution

Oracle-Regular / Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution/ Schrader et al. / 182-2 / Front Matter

Resources
If you decide to implement one of the Oracle products for OLAP, the following
resources can help ensure your implementation is both smooth and successful:

 Product documentation ■

Oracle University training courses ■

Oracle consultants ■

Product tutorials, wikis, and community groups on Oracle Technology ■
Network

Conventions
Oracle OLAP and Oracle Essbase are both implementations of OLAP technology. Of
course, the problem with writing a book where a product name includes the name of
the technology is that we may appear to refer to a product when we actually mean
the technology in general. Throughout this book, we use the following conventions:

 To refer to OLAP technology, we use ■ OLAP or OLAP technology.

To refer to OLAP components as a group, we use ■ OLAP system.

To refer to the product Oracle OLAP, we spell out ■ Oracle OLAP.

When something applies to both Oracle OLAP and Oracle Essbase, we use ■
Oracle’s OLAP solutions or Oracle’s OLAP products.

When talking about any OLAP product, we use ■ OLAP product.

Throughout the book, our convention is to use the full product name at first
mention, and then use an abbreviated form on subsequent occurrences when doing
so will not cause confusion. Therefore, Oracle Essbase becomes Essbase, but Oracle
Database and Oracle OLAP are not shortened.

Chapter
1

Introduction to OLAP

1

 Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution

nline analytical processing (OLAP) uses a multidimensional approach
to organize and analyze business data. By storing data in highly
optimized structures, businesses can very quickly explore the data
and uncover important insights that would otherwise remain hidden.
As a result, OLAP enables companies to achieve key organizational

goals, including wide-ranging business intelligence.

We begin this chapter by defining OLAP within the larger context of business
intelligence. Then we review the benefits you can expect to see by implementing
OLAP technology in an organization. Next, we have an OLAP primer—a short
introduction to what makes up an OLAP system and what kinds of OLAP
implementations are possible. This foundation enables us to introduce Oracle’s two
OLAP solutions—Oracle OLAP and Oracle Essbase—i and review some case
studies. The chapter ends with a section on architecting an OLAP solution, which
compares and contrasts Oracle’s two OLAP products and provides guidance on
selecting the correct product for your organization.

OLAP as a Component
of Business Intelligence
To explain how OLAP technology contributes to business intelligence (BI), we first
need to define BI itself. BI means different things to different people. For some
people, BI is only the data warehouse. Others see BI as the dashboards on their
desktops. In this book, we define BI as all of the processes and technologies used
to help businesses make better decisions.

BI includes the following:

 Enterprise performance management ■

Data warehousing ■

Business reporting, including dashboards and scorecards ■

Predictive analytics and data mining ■

OLAP ■

Together, these technologies support an organization’s ability to create,
maintain, analyze, and report accurate information about the business, and use
that information for forward-facing activities such as budgeting and forecasting.
The next sections define each of the technologies so that you can understand
exactly what OLAP contributes to BI.

O

 Introduction to OLAP 3

Enterprise Performance Management
Enterprise performance management (EPM) is a set of processes and related software
that supports management excellence. EPM organizations are smart, agile, and
aligned.

Smart organizations recognize that they must rationalize their analytical tools
and data management systems to eliminate the noise and provide actionable
insights to all the stakeholders of the enterprise.

Agile organizations are able to detect deviations between plans and execution
quickly, find the root causes, and take fast corrective actions. They use best-of-breed
technologies that offer advanced integration with operational systems, yet can be
used easily with a company’s existing architecture and information technology (IT)
investments.

Aligned organizations address the needs of all stakeholders and share information
through integrated systems and processes so that all stakeholders are working from
the same set of facts—that is, the same data.

Data Warehousing
The objective of a data warehousing system is to provide business users with a time-
based, integrated view of cross-functional data. To create a data warehouse, we start
with data that may exist in different formats across several systems. We transform
the data, cleanse it, and create an integrated view of the data.

Data warehousing provides historical data, as opposed to the current snapshot
of data that can be found in an online transaction processing (OLTP) system. A data
warehouse does not answer the question “What orders are shipping now?” but
rather reporting questions such as “How many orders did we ship last month?” and
analytical questions such as “When have we shipped orders the fastest?”

A data warehouse offers a central, reliable repository of historical business data
that all stakeholders can use. End users can write queries to pull data from this single
source of data, so that regardless of who asks the question, they will get consistent
answers.

Business Reporting
Business reporting is about conveying information that is important to the organization
and using that data to manage the business. Business reports have been around since
the first data management systems were implemented.

The original medium of reports was paper documents. Today, many organizations
implement business reports online through dashboards and scorecards. Business
reports often require current data, and they can be widely distributed within an
organization.

4 Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution

Predictive Analytics and Data Mining
Predictive analytics is concerned with examining historical data using statistical
tools and techniques, such as regression or data mining, to forecast or predict future
events and to determine the factors that best predict an event.

For example, using historical data, a company could forecast a customer’s price
point for a certain product. By determining each customer’s profile, the company
could manage its revenue stream better by charging different customers different
prices. This would allow the company to increase revenue while maintaining
customer satisfaction. After these models are developed, analysts can look for
exceptions to the model for activities such as anomaly and fraud detection.

OLAP
OLAP is a technology that supports activities ranging from self-service reporting and
analysis to purpose-built management applications such as planning and budgeting
systems. What differentiates OLAP from regular business reporting is the analytics. In
an OLAP application, metrics are often compared with a baseline, such as last year’s
numbers or the performance of the whole United States. Over the course of this book,
we describe OLAP technology in general and Oracle’s products for OLAP in particular.

 The next two sections provide a foundation upon which you can begin to build
up your understanding of OLAP technology and OLAP products. We describe the
benefits of OLAP, and then provide some basic information about OLAP systems
and implementations.

Why OLAP?
An effective OLAP solution solves problems for both business users and IT departments.
For business users, it enables fast and intuitive access to centralized data and related
calculations for the purposes of analysis and reporting. For IT, an OLAP solution
enhances a data warehouse or other relational database with aggregate data and
business calculations. In addition, by enabling business users to do their own analyses
and reporting, OLAP systems reduce demands on IT resources.

OLAP offers five key benefits:

 Business-focused multidimensional data ■

Business-focused calculations ■

Trustworthy data and calculations ■

Speed-of-thought analysis ■

Flexible, self-service reporting ■

The next sections describe each of these benefits of OLAP.

Chapter 1: Introduction to OLAP 5

Business-Focused Multidimensional Data
As mentioned in the first sentence of this chapter, OLAP uses a multidimensional
approach to organize and analyze data. In a multidimensional approach, data is
organized into dimensions, where a dimension reflects how business users typically
think of the business. For example, business users may view their data by product,
by market, and over time. Each of these is a dimension in an OLAP application.
Note that business users instinctively refer to dimensions after prepositions such as
by (by product/by market), over (over time), or across (across business units).

A dimension can be defined as a characteristic or an attribute of a data set. Each
dimension contains members that share the common characteristic. The members are
often organized hierarchically within the dimension. For example, Figure 1-1 contains
a few dimensions and their members. The Time dimension, which represents a year,
is divided into quarters, and each quarter into respective months. The Products
dimension contains product groupings and then the individual products within each
grouping. The Markets dimension demonstrates a division into geographic regions
divided further into states.

The hierarchical aspect of the dimension represents the first option for aggregation.
For example, Quarter 1 summarizes the data for its child members January, February,
and March. Time summarizes the data for all four quarters in the year. The aggregations
are inherent in the hierarchy. The metadata in an OLAP system contains the aggregation
rules, freeing the application from needing to define these aggregation rules and
ensuring that these rules are applied consistently for each report or analysis.

April

Time Products Markets

West

CA

East

CT

Sodas

Fruit Soda

Cream Soda

Colas

Quarter 1

Quarter 2

January

February

March

Diet Coda NY

FIguRE 1-1. Sample dimensions with members

6 Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution

We describe the multidimensional approach more fully in the next chapter. For
now, it is enough to understand that OLAP organizes data in a multidimensional
model that makes it easy for business users to understand the data and to use it in
a business context, such as a budget.

Business-Focused Calculations
One reason OLAP systems are so fast is that they preaggregate values that would
need to be computed on the fly in a traditional relational database system. The
calculation engine handles aggregating data as well as business calculations. In an
OLAP system, the analytic capabilities are independent from how the data is
presented. The analytic calculations are centrally stored in the metadata for the
system, not in each report.

Here are some examples of calculations available within an OLAP system:

 Aggregations, which simply roll up values based upon levels organized in ■
hierarchies. For example, the application may roll up sales by week, month,
quarter, and year.

Time-series calculations with time intelligence, such as percent difference ■
from last year, moving averages, and period-to-date values.

Matrix or simple intradimensional calculations, such as share of parent or ■
total, variances, or indexes. For those readers used to spreadsheets, this type
of calculation replaces embedded spreadsheet formulas.

Cross-dimensional or complex interdimensional calculations, such as index ■
of expenses for current country to revenue for total United States. Someone
using only spreadsheets would need to link spreadsheets and create formulas
with values from different sheets to accomplish this type of calculation.

Procedural calculations, in which specific calculation rules are defined ■
and executed in a specific order. For example, allocating a shared expense,
like advertising across products, as a percent of revenue contribution per
product is a procedural calculation, requiring procedural logic to model and
execute sophisticated business rules that accurately reflect the business.

OLAP-aware calculations, with specialized functions such as ranking and ■
hierarchical relationships. These calculations can include time intelligence
and financial intelligence. For example, an OLAP-aware calculation
would calculate inventory balances in which quarter 1 ending inventory is
understood to be the ending inventory of March, not the sum of January,
February, and March inventories.

User-defined expressions, allowing a user to combine previously defined ■
calculations using any operators and multidimensional functions.

Chapter 1: Introduction to OLAP 7

Trustworthy Data and Calculations
When electronic spreadsheets, such as VisiCalc and Lotus 1-2-3, were released in
the late 1970s and early 1980s, business analysts, who were already familiar with
paper-based spreadsheets, embraced these new tools. Analysts would create
spreadsheets starting from raw data and spend hours formatting and massaging the
data into a form they could use. They would develop dozens to hundreds of these
sheets. In turn, their organizations began to rely on an inordinate number of these
manually produced spreadsheets for extremely important information.

Unfortunately, as soon as data starts living in spreadsheets, users start changing
the data, entering new data, and creating calculations to augment what is already
there. Soon, there are multiple definitions of something as basic as sales or profit.
The resulting confusion gave rise to a phenomenon that came to be known
colloquially as “spreadsheet hell.” To get a sense of the depth of the problem
caused by spreadsheet hell, consider the following scenario: There are ten people in
a room, each with his own spreadsheet containing his own metrics, formulas, and
numbers. None of the spreadsheets contains exactly the same data. It becomes
exceedingly difficult, if not impossible, for management to make sound business
decisions when no one can agree on the underlying facts.

The problem is not limited to just spreadsheets. Many organizations have
multiple reporting systems, each with its own database. When data proliferates, it is
difficult to ensure that the data is trustworthy.

OLAP systems centralize data and calculations, ensuring a single source of data for
all end users. Some OLAP systems centralize all data in a multidimensional database.
Others centralize some data in a multidimensional database and link to data stored
relationally. Still other OLAP systems are embedded in a data warehouse, storing data
multidimensionally within the database itself. Regardless of the implementation details,
what is important is that OLAP systems ensure end users have access to consistently
defined data and calculations to support BI.

Speed-of-Thought Analysis
Speed-of-thought analysis (also referred to as ad hoc analysis) means that analysts
can pose queries and get immediate responses from the OLAP system. Not needing
to wait for data means fewer interruptions in the analyst’s train of thought. The
analyst can immediately pose another query based on the results of the first query,
then another query, and so on, leading the analyst on a journey of discovery. Fast
response times, together with intuitive, multidimensional organization of data, enable
an analyst to think of and explore relationships that otherwise might be missed.

For example, consider a company that experiences a sudden increase in the
number of customer complaints concerning late product shipments. In investigating
the issue, the analyst drills down into the financial cube and discovers that profits
are at a record high. She then drills down on the average age of the company’s

8 Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution

payable invoices to discover that the average age is growing at a very high rate.
Finally, the analyst drills down into inventories and discovers that raw materials
are at low levels. From this analysis, she can draw the conclusion that the finance
officer started paying invoices late, which improved short-term cash flow and
profits, but now the company’s vendors are upset and shipping later. Late
shipments of raw materials translates into late products and an increasing number
of related consumer complaints. Speed-of-thought analysis is a key component
that enables this kind of drill-down investigative work across multiple functional
areas.

OLAP systems respond much faster to end-user queries than do relational
databases that do not capitalize on OLAP technology. Quick response times are
possible because OLAP systems preaggregate data. Preaggregation means that there
is no need for many time-consuming calculations when an end-user query is
processed. In addition, OLAP systems are optimized for business calculations, so
calculations take less time to execute.

OLAP systems make the analysis process easy for analysts by supporting tools
they already use. For example, many OLAP systems support commercial
spreadsheet tools such as Microsoft Excel or offer their own spreadsheet interface.

Flexible, Self-Service Reporting
The best report designers and builders usually come from within the business
community itself because they know what is needed. Enabling these people to
create their own reports is a hallmark of an OLAP system.

OLAP systems enable business users to query data and create reports using tools
that are natural for them to use. Providing tools that are familiar to end users means
that their learning curve is reduced, so they are more likely to use the system. In
addition to commercial and custom spreadsheet applications, OLAP systems
support other front-end reporting tools that are designed with business users in
mind. For example, they include user-friendly tools that enable report designers to
create and publish web-based dashboards and interactive reports using live OLAP
data. The consumers of interactive reports are often able to customize their view of
the data.

When business users can build their own reports, it reduces the reliance on IT
resources for generating reports. Without an OLAP system, IT departments are often
called upon to create a multitude of materialized views and specialized reports for
business users on demand.

As with any application geared to business users, the front-end tools must be
intuitive and flexible enough to be employed by casual users. That said, as with any
new tool, people need to be trained on how to use these reporting facilities
effectively. If end users deem the system too hard to use, they will not adopt it.

Chapter 1: Introduction to OLAP 9

OLAP Primer
In this introduction to OLAP, we provide an overview of OLAP system
components and implementations. In Chapter 2, we will identify and discuss
underlying OLAP concepts and show how those concepts are used by Oracle
OLAP and Essbase.

OLAP System Components
In describing the benefits of OLAP, we used the term OLAP system. An OLAP
system is made up of the following four primary components:

 Server ■ The OLAP server hosts the multidimensional data storage and
runs the calculation engine. An OLAP server can be a stand-alone server
or embedded within a relational database. For example, Essbase can
run on a stand-alone server. Oracle OLAP is contained within the
Oracle Database. The latter part of this chapter describes similarities and
differences between Essbase and Oracle OLAP.

Multidimensional storage ■ OLAP data is stored multidimensionally
in constructs often referred to as cubes. A cube is a useful concept for
explaining multidimensionality. Dimensions (such as products, markets,
and time) form the edges of the cube. Members from each dimension create
intersections within the cube, each of which can potentially hold a data
value. Depending on how an OLAP system is implemented, cubes can be
stand-alone multidimensional databases or data objects within a relational
database. We expand on the concepts of cubes, dimensions, and members
in Chapter 2.

Calculation engine ■ The OLAP engine handles aggregation of data and
optimizes business calculations. Calculations are centrally stored in the
metadata for the system, rather than in specific reports or applications. We
talk more about calculations throughout this book.

Front-end analysis and reporting tools ■ Front-end analysis and reporting
tools communicate with the OLAP server and present multidimensional
data to the end user. As mentioned earlier in this chapter, OLAP systems
support user-friendly tools for analysis and reporting, including commercial
and custom spreadsheet applications and functions for creating web-based
dashboards and interactive reports. We describe OLAP reporting tools and
processes in Chapter 6.

10 Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution

OLAP Types
If you have read about OLAP before picking up this book, you may have come
across a description of the various types of OLAP implementations. Three main
types of OLAP are available: multidimensional OLAP, relational OLAP, and hybrid
OLAP. To help you understand where Oracle’s OLAP solutions fit into this
spectrum, we will briefly describe each type.

Multidimensional OLAP
With multidimensional OLAP (MOLAP), the data is stored in a multidimensional
data store. Both Essbase and Oracle OLAP use MOLAP technology. Essbase stores
data in a multidimensional database. Oracle OLAP cubes are multidimensional
objects stored in the Oracle Database.

MOLAP cubes are automatically indexed based on the dimensions. Data can be
located using offset addressing. To find a given value in a multidimensional array,
a MOLAP product needs to use only multiplication and addition, and computers do
those operations very fast. MOLAP technology is the best option for dense arrays,
where most of the data cells in a cube contain a value. That said, both Essbase and
Oracle OLAP have capabilities to manage sparse MOLAP cubes effectively. Figure 1-2
summarizes MOLAP cube advantages and challenges.

Relational OLAP
Relational OLAP (ROLAP) uses a traditional star/snowflake schema and relational
data sources only. With ROLAP, data is neither aggregated nor manipulated. The
data is stored in relational tables that can be queried by SQL.

ROLAP is ideal for lower density (sparse) cubes. ROLAP automatically provides all
of the advantages of a relational database, such as high availability, replication, read
consistent view of data, backup and recovery, parallel processing, and job scheduling.

FIguRE 1-2. MOLAP advantages and challenges

Data Latency

Very Fast Once Consolidated
Memory Access
Good for Dense Arrays

Advantages:

Challenges:

MOLAP – MULTIDIMENSIONAL OLAP

11
1

11

1 1
1

1
1

0

0
00

0
0

0
0

Chapter 1: Introduction to OLAP 11

(Note that Oracle Database with Oracle OLAP offers these same advantages
within a MOLAP structure.) Figure 1-3 summarizes the advantages and challenges
of ROLAP.

Hybrid OLAP
With hybrid OLAP (HOLAP), the data is stored both in an OLAP data store and a
relational database. For example, you may have summary-level data stored in the
OLAP data store and detailed data stored in the relational database. You could then
drill down from the OLAP data store to the detail stored in the relational database.

Today, most OLAP products support the hybrid architecture. Both Essbase and
Oracle OLAP can be implemented in this fashion. Figure 1-4 summarizes the
advantages and challenges of HOLAP.

FIguRE 1-3. ROLAP advantages and challenges

Resources

Good for Sparse Arrays
Adds Database Features

Advantages:

Challenges:

ROLAP – RELATIONAL OLAP

FIguRE 1-4. HOLAP advantages and challenges

More Complex

Best of Both Worlds
Fast
Scalable

Advantages:

Challenges:

HOLAP – HYBRID OLAP

11
1

11

1 1
1

1
1

0

0
00

0
0

0
0

12 Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution

One new extension of HOLAP is called extended OLAP (XOLAP). With XOLAP,
you can model metadata such as database outlines and hierarchies in the MOLAP
product; however, the data comes from relational sources. Essbase supports XOLAP.

OLAP Products
There are many different types of OLAP products, each of which seeks to provide
solutions to certain problems and to meet the needs of particular user communities.
While all OLAP products share the ability to support business users with a highly
interactive user experience, they can differ significantly in terms of that user
experience, performance, analytic capabilities, target audiences, and architecture.

For example, some OLAP products provide a dimensional query model for data
stored in relational tables in a way that makes it easier for users to define their own
queries and navigate data interactively. Other OLAP products take a fundamentally
different approach by tightly coupling data needed with the dimensional model for
fast access to the data. This kind of OLAP product differs from one that also provides
performance benefits and rich analytical capabilities, and is very different from an
OLAP product that is designed to support, for example, a planning and budgeting
application.

OLAP with a Data Warehouse
If you already have a data warehouse in place, you can leverage that investment by
implementing an OLAP system within or alongside the data warehouse to support BI
and performance management activities. Often, a finer level of granularity exists in
the data warehouse than in the OLAP system. For example, many of today’s
implementations are HOLAP systems, where the data warehouse stores the detail
data and the OLAP system stores summaries. The OLAP system has ways to allow a
user to drill down to detailed data in the data warehouse.

When you implement a middle-tier OLAP system with a data warehouse, data
flows from the data warehouse to the OLAP cubes. This is important because the
data values in the cubes need to match those in the data warehouse. If you
performed all of the data-integration steps for the OLAP system from the original
data sources rather than the data warehouse, you would run the risk of the data
warehouse and the OLAP environment having two slightly different versions of the
data. This could lead to inaccurate analyses and errors.

When you implement a database-centric OLAP system, OLAP data is stored in
cubes within the data warehouse itself. The cubes are data objects that can be
treated like any other data objects. Connections between summary data and
detailed data can be handled by joining a cube to a table.

SQL statements that normally would access a large fact table can be automatically
rewritten to access cube-organized views. This greatly increases the performance of
the system. Often, a single cube-organized materialized view can replace many
table-based materialized views, easing maintenance of the data warehouse.

Chapter 1: Introduction to OLAP 13

Typical OLAP Applications
OLAP has been used successfully in a wide variety of applications, including the
following:

 Analyzing financial data ■

Budgeting and planning ■

Forecasting ■

Replacing manual spreadsheets ■

Accelerating a data warehouse ■

Enhancing an enterprise resource planning (ERP) system ■

Replacing custom SQL reports ■

This book includes cases studies—both in this chapter and in Chapter 9—that
provide examples of these typical applications. The case studies are specific to
either Oracle OLAP or Essbase.

Now that you have a basic understanding of OLAP, we can turn our attention to
Oracle’s product offerings. The rest of this chapter focuses on Oracle OLAP and Essbase.

Why Two OLAP Products from Oracle?
With the acquisition of Hyperion Solutions Corporation in 2007, Oracle now owns the
two most capable OLAP products on the market: Essbase and Oracle OLAP. While
both products fall within the OLAP category and have some similar capabilities, they
are different in significant ways. One purpose of this book is to show how the products
are the same and how they differ, so that you can choose the solution that best suits
your environment.

Similarities Between Essbase and Oracle OLAP
Both Oracle OLAP and Essbase have the capability of storing data in OLAP cubes.
As such, they share the following capabilities:

 Excellent performance for queries that require summary-level data ■

Fast, incremental update of data sets, which is required to facilitate frequent ■
data updates

Rich calculation models that may be used to enrich analytic content ■

A dimensional model that presents data in a form that is easy for business ■
users to query and define analytic content

14 Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution

Because both Essbase and Oracle OLAP provide these core capabilities, it might
seem like they are similar enough to be interchangeable. This is not the case. Each
product focuses on delivering OLAP capabilities into different types of applications
and for different classes of users.

Differences Between Essbase and Oracle OLAP
Essbase and Oracle OLAP are two of the leading OLAP solutions. However, the
products have taken different paths based on the product strategies of Hyperion
and Oracle and the roles that each product fulfills. From the mid-1990s to 2007,
Hyperion focused on building solutions for the middle tier. Oracle spent the same
period embedding an OLAP engine into its world-class database. Most of the
differences between Essbase and Oracle OLAP derive from the fact that Essbase
is a separate process, while Oracle OLAP is an option to the Oracle Database
Enterprise Edition.

Essbase: Separate-Server OLAP
As noted, Essbase comes from a history of OLAP applications based in the middle
tier. The strategy of Essbase centers on custom analytics and BI applications with a
focus on EPM. This strategy addresses the what-if, modeling, and future-oriented
questions that companies need answered today in order to see into the future.

Typically, Essbase applications are started and maintained by business analysts.
The buyer is usually in the line of business. The typical end users are line-of-
business users, such as analysts in the finance, marketing, and sales departments,
who query and create data with Essbase tools and Oracle Hyperion applications.
The line of business typically has a large degree of uncertainty and needs to
understand a dynamic and changing environment.

Essbase is the OLAP server that provides an environment for rapidly developing
custom analytic and EPM applications. The data management strategy allows
Essbase to easily combine data from a wide variety of data sources, including the
Oracle Database. Essbase is part of the Oracle Fusion Middleware architecture.

Oracle OLAP: Database-Centric OLAP
Oracle OLAP is available as an option to the Oracle Database Enterprise Edition.
As an embedded component of the Oracle Database, Oracle OLAP benefits
from the scalability, high availability, job scheduling, parallel processing, and
security features inherent in the Oracle Database. With Oracle OLAP, all of the
data resides in an Oracle database, governed by centralized data security and
calculation rules.

An SQL interface to OLAP cubes allows SQL-based applications to query cubes
within an Oracle database, and benefit from the performance and analytic content

Chapter 1: Introduction to OLAP 15

of the OLAP option. The primary data-access language for Oracle OLAP is SQL,
making Oracle OLAP a natural choice for enhancing the performance and
calculation capabilities of an existing Oracle data warehouse.

OLAP Business Case Studies
To get a sense of how the two Oracle OLAP solutions differ in a real-world setting,
let’s take a look at some case studies.

Essbase Case Studies
For the Essbase case studies, we examine a major airline and a major food
processing company.

Airline Case Study
After the terrorist attacks of September 11, 2001, a major airline faced a crisis.
Management needed to project cash flows in the face of extraordinary uncertainty
about customer travel plans, fuel prices, new security regulations, and other
variables in the wake of tragedy. The solution was implemented with alternative
cash flow scenario models, capital spending plans, 15-month rolling forecasts, and
“business cockpits” (multidimensional dashboards). The buyer was the vice
president of the finance department, and the user community consisted of business
users in finance, reservations, and ground operations.

Key to survival and success was determining how long cash balances of $1 billion
would last based on immediately deferred capital spending, halted discretionary
spending, and borrowing $400 million on an existing line of credit. The answer
depended on return in revenues.

On September 11, Essbase enabled airline personnel to model many scenarios
that provided the moral support, comfort level, and confidence for the many
departments working hard to make it through that fateful day and the days that
followed. Within five days, they were able to set up all scenario models, and they
could forecast within 2 percent of outcome entirely in Essbase, providing top-to-
bottom and bottom-to-top analysis capabilities.

Essbase performed very well. Queries that would have taken at least four hours
to write, run, gather data for, enter on a spreadsheet, and analyze were instead
accomplished in one minute with Essbase. Before Essbase, the finance department
was spending 75 percent of its time accumulating data and 25 percent of its time
analyzing. With Essbase, those ratios are now 10 percent and 90 percent,
respectively.

16 Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution

Airline Case Study Summary

Business problem Needed to project cash flow in the face of extraordinary
uncertainty about customer travel plans, fuel prices, new
security regulations, and other variables after 9/11

Solution Alternative cash flow scenario models, capital spending
plans, 15-month rolling forecasts, and “business cockpits”
(multidimensional dashboards)

Buyer VP of finance department

User community Business users in finance, reservations, and ground
operations

Food Processing Company Case Study
The food processing company is one of the world’s largest providers of luncheon
and deli meats. The company employs more than 1,000 people and distributes its
products across all 50 states, as well as exporting to Mexico and Puerto Rico. It has
three distribution centers in the United States, and sells its products through the
largest grocery and mass merchandizing chains in the country.

The company had a requirement to do marketing lift analysis. For example, if
the company launched a coupon campaign, the marketing managers needed to
determine what the sales lift was by product. They wanted to know how the
campaign affected sales over the life of the campaign, in addition to calculating the
return on investment (ROI) of the campaign. They also needed to integrate data from
a number of sources: third-party data, data from legacy systems, ERP data from JD
Edwards (JDE), and data stored in multiple SQL Server databases. They evaluated a
number of prepackaged solutions for marketing analysis and determined that their
requirements were unique enough that a custom solution was required.

The food processing company implemented a custom solution of Essbase in less
than two months and can now analyze its campaign performance effectively.

Food Processing Company Case Study Summary

Business problem Visibility into marketing campaign effectiveness

Solution Marketing analysis application that integrates internal
data from JDE and SQL Server with external demographic
feeds, calculates percentage lift of marketing promotions,
and identifies advertising ROI by campaign

Buyer Marketing department (also used in finance)

User community Managed by marketing analysts; accessed by marketing
and advertising managers

Chapter 1: Introduction to OLAP 17

Oracle OLAP Case Studies
For the Oracle OLAP case studies, we present a major automotive manufacturer and
a management consulting and research company.

Automotive Manufacturer Case Study
The challenge for the management of the automotive manufacturer was to analyze
energy-consumption patterns within an automotive assembly plant, with the goal of
rescheduling peak usage to coincide with times of day and with lower per-unit costs.
The solution was to consolidate energy-meter readings in an Oracle data warehouse,
including OLAP cubes utilized for time-series analysis. The buyer of Oracle OLAP
was the IT department. The user community was the line-of-business users at product
unit and cost center levels. They queried the Oracle data warehouse with the OLAP
cube utilizing BusinessObjects Web Intelligence and Oracle Business Intelligence
Spreadsheet Add-in.

The company faced the following challenges when approaching this problem:

 Enable automated and manual collection of detailed transactional data from ■
the factory’s many energy meters.

Enable near real-time analysis of energy consumption, requiring frequent ■
and rapid update of the data warehouse.

Enable detailed analysis of past energy consumption. ■

The IT department, in consultation with the line-of-business users, implemented
Oracle OLAP. They consolidated and centralized data sources using Oracle Database
10g and Oracle Warehouse Builder (OWB), enabling rapid data aggregation and near
real-time analysis of energy usage. This allowed line-of-business users at the
production unit and cost center levels to rapidly analyze data using Oracle OLAP,
BusinessObjects Web Intelligence, and the BI Spreadsheet Add-In.

Automotive Manufacturer Case Study Summary

Business problem Analyze energy-consumption patterns within an automotive
assembly plant, with the goal of rescheduling peak usage to
coincide with times of day with lower per-unit costs

Solution Consolidate energy-meter readings in an Oracle data
warehouse, using OLAP cubes for time-series analysis

Buyer IT

User community Line-of-business users at product unit and cost center levels,
who query the Oracle data warehouse with OLAP cubes using
BusinessObjects Web Intelligence and BI Spreadsheet Add-in

18 Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution

Management Consulting and Research Company Case Study
A management consulting and research company provides healthcare satisfaction
metrics to thousands of healthcare providers, based on survey data from tens of
thousands of patients per year. Because of the volume of data and privacy issues,
the company requires a data infrastructure that is highly scalable, reliable, and
secure. The data must be accessible to a wide variety of applications, including
SQL-based BI applications.

This company’s IT organization implemented an infrastructure that uses an
Oracle data warehouse, including Oracle OLAP, to achieve a highly scalable and
secure solution with time series and other analytic features. The goal was to gain the
ability to support BI applications without replicating large amounts of data in
specialized analytical databases.

The Oracle-based data infrastructure supports more than 1,000 concurrent
users, without compromising performance, reliability, or security. The solution
provides rapid response time for a custom SQL-based application, even for large
documents that contain more than 20 thumbnail graphs and 20 cross tabulations
per page (as many as 40 queries per page view).

Management Consulting and Research Company Case Study Summary

Business problem Allow a large user community of third-party health
providers to analyze healthcare satisfaction polling data

Solution Consolidate healthcare satisfaction survey data in an
Oracle data warehouse using OLAP cubes
Custom SQL-based reporting application relies on the
cube for required analytics and fast query response

Buyer IT

User community 1,000+ concurrent third-party healthcare providers
querying OLAP cubes

Architecting the Appropriate
OLAP Solution
The case studies reveal how assessing an organization against a set of standard
criteria can help determine the best OLAP solution for that environment. Here are
five questions you can ask to help assess your own organizational needs in terms of
those criteria:

 What is the purpose of the application? ■

Who is the buyer of the application, and who will support it? ■

Chapter 1: Introduction to OLAP 19

Who are the end users, what needs do they have, and what tools will ■
they use?

How will the application acquire and manage data? ■

Does a middle-tier or database OLAP architecture serve the organization ■
best?

This section guides you in selecting the OLAP solution for your organization and
describes the types of OLAP implementations that are available.

Choosing the Solution That Meets Your Needs
Table 1-1 compares and contrasts Essbase and Oracle OLAP based on the five criteria:
purpose, buyer, typical end user, data management strategy, and architectural needs.

Better Together
Both Essbase and Oracle OLAP provide powerful OLAP solutions. They are not,
however, mutually exclusive. When implemented together, they can form a
complete OLAP solution.

Essbase provides a platform for EPM and pervasive BI. Oracle OLAP is a
powerful enhancement to a data warehousing environment. Better together, the two
OLAP solutions provide complementary benefits for a complete OLAP solution.

Essbase Oracle OLAP

Purpose Custom analytic and BI
applications with a focus on EPM;
built and maintained by analysts

Improves the performance
and analytic content of
SQL-based BI applications

Buyer Line of business IT

Typical end users Line-of-business users who query
and create data with Essbase tools
and OLAP applications

Users of SQL-based BI
tools who query data in the
database

Data
management
strategy

Combines data into a
multidimensional database stored
on disk and in RAM

Stores data in the Oracle
Database

Architecture OLAP in a server, part of Oracle
Fusion Middleware

OLAP in the Oracle
Database

TABLE 1-1. Comparison of the Two Oracle OLAP Solutions

20 Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution

Conclusion
Essbase and Oracle OLAP share common characteristics such as excellent query
performance, fast update, rich analytic content, and a dimensional model.
However, the products have different users and uses. Essbase is designed for line-of-
business users and is focused on EPM applications. Oracle OLAP is part of the
Oracle Database and is designed so that IT can support the needs of business users
directly from the database or data warehouse. Implemented together, their
capabilities provide a complete OLAP solution.

In the next chapter, we look at the concepts that underlie OLAP technology. We
take the time to point out how Oracle OLAP and Essbase implement those concepts
so that you have a foundation from which to approach the following chapters about
designing and building Oracle OLAP and Essbase applications. We also present a
history of each product to help you understand why the products approach general
OLAP concepts differently.

References
Nader, Michael and Dave Collins. Dare to OLAP. Oracle Corporation, 2008.

Schrader, Michael, with William Endress and Fred Richards. Understanding an
OLAP Solution from Oracle. Oracle Corporation, April 2008.

Oracle-Regular / Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution/ Schrader et al. / 182-2 / Chapter 2
Blind folio: 21

Chapter
2

OLAP Concepts
and History

21

22 Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution

hapter 1 introduced Essbase and Oracle OLAP, and showed how they
both offer effective solutions for OLAP. The similarities between the
products arise from a shared goal to provide business users with the
technology they need to perform ad hoc analysis and to report on
centralized data stored on a server. The differences between the two

products stem primarily from who is responsible for (or “owns”) the OLAP solution,
how it is implemented and accessed, and where the OLAP data is stored.

Essbase is owned and managed, generally speaking, by line-of-business users in
partnership with the IT group. Essbase uses a multidimensional database stored on
disk and in RAM. In contrast, the organization’s IT group typically owns Oracle
OLAP, in partnership with line-of-business users. Oracle OLAP is a natural part of
the Oracle Database, which means it can take advantage of other database features
(such as security and access to data via SQL) and other options (such as Oracle Real
Application Clusters). The similarities and differences are reflected in how each
product implements OLAP concepts.

In this chapter, we introduce common OLAP concepts—such as multidimensionality,
calculations, and ad hoc analysis—and show how the concepts are implemented in
Essbase and Oracle OLAP. In subsequent chapters, we will build on this foundation,
explaining product-specific implementations in more detail. We conclude this chapter
with histories of Oracle OLAP and Essbase. The business problem each product was
designed to solve and the evolution of each product help to explain the differences
between the two products.

Common OLAP Themes
OLAP relies on a basic set of concepts. These concepts are shared between Oracle
OLAP and Essbase. For the purposes of this book, we have organized the concepts
into the following logical groupings:

 Multidimensional view of information ■ The concepts of a cube, dimensions,
members, hierarchies, levels, attributes, measures, and aggregation

From data source to multidimensional data ■ Data-related concepts such as
transformation from transactional data sources to multidimensional cubes,
dense and sparse cubes, partitions, slowly changing dimensions, user access
to data, and write-back functionality

New results from existing data ■ Advanced aggregation operators and
calculated measures that are derived from data stored in multidimensional
cubes

Ad hoc analysis ■ Having a conversation with the data by using drill paths,
pivoting dimensions, and manipulating data subsets

C

Chapter 2: OLAP Concepts and History 23

The following sections describe each group of concepts, including how Essbase
and Oracle OLAP implement them. The goal here is to map the conceptual terms to
particular features within each product so that you can begin to build up some
product-specific vocabulary. Note that product-specific features are only briefly
introduced here. They are described in more detail in the following chapters in the
context in which the features are used.

Multidimensional View of Information
We defined the term OLAP in the first chapter, but you may also encounter another
term that is used interchangeably: multidimensional analysis. Multidimensional
means nothing more than thinking about a topic from more than one perspective.
For example, consider your answers to the following questions:

 Where are you currently located? ■

What day of the week is it? ■

What are you doing right now? ■

You just performed your first piece of multidimensional analysis—analyzing
location by time and task. In this example, location, time, and task are dimensions.
Your specific answers to these questions—let’s say head office, Monday, and
reading—are members within the dimensions. In a multidimensional analysis, the
dimensions can be thought of as forming the edges of a cube, with the names of the
dimension members defining where you are on each edge.

A fundamental principle of OLAP systems is to optimize how data is stored so that
it may be accessed as quickly as possible by the end user to support ad hoc analysis.
Unlike transactional systems built with relational databases, or even data warehouses
built on relational databases, OLAP systems provide highly optimized structures to
store and aggregate data. The purpose of these systems is to precalculate measures
that could possibly be used as part of the analysis. The precalculation happens when
loading the data. A lot of the generic “overhead” used to store data in a relational
database is omitted from OLAP cubes. The following discussion summarizes the
concepts used to precalculate and efficiently store data so that access to the data is
blazingly fast.

Cubes
We introduced the concept of a cube in Chapter 1. To recap, Figure 2-1 shows
three dimensions, one on each axis of the cube. The intersection of members from
each dimension has the potential to hold a value. The values represent a measure,
which is sales in this case.

24 Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution

Fundamentally, Essbase and Oracle OLAP implement the concept of a
multidimensional cube differently. Although Essbase applications can be made up
of a series of interconnected cubes, they often store all data in a single cube that
represents all possible combinations of all dimensions. Using the term cube in this
context is a bit of a stretch, and sometimes the term hypercube is used to suggest the
higher dimensionality. An Essbase cube is more accurately referred to as an Essbase
multidimensional database, where the data is stored in a multidimensional structure
rather than a relational structure, though the terms are often used interchangeably.
In this chapter’s discussion of generic OLAP concepts, we will continue to use the
term cube to describe an Essbase database.

In Oracle OLAP, data is stored in cubes of varying dimensionality. Specifically,
the data and the type of analysis required determine the number of dimensions
represented in any given cube. For example, sales data may be broken down by
four dimensions: region, time, channel, and product, but budgetary data may be
broken down only by channel or region. With Oracle OLAP, you can specify the
dimensions for each of the two cubes independently. A single cube is often loaded
from a central fact table and the associated dimension tables. These cubes are
presented as a star schema, and can be used as cube-organized materialized
views in the larger relational database, which will be discussed in more detail in
Chapters 3 and 4.

From a practical standpoint, the functionality that is exposed to the end user
from either Essbase or Oracle OLAP is very similar. End users can interact with their
data in an easy-to-understand, intuitive fashion. How the application is built and
maintained relates to the core differences of the two products.

166

131

123

267

182

149

150

196

143

120

115

231

Jan

Diet Cola

Mar
ke

ts

CACT N
Y

Root Beer

Cream SodaPr
od

uc
ts

Fruit Soda

Feb

Time

Mar

267 units of fruit soda sold in CA in Jan

FIguRe 2-1. Dimensions represented in an OLAP cube

Chapter 2: OLAP Concepts and History 25

Dimensions, Hierarchies, and Members
As discussed in Chapter 1, a dimension is a collection of items that share some
attribute or characteristic. You define dimensions for those attributes or characteristics
that you want to report or analyze. Dimensions contain members such as January or
February, which are often organized into one or more hierarchies.

The concept of a hierarchy is intuitive. Hierarchies are how human beings like
to think of and categorize concepts. For example, if you have ever written an essay
in school, you organized the information in a hierarchy.

 1. Animals

 a. Dogs

 i. Labrador

 ii. Shepherd

 iii. Terrier

A typical dimension consists of one or more members, each of which may
contain one or more hierarchies of members. Figure 2-2 shows partial dimension
hierarchies for Time, Products, and Markets.

The relationships between members within a dimension define the dimension
hierarchy. OLAP systems often use a genealogical model to explain the relationships
among members, so we can talk about members having children, parents, siblings,
ancestors, and descendants. In Figure 2-2, Sodas has two children (Fruit Soda and
Cream Soda), one parent (Products), and at least one sibling (Colas).

FIguRe 2-2. Dimension hierarchy

April

Time Products Markets

West

CA

East

CT

Sodas

Fruit Soda

Cream Soda

Colas

Quarter 1

Quarter 2

January

February

March

Diet Coda NY

26 Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution

Another way to talk about a member is by its location, or level, within a hierarchy.
In Figure 2-2, the Time dimension has three levels: time (which corresponds to the
year), quarters, and months. Members with no children are called base-level members
or leaf members. In this Time dimension, the base-level members are the 12 months
of the year.

When a hierarchy contains at least one base-level member at a different level than
the other base-level members, it is called a ragged hierarchy. Ragged hierarchies are
very common in OLAP systems, as they typically explain the complexity in the real
world. For example, in Figure 2-3, the sales for a company are broken down by region
of the country and then state for the United States, but only by a few provinces for
Canada, and simply by country for Mexico. This type of hierarchy reflects that
business people tend to think about the business in groups that are of a similar size. In
the example in Figure 2-3, the company has sales that are approximately equal across
the regions in the United States, within the selected provinces in Canada, and for the
entire country of Mexico.

FIguRe 2-3. A ragged hierarchy with leaf nodes highlighted

United States

Sales Region

East

Connecticut

Georgia

Massachusetts

New York

Rhode Island

West

Canada

Mexico

Alberta

Ontario

British Columbia

Quebec

Chapter 2: OLAP Concepts and History 27

When a hierarchy has at least one member whose parent is more than one
level above it, the hierarchy is referred to as a skip-level hierarchy. For example,
in Figure 2-4, the president, Smith, has vice presidents as well as a director
reporting to him. The director, Garcia, skips through the vice president level.
Another skip-level occurs in Tilson’s reporting structure, where Tilson has a
director (Sutherland) as well as a regular employee (Starr) reporting to her. Starr
skips through the director level. Again, multidimensional systems make it easy to
represent the real world in an intuitive manner.

Robust OLAP systems, including Oracle OLAP and Essbase, support ragged
hierarchies and skip-level hierarchies.

NOTe
The homogenous use of a single dimension
representing multiple levels is sometimes confusing
to DBAs who are used to relational database
concepts. Columns in a relational table can
store only one type of item, such as a month or
a year; they cannot store both types. In an OLAP
application, to select just months, you simply ask for
times at the month level.

Oracle OLAP and Essbase implement dimensions, hierarchies, and members in
similar ways. They use the language of genealogy to describe member relationships.
Both products also implement the concept of levels, but in different ways. In Oracle
OLAP, you define and label levels in a hierarchy. You can also have value-based

FIguRe 2-4. Skip-level hierarchy with skip-through nodes highlighted

Smith
President

Garcia
Director

Jackson
Director

Watanabe
Director

Meyers
Vice President

Tilson
Vice President

Sutherland
Director

Rogers SinghCobbler Lyle Thompson Mora Petrov Wagner Starr

28 Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution

hierarchies, where the parent-child structure is in place, but specific levels are not
identified—just the depth from the top. Essbase automatically identifies levels in two
ways: levels and generations. Levels are numbered from bottom to top, where level
0 is a leaf member (a member with no children), level 1 is its parent, and so forth up
the hierarchy. Generations are numbered from top to bottom, where generation 1 is
the root of the dimension, generation 2 is all its children, and so forth down the
hierarchies. Essbase also allows user-defined level names. In all cases, you can use
levels to map source data to locations within dimension hierarchies. The walk-
throughs in Chapters 4 and 5 provide more details on how to map data sources to
dimensions.

Attributes
An inherent value of an OLAP system is the ability for business users to analyze data
in a way that makes sense to them. We do this every day when we make a decision
based on a variety of environmental and personal points of view. To that end, OLAP
models have evolved to provide the ability to view data in a variety of ways.

One way to provide alternate views of the data is through user-defined attributes
or groupings. An attribute is a tag or property assigned to a member. For example,
you might tag some Market members as “Major Market,” so that an end user can
easily find and present all of the major markets in a report.

Oracle OLAP and Essbase approach user-defined attributes in the same way—
that is, as tags assigned to members. Users can create as many different attribute
tags as they need to suit their purposes. Attributes can be assigned to any dimension,
and a member can have multiple attributes associated with it. There are no
calculations inherent in attributes, but attributes can be used within calculations. In
addition to user-defined attributes, Essbase also has a dimension type called an
attribute dimension, which provides a way to create alternate hierarchies based on
a characteristic of the members. For more information, see the related sections in
Chapter 3.

Alternate Hierarchies
Another way to get alternate views of the data is to define more than one hierarchy for
a dimension. Alternate hierarchies provide different ways to aggregate a dimension. For
example, a Customer dimension may have a geographic hierarchy and a managerial
hierarchy, as shown in Figure 2-5. If analysis is typically performed using one of these
hierarchies (but not both at the same time!), this is best done with two hierarchies of
the same dimension. OLAP products ensure that data is not counted more than once
when using alternate hierarchies.

The products differ in their implementation of alternate hierarchies. In Oracle
OLAP, each dimension has a current hierarchy that defines the current drill path

Chapter 2: OLAP Concepts and History 29

for the dimension. Users can select a hierarchy to use as their current hierarchy.
Because users are working with only one hierarchy of a dimension at a time, there is
little risk in counting the data multiple times. In Essbase, alternate hierarchies can be
defined in two ways: by creating attribute dimensions and by creating hierarchies
that contain shared members (pointers to members in the primary hierarchy). Users
can drill through to different hierarchies as easily as drilling down from one level to
the next. We define and discuss drill paths in the “Ad Hoc Analysis: Having a
Conversation with Your Data” section later in this chapter.

unique Versus Duplicate Members
A discussion about alternate hierarchies generally leads to another discussion—one
concerning the concepts of unique and duplicate members. A duplicate member
occurs when you use the same member name for more than one member.

For example, consider an OLAP system for a shipping company that has a
dimension for Origin and another dimension for Destination. A customer in San
Francisco could both send and receive packages from that location, which means
that the customer would legitimately need to belong to both dimensions. Although
the company could create unique names, a more elegant solution from the user
perspective would be to allow the customer to exist in both dimensions, and use
the context of the member within the hierarchy to provide the uniqueness.
This approach to creating uniqueness is similar to that used in object-oriented
programming, where the larger class defines the unique attributes of the member.

Essbase and Oracle OLAP support duplicate members. In Essbase, member
names are assumed to be unique unless you enable support for duplicate members.

FIguRe 2-5. Multiple hierarchies for a Customer dimension

Geographic Hierarchy Managerial Hierarchy

Company Total

Division

District

Territory

Customer

Company Total

Country

State

City

Customer

30 Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution

Duplicate members are made unique by prefixing the member name with its
ancestors, up to and including the dimension name. Oracle OLAP, on the other
hand, has no unified list of dimension values across all dimensions, so duplicate
members across dimensions are not an issue. Oracle OLAP offers support for
duplicate members within a dimension using surrogate keys. Support for surrogate
keys is on by default. In Oracle OLAP, level names in a hierarchy are user-defined.
Oracle OLAP makes the member name unique by prefixing the member name with
the level name.

NOTe
In Essbase, working with a model that contains
duplicates is more complex from a reporting
perspective. In this book, assume that all examples
are created using unique member names only.

Dimensions, hierarchies, members, levels, and attributes form the structure of a
cube. The data comes from measures.

Measures and Values
Measures represent business data that is important for analysis, such as sales and
cost of goods sold. Measure values are the data that fills the intersections in a cube.
To be meaningful, a value must be defined in terms of all dimensions in the cube
(hence the term multidimensional analysis). For example, in Figure 2-1, we
determine the meaning of the highlighted sales value of 267 by examining the
dimension members that form the intersection at that value, and so we understand
that 267 units of soda were sold in California in January.

TIP
For those with a relational database data warehouse
background, a measure is synonymous with a fact
in a fact table. When a relational database provides
the source data, unique key columns are often the
dimensions and fact columns are often the measures.

Stored measures are values saved in the cube. Calculated measures are values
derived from calculations based on stored measures and/or other calculated
measures.

Oracle OLAP and Essbase have some key similarities in how they implement
measures. Both products allow for stored measures and calculated measures (though

Chapter 2: OLAP Concepts and History 31

Essbase uses the terms stored values and calculated values instead). In each case,
decisions must be made about the level of detail to include in the cube; for
example, it may be more appropriate to provide summary-level data in a cube
rather than detailed data.

The products also have differences in how measures are handled:

 With Oracle OLAP, you create multiple cubes of varying dimensionality, ■
which means that understanding the context of a measure is straightforward.
Measures are organized by their dimensions and typically include a
Time dimension. In contrast, Essbase includes all dimensions in its
multidimensional database, so querying and understanding the meaning of
an individual measure can be more complex, because you need to think
across more dimensions.

Oracle OLAP has no internal representation of a “measures dimension” per ■
se, and no hierarchy of measures, whereas Essbase has a dimension type
for measures called accounts. What makes an accounts dimension special
is that Essbase calculates the accounts dimension first. Other than that, it
behaves exactly like any other dimension stored in the cube.

With Essbase, any dimension can have calculated values, whereas with ■
Oracle OLAP, calculated measures can be defined, but calculated values
of other dimensions require special techniques called models. In Oracle
OLAP 11g Release 1 and earlier, this is done in OLAP Worksheet via the
OLAP Data Manipulation Language (DML). Models can be defined for any
dimension by database administrators and will be covered later in this book.

Aggregation
OLAP systems leverage the concept of hierarchies for calculation purposes,
providing default calculations simply by aggregating the values of the members up
the hierarchy. Take the Time dimension in Figure 2-2, for example. Time has a
value that represents the total of the values for each of the four quarters in the year.
The quarter members get their value from the summation of the months within the
quarter. This speeds the access to information and makes it easy for the OLAP
system to find the values and present them to end users.

Both Essbase and Oracle OLAP implement the concept of aggregation.
Aggregation, by default, is addition. You can turn off aggregation or change the
operation from addition to some other operation. We discuss aggregation operators,
as well as other ways to perform calculations, in more detail in the “New Results
from Existing Data” section later in this chapter. With both Oracle OLAP and
Essbase, aggregations can occur either in some batch process or on the fly as a user
is querying the cube.

32 Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution

From Data Source to Multidimensional Data
In the previous section, we talked about measures as the data in the cube. All OLAP
systems pull data into cubes from one or more data sources. An important part of
both OLAP engines is how the data will be stored to optimize efficient access to
respond to end-user queries. In this section, we discuss concepts related to data,
including data sources, dense and sparse cubes, partitions, security of the data, and
write-back to the cube.

Data Sources
A company’s source data often comes from transactional systems, such as point-of-
sale or customer relationship management (CRM) applications. To perform an OLAP
analysis, source data needs to be made available to the OLAP engine. We use the
phrase “made available” very deliberately, because depending on the type of OLAP
implementation, data may or may not need to be moved into the OLAP engine.

Data Sources and OLAP Types An OLAP engine stores and accesses data
differently, depending on the type of OLAP implementation. As discussed in
Chapter 1, the three main types of OLAP are multidimensional OLAP (MOLAP),
relational OLAP (ROLAP), and hybrid OLAP (HOLAP), which store data as follows:

 With MOLAP, the engine stores data—often aggregated data—in a ■
multidimensional structure.

With ROLAP, data is stored in a relational source, and the OLAP engine ■
generates dynamic SQL to extract the data for analytical processing at query
time.

With HOLAP, the engine stores some data in the OLAP engine and some ■
data in a relational data source. Depending on the level of detail required
for the query or analysis, the data may need to be accessed from one
or both locations. For example, if you have a model that analyzes sales
patterns across the United States, you might store data down to the city level
in the OLAP structure, but leave granular data like zip (postal) codes in the
relational structure. The decision to store data in one location or another
is most often a factor of processing efficiency and query performance
requirements.

Relational Database Schemas When mapping a relational data source to a cube,
OLAP products make use of the relational source’s star or snowflake schema as a
way to define dimensions and hierarchies.

As illustrated in Figure 2-6, a star dimensional model uses fact tables and a set of
smaller dimension tables. The star dimensional model is a flat model that allows for

Chapter 2: OLAP Concepts and History 33

easier user access than third normal form. Dimension tables act much like foreign
key tables or reference tables in an online transactional processing (OLTP) system.
Fact tables have key values that relate to the dimension tables and fact columns,
such as quantity.

A snowflake model is an extension of a star dimensional model, as illustrated
in Figure 2-7. It normalizes and aggregates the dimensions in a star dimensional
model. This has the effect of creating more tables and requires more SQL joins.

Both Oracle OLAP and Essbase have administrative applications that can read
a star or snowflake schema and present the tables for selection in an OLAP cube.

Multidimensional Storage and Access
As noted in Chapter 1, speed-of-thought response time to queries is a hallmark of
OLAP. The way OLAP engines store and retrieve data is necessarily different from
a traditional, relational database-based, data warehouse approach. Before we visit
OLAP solutions, let’s explore how traditional data warehouses typically access data.

FIguRe 2-6. Star model with one fact table and smaller dimension tables

Product
Dimension

Location
Dimension

Date
Dimension

Customer
Dimension

FACT TABLE

Customer ID
Product ID
Location ID
Date ID
Quantity

FIguRe 2-7. Snowflake model

Product
Dimension

Location ID
Location Description
Branch ID

Branch ID
Branch Description

Date
Dimension

Customer
Dimension

FACT TABLE

Customer ID
Product ID
Location ID
Date ID
Quantity

34 Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution

Traditional Data Warehouse Approach—Bitmapped Indexes Bitmapped indexes
are important for data warehouses. Bitmapped indexes logically map each row with
each distinct data value. Bitmapped indexes are generally chosen over a B-tree data
structure for low-cardinality columns. Low cardinality is determined by dividing the
number of distinct column values by the total number of rows. If the result is below
5 percent, the column has low cardinality. For example, a one million row table
might have a State column that has only 50 distinct values. In this case, the State
column has low cardinality, since 50 divided by 1 million is less than 5 percent.

A properly designed bitmapped index is approximately ten times smaller than
a B-tree data structure. As these indexes must be stored as structures in the data
warehouse and consume disk space storage, there is a constant tension between
how much indexing is needed versus how much space is to be consumed and taken
away from the data. Because of its much smaller size, a bitmapped index is ideal for
traditional data warehouses.

An OLAP Approach—Arrays At its most basic level, OLAP products store
multidimensional data in arrays. Arrays provide a way of organizing OLAP data.
Data is stored very efficiently, since the keys (dimension values) are kept separate
from the data in the cube. OLAP dimensions are analogous to an array’s subscripts.
The dimensions serve as a sort of index to the array, and they provide fast access to
the data. Data in arrays can be located with simple arithmetic.

In Oracle OLAP, the implementation of the array-based storage concept is more
sophisticated than simple arithmetic, especially with respect to sparse data sets. For
example, aggregate compression delivers very sophisticated algorithms for storing
and retrieving data optimally. Oracle OLAP automatically manages retrieving data
from disk when required and caching the data in memory as appropriate.

Essbase has two approaches to storing data: block storage and aggregate storage.
For block storage, data is stored in an array. For aggregate storage, data is stored in
tablespace—similar to a large array—as a collection of cells. We discuss the two
types of storage models in more detail in Chapter 3.

Essbase handles data and requests for data using two primary structures:
indexes and a data storage mechanism (array or cell). Whenever a data value is
queried, loaded, or calculated, Essbase brings the specific data storage file into
memory. To find the proper data, Essbase uses an index. All data values in the
model are indexed. Essbase holds this index in RAM (in many cases), and each
request first goes to the index to find the data location. Once identified, Essbase
brings that data into RAM to perform the requested action. Both the data index
and data files are compressed while on disk, and to a lesser degree, in RAM. The
nature of the compression varies depending on the type of numeric data stored in
the structure.

Chapter 2: OLAP Concepts and History 35

Dense and Sparse Cubes
Density is a ratio of the total number of cells in an OLAP cube that are populated
with a value versus the total number of possible cells in the cube. The closer this
ratio is to 1, the denser the OLAP cube; the further away from 1, the sparser the
cube. For example, consider a cube that contains sales data by time by products by
markets. If most of the products are sold in most of the markets over the year, then
most of the cells contain data, and the cube is dense. If the opposite is true—most
products are not sold in most markets—many of the cells are empty, and the cube is
sparse.

Sparse cubes take more space than necessary to store because space is reserved
for every cell, whether or not it has data in it. They may also take longer than
necessary to calculate, because null data cells are considered for calculation along
with values. OLAP systems use different approaches to address sparsity of data.

In Essbase, most cubes are inherently sparse because they contain all
dimensions. Essbase handles sparsity in two ways, depending on which type of data
storage is in use: block or aggregate. We will talk more about storage types later. For
the moment, it is sufficient to know that, for block storage databases, Essbase
requires that the administrator tag dimensions as dense or sparse at the outline level,
so that it knows how to store the data. For example, a Time dimension is usually
dense, while a Product dimension is often sparse. In aggregate storage databases,
Essbase does not require the dense/sparse tag; it handles sparsity at the storage level.

In Oracle OLAP, the administrator defines a dimension as sparse. For all sparse
dimensions, Oracle OLAP defines a special type of dimension called a composite.
The composite holds only the combinations of the sparse dimensions that actually
contain data. This composite is maintained automatically by Oracle OLAP and is
integrated with its advanced compression algorithms for handling aggregate data.
Composites are discussed in more detail in Chapter 3.

Partitions
Whenever a database handles volumes of data, the concept of data partitioning
across multiple data storage becomes important. In a data warehouse environment,
for example, partitioning allows huge tables to be broken up into a series of smaller
tables with faster access, but the SQL application can query the series of smaller
tables as if it were one big table. With partitioning, a data warehouse can expand to
many hundreds of terabytes, while ensuring that results are returned in a reasonable
amount of time. A partitioned architecture also enables you to drop a partition,
which takes less than a second. If you do not partition, deleting old data could take
a long time.

OLAP cubes can also benefit from partitioning data. By partitioning your data,
you can break your data into more manageable chunks, but you are able to hide the
complexity of this strategy from the application and end user. For example, you
could partition a Time dimension so that historical data (say, older than five years) is

36 Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution

kept in a separate partition, allowing faster access to data from more recent years.
When implemented effectively, partitions help to ensure fast, reliable, and
concurrent access to OLAP data.

Oracle OLAP and Essbase both offer partitioning strategies. Oracle OLAP allows
you to define a dimension as a partitioning dimension. Generally, you identify a
level (such as year) of the partitioning dimension, although more complex designs
are possible. Cubes are physically separated into individual partitions for each year,
but the partitioning scheme is transparent to applications that query or write to a
cube. At query time, partition pruning occurs—meaning if you partition by year and
ask for data for a single year, only one partition is accessed for the data. Partitions
can be added and removed easily. We discuss partitioning Oracle OLAP cubes in
Chapter 4.

In Essbase, you can think of a partition as a region of a cube that is shared with
another cube. Partitions come in three types:

 Replicated partitions ■ allow you to store data in different cubes and copy
shared data from one cube to another.

Transparent partitions ■ enable users to navigate seamless from locally stored
data to remotely stored data.

Linked partitions ■ provide a means of linking a cell in a cube to a different
cube with potentially different dimensionality.

We discuss Essbase partitioning strategies in Chapter 3.

Slowly Changing Dimensions
Slowly changing dimensions are dimensions that change over time—sometimes a little,
but sometimes (perhaps because of an acquisition) a lot. For example, consider a cube
that tracks personnel data. The dimension that tracks employee names is a slowly
changing dimension because it is possible for the names, in particular the surnames, to
change. While you could simply overwrite the data, it may be important to track the
changes.

Handling slowly changing data effectively is critical in any database. Data
warehousing theory proposes methods for managing changing data that we can also
apply to OLAP cubes:

 Type 1: Replace the value ■

Type 2: Add a record with an effective start date and effective end date ■

Type 3: Store the old value ■

Type 6: A combination of Types 1, 2, and 3 ■

Chapter 2: OLAP Concepts and History 37

Because slowly changing dimensions are so important, let’s take some time to
understand how each type works before we look at how Oracle OLAP and Essbase
implement this concept. For this discussion, we will use the following example:
Mary Smith marries Bob Jones and decides to change her name to Mary Jones.

Type 1 In Type 1, the column or attribute value is simply overwritten and the
previous value is lost. In our example, a Type 1 methodology would just change the
member dimension to update the last name from Smith to Jones. The fact that Mary
was once Mary Smith is lost. For example, this data:

Key First Name Last Name

12345 Mary Smith

becomes this data:

Key First Name Last Name

12345 Mary Jones

Type 2 In Type 2, an additional record is created, as well as fields for the effective
start date and the effective end date. In our example, a Type 2 methodology would
add a new record for Mary Jones with the effective start date of today. The old
record would have the effective end date updated with today’s date. The fact that
Mary was once Mary Smith is not lost.

Key First Name Last Name Eff_Start Eff_End

12345 Mary Smith 1/18/1960 3/14/2006

45678 Mary Jones 3/14/2006

Type 3 In Type 3, an attribute is added to the record. In our example, a Type 3
change would add fields to the record to contain the old name. The old last name
field would be set to Smith, and the current last name field would be changed to
Jones.

Key First Name Last Name Prior First Name Prior Last Name

12345 Mary Smith Mary Jones

Type 6 Type 6 combines Types 1, 2, and 3. Expanding on our example, let’s say
that Mary Smith was born on 1/18/1960. Mary Smith marries Bob Jones and

38 Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution

becomes Mary Jones on 3/14/2003. On 7/24/2005, Mary Jones divorces Bob Jones.
On 9/17/2005, Mary Jones marries Mark Davis and chooses to take his last name.

Key
Current
First Name

Current
Last Name

Historical
First Name

Historical
Last Name Eff_Start Eff_End

12345 Mary Smith Mary Smith 1/18/1960

Key
Current
First Name

Current
Last Name

Historical
First Name

Historical
Last Name Eff_Start Eff_End

12345 Mary Jones Mary Smith 1/18/1960 3/14/2003

45678 Mary Jones Mary Smith 3/14/2003

Key
Current
First Name

Current
Last Name

Historical
First Name

Historical
Last Name Eff_Start Eff_End

12345 Mary Davis Mary Smith 1/18/1960 3/14/2003

45678 Mary Davis Mary Jones 3/14/2003 7/24/2005

56789 Mary Davis Mary Jones 9/17/2005

This method gives us the most flexibility, but at the highest cost in terms of
space and maintenance.

Oracle OLAP and essbase Implementation Both Oracle OLAP and Essbase
support slowly changing dimensions. In Oracle OLAP, you can model slowly
changing dimensions using attributes and measures. For example, to model the
preceding example, you would simply map the key column to the dimension
member. Type 1 will be handled automatically—when the dimension is maintained,
the name will change. For Type 2 and Type 3, simply add attributes or measures for
the Eff_Start and Eff_End and Prior First Name and Prior Last Name to allow the user
to choose which dimension members to use for selection or display purposes. For
Type 6, you can add attributes and measures for the historical names as well.

In Essbase, you can model slowly changing dimensions using user-defined
attributes, aliases, alternate hierarchies created with shared members, or varying
attributes. For example, to model the preceding example in a Type 1 scenario, you
would simply change the name of the Mary Smith member to Mary Jones. For Type
3, you could use an alias, so that the member name remains unchanged, but you
could use the new name for query and display purposes. If you need to track when
the surname changed, as in a Type 2 scenario, a user-defined attribute or varying
attribute may be more appropriate. Alternatively, if you are mapping a Type 2 or
Type 6 approach directly from the relational source to an Essbase cube, you can
load the columns into Essbase as usual, and then vary attributes across time on the
Historical Last Name.

Chapter 2: OLAP Concepts and History 39

Security and user Access
The security of the data in OLAP systems is critical. Some organizations have all-or-
nothing security procedures, meaning that you can either see the data or you cannot
see the data. More often, various groups of users need access to specific portions of
OLAP cubes. For example, maybe the Eastern region manager should have access to
only the data for the Eastern region and all of the customers in the Eastern region. A
robust OLAP system offers the ability to set user access for the cube, as well as at
various levels in the cube, including dimensions and measures.

 Oracle OLAP leverages Oracle Database user accounts, passwords, and
security measures to protect data, using commands such as GRANT to control
access to cubes, just like any other database object such as tables. In addition to this
overall security, object security lets you grant and revoke access to dimensional
objects using SQL. For data security, Analytic Workspace Manager (AWM) allows
you to control access to sections of a cube at the cellular level, in a fashion similar
to virtual private databases (VPDs), typically for each dimension.

Similar to Oracle OLAP, Essbase supports detailed user and group security.
Essbase provides general security for cube access and administrative roles (such as
the ability to provision users). Additionally, Essbase allows for a series of optional
security levels on objects as well as data and metadata. From a data and metadata
perspective, Essbase supports security down to the cell level.

Write-Back to the Cube to Build Scenarios
Write-back provides end users with the ability to change the values in the cube. End
users can try out various scenarios (called scenario playing) by posing “what-if” type
questions. For example, a business user might want to see what would happen if
sales for a product or set of products increased by 5 percent. Many modeling and
planning applications are based on scenario playing. When OLAP systems support
scenario playing, system administrators assign write-back permission to authorized
end users.

Essbase and Oracle OLAP support scenario playing and write-back via front-end
applications. Essbase has write-back built in as a basic feature. Oracle OLAP provides
the capability via the BI Spreadsheet Add-in, through the OLAP DML, or by using SQL
to change the original source tables. For both products, administrators grant write
access using the standard user access and security mechanisms for each product.

New Results from existing Data
At the heart of an OLAP solution is the ability to perform quick and often complex
calculations. In addition to the aggregation, OLAP engines contain hundreds of
prepackaged calculation functions, ranging from a simple average function to the
more complex allocation, return on investment (ROI), and trend functions. Many
OLAP engines also provide the capability to define calculations based on standard
mathematical operators.

40 Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution

Advanced Aggregation Operators
We have already discussed the concept of aggregation that is built in to the
hierarchical structure of OLAP systems. Many OLAP products enable you to change
what happens during the aggregation, either by preventing some values from rolling
up where logically the results would not make sense or by changing addition to
some other operation as a function of the underlying dimension or data.

Both Essbase and Oracle OLAP support additional aggregation operators, though
the available operations are very different. In Essbase, they are called consolidation
operators, and the set is limited to basic mathematical operations (addition,
subtraction, multiplication, division, percentage, and do not consolidate). Oracle
OLAP offers a different and larger set of aggregation operators, which are grouped
as basic operators (such as sum and average), scaled and weighted operators (such
as scaled sum and weighted average), and hierarchical operators (similar to the
previous operations, but all children are taken into consideration, even if they do
not contain data). In both products, when using different aggregation operators, the
order of calculation becomes important and requires special attention.

Calculated Measures/Values
One powerful feature of the OLAP calculation engine is the ability to create and
perform complex business calculations. The concept of a calculated measure is
simple. The measures are derived from the values of other measures, including
stored and other calculated measures in the current cube or other cubes. The
calculated measures look the same as stored measures to the end users, which
makes them easy for end users to use. As previously mentioned, OLAP engines can
handle complex calculations very quickly, and it is often more efficient to allow the
engine to calculate values at query time, rather than calculating and storing them.

Oracle OLAP and Essbase offer a wealth of predefined calculations and
powerful expression languages, though they may differ in both the number and
types of calculations available. The products also differ in how calculated measures/
values are created. Oracle OLAP has templates for calculating business measures. It
has a rich library of dimension and hierarchical functions, and is syntactically
similar to SQL analytic and window functions. Essbase allows you define calculated
values by attaching formulas to members (for any dimension) and creating
calculation scripts.

Ad Hoc Analysis:
Having a Conversation with Your Data
A principal value of OLAP is that it is tangible. You get to interact with the data in a
fashion that make sense to you, as opposed to looking at only static information in a
report. Another way to think of it is that OLAP lets you have a conversation with
your data. Ask a question based on the dimensions and hierarchies, and you get the

Chapter 2: OLAP Concepts and History 41

answer in any visual format you desire. Interacting with an OLAP source in this
fashion is often called ad hoc analysis.

In the real world, as you start to understand your business and ask questions of
it, the first question often spawns a second set of questions. As you answer the
second set, there can be third or fourth (or more) iterations of questions. Like a
process of scientific discovery, asking a question and uncovering the answer will
often spawn follow-up questions. OLAP is designed to support this line of inquiry.

It is important to draw a distinction here between end-user client tools and the
capabilities of a centralized OLAP engine. The abilities described in this section are
inherent to OLAP engines, and they are simply exposed to client tools as application
programming interface (API) calls or query languages. There is no need for a client-
side tool, for instance, to create the ability to drill down. Instead, the tool simply
asks the engine for the members on the next level of the hierarchy. Front-end tools
for Oracle OLAP and Essbase take advantage of these built-in capabilities in similar
ways.

Drill Path
Drill paths determine what happens when a user navigates through data. Usually,
the drill path correlates to the organization of the hierarchies. Drilling down (or
zooming in) enables you to navigate to lower levels in hierarchy. For example, if
you want to view data for a specific quarter rather than the data value for the whole
year, you can drill down on the Year dimension to see quarter information directly
below. Drilling up (also called zooming out or rolling up) lets you navigate to higher
levels of the hierarchy by collapsing the current member tree. For example, as
shown in Figure 2-8, if you drill down on Qtr1 to view data by months, you can
drill up to see only the total Qtr1 member again. As you drill up, cardinalities shrink
and the portion of the cube that is visible gets smaller.

Roll up Drill down

Sales

CA
Diet Cola

Root Beer

Jan

166

131

Feb

182

149

Mar

143

120

Qtr1

491

400

Sales

CA
Diet Cola

Root Beer

491

400

Qtr1

FIguRe 2-8. Drilling down and rolling up values in a cube

42 Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution

Pivot
Pivoting lets you change the orientation of a report. For example, you can move a
dimension from a row to a column. Conceptually, pivoting can be thought of as
rotating the cube to view analytic data from different perspectives. Figure 2-9 shows
how you can change the visualization of sales data by pivoting the Markets dimension.

You can also use pivoting to move a dimension off the grid to the page. When a
dimension is on the page, it acts as a report filter, filtering data visible on the current
page by the selected member.

Slicing and Dicing Data
The ability to remove or retain subsets of members on a dimension is a hallmark of
an OLAP reporting application. Often, the entire cube is enormous—much larger
than can be effectively presented to the user at one time. The OLAP engine allows
you to select a subset of data to be presented to the user, as shown in Figure 2-10.

Oracle OLAP implements slice and dice functionality using a powerful
“selection” capability that allows you to determine which dimension values are to
be displayed. Essbase uses the intuitive Keep Only action to focus on in a selected
subset and the Remove Only action to remove the subset selected from the current
view of data. While these differences are located in the front-end client tools, not

FIguRe 2-9. Rotating the cube

Sales

Diet Cola

Root Beer

January

166

131

February

182

149

January

78

55

February

56

69

CTCA

Sales

CA

CT

Diet Cola

Root Beer

Diet Cola

Root Beer

166

131

78

55

January

182

149

56

69

February

Chapter 2: OLAP Concepts and History 43

the engines themselves, differences in the API calls for Oracle OLAP and Essbase
influence the capabilities exposed to end users.

Summary of Common OLAP Themes
You should now have a better understanding of OLAP concepts in general and
how Oracle OLAP and Essbase implement those concepts. Table 2-1 summarizes
these OLAP concepts and maps them to the terms used by Oracle OLAP and
Essbase. The concepts are listed in the order in which they were introduced in
this chapter.

Each product offers full OLAP capabilities; only the implementations are different.
Most of the differences in implementation stem from the different approaches taken by
the products. The difference in approach is best understood within the context of the
origins and evolution of the products. The next two sections summarize the history of
Oracle OLAP and Essbase.

FIguRe 2-10. Slices of data in a cube

Regional Mgr.View

Ad Hoc View

Product Mgr.View

Financial Mgr.View

SALES

PR
ODUCT

TIME

M
A

R
K

ET

44 Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution

OLAP Concept Oracle OLAP Terms essbase Terms

Cube Cubes, cube-organized
materialized views

Multidimensional
database, cube

Dimension Dimension Dimension

Dimension member Dimension member Dimension member,
shared member

Dimension hierarchy Hierarchy, current hierarchy,
level-based hierarchy, value-
based hierarchy

Hierarchy, alternate
hierarchy

Hierarchy level Levels (user-defined), value-
based hierarchy

Levels (automatic
or user-defined),
generations

Member relationships
within a hierarchy

Ancestor, parent, sibling, child,
descendant

Ancestor, parent, sibling,
child, descendant

Attribute Attribute User-defined attribute
(UDA), Attribute
dimension

Alternate hierarchy Hierarchy, current hierarchy,
level-based hierarchy, value-
based hierarchy

Alternate hierarchy,
attribute dimension,
hierarchy of shared
members

Measure Measure, stored measure Data value, stored
value, Accounts
dimension type

Calculated measure Calculated measure Calculated value

Aggregation Aggregation, aggregation
operators

Consolidation,
consolidation operators

Density and sparsity Dense, sparse, compressed
composites

Dense, sparse, block
storage, aggregate
storage

Drill Drill up, drill down Zoom out/drill up,
zoom in/drill down

Pivot Pivot Pivot, point of view

Slice and dice Selection capability Keep Only and
Remove Only

TABLe 2-1. Mapping OLAP Concepts to Oracle OLAP and Essbase

Chapter 2: OLAP Concepts and History 45

The History of Oracle OLAP
Oracle OLAP has a rich history extending back before the advent of relational
databases. It grew out of a business need to represent business data in a form that
could be easily analyzed. It has gone through several changes over the decades.
This section reviews the history of Oracle OLAP, from its Express days to its current
status as the multidimensional component of Oracle’s flagship database, the Oracle
OLAP option to Oracle Database Enterprise Edition.

Why a Multidimensional Database?
In the late 1960s, Jay Wurts, a student at Massachusetts Institute of Technology
(MIT) was working on a project for his professor, John Little. When calculating how
much should be spent on advertising for cookies, Wurts found that he spent most of
his time wrestling with reformatting the data for his analysis, not on the statistical
algorithms or the true data analysis. He realized that he needed some sort of
computer-based analytical tool bench for supporting decision making. If the data
model could be abstracted from the data itself, the system could be used for a wide
array of projects, instead of starting from scratch each time.

Wurts found that once he had modeled the data in a multidimensional form, he
was able to report the data in many different formats. By abstracting the data model
from the data itself, his system could produce reports that were not part of the
original specifications. The user could work with the data in an ad hoc fashion,
asking questions that had not been formulated when developing the specifications,
on data that was not even loaded when the system was first constructed. Wurts’s
system allowed users to interact with the data using meaningful names, such as
regions, products, months, and so on. Enhancing the system to store numbers with
more precision allowed the same engine to be used for financial analysis as well,
opening up the software product to a new set of customers.

1960s to 1985—glory Days of Mainframe express
In the early 1970s, Wurts and others in the MIT community—including John Little,
Glen Urban, and Len Lodish—formed the company Management Decision Systems
(MDS) in Weston, Massachusetts, outside of Boston. They developed Wurts’s
original multidimensional engine into the product called Express. In the Express
environment, arrays can be manipulated with a fourth-generation language (4GL) to
conduct business analysis and build systems that help support business decisions, a
class of applications then called decision support systems (DSSs). Eventually, this
product would be called Mainframe Express.

Mainframe Express was delivered on the IBM VM/CMS, and then Primos platforms
in the 1970s and 1980s. Over the years, advanced capabilities were added to
Mainframe Express as it developed into a full-fledged decision-support calculation
engine. These included advanced linear-programming capabilities, Box-Jenkins
modeling, goal-seeking and a LIMIT command to scope down further commands in

46 Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution

a session to subsets of the storage array, and embedded total dimensions for handling
multiple levels of a hierarchy in a single structure. Built in this environment were
applications such as EasyTrac, a general-purpose DSS application, and Easycast, a
general-purpose forecasting product.

1985 to 1990—A New C-Based engine
By the mid-1980s, it was time for Express to move to a more modern development
environment. Originally written in the AED programming language, Express was
rewritten in the C programming language, which was popular at that time. This
allowed MDS to attract talented programmers to work on Express. It also allowed
MDS to port Express to additional operating systems and hardware platforms,
including the increasingly popular IBM PC.

At the same time, MDS recognized that it needed a more sophisticated method
of storing data to deal with issues such as inserting new dimension values without
needing to rewrite the entire array (a process called shuffling). This new engine was
first delivered in 1986 on the MS-DOS operating system as pcEXPRESS version 1.0.
As demand for larger databases grew, the limitations of the PC hardware became
apparent. This new C-based engine was ported to several operating systems and
servers, including VM/CMS, MVS/TSO, VMS, and several variations of UNIX. The
product was called pcEXPRESS on the PC platform and Express MDB on other
platforms.

Express became dominant in consumer packaged goods companies due to its
flexible query capabilities and speed. Many of these companies were also customers
of Information Resources, Inc. (IRI), a Chicago-based syndicated data company. IRI
had been delivering its supermarket sales data in volumes of books called the
Marketing Fact Book. By the mid-1980s, it was looking for a way to deliver its sales
data in a new interactive manner. IRI wanted its users to be able to drill down on
reports and make the experience of using the data more interactive. IRI purchased
MDS in 1985, leaving the Express development staff in the Boston area.

Applications written in Express, especially those targeted to consumer packaged
goods companies, became very important to IRI. Express was the underlying technology
for EasyTrac, later named DataServer by IRI. In the first releases of EasyTrac/DataServer,
pcEXPRESS was used as the front end, providing the ability to navigate through
dimensions in a rich environment, and using Mainframe Express and then Express MDB
to manage the data using a client/server model. DataServer would become the major
delivery vehicle for IRI’s new InfoScan data service, which replaced the Marketing Fact
Book. Other applications were developed as well, most notably Financial Management
System (FMS), a distributed budgeting and planning application.

Between versions 1.0 and 5.0, the pcEXPRESS/Express MDB engine eventually
gained the same sophisticated capabilities as Mainframe Express, including self-
ordering models that would intelligently figure out the order in which equations
needed to be solved to calculate a model, and seasonally adjusted forecasting
algorithms, such as Holt-Winters.

Chapter 2: OLAP Concepts and History 47

1990 to 1996—express goes guI
pcEXPRESS was designed with a character-based user interface—80 characters by
25 lines. Data was presented in scrollable tables, and the keyboard was used for
navigation. The end user could enter graphics mode to display graphs, but true
interaction with graphs was limited. Express MDB had only a command-line interface.
As personal computer hardware evolved to support graphical user interfaces (GUIs),
users began demanding GUIs and the ability to use a mouse with applications. An
Executive Information System (EIS) product was offered as a general-purpose tool for
finance departments that operated entirely in graphics mode.

To address demands for a richer client interface, IRI started building applications
with entirely separate GUIs using Visual Basic and C. Applications were rewritten in
this object-oriented GUI environment. The two most successful applications included
Financial Management System and SalesAnalyzer (successor to DataServer).
Additional applications with analysis capabilities were developed using IRI’s data,
including SalesPartner, an expert system for fact-based selling; Coverstory, a tool for
automatically producing board-room-ready presentations; and BrandPartner for
fact-based marketing.

During these years, Express competed head-to-head with Essbase. Essbase
touted its intuitive spreadsheet interface. Express touted its strong multicube storage
model.

1995 to 1997—Oracle Buys and Markets express
In 1995, IRI was looking for cash to retire debt and fund its international expansion.
At the same time, Oracle Corporation wanted to augment the data warehouse
capabilities in its relational database with OLAP technology. OLAP applications
require a multidimensional view of the data, star schemas, and interrow joins for
time comparisons and share calculations. Express seemed to fit the bill perfectly.
Oracle ended up buying the Express product line and related applications, leaving
IRI’s syndicated data service with IRI. In effect, Oracle bought IRI’s Boston-based
products, applications, and development organization. DataServer and SalesAnalyzer
were renamed to Oracle Sales Analyzer and sold as a very effective general-purpose
performance analysis application. Financial Management System was renamed to
Oracle Financial Analyzer (OFA) and sold as a very effective financial analysis and
distributed budgeting application.

From 1995 to 1997, Oracle ran the Express products group as a separate group.
In this time period, Express Server version 6.0 was delivered as a database service.
As a database service, Express Server could deliver data to multiple sessions at once,
address more memory, and scale much more than the previous platform would
allow. Oracle also continued to enhance the Express platform. Oracle Express
Objects (OEO) and its companion, Oracle Express Analyzer (OEA), were designed
to allow developers to build applications using popular object-oriented techniques.

48 Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution

A new language, Express Basic (modeled after Microsoft’s Visual Basic), was the
host language for OEO and OEA, controlling events and the graphical presentation
of data. Even the development of Express databases went graphical with the release
of Express Administrator, the first graphical tool for developing Express databases.

Around this time, the World Wide Web became a dominant theme in user
interfaces. A new API for building web-based applications called Express Web
Agent was developed. This API was modeled after Oracle Web Agent and used an
HTML template approach combined with Java applets to deliver very functional
applications for running on a web server. The Java applets added higher-level
objects like pivot table and charts. Programming in this environment leveraged the
Express 4GL, the same language used to develop other Express-based applications.

1998 to 2001—Integrating express
into the Oracle Database
Oracle customers wanted their multidimensional data housed in the Oracle Database,
not in the stand-alone Express Server. Oracle decided to start an ambitious project—
the true integration of the Express engine directly into the Oracle Database. The
C-based Express environment was absorbed into the Oracle kernel and was marketed
as the Oracle OLAP option to the Oracle Database Enterprise Edition. This technically
challenging project took several years and several releases to develop. The result is a
true multidimensional engine embedded and integrated into the heart of the Oracle
Database.

2002 to 2003—Oracle9i OLAP
In the first release of Oracle9i OLAP, OLAP data was still stored in a separate file
with a .db extension. At first, Oracle OLAP could be used in ROLAP mode, with
data stored in relational tables, or in MOLAP mode, with data stored in true arrays.
Use of Oracle OLAP in ROLAP mode was met with limited success, with slow
response times for cubes of any significant size.

In Oracle9i Database Release 2, Oracle capitalized on its new object technology
in the database to store multidimensional data in a new analytic workspace—a
binary large object (BLOB) inside an Oracle table. This allowed OLAP data to be
managed, secured, and backed up just like other data in an Oracle database. The
BLOB abstraction allowed the data to continue to be stored in arrays and to retain
the true multidimensional characteristics from Express.

The application AWM allowed cube designers to create and maintain cubes.
AWM provided a graphical environment for defining dimensions and variables, and
for mapping to relational tables to source data. Since Oracle tables were the most
likely source of data, AWM included a graphical interface for mapping source
relational tables to multidimensional objects.

Chapter 2: OLAP Concepts and History 49

A new API, the Java OLAP API, was developed to give an interface to the
multidimensional data. With the declining popularity of object-oriented programming
environments, Oracle moved away from its OEO platform and focused its efforts on a
new Java-oriented development environment, Business Intelligence Beans (BI Beans),
which served as a more approachable programming interface to the Java OLAP API. BI
Beans was delivered with Oracle’s integrated development environment (IDE) for Java,
JDeveloper. Oracle had no generic ad hoc reporting solution at the time, preferring to
promote the development of custom applications using BI Beans and JDeveloper.
Alternatively, customers could develop web-based applications using Oracle OLAP
Web Agent, a web-based programming environment that was a simple port from
Express Web Agent, but this environment was not widely promoted or deployed.

2004 to 2006—Oracle OLAP 10g
With the Oracle Database 10g release of OLAP, Oracle added more capabilities to the
language and started the true integration work to bring the multidimensional metadata
into the Oracle Database. Compression and dynamic models were added to the
aggregation engine. A series of relational tables, the OLAP Catalog, allowed
multidimensional objects to be exposed to relational applications. In Oracle Database
10g Release 2, Oracle truly had a platform on which relational applications could issue
SQL against multidimensional objects. Again, Oracle turned to its object technology to
expose multidimensional objects as a series of rows in a table, using the new function
OLAP_TABLE. Oracle also released a plug-in for AWM that built views for accessing
Oracle OLAP data using the OLAP_TABLE function. OLAP_TABLE enabled Oracle to
establish SQL as the dominant method for accessing Oracle OLAP cubes.

While some companies developed their own custom applications using BI Beans,
it became clear that Oracle needed its own ad hoc tool for accessing Oracle OLAP
data. Oracle had a sample application that it delivered with BI Beans that some
consulting companies developed into an ad hoc reporting tool, including Vlamis
Software Solutions VSS Business Analyzer. Oracle used BI Beans to develop its own
ad hoc tool for accessing Oracle OLAP cubes in 2004, extending its Discoverer
product to include a sister product, Discoverer Plus OLAP. Web-based Discoverer
Viewer was also extended to access Oracle OLAP data. At the time of this writing,
Discoverer is now marketed as Oracle Business Intelligence Standard Edition. Using
the same BI Beans technology, Oracle also released the BI Spreadsheet Add-in, which
enabled access to Oracle OLAP cubes directly from Microsoft Excel.

In 2006, Oracle completed its acquisition of Siebel. Siebel had previously
purchased nQuire and was using its ad hoc and dashboard tools to provide
analytics in its popular CRM applications. Oracle quickly embraced the nQuire
tools, branding them as Oracle Business Intelligence Enterprise Edition (OBIEE). At
the time of this writing, OBIEE is Oracle’s strategic platform for BI applications. As
explained in Chapter 6, Oracle OLAP (and Essbase) data can be reported and
analyzed using OBIEE. OBIEE 11g will include additional OLAP reporting and
analysis capabilities.

50 Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution

2007 to 2009—Oracle OLAP 11g
With the release of Oracle Database 11g, Oracle took another major step in
integrating multidimensional data into the relational engine and support for SQL
access to Oracle OLAP cubes. Oracle’s customers increasingly need the ability to
store summary data from a data warehouse into summary tables.

In Oracle Database 11g, Oracle extended its materialized view logic to treat
OLAP cubes as materialized views. The Oracle optimizer now knows about a “cube
scan” operation that can greatly speed up SQL queries against fact tables by rewriting
queries to run against cubes with summary data. Oracle created a new function,
CUBE_VIEW, which directly reads the OLAP metadata to expose multidimensional
data as relational views. Oracle OLAP 11g also automatically creates views to expose
dimensions and cubes as relational views with a star schema. SQL-based applications
can now access Oracle OLAP data and calculations as easily as selecting from a series
of tables. In addition, dimensions, cubes, levels, hierarchies, and other OLAP
metadata are now integrated into the Oracle dictionary. With this version, Oracle
OLAP is truly integrated into the Oracle Database.

2009 and Beyond
Oracle OLAP is clearly influenced by its history. Over the years, the original Express
4GL language has been augmented considerably, yet still retains full application
development and advanced calculation capabilities as the OLAP DML. The Oracle
Database is now positioned as a rich analytic engine, with multidimensional data
types, and SQL access to all of these calculations for analytical applications. In
addition, a third party, Simba Technologies, has opened up access to Oracle OLAP
cubes using the Multidimensional Expressions (MDX) query language from MDX-
based tools such as Microsoft Excel. Oracle OLAP can be used as a calculation
engine, or especially with cube-organized materialized views, as a sophisticated
aggregation engine for a data warehouse.

The History of essbase
Essbase was released in 1992 by Arbor Software. Like most successful products,
Essbase was invented to address an urgent business need. It has endured and
flourished because it fulfilled the need in the right way. We start our discussion of the
history of Essbase by reviewing the original problems. Then we show how Essbase
solved these problems using a multidimensional approach. Finally, we wrap up our
discussion with a summary of important dates in Essbase history, ending with the
acquisition of Hyperion Solutions (and Essbase) by Oracle.

Chapter 2: OLAP Concepts and History 51

Why essbase?
Essbase was developed as a solution to the two main issues with electronic
spreadsheets, called spreadsheet hell and spread marts by those who have
experienced them. Both issues arise from the limitations of spreadsheets.

Spreadsheet Hell
As noted in Chapter 1, spreadsheet hell comes about as a side effect of the nature of
spreadsheets themselves. Spreadsheets excel at capturing two dimensions. After all,
spreadsheets are essentially a group of rows and columns. Figure 2-11 shows how
two dimensions, Time and Measures, can be used to model a few data values in a
spreadsheet.

In Figure 2-11, the row and column dimensions (Measures and Time) are used to
track income and expense by month and quarter. The challenge is that organizations
never model by just two dimensions. What if the company that owned this spreadsheet
wanted to understand these values by market as well? The concept of a workbook
containing multiple spreadsheets enabled analysts to include a third dimension by
adding a new spreadsheet for each member in the dimension. Figure 2-12 shows how
the company ends up with four additional spreadsheets (one for each region) when the
Market dimension is included.

FIguRe 2-11. Two dimensions: Measures by Time

Measure

Time

52 Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution

You may be thinking that five spreadsheets (the original one plus the four
regional spreadsheets) are not exactly a burden. But what if the company were to
add products to the picture? Figure 2-13 shows what happens when the company
adds five product groupings by the four geographic regions.

FIguRe 2-12. Three dimensions: Measures by Time by Market

Market(s)

FIguRe 2-13. Four dimensions: Measures by Time by Market by Product

Products(s)

Chapter 2: OLAP Concepts and History 53

In fact, most subject areas are analyzed by several dimensions, and this is where
spreadsheets will typically bog down. As we move beyond four dimensions, it
becomes increasingly difficult to represent the spreadsheets as images. To show five
dimensions, we can use a table format. Table 2-2 represents five dimensions: the
previous four plus a new one called Scenarios.

The Input Values column in Table 2-2 contains the number of cells that have a
data value input for each dimension. For example, in the Time dimension, we have
12 months, hence the value 12 in the table. In the Aggregate Values column, we
show how many aggregate values are associated with the dimension. Recall that a
typical Time dimension represents a year with four quarters, where the value for
each quarter is the sum of the months within the quarter, and the value for the year
is the sum of the four quarters. Therefore, the dimension has five aggregate values
(4 + 1). The total number of cells is the number of input values plus the number of
aggregate values. In the last column, we identify where the dimension was
represented in our original spreadsheet example. Recall that Time and Measures
were the original column and row dimensions. Markets, Products, and Scenarios are
what we call page dimensions. Each page dimension requires that a new
spreadsheet be created for every member in the dimension.

On the surface, this example appears fairly simple. But let’s do a bit of
arithmetic. Beginning with the row and column dimensions, we multiply the
number of members for Time and Measures (17 * 18) to arrive at 306 cells in a
page. For the page dimensions, we multiply the members belonging to Markets,
Products, and Scenarios (25 * 19 * 4) for a total of 1,900 spreadsheets. The result
is 581,400 (306 * 1,900) data cells spread over 1,900 spreadsheets!

Spread Marts
Maintaining vital information across spreadsheets is often a tremendous challenge for
organizations, large or small. For instance, if the definition of Total Expenses in the

Dimension Input Values
Aggregate
Values

Total Number
of Cells

Spreadsheet
Representation

Time 12 5 17 Column

Measures 9 9 18 Row

Markets 20 5 25 Page

Products 14 5 19 Page

Scenarios 2 2 4 Page

TABLe 2-2. Five Dimensions Represented in Spreadsheets

54 Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution

previous section’s example were modified, the analyst would need to change each of
the two calculations under January and Quarter 1 across all 1,900 spreadsheets. That
is quite a lot of work and presents many potential sources for error.

Many IT people call data maintained in this fashion “spread marts,” because the
collection of spreadsheets often becomes a bit of a data mart, housing quite a lot of
very important information. Unfortunately, that is where the “mart” comparison
ends. A data mart is a collection of data available to many users, stored in a highly
scalable database, along a specific subject area. In contrast, spreadsheets are
personal productivity tools that allow users to model smaller amounts of data.

essbase: A Multidimensional Solution
The inventors of Essbase decided to solve the dual problems of spreadsheet hell and
spread marts by implementing a database and storing data in terms of dimensions.
In fact, Essbase is an acronym for Extended Spread Sheet dataBase. Their idea was
to create a database from a series of disconnected and often single-user-based files
and use a spreadsheet tool like Lotus 1-2-3 or Microsoft Excel for query and report
creation.

According to United States Patent 5,359,724, Essbase is defined as a “method and
apparatus for storing and retrieving multi-dimensional data in computer memory.”
Essentially, this means that Essbase is a multidimensional database management
system (MDBMS). Unlike a relational database management system (RDBMS), Essbase
stores data much like a spreadsheet. However, where spreadsheets store values per
the combination of just two dimensions (row and column), Essbase allows users to
define the number of dimensions that are appropriate for the business case.

Returning to our example, Figure 2-1, shows the same dimensions—Measures
by Products, Time, and Markets—represented as a cube. Each of the dimension
members are combined to create a potential data cell that can contains a value. In
other words, the combination of specific Product, Market, and Time members yields
a value; for example, 267 units of fruit soda sold in California in January.

The great thing about an MDBMS is that you can select the dimensions you
want, and the data cells and their relationships are created automatically. For
example, you could query the database to create a report containing values for
measures by time for a particular market and product, and using a specific scenario.
Recall that, for our simple example, we calculated that you would need to create
and save 1,900 spreadsheets to model these same five dimensions. Essbase allows
you to create any of those 1,900 spreadsheets instantly, simply by querying the
multidimensional database for the members you want to display in a spreadsheet.

1992 to 1994—essbase Is Born
Essbase was patented on March 30, 1992. Though revolutionary at the time, initial
releases of Essbase allowed for fairly small data sets to be stored in Essbase cubes.
The cubes were stored on a server, and initially Lotus 1-2-3 and Microsoft Excel

Chapter 2: OLAP Concepts and History 55

were the primary client-side query and reporting methods. A very rudimentary,
script-based report writer was also included.

When first released, the Essbase Server was available only on OS/2. Windows
and UNIX support followed shortly thereafter.

Application development and administration were achieved via a Windows-
based studio called Essbase Application Manager. With the Application Manager’s
easy-to-use, drag-and-drop style interface, the power user could create applications
without the help of IT. This represented an important major shift in application
development.

1994 to 1998—APIs and the essbase Web gateway
The second half of the decade brought a host of improvements and innovation to
Essbase. Arbor Software developers saw themselves as engineers of the best
MDBMS available. Therefore, instead of creating proprietary reporting tools, the
norm for RDBMS at the time, they created and nurtured a partner ecosystem. The
approach was to open Essbase to other software developers. The mission was to
ensure that Essbase could be integrated into just about anything that needed an
MDBMS.

To achieve this mission, Arbor published a series of APIs, enabling both customers
and partners to create complementary applications. Next, Arbor Software released the
Essbase Web Gateway, a development environment that enabled developers to deliver
browser-based applications on top of Essbase.

The Essbase Web Gateway was used to develop and deploy intranet- and Internet-
based web-enabled applications for ad hoc analysis, management reporting, enterprise
information systems, budgeting, and sales forecasting. Essbase and the Essbase Web
Gateway enabled corporations to deliver OLAP applications directly from operational
systems or within an overall data warehousing architecture.

1998 to 2003—New Reporting Options for essbase
After Arbor Software merged with Hyperion Solutions in 1998, several new
Hyperion-based reporting options appeared. Hyperion’s approach to the software
market was very different from Arbor’s. After all, Hyperion was an applications
vendor, rather than a software engineering company. This would cause some
growing pains. The marriage eventually bore fruit, however, as Essbase was used to
power some Hyperion applications, as well as to provide extensibility for many of
Hyperion’s other applications.

By 2002, Hyperion Solutions had evolved a business strategy to help companies
better understand their performance. Hyperion, through thought leadership, created
the term business performance management (BPM). Gartner later recognized BPM
as a category of software called corporate performance management (CPM). Today
we might know this better as enterprise performance management (EPM).

56 Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution

2003 to 2007—Aggregate Storage
and Hybrid Architecture
When it first came out, Essbase had one storage type: block storage (BSO). BSO was
relegated to a subset of multidimensional applications, due to size constraints. As
such, Essbase was well positioned to assist in applications of a more financial
nature. Additionally, spreadsheet problems were typically found in the finance
department of an organization. This makes sense, as finance users use spreadsheets
extensively.

During late 2003 and early 2004, developers undertook a project to create a
new form of Essbase storage specifically designed to address applications requiring
extensive dimensionality and small update windows. By increasing the amount of
data and expanding the number of dimensions and members, Essbase could address
a far wider range of applications. This new form of storage was eventually named
aggregate storage (ASO). With ASO, most of the data limitations associated with
BSO were addressed, so customers could create applications far outside the
traditional realm of finance.

A third form of storage, called advanced relational access (ARA), was added
with Essbase 9. ARA enabled a hybrid approach to OLAP using Essbase. Whereas
BSO and ASO store all the data in their respective Essbase databases, ARA provides
for the ability to link back to a relational database. Essentially, you can decide
which information along a dimension was stored in the Essbase database versus
what was left behind in the relational database. For example, you might drill down
through a Time dimension from years to quarters to months. Then, when drilling
down from months to days, Essbase queries the relational database and presents the
data as though it had been in Essbase the whole time.

Actually, the aforementioned Essbase 9 had been renamed just as Essbase won
an award. The new name was Hyperion System 9 BI+ Analytic Services. Over time,
it became apparent that the user community preferred and continued to use the
former name Essbase. And the recognition that Essbase achieved? Information Age
magazine named Essbase as one of “The 10 Most Influential Innovations.”

2007 to Present—essbase Powers Oracle
ePM and BI
July 2007 brought the legal entity merge of Hyperion Solutions into Oracle. Many
companies “run” themselves via enterprise resource planning (ERP) systems such as
Oracle or SAP. However, many of these same organizations used the Hyperion
performance management applications to gather information from the ERP systems
to provide information to management. So, it was logical for Oracle to join forces

Chapter 2: OLAP Concepts and History 57

with such a complementary vendor. With Hyperion integrated into Oracle, a
complete set of offerings would be available. In addition, Hyperion’s BPM strategy
was recognized by Gartner and, in turn, by Oracle.

Since the acquisition, Oracle has restored the Essbase brand and released
Essbase versions 9.3.1 and 11.1.1. Essbase was core to the Hyperion acquisition by
Oracle and has since become Oracle’s strategic direction for EPM, powering Oracle
Enterprise Performance Management System and functioning as a data source for
OBIEE Plus. Although this arrangement was conceived of before the Hyperion
acquisition, Oracle developers—backed by a host of Hyperion resources—made
tremendous improvements to the integration. At present, Oracle is the leading
source of performance management systems, per Gartner.

Conclusion
Oracle OLAP and Essbase both offer robust implementations of OLAP concepts.
While the products diverge significantly in how they implement some concepts—for
example, in their approaches to cubes, levels, and alternate hierarchies—they are
remarkably similar in many other ways, including how they approach the concepts
of dimensions, hierarchies, members, user-defined attributes, measures, and
aggregation. The histories of each product shed some light on why the approaches to
OLAP differ. Essbase grew out of the needs of the line of business, and so all relevant
dimensions are available for analysis and calculation in an Essbase database. Oracle
OLAP evolved from its origins as a mainframe application into an integrated OLAP
solution for the Oracle Database. An Oracle OLAP cube serves to replace a set of
single-level materialized views and to provide additional calculations.

An understanding of the history of the products also offers insight into how
each fits into Oracle’s BI and EPM architectures and possible future roadmaps.
Oracle OLAP 11g represents the cumulation of years of work to integrate the
Express engine fully into the Oracle Database, providing a truly unique partnership
of data warehouse and OLAP capabilities. Oracle OLAP is focused on providing
data to SQL-based front-end tools and dimensional tools using MDX such as
Microsoft Excel as a natural extension to the Oracle Database. Essbase continues to
provide a flexible, stand-alone OLAP server, as well as becoming the OLAP engine
that powers the Oracle Enterprise Performance Management System suite of
products. Both products can supply OLAP data to the front-end tools available with
OBIEE Plus.

In the next chapter, we turn our attention to the general principles that guide the
design of an OLAP solution, as well as product-specific design methodologies. We
also present the architectures and components for Essbase and Oracle OLAP.

58 Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution

References
“Oracle Announces Next Generation of Open OLAP Technology.” Oracle news

release, January 8, 1996.

 “Oracle Unveils the Industry’s Most Comprehensive Solutions for Data
Warehousing.” Oracle news release, June 21, 1995.

Information Resources, Inc. Announces $100 Million Asset Sale and Technology
Agreement with Oracle Corporation.” IRI press release, June 12, 1995.

 “Oracle Buys Enterprise Performance Management Leader Hyperion.” Oracle news
release, March 1, 2007.

Oracle-Regular / Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution/ Schrader et al. / 182-2 / Chapter 3
Blind folio: 59

Chapter
3

Design and Overall
Methodology

59

60 Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution

o begin to design an effective OLAP application, designers need a
background in basic OLAP concepts, as well as knowledge of general
OLAP design principles. Next, they need to learn the specifics of their
selected OLAP product. Designers should know about the product’s
features, functionality, and restrictions, so that they can design an OLAP

application that takes advantage of the strengths of the product while avoiding
potential pitfalls. They should also understand the OLAP product’s architecture and
how that architecture fits into their existing infrastructure. Designers need to know
about the capabilities of the product components that come out of the box—including
the tools provided to make the process of designing and building an OLAP solution
easier—as well as understand the front-end tools that may be available to support the
analysis and reporting needs of business users.

Finally, the developer should work with end users to train them. Often, end
users miss many nuances that truly make their lives easier in an attempt to “just get
started.” A training program should be implemented that starts with the basics, then
allows users to get used to the system, then follows up with more advanced features
that make tasks easier. Without this approach, end users often get frustrated and do
not adopt the system. End-user adoption will be a critical component of the success
or failure of the OLAP application.

In this chapter, we build on some of the OLAP concepts introduced in Chapter 2,
showing how they affect the design process. We begin our discussion with some
general design principles that are applicable to the design of any OLAP application.
We then look at specific design issues for Oracle OLAP and Oracle Essbase. We
conclude with a review of product architectures, product components, and compatible
Oracle products for Essbase and Oracle OLAP.

General Design Principles
To reduce the concept of OLAP application design methodology into a few pages is a
challenging exercise. As with developing most of types of applications, there are as
many ways to design and build an OLAP application as there are OLAP consultants.
The purpose of this chapter is to share general principles of successful methodologies.

NOTE
In this chapter, we use the general term OLAP
application. For Essbase, the application is made
up of one or more Essbase multidimensional
databases. For Oracle OLAP, the application is
an analytic workspace with multiple cubes and
multidimensional objects.

T

Chapter 3: Design and Overall Methodology 61

A good application design methodology considers the following general principles:

 Design is an iterative process, requiring multiple releases of the application. ■

User requirements must drive design. ■

What is omitted from each release is as important as what goes in. ■

Dimension types offer convenience for both the designer and end users. ■

Data types improve data quality. ■

Different uses require different views of the data. ■

User access and security need to be planned in advance. ■

Applying these principles to the design of either an Essbase database or an
Oracle OLAP analytic workspace will go a long way to ensuring the success of your
project. In the following pages, we describe each of these general principles in more
detail. Later in the chapter, when we introduce the design processes for Oracle
OLAP and Oracle Essbase, we will expand on some of these principles and show
how they apply to each product.

Design Is an Iterative Process
One of the most effective approaches to OLAP design is an iterative approach, which
seeks feedback from users and incorporates that feedback into the application. Figure 3-1

FIGuRE 3-1. Designing and building an OLAP application is an iterative process.

Report
and

verify
Load data

Calculate

Build MDB

62 Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution

shows a very simple diagram describing an iterative design and build process. While
the diagram in Figure 3-1 was originally created with Essbase in mind, it applies just
as well to Oracle OLAP and to OLAP design in general. Of course, the process may
be more complex than this figure implies, requiring more than four steps.

There are three primary inputs for the design: the dimensions you identify and
use, the source data you select, and the calculations you run. You need to consult
with your user base while initially designing each input.

The output is a set of reports, which are used to validate the data and verify that
the results match the expectations of business users. The results of the validation step
feed back into the other steps of the process, allowing you to tweak your design and
implementation to better suit your users.

With time and repetition, you will see incremental improvements to your OLAP
application. This iterative process is a powerful way to ensure that your design
actually does meet the needs of your users.

user Requirements Drive Design
We have said it before, and we will say it again throughout this book: OLAP
applications are about the business user. While IT plays an important role in data
management, business users—and their need for capabilities such as fast and easy
reports, ad hoc analyses, and scenario modeling—will drive the implementation of
an OLAP application. Ignoring this fundamental design principle will inevitably lead
to dissatisfied users and the ultimate failure of the system to meet business needs.

With that in mind, the logical place to start the design process is with the tool
most used by business users: reports. Long before you ever considered an OLAP
system, users were creating reports. The reports might be in spreadsheets or some
other reporting front end, but they exist. These reports will tell you a great deal
about how to structure your OLAP model.

For example, consider the spreadsheet report shown in Figure 3-2. For the
purposes of discovering the important design elements, the numbers are irrelevant.
The labels and the delivery vehicle, however, tell us a great deal about the business.
You just need to decode it.

When decoding a report, you need to channel your internal Sherlock Holmes.
Looking at this report, we can deduce the following:

 There are six, possibly seven, required dimensions: Product (Colas), Region/ ■
Market (East), Customer/Account (N.A. Strategic), Measures (row headers),
Scenario (columns Actual, Budget, and Variance), and Time (may be two
dimensions, see the next item for an explanation).

For Time, we can see that the page header denotes fiscal years (FY10), ■
and the column headers specify quarters (Qtr1 and Qtr2). This generally
indicates that there is a cross-tab reporting requirement for time. Cross-tab

Chapter 3: Design and Overall Methodology 63

means using a dimension on both the row and column at once. This may or
may not need to be done in two dimensions, depending on the tool and the
business environment.

Variance calculations are required in the Scenario and Measures dimensions. ■

The sample report is a Microsoft Excel spreadsheet, which may indicate a ■
preference for Excel as a reporting vehicle.

Report formatting might be a key concern in the delivery (see the previous item). ■

The point in reviewing existing reports is to start forming assumptions and
questions for your end users. The end users will not tell you what dimensions they
need. While your initial assumptions may not be correct, reviewing the elements the
end users are currently using in their reports will be the best place to start your
investigation for the design. You users will validate or invalidate your assumptions
down the line.

What’s Left Out Is as Important as What Goes In
What you leave out of an OLAP application is just as important as what you put into
it. Creating a meaningful application is not about extensive dimensionality or
volumes of data. It is not about tricky mathematics or an abundance of available
metrics. At the end of the day, no matter how elegant a solution you create, the
OLAP application will live and die on the perceptions of the users. Simplicity is
often best. This advice does not mean that you cannot have a 30-dimension model.

FIGuRE 3-2. Design begins with reports.

64 Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution

In fact, we have seen a number of OLAP applications with many dimensions in
production. It simply means that you should ensure that the dimensionality you
build into your model is meaningful.

For example, consider the following dimensions used in an application whose
purpose is to analyze profits: Time, Profit, Customers, Markets, and Weather. The
dimensions that reference time, customers, and markets all make sense in respect to
profit and in respect to each other. The dimension for weather seems a bit out of place.
We are not arguing that weather can never have an impact on profits; depending on
the products you sell, analyzing weather conditions may be important. Rather, we are
suggesting that, in most cases, weather is not an indicator of profitability. If a dimension
is irrelevant to the purpose for the database, omit it from the model. In this scenario,
ask the end users to show how weather is being used in the current set of reports. If you
hear “We think it would be nice to understand how weather impacts profits,” gently
push back on the request and suggest that it be added in the next release.

One best practice when building an OLAP application is to solve what is
currently being manually analyzed by spreadsheets. After the first delivery of the
application, it is very likely the end users will uncover other trends or hypothesize
about other dimensions that may be relevant to the analysis. At that point, when the
original problem is solved, you can begin a new iteration and consider extending
the application to incorporate these other dimensions.

In addition, designers often add dimensions that really are simply extensions of
other dimensions or not needed at all. For example, consider a model that has
dimensions for Scenario, Project, Business Units, Time, and Accounts. On the
surface, all of these dimensions seem to be relevant. However, you might discover
that a given project is worked on by only one business unit. Figure 3-3 shows what
a report might look like when Project and Unit dimensions are modeled separately
in this situation. It can be difficult for users to find the data with this design.
Practically speaking, if a project belongs to only one department, you could easily
model Unit and Product as a single dimension, as shown in Figure 3-4.

FIGuRE 3-3. Project and Unit as separate dimensions results in many null cells.

Chapter 3: Design and Overall Methodology 65

You can often spot irrelevant dimensions by considering the purpose of the
application—the metrics. If your application is tracking customer profitability, then a
dimension with employee numbers may not be relevant.

As a last note about dimensionality, remember that values in an OLAP cube must
always be represented as an intersection of a member from all base dimensions. If
you put 20 dimensions in your OLAP model, either your user must think across 20
dimensions or you must create a good template-reporting approach to make it easy for
the users to focus on the dimensions that are important to them. Again, a step-wise
rollout of dimensions to support additional functionality over the multiple releases of
the OLAP application can ease this pain.

Dimension Types Offer Convenience
Dimension types provide the OLAP engine with a wealth of information about the
dimensions, including metadata and inferences about how to process the data
connected to the dimension. For example, dimensions of the time type have a
sequential order (January is always before February), values that can be aggregated
(rolled up), and members that can be compared to other members within the
dimension (Quarter 1 versus Quarter 2). If you create a dimension as a time
dimension, you can specify things such as time period ranges (January 2010 to
May 2010), year-to-date values (January 2010 through May 2010 summed up),
and year-over-year comparisons (January 2010 versus January 2009), and the
OLAP engine will know how to store and calculate the data.

FIGuRE 3-4. Project may be better modeled as a member of Unit.

66 Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution

When designing your OLAP application, you should be aware of the built-in
dimension types offered by the OLAP product and plan to take advantage of the
convenience they offer. This can save time for the developer as well as the end
users, because OLAP systems have built-in capabilities for certain dimension types.
The dimension types for Oracle OLAP and Oracle Essbase are described in the
product-specific design sections later in this chapter.

Data Types Improve Data Quality
Similar to dimension types, data types provide information about the data to the
OLAP engine. Setting the appropriate data type for the data in your application can
save space and execution time. Data types also help to ensure that only data with
the appropriate data type is written back to the database. As with dimension types,
you need to learn about the built-in data types offered by the OLAP product.

The most common data type in both Oracle OLAP and Oracle Essbase is the
numeric type. Essbase stores numeric data in decimal format, occupying 8 bytes per
cell of data. Oracle OLAP defaults to this data type, but can use any Oracle
Database data type. Both products also offer a text data type, though with varying
restrictions. The data types for Oracle OLAP and Oracle Essbase are described in
more detail in the product-specific design sections later in this chapter.

Different uses Require Different Views of the Data
Hierarchical dimensions provide one way of looking at data. Business users often
want to look at their data in other ways as well. For example, different analyses call
for different rollup structures. In addition, users require an efficient means for
selecting specific dimension members for analyses and for summarizing dimension
members in different ways.

During the design process, be on the lookout for user requirements that might
indicate the need for alternate views of the data. Look at how your business is
organized for additional clues on how to define alternate views. For example, the
sales team may want to look at the data by sales representative and sales managers,
and the product team may want to look at the same data, but by the company’s
product lines.

In general, there are two methods for repurposing members: attributes and
alternate hierarchies, which were discussed in Chapter 2. Recall that an attribute is
a tag assigned to a member. Its purpose is to aid an end user in finding that member
without needing to navigate the dimensional hierarchies. Alternate hierarchies
provide different ways to aggregate a dimension. Oracle OLAP and Oracle Essbase
take a similar approach to user-defined attributes but differ in how they support
alternate hierarchies. For more information, see the product-specific design sections
later in this chapter.

Chapter 3: Design and Overall Methodology 67

user Access and Security Needs Planning
As noted in Chapter 2, in OLAP applications, user access rights are often defined on
specific dimensions. For example, the Eastern region manager may require access to
only the data for the Eastern region and all of the customers in the Eastern region.

While access rights are often considered after the first prototype of a system is
built, they should be considered carefully in the design process, as often the data
that drives security policies (such as which users map to the Eastern region) is not
available in the source data. This data may need to be created and added.

When you design an OLAP application, you should be aware of your organization’s
policies and infrastructure for user authentication and user roles, as well as the security
features included with the OLAP product. For more information, see the discussions of
security in Chapters 4 and 5.

Allow Areas for Training and Testing
As mentioned at the beginning of this chapter, training end users is an important
part of an OLAP project. You may want to include areas in your application design
that are specifically designed for training purposes. Often, these areas can also be
used for testing purposes. By incorporating these into your design, you will ease the
job of those that are training people and testing the application.

Designing an Oracle OLAP
Analytic Workspace
In this section, we discuss the features in Oracle OLAP that you should be aware of
when designing analytic workspaces. The content here expands on the concepts
introduced in Chapter 2 (where those concepts relate to design) and the general
design principles discussed in the preceding section. For implementation details, see
Chapter 4.

Determining Dimensions from user Requirements
As mentioned, user requirements must drive the design of Oracle OLAP cubes. This
fact is often overlooked in Oracle OLAP design, as the data is sourced from relational
tables or views. Often, these tables are part of a data warehouse with a well-defined
structure. The structure of the source tables will be an important influence, but the
ultimate structure of the OLAP cubes should be driven by user requirements, not the
convenience of loading data from the data warehouse, because often the data
warehouse design is not reflective of user requirements. Oracle OLAP cubes can be
used solely for their cube-organized materialized views to accelerate performance of
queries on data warehouses, but they offer much more.

68 Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution

Relating Oracle OLAP Data to
a Star Dimensional Model
As mentioned in Chapter 2, OLAP data is often represented in relational tables as a
star dimensional model. As shown in Figure 2-5, a central fact table contains the
data, and dimension tables can be joined to the fact table to supply additional
information about the dimensions. This is called a star model or a star schema
because the dimension tables are often shown radiating from the central fact table,
like a star. With OLAP data, each of the dimensions ends up being described in its
own dimension table.

The star dimensional model is central to Oracle OLAP design. Data that is loaded
into Oracle OLAP cubes and dimensions often comes from a star dimensional model.
In this model, there is a one-to-one correspondence between a dimension and a
dimension table. Likewise, there is a one-to-one correspondence between a cube and
a fact table. As discussed in Chapter 4, the Oracle tool used to create and manage
analytic workspaces, called Analytic Workspace Manager (AWM), is specifically
designed to load Oracle OLAP cubes from star and snowflake dimensional models or
from a collection of tables.

Oracle OLAP takes this relationship between star dimensional models and Oracle
OLAP cubes even further by automatically creating a dimension view for each
dimension and a cube view for each cube. These views can be queried just as if they
were relational tables. This is the primary mechanism for querying Oracle OLAP data.

Many tools designed for reporting relational data are optimized for reporting
against star models. By exposing cube data in a star schema, Oracle has made data
in Oracle OLAP cubes accessible to reporting tools that can use SQL to access data.

As also discussed in Chapter 2, snowflake schemas are the same as stars, except
there is a dimension table for each level of a dimension. In each level’s dimension
table, a column joins to the next higher level table. Snowflake schemas radiate out
from the central fact table, hence the name snowflake schemas. Chapter 4 contains
examples of loading from a star schema, a snowflake schema, and multiple tables.

Mapping Relational Data
to Multidimensional Objects
In designing Oracle OLAP cubes, bear in mind that every object in your analytic
workspace needs to be sourced from some relational table, view, or something that
acts like a relational table, such as an external table or a gateway This enables
access to many sources outside an Oracle database. You use AWM to define the
mapping between relational columns and each multidimensional object, except
calculated measures. Therefore, if you know you want to represent regions in your
analytic workspace, you need some sort of column that gives a list of regions in
some sort of table. Likewise, if you want to load cost data into your cube, and it

Chapter 3: Design and Overall Methodology 69

cannot be calculated from other data already in the cube, you should have a
column in a table or view that represents cost data.

Determining Dimensions of Cubes
Dimensions are the heart of an Oracle OLAP design; the dimensions you select affect
performance and capabilities more than any other decisions. Often, the first clues as
to what dimensions may exist in the data come from the star dimensional model. The
list of dimension tables may indicate candidates for dimensions of a cube.

NOTE
As stated previously, user requirements should
dictate the design of dimensions and cubes, but
if you intend to use cubes simply as a method for
accelerating queries, having the dimensions in the
star schema dictate the dimension and cube design
may be warranted.

As mentioned earlier in the “General Design Principles” section, you should
become aware of the dimension-related features available with the product you are
using before determining and designing dimensions. In this section, we describe
Oracle OLAP dimension types, hierarchies, and attributes, which are all important
considerations for dimensions that you may want to reuse across multiple cubes.

Dimension Types
Oracle OLAP offers two dimensions types: user and time. By default, Oracle OLAP
dimensions are of type user. Most of your dimensions will be user dimensions.

Time dimensions are just like user dimensions, except they have special attributes
(described in the “Attributes” section) and they support time-series calculations. If a
dimension is continuous and contains time periods, and if users may want to create
measures such as year to date or change from prior year, you should consider adding
these special attributes to your dimension definition. Otherwise, you will not be able
to create these special calculated measures. We describe the specifics of these
special attributes in Chapter 4.

The list of measures (both ones that are loaded and those that are calculated) is
sometimes represented as an additional measure dimension by some OLAP
reporting tools. In the Oracle OLAP model, this is not a true dimension type. Rather,
it is a list of measures, with little of the extra metadata associated with Oracle OLAP
dimensions. Of course, you are free to design an Oracle OLAP cube with a single
measure called Data or some other generic name dimensioned by a Measure
dimension. The Oracle OLAP engine would not know anything special about this
Measure dimension, but it would allow you to create hierarchies of measures, with
drill-down paths and so forth.

70 Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution

Hierarchies
Dimensions can be a simple list of values. More often, however, dimensions have one
or more hierarchies. Hierarchies give structure to a dimension, defining the aggregation
from lower-level data to higher-level data and the drill path from higher-level data to
lower-level data. You should usually include a top dimension value that represents all
lowest-level dimension values aggregated together. Without this top dimension value,
every time you view the data, it will be broken down by the dimension. A user may
say, “I don’t care about this dimension—sum it up for me please.” This summation
would need to be done by the end-user tool, eliminating one of the prime advantages
of Oracle OLAP.

One notable exception to this rule is in time dimensions. Sometimes users never
want to aggregate multiple years together. Still, be very careful with this lack of a
requirement. Some in the user community may say they never want to aggregate
multiple years together, but inevitably, someone will leave out the year selection
and expect Oracle OLAP to add all of the years together. Without a top dimension
value, Oracle OLAP cannot aggregate the data for all years. In addition, the top
dimension value is often used in calculated measures, such as share measures (share
of total for company).

Oracle OLAP hierarchies can be defined to be either level-based or value-based
hierarchies. Often, the dimension tables that load the hierarchical information
determine whether a given hierarchy is level-based or value-based.

Level-Based Hierarchies In level-based hierarchies, each dimension value has a
level associated with it. These levels typically have meaningful names, are ordered
from most aggregate to least aggregate, and define the drill path for the dimension.
For example, the levels of a time dimension may be Year, Month, Day. A dimension
value is a year, a month, or a day. A given day belongs to only one month; a given
month belongs to only one year.

End users can choose to view reports for a single level or for multiple levels, but
typically with level-based hierarchies, users have a sense of the level at which they
want to view the data. Star and snowflake dimension tables are presented as
level-based hierarchies. Each column typically corresponds to a level.

Value-Based Hierarchies In value-based hierarchies, each dimension value has a
parent in that hierarchy. There is often no concept of a level in a value-based
hierarchy. Users can drill from higher-level dimension values to the children of these
higher-level values. With value-based hierarchies, a dimension table can list the values
in a dimension, and a column defines the parent of each dimension value. Value-
based hierarchies are often used in employee dimensions or in account and line item
dimensions.

Chapter 3: Design and Overall Methodology 71

Additional Hierarchies You can define as many hierarchies—either level-based or
value-based—in a dimension as you need. Different user communities may want to
look at dimensions differently. Some may prefer different rollup structures or ways of
aggregating the data. Additional hierarchies allow you to meet the needs of these
multiple communities or multiple uses within a community. You can have as many as
you need to model your business. For example, you may introduce new hierarchies
each year or to model a planned reorganization. Users operate with only one hierarchy
at a time.

Often, combining two different ways of looking at the data into a single
dimension is a good way of avoiding the explosion that occurs with multiple user
communities. If one group wants to break out the data by state and another wants to
break out the data by customer type, but no one ever wants to break out the data by
state and customer type, it may make sense for a single Customer dimension to have
a Type hierarchy and a State hierarchy. In contrast, if you were to include Customer,
Type, and State as three separate dimensions, your aggregation time could be much
greater, because Oracle OLAP would try to aggregate the data for every Type-State
combination that could exist.

Attributes
Dimension attributes help users to find specific dimension values and provide
information about those dimension values. They also supply multilingual descriptive
values for dimension values. For example, suppose there is a list of 10,000 products
for a user to sift through. How is that user to find the product of interest? Also,
suppose you want to store the ending date of each time period so you can determine
which time period precedes a given time period or sort time periods by ending date.
Dimension attributes enable you to specify this information. Some attributes are
automatically defined by the system (system-defined) and some are defined by the
person creating the dimension (user-defined).

System-Defined Attributes Oracle OLAP automatically defines the LONG_
DESCRIPTION and SHORT_DESCRIPTION attributes for each dimension. System-
defined attributes are typically used by front-end tools to identify a given dimension
value. Users can often search for text strings within these names. These attributes are
dimensioned by an automatically generated language dimension to allow for names
in multiple languages. Oracle OLAP does not require these description attributes,
but some applications may need them.

For dimensions you identify as time dimensions, Oracle OLAP also creates the
special attributes END_DATE and TIMESPAN. END_DATE contains the ending date
of each time period. TIMESPAN contains the number of days in the time period.
Oracle OLAP uses this information to calculate prior time periods and year-ago time
periods. By using these attributes, Oracle OLAP cans support rich time-series
calculations for just about any sort of time calendar, including fiscal calendars,

72 Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution

promotional calendars, 13 periods per year, overlapping time periods, and more. If
you do not populate these attributes, you will not be able to create time-based
calculated measures. Bear this in mind when creating time dimension tables,
because you will want to map to columns that contain this important metadata.

user-Defined Attributes You can create as many additional attributes on your
dimensions as you want. Attributes are added to the Oracle database data
dictionary. They are revealed as a column in dimension and hierarchy views. End
users can use these attributes to find dimension values of interest.

For example, suppose you think that a user may want to create a report that
displays sales for all products of a certain color. You could create an attribute called
COLOR that enables users to select all of the products whose COLOR attribute is
RED or WHITE. Attributes can be set for individual levels of a dimension or for all
levels of a hierarchy, depending on whether that attribute applies to multiple levels.

Attributes are single-valued. For example, a product can be RED or WHITE, or
even REDWHITE, but cannot be multiple values at once. Attributes are associated
with a single dimension and are not tracked over time.

TIP
If you need to keep track of an attribute that changes
over time, or varies by another dimension, you can
define a cube with that information. For example,
you may want to define a text Color measure that is
dimensioned by Product and Time that defines the
color of a product in a given month. This measure
will generally occupy much more space than an
attribute, because it is two dimensional. In addition,
it will not benefit from having an index.

Attributes can be used together to find dimension values that meet certain
criteria. This is especially handy for creating reports that need to select dimension
values that should change as the data changes. If users were to select all the
products that were red and white by selecting them from a list, when new red
products were introduced, they would not be automatically added to the report. If a
COLOR attribute were used instead, new red products would automatically appear
on a report since the rule “select all RED products” is used. This technique is
especially powerful when multiple attributes are used together, such as “select all
RED or WHITE COLOR products or all VALENTINE THEME products.”

When creating attributes, be sure to check the Index checkbox if you will be
using the attribute in a filter, such as in a WHERE clause. It is faster to find all white
products if there is an index of colors than to search sequentially through all
products to see if the COLOR attribute is set to WHITE.

Chapter 3: Design and Overall Methodology 73

Designing Oracle OLAP Cubes
We discussed cubes in a general way in Chapter 2. This section focuses on the
design considerations for Oracle OLAP cubes.

One of the great advantages of Oracle OLAP is the ability to define cubes to meet
specific business requirements. These cubes can have varying dimensionality, and all
share dimensions and reside in the same analytic workspace. If some of the data you
want to represent varies by only three dimensions, create a cube with only three
dimensions. If other data requires five dimensions, create a different cube with the
five dimensions. By storing and calculating data for only the dimensions required for
a certain analysis, you can save storage space, calculation time, and retrieval time.

Recall that cubes contain measures. If a measure is loaded from a fact table, it is
a stored measure. You can also create calculated measures that are derived from
other measures.

Stored Measures
Stored measures in Oracle OLAP are loaded directly from fact tables, views, or similar
objects such as materialized views, external tables, or gateways. They are usually the
columns in the fact table that are not keys. The precision and data type of these values
determine the specific data type of your measures. Usually, these are the number data
type, but Oracle OLAP can support cubes with decimal, shortdecimal (half the size of
decimal), Boolean, date, and text measures. These stored measures are the source of all
of the data in the cube. Examples are SALES, COSTS, and UNITS. All data is computed
from the stored measures.

Stored measures can also be calculated from within a cube using OLAP DML
code, such as a forecast. If a measure can be computed from one or more other
measures, generally it is better to create a calculated measure and allow Oracle
OLAP to calculate the value on the fly.

Calculated Measures
Calculated measures in Oracle OLAP are measures that can be calculated dynamically
from stored measures and other calculated measures. Calculations include arithmetic
calculations, such as ratios between two measures like DOLLARS_PER_UNIT and
SALES_MINUS_RETURNS, as well as more sophisticated calculations. Often,
calculations reference specific dimensions and hierarchies. A common calculation that
includes dimensions is a share calculation such as DOLLAR_SHARE_OF_REGION,
which represents the ratio of the dollars sold to a given customer divided by the dollars
sold to the region to which that customer belongs. This calculation allows a user to
determine how important this customer is to its region. Some calculations involve the
Time dimension, such as DOLLARS_PERCENT_CHANGE_FROM_YEAR_AGO. We
discuss specific forms of calculated measures in Chapter 4.

74 Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution

The key point here is that the calculations to compute these measures are
performed at the time that the data is requested of the cube. Thus, calculated
measures require no storage.

Models
Dimension calculation models provide an alternative to aggregations and allocations
for calculating data for dimension members. Use models when no single rule, such as
summing or averaging children, applies to how each dimension value is calculated.
With a model, each member can be calculated using a unique equation.

Figure 3-5 shows an account financial model, which calculates three accounts
from other accounts from other dimension values. The results of running this model

FIGuRE 3-5. A dimension calculation model

Chapter 3: Design and Overall Methodology 75

are displayed in an Oracle OLAP Worksheet window. Notice that the values for
Revenue % of GP, Net Income, and Gross Profit are calculated appropriately, even
though the formula for Revenue % of GP uses Gross Profit before Gross Profit is
defined. Oracle OLAP automatically computes the dependencies and solves the
model in the proper order.

Models can be run after loading data, or you can have this run on the fly by
attaching the model to an aggregation map. You use the OLAP DML language to
enter your models.

Sparse and Dense Dimensions
We covered the concept of sparse and dense cubes in Chapter 2. When you define
an Oracle OLAP cube, you specify which dimensions are sparse—in other words,
which dimensions you expect to have a significant number of dimension value
combinations for which there is no data present.

Oracle OLAP reserves space for every combination of dimension values that is
defined as dense in a cube. For example, if you define a cube with 10,000 products
and 1,000 geography values, and both dimensions are dense, you should expect
Oracle OLAP to reserve space for 10,000,000 cells for each combination of any
other dimensions of the cube. If, in reality, a given geography carries, say, only 2
percent of the detail product line, you should define these dimensions as sparse.

A couple of caveats are worth noting here. With hierarchical data, the sparsity of
a cube often varies by level. As data is aggregated up a hierarchy, the data becomes
denser. For example, while an individual store may carry a small fraction of a
product line (sparse at low levels), at the total country level, most product categories
have been sold at some point (dense at high levels).

For years, the general rule of thumb has been to define any dimension with less
than 15 percent density as sparse, but to try to define as many dense dimensions as
possible. Now, however, most Oracle OLAP cubes that we see are extremely sparse,
and we recommend defining all dimensions as sparse. This is especially true for daily
data. Define a dimension as dense only when you know that most combinations of
sparse dimension values will have data for most values of that dimension. For example,
if you are loading monthly sales data and you know that if a given store sells a product
during any month, it is likely to sell at least some of that product most months, it may
make sense to define the dimension as being dense.

After mapping a cube, you can run the Cube Storage Advisor from the Storage tab
in AWM when defining a cube. This advisor analyzes your data and recommends
which dimensions should be defined as sparse and dense. This is a great place to start
if you are not intimately familiar with your data. Ultimately, the best way to determine
which dimensions should be sparse or dense is to experiment using representative
samples of your data.

76 Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution

Composites and Compressed Composites
As noted in the previous section, often your data is sparse. Oracle OLAP creates a
special object like a dimension called a composite, which contains dimension values
for each combination of sparse dimensions that exist in the data. In Figure 3-6, only 5
of the 16 possible combinations of Dim1 and Dim2 have data. If we define Dim1 and
Dim2 as sparse dimensions when creating a cube, Oracle OLAP reserves only space
for five cells, not the full 16. The work to create a composite is managed internally by
the Oracle OLAP engine.

Often, certain dimension values have only one child. In this case, the data for the
parent is the same as the data for the child, since the data for the parent is aggregated
from only one child. With multiple dimensions and sparse data, the situation where
only one child exists for a given parent cell is quite common. Before compressed
composites, Oracle OLAP would store this data for the child level and again for the
parent level. In Figure 3-7, Dim1 has a hierarchy with A being aggregated from B and
C, B aggregated from D and E, and C from F and G. Dim2 is being aggregated
horizontally with Q aggregated from R and S, R from T and U, and S from V and W.

As you can see, none of the dimension values have only one child, but given the
sparsity in the data, certain values are replicated as we aggregate. The outlined values
in the grid have only one child. With compressed composites, Oracle OLAP
compresses these extra cells and points to the lower-level data, instead of taking up
extra space. As the number of dimensions or sparsity increases, this ability to compress
data can make a huge impact. We have seen cubes that have decreased their storage
requirements (and solve times) by ten times because of compressed composites.

There is little overhead and no loss in functionality in using compression on
composites. In general, you should choose to use compression.

FIGuRE 3-6. Composites list only the dimension combinations that contain a value.

Dim2

Composite
(5 cells)

Multidimensional measure
(16 cells)

• NAs take as much space as values
• Composites save space with sparse data
• Composites use significant amount of
 overhead

Dim1

T

D

E

F

U V W

G

NA

NA

NA

10

NA

NA

20

NA

NA

35

NA

50

65

NA

NA

NA

Dim1

1

2

3

Dim2 Value

D

E

F

W

V

U

65

35

20

4 G T 10

5 G V 50

Chapter 3: Design and Overall Methodology 77

Dimension Order
When listing dimensions in a cube, order is important. To optimize the performance
of Oracle OLAP, list dense dimensions first, followed by sparse dimensions.

For dense dimensions, the first dimension listed is the one that varies the fastest,
and the last dimension listed is the one that varies the slowest. For example, if Time
is listed first and is a dense dimension, Time varies fastest when the data is stored on
disk. This order is optimal for a trend graph of data that contains most of the time
periods, because one disk access is likely to retrieve all of the months for whatever
is being graphed, since all of the time periods are contiguously laid out on disk.
However, this may not be optimal when loading data for the latest month, since the
“latest month” for other dimension values are spread all over.

The order of sparse dimensions is less important than the order of dense dimensions,
but still relevant. The rule of thumb is different for compressed and uncompressed
cubes. If your cube is compressed (which in most cases, it should be), you should plan
to list the sparse dimensions in ascending order based on the number of members in the
dimensions. For uncompressed cubes, list sparse dimensions in descending order.

Aggregation
Data is typically loaded into OLAP cubes at the lowest level of a dimension, and
then aggregated up hierarchies, but there are other possibilities as well. The default
aggregation operator is Sum, but others are available. We discuss the aggregation
operators in Chapter 4, when we show how to change the aggregation operator.

FIGuRE 3-7. Compression increases with multiple dimensions.

Q

Q

R

S

T

U
V

W

Dim1

Dim2

R S T U V W

180A

A

B

D E F G

C

30 150 10 20 85 65

100B 100 35 65

80C 30 50

65D 65 65

35E 35 35

20F 20 20

60

Base data

Compressible cell

G 10 50 10 50

10 20 50

78 Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution

In addition to the aggregation operators, two other aggregation techniques are
available to you: preaggregation and loading data at multiple levels.

Precomputing Aggregates Oracle OLAP always presents your data as if it were fully
solved; that is, if you ask for the total sales for the entire year at the top of each
dimension, Oracle OLAP computes aggregates from the data it has. Of course, if you
have loaded 1 billion numbers and have not precomputed any aggregates ahead of
time, it may take a while to add up all the numbers required for a given cell.

You can specify how much of the cube should be precomputed after loading
data in the Aggregation tab when defining a cube. Determining how much you
precompute is all about balancing the input/output (I/O) required to store and
retrieve precomputed values against the CPU time it takes to compute values, both
at build time and at run time. In general, the more you precompute, the faster your
queries run, but the longer your builds run.

Cost-based aggregation allows Oracle OLAP to determine which aggregates
should be precomputed based on the specific structure of the dimensions involved.
You can specify a number from 0 to 100 (representing a relative scale, not a
percentage) that defines whether the cube should be precomputed, and if so, how
much of the cube. For example, suppose that Los Angeles has only 35 customers,
and New York has 25,000 customers. With the cost-based aggregation method,
Oracle OLAP is likely to choose to preaggregate New York and aggregate Los Angeles
when queried, as illustrated in Figure 3-8. The cost-based aggregation method is a
fine-tuned aggregation strategy that yields better build and query performance and
should be used with compressed cubes in Oracle OLAP 11g. Cost-based aggregation
is covered in more depth in Chapter 4.

NOTE
Cost-based aggregation is available in Oracle OLAP
11g and later.

FIGuRE 3-8. Cost-based aggregation example

• Precomputed

• Computed when queried

• NY 25,000
 customers

• Los Angeles
 35 customers

• Improves aggregation speed and storage
 consumption by precomputing cells that
 are most expensive to calculate.
• Easy to administer
• Simplifies SQL queries by presenting
 data as fully calculated

Chapter 3: Design and Overall Methodology 79

In Oracle OLAP 10g, you can specify which levels of a dimension should be
precomputed. You should generally precompute those levels that you expect to be
accessed frequently. The default in Oracle OLAP 10g is to precompute every other
level using a practice commonly called skip-level aggregation. Because every other
level is already precomputed, only a few values must be aggregated at query time.
Skip-level aggregation often represents a good balance between load performance
and run-time performance.

Loading at Multiple Levels Most Oracle OLAP implementations load data at a
single lowest level and aggregate from that level, but other possibilities exist. For
example, perhaps weeks can span multiple months, and you would like to view
monthly and weekly data, but have no need for daily data in your cube. You could
load data at the week level, and load data at the month level in two different
hierarchies.

You may also want to load data at multiple levels because the data does not
aggregate up the hierarchy—it has been computed outside Oracle OLAP, and there
is no way to tell Oracle OLAP how to aggregate the data properly. In this case, you
can load the data at multiple levels and tell Oracle OLAP not to calculate certain
hierarchies.

Partitioning
Partitioning a cube allows you to break a cube into pieces for manageability,
performance, and scalability reasons. Cube partitioning works just like table
partitioning. Each partition of a cube can be processed independently and
concurrently. Queries that can be satisfied by a single partition can be sped
significantly, because Oracle can look at a much smaller set of rows, instead of
an entire table. To help manage cubes, partitions are automatically added when
required and can be easily dropped when no longer needed.

Partitioning becomes critical with large cubes and multiprocessor machines,
because only one processor in Oracle OLAP can write to a given partition. If you
want Oracle OLAP to use multiple processors in a write operation (such as loading
or aggregating), you need to partition your cubes.

You set the partition on a dimension at a selected level within that dimension.
For example, you can specify that you want Oracle OLAP to partition your Sales
cube by the Year level of the Time dimension. This creates a separate partition for
each year in your cube. If you load and aggregate eight years of data, Oracle OLAP
can separate the task of loading and aggregating into eight different jobs: one for
each processor. If you want to spread the work evenly among multiple processors,
you should design your partitions to be of relatively equal sizes and ensure that in
each load, you are processing multiple partitions. If you partition by month and are
loading only the latest month, you will not be spreading out the load and

80 Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution

aggregation work among multiple partitions. If your goal is to use multiple CPUs,
consider partitioning by some other dimension, such as region of the country.

The Cube Partitioning Advisor can help you select the appropriate partitioning
strategy by analyzing your fact tables. Run the Cube Partitioning Advisor from AWM
after you map your cube, but before you load data. For more information, see
Chapter 4 and the Oracle OLAP User’s Guide. Specifics on how to partition cubes
are discussed in Chapter 4.

Cube-Organized Materialized Views
As noted in Chapter 1, Oracle OLAP cubes are often used as materialized views. A
bit of background is in order here. Materialized views save query time, since the
data is precalculated when the view was materialized. When the Oracle optimizer
creates the execution plan for a query, it can rewrite the query (or a block within the
query) to a materialized view to improve performance.

NOTE
Cube-organized materialized views are available in
Oracle OLAP 11g and later.

With Oracle OLAP, you can create cube-organized materialized views that
improve performance on queries against fact tables. Some organizations implement
Oracle OLAP for this single capability. Oracle OLAP can be deployed simply as a way
to accelerate queries on a data warehouse. Applications do not need to be modified in
any way; they simply query the fact tables, and queries are redirected to the cube-
organized materialized views. Queries that once took hours now may take seconds!

The other major benefit of cube-organized materialized views is manageability. This
type of view represents data at multiple levels of multiple dimensions. Traditional
materialized views represent data at only a single level of each dimension, so a single
cube-organized materialized view can replace many traditional materialized views. If
you want to expose cubes as materialized views, bear in mind the following restrictions:

 All dimensions of the cube must have at least one level and one hierarchy. ■
The Oracle Database requires not-null constraints on columns with dimension
members. Ragged and skip-level hierarchies (discussed in Chapter 2) use
nulls, so transform them by filling in these columns with the concatenation of
the level name and the parent dimension value whenever there is a null value
in the table.

All dimensions of the cube must use the same aggregation operator, which is ■
Sum, Min, or Max.

Chapter 3: Design and Overall Methodology 81

The cube must be fully defined and mapped. For example, if the cube has ■
five measures, all five must be mapped to the source tables.

The detail tables must support dimension and rely constraints. If they have ■
not been defined, then use the Relational Schema Advisor to generate a
script that defines them on the detail tables.

The cube must be compressed. ■

The cube can be enriched with calculated measures, but it cannot support ■
more advanced analytics in a cube script.

AWM enforces these rules and tells you if a cube can be used as a materialized
view. The mechanics of enabling cubes to be used as materialized views are
covered in Chapter 4.

You can refresh cubes used as cube-organized materialized views using the
same mechanisms as relational materialized views. You will find that the DBMS_
MVIEW.REFRESH syntax for refreshing cube-organized materialized views is the
same as refreshing relational materialized views. This makes cubes more transparent
as a mechanism for storing materialized views. Cube-organized materialized views
can also be updated incrementally. For example, if you modify data for only the
latest month, Oracle OLAP is smart enough to modify only the current month’s data
and any values that are aggregated from the current month. Designing your update
process to capitalize on this capability can speed your update time significantly.

Summary of the Oracle OLAP Design Process
You must take into account many factors when designing an Oracle OLAP analytic
workspace. Of paramount importance is how users are planning to use the cubes.
Also important is the structure of the source data, although this can often be
changed by loading from views that transform tables while data is being loaded.
You also need to consider how users find dimension values—the need for run-time
calculated measures, aggregations, and partitioning strategies.

The design of Oracle OLAP analytic workspaces offers a great deal of flexibility.
Much of this information will be clearer after we walk through building an Oracle
OLAP analytic workspace in Chapter 4. To master these concepts, however,
requires practicing the art of designing Oracle OLAP analytic workspaces.

Designing an Essbase Database
Earlier in this chapter, we covered general principles for designing effective OLAP
applications. In this section, we expand on those general principles as they apply to
the process of designing an Essbase database.

82 Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution

As previously mentioned, designing any OLAP database begins with analyzing
existing reports and the data sources that feed those reports. From the reports, you
can deduce dimensions and select the dimensions to include in our OLAP model.
The Essbase-specific part of the design methodology begins when you create an
outline of the model in Essbase. You then validate a label outline with the business
users and incorporate feedback. You enhance the label outline with dimension
types, data types, and alternate hierarchies. Finally, you decide which type of data
storage best suits the model that you have created.

Identifying Data Sources
A common question when first starting to design an Essbase database is “Where do I
get my source data and metadata?” A complementary question is “What data
sources are supported by Essbase?” Essbase supports the following data sources:

 Flat files (text) ■

Spreadsheets (xls) ■

Singular relational sources ■

Star/snowflake schema ■

Extract, transform, and load (ETL) process output (such as from Informatica ■
or Oracle Data Integrator Enterprise Edition)

API-based data streaming ■

Who Designs Essbase Databases?
As mentioned in Chapter 1, Essbase is often “owned” by line-of-business
users, rather than by IT departments. Essbase databases are therefore designed
and built either by an Oracle solutions consultant contracted by the line of
business or by a business user within the organization itself.

A good candidate for an internal Essbase designer/administrator is someone
we call the power business user. You can recognize the power business user in
your own organization by the types of activities this employee is currently
performing, such as engineering multispreadsheet analyses and creating
Microsoft Access applications with macros. Our experience shows that with
appropriate training, in-house Essbase designers/administrators are very effective,
because they are intimately familiar with the organization’s data and needs.

Chapter 3: Design and Overall Methodology 83

In short, Essbase is data source-agnostic. If you can provide data output from
a system, it can be input into an Essbase database.

Source data and metadata depend on the specific type of analysis the users want
to perform and the types of systems in which that information is stored. Many
companies have an extensive data warehouse and build Essbase databases directly
off the warehouse. Just as many companies store data in a plurality of formats (flat
file extracts, data warehouse, departmental relation models, and so on) and build
Essbase databases from these federated sources. The source data and metadata for
your specific Essbase database vary based on the specifics of your deployment
environment. From a design perspective, it is important to remember that regardless
of its source, data can be consolidated into an Essbase database for reporting and
analysis.

Defining the Outline
With the results of the reports analysis in hand, the next step is to create the OLAP
model. In Essbase, the design process moves online via one of the console tools:
Essbase Studio console, Administration Services console, or Integration Services
console. The tool you choose depends on your data source. Essbase Studio can be
used for most data sources, while each of the other tools is more specialized. For
more information, see the “Essbase Architecture and Components” section later in
this chapter.

In the console tool, you map the data sources and model the dimensions and
their hierarchies. The outcome of this process is the Essbase outline. In Chapter 5,
we walk you through the process of mapping the data source in Essbase Studio. For
the rest of this section, we will focus on developing a deeper understanding of how
Essbase works by defining the outline in terms of reports and calculations.

The Essbase outline is, quite simply, a collection of dimensions. It is the
fundamental reporting and mathematical structure of your OLAP model. You can
view the outlines for all Essbase databases in the Administration Services console.
Figure 3-9 shows a sample outline.

FIGuRE 3-9. Sample Essbase outline

84 Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution

Any piece of numeric data provided by this Essbase database is in respect to all
dimensions. For example, if you queried the database for sales for the East region in
January, the resulting report might look like the spreadsheet in Figure 3-10.

Notice that the dimensions not specified in our query (Product and Scenario) are
shown on the point of view (POV). Essbase must represent data in respect to all base
dimensions. While we asked for sales in the East for January, we got this result for all
products and all scenarios (in this case equivalent to actual). Whenever you get data
from, or send data to Essbase, you must represent a member from every dimension.
It is possible that a tool might abstract the display and hide the POV dimensions;
nonetheless, if they are not on the grid, they are implied in the result Essbase
returns.

The requirement of representing all dimensions is only one way in which the
outline dictates the reporting structure. When you refresh an empty spreadsheet in
either Oracle Hyperion Smart View for Office or the Oracle Essbase Spreadsheet
Add-in, the resulting report is populated with a default retrieval, which is made up of
the top of all dimensions and a value, if one exists at that intersection. Figure 3-11
shows a sample report.

FIGuRE 3-10. Sample report based on the dimensions in the preceding outline

FIGuRE 3-11. Default data retrieval shows the top level of all dimensions and a value.

Chapter 3: Design and Overall Methodology 85

In this case, the outline dictates dimensional positioning. The first dimension in
the outline (Year) is placed in the row, and the second dimension (Measures) is
placed on the column. The remaining dimensions are placed on the POV toolbar in
the order in which they appear in the outline.

When we drill into the Year dimension, we see the quarters in the year, as shown
in Figure 3-12. Figure 3-13 shows the outline that supports the report in Figure 3-12.
Notice that the order of the quarters is the same.

We understand the logic inherent in ordering the quarters sequentially. Essbase,
however, lets you order them in any manner you desire. If you were to place Qtr1 in
between Qtr3 and Qtr4 in the outline, it would affect all reports drilling into that
dimension, as shown in Figure 3-14. This affects the default display order only.
Essbase still knows that the prior quarter for Qtr 4 is Qtr 3, because Essbase has time
intelligence built in. It is important to know that time-series and other calculations
would adjust automatically to work with the new structure.

FIGuRE 3-12. Drilling down on a dimension in a report reveals the dimension members.

FIGuRE 3-13. The outline controls the order in which members are displayed in reports.

86 Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution

The outline also controls dimensional math—that is, the aggregation behavior
inherent in the hierarchical structure. In Figure 3-13, you can see plus signs (+) to
the right of each quarter. These are called consolidation operators or unary
operators. In this case, we add the quarters together to derive the value for Year.
Essbase also offers built-in time intelligence capabilities. These are discussed in the
“Essbase Dimension Types” section later in this chapter.

Design methodology extends beyond the concept of the outline. When building
an Essbase database, you must consider data sources and flow, available RAM, user
load requirements, and a myriad of other factors. Having said that, the outline is the
engine that drives everything in the database. When creating the outline, some
thought needs to be given to the order of dimensions (for retrieval), the hierarchy of
members (for aggregation), and the order of members at each level (for display
purposes).

Validating the Outline with Business users
The design of the outline is intended to serve the needs of the business user. A
common approach to engaging users is to present them with a label-based outline.
This lets the designers communicate their understanding of the business requirements
and allows the users to see the outline in common terms.

In a label-based outline, you first show the levels that will be defined. You then
pick one or two sample values at each level, showing sample drill paths. This helps
users relate to the abstract level names, using some well-known values as examples
of each level. You can incorporate feedback from this review to improve the outline.

Figure 3-15 shows an example of a label-based outline, with hierarchies for two
dimensions: Entity and Products. The first tree under each dimension shows the drill
path using general business names. The second tree under each dimension shows a
practical example from the data set.

FIGuRE 3-14. Changing the order in the outline changes the order in the report.

Chapter 3: Design and Overall Methodology 87

Enhancing the Outline
Determining the dimensional structures in an outline is key to overall success.
However, you also need to consider the following items:

 Dimension types ■

Data types ■

Alternate views of the data ■

Remember that design is an iterative process. After enhancing the outline, be
sure to validate the changes with business users.

Essbase Dimension Types
By default, dimensions in Essbase have no dimension type (they are tagged as
“none”). Untyped dimensions are often called business view dimensions, because
they reflect how you view your business. For example, dimensions like Products,
Customers, and Regions are common business view dimensions.

FIGuRE 3-15. A sample label-based outline

88 Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution

Dimension types enhance the analysis you can do across the standard dimensions.
Dimension types offer specialized capabilities and have a considerable impact on the
design of the model. Essbase calculates time and accounts dimensions before other
dimensions.

NOTE
Dimension types in Essbase are optional. It is,
however, rare to find an implementation that does
not use one or more dimension types.

Accounts Dimension The accounts dimension type is the most widely used.
Applying this tag to a dimension lets Essbase know where the majority of the
calculations will occur. Only one dimension in an Essbase database can be tagged
as an accounts dimension.

NOTE
The use of the term accounts can be a bit
misleading. Many people assume that this is a chart
of accounts or explicitly financial. This is not the
case. Essbase is (at the core) a calculator. While it
does contain many functions that are financial in
nature, it contains just as many that are statistical or
analytical.

The accounts dimension type provides specialized functionality across the
members in the selected dimension. Two key capabilities are expense reporting and
time balancing.

Expense reporting flips the sign on variance calculations involving expenses. For
example, if you have a variance calculation that is Actual-Budget, then you could
get a report that looks like this:

Actual Budget Variance

Sales 100 120 –20

COGS (Expense Reporting) 100 120 20

Notice that the same calculation derives differently. For Sales, a variance against
the budget shows as negative. However, for Cost of Sales (COGS), the variance is in
your favor, so it derives as positive. The expense reporting tag handles that logic for
you. There is no need to account for it in the logic of the database.

Chapter 3: Design and Overall Methodology 89

Time balancing specifies how values derive across time. For example, consider
Sales and Opening Inventory over time:

January February March Quarter 1

Sales 100 120 150 370

Opening Inventory
(Time Balance First)

 50 75 93 50

For Sales, the value at Quarter 1 is derived using straightforward aggregation—it
is the sum of the months in the quarter. Opening Inventory, on the other hand,
requires that the value at Quarter 1 be the same as the value at the beginning of the
time period—in this case, the value for January. Essbase provides these time-balance
capabilities for the accounts dimension:

 Time Balance First (TB First), which uses the first value in time period ■

Time Balance Last (TB Last), which uses the last value in a time period ■

Time Balance Average (TB Average), which uses the average values across ■
a time period

Flow, which lets values flow across years (for example cash on hand) ■

As the name of the feature implies, time balancing requires a time dimension.

Time Dimension Essbase has a time dimension type for managing time. The
specific capabilities of this dimension type vary depending on the nature of your
deployment, but in general, time dimensions provide date-differencing and time-
aware calculations and selections, as well as period-to-date reporting.

Essbase recognizes that January 21, 2008, is a greater overall value compared to
January 25, 2007. Essbase provides the ability to count the number of seconds,
hours, days, weeks, quarters, months, and years in between those dates. Additionally,
Essbase can easily perform parallel period analysis by letting you select comparative
time periods. For example, if you want to look at the third day of each week across
the year, you can perform simple selections to bring these periods onto a report.

Essbase also lets you provide time-to-date values in reports. For example, you
can ask for a sales-to-date summary for May, and Essbase totals the values from
January to April as well as May and presents the total (see Figure 3-16). Alternatively,
you can ask for sales-to-date values for the quarter, and Essbase adds values for April
and May.

90 Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution

There are two variations of the time dimension type: the standard time dimension
and a date-time dimension. Both types provide the preceding features, but specific
capabilities may vary depending on the time dimension variation. For more information,
see the Essbase Database Administrators Guide.

Attribute Dimension and Base Dimension Attribute dimensions provide the ability
to group members by characteristics. For example, you might have an attribute
dimension that groups products by package type or by introduction date. Attribute
dimensions are listed at the bottom of a database outline, as shown in Figure 3-17,
and identified with the Attribute tag.

Attribute dimensions are assigned to base dimensions. Base dimension simply
means any dimension that is not an attribute dimension. In a block storage model,
an attribute can be assigned to only a sparse base dimension; in an aggregate
storage model, any dimension can be assigned attributes.

In an outline, the attribute dimensions for a given base dimension are listed in
braces ({}) next to the base dimension name. For example, in Figure 3-17, the
Product dimension has four attribute dimensions assigned to it: Caffeinated, Intro
Date, Ounces, and Pkg Type.

FIGuRE 3-16. Sales-to-date summary for the quarter as of May

FIGuRE 3-17. Attribute dimensions

Chapter 3: Design and Overall Methodology 91

You can use attribute dimensions in a report on any axis and navigate through
them like any other dimension. In Figure 3-18, the Pkg Type attribute dimension is
assigned to rows and is expanded to show its children: Bottle and Can.

If you zoom in on a level 0 attribute member, Essbase traverses the base dimension
and brings back all members with an assigned attribute. For instance, in Figure 3-18,
products 100-10, 100-20, and 300-30 are packaged in cans. The ability to navigate
through the bottom of an attribute dimension and into the base dimension hierarchy is
an advantage attribute dimensions have over shared members (pointers to existing
members).

Another advantage of attribute dimensions is that you can assign them to a different
axis than the base dimension (often called a cross-tab report) as shown in Figure 3-19.

FIGuRE 3-18. Pkg Type attribute dimension assigned to rows

FIGuRE 3-19. Attribute dimensions can be assigned to a different axis than the base
dimension.

92 Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution

You can also take advantage of built-in calculations for attribute dimensions. By
default, Essbase sums values for attribute dimensions dynamically (derived at query
time, not stored). You can ask Essbase to derive the values in a variety of ways:

 Sum ■

Count ■

Minimum (Min) ■

Maximum (Max) ■

Average (Avg) ■

Sum is the default. To select a different representation, you enter the keyword
(shown in parentheses in the preceding list) in the spreadsheet (see Figure 3-20).
Note that you can enable alternate keywords as desired. This might be to match
other languages or just to use preferred terms.

Because attribute values are derived dynamically, there are performance
considerations when implementing alternate data views in this fashion. For more
information, see the “Optimizing Essbase” section in Chapter 8.

Attributes can be of five types: text, date, Boolean, numeric, or linked value. The
linked value attribute is a special attribute type reserved for Essbase. Linked value
attributes are created automatically when building a date-time dimension type. They
allow for the cross-tab reporting of time. Each time period is categorized by its
characteristics in relationship to the other members in the time dimension. For example,
a day might have an attribute that denotes that it is the third day of the week, twenty-
third day of the month, and a Tuesday. The specific linked value attributes that are
created are based on the selections you make when creating the date-time dimension.

FIGuRE 3-20. Built-in calculations for attribute dimensions are easy to use.

Chapter 3: Design and Overall Methodology 93

Depending on the attribute type, you can leverage the member’s attribute values
for further analysis. For example, if you wanted to derive profit per ounce, you
could divide the total profit for a product SKU by its numeric ounces value. Essbase
provides functions to let you query a member’s attribute values.

Attribute dimensions are one way to provide alternate hierarchies. You can also
use shared members to create an alternate hierarchy, or you can use user-defined
attributes to group members differently. For more information, see the “Alternate
Views of the Data” section a little later in this chapter.

In addition, any attribute association can be defined to vary across other
dimensions. For example, the product manager for a product may vary across the
additional dimensions of geography and time.

Essbase Data Types (Typed Measures)
Historically, Essbase was limited to storing only numbers. However, with more
recent releases, Essbase has expanded its capabilities to store not only numeric data
but also text and dates. From a design perspective, the capabilities that these data
types provide either expand historical capabilities or serve to make specific types of
analysis easier.

Numeric Measures The numeric data type is the default data type for Essbase. By
default, all metrics are stored as doubles. Before version 11.x of Essbase, the
numeric data type was the only storage format for data within an Essbase database.

Text Measures In Essbase, the text data type is associated with a text list. The text
list takes a list of user-defined text tags that can be assigned to a measure or to any
other member in any dimension. For example, you might have a metric to track
customer satisfaction based on a scale from 1 to 3. Instead of showing the numerals
1, 2, and 3 in a report, you can show High, Medium, and Low. Additionally, you
can alter a value at a given intersection and use the write-back capabilities of
Essbase to submit an updated satisfaction rating to the database.

Figure 3-21 shows how a text list looks in Smart View. In this tool, you can select
text values from a drop-down list associated with a data cell. Regardless of the front-
end reporting tool, Essbase provides the text tag so the reporting display is consistent.

FIGuRE 3-21. In Oracle Hyperion Smart View for Office, text values are shown in a
drop-down list for the selected data cell.

94 Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution

Smart View is able to leverage some of the user interface capabilities of Microsoft Excel
to provide additional functionality.

You can also do math across the text values. Internally, Essbase understands
these strings as numbers. So, for example, you can take an average of customer
satisfaction across a given region.

Thinking more about the database design, you might consider using text
measures instead of attributes in some cases. For example, Figure 3-21 shows how
a product is packaged in the data grid instead of using attributes as row or column
headers. Leveraging text in this fashion lets you show how a product is packaged
differently from region to region. Essentially, this accommodates the requirement of
showing many-to-many relationships. When designing the analytical database, do
not forget the reports. If there is a reporting requirement to show data (text included)
in this fashion, then you should consider the use of textual data.

Date Measures Similar to text data, you can display date values in an Essbase
report. This is done by specifying that a given member (generally a measure) is of
type date. You can then specify the date format (MM-DD-YY, YYYY-DD-MM, and
so on) for the output. Figure 3-22 shows an example of using a date type instead of,
say, an attribute dimension for introduction date. Essbase understands the numeric
value of the date, so you can easily perform date-differencing calculations (such as
day’s sales outstanding).

Alternate Views of the Data
In Chapter 2, we discussed how there is more than one way to look at data, and we
introduced the general concepts of alternate hierarchies and user-defined attributes.
In Essbase, you can create alternate hierarchies using shared members or attribute
dimensions. You can also specify user-defined attributes. When designing your
Essbase database, you need to make decisions about how to implement alternate

FIGuRE 3-22. Sample report with date measures

Chapter 3: Design and Overall Methodology 95

views of the data. This section presents all three options, and then gives you some
advice for choosing the most suitable option for your application.

Alternate Hierarchies using Shared Members A shared member is a pointer to an
existing member. This means that you can include a member in more than one
dimension hierarchy while ensuring that the Essbase database does not store the
member more than once. For example, Figure 3-23 shows an alternate hierarchy
contained in the Sample Basic outline.

The Diet hierarchy contains a list of members representing the diet soda. We know
the members are shared members because the tag Shared Member appears beside the
member name. The actual members reside under Colas, Root Beer, and Cream Soda,
respectively. The values of the shared members aggregate to the Diet member, thereby
representing an alternate reporting structure and mathematical total within the Product
dimension. Using this technique, you can minimize data storage (and disk space
requirements), but still provide a broad range of reporting capabilities.

Alternate Hierarchies using Attribute Dimensions We discussed the attribute
dimension approach to alternate hierarchies earlier, in the “Attribute Dimension and
Base Dimension” section. Attribute dimensions have restrictions on when and how
you can use them. Some of the restrictions are apparent in Table 3-1, which compares
the alternate view methods. One restriction that is not obvious from the table is that
attribute dimensions can be applied to only sparse dimensions in a block storage
database. For more information about attributes and attribute dimensions, see the
Oracle Essbase Database Administrator’s Guide.

FIGuRE 3-23. Alternate hierarchies can be created using shared members.

96 Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution

user-Defined Attributes Recall that user-defined attributes are text tags that make
it easier to find and display members in alternate ways. In Essbase, you can define as
many tags as you need and associate those tags with members in any dimension and
at any level. In the outline, members with attributes have an UDA tag followed by
the attribute text, as shown in Figure 3-24.

When querying against an Essbase database, you can select members based on
their user-defined attributes and bring them into the sheet. You use a member selector,
such as that shown in Figure 3-25, to filter results by user-defined attributes.

FIGuRE 3-24. User-defined attributes are identified with the UDA tag.

FIGuRE 3-25. User-defined attributes let you filter your results.

Chapter 3: Design and Overall Methodology 97

Unlike attribute dimensions, user-defined attributes do not provide any additional
capabilities such as attribute calculations or cross-tab capabilities. They can, however,
be assigned to any dimension, and a single member (such as New York, for the
example in Figure 3-24) can have multiple user-defined attributes from the same
category—neither of these apply with attribute dimensions. For example, if you have
an attribute dimension for package type (bottles or cans), then you can assign a given
product (such as Cola) the attribute of bottle or can, not both. Conversely, you could
assign both if they were user-defined attributes.

Comparing Alternate View Methods It is almost inevitable that users will want to
view data via multiple methods. You need to consider which technique to use to
meet your users’ needs. While there are no absolutes for choosing one method over
another, Table 3-1 provides some guidance for making this choice.

Whichever way you choose to implement alternate views of the data, doing so
means that you will be meeting a critical need of your end users to see and
calculate data in a variety of ways.

Varying Attributes
Varying attributes can be thought of as an extension of the attribute capability. They
are neither a dimension type nor a data type, but have elements of each to enable
you to store data associations that change over other dimensions. Varying attributes
let you vary information in one dimension by up to four additional dimensions. For
example, if you classify employees by marital status or number of dependents, you
can vary this over time. If an employee has no dependents in January, but has twins
in April, you can classify data correctly in each time period.

TABLE 3-1. Comparison of Features Supported by the Alternate View Techniques

Shared
Members Attributes

user-Defined
Attributes

Drill-down capability X X

Work across dense and sparse
dimensions

X X

Many-to-many relationships X X

Additional dynamic calculations X

Cross-tab reporting X

98 Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution

You can vary information across up to four independent dimensions. Using our
package type attribute as an example, you could vary the packaging over time and
geography, as shown in Figure 3-26.

There are no special client requirements to query a varying attribute. The
structure is modeled into the database, and users simply query the information like
any other Essbase data. However, using Smart View, it is possible to produce
alternate views of the data based upon specific attribute associations, for example,
view the data as it would have been if all associations were as specified in March.

Choosing a Data Storage Model
A key decision in design is the type of model you choose. When we talk about
Essbase model types, we are not talking about the classifications of OLAP (MOLAP,
HOLAP, ROLAP, and XOLAP). Rather, we are referring to the two storage types
available within Essbase: aggregate storage and block storage.

Often, the model type is a direct result of user or analytic requirements. Other
times, either Essbase model type can meet the requirements, and the choice is
simply a matter of performance and maintenance considerations.

Block Storage
Block storage is the historical storage methodology in Essbase. Databases using this
storage method hold data in small linear arrays, called blocks. The exact architecture
of the blocks is determined by dense and sparse dimensions, which are discussed in
detail in Chapter 8. The easiest way to think about a block storage model is by
looking at a spreadsheet like the one in Figure 3-27. For the sake of this discussion,
assume that the entire block structure is represented on this spreadsheet.

For every intersection where a piece of data exists, Essbase creates a block.
Using our example, every block in the database contains all the members under
Year and all of the members under Profit. Essbase also creates a block for every
intersection of Product, Market, and the scenario (Actual, Budget, and so forth)
where there is numeric data. For example, if you have a sale for product 100-10 in
New York for the Actual scenario, one block is created. If you then put in a value in

FIGuRE 3-26. Varying attributes let you model slowly changing dimensions.

Chapter 3: Design and Overall Methodology 99

for same product and market in the Budget scenario, a new block is created. And if
you sell product 100-10 in Boston in the Actual scenario, this is another block.

All blocks have the same time periods and same accounts. The specific numeric
values will most likely be different. Essbase preallocates the space for data storage.
Whenever you query values from or submit values to the database, the specific
block or blocks need to be brought into memory.

In general, block storage supports a smaller number of dimensions and overall
members. For example, if there are 10,000 members in the Market dimension and
1,000 products, this represents 10,000,000 blocks (assuming every product has data
for every market). But even though the overall dimensionality, members, and data
tend to be smaller for block storage databases, these databases do not need to be
small. We have worked with many block storage databases that have millions of
members and hundreds of gigabytes of input data.

Block storage databases have the following functional advantages:

 upper-level input ■ You can input a total charge at an upper level, such
as the dimension level, and then use an allocation method to push those
values down to the members. For example, you can input a total charge at
all markets and at all products and allocate the values down to individual
product SKUs in individual cities. Upper-level inputs are particularly useful
in situations where you want to do target budgeting or perform allocations
such as a corporate overhead charge.

FIGuRE 3-27. Block storage saves data in blocks of memory.

100 Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution

Preaggregated values ■ You can have Essbase precalculate every intersection.
This means that query times (assuming the data request volume is synonymous)
from request to request are consistent. In practice, however, many intersections
of a block storage database are left to calculate dynamically at retrieval time.
Total time period values, such as the total at Quarter 1, are often dynamically
calculated as an overall efficiency practice.

Period-to-date reporting ■ Period-to-date reporting capabilities come out of
the box with block storage databases.

Procedural calculations ■ You have complete control over calculation
behavior, down to the cellular level. If you need to model a complex
calculation process, such as a goal-seeking calculation, you can control the
process in detail with a calculation script.

Aggregate Storage
Aggregate storage databases store and manage data very differently from block
storage databases. Instead of storing data in arrays (blocks), aggregate storage
databases work with cells. In a block storage database, if you query a single value
from a block, the entire structure comes into memory on the server. In an aggregate
storage database, the same data that we used in the block storage example is
represented as 136 data cells. Now if you query a single value, only that value is
retrieved.

Because data structures are not preallocated, aggregate storage database can
handle very expanded dimensionality and a lot more data. For instance, we have
worked with models containing more than 10 million customers in a single
dimension, as well as those with multiple millions of members per dimension in
many dimensions.

With aggregate storage databases, data is loaded at level 0, and all upper-level
members (for example, East) and member formulas are derived dynamically. To
optimize retrieval performance, you can run an aggregation process on the database
to build stored values at some upper-level intersections. After loading data, Essbase
analyzes the source data and builds aggregates to optimize those queries that will
take the longest to resolve based on the structure of the database. You can also have
Essbase monitor the query patterns of your user base, and then build aggregations to
serve your specific queries better. Essentially, the model is self-learning. Detailed
information on tuning aggregate storage databases is provided in Chapter 8.

In general, aggregate storage models are ideal for aggregating large data sets
(also called rack and stack applications). While you can do complex mathematics in
aggregate storage models, all formulas are derived dynamically. A formula that is
overly complex can affect performance. Although there are usually numerous ways
to optimize processing in aggregate storage databases so that complex formulas do

Chapter 3: Design and Overall Methodology 101

not have a large impact on performance, the dynamic nature of such formulas
should be taken into consideration.

Aggregate storage databases provide the following advantages:

 Dimension, member, and data scale ■ It is common to see aggregate storage
databases with many millions members, with large dimensionality (20 or
more dimensions), and being sourced with hundreds of gigabytes of data. In
many cases, databases that could not be built in block storage work without
difficulty in aggregate storage mode.

Load and aggregation speed ■ The smaller, cell-based structures tend
to load more rapidly than blocks. Additionally, because you are not
aggregating large portions of the database, but rather strategic points, the
data is available to your users with less system downtime. Running an
aggregation process, while recommended for performance reasons, is
optional. Because all upper-level values are dynamic, the values at upper
levels calculate on retrieval immediately after loading data.

Smaller disk footprint ■ Following the logic in the previous point, the overall
structure of an aggregate storage database is smaller. A smaller structure
coupled with a smaller aggregation footprint can lead to a disk footprint
significantly smaller than that of a block storage database.

Selecting an Appropriate Data Storage Model
From an end-user perspective, querying an aggregate or block storage database is
exactly the same. The nuances between the storage types are purely a deployment
decision on the part of the Essbase database designer. At no point should an end
user need to know how the data is handled within the database. Instead, you choose
the model type based on the user requirements.

For example, we worked with a client who needed a six-dimensional model
built with hundreds of gigabytes of input data. The company did not need any
member formulas—the database was a series of simple aggregations and ratios. Our
initial thought was to use aggregate storage. However, this company buys data, so
the totals (for example, East) are not equal to the sum of the details (such as the
children of East). In this case, we needed to load data at all levels in the database,
which functionally is provided only by the block storage model. In addition, the
company also had a ten-dimensional model that covered product SKU level
information across 1.9 million customers. For this product database, we loaded
level 0 data into an aggregate storage model. Your requirements may not always be
so cut and dry. It is important to consider the attributes of each model type carefully,
and especially the user requirements, before building the database.

102 Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution

Table 3-2 compares block storage and aggregate storage models based on user
requirements. If both models can address the use requirement equally well, both
columns are marked. If one is better at meeting the requirement, then it is selected,
but this does not necessarily mean that the user requirement cannot be met by the
other model (as shown by the example in the preceding paragraph, where we use
block storage for a large input data set). For a list of current restrictions, see the
Oracle Essbase Database Administrator’s Guide.

Considering Partition Strategies
In Chapter 1, we talked about the importance of partitions in the data warehouse
world, and mentioned how OLAP systems face some of the same challenges with
respect to partitioning data. In Essbase, you can design applications with or without
partitions, depending on the needs of your organization and the technical challenges
of your environment.

Up until now, we have assumed that we are working with one Essbase database.
As you will see, there are some very good reasons to implement multiple Essbase
databases connected via partitions. To implement multiple databases, you need to
create multiple Essbase applications. An Essbase application is essentially a container
for an Essbase database and all the rules, reports, and metadata associated with that
database. It is a best practice to have one database per application, though technically
speaking, you could have more than one. Partitions allow you to manage and traverse
data across multiple Essbase databases (and applications) seamlessly.

This section summarizes when you might want to partition data and outlines the
types of partitions that are available. For more information, including guidelines,
restrictions, and case studies, see the Oracle Essbase Database Administrator’s Guide.

TABLE 3-2. Comparing Block and Aggregate Storage

user Requirements Block Storage Aggregate Storage

Level 0 write-back X X

Upper-level write-back X

Procedural calculations X

Large dimensionality X

Large input data sets X

Hybrid/XOLAP deployment X X

Using attributes across all dimensions X

Chapter 3: Design and Overall Methodology 103

Reasons to Partition Data
You may want to partition your data for any of the following reasons:

 Differing dimensionality ■ Different planning systems require different
dimensionality. For example, you may want to budget costs for personnel,
but that detail is unnecessary in a sales-focused application. You can create
two applications and link them with a partition.

Currency conversion ■ This is a special case of differing dimensionality.
Essbase has built-in features for creating a currency database and managing
currency conversions.

Redundancy ■ You may want to have multiple copies of the same data
available. For example, if your end users are reporting that they need to wait
for access to a database, you can replicate the data to other databases and
spread user access among the databases.

Regional versions ■ Remote offices may suffer from poor network response
times, or they may need access when the master database is offline, so a
local copy of the database is required.

Local control over local data ■ When a centrally administered database
goes down, it affects everyone—local and remote. It may be preferable for
remote offices to have control over their own data in local databases, with
shared access to corporate data stored centrally.

Security ■ Not everyone needs to have access to all data. For example,
personnel information is highly sensitive. This information can be
safeguarded by maintaining the data separately and carefully controlling
access to parts of the data via partitions. Although Essbase allows full
security control within a database (to the individual cell level, if required),
sometimes it can be easier to administer at the database level, or you may
want different administrators for each database.

Differing data storage ■ Some data may be best stored in an aggregate
storage database, while other data may be best handled in a block storage
database. For example, an aggregate storage database can support write-
back only to level 0. You might implement a block storage partition to
handle changes to higher-level data for scenario playing or top-level
adjustments. Additionally, you may wish to present a mix of stored data
(aggregate storage or block storage), that is loaded daily, together with
dynamic data from the data warehouse using an XOLAP database.

104 Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution

Long timelines ■ If you have (or plan to have) decades of data, you may
want to store historical data separately, while retaining the ability to drill
down into historical data from the current data.

Regional batch windows ■ If you have a composite database with data
from multiple regions or business areas across different time zones, it may
make sense to create different databases for each region and partition them
together for presentation purposes.

Types of Partitions
Before we launch into a description of each of the partition types, let’s start by
defining some terminology. Figure 3-28 shows two multidimensional databases
connected by a mapped partition. The source database is the primary database,
which contains the stored multidimensional data. The target database is the
secondary database—the one to which you copy or map stored data defined by a
partition. Any given database can function as both a source database and a target
database simultaneously. The partition area is the region of data to be shared.
A partition cell identifies the cell used in linked partitions.

Essbase offers three types of partitions: replicated, transparent, and linked. You
can use different partition types within the same database, with some documented
restrictions.

Replicated Partition With a replicated partition, Essbase copies data in the partition
from the source database to the target database. The databases must share a similar
dimensionality, and you need to map the dimensions, members, and attributes within
the partition to the target database. As shown in Figure 3-29, a target database can be
made up entirely from data copied from multiple source databases. For example,
imagine that each of the source databases belong to a sales region. The summary
data from each source database is partitioned and replicated to the target database,

FIGuRE 3-28. Partition terminology

Source Database

Partition Cell Partition Area

Target Database

Chapter 3: Design and Overall Methodology 105

which is used by head office to analyze sales. The target database can also contain its
own data, as well as additional data coming from other partitions.

The replicated data in the target database reflects the state of the data at the time
the region was copied. The administrator updates partitions on a regular schedule,
either by recopying the entire partition or by updating changed values. Periodic
updates mean that at any given point in time, end users accessing the target
database may be working with data that is not up-to-the-minute current. This may or
may not be of concern. In many scenarios, such as analyzing past performance (for
a month, quarter, or year for example), the data does not need to be up-to-date.

Transparent Partition If you do need up-to-the-minute data, a transparent partition
may be more suitable. A transparent partition opens a window from the target
database to the source database, as illustrated in Figure 3-30. End users can access
data in the partition without the need to copy the data to the target database. As
with replicated partitions, the source and target databases must share similar
dimensionality, and you need to map the dimensions, members, and attributes in
the partition to the target database.

End users query their target database as usual. Essbase retrieves data from the
source database as required and presents it to the user as if it were part of the target
database. If a user updates data that lives in the source database, the update is

FIGuRE 3-29. Replicated partitions copy data to another database.

Target Database

Source Databases

106 Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution

written back to the source database. Calculations may be faster because they are
distributed across multiple databases (and potentially multiple computers and/or
processors).

While transparent partitions have clear advantages, they may also cause higher
network traffic as Essbase retrieves data from the source database, which may be on
a different server. If the number of retrievals becomes excessive, end users may
experience slower response times. Implement transparent partitions using the
documented guidelines to avoid this and other performance-related issues.

Linked Partition A linked partition is not so much a partition as a drill path
associated with a data cell. As illustrated in Figure 3-31, the partition cell enables
users to drill across from the target database to the source database. The target and
source databases can have different dimensionality. The partition cell can be a
single cell or a group of cells.

When an end user drills down on a partition cell in Excel, a new grid is created
based on the data in the source database. Linked partitions are supported in Excel
with Spreadsheet Add-in. Not all front-end reporting tools implement linked partition
functionality, so check the documentation for any tools you use before implementing
linked partitions. Finally, be sure to set user access separately for each database to
ensure the security of the data. You do not want an end user linking to another
database and having unrestricted access to potentially sensitive data.

FIGuRE 3-30. Transparent partitions connect databases.

Target Database

Source Databases

Chapter 3: Design and Overall Methodology 107

Designing an OLAP Solution with Partitions
Partitions are the tools that can take you from a single, stand-alone database to a
distributed Essbase solution tailored to meet your business needs and technical
environment. When designing a distributed database model, you can use the
following approaches:

 In a ■ top-down approach, your primary database contains all your data, and
the data is copied or mapped to other databases. For example, you could
use this approach to create redundant or regional versions of a central
database.

A ■ bottom-up approach takes data from a set of databases and presents that
data together. Figure 3-29, which illustrates replicated partitions, shows a
bottom-up approach: regional data is stored locally, and summary data goes
to a target database at head office.

For an ■ attribute-driven approach, you create a partition that contains data for
members that share the same user-defined attributes and map or copy that
partition to a target database under a base dimension.

FIGuRE 3-31. Linked partitions enable drill-across to a database with different
dimensionality.

Target Database

Source Database

108 Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution

You can use the different partition types and strategies together to create a model
that meets the unique needs of your organization. Bear in mind, however, that a
distributed Essbase model adds layers of complexity to an OLAP solution. You need
a solid understanding of each of the partition types and how they can be used
together before beginning the design process.

Summary of the Essbase Design Process
Essbase is an independent OLAP solution that lets organizations extend their analytic
and reporting in environments by providing large data scale, exemplary performance,
and centralized control over metadata definitions and calculations. The driving factors
in an Essbase deployment are the reporting requirements of the end user. While it is
important to have a fundamental grounding in OLAP modeling, it is equally important
to talk to the line-of-business users being served by the analytic system. In general,
this drives most decisions, ranging from alternate hierarchy requirements, to data
partitioning, to storage type.

After gaining the understanding of the overall reporting and analytics requirements,
it is important to consider the built-in capabilities Essbase provides. Attribute
dimensions, user-defined attributes, and shared members (for example) provide an
array of capabilities without driving complex design or maintenance. In that same
spirit, dimension types, built-in time-series calculations, and expense reporting
capabilities can often serve to simplify the model and provide a greater level of user
satisfaction. In short, do not forget to consider the out-of-box capabilities that Essbase
provides.

In the next section, we look at the architecture of Oracle OLAP and Oracle
Essbase and introduce the components for each product.

OLAP Architectures
Your choice of an OLAP product from Oracle depends in part on your current IT
infrastructure. If you are running an Oracle database as a data warehouse, the
obvious solution is to add the Oracle OLAP option to your data warehouse. If you
have an Oracle database as one source of data or if your organization has only non-
Oracle data sources, your choice will depend on the criteria discussed in Chapter 1:
purpose, buyer, typical end user, data management strategy, and architecture.
Knowing how Oracle OLAP and Oracle Essbase are architected and understanding
their components will help you choose the correct product for your needs.

Oracle OLAP Architecture and Components
Oracle OLAP is a feature of the Oracle Database. This section describes how
Oracle OLAP fits in with the Oracle Database, and then describes the Oracle OLAP
components.

Chapter 3: Design and Overall Methodology 109

Oracle OLAP Architecture
Oracle OLAP has a simple architecture, as depicted in Figure 3-32. Oracle OLAP is
a licensed option to the Oracle Database Enterprise Edition. As such, Oracle OLAP
applications benefit from other features of Oracle Database, including scalability,
reliability, security, backup and recovery, and manageability.

Client Tier Oracle delivers multiple tools to work with Oracle OLAP, but
fundamentally, Oracle OLAP is part of the Oracle Database. While AWM is the
main client tool that manages objects in Oracle OLAP, you can also use Oracle
Warehouse Builder (OWB) to build cubes. From an architectural standpoint, client
tools communicate directly with the Oracle Database, typically using Oracle Call
Interface (OCI), Java Database Connectivity (JDBC), or Open Database Connectivity
(ODBC), in the same way as other Oracle Database tools. You can query OLAP
cubes using SQL, PL/SQL, or the Multidimensional Expressions (MDX) language
(via a driver available from Simba Technologies). Any tool that can query an Oracle
database can query Oracle OLAP.

FIGuRE 3-32. Oracle OLAP architecture

OLAP/Analytic Workspace Java API

OLAP/Analytic Workspace Java API

Oracle Database
Server

Relational and
Multidimensional Data

Oracle OLAP API

Analytic Workspace
Manager

Oracle Warehouse
Builder

Discoverer OLAP

BI Spreadsheet Add-in

OBIEE or any SQL-
based reporting tool

Oracle OLAP API

SQL

Relational

ERP

Legacy

Flat-files

110 Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution

Database Tier Oracle OLAP is in the kernel of the Oracle Database, part of
oracle.exe, that is running when you are running the database. Because of this,
there is no such thing as running Oracle OLAP without running the Oracle
Database or starting it separately. OLAP is always installed when you install the
Enterprise Edition of the Oracle Database. You can choose to disable the OLAP
option, but it is on by default.

At the heart of Oracle OLAP are analytic workspaces. Think of analytic
workspaces as containers for multidimensional structures (cubes) in a relational
database. Analytic workspaces are stored as binary large objects (BLOBs) in one or
more rows in relational tables. An Oracle BLOB provides a convenient way to store
binary data in a table. The BLOB provides this mechanism and is the magic that
allows Oracle to store true multidimensional data in a system built around relational
data. The analytic workspaces are stored in tablespaces and data files just like any
other data in an Oracle database.

OLAP DML The OLAP DML is a rich, dimensionally aware 4GL procedural
programming language that can be used to enhance the analytic content of the
Oracle OLAP cube. As described in Chapter 2, this language is the same as that was
used in Oracle OLAP’s predecessor, Express, but it has been enhanced with many
new commands. Using the OLAP DML, you can design advanced custom measures
and user-defined functions, and write programs that perform calculations, assign
data to stored measures, or flow data from one cube to another.

As a dimensionally aware language, the OLAP DML makes it easy to navigate and
refer to data in a dimensional model. For example, the OLAP DML has hundreds of
analytic functions and understands how to loop over dimensions and reference
dimensional and hierarchical data. As a procedural programming language, it includes
the ability to write programs and functions, looping, if/then/else, local variables, and
other standard programming constructs.

You do not need to use the OLAP DML to design or query a cube, but it is a
powerful tool that is available to add analytic content and to manipulate cubes. The
OLAP DML is especially helpful if you are upgrading from Express.

SQL Interface to Multidimensional Data Types The primary method for accessing
Oracle OLAP data is through SQL. With Oracle OLAP 11g and beyond, any time you
create dimensions or cubes using API calls or using AWM, views are automatically
created that present a star schema for your OLAP cubes. You access your data using
standard SQL against these views. If you want to bypass these views, you can use the
CUBE_TABLE function that was introduced in Oracle OLAP 11g, which takes
advantage of the metadata stored in the Oracle database, as in the following command:

select * from table(cube_table('global.units_cube'));

Chapter 3: Design and Overall Methodology 111

NOTE
For Oracle OLAP 10g and earlier, the OLAP_TABLE
function translates between Oracle OLAP objects in
analytic workspaces and views accessible from SQL.

The syntax for OLAP_TABLE has a great deal of flexibility, and it is documented
in the Oracle OLAP DML Reference. OLAP_TABLE is still available in Oracle OLAP,
but it is generally simpler to use CUBE_TABLE or the built-in views with Oracle
OLAP 11g.

OLAP API The OLAP API is a Java-based programming interface for OLAP
applications, used to query OLAP objects. This API is quite extensive. Oracle Business
Intelligence Beans (BI Beans) uses the API and provides an easier to use way of
accessing the power in the OLAP API. BI Beans is available with Oracle JDeveloper.

A portion of the OLAP API (called the Analytic Workspace Java API in Oracle
OLAP 10g) supports the creation and maintenance of analytic workspaces in Java. It
provides a programmatic method for defining a logical dimensional data model and
instantiating that model in an analytic workspace. AWM uses this API to create and
modify analytic workspaces.

System Views with OLAP Metadata In Oracle OLAP 11g, tables and views with
information about analytic workspaces were added to the system catalog, in the SYS
schema. These views can be queried to obtain information about the Oracle OLAP
data available on your instance. This allows applications to find cube metadata,
such as the list of cubes, measures, dimensions, hierarchies, attributes, and their
definitions and interrelationships. For example, in the same way that ALL_TABLES
provides information about all of the tables, the view ALL_CUBE_DIMENSIONS
provides information about all of the cube dimensions.

Client Applications for Managing Oracle OLAP
AWM is the administrative tool used to design and manage Oracle cubes. This
application is installed when the Oracle Database 11g client tools are installed, and
it is generally available under the Integrated Management Tools menu choice, but it
can be installed separately as well.

Analytic Workspace Manager AWM is used to create and manage analytic
workspaces. It enables you to develop a logical dimensional model, map logical
objects to data sources, and load and aggregate the data.

Generally, there is a new release of AWM for each new release of Oracle OLAP;
AWM is enhanced to present new features of Oracle OLAP with each release. You
should always use the version of AWM that matches the version of Oracle OLAP
you are using.

112 Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution

AWM is a Java application and runs anywhere Java runs. Figure 3-33 shows a
typical use for AWM to map the CHANNEL_DIM table to the CHANNEL dimension.

Oracle OLAP Worksheet Oracle OLAP Worksheet, launched from AWM, is the
command-line interface to Oracle cubes and dimensions. Using the OLAP DML,
OLAP Worksheet can be used to view data; create new functions and programs;
define and maintain forecasts; and add dimension calculation models, allocations,
and other analytic enhancements to the cube. It serves as the primary mechanism
for entering and viewing output for OLAP DML commands. The complete OLAP
DML reference is available from OLAP Worksheet’s help system.

Figure 3-34 shows the result of entering some typical OLAP DML commands in
the lower portion of the OLAP Worksheet window.

Oracle Warehouse Builder OWB can also be used for generating Oracle OLAP
cubes. With OWB, the building of dimensions and cubes is integrated into the entire
ETL process, including transforming tables and views for use with Oracle OLAP. It
provides a central application for building and managing data warehouses based on
relational and multidimensional data.

Currently, OWB 11g supports building 10g-mode analytic workspaces on Oracle
Database 10g and 11g. The next release of OWB 11g (Release 2) is expected to

FIGuRE 3-33. Using Analytic Workspace Manager

Chapter 3: Design and Overall Methodology 113

support building 11g dimensions and cubes. For the purposes of this book, we will
use AWM to build analytic workspaces, dimensions, and cubes in an Oracle
Database 11g database.

OX OX is a freeware tool developed by several Oracle consultants. It is made
freely available with no support. It serves as an alternative way to present an OLAP
DML command line with some useful features not available in OLAP Worksheet.
You can access it from the Oracle OLAP Downloads web page.

Support for MDX Using an MDX provider developed by Simba Technologies,
applications can also query Oracle OLAP cubes using MDX. For example, Microsoft
Excel can query data directly from cubes using the MDX provider in the same way
that Excel connects to Microsoft Analysis Services.

Support for SQL-Based Tools Because Oracle OLAP data is exposed via SQL
views, any front end that uses SQL to access data can be used to present data from
Oracle OLAP. An example of such a tool is Oracle’s own Application Express, as
well as many third-party tools.

FIGuRE 3-34. OLAP DML commands and result in the Oracle OLAP Worksheet window

114 Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution

Essbase Architecture and Components
As a storage-independent OLAP solution, Essbase can be implemented in an
existing IT environment with no modification or disruption to the systems containing
your source data. The data for an Essbase database can come from one or more data
sources simultaneously. The following sections describe the architecture for a typical
Essbase implementation, as well as the core and optional components.

Essbase Architecture
Figure 3-35 shows a high-level overview of a typical Essbase installation. As you
can see, the implementation is broken into three tiers: client, middle, and database.
The client tier contains all of the end user and design components. The middle tier
is a web services tier that sits between users (end users and administrators) and the
Essbase server. The database tier contains one or more Essbase servers. Additionally,

FIGuRE 3-35. A typical Essbase architecture

• Smart View
• Spreadsheet Add-in
• Smart Search
• Administration Services
• MaxL
• XMLA
• C API or VB API Applications
• Oracle Business Intelligence
 Enterprise Edition Plus
• Partner Tools

Middle Tier
Services

Client Tier
Essbase Server Clients

Database Tier
Essbase Servers

Hyperion
Provider
Services

Essbase
Administration
Services

Essbase Studio/
Essbase
Integration
Services

Metadata
Catalog

ODBC/JDBC Driver ODBC/JDBC Driver

ODBC/JDBC Driver
RDBMS
Source

TCP/IP

TCP/IP

HTTP

TCP/IP or HTTP

Chapter 3: Design and Overall Methodology 115

a relational database may contain a metadata catalog and may provide source data
for the Essbase databases. Let’s start with a high-level look at each of the tiers.

Client Tier The client tier includes the front-end options for Essbase. Analysts may
use either Smart View or the Spreadsheet Add-in to retrieve and analyze data and to
create ad hoc reports in Microsoft Excel. Smart View is the next generation of the
Spreadsheet Add-in, offering integration with Microsoft Word and PowerPoint, as
well as Excel.

Administrators use the consoles for Oracle Essbase Administration Services,
Essbase Integration Services, and Essbase Studio to model and manage Essbase
databases.

MaxL is a language used by developers to provide command scripts used for
scheduled processes. XML for Analysis (XMLA) is a query language. There are
several command-line and API options available as well, such as C and Visual
Basic. Oracle offers a comprehensive set of query and reporting tools called Oracle
Business Intelligence Suite Enterprise Edition Plus (OBIEE Plus). In addition, several
Oracle partners have created custom applications integrated with Essbase.

Middle Tier In the middle tier, three services form a layer between the data
sources and the Essbase Server. Whether these three services are installed on
individual servers is a matter of design. They are able to exist on a single server and
have been configured as such for smaller implementations.

Smart View requires a middle-tier component called Oracle Hyperion Provider
Services. When a user issues a request using Smart View, it flows through Provider
Services. We will discuss the advantages of such an approach later in this chapter.

The Administration Services Server is used to manage users and user security,
server options, applications, databases, and database objects. When building a cube
from a data source, the Administration Services Server supports reading from a
single relational table or a flat file.

The third possibility in a typical installation can be either Essbase Studio or
Integration Services. Neither of these services is required. Rather, both tools support
cube building from a data warehouse with a star or snowflake schema. Essbase
Studio, however, is the next generation of Integration Services and is the tool of
choice for a new Essbase implementation. Essbase Studio can also be used instead
of Administration Services to build cubes from a single relational table or a flat file,
with the added benefit that it generates all the data-load rules automatically.

Database Tier The database tier is where you find the Essbase Servers. These
servers are responsible for storing, calculating, and serving data to the various
components as needed. In many respects, the Essbase Server is the heart of the
implementation. Historically, it brokered all of the transactions and was responsible
for the tasks now available through the middle tier.

116 Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution

Relational Database Sources Below the middle tier are two relational sources: the
Metadata Catalog and the RDBMS source. The Metadata Catalog is required by
Administration Services, Integration Services, and Essbase Studio. The RDBMS
source represents the original data sources that provide data to the Essbase
databases in the Essbase Server. Essbase does not require data be placed in a
relational structure before loading. In fact, data can also come from legacy systems,
enterprise resource planning (ERP) systems, data warehouses, and flat files.

We have reviewed a typical architecture and some additional front-end
components. Note that few components are required to simply build an Essbase
database, load data, and create reports. A little later in this chapter, we will discuss
these core components. For now, we turn our attention to how the components in a
typical architecture talk to one another.

Communication Protocols and Query Methods We omitted the communication
protocols and query methods from the preceding discussion to be able to focus on
the tiers. Figure 3-36 identifies the protocols and query methods.

Generally speaking, if a client-tier component needs the ability to communicate
through a firewall it uses HTTP(s); otherwise, it uses TCP/IP. The query method varies
by component. Table 3-3 summarizes the client-tier components.

FIGuRE 3-36. Types of communication protocols and query methods used with Essbase

Public API

MDX and APIETL/ELT Server

Essbase Server

Metadata
Repository

Internal API

Essbase Studio/
Integration Services

Server

SQL

SQL/API

Administration
Services Server

MaxL and API MDX via
API Calls

BI Server

HTTP(s)

Essbase
Spreadsheet Add-in

Smart View and
third-party tools
through Java API

Provider Services

HTTP(s)

TCP/IP

BI Answers and
BI Interactive Dashboards

Relational

ERP

Legacy

MDM

Flat-files

Chapter 3: Design and Overall Methodology 117

All the middle-tier components use TCP/IP to connect to the Essbase Server. The
query method varies by component. Table 3-4 summarizes the middle-tier components.

In the database tier, the Essbase server uses TCP/IP to communicate with other
components. The query method varies by component. The Essbase Server uses the
protocols and components listed previously. The ETL components, such as the
Oracle Data Integrator Enterprise Edition, use TCP/IP to the Essbase Server and query
through the API to Essbase via prebuilt adapters.

Component Protocol Query Method

Smart View HTTP(s) to Provider Services MDX

Essbase Spreadsheet Add-in TCP/IP to the Essbase Server API

Administration Services
Console

TCP/IP to Administration Services
Server

MaxL and API

Essbase Studio Console TCP/IP to Essbase Studio Server API

Integration Services Console TCP/IP to Integration Services
Server

API

BI Answers and BI Interactive
Dashboards via browser

HTTP(s) to BI Server using a
browser

MDX

TABLE 3-3. Client-Tier Communication Protocols and Query Methods

TABLE 3-4. Middle-Tier Communication Protocols and Query Methods

Component Protocol Query Method

Provider Services TCP/IP to the Essbase Server MDX via API

Administration Services
Server

TCP/IP to the Essbase Server MaxL and API to Essbase;
SQL or API to data
sources (SQL interface
leverages ODBC drivers)

Essbase Studio Server TCP/IP to the Essbase Server Internal API to Essbase;
SQL via JDBC or API to
data sources

Integration Services
Server

TCP/IP to the Essbase Server Internal API to Essbase;
SQL via ODBC or API to
data sources

BI Server TCP/IP to the Essbase Server N/A

118 Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution

As you can see from Figure 3-36, a typical implementation connects an Essbase
Server to your data sources and to front-end applications. Your implementation will
depend on what you currently have in place and the Essbase capabilities you want
to use. To help you in your assessment, we break out the core components of an
Essbase installation and explain what they do. Then we discuss the other components
and products that are available for Essbase under four categories: administrator and
developer tools, data-integration tools, end-user applications, and additional Oracle
components.

Core Components
Essbase has five core components: the Essbase Server, Administration Services,
Spreadsheet Add-in, Smart View (Fusion Edition), and Provider Services. With only
these components, you can create an Essbase database, connect to data sources,
populate the database with data, retrieve and analyze data, and create ad hoc
reports. In this case, the only reporting options are Smart View or Spreadsheet Add-
in. All data loads are done through the Data Prep Editor inside Administration
Services, and security is handled internally on the Essbase Server. Figure 3-37 shows
how the core components relate to one another.

In this section, we touch briefly on each of the core components.

FIGuRE 3-37. Essbase core components

Essbase Server Provider Services

Administration
Services Server

Smart View

Essbase
Spreadsheet Add-in

Administration
Services Console

Relational

ERP

Legacy

MDM

Flat-files

Chapter 3: Design and Overall Methodology 119

The Essbase Server The Essbase Server is at the heart of an Essbase implementation.
It is a powerful multidimensional database that offers two kinds of storage options
(block and aggregate), an extendable library of functions to define business logic, and
a powerful calculation engine. As suggested by Figure 3-37, an Essbase Server can
host multiple Essbase databases. Moreover, while only one Essbase Server is pictured
in the figure, it is possible to run multiple instances of Essbase Servers at the same
time. Essbase Servers are managed using Administration Services.

Oracle Essbase Administration Services (Server and Console) Administration
Services is the gateway to your Essbase server. Database and system administrators
use Administration Services to manage users and user security, server options,
applications, databases, and database objects. It supports cube-building tasks, such
as data modeling and loading data, for single relational tables and flat files.

TIP
For cube-building tasks, you can choose to use
Essbase Studio. You will still need Administration
Services for security and server options.

The Administration Services console provides a graphical user interface (GUI) to
the Administration Services Server. For example, from the Administration Services
Console, a database administrator can create an Essbase database, design a database
outline containing dimensions and members, create rules that transform source data
to matching fields in the new database, load data from a single relational table or a
flat file, and create and run calculations scripts. The Administration Service Server
does the actual work.

Oracle Essbase Spreadsheet Add-in Spreadsheet Add-in is a software program that
merges seamlessly with Microsoft Excel. With the Spreadsheet Add-in installed, your
analysts have menus, toolbars, and keyboard shortcuts for Essbase within Excel.
Analysts can connect to an instance of an Essbase server, retrieve data, analyze data,
and create ad hoc reports. For analyzing the data, they can pivot the point of view,
drill down to show more detail, roll up to show less detail, remove or retain subsets
of data, format data, and calculate data. With the appropriate security permissions,
they can edit the data and write back to the database.

 The next generation of the Spreadsheet Add-in is Smart View, Fusion Edition.

Oracle Hyperion Smart View for Office, Fusion Edition Smart View is a web-
deployed, thin-client program that is embedded in Microsoft Office applications—
Excel, Word, PowerPoint, and (if Word is the e-mail editor) Outlook. Within Excel,
Smart View provides similar functionality to the Spreadsheet Add-in, but improves
upon the Spreadsheet Add-in with an intuitive, customizable user interface.

120 Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution

With Word and PowerPoint, analysts can connect to a database, copy a data
point from an Excel spreadsheet to a document or slide, refresh the data, and
display the data in charts or graphs. Imagine having documents and slides with data
that you can refresh on demand! Analysts can even add content to Outlook e-mail
messages if Word is set as the e-mail editor.

Smart View supports not only data coming from Essbase, but also data from OBIEE
(and hence, Oracle OLAP) and Oracle Hyperion Planning, and content from Oracle
Hyperion Financial Management, Oracle Enterprise Performance Management System,
and Hyperion Financial Reporting and Hyperion Web Analysis. This means that you
can collate information from multiple sources in one report.

Smart View is part of Oracle Hyperion Foundation Services, which ships with
Oracle Essbase. Smart View requires Provider Services.

Oracle Hyperion Provider Services Provider Services is a set of services that
connects end-user applications to data sources. There are three services: the Smart
View provider, a Java API provider, and an XMLA API provider. Provider Services
also enables high availability, clustering, load balancing, and failover services for
Essbase Servers, bringing enterprise-level performance and reliability to Essbase and
performance management applications. Figure 3-38 shows which services are used
by the various applications and data sources.

FIGuRE 3-38. Provider Services connects end-user applications to data sources.

Smart View
Custom and

Third-party Java Tools

Interactive Reporting
SQR Production Reporting

Financial Reporting
Web Analysis

Microsoft Reporting
Service ADOM.NET

XMLA Tools

Smart View
Provider

Java API XMLA API Provider Services

OBIEE Plus Planning Essbase

Chapter 3: Design and Overall Methodology 121

NOTE
If you are currently using Smart View with Planning
or OBIEE Plus, you already have Provider Services in
your architecture.

Additional Administrator and Developer Components and Tools
The components and tools described in this section ship with Oracle Essbase. They
include Essbase Studio, Integration Services, and command and query languages.

Oracle Essbase Studio (Server and Console) Oracle Essbase Studio combines the
cube-building functionality previously provided in Integration Services and
Administration Services into a single environment. Essbase Studio supports modeling
for all the different types of data sources from which Essbase applications are typically
built. The Essbase Studio Console provides an easy way to perform tasks related to
data modeling, cube design, and construction of analytic applications. A command-
line language is also available.

Essbase Studio supports MOLAP, HOLAP, and XOLAP architectures. For the
hybrid architectures, Essbase Studio supports several drill-through options: relational
databases, OBIEE Plus, URLs, custom SQL, Oracle Hyperion Financial Data Quality
Management, and Java methods. Drill-through functionality is supported from data
cells and member cells and is dynamically linked to cubes with matching metadata
context. Figure 3-39 shows the drill-through functionality.

FIGuRE 3-39. Essbase Studio enables drill-through from data cells through Essbase to
data sources.

Metadata
Repository

Provider Services

Essbase Server

Essbase Studio
Server

Smart View

Communication back to
Essbase Studio
provides drill-through
capabilities to data
sources

Relational

ERP

Legacy

MDM

Flat-files

122 Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution

A common metadata repository, or catalog, captures all metadata related to all
Essbase applications built in the enterprise and allows the reuse of metadata at the
lowest level of granularity. The catalog gives Essbase Studio knowledge of the
common metadata that is shared across the various applications enterprise-wide. For
example, you can model a customer dimension once, and then leverage it across a
series of Essbase databases. Essbase Studio also supports lineage tracking through a
rich graphical view of the metadata relationships, allowing users to follow
application lineages to their metadata components and through to the data sources
from which they were sourced.

How does Essbase Studio compare with Integration Services? Essbase Studio is
the next generation of Integration Services, incorporating all the functionality of
Integration Services plus the cube-building functionality from Administration
Services, and adding a wizard-driven interface. It provides the ability to connect to
data sources via JDBC or ODBC, rather than just ODBC. Essbase Studio automates
some work that used to be done manually, including automatically creating joins
between tables and autogenerating data-load rules. In Essbase Studio, database
administrators create minischemas instead of OLAP models. Essbase Studio provides
greater flexibility in designing and reusing hierarchies across metaoutlines, because
the hierarchies have been separated from the metaoutline. Finally, Essbase Studio
separates the grouping of hierarchies and their relationships from the metaoutline by
organizing metadata elements, such as measures and hierarchies into a cube schema.
For more information, see the New Features guide for Oracle Essbase Studio 11.1.1.

Essbase Studio is a component of Oracle Essbase. Essbase Studio requires
Hyperion Shared Services for user management and security.

Oracle Essbase Integration Services (Server and Console) Oracle Essbase
Integration Services is the predecessor to Essbase Studio. For new Essbase
implementations, you should choose Essbase Studio. If you have an existing Essbase
implementation, your organization may be already using Integration Services. This
section is for you.

 Integration Services offers a set of scalable data-integration services and
graphical tools to create multidimensional Essbase databases from SQL-based
relational sources and data warehouses. Its services enable drill-through access from
summary-level data in an Essbase database to detailed data in relational databases
and/or data warehouses (HOLAP architecture) via ODBC connections. Built on a
flexible, multitier architecture, Integration Services easily scales to accommodate
changing requirements, and delivers scalability, performance, and reliability.

The Integration Services Console is a GUI in which database administrators can
create a logical OLAP analysis model from the tables, views, and columns of
relational databases and/or data warehouses. They can use the OLAP model to
create a metaoutline containing the structure and rules required to generate an

Chapter 3: Design and Overall Methodology 123

Essbase database outline, and then use the metaoutline to create and populate an
Essbase multidimensional database.

Integration Services Server does the actual work of extracting data from the data
sources, performing the operations specified in the associated metaoutline, and
loading the data into an Essbase database. It uses the information in an OLAP
Metadata Catalog to extract dimensions and members. This catalog is a relational
schema containing: metadata describing the nature, source, location, and type of data
to retrieve; metadata describing information required to generate Essbase outlines; and
OLAP models and metaoutlines. You can create multiple OLAP Metadata Catalogs to
store models and metaoutlines.

Integration Services is a component of Oracle Essbase.

Essbase Command and Query Languages MDX is a query language specification
for OLAP data sources. MDX is the most commonly used multidimensional
expression language today. The Essbase version of MDX includes an ever-growing
list of functions developed specifically for Essbase. Because of this, MDX for Essbase
is also called MaxL MDX and is technically a subset of MaxL. However, MaxL MDX
and MaxL Data Definition Language (DDL) have little in common syntactically.
MaxL MDX is used in Essbase to query both block and aggregate storage databases,
and for outline member formulas in aggregate storage outlines.

Data definition means structural control of a database system, including
operations like creation, deletion, and updating of users, applications, databases,
and database objects. Statements in MaxL DDL include verbs like CREATE, ALTER,
DROP, GRANT, and DISPLAY. Comments begin with /* and end with */.

MaxL is used to create repeatable processes. For instance, suppose that each
month, you need to load the most current data. The following is an example MaxL
script from the Essbase Bootcamp course:

/* CREATE PROCESS LOG AND LOGIN TO SERVER */
spool on to "$arborpath\\salesrisk_log.txt";
login $1 $2 on 'localhost';
/* Activate Bigcorp Sales database */
alter system load application 'Bigcorp';
alter application 'Bigcorp' load database 'Sales';
/* Load data files */
import database 'Bigcorp'.'Sales' data from server text data_file
'SalesRisk.txt'
 using server rules_file 'SlsRisk' on error write to acterr;
/* CLOSE OUT PROCESS LOG AND EXIT */
spool off;
exit;

For queries, Essbase supports MaxL MDX through the C API, Java API, MaxL
interface, and XMLA API.

124 Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution

In many ways, MaxL MDX is comparable to Essbase report scripts. MaxL MDX
and report scripts are both capable of performing similar member selection and
calculation functions, but report scripts also include a set of report-formatting
options to control how results are represented. On the other hand, the focus of a
MaxL MDX query is analytical data retrieval, with the underlying API handling the
resulting data structures.

SELECT {Jan, Feb, Mar} ON ROWS,
{[Net Sales], [Cost of Sales]} ON COLUMNS
FROM [HyptekAS].[HyptekAS]
WHERE ([North America], FY06)

Additionally, MDX is the core calculation functionality for Essbase aggregate
storage applications.

Closely associated with MDX is XMLA, the most recent attempt at a standardized
API in the OLAP and BI space. XMLA is a standard that allows client applications to
talk to multidimensional or OLAP data sources. The communication of messages back
and forth is done using the HTTP, SOAP, and XML web standards. The query language
used is MDX. XMLA has already gained broad support, including from companies like
Oracle, Microsoft, SAP, and SAS.

ESSCMD is a legacy command-line interface that performs operations interactively
or through a batch or script file. Developers should avoid ESSCMD, as MaxL was
introduced as a replacement with the release of Essbase 6.5.

Data-Integration Tools
If your data source is a data warehouse or transactional system, you may want to
include a data-integration tool in your Essbase implementation. Data-integration
tools fall into three categories: ETL; extract, load, and transform (ELT); and
application-based solutions.

Oracle provides many options in the realm of data-integration tools, depending
on the source and usage requirements. In this section, we introduce tools for data
integration. These tools are available separately; they do not ship with Oracle
Essbase. For more information, see the Oracle web site.

Oracle Data Integrator Enterprise Edition Oracle Data Integrator Enterprise Edition
(ODI) delivers unique next-generation ELT technology that improves performance
and reduces data-integration costs, even across heterogeneous systems. Unlike
conventional ETL tools, ODI offers the productivity of a declarative design approach,
as well as the benefits of an active integration platform for seamless batch and real-
time integration.

In addition, hot-pluggable Knowledge Modules provide modularity, flexibility,
and extensibility. Oracle provides Essbase-aware Knowledge Modules, allowing
developers to create an end-to-end integration from transaction systems to an

Chapter 3: Design and Overall Methodology 125

enterprise data warehouse to Essbase. ODI also supports the rest of the Oracle
Enterprise Performance Management System.

For many organizations, a standards-based approach is important, if not critical.
To that end, ODI may be used as an approach to Essbase integration. With ODI,
you can import both data values and dimensional information.

Hyperion Data Integration Management Adapters If your organization has
adopted Informatica PowerCenter, a third-party ETL tool, as a standard, rather than
ODI, Hyperion Data Integration Management (DIM) may be appropriate. Simply
stated, DIM is a collection of adapters that Oracle created to support the use of
Informatica PowerCenter with Essbase and the rest of the Oracle Enterprise
Performance Management System.

Like ODI, DIM allows you to import both data values and dimensional
information.

Oracle Hyperion Financial Data Quality Management, Fusion Edition Another
form of data integration is provided via Oracle Hyperion Financial Data Quality
Management (FDM). Its data-preparation server can ease integrating and validating
financial data from any of your source systems. Like ODI and DIM, FDM includes
prepackaged adapters for Essbase and the rest of the Oracle Enterprise Performance
Management System.

Unlike ODI and DIM, which are more IT-centric, FDM is a packaged solution
for business users that helps develop standardized financial data management
processes using a web-based guided workflow user interface. FDM does not provide
dimension integration. Rather, with FDM, users validate, map and move data from
source systems to Essbase or the target application.

Other Oracle Components for use with Essbase
In this section, we introduce you to other components that can be used with
Essbase: Oracle Hyperion Data Relationship Management, Shared Services, Smart
Search, and other Oracle Enterprise Performance Management System applications.

Oracle Hyperion Data Relationship Management, Fusion Edition Generally
speaking, the dimensional information used by products such as Essbase might be
referred to as master data. Oracle Hyperion Data Relationship Management,
previously known as Hyperion Master Data Management, provides organizations
with a solution to build consistency within master data assets despite endless
changes within the underlying transactional and analytical systems. Specifically,
Data Relationship Management provides a master data management solution built
to enable dimension management.

126 Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution

In essence, Data Relationship Management is an application managed by IT and
used by business users to do the following:

 Create an enterprise view of analytical dimensions, reporting structures, ■
performance measures, and their related attributes and hierarchies.

Construct departmental perspectives that bear referential integrity and ■
consistency.

Provide validations and business rules that enforce enterprise governance ■
policies.

Synchronize master data with downstream processes. ■

Often, Data Relationship Management is implemented alongside FDM, as they
complement each other; the latter specializes in data values, and the former
provides dimension management.

Hyperion Shared Services Shared Services provides a single sign-on (SSO) service,
not only for Essbase and its components, but for all Oracle Enterprise Performance
Management System products. SSO promotes an uninterrupted workflow when
moving between Essbase components and/or Oracle Enterprise Performance
Management System products. Shared Services can be linked with your existing
corporate repository—for example, a Lightweight Directory Access Protocol (LDAP)
server to authenticate users. Administrators can create user roles and groups to
define which products end users can use and the level of access they have to the
product. Together, user authentication and role-based authorization provide a
secure environment.

Shared Services is part of Oracle Hyperion Foundation Services, which ships
with Oracle Essbase. It is required for managing users in Essbase Studio.

Oracle Hyperion Smart Search Smart Search was originally designed for use
with Google OneBox for Enterprise Google Search Appliance. The thought was to
allow a user to search the company’s internal data using business terms. As such,
the OneBox appliance first creates an index of all dimension information for all
deployed Essbase databases. Then people can use their browser to query the
dimensions via Google. For example, you could type in “fourth-quarter cost of
goods sold” and Smart Search would find related items. The found items are
presented much like any other Google search results—as a list of content sorted
by relevance. If you click a link, the associated data is presented in Excel using
Smart View.

Smart Search now supports Oracle Secure Enterprise Search as well as Google
OneBox. Smart Search is a component of Oracle Essbase.

Chapter 3: Design and Overall Methodology 127

Oracle Enterprise Performance Management System Applications Two of the
applications in Oracle Enterprise Performance Management System use Essbase as a
database and calculation engine: Planning and Oracle Hyperion Profitability and
Cost Management. If you have either of these products installed, then you have the
core components of Essbase already installed. For more information, see Chapter 7.

End-user Tools
End users are the consumers of OLAP data. End users include people at all levels in
an organization and in many departments. The needs of end users will differ
depending on roles and responsibilities. A financial analyst needs more investigative
capabilities than say a CEO, who is likely more interested in seeing results presented
in a dashboard report. OBIEE and OBIEE Plus provide the tools you need to satisfy
the diverse reporting needs of your organization. In addition, many third-party
vendors offer tools that are compatible with Essbase or Oracle OLAP. Alternatively,
you can use Java to create custom end-user applications, as discussed in Chapter 7.

Oracle Business Intelligence Suite Enterprise Edition Plus
Oracle OLAP and Oracle Essbase both support two key components of OBIEE: BI
Interactive Dashboards and BI Answers, which provide a key pairing for delivering a
world-class dashboard solution. BI Interactive Dashboards provides a personalized,
role-based, 100 percent thin client web browser interface for important trends and
key performance indicators, including gauges, charts, summary reports, and even
condition-based guided analytics. BI Answers is a 100 percent thin client ad hoc
reporting and analysis solution that is fully integrated with BI Interactive Dashboards
and BI Publisher. End users can quickly create their own reports and then drill
through, analyze, visualize, and embed the results in their own personalized
dashboard.

Because BI Interactive Dashboards and BI Answers sit directly on Oracle BI
Server, they provide two unique capabilities:

 You can create federated queries that cross the bounds of relational and ■
multidimensional data.

You can provide a single definition for a metric (such as profit) and reuse ■
that consistent definition across all your reports.

For more information, see Chapter 6, which covers reporting OLAP results.
OBIEE Plus extends OBIEE by bundling Hyperion analysis and reporting

applications for use with Essbase: Web Analysis, Financial Reporting, Interactive
Reporting, and SQR Production Reporting. Two of these products—Web Analysis
and Financial Reporting—are particularly useful for sharing Essbase data throughout

128 Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution

the organization. Figure 3-40 shows how these front-end applications fit into an
Essbase implementation. Note that the BI Server pictured here could just as easily be
hooked up to an Oracle database to retrieve Oracle OLAP data.

Web Analysis is a powerful, intuitive, web-based interface that delivers
interactive analytics to everyone in the enterprise. It is a purpose-built interface for
ad hoc analysis and executive reporting systems. Web Analysis provides a broad
range of flexible, easy-to-use display types, including grids, charts, pin boards, traffic
lighting, and personalization. Users have complete control over layouts, formatting,
fonts, and colors, as well as a flexible array of output options enabling wide
distribution via print, HTML web pages, PDF, and online viewing. Web Analysis
facilitates access to multidimensional data sources as well as Oracle Enterprise
Performance Management System applications. It supports drill-through to relational
sources, including drill-through to URL.

Financial Reporting, Fusion Edition, is the application-intelligent structured
reporting solution for Essbase applications. It is a powerful tool that lets you
graphically design and present your analytic data. You can use the Financial
Reporting Windows client interface to design traditional financial reports (such as

FIGuRE 3-40. Oracle Business Intelligence Suite Enterprise Edition Plus applications

Metadata
Repository

Provider Services

Essbase Server

Essbase Studio

BI Server

BI Answers and
BI Interactive
Dashboards

Hyperion Financial Reporting
Hyperion Web Analysis

Hyperion Interactive Reporting
Hyperion SQR Production Reporting

Communication back to
Essbase Studio
provides drill-through
capabilities to data
sources

Relational

ERP

Legacy

MDM

Flat-files

Chapter 3: Design and Overall Methodology 129

cash management reports and balance sheets) and nontraditional reports. Finished
reports can be routed to a printer and viewed on the Web through a browser.

You can also use Hyperion Interactive Reporting and Hyperion SQR Production
Reporting. For more information, see Chapter 6.

Third-Party Applications
Oracle partners and other vendors offer their own front ends for Essbase and Oracle
OLAP. For example, for Essbase, Applied OLAP offers an enhanced spreadsheet-
style interface called Dodeca, which integrates Oracle applications and non-Oracle
applications on the desktop. For Oracle OLAP, Collaborative Consulting, Inc. has
developed the ClearView add-in for Microsoft Excel that enables users to view and
write back to Oracle OLAP cubes. It has sophisticated “spreading tools” for writing
back to Oracle OLAP cubes and also tracks changes. For more information, see
Chapter 6.

Conclusion
OLAP design requires a foundation in basic OLAP concepts and general OLAP
design principles, as well as an understanding of the architecture, features,
functionality, and restrictions of the selected OLAP product. Designers need to give
more importance to end-user requirements than to the structure of the data source.
OLAP products from Oracle offer effective ways to restructure and enhance data to
meet user requirements, such as adding aggregate and calculated data or combining
data from multiple sources.

Both Oracle OLAP and Oracle Essbase have architectures that fit easily into
existing infrastructures. Oracle OLAP is an option to the Oracle Database, while
Essbase is an independent OLAP database that can augment existing systems. The
products are full featured and offer next-generation administration tools to making
building and maintaining cubes as easy as possible.

The next two chapters provide an overview of the steps needed to build an
Oracle OLAP analytical workspace and an Essbase database, respectively. The
intention is to provide an overview of the build processes, rather than building a
working Oracle OLAP analytical workspace or Essbase database. The procedures
and sample data also allow us to introduce the user interfaces of some of the build/
administration tools within a logical flow.

References
Alexander, Lisa. Hyperion System 9 BI+ Essbase Analytics Bootcamp Student Guide.

Hyperion Solutions Corporation, 2007.

Collins, Dave. “Hyperion 7.x New Features.” Presentation. Hyperion Solutions,
2004.

130 Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution

EPM Information Development Team. Oracle Essbase Database Administrator’s
Guide, Release 11.1.1. Oracle Corporation, 2008.

EPM Information Development Team. Oracle Essbase Studio New Features, Release
11.1.1. Oracle Corporation, 2008.

EPM Information Development Team. Oracle Hyperion Provider Services
Administration Guide, Release 11.1.1. Oracle Corporation, 2008.

Nader, Michael and Dave Collins. Dare to OLAP. Oracle Corporation, 2008.

Oracle Corporation. Oracle OLAP User’s Guide 11g Release 1 (11.1). Oracle
Corporation, 2008.

Oracle-Regular / Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution/ Schrader et al. / 182-2 / Chapter 4
Blind folio: 131

Chapter
4

Building an Oracle OLAP
Analytic Workspace

131

132 Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution

he previous chapter focused on designing OLAP applications. In this
chapter, we walk you through the steps required to build an Oracle
OLAP analytic workspace. Recall that an Oracle OLAP analytic
workspace contains a collection of dimensions and a collection of
cubes, where any given cube contains only the dimensions required

to describe the measures in that cube. The analytic workspace also holds other
multidimensional objects, such as folders and programs, that are required for an
OLAP analysis.

The chapter starts with an overview of the components and files used in the
demonstration. During the demonstration, we walk you through how to prepare
data, create an analytic workspace, create and populate dimensions, and
create and populate cubes. Along the way, we will expand on the work begun
in Chapters 2 and 3 and provide more details about the Oracle OLAP
implementation of a variety of OLAP concepts. After the demonstration, we
highlight how to use calculated measures to create business-savvy calculations.
We end this chapter with a few advanced topics, including cube-organized
materialized views and security.

Oracle OLAP Demonstration Overview
Our goal for this demonstration is to provide an overall workflow and some best
practices to get you started with Oracle OLAP. You can use the same workflow to
build both simple and complex OLAP models. This walk-through is for demonstration
purposes only. Before building an analytic workspace for a production environment,
see the Oracle OLAP User’s Guide and the Oracle OLAP DML Reference.

In this demonstration, we create an analytic workspace using a four-step
process:

 Prepare the data. ■

Create an analytic workspace. ■

Create and populate dimensions. ■

Create and populate cubes. ■

After we show how to create a cube with dimensions and some simple
calculations, we discuss adding more advanced calculations and operations to
dimensions and cubes.

T

Chapter 4: Building an Oracle OLAP Analytic Workspace 133

NOTE
Unless otherwise specified, the instructions and
screen captures in this chapter reflect Oracle OLAP
11g and Oracle Database 11g running in a UNIX-
based environment. For those using Oracle OLAP
10g, we point out where version 11g is different
from version 10g. For instructions for other operating
systems, see the Oracle OLAP documentation set.

In the architecture diagrams for Oracle OLAP presented in Chapter 3, we
introduced the key components involved in the building process. These components,
circled on Figure 4-1, are OWB and AWM.

OWB is a general-purpose warehouse construction and extract, transform, and
load (ETL) tool that has the ability to build and maintain OLAP objects, as well as all

FiguRE 4-1. You can build analytic workspaces using the administration tools.

Oracle Database
Server

Analytic Workspace
Manager

Oracle Warehouse
Builder

Oracle
Spreadsheet Add-in

Discoverer/BI
Publisher

Relational and
Multidimensional Data

Relational

ERP

Legacy

Flat-files

134 Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution

the other warehouse components. AWM focuses solely on the construction and
maintenance of OLAP objects. Both tools are written in Java and use the Java API for
Oracle OLAP to perform a bulk of the work. For this chapter’s example, we use
AWM. If you want to use OWB, you will find the processes and concepts to be
similar, although the user interface is different.

The examples and screen captures used in this chapter are based on the
OLAPTRAIN OLAP demo data. You can download the sample data from the Oracle
Press web site.

From Source to Cubes with
Analytic Workspace Manager
In this section, we describe how to use AWM to build an analytic workspace and
the objects contained within. After an overview of AWM, we walk you through the
four steps required to build and populate OLAP cubes, as noted in the previous
section.

getting Started with Analytic Workspace Manager
The first time you start AWM, you are asked to create a database connection. AWM
uses either SQL*Net or JDBC to connect to an Oracle database. You will need to
know the host, port, and service ID (SID) for the database or the TNS Alias created
to connect to the database. Your Oracle Database Administrator can supply this
information. After you connect to the database, you are prompted to log in to the
database. If you like, you can configure your AWM environment at this time. The
following sections describe the steps to get started with AWM.

Creating a Database Connection and Logging in

 1. To launch AWM, do one of the following:

On Windows-based systems, click ■ Start | All Programs | Oracle – OraClient
Home1 | Integrated Management Tools – OLAP Analytic Workspace
Manager.

On UNIX-based systems, open a prompt and run the following shell script: ■

$ORACLE_HOME/bin/awm.sh

 2. If this is the first time you have opened AWM, you are prompted to define a
database connection.

Chapter 4: Building an Oracle OLAP Analytic Workspace 135

 3. Enter a description to identify the server.

 4. If you want to use SQL*Net, specify the TNS Alias for the server. Otherwise,
specify the host, port, and SID, separated by colons. Then click Create.

 5. The following image is for illustrative purposes only; do not copy these values.

 6. Right-click the connection and select Connect Database.

 7. When prompted, specify the user name and password that you use to
connect to the database. For this example, we are using the OLAPTRAIN
schema with a password of oracle.

 8. After you are connected, you will be presented with a list of schemas to
which you have access. Select the schema that will contain the new analytic
workspace. Expand a schema tree to see what, if any, analytic workspaces
exist in those schemas.

Configuring Analytic Workspace Manager
You can configure AWM to suit your environment and preferences. The configuration
settings affect the way that AWM behaves. To set your configuration preferences,
select Tools | Configuration. We recommend setting the following options:

 Template directory ■ Specify where you want template files stored.

Enable plugins ■ Select this option to install plug-ins automatically.

136 Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution

Plugin directory ■ Specify where you want the plug-ins located.

You can specify other options as desired. For descriptions of the options,
click Help.

NOTE
If you are building 10g mode AWs with either
Oracle Database 10g or Oracle Database 11g in
10g mode, and you want to use SQL to access
cubes, you need to obtain and install the plug-in
that enables the generation of SQL views. You can
download the plug-in from the Oracle Technology
Network (OTN) web site under Oracle OLAP. In
Oracle OLAP 11g connected in 11g mode, SQL
views are generated automatically.

Setting Read-Only Access on Analytic Workspaces
Before we get started building the analytic workspace, here is one more helpful tip.
Normally, when you attach an analytic workspace, it comes up read-write. This
behavior can be changed by modifying the awm.properties file. By adding a setting,
you can have AWM prompt you for how to open the analytic workspace. This will give
you the option to attach the workspace as read-only, which is useful when you want to
explore an analytic workspace without the danger of inadvertently modifying it.

Chapter 4: Building an Oracle OLAP Analytic Workspace 137

To make this modification, follow these steps:

 1. Go to the directory where the AWM program is started, usually
Oracle Home/olap/awm.

 2. Open the awm.properties file.

 3. Insert the following command in the list of settings:

aw.model.show.attach=y

 Your file should look like similar to this:

_awm.object.display=

_aw.model.show.attach=y

olap_dml_log.log_results=y

awm.hide.map.graphical=n

awm.plugin_dirname=/

 4. Save and close the file.

The next time you attach an analytic workspace, you will be prompted to choose
how you want to open it: Read Only, Read Write, or Read Write Exclusive. If you
want to save your work, do not select Read Only.

Preparing the Data
Before we jump into building the OLAP analytic workspace, we need to start with
some data. In this demonstration, we are working with a relational fact table that
contains daily sales data for a computer sales company. The fact table has four
lookup tables, as shown in Figure 4-2.

In Figure 4-2, the All level is represented explicitly in the source data. This single
value represents the top of the hierarchy and it is repeated in every data row. In
Oracle OLAP 11g, you do not need to include it and can enjoy some space savings
by leaving it out. Version 11g also provides the ability to enter equations in the
mapping panel, so that you can calculate source values on the fly from other data
without physically storing it. This gives a mechanism for handling missing values.
Many reporting tools, including OBIEE, require an All level for user-defined
dimensions, so it is a good idea to include this level where possible.

Oracle OLAP uses Oracle tables, views, and materialized views as the primary
data sources. These data sources can be represented as a star schema (as in Figure 4-2)
or a snowflake schema (as in Figure 4-3), as parent-child relations, or as a collection
of tables and views. You can also use flat files as data sources, however, the flat files
need to be represented by external tables or loaded into tables via an ETL process. It is
possible to use gateways to non-Oracle data as well.

138 Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution

TiP
If a dimension has skip-level or ragged hierarchies,
consider using a snowflake schema to represent
the data source. AWM automatically handles the
relationships between levels in a snowflake schema.

Day

Month

Quarter

Year

All Years

Time

Subtype

Type

Item

Category

Depart-
ments

All
Products

Product

State

Country

Region

All
Regions

Geography

Channel

Class

All
Channels

Channel

Sales Fact

Sales

Units

Price

FiguRE 4-2. Demonstration data in a star schema

Chapter 4: Building an Oracle OLAP Analytic Workspace 139

When preparing the dimension table or view, you need to ensure that each
member has a key value and description. If you are using a star schema, the
dimension sources must have the full parentage in each row. With a snowflake
schema, where each level of a dimension is in a separate source table or view, you

FiguRE 4-3. Demonstration data in snowflake schema

Day

Month

Quarter

Year

All Years

Time

Subtype

Type

Item

Category

Depart-
ments

All
Products

Product

Channel

Class

All
Channels

State

Country

Region

All
Regions

Geography

Sales Fact

Sales

Units

Price

140 Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution

need to provide an additional column for the parent key of that level. Here is an
example of a star schema table for a CHANNEL dimension:

create table channel
 (all_channels_key number,
 all_channel_name varchar2(20),
 class_key number,
 class_name varchar2(20),
 channel_key number,
 channel_name varchar2(20)
)

In addition, the following is an example of the snowflake schema tables for a
CHANNEL dimension:

create table all_channels
 (all_channels_key number,
 all_channel_name varchar2(20))

create table channel_class
 (all_channels_key number,
 class_key number,
 class_name varchar2(20)
 constraint "CH_ALL_FK"
 foreign key ("ALL_CHANNELS_KEY")
 references all_channels
 ("ALL_CHANNELS_KEY") enable
)
create table channel
 (class_key number,
 channel_key number,
 channel_name varchar2(20),
 constraint "CH_CLASS_FK"
 foreign key ("CLASS_KEY")
 references channel_class
 ("CLASS_KEY") enable
)

As you can see, the snowflake tables represent the same data as the star table.
The same data is spread across three tables linked with parent keys. To support skip
and ragged levels, the parent keys can be any parent key above the child level in
any table.

Lastly, a parent-child table represents a value-based hierarchy with columns for
the member key, parent key, and member description.

Chapter 4: Building an Oracle OLAP Analytic Workspace 141

Creating an Analytic Workspace
Now we are ready to create an analytic workspace that will hold our OLAP
dimensions and cubes. Before we get started, let’s review some best practices for
creating workspaces and naming the metadata used within the workspace.

Best Practices
Following the advice in this section will help you to create cubes that are easy to
understand and use. The naming conventions that we suggest ensure that the
generated column names in your views are easy to read, and reduce the chances
that generated column names will be truncated to fit within the limits for a column
name in the Oracle Database. These naming conventions also make it easier and
quicker to map to the columns in AWM, because the screens are less cluttered with
long object names.

The following guidelines have proven effective in many Oracle OLAP
implementations:

 If possible, create the analytic workspace in its own schema. This helps with ■
security and backing up the analytic workspaces. For more information, see
Chapter 8.

Store the workspaces in a separate tablespace from the relational data. In ■
most cases, you should turn off logging during maintenance to reduce the
size of the IO and redo buffers.

Create simple, meaningful names and avoid the use of the underscore ■
character (_), especially when naming dimensions, hierarchies, levels, and
attributes.

Keep names as short as possible for dimensions, levels, hierarchies, and ■
attributes. In Oracle OLAP 11g, the dimension level creation tool limits the
length of level names to 30 characters.

Dimension names must be unique within an analytic workspace, but level ■
and attribute names do not need to be unique. You can use the same level
name, such as TOTAL or ALL, in more than one dimension. The same is true
for attributes.

Do not put the dimension name in level or attribute names. CLASS is fine to ■
represent PRODUCT_CLASS.

Do not be too cryptic in your naming standard (for example, do not use just ■
the first two characters of the dimension names in the cube as the name of
the cube). This may make sense initially, but it can be very hard to read and
find the objects later.

142 Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution

Do not try to make names too descriptive (for example, avoid putting “DIM” ■
in the name of everything that is a dimension or “ATT” into the name of
all the attributes). Adding prefixes makes names too long and harder to
read. The database knows which objects are which, and you can query
the analytic workspace if needed. For example, to find the names of all the
dimensions in an analytic workspace, you can use a simple SQL command
like the following:

select * from all_cube_dimensions

Avoid using plurals in the names of objects where appropriate. For example, ■
name a dimension PRODUCT instead of PRODUCTS.

Table 4-1 suggests some possible names for common object types and provides
guidelines for the number of characters to use for each type of object.

To illustrate the importance of naming your objects appropriately, Figure 4-4
shows two implementations of the same CUSTOMER dimension. The dimension on
the right side implements the preceding best practice guidelines.

Figure 4-5 shows the same dimensions in a different view. Notice that in this
view, some column names have been truncated due to the maximum length of
column names in the database. For the poor names, the truncation makes things
even more unreadable.

Here is an example of a SELECT statement to retrieve data from the poor
naming convention:

select

all_company_customers_di,sales_districts_long_des,sales_managers_long_desc,

customer_sales_represent,sales_customers_long_des

from company_customers_dim_mai_view

Object Type instead Of use

Suggested
Character
Length

Recommended
Character
Length

Dimensions COMPUTER_PRODUCT_DIM PROD 3–6 < 12

Levels PRODUCT_CATEGORY CAT 3–6 < 15

Hierarchies FISCAL_CALENDAR_HIERARCHY FISCAL 4–10 < 16

Attributes PRODUCT_COLOR_ATTRIBUTE COLOR 3–8 < 16

Cubes TI_PR_GE_CH or SALES_CUBE SALES 6–12 < 20

TABLE 4-1. Suggested Naming Conventions

Chapter 4: Building an Oracle OLAP Analytic Workspace 143

FiguRE 4-4. Names are easier to read when you follow best practices

In addition, the following is an example of a SELECT statement using the
recommending naming conventions:

select

all_customers_long_descr,district_long_descriptio,managers_long_description,

sales_rep_long_descripti,customer_long_descriptio

from customer_standard_view

As you can see, the shorter names make for easier SELECT statements, which
are also easier to read and may actually run faster.

NOTE
Long and short description attributes are created
automatically. You can change them if shorter
names are desired.

Creating the New Analytic Workspace
Analytic workspaces can become very big, and the maintenance of the analytic
workspaces is very disk-intensive. If your analytic workspace will be large, we
recommend that you create a separate tablespace to store the analytic workspace.
Depending on the update frequency and the size of each update, it may be
appropriate to disable logging on this tablespace.

144 Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution

To create an analytic workspace:

 1. In AWM, right-click Analytic Workspaces and select Create Analytic
Workspace.

 2. Specify a name for the analytic workspace. For
this example, enter SALESTRACK.

 3. Select the tablespace where you want to store
the analytic workspace. For this example, use
the default tablespace.

FiguRE 4-5. Truncation can cause readability issues.

Chapter 4: Building an Oracle OLAP Analytic Workspace 145

 4. Click Create. The analytic workspace is created and displayed in the main
AWM window.

The next step is to create the dimensions for the cubes.

Creating and Populating Dimensions
You can create your dimensions in any order. AWM will list them in alphabetical order
once they are created. Remember that dimensions are created once in the analytic
workspace and are reused in the cubes. Dimensions require a default hierarchy and may
contain more than one hierarchy. You need to create all dimensions for a cube before
you can create the cube itself. The process consists of the following steps:

 Create the dimensions. ■

Optionally, define summary levels (not required for value-based hierarchies). ■

Organize dimension levels into hierarchies. ■

Map to a data source. ■

Load the dimensions. ■

As you may recall from Chapter 3, Oracle OLAP has two basic types of dimensions:
user-defined and time. User-defined dimensions represent a majority of the dimensions
used by the cubes. Time dimensions are specialized dimensions that have additional
characteristics that allow for time-series analysis. If the application or the cube does not
require time-series analysis, you do not need to create a time dimension.

146 Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution

As also discussed in Chapter 3, the two types of hierarchies are level-based and
value-based. Level-based hierarchies, the default, require at least one level. Value-
based hierarchies do not require levels; you simply give the hierarchy a name and
select the Value Based Hierarchy option in AWM.

Oracle OLAP requires that all keys for a dimension be unique across all levels
and hierarchies within that dimension. They do not need to be unique across all
dimensions; for example, you can have a customer 1001 and a product 1001. If
they are not unique within a dimension, the data loader will not load the dimension
members during the maintenance process.

When you create a dimension, you specify how you want Oracle OLAP to handle
duplicate members by selecting either the Generate Surrogate Keys option or the Use
Keys from Data Source option. As a safety measure, AWM defaults to Generate
Surrogate Keys, which means that Oracle OLAP adds the level name as a prefix to all
incoming member names to ensure uniqueness across levels. For example, Table 4-2
shows the assigned keys for the members in the CHANNEL dimension.

Surrogate keys are especially helpful if you are not sure that your members are
unique across levels. As you can see, there were nonunique NA members in the
preceding example. Prefixes create large key values, which can increase the size of the
analytic workspace. However, the increase in size due to surrogate keys is very slight,
because the dimension members are only stored once (unlike with tables, where the
impact on storage is larger because the key repeats for each row in the table). Surrogate
keys can also make querying the data via the OLAP command language and possibly
SQL map more complex, because you may need to know the level name.

NOTE
Keys must be unique within a level. For example,
you are not allowed to have a city with the key
KC that is a child of Missouri if there is a separate
city with the key KC that is a child of Kansas. In
this case, surrogate keys do not help you, because
the key for each city KC would be assigned the
key CITY_KC; Oracle OLAP would not be able to
differentiate these when loading the data.

TABLE 4-2. Assigned Keys When Generate Surrogate Keys Is Selected

incoming Member Key Level Assigned Key

DIRECT Channel CHANNEL_DIRECT

NA Class CLASS_NA

NA Channel CHANNEL_NA

ALL_CHANNELS All channels ALL_CHANNELS_ALL_CHANNELS

Chapter 4: Building an Oracle OLAP Analytic Workspace 147

Creating Dimensions
Now let’s build the dimensions. In this demonstration, we are creating the four
dimensions shown in our original star schema (shown in Figure 4-2): CHANNEL,
PRODUCT, GEOGRAPHY, and TIME.

To build dimensions:

 1. Right-click Dimension and select Create Dimension. The Create Dimension
dialog box has four tabs where you can enter information for a dimension.
However, you do not need to enter information on all the tabs at the time
the dimension is first created.

 2. On the General tab, specify the name of the dimension. In this case, enter
CHANNEL. As you type, the Short Label, Long Label, and Description fields
are filled in automatically. The name is created in uppercase characters.
The name cannot contain spaces or special characters. Underscores are
permitted, though it is a best practice to avoid them where possible. If you
use an underscore in the Name field, the underscore is converted to a space
in the label and description fields. If desired, edit the labels and description
for the dimension.

148 Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution

NOTE
In Oracle OLAP 10g, the Levels and Materialized
Views tabs are not part of the Create Dimension
dialog box, and this information is entered
separately.

 3. On the Levels tab, enter ALL_CHANNELS, CLASS, and CHANNEL. If
desired, edit the labels and description for the level.

TiP
While not required, you can avoid confusion later
by entering the levels in a top-down order that
reflects the parent-child relationships between
members, as shown in the following illustration.

 4. On the Implementation Details tab, if you are sure that the data source
contains no duplicate member names (keys), select Use Keys from Data
Source. The data for this demonstration uses unique keys.

Chapter 4: Building an Oracle OLAP Analytic Workspace 149

 5. Click Create to generate the CHANNEL dimension.

 6. Repeat this process to create the following dimensions and levels:

Dimension Name Level Names

TIME All Years
Year
Quarter
Month
Day

PRODUCT All Products
Department
Category
Type
Subtype
Item

GEOGRAPHY All Regions
Region
Country
State

Creating Hierarchies
For this demonstration, we create four level-based hierarchies: one for each of the
dimensions. While there is no functional limit to the number of hierarchies in a
dimension, you can have only one default hierarchy in each dimension. You can
use any name you want for hierarchies, but it is a good idea to establish a naming
convention for the default hierarchies, such as STANDARD or DEFAULT.

NOTE
By default, when you create a new hierarchy, it is
a level-based hierarchy. It is also set as the default
hierarchy. If you have more than one hierarchy in a
dimension, you need to choose one of them to be
the default hierarchy.

If you did not create levels in the previous procedure (for example, you are
using Oracle OLAP 10g) or if you want to add new levels, create the levels now.

 1. For the CHANNEL dimension, right-click Levels and select Create Level.

 2. Specify the name for the level and fill in short label, long label, and
description. Then click Create.

150 Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution

 3. Repeat this procedure to add the rest of the levels for this dimension and the
rest of the dimensions.

You are now ready to create the default dimension hierarchies.

 1. For the CHANNEL dimension, right-click Hierarchy and select Create
Hierarchy.

 2. Enter the name of the hierarchy. For this example, you may want to use the
default name: STANDARD. If desired, change the autogenerated labels and
description.

 3. Select the levels to include in the hierarchy from the Available Levels list
and add them to the Selected Levels list. If necessary, change the order of
the levels in the Selected Levels list so that the list reflects the desired top-
down hierarchy order (and by extension, the desired drill path).

TiP
If you created the levels in a top-down order, you
will not need to change the order here.

Chapter 4: Building an Oracle OLAP Analytic Workspace 151

 4. Click Create to create the default hierarchy for the CHANNEL dimension.

 5. Repeat this procedure to create default hierarchies for the other dimensions,
as follows:

Dimension Name Default Hierarchy Name Level Names/Order

TIME STANDARD All Years
Year
Quarter
Month
Day

PRODUCT STANDARD All Products
Department
Category
Type
Subtype
Item

GEOGRAPHY STANDARD All Regions
Region
Country
State

Create Attributes
Attributes are used in two ways: to display as dimension member labels, and to use in
calculations and when selecting data. For user-defined dimensions, AWM automatically
creates the attributes LONG_DESCRIPTION and SHORT_DESCRIPTION. These
attributes represent the dimension member labels. These labels can be used by the
front end to display a long or short descriptive label for the dimension. The name of
the attribute can be changed, but the attribute type should not be changed. You can
also create user-defined attributes.

In this example, we create a user-defined attribute called TYPE that can be used
in calculations and when selecting data. We define the name, labels, and description,
but Oracle OLAP sets the attribute type.

To create the TYPE attribute:

 1. Right-click Attributes and select Create Attribute.

 2. Specify a name for the attribute. For this example, enter TYPE. The labels
and description are filled in automatically. If desired, modify the labels and
description. By default, the new attribute will be included in SQL views (not
available in Oracle OLAP 10g). In addition, an index is created to improve
the performance of attribute-based queries. You can choose not to create an
index by deselecting the Index option.

152 Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution

 3. Associate the attribute with levels by selecting the levels in the Apply
Attributes To area. For this example, select CHANNEL.

NOTE
The data source will need an attribute value for each
level selected here.

 4. Click Create to create the TYPE attribute.

Repeat this procedure to create additional attributes as desired.

Mapping Dimensions
As we described previously, we have source data for the dimension contained in
either a table or a view. We must now tell AWM how to relate this source data to
the dimension levels. This is done through a process called mapping.

There are three basic steps to mapping dimensions:

 Choose the mapping type. ■

Choose the data source. ■

Map the source columns to the dimension members and attributes. ■

Chapter 4: Building an Oracle OLAP Analytic Workspace 153

The mapping tool supports mapping standard star schemas, snowflake schemas,
and source collections. This section covers the two basic types of mappings: star
schema and snowflake schema.

Mapping Dimensions using a Star Schema In the following procedure, we map
the demonstration data to dimension members and attributes using a star schema.
After the procedure, we discuss the differences that would occur if we selected a
snowflake schema instead.

To map to a star schema:

 1. Click Mappings to display the mapping panel. The window shows a list of
available schemas, and the mapping panel displays the dimensions to be
mapped. By default, Star Schema is selected as the type of the dimension
table, and Oracle OLAP 11g displays information in a table mapping
view. Version 10g defaults to the graphical mapping view. You can switch
between views in either version. In 11g, if you use expressions in the
mapping, you will not be able to go back to the graphical mapping. The
following illustration shows the graphical mapping view in version 11g.

154 Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution

 2. In the schema list, find the table or view, and either drag it over to the
mapping panel or double-click it. For this example, double-click the
CHANNELS table.

 3. If desired, you can now hide the schema list so there is more room to map to
the dimension by shrinking the schema pane or clicking on the shrink icon
on the divider.

 4. Map table columns to dimension members by dragging and dropping the
column name to the appropriate dimensional object. Key columns are
mapped to level members. Name columns are mapped to the description
attributes.

NOTE
If there is only one description column for each level
in the source, map the column to both attributes. It
is important that all levels and attributes be mapped,
especially if you plan to use cube-organized
materialized views, as discussed in the “Working
with Cube-Organized Materialized Views” section
later in this chapter.

 For this example, create the following mappings:

OLAPTRAiN.CHANNELS
Column

CHANNEL
Dimension

CHANNEL Members/
Attributes

CLASS_KEY CLASS Member

CLASS_NAME CLASS LONG_DESCRIPTION
SHORT_DESCRIPTION

CHANNEL_KEY CHANNEL Member

CHANNEL_NAME CHANNEL LONG_DESCRIPTION
SHORT_DESCRIPTION

CHANNEL_TYPE CHANNEL TYPE

Chapter 4: Building an Oracle OLAP Analytic Workspace 155

 The following illustration shows what the resulting mapping looks like in the
graphical view.

 You may have noticed that we did not map columns to the All Channels
level. In Oracle OLAP 11g, we do not need to have these columns because
it has the same value for every row. You can choose to add custom values,
as shown in the following steps.

 5. To add values, switch to the table mapping view by clicking the Table Map
button in the toolbar.

 6. Under ALL_CHANNELS, specify ‘ALL_CHANNELS’ to the right of Member.
The long and short descriptions are filled in automatically. Click Apply to
add the value.

156 Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solutio

Here, we assigned a literal string as a value for the dimension member. However,
you can also concatenate columns (name||title), apply functions (upper(name)), or
create more complex SQL expressions. Also, we specified only text in this example, but
you can also specify equations. We will explore the use of equations in later examples.

NOTE
In Oracle OLAP 10g, it is not possible to enter text
or equations here; the source table or view must
contain these values. You may need to create and
populate the necessary columns in the source or
define a view that contains the necessary columns.

understanding the Differences for a Snowflake Schema Snowflake schema
mapping is used when the relational schema is a snowflake or when the data has
ragged or skip-level hierarchies. The information required for a value-based
hierarchy is the same as for a snowflake mapping. The source must contain columns
for a parent, child, and description.

To change to a snowflake schema, select Snowflake Schema from the Type of
Dimension Table(s) drop-down list. In Figure 4-6, there are two hierarchies: Region

Chapter 4: Building an Oracle OLAP Analytic Workspace 157

and Customer. The Zip level (above Customer) is a skip-level hierarchy because not
all customers have a ZIP code. When a ZIP code is not provided for a member, the
parent key for that member is the State key. This ensures that all the customers will
roll up to State and above. When drilling down on a State, both ZIP codes and
customers that are children of that state will be shown.

Notice that every level in the mapping has a different source (in this case, views)
specified with parent, member, and name fields. If a dimension has more than one
hierarchy, the sources can have additional parent keys. For example, GEOG_
REGION_V has two keys—ALL_REGIONS_ID and ALL_CUSTOMERS_ID—to reflect
its inclusion in the Region and Customer hierarchies, respectively. You will also
notice that there are sources for the All levels. This is required for Oracle OLAP 10g,
but in version 11g, they can be replaced with a text literal similar to the one we
used for the CHANNEL dimension.

In the case of a value-based hierarchy, the mapping screen requires only the
parent and member keys.

FiguRE 4-6. GEOGRAPHY dimension mapped as a snowflake schema

158 Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution

understanding Time Dimensions
A time dimension is a specialized dimension that is similar to a user-defined
dimension, except that the time dimension must be level-based, and you need to
specify two additional attributes for each level:

 END_DATE, which represents the end date of a period and must be of ■
type date

TIMESPAN, which is a number representing the number of days in the period ■

Time dimensions generally have multiple hierarchies to handle items such as
calendar year and fiscal year. In addition, if weeks and months are modeled, you
need two separate hierarchies if weeks can cross months. It is very simple to support
a 4-5-4 calendar, where weeks easily fit within months and quarters. Figure 4-7
shows the additional attributes.

NOTE
If you never want to be able to combine all years
together (display the sum of all years), you do not
need to have an All level. In some reporting tools,
such as OBIEE, the All level is desired even for time.

You will need to provide the attributes for all of the levels. If these fields are not
populated, or populated incorrectly, errors will result when performing a time-series
analysis. If the required data is not present in the time sources, you can specify
equations for the missing information. For example, in Figure 4-8, we specify an
equation for the END_DATE attribute.

NOTE
In Oracle OLAP 10g, the easiest way to provide data
not present in the time table is by using a view.

FiguRE 4-7. Time dimension with four attributes

Chapter 4: Building an Oracle OLAP Analytic Workspace 159

As you can see, the values for the ALL_YEARS attributes were created manually
using constants or function calls. This All level is occasionally required by some
front-end tools, like OBIEE, where a total level with only one member must be
provided. The All level allows for the proper reporting of summary data when a time
dimension member is not part of the query. An All level is not always required and
can be added later if required.

Populating Dimensions
After the dimensions have been defined, the next step is to populate the dimensions
with data. You will need to set a synchronization policy, to control whether and
how to synchronize the dimension with the source. If synchronization is set to off,

FiguRE 4-8. A fully mapped time dimension with an equation for END_DATE

160 Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution

Oracle OLAP retains members that are specified in the dimension, but not in the
source. When synchronization is on, Oracle OLAP adds and deletes members from
the dimensions to match the source.

You can choose from a variety of synchronization refresh methods. Dimensions
usually use the Complete refresh method, which means that all data is cleared, and
then loaded and aggregated from the source tables. The other refresh methods are
used with cubes. For more information, see the “Populating Cubes” section later in
this chapter.

To populate the dimensions:

 1. Right-click the dimension and select Maintain. For this example, select
CHANNEL.

 2. The Maintenance Wizard starts. This wizard is used to populate and
maintain dimensions and cubes. The selected dimension appears in the
Selected Target Objects area on the right. You can add more dimensions
as needed from Available Target Objects list. With the desired dimensions
selected, click Next.

 3. Specify the synchronization option and the refresh method. For this example,
choose Yes and Complete. Then click Next.

Chapter 4: Building an Oracle OLAP Analytic Workspace 161

 4. Set the processing options as follows, and then click Next to continue.

Atomic Refresh ■ If you want all updates to the dimensions (and cubes)
committed to the database as a single transaction rather than individual
transactions, select Atomic Refresh. For this example, select this option.

Refresh After Errors ■ If you want Oracle OLAP to stop processing
individual transactions when an error occurs, select Refresh After Errors. For
this example, deselect this option.

TiP
If Refresh After Errors is selected, the Atomic Refresh
option should be deselected so that if an error
occurs, processing is stopped.

162 Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution

 5. Set when and how to update the dimension:

Run maintenance task immediately in this session ■ If the maintenance
process runs quickly and does not need multiple processors, select this
option. For this example, deselect this option.

Submit the maintenance task to the Oracle Job Queue ■ If the process
requires multiple processors or runs a long time, you need to submit as a
batch job. Select this option and choose whether to run it immediately or at
a specified date and time. For this example, select this option and select Run
immediately.

Maximum number of parallel processes ■ If you are maintaining a cube that
has been partitioned, you can also set the number of parallel processors
to use. Only partitioned cubes can be run using the parallel processing
capabilities of the database. Dimensions and nonpartitioned cubes are
always maintained using one processor, regardless of the number of
processors selected. This is discussed further when we build cubes,

Save maintenance task to script ■ If you want to save this maintenance
process as a SQL script that can be run from a PL/SQL process or from
an external batch process such as cron, select this option and specify (or
browse to) a file. For this example, select this option and specify a file name.

 6. Click Finish to populate the CHANNEL dimension. Because we chose to run
the process immediately, the process begins and the dimension is populated
with data. When the process ends, the Build Log dialog box is displayed. It
shows the run statistics and can show the number of members processed

Chapter 4: Building an Oracle OLAP Analytic Workspace 163

during the run. The build log is beneficial for discovering errors and tracking
how long it takes to load the rows from dimension and fact tables.

 7. Repeat this procedure to populate the PRODUCT, GEOGRAPHY, and TIME
dimensions.

This completes the dimension creation portion of the demonstration. However,
there are two related topics—templates and security—that we will cover here before
moving on to creating a cube.

Saving Dimensions as XML Templates
You can save the dimensions as XML templates. Templates serve as a backup of the
workspace definitions and make it easy to move objects from one schema or
database to another. When you select the Save as Template option, you can select a
location and specify a file name for the XML file, as shown in Figure 4-9. You can
also save analytic workspaces, cubes, and even calculated measures as templates
using the same dialog box. The XML file stored on the local file system contains only
the structure, and not the data for the OLAP object.

164 Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution

Setting Security on Dimensions
In Oracle OLAP 11g, you can control security of OLAP objects. In the case of
dimensions, you can grant the ability to select, update, delete, and alter a dimension
to a role or database user using the Set Object Security dialog box, as shown in
Figure 4-10. You can open the dialog box from the dimension context menu.

Creating and Populating Cubes
Now that we have created, mapped, and populated our dimensions, we can use those
dimensions to create a cube. In this part of the demonstration, we start by reviewing
some key concepts related to cubes. Then we complete the following steps:

 Build a cube using the Create Cube wizard. ■

Create measures (stored and calculated). ■

Map the cube. ■

Populate the cube. ■

We end with a discussion of cube scripts.

FiguRE 4-9. Saving the CHANNEL dimension as a template

Chapter 4: Building an Oracle OLAP Analytic Workspace 165

understanding Oracle OLAP Cubes
In this section, we discuss aggregation policies, partitions, and storage for Oracle
OLAP cubes. In Oracle OLAP, cubes can be defined as compressed or uncompressed.
If the cube is to use compression, then there are some additional restrictions.
Compressed cubes must use the same aggregation types for the dimensions and all
stored measures in the cube must be the same data type. If you want the measures in
the cube to have different data types or aggregation methods, then you must either
define a different cube to hold them or use an uncompressed cube.

Aggregation Policies Aggregation policies include the following information:

 Aggregation operators for each dimension ■

The order in which to aggregate dimensions ■

FiguRE 4-10. Setting security on the CHANNEL dimension

166 Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution

Whether or not any given dimension or hierarchy should be loaded and ■
aggregated

The aggregation method ■

Aggregation operators define what happens when dimensions are rolled up. By
default, the values for sibling members are added together and attributed to their
common parent member. You can choose from the following predefined
aggregation operators:

 Sum (default) ■

Average ■

First Non-NA Data Value / Last Non-NA Data Value ■

Hierarchical Average / First Member / Last Member ■

Hierarchical Weighted Average / Weighted First / Weighted Last ■

Minimum / Maximum ■

Non Additive (do not summarize) ■

Scaled Sum ■

Weighted Average / Weighted First / Weighted Last ■

Weighted Sum ■

If you use an aggregation operator other than Sum, the order in which the
dimensions are aggregated can make a difference in the results. It is important that
aggregations occur in the order specified. When aggregating across multiple
dimensions, you must keep in mind that numbers may not appear to add up the way
you look at two-dimensional spreadsheets. This is especially true when aggregation
types are different for each dimension. Be aware of this when you start reviewing the
results. It may be necessary to change the order of aggregation to achieve the
desired results.

By default, all dimensions and hierarchies are loaded and aggregated. In some
cases, it may not be required, or desired, to load and aggregate all the dimension
hierarchies. Some hierarchies may be used only for loading the data, while other
hierarchies are used for aggregation. Restricting the aggregation to only the required
dimensions and hierarchies can improve load and aggregation performance of the
cube. However, this can also mean that those levels that are not aggregated will be
calculated on the fly, which can affect query performance.

A good example of the use of multiple hierarchies is having one hierarchy that is
used to load and aggregate the data, and another hierarchy that is used for navigational

Chapter 4: Building an Oracle OLAP Analytic Workspace 167

purposes and may not be used for aggregation. This allows for displaying only levels
that are needed to fulfill a business requirement, although the data is still loaded into
the cube.

There are two aggregation methods: cost-based aggregation and level-based
aggregation. With cost-based aggregation, you can precompute none, some, or all
data by specifying a value between 0 and 100. Note that although the scale goes to
100, this value is not a percentage of the cube being precomputed; rather, it is a
relative scale—the designers could have just as easily picked 0 to 200. Using a setting
of 0 means do nothing to optimize the aggregation of the cube. This represents a low
cost for the build, but it is not usually very useful for queries. A setting of 1 causes the
cube composite to be built, but none of the measure values are precomputed. Unless
the cube is small (like what-if type cubes), you should always choose a value of 1or
higher. Values between 2 and 100 precompute progressively more of the measure
values. A good starting point is 20. A value of 50 is on the high side.

In cases where cost-based aggregation is not going to be used or if the cubes are
uncompressed and level-based aggregation is used, you will need to select which
levels should be solved and stored. The default setting is to use skip-level aggregation,
which aggregates and stores data at only every other level. This conserves space and
still provides reasonable performance. It is also a good practice to select those levels
that are most commonly viewed by the end users.

NOTE
Only level-based aggregation is available in
Oracle OLAP 10g.

Partitions If a cube is small and loads quickly, it may not be necessary to define a
partition. However, most real-world cubes can benefit from partitioning. Partitioning
can be used for life-cycle management, where you can partition by time, allowing
for old time periods to be dropped from the cube as new periods are added.

The most common use of partitioning is to improve load and query performance.
Without partitioning, you are restricted to the processing power of a single processor.
Partitioning enables you to spread data loads and other cube maintenance tasks
across multiple processors, which means that the cube can take advantage of parallel
processing and complete tasks faster.

Each cube can be partitioned by only one dimension, so it is important to select
the correct dimension and level. While there is only one partition specification for a
cube, there are still multiple partitions. A cube partitioned by quarter over two years
will still have eight partitions for the eight quarters plus a total partition. The number
of partitions is maintained automatically, like table-based interval partitioning.

When selecting a dimension for partitioning, you need to choose one that has a
level-based hierarchy, because you will need to specify a level along which to partition.
It is a good idea to select an upper level within a dimension. Do not choose the top
level, as this would not provide any practical advantage. This level should have a

168 Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution

number that will divide the data as evenly as possible, so that the aggregation can
be spread as evenly as possible across as many processors or processes as would be
appropriate for the hardware utilized.

A good dimension to consider partitioning on is a time dimension. When you
partition using a time dimension, you are generally loading and using more than
one partition, which means that you can take advantage of parallel processing. The
Month or Quarter levels are both suitable candidates for partitioning. For example,
if the data contains 24 months (eight quarters) of data, you could partition at the
Quarter level and split the load process across up to eight processors.

There are reasons to choose other dimensions instead of time. For example,
suppose that after the initial data load, you choose to refresh the cube data only for
the current month. Because the data is for a single month, you will be using only
one partition (the one assigned to that Month or Quarter), which in turns means you
will be using only one processor (the processor assigned to that partition). In this
case, you should consider a different dimension and level, such as geographical
region or product division, where the incremental changes to data will be spread
across multiple partitions. It may take some trial runs to determine the best partition
to use for the particular data in the cube and refresh methodology used.

You may also consider using partitioning to improve query performance. If a query
can be satisfied within a partition, only that partition is accessed, thereby reducing the
amount of the cube that is queried. This is known as partitioning pruning.

Before we wrap our discussion of partitions, it is important to understand the
relationship between partitioning and the cost-based aggregation method. When
you partition a cube, Oracle OLAP creates cost-based aggregation settings for both
the bottom and top partitions. The bottom partition includes all the members of the
partitioned dimension, up to and including the partition level. For example, if you
partition on Quarter, the bottom partition includes the Day through Quarter levels
(as well as values from the other dimensions). The top partition includes the levels
above the partition dimension, such as Year and All Years.

The top partition can be very large. For example, it could include all years by all
other dimension values. Therefore, any significant preaggregation of the top partition
can be expensive—great amount of data in a single partition, which often gets bogged
down in input to and output from the cube. A good rule of thumb is to partition at as
high a level as possible, and set the top partition cost-based aggregation parameter to
0 (no preaggregation) or 1 (minimal preaggregation).

NOTE
It is not important to partition at a low level to
isolate refreshes. A cube is aggregated incrementally
within a partition during a refresh (unless the data is
cleared out first). Partitioning has more to do with
parallel processing and keeping data in memory to
reduce cube access.

Chapter 4: Building an Oracle OLAP Analytic Workspace 169

In Oracle OLAP 11g, you can run the Cube Partitioning Advisor (located on the
Partitioning tab of the Create Cube dialog box) to help you decide how to partition
the cube. You need to fully define and map the cube before you can run this advisor.

Cube Storage You have a fair amount of control over how Oracle OLAP cubes are
stored. You can choose whether or not the cube is compressed, the order and
sparsity of the dimensions, and the base data type of the cube.

Cubes can be defined as compressed or uncompressed. Oracle OLAP
compresses cubes by default. As described in Chapter 3, most cubes are very
sparse, and compression helps to save disk space and data load time. All stored
measures in a compressed cube must be of the same data type, and all dimensions
in a compressed cube must use the same aggregation operator. If you need more
flexibility, you must either define a different cube to hold the nonconforming stored
measures and dimensions or use an uncompressed cube. By default, compressed
cubes use the cost-based aggregation method. Level-based aggregation is the
default aggregation method for uncompressed cubes.

You can identify dimensions as sparse or dense. A composite is created to
contain combinations of all sparse dimension members for which there is data. By
default, time is considered dense, because if data exists for one time dimension
member, it likely exists for multiple time dimension members. This may not be the
case for all cubes. It may be that all dimensions in a given cube are sparse, and all
dimensions will be contained in the composite. The order of dimensions is
important only for uncompressed cubes and has no effect on compressed cubes. For
uncompressed cubes, all dimensions identified as sparse must be grouped together.

All cubes have a default data type. If you are creating a cube to be used as a
materialized view for query rewrite (see the “Working with Cube-Organized
Materialized Views” section later in this chapter), you should ensure that the cube
uses the same data type as the source data. For uncompressed cubes, the measures
will inherit the cube data type, but you can specify a different data type for each
measure. Depending on the data type chosen, you can also define the data precision
(number of significant digits), scale (number of decimal places), and the maximum
number of bytes (for text data types).

Each cube, whether compressed or uncompressed, has at least one composite.
Unpartitioned cubes always have only one composite. A partitioned, compressed
cube always has a composite for each partition. With partitioned, uncompressed
cubes, you have the choice between a single (global) composite and multiple
composites.

In Oracle OLAP 11g, you can run the Cube Storage Advisor (located on the
Storage tab of the Create Cube dialog box) to help you select storage parameters.
You need to create the cube before you can run the advisor. The Cube Storage
Advisor will examine the data and suggest storage options appropriate for your data.

170 Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution

Creating a Cube
Now we use the Create Cube wizard to specify dimensions for the new cube,
aggregation policies, partitions, and storage policies.

To create a cube:

 1. Select Create Cube from the Cube selection menu.

 2. Specify a name for the cube. The labels and description are filled in
automatically. If desired, edit the labels and description.

 3. Select dimensions for this cube from the Available Dimensions list and add
them to the Selected Dimensions list. For this example, the cube has four
dimensions: TIME, CHANNEL, PRODUCT, and GEOGRAPHY. Generally
speaking, we recommend placing the dense dimension first, if there is one,
followed by the user-defined dimensions, in order from fewest members to
most members. By default, AWM puts TIME first, because this dimension is
usually dense. But that is not always the case and can certainly be changed.

Chapter 4: Building an Oracle OLAP Analytic Workspace 171

 4. Select the Aggregation tab. The Rules subtab should be selected. The default
dimension order, aggregation operators, and hierarchy settings are suitable
for this example.

 5. Select the Precompute tab. Because the cube is compressed, the default
aggregation method is cost-based aggregation. The cube is not partitioned,
so only the bottom partition value is used. The default bottom partition value
is 20, but we changed it to 35 because it is a more reasonable value for the
demonstration data set. Even if a cube is partitioned, we generally leave
the top partition value at its default value of 0, as explained in the previous
section.

172 Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution

 6. Select the Partitioning tab. By default, cubes are not partitioned. For this
demonstration, we will create a partition. Select the Partition cube checkbox
and specify the following partition details:

Dimension ■ TIME

Hierarchy ■ CALENDAR

Level ■ CALENDER_QUARTER

Chapter 4: Building an Oracle OLAP Analytic Workspace 173

 7. Select the Storage tab. By default, all cubes are compressed. You can change
this cube to an uncompressed cube by deselecting the Use compression
option. We will leave it compressed for this example. The TIME dimension
is dense by default. Change it to sparse by selecting the checkbox in the
Sparse column in the TIME dimension row. Now the TIME dimension will
be included in the composite with all the other dimensions. For our data set,
this approach loads faster.

174 Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution

CAuTiON
Once a cube has been defined as compressed or
uncompressed, it cannot be changed.

 8. Click Create to generate the new cube.

After the cube is created, you can return to the Storage tab of the Create Cube
dialog box and run the Cube Storage Advisor. It will recommend storage parameters for
the cube. After you have defined and mapped measures, you can use the Materialized
Views tab, as discussed in the “Working with Cube-Organized Materialized Views”
section later in this chapter.

Creating Measures
Recall that in its basic form, a cube is a collection of measures that have the same
dimensionality. Oracle OLAP cubes contain two types of measures: stored measures
and calculated measures. Stored measures are values saved in the cube. The values
are either loaded from a data source or calculated and stored using a program.
Calculated measures are defined by calculations or formulas. The calculated
measures are not stored in the database, but rather calculated on the fly when
requested by the application or an end-user query.

Chapter 4: Building an Oracle OLAP Analytic Workspace 175

Many traditional data warehouses simply publish basic measures, such as sales,
cost, and quantity. Most of these measures are considered stored measures because
they come from the fact table. End users can do very little with this basic data. Both
business and financial communities usually want to see information like sales
compared to the same time last year, rate of growth of sales, and actual sales versus
forecast. This means that end users are actually more interested in calculated
measures derived from the base data.

Calculated measures are one of the most powerful features of OLAP. While it is
fairly easy to do some of these calculations in spreadsheets and other reporting
tools, these calculations can be a major performance drain, and the calculations
reside only in the reporting repository, limiting access to and use of the measures.
Furthermore, many calculated measures, such as time-series analysis, are very hard
to compute outside the database.

AWM provides a wizard to help define many common types of business
calculations. These are divided into four functional categories of calculations:

 Basic,

 Advanced,

 Prior/Future Comparisons, and

 Time Frame.

In addition, Oracle OLAP has an expression language that allows for building
just about any calculation desired. The following calculations are available in
Oracle OLAP 11g:

Addition Share

Subtraction Rank

Division Parallel Period

Percent Difference Diff from Parallel Period

Index % Diff from Parallel Period

Prior Period Moving Total

Diff from Prior Period Moving Average

Percent Diff from Prior Period Moving Maximum

Future Period Moving Minimum

Diff from Future Period Cumulative Total

Period to Date Cumulative Average

Period to Date Period Ago Cumulative Maximum

Percent Diff from Future Period Cumulative Minimum

Diff from Period to Date Period Ago User Defined Expression

% Diff from Period to Date Period Ago

176 Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution

NOTE
Oracle OLAP 10g uses a calculation wizard for
specifying calculated measures and can use the
OLAP DML. Some calculations are not available
in Oracle OLAP 10g.

In order to create a calculated measure, you must first have stored measures, so
we begin by creating stored measures.

Creating Stored Measures For compressed cubes, creating a stored measure is as
simple as opening the Create Measures dialog box and specifying a name for the
measure. For uncompressed cubes, however, you can choose to override the cube-
level aggregation policy and set one for the measure. The Aggregation tab in the
Create Measure dialog box is identical to the same tab in the Create Cube dialog box.

To create a stored measure:

 1. Right-click Measures and select Create Measure.

 2. Specify a name for the measure. For this example, enter SALES. The labels
and description are filled in automatically. If the cube is compressed, which
it is by default, and for this example, you do not need to supply any other
information.

 3. Click Create to create the SALES measure.

Chapter 4: Building an Oracle OLAP Analytic Workspace 177

Creating Calculated Measures For this demonstration, we create a calculated
measure for profit, where the formula for profit is sales minus costs. To create this
calculated measure, follow these steps:

 1. Right-click Measures and select Create Calculated Measure.

 2. Specify a name for the measure. For this example, enter PROFiT. The labels
and description are filled in automatically.

 3. Select the type of calculation from Calculation Type drop-down list. For this
example, select Subtraction.

 4. Under Calculation, click the first SALES measure to view a list of measures,
and then select COSTS.

178 Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution

 5. Click OK to create the SALES measure. Under Calculation, SALES changes
to COSTS. You do not need to change the second SALES measure, because
profit is sales minus costs. Notice that the syntax for the calculation is
displayed in the Expression field. The syntax is helpful when you want to
build complex expressions that cannot be handled by the wizard.

Mapping Cubes
The mapping of cubes is similar to the mapping of dimensions, but generally much
simpler.

Creating Joins from Fact Tables For this demonstration, we set join conditions that
map data from the fact table for a summary level above the level contained in the
fact table. The sample data has a fact table that has data at the day level, but the

Chapter 4: Building an Oracle OLAP Analytic Workspace 179

TIME dimension starts at month. The TIMES table contains the day data, as well as
the month ID. We join the TIMES table with the fact table to get the month key.

NOTE
Join conditions are not available in Oracle OLAP
10g. You need to create a view to accomplish the
same task.

To create a join condition:

 1. Click Mappings under the cube. The right panel displays the cube-mapping
panel.

NOTE
In Oracle OLAP 11g, the default mapping type
is table view. In Oracle OLAP 10g, the graphical
mapping view is the default.

 2. While in the table view, drag the MONTH key from the TIMES table to
the MONTH level source, and then drag the TIMES DAY_KEY to the Join
Condition field.

 3. Drag the DAY_KEY from the SALES_FACT table to the Join Condition field.
The join condition appears as OLAPTRAIN.SALES_FACT.DAY_KEY =
OLAPTRAIN.TIMES.DAY_KEY.

180 Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution

NOTE
Notice that the cube-mapping panel in our
example contains a similar join condition in the
GEOGRAPHY dimension, using the CUSTOMERS
table.

When the data is loaded, the load processor will perform a join and summary
operation on the data from the fact table and load the results.

Loading Data from Multiple Tables You can load data from multiple tables into
the same cube, but only if you do not use materialized views. This is done using the
graphical mapping view. You place both sources on the panel, and drag and drop
the keys from the fact tables to the associated targets. Oracle OLAP is not able to do
any joining for this type of mapping.

Figure 4-11 shows an example of this type of mapping. This example includes
an additional time hierarchy called Week that rolls up the data from week to year.
This requires loading the data at the Week level as well as Month level. Two views
were created to provide data at these levels. The views were then mapped to the
appropriate levels of the TIME dimension.

FiguRE 4-11. Mapping from multiple sources

Chapter 4: Building an Oracle OLAP Analytic Workspace 181

You might ask, “Why not just load the data at the Day level and then roll up the
data to the respective hierarchies?” This is definitely possible, but it would add an
additional level in the TIME dimension and 365 members per year. Such a high
number of members can have a dramatic impact on space requirements. If there is a
need to report data at the daily level, add the extra level to the dimension.
Otherwise, save the resources for something that is required.

One nice feature of the mapping tool is the ability to view the table data while
you are in the mapping panel. You can use it to verify that there is data in the
source or to validate that the correct source and columns are being used. To view
the data, right-click the source and select View Data. The first 1,000 rows of the
source will be displayed in a tabular format, as shown in Figure 4-12.

Populating Cubes
You can populate a cube using the same Maintenance Wizard that you use with
dimensions. When you select a cube to maintain, you see the cube and all the

FiguRE 4-12. Source data view

182 Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution

dimensions that the cube uses. As you can see in Figure 4-13, all four dimensions,
along with the cube, are selected automatically.

It is generally a good idea to update the dimensions at the same time as the cube,
because there are often changes to dimensions if there are changes to the fact data.
However, you can remove any dimensions you do not want to maintain with the cube.
If you do not want to maintain any dimensions, deselect the Add the Dimensions of the
Cubes option before you move the cube over to the target objects.

The Refresh Methods page will now include the cube in the list of objects. With
the cube, you have the option to choose a cube script, which is a series of steps
required to maintain a cube. For example, a script might load the data, calculate a
forecast, and aggregate the data. The cube script list shows the scripts available for
this cube. Cube-organized materialized views always use the SYS_DEFAULT script.
For more information, see the next section on creating cube scripts.

The cube refresh methods are:

 Complete ■ Clear all data from the cube, then load and aggregate all the
data from the source tables. All cubes can use this method.

Fast ■ Use the materialized view log tables to identify, load, and aggregate
only the new and changed data from the source tables. Cubes defined as a
fast refresh or a materialized view can use this method.

FiguRE 4-13. Maintaining a cube

Chapter 4: Building an Oracle OLAP Analytic Workspace 183

Force ■ Use the Fast method if possible; otherwise, use the Complete method.

Partition Change Tracking ■ Clear, load, and aggregate only the values from
an altered partition in the source tables.

Fast Solve ■ Load all the detail data from the source tables, then aggregate
only the new values. Compressed cubes and cube materialized views can
use this method.

NOTE
Some of the cube refresh options in Oracle OLAP
11g are not available in Oracle OLAP 10g.

The remaining pages are the same as those for maintaining dimensions. On the
last page, Scheduling, for this cube, you may want to choose to run in batch mode,
because the sample data has been partitioned. Running in batch mode allows you to
set the amount of parallelism and run on more than one processor. Figure 4-14
shows that two processes will be used. This number can be set from 1 to the
maximum number of processors accessible to the database instance. In cases where
there are other processes running on the server and there are more than two
processors, it is often wise to set the number to be equal to the number of processors
minus 1 to reserve a processor for other processes. You can also set this batch
process to run at a later time or date.

FiguRE 4-14. Scheduling maintenance on multiple processors

184 Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution

Creating Cube Scripts
In Oracle OLAP 11g, cube scripts give you more control of the maintenance
process. As shown in Figure 4-15, you define each script as a sequence of steps.
You determine the order in which these steps are to be executed.

A cube script can contain any combination of the following actions:

 Clear Data ■ Clear out the data in the cube. This should not be put after
a load step!

Load ■ Load new data (insert or update) or synchronize data (insert, update,
and delete).

Aggregation ■ Aggregate the data.

Analyze ■ Analyze the materialized views if the cube is set for use in query
rewrite.

OLAP DML ■ Specify and run OLAP DML commands or programs.

PL/SQL ■ Specify and run PL/SQL commands.

FiguRE 4-15. Creating a cube script

Chapter 4: Building an Oracle OLAP Analytic Workspace 185

Cube scripts open up many ways to customize the loading, calculation, and
aggregation of the cube data. In the past, external OLAP DML and PL/SQL programs
did much of this work. Now you can integrate custom maintenance tasks in the
system processes.

NOTE
Cube scripts are not available in Oracle OLAP 10g.

The Maintenance Wizard and refresh materialized views execute the default
cube script when refreshing a cube. The default cube script is named SYS_DEFAULT,
and it includes load and aggregation steps. The script is displayed in the navigation
tree only after you define a second cube script. During the Maintenance Wizard
process, you can explicitly choose which script you want to execute during the load.

To create a cube script:

 1. Expand the folder for a cube, right-click Cube Scripts and select Create Cube
Script. The Create Cube Script dialog box is displayed.

 2. Fill in the information on the General tab.

 3. To create a new step, choose the type of step you want to create.

 4. Complete all tabs associated with the step, and then click Create. The new
step is listed on the General tab.

 5. Create additional steps as desired. You can edit, delete, or reorder the
steps at any time. Remember that if you are performing calculations and
aggregations, your data must be loaded first, so be careful how you order
your steps.

 6. Click Create to generate the script. The new cube script is displayed as an
object in the Cube Scripts folder.

We will revisit cube scripts in the “Creating Advanced Cubes for Typical
Business Purposes” section later in this chapter.

186 Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution

Summary of the Cube-Building Process
For this demonstration, we completed the following major steps:

 1. Prepare the data.

 2. Create an analytic workspace.

 3. Create and populate dimensions.

 4. Create and populate a cube.

An analytic workspace generally contains a set of cubes, so in a real-world
environment, steps 3 and 4 would be repeated to create the rest of the cubes.

Next, we take a more in depth look at the types of calculated measures that are
available to you.

Adding Business-Savvy
Calculations to Cubes
This section describes how to create the following business calculations:

 Share calculation ■

Percent different prior period or parallel period calculation ■

Moving average calculation ■

Custom calculated measures ■

We also review how to modify and manage calculated measures.

Creating a Share Calculation
A very useful calculation is the calculation of share. A share is a dimension
member’s contribution compared to another member (a baseline), where this
baseline is often a parent or ancestor at a level.

You create a share calculation through the Share template, shown in Figure 4-16.
The most common use of the Share template is to express the share as a percent of total
or percent of parent in the chosen hierarchy. You can also select a dimension member
to be used as the baseline of the calculation. This is useful if you want to compare
members of the dimension in question to a specific benchmark or model member, such
as an established market leading product, flagship store, or key competitor.

Chapter 4: Building an Oracle OLAP Analytic Workspace 187

After you select the Share template, you are prompted for the components for
the calculation. From here, you fill in values for the various parameters:

 Share of measure ■ A measure or calculated measure (SALES in this
example).

in ■ The hierarchy to be used while calculating the share for the selected
dimension (if more than one hierarchy exists in the chosen dimension).

Of the ■ The dimension for which the share is to be calculated (PRODUCT
in this example).

As a ratio of ■ The dimension member to be used as a baseline to calculate
the share.

When calculating a ratio, select one of the following choices (the first three are
disabled for a dimension that does not have any hierarchies):

 Top of hierarchy ■ Specifies that the baseline consist of the total of all items
on the level that is associated with the current member (that is, the item for
which the share is being calculated).

Member’s parent ■ Specifies that the baseline consist of the total on the
level of the parent for the current member (that is, the item for which the
share is being calculated).

FiguRE 4-16. Creating a share calculation

188 Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution

Member’s ancestors at level ■ Specifies that the baseline consist of the total
of a level to be specified. Choosing this item requires the selection of a
value in the associated drop-down list. This list displays the names of levels
from the selected hierarchy for the selected dimension that are available for
calculating the share.

Member ■ Specifies that the baseline consists of dimension member to
be specified. Choosing this item requires the selection of a value in the
associated drop-down list. This list
displays the names of the dimension
members that are available for
calculating the share.

In this example, we are calculating the sales share of the member’s parent. You
can choose to represent the share as a percentage by selecting the Multiply Result
by 100 option. Figure 4-17 shows the completed share calculation.

FiguRE 4-17. The completed share calculation

Chapter 4: Building an Oracle OLAP Analytic Workspace 189

It may be necessary to create multiple calculated measures using the same Share
template to provide different results, such as shown in Figure 4-18. The report in
Figure 4-18 is showing the SALES base measure and two share calculations: share of
product total and share of product parent level. Notice how the SALES SHARE TOT
PROD and SALES SHARE PRNT PRODUCT measures return the appropriate results
as you drill down the product hierarchy.

Creating a Percent Different Prior
or Parallel Period Calculation
Using the Percent Difference from Prior Period template, you can create a
calculated measure that indicates growth or decline of a measure over time. This
calculation template is found in the Prior/Future Time Period calculation type folder.
This template accepts the following inputs:

 For measure ■ Select a measure or a dimension member for which you want
to calculate the percentage difference from the prior period.

in ■ If there is more than one time dimension, you can select the one you
want to use. Otherwise, the default time dimension is used.

And ■ Select the hierarchy for the specified dimension.

Number of periods ago ■ Enter a specified number of periods ago, for each
level (such as Year, Quarter, or Month).

A sample measure is shown in Figure 4-19.

FiguRE 4-18. Sample share report

190 Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution

A similar, but more complex, calculation is the percent difference between
the current time period and a prior parallel period, such as prior year. To do this
calculation, we need to use the parallel period calculation not the prior period
calculation. To perform this calculation, you provide the following inputs:

 From ■ Select either Parallel period or Parallel period closest.

For measure ■ Select a measure or a dimension member for which you want
to calculate the percentage difference from the parallel period.

in ■ If there is more than one time dimension, select the desired dimension
from the list box. Otherwise, the default time dimension is used.

Number of periods ■ Enter a number of periods ago.

Ago ■ Select the level to use as a basis.

From ■ Select either beginning to ending of period or ending to beginning
of period.

FiguRE 4-19. Creating a percent difference prior period calculation

Chapter 4: Building an Oracle OLAP Analytic Workspace 191

A sample percent difference from parallel period calculation is shown in
Figure 4-20.

Figure 4-21 shows a report that contains calculations of a number of alternative
percentage differences from prior periods. All the measures automatically handle the
situation in which the user needs to drill down into the time dimension and look at
time periods at different levels. A single calculated measure in the analytic
workspace can be used at any level of time, by any query tool, including SQL tools.

Note the following from Figure 4-21:

 The Sales Pr Period calculation works at all levels of time, and shows the ■
value for the previous time period at the same level.

The Sales Pr Period Pct Chg calculation works at all levels of time, and ■
compares each time period with the previous period at the same level.

Similar calculations can be easily generated for costs, quantity, and profit ■
measures.

FiguRE 4-20. Creating a percent difference from parallel period calculation

192 Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution

Creating a Moving Average Calculation
The Moving Average template enables you to create moving averages over any of
the measures in your analytic workspace. Moving averages are very useful when
you analyze volatile data, because they smooth out the peaks and troughs, and
enable you to visualize trends in the data more easily. In the Moving Average
template, you are prompted to provide the following inputs:

 Measure ■ Select the measure for which you want to calculate a moving
average.

Over time in ■ If there is more than one time dimension, select the desired
dimension from the list box. Otherwise, the TIME dimension and the default
hierarchy will be used. This is the case for our demonstration.

include preceding ■ Enter the number of periods preceding the given time
period to be included in the moving average calculation.

include following ■ Enter the number of periods following the given time
period to be included in the moving average calculation.

Within ■ The choices here are level, parent, ancestor at level, Gregorian
year, Gregorian week, Gregorian month, and Gregorian quarter.

For example, let’s say you want to create a calculation that represents the
moving average of sales for the last three months. When displaying this value for

FiguRE 4-21. Sample report with prior period calculations

Chapter 4: Building an Oracle OLAP Analytic Workspace 193

March, this would average January, February, and March. When displaying this
value for April, this would average February, March, and April. Figure 4-22 shows
how this calculation is structured in the Moving Average template.

NOTE
Similar templates are available for creating moving
total, moving maximum, and moving minimum
calculations.

Figure 4-23 shows a combination graph reflecting the sample moving average
calculation. The fluctuating line is sales, and the smoother line is the three-month
average.

FiguRE 4-22. Creating a moving average calculation

194 Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution

Creating Custom Calculated Measures
Using the Expression template, you can build just about any calculation desired.
You can use this template to simply take action on more than one measure or to
create very complex calculations. Oracle OLAP has a very powerful calculation
engine that supports a huge library of functions:

 Numeric ■

Time series ■

Text ■

Financial ■

Statistical ■

Date and time ■

Aggregation ■

Data type conversion ■

FiguRE 4-23. Graph of moving average

Chapter 4: Building an Oracle OLAP Analytic Workspace 195

Any these functions can be used to create a custom calculated measure, and can
be used in a procedural function or program.

A simple custom calculation would be to produce a measure that is the percent
of sales for 2006, such as sales year to date divided by total sales for 2006. As
shown in Figure 4-24, the expression would look like this:

100 * (SALES_CUBE.SALES_YTD / SALES_CUBE.SALES[“TIME” = 'CY2006'])

Note that this expression uses an existing calculated measure for SALES_YTD, and
then uses what is called a qualified data reference to find the sales for 2006.
(Qualified data reference syntax is discussed in the “Using OLAP DML” section later
in this chapter.)

You can also edit the expression and define your own calculations using any
expression you care to enter as shown in Figure 4-25.

FiguRE 4-24. Expression for sales percent of 2006

FiguRE 4-25. Editing an expression

196 Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution

You can also use OLAP DML in the expression. For example, you could
use an OLAP_DML_EXPRESSION('function',datatype) form such as
('lag(sales,1,time,nostatus)', NUMBER). Furthermore, you can run
programs in a calculated measure, such as a forecast program. For example, you
could create a forecast measure, such as a crossover linear regression, in an OLAP
DML program and then use it in the expression using OLAP_DML_EXPRESSION
('program_name', NUMBER). For more information about these various
functions, see the Oracle OLAP DML Reference. We will also demonstrate some
complex calculations in the “Advanced Topics” section later in this chapter.

Managing Calculated Measures
You can edit existing calculated measures from within AWM. To change a
calculated measure, click the calculated measure. You will see the general
information displayed on the right. You can change the labels and description, but
not the name. You can also change the calculation type and the expression.

NOTE
In Oracle OLAP 10g, you need to select the Launch
Calculation Editor button to change the details of a
calculated measure. Note that you can change the
details, but not the type, of the measure.

As you have seen, calculated measures are part of the cubes, but occasionally
cubes need to be changed, such as by modifying their dimensionality or data type.
These changes require that the cube be deleted. There are two ways to delete a
cube but keep the calculated measures:

 Save the calculated measures to XML templates. ■

Edit the XML definition for the cube. ■

Saving calculated measures to XML files is always a good idea because this
creates a backup of the definition. Once the cube is dropped and rebuilt, you can
simply import the calculated measures. However, you can save only one measure
per XML template, which is fine if you create the XML template when you define
the calculated measure, but not practical if you have many calculated measures in a
cube and then decide to save them all to XML templates.

Editing the XML is not something we would normally recommend, but it is
possible to move calculated measures from one template file to another using a text
editor such as Notepad. Assuming that you do not change the dimensionality, you
can cut and paste the XML. The calculated measures are all defined at the bottom of

Chapter 4: Building an Oracle OLAP Analytic Workspace 197

the XML definition file. Each measure is contained in a single block of XML code,
using the tag DerivedMeasure. Copy all the DerivedMeasure blocks to your
new cube XML template and reload that template to restore all your calculated
measures. This work-around works in Oracle OLAP 10g Release 2 and later.

Advanced Topics
In this section, we cover the following advanced topics:

 Managing workspaces with Oracle OLAP Worksheet ■

Working with cube-organized materialized views ■

Managing security of cubes and dimensions ■

Creating advanced cubes for typical business purposes ■

Using SQL with OLAP ■

Managing Workspaces with OLAP Worksheet
Oracle OLAP Worksheet provides full use of the OLAP DML for users who need to
manage the contents of an object or execute a program. It opens in a separate
window from the AWM console. As shown in Figure 4-26, OLAP Worksheet
provides menus, a toolbar, an input pane for OLAP DML commands on the bottom,
and an output pane on the top. You can access the OLAP DML documentation
through the Help menu.

In Figure 4-26, the output pane shows that the SALESTRACK workspace is
attached with read/write access in both OLAP Worksheet (as shown by the AW
LIST command) and AWM. The two applications share the same session, so
whatever you do in OLAP Worksheet affects AWM as well. Changing the status or
closing the workspace may have consequences on commands that you issue in
AWM.

TiP
Use the AW LIST command to check which
workspaces are attached and in which order,
because many OLAP DML commands—like
LISTNAMES and DEFINE—operate on only the first
workspace.

OLAP Worksheet is an interactive environment for working with analytic
workspaces, similar to SQL*Plus Worksheet. In addition to providing easy access to

198 Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution

the OLAP DML, OLAP Worksheet enables you to perform sophisticated business
analyses, such as modeling, forecasting, and allocation. You can switch between
two different modes: one for working with analytic workspaces in the OLAP DML
language and the other for working with relational tables and views in SQL.

You can use OLAP Worksheet to perform the following tasks:

 Connect to an analytic workspace. ■

Execute most OLAP DML commands. ■

Create and populate data objects. ■

Create, modify, compile, and execute DML programs. ■

Execute SQL statements. ■

FiguRE 4-26. OLAP Worksheet opened from AWM

Chapter 4: Building an Oracle OLAP Analytic Workspace 199

To open OLAP Worksheet from AWM, after you have connected to your
database and opened an analytic workspace, place your cursor on the analytic
workspace or an object within the analytic workspace and select Tools | OLAP
Worksheet. To execute an OLAP DML command, type it in the input pane at the
bottom of the window. For example, to view the list of attached analytic
workspaces, issue the command AW LIST.

using the Editor in OLAP Worksheet
You can use the built-in editor in OLAP Worksheet to change the content of a
program, model, or aggregation map. You cannot use the editor to change the
contents of a dimension, variable, relation, value set, or other data containers.

To change a program, issue the following command to open the program in the
editor window:

EDIT program_name

For example, enter EDIT ONATTACH to open the ONATTACH program, which is
shown in Figure 4-27. The object type PROGRAM is the default type, so you do not
need to specify it. You must specify the other object types. For example, to edit an
aggregation map, you would issue a command such as EDIT AGGMAP units_
cube_aggmap.

In the editor, type the OLAP DML commands that you want in the program.
When you are finished editing the program, save it and close the editor. The status
bar at the bottom of the window will tell you if there have been changes that have
not been saved.

FiguRE 4-27. Opening a program in the OLAP Worksheet editor

200 Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution

To execute the program, issue this command:

CALL program_name

To issue SQL commands, you need to select SQL Mode from the Options menu.
To resume issuing OLAP DML commands, clear the SQL Mode selection.

using OLAP DML
The ability to manipulate data directly using a stored procedure language is key to
developing sophisticated OLAP-based applications. We have previously shown how
to do this by creating calculated measures. These calculations use the OLAP stored
procedure language, OLAP DML. As you have seen, the custom expression option
available for calculated measures allows for entry of a complete OLAP DML script
or program.

NOTE
The OLAP DML is very much like PL/SQL. In fact
over the years, Oracle has included many of the
same functions and features of SQL in the OLAP
DML.

The OLAP DML language is the same language as the Express language
mentioned in Chapter 2. There have been many enhancements to the language
(mostly new commands and functions), but the language is the same. Originally,
entire applications were written in this language, so all of the capabilities that you
would expect in a modern computer language are there. Today, most applications
use other technology to display the data, so generally, commands that generate
output (such as the REPORT command) are not used, but they are still in the
language.

OLAP DML programs contain a series of OLAP DML statements and reside in an
analytic workspace. An OLAP DML program is an object in the analytic workspace,
just like a dimension or variable. In order to change or run a program, you must first
attach the analytic workspace that contains the program.

The OLAP DML language is used for multiple purposes:

 Specify a data expression. ■

Manipulate OLAP data with commands (potentially in a batch process). ■

Diagnose problems. ■

Load data. ■

Chapter 4: Building an Oracle OLAP Analytic Workspace 201

using OLAP DML for Expressions BI applications often need to calculate data.
This data can often be calculated on the fly, at run time. The OLAP DML operates
as a sophisticated expression language, much like MDX.

Many functions are built in to the OLAP DML, including those specifically
designed to manipulate multidimensional data, as well as numeric and text
functions. Table 4-3 lists some common OLAP DML functions.

In addition, there are functions to convert from one data type to another, time
manipulation functions, database information functions, statistical functions, and
more. These functions, along with operators such as + (plus), - (minus), * (multiply), /
(divide), ** (exponent), and others provide the ability to calculate many business
calculations as simple expressions. Expressions can also refer to programs that
calculate a return value, allowing you to create your own functions. For a complete
list of functions, see the Oracle OLAP DML Reference online documentation or the
OLAP Worksheet Help.

TABLE 4-3. Some OLAP DML Data-Manipulation, Numeric, and Text Functions

Function Description

TOTAL Sum data

MOVINGTOTAL Calculate a total of a series of time periods

COUNT Count the number of instances that meet a Boolean
condition

MEDIAN Calculate a median of a series of numbers

NPV Calculate the net present value of a series of cash-
flow values

SQRT Return the square root of a number

ABS Calculate the absolute value

DECODE Decode a value (just as in PL/SQL)

LOG Calculate the natural logarithm

RANK Calculate the rank of values

ROUND Round a number to a specified number of digits

SIN Calculate the sine of an angle expression

JOINCHARS Concatenate multiple strings

FINDCHARS Search a string for a substring

UPCASE Convert a string to uppercase

202 Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution

OLAP DML expressions automatically have “dimensionality.” If the SALES
measure is dimensioned by PROD, GEOG, and TIME, the expression SALES*2
(multiple sales by the constant 2) is likewise dimensioned by PROD, GEOG, and
TIME. Oracle OLAP always knows the dimensionality of an expression and will loop
over the dimensionality in most situations, so no explicit FOR loop is necessary.

using QDRs to Change the Dimensionality of an OLAP Expression If you wish to
work with only a single dimension value, you can limit your expression using syntax
called a qualified data reference (QDR). This syntax removes a dimension from the
dimensionality of an expression. For example, the expression SALES(GEOGRAPHY
'US') qualifies the GEOGRAPHY dimension to the single value 'US'. The expression
is dimensioned by the remaining dimensions of SALES, namely PRODUCT and TIME.

QDRs are often used in expressions when calculating a share. For example, the
expression SALES / SALES(GEOGRAPHY 'US') calculates the sales share of the
United States. Because the numerator (SALES) is not qualified in any way, this will
work for any geography value.

The expression SALES(GEOGRAPHY 'US') specifies a single geography
dimension value. The literal expression 'US' can be replaced with another variable,
such as TOPCOUNTRY, which can be set to different values depending on the region
of interest.

If instead of a single scalar value, you use another dimensioned expression, the
dimensions of the reference are added to the other dimensions of the qualified
expression. For example, suppose the top region needed to depend on the sales
channel of interest. TOPCOUNTRY could be dimensioned by CHANNEL and have a
different value for each CHANNEL. In that case, the expression SALES(GEOGRAPHY
TOPCOUNTRY) would be dimensioned by PRODUCT, TIME, and CHANNEL. The
qualification of the GEOGRAPHY dimension removes that dimension from the
expression; the reference to TOPCOUNTRY, which is dimensioned by CHANNEL,
adds the dimension CHANNEL to the overall expression.

This ability to remove and add dimensions using QDRs is used often to
transform and manipulate Oracle OLAP data. Note that this expression language
allows for combining data from multiple measures, cubes, and dimensions.

Manipulating OLAP Data with Commands If you wish to store the result of an
expression permanently in a database, you can use an assignment statement to
assign this expression to a variable. Usually, this can be calculated on the fly,
eliminating the need to use disk space to store results permanently. Other
commands are specifically designed to manipulate data, such as the following:

 AGGREGATE ■ and ALLOCATE, which aggregate data up and down a series of
hierarchies, respectively

FORECAST ■ and REGRESS and commands beginning with FC for advanced
forecasting

Chapter 4: Building an Oracle OLAP Analytic Workspace 203

FILEREAD ■ and OUTFILE and other file reading and writing commands

EXPORT ■ and IMPORT for moving data between workspaces or database
instances

Commands to directly access the Oracle relational data ■

Commands to create or execute Models ■

And many more commands ■

The OLAP DML language also contains standard control structures such as FOR
loops, WHILE loops, SWITCH statements, and IF-THEN-ELSE statements. You can
also trap for error conditions, and transfer control to an error procedure to handle
anticipated and unanticipated error conditions (such as division by zero). Options
are available to control behavior of certain conditions.

TiP
One option in particular can be very handy: If you
set DIVIDEBYZERO to yes, Oracle OLAP will return
an NA when you attempt to divide a number by
zero, instead of producing an error.

The OLAP DML language has more than 100 commands. Some of the more
common include:

 DEFINE ■ , to create new objects

DESCRIBE ■ , to obtain the definition of an object

LISTNAMES ■ , to list all of the objects in an analytic workspace

SHOW ■ , to display the contents of an expression

REPORT ■ , to produce a formatted report of a series of expressions

LIMIT ■ , to control the current status of dimensions

AW ■ , to attach or detach an analytic workspace, or to list the attached
analytic workspaces

See the Oracle OLAP DML Reference for more information about the OLAP
DML commands.

204 Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution

Persistent Status Within a Session Dimensions in Oracle OLAP sessions have a
“status” associated with them. This is persistent throughout a given user session. You
can think of dimension status as a sort of persistent SQL WHERE clause. Session
status allows you to focus a series of OLAP DML statements on certain dimension
values. All subsequent statements that are executed apply to only those values in
current status until the status is reset to something else. For example, suppose you
execute the following commands:

limit prod to all
limit geog to 'US'
limit time to '2007' to '2009'
limit time add descendants
sales = na
limit geog to 'CANADA'
sales = 100

Sales will be set to the special value na (not available) for all products, for just the
geographic region US and for the time periods 2007 to 2009, and all values that are
descendants of those time periods (typically quarters and months in 2007, 2008,
and 2009). Sales for Canada for the same time periods will be set to 100. Note that
no FOR loop is necessary—Oracle OLAP loops over all dimension values for sales
currently in status. This status is automatically reset to ALL at the beginning of every
session.

Wrong assumptions about the status of key dimensions are a common source of
bugs and performance problems in Oracle OLAP applications. When operating on
the data, be sure to limit to the minimum status necessary to perform a given task.
For example, if you need to calculate only the average price for certain products,
limit the Product dimension to only the products in question.

TiP
A powerful DML is at the core of the Oracle OLAP
environment. This language expands Oracle OLAP
to be an analysis environment, instead of simply a
reporting environment. This section only introduces
the concept of the Oracle OLAP DML. To become
more familiar with all the features of the language,
download and read the Oracle OLAP DML
Reference.

Working with Cube-Organized Materialized Views
With query rewrite, Oracle can automatically convert a SQL query into a more
efficient SQL query. The Oracle query engine can direct a query to take advantage
of materialized views or, as in Oracle OLAP 11g, a cube-organized materialized

Chapter 4: Building an Oracle OLAP Analytic Workspace 205

view from an analytic workspace cube. Oracle’s optimizer is intelligent enough to
take advantage of preexisting summaries instead of reading all the detail records and
summarizing them again. The end users do not know a transformation has occurred.
The end users would only notice the improvement in performance.

Oracle’s optimizer examines the query to determine if the SQL query can be
rewritten for improved performance. If Oracle’s optimizer determines it cannot
improve the results, it performs the original plan by accessing the detail table rows
and summarizing them.

Originally, Oracle had a rules-based optimizer that used a heuristic approach. In
other words, the optimizer followed a series of rules. For example, one of the top
rules was for the optimizer to utilize a unique index over any other access method.
The rules-based optimizer would not care about other particulars of the situation,
such as the number of rows in the table or whether the index was fragmented; it
would simply follow the rule, even if the change actually resulted in poorer
performance.

For Oracle8i, Oracle created a cost-based optimizer. A cost-based optimizer
uses statistics on the objects, such as tables and indexes, to determine the best
execution plan to return the results of the query. For example, if a table has very few
rows in it, the cost-based optimizer may choose to perform a full table scan as
opposed to an index scan. Normally, a full table scan would be more expensive;
however, the expense of a full table scan depends on the size of the table.

In Oracle OLAP 11g, the cost-based optimizer takes into account cube-
organized materialized views for query rewrite. If the cost-based optimizer thinks
that the query will perform faster using OLAP cubes, the query will be rewritten to
use OLAP cubes.

Setting up for Cube-Organized Materialized Views
Each Oracle database has a set of parameters used to configure the database. For
example, these parameters establish how much memory is allocated or whether to
allow query rewrite. The following sections describe the two parameters that need
to be set— QUERY_REWRITE_ENABLED and QUERY_REWRITE_INTERGRITY—
and how to enable a cube for query rewriting.

Setting the QuERY_REWRiTE_ENABLED Parameter The QUERY_REWRITE_
ENABLED database parameter controls the query rewrite feature for the database. It
has three settings: TRUE, FALSE, and FORCE. Query rewrite is enabled on TRUE or
FORCE, and disabled on FALSE. If set to FORCE, this parameter forces the optimizer
to utilize the rewritten queries, even when the cost of the original query is lower.

The following example enables the query rewrite feature on the database:

query_rewrite_enabled = true;

206 Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution

You can override the database setting with the ALTER SESSION command:

alter session set query_rewrite_enabled = true;

Enabling Query Rewrite for Cube With Oracle OLAP 11g, it is very easy to enable
query rewrite on the cube-organized materialized view. You just need to check a
box in AWM, as follows:

 1. In AWM, select the cube.

 2. Select the Materialized View tab.

 3. Select Enable Materialized View Refresh on the Cube.

 4. If desired, set the Refresh Method and Refresh Mode options.

Enabling materialized view refresh of the cube also enables the dimensions
associated with the cube. Once this refresh is enabled, it is not possible to make
changes to the cube or dimension structures, such as adding levels or hierarchies. If
changes are necessary, you must first disable materialized views. Then you can
make the changes and re-enable materialized views.

Chapter 4: Building an Oracle OLAP Analytic Workspace 207

Setting the QuERY_REWRiTE_iNTEgRiTY Parameter The QUERY_REWRITE_
INTEGRITY parameter has three settings:

 ENFORCED ■ This is the default value. The optimizer will utilize the query
rewrite feature only if the summary data represents the current detail values.
For example, if the source fact table has been changed since the cube was
loaded, the optimizer will not rewrite the query. The materialized view cube
must be current, and no changes can have occurred to the detail tables
since the last refresh of the materialized view cube.

TRUSTED ■ With the TRUSTED value, the optimizer assumes that the
relationships with foreign keys constraints are correct. It also trusts that
declared, but not enabled, primary keys or unique keys are valid. With
this setting, data integrity is assumed (not checked with the database
constraints); therefore, there may be some invalid data.

STALE_TOLERATED ■ With STALE_TOLERATED, the optimizer can
rewrite queries even though the summary data may not be current. This
setting has the risk that the summary data does not reflect the detailed data
in the database. For example, detail data has been loaded with new rows;
however, the materialized view cube has not yet been refreshed to reflect
the current changes.

To set the parameter at the database level, use the following syntax:

query_rewrite_integrity = enforced;

In addition to setting QUERY_REWRITE_INTEGRITY at the database level, you
can set the level of query rewrite for a session. This allows users to set this
parameter to meet their needs, as in the following example:

alter session set query_rewrite_integrity = stale_tolerated;

Verifying Query Rewrite Occurred
If the query rewrite happens automatically, how do you check to see if the query
rewrite worked? You can run an explain plan to see the execution plan.

The easiest way to run an explain plan is to run the query in SQL Developer,
press f6, and examine the results in the Explain tab. Figure 4-28 shows the SQL
Developer results.

208 Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution

Managing Security of Cubes and Dimensions
With Oracle OLAP 11g, Oracle has now brought an additional security option to
OLAP. In the past, access control needed to be provided through the use of OLAP
DML programs, was difficult to set up, and was not user-friendly. AWM 11g includes
the capability to control access to OLAP data. This is fully compatible with the virtual
private database (VPD) features in the Oracle Database. Oracle VPD enforces
security, to a fine level of granularity, directly on database tables, views, or synonyms.
Because you attach security policies directly to these database objects, and the
policies are applied automatically whenever a user accesses data, there is no way to
bypass security. With VPDs, you are able to control users’ access to data related to
them only, and prevent them from accessing data they are not authorized to see.

Setting Basic Security
You can grant access to users and roles on a particular analytic workspace, just as
you can grant access to other database objects such as tables and views. These
privileges are SELECT, ALTER, INSERT, and UPDATE. Granting these accesses to

FiguRE 4-28. Sample execution plan in SQL Developer

Chapter 4: Building an Oracle OLAP Analytic Workspace 209

the analytic workspace does not grant these privileges to dimensions or cubes
within an analytic workspace; these permissions must be granted separated. It is
possible to grant basic access using SQL or using AWM.

The following shows an example of granting privileges. These SQL commands
enable user Scott to query the Units cube. They give Scott SELECT privileges on the
Global analytic workspace, the cube, and all of its dimensions. Scott also gets
privileges on the dimension views, so that he can query the dimension attributes for
formatted reports. Notice that we are using standard database GRANTS, which are
familiar to all DBAs and users of the Oracle Database.

/* Grant privileges on the analytic workspace */
grant select on olaptrain.aw$salestrack to scott;
/* Grant privileges on the cube */
grant select on olaptrain.sales_cube to scott;
/* Grant privileges on the dimensions */
grant select on olaptrain.channel to scott;
grant select on olaptrain.geography to scott;
grant select on olaptrain.product to scott;
grant select on olaptrain.time to scott;
/* Grant privileges on the cube, dimension, and hierarchy views */
grant select on olaptrain.sales_cube_view to scott;
grant select on olaptrain.channel_view to scott;
grant select on olaptrain.channel_primary_view to scott;
grant select on olaptrain.geography_view to scott;
grant select on olaptrain.customer_shipments_view to scott;
grant select on olaptrain.customer_segments_view to scott;
grant select on olaptrain.product_view to scott;
grant select on olaptrain.product_primary_view to scott;
grant select on olaptrain.time_view to scott;
grant select on olaptrain.time_calendar_view to scott;
/* grant privileges to materialized views using query rewrite */
grant global query rewrite to scott;

Different types of privileges can be granted to users and roles individually for
dimensions and cubes. For example, you may want a user to see only the Sales
cube and not the Forecast cube. This is considered object-level security, which is
set using the Object Security wizard in AWM, as shown in Figure 4-29.

Setting Finer-grain Security
Data security policies enable you to grant users and roles privileges on specific
dimension members. For example, you might restrict district sales managers to the
data for just their own districts instead of all geographic areas. While it is possible to
set security at the dimension and cube levels, it is not recommended to set this
policy only at the cube level. Setting security on the cube level can cause confusion

210 Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution

for end users; they will be able to choose a dimension member that they are not
permitted to see, but the cube will not report that data.

The data security policy on a dimension extends to all cubes within that
dimension. You do not need to re-create the policy for each cube. When you create
a data security policy on a cube, you select the members for each dimension of the
cube. The policy applies to only that cube. When you create data security policies
on both dimensions and cubes, users have privileges on the most narrowly defined
portion of the data, where the policies overlap.

As soon as you create a data security policy, all other users are automatically
denied access. AWM creates a default policy that grants all privileges to the owner.
Otherwise, the owner would not be able to access any data.

Set these policies using AWM by selecting the Data Security option under the
dimension or cube that will have the policy. Name the policy, and then add a user

FiguRE 4-29. Setting object-level security

Chapter 4: Building an Oracle OLAP Analytic Workspace 211

or role. In the example in Figure 4-30, we have added the user Scott to a new policy
called NA_ONLY (NorthAmericaOnly).

Next, use the Member Selection tab to choose the dimension members that will
be visible to this user. In this case, we want to limit the Geography to only North
America and the members below it. Using the selector, choose Geography and then
select North America to appear in the selected panel, as shown in Figure 4-31. Since
we do not want to restrict access on any of the other dimensions, we leave them
alone. If you look at the condition expression, you will note that the statement WHERE
1 = 1 for all other dimensions. Clicking Create will create this policy, and it will be
applied. The next time Scott logs on, he will have access to view the data in the Sales
cube, but only for data from North America. This applies to looking at the data via
AWM as well as using the SQL views, assuming Scott has access to the views.

Creating Advanced Cubes
for Typical Business Purposes
Oracle OLAP has the flexibility and power to handle a wide range of analytical
needs. The previous sections have addressed how to work with typical star and
snowflake multidimensional models. This section addresses how some more
complex problems can be handled using Oracle OLAP. As an example, we show
how you can use advanced forecasting techniques to compute additional cube-
based measures.

FiguRE 4-30. Creating a data security policy

212 Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution

A close examination of the OLAP DML guide shows that several forecasting and
statistical analysis functions are provided in the OLAP engine. The forecasting
engine supports basic forecasting, as well as advanced forecasting using the Geneva
Forecasting engine, acquired from Roadmap Technologies. OLAP DML supports
simple linear regressions, several nonlinear regression methods, single exponential
smoothing, double exponential smoothing, and the Holt-Winters method. The OLAP
engine also can decide the best fit for your data based on past performance.

For our forecasting program example, the following commands are used to
calculate a forecast:

 FCOPEN ■ , to open a forecast full table scan

FCSET ■ , to specify the options of the forecast

FCEXEC ■ , to execute the forecast

FCQUERY ■ , to retrieve information and characteristics about the forecast

FCCLOSE ■ , to close a forecast

FiguRE 4-31. Selecting data security members

Chapter 4: Building an Oracle OLAP Analytic Workspace 213

The following is an example forecast:

"Set forecast parameters for 'best fit'
fcset _handle approach 'APPAUTO' periodicity 12 histperiods 36
"Execute the forecast
"save seasonal and seasonal smoothed into the variables just defined
fcexec _handle time time into forecast_best -
 seasonal forecast_seasonal -
 smseasonal forecast_smseasonal backcast -
 sales_cube_sales

We can use this in a program written in OLAP DML to calculate the forecast and
store the results back to the cube so that it can be viewed like any other stored
variable.

OLAP DML programs are very similar to PL/SQL scripts. The program Load_
Forecast, shown in Figure 4-32, defines variables and then calls the FCEXEC
function to compute the forecast and place it in the variable MyForecast.

FiguRE 4-32. Forecast program

214 Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution

The execution of the forecast takes less than a minute to run for the entire cube.
This program can be executed from a SQL or PL/SQL call, or can be incorporated
into the maintenance routine of the Forecast cube, using cube scripts.

NOTE
The full code for the forecasting program is available
as part of the OLAPTRAIN demo.

As mentioned earlier in the chapter, it is possible to have custom steps in Oracle
OLAP 11g cube scripts. In this case, we can add an OLAP DML command step to the
LOAD_AND_AGGREGATE cube script for the Forecast cube by doing the following:

 1. Select the LOAD_AND_AGGREGATE script.

 2. Delete the existing Load step.

 3. Add a new step (OLAP Command).

 4. Save the step and reorder the steps so that this new step is the first step.

Now the Forecast cube can be maintained along with the Sales cube. However,
when the maintenance is performed, this cube must be maintained after the Sales
cube has been maintained. This is because the data needed for the forecast is in the
Sales cube, and it must be present before the forecasting program is run.

using SQL with OLAP
One of the most useful features introduced with Oracle OLAP is the ability to use SQL
queries to access the multidimensional calculation engine and multidimensional data.
This single feature dramatically increases the reach and applicability of OLAP to a vast
range of BI query and reporting tools, as well as SQL-based custom applications. Many
more applications and reporting tools can now benefit from the superior performance,
scalability, and functionality of a first-class multidimensional server contained within
the Oracle Database. The bottom line is that applications that can connect to an
Oracle database instance and execute simple SQL can benefit from analytic
workspaces.

Follow these recommendations to gain the maximum benefit from OLAP SQL
views:

 Always build your analytic workspaces to Oracle OLAP standard form. ■
This happens automatically if you build them with AWM, OWB, or the
supplied API.

Chapter 4: Building an Oracle OLAP Analytic Workspace 215

If you are using Oracle OLAP 10 ■ g, use the View Generator plug-in for AWM
10g to build your 10g views. If you are using Oracle OLAP 11g, leverage
the automatically generated views.

If you follow this advice, you will save much of time on your project and
increase your ability to support the application in the future.

The plug-in for AWM 10g Release 2 is free shareware and can be downloaded
from the Oracle Technology Network (OTN) web site. The plug-in adds a simple
wizard within AWM. As you follow the steps in the wizard, you choose the
measures and other items you need, and then the wizard creates the views for you.
The wizard stores the biggest lump of syntax—the limitmap parameter, which
describes which analytic workspace objects show up in what columns in your
view—inside the analytic workspace itself, in a multiline text variable/measure.

In Oracle Database 11g, OLAP_TABLE() is still available for you to use. It is
sometimes suitable for your needs, as it has many very clever hooks by which you
can trigger various OLAP actions whenever a user selects from the view. For most
cases, however, the new CUBE_TABLE() function added in Oracle Database 11g is
recommended. CUBE_TABLE() views are what AWM 11g automatically creates for
you when defining the objects inside the analytic workspace. Assuming that you
have a valid standard form analytic workspace, such as you might build in AWM
11g, CUBE_TABLE() is much easier to use than OLAP_TABLE(). For example, the
entire syntax required to create a dimension view for a specified hierarchy of that
dimension in an analytic workspace is as follows:

create or replace force view mydim_myhier_view as
select * from table(cube_table('MYSCHEMA.MYDIM;MYHIER'));

Remember that AWM 11g already does this for you. All you need to know
about your analytic workspace is the name of the hierarchy (MYHIER), dimension
(MYDIM), and schema that the analytic workspace is built in (MYSCHEMA). All the
object mappings that you need to tell OLAP_TABLE about, in the limitmap
parameter, are automatically done as a result of improvements in the Oracle
Database 11g data dictionary. The data dictionary is now fully aware of all the
OLAP objects created by AWM, OWB, and the OLAP API.

AWM 11g creates the necessary view for each dimension and cube in the
analytic workspace. Figure 4-33 shows the view information (from AWM) for the
Sales cube view.

Notice that the dimensions and measures are shown in the view. The dimensions
have only one column for each dimension, which represents the dimension member
or key. There is one row for each member in the cube that has data, for all levels of
all dimensions of the cube. This data can either be stored or not stored. The data that
is not stored is aggregated on the fly when the data is retrieved from the view. The
cube view can be joined with the dimension views in queries to produce data at any

216 Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution

FiguRE 4-33. Sample cube view

FiguRE 4-34. Example of selecting data from a cube

Chapter 4: Building an Oracle OLAP Analytic Workspace 217

desired aggregation level. The data can be used in any SQL-based query tool, just
like any other relational data.

A simple SELECT statement such as the one shown in Figure 4-34 on the
preceding page yields results from the cube rapidly. The performance of the
SELECT statement is not significantly affected by the complexity of the calculations,
unlike a similar SELECT from relational tables. Remember that many of these
measures are calculated on the fly, and yet the SELECT performance is still
excellent.

Conclusion
Oracle OLAP is a logical extension of the Oracle Database that increases the power
of the database. The Oracle OLAP environment provides a great deal of flexibility in
building multidimensional applications. We have shown how easy it is to take
relational data and build simple but powerful OLAP cubes that can greatly improve
the ability to provide rapid answers to end-user questions. By using the built-in
features of AWM, or by extending it with the functionality of OLAP DML, you can
take those simple solutions and extend them into complex applications that can
solve just about any BI problem.

If you keep in mind Oracle OLAP’s strengths and take into account what it is going
through to service your requests, you can create more efficient applications. As is true
with any computer environment, having an understanding of what the software is
doing at a lower level helps to enhance database design and performance.

This page intentionally left blank

Oracle-Regular / Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution/ Schrader et al. / 182-2 / Chapter 5
Blind folio: 219

Chapter
5

Building Your
Essbase Database

219

220 Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution

hapter 3 introduced potential architectures for Essbase implementations,
components of the overall solution (both required and optional), and
fundamental design methodology. Now we present a hands-on
demonstration of how to build an Essbase database.

The chapter starts with an overview of the components and files used in the
demonstration. During the demonstration, we walk you through how to build and
deploy an Essbase database using Oracle Essbase Studio. Then we talk about how to
calculate the database and validate the data in the database using reports. After the
demonstration, we discuss some Essbase features you can take advantage of, such as
custom load rules and member calculations. The chapter ends with examples of
automating the build and load processes.

Demonstration Overview
Our goal for this demonstration is to show you the overall process for building,
deploying, calculating, and validating an Essbase database. By the end of the
demonstration, you will be able to deploy a simple database, and you will have a
foundation from which to explore more advanced topics.

NOte
Unless otherwise specified, the term database in
this chapter refers to an Essbase multidimensional
database. In the Essbase Studio console, an Essbase
database is also called a cube.

In this demonstration, we build an Essbase database in five steps:

 Map the data source. ■

Model the data source. ■

Build dimensions (hierarchies). ■

Model the Essbase database. ■

Deploy the Essbase database. ■

After building the Essbase database, we will calculate it and show you how to
validate it. Along the way, we will discuss related aspects of an Essbase database.

C

Chapter 5: Building Your Essbase Database 221

NOte
The instructions and screen captures in this
chapter reflect a Windows-based environment. For
instructions for UNIX-based systems, see the Oracle
Essbase documentation set.

This demonstration is for illustrative purposes only. There are a many ways to
build an Essbase database. The specific methodology you use will depend on your
data sources, the data-integration components that are available to you, the versions
of your software, and your overall comfort level with Essbase.

While there are external aspects of building a database, such as extract,
transform, and load (ETL) processes, the components discussed are those that are
provided out of the box with Essbase. As indicated in Figure 5-1, the following
components are required for this demonstration:

 Essbase server ■

Essbase Administration Services server and console ■

Essbase Studio server and console ■

Metadata
Repository

Essbase Server

Administration
Services Server

Essbase Studio
Server

Essbase Studio
Console

Administration
Services Console

Relational

ERP

Legacy

MDM

Flat-files

FiguRe 5-1. Essbase architecture used for the demonstration

222 Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution

Because we use a relational database as the data source in this example, we had
a choice of build tools for this demonstration: Essbase Studio, Integration Services,
or Administration Services. Both Essbase Studio and Integration Services are much
faster to deploy against this type of data source than Administration Services. We
selected Essbase Studio because it is likely to replace Integration Services in the
future, as discussed in Chapter 3.

Essbase Studio also provides a significant advantage over Integration Services, in
that it generates data-load rules—the underlying files used to build and update a
database—automatically. Essbase Studio provides a graphical means to generate
load rules. Instead of needing to map each individual field and select a variety of
specific settings, you can accomplish these tasks using simple drag-and-drop
actions. In short, Essbase Studio simplifies the process of creating dimensions and
building a database. At the end of the process, Essbase Studio not only builds the
Essbase database, but it also places the load rules it generates into the database
directory for use in batch processes.

If you intend to follow the steps in this chapter’s example, you need to create
the relational database to be used as a data source. First, you need a working
installation of one of the following relational databases: Oracle Database, SQL
Server, Teradata, or DB2. You then run the SQL scripts that ship with Essbase Studio
to create all of the tables, data, and metadata in the relational database. The SQL
scripts are located in the sqlscripts subdirectory of your Essbase Studio installation.
The sample relational database is called TBC (for The Beverage Company).

From Source to Database
with essbase Studio
In this section, we demonstrate an efficient method for building and deploying an
Essbase database using Essbase Studio. We start with an overview of the Essbase
Studio console. We then walk through the steps required to build and deploy an
Essbase database, as outlined in the previous section. Then we will take a quick
look at one of the generated load rules, summarize the building process, and
calculate and validate the completed database.

Overview of essbase Studio
Introduced in version 11.x of Essbase, Essbase Studio represents a much simplified
methodology for creating Essbase databases compared to previous methods. While
it is always possible to create a complete model using load rules created manually
in Administration Services, Essbase Studio provides distinct advantages:

 Greater reusability of metadata (including dimensions) and data across ■
analytic applications without requiring the user to model twice

Chapter 5: Building Your Essbase Database 223

Lineage tracking of a database and its parts (dimensions, members, and so ■
on), which allows administrators to perform impact analysis of changes to
underlying data sources and elements on analytic applications

Unification of database-building processes, regardless of the data source type ■

Enhanced ability to drill through from Essbase to supporting data sources ■

Simplification of federated data source environments ■

Ease of integration into existing batch processes ■

To start the Essbase Studio server on a Windows-based system, if the server was
installed as a service, open the Windows Services management console and start
the service named Hyperion Essbase Studio Service. Otherwise, from the Windows
taskbar, select Start | Programs | Oracle EPM System | Essbase | Essbase Studio |
Start Server. The server starts in the foreground after a few seconds.

NOte
On a Windows system, the display may show error
messages as the Essbase Studio server tries to load
drivers that are not installed. For example, you will
see an error message if you do not have the MySQL
driver installed. The messages are a normal part of
the Essbase Studio startup process. They will not
interfere with the server’s operation.

To start the Essbase Studio console, select Start | Programs | Oracle EPM
System | Essbase | Essbase Studio | Essbase Studio Console. When prompted, enter
your user name and password, and then click OK.

As shown in Figure 5-2, the Essbase Studio console contains three distinct areas:

 Metadata Navigator ■ The left panel contains all analytic objects created
based on the data sources and database schemas that are selected in the
Data Sources panel on the right. These include (but are not limited to)
hierarchies, cube schema, drill-through reports, and metadata elements
(which are used to create hierarchies).

Work Area ■ In the central panel, you can edit objects selected in the
Metadata Navigator or the Source Navigator.

Source Navigator ■ The right panel lists data sources and data source
internal mappings (minischemas). You can add, delete, and edit data source
connections in this area. You can also add tables from an existing source,
modify joins, and edit or create a minischema.

224 Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution

Mapping Data Sources
At the time of publication, Essbase Studio supports the use of data from any of the
following sources for an Essbase database (a JDBC driver is required for each source):

 Oracle Database ■

OBIEE ■

Oracle Enterprise Performance Management Architect ■

Microsoft SQL Server ■

IBM DB2 ■

FiguRe 5-2. The Essbase Studio Console

Metadata Navigator Source NavigatorWork Area

Chapter 5: Building Your Essbase Database 225

Teradata databases ■

Sun Microsystems MySQL ■

Delimited text files ■

NOte
Microsoft Excel cannot be used directly as a data
source for an Essbase database. The data must first
be saved to a delimited text file (a comma-separated
values, or CSV, file).

As noted earlier, for this demonstration, we use a relational database as a data
source. Therefore, while the following procedures are generalized, the examples
and screen captures represent a relational database as a data source.

Follow these steps to map a relational data source from the Essbase Studio
console:

 1. In the Source Navigator, select the Data Sources tab.

 2. Right-click the Data Source root node and select New | Data Source.

 3. The Connection Wizard starts. Specify the parameters—database type, server
name, database SID, and so on—applicable to your local environment and
data source. In the both the Connection Name and Database Name fields,
enter tBC for this example. Then click Next to continue. The following
image is for illustrative purposes only; do not copy these values.

226 Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution

 4. On the Select Tables page, select the following tables, and then click the
Add button:

TBC.Family ■

TBC.Market ■

TBC.Measures ■

TBC.Population ■

TBC.Product ■

TBC.ProductDim ■

TBC.Region ■

TBC.Sales ■

TBC.Scenario ■

TBC.Supplier ■

Chapter 5: Building Your Essbase Database 227

 5. Click Finish. In the Source Navigator, the database is added to the Data
Sources tree.

 6. If necessary, expand the Data Sources root node to see the new data source.
Then expand the TBC database tree to view the tables in the database.

 7. Expand one of the table trees to view the columns in the table.

 8. Right-click the Family table and select View Sample Data. A sample set of
records from the table is displayed. Note that the column headings match
the column names in the table.

 9. Close the Sample - Family tab by clicking the X icon beside the tab name.

Modeling the Data Source
In a sense, modeling the data source is optional. The reason we model the data
source is so that we can load data from a relational source. Therefore, if you want to
build an outline from the relational source without loading data, you can skip this
step. However, you will need to create custom load rules to load data into the
database later. For more information, see the “Creating Custom Load Rules” section
later in this chapter. For this demonstration, we will model the data source and let
Essbase Studio do the work of generating the load rule files.

NOte
If data is stored in flat files, the wizard used to map
the data source does the modeling automatically.
This step is not required.

228 Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution

Minischema Basics
You model a relational source by creating an Essbase Studio minischema. In the
minischema, you create the join relationships between tables. The minischema does
not contain hierarchy information; it simply provides the mappings so that Essbase
Studio can traverse the data source. The following are other important points
regarding minischemas:

 Text files can be added to a minischema for logical grouping only. They ■
cannot be joined to other text files or relational tables.

Essbase Studio supports the use of multiple fact tables in the minischema. ■

There is no requirement to have a fact table for hierarchy creation or ■
Essbase database deployment. To that end, you can use columns from a
relational source to build the model without a minischema, and use a flat
file to load the data.

Creating a Minischema from a Relational Source
Follow these steps to create the minischema for this example:

 1. In the Source Navigator, select the Minischemas tab.

 2. Right-click the Minischemas root node and select New | Minischema.

 3. Specify a name for the minischema and, optionally, a description of its
purpose. For this example, enter the name SalesAnalysis. You do not need to
enter a description. Then click Next.

Chapter 5: Building Your Essbase Database 229

 4. On the Add/Remove Tables page, ensure TBC is selected and add all tables
to the minischema.

 5. Click Finish. The tables in the database are laid out in the schema viewer.

230 Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution

 6. Right-click in the schema viewer and select Add Joins by Inspection.

CAutiON
While the Add Joins by Inspection option is selected
here for simplicity, adding joins by inspection can
potentially create numerous repetitive joins between
tables. For a production database, it is generally
better to inspect the keys and foreign keys and build
the joins manually.

 7. In the Create Joins by Inspection dialog box, select Select all Items, and then
click OK. Like columns across tables are joined.

 8. Right-click in the schema viewer and select Layout Schema to view the
current schema.

Adding a Recursive Join to the Minischema
Now we will modify the schema to include a recursive join for the Measures table.
Adding a recursive join lets us do parent/child dimension builds from the table.

 1. Right-click the Measures table and select Add Join. The Properties dialog
box appears. Here, you can edit the properties of a minischema join.

 2. Select the Measures table from the second drop-down list.

Chapter 5: Building Your Essbase Database 231

 3. In the Column area, click in the first cell and select CHILD from the drop-
down list.

 4. Click in the cell to the right and select PARENT from the drop-down list.

tiP
Alternatively, in the Measures table (in the schema
viewer), you can select PARENT and drag and drop
it on top of CHILD.

 5. Click OK to add the join.

 6. Save the changes to the SalesAnalysis minischema and close it.

Building Dimensions (Hierarchies)
When using other Essbase components, we use the term hierarchy to refer to a specific
portion of a dimension. In Essbase Studio, hierarchy means dimension. Therefore, this
section focuses on building the dimensions—in other words, creating the hierarchies—
for our database. Hierarchies are built using metadata elements, such as column names
in a relational source and fields in a text file.

232 Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution

In this demonstration, we begin by creating a folder structure in the Metadata
Navigator. The folder structure enables us to organize the elements for the new
database, including metadata elements and hierarchies. You can create as many
folders and subfolders as desired to organize your deployment. You can add folders
at any time, but we recommend that you organize the metadata elements before
creating hierarchies, because it simplifies the process.

A metadata element is anything that you can use to create an analytical model.
A metadata element in Essbase Studio is any of the following:

 Relational column (based on the source or user defined) ■

Field from a text file ■

User-defined element (such as a variance that does not exist in the relational ■
source)

Hierarchy ■

Drill-through report ■

Cube schema ■

Hierarchies are built by dragging and dropping metadata elements into the
hierarchy. In Chapter 2, we talked about dimensions organized from top to bottom
(generations), from bottom to top (levels), or in a recursive fashion (parent/child).
Essbase Studio removes the necessity to think about a dimension build in this way.
Instead, you drag and drop the sources for each level either from the Metadata
Navigator (the easiest way) or directly from the Data Sources tab in the Source
Navigator. The term level is used here in a very generic sense, in that there is no
requirement to understand the concepts of levels, generations, parents, or children.
You can create custom members, hierarchies, attributes, and alternate hierarchies in
the same fashion. At any point during the process, you can see a full preview of the
resulting hierarchy.

NOte
The hierarchy corresponds to the Essbase outline
discussed in the “Designing an Essbase Database”
section in Chapter 3. If you like, you can use the
Administration Services console to view and edit the
hierarchy in the Outline Editor.

Chapter 5: Building Your Essbase Database 233

Creating a Folder Structure in the Metadata Navigator
To create a folder structure, follow these steps:

 1. In the Metadata Navigator, right-click the Root folder and select New | Folder.

 2. In the Properties dialog box, name the folder SalesAnalysis, and then click OK.

 3. Create the following additional folders under
the SalesAnalysis folder: Dimension elements,
Hierarchies, Cube Schemas, and Drill through
Reports.

Selecting Metadata elements
Follow these steps to add metadata elements to the Dimension Elements folder:

 1. In the Source Navigator, select the Data Sources tab.

 2. Expand the Market table.

 3. Drag STATE from the Source Navigator to the Metadata Navigator, and drop
it in the Dimension Elements folder.

 4. In the Source Navigator, expand the Region table and drag REGION to the
Dimension Elements folder.

 5. Repeat the process to add the following columns to the Dimension Elements
folder:

table Name Column Name

ProductDim FAMILY

Product SKU

CAFFEINATED

OUNCES

PKGTYPE

Region DIRECTOR

234 Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution

Creating Hierarchies
Follow these steps to create the hierarchies for this example:

 1. In the Metadata Navigator, right-click the Hierarchies folder and select
New | Hierarchy.

 2. Specify a name for the hierarchy. For this example, enter Product.

 3. Drag FAMILY from the Dimension Elements folder and drop it in the first
empty cell in the data table.

 4. Drag SKU from the Dimension Elements folder and drop it on top of the
FAMILY entry in the first cell. SKU becomes a child of FAMILY.

 5. Add the following columns to the Product hierarchy at the specified level:

Hierarchy Name First Level Second Level

Product OUNCES SKU

Product PKG TYPE SKU

Product CAFFEINATED SKU

Chapter 5: Building Your Essbase Database 235

 6. Click Save and Preview. The Product hierarchy is displayed in a tree format.

236 Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution

 7. Following the same procedure, create a Market hierarchy with the following
levels:

Hierarchy Name First Level Second Level

Market REGION STATE

Market DIRECTOR STATE

 8. Click Save and Preview. The Market hierarchy is displayed.

 9. Create the following additional hierarchies and levels:

Hierarchy Name First Level Second Level

Accounts PARENT CHILD

Scenario SCENARIO N/A

Building a time Dimension
Our demonstration requires a time dimension, but our data source does not
enumerate year, quarter, and month columns. However, it does contain a column
with a date-time stamp. Through a simple wizard, Essbase Studio can extract the
individual date elements from a single record to create the time dimension.

Chapter 5: Building Your Essbase Database 237

tiP
If your data source contains columns or fields for
years, quarters, months, weeks, days, and so forth,
you can build a time dimension in the same fashion
as you would any other hierarchy.

 1. In the Metadata Navigator, right-click the Dimension Elements folder and
select New | Dimension Element. The Properties dialog box is displayed.

 2. Specify a name for the new element. For this example, enter Quarter.

 3. Select the Functions tab below the Formula list box.

 4. Expand Date.

 5. Select the QuarterAsString function and click the Add button beside the
Caption Binding area.

238 Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution

 6. Select the Source tab.

 7. Expand TBC, then Sales.

 8. In the Caption Binding area, select the string $$DateOperand$$. With the
string selected, select Transdate from the Source tab, and then click the Add
button beside the Caption Binding area. Transdate should overwrite the
$$DateOperand$$ string.

 9. Click OK to add the element.

Chapter 5: Building Your Essbase Database 239

 10. Repeat the process to create a new dimension named Month. Specify the
MonthShortName function.

 11. In the Hierarchies folder, create a hierarchy named Year. Make Quarter the
top of the hierarchy, and nest Month underneath it.

Modeling the essbase Database
In this part of the demonstration, we select the hierarchies (dimensions) to include
in the Essbase database. The Essbase Studio console refers to this process as
“creating a cube schema and model.” Recall that cube is another name for a
multidimensional database.

Let’s take a step back for a moment. A cube schema is simply a representation of
the actions you want Essbase Studio to take. This is different from a minischema,
which describes how Essbase Studio should navigate the relational structure in order
to retrieve numeric data across the set of tables. In the case of a cube schema, you
are describing which dimensions you would like Essbase Studio to deploy to an
Essbase database. The cube model is where you specify properties for deployment,
such as the following:

 Which dimensions are dense or sparse ■

The consolidation operator assigned to a member ■

Whether the resulting database should contain unique member names or ■
allow for duplicate names

Depending on the nature of the data source, it is possible that all of the
properties are being housed in the relational source. We have worked on a number
of deployments where customers store all of the Essbase database information
(metadata) in columns of the relational model. This might include consolidation
operators, member formulas, member aliases, and user-defined attributes.

A centralized data warehouse or data mart makes it easier to manage changes to
this information and to push them out to existing models. As the information changes
in the data warehouse or mart, Essbase Studio automatically picks up those changes
when it deploys the Essbase database. Once deployed, the implemented changes are
available to the end users of the system. This way, you do not need to manage these
changes on each deployed database individually.

The following procedures walk through the creation of the cube schema/model,
as well as the assignment of various Essbase properties. Many of the Essbase
properties for this model are stored in the relational database source, and the steps
show you how to map these into your Essbase database.

240 Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution

Creating a Cube Schema and Model
Follow these steps to create the cube schema and model for this example:

 1. In the Essbase Studio console’s Source Navigator, select the Data Sources tab.

 2. Expand TBC, and then the Sales table.

 3. Drag AMOUNT from the Source Navigator to the Metadata Navigator, and
drop it in the Dimension Elements folder.

 4. In the Metadata Navigator, right-click the Cube Schemas folder and select
New | Cube Schema.

 5. Specify a name for the cube schema. For this example, enter tBC1.

 6. Expand the Hierarchies folder and add the following hierarchies: Accounts,
Year, Scenario, Product, and Market.

 7. Expand the Dimension Elements folder and add Amount to the Measures area.

Chapter 5: Building Your Essbase Database 241

 8. Click Preview Hierarchies. Review the dimension.

 9. Click OK to close the preview, and then click Next.

 10. On the Cube Schema Options page, select Create Essbase Model.

 11. From the Accounts Dimension drop-down list, select Accounts.

 12. Click Finish to create the cube schema.

The next task is to set all the Essbase properties in the Essbase model.

Setting Properties in the essbase Model
To set properties for the model, follow these steps:

 1. If the TBC1 model is not displayed, double-click TBC1 in the Metadata
Navigator.

 2. Right-click in the model and select Essbase Properties to display the
properties of the model.

242 Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution

 3. Expand Accounts and PARENT, and then select CHILD.

 4. Select the Info tab and specify the settings as follows:

Consolidation ■ Select External source and then select CONSOLIDATION.

two Pass Calculation ■ Select External source and then select
TWOPASSCALC.

Data Storage ■ Select External source and then select Storage.

Chapter 5: Building Your Essbase Database 243

 5. Select the Account Info tab and specify settings as follows:

time Balance ■ Select External source and then select TIMEBALANCE.

Skip ■ Select External source and then select SKIP.

Variance Reporting ■ Select External source and then select
VARIANCEREPORTING.

244 Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution

 6. Select the Formula tab. Select External source and select Formula from the
drop-down list.

 7. Select the UDA tab. From the External source drop-down list, select UDA
and click Add to List.

 8. Click Apply to apply these member properties.

 9. Select PARENT from the navigation tree. Repeat steps 4 through 8.

 10. Expand the Product dimension and select OUNCES.

 11. On the General tab, select Essbase Attribute for SKU.

 12. Change the Attribute Type to Numeric.

Chapter 5: Building Your Essbase Database 245

 13. Specify the remainder of the settings for this model as follows:

Hierarchy Column tab Property Setting

Year Year Info Dimension Type Time

Year Year Info Dimension Storage Dense

Scenario SCENARIO Info Consolidation ~

Product PKGTYPE General Select Essbase
Attribute for SKU

String (default)

Product CAFFEINATED General Select Essbase
Attribute for SKU

Boolean

Market STATE
(under REGION)

UDAs External Source UDAMKTSIZE

Market STATE
(under REGION)

UDAs External Source UDAMKTTYPE

 14. Click Close. If you are prompted to validate the model, select Yes. Fix any
issues identified. When the validation is complete, click Close.

NOte
If you receive a message stating that the selection of
External for data storage for the column Child can
cause trouble, ignore this message. This message
indicates that if not configured properly, the external
settings can cause invalid configurations on cube
deployment. The sample database source is free of
data errors.

Deploying the essbase Database
The actual deployment is the simplest of all steps. At this point, all you need to do is
specify a destination for your database, select a few deployment options (if desired),
and let the process run.

For the deployment target, you can specify an existing Essbase server that you
previously defined in Essbase Studio, or you can define a new Essbase server
directly from the Cube Deployment Wizard. For this demonstration, we will define
the Essbase server during deployment to preserve a logical flow through the chapter.
Alternatively, you can define a deployment target using the data source window
when you map data sources. There is no advantage or disadvantage to defining the
Essbase server at deployment or earlier in the process.

246 Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution

The deployment options allow you to specify how you want Essbase Studio to
treat the build process. You can choose to deploy only the outline (metadata only),
load data to an existing outline, or both. If you are updating an existing database,
you can tell Essbase Studio to remove all members and rebuild, or tell it to build a
dimension incrementally and update the numeric data accordingly. Many other
deployment options are available. The intention of this demonstration is to provide
a framework for the overall process. For specific information on the deployment
options, see the Oracle Essbase Studio User’s Guide.

Deploying the Database to an essbase Server
Follow these steps to deploy the sample Essbase database:

 1. With the TCB1 model open (if necessary, expand Cube Schemas in the
Metadata Navigator and select the model), right-click TCB1Model and select
Cube Deployment Wizard.

Chapter 5: Building Your Essbase Database 247

 2. Click New Connection.

 3. Define a new Essbase deployment target by completing the fields in the
Essbase Login dialog box as follows, and then click Login.

Name The name you want to display in the interface
(for this example, specify Demo)

Description An optional parameter allowing you to provide
a description about the Essbase target (for this
example, you can leave this field blank)

Server Hostname or IP address of your Essbase server

Port Port on which Essbase is listening (1423 is the
default port; you should not change it unless
you have been told specifically that the default
Essbase port was not used)

user User name that you specify when connecting to
Essbase

Password Password that you specify when connecting to
Essbase

 The following image is for illustrative purposes only; do not copy
these values.

NOte
The login information you supply in the
Essbase Login dialog box needs to reflect your
implementation of Essbase. If you do not know this
information, contact the person responsible for the
Essbase server in your organization.

248 Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution

 4. Select the new connection from the Essbase Server Connection drop-down
list. In this case, select Demo.

 5. Specify names for the application and database. For this example, name
both of them tBC1.

tiP
Although the Application and Database fields are
drop-down lists, you can also type the name of a
new application and database into the fields.

 6. Under Load Task Type, select Build Outline and Load Data.

 7. Click Finish. Essbase Studio initiates the deployment of the database.

Chapter 5: Building Your Essbase Database 249

taking a Look at the Load Rules
As mentioned earlier in this chapter, Essbase Studio is a graphical load rule
generator. You can use the Administration Services console to look at the TBC1
database we just deployed and see the load rules that were created by Essbase
Studio. Figure 5-3 shows the Administration Services console with the rules files
displayed in the left navigation panel. The TBC1 rules file is open in the Data Prep
Editor.

In the Data Prep Editor, the upper half of the window shows the original data
source. The lower half shows the load rule that was created based on the data
source and the selections made while building the database. The rows represent
records, and the columns are the dimensions. There is a single metric per record,
which is located in the last column, entitled *Data*.

You can use these load rules to automate your processes, as discussed in the
“Automating Processes” section later in this chapter. You can also create custom
load rules, as explained in the “Creating Custom Load Rules” section later in this
chapter.

FiguRe 5-3. Autogenerated rules files for the database

250 Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution

Summary of the Database Building Process
At this point, we have successfully deployed an Essbase database from scratch.
Before we move forward, let’s review the steps that we have covered so far and look
at how they map to our overall architecture.

Recall the first four steps:

 1. Map the data source.

 2. Model the data source.

 3. Build dimensions (hierarchies).

 4. Model the Essbase database

Figure 5-4 shows the components used in the process. We used the Essbase
Studio console to complete all the steps. First, we mapped the data source, which
connected the Essbase Studio server to the data source. We then modeled the data
source so that load rules could be created, and we created the hierarchies that
represent our dimensions. Finally, we modeled the Essbase database and pushed
information about our dimensions and the Essbase database structure into the
metadata repository.

FiguRe 5-4. Components used in the first four steps of the demonstration

Essbase Studio
Console

Metadata
Repository

Essbase Studio
Server

Relational

ERP

Legacy

MDM

Flat-files

Chapter 5: Building Your Essbase Database 251

In the fifth step, the Essbase server enters the picture. As shown in Figure 5-5,
when the Essbase database is deployed to the Essbase server, a physical database is
created on that server.

Figure 5-5 also includes the Administration Services server and console. After
deployment, we used the Administration Services console to view a generated load
rule.

NOte
So far, we have worked completely in the user
interfaces. This is not, however, how deployments
operate after the prototype stage. Essentially, you
would use the Essbase Studio console for modeling,
but leverage the standard Essbase automation
capabilities to deploy a production-level database.
For more information, see the “Automating
Processes” section later in this chapter.

The next steps are to calculate the Essbase database and then validate the data.

FiguRe 5-5. Components used when the Essbase database is deployed

Metadata
Repository

Essbase Server

Administration
Services Server

Essbase Studio
Server

Essbase Studio
Console

Administration
Services Console

252 Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution

Calculating the essbase Database
You now have a database with data loaded. However, as illustrated in Figure 5-6,
your database is generally not usable until you run a calculation process.

It is important to understand why calculation is required. To make this clear,
let’s take a look at the simple hierarchy shown in Figure 5-7. If you load the sales
value 10 into all of the bottom level (leaf node) markets, then a generated report
might look like the report in Figure 5-8.

If the values at East and Market are not dynamically calculated (derived at
request time), then there is no total at East or Market. To get a value to appear at that
level, you need to execute a calculation to tell Essbase to, at the very least, read the
outline and do what the consolidation operators tell it to do. From Figure 5-7, you
see that this is simple addition. The value for East is the sum of the values for the
individual states—that is, 50. This total is then added to the totals for the other
regions (not pictured) and rolled up to produce a Market total.

FiguRe 5-6. A database needs to be calculated to be usable.

Report
and

Verify
Load Data

Calculate

Build MDB

FiguRe 5-7. A simple hierarchy

Chapter 5: Building Your Essbase Database 253

To accommodate simply moving data through the model, every database comes
with a prebuilt calculation, called the default calculation, which reads the outline
and does exactly what the consolidation operators say to do. Aggregate Storage
databases calculate all upper level intersections dynamically at query time. As such,
there is no need to run a calculation to see data at a given intersection. Performance
is greatly improved by running at least the default aggregation set. Running the
default aggregation set after a build is the recommended process. For block storage
databases, you need to run the default calculation yourself, as follows:

 1. In the Administration Services console, expand Essbase Servers, then your
server, then Applications, then Sample.

 2. Right-click the database node and select Execute Calculation.

 3. In the Execute Calculation dialog box, select Default calculation, and then
click OK.

Sometimes you need to do something more complex than just aggregate the
model. You might want to clear data in a certain portion of the database, and
aggregate it in a different fashion. For example, you may need to recalculate a
portion of the model when comparing exchange rates between actual and forecast
scenarios. To handle situations like this, you can create member formulas and
custom calculation scripts. Both of these topics are discussed in the “Creating
Member Formulas and Calculation Scripts” section later in this chapter.

FiguRe 5-8. Report showing the output of the simple hierarchy and its data

254 Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution

Note that when we built the dimensions for the database, we linked a formula that
is defined in the metadata repository to the PARENT and CHILD members of the
Product hierarchy. When the database is calculated, these formulas are also processed.

Validating the essbase Database
The model is built, the data loaded, and a calculation is run. The next step is to
validate the data and metadata in the database by running a series of reports on the
Essbase database and comparing the results to the original data and reports. Be sure
to share the results with your business users and investigate any analytic challenges.
You should expect to need to tweak dimensions, members, hierarchies, attributes,
and formulas based on their feedback. This will drive the greatest flexibility for
future use.

You can create reports for Essbase in many ways, including with Oracle
Hyperion Smart View, Oracle Essbase Spreadsheet Add-in, Oracle Business
Intelligence Answers, Oracle Hyperion Financial Reporting, Oracle BI Publisher,
plus a variety of third-party reporting tools. Most of these tools make use of the
built-in Essbase reporting languages to query the Essbase database. If you want, you
can use the built-in reporting languages directly to create your reports. For more
information, see the “Using Essbase Query Languages for Reports” section later in
this chapter.

using essbase Features
The preceding demonstration covered the basic workflow for building, deploying,
calculating, and validating an Essbase database. In this section, we will address
some optional features and more complex functionality available with Essbase.

We start by introducing two powerful features available with Essbase Studio:
drill-through reports and lineage tracking. Then we move from Essbase Studio to
Administration Services. We use the Administration Services console to take a closer
look at the anatomy of a load rule and show you how to create custom load rules.
We then return to the concept of member formulas, introducing the scripting
languages and creating a member formula and a calculation script. We wrap up the
section with a look at how to use the built-in reporting languages available with
Essbase.

Many of the examples in this section use the Sample Basic database, which
contains the same data as the TBC1 database used in this chapter’s demonstration.

Creating Drill-through Reports
Drill-through reports provide one way to implement an HOLAP architecture, where
summary data is stored in the Essbase database, but detailed data remains in the
relational source. The ability to create a drill-through report is a distinct advantage
Essbase Studio has over the traditional load rule approach.

Chapter 5: Building Your Essbase Database 255

understanding How Drill-through Works
Drill-through is the ability to navigate from your intersection in an Essbase reporting
environment to data found in another source. Essbase Studio passes your current
context to the other data source. For example, Figure 5-9 shows a typical spreadsheet
report for the TBC1 database. When you drill into the cell at the intersection of New
York and Root Beer, Oracle Hyperion Smart View checks for the existence of a drill-
through report for this data cell and finds one for Supplier detail.

When the report is launched, the context of the data cell—that is, New York and
Root Beer—is passed into a SQL statement. The resulting report, shown in Figure 5-10,
lists only the suppliers of Root Beer to New York

FiguRe 5-9. Smart View finds a drill-through report for Supplier detail.

FiguRe 5-10. The Supplier report lists the suppliers of Root Beer in New York.

256 Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution

Essbase Studio supports the following sources for drill-through reports:

 Relational sources ■

URL, standard (manual) or within the template for Oracle Hyperion ■
Financial Data Quality Management (FDM) or for Oracle BI EE

Custom SQL ■

Java method ■

Creating a Drill-through Report
To create a drill-through report, follow these steps:

 1. In the Metadata Navigator, right-click the Drill Through Reports folder
(under SalesAnalysis) and select New | Drill-through Report.

 2. Specify a name for the report. For this example, enter Supplier.

 3. In the Intersections area, click Add.

 4. Expand SalesAnalysis and Hierarchies.

 5. Select Product, and then click OK.

 6. Change the intersection level to be only Family.

Chapter 5: Building Your Essbase Database 257

 7. Select the Report Contents tab.

 8. Add the following columns to the reports (you can drag and drop from either
the Data Sources area or the Metadata Navigator): Supplier Alias, Address,
City, State, and Zip.

 9. Select the Associations tab.

 10. Select SalesAnalysisModel, and then click Save.

 11. Select the Report Contents tab.

 12. Deselect Show Duplicates in Report, and then click Test.

258 Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution

 13. For Family, enter a value of 200. Press enter and click Show Result. Ensure
that the result looks similar to the following report.

 14. Click Close twice.

The report is now available; no further deployment steps are required.

Leveraging Lineage tracking
The ability to track lineage on an Essbase database and the individual dimensions
that make up that database is another advantage of using Essbase Studio. A constant
issue with analytical systems is adapting to change. By the time, the data is cleansed
and ultimately moved to an analytical database, the needs on the data change. For
example, the economic conditions vary, competitive changes alter the business
model, or new data sources are identified. In many cases, this results in changes to
the analytical structure or the sources upon which it is built. You need to consider
what impact a change in structure or source has on your analytical environment.
Additionally, after the data models are deployed, you will want to be able to track
data from the source to target and back.

Chapter 5: Building Your Essbase Database 259

To help solve both of these problems, Essbase Studio provides lineage tracking.
Through either the context menu or standard menu selection, you can request
lineage diagrams for any metadata element (up to and including deployed models).
Figure 5-11 shows a lineage chart for the Market hierarchy. As you can see, the
chart displays information back to the original source columns or fields. It also
shows the Essbase databases in which the Market dimension is used; in this case, it
is used in two Essbase databases TBC and TBC1. Moreover, you also have the
ability to review individual object properties from the lineage chart. For example,
you can right-click the Market hierarchy object and see specific storage properties.

Creating Custom Load Rules
While Essbase Studio automatically generates rules, you may find yourself in a
situation where you want to do a highly custom build or load process on a
database. In this case, it may be necessary to use the Data Prep Editor in the
Administration Services console to create a load rule directly. Figure 5-12 shows the
Administration Services architecture with the Data Prep Editor noted.

A load rule is a mapping object that tells the Essbase server how to read a data
source (flat file or relationally based). Load rules have two functions: dimension
build and data load. A single rule can perform both functions if required. Let’s look
at both types, and then create a dimension build rule from scratch.

Dimension Build Rules
The goal of a dimension build rule is to add dimensionality to a database or to alter
existing dimensionality. For example, you can use a build rule to update the
corporate reporting structure in the database or to add additional SKUs to a product

FiguRe 5-11. Lineage chart for the Market hierarchy

260 Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution

dimension. You can have a build rule reorder or incrementally build portions of
your database. In addition, a build rule can do something as simple as change an
alias on a member.

Figure 5-13 shows a flat file, displayed in Notepad, which we will use as a data
source on which to create a dimension build rule. The file, from left to right,
presents a hierarchy. In Chapter 2, we introduced the concepts of generations and

FiguRe 5-12. Administration Services architecture

Administration
Services Server

Essbase Server Data Prep Editor

Administration
Services Console

Relational

ERP

Legacy

MDM

Flat-files

FiguRe 5-13. Creating a dimension build rule starts with a data source.

Chapter 5: Building Your Essbase Database 261

levels in Essbase. The contents of this file represent generations in a geographic
dimension (for example, Market or Regions).

The rule file (shown with a .RUL extension in the database directory) for this
data source might look similar to the rule displayed in Figure 5-14.

The Data Prep Editor has two view areas. On the top is the source file in its
original state. On the bottom, the load rule shows how Essbase would interpret the
data source. For example, the first column should be placed at the second
generation of the Markets dimension (GEN2,Markets). The other columns continue
to subsequent generations in the hierarchy. In addition, the first line is ignored as a
column header and is not built into the model. This is not explicitly shown, but is a
simple setting in the rule.

The settings are exactly the same whether you are working with a flat file or
querying the metadata directly from a relational source. Essentially, columns in a
table are not treated any differently from columns in a file.

Figure 5-15 shows the resulting database outline after this rule is run. Essbase
parses the data file and reads it as instructed by the load rule.

This is a very simple example. A dimension build rule can handle much more
complex build cases. It can be used to add, ignore, reorder, concatenate, split, or
truncate columns. You can also perform string replacements, record selection/rejection,

FiguRe 5-14. A dimension build rule maps column headings to members in a
hierarchy.

262 Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution

and conversions where required. Furthermore, the rules file does not need to be
structured from the top down using generations; you can easily create rules to handle
building from the bottom up (levels) through recursive (parent-child) relationships.

Data Rules
You can have load rules that load numeric or textual data into the model. As is the
case with dimension build rules, data rules are simply instructions to the Essbase
server on how to process the file.

For example, the data source, shown in Figure 5-16, contains columns for each
of five dimensions—Market, Product, Scenario, Time, and Measure—plus a Data
column. All dimensions are represented for each record (row), and the single
numeric fact is listed at the end of each record.

FiguRe 5-15. When run, the database outline is updated to include the hierarchies.

Chapter 5: Building Your Essbase Database 263

Figure 5-17 shows a sample rules file for this source. The data-load rule simply
tells Essbase which dimension to scan in order to find the matching members. For
instance, Essbase will look for Jan in the dimension named Year. It is important to
note that the last column is specified as the data value. After identifying the specific
intersection denoted by the dimension members, Essbase places the value in the
Data column into the database at that intersection.

Figure 5-18 illustrates a different data source example. In this case, the Measure
members are presented as column headers. The data rule to interpret this data source
presentation is shown in Figure 5-19. Notice that this rule handles the Measure
dimension differently than in the first example. Each row includes multiple values of
the Measures dimension for a single Market-Product-Scenario-Year intersection.

FiguRe 5-16. Flat file with five column headers that map to dimensions

FiguRe 5-17. Data rule for the preceding data source

264 Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution

Creating a Load Rule Manually
In this section, we build a load rule that uses a flat file as its data source. The flat file
accompanies the Sample Basic database example that ships with Essbase. This is the
same sample application used in the Oracle Essbase Database Administrator’s Guide.
If you do not have this sample, you can download it from the Oracle Technology
Network (OTN) web site.

This procedure provides a general guideline for working with load rules. While it
focuses on creating a dimension build rule, the process for creating a data rule is
similar. For more information, see the Oracle Essbase Database Administrator’s Guide.

As was the case with the Essbase Studio example, this procedure is for illustrative
purposes only. The specific process to create a custom rule varies based on many
factors, including the data source and the type of structure you want to build in the
Essbase database.

Finally, it is worth repeating that Essbase Studio eliminates the necessity (in most
cases) to create load rules manually, as it generates the load rules based on the
actions you take in the Essbase Studio console.

FiguRe 5-18. Flat file with Measures members as column headings

FiguRe 5-19. Data rule for the second data source

Chapter 5: Building Your Essbase Database 265

Selecting the Data Source for a Load Rule Follow these steps to start Administration
Services and select the data source for the load rule:

 1. To start the Administration Services server, select Start | Programs | Oracle
EPM System | Essbase | Administration Services | Start Administration
Services (Embedded Java Container). If you have the Administration Services
server installed as a service in your environment, you can start the service
by issuing the specific operating system command or by using the specific
operating system user interface. For example, in Windows, open the Services
Management console and start the Hyperion Administration Services service.

 2. To start the Administration Services console, select Start | Programs | Oracle
EPM System | Essbase | Administration Services | Start Administration
Services Console.

 3. In the Metadata Navigator, expand Essbase
Servers, then Applications, then Sample,
then Basic.

 4. Under demodrive.Sample.Basic, right-click
Rules File and select Create Rules File.

 5. The Data Prep Editor appears in the work area of the Administration Services
console. Select File | Open Data File. The Open dialog box displays a series
of files stored directly on the Essbase Server.

266 Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution

tiP
You can browse to a file located elsewhere by
selecting the File System tab of the Open dialog box.

 6. Select Genref.txt and click OK. Genref.txt is a metadata file. There are no
numeric data values like those for sales or cost. We will use it to build an
outline.

 7. To specify that you are building the outline (not loading data), select View
Dimension Build Fields from the toolbar or the View menu.

Specifying File-Based Settings for the Rule Now, you need to specify any file-
based settings, such as file headers that you want to skip during the build process.
Follow these steps:

 1. Select Options | Data Source Properties. The Data Source Properties dialog
box appears.

 2. The Data Source Properties dialog box lets you specify things like file
delimiters and headers, If you need to specify any settings for the data source,
do so at this time. For this example, no changes are required. Click Cancel.

 3. Select Options | Dimension Build Settings. The Dimension Build Settings
dialog box appears.

Chapter 5: Building Your Essbase Database 267

 4. Select the Dimension Build Settings tab. We will add the members in the
sample file to the Product dimension.

 5. In the Dimension area, double-click Product.

 6. In the Build Method area, ensure that Use Generation References is selected,
and then click OK.

268 Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution

This denotes that this file will build the dimension from the top to the bottom.
In this case, the member 500 will be placed toward the top of the outline and
subsequent members organized underneath.

Specifying Field Properties for the Rule The next task is to specify field properties,
as follows:

 1. Select field1 in the Data Prep Editor.

 2. Select Field | Properties.

 3. In the Field Properties dialog box, select the Dimension Build Properties tab.

 4. In the Dimension area, double-click Product.

 5. In the Field area, double-click Generation.

 6. In the Number area, enter 2. This specifies that the member 500 will be
placed directly below the Product dimension name as a product line.

 7. Click Next to move the focus to the next field of the source file.

 8. Repeat the process using the following values for the fields:

Field Number Dimension Field type Field Number

2 Product Generation 3

3 Product Generation 4

 9. When you are finished, click OK.

In the Data Prep Editor, the column headings represent the fields. The headings
contain an abbreviation of the Field Type and Field Number (for example, GEN2),

Chapter 5: Building Your Essbase Database 269

followed by the Dimension name (in this case, Product). The values in the table
match the values for each of the fields in the original source file.

NOte
If the field labels are not showing, ensure that the
Dimension Build Fields option is selected (via the
toolbar button or the View menu).

Validating and Saving the Load Rule Follow these steps to validate and save your
new load rule:

 1. Select Options | Validate. A message tells you whether the rule is valid.
Click OK to close the message box.

 2. If the rule was not valid, edit the rule and rerun the validation process.

 3. To save the load rule, select File | Save. Specify a name for the new load
rule.

 4. Close the rule.

executing the Load Rule You can execute the load rule against the database in a
couple ways. If you use the Update Outline option (as specified in the following
steps), you can test the impact on the database before saving it (this option is
available only on block storage databases).

 1. Open the Sample Basic outline.

 2. Select Outline | Update Outline.

 3. Click Find Data File. Browse to and select the original data file, and then
click OK.

270 Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution

 4. Click Find Rules File. Browse to and select the rule you just created, and
then click OK.

 5. Click OK. The load rule should complete with a message stating that the file
loaded with no errors. Click Close to dismiss this message.

 6. Expand the Product dimension in the outline. The additional chain starting
with the member 500 should be visible.

 7. If you want to keep the updates, click Save, and then close the outline.

Chapter 5: Building Your Essbase Database 271

Note that while this rule simply added a chain to an existing dimension, a rule
could have been built to create a new dimension in the model.

Load Rules and the SQL interface
Up to this point, our discussion of custom load rules has concentrated on using flat
files for the data source. Quite often, however, load rules are written to source a
relational database. The Data Prep Editor provides an interface that lets you connect
directly to a relational source. You can create dimensions and load data based on a
SQL connection instead of relying on a flat file.

The steps for the creating a rules file from a SQL source are basically the same
as those used when creating a standard load rule, after you select the SQL data
source. Instead of selecting File | Open Data File, you select File | Open SQL. As
shown in Figure 5-20, you then choose the appropriate database source (in this
example, the TBC database) from the SQL Data Sources drop-down list.

FiguRe 5-20. You map a relational source using the Open SQL Data Sources dialog box.

272 Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution

The SQL data sources drop-down list is populated either by your System DSN
list (on Windows) or through use of an ODBC.ini file (UNIX/Linux). You specify the
SQL statements that you want to use in the Select, From, and Where portions of the
dialog box, and then click OK/Retrieve. After entering your user authentication
information, the SQL statement executes, and a portion of the results are displayed
in the Data Prep Editor, as shown in Figure 5-21.

All of the remaining steps are the same as for a load file based on a flat file.
When using the SQL-based load rule in automation (discussed in detail later in this
chapter), Essbase executes the SQL embedded in the rule, takes the output from the
source, and applies the mappings designated in the rule.

Creating Member Formulas and Calculation Scripts
In our demonstration, the only calculations in the database were the consolidation
calculations defined by the hierarchies and an unidentified formula retrieved from
the metadata repository. As noted earlier in the chapter, you can create additional
calculations attached to dimension members.

There are two ways to create calculations: through a member formula or through
a calculation script. Depending on the nature of what you are doing, you can often
accomplish similar tasks with either approach. While there may be slight syntactical

FiguRe 5-21. The SQL data source and associated rule are displayed in the Data Prep
Editor.

Chapter 5: Building Your Essbase Database 273

differences between commands in member formulas and those in calculation
scripts, the general logic and process of creation is similar.

For example, what if 25% of the cost and revenue of Florida is assigned to the
East region, while the remainder is assigned to the South. You can easily create a
formula with a weighted total to reflect this situation. The formula for the East
member might look like this:

@SUM ("New York", "Massachusetts", "Connecticut", "New Hampshire") +
 ("Florida"*.25);

You would need to create a similar formula for the South member to account for
the other 75% of Florida’s cost and revenue. In this example, all metrics in the
database would be subject to the weighted aggregation. Furthermore, this
assignment would apply to all scenarios (Actual, Budget, Forecast, and so forth).

You can expand this formula to include a series of logical tests. The test would
validate the intersection and take appropriate actions. For example, you might be
considering moving Florida’s reporting hierarchy from East to South. You can
calculate Actual numbers one way and put a check in to calculate a scenario for
reorganization (ReOrg1) in a different way.

IF (@ISMBR("Actual"))
 "East"=@SUM ("New York": "New Hampshire");
ElseIf (@ISMBR("ReOrg1"))
 "East"=@SUM ("New York", "Massachusetts", "Connecticut",
"New Hampshire") +
 ("Florida"*.25);
ENDIF

Another common type of calculation (and one used in the following examples)
is the creation of variances inside Essbase. For example, if you wanted to create a
variance to compare quarter over quarter changes, the formula might look like this:

"Q1 vs Q2"=@VAR("Qtr1","Qtr2");

If you wanted a percentage difference, you could use the @VARPER function
instead. (The @VAR and @VARPER functions reverse the variance reporting for items
flagged as Expense within the Accounts dimension.)

In the preceding example, the formula would always do a variance between
Qtr1 and Qtr2, only. For more flexibility, you could make the formula reusable. For
instance, you could build a formula that takes the current quarter and does a
variance comparison to the previous quarter. The process for designing reusable
calculations is covered in Chapter 8.

Calc Scripting Language Versus MDX
Chapter 3 described the two database storage methodologies within Essbase: block
storage (BSO) and aggregate storage (ASO). Depending on the storage method you

274 Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution

choose for a specific database, the language you use to write a member formula is
either the native Essbase Calc Scripting Language for block storage databases or the
Multidimensional Expressions (MDX) language for aggregate storage databases. The
following sections provide a general overview of the language specifications. For
detailed information, see the Oracle Essbase Technical Reference.

Block Storage Databases and the essbase Calc Scripting Language Block storage
database formulas use the Calc Scripting Language. This language is a series of
functions and commands that lets you select and calculate members of your Essbase
database. The Calc Scripting Language is divided into two categories: Commands
and Functions.

Commands provide broad capabilities across a database (as opposed to deriving
a value for or working with a specific member). For example, you can use the
DATACOPY command to copy a slice of data from one portion of the database to
another (such as copying last year’s actual values to seed this year’s budget).

Functions work on individual members, either by selecting a member for
calculation or by deriving a value for a member. For example, the @SUM function
adds the specified members together. Functions are divided into a series of
subcategories. Here is an overview of some of the key areas:

 Boolean ■ These functions are used to perform logical tests on values. For
example, they can be used to check if the active member matches a given
string, as in @ISMBR("Actual");.

Relationship ■ These functions retrieve a value from a member in the
database based on its relationship to another member. For example, you
could request the total sales value for the East market by specifying one
of its children, using @PARENTVAL ("New York", "Sales");. This
would return the total Sales value for East (the parent of New York).

Mathematical ■ These functions perform arithmetic and mathematical
operations on a member or set of members. For example, you can add a
range of values, as in @SUM("Jan":"Mar");.

Member Set ■ These functions specify a set of members on which to
perform actions. For example, to get all of the months in Qtr1 to do an
average, you can use @CHILDREN("Qtr1");.

There are also Statistical, Forecasting, Allocations, and a whole host of other
categories from which you can choose functions. In total, there are hundreds of
prebuilt functions in the Essbase engine.

Chapter 5: Building Your Essbase Database 275

You should be aware of a few Calc Scripting Language syntax rules:

 Functions must end in a semicolon (;). ■

Any member name containing a space, number, or special character (*, &, ■
$, and so forth) must be enclosed in double quotes.

Functions start with the @ symbol; commands do not. ■

For a complete list of functions, commands, and syntax requirements, see the
Oracle Essbase Technical Reference, which is part of the Oracle Essbase
documentation set.

Aggregate Storage Databases and MDX When creating formulas for an aggregate
storage database, you use MDX. MDX is a standardized query and calculation
language for multidimensional databases such as Essbase, Microsoft Analysis
Services, and SAP BW. When the aggregate storage option was added to Essbase,
MDX was chosen over the Calc Scripting Language in order to embrace the
industry-standard query methodology.

Although formulas created in MDX can be used only for aggregate storage
databases, MDX can be used to query any Essbase database—block or aggregate
storage. This is because the syntax and functions described in this section are
universal, regardless of whether they are used in formulas or queries. For more
information, see the “Using Essbase Query Languages for Reports” section later in
this chapter.

In general, MDX formulas are very similar to Calc Scripting Language formulas.
For example, to perform the same summation we looked at previously, the formula
would be SUM([Jan]:[Mar]). Aside from a few apparent syntactical differences,
the logic and function are the same.

Unlike the Calc Scripting Language, MDX is not divided into functions and
commands. MDX contains a series of functions to perform similar grouping and
mathematical operations. MDX functions are organized by action:

 Member return ■ These functions return a member. For example, to see the
parent of a Jan, you use the Parent function (returns the member Qtr1):
[Jan].parent or Parent([Jan]).

Set return ■ These functions return a set of members. For example, to see
the children of Qtr1, you can use the Children function (returns Jan, Feb,
and Mar): [Qtr1].children or Children([Qtr1]).

Number return ■ These functions are mathematical, such as Average. For
example, you can get the average sales for Qtr1 using the Avg function:
Avg([Qtr1].children, [Sales]).

276 Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution

There are many additional functions in the MDX specification. For a complete
list of functions, including examples, see the Oracle Essbase Technical Reference in
the Oracle Essbase documentation set.

Some syntactical rules for MDX include the following:

 Any member name containing a space, number, or special character ■
(*, &, $, etc) must be enclosed in hard brackets [].

You can often call a function as a property of a given member by using ■
a dot (.) notation. For example, [Qtr1].children is the same as
Children([Qtr1].

Now let’s take a look at how to create a member formula and a calculation
script. The following examples are based on the Sample Basic database. Because
this database is a block storage database, we use the Calc Scripting Language
syntax.

Creating a Member Formula
The sample member formula calculates the variance
between Quarter 1 and Quarter 2. Follow these steps to
create this member formula:

 1. In the Administration Services console,
expand Essbase Servers, then your server, then
Applications, then Sample, then Basic.

 2. Double-click the Outline node to open the
Sample Basic outline.

 3. Expand the Year dimension.

 4. Right-click Qtr4 and select Add Sibling.

 5. In the dialog box, type time Variances. Press the
enter key to accept the name, and then press the
esc key to leave member-entry mode.

 6. Right-click Time Variances and select Add
Children.

 7. In the dialog box, type Q1 vs Q2. Press the enter
key to accept the name, and then press the esc
key to leave member-entry mode.

Chapter 5: Building Your Essbase Database 277

 8. Press and hold the ctrl key and select both Time Variances and Q1 vs Q2.

 9. Click the ~ icon on the toolbar to ensure these do not consolidate on a
calculation process.

 10. Right-click Q1 vs Q2 and select Edit Properties.

 11. In the Member Properties dialog box, select the Formula tab. The Member
Formula Editor is divided into three areas: outline viewer, function selector,
and text editor.

 12. In the text editor, type the formula: @VAR(“Qtr1”, “Qtr2);

 13. Click OK.

 14. In the outline editor, click Save.

 15. If you are prompted to restructure the model, ensure All Data is selected,
and then click OK.

278 Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution

Creating a Calculation Script
The sample calculation script clears data on the Budget scenario, copies Actual into
Budget, increments the copied values by 5%, focuses the process on the Budget
scenario, and then aggregates the new values across the other dimensions. Follow
these steps to create this calculation script:

 1. In the Administration Services console, right-click the Sample Basic database
and select Create | Calculation Script. You will see that the Calculation
Script Editor (like the Member Formula Editor) is divided into three areas:
outline viewer, function selector, and text editor.

 2. In the function selector, select the Alphabetical tab.

 3. Expand the tree and double-click FIX. This inserts the FIX command into the
script. This command is used to focus the script on a specific subsection of
the database.

 4. In the text editor, type the remainder of the script to match the following
image.

Chapter 5: Building Your Essbase Database 279

 5. On the toolbar, click the Validate button (green checkmark).

 6. After validating the script, select File | Save.

 7. Name the script, and then click OK.

 8. To execute the script, click the Execute button on the toolbar.

using essbase Query Languages for Reports
Essbase provides two built-in reporting options: MDX scripts and report scripts.
Generally speaking, neither option is normally used in raw format for reporting.
Both MDX and report scripts represent language specifications (similar to SQL) to
query data and dimensionality from an Essbase database. Both are often used by
front-end reporting tools to interface with an Essbase database. Oracle BI EE, for
example, generates MDX queries when sourcing data from Essbase. From a batch
processing and automation perspective, you might use either MDX or report scripts
to export data from an Essbase database or to validate numbers. This section
provides a brief overview of each scripting language.

Querying with MDX
Recall that MDX can be used to query either a block storage or an aggregate storage
database. MDX is a standardized query calculation language for OLAP sources. It is
similar to the relational database SQL language. An MDX query is divided into three
key areas:

 Select ■ This specification denotes what information you want on the axes
of your reports. What do you want on rows and columns?

Data source ■ This specification identifies the Essbase database you are
using for the query.

Where ■ This optional specification filters the results. For example, you
could request on data values for April.

Here is a simple MDX query to get all of the Profit subaccount details for the
specified market regions in the first quarter:

SELECT Descendants([Profit]) ON ROWS, Children ([Market]) ON COLUMNS
FROM [Sample.Basic]
WHERE [Qtr1]

280 Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution

FiguRe 5-22. An MDX query and the resulting report

This request can be passed into Smart View via the Execute Free Form MDX
Query dialog box. Figure 5-22 shows the formula within this dialog box, followed
by the results of the query in Microsoft Excel.

The specific format of the output is determined by the front-end client. MDX
does not contain specific formatting functions. Instead, MDX focuses on data and
metadata queries.

The Administration Services console also includes an MDX editor and viewer.
Follow these steps to create a sample MDX query using the Administrative Services
console:

 1. In the Administration Services console, select File | Editors | MDX
Script Editor.

Chapter 5: Building Your Essbase Database 281

 2. In the text editor, type the following query:

SELECT [Year].Children ON ROWS,

[Profit].Children ON COLUMNS

FROM [Sample].[Basic]

WHERE [Actual]

 3. From the menu bar, select MDX | Execute Script.

Querying with Report Scripts
Report Script is a legacy Essbase script-based reporting interface. Like MDX, you
can use report scripts on either aggregate storage or block storage databases.

282 Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution

The report script language contains functions and is divided into a series of
categories:

 Data layout ■ Positioning of a dimension on a report

Data range ■ Ordering, top, and bottom functions

Formatting ■ Commands dedicated to specifying overall report formats
(such as column width)

The complete report scripts specification is detailed in the Oracle Essbase
Technical Reference.

A series of report scripts is included with the Sample Basic database. The
following is an example of one of these scripts, which retrieves the top ten products
for specified markets:

<Sym
//Suppress shared members from displaying
<Supshare
 <Column (Scenario, Year)
 Actual Budget
 Jan Dec
<Row (Market, Product)
<Desc Market
//Use bottom level of products
<DimBottom Product
<Top (10, @DataColumn(3))
!

Figure 5-23 shows the output of the script.
Report scripts can be run from the Administration Services console or via the

Essbase command-line languages (MaxL and ESSCMD). Regardless of the execution
medium, you can send the output of a report script to a file or the screen, or you
can stream the results to another program. For example, Financial Reporting (an
Oracle reporting tool) issues report script commands to Essbase and displays the
data in its user interface.

To create a report script using the Administrative Services console, follow these
steps:

 1. This sample report script, when executed, shows the actual and budget
values for January and December (as columns) for all market and product

Chapter 5: Building Your Essbase Database 283

combinations (on rows). In the Administration Services console, right-click
the Sample Basic database node and select Create | Report Script.

FiguRe 5-23. Report output created by the sample report script

284 Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution

 2. In the Report Script text editor, type the following query:

<Sym

<Column (Scenario, Year)

Actual Budget

Jan Dec

<Row (Market, Product)

<Ichild Market

<Ichild Product

!

 3. From the menu bar, select File | Save.

 4. In the Save dialog box, name the script, and then click Save.

 5. Select Options | Execute Script.

 6. When prompted, select Console for output, and then click OK.

Chapter 5: Building Your Essbase Database 285

Automating Processes
Up to this point in this chapter, we have done almost everything in the various user
interfaces. We modeled the database in the Essbase Studio console. We used the
Administration Services console to view and create load rules, to create a drill-
through report, and to create member formulas. We even generated a report (via
MDX) using Smart View.

From a practical deployment perspective, however, most databases processes
are automated. After you create the initial database using Essbase Studio (or custom
load rules in the Data Prep Editor), you create automation scripts to use these
objects in a larger batch process. This section focuses on the command-line
capabilities inherent in Essbase.

The two command-line languages available are ESSCMD and MaxL. ESSCMD is
a supported and actively used scripting language for Essbase automations. However,
the majority of recent development efforts from both a user and an Oracle product
direction perspective—use MaxL. This section provides an overview of using
ESSCMD and MaxL. For a complete listing of all MaxL and ESSCMD capabilities,
see the Oracle Essbase Technical Reference.

using eSSCMD
ESSCMD is a legacy scripting language that lets you create, use, and modify
database objects. It was the first command-line language provided for Essbase.
ESSCMD is primarily numeric-based in its command syntax. For example, to
execute a load rule using ESSCMD, the syntax is as follows:

BUILDDIM 2 "GenRef" 2 "GenRef" 4 "GenRefError";

Decoding the syntax, this command does the following:

 BUILDDIM ■ executes a dimension build rule.

2 "GenRef" ■ leverages a server-based load rule named GenRef.

2 "GenRef" ■ leverages a server-based data file named GenRef.

4 ■ tells Essbase that the source is a text file.

"GenRefError" ■ writes any errors out to an error file named GenRefError.

using MaxL
MaxL is the newer of the two command-line languages for Essbase. It provides
commands for building, calculating, and managing Essbase processes. Unlike
ESSCMD, MaxL’s command structure is closer to common language. In many
respects, it is similar to the Oracle SQL*Plus command-line language.

286 Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution

To perform the preceding data load example using MaxL, the command is as
follows:

import database sample.basic dimensions from server text data_file
'GenRef.txt'
using server rules_file ‘GenRef.rul’ on error append to
'GenRefError.txt';

As you can see, MaxL syntax is easier to interpret than the ESSCMD commands.
The following are some key syntactical requirements of MaxL:

 MaxL statements end in a semicolon (;). ■

Paths with spaces and special characters require single quotes ('). ■

To insert comments into a script, open the comment block with /* and ■
close it with */. Anything within these markers is ignored when the script is
executed.

With MaxL, you can automate other tasks beyond building a database, such as
the following:

 Logging out users and disabling connections during batch processes ■
(if desired)

Exporting data and objects for backup ■

Encrypting user names and passwords ■

Creating calculation and report scripts ■

Setting database caches ■

In short, the MaxL command-line language provides a full range of capabilities
for managing all database processes.

A Sample MaxL Script
You can automate all the processes modeled in this chapter in a single MaxL script,
as presented in this section. This script assumes that the application name is Sample,
the database name is Basic, and the calculation script created earlier is named
BudInc. It also assumes the load rules generated by the Essbase Studio process are
as follows:

 ACCOUN ■ builds the Account dimension.

MARKET ■ builds the Market dimension.

Chapter 5: Building Your Essbase Database 287

PRODUC ■ builds the Product dimension.

SCENAR ■ builds the Scenario dimension.

YEAR ■ builds the Year dimension.

BASIC ■ loads numeric data into the model.

The following script contains commented sections that explain the purpose of
each command or block of commands.

/* Create a log file of the process and log into the Essbase sever.*/
spool on to 'c:/MaxL_Logs/output.txt';
login 'admin' 'password';

/* Build the Essbase database using the rules created by Essbase
Studio*/
import database sample.basic dimensions
connect as 'admin' identified by 'password' using server rules_file
'ACCOUN',
connect as 'admin' identified by 'password' using server rules_file
'MARKET',
connect as 'admin' identified by 'password' using server rules_file
'PRODUC',
connect as 'admin' identified by 'password' using server rules_file
'SCENAR',
connect as 'admin' identified by 'password' using server rules_file
'YEAR'
on error append to 'C:/MaxL_Error/dimbuild.txt';

/* Load data into the Essbase database using the rule created by
Essbase Studio*/
import database sample.basic data
connect as 'admin' identified by 'password' using server rules_file
'BASIC'
on error append to 'C:/MaxL_Error/data.txt';

/* Execute the BudInc calculation script */
Execute calculation sample.basic.budinc;

/* Execute the Top report script*/
export database sample.basic using server report_file 'top.rep' to
data_file
'c:/MaxL_Reps/top.txt';

/* Close log file and exit*/
spool off;
exit;

288 Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution

executing a MaxL Script
MaxL is a command-line shell similar to a standard Windows command line. The
Essbase MaxL Shell (ESSMSH), shown in Figure 5-24, inherently knows how to
execute the MaxL commands.

Once you have created a script file, you execute the script in a batch process by
invoking the MaxL shell and passing the name of the script object. This can be
done, for example, with a Windows BAT file. For instance, if you named the
previous script sample.mxl, the batch file to execute this script might contain a
single command:

ESSMSH sample.mxl

In this case, the batch file starts ESSMSH and passes the sample.mxl file to the
shell. The MaxL shell reads the commands in the file and executes them as
specified.

Note also that parameters can be passed to the script, so you could pass the user
name and password when calling the script. In addition, you can encrypt the script,
so that the password is not visible. Furthermore, you can incorporate MaxL
commands into the Perl language for greater integration into other business
processes.

Creating a Script in the MaxL Script editor
This script creates an application and database named test, and then shuts down the
running application.

FiguRe 5-24. An Essbase MaxL Shell window

Chapter 5: Building Your Essbase Database 289

Follow these steps to create a script using the Administration Services console:
In the Administration Services console, select File | Editors | MaxL Script Editor.

 1. In the MaxL Script Editor window, type the following script:

create application 'test';

create database 'test'.'test';

alter system unload application 'test';

 2. From the menu bar, select MDX | Execute.

After you have the script created, you can save this as a text file and use a batch
file to execute the script (as shown in previous section). While you could have
created the script in any text editor, the MaxL editor provides valuable syntax-
checking capabilities, as well as an autocomplete option.

290 Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution

Conclusion
There is not a single method or philosophy for designing and building an Essbase
database. After so many years of doing something, you often take for granted how
difficult or easy it is to do. A number of years ago, I was working with a friend on an
Essbase design project. He remarked on how easy it is to build an Essbase database.
From his perspective, it is no more difficult than counting to three. While I never
thought building an Essbase database was difficult, I never really would have
thought it as simple as 1-2-3. Rather, like most things in the world, it is somewhere
in between. The steps outlined in this chapter provide a method for building an
Essbase database. For sake of simplicity, the chapter did not include ETL tools such
as Oracle Data Integrator or Informatica. You could just as easily build a database
leveraging adapters in numerous ETL tools. The specific methodology you use to
build an Essbase database will vary depending on the specifics of your data
source(s), your analytical needs, and your comfort level with the product.

In this chapter and the preceding chapter, we showed you how to build OLAP
applications for ad hoc analysis. In the next chapter, we discuss ways to share OLAP
results with business users throughout your organization using web-based and
desktop-based reports.

Oracle-Regular / Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution/ Schrader et al. / 182-2 / Chapter 6
Blind folio: 291

Chapter
6

Reporting from an
OLAP Application

291

292 Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution

ven the most sophisticated technical implementation of an OLAP
solution can fail if put into production without thought to the
reporting needs of the users. Without user input, the system will not
meet user expectations.

Frequently, we hear how the user community simply wants one reporting
tool—an idea that speaks to simplicity, but is unfortunately flawed. The reality is
there is not a single “silver bullet” reporting tool, because there is no single type of
user. Typically, several use cases are needed to drive the application design. For
example, an executive “big-button” user needs technology to be simple and guide
him, while a technical analyst wants technology to get out of the way and let her
quickly perform ad hoc analyses. The OLAP application developer must discover
the needs of all interested users, and make sure they have options available that
meet their requirements.

Oracle offers an approach that fits in with this reality. When looking at the
different reporting tools an organization may need, the solution may indeed be a
suite of tools to suit different users. Oracle Business Intelligence Suite Enterprise
Edition Plus (OBIEE Plus) delivers reporting tools to support a wide range of end-
user reporting needs.

Underlying the OBIEE Plus philosophy is delivery of tools that can be used for
different purposes, yet should be integrated, so they are easy to maintain, regardless
of data source. OBIEE Plus is the strategic platform for BI reporting from Oracle, and
the examples in this chapter come mainly from that set of tools.

In addition, OBIEE Plus allows access to many different data sources, including
both Oracle OLAP and Oracle Essbase, as well as relational sources. Companies
can use OBIEE Plus to report from a single source, as well as to combine data from
many different data sources by means of a federated query engine supported by a
single semantic model, interface, dashboard, or report. OBIEE Plus will serve as the
central reporting interface for Oracle for years to come. So, invest time to learn its
tool set and many capabilities.

In this chapter, we cover many of the considerations necessary to support
reporting from an OLAP application. We start by focusing on user discovery,
followed by an introduction to the types of reports that are available. After you have
a sense of what is possible, we bring the possible into the realm of what is doable
with a discussion of deployment options and architectural considerations for your
organization. Finally, we spend some time discussing the types of functionality you
should look for in web-based and desktop-based reporting tools.

User Discovery
One consistent, successful strategy for OLAP applications is the formation of a user
committee. This committee—whether formal or informal—helps to secure buy-in
from relevant people throughout all phases of the project. A user committee

E

Chapter 6: Reporting from an OLAP Application 293

generally starts with the people who championed the purchase of an OLAP system,
and expands to include anyone with a vested interested in OLAP results. A well-
rounded, representative user committee—that is, one with members from all areas
of the organization that may use the OLAP application and the OLAP reports—is
ideally suited to take on the task of user discovery.

Identifying the Consumers of OLAP Reports
Early in the process, use the committee to identify the potential content consumers,
or end users, of OLAP reports in your organization. Typical consumers are executives,
managers, and analysts. Do you have additional consumers in your organization?
Identify the departments to which your consumers belong. Where, geographically
speaking, are your consumers located?

For example, Company XYZ envisions a roll out to 1,000 users around the world.
The company’s purchase of software follows the standard breakdown of users: about
80 percent are strict report consumers, 15 percent need more interaction and
analysis, and 5 percent are power or administrative users. The majority of these users
are in the United States, but given the global nature of the company, it is probably a
60/40 split. The users require 24-hour support. As this software is implemented, the
user breakdown and global nature of the company must be taken into consideration.

Gathering Information About Your Users
The next step is to find out how your users prefer to consume their information.
You might use a questionnaire or conduct interviews with interested parties. You
do not need to collect exact numbers; rather, just get a feel for the needs of your
different users. Your questions should suit your environment, but as a starting
point, you may need to ask a few key questions. A good guide for determining the
type of questions to ask is Oracle’s Comprehensive Guide to Realizing Enterprise
Performance Management Version 2.2. Here is a sample of questions that you may
want to ask your users, paraphrased from that white paper:

 Do you expect to consume static reports with no interaction? ■

Do you need reports that you can customize through interacting with the ■
report? In what ways would you want to modify the report?

Do you want a big-button approach to reports, such as dashboards that ■
contain summary reports from multiple sources?

Do you prefer to build reports from scratch, rather than using prebuilt ■
reports?

How do you expect to access reports? From the desktop, Web, or both? ■

294 Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution

From your users’ responses, you can begin to determine how many people in
the organization will require which kinds of reports. Some need just one type of
report, while others need three or four to provide context while analyzing data.

Discussing the Reporting Needs of Your Users
After you have formed a picture of what your users expect, you can begin to piece
together the style of reports they may want to consume. Here are some questions
that the user committee can use to discern which reports may be needed (also from
the white paper):

 Are predefined dashboards part of the user vision? ■

Is there a need for delivery via a corporate standard portal? ■

Is there a “start from scratch” set of users who require ad hoc analysis and ■
reporting? These users might require drill-down, pivot, and “slice-and-dice”
capabilities.

Do users need to integrate multiple data sources into one report? What ■
about into one dashboard?

Do some users need standard drag-and-drop controls along with a right- ■
click context menu for ease of use?

Is there a need for deployment through Microsoft Office? ■

Do you need to provide the ability to drill through from the analytic ■
measures to the underlying transactional detail?

Is there a need for offline analysis? ■

What about scheduling and batch bursting of reports? ■

NOTE
Batch bursting allows for secure delivery of
hundreds or thousands of individual reports using
one template. It can be run for the portion of data
allowed to a particular user, instead of needing to
build multiple reports.

Suppose that Company XYZ ended up purchasing 1,000 OLAP licenses to
support enterprise performance management (EPM) and BI applications. Two
different departments were involved in the purchase: the finance department
needed 700 licenses, and the operations department claimed 300. Now that the user

Chapter 6: Reporting from an OLAP Application 295

committee has done its work, the project team must work with each department and
get more details about their users and reporting needs.

In the interview with the finance department representatives, they list several
current reporting projects and the need to improve them. Executives have a 50-page
book of reports created mainly in Microsoft Excel that takes a team of analysts two
weeks each month to create. Around 200 executive users want to consume the
reports in this book. Currently, they receive the book via interoffice mail, and keep
copies of past and present books on their local computer hard drives. The executives
would prefer to view the reports online in static dashboards and have links to PDF
versions of past books stored in a central archive to support future audits.

The team that creates the monthly book still wants interaction with the Microsoft
Office suite of tools, but with much more flexibility and speed. They want the ability
to link data points from Excel to Word to PowerPoint. Instead of spending weeks to
create the reports, they want a set of reports that they can simply refresh with the
new monthly data. They also want any changes in hierarchy structure to flow
through to the reports automatically, removing the need for manual updates.

Each of these executives has a team of around 500 managers and analysts who
truly need both ad hoc reporting and the ability to start from scratch against that
monthly data. They want to consume a group of dashboards as a starting point—to
see the same information as the executives—but they also want to be able to modify
the report sections and work free-form to do additional analysis. These users also
want to do forecasting based on the seasonal monthly trends. They decide that an
Excel add-in would suit their requirements, allowing them to drill down to detail
data and pivot data, and write back to a database. The higher-level visual analysis
features are appealing to a group of about 50 users that do statistical trending.

The operations department has a brand-new sales reporting project to meet the
requests from its field sales team. All 300 users will be mobile, and they need to be
notified when the sales reports for the previous day are ready. They want to receive
an e-mail message that has a link to the online system, but also an attached static
sales report for just their customers. The static report keeps them informed of the
sales activity, and the ability to link to the online system gives them the flexibility to
do some ad hoc reporting via the Web. They also need offline analysis capabilities,
so they can work in an airplane or a location without Internet access.

 To summarize, Company XYZ needs to deliver a unified reporting system to
meet the requirements of both departments, starting with a single sign-on to
corporate dashboards that everyone uses to see total company results. These
dashboards provide links to additional reports and tools that make sense for the
users’ daily jobs. The reports need to be available via the desktop and the Web.

Clearly, a project team needs to be ready with reporting options and tools
already in mind for the different styles of reports each user community mentioned.
In the next section, we review the types of reports that are generally available in a
reporting tool. After that, we look at possible deployment options.

296 Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution

Types of Reports
As discussed in the previous section, many users will want different interfaces for
different requirements. You cannot meet the needs of power users who want ad hoc
analysis by giving them only dashboards. Similarly, you cannot meet the needs of
big-button executive users if you provide only a reporting tool to start reports from
scratch. The best approach is to deliver a reporting system that leverages a common
back end but provides different delivery mechanisms based on requirements.

To help you select appropriate reports for your various users, this section presents
some of the typical report types. The screen captures in this section reflect output
from a variety of software reporting tools. These are just a few examples; additional
styles of reports may be needed by an organization.

Basic Report
The simplest of report types, a basic report has a single source of data presented in a
grid format made up of rows and columns. Figure 6-1 shows a basic report for product
family, time scenarios, and sales data. A basic report can be used as a component of
a dashboard report.

FIGURE 6-1. A basic report

Chapter 6: Reporting from an OLAP Application 297

Compound Report
A compound report adds a visual analysis component to the grid of data. The
visualization contains the same data as in the grid. For example, Figure 6-2 contains
the same grid as Figure 6-1, as well as a bar chart summarizing the sales data for all
scenarios by product. A compound report can be used as a component in a larger
dashboard.

Dashboard Report
A dashboard report is a compilation of reports containing summary-level data. Its
purpose is to provide a complete picture of a certain group of metrics. Many times,
this can include the use of basic or compound reports brought together across similar
metrics. In his book Information Dashboard Design, Stephen Few defined a dashboard
as “a visual display of the most information needed to achieve one or more objectives
which fits entirely on a single computer screen so it can be monitored at a glance.”

A dashboard usually has some common information across all of the elements,
such as revenue, viewed from different perspectives. Dashboards have controls on

FIGURE 6-2. A compound report

298 Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution

either individual sections or the whole report, depending on the control and the
requirement. Figure 6-3 shows a sample dashboard with sales data presented from
a variety of perspectives, such as trends by product and revenue by geography.

Often, dashboards serve as a launch pad to more detail, providing links to
additional reports or information. For example, in Figure 6-4, links to related content
are located to the left and right of the graphs.

Production Reports
A production report (also called a static management report) is a noninteractive
report that is pixel-perfect. Strict requirements dictate the look and feel of rows,
columns, headers, and images. This style of report is typically created ahead of time
as a “snapshot” in time from a database, and the report does not give the user any
interactive capabilities. What you see in this report online is what is expected in
PDF and printed versions of the report. Scheduling of reports and batch bursting are
typical requirements associated with production reports.

Figure 6-5 shows a production report with a strict landscape layout, including
spacing requirements, underlining on certain rows, a logo, and a context-sensitive

FIGURE 6-3. A sample dashboard report

Chapter 6: Reporting from an OLAP Application 299

FIGURE 6-4. A dashboard report with links to related content

FIGURE 6-5. A production (static management) report

300 Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution

header. The title updates automatically based on the point of view (POV) for the user, but
no changes can be made.

Interactive Management Reports
An interactive management report is very similar to a production report in its
formatting, but retains the ability to be modified slightly by an end user. The report in
Figure 6-6 allows a user to do some minor query changes and update the dimensional
selections using the POV bar across the top of the report page.

Ad Hoc Spreadsheet Reports
Ad hoc reporting for OLAP is often done in Microsoft Excel. From the familiar Excel
interface, analysts can connect to an Essbase database or Oracle OLAP analytic
workspace, retrieve data, format the data, navigate the data, change the POV,

FIGURE 6-6. An interactive management report

Chapter 6: Reporting from an OLAP Application 301

calculate the data, refresh the data, and (with the appropriate permissions) write
back to the database. Ad hoc spreadsheet reports are attractive to power users who
like to build reports from scratch and to users who want the ability to experiment
with the numbers to create what-if scenarios. Both basic users and advanced
analysts use these types of reports on a daily basis.

 Figure 6-7 contains an ad hoc spreadsheet report created using the Spreadsheet
Add-in. While the user interface is specific to Essbase, the example applies equally
well to Oracle OLAP. The report shows a Measures dimension in the rows and a
Time dimension in the columns. The indentations in the row text for the Measure
members represent the dimension hierarchy. In this example, actions related to the
Essbase database are available from the main menu via a Hyperion menu.

Custom Microsoft Office Reports
Custom Microsoft Office reports include live data in an otherwise static document
or slide. Report creators can copy a data point from Excel and paste it anywhere in

FIGURE 6-7. An ad hoc spreadsheet report

302 Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution

FIGURE 6-8. A custom Microsoft Office document with dynamic content

Financial Metrics – Forecast to Plan

–50%

–100%

0%

50%

100%

Forecast Budget Variance

Margin
Tot. Exp.
Profit
Margin %

Refresh

Forecast Plan

Variance

Margin Total Exp. Profit Margin%

Commentary:
A critical driver to our success is
ability to both execute regionally
against our plan values, and to be
comparable to other regions in our
organization. While our gross margin
shows a positive trend for this
quarter, other metrics (most notably
expenses) are in danger of
exceeding plan for the fourth
quarter.

Change POV$54,387
$28,587
$25,800
55.42%

$214,140
$84,760
$129,380
57.40%

($159,753)
$56,173
($103,580)
–1.98%

a Word document or PowerPoint slide. They can then specify how that data is displayed
using a visualization tool. Finally, with an active connection to the multidimensional
database, the data can be refreshed on demand. Figure 6-8 shows an example of a
custom Microsoft Office report containing two data points presented as compound
reports (a grid and a chart).

Desirable Functionality in
Web-Based OLAP Reporting
BI and OLAP reports share some commonalities. For example, at the presentation layer
(what an end user sees), a static BI report is the same as a static OLAP report; regardless
of its data source or underlying analytic engine, each must meet the user requirement
that the report is pixel-perfect. Similarly, most reporting tools, regardless of whether
they are for BI or OLAP, start with the concept of data organized in rows and columns.
You select the criteria for what you want to display in the rows and columns, and the
tool returns a report. Where BI and OLAP reports part ways is in how much freedom
the end user has to interact with the data and format the presentation.

Chapter 6: Reporting from an OLAP Application 303

In discussing desirable functionality with web-based tools, consideration must be
given to performance over a network, amount of images, caching, and comparisons
between what users get on the desktop. As is commonly known, desktop tools
typically deliver a richer and more interactive user experience for nearly all software.

In this section, we review some of the most desirable functionality in an OLAP
reporting tool. We start with member selection and data aggregation, which is
common to most BI and OLAP reporting tools. Then we move to OLAP-specific
functionality, discussing pivoting and POV. Lastly, we explore how OLAP enables
analysts to dig down into dimensions and create reports with data sets that are

FIGURE 6-8. A custom Microsoft Office document with dynamic content (continued)

East West South Central
Forecast 21.250000 28.180000 13.100000 35.720000

22.350000 31.560000 13.410000 32.690000
21.750000 34.600000 13.700000 29.950000

Budget 21.250000 28.360000 13.520000 36.870000
21.120000 30.910000 13.520000 34.450000
20.910000 35.100000 13.510000 30.470000

Variance 1.760000 –0.180000 –0.420000 –1.150000
1.230000 0.650000 –0.110000 –1.760000
0.840000 –0.500000 0.190000 –0.520000

Forecasted Overhead per Region

The current forecasted corporate overhead allocation for the Eastern region stands at -
…

Cost Contribution %
Revenue Contribution %
Profit Contribution %

Profit Contribution %
Revenue Contribution %
Cost Contribution %

Profit Contribution %
Revenue Contribution %
Cost Contribution %

40

35

30

25

20

15

10

5

0

Budget BudgetForecast ForecastForecast
vs Plan

Forecast
vs Plan

East
West
South
Central

–5

Profit Contribution % Margin Contribution %

304 Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution

meaningful to the OLAP report consumer. Note that the screen captures in this
section reflect a variety of software reporting tools, yet the basic capabilities are
very similar. In many cases, business users need to view the data summarized, or
in aggregate, to start to understand the underlying business issues.

Creating the Skeleton of a Report
All OLAP reports start with the selection of dimensions for the rows and columns.
You might make this selection from a conventional selection tool similar to those
used by BI tools or from an OLAP pivot table. In addition to rows and columns,
OLAP reports often use filtering or POV options to focus the data to display. Let’s
begin with a look at conventional member selection.

Conventional Member Selection
Any basic BI reporting tool allows for the selection of members, fields, or columns,
regardless of the data source with which you are working. The initial selection becomes
the starting point for a query. In an OLAP reporting tool, the selection of members starts
with the dimensions. For example, in Figure 6-9, an analyst has selected members from
the Product, Scenario, and Measures dimensions as the initial query.

FIGURE 6-9. Standard selection of dimensions

Chapter 6: Reporting from an OLAP Application 305

When the analyst processes the query, the resulting report displays the data for
each of the selected dimension members. Figure 6-10 shows the results of a query
displayed in a simple column format.

The next step may be to change the representation of the aggregated data, creating
a grid, a graph, or a chart. Figure 6-11 shows a compound report containing a grid
and a bar chart side by side. This type of compound report is one we see used very
often, sometimes side by side, sometimes top to bottom, and sometimes with a toggle
or drop-down window listing choices to let the consumers of the report choose the
orientation that suits their needs.

Member Selection Using a Pivot Table
Where OLAP shines is when users are looking to go beyond static and traditional
styles of reporting. You can truly empower end users to analyze data with interactive,
free-form, speed-of-thought query responses. In effect, the end users can change what
data is aggregated and displayed on the fly. Starting from a pivot table is a great way to
do this. Members left in the filter area can then be used to make specific choices in
other dimensions or separate POVs.

FIGURE 6-10. Results from the OLAP query

306 Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution

One main difference between a typical BI reporting tool and an OLAP reporting
tool is that an OLAP report is more appropriately designed using a pivot table to
create cross-dimensional displays. While a pivot table can also be used by relational
tools, it is the best practice way to look at multiple dimensions at the same time.
For example, rather than just a cross-tab comparison of sales greater than 1,000,
you can generate a report that shows product sales greater than 1,000 sorted by
region, month, scenario, and customer category. It is this in-depth, multidimensional
analysis that OLAP so easily conveys.

 In a pivot table, you assign dimension members to both columns and rows,
and you select at least one data element—a measure, account, or fact (like sales
or units). The results are displayed in a grid format. This cross-dimensional view of
data can allow for detailed analysis by adding more dimensions to both rows and/or
columns.

FIGURE 6-11. Results of the query displayed as a compound report

Chapter 6: Reporting from an OLAP Application 307

FIGURE 6-12. A pivot design layout

Figure 6-12 shows an example of a pivot table with the Product dimension
assigned to rows and Scenario assigned to columns. In Figure 6-13, another
example of a pivot table implementation shows the Scenario dimension assigned
to rows and the Time Periods dimension assigned to columns.

Reports can be designed with multiple dimensions nested within each other in
both rows and columns, so you get a full picture of the results by perspective.

Filters and Points of View
A report needs additional perspective for the data displayed, which is provided by
filters. You can filter on the dimensions that are not in the rows or columns, such as
sales amount or units. Items that are filters can be thought of as a POV for the report,
and can be used to filter a single selection in the report. Filters can be driven from
drop-down windows, parameter selections before running a report, or free-form

308 Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution

selection by end users. It is a best practice to design reports that allow users to
change their POV and alter the report to display only what they need to see.

Adding Functionality to a Report
Selecting dimension members for rows and columns and adding filters creates the
skeleton of an OLAP report. Now you can add some muscle by selecting details to
include in the report. This section covers dimension browsing, time-specific member
selection, formatting, and some advanced options.

Dimension Browsing
To make more complex selections from a dimension, you need a tool that enables
you to browse and select the members of a dimension. Figure 6-14 shows an OLAP
dimension browser. Using the dimension browser, you can go into each dimension and
browse the members until you find the ones you want to select, not just by picking
members from a list, but also using functions like Parent, Children, Descendants,

FIGURE 6-13. Another pivot design layout

Chapter 6: Reporting from an OLAP Application 309

Siblings, Dimension Bottom, and so forth. This is where the real OLAP advantage starts
to show. You cannot easily do this level of specific complexity in a relational model.

OLAP allows you to select individual members from any level or combination of
levels, or you can select a member and then include other members based on their
relationship to a member. A powerful attribute of reporting tools that are designed to
work with OLAP is that they help the end user with these concepts and guide the
end user with the analysis, making it much easier to accomplish.

For example, with the dimension browser shown in Figure 6-14, you can right-
click a member—in this case, Electronics—and display a context menu that contains
the select-based-on-relationship options. Because Electronics has children of four
different product types, the design that allows for the easiest report maintenance of
this dimension would be to choose either Also Select Children or Also Select
Descendants. If you choose Also Select Descendants, the report can query the cube
for all members that appear beneath Electronics, regardless of ragged and changing
hierarchies. This means that if anything ever changes in the product structure below
Electronics, the report will still display it correctly.

FIGURE 6-14. A dimension browser

310 Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution

Time-Specific Member Selection
Figure 6-15 shows another dimension selection window, this time with the
functions displayed in a Functions tab. Let’s take a look at the time-series functions
shown at the bottom of the list: Year-to-Date (Y-T-D) and Quarter-to-Date (Q-T-D).

The time-series functions have been set up on the database, and they can be
used in reports for dynamic update without needing to store these data points.
Consider a report that lets a user choose a month via a prompt. The generated report
has columns for that month, but because of the time-series functions, the report also
includes the quarter-to-date information and the year-to-date data, both dynamically
generated based on the month the user selects.

Grid Formatting
Once you have finished making your selections, you apply them and see the results
returned as a grid. You then go into the aspect of applying formatting to your grid
(spacing, fonts, headers, data display, and so on). You may have choices like those
shown in Figure 6-16.

FIGURE 6-15. Time-specific functions

Chapter 6: Reporting from an OLAP Application 311

FIGURE 6-16. Grid display options for formatting

312 Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution

Charts
If you need to display more than a grid, many tools let you choose to display a chart
instead of the grid or next to the grid. Available types are usually basic bar, line, pie,
and area charts, and may include other specialized visualizations, such as bubble
and quadrant. Figure 6-17 shows an example of the types of charts available with
one reporting tool.

Custom Drill Paths
The default drill path generally follows the structure of the dimension hierarchy, so
that drilling down expands the children of the selected member, while drilling up
hides the selected member’s children. A full-featured OLAP reporting tool is aware
of the underlying analytic technology and offers the choice to drill to something
other than children, such as all descendants, siblings, or levels. This flexibility in
reporting and analysis is why OLAP is popular.

Advanced Analysis Options
Web-reporting tools offer a wide variety of analysis options. In addition to standard
slice-and-dice analysis (retaining and removing dimensional slices; see the “Powerful

FIGURE 6-17. Chart display options

Chapter 6: Reporting from an OLAP Application 313

Ad Hoc Analysis Features” section later in this chapter), web-reporting tools may
offer the following types of advanced analysis:

 “Traffic lighting” of cells to visually highlight important thresholds in ■
the data

Sorting ■

Retrieval options (such as top five or bottom ten products) ■

Thresholds to restrict data (such as show only members with data over a ■
certain value)

End-user calculations (such as when the calculation is not available from the ■
database)

Show or hide members based on criteria ■

Advanced formatting options ■

As you can see, end users are given wide flexibility to do analysis, and are
enabled to do it themselves, instead of being reliant on static reports.

Suppress Missing Data Values
A very useful feature for OLAP reporting is the ability to suppress missing data
values. Because of the inherent sparsity of OLAP cubes, many combinations of
members have no data value. The result can be reports with too many null values.
A suppress missing values feature provides an easy way to avoid taking up large
amounts of screen real estate with null or empty cells returned from a symmetric
result set. Such a feature may allow you to suppress missing rows, missing columns,
or even zero rows (when the data stored is actually the numeral 0). This level of
suppression selection again helps OLAP reporting be more flexible and stand out
compared with relational reporting tools.

Display of Dimension Members
The last report item that is frequently requested in OLAP reporting is changing how a
user can display the rows. This feature allows the end user to decide where the parent
of a member is displayed—perhaps at the top or at the bottom of the list of members.
For example, financial statements such as net income reports are typically made from
dimensions that roll up, so the parent is best displayed below its children.

314 Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution

Desirable Functionality in
Desktop-Based Reporting
Earlier in this chapter, we mentioned that desktop-based reporting is most often
done from within Microsoft Excel. This means that you can take advantage of many
of the features that come standard with Excel, including formatting, sorting, and
other spreadsheet-related functionality. When selecting a desktop-based reporting
tool—whether it is from Oracle, a third-party, or created in-house—you should
make sure that you are getting the OLAP functionality you need to produce the
types of reports you want.

Desirable functionality for desktop-based reporting includes:

 Integrated database connection for data retrieval, calculation, refresh, and ■
write-back

Powerful ad hoc analysis features, such as the ability to drill down on ■
dimension hierarchies, pivot rows and columns, change the POV, and keep
or remove subsets of data

Easy report-creation tools, such as member selection, saved queries, and ■
free-form reports

Visualization tool to create charts and graphs based on the data in the ■
spreadsheet

In the following sections, we review each group of features in more detail. We
use two tools in our examples: Smart View and Discoverer Plus OLAP. Discoverer
Plus OLAP is the OLAP component of Oracle Business Intelligence Discoverer Plus,
which is described later in this chapter.

Integrated Database Connection
To perform an effective OLAP analysis, you need a connection to live multidimensional
data. Therefore, your desktop-based reporting tool should provide an integrated way of
connecting to databases. Desirable features include the ability to retrieve, calculate, and
refresh data, as well as write back to the database (with the appropriate permission). For
example, Smart View offers an integrated way to connect to Essbase databases and
enables all of these data-related features. The features for running calculation scripts on
the database and writing back to the database are restricted to users with the appropriate
security permissions.

Chapter 6: Reporting from an OLAP Application 315

Figure 6-18 shows the Data Source Manager, which allows connection not just
to Essbase, but also to Oracle BI Server content. Here, we will focus on Essbase as
the data source.

Powerful Ad Hoc Analysis Features
In addition to standard spreadsheet features such as formatting and sorting, a competent
ad hoc analysis tool should provide the following OLAP-related capabilities:

 Zooming in/out on dimension hierarchies ■

Setting the POV ■

Pivoting dimensions ■

Retaining and removing dimensional slices ■

FIGURE 6-18. Smart View integrated database connection

Essbase database connection

316 Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution

Zooming In/Out on Dimension Hierarchies
A good desktop-based OLAP reporting tool makes it easy to explore a dimension
hierarchy from within the spreadsheet. Look for the ability to zoom in/out
(drill down/up) on a data cell. When you zoom in on a dimension member, you
should see (by default) data for the children of the selected member. For example,
if you zoom in on a Year dimension, data for the quarters is displayed in the
spreadsheet. Drilling down on a quarter then reveals the months in the quarter.
You should be able to reverse this process by zooming out.

More advanced tools will provide a way to modify what happens when you
zoom in and out. For example, you may be able to show all descendants, instead of
just the children, or to explore the siblings. In a hybrid architecture, you may want
the ability to drill down to dimensional data stored in a relational source.

Figure 6-19 shows what happens when you zoom in on Year Tot and then zoom
out using Smart View. Smart View makes zooming in/out as simple as double-clicking
a cell. It supports changing the zoom actions, as well as drilling down to data in a
relational source (requires Essbase Studio).

Changing the POV
As previously mentioned, a POV enables you to see a subset of data. A POV feature
makes it easy to filter out extraneous data and focus in on what is important to you.
The desktop-based reporting tool that you choose should offer a convenient and
intuitive way to set and change the POV.

FIGURE 6-19. Navigation of hierarchies

Drill up

Drill down

Chapter 6: Reporting from an OLAP Application 317

Figure 6-20 shows the Smart View POV toolbar. The selections made in the POV
toolbar control what data is displayed in the spreadsheet. In this example, the POV is
set to show the net sales for the Lightbolt product only. You can select a new POV by
using the drop-down lists on the POV toolbar.

Pivoting Dimensions
When following a path of investigation, it can be very useful to change the
orientation and order of dimension data in the spreadsheet. Desirable pivoting
features include the ability to perform the following actions:

 Pivot a dimension from a row to a column ■

Pivot a dimension from a column to a row ■

Pivot a dimension from the spreadsheet to the POV ■

Pivot a dimension from the POV to a row or column ■

Change the order of dimensions in the rows ■

Change the order of dimensions in the columns ■

Figure 6-21 shows a sample spreadsheet and the results of several pivot actions
related to the Current Year and Prior Year dimensions. On the bottom left, the
selected dimensions are moved from the second column to the first column. On the
upper right, the selected dimensions are pivoted from rows to columns. The bottom
right shows what happens when the row order is then changed.

Slicing and Dicing
For effective OLAP analysis, you need to be able to remove dimensional slices (data
subsets) without deleting individual cells. A dimensional slice is made up of one or

FIGURE 6-20. Smart View POV toolbar

318 Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution

FIGURE 6-21. Pivot examples

more dimensions and/or dimension members. When a dimensional slice is selected,
you should be able to choose whether to remove the slice from the data displayed
or to display only the slice.

For example, Figure 6-22 shows the results of the Essbase Keep Only and
Remove Only actions on a sample spreadsheet. In Smart View, you specify the
dimensional slice by selecting the desired rows and columns in the spreadsheet.
In this case, the dimensional slice is made up of Qtr 1 and Qtr 2 (rows) and
Performance and Value (columns). The image on the left shows the result of
keeping only the slice; that is, the selected rows and columns are retained and
everything else is removed from the spreadsheet. The image on the right shows
what happens if the same slice is removed.

Chapter 6: Reporting from an OLAP Application 319

Easy Report-Creation Tools
Ad hoc analysis takes time because you are exploring the dimension members and
data as you build the report. A desktop-based tool that provides shortcuts for report
creation and reuse can be invaluable. Desirable report-creation features may
include the following:

 Member selection ■

Query creation ■

Free-form reports ■

Member-Selection Tool
When you are dealing with millions of members organized within dimensions,
finding the members that you want in a report using only ad hoc features can be

FIGURE 6-22. Examples of Keep Only and Remove Only in Smart View

320 Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution

a daunting task. A good member-selection tool can make the process faster and
easier. At minimum, you need to be able to browse members by dimension and
select multiple members at the same time. You may also want the ability to filter
results, search for members, and specify conditions and criteria for member
inclusion. The end result of your selection is a query that you can use to retrieve
data from the database.

Figure 6-23 shows the Member Selection dialog box in Smart View, which offers
all of the desired abilities.

Query Creation
After spending the time to create the query for a report, it would be useful to be able to
save it and share it with others, without needing to save the data contained in the actual
report. The saved query can be used to generate the report as exactly as designed, or the
query can function as a quick starting point for creating new report queries.

With Smart View, you can create queries and save them to the server, allowing
the query to be reused and shared with others. Figure 6-24 shows a simple report
query with Market and Time dimensions assigned to rows and members of the
Measures (or Accounts or Facts) dimension in columns. Note that you can also
select a POV and attributes from the query window.

FIGURE 6-23. Member selection

Chapter 6: Reporting from an OLAP Application 321

Some tools offer advanced query construction, where you can select conditions
as well as members. For example, Figure 6-25 shows a query-creation tool from
Discoverer Plus OLAP with an option to select the top ten items based on a variety
of criteria.

Free-Form Reporting
Free-form reporting lets you converse with data in the connected database. The
concept is straightforward. You enter the dimension or member names in the data
cells of the spreadsheet, laying out the elements in the orientation you would like
used for the report. A report is automatically generated from that information.

Free-form reporting is unique to Smart View. Figure 6-26 shows two ways to
create a free-form report: specifying all dimensions/members or specifying some
dimensions/members. If only some dimensions/members are included, Essbase
completes the query and returns all other dimensions as top-level entries.

FIGURE 6-24. A report with a query designer

322 Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution

FIGURE 6-25. Query creation

FIGURE 6-26. Free-form reporting techniques

You can do this in two ways
• All dimensions represented

• Incomplete dimensions (typed onto grid)

Chapter 6: Reporting from an OLAP Application 323

Visualization
The notion of visualization has been around for years. Visualization provides a
means by which you can gain insight into your data. For some, visualization can be
a report that appears in their e-mail inbox or on a web page. For others, it could be
a grid of numbers with a chart in Excel. The key is to provide the correct, most
efficient approach to allow users to view what there is to see.

Grids (such as tables and spreadsheets) are a simple and very powerful form of
visualization, but when it comes to presenting multidimensional OLAP results, they tend
to take up a lot of real estate—so much real estate that you may need to scroll through
subsets at a time. Because scrolling can be very time-consuming and tedious, important
information may be overlooked, if ever even seen. Other kinds of visualization can
enhance users’ ability to interpret large sets of OLAP results. For example, the scatter
plot is ideal for revealing patterns and anomalies in large data sets.

Here, we will go into some detail on visualization—starting with the limitations
of traditional grids for OLAP querying and reporting, and then showing some
effective visualization means you might consider for visualizing OLAP results.

Limitations of the Grid Format for OLAP Reporting
Not so long ago, people would run a report per a set of parameters and sift through
the details. In some instances, data would be transferred to a spreadsheet for some
additional analysis. Once in a spreadsheet, consumers could apply graphs to spot
trends or color-coding to find outliers. With smaller amounts of data, these tasks
were important, but basic.

OLAP analysis can produce very large sets of data. Analysts often miss important
information, because the sheer amount of data can be overwhelming. Thus, decision-
making suffers. Spreadsheets exacerbate this issue. Though spreadsheets are very
user-friendly, the ability to store millions of cells by row and column inhibits the
ability to see the entire data set at once.

It is far easier to spot trends, patterns, anomalies, and so on when you can
examine the data in its entirety in a single view. If the data set is so large that you
find yourself scrolling up and down and side to side, your analysis will suffer. It is
virtually impossible to remember all of the data as you scroll. Enter the scatter plot.

From Grid to Scatter Plot
To meet the challenge posed by larger data sets, software vendors have begun
creating new ways to query data that promote better visualization. In this section,
we compare OLAP results in a grid format with the same data in a scatter plot. The
demonstration starts with a small data set made up of sales and marketing data for a
year. After you see how that data set maps to a scatter plot, we add the Market and
Product dimensions to increase the size of the data set. Important information,
hidden in the detail of a grid, becomes readily apparent in the scatter plot.

324 Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution

Let’s get started. Figure 6-27 shows OLAP results in a simple grid. In this case,
Smart View was used to query an Essbase database and populate an Excel spreadsheet.
Grids show values explicitly. For example, cell B2 reflects the value associated with Jan
Sales: $31,538. Figure 6-28 presents the same data in a scatter plot.

So, what is the difference? Well, instead of the 24 numbers shown in the grid,
we see 12 data points in the scatter plot. The scatter plot still reflects all 24 values,

FIGURE 6-27. Sales and marketing values by month in a grid

FIGURE 6-28. Sales and marketing by month in a scatter plot

6K

5K

4K

3K

2K

1K

0K
0K 5K 10K 15K 20K

Sales

M
ar

ke
tin

g

25K 30K 35K

Chapter 6: Reporting from an OLAP Application 325

except that the data is plotted by sales and marketing. This is a subtle but extremely
powerful difference. In addition, instead of showing the numeric value in each cell,
a plot point represents the value as an intersection with each axis. One drawback is
that, initially, it may be difficult to discern which data point is which. We will
demonstrate techniques to address this issue in the next section. But first, let’s
review how the scatter plot works. Then we will look at larger examples using the
same size scatter plot object.

Creating plots in a scatter plot is a matter of simple geometry. In our example,
each data point reflects a given month. So, to find the data point for sales and
marketing for January, locate 31,538 on the x-axis (Sales) and draw a line upward,
parallel to the y-axis. Locate 5,223 on the y-axis (Marketing) and draw a line to the
right, parallel to the x-axis. As shown in Figure 6-29, the data point is found at the
intersection of the two lines. The lines are sometimes referred to as drop lines.

Now that you have the basics, let’s expand the data set to include market data.
Figure 6-30 shows that as the domain size increases, the grid takes up more space.
For each market, we need two rows by 12 columns to present 24 values. With 20
markets, we need 40 rows by 12 columns to present 480 values. In a scatter plot,
the 20 additional markets are presented as 240 marks in the same space used before
we introduced the additional markets, as shown in Figure 6-31.

FIGURE 6-29. Sales and marketing by January

6K

5K

4K

3K

2K

1K

0K
0K 5K 10K 15K 20K

Sales

M
ar

ke
tin

g

25K 30K 35K

326 Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution

FIGURE 6-30. Sales and marketing by month by market in a grid

FIGURE 6-31. Sales and marketing by month by market in a scatter plot

800

700

600

500

400

300

200

100

0
0 500 1000 1500 25002000

Sales

M
ar

ke
tin

g

3000 3500 45004000

Chapter 6: Reporting from an OLAP Application 327

When we add the Product dimension with its 12 members to the mix, the
spreadsheet gets even larger and more unwieldy, while the scatter plot simply adds
more data points. Figure 6-32 shows the scatter plot. (The spreadsheet version is too
large to show.)

It may be useful to look at the progression of the scatter plots we have discussed.
Figure 6-33 demonstrates the increased data points plotted as we add 20 markets,

FIGURE 6-32. Sales and marketing by month by market by product in a scatter plot

160

140

120

100

80

60

40

20

0

0 100 200 300 400 500 600 700 800 900
Sales

M
ar

ke
tin

g

FIGURE 6-33. From 12 values to more than 2,700 values

160

140

120

100

80

60

40

20

0

0 100 200 300 400 500 600 700 800 900
Sales

M
ar

ke
tin

g

800

700

600

500

400

300

200

100

0
0 500 1000 1500 25002000

Sales

M
ar

ke
tin

g

3000 3500 45004000

6K

5K

4K

3K

2K

1K

0K
0K 5K 10K 15K 20K

Sales

M
ar

ke
tin

g

25K 30K 35K

328 Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution

followed by 12 products. Throughout, the footprint used remains the same. In
contrast, the number of rows in the spreadsheet increases tremendously as we add
markets and products.

More interesting though is the information that can be gleaned by a quick
glance. The rightmost scatter plot in Figure 6-33 has some stunning information.
What appeared to be a consistent pattern has been broken, yielding very interesting
data in both the upper-left and lower-right portions of the result. We refer to these
anomalies as outliers, and their location in the scatter plot is critical. In this case,
some of the outliers are good news and some are potentially bad news.

Considering that our analysis compares sales to marketing, the outliers found at
the lower right are good news. These data points represent our ability to sell with
little to no marketing expense. In contrast, the outliers found at the upper left warrant
further investigation, because the opposite is true—the company is spending money
on marketing with little return in sales. These outliers may be understandable; for
example, a new product entering the market could have this kind of profile. If the
product has been around for some time, however, this result is cause for attention.

Improving the Presentation of Data in a Scatter Plot
One challenge presented by the scatter plot is visibility. For example, it is hard to
tell which market-by-product-by-time combination is associated with a given data
point. To solve this problem, we can associate dimensional information with any
combination of color, shape, size, and/or text. Color, shape, and size generally
provide the most value. Text is nice to use with smaller sets of data. A legend is also
important to aid comprehension. Another useful technique is to make the values
along the axes suit the range of values contained in the chart. Let’s take a look at
a few examples.

Figure 6-34 presents a side-by-side view of our very first scatter plot—the one
showing sales and marketing by month—with text labels added to each data point.
The left chart reveals that, because the data points are clustered so close together,
much of the text cannot be displayed. The solution, as shown in the right chart, is to
use more appropriate axes values in order to provide the space necessary to display
the text labels.

As you might guess, the challenge with text for larger data sets is that text uses a
good deal of space. In essence, for larger data sets, the problem is the same one that
led to using a scatter plot in the first place: lack of real estate. So, let’s look at some
other techniques for improving comprehension using larger data sets.

In the next example, we turn our attention away from months and focus on
market. Figure 6-35 contains the scatter plot originally shown in Figure 6-32 (sales
and marketing by month by market by product) with color assigned to the Market
dimension. A legend maps a color to each of the markets.

Chapter 6: Reporting from an OLAP Application 329

FIGURE 6-34. Text labels are used to identify months.

6K 6000

5900

5800

5700

5600

5500

5400

5300

5200

Sales
31

50
0

32
00

0
32

50
0

33
00

0
33

50
0

34
00

0
34

50
0

35
00

0
35

50
0

36
00

0
36

50
0

M
ar

ke
tin

g

5K

4K

3K

2K

1K

0K
0K 5K 10K 15K 20K

Sales

M
ar

ke
tin

g

25K 30K 35K

Jan

Jun

May

Jun

Jul

Aug

Dec
Sep

Apr
Oct

Mar
Feb

Nov
Jan

NOTE
As this book is printed in black and white, the colors
in the following images are rendered in shades of
gray. In the real world, you would be viewing the
scatter plot—and the colors—online.

We can quickly determine a pattern in the data after color is applied. The cluster
of good outliers (lower right) is from Massachusetts, while the two clusters of poor
outliers are from Nevada (leftmost) and New York State, respectively. We have
figured out that our problems are isolated to particular markets. This is very helpful
information that would be a challenge to discover using a spreadsheet.

Now, by applying shape to product data in Figure 6-36, we can see other
patterns emerge. Particular products are associated with the good and poor outliers.
Referring to the legend, which contains a subset of information, we discover that
Cola is the product that is selling very well in Massachusetts (good outlier). The poor
performing product is Old Fashioned in New York State. With the information
gleaned from increased visibility, we can contact the product managers for those
markets and determine a course of action.

330 Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution

Up to this point, we have used two measures, Sales and Marketing, on the x and
y axes. Each data point represents the intersection of the values associated with these
measures in terms of months, market, and products. We then highlighted markets
with color and products with shapes. Now we are going to layer on yet another
dimension member: ending inventory. We will use size to represent the value of the
ending inventory—the larger the plot point, the greater number of units in inventory.
Figure 6-37 confirms that in the poorest performing area (upper left), the data points
are indeed larger than those found in the best performing area (lower right).

From Figure 6-37, we can conclude that we may be able to apply production
capacity from the products at the upper left to the more profitable products at the
lower right. After all, we are producing more product than we can possibly sell. In
addition, if this excess inventory could be sold in the markets found at the lower right,

FIGURE 6-35. Adding color to markets causes a market-specific pattern to emerge.

160

140

120

100

80

60

40

20

0

0 100 200 300 400 500 600 700 800 900

Sales

M
ar

ke
tin

g

Florida
New York State
Massachusetts
Connecticut
New Hampshire
California
Oregon
Washington
Utah
Nevada

Texas
Oklahoma

Chapter 6: Reporting from an OLAP Application 331

a simple distribution change would help. In either case, having the information
quickly provides us with the power to make a better decision.

The preceding examples demonstrated some basic functionality shared by many
different visualization tools. We showed how properties such as shape, color, size,
and text could be used to identify the data points and reveal patterns within the
data. Most of what we demonstrated had to do with outliers. These values are
simply anomalies that appear outside a typical pattern. Visualizations such as the
scatter plot are great for this type of analysis.

Other Types of Visualizations
In general, visualizations should provide the most appropriate method for presenting
the data, given the analytic need. Our intent was to present an alternative approach

FIGURE 6-36. Adding shape to products reveals a product-specific pattern.

160

140

120

100

80

60

40

20

0

0 100 200 300 400 500 600 700 800 900

Sales

M
ar

ke
tin

g

Florida
New York State
Massachusetts
Connecticut
New Hampshire
California

Cola
Diet Cola
Caffeine Free Cola
Old Fashioned

Diet Root Beer
Sasparilla

332 Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution

to the grid- and chart-based methods. If you are simply after a report comparing
this year to last, a grid or bar chart may fit the need. However, when heavy data
volumes or no clear-cut output is needed—meaning the exercise is more analytic
than static—other visualizations are a better fit. Both Oracle OLAP and Oracle
Essbase can leverage Excel to perform similar tasks, allowing users to get more
depth of analytics and insight, not just rows of data.

Many other types of visualizations are possible, including the following:

 Bar charts are a great way to compare data across categories or to break ■
data down into stacked bars.

Text tables (also called cross-tabs or pivot tables) provide an easy way to ■
display the numbers associated with categorical data.

FIGURE 6-37. Size represents the value of ending inventory.

160

140

120

100

80

60

40

20

0

0 100 200 300 400 500 600 700 800 900

Sales

M
ar

ke
tin

g

–3,883
0
5,000
8,879

Chapter 6: Reporting from an OLAP Application 333

Line charts connect individual data points in a data view. They provide a ■
simple way to visualize a sequence of values, and they are especially useful
when you want to see trends over time.

Heat maps are a great way to compare categorical data using color. They ■
are typically constructed as a table using colored squares to represent
the data and a continuous range of colors. Heat maps allow you to see
variations in the data via variations in color.

Gantt charts are typically used when you want to display the duration of ■
one or more categories of interest against the progression of time.

This section has covered the wide variety of functionality that you may want in
a desktop-based OLAP reporting tool. Whichever tools you choose, ensure that you
are getting the features you need to produce the types of ad hoc reports and custom
reports that your users want.

Understanding Deployment Options
So far, we have discussed a general approach for determining what may be needed in a
reporting solution. However, types of users and styles of reports are not the only factors
that need to be taken into consideration. The project team needs to know which
deployment options are feasible within the existing IT infrastructure. Sometimes, the
ideal reporting solution is simply not possible based on security requirements or
previous investments in technology. The team needs to manage expectations and be
wary of letting pie-in-the-sky notions become requirements.

The project team works with the user committee to provide the best possible
solution for their environment—one that adheres to enterprise standards while also
providing the required functionality both for web-based and desktop-based reporting.

Fitting in with Enterprise Standards
Organizations may have strict policies about what can be delivered to end users.
To follow best practices, many different interfaces need to be used to meet the
requirements of different user types, but all of them need to comply with corporate
standards for technology, security, and single sign-on end-user restrictions. Many
companies do not allow employees administrator-level control over their desktop or
laptop, may have data restrictions to different databases, and may assign different
access to different reports.

Most likely, the project team members who selected the software are already
aware of the possible options for deployment. If not, they can poll the user committee
or user community for requirements based on what they know will fit in with their
standards.

334 Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution

Web-Based Deployment Options
The majority of examples shown so far in this chapter have been from web-based
reporting tools, so let’s first look at the different ways you can deliver reports over
the Web:

 ■ Interactive reporting A good way to look at web-based interactive
reporting is that it provides all the functionality for doing detailed
analysis—functionality that is as close as possible to that available in a
desktop application—yet delivered securely through the Web for ease of
maintenance. There is always a need to deliver ad hoc analytics and what-
if capabilities through the Web, and this style of reporting comes closest
to satisfying the needs of users who are used to desktop analytic tools.
Examples of deployment options include Hyperion Web Analysis, Oracle
Business Intelligence Answers, and custom web portals.

Dashboard reporting ■ Web-delivered dashboards have been a buzz
topic for many years now, because they provide a great overview into a
particular subject area on one or just a few screens. Ideally, a dashboard is a
starting point, containing high-level information, which can then be drilled
into for additional detail, investigation of a certain problem, and links to
additional areas that may be of interest. Examples of deployment options
include Oracle Business Intelligence Interactive Dashboards and Hyperion
Interactive Reporting.

Production reporting ■ Also known as pixel-perfect reporting, production
reporting delivers a report that must look a certain way to meet requirements,
but has little or no interactivity. Statements, checks, formatted management
reports like income statements, balance sheets, and cash flow reports fall
into this category. Examples of deployment options include Oracle Business
Intelligence Publisher, Hyperion Financial Reporting, and Hyperion SQR
Production Reporting.

Desktop-Based Deployment Options
Desktop-based reporting is generally delivered via Microsoft Office products—in
particular, Excel. However, some third-party tools exist that offer other spreadsheet-
based interfaces with built-in Essbase or Oracle OLAP features.

Ad Hoc Spreadsheet Reporting
As previously mentioned, ad hoc spreadsheet reports are most often created in Excel
by power users. OLAP features are integrated into the Excel interface. Analysts can
connect to and retrieve data from either an Essbase database or an Oracle OLAP

Chapter 6: Reporting from an OLAP Application 335

analytic workspace. They can also set the POV, navigate the data, calculate the
data, and format the report—all from within the spreadsheet. With the appropriate
permissions, they can even write back to the database. End users can modify the
report to create what-if scenarios.

Essbase Tools for Ad Hoc Reporting You can add Essbase features to Excel using
either the classic Spreadsheet Add-in or the next-generation Smart View, which both
come standard with Essbase. Smart View has the added advantages of being able to
connect to and retrieve content from other EPM applications, such as Planning and
Financial Management, as well as offering the ability to create custom Microsoft
Office reports (as described shortly).

Some third-party tools, such as Dodeca from Applied OLAP, offer an Excel-
compatible spreadsheet interface and integrated Essbase features. Dodeca is
described in more detail later in this chapter.

Oracle OLAP Tools for Ad Hoc Reporting For Oracle OLAP, several desktop
options are available for displaying and reporting data. These tools include those
provided by Oracle and some third-party tools that support Oracle OLAP 11g features.

We have already discussed OBIEE Plus and its support for Essbase and Oracle
OLAP, but there is also Oracle Business Intelligence Standard Edition, which is
based on the Oracle Business Intelligence Discoverer tool set.

BI Discoverer has two components that can be used with OLAP data.

 Oracle Business Intelligence Discoverer Plus ■ BI Discoverer Plus is a Java-
based tool delivered via a browser. It provides a rich report development
and viewing environment. Because BI Discoverer Plus is a Java application,
it can run on any operating system capable of running the Java environment,
including Windows, Linux, and Mac OS X. BI Discoverer Plus has been
available for quite some time for relational data. Several years ago, an
OLAP component was released, called Discoverer Plus OLAP. Discoverer
Plus OLAP directly accesses the data in Oracle OLAP cubes. Unlike earlier
versions of BI Discoverer Plus, there is no need to use an administrator tool
to create the metadata; in this case, an end user layer (EUL) can directly
access the OLAP data stored in an Oracle database.

Oracle Business Intelligence Discoverer Viewer ■ BI Discoverer Viewer
is a web-based, thin client viewer that allows for viewing of reports and
workbooks created with BI Discoverer Plus.

To view OLAP data in Discoverer Plus OLAP, start Discoverer Plus OLAP and
select the data you want to view using the Workbook Wizard. Figure 6-38 shows
a sample report. The feature-rich multidimensional query builder contained in this
tool allows users to build very powerful presentations and briefing books.

336 Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution

After you have selected all the data and filtered the dimensions, you will see your
new Discoverer Plus OLAP workbook. You can now create reports. You have the
option of viewing the reports in BI Discoverer Plus or allowing authorized web users
to view the reports as well using BI Discoverer Viewer, as shown in Figure 6-39.

You can also use the BI Spreadsheet Add-in to display OLAP data in Excel. The
BI Spreadsheet Add-in can be downloaded from the Oracle Technology Network
(OTN) site or installed as part of the Oracle Business Intelligence Standard Edition
Client bundle.

The BI Spreadsheet Add-in adds the following enhancements to Excel:

 Common business rules and definitions on the OLAP catalog ■

Leverage of the scalability of Oracle OLAP ■

Access to the advanced calculations and power of the OLAP engine ■

Storage of data in a central repository—one version of the data! ■

FIGURE 6-38. Discoverer Plus OLAP report

Chapter 6: Reporting from an OLAP Application 337

After the BI Spreadsheet Add-in is installed, you start up Excel, navigate to the
OracleBI menu item, and create a new query. After creating a connection to the
database schema that has access to the OLAP cubes, the Query wizard is displayed.
The wizard uses the same set of dialog boxes used to create a query in Discoverer
Plus OLAP. Figure 6-40 shows an example of an Excel spreadsheet with the same
data we showed in Discoverer Plus OLAP.

The BI Spreadsheet Add-in cannot use the same presentations that were created
in Discoverer Plus OLAP, but they can share calculated measures and calculated
members. One excellent offering of the BI Spreadsheet Add-in is a write-back feature
that allows authorized users to write data directly back to the OLAP cubes. While this
is only single user, the BI Spreadsheet Add-in does a good job of managing contention
and opens the data in read-write mode only when data is actually being written.

As of this writing, the BI Spreadsheet Add-in supports only Oracle OLAP 10g.
A couple third-party products support Oracle OLAP 11g in Excel, as discussed in
the “Third-Party Reporting Tools for Oracle OLAP” section later in the chapter.

FIGURE 6-39. BI Discoverer Viewer in a browser

338 Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution

Custom Reporting with Microsoft Office
Recall that custom Microsoft Office reports enable analysts to create documents and
slides with live data points. Analysts can create the report once and reuse it month
after month, simply by updating the content of the data points. The data points can
be presented in the default grid format and in a variety of other visualizations, such
as a scatter plot, bar chart, heat map, and so forth.

OBIEE includes the Oracle Business Intelligence Add-in for Microsoft Office
which allows data from the BI Server to be used in Office products such as Excel and
PowerPoint. Because Oracle OLAP and Oracle Essbase data can be used with OBIEE
Plus and the BI Server, this same data can be used in the Oracle Business Intelligence
Add-in as well. Oracle also offers the ability to create custom Microsoft Office reports
out of the box with Smart View and its integrated visualization tool, Visual Explorer.
Smart View offers the ability to view Essbase data directly or use data from the BI
Server, which includes Oracle OLAP data.

FIGURE 6-40. Excel spreadsheet with the Oracle BI menu

Chapter 6: Reporting from an OLAP Application 339

Third-Party Reporting Applications
All the reporting tools that have been used as examples in this chapter are Oracle
products. There are also some high-quality third-party reporting tools available for
both Oracle OLAP and Oracle Essbase.

Third-Party Reporting Tools for Oracle OLAP
Over the years, several products have been able to access the data in Oracle OLAP
workspaces. Recently, with all the BI software company consolidations and mergers,
the landscape has changed. Several of the smaller independent companies that
produced some very good tools are no longer with us, but others have emerged to
take their place. The three products we address here are the Simba MDX Provider,
ClearView, and Escendo Analyzer. The Simba MDX Provider and ClearView both
work with Microsoft Excel, but provide different levels of integration and features.
Escendo Analyzer is a stand-alone application that works directly with the Oracle
OLAP data.

Simba MDX Provider
Simba Technologies has been a leader in relational and multidimensional connectivity
tools and drivers for more than 18 years. The company has been providing
multidimensional drivers for front-end tools for Microsoft and Hyperion since 2002. In
the summer of 2009, Simba came out with another first: a native Microsoft Excel 2007
connector for Oracle OLAP 11g. This product uses Simba’s MDX query language
technology to access Oracle OLAP. Just about all other multidimensional databases
have MDX providers; up until now, Oracle OLAP has been an exception. This will
help level the playing field.

The primary purpose of the MDX Provider is to provide the same level of
functionality within Excel as Microsoft Analysis Services. As far as Excel is concerned,
the Oracle OLAP data looks just like Microsoft Analysis Services data. End users
familiar with using the Excel PivotTable feature will view the Oracle OLAP data the
same way they would see the Microsoft Analysis Services data. This is not an Excel
add-in or bolt-on like other solutions; it works natively with Excel.

The Simba MDX Provider works seamlessly to parse and process multidimensional
queries from Excel and integrate with Oracle OLAP 11g via SQL/ODBC. It translates
Excel’s MDX queries to SQL to retrieve Oracle OLAP cube information. The result is a
fast and secure means to use popular, multidimensional tools like Excel to access your
Oracle OLAP data directly.

The Excel 2007 PivotTable can now be used with Oracle OLAP to take advantage
of all the BI analysis and presentation features that Microsoft provides. Connection to
the database is simple. It is set up in the same way as any other MDX multidimensional
data store, as you can see in Figure 6-41.

340 Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution

As you can see from Figure 6-42, the OLAP data is presented in the native Excel
interface supported by Microsoft. No additional menus or user interfaces are necessary.

NOTE
The native Excel PivotTable functionality does not
allow for data write-back. As a result, the Simba
MDX Provider does not currently support writing
data back to the database.

FIGURE 6-41. Connection to Oracle OLAP data via the Simba MDX Provider

Chapter 6: Reporting from an OLAP Application 341

The Simba MDX Provider requires Oracle OLAP 11g (support for version 10g is
currently not planned). This is the first release of the product, and Simba plans for
this to eventually become a full MDX provider, compatible with other MDX data
consumers. As you can see, this product provides a different layer of compatibility
than other tools. While it may be limited by not supporting write-back, it also has
the brightest future. If Simba is able to enhance the provider to support integration
into other tools that currently support only Microsoft Analysis Services or other
MDX multidimensional databases, this will expose Oracle OLAP to a much broader
reporting tool base.

ClearView
ClearView 2.0, by Collaborative Concepts Consulting, Inc., allows Microsoft Excel
users a great way to access data in Oracle OLAP cubes. ClearView is a rich Excel
add-in that enables users to view data with a powerful query builder tool for ad hoc
reporting, boardroom-ready reporting analysis, and what-if analysis. ClearView
supports full write-back to Oracle OLAP cubes and can be used for a complete
analysis solution.

ClearView 1.0 was originally developed for Oracle Financial Analyzer users.
ClearView 2.0 extends support to Oracle OLAP cubes and adds a great number of
features. ClearView is developed as an Excel add-in, using the Excel worksheet as a
presentation vehicle. This solution is designed for a collaborative, multiuser environment.

FIGURE 6-42. Simba MDX Provider accessing OLAP data in Excel

342 Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution

It supports a workbook management catalog system, storing all workbooks in the
Oracle Database, instead of separate .xls files on users’ hard disks.

Cubes in a ClearView solution are still managed by AWM. It uses the same
metadata as Oracle OLAP 11g, using the built-in views to access the data. For Oracle
OLAP 10g analytic workspaces, ClearView includes routines that produce 11g-style
metadata and built-in relational views. There are stored procedures and relational
tables that are installed in the Oracle Database as part of ClearView setup. This type of
architecture allows collaboration and sharing of content between users in a secure way.

On the front end, ClearView is a single DLL installed as an Excel COM add-in.
This works with Microsoft Excel versions 2002, 2003, and 2007. The Excel add-in
provides all of the interface components for ClearView. ClearView uses Oracle
ADO components for communication with the Oracle Database.

ClearView extends the Excel menus to include standard OLAP actions such as
ranking, matching, sorting, rotating, selecting, and drilling down, as well as more
advanced actions such as spreading amounts from a higher level to lower levels (for
allocating forecasts). Figure 6-43 shows a selection of options available in ClearView.

ClearView also allows users to select the dimension values of interest from
within Excel using the Easy Select feature (autocomplete), without needing to pop
up another data selection window. The newly inserted row or column inherits all
the formatting from the previous row or column. The Easy Select feature, shown in
Figure 6-44, can be used to append or insert records to a range of data without
affecting other formats on the worksheet.

FIGURE 6-43. ClearView Spread Amount feature

Chapter 6: Reporting from an OLAP Application 343

ClearView allows users to create a highly formatted deck of reports that can be
periodically refreshed to reflect the latest data. These reports use qualified data
reference (QDR) format, which allows users to create customized asymmetric reports
with ease. Excel formulas and Excel charts, along with other native Excel features, can
be used within the same report, as shown in Figure 6-45.

FIGURE 6-44. Inserting additional rows by using the Easy Select feature

FIGURE 6-45. Sample boardroom-ready report

344 Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution

Users can enter data directly into Excel to be written back to Oracle OLAP cubes.
When this occurs, this data is submitted to a task processor. This allows administrators
to have fine control over what is actually written back and to trigger calculation rules
that can calculate other data based on what was written back. ClearView’s Aggregate
function allows users to do a what-if analysis before committing the data to the
database. This means that users can type in data, submit data in a read-only instance
of the analytic workspace, compute the totals in the database, and redisplay the
results in the worksheet. Based on the analysis of the aggregated results, the data can
then be permanently submitted, as shown in Figure 6-46.

ClearView’s write-back functionality supports all the AWM data types (text, date,
and numeric). Security defined at the cube cell level within AWM is enforced for
write-back. The task processor supports multiple queues, which can be configured for
different cubes, facilitating multiuser write-back. An intelligent processor optimizes the
queue processes to minimize the number of aggregations. It also supports Sarbanes-
Oxley compliance with change tracking for reports and all data adjustments.

FIGURE 6-46. ClearView submits data tasks to a task processor for processing.

Chapter 6: Reporting from an OLAP Application 345

As shown in Figure 6-47, ClearView can be configured to support custom
add-ins to extend the OLAP functionality. For example, a custom add-in could be
output coming from a relational query, OLAP DML program, or stored procedure.

While ClearView allows you to place Oracle OLAP data in any cell, by using
formulas that access data at the cell level, it also fetches all cells of the same
measure in bulk, providing excellent performance even on large data refreshes.
Sparse data is handled in the back end to minimize communications between the
front end and back end.

We have covered only a sampling of the capabilities of ClearView. Any company
that is looking for a complete OLAP analysis solution using Oracle OLAP data with
an Excel front end should investigate ClearView. ClearView’s advanced write-back
functionality makes it an ideal choice for clients who need a low-cost planning and
forecasting application solution on top of Oracle OLAP. The task processor provides
for orderly submission of data and tracking of multiple changes. The workbook
management catalog system gives users the ability to store workbooks directly in the
Oracle Database, mitigating one of the major problems with spreadsheet access to
OLAP data—the proliferation of data.

Escendo Analytics
Escendo provides an application development environment for developing, deploying,
and analyzing Oracle OLAP cubes. Escendo is built by long-time Express and Oracle
OLAP consultants for migrating Express applications and developing new analytic
applications on top of Oracle OLAP. Rather than using AWM, they wrote their own
Escendo Architect tool for building cubes.

Escendo Analytics consists of two related products. Escendo Architect replaces
AWM for cube development and deployment. Escendo Analyzer provides a web-
enabled front end for reporting and analyzing Oracle OLAP cubes.

FIGURE 6-47. ClearView add-ins provide ways to extend OLAP functionality.

346 Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution

Escendo cubes are built with Escendo Architect, a Java application used by Oracle
OLAP administrators. Components live on the server as well as on the client side.
Escendo works with Oracle OLAP 10g as well as Oracle OLAP 11g, but uses its own
metadata to include features such as version control on OLAP objects, customized
SQL for loading data into cubes, a deployment manager, security administration, and
migration from Oracle Express. As a result, some of the features available with Oracle
OLAP 11g, such as cube-organized materialized views and query rewrite, are not yet
available for cubes built with Escendo.

Escendo Analyzer is a Flash-based front end built on a Java EE framework.
Deployments have a hierarchical structure, giving users the ability to control who
gets to see what data or approve changes, carrying forward some of the features
available with Oracle Financial Analyzer.

 Escendo Analytics, shown in Figure 6-48, includes standard OLAP actions such
as rotating, selecting, and drilling down. It also adds a Business Perspectives feature,

FIGURE 6-48. Escendo Analytics

Chapter 6: Reporting from an OLAP Application 347

which helps to define which users get to see what data in what format. Users can
write back data to the cubes.

Escendo allows companies to develop OLAP applications using Oracle OLAP.
With Oracle OLAP moving more toward the IT organization, Escendo extends its
use back to the user community for classic OLAP applications, developed and
managed by line-of-business users.

Escendo should be considered by organizations that are attracted to many of the
features of Essbase (but not necessarily the Excel interface), but want to store their
data in an Oracle Database in Oracle OLAP cubes. Users can write back data to
cubes using Escendo.

Third-Party Reporting Tools for Essbase
Nearly all of the reporting tools that have been used as examples in this chapter are
Oracle products, from the OBIEE Plus tool set. Given the openness of Essbase and its
use of standard MDX for querying, over the years, many companies have introduced
great interfaces for Essbase. The software industry has gone through some major
changes in the last few years, however, and many independent reporting tool
companies were acquired by larger companies. Reporting tools for Essbase that were
previously offered by smaller companies such as Temtec and Alphablox are now tools
positioned inside larger companies. Their offerings may or may not retain their former
level of support for Essbase.

Applied OLAP is one independent company that has developed its product,
Dodeca, to meet needs that might not be available out of the box with Oracle’s own
reporting tools. We know of several Essbase clients using Dodeca very successfully
today. This section includes a case study that highlights when the purchase of a
third-party tool may be useful.

Dodeca
Dodeca is a web-deployed solution that easily integrates with Microsoft Office.
It addresses the typical range of reporting needs, while also bringing together
information from disparate data sources, including OLAP and relational database
systems, within a single integrated user interface. Quick and easy customization is
one of Dodeca’s strengths.

Based on a web services and a metadata-centric architecture, Dodeca is designed
to create tailored, customized applications that are targeted for analysts, decision
makers, and business users at all levels. It was architected for speed of deployment
and ease of use, while centralizing and managing business rules and files.

The two main features of the Dodeca architecture are the modular design and
a patent-pending metadata management engine. The modular design provides the
flexibility necessary for customers to control an interface that fits their exact needs,
while the metadata engine enables rapid, global deployment flexibility and support
for best-practice application life-cycle management.

348 Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution

Typically, companies have a number of disparate data sources that contain
related information, both relational and OLAP. Dodeca provides an interface that
can bring those multiple sources together into a single custom application. Essbase
analytics and underlying data sources, such as general ledger and other transaction
systems, become part of a single experience. Figure 6-49 shows a standard Dodeca
window, with user controls on the left, content in the center, and dimensional
navigation on the right.

 All of the features and functionality in Dodeca are provided by the underlying
modular architecture. There are a large number of features that are available out of
the box, including the following:

 Dodeca provides essentially the same functionality found in the classic ■
Essbase Spreadsheet Add-in, but also has some unique features. Specific
operations can be made available within a given context, thus providing a
more structured and guided user experience. For example, the zoom in and
out operations can be enabled or disabled on a dimension-by-dimension
basis for a specific report.

FIGURE 6-49. The standard Dodeca user interface

Chapter 6: Reporting from an OLAP Application 349

Dodeca includes its own Excel-compatible spreadsheet interface that can ■
read and write Excel files that contain one or more sheets, calculate Excel
formulas, render Excel formatting and charts, and enforce Excel element
protection. It supports familiar editing operations, such as copy and paste
special.

Intelligent navigation makes it easy for users to remain in context as they ■
navigate between different views or reports. This capability allows users
to remain within a continuous thought process without the distraction of
logging in to multiple systems or reselecting the parameters in the supporting
systems. For example, an existing Dodeca customer has both Essbase and
PeopleSoft GL, and uses the right-click functionality of intelligent navigation
to drill across from Essbase to the details from PeopleSoft.

Analytic commentary allows users to communicate variance explanations ■
or other textual information related to an analysis in a systematic way. The
commentary functionality delivered with Dodeca provides for threaded
conversations and allows users to attach relevant documents to data points
or partial data points within a view or report.

Dodeca automatically logs all changes to the Essbase database, including ■
the user information, a timestamp, the old values, and new values.

All aspects of the Dodeca user environment are controlled centrally by ■
administrators who manage the metadata that drives the application using
a form-driven administration environment. Administrators control all
aspects of both content generation and behavior—including the spreadsheet
templates, available database connections, toolbars, and all user interface
elements—to ensure that end users can easily and quickly get the correct
information with minimal effort.

These are only a small sampling of the out-of-the-box features of Dodeca.
For those customers who have other needs, Dodeca’s object-oriented modular
architecture is open, documented, and supported. Customers can create their own
modules to satisfy their most demanding user requirements. Now we will look at a
case study showing how Dodeca can be used.

Dodeca Case Study
Dodeca is often used when a company has a number of data sources, including
a large number of Essbase databases, and wants to enable users to more easily
explore and find the information they need.

350 Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution

A large international bank had hundreds of users using an Essbase flash reporting
system to view daily results. Although popular with users, the flash reporting
database lacked the level of detail necessary to get a complete understanding of the
data. In order to access the detailed analytic data, a user had to connect to a different
Essbase database that contained significantly more details for two of the dimensions.
Next, to further investigate the underlying details stored in an external general ledger
system, the user had to log in to the system and create one or more queries. Finally,
to review a source document, such as an invoice, a request had to be submitted to
the accounts payable department, who provided a copy within five working days.

Due to the cumbersome and time-consuming effort required to complete the
analysis process, user productivity suffered. Further investigation was frequently
skipped altogether, as the cost to dig into supporting details was often greater than
the benefit gained.

The bank managers chose Dodeca for its Essbase functionality and Excel
compatibility. They also looked to Dodeca’s intelligent navigation feature to make it
easier for users to complete more thorough analyses. As noted earlier, intelligent
navigation enables users to move interactively between reporting systems in order
to explore a particular point of interest, while staying within the same application.
The context is automatically retained as a user navigates through and across the
various systems.

The value of the intelligent navigation feature is demonstrated in this example
during a training session with a corporate controller. He learned how to explore
summary information from Essbase, and then, with a single mouse click, navigate to
a more detailed analytic view. A report was created that allowed for drill through to
details, like the one shown in Figure 6-50.

The controller was automatically connected to an Essbase database containing
more detail in the account and entity dimensions. The view presented at the
detailed level maintained the entity, month, scenario, and other dimensions of the
selected data point as the starting point for the new report. At this point, he was able

FIGURE 6-50. Case study first report with right-click drill-through capability

Chapter 6: Reporting from an OLAP Application 351

to navigate through certain dimensions to explore the detailed data further. For
example, he could have selected to explore the CMB - Commercial Bank entity
rollup instead of viewing data for the entire bank, as shown in Figure 6-51.

Once the controller found a number that required more detailed exploration, a
simple right-click moved the analysis into the company’s general ledger system.

When the controller selected the GLTXN link on the context menu, the context
for the selected data point was automatically passed to the general ledger and
produced a report showing the details. The controller selected a value that was the
summary of more than 2,000 entities and over 100 accounts from the context menu
shown in Figure 6-52.

The resulting general ledger report returned posting-level entities and accounts,
and prepared a report for all postings that composed the number. Figure 6-53 shows
an example of the GL Details Report.

The controller reviewed the details and found an accounts payable posting that
was relevant from this detail, as shown in Figure 6-54. Once again, intelligent
navigation allowed the controller to easily review the invoice image, where he
discovered that one of his managers had a signature authority limit significantly
higher than he believed appropriate. The continuous analytic thought process
enabled by Dodeca gave the controller an insight into his business that led directly
to action and to increased oversight within his department.

FIGURE 6-51. Drill-through details to CMB

FIGURE 6-52. GLTXN drill-through selection

352 Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution

FIGURE 6-53. Miscellaneous expense GL report

FIGURE 6-54. Accounts payable posting and invoice

Chapter 6: Reporting from an OLAP Application 353

Conclusion
This chapter touched on many areas that need to be taken into consideration for
OLAP reporting. We showed that customers leverage many common elements—not
just functionality and ease of use, but also terminology and common tools to deploy
sophisticated OLAP reporting. You saw examples from many of the components in
OBIEE Plus, as well as some additional reporting options from third-party companies.
Oracle’s strategy is to continue to offer functionality in a platform that works with both
Oracle OLAP and Oracle Essbase, and extends current capabilities in both the web
offerings and Smart View. This will make it easy for a large user base to extend their
OLAP projects and leverage these common tools that work with both OLAP offerings.

We discussed determining the types of users and reports, the functionality they
desire, and the many deployment options a project team can choose to use. In the
next chapter, we look at front-end products that can leverage OLAP data and how
they are commonly used in organizations.

References
Few, Stephen. Information Dashboard Design: The Effective Visual Communication

of Data. O’Reilly Media, 2006.

Hatch, Toby and Raef Lawson. Oracle’s Comprehensive Guide to Realizing EPM
Version 2.2. White Paper. Oracle Corporation, October 2007.

Nader, Michael and Dave Collins. Dare to OLAP. Oracle Corporation, 2008.

This page intentionally left blank

Oracle-Regular / Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution/ Schrader et al. / 182-2 / Chapter 7
Blind folio: 355

Chapter
7

Leveraging OLAP in
Your Organization

355

356 Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution

he reporting and spreadsheet tools discussed in Chapter 6 are
powerful ways to interact with OLAP data and share results, but they
are not the only ways. Many packaged applications can use Essbase
or Oracle OLAP as a source of data and/or as a calculation engine.
For example, you can find applications for planning, forecasting, and

cost management. These packaged applications interact with Essbase or Oracle
OLAP via Java APIs. The APIs are public, which means that anyone can develop
a custom application to work with one of Oracle’s OLAP engines.

In this chapter, we present some Oracle products that can be used with Essbase
and Oracle OLAP. For Essbase, we showcase two enterprise performance
management (EPM) products—Oracle Hyperion Planning and Oracle Hyperion
Profitability and Cost Management—as well as Oracle Crystal Ball and Oracle Smart
Space. For Oracle OLAP, we cover Oracle Application Express. We conclude with
an introduction to the Java APIs for those who may be interested in developing a
custom front-end application.

Performance Management Applications
Leveraging Essbase
As described earlier in this book, you can create planning, budgeting, forecasting,
and profitability and cost management systems using Essbase features embedded
within custom Microsoft Excel or web applications. Custom applications come
with challenges, including template creation (often by budget administrators),
ease of use, end-user support, documentation, custom programming, a path for
upgrades, and ongoing maintenance. For example, on one job, we had a situation
where one employee created and owned the Excel-based planning models. The
system was not documented, and it contained a lot of Visual Basic code leveraging
the Essbase APIs. No one else in the organization had the knowledge necessary to
maintain the application, and because the application was created by the finance
department, it was not supported by the IT organization. Therefore, while this
custom application did the job in the short term, the risks to the organization were
high over the longer term.

Start-from-scratch solutions are obviously not for everyone. Fortunately, other
options are available. As a result of the high demand for packaged applications,
Oracle assembled the Oracle Enterprise Performance Management System. Two
applications within that Oracle system leverage Essbase as their database and
calculation engine: Planning and Profitability and Cost Management. Planning
focuses on planning, budgeting, and forecasting. Profitability and Cost Management
helps you to determine profitability and manage costs. With these Essbase-based
applications, you gain all the advantages of a packaged application, without
sacrificing the speed and power of an OLAP system.

T

Chapter 7: Leveraging OLAP in Your Organization 357

In this section, we review the features and functionality of the Planning
application and the Profitability and Cost Management application. We then look at
the administration component called Oracle Hyperion Enterprise Performance
Management Architect, which an administrator can use to create, manage, and
deploy Planning and Profitability and Cost Management applications, as well as
Essbase cubes. We end with a brief look at the architecture for all three applications.

Oracle Hyperion Planning
Planning is a centralized, OLAP-based application for planning, budgeting, and
forecasting. Essbase is the underlying calculation engine and data repository.

Planning offers data-entry forms, custom context menus for ease of navigation,
a graphical interface for creating rules and calculations, and built-in workflows. The
workflow component helps drive collaboration throughout the planning, budgeting,
and forecasting processes. For example, in the budget process, budget owners can
submit their budgets for approval with commentary, and approvers can respond in a
variety of ways, including sending comments back to the owner.

To satisfy the diverse needs of user communities within an organization,
Planning provides a web-based interface and an Excel-based interface. A centralized
server provides a single point of administration for both interfaces. For example, an
administrator can create one data-entry template that is available from either a web
browser or Excel.

Planning includes the following features:

 Support for top-down and bottom-up planning ■ Senior management can
set high-level targets at upper levels and allocate the targets down to lower
levels (top-down). Planners can also start building budgets from the lowest
level (bottom-up) and have comparisons to the targets.

Multiple versions for iterative planning cycles ■ Planners can set up
multiple versions of the plan to create what-if scenarios. They can also
capture plan iterations and create comparisons between the iterations.

Support for driver-based plans ■ Planners can set up assumptions for drivers
that may affect their financial plan, such as market share, inflation factors,
interest rates, midpoint salaries, and FICA limits.

Graphical Calculation Manager ■ Planners can create easy and complex
business rules and allocations without having to write script.

Web-based and Excel-based data-entry forms and annotations ■ Planners
can create data forms to collect key plan information. A single data form
definition is valid for both interfaces.

Process management of the planning cycle ■ Planners have a hierarchical
or matrix review and sign-off with collaboration.

358 Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solutio

Integration with other systems ■ Planning ships with Oracle Data Integrator
Enterprise Edition (ODI). ODI can be used to load metadata (such as charts
of accounts, departments, and products) and related data from a relational
data source.

Currency conversion for multicurrency applications ■ Currency conversion
is built into Planning.

Workforce Planning module ■ This module provides predefined and
supported content for the planning, budgeting, and forecasting of headcount
and salary expenses.

Capital Expense Planning module ■ This module provides predefined and
supported content for the planning, budgeting, and forecasting of capital
expenditures and related profit and loss, balance sheet, and cash flow
statements.

Common administration ■ Planning ships with Performance Management
Architect, which is a common tool for managing shared hierarchies and
creating applications for Planning and Profitability and Cost Management.

In a packaged solution, administrators expect the supporting components of the
system to adapt to changes made to the system. For example, if an administrator
adds a new cost center to an application, then the business rules, data-entry forms,
custom navigation menus, process management, and related reports should
automatically become aware that the new cost center exists. The administrator
should not need to make any manual changes. Planning makes use of Essbase
features to meet the demand for adaptive software. For example, when designing a
business rule or data-entry form, the user will use family-related functions like
IDescendants (Total Company). With family-related functions, the business rule and
data form can adapt automatically to the addition of a new cost center. The
following sections describe the adaptive components of Planning: Calculation
Manager, data-entry forms, custom menus, process management, and task lists.

Calculation Manager
Business rules and the related calculations are the backbone of a planning
application. Oracle developed a common interface, called Calculation Manager,
where users can design, validate, and administer business rules in a graphical
environment. Calculation Manager leverages the power of the Essbase calculation
engine without the need to write Essbase calculation scripts. For example, you can
graphically create a rule to aggregate the IT departmental expenses and allocate the
total to all other cost centers (excluding the IT department) based on the number of
PCs they have in place.

Chapter 7: Leveraging OLAP in Your Organization 359

Calculation Manager has four main components: business rules, templates,
variables and run-time prompts, and rule sets.

Business Rules A business rule consists of components that are dragged and
dropped into a rule flowchart. Figure 7-1 shows a sample flowchart and points out
the components of a business rule.

As summarized in the New Objects area of Figure 7-1, a rule has five possible
components:

 Formula ■ This is the primary component of a business rule. Formulas
contain calculation statements that assign values to accounts. For example,
operating cost of sales (COS) can be assigned the value of 50 percent of
operating revenue (Operating COS = Operating Revenue / 2). You can
embed Essbase functions within formulas. Figure 7-2 shows two sample
formulas within the Formula component.

FIGuRE 7-1. Business rule flowchart

Member Range Object Condition ObjectScript Object Formula Object

FIGuRE 7-2. Formula component of a business rule

360 Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution

Script ■ With the Script component, those who are familiar with Essbase
Script can add calculation statements to their rules using Essbase syntax
instead of formulas. You can embed Essbase functions within scripts.
Figure 7-3 shows the calculations from Figure 7-2 recast in Essbase Script.

Condition ■ You insert other rule components within the scope of the
Condition component. A condition is an if-then statement. When the if part
of the statement is true, Calculation Manager executes the statements within
the Condition component. When it is false, the statements of the Condition
component are skipped. You can specify conditions based on metadata or on
the data itself. You can use Condition components to test which calculation
should be executed. For example, the condition shown in Figure 7-4 states
that if gross margin percent (Gross Profit / Net Revenue) is greater than
25 percent, execute the rule for medium COS.

FIGuRE 7-3. Script component of a business rule

FIGuRE 7-4. Condition component of a business rule

Chapter 7: Leveraging OLAP in Your Organization 361

Member Range ■ This component creates a focus on a member or members
where you would like the calculation to execute. For example, the range
in Figure 7-5 specifies that this portion of the calculation will execute for
all products under the Electronic category for the year FY10 for the Plan
scenario and the Working version.

Fixed Loop ■ This component indicates that a block of code is to repeat for
a specified number of iterations. For example, you could specify that a loop
execute the components within its scope ten times.

Templates The rule designer provides predefined business rules called templates.
Templates can be used for clearing a portion of the database, copying a portion of
the database, creating allocations, and aggregating a portion of the database. A
Units/Rate/Amount template solves for any of the three variables, as long as two of
the three variables are defined. Figure 7-6 shows a template specifying a revenue
calculation based on units and price. Using this template, if a planner enters values
for units and price, the template solves for operating revenue. If another planner
enters values for price and operating revenue, the template will solve for the
number of units.

FIGuRE 7-5. Member Range component of a business rule

362 Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution

Variables and Run-Time Prompts Variables are user-defined values that are set at
the global, application, rule, or Essbase level. For example, you can create a
variable called CURRYEAR and set it to 2009. Rules containing this variable will use
the year 2009 in all calculations. In subsequent years, you can reset CURRYEAR to
the new current year, and all rules that contain the variable automatically use the
new value. Using variables eliminates the need to update each rule manually when
the value of a global variable changes.

Run-time prompts (RTPs) can be used to ask the user to enter required information
during the execution of a calculation. For example, if you had a business rule to
increase an account by a given percentage, the RTP would ask the user to enter the
percentage value.

An advanced feature of RTPs uses members that are on the data-entry form. The
form enters the tokens into the business rule, and executes when the form is saved
without prompting the user. For example, consider a data-entry form where the
point of view reflects these settings: Scenario=Plan, Year=2009, Version=Working,
and Entity=Dallas. If the end user changes the point of view to show Houston
instead of Dallas and saves the change, the rule is updated to specify Houston.

Rule Sets Rule sets contain two or more rules that are calculated simultaneously or
sequentially. For example, if you are allocating the IT department’s expenses to all
other cost centers, you first want to aggregate the expenses, and then run a series of
allocations. You can create a rule set to automate the calculation and allocations.

FIGuRE 7-6. Template rule designer

Chapter 7: Leveraging OLAP in Your Organization 363

Data-Entry Forms
Data-entry forms are spreadsheet-like grids with rows and columns for entering and
modeling data. Figure 7-7 shows a sample Planning data-entry form displayed in a
web browser.

Figure 7-8 shows the same data-entry form displayed in Microsoft Excel. In
Excel, a companion line graph aids understanding of the relative differences among
expenses.

Creating Forms You design data-entry forms in a wizard by selecting the
columns, rows, and page headers. Data-entry forms are designed using family-
related functions (like IDescendants) and variables (like CURRYEAR) to minimize
the number of forms required, and for monthly and annual maintenance during the
monthly forecasting and annual planning processes. For example, if you set the
variable CURRYEAR to FY10 for this year, all annual planning data-entry forms for
the current annual operating plan will reference the year FY10. Next year, you can
set the CURRYEAR variable to FY11, and these same forms will now reference
FY11 as the current planning year. This use of variables and functions minimizes
the amount of maintenance required for the system. Figure 7-9 shows an example
of the column and row options for a data-entry form.

FIGuRE 7-7. Data-entry form in a web browser

364 Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution

using Forms Planning includes various out-of-the-box data-entry features for
entering and modeling data. End users can do the following with the data in a form:

 Enter data ■ You can enter data directly into cells on a data-entry form.
There are visual clues when data changes. When a cell has changed, the
data-entry form marks the cell by changing the background of the cell to a
darker yellow. After the data is committed to the application, the cell reverts
to the original color. Figure 7-10 shows two data cells with changed values.

Spread data changes ■ You can spread data from summary to base time
periods automatically. For example, in Figure 7-11 a planner changes the
year total of Office Supplies from 45,000 to 50,000. The difference is spread
down to the month proportionately based on the values that were previously
there.

FIGuRE 7-8. Data-entry form in Microsoft Excel with line graph below

Chapter 7: Leveraging OLAP in Your Organization 365

FIGuRE 7-9. Data-entry form wizard

FIGuRE 7-10. Data cells with changed values are indicated with a yellow fill.

366 Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solutio

Increase and decrease values for members ■ You can use the Adjust Data
tool to increase or decrease data by a value or percentage. In Figure 7-12,
a planner specifies a 5 percent decrease to Office Supplies Expenses.

Increase and decrease values for dimensions ■ You also have the ability to
adjust data for dimensions. A planner can adjust the data by various spread

FIGuRE 7-11. A change to a total value is reflected proportionally across its members.

FIGuRE 7-12. Data for a member can be adjusted by user-defined values.

Chapter 7: Leveraging OLAP in Your Organization 367

methods, such as proportional spreads based on prior year actual values.
In Figure 7-13, a planner decreases overall sales units by 5 percent for the
DVD product line. She specifies a relational spread for the FY10 Working
Plan based on the proportional values found in the Final version of the
Actual scenario for FY09.

Execute predefined calculations ■ You can execute business rules to
perform predefined calculations on data. For example, planners can enter
key revenue drivers, and when the data is saved, execute a business rule
to derive revenue and cost of sales based on the driver inputs. Figure 7-14
shows the drivers (Units through Sales Allowance %) followed by the
business rule calculated accounts (Operating Revenue to Gross Profit).

Add comments and dates ■ You can add text comments directly into a data
form. For example, a planner may need to enter a description or justification
for the addition of a capital expenditure. You can also add dates directly
into a data form, such as when a capital item was acquired for the purposes
of depreciation. In Figure 7-15, a planner has added comments about

FIGuRE 7-13. Data for a dimension can be adjusted and spread according to user-
defined values.

368 Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution

FIGuRE 7-14. Drivers and calculated accounts in a business form

FIGuRE 7-15. Comments and important dates can be added to data.

Chapter 7: Leveraging OLAP in Your Organization 369

a company car, its purchase date, and the date that it went into service. He
likely has (or will create) a business rule to depreciate the value of the car
automatically based on the In Service date.

Add detail to line items ■ You have the ability to add line-item detail for
base accounts. For example, your application may have an account for
Travel Expense, but the planner wants to enter each trip. By using the line-
item detail feature, the planner can build up the detail to derive the total
Travel amount. In Figure 7-16, a planner has decided to record the number
of trips and the average cost per trip.

Attach documents ■ You can attach documents directly into a data form.
For example, a planner may want to attach a copy of the funding document
in PDF format for justification of the new capital expenditure, as shown in
Figure 7-17.

You can make data-entry forms more dynamic by adding context menus, as
discussed in the next section.

FIGuRE 7-16. Planners can add detail to line items.

370 Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution

Custom Menus
While in a data-entry form, you can right-click a row or column to display a context
menu with related actions. For example, after entering data, you may want to use
the context menu to move to the Manage Process page, where you can approve a
predefined scenario and version for use. Administrators are responsible for creating
context menus and associating them with data-entry forms.

Here is a list of the types of tasks you may want added to the context menus:

 Launch another application, URL, or business rule, with or without runtime ■
prompts

Move to another data form ■

Move directly to the Manage Process page, with a predefined scenario and ■
version

For example, in Figure 7-18, a right-click on the TBH1 row displays a context
menu with related hiring actions, such as the option to add or remove a to-be-hired
employee.

The context of the right-click is relayed to the next action. Any content that exists
in the Page drop-down list (for example, the selected cost center) is passed to the
next action, and the end user does not need to reenter that information. Figure 7-19
shows a sample form with inherited content.

FIGuRE 7-17. Attach a document in a data form when detail is required.

Chapter 7: Leveraging OLAP in Your Organization 371

FIGuRE 7-18. Administrators create context menus and associate them with forms.

FIGuRE 7-19. Content is inherited from the page where the context menu action was
initiated.

372 Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution

Process Management
Process management enables you track the progress of your budget, view status
information, identify ownership, and change the budget status at any level within
the organization. Process management reduces budget cycle time through these key
characteristics:

 Approval process ■ Preparers submit plans for approval and reviewers
approve or decline submitted plans.

Audit trail ■ Includes built-in audit information through annotations and
process status. For example, preparers and reviews collaborate by including
comments, and the system maintains an audit trail of the status of the plan.

E-mail notification ■ E-mail notifications are sent when a status changes. For
example, when a plan preparer submits a budget for approval, the reviewer
receives an e-mail message stating that the plan is ready for review.

Task Lists
Task lists are a method of guiding users though the planning process. They provide a list
of specific activities to complete within and outside the Oracle Enterprise Performance
Management System. When an organization’s plan or forecast requires end users to
perform multiple activities, some of which may be performed infrequently, task lists
provide guidance in completing these activities. For example, Figure 7-20 shows a task
list that includes five tasks: allocating top-down strategic targets, compiling and
reviewing the revenue plan, preparing and reviewing financial statements, and
submitting the plan for approval.

FIGuRE 7-20. Sample task list

Chapter 7: Leveraging OLAP in Your Organization 373

Oracle Hyperion Profitability
and Cost Management
Profitability and Cost Management is a packaged application that manages the cost
and revenue allocations required to compute profitability for a business segment,
such as a product, service, customer, region, or branch. The application provides a
process that allows a business user to define allocation rules in business terms. The
application translates these rules into underlying calculation scripts. By having a
packaged application to create allocation definitions in business terms, business
users are able to quickly create, deploy and maintain profitability and cost
management solutions.

Before Profitability and Cost Management, it was common for business users to
create complex Excel modules that linked a bunch of spreadsheets, and were
difficult for other business users to decipher. Business users with access to Essbase
would extend these Excel models by using the calculation functions within Essbase,
but this usually required the assistance of an Essbase administrator to help write the
complex calculations scripts required. While the combined Essbase/Excel solution
was an improvement over Excel on its own, it did not provide business users with
the flexibility to easily revise the allocation definitions to reflect changes in the
business operations. Neither custom solution provided a user-friendly interface to
define the profitability module or traceability of what was allocated and how it was
allocated. Having a packaged solution for these tasks offers many benefits.

Building a Profitability and Cost Management Model
Profitability and Cost Management applications are referred to as models. A model
represents part or all of an organization, and starts with costs and revenue values,
often in a form similar to the organization’s chart of accounts. These initial financial
values are transformed through one or more allocations to assign reasonable and
defensible cost values to ultimate cost (or profitability) objects—products, services,
customers, and so on.

Building a Profitability and Cost Management model follows these steps:

 Define stages ■ Define the number of cost or revenue transformations within
an allocation process.

Create drivers ■ Define the methods used to calculate how source values
are allocated to their destinations within a stage.

Select drivers ■ Choose which driver methods will be used by which source
costs or revenues.

Make assignments ■ Map source cost and revenues to destinations.

374 Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution

Collect data ■ Use any number of existing utilities to load cost, revenue and
driver data into the application’s database (Essbase) or manually enter data
through the Profitability and Cost Management data-entry forms.

The following sections detail each of these steps.

Defining Stages Stages represent the network of allocations within your organization.
They enable you to create allocations that require multiple steps by defining a
calculation sequence. The allocation result calculated and stored in a prior stage
becomes the source value to be allocated in the following stages. You can define up to
nine stages in your model. For example, total labor costs for the department collected
in stage 1 are allocated to the activities performed by each department in stage 2. The
total for each activity, in turn, can act as a source value to be allocated in a subsequent
stage. Stages can be skipped when certain costs do need to reflect that stage’s specific
transformation. For example, raw material costs collected in stage 1 can be allocated
directly to the products in stage 3. Figure 7-21 shows five stages.

The overall process for transforming costs from stage to stage is that source costs
from one stage will be assigned to destination costs in subsequent stages, using a
mathematical method (a driver). The resulting model is a series of “source to
destination using a driver” relationships. After the stages are defined, the business
user will define the required drivers, identify which sources will use which drivers,
and define the source-to-destination assignments.

Defining and Selecting Drivers Drivers provide formulas for allocating the source
intersections values to the destination intersections. For example, the wages for the
manufacturing department could be split among the different activities based on the
number of hours consumed by each activity. Profitability and Cost Management

FIGuRE 7-21. Defining stages

Chapter 7: Leveraging OLAP in Your Organization 375

enables you to create an unlimited number of drivers. When you create a driver, you
can select from predefined formulas, such as even split, or you can create custom
formulas. In Figure 7-22, drivers have been created for even split, headcount,
number of application users, and so on.

After drivers have been defined, the business users assign the drivers to
applicable source members for each stage. For example, in Figure 7-23, the activity
of invoicing by the finance department is to be assigned based on the number of
invoices created.

Making Assignments Assignments represent the links between data in stages. For
each intersection of dimension members within a stage that contains source data,
you assign downstream destinations. The destinations can be within the same stage
as the source intersections. This assignment is called an intrastage assignment.
Intrastage assignments can be reciprocal. For example, the HR department could
have the IT department as an assignment, and the IT department could have HR as
an assignment. Dimension intersections in later stages cannot have assignments in
earlier stages. Figure 7-24 shows an assignment example that shows that corporate
rent will be distributed to 45 department-activities based on a square footage driver.

After all assignments are made, it is time to collect data.

FIGuRE 7-22. Defining drivers

376 Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solutio

FIGuRE 7-23. Selecting drivers

FIGuRE 7-24. Making assignments

Chapter 7: Leveraging OLAP in Your Organization 377

Collecting Data You can import cost, revenue, and driver data into the underlying
Essbase database by using Essbase load rules, Smart View, or ODI. After loading data
into your model, you use the Data Entry window to verify the data, as shown in
Figure 7-25. You can edit data or add missing data in this window, if necessary. The
Data Entry window has separate tabs for Stage Data and Driver Data. On the Stage
Data tab, you can view cost, revenue, or driver data for a selected stage and selected
measures. You can save your measure selections as a view that you can reuse.

After all data has been collected, you can validate the model.

Validating Model
The model is verified against model validation rules to ensure the structure is sound
before adding data. The structure validation checks to help ensure these criteria are
correct:

 You assigned a driver to each dimension intersection that is assigned ■
destination members.

You assigned destination members to all dimension intersections to which ■
a driver is assigned.

FIGuRE 7-25. Manually collecting data

378 Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution

Intrastage assignments are correct. ■

Reciprocal assignments are correctly defined. ■

After the model is calculated, you can use built-in features to help validate the
correctness of these calculations. Figure 7-26 shows the Stage Balancing report,
which illustrates the high-level flow of costs across the stages. It will provide the user
with a quick recap of the flow of costs and highlight where the allocations may need
further work.

Tracing Allocations
A trace allocation report, such as the one shown in Figure 7-27, provides a graphical
representation that enables you to trace allocations throughout the model. For a
selected member intersection in a stage, the report lets you move backward or forward
through the model. You can move backward from the intersection to view the source
members that contributed to the value for the intersection and the amount that each
contributed. You can move forward to view the destination members to which the
value for the intersection was allocated and how much was allocated to each member.

FIGuRE 7-26. Validating the model

Chapter 7: Leveraging OLAP in Your Organization 379

Oracle Hyperion Enterprise
Performance Management Architect
Performance Management Architect offers a centralized interface where
administrators can manage, create, and deploy Oracle Hyperion applications.
Eligible products include applications for the Fusion Editions of Planning,
Profitability and Cost Management, as well as Oracle Hyperion Financial
Management and custom Essbase cubes.

Performance Management Architect enables administrators to perform the
following tasks:

 Visually link and manage applications. ■

Use dimensions and attributes across multiple applications. (For example, ■
you can create one account dimension and use it in multiple applications.)
Performance Management Architect leverages existing applications and
dimensionality to spin off other applications with previously constructed
dimensions.

FIGuRE 7-27. Tracing an allocation

380 Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution

Graphically manage data flows. ■

Perform impact analysis—graphically view and model relationships across ■
applications.

Handle and evaluate the impact of exceptions and changes to all models. ■

Eliminate manual dimensional and data reconciliation between applications. ■

Performance Management Architect has four main components for performing
these tasks: a dimension library, dimension mapping, data synchronizer, and the
application library. Figure 7-28 shows the interfaces for each of the components.

Architecture of Performance
Management Applications
Planning and Profitability and Cost Management are multitiered, web-based
applications. Figure 7-29 breaks down the products into their required components.

FIGuRE 7-28. Interfaces for the components of Performance Management Architect

Dimension Library
Common, extensible

components

Dimension Mapping
Link Applications

Data Synchronizer
Process Synchronizations

Application Library
One Control Center

Chapter 7: Leveraging OLAP in Your Organization 381

As shown in Figure 7-29, the architecture has the following tiers:

 Client tier ■ The client tier consists of the Oracle Enterprise Performance
Management Workspace (EPM Workspace) web client. The EPM Workspace
provides a centralized interface for viewing and interacting with content
created using the Oracle Enterprise Performance Management System,
including financial applications and reporting content. In addition to
viewing and interacting with content, administrators can manage the
application through the EPM Workspace.

Server tier ■ This tier primarily consists of the application server (Planning
and Profitability and Cost Management) and the web server. A Hyperion
Reporting and Analysis or Hyperion Web Analysis server is optional. The
web server, which can be on a separate machine or on the same machine
as the application server, lets you access Planning applications from a
web client. It uses standard HTTP as the communications protocol and
uses Windows security authentication. Client access to the web server is
delivered through a standard web browser.

Database tier ■ This tier consists of a relational database management
system (RDBMS) and Essbase.

FIGuRE 7-29. Architecture of the performance management applications.

Application Server Web Analysis

HTTP(S)

Financial Reporting

Reporting and AnalysisWeb Data EntryMS Office IntegrationAdministration

Client

Server

Database

External Services

Data Warehouse Legacy

Essbase Relational

ELT/Direct

Windows/UNIX/Linux

Windows*/UNIX/Linux

Browser/Office

JDBC TCP/IP – Database Protocols

ERP Files/Excel/XML

Web Server Application Server

Enterprise Performance Management (EPMA*) Shared Services Calculation Manager

382 Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution

This concludes our coverage of the packaged performance management
applications. With Planning and Profitability and Cost Management, you gain all the
advantages of a packaged application, without sacrificing the speed and power of
Essbase.

Oracle Crystal Ball with Essbase
Uncertainty makes strategic planning complex. Removing, or even mitigating,
uncertainty can create unlimited business value. However, most companies lack the
strategic planning infrastructure to rise above the unknown.

Previous sections have illustrated how OLAP tools support management
processes and provide key stakeholders with relevant, actionable insight for speed-
of-thought analysis. Yet while understanding the past through historic data is
necessary for sound decision-making, is it sufficient for forward-looking estimates?
Making the right decisions requires you to anticipate and plan for possible changes
in the future. A common approach to anticipate these changes is to first assess the
company’s current position by analyzing historical information to understand the
company’s past. Occasionally, however, there might be very little or no historical
precedent. And even if you do have historical data, it might not extrapolate
correctly into the future. For example, let’s assume your company wanted to launch
a new product or compete in a different market. Your company’s past and present
state can be a good indicator of future performance, but does not guarantee it. The
linkage to making the right actionable decisions still requires additional analysis.

To anticipate possible changes in the future, you must start addressing questions
about the future possible outcomes, specifically the following:

 Which outcomes are most likely? ■

What are the key risk drivers for those outcomes? ■

To answer these questions and plan for the right decisions, you must first
ascertain the potential range of future results and the probability of different
outcomes actually occurring. This type of analysis generally tends to be a limited
exercise, concentrating on three common scenarios: best case, worst case, and
something in between. Typically worked up in a spreadsheet, these scenarios tend
to flex one or two inputs (assumptions) at a time and provide little insight into
probable outcomes or drivers, which in the real world; reflect the collective
influence of many variables (good and bad) coming together at the same time.
Powerful applications such as Planning can use OLAP data to generate and store
multiple scenarios, but the process remains slow and manual.

Fortunately, solutions such as Crystal Ball extend traditional OLAP capabilities to
help organizations overcome uncertainty and achieve results. Excel-based, Crystal Ball
can be used as a stand-alone desktop tool or integrated with Oracle’s OLAP technology.

Chapter 7: Leveraging OLAP in Your Organization 383

Using the tools of predictive modeling, simulation, and optimization, Crystal Ball gives
you insight into the critical factors affecting risk, and calculates the likelihood that you
will reach your objectives under even the most uncertain conditions.

Crystal Ball and Monte Carlo Simulation Methods
Monte Carlo simulation, founded upon stochastic analysis, offers the ability to
quickly create thousands of what-if scenarios. The ability of Monte Carlo modeling
to reflect all outcomes—particularly those dismissed as too unlikely to consider—
makes it an objective and vital resource for assessing risk and the effects of
uncertainty. These results give the user not only a comprehensive, realistic picture
of future possibilities, but also their associated probabilities.

As an example, a company attempting to calculate a certain metric, such as
earnings per share for the upcoming quarter, would first input data for various
parameters. It would then run an algorithm that uses these inputs to generate
outputs of interest, including earnings per share. Monte Carlo simulation is crucial
when the exact values for input parameters are unknown or uncertain.

Crystal Ball, using Monte Carlo methods, accommodates uncertainty by
allowing the user to define ranges of values (probability distributions) for variable
inputs. The program then chooses a value for each assumption according to the
given range, and repeats this process as many times as needed—even into the
thousands. The result is a rank-ordered list of outcomes from which statistics are
calculated. Because values are chosen randomly and the process is repeated many
times, the output is statistically significant—a major improvement over a handful of
subjective scenarios. Figure 7-30 shows how the output of the simulation would be

FIGuRE 7-30. Crystal Ball generates a full range of outcomes with associated
probabilities.

• Limited Scenarios (Worst, Base, Best) = Limited view of risk
• What is the likelihood I’ll miss the target?
• What are the most important risk factors?
• What if I want to vary many factors in the forecast at once?

Limited possibilities... No probabilities...

• Full range of outcomes-full view of risk
• Understand associated probabilities
• Ranking of key drivers
• Vary as many inputs as needed

Model all possibilities = Forecast with clear probability

THE OLD WAY
Guesswork

THE NEW WAY
Quantify risk and uncertainty in the Forecasr

384 Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution

thousands of values (scenarios) for earnings per share, from which the user could
understand the likelihood of, for instance, meeting or exceeding some target value.

Crystal Ball, using Monte Carlo simulation, calculates the probability of
achieving any given strategic goal and offers the ability to develop plans that reflect
realistic risk and reward. Monte Carlo simulation helps decision makers think about
investment and long-term planning, for instance, as a continuum of probabilities
rather than a certainty. Therefore, they grow accustomed to responding to change,
rather than hoping it will not happen.

Crystal Ball Analysis
Four steps are involved in a Crystal Ball analysis:

 Develop a model of the problem. ■

Assign ranges of values to the inputs. ■

Calculate the ranges/probabilities of the outputs. ■

Analyze and share results. ■

This section uses the example of a healthcare provider estimating patient
revenues to illustrate the workflow of building a Crystal Ball analysis.

Developing a Model of the Problem
Essbase and Excel are both excellent general-purpose, model-building platforms. In
the context of integrating Crystal Ball with OLAP technology, we will use an
example that takes advantage of the strengths of each tool. Sharing traditional
spreadsheet models in an enterprise environment is difficult at best. Broken links,
cryptic formulas, and inconsistent application of business rules are just a few of the
problems. In Figure 7-31, an Essbase application has been created that defines the
relationships (business rules) between inputs in order to calculate reimbursement
revenue. Throughout our analysis, our model will remain consistent and secure.

Assigning Ranges of Values to the Inputs
The next step in the modeling process is to assign ranges of values to uncertain
inputs. With Smart View, you can access data from a variety of Oracle products for
OLAP, such as Essbase and Planning, and bring that data into Excel for further
analysis. This OLAP data can be examined either independently using the
forecasting tools of Crystal Ball or linked into existing Crystal Ball simulation and
optimization models.

Chapter 7: Leveraging OLAP in Your Organization 385

In Figure 7-32, we have opened an ad hoc query of our Essbase application
using Smart View.

We are now ready to apply Crystal Ball. We select a cell containing one of the
uncertain inputs (Crystal Ball assumptions). For example, Figure 7-33 shows a
selected cell representing the Occupancy % Input for January in the Forecast
scenario. Clicking the Define Assumption button on the Crystal Ball ribbon opens a
gallery of distributions from which to choose, as shown in Figure 7-34. From the
gallery, you can select a distribution type and open a dialog box in which you can
specify the parameters, as shown in Figure 7-35.

Crystal Ball offers a great deal of flexibility in assigning distributions, or ranges,
to inputs. If there is sufficient historic data, the user can fit a probability distribution

FIGuRE 7-31. Essbase cube calculating net patient revenue based on a variety of inputs

386 Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution

FIGuRE 7-32. Crystal Ball assumption created on top of a Smart View ad hoc query

FIGuRE 7-33. Select a cell where uncertainty or variability exists.

FIGuRE 7-34. Choose Define Assumption from the Crystal Ball ribbon.

Chapter 7: Leveraging OLAP in Your Organization 387

to those values. Range definitions are also available for cases where limited data
exist, or where expert opinion might be more appropriate.

In our example, the planner estimates a minimum (0.4), most likely (0.65), and
maximum (0.75) value for Occupancy based on expert opinion, and enters these
estimates as parameters for the Triangular distribution. Ranges are assigned for the
rest of the uncertain inputs in the forecast scenario, and the outputs (Crystal Ball
forecasts)—or values targeted for analysis—are identified. By default, assumptions
are assigned a green background, and forecasts are assigned a blue background. In
this case, we are interested in the Net Patient Revenue for each month as well as
Qtr1. The model is now ready to run. Figure 7-36 shows the output.

Calculating the Ranges/Probabilities of the Outputs
Running the model generates 500 what-if scenarios (the number of scenarios can be
defined by the user). For each trial, a new value within the defined range is selected
for each assumption. These values are submitted back to Essbase, where the Essbase
database is recalculated according to the business rules. New results for the outputs
are then refreshed in Excel and stored by Crystal Ball for analysis. The histograms in
Figures 7-37 and 7-38 represent the range and likelihood of the outcomes for net
patient revenue. The higher the bar, the more outcomes were observed in the given
range. The boxes at the bottom of the forecast chart can be used to evaluate the
certainty of any range of values.

FIGuRE 7-35. Crystal Ball distribution gallery (left) and associated parameters dialog
box (right)

388 Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution

FIGuRE 7-36. Crystal Ball model with outputs and uncertain variables defined.

FIGuRE 7-37. The likelihood of exceeding the baseline estimate for net revenue is only
about 30%.

Chapter 7: Leveraging OLAP in Your Organization 389

Analyzing and Sharing Results
The chart in Figure 7-37 shows the likelihood of exceeding the baseline estimate of
$7.28 million, which is only about 30 percent. We would like to be more confident
in our forecast. The chart in Figure 7-38 shows the same forecast, but now identifies
that a value of $6.65 million gives 80 percent certainty, which is a more realistic
estimate. Note that key metrics such as mean, 80 percent, and 20 percent
confidence levels are members of the Essbase application. Once the simulation is
complete, these values are extracted by Crystal Ball and stored in Essbase, giving
more meaningful insight to the outcomes used in the Forecast scenario.

The forecast charts answered the question about which outcomes are most
likely. A Crystal Ball sensitivity chart identifies which inputs are most significant. It
is much more realistic than a tornado chart, because it varies all of the assumptions
simultaneously, and each assumption varies according to its own distribution.
Figure 7-39 illustrates that the uncertainty around occupancy contributes most to
the variability in net revenue. Any “where to focus” discussions for reducing
uncertainty and improving forecast accuracy should begin with the sensitivity chart.

In addition to integrating Crystal Ball results directly into OLAP applications, as
illustrated in this example, EPM Workspace enables secure sharing of Crystal Ball
workbooks and analysis across the enterprise.

FIGuRE 7-38. A value of $6.65 M provides 80% certainty—a more confident forecast!

390 Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution

Crystal Ball with Planning Models
Crystal Ball is also a great extension for Planning models. For example, you can
apply Crystal Ball to historic sales data and create future sales predictions by
analyzing the levels, trends, and cycles within your data through time-series
forecasting and regression methods. These predictions can act as inputs to financial
models, which can be simulated and optimized to increase the probability of
making your forecasts and reduce the potentials risks in planning assumptions.

Postanalysis of the forecast results can be saved back into your Planning model
as scenarios and forecasts. The result is a more accurate forecast with increased
confidence.

Crystal Ball Decision Optimizer
Crystal Ball Decision Optimizer adds optimization and substantial processing speed
to the power of Monte Carlo simulation. With Decision Optimizer, you can
automatically search for your optimal solution to business, finance, and operational
spreadsheet models.

FIGuRE 7-39. Uncertainty around occupancy has the highest impact on net revenue.

Chapter 7: Leveraging OLAP in Your Organization 391

Decision Optimizer is easy to use. A wizard guides you through the process of
specifying your objectives and defining your constraints and requirements. After you
define the optimization parameters, Decision Optimizer quickly pinpoints the set of
inputs that best meet your goals, and transfers this to your spreadsheet model. Examples
of optimization include finding the asset allocation that maximizes return for a given
level of risk, or choosing staffing levels that minimize cost while maintaining required
service levels.

This concludes our discussion of Crystal Ball. With this flexible, integrated tool,
you can solve problems in which uncertainty and variability have traditionally
distorted forecasts and make better decisions to impact the bottom line.

Oracle Smart Space with Essbase
Smart Space, Fusion Edition is a way for people to connect to the whole of the
Oracle Business Intelligence Suite Enterprise Edition (OBIEE) stack. It provides direct
connectivity to the EPM Workspace (and so to Web Analysis and Financial
Reporting documents), OBIEE, and Oracle BI Publisher. Smart Space also provides
Essbase developers and administrators easy access to calculations, load rules, and
even the status of cubes.

Rather than needing to go to each of the documents of interest, users of Smart
Space have the documents come to them! Smart Space uses gadget technology to
serve appropriate content directly to the user.

Smart Space is always on, so when you log in to your Windows-based
computer, Smart Space automatically connects and shows you what is most
interesting to you. Figure 7-40 shows a sample Smart Space desktop.

NOTE
A common misconception is that Smart Space
requires Microsoft Windows Vista. This probably
came about because Smart Space was used by
Microsoft to show off its gadget technology on
the original Vista road show in North America.
However, Smart Space also works on Windows XP
and Windows 2003.

Smart Space Desktops
The core of the user interface is the Smart Space desktop. The desktop allows you to
personalize your installation by installing only those gadgets that are relevant to you.
In addition, you can have many different desktops, to represent different functions or
working practices. For example, the set of gadgets and the list of favorite reports that
you use may differ during the month—during the close cycle, you may want access to

392 Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution

all your statutory reports, but then during a budget reforecast cycle, you may need
access to information from your Planning system. By having multiple desktops, you
can avoid information overload during key cycles.

You can create, edit, and select desktops using the Smart Space Palette. In
Figure 7-41, the current desktop is highlighted, and the default desktop is marked
with an asterisk (*). You can add gadgets to the current desktop simply by dragging
them from the palette.

Smart Space Gadgets
Oracle supplies a set of standard gadgets with Smart Space. Any number of these
gadgets may be flagged as Recommended by the administrator, which means that
they will be installed by default. The following are the standard gadgets:

FIGuRE 7-40. Smart Space gadgets on a desktop

Chapter 7: Leveraging OLAP in Your Organization 393

 Collaboration ■ The Collaboration gadget allows secure, audited discussions
to take place around Oracle Enterprise Performance Management System and
OBIEE Plus content using instant messaging technology. Any Smart Space
content can be shared within a Collaboration discussion (one to one) or
meeting (many users), to ensure that everyone has the same information. For
example, let’s say that you initiate a conversation with a colleague, Frank,
about the Net Revenue Details report. As you can see from Figure 7-42, Frank
can open the report directly from the discussion window, ensuring that you
are both looking at the same version of the numbers.

Key Contacts ■ The Key Contacts gadget allows easy communication with
your most common contacts. You can see the instant messaging status of
your contacts and use the gadget to start a Collaboration discussion or
meeting. Figure 7-43 shows how the contacts and their status are displayed.

Notification ■ The Notification gadget records a history of alerts that
have been received. When an alert is triggered, a message is displayed
immediately, and the alert is logged in the Notification gadget, as shown in
Figure 7-44.

FIGuRE 7-41. Managing desktops with the Smart Space Palette

394 Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution

FIGuRE 7-42. Open documents directly from the Collaboration gadget.

FIGuRE 7-43. Keep your contacts list handy using the Key Contacts gadget.

FIGuRE 7-44. An alert message is displayed and logged in the Notification gadget.

Chapter 7: Leveraging OLAP in Your Organization 395

Smart Book ■ The Smart Book gadget allows for a selection of Oracle
reporting and analysis documents or URLs to be available directly on
a user’s desktop. Figure 7-45 shows how any reporting documents you
add can be (optionally) displayed as a live preview in a preview panel.
A selected document can be viewed fully within the Smart Book gadget.
Additionally, you can open the item in the EPM Workspace or use it to
initiate a discussion through the Collaboration gadget.

Favorites ■ The Favorites gadget contains a user-defined list of shortcuts to
any web-based tool (via a URL) or Smart Space content. Figure 7-46 shows
a sample Favorites gadget. The shortcuts can be organized into a folder
structure to ease navigation. You can have a different set of favorites within
each of your desktops.

Search ■ The Search gadget allows a quick search of any keywords within
the EPM Workspace, without having to open it. Figure 7-47 shows sample
search results. You can open any of the resulting items in a viewer or the
EPM Workspace, or you can drag an item directly into another gadget, such
as a discussion window or Smart Book.

FIGuRE 7-45. A report displayed in the Smart Book gadget

396 Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution

FIGuRE 7-46. The Favorites gadget with some shortcuts

FIGuRE 7-47. Search an EPM Workspace without opening it.

Chapter 7: Leveraging OLAP in Your Organization 397

Essbase Data Load and Essbase Calculation ■ These two gadgets enable you
to execute Essbase load rules (to perform both data load and restructures)
and calculation scripts from the desktop with a single click. When initiated,
the icon next to the selected rule/calculation changes to indicate that it is
in progress. Upon completion, the status changes so that you can see the
outcome of the process. For example, Figure 7-48 shows a list of Essbase
calculations, with one calculation underway and others available to be
launched. Any executed calculations would display the appropriate status
(complete, in progress or failed).

In addition to the standard gadgets, Smart Space also makes content available
directly from Windows Explorer. Similar to the Search gadget, you can navigate all of
the EPM Workspace, OBIEE Plus, and BI Interactive Dashboards content, to view
locally, discuss, add to other gadgets, or launch into the EPM Workspace. Figure 7-49
shows how a new folder, called Smart Space Content, is added to Windows Explorer
to allow access to the different sources.

Software Development Kit
Smart Space is designed to be an open, extendable solution to enable partners and
customers to create and publish their own gadgets. The Smart Space Development
Kit provides a software development toolkit (SDK) designed for use with Microsoft
Visual Studio 2005.

FIGuRE 7-48. Run Essbase calculations with the Essbase Calculation gadget.

398 Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution

The SDK offers a full range of functionality, including the following features:

 Gadget user interface for modifying a gadget’s user interface ■

Security Services for using the user’s single sign-on token to launch content ■

Catalog and repository access for listing, administering, and launching ■
documents from OBIEE Plus catalogs and repositories

Collaboration Services for using the Collaboration gadget, including ■
the ability to programmatically send notifications to users from external
applications via .NET or Java, and through a web service

FIGuRE 7-49. Windows Explorer with the Smart Space Content folder displayed

Chapter 7: Leveraging OLAP in Your Organization 399

The SDK enables you to implement the standard gadgets in ways that suit your
business needs. For example, the Notification section in Figure 7-43 (shown earlier)
shows an alert message about negative sales variance coming from Essbase. To
communicate this information to the appropriate people, a developer created a Java
function that calls the SDK’s Collaboration Services. The Essbase script that
calculates the sales variance was then modified to call the Java function whenever
certain conditions were met—in this case, a negative variance.

Developers can also create custom gadgets. The developer of the gadget deploys
it using the Smart Space Administration Utility, and your users can then include the
custom gadget on their Smart Space desktops. Various Oracle partners have created
custom gadgets and deployed them at customer sites. Examples of custom gadgets
are the Outline Browser gadget from Applied OLAP and the Cube Freshness gadget
from Kerdock.

As you have seen, Smart Space gadgets serve appropriate content directly to the
users on their desktop. The Essbase gadgets make it easy to run and monitor
calculations scripts and load data, and custom gadgets can be created to manage
other Essbase tasks.

Oracle Application Express
for Oracle OLAP
Oracle Application Express (APEX) is a web-based application development and
deployment tool that comes with the Oracle Database. Developers can use it to
create reliable, secure, and easy-to-maintain web applications. The built-in wizards
and functionality make it possible to build applications rapidly using relational and
Oracle OLAP data. Since the Oracle OLAP data can be represented as SQL views, it
is now easier than ever to report on the Oracle OLAP data. By using conditions on
the SQL queries, it is possible to return data without the need to use aggregation
functions. This greatly increases the performance of querying and retrieving data.

How is this all done? The Oracle OLAP views represent a traditional star
schema, where the fact table is represented by the cube view, and the dimension
views represent the dimension tables. The data in the cube view represents the data
at all levels for all dimensions. So by adding conditions to the WHERE clause to
include the level name of the required data, you can retrieve summary data without
the time-consuming GROUP BY clause.

APEX allows you to specify these WHERE conditions as drill parameters, so that as
you drill down the dimensions, the correct summary data is retrieved from the cube
view. This is all done by constructing a parameterized SQL statement. Figure 7-50
shows a query from the Oracle OLAP views that will be used in APEX.

400 Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution

This query is pasted into APEX and used as the primary query for a sales report.
Figure 7-51 shows the main query entry window in APEX.

Now you can set up the parameters and construct the report based on the query.
You can even define stoplight and alert formatting to enhance the report outputs. An
example report using this data is shown in Figure 7-52.

Drilling up and down the dimensions is fully supported. APEX also supports
graphing of the data. Each task requires little more than creating a simple SQL
statement and following an APEX wizard to create a very usable Oracle OLAP-
based report.

FIGuRE 7-50. SQL query to be used in APEX

SELECT
g.long_description "Geography",
p.long_description "Product",
t.long_description "Time",

Dimension
Descriptions

Measures

Dimension Key
and Parent Columns
(used for drilling)

Cube and
Dimension Views

Parent Conditions
that Select Children
of Parameter Value

trunc (sales) "Sales",
trunc (sales_pp_pct_chg, 1) "% Chg Pr Period",
trunc (sales_py_pct_chg, 1) "% Chg Pr Year",
product_alert "Product Alert",
trunc(sales_ytd) "YTD",
trunc(sales_ytd_py_pct_chg, 1) "YTD % Chg Pr Year",

t.dim_key as time_dim_key,
t.parent as time_parent,
t.end_date as end_date,
g.dim_key as geography_dim_key,
g.parent as geography_parent,
p.dim_key as product_dim_key,
p.parent as product_parent,

FROM sales_cube_view s,
 time_calendar_view t,
 product_standard_view t,
 geography_regional_view t,

WHERE s.time = t.dim_key
 AND s.product = p.dim_key
 AND s.geography = g.dim_key
 AND s.channel = 'ALL_CHANNELS'
 AND t.parent = nvl(:P1_TIME, 'ALL_YEARS')
 AND g.parent = nvl(:P1_GEOGRAPHY, 'ALL_REGION')
 AND p.parent = nvl(:P1_PRODUCT, 'All_PRODUCTS')

Chapter 7: Leveraging OLAP in Your Organization 401

The types of reports and dashboards that can be created from APEX are not as
diverse as those produced by OBIEE, but they are still very comprehensive and
plentiful. In addition, the skill level requirement is relatively low, and the price is
considerably less.

FIGuRE 7-51. APEX report query definition window

402 Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution Chapter 7: Leveraging OLAP in Your Organization 403

Java Development
Oracle offers Java APIs for both Oracle OLAP and Oracle Essbase. These APIs are
public, which means that anyone can develop a custom application to work with
one of Oracle’s OLAP engines.

using Oracle BI Beans with Oracle OLAP
Oracle Business Intelligence Beans (BI Beans) is a set of standards-based JavaBeans
that provides analysis-aware application building blocks designed for Oracle OLAP.
Using Oracle JDeveloper 10g and BI Beans, you can build Internet applications
quickly and easily. These applications can expose the advanced analytic features of
the Oracle Database to both casual information viewers and high-end users who
require complete ad hoc query and analysis functionality. The BI Beans components
are included in the current 10g version of JDeveloper, but they can also be
downloaded separately. BI Beans fall into three categories: presentation, OLAP, and
catalog services.

FIGuRE 7-52. Sample APEX report

Chapter 7: Leveraging OLAP in Your Organization 403

NOTE
Oracle is no longer supporting BI Beans in
JDeveloper 11g. While it is possible to use the
version 11g OLAP API libraries to access the Oracle
OLAP 11g data, the process is not currently certified.
This does not prevent the continued use of BI Beans
to develop Java applications. In the future, it is
anticipated that solutions will be provided to use
the JDeveloper ADF components to access Oracle
OLAP.

By using BI Beans, application developers can leverage the Oracle technology
stack and exploit the advanced analytic features of Oracle OLAP. Using JDeveloper
as the integrated development environment (IDE) for BI applications increases
application developer productivity.

With Oracle BI Beans, you can do the following:

 Create boardroom-quality presentations. ■

Leverage advanced analytics of Oracle OLAP. ■

Support collaboration across the enterprise. ■

Rapidly develop BI applications for the Web. ■

Presentation Beans
When building BI applications, the key piece is the data. The data needs to be
presented in such a way that it is easy to identify positive or negative trends. In
addition, data presentations are typically created for review by senior management.
Presentations need to be easy to build, so any level user within an organization can
produce the high-quality reports that senior management expects.

The presentation beans have been through extensive usability testing and are
used by other Oracle development groups for products like Oracle Discoverer,
Oracle Reports, BI Publisher, and BI Spreadsheet Add-in. For the end user, this
provides a consistent look and feel across Oracle products, thus lowering the
learning curve as new applications are introduced.

BI Beans provides three flexible data-aware presentation components: graph,
crosstab, and table. There is a graph for every occasion, and more than 70 graph
types are included with BI Beans. Each graph has hundreds of properties for
customizing the graph to give the exact look that you require. User-interface
components are provided to make formatting graphs easy. For example, a Graph
Type panel, shown in Figure 7-53, is available for end users to change the type of

404 Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution

graph they are currently viewing. The graph has full analytic support as well, which
includes drilling, changing the layout, and providing data tips.

The BI Beans table provides a row-oriented view of data, typically used by those
who are familiar with relational databases. The crosstab component offers a
multidimensional view of data and provides services such as drilling and pivoting.
Both table and crosstab components provide page-item-filtering capabilities.

Tables and crosstabs have rich formatting capabilities, down to the cell level.
For example, data-driven formatting allows users to highlight data by setting
foreground and background colors based on data values within cells. Presentations
are completely customizable, down to the details of hiding or showing gridlines,
showing titles, and formatting labels.

Not only do application developers have complete control of the look and feel
of crosstabs and tables programmatically though the APIs, but BI Beans also present

FIGuRE 7-53. The Graph Type panel allows users to change the graph type.

Chapter 7: Leveraging OLAP in Your Organization 405

user-interface components for customizing a presentation. Easy-to-use interfaces are
available for defining data-driven formatting, and a toolbar gives quick access to
commonly used formatting options.

Java and HTML Clients
Depending on the nature and requirements of the application, BI Beans data
presentations may be Java-based or HTML-based. This gives developers the option
of providing intranet-based users, who have high-bandwidth connections, with full-
featured Java applications. If a user population has slower connections, such as a
remote sales force using dial-up connections, an HTML application can be
deployed for their use.

High-end analytical users who spend a large percentage of their business day
analyzing past business performance or developing forecasts of future performance need
a highly interactive environment. The Java versions of the presentation beans enable a
rich, interactive experience. This includes rotating dimensions in a presentation using
drag and drop, formatting through direct manipulation (a formatting toolbar is offered to
enhance the interaction), and frozen row and column headers to aid in the navigation of
large reports.

The HTML versions of the presentation beans can display custom formats that
have been defined and saved using a Java client application, as shown in Figure 7-54.
However, they do not require Java to be downloaded to the client. HTML-based tools
provide the ability to change among presentation types, change the layout of a
presentation, sort the data, and apply queries that have been previously created and
saved. The graph bean generates image files on the middle tier, which you can insert
into an HTML page just as you would any other image. The thin graph creates image
maps that support drilling and tooltips in an HTML application.

BI Beans Catalog
The BI Beans Catalog is used to save, retrieve, and manage all developer-defined and
user-defined analytical objects, such as reports, graphs, favorite queries, and custom
measures. The BI Beans Catalog is designed to support large, distributed user
communities who share analytical objects in collaborative environments. Developers
take advantage of the catalog at design time and hook application logic to the
catalog, so users can access catalog functionality from the application at run time.

The BI Beans Catalog can be stored in an Oracle Database or in a local file
system. From a development standpoint, it may be convenient to store all your objects
within your local file system. However, when the time comes to deploy applications,
you should export your objects to a database implementation of the catalog. Since the
BI Beans Catalog is then in the Oracle Database, it is scalable and secure.

Object definitions are stored in the catalog as XML. This allows developers to
store application objects once, and then use the same objects in Java and HTML
applications (or, for that matter, in a PDA or WAP application).

406 Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution

Application Development
Increasing developer productivity is the mission of the BI Beans. This has been
accomplished by making JDeveloper the premier environment for developing BI
applications. Although BI Beans are standard Java components that can be used
with any IDE, using JDeveloper significantly enhances and simplifies the developer
experience. Using BI Beans and JDeveloper provides the flexibility to develop
applets, applications, servlets, and JSPs.

To speed the process of developing applications and application objects, BI
Beans provide a number of wizards in JDeveloper. These wizards allow you quickly
to create presentation objects (crosstabs, tables, and graphs), calculations, complete
Java applications, and complete HTML applications as servlets. Developers can edit
these objects and applications visually in JDeveloper, or they can edit the generated
Java code directly.

BI Beans also includes a custom JavaServer Pages (JSP) tag library for embedding
BI Beans objects directly into JSPs. For example, a developer could embed a graph
in a page by simply inserting a tag referencing a graph that was previously created.

FIGuRE 7-54. Java crosstab with formatting and toolbar (left) and the same crosstab in
HTML (right)

Chapter 7: Leveraging OLAP in Your Organization 407

BI Beans provides a live connection to Oracle OLAP during the JDeveloper
application design session, as shown in Figure 7-55. This allows the application
developer to see data at design time. This is particularly important with BI
applications, because the data content often affects how the analytical objects are
designed. For example, being able to see the data at design time allows the
developer to make decisions about data selections and formatting in a report.

JDeveloper understands the BI Beans Catalog. This makes it very easy to share
analytical objects among many different applications. For example, several different
applications could all share the same report. When the report needs to be altered,
JDeveloper can be used to make the changes. All the applications that use that
report then automatically see the updated report. Other IDEs can be used to do this,
but JDeveloper makes the task almost trivial.

In summary, BI Beans provides an application architecture to support any
enterprise BI needs. Because BI Bean applications are built using Java, they can be
deployed anywhere on the Internet. Java applications can be deployed on any
device that can run Java. Servlets can service any device that supports a browser.
The application logic is written by the developer on the middle-tier and may be
reused by any client application: Java applications, servlets, JSPs, and so on.

FIGuRE 7-55. Creating a crosstab in JDeveloper with live access to data and formatting

408 Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution

This provides support for a variety of devices, such as PCs, browsers, PDAs, and
even web-enabled phones like the Apple iPhone and BlackBerry.

Connecting Java Applications to Essbase
Essbase includes a Java API bundled with its Oracle Hyperion Provider Services
component. Oracle development teams and partners use the Java API to create
distributed, server-side applications that interact with Essbase databases. For
example, some of the Oracle products discussed earlier in this chapter, such as
Planning and Profitability and Cost Management, incorporate the Java API, as does
Applied OLAP’s Dodeca, which was introduced in the preceding chapter.

Because the Java API is public, you can have your own development team use
the Java API to connect a custom Java application to an instance of an Essbase
Server. Programmers can do basic things like sign on to an Essbase Server domain,
establish a connection to a database, build dimensions, load data, query data, run
calculation scripts, modify a database outline, sign out, and close the connection.
They can also perform some advanced tasks, such as create a grid interface.

The API is 100% Java. The ess_japi.jar file is located in the lib directory of your
Provider Services installation. The packages in the JAR file reflect the kinds of tasks
that you usually do with Essbase.

Architectural Considerations
When designing or modifying an application to work with Essbase, you can follow
one of two architectural paths:

 Embed the Java API in your application, as shown in Figure 7-56. ■

Implement Provider Services to service calls from the Java API. as shown in ■
Figure 7-57.

FIGuRE 7-56. Embedded architecture

TCP/IPJava API for
Oracle Essbase

Java Application Oracle Essbase Server

Chapter 7: Leveraging OLAP in Your Organization 409

As discussed in Chapter 2, Provider Services can also be a data source provider
for Smart View, XMLA clients, OBIEE Plus, and Planning (via the Smart View
provider). If you are already using one or more of these products, this may be the
preferred option for your environment.

Each implementation option offers benefits and drawbacks in terms of supported
features. Table 7-1 lists some features and indicates whether they are supported by
each option.

You are not bound by your initial architecture decision. Because the reference
to the type of implementation is contained within the signOn() method, it is easy
to direct your program to use a different architecture should the need arise.

FIGuRE 7-57. Provider Services middle-tier architecture

TCP/IPHTTP

Oracle Essbase Server

Oracle Hyperion
Provider Services

Java API

Java
Application

TABLE 7-1. Supported Features by Implementation Method

Feature
Supported by
Embedded API

Supported by
Provider Services

High availability No Yes

Clustering No Yes

Support Java API client requests from other
applications or Oracle Hyperion products

No Yes

Middle-tier server No Yes

Direct TCP/IP connection from application
to an Essbase Server

Yes No

API installed on client machine Yes No

410 Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution

Java API Resources
This section provided only a broad overview of the Java API. Essbase ships with a
set of sample applications that do a good job of showcasing key methods available
to you in the Java API. You can find information about the sample applications,
including where to locate them and how to run them, in the Oracle Hyperion
Provider Services Administration Guide.

 You may also find the following resources helpful during your development
process:

 Java API for Oracle Essbase Javadoc ■ Get details on interfaces, classes,
methods, and fields. The Javadoc is installed with Provider Services.

Oracle Technology Network: Java Developer Center ■ Discover Oracle’s
tools for Java—including JDeveloper and Oracle WebLogic Server—and
connect with other Java developers at http://www.oracle.com/technology/
tech/java/index.html.

Blogs ■ Benefit from real-world experience as told by industry experts. Find
blog postings and presentations on the Internet by using the search term
combination “essbase java api.”

Conclusion
You may not need to create your own cubes, spreadsheets, and reports to reap the
benefits of online analytical processing. In some cases, it may be more appropriate
to implement a packaged application to address a particular need, rather than
creating your own set of spreadsheets and reports. One or more of the products
discussed in this chapter may be exactly what you need to get your OLAP solution
up and running quickly. In addition, if a packaged solution does not suit your needs,
the public Java APIs for Essbase and Oracle OLAP mean that you can have a custom
front-end application built.

In the next chapter, we look at how to make Essbase and Oracle OLAP run more
efficiently. As all environments are different, we cannot offer specific solutions. But
we can give you some ideas about how to optimize and maintain Oracle OLAP
analytic workspaces and Essbase servers and databases.

References
EPM Information Development Team. Oracle Hyperion Provider Services

Administration Guide, Release 11.1.1. Oracle Corporation, 2008.

Oracle Corporation. Creating Interactive APEX Reports Over OLAP 11g Cubes.
Oracle Technology Network (http://www.oracle.com/technology/obe/olap-apex/
usingapex4olap.htm).

http://www.oracle.com/technology/tech/java/index.html
http://www.oracle.com/technology/tech/java/index.html
http://www.oracle.com/technology/obe/olap-apex/usingapex4olap.htm
http://www.oracle.com/technology/obe/olap-apex/usingapex4olap.htm

Oracle-Regular / Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution/ Schrader et al. / 182-2 / Chapter 8
Blind folio: 411

Chapter
8

Keeping It Running

411

412 Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution

his chapter is intended for database administrators, or anyone
implementing or maintaining Oracle OLAP analytic workspaces or
Essbase databases. It covers techniques for keeping your OLAP
solution running smoothly.

Many factors can affect the performance of your OLAP cubes. By reviewing the
advice in this chapter before implementing Oracle OLAP or Essbase, you may be
able to design your implementation to minimize performance issues. If you are
inheriting an OLAP system that is underperforming, you should find some hints to
guide your optimization efforts. However, do note that sometimes performance
problems are not related to OLAP, but rather to metadata, source data, or the
network. Such problems can result in poor application performance, even when the
cubes are performing well.

It is also vital to decide on a backup plan early on in your implementation. You
need to ensure that data is never at risk. This chapter describes how to back up
Oracle OLAP analytic workspace data, as well as an Essbase database.

Oracle OLAP Care and Maintenance
Because Oracle OLAP runs in the Oracle Database kernel, it inherits all the benefits
of the Oracle Database. Many things that are normally done to improve performance
or troubleshoot the Oracle Database will affect Oracle OLAP as well. Here, we will
focus on how to configure, tune, back up, and troubleshoot Oracle OLAP analytic
workspaces.

Configuring and Tuning Oracle OLAP
Oracle OLAP’s multidimensional objects use the same database memory, processes,
and storage as any other type of object in the database. As a result, Oracle OLAP
benefits from the proper tuning and configuration of the Oracle Database itself. For
the most part, if the Oracle Database is running efficiently, Oracle OLAP should be
functioning efficiently as well. As with an Oracle database, if the Oracle OLAP
design is off, the performance is off, so make sure you validate the design. If the
design is bad, no amount of tuning can solve the big problem.

In this section, we present recommendations and techniques that we have used
over the years to help diagnose problems and optimize the performance of Oracle
OLAP analytic workspaces. For general database configuration and tuning
recommendations, see the Oracle Database documentation.

Validating the Oracle OLAP Installation
Occasionally, Oracle OLAP is not installed correctly or the installation is invalidated
for some reason. For example, installation-related issues can occur if the Oracle

T

Chapter 8: Keeping It Running 413

database has been migrated from one major release to another, like moving from
Oracle Database 10g to 11g.

To verify that the Oracle OLAP is installed and functioning properly, you should
first ensure Oracle OLAP is in the list of installed options, and then run a SELECT
statement to ensure that the installation is valid.

Is Oracle OLAP in the List of Installed Options? When you run SQL*Plus, the
header indicates which options are installed on the database. You will see
something like the following when you log in:

Oracle Database 10g Enterprise Edition Release 11.1.0.7.0 - 64bit
Production With the Partitioning, OLAP and Data Mining options

If you do not see OLAP in the list, you need to install Oracle OLAP:

 On Windows-based systems, run the universal installer. Under the custom ■
installation options, select the OLAP option to install Oracle OLAP.

On UNIX/Linux systems, relink with the OLAP_ON setting using the ■
following commands:

cd $ORACLE_HOME/rdbms/lib

make -f ins_rdbms.mk olap_on

make -f ins_rdbms.mk ioracle

Is the Oracle OLAP Installation Valid? Now you can verify that Oracle OLAP is
installed and valid. From SQL*Plus or Oracle SQL Developer, issue the following
statement while logged in as as administrator:

select comp_id, comp_name, version, status from DBA_REGISTRY where
comp_name like '%OLAP%' or comp_name like '%X%' or comp_name like
'%J%';

If Oracle OLAP is installed in the instance, you should see something like the
following output:

COMP_ID COMP_NAME VERSION STATUS
--------- ----------------------------- ----------- ---------
JAVAVM JServer JAVA Virtual Machine 11.1.0.7.0 VALID
CATJAVA Oracle Database Java Packages 11.1.0.7.0 VALID
XML Oracle XDK 11.1.0.7.0 VALID
XDB Oracle XML Database 11.1.0.7.0 VALID
APS OLAP Analytic Workspace 11.1.0.7.0 VALID
XOQ Oracle OLAP API 11.1.0.7.0 VALID
AMD OLAP Catalog 11.1.0.7.0 VALID

414 Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution

If any of these elements are missing or invalid, you need to reinstall Oracle
OLAP. Before reinstalling it, you should ensure that the Java Virtual Machine (JVM),
Oracle Database Java packages, Oracle XML Developer Kit (XDK), and Oracle XML
DB are installed and valid. Sometimes the installation can be done using the
Database Configuration Assistant (DBCA), but this is not usually the case, especially
if the database instance is a custom installation. The simplest way to reinstall Oracle
OLAP is to run a manual installation.

NOTE
Reinstalling Oracle OLAP does not affect any
existing analytic workspaces that are present in an
Oracle database.

To reinstall Oracle OLAP manually, follow these steps:

 1. Stop the database and restart it in upgrade or restricted mode.

 2. Go to command mode and change to the ORACLE_HOME directory.

 3. Start SQL*Plus in SYSDBA mode (sqlplus / as SYSDBA).

 4. Run the following commands.

To install the Java VM, XDK, or XML:

conn / as SYSDBA
@?/javavm/install/initjvm.sql;
@?/xdk/admin/initxml.sql;
@?/xdk/admin/xmlja.sql;
@?/rdbms/admin/catjava.sql;
@?/rdbms/admin/catexf.sql;

To install Oracle OLAP:

@?/olap/admin/olap.sql SYSAUX TEMP;

Check the logs to make sure that this procedure properly installed or reinstalled
Oracle OLAP. You can verify the installation by rerunning the validation query.

Setting Database Parameters
You can set parameters to improve the performance of Oracle OLAP. Some of these
are Oracle Database parameters; others are specific to Oracle OLAP.

Chapter 8: Keeping It Running 415

Database Parameters That Affect Oracle OLAP Performance Make sure that the
database is set up with the minimum settings to run Oracle OLAP. The parameters
that affect the performance of Oracle OLAP are listed in Table 8-1. Adjust the server
parameter file or init.ora file to these values, and then restart your database instance.

The recommendations in Table 8-1 assume that the computer is dedicated to
Oracle Database and that your database is used predominantly (if not exclusively)
for OLAP purposes. If you want to reserve some resources for other applications,
first calculate the percentage of resources that are available to Oracle Database. For
example, if your computer has 4GB of physical memory and you want to reserve 25
to 30 percent for other applications, you would calculate MEMORY_TARGET (or
SGA_TARGET plus PGA_AGGREGATE_TARGET) based on 75 percent of 4GB, which
is 3GB.

Parameter Setting

JOB_QUEUE_PROCESSES Number of CPUs, plus one additional process for
every three CPUs. For example, set JOB_QUEUE_
PROCESSES=5 for a four-processor computer.

MEMORY_TARGET 70% of physical memory; also set PGA_
AGGREGATE_TARGET=0 and SGA_TARGET=0.

MEMORY_MAX_TARGET If there is a need in the future to increase MEMORY_
TARGET, consider setting this parameter to a
maximum value. This allows you to increase the
MEMORY_TARGET up to the value you specify
for MAX.

PGA_AGGREGATE_TARGET 25% of physical memory (increase up to 50%
for builds and major query operations). If using
MEMORY_TARGET in Oracle Database 11g, set this
value to 0.

SGA_TARGET 50% of physical memory. If using MEMORY_TARGET
in Oracle Database 11g, set this value to 0.

SESSIONS 2.5 * maximum number of simultaneous OLAP users.

UTL_FILE_DIR Directory path where the Oracle Database can write
to a file.

UNDO_MANAGEMENT AUTO

TAbLE 8-1. Initial Settings for Database Parameter Files

416 Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution

Oracle OLAP Parameters Oracle OLAP uses a memory area called the OLAP page
pool. The related parameter, called OLAP_PAGE_POOL_SIZE, specifies in bytes
(or kilobytes or megabytes) the size of the paging cache to be allocated to an Oracle
OLAP session for a user performing any operation against analytic workspaces. This
memory is allocated from the User Global Area (UGA).

In Oracle Database 10g and 11g, OLAP_PAGE_POOL_SIZE is set to 0, which
means the database dynamically allocates memory to users on an as-needed basis.
In some cases, the dynamic allocation can assign too much memory to a single
process, leaving little for other users. If this happens, you many need to change the
parameter value to reflect the amount of memory required by the users.

If Oracle OLAP is used in a shared server environment, OLAP_PAGE_POOL_
SIZE is not dynamic. If the value for OLAP_PAGE_POOL_SIZE is not set, the pool
is automatically set to six times the _olap_page_pool_low setting (default of
256KB). In this case, we recommend setting OLAP_PAGE_POOL_SIZE to a fixed
value that can accommodate your number of concurrent users, available memory in
the System Global Area (SGA), and other resources—between 4MB and 16MB can
be a good starting value.

Tuning Oracle OLAP
Before attempting to tune Oracle OLAP, ensure that the server is set up properly and
the database is performing well on the relational side. For help completing these
tasks, see the Oracle Database 2-Day + Performance Tuning Guide available in the
DBA Essentials section of the Oracle Database Documentation Library.

Assuming that the server and database have been tuned appropriately, you
can focus on Oracle OLAP. Generally, Oracle OLAP performance issues manifest
themselves by poor load performance and/or front-end query performance. Load
performance can be the most difficult to diagnose, but can also be easiest to fix. This
section tells you how to detect poor performance and suggests a few areas where
you can improve performance.

Assessing Load Performance A good place to start your assessment of load
performance is the load logs generated by the maintenance process. In Oracle
OLAP 10g, the logs are located in the XML_LOAD_LOG table owned by OLAPSYS.
In version 11g, each schema has a table called CUBE_BUILD_LOG. These tables
have statistics on the loading processes for dimensions and cubes. For either
version, look for the rows that specify a LOAD process, and assess the number of
rows loaded and the time it took to load the data. As a general rule of thumb, you
should expect at least 1 million rows per minute to be loaded by OLAP. Anything
less would indicate that you are having an I/O problem or there is some inefficient
SQL processing.

If you discover inefficient load processes, you can use DBA tools such as
explain plan on the SQL being used to load the data. If the explain plan indicates

Chapter 8: Keeping It Running 417

full table scans and other inefficient behavior, consider fixing these issues. The
Automatic Database Diagnostic Monitor (ADDM) can be a big benefit here as well.

The Dimensional Model and Performance The dimensional model should also be
considered as a possible contributor to poor performance. Many implementations
create a dimension when it would be more appropriate to define a level, hierarchy,
or attribute of an existing dimension. This generally happens when migrating from
an existing relational data warehouse or ROLAP tools. We have seen cases where
the migrated dimensional model had 50 dimensions. In one particular case, we
redesigned a 50-dimension model into a 15-dimension model, and the performance
issues were resolved.

Creating surrogate keys in a dimension can also contribute to poor performance.
As explained in Chapter 4, Oracle OLAP ensures keys are unique by prefixing the
incoming key with the level identifier. Adding a prefix results in larger keys being
used in the analytic workspace, which means that it can take longer to store the
keys, take up more space, and possibly take more time to retrieve into the front-end
tool. If you know that your dimension data contains only unique keys, turn off the
surrogate keys option for the dimension. When you do need surrogate keys, use the
shortest possible level identifier to minimize the effect of the storage of the data.

Preaggregation: A balance between Query Times and Load Performance While
preaggregation of data can improve query performance, it can also increase load
times and take additional space. There is a trade-off between space and load time.
The best query performance is generally a fully solved cube, but that takes time and
space. If load times are too long and space is a concern, further analysis is required.
If load times are fast and space is not a concern, then set it to fully solve and check
the query performance.

TIP
As mentioned in Chapter 4, with Oracle OLAP 11g,
the cost-based aggregation option does not require
setting aggregation levels. This is because this
version of Oracle OLAP does the analysis for you.
Therefore, if you are using version 11g with cost-
based aggregation, you might want to let it do the
work for you.

You can perform an analysis of how many members are loaded at each level of
a hierarchy. This analysis is important in determining which levels of a dimension
should be preaggregated and which ones can be aggregated at query time. Let’s
look at some examples. Table 8-2 shows a simple analysis that should be done on
each dimension.

418 Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution

The number of members and the average number of children per member
represent a fairly normal distribution, so standard skip-level aggregation should
work well. As we discussed in Chapter 4, in skip-level aggregation, the bottom level
is aggregated (in our example, SKU) and every other level above it is aggregated
(in this case, Class and All Products). This is the default behavior of the AWM Cube
Aggregation wizard.

Table 8-3 shows an example where the bottom two levels have a 1:1 ratio. You
do not want to spend the time to aggregate the 400 members of the Group level
on the fly, so you should preaggregate this level, along with the SKU level. The
compressed composite algorithm will identify the 1:1 ratio automatically and further
minimize space by not storing both member keys.

Finally, Table 8-4 shows a much wider distribution. This distribution may take
some sample runs to determine the sweet spot with respect to query performance. We
recommend starting with the default skip-level aggregation, as shown in Table 8-4.

TAbLE 8-2. Product Dimension Example 1

Level Number of Members
Average # of Children

per Member Preaggregate?

All Products 1 2 Yes

Division 6 3 No

Class 16 4 Yes

Group 55 23 No

SKU 1200 0 Yes

TAbLE 8-3. Product Dimension Example 2

Level Number of Members
Average # of Children

per Member Preaggregate?

All Products 1 2 Yes

Division 6 3 No

Class 20 25 Yes

Group 400 1 Yes

SKU 500 0 Yes

Chapter 8: Keeping It Running 419

If this leads to poor performance, then we recommend aggregating the level with the
largest number of members, in this case the Sub Group level. If this change still does
not improve performance, we would likely use full aggregation instead.

Cube Storage Cube storage is another important consideration. Using only the
amount of storage you need for your data is important for both load and aggregation
times. Here are some helpful hints:

 If your data supports it, use the decimal or integer data type. Even though ■
number is the default, this data type can take up to 3.5 times more space
than decimal. Number takes 22 bytes; decimal or integer takes 8 bytes.
If your data can be expressed in 8 bytes, you should consider taking
advantage of the smaller data storage offered by the other data types.

Use compressed composites if possible, because this will always build ■
a smaller more efficient cube. Our experience also indicates that
compressed composites load much faster than uncompressed composites.
Where possible, consider using compressed composites to improve load
performance. Compressed composites are discussed in Chapters 3 and 4.

Do not use global composites, which are bigger composites since they are ■
shared across cubes. Note that global composites are unavailable when
using compressed composites.

Review your sparsity settings. You do not need to have a dense dimension. ■
In fact, extensive testing has shown that defining all dimensions as sparse
can result in a dramatic improvement in load and aggregation performance,
without a significant degradation of query performance. This is especially
true for compressed composites.

TAbLE 8-4. Product Dimension Example 3

Level Number of Members
Average # of Children

per Member Preaggregate?

All Products 1 5 No

Division 6 14 Yes

Class 89 4 No

Group 1456 3 Yes

Sub Group 3989 67 No

SKU 120000 0 Yes

420 Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution

backing Up Oracle OLAP
Because the Oracle OLAP data is contained in the Oracle database, there should
already be a backup strategy in place to back up not only the relational data, but
also the OLAP data. In addition to the existing Oracle Database backup utilities,
Oracle OLAP also contains utilities that can be used to ensure that the data is
backed up and secure.

In this section, we touch on the traditional Oracle Database backup processes,
and then focus on the Oracle OLAP processes that are available. While manual
backups are usually enough for small systems, it is highly recommended that an
automatic backup be made on a regular basis.

Full Database backups
The simplest and most reliable database backup is called a cold backup. This
consists of shutting down the database instance and copying the directories
containing the database files (including Oracle OLAP data) to an archive device,
such as tape or other removable media. The challenge is that the database instance
must be shut down to perform this type of backup. This is not always possible.

Software products allow for backing up the Oracle database files while they are
still open. Recovery Manager (RMAN) is an example of this type of software that is
available from Oracle. For more information, see the Oracle Database documentation.

Oracle Database Export Commands
Oracle Data Pump enables fast bulk data and metadata movement between Oracle
databases. Data Pump provides parallel export and import utilities (expdp and
impdp), as well as a web-based Oracle Enterprise Manager interface. Because the
OLAP option is fully integrated into the Oracle Database, it can make use of this
facility for backing up and moving data from one machine to another.

RMAN is commonly used to back up, restore, and migrate databases. Again,
because Oracle OLAP is fully integrated into the Oracle Database, it can make use
of this facility.

A standby database can also be used, provided it is run in Physical mode.

Excluding Analytic Workspace Data for Exports
Analytic workspaces can take up a lot of space and can take time to export. If the
analytic workspace can be reconstituted quickly from relational data, or you
perform a separate export of the analytic workspace using Data Pump or the OLAP
DML export command (discussed in the next section), you may want to exclude the
analytic workspace data.

Chapter 8: Keeping It Running 421

To exclude analytic workspaces from dpexp and exp exports, use this command:

select * from sys.exppkgact$ where package IN ('DBMS_AW_EXP',
'DBMS_CUBE_EXP');
delete from sys.exppkgact$ where package IN ('DBMS_AW_EXP',
'DBMS_CUBE_EXP');

To restore analytic workspaces exports in dpexp and exp exports, use this
command:

insert into sys.exppkgact$ values ('DBMS_AW_EXP', 'SYS', 2, 1000);
insert into sys.exppkgact$ values ('DBMS_AW_EXP', 'SYS', 4, 1000);
/* For Oracle Database 11.1, add this syntax: */
insert into sys.exppkgact$ values ('DBMS_CUBE_EXP', 'SYS', 2, 1050);

Oracle OLAP Data Export Commands for Analytic Workspaces
The OLAP DML language has a set of utilities that support exporting and importing
analytic workspace data to files on the server. These commands copy data and
definitions from the analytic workspace to an EIF file contained in the server directory
specified by the directory alias. The status of the data’s dimensions determines which
values are exported from the analytic workspace. These commands are used to copy
all or parts of the data contained in the analytic workspace to a file, from which it can
be imported into another schema or database instance. These commands perform the
same basic functionally as the database export commands, but for analytic workspace
objects.

An important feature of the export command is the ability to create subsets of
the data, using the LIMIT command, before exporting the data. This can be very
important if you want to create a small test set of data. When imported, the analytic
workspace will contain all the structures, but only the data needed for the desired
functionality. The data can then be imported into a test schema or test server. This is
very difficult to do with relational data (although a new feature of Data Pump allows
for issuing SELECT statements to do similar limiting of data).

Another handy feature of the Oracle OLAP export command is the ability to
exclude aggregated data from the export file. This creates a much smaller export file
and still preserves the data. It does require that you aggregate the data once it is
loaded again, but this may take less time than the export. To exclude aggregated
data, add the noaggr argument to the end of the export command.

The export command has the following syntax:

EXPORT export_item TO EIF FILE filename [LIST] [NOPROP] -
[NOREWRITE|REWRITE] [FILESIZE n [K, M, or G]] -
[NOTEMPDATA] [NLS_CHARSET charset-exp] [AGGREGATE | NOAGGR]

422 Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution

where export item is one of the following:

 ■ name [AS newname]

exp [SCATTER AS scattername [TYPE scattertype] ■
EXCLUDING (concatbasedim . . .)]

exp AS name [EXCLUDING (concatbasedim . . .)] ■

ALL ■

The following example exports the SALESTRACK analytic workspace:

CDA olapdir /* change the directory alias to point to olapdir
EXPORT ALL to eif file salestrack.eif

If you wanted to do the same thing from a SQL command prompt, you can use
the DBMS_AW stored procedure, as follows:

exec dbms_aw.execute('cda olapdir;export all to eif file
salestrack.eif');

The following is the syntax for the import command:

IMPORT import_item FROM EIF FILE filename [INTO workspace] -
 [MATCH [STATUS]|APPEND|REPLACE [DELETE]] [LIST [ONLY]] [DATA] -
 [DFNS] [UPDATE] [NOPROP] [NASKIP] [NLS_CHARSET charset-exp]

where import_item is one of the following:

 ■ name [AS newname]

ALL ■

For example, to import the salestrack.eif file into a new analytic workspace, use
this command:

CDA olapdir /* change the database alias to point to olapdir
Import ALL from eif file salestrack.eif

Troubleshooting Oracle OLAP
A plethora of information pertaining to troubleshooting the Oracle Database is
available. Our goal here is to provide some hints on troubleshooting issues related
to Oracle OLAP.

Chapter 8: Keeping It Running 423

Access to the Analytic Workspace
It is not unusual to have users of such tools as OBIEE or Microsoft Excel complain
that they are not able to see the Oracle OLAP data. The problem can be traced to
user access privileges. As discussed in Chapter 4, the OLAP data stored in an
analytic workspace is actually an Oracle table. To allow users access to this table, a
simple grant needs to be executed.

For example, consider an analytic workspace table called AW$OLAPTRAIN. To
allow Scott to read the OLAP data in SALESTRACK contained in the OLAPTRAIN
schema, you issue this command:

grant select on AW$SALESTRACK to Scott;
grant OLAP_USER to Scott;

The additional grant, OLAP_USER, is used to extend the ability to see OLAP
objects. After these grants are made, the user, Scott, can now see the data contained
in SALESTRACK AW. See Chapter 4 for additional security settings.

Oracle OLAP Dynamic Performance Tables
The Oracle Database has a series of tables that record the database activity and store
information about processes and operations in the database instance. Data in the
tables is updated continuously while the instance is running. These tables are called
the V$ tables, or the dynamic performance tables, and they are owned by SYS. Any
user with the SELECT CATALOG role can access these tables. Additionally, the
system creates views from these tables and creates public synonyms for the views.
The views are also owned by SYS, but an administrator can grant access to them to
any user requiring access.

One set of tables collects data pertaining to the operation of Oracle OLAP. These
tables and related views are prefixed with V$AW, as listed in Table 8-5.

TAbLE 8-5. Oracle OLAP Views

View Description

V$AW_ALLOCATE_OP Lists the allocation operators available to Oracle OLAP

V$AW_AGGREGATE_OP Lists the aggregation operators available to Oracle OLAP

V$AW_CALC Collects information about the cache space usage and
the status of dynamic aggregation

V$AW_OLAP Collects information about the status of active analytic
workspaces

V$AW_SESSION_INFO Contains information about all active sessions that are
using Oracle OLAP

V$AW_LONGOPS Contains information about SQL fetches

424 Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution

The most important views are V$AW_CALC and V$AW_LONGOPS. The
V$AW_CALC view contains data about session usage of caches as well as the status
of aggregation processing. You should watch how large the page pool is, as well as
cache hits and misses. The more effective the caches are, the better is the response
time experienced by users. An ineffective cache (that is, one with few hits and many
misses) suggests that the data is not being stored optimally for the way it is being
viewed. To improve run-time performance, you may need to reorder the dimensions
in the cube to load the larger dimensions sooner than later. The V$AW_CALC view
also shows the OLAP DML command that was executed. Knowing which command
was executed will help you determine what was being done at the time.

The V$AW_LONGOPS view shows the OLAP DML command being run,
such as SQL fetch, import, or execute. The view provides the current state of the
operation—whether it is executing, fetching, or finished. It also shows the number
of rows that have been acted upon and the time the command started executing.

For additional information about these views and how they can be used, see the
Oracle OLAP User’s Guide under “Administering Oracle OLAP.”

Diagnostic Commands
Tables 8-6, 8-7, and 8-8 list of some diagnostic commands that can be used to turn
on various features of the database to trace and capture information. These can be
used for diagnosing build, query, and program performance problems.

TAbLE 8-6. OLAP Maintain Debugging

Diagnose Setting

SQL tracing alter session set sql_trace true

OLAP continuous tracing alter session set "_olap_continuous_
trace_file"=true

OLAP debug information
to trace

alter session set "_olap_dbgoutfile_
echo_to_eventlog"=true

OLAP POutLog
(aggregation) to trace

alter session set "_olap_poutlog_echo_
to_eventlog"=true

OLAP SQL import to trace alter session set events "37390 trace
name context forever, level 1"

OLAP update to trace alter session set events "37396 trace
name context forever, level 1"

Chapter 8: Keeping It Running 425

NOTE
In Oracle Database 11g Release 2 (11.2.0), use the
DBMS_CUBE_LOG package to manage diagnostic
logs.

These commands should be used with caution. If possible, try them on a
nonproduction environment until you are comfortable with their use.

NOTE
Regarding the OLAP DML command settings listed
in Table 8-8, if you are running OLAP Worksheet,
there is no need for the PL/SQL wrapper.

TAbLE 8-7. Query Debugging

Diagnose Setting

SQL tracing (binds and waits) alter session set events "10046 trace
name context forever, level 12"

CBO decisions alter session set events "10053 trace
name context forever, level 1"

OLAP continuous tracing alter session set "_olap_continuous_
trace_file"=true

OLAP table function to trace alter session set "_olap_table_
function_statistics"=true

TAbLE 8-8. Program Debugging

Diagnose (OLAP
DML Commands) Setting

Details when bad line of code exec dbms_aw.execute('BADLINE=yes');

OLAP program execution exec dbms_aw.execute('PRGTRACE=on');

OLAP model execution exec dbms_aw.execute('MODTRACE=on');

Show error messages exec dbms_aw.execute('ECHOPROMPT=yes');

426 Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution

Helpful DbA Scripts
Analytic workspace access can be summarized as read-many, write-once—only one
user at a time can have an analytic workspace open in read-write (RW) mode, but
many can have the same analytic workspace open in read-only (RO) mode. You can
find out who has RW access by running a SQL select statement such as this one:

select username,sid,serial#,
owner||'.'||a.aw_name||' ('||decode(attach_mode, 'READ WRITE', 'RW',
'READ ONLY', 'RO','MULTIWRITE', 'MW', 'EXCLUSIVE', 'XW', attach_
mode)||')' aw, generation
from dba_aws a,v$aw_olap b, v$aw_calc c, v$session
where a.aw_number=b.aw_number and sid=b.session_id and c.session_id = sid
order by username, sid, a.aw_name;

Notice that this SELECT statement makes use of the previously mentioned V$
tables to obtain the session and analytic workspace information. The results of the
SELECT statement look something like this:

USERNAME SID SERIAL# AW GENERATION
-------------- ---------- ------ ------------------------- ------------
MDT 137 20685 MDT.EMS (RO) 24
MDT 137 20685 SYS.EXPRESS (RO) 2
OLAPTRAIN 140 31597 SYS.EXPRESS (RO) 2
OLAPTRAIN 140 31597 OLAPTRAIN.SALESTRACK (RW) 24

These results provide not only a list of all the users that are connected to
analytic workspaces, but also their session information. The session is important if
you need to kill their session, trace the commands being executed, or just give them
a call and ask them to detach from the analytic workspace when they are done.

A more complex query can yield more interesting and useful information. If you
want to know about how much of the Program Global Area (PGA) is being used by
a session and how well it is using the OLAP page pool, you could use the following
script:

set lines 110 pages 500
col usn for a23 hea "USER (SID,SERIAL#,SVR)"
col pga_used for 9,990.9 hea "PGA MB|USED"
col pga_max for 9,990.9 hea "PGA MB|MAX"
col olap_pp for 9,990.9 hea "OLAP MB"
col olap_hrate for 99.9 hea "OLAP|Hit %"
bre on REPORT;
comp avg lab Average min lab Minimum max lab Maximum of olap_hrate on
REPORT;
comp avg lab Average sum lab Total min lab Minimum max lab Maximum of
pga_used on REPORT;
comp avg lab Average sum lab Total min lab Minimum max lab Maximum of
pga_max on REPORT;
comp avg lab Average sum lab Total min lab Minimum max lab Maximum of
olap_pp on REPORT;

Chapter 8: Keeping It Running 427

select vs.username||' ('||vs.sid||','||vs.serial#||','||
decode(server,'DEDICATED','D','S','SHD','U')||')' usn,
round((pga_used_mem)/1024/1024,1) pga_used, round((pga_max_
mem)/1024/1024,1) pga_max,
round((pool_size)/1024/1024,1) olap_pp,
round(100*((pool_hits)/((pool_hits)+(pool_misses))),1) olap_hrate
from v$process vp, v$session vs, v$aw_calc va
where va.session_id = vs.sid and vp.addr = vs.paddr
order by vs.username, vs.sid, vs.serial#;

This script produces output like the following:

 PGA MB PGA MB OLAP
USER (SID,SERIAL#,SVR) USED MAX OLAP MB Hit %
----------------------- -------- -------- -------- -----
MDT (137,20685,D) 6.0 6.5 1.8 98.9
OLAPTRAIN (140,31597,D) 5.9 8.8 1.4 98.8
 -------- -------- -------- -----
Average 6.0 7.7 1.6 98.9
Minimum 5.9 6.5 1.4 98.8
Maximum 6.0 8.8 1.8 98.9
Total 11.9 15.3 3.2

Oracle provides some other handy scripts for the Oracle OLAP administrator on the
Oracle wiki site (http://wiki.oracle.com/page/OLAP+option+-+DBA+Sample+Scripts),
as shown in Figure 8-1.

FIgURE 8-1. Oracle OLAP DBA scripts on the Oracle wiki

http://wiki.oracle.com/page/OLAP+option+-+DBA+Sample+Scripts

428 Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution

Another interesting site is the Oracle OLAP blog (http://oracleolap.blogspot.com),
which includes discussions of basic and advanced OLAP option topics. Another
example script demonstrates how to determine the names and size of all the internal
AW objects:

set lines110 pages 500
col partname for a50 hea AW_OBJECT
col kb for 999,999,990
bre on REPORT;
comp sum lab Total of kb on REPORT;
select partname,

 round(sum(dbms_lob.getlength(awlob))/1024,0) KB
from olaptrain.aw$salestrack
where extnum=0
group by partname
order by kb;

AW_OBJECT KB
-- ------------
PRODUCT_PRODUCT_TYPE_ID_INDEX 236
CHANNEL 260
GEOGRAPHY 260
TIME 283
FORECAST_SMSEASONAL 291
FORECAST_SEASONAL 299
PRODUCT_SHORT_DESCRIPTION 338
__AW_GENERATED_153 338
FORECAST_BEST_FIT 378
__AW_GENERATED_150 386
FORECAST_LINEAR_REGRESSION 386
PRODUCT_LONG_DESCRIPTION 401
PRODUCT 496
PRODUCT_PRODUCT_ITEM_ID_INDEX 504
PRODUCT_ITEM_SHORT_DESCRIPTION 567
PRODUCT_ITEM_LONG_DESCRIPTION_ 614
 43,716
SALES_CUBE_STORED:P1 89,959
SALES_CUBE_STORED:P2 96,570
SALES_CUBE_STORED:P3 104,174
SALES_CUBE_P1_PRTCOMP 197,305
SALES_CUBE_P2_PRTCOMP 212,047
SALES_CUBE_P3_PRTCOMP 227,569

Total 1,019,854

http://oracleolap.blogspot.com

Chapter 8: Keeping It Running 429

Flashback with Analytic Workspaces
Oracle OLAP is fully compatible with the Flashback option for the Oracle Database.
Flashback can quickly return a database to the state it was in before the last update
or maintain action. This feature is handy if you are testing designs or debugging
OLAP DML programs. You can use Flashback to help avoid mistakes and save
valuable time.

The following script uses SQL and OLAP DML to demonstrate how to use
Flashback.

/* grant flashback to OLAPTRAIN
conn system/manager
grant execute on sys.dbms_flashback to olaptrain;

/* now connect to olaptrain user
conn olaptrain/oracle
set serveroutput on size 9999
begin
dbms_aw.execute('aw attach SALESTRACK rw');
dbms_aw.execute('DEFINE flash_test VARIABLE DECIMAL');
dbms_aw.execute('flash_test = 10');
dbms_aw.execute('update ; commit');
dbms_aw.execute('show flash_test');
dbms_aw.execute('aw detach SALESTRACK');
end;

/* Wait 30 Minutes or so */
begin
dbms_aw.execute('aw attach SALESTRACK rw');
dbms_aw.execute('flash_test = 20');
dbms_aw.execute('update; commit');
dbms_aw.execute('show flash_test');
dbms_aw.execute('aw detach SALESTRACK’);
end;

/* Now verify the values */
begin
dbms_flashback.enable_at_time(sysdate - 15/1440); -- go back 15 minutes
dbms_aw.execute('aw attach SALESTRACK ro');
dbms_aw.execute('show flash_test');
dbms_aw.execute('aw detach SALESTRACK');
dbms_flashback.disable;
end;

430 Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution

These commands can be run as a script (as shown), run interactively from the
SQL prompt, or even run from OLAP Worksheet in SQL or OLAP DML mode.

Essbase Care and Maintenance
In this section, we recommend methods for optimizing an Essbase database and
backing up data. The recommendations are general in nature, and some may be
inappropriate for your particular situation. You should discuss your specific needs
with your consultant before implementing any optimizations.

Optimizing Essbase
It has been said that tuning an Essbase database depends as much on the chef as it
does on the recipe. The optimization process requires more than blindly following a
specific set of steps. You need an understanding of the data and the users to be able
to select the most appropriate optimizations for your system.

There are five key areas for optimization:

 Overall performance (choosing an appropriate data storage model) ■

Query performance ■

Data load performance ■

Calculation performance ■

Cache performance ■

Overall Performance
The most obvious impact on performance can come from the choice of data storage
for your Essbase database. As mentioned in Chapter 3, Essbase has two data storage
options: aggregate storage option (ASO) and block storage option (BSO).
Implementing a storage model that is inappropriate for the data contained in the
database can cause performance issues.

When ASO was added to Essbase in 2004, it dramatically changed the
performance and scalability landscape. When one beta customer converted an
existing BSO application that took more than 3½ hours to aggregate to ASO, the
application aggregated in 31 seconds. Early versions of ASO also had a fair number
of restrictions. Sadly, myths around these early restrictions remain today, although

Chapter 8: Keeping It Running 431

most of them have been removed, usually many years ago. The result is that many
long-time Essbase developers still recommend to new Essbase developers that they
start with block storage. We contend that the mindset needs to change from “I will
start with BSO, unless it gets too big” to “Is there a reason why I should not use
ASO?”

There are still some valid reasons not to choose an ASO solution, such as the
need to store/write data to upper levels, or the need to run a procedural calculation
script or to call external functions from a script, but this does not preclude a hybrid
implementation using the benefits of both storage models. “Should I use ASO or
BSO for this model?” is a common question, but the wrong one. “How should I use
ASO and BSO together to create my Essbase application?” is a much better starting
point. An Essbase application can consist of many databases.

Now that ASO can be the source and target of a partition, creating a composite
model that fully satisfies users’ requirements is more straightforward, and the
resulting solution can leverage the power of both options.

Chapter 3 discussed the advantages of BSO and ASO. We summarize them
again here for your review in the context of optimization.

BSO has the following functional advantages:

 You can input data to upper levels. For example, you can input a total ■
charge at the All Markets and All Products levels, and then use an allocation
method to push those values down to the individual product SKUs in the
individual cities. Upper-level input is particularly useful when you want to
do target budgeting or perform allocations (such as a corporate overhead
charge).

You can precalculate every intersection. This means that query times ■
(assuming the data request volume is synonymous) from request to request
are consistent. In practice, many intersections of a BSO database are left to
calculate dynamically at retrieval time. Total time period values (such as the
total at Quarter 1) are often dynamically calculated as an overall efficiency
practice.

Period-to-date reporting capabilities are built into BSO databases. ■

You can control calculation behavior down to the cell level. If you need ■
to model a complex calculation process (for example, a goal-seeking
calculation), you can control the process in detail with a calculation script.

432 Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution

ASO provides the following advantages:

 In general, ASO databases are ideal for aggregating large data sets. They can ■
have many millions members, with large dimensionality, and be sourced
with hundreds of gigabytes of data.

ASO databases are cell-based, and these smaller structures (compared to ■
blocks) tend to load rapidly. Additionally, because you are not aggregating
large portions of the database, but rather strategic points, the data is
available to your users with less system downtime. Running an aggregation
process (while recommended for performance reasons) is optional. Because
all upper-level values are dynamic, the values at upper levels calculate on
retrieval immediately after loading data.

The overall structure of an ASO database is smaller than that of a BSO ■
database. This, coupled with a smaller aggregation footprint, can lead to
a disk footprint significantly smaller than with a BSO database.

 When designing a database, ensuring proper batch load and calculation times
are exceedingly important considerations. If you cannot provide data access to
your users in a timely fashion, the deployment is perceived as a failure. Equally
important, however, is the concept of query performance, as discussed in the next
sections. You need to optimize that database for the types of query executed,
the number and frequency of those queries, and the size of the user base. The
parameters involved vary from ASO to BSO, and this is where some of the benefits
of an ASO database become apparent—the number of things you need to consider
is dramatically reduced.

Query Perfomance in block Storage Databases
Essbase uses a patented storage algorithm for BSO databases that prevents the
database explosion that can occur in OLAP databases. Essentially, space is allocated
for the members in the dense dimensions whenever data is received against an
intersection of sparse members. For example, consider the outline in Figure 8-2.
Let’s assume that Year, Measures, and Scenario are flagged as dense, while Product
and Market are sparse. The others are attribute dimensions and are not flagged.

When a Product is sold in a Market, a data block holding all values for Year,
Measures, and Scenario is created. Thus, the dense/sparse setting controls the size of
the block of data that is stored, as well as how many blocks are created. If Market
was changed to dense, the database would store more information within the block,
but there would be fewer blocks: one for each Product, rather than one for each
Product/Market combination.

Chapter 8: Keeping It Running 433

This is where the tuning of Essbase becomes more of an art. There is no right
answer for the block size (although there may be some wrong ones!). The best block
size depends on the nature and use of the application, as well as the hardware and
operating system being used.

Various statistics are available (as shown in Figure 8-3) to help you understand
the application and the data, so you can tune these settings. The volume of data is
not necessarily the determining factor, but rather the distribution across the
dimensions. The distribution across the sparse dimensions determines how many
blocks will be created (before aggregation), while the spread across the dense
dimensions will determine the block density (basically, how full the block is).

We mentioned that some of the dimensions in the outline were attribute
dimensions. An attribute dimension does not affect storage, as it does not hold any
data. It does not exist in its own right, but qualifies another dimension: product A
is red; product B is green; the manager for the Eastern region is Jeremy. However,
attribute dimensions do allow a greater flexibility of analysis. For example, if you
request the total sales of red products, Essbase dynamically calculates the result by
retrieving the associated members. Of course, whenever values are calculated at
request time, there is a potential impact on retrieval speed.

FIgURE 8-2. Sample outline for a block storage database

434 Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution

Data Storage Settings Setting dimensions to dense impacts the amount of data
stored in each block (that is, the block size). The theoretical block size is calculated
by multiplying together the number of members in each dense dimension and then
multiplying this by 8 (as each data point requires 8 bytes of storage). Clearly, if you
store fewer members, you have a smaller block size, so Essbase allows you to
control the storage of individual members. For example, you do not need to store a
value for Time, because you can calculate it (and the value of the quarters) from the
months. You can flag these members as Dynamic Calc members, so that you are
storing 12 members (the months), instead of 17 (the months plus the quarters plus
the year). Figure 8-4 shows a sample optimization to reduce the number of stored
members.

Based on the dimensional statistics in Figure 8-4, you can calculate the impact
of the optimization by comparing the Members in Dimension and Members Stored
columns. Using the stored members, you can calculate the block size by multiplying

FIgURE 8-3. BSO statistics in the Administration Services console

Chapter 8: Keeping It Running 435

the dense dimensions together (12 * 9 * 2 = 216) and then multiplying by the 8 bytes
storage (216 * 8). The result is 1,728 bytes. This compares with the theoretical block
size (with no optimizations) of 13,680 bytes (19 * 18 * 5 * 8).

As well as the dynamic calculation setting, there are other options for controlling
the size, such as flagging an item as a label. This tells Essbase that it is a placeholder in
the outline, but no data will be stored there. Essbase will also automatically try to apply
optimizations, so if a member has a single child, it will save space by converting it to
an implied share.

Table 8-9 describes the member storage properties that affect block size and
states what happens to the block size when each is used on a dense dimension.

 For example, consider the following Scenario dimension with five members
(recall that Scenario itself counts as a member):

 Actual ■

Budget ■

Variance, with the formula @VAR(Actual, Budget); ■

Variance %, with the formula @VARPER(Actual, Budget); ■

FIgURE 8-4. Reducing the number of stored members in dense dimensions reduces
block size.

436 Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution

If you set Variance and Variance % to Dynamic Calc, the dimension is reduced by
two members, which is a reduction of 40 percent. Furthermore, if you set Scenario to
Label Only, the dimension is reduced another 20 percent. This reduction has an
immediate impact on the size of the block, and in turn, the size of the database, as all
blocks are reduced in size.

Choosing Dense or Sparse When determining whether a dimension is dense or
sparse, you need to examine the notion of data distribution. Look at each dimension in
combination with each of the other dimensions and note where data exists more so than
not. As shown in Figure 8-5, when data exists for many combinations, the dimensions
are dense. When few combinations contain values, the dimensions are sparse.

TAbLE 8-9. Properties That Affect Block Size

Storage Property Description
Impact on
block Size

Store Data Data is stored in the database. Values may be
either input or associated with a calculation. If
the member has a single child, an implicit share
is established and the value is not stored.

Increase

Never Share Data This works like Store Data, but the implicit
share scenario is never allowed.

Increase

Label Only Data is not stored. Rather, the member marked
as Label Only is used as a grouping device to
provide drill-down.

Decrease

Dynamic Calc Data is not stored in the database. Values are
calculated upon request.

Decrease

Dynamic Calc &
Store

Values are calculated upon request and then
stored. Stored values may be removed only via
a calculation script using the CLEARBLOCK
DYNAMIC command.

Increase

Shared Member Shared members appear to be duplicates.
Instead, the duplicate member points to the
original member. Thus, the data is “reused.”
For example, in the Sample Basic database,
three diet products occur under their respective
product category and a parent called Diet. The
Diet member is used for a secondary grouping
or rollup.

Decrease

Chapter 8: Keeping It Running 437

The first distribution diagram in Figure 8-5 reveals that not all products are sold
in all markets. For example, a particular drink might sell better in California than in
Texas. However, if you have designed your model correctly, you generally have
measures across various time periods. The second distribution diagram reflects that
while a particular drink may not sell well in Texas as opposed to California, some
drinks sell there, and so you have data for sales across time periods.

Block size is the next way to look at dense and sparse. For each application,
there should be an optimal size. The Oracle Essbase Database Administrator’s
Guide suggests 8KB to 64KB; however, block sizes larger than 64KB are often better
than ones that are less than 8KB. Simply stated, Essbase reads and writes data by
block. Therefore, all input, output, and calculation transactions depend on this
configuration. As an example, think of a sandy beach and several sizes of shovel. If
the task is to move sand from point A to point B, a shovel the size of a teaspoon will
be less efficient than one used for gardening by hand. A larger shovel, like one used
for snow, can actually work against you, due to the weight of the sand.

As we have said, dimension size has a direct impact on block size. In the
preceding examples, you saw that 1,000 accounts by 12 months means 12,000 cells.
However, adding another dense dimension, say one with four members, increases
the number of cells fourfold. Therefore, adding even a small dense dimension can
have a serious impact. Remember that you do not sum the members of a dimension;
you multiply them, so the more dimensions you mark as dense, the bigger the block
and bigger the impact.

FIgURE 8-5. Data distribution

X

X X

X

X X

X

X X X X

XX X

X XXX

X

X

XXX X

X X X X

Measures

Products

T
im

e

M
ar

ke
ts

Sparse:
Few combinations from
all possible ones exist

Dense:
Most combinations from
all possible ones exist

438 Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution

If you can split a block along a smaller dimension, you can quickly reduce the
size. For example, you might make Scenario sparse, as shown in Figure 8-6. The
reasoning is that frequently you do not need both actual and budget data available
at the same time. Assume that you create the budget in the fall, and the actual data
does not yet exist. If Scenario were dense, the block would have two times the
amount of required data in memory. That means that you need to move more cells
into memory than required, which translates to wasted time.

At this point, we will suggest that you review the Oracle Essbase Database
Administrator’s Guide and be prepared to experiment with different dense and
sparse scenarios.

Query Performance in Aggregate Storage Databases
ASO databases load data at level 0 and derive all upper-level members and member
formulas dynamically. To optimize retrieval performance, you can run an aggregation
process on the database to build stored values at some upper-level intersections. After
loading data, Essbase analyzes the source data and builds aggregates to optimize
those queries that will take the longest to resolve based on the structure of the model.
You can also have Essbase monitor query patterns of your user base, and then build
aggregations to serve your specific queries more efficiently.

ASO databases have two primary dimension types to consider for optimization:
stored and dynamic. Another dimension type, multiple hierarchies enabled, is
a hybrid option that allows a portion of one dimension to be stored and other
portions to be dynamic. The dimension types come into play when Essbase

FIgURE 8-6. Scenario tagged as a dense dimension versus as a sparse dimension

Vs.

Actual/Budget – Scenario is DENSE Actual/Budget – Scenario is SPARSE

Chapter 8: Keeping It Running 439

builds aggregates. Assume you have a database that has the following dimensions
and storage properties:

 Time (dynamic) ■

Measures (dynamic) ■

Markets (stored) ■

Customer (stored) ■

Products (stored) ■

Scenario (stored) ■

When the ASO engine builds aggregates, it looks at all members (including
upper-level members) in stored dimensions to be part of an aggregate view.
Suppose you have 4 million customers divided into five geographical regions and
then a few hundred subregions. In this dimension, the ASO engine might build
a series of aggregate views at the subregion level. In that case, the queries at the
five geographical regions would not need to start adding up the entire group of
individual customer accounts. Instead, ASO could start the math from the already
derived subregions. That aggregation point (based on this example) might be a
customer subregion for a given month for a given product line in North America,
and be based on the current year scenario.

Because only stored hierarchies are considered for aggregate views, it is much
more efficient to have stored dimensions in the outline. With dynamic dimensions,
Essbase must derive the entire dimension from the bottom to provide query results
(assuming you are querying at upper levels). The multiple hierarchies enabled
dimension type would let you have a portion of a dimension be stored and other
portions dynamic. You need to use a dynamic hierarchy in the following
circumstances:

 To use member formulas in a dimension ■

To use consolidation operators other than addition (+) ■

To have complex shared member structures (alternate hierarchy dimensions ■
can generally accommodate simple shared hierarchies)

It is best to use dynamic dimension types for smaller dimensions (hundreds or
thousands of members), as these can be derived very quickly. From most efficient to
least efficient, the dimension types are stored, multiple hierarchies enabled, then
dynamic.

440 Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution

Data Load Optimizations
Another important optimization involves streamlining how data is loaded. The first
rule of thumb is to try to keep the data manipulation to a minimum. Yes, you can
move and split fields in a load rule or replace strings, but this type of manipulation
is better suited to a relational database source. When loading data from an SQL
source, it is more efficient to present the data fields to Essbase in the correct order,
and perform any manipulations and aggregations within the SQL statement.

Sorting for block Storage Databases In a BSO application, the most efficient way
to load data is to process each block only once. For example, you do not want to
write the volume information for each product, and then go back and write the sales
value afterwards. Therefore, the optimum sequence for loading data is to sort by the
sparse dimensions first, followed by the dense dimensions, so that all the data for a
block is processed together, and the block is written only once.

For example, assume that you have a database with Year, Region, Scenario, and
Account dimensions. Region and Scenario are flagged as sparse dimensions; Year
and Account are dense dimensions. With this configuration, there would be a block
of Year by Account data for each combination of Region by Scenario. Figure 8-7
shows two ways to represent the data for load purposes.

In Figure 8-7, the file on the left is much less efficient than the one on the right.
The right file is sorted by Region and Scenario, so each group of three records
belongs to a particular block. Additionally, the example on the right has more data
per record than the one on the left. With more data values in each record, Essbase
does not need to process as many records.

buffers for Aggregate Storage Databases In an ASO database, the concept of
blocks does not exist, and the organization of the data for optimum loading happens
automatically in the load buffer. When large volumes of data are being loaded, the
size of this buffer can be adjusted to ensure that performance is maintained, setting
the Pending cache size limit option, as shown in Figure 8-8. In addition, discrete
sets of data can be loaded into individual load buffers, and then the multiple buffers
can be committed in a single action.

Calculation Optimizations
As discussed in Chapter 3, one of the principal differences between ASO and BSO is
the ability to have procedural calculations. The potential requirement for having a
procedural calculation in a deployment is a driving consideration when choosing
the data storage model. Of the two models, it is much simpler to optimize ASO
aggregations. That is not to say that optimizing calculation scripts is complex, but
there is more to consider.

Chapter 8: Keeping It Running 441

FIgURE 8-7. Improve data-load efficiency by processing sparse dimensions first.

442 Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution

Aggregations for Aggregate Storage Databases Within an ASO database, all
calculations are dynamic (performed at retrieval time). Performance is maintained
by designing aggregations based on the most expensive queries in the database.
Based on the data loaded into the database, the ASO engine uses an algorithm to
determine those queries that would take the longest. Using our previous example, if
we load data for 4 million customers, a query that requests aggregated values across
this dimension would require Essbase to add quite a bit of information. The ASO
engine would look at the data distribution under this dimension and try to build
aggregation points to help query performance across this dimension.

In general, the more aggregations in a database, the faster the performance.
Aggregations, however, require disk space. More aggregate values mean more data
storage space. As such, there is a point of diminishing returns. It may not benefit you
to use an additional 10GB of disk space if the impact on performance might be
negligible.

When optimizing the database, you can specify the amount of disk space you
want to allow for aggregations. As shown in Figure 8-9, Essbase provides an impact
analysis comparing query performance improvement and disk space. This lets you
make an educated decision on how much space you use.

FIgURE 8-8. Setting the size of the cache

Chapter 8: Keeping It Running 443

In Figure 8-9, the horizontal axis on the graph represents the amount of disk
space. The vertical axis represents the potential performance gain. In this example,
there is a large performance gain over the initial set of aggregations. After that gain,
the impact of additional aggregations appears to be somewhat limited.

To quantify the preceding points, a prime way to optimize aggregation behavior
in ASO database is to allocate disk space. In addition to leveraging the default
aggregation behavior, the administrator can enable query tracking to log which
areas of the database are being hit most often, and use this information to overlay
or replace the aggregations to fine-tune the performance. In this way, the ASO
database becomes self-learning.

Another consideration for ASO aggregation optimization is the amount of time it
takes Essbase to build the aggregations. You can optimize this process by allocating
RAM to the ASO cache. This cache is used by ASO databases to optimize load and
aggregation processes.

Calculation Scripts for block Storage Databases As we discussed earlier, BSO
databases rely on blocks. When running a calculation script on a BSO database,
you are creating additional blocks, deriving values for existing blocks, or a

FIgURE 8-9. Essbase impact analysis

444 Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution

combination of both. Remember that even if you are calculating only a single value
in a block, the entire block comes into memory. The goal of optimizing a BSO
calculation script is to calculate as few blocks and as few cells within those blocks
as necessary. In short, do not do more work than is necessary to complete your
analysis.

By default, Essbase processes only those parts of the database that have been
amended. This behavior is called intelligent calculation. Intelligent calculation
reduces the need for the developer to think about the process in too much detail.
However, there are times when you need to override the default behavior. For
example, if a driver value or exchange rate is changed, the whole database needs
to be processed, not just those blocks that have been updated.

As with data loading optimization, you want to ensure that Essbase does not
need to read or write to any block more than necessary—preferably only once.
Therefore, when designing a calculation script, you want to process the database
in a logical order and access only those parts of the database that are required. For
example, if you load actual numbers for the current month, you do not want to
process any of the budget or forecast data that may exist in the database. The IF,
FIX, and EXCLUDE commands can be used to control the areas used for either a
calculation as a whole or a subsection of it. For example, you could use a statement
like FIX(Actual) to ensure that you calculate on only the Actual scenario.

Another key part of calculation performance is ensuring that Essbase has sufficient
memory available to the script to be able to perform efficiently. As a starting point,
you can design the database outline in what is known as the hourglass shape. An
hourglass shape organizes the dense dimensions first, in decreasing order of size,
followed by the sparse dimensions, in increasing order of size. Then you ensure that
the memory allocated is sufficient to allow Essbase to anchor on the last two sparse
dimensions.

You need to consider a series of caches and configuration settings when
optimizing calculation processes on BSO database. The best resource for a detailed
explanation and instructions of how to calculate these requirements is the Oracle
Essbase Database Administrator’s Guide. That said, the next section provides an
overview on the various caches used by Essbase.

One final consideration for calculation script performance is the ability to
process calculation tasks in parallel. Essbase can divide a calculation process into
multiple tasks, and then run these tasks in parallel. The analysis of whether a script
can be run across parallel tasks happens automatically in Essbase; however, you can
also set some parameters the Essbase configuration file (essbase.cfg), located in the
bin directory of the Essbase installation.

The Essbase configuration file is an optional file that contains a series of
commands Essbase reads at startup. Many of these commands apply to the concept

Chapter 8: Keeping It Running 445

of optimization. For example, you can set default parallel calculation settings for all
databases. For descriptions of specific settings, see the Oracle Essbase Technical
Reference.

Optimizing Caches
The caches allow the control of memory allocation to a particular database. Clearly,
it is advantageous to allocate as much memory as possible to a database, but this
needs to be balanced against the other databases and applications on the server, as
well as the total memory available. This is where the 64-bit operating systems
provide the greatest performance advantages, with the ability to reference huge
quantities of memory. The scope of this memory allows you to lock individual
databases completely into memory or to build models that would traditionally be
thought too big for an OLAP solution.

BSO databases have separate caches for the index and page file (metadata and
data). Figures 8-10 and 8-11 show the related cache settings. To help you judge the
settings for both of these caches, statistical information around the effectiveness of
the caches is available in Administration Services Console. For more information,
see the Oracle Essbase Database Administrator’s Guide.

FIgURE 8-10. Settings for the BSO caches

446 Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution

NOTE
Several other caches exist in BSO databases. The
data file cache setting is rarely used, as it relates to
when you use Essbase in direct I/O mode, instead
of letting the operating system manage the I/O. The
calculator and dynamic calc caches are internal
behaviors triggered by both the essbase.cfg settings
and the outline order. For more information about
these caches, see the Oracle Essbase Database
Administrator’s Guide.

Within an ASO database, there is a single cache, as there is not the same concept
of separating the index and page files. Figure 8-12 shows the cache settings.

For more information about the cache settings, see the Oracle Essbase Database
Administrator’s Guide.

backing Up Essbase
Given the strategic importance of Essbase to many organizations, administrators
need to take steps to protect their data. This means integrating Essbase backups
into routine database maintenance right from the start. Backups provide a way to
restore a specific application or, for that matter, the entire production environment.

FIgURE 8-11. Run-time settings for BSO databases

Chapter 8: Keeping It Running 447

Manual backups are sufficient if created on a regular schedule, but automating
your backups offers greater reliability and can provide peace of mind.

In this section, we introduce the various backup strategies that are available for
Essbase. We start with the backup strategies that are available for both BSO and
ASO databases. Then we examine strategies for BSO databases. We conclude this
section with a list of files that need to be backed up in addition to the database.

Creating an Operating System backup
The traditional approach to backing up servers is an operating system backup. The
challenge from an Essbase point of view is that active database files are typically
skipped because they are open for read-write access. So, if you can bring your
Essbase environment down, this form of backup is fine. Otherwise, you will need to
select one of the other backup strategies covered in this section.

FIgURE 8-12. Run-time cache settings for ASO databases

448 Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution

Exporting the Database
One of the most common means of backing up BSO or ASO data is a database
export. In an export, before you back up a database, you direct Essbase to write the
database data to a text file. If the database fails, you can then reload the text file.
Because some file management systems do not support large text files, the Essbase
server automatically creates a series of 2GB files, appending a number to each file
name (01, 02, and so on), until all of the data is exported.

A database export can be executed using Administration Services, MaxL
statements, or API methods. Figure 8-13 shows how you can use the context menu
associated with the database node to open the Export Database dialog box.

In the Export Database dialog box, you start by specifying a file name. By
default, the file will be placed in the folder where all of the applications are stored,
rather than in a folder related to the application or database. Next, select one of
three export options:

 All data ■ Exports all data values, input and calculated.

Level 0 data blocks ■ Exports blocks of data associated with the lowest level
or leaf nodes of a dimension.

Input level data blocks ■ Exports blocks of data where data input, manual or
mass, has occurred.

FIgURE 8-13. Choosing Database Export in Administration Services

Chapter 8: Keeping It Running 449

Finally, you can choose to export data in column format. This creates a tabular
output that is particularly useful if the goal is to provide a copy of the data to
another application. By default, Essbase exports data in a very compact, quasi-
tabular format that can be reloaded very fast. You can also choose to execute
the export using a background process, allowing you to continue working in
Administration Services.

In the following MaxL example, data is exported to a file called input.txt. By
default, only level 0 data is available for export.

export database DareOLAP.Complete input data to data_file 'input.txt';

To specify a subset of data, you can create and call a report script. The following
MaxL example exports a database using the subset described in a report script
called input.rep. The output file is input.txt.

export database DareOLAP.Complete using report_file 'input.rep' to
 data_file 'input.txt';

More modern backup strategies exist for BSO databases. These are discussed in
the next section.

Other backup Strategies for block Storage Databases
Starting with Essbase release 9.3, new backup methods became available for BSO
databases. These include exports through calculation scripts, automated Essbase
backup and restore, and transaction replay. All of these methods can be performed
manually or automatically.

Creating a Calculation Script Essbase release 9.3 introduced the ability to export
data from BSO databases through calculation scripts. A subset data export enables
you to specify with more detail the data you would like to export. You can automate
calculation scripts using MaxL.

The following MaxL example executes a calculation script called Export for the
database called complete within the application called DareOLAP.

execute calculation DareOLAP.Export on database Complete;

Three database export targets are available via a calculation script: text, binary,
and relational. Here, we will look at examples of how to set data export options for
each of the target types using the SET DATAEXPORTOPTIONS command. For more
information about this and other commands, see the Oracle Essbase Technical
Reference.

The following script exports data to a text file. It specifies a data export level of 0
(which means the lowest members in the hierarchy), and then limits output to sales
data with values of 1,000 or greater. Next, the script fixes the data slice for the

450 Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution

specified dimensions members. Finally, the export target is specified as a text file
located at b:\exports\jan.txt. Data will be separated using comma (,) delimiters, and
any missing data values are represented by #MI.

SET DATAEXPORTOPTIONS
 {
 DataExportLevel "LEVEL0";
 };
DATAEXPORTCOND ("Sales">=1000);
FIX ("100-10","New York","Actual","Sales");
 DATAEXPORT "File" "," "b:\exports\jan.txt" "#MI";
ENDFIX;

When you export data using the binary method, Essbase creates the export file
using the same bitmap compression technique that is used by the Essbase kernel.
This makes for a very fast and efficient export process, using minimal disk storage.
Binary exports can be fixed only on sparse dimensions. The following script exports
all New York data blocks to a binary file located at b:\backup\newyork.bin.

SET DATAEXPORTOPTIONS
 {
 DataExportLevel "ALL";
 };
FIX ("New York");
 DATAEXPORT "BinFile" "b:\backup\newyork.bin";
ENDFIX;

In the next example, selected records are inserted directly into the table named
NEWYORK in a relational database. All data is exported for the selected dimension
members. In the DATAEXPORT statement, a data source name (DSN) is used to
establish a connection, commonly via ODBC, to the CUR_SALES relational
database. The table name is specified as NEWYORK, followed by the user name
and password for the relational database.

SET DATAEXPORTOPTIONS
 {
 DataExportLevel "ALL";
 };
FIX("100-10","New York","Actual","Sales");
 DATAEXPORT "DSN" "cur_sale" "newyork" "admin" "password";
ENDFIX;

Archiving and Restoring a Database Beginning with Essbase release 11,
administrators can back up and restore BSO databases using the automated Essbase
backup and restore capabilities. The automated backup copies the database object
and data files to an archive location that you specify, and from which you can

Chapter 8: Keeping It Running 451

quickly restore the database. You must have the Administrator role to use the
automated backup feature.

When backing up a database, Essbase performs the following tasks:

 Place the database in read-only mode, protecting the database from updates ■
during the archive process while allowing requests to query the database.

Write a copy of the database files to an archive file that resides on the ■
computer hosting the Essbase server.

Return the database to read-write mode. ■

Figure 8-14 shows how you can use the context menu associated with the
database node to open the Archive Database dialog box. In this dialog box, provide
the file name. Unless otherwise specified, the file is placed in the ARBORPATH/app
folder. Because this process must place the database in read-only mode, the Force
archive option may be used to drop users from the database. Users may reconnect
to the database, but they will not be allowed read-write access. The Archive in the
background option allows you to continue working in Essbase Administration
Services while the archive proceeds.

You can use MaxL to automate the archive process. The following example
backs up the complete database within the DareOLAP application, overwriting the
existing archive file.

alter database DareOLAP.Complete force archive to file /Hyperion/
DareOLAP.arc;

FIgURE 8-14. Choosing Database Archive in Administration Services

452 Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution

Restoring a database is the reverse of archiving a database. You must have the
Administrator role to terminate active client connections and restore a database.
Figure 8-15 shows how to use the context menu associated with the database node
to open the Restore Database dialog box. The options in this dialog box work like
the corresponding ones in the Archive Database dialog box.

You can also use MaxL to automate the restore process. The following example
restores the Complete database within the DareOLAP application.

alter database DareOLAP.Complete force restore from file /Hyperion/
DareOLAP.arc;

For more information, about Essbase automated backup and restore, see the
EPM System Backup and Recovery Guide.

Tracking Transactions Another new feature of Essbase release 11 is called
transaction replay. With this approach, administrators can instruct Essbase to
capture each transaction executed for later use. This is very valuable, because you
have a single source of all actions that may need to be repeated in case of server or
application failure. It eliminates the guesswork.

Transaction capture may be enabled at the server, application, or database level.
Essentially, this means that you may specify all applications, all databases within

FIgURE 8-15. Choosing Database Restore in Administration Services

Chapter 8: Keeping It Running 453

an application, or a specific database. To enable transaction logging, the administrator
creates a directory on the Essbase server, and then specifies the directory location via
an Essbase configuration setting. The following example shows the essbase.cfg file
setting used to enables transaction logging for all databases associated with the
DareOLAP application. The log is written to a folder called C:\Hyperion\ trlog.

TRANSACTIONLOGLOCATION DareOLAP C:\Hyperion\trlog NATIVE ENABLE

To view the transaction history, right-click the database name, choose Display
Transactions from the menu, and fill in the Display Transactions dialog box, as
shown in Figure 8-16. You can view transactions from the last replay or from a
specific date and time. Additionally, you may redirect the output to a file, rather
than view it on screen.

To replay transactions, right-click the database name, choose Replay Transactions
from the menu, and fill in the Replay Transactions dialog box, as shown in Figure 8-17.
You can replay transactions from the last replay or from a specific date and time.
Additionally, you may execute the replay in background.

You can use MaxL to automate the replay process. The following example
replays the transactions in the DareOLAP. Complete database with sequence IDs
1 through 10 and 20 through 100.

alter database DareOLAP.Complete replay transactions using
 sequence_id_range 1 to 10, 20 to 100;

FIgURE 8-16. Choosing Display Transactions in Administration Services

454 Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solutio

The next example replays all transactions that were logged after a specified date
and time.

alter database DareOLAP.Complete replay transactions after
 '11_20_2007:12:20:00';

Other Important Files to back Up
The previous sections provided you with many options for backup and restore.
However, exporting the data from a database is just part of a good backup strategy.
Several other files associated with the applications, databases, and Essbase Server
are important for recovery.

In general, all files from the following folders should be backed up:

 ARBORPATH/app/appname ■

ARBORPATH/app/appname/dbname ■

FIgURE 8-17. Choosing Replay Transaction in Administration Services

Chapter 8: Keeping It Running 455

Additionally, the following files should be backed up:

 ESSBASEPATH/bin/essbase.sec (the Essbase security file) ■

ESSBASEPATH/bin/essbase.bak (the backup of the Essbase security file) ■

ESSBASEPATH/bin/essbase.cfg (Essbase server configuration settings) ■

You can find the values of ARBORPATH and ESSBASEPATH by examining the
environment variables for the server on which Essbase was installed.

Conclusion
Oracle OLAP and Oracle Essbase are significantly different, both in optimization
strategies and back up processes. Oracle OLAP, as part of the Oracle database,
benefits from the configuration and tuning efforts performed on the database itself. A
well-performing database goes a long way to ensuring acceptable load times and
query response times for Oracle OLAP data. In addition, when an Oracle database
is backed up, so is the Oracle OLAP data. In contrast, Essbase, as a stand-alone
multidimensional database, has a variety of optimizations available to tune
performance. Many of the optimizations differ based on the data storage model used
(ASO or BSO). As with any database, Essbase has its own backup and restore
procedures.

In the next and final chapter, we present some real-world examples of how
Essbase and Oracle OLAP have been implemented.

References
Oracle Corporation. Oracle OLAP Developer’s Guide 10g.

Oracle Corporation. Oracle OLAP Developers Guide 11g.

Oracle Corporation. “Relevant Diagnostic Parameters for the Oracle OLAP option.”
Oracle wiki (http://wiki.oracle.com/page/Relevant+Diagnostic+Parameters+for+
the+Oracle+OLAP+option).

EPM Information Development Team. Oracle Essbase Database Administrator’s
Guide, Release 11.1.1. Oracle Corporation, 2008.

http://wiki.oracle.com/page/Relevant+Diagnostic+Parameters+for+the+Oracle+OLAP+option
http://wiki.oracle.com/page/Relevant+Diagnostic+Parameters+for+the+Oracle+OLAP+option

This page intentionally left blank

Oracle-Regular / Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution/ Schrader et al. / 182-2 / Chapter 9
Blind folio: 457

Chapter
9

Real-World Examples

457

458 Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solutio

n this chapter, we present some real-world examples of how Oracle
OLAP and Oracle Essbase have been used to solve analytic
challenges. These examples are assembled from a variety of sources,
including published stories and our own experiences. In some cases,
we exclude the name of the company to protect its privacy; as you

might expect, these companies have gained a competitive advantage and want to
preserve this advantage.

We start by presenting three Oracle OLAP examples, followed by three Essbase
examples. Each example describes a typical challenge that can be addressed using
OLAP technology, and then shows how Oracle OLAP or Essbase was used to solve
that problem. We do not cover every type of usage, but rather provide a sample of
what has been done to give you an idea of the possibilities.

Oracle OLAP Examples
Oracle OLAP is often a part of a larger implementation, but in these examples, we
focus on the specific portion involving Oracle OLAP. In this section, we describe
how Oracle OLAP has been used for the following purposes:

 Accelerating a data warehouse ■

Analyzing projections ■

Analyzing financial data ■

Accelerating a Data Warehouse
As mentioned in Chapter 1, data warehousing with Oracle OLAP can provide the
best of both worlds: a single source of analytic data coupled with a multidimensional
analysis of the data. The following example comes from a customer story first
referenced in an Oracle Magazine article titled “Measure. Analyze. Perform.”
and then published as a follow-up success story in the February 2009 Oracle
OLAP Newsletter. The company is R.L. Polk & Co. (Polk), and we focus on how
adding Oracle OLAP to an existing Oracle Database data warehouse boosted
the performance of both the warehouse and the company’s BI tools.

Challenge: Improve the Performance of the
Data Warehouse for a BI Application
Polk was running an Oracle Database 10g data warehouse and using materialized
views to create aggregate totals for its BI application. The managers contacted
Oracle for assistance in improving data loads, data formatting, and query response
times. They were also interested in reducing time spent on maintenance.

I

Chapter 9: Real-World Examples 459

Solution: Introduce Oracle OLAP
Cube-Organized Materialized Views
Before making any changes to the data warehouse, Oracle consultants created a
baseline by running benchmark tests for user performance and query rewrite using
Oracle Real Application Testing and a set of data from the warehouse. Using good
experimental design techniques, they ran the same tests with the same data after
each major change to the data warehouse, so that they could quantify and isolate
any improvements.

In this scenario, the company first upgraded its version of Oracle Database from
10g to 11g. After the upgrade, they reran the benchmarks. The time to load and
aggregate the materialized views decreased from 452 minutes to 385 minutes with
version 11g.

 Then they created an Oracle OLAP cube with four dimensions, based on the
design of the original relational materialized views. Unlike the relational materialized
views, which were only partially aggregated, the cube-organized materialized views
contained fully aggregated data, as well as views for the dimensions themselves.
Cube-organized materialized views were also joined to relational tables as necessary
at query execution time, which meant that the cube could be integrated into the
existing snowflake schema without the need to store all dimension attribute data in
the cube itself. When the benchmark tests were rerun using the Oracle OLAP cube-
organized materialized views, the results were dramatic. The load and aggregation
were computed in just 38 minutes—an improvement of 92 percent over Oracle
Database 11g alone. Query response times also improved significantly from
552 seconds down to 12 seconds for one sample query.

NOTE
As discussed in Chapter 4, cube-organized
materialized views can dramatically improve
performance on normal queries against fact tables.
Analytic applications do not need to be modified.
The applications simply query the fact tables
as usual via SQL, and the Oracle Database 11g
optimizer redirects the queries to the cube-organized
materialized views for faster performance and access
to data.

Summary
The benefits of Oracle OLAP as a data warehouse accelerator are clear from this
example: improved build times and query times. In addition, as a team member
noted, one or a few cube-organized materialized views can replace tens or hundreds
of relational materialized views, reducing IT workload and maintenance tasks.

460 Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution

Analyzing Projections
Many of the examples in this book have involved financial data. OLAP technology
can be used for other purposes as well. As our next example shows, Oracle
Database with Oracle OLAP can be useful for consolidating and analyzing data
along multiple dimensions. In this example, the National Petroleum Council (NPC)
uses Oracle OLAP to analyze projections for world energy consumption and supply.

Challenge: Analyze Projections for Energy Consumption and Supply
In October 2005, then Energy Secretary of the United States, Samuel W. Bodman,
wrote an open letter to Lee Raymond, Chairman of the NPC, an advisory group
representing the oil industry. In his letter, Secretary Bodman asked the following
questions:

 What does the future hold for global oil and natural gas supply? ■

Can incremental oil and natural gas supply be brought online, on time, and ■
at a reasonable price to meet future demand without jeopardizing economic
growth?

What oil and gas supply strategies and/or demand-side strategies does the ■
Council recommend the United States pursue to ensure greater economic
stability and prosperity?

His questions precipitated a multiyear study of the problem, pulling information
from many experts and organizations, including academic experts, research centers,
government agencies, environmental groups, and energy companies. The results
were published in 2007 under the title Facing the Hard Truths about Energy,
available at http://www.npchardtruthsreport.org.

For the study, the organization needed to collect projections from multiple sources
and aggregate them in a meaningful way. One of the challenges of the project was
privacy. To meet antitrust guidelines set forth by the government, and to ensure no
competitive information was exchanged during the study, all information that could
identify the source of a projection had to be removed. Indeed, with individual
projections being considered very proprietary, technical consultants working on the
project were not allowed to access the raw data.

Solution: Implement an Oracle OLAP
Analytic Workspace for Survey Data
The Oracle Database data warehouse was designed to be the main analytical tool
for the task groups, accepting all data collected from the survey questionnaire and
other data sources. To meet privacy concerns, a bonded third party ran Oracle

http://www.npchardtruthsreport.org

Chapter 9: Real-World Examples 461

database routines that computed averages, medians, minimums, and maximums,
which were used for further analysis.

The multidimensional survey data was then loaded into Oracle OLAP cubes for
analysis. The OLAP data was organized into seven dimensions:

 Time (year) ■

Geography (country or geographic region) ■

Energy type (such as oil, gas, coal, nuclear, or renewable) ■

Energy sector (such as commercial or residential) ■

Case type (such as business as usual or alternative energy policy) ■

Units (applicable unit of measure) ■

Source (such as public or proprietary) ■

The data presented its own issues, such as nonadditive data, skip-level hierarchies,
and nonstandard aggregation rules. For example, analyses were conducted at multiple
geographic levels. Sometimes the detail data for a given country needed to be obscured
because revealing that data would reveal the source of the data. Summary data at a
continent level, however, could be revealed, because there were more than three
sources for the continent-level data. This led to the need to load data at multiple levels,
with special aggregation logic to support higher-level data that was not necessarily the
sum of the children.

To analyze the data and draw conclusions, industry experts used Discoverer
Plus OLAP. The data was also exported from Oracle BI Discoverer and loaded into
Microsoft Excel and PowerPoint for presentations to members of various analysis
teams. Study teams were able to investigate relationships in the data during working
sessions. The multidimensional nature of the data allowed them to drill down in
multiple ways to investigate relationships that otherwise would not have been
obvious.

Summary
By storing and analyzing multidimensional survey data using Oracle OLAP, the
NPC was able to develop a comprehensive study of the global energy supply and
demand through 2030. The privacy of the study contributors was protected because
the analysts never had access to the source data, only the aggregated data stored in
Oracle OLAP cubes. This project shows that OLAP technology can be used for a
wide variety of purposes beyond handling marketing and financial data.

462 Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution

Analyzing Financial Data
Our next Oracle OLAP example is a more typical BI scenario. A company (name
withheld for privacy) wanted to help its clients improve their business operations by
analyzing their financial data.

Challenge: Provide an Environment for
Clients to Analyze Financial Data
In this case, the application was a traditional financial analysis application for
reporting financial general ledger data and key business metrics in the healthcare
industry. Some of the challenges for this project included the following:

 About 25,000 Account dimension values, with the need to flip the sign of ■
certain accounts for reporting purposes

Calculated equations for some accounts with interdimension references ■

Calculated measures with rules that vary depending on account value ■

Need to use Excel in addition to a web-based viewer of reports ■

Solution: Leverage Oracle OLAP Financial Calculations
While other OLAP products could provide the necessary calculations, this company
chose Oracle OLAP specifically so that it could leverage the scalability, reliability,
and backup facilities in the Oracle Database that already housed the company’s
data. The client already had extensive knowledge of the Oracle Database. The
reporting requirements would have been difficult to meet using SQL queries to
access the relational tables.

By moving the data into a properly designed Oracle OLAP cube, they were able to
quickly build reports to include time-series analysis and interdimensional calculations.
Because the data is stored at all levels in the cube, the performance of run-time reports
improved. By joining the Oracle OLAP data to relational tables, the client was able to
easily build reports that drilled to the detail in the relational tables.

The following sections highlight a few of the calculations that were created to
meet each challenge and the front-end tools that were used.

Flipping the Sign for Reporting Purposes Financial reporting has unique
requirements. The general ledger stores revenues, liability, and equity accounts as
credits, and expenses as debits. The credits are saved as negative numbers, while
debits are positive numbers. Using a different sign for credits and debits allows the
income statement to be easily derived by aggregating the numbers. For external

Chapter 9: Real-World Examples 463

reporting purposes, however, it is necessary to report all the numbers as positive
numbers, changing the sign for credit accounts by multiplying by negative 1 (-1).
For example, if a company has a profit of 1 million, this should be reported as
+1,000,000 even though it is stored as -1,000,000.

The consultants fulfilled this external reporting need by multiplying all credit
accounts and their ancestors by -1 as the data was reported. Moving the responsibility
for this data requirement to the Oracle Database ensured that this rule was applied
consistently to all reports. For this project, the consultants defined and loaded a
one-dimensional measure dimensioned by account called ACCT_REP_SIGN_VAR,
which contained a 1 or -1 from a preexisting relational table. The reporting measure
ACTUAL was then modified to use the following formula:

 ACT * ACCT_REP_SIGN_VAR

By multiplying the data by a one-dimensional measure that contains a 1 or -1,
they were able to “flip the sign” as appropriate for each account.

Calculated Accounts Simple aggregation handled most of the calculations for the
Account dimension, but some accounts needed to be calculated using custom
equations. These accounts were calculated using models, as described in Chapter 3.

The business needed to report the cost per day for inpatient hospital care.
Oracle OLAP was able to meet this business need by using the following formula,
defined in the model:

 OPEREXP_PER_DAY = OPEREXP / STAY_DAYS

This divides the operating expenses by the number of inpatient days to achieve the
operating expenses per inpatient day. By defining this key metric in the database,
application designers could ensure that this metric was calculated in a consistent
way across all reports and analyses.

Calculated Accounts with Interdimensional References Some more interesting
account calculations needed to refer to specific data from two months ago. The
business had a cash collection goal for each month. The goal was to collect all net
revenue and any bad debt over 60 days. They were able to report the cash
collection goal by creating the following model calculation:

 CASH_COL_GOAL = PATIENT_REV + LAG(BAD_DEBT, 2, PERIOD)

Calculated Measures with Rules That Vary Revenue and expense type accounts
can be summed up when calculating a year-to-date measure. Summing balance
sheet numbers over periods would grossly overstate the balance sheet. Balance
sheet accounts (assets, liability, and equity) are reported as balances as of the end of

464 Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution

the period (current month = prior period balance + changes in balance sheet for the
current month), requiring no aggregation for year-to-date numbers. In addition,
some accounts, like square feet (actual square feet of a building), do not change
over time. For both of these examples, a year-to-date measure should report the
same as the current month value. The consultants accomplished this requirement by
giving these accounts an account type of B and changing the year-to-date formula
as follows:

 EQ if ACCT_TYPE eq 'B' then ACTUAL else {normal YTD formula}

End-User Tools For most of the reporting, Discoverer OLAP was used. BI
Discoverer Plus with a Java applet was used to generate reports. BI Discoverer
Viewer was used by casual users who wanted to view reports created previously in
Discoverer Plus OLAP. Because the cube was built using AWM, the business can
take advantage of BI Discoverer, as well as other Oracle reporting tools such as
OBIEE and the BI Spreadsheet Add-in to access the same analytic workspace for
different customer needs.

Summary
This story highlights how Oracle OLAP can be used for traditional financial analysis
applications. Oracle OLAP eases time-series calculations and allows for flexible
reporting of the data in a consistent fashion. OLAP models allow for complex
models, and insulate the reporting and analysis application from the complexities of
data calculations. The business is now able to quickly report on its financials, and
easily create formulas and models to meet its needs. The ability to employ models
and custom formulas allows Oracle OLAP to be used in a variety of analytical
situations.

Essbase Examples
In the preceding section, the Oracle OLAP examples show how a database-centric
approach to OLAP effectively solves the challenges faced by these organizations,
while at the same time leveraging the features of the Oracle Database. In this
section, we present three examples of how Essbase has been used to solve business
problems.

You will notice that the Essbase examples take a different approach than the
Oracle OLAP examples. An Essbase implementation tends to start with a pilot
completed during the discovery process. For a pilot, an Essbase analyst builds an
Essbase database using the client’s data, and then presents the results to the line-of-
business users. The purpose of the pilot is twofold: it shows how Essbase can solve
the organization’s problem and it demonstrates how quickly Essbase can be
implemented.

Chapter 9: Real-World Examples 465

The examples show Essbase being used for the following purposes:

 Replacing the Excel workbook ■

Enhancing an enterprise resource planning (ERP) system ■

Replacing custom SQL reports generated by IT ■

Replacing the Excel Workbook
In Chapter 2, we introduced a phenomenon known as “spreadsheet hell,” in which
hundreds of manually produced spreadsheets may exist, with no central source for
data or calculations. In this scenario, we examine a real-world example of
spreadsheet hell and review the Essbase solution.

Challenge: Eliminate Manually Created Spreadsheets
A rental car conglomerate controlled two brand names, operating in several countries.
To power business analyses, Excel workbooks were prepared monthly and distributed
throughout the organization. The business analysts used spreadsheets for analysis
because the software was already available in the organization, they had early success
with spreadsheets as analysis tools, and they were already familiar with spreadsheets.

As their use of spreadsheets expanded, the workbooks became more complex
and time-consuming to assemble. On a monthly basis, analysts would extract data
from disparate sources, including operational systems and the data warehouse, and
paste the data into several spreadsheets. These data sheets were then used as the
source for report sheets. The report sheets relied on a very complex network of
reference-based cell formulas to pull data from the data sheets. All told, it took
several business analysts an average of eight business days to perform the data
extractions, load the workbooks, and perform some rudimentary tests. This situation
caused concern for both the chief operating officer (COO) and chief financial officer
(CFO).

The CFO and COO wanted to have access to the data sooner, as well as
improve the reliability of the data and calculations. It was also important to them
that, whatever solution was implemented, business users would continue to create,
maintain, and monitor the application, rather than having IT control administration.
The COO and CFO saw IT providing value through data integration and project
mentoring.

Solution: Move Data into an Essbase Database
The COO and CFO identified resources from IT and the business community to act
as project sponsors. It is a best practice to have representation from both IT and the
line of business right from the start. IT has a lot of experience in building systems

466 Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution

and managing data, while people from the business side know the business use
cases and can identify analytic and reporting requirements. The role of the project
sponsors was to assist the Essbase analyst in creating an Essbase database as a pilot
project.

The project team created the following plan:

 Schedule a meeting to discuss the business needs and review the existing ■
solution.

Present a basic technology demonstration to provide a baseline of ■
knowledge for the project sponsors.

Gather data and reports from which to create the pilot. ■

An Essbase analyst from Oracle would create the database and example ■
reports.

The Essbase analyst would review the pilot with the project sponsors. ■

Sponsors would present the final pilot to the COO and CFO for project ■
approval.

The entire pilot process was scheduled over a two-week period. The team
selected this time frame to demonstrate that the review process could be completed
in less time than was needed to maintain the application monthly.

The first step in proving the proposed solution involved moving the data from
the workbooks to an Essbase database. The Essbase analyst built and demonstrated
this process. Essbase dimension build rules were used to create the database outline,
and data-load rules populated the database with data from the original sources.
From there, some ad hoc spreadsheet retrievals validated the dimension structures,
calculated values, and demonstrated typical query usage.

After the pilot was complete, the Essbase analyst reviewed the pilot with the
project sponsors. The demonstration was executed first with the business cases in
mind. Then the methods used to create the database were presented. Most
impressive to the sponsors was the speed with which the pilot had been created.
From needs analysis to first review took just a few days, while the pilot database
itself took the Essbase analyst a mere two hours to build and load with data. And to
the amazement of the sponsors, the pilot data matched the production system and
the workbooks.

Summary
The COO and CFO wanted reliable data available sooner, but they also wanted a
system that could be managed by the business users. On the strength and accuracy

Chapter 9: Real-World Examples 467

of the pilot, and with the assurance of the sponsors that the system could be
managed by the business analysts, the company adopted and implemented the
Essbase solution. It took three weeks to complete the production-ready system,
including the Essbase database and the end-user reports. Now it takes just one hour
a month to load the data from the sources systems and generate end-user reports
from the Essbase database.

Enhancing an ERP System
In the next scenario, we look at how Essbase can be used in conjunction with an
ERP system. ERP systems use an online transactional processing (OLTP) schema to
store data efficiently in a relational database. However, to answer typical analytic
questions requires many joins between tables, and the more joins, the slower the
query response time. In contrast, OLAP technology stores and aggregates data
multidimensionally, which translates into extremely fast query response times and
the ability to do ad hoc analyses. Adding Essbase on top of an ERP system enables
an organization to take advantage of the strengths of both OLTP and OLAP
technologies.

In the following example, the company has a single ERP system. However, because
companies often acquire other companies, they can find themselves attempting to
manage multiple ERP systems. This is a clear case for a tool like Essbase, which can
consolidate data from disparate sources.

Challenge: Create a More Flexible Analytic Environment
One very large consumer packaged goods (CPG) company implemented an ERP
system to integrate the data and processes of the organization into a single system.
The advantages of an ERP system are many, but for this customer’s IT department,
the big draw was the ability to provide a single source for all transaction data.

For business analysts, however, an ERP system can present challenges. This
particular company’s business analysts discovered their limitations very quickly:

 Running analyses was very slow. The ERP application was retrieving ■
detailed data from a relational database management system (traditionally a
slow process when done on a production system during business hours) and
calculating dynamic values at the time of the query (also time-consuming).

The analysts could not create custom dimensions. The ERP system came ■
with predefined dimensions and offered little flexibility to modify them to
meet analytic needs.

To work around these limitations, the business users needed to analyze the data
offline from the ERP, and ended up building very large workbooks using Excel. As in

468 Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solutio

the previous example, updates often took days or weeks, which limited the impact
of analyses on the current month and resulted in decisions that were not always
based on facts.

Management had been looking for alternatives when a newly hired, senior-level
employee mentioned Essbase. He had used Essbase before, and he encouraged
management to look at it.

Solution: Add Speed and Flexibility to ERP with an Essbase Database
The pilot process was accomplished very quickly. First, a senior employee was
excited about the opportunity to incorporate Essbase into the organization. Second,
the Microsoft Office integration available using Oracle Hyperion Smart View for
Office was very attractive, as the company’s business analysts often used Excel, Word,
and PowerPoint to provide information to executives. Once again, a demonstration
database was created from an Excel workbook.

In this case, the presentation caused some consternation. When the Essbase
analyst presented some reports validating the data, one attendee called into question
the revenue for a business unit that had been sold recently. First, the Essbase analyst
checked the Essbase outline for accuracy and found that the consolidation used was
indeed correct. Then the Essbase analyst checked the formulas in the original Excel
workbook for that business unit and discovered the error: Someone had not updated
the consolidations from child to parent after the previous quarter’s reorganization.
The result? The revenues expressed in the workbook were 13 percent understated.
Because the workbook had been the only source used to assess the worth of the
business unit, the hard truth was that the business unit had been undervalued when it
was sold, representing a loss of millions of dollars to the shareholders.

Summary
For the managers, the news of the error was enough to convince them to implement
Essbase. For the business analysts, Essbase solved their main challenges with the
ERP system. Essbase gave them the flexibility to model dimensions that reflect the
way the company is managed, rather than the way the ERP system is configured.

Queries to the Essbase database are now fast—speed-of-thought fast—and the
data is reliable. Instead of taking days to weeks before the data is available for
reports, it now takes about an hour to load and consolidate the Essbase database.

Replacing Custom SQL Reports
Companies succeed in analytics due, in large part, to a strong working relationship
between IT and the rest of the business. A good relationship, however, does not
mean that IT should expend valuable resources doing things for business users that,
with the right tools, the business users could do for themselves. For example,

Chapter 9: Real-World Examples 469

analysts who understand their business should be able to model the business, build
scenarios on the fly, and create their own reports.

The organization in this example is a very large utility conglomerate. As in the
previous example, an ERP system was in place, providing a single source of detailed
data. Once again, the business users were facing challenges when performing
analyses, in this case due to the technical nature of the analytic and reporting tools
provided by IT.

Challenge: Empower Business Users to Create Their Own Reports
The IT department members of the utility conglomerate knew business users needed
analytics. To meet this need, they had acquired and deployed an add-on analytical
application for the ERP system, as well as a SQL-based query and reporting tool.
Most of the required content was available through the relational data mart and
some 200 standard reports created by IT. However, several ad hoc needs were
either ignored or just very difficult to achieve. Because the query and reporting tool
required knowledge of SQL, users began to lean on IT resources to create custom
reports. This reliance on IT resulted in significant delays in the analysis process, as
the analysts were required to wait hours or days for reports to be generated.

Custom reports also contributed to higher workloads for IT personnel. Soon, the
IT department was faced with about 3,000 of these custom reports! In many cases,
the custom report differed very little from the standard version. However, because
the tools provided were technically challenging to the business users, the notion of
self-service reporting was merely a dream.

IT management grew concerned about how to handle the thousands of new
reports and how to manage the increased demand on their time. A new OLAP
reporting solution was required.

Solution: Use Smart View to Create Reports
The Essbase pilot focused on showing how Smart View installed in Excel enabled
business users to run their own queries and create their own reports—without
using SQL.

Solutions to several previously unidentified reporting issues surfaced during the
pilot. For example, simple variance reporting using favorable/unfavorable scenarios
meant custom coding in each SQL-based report. The Essbase analyst was able to
demonstrate how, with Essbase, the expense reporting property was stored in the
database, and so provided this functionality to each report and ad hoc query,
eliminating the need for custom coding within the reports themselves. Similarly,
balance sheet reporting was modeled in the database, instead of at the report level.
Tremendous advantages can be gained when modeling complexities like favorability
and balances in the database. Users no longer need to remember to maintain these
calculations in every report or query.

470 Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution

Summary
Essbase became part of the solution to the challenges experienced by both the
business users and IT. Business users began relying on Smart View for ad hoc
reporting, rather than a formal reporting tool. Because ad hoc analysis is driven via
business terminology, rather than by SQL, IT was off the hook for supporting all the
custom report requests.

Conclusion
The six examples in this chapter were selected to represent typical ways in which
Oracle OLAP and Oracle Essbase can solve real-world problems. We demonstrated
how Oracle OLAP has been used by organizations to accelerate a data warehouse,
analyze projection data from multiple sources, and analyze financial data. The
Essbase examples showed how Essbase has been used to replace data stored in
Excel workbooks, enhance an ERP system with improved analytics, and replace
custom SQL reports generated by IT with self-service reporting. These are just a few
of the ways that OLAP systems can be used within an organization. For more
examples, see the success stories on the Oracle Technology Network (OTN) web
site or contact your Oracle sales consultant.

While the examples in this chapter are specific to each product, it does not mean
that Oracle OLAP or Essbase would be unable to meet the analytic requirements
presented in the other product’s examples. That said, it should be clear that each
example plays to the strengths of the Oracle product used in the example. If IT wants to
speed up response times for analytic SQL-based queries against an Oracle database,
Oracle OLAP is the obvious choice, both for its cube-organized materialized views and
for its support of SQL. In contrast, when the line of business wants to retain control of
the OLAP technology outside the Oracle Database, Essbase is the obvious choice. This
is a key point. Both Oracle products are full-featured OLAP offerings; however, each
has different strengths that arise from their histories and different development goals.
Indeed, the products’ differing strengths speak to why Oracle continues to support the
development of both products.

Before we conclude this book, let’s take a moment to review why OLAP is a
cornerstone of BI.

OLAP as a Cornerstone of BI
Chapter 1 stated the five key benefits of an effective OLAP solution: business-
focused multidimensional data, business-focused calculations, trustworthy data and
calculations, speed-of-thought analysis, and flexible, self-service reporting. Here, we
show how Essbase and Oracle OLAP provide these benefits, even though they come
at the problem from different points of view.

Chapter 9: Real-World Examples 471

Recall that Essbase was designed to solve the problems of spreadsheet hell and
spread marts faced by people in the line of business. It does so by offering an
independent multidimensional database that centralizes data from disparate data
sources and arranges that data into dimensions that are intuitive for business users.

Because Essbase offers drill-back to the original data sources, administrators can
choose whether to store only summary-level data or detail data as well. Essbase
enables administrators to create, store, and run business calculations, ensuring that
consistent calculations and results are available across spreadsheets and reports.
Essbase includes powerful front-end analysis tools that work within Microsoft Excel,
which makes it easy for analysts to query an Essbase database, calculate the
database, and create what-if scenarios within the comfort of a familiar user
interface. The combination of centralized data, centralized calculations, and
front-end tools support speed-of-thought analysis for end users in the line of
business. A broad array of user-friendly reporting tools makes flexible, self-service
reporting a reality.

Through its ownership by Hyperion, Essbase has evolved into an engine for
packaged BI and EPM applications. Essbase supports a variety of packaged reporting
tools, BI applications, and EPM applications, such as some of those found in Oracle
Enterprise Performance Management System and in OBIEE Plus.

Oracle OLAP is part of the Oracle Database. It resides in the performance layer
of the Oracle Database and runs in the Oracle Database kernel. Oracle OLAP
benefits from many of the features of the Oracle Database, including data types,
SQL support, high availability, scalability, user access management, security,
maintenance tasks, and backups.

Oracle OLAP analytic workspaces centralize summary-level data in cubes and
present that data in an intuitive star schema, designed for business reporting and
analysis. Summary-level OLAP data can be joined to detail-level relational data in
the Oracle database with simple table joins. Cubes offer fine control over
aggregation to support speed-of-thought analysis for end users. Administrators can
maintain business calculations within the analytic workspace, ensuring consistent,
trustworthy calculations for an organization. The use of cube-organized materialized
views allows for greatly improving the performance of queries and simplification of
summary management. End users can continue to use the user-friendly BI
applications and reporting tools that they are familiar with, such as those found in
OBIEE, Application Express, and third-party SQL-based tools, while enjoying vastly
improved performance of end-user analytic queries.

The purpose of any OLAP solution is to solve problems for both business users
and IT departments. For business users, it enables fast and intuitive access to
centralized data and related calculations for the purposes of analysis and reporting.
For IT, an OLAP system enhances a data warehouse or other relational database
with aggregate data and business calculations. The needs of both constituencies can
be met effectively with either Essbase or Oracle OLAP.

472 Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution

Businesses need BI to compete in today’s economy, and OLAP is the
cornerstone in an effective BI solution. Oracle offers two market-leading OLAP
technologies, each of which provides everything you need to realize the key
benefits of OLAP. Whichever technology you choose, our hope is that this book
gives you the tools to select, design, construct, and deploy a comprehensive OLAP
system—one that empowers the people in your organization to make better, faster
decisions for today and more accurate, fact-based predictions for tomorrow.

References
Baum, David. “Measure. Analyze. Perform.” Oracle Magazine: July/August 2008.

Oracle Technology Network (http://www.oracle.com/technology/oramag/
oracle/08-jul/o48bi.html).

Oracle Corporation. “Customer Feature.” Oracle OLAP Newsletter: February 2009.
Oracle Technology Network (http://www.oracle.com/technology/products/bi/
olap/olapref/newsletter/oracleolapnewsletter_feb09.html).

Committee on Global Oil and Gas, Lee R. Raymond, Chair. Facing the Hard Truths
about Energy, Appendix A, “Request Letter and Description of the NPC.”
National Petroleum Council. July 2007.

http://www.oracle.com/technology/oramag/oracle/08-jul/o48bi.html
http://www.oracle.com/technology/oramag/oracle/08-jul/o48bi.html
http://www.oracle.com/technology/products/bi/olap/olapref/newsletter/oracleolapnewsletter_feb09.html
http://www.oracle.com/technology/products/bi/olap/olapref/newsletter/oracleolapnewsletter_feb09.html

Oracle-Regular / Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution/ Schrader et al. / 182-2 / Glossary
Blind folio: 473

Glossary

473

474 Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution

accounts dimension In Essbase, a dimension type that makes accounting intelligence
available. Only one dimension can be defined as the accounts dimension. See also
dimension.

ad hoc analysis An online analytical query created on the fly by an end user.

aggregate storage database In Essbase, the database storage model designed to
support large-scale, sparsely distributed data that is categorized into many,
potentially large dimensions. Upper-level members and formulas are calculated
dynamically, and selected data values are aggregated and stored, typically with
improvements in overall aggregation time. Contrast with block storage database.

aggregation The process of aggregating data from dependent members to parent
member. For example, Total US might be an aggregated dimension value aggregated
from Western US and Eastern US in the Geography dimension. Also called rollup or
consolidation.

aggregation operator An operator that defines how values in a hierarchy are
aggregated. The default is addition. Oracle OLAP offers a large set of aggregation
operators, which are broken down into basic operators (such as sum and average),
scaled and weighted operators (such as scaled sum and weighted average), and
hierarchical operators (similar to the previous operations, but all children are taken
into consideration, even if they do not contain data). In Essbase, aggregation
operators are called consolidation operators.

alias An alternative name. For example, for a more easily identifiable column
descriptor, you can display the alias instead of the member name.

alternate hierarchy A way to analyze the same data in a different way. A dimension
can have one or more hierarchies that organize and aggregate dimension members in
different logical structures. See also hierarchy.

analytic workspace In Oracle OLAP, a container for storing related dimensional
objects, such as dimensions and cubes. An analytic workspace is stored in
a relational table.

application programming interface (API) A set of routines, data structures, object
classes, and/or protocols that are provided in order to support the building of
applications.

attribute A characteristic that describes a group of dimension members. Users can
use attributes to return lists of members that have the specified attribute associated
with them. See also user-defined attribute and system-defined attribute.

 Glossary 475

attribute dimension In Essbase, a special dimension that further defines another
(base) dimension. No data is stored against an attribute dimension. See also dimension.

block storage database In Essbase, a way of storing data to optimize data storage.
Data is stored in a series of blocks. Each block is an array with storage for every
dense dimension member. A block is created for every combination of sparse
dimension members for which data exists. Contrast with aggregate storage database.

business intelligence (BI) A set of concepts and methodologies to improve decision
making in business with the use of facts and fact-based systems.

cache A short-term storage of data to improve speed.

calculated measure In Oracle OLAP, a measure derived from stored measures
and/or other calculated measures. See also measure.

calculated value In Essbase, a value derived from stored values and/or other
calculated values. See also cell.

calculation The process of aggregating data or running business calculations.

calculation script In Essbase, a set of commands that define how a database is
consolidated or aggregated. A calculation script may also contain commands that
specify allocation and other calculation rules separate from the consolidation
process. Compare with dynamic calculation and member formula.

cell In Essbase or Oracle OLAP, the data value at the intersection of dimension
members in a cube. In a spreadsheet, a cell is the intersection of a row and a column.

composite In Oracle OLAP, a compact format for storing sparse multidimensional
data. A composite value exists for each combination of sparse dimensions for which
data exists. Oracle OLAP provides two types of composites: a compressed composite
for extremely sparse data and a regular composite for moderately sparse data.

compressed cube In Oracle OLAP, a cube with very sparse data that is stored
using a compressed composite.

consolidation See aggregation.

consolidation operator An operator that defines how values in a hierarchy are
aggregated. The default is addition. In Essbase, consolidation operators include the
arithmetic operations of addition, subtraction, multiplication, and division, as well
as operators for percentage, do not consolidate, and never consolidate. In Oracle
OLAP, consolidation operators are called aggregation operators.

476 Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution

consolidation order In Essbase, refers to the default sequence in which dimensions
are aggregated, as well as how members are aggregated. See also solve order.

cube A construct used to visualize how OLAP data is stored. Dimensions form the
edges of the cube. The intersection of a member from each edge creates a cell that
can potentially hold a data value. In Oracle OLAP, an analytic workspace contains
multiple cubes with different dimensions. In Essbase, an Essbase multidimensional
database is referred to as a cube.

cube schema In Essbase Studio, the metadata elements, such as measures and
hierarchies, representing the logical model of a cube.

cube script In Oracle OLAP, a sequence of steps that prepare the data for
querying, such as loading and aggregating new data.

cube view In Oracle OLAP, a relational view of the data stored in a cube, which
can be queried by SQL. It contains columns for the dimensions, measures, and
calculated measures of the cube.

cube-organized materialized view In Oracle OLAP, a type of materialized view
that is organized as a cube. A cube-organized materialized view can be
incrementally refreshed through the Oracle Database materialized view subsystem,
and it can serve as a target for transparent rewrite of queries against the source
tables. A cube-organized materialized view can be used to replace many relational
materialized views.

dashboard A collection of metrics and indicators that provide an interactive
summary of your business. Dashboards enable you to build and deploy analytic
applications.

data cell See cell.

data cube See cube.

data-load rules In Essbase, a set of criteria that determines how to load data into
a multidimensional database from a text-based file, a spreadsheet, or a relational
data set.

data source In the context of Oracle OLAP and Oracle Essbase, a source of data
for OLAP cubes. Source data can be located in relational sources, flat files, or other
formats.

 Glossary 477

data value See cell.

data warehouse A central data repository that provides a single source of data for
an organization.

dense dimension A dimension that contains data for all (or most) combinations of
dimension members. For example, time dimensions with months and years are often
dense because they can contain values for all, or many, of the defined periods.
See also dimension. Contrast with sparse dimension.

dimension A data category used to organize business data for retrieval and
preservation of values. Cubes are accessed via their dimensions. See also dense
dimension, sparse dimension, attribute dimension, accounts dimension, user
dimension, and time dimension.

dimension build rules In Essbase, specifications, similar to data-load rules that
Essbase uses to modify an outline. The modification is based on data in an external
data source.

drill path Navigation through the query result set using a dimensional hierarchy.
Drilling down moves the user perspective from aggregated data to detail data.
Drilling up navigates from detail to aggregate data. Drill paths can also be used to
define links between reports, such as drilling from one dashboard to another.

duplicate member The multiple occurrence of a member name, with each
occurrence representing a different member. For example, you could have two
members named New York; one member represents New York State, and the other
member represents New York City. See also member. Contrast with shared member.

extended OLAP (XOLAP) In Essbase, a multidimensional database that stores only
the outline metadata and retrieves all data from a relational database at query time.

extract, transform, and load (ETL) Data source-specific rules for extracting data
from one database, transforming it, and loading it into another database.

fact table The central table in a star schema. This table typically contains
dimension keys that can be joined to dimension tables and numeric data that
comprise the facts.

field In the context of a relational database, an area that holds a value, such as
a text string, a date, a number, and so on. Records contain fields. See also record.

478 Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution

gadget In Oracle Smart Space, a simple, specialized, lightweight application
that provides easy viewing of business intelligence and enterprise performance
management content and functionality.

genealogy Used to express relationships among members in a hierarchy.
Genealogical terms include parent, child, sibling, ancestor, and descendant.

generation In Essbase, a layer in a hierarchical tree structure that defines member
relationships in a database. Generations are ordered incrementally from the top
member of the dimension (generation 1) down to the leaf members.

hierarchy An arrangement of dimension members into a genealogical structure.
Data values are often aggregated up a hierarchy. Users often drill down on a
hierarchy. In Essbase and Oracle OLAP, hierarchical relationships are expressed
genealogically.

hybrid OLAP (HOLAP) A method of storing data that is a hybrid of multidimensional
OLAP (MOLAP) and relational OLAP (ROLAP). Some data is stored multidimensionally
(MOLAP), and some data is stored relationally (ROLAP).

IT Information technology department of an organization.

label-only member In Essbase, a member with no data. A label-only member can
be used to group other members, in which case it points to the data associated with
its first child member. Contrast with member and shared member.

leaf member A member with no children. A leaf member is the lowest point in
a hierarchy. In Essbase, a leaf member is also called level 0.

legacy system An old computer system or application program that continues to
be used because the user (typically an organization) does not want to replace or
redesign it.

level-based hierarchy In Oracle OLAP, a hierarchy with defined levels. For
example, Time is usually level-based with levels such as Month, Quarter, and Year.
Most hierarchies are level-based. See also hierarchy. Contrast with value-based
hierarchy.

levels Categorize the members of a level-based hierarchy. In Oracle OLAP, levels
in level-based hierarchies define the genealogical structure for dimension members,
such as Year, Quarter, and Month. In Essbase, levels are numbered from the bottom
of the outline to the top: level 0, level 1, level 2, and so on.

 Glossary 479

load rule In Essbase, a rule that can execute as a data-load rule and/or a dimension
build rule. See data load rule and dimension build rule.

mapping In Oracle OLAP, a series of specifications that define how Oracle OLAP
objects are loaded from relational tables or views.

materialized view In the Oracle Database, a view often used in data warehousing
to provide quick access to summary data by precomputing the rows. Materialized
views are refreshed periodically. The Oracle Database can redirect queries to
materialized views to improve query performance.

MaxL In Essbase, the multidimensional database access language consisting of
a data definition language (MaxL DDL) and a data manipulation language (MaxL
DML). MaxL is used to automated repeated functions or batch together multiple
consecutive operations.

MDX (Multidimensional Expression) A language used to query OLAP data, similar
to the use of SQL for relational databases.

measure In Oracle OLAP, a logical object that contains data.

member A discrete component within a dimension. A member identifies and
differentiates the organization of similar units. For example, a Geography dimension
might include the members New York, Dallas, and United States.

member formula In Essbase, a formula attached to a member.

metadata Data about the data. A set of data that defines and describes the
properties and attributes of the data stored in a database or used by an application.
Examples of metadata are dimension names, member names, properties, time
periods, and security. Metadata encompasses business and system/technical data.

metadata management The process of tracking an organization’s data and the
usage of that data. Metadata management tracks data lineage, data definitions,
usage patterns, business rules, and so on.

minischema A subset of a dimensional schema used for a business purpose to
simplify a dimensional schema for a particular audience.

multidimensional A method of organizing, storing, and referencing data using
dimensions. An individual value is the intersection point for a set of dimensions.
See also dimension.

480 Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solutio

multidimensional OLAP (MOLAP) MOLAP is the “classic” form of OLAP and is
sometimes referred to as just OLAP. See also multidimensional.

OLAP DML In Oracle OLAP, the data definition and manipulation language for
analytic workspaces.

on the fly Calculated at run time in response to a specific query. Also called
dynamic calculation.

online analytical processing (OLAP) A multidimensional, computing environment
for users who analyze data in real time. OLAP systems feature drill-down, data
pivoting, complex calculations, trend analysis, and modeling.

outline The database structure of an Essbase database, including all dimensions,
members, tags, types, consolidations, and mathematical relationships. Data is stored
in the database according to the structure defined in the outline.

partition In Essbase, an area of data that is replicated, shared, or linked between
databases. In Oracle OLAP, you partition along a dimension, usually at a selected
level. Partitions enable you to break up and manage data, while at the same time
hiding this complexity from applications and end users.

pivot The act of changing your view of the data, such as swapping a dimension
from rows to columns.

query A request for data.

ragged hierarchy A hierarchy that contains at least one member with a different
base level, creating a “ragged” base level for the hierarchy. Organization dimensions
are frequently ragged. Compare with skip-level hierarchy.

record In a database, a group of fields making up one complete entry. For example,
a customer record may contain fields for name, address, and telephone number.

relational OLAP (ROLAP) An OLAP system that stores data in a relational database.
The base data and the dimension tables are stored as relational tables, and new tables
are created to hold the aggregated information.

rollup See aggregation.

schema In the Oracle Database, a collection of objects (including analytic
workspaces) that belong to a database user.

 Glossary 481

shared member In Essbase, a member that shares storage space with another
member of the same name, preventing duplicate calculation of members that occur
multiple times in an Essbase outline. Contrast with stored member.

skip-level hierarchy In Oracle OLAP, a hierarchy that contains at least one
member whose parent is more than one level above it, skipping a level in the
hierarchy. For example, in a Geography dimension with levels for City, State, and
Country, Washington D.C. is a city that does not have a State value; its parent is
United States at the Country level. Compare with ragged hierarchy.

slowly changing dimension (SCD) A dimension with values that change slowly
over time. For example, an organization’s structure changes over time when
employees change departments. See also dimension.

snowflake dimensional model A schema design in which a centralized fact table is
related to a series of dimension tables that in turn relate to other supporting tables.

software development kit (SDK) A set of development tools that enables a
software developer to create applications for a software package, framework,
operating system, and so on. It may contain an application programming interface
(API).

solve order In Essbase, a value against a member in an aggregate storage database
used to ensure that formulas are resolved in the correct sequence. See also
consolidation order.

sparse dimension A dimension that is unlikely to contain data for all member
combinations when compared with other dimensions. For example, not all
customers have data for all products. See also dimension. Contrast with dense
dimension.

spreadsheet application An application, such as Microsoft Excel, where data is
represented in rows and columns.

SQL (Structured Query Language) A language used to communicate instructions
to relational databases, often to request data.

star schema The simplest data warehouse schema type. The star schema consists
of a few fact tables (possibly only one, justifying the name) referencing any number
of dimension tables. The star schema is considered an important special case of the
snowflake schema.

482 Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution

stored measure In Oracle OLAP, a measure that is stored in the cube. See also
measure.

stored member In Essbase, another term for member, used to distinguish it from
a shared member. Contrast with shared member.

stored value In Essbase, a value that is stored in the cube. See also cell.

surrogate key In Oracle OLAP, a way of resolving duplicate members by adding
the level name to the member name. See also duplicate member.

system-defined attribute In Oracle OLAP, an attribute that is automatically
generated for a dimension. See also attribute.

TCP/IP (Transmission Control Protocol/Internet Protocol) A standard set of
communication protocols linking computers with different operating systems and
internal architectures. TCP/IP is used to exchange files, send mail, and communicate
in various OLAP products.

time dimension A dimension type that signifies that the dimension contains time-
based members, such as fiscal or calendar years and periods. The time dimension
can then be used to enable specific time-based calculations and features, such as
year-to-date values, time balance averages, change from year ago, and so forth.
See also dimension.

user dimension In Oracle OLAP, a dimension type other than a time dimension.
See also dimension.

user-defined attribute (UDA) In Essbase, an attribute attached to a member
defined by the administrator. UDAs can be used for selection and in calculations.
See also attribute.

value-based hierarchy In Oracle OLAP, a hierarchy defined only by the parent-child
relationships among dimension members. For example, an employee dimension might
have a parent-child relation that identifies each employee’s supervisor. See also
hierarchy. Contrast with level-based hierarchy.

visualization A method for displaying data in meaningful ways using grids, charts,
graphs, and other visual techniques.

XML for Analysis (XMLA) A standard that allows client applications to talk to
multidimensional or OLAP data sources. The query language used is MDX.

483

A

ABS command, 201
accelerating data warehouses, 458–459
access

analytic workspace, 136–137, 423
in design, 67
multidimensional, 33–34

accounts
calculated, 463
dimension type, 88–89
OLAP, 31

ad hoc analysis, 7, 40–41
desktop-based reporting, 315–319
drill paths, 41
pivoting, 42
slicing, 42–43
spreadsheet reports, 300–301, 334–338

Add Joins by Inspection option, 229
ADDM (Automatic Database Diagnostic

Monitor), 417
Administrative Services tools, 83

client and middle tiers, 115–117
for database building, 222
for database calculations, 253
for load rules, 249, 251, 254, 259–260, 265
MDX queries, 280
for outlines, 83
overview, 118–119
report scripts, 282–284

advanced aggregation operators, 40
advanced analysis report options, 312–313
Advanced category for calculations, 175
advanced cubes, 211–214
advanced relational access (ARA), 56
AED programming language, 46
AGGREGATE command, 202
Aggregate function, 344

aggregated data and aggregate storage (ASO), 34
buffers for, 440
in ClearView, 344
cube design, 77–79
cube policies, 165–166
cube scripts, 184
database calculations, 253
description and benefits, 100–102
as Essbase new feature, 56
excluding from exports, 421
MDX for, 275–276
multiple year data, 70
OLAP systems, 6
operators, 40, 171
overview, 31
in performance, 430–432, 438–439, 442–443
precomputing, 78–79
spreadsheets, 53

agile organizations, 3
airline case study, 15–16
aligned organizations, 3
ALLOCATE command, 202
allocation tracing, 378–379
alternate hierarchies and views

Essbase, 95
methods, 94–97
overview, 28–29
for repurposing members, 66

analytic workspaces and Analytic Workspace
Manager (AWM), 39, 48, 67–68, 109–112

access, 423
attributes, 151–152
best practices, 141–144
configuring, 135–136
connections, 134–135
cube calculations, 186–197
cube creation, 170–174
cube design, 73–81

Index

Oracle-Regular / Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution/ Schrader et al. / 182-2 / Index Oracle-Regular / Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution/ Schrader et al. / 182-2 / Index

484 Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution

Oracle-Regular / Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution/ Schrader et al. / 182-2 / Index Oracle-Regular / Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution/ Schrader et al. / 182-2 / Index

analytic workspaces and Analytic Workspace
Manager (AWM) (cont.)

cube dimensions, 69–72
cube mapping, 178–181
cube measures, 174–178
cube-organized materialized views,

204–208
cube overview, 164–169
cube population, 181–183
cube scripts, 184–185
cubes for business purposes, 211–214
data preparation for, 137–140
database connections and logins, 134–135
demonstration overview, 132–134
dimension creation and population,

145–149, 159–163
dimension determination, 68
dimension mapping, 152–157
dimension security, 164–165
in exports, 420–422
Flashback with, 429–430
hierarchies, 149–151
mapping relational data to multidimensional

objects, 68–69
new, 144–145
OLAP Worksheet for, 197–204
read-only access setting, 136–137
saving dimensions as XML templates,

163–164
security issues, 208–211
SQL with, 214–217
star dimensional model, 68
survey data, 460–461
time dimensions, 158–159

Analyze actions in cube scripts, 184
APEX (Application Express), 399–402
APIs

Essbase, 55
Java, 49, 111, 120, 410
XMLA, 120, 124

application-based Essbase solutions, 124
application development in BI Beans, 406–408
Application Express (APEX), 399–402
Application Manager, 55
Applied OLAP, 129, 399
approval process in Planning application, 372
ARA (advanced relational access), 56
Arbor Software, 55
architectures

Essbase, 114–118
Java applications, 408–409
OLAP solutions, 18–19
Oracle OLAP, 108–113
performance management applications,

380–382
Archive Database dialog box, 451
archiving BSO databases, 450–452
areas in partitions, 104
arrays, 34

ASO. See aggregated data and aggregate
storage (ASO)

assignments
Crystal Ball values, 384–388
Profitability and Cost Management models,

375–376
at sign symbols (@) in Calc Scripting, 275
Atomic Refresh option, 161
attachments in forms, 369–370
attribute-driven partition approach, 107
attributes

and base dimensions, 90–93
creating, 151
hierarchies using, 95
multidimensional view of information, 28
purpose, 71
for repurposing members, 66
storage for, 433
system-defined, 71–72
user-defined, 72, 96–97
varying, 97–98

audit trails, 372
Automatic Database Diagnostic Monitor

(ADDM), 417
automating processes for Essbase databases,

285–289
automotive manufacturer case study, 17
averages, moving, 192–194
Avg function, 92, 275
AW command, 203
AWM. See analytic workspaces and Analytic

Workspace Manager (AWM)
AWM Cube Aggregation wizard, 418
awm.properties file, 137

B

B-tree data structures, 34
backups

Essbase, 446–455
operating system, 447
Oracle OLAP, 420–422

bar charts, 332
base dimensions, 90–93
base-level members, 26
Basic category for calculations, 175
basic reports, 296
batch bursting, 294
BI. See Business Intelligence (BI)
BI Answers, 127
BI Beans Catalog, 405, 407
BI Discoverer Plus, 335–336
BI Discoverer Viewer, 335–336
BI Interactive Dashboards, 127
BI Spreadsheet add-in, 336–338
binary files, backing up, 450
binary large objects (BLOBs), 48, 110
bitmapped indexes, 34

Oracle-Regular / Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution/ Schrader et al. / 182-2 / Index Oracle-Regular / Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution/ Schrader et al. / 182-2 / IndexOracle-Regular / Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution/ Schrader et al. / 182-2 / Index Oracle-Regular / Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution/ Schrader et al. / 182-2 / Index

Index 485
block data and block storage (BSO), 34

attribute dimensions in, 90
backups, 449–454
Calc Scripting Language for, 274–275
calculation scripts, 443–445
description and benefits, 98–100
Essbase, 430–432
limitations, 56
query performance in, 432–438
sorting, 440–441

blogs, 410
Bodman, Samuel W., 460
Boolean data type

for attributes, 92
Calc Scripting Language functions, 274

bottom-up partition approach, 107
bottom-up planning, 357
Box-Jennings modeling, 45
BPM (business performance management), 55
browsing, dimension, 308–309
BSO. See block data and block storage (BSO)
buffers in ASO databases, 440
Build Log dialog box, 162–163
build logs, 163
business-focused calculations, 6
business-focused multidimensional data, 5–6
Business Intelligence (BI)

data calculations, 201
data warehouse performance, 458
Essbase for, 56–57, 111
interactive dashboards, 127–129
OLAP in, 2–4, 470–472
reports, 302–306

Business Intelligence (BI) Beans, 49, 402–408
business performance management (BPM), 55
business reporting, 3
business rules, 359–361
business users, validating outlines with, 86–87
business view dimensions, 87

C

C programming language, 46
caches

Essbase, 445–446
monitoring, 424

Calc Scripting Language, 273–276
Calculation Manager, 358–359

business rules, 359–361
rule sets, 362
templates, 361–362
variables and run-time prompts, 362

Calculation Script Editor, 278–279
calculation scripts

BSO databases, 443–445, 449–450
creating, 278–279
Essbase database building, 272–279

calculations
business-focused, 6
calculation engines, 9
cubes, 73–74, 174–178

description, 30
as design input, 62
dimensions, 74–75
Essbase databases, 252–254
in forms, 367–368
managing, 196–197
moving averages, 192–194
optimizing, 440–445
overview, 40
percent differences, 189–192
saving to XML files, 196–197
share, 186–189
trustworthy, 7
variance, 273

capital expense planning module, 358
case studies

Dodeca, 349–352
Essbase, 15–16
Oracle, 17–18

cells, partition, 104
centralized data warehouses, 239
charts in reports, 312
child dimensions, 76
Children function, 275
@CHILDREN function, 274
Clear Data actions in cube scripts, 184
ClearView add-in, 129, 341–345
client tier

Essbase, 114–115
Oracle OLAP, 109
performance management applications, 381

clients
HTML, 405
Oracle OLAP, 111–113

cold backups, 420
Collaboration gadget, 393–394
Collaboration Services, 399
color in scatter plots, 328–330
comma-separated values (CSVs), 225
command languages, 123–124
commands in Calc Scripting Language, 274
comments in forms, 367–368
common administration in Planning

application, 358
communication protocols, 116–118
Complete refresh methods for cubes, 182
complex interdimensional calculations, 6
composites

for cube storage, 419
dimensions, 35, 76–77

compound reports, 297
compressed composites, 76–77, 419
compressed cubes, 165, 169
compression in Oracle10g OLAP, 49
Condition component, 360
Connection Wizard, 225–226
connections

AWM, 134–135
desktop-based reporting, 314–315
Essbase databases, 225–226
Java applications to Essbase, 408–410

Oracle-Regular / Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution/ Schrader et al. / 182-2 / Index Oracle-Regular

486 Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution

Oracle-Regular / Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution/ Schrader et al. / 182-2 / Index Oracle-Regular

Essbase databases, 239–241
mapping, 178–181
measures for, 174–178
moving average calculations, 192–194
OLAP, 9
partitions, 79–80, 167–169, 172
percent difference calculations, 189–192
populating, 181–183
scan operations, 50
schemas and models, 240–241
scripts, 182, 184–185
security, 208–211
share calculations, 186–189
SQL interface, 14–15
storage, 169, 173–174, 419
write-back to, 39

currency conversion
partitions for, 103
Planning application, 358

custom calculated measures, 194
custom drill paths, 312
custom load rules, 259–272
custom menus, 370–371
custom Microsoft Office reports, 301–302
custom SQL reports, 468–470

D

dashboard reports, 297–299, 334
data

collecting, 377
preparing for AWM, 137–140
trustworthy, 7

data-entry forms and annotations, 357, 363–370
Data Integration Management (DIM), 125
data-integration tools, 124–125
data layout category in report scripts, 282
data loads

optimizations, 440–441
rules, 262–264

data marts, 54, 239
data mining, 4
Data Prep Editor

Essbase, 120
load rules, 249, 265–268
SQL data sources, 272
view areas, 261

Data Pump, 420
data range category for report scripts, 282
Data Relationship Management, 125–126
Data Source Properties dialog box, 266
data sources

as design input, 62
Essbase database building, 224–227
Essbase database design, 82–83
for load rules, 265–266
mapping, 224–227
MDX queries, 279
modeling, 227–231
OLAP, 32–33
for partitions, 104

consolidation operators, 40, 86
Consolidation setting, 242
consumers of reports, 293
context menus in Planning application, 370–371
core Essbase components, 118–121
corporate performance management (CPM), 55
cost-based aggregation, 78, 167
cost-based optimizer, 205
COUNT command, 201
Count function, 92
CPM (corporate performance management), 55
Create Analytic Workspace dialog box, 144
Create Attribute dialog box, 152
Create Calculated Measure dialog box, 177,

188, 190
Create Cube Script dialog box, 185
Create Cube wizard, 170–174
Create Dimension dialog box, 147–148
Create Hierarchy dialog box, 150
Create Joins by Inspection dialog box, 229
Create Measure dialog box, 176
cross-dimensional calculations, 6
crosstabs

JDeveloper, 407
presentation beans, 404–405
reports, 332

Crystal Ball application, 382–383
Decision Optimizer, 390–391
input value assignments, 384–388
models in, 384–385
Monte Carlo simulation methods in,

383–384
output ranges, 387–389
with Planning Models, 390
results, 389–390

CSVs (comma-separated values), 225
CUBE_BUILD_LOG table, 416
Cube Deployment Wizard, 245–248
Cube Freshness gadget, 399
cube-mapping panels, 179
cube-organized materialized views, 80–81,

204–208, 459
Cube Partitioning Advisor, 80, 169
Cube Schema Wizard, 240–241
Cube Storage Advisor, 75, 169
CUBE_TABLE function, 110, 215
CUBE_VIEW function, 50
cubes, 23–24, 164

advanced, 211–214
aggregation, 77–79
aggregation operators, 171
aggregation policies, 165–166
in ClearView, 341–342
composites and compressed composites,

76–77
creating, 170–174
custom calculated measures, 194
dense and sparse, 10, 35
designing, 73–81
dimensions, 69–72, 75, 170
in Escendo Analytics, 345–347

Oracle-Regular / Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution/ Schrader et al. / 182-2 / Index Oracle-Regular / Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution/ Schrader et al. / 182-2 / IndexOracle-Regular / Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution/ Schrader et al. / 182-2 / Index Oracle-Regular / Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution/ Schrader et al. / 182-2 / Index

Index 487
descriptions

cubes, 170
dimensions, 147
Essbase logins, 247
levels, 148
measures, 176
minischemas, 228

design
Essbase databases. See Essbase

database design
OLAP. See OLAP design
Oracle OLAP. See analytic workspaces and

Analytic Workspace Manager (AWM)
desktop-based reporting, 314

ad hoc analysis features, 315–319
deployment options, 334–338
integrated database connections, 314–315

desktops, Smart Space, 391–392
detail for form line items, 369
diagnostic commands, 424–425
DIM (Data Integration Management), 125
Dimension Build Settings dialog box, 266–267
dimension tables for AWM, 139
dimensional model in performance, 417
dimensions

in ad hoc analyses, 316–319
for analytic workspace, 68
attributes, 28, 71–72, 90–93, 151
base, 90–93
browsing for reports, 308–309
build rules, 259–262
calculation models, 74–75
in ClearView, 342
in composites, 76–77
for convenience, 65–66
creating, 145–149
cubes, 69–72, 75, 170
in design, 62, 65–66
dynamic, 438–439
Essbase, 87–93, 231–239
in forms, 366–367
hierarchies, 70–71, 146, 149–151
mapping, 68–69, 152–157
multidimensional data, 5–6, 23–31
names, 141–142, 147, 237
number of, 63–65
order of, 77
in outlines, 83–85
partitions for, 103, 167–168
populating, 145–149, 159–163
for reports, 304–307, 313
saving as XML templates, 163–164
security, 164–165, 208–211
slowly changing, 36–38
sparse and dense, 75, 169, 436–438
spreadsheets, 51–53
star dimensional model, 68
storage for, 101, 433–440
time. See time dimensions
types, 69
updating, 161–163, 182
from user requirements, 67

data storage
aggregated. See aggregated data and

aggregate storage (ASO)
block. See block data and block storage (BSO)
cubes, 169, 173–174, 419
Essbase, 56, 242
multidimensional, 33–34
OLAP, 9
partitions for, 103
selecting, 101–102

data types
cubes, 169, 419
in design, 66
Essbase, 93–94

data warehousing systems
accelerating, 458–459
benefits, 3
bitmapped indexes, 34
OLAP with, 12

database-centric OLAP systems, 12, 14–15
Database Configuration Assistant (DBCA), 414
database tier

Essbase, 114–115
Oracle OLAP, 110
performance management applications, 381

databases
AWM connections, 134–135
calculation scripts, 443–445
Essbase database. See Essbase database

building; Essbase database design
multidimensional, 24, 45
parameters, 414–416
schemas, 32–33

DATACOPY command, 274
DataServer technology, 46
date-time dimensions, 90
dates and date type

attributes, 92
Essbase, 94
in forms, 367–368

DBA scripts, 426–429
DBCA (Database Configuration Assistant), 414
DBMS_AW procedure, 422
DBMS_MVIEW.REFRESH syntax, 81
debugging Oracle OLAP, 424–425
decimal types in cube storage, 419
Decision Optimizer, 390–391
decision support systems (DSSs), 45
DECODE command, 201
defaults

cube data types, 169
Essbase database calculations, 253
hierarchies, 151

DEFINE command, 197, 203
define stages in Profitability and Cost Management

models, 374
dense cubes, 35
dense dimensions, 75, 77, 169, 436–438
deployment

Essbase databases, 245–249
reports, 333–338

DESCRIBE command, 203

Oracle-Regular / Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution/ Schrader et al. / 182-2 / Index Oracle-Regular

488 Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution

Oracle-Regular / Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution/ Schrader et al. / 182-2 / Index Oracle-Regular

Essbase, 50
aggregate storage, 56
architecture, 56, 114–118
backups, 447–455
benefits, 51–54
birth of, 54–55
caches, 445–446
calculations, 440–445
case studies, 15–16
components, 118–127
Crystal Ball with. See Crystal Ball application
data-integration tools, 124–125
data loads, 440–441
ERP system enhancements, 467–468
Essbase Web Gateway, 55
examples, 464–470
Java for, 408–410
multidimensional view of information,

23–31
Oracle OLAP comparisons, 19, 43–44
Oracle OLAP differences, 14–15
Oracle OLAP similarities, 13–14
overall performance, 430–432
performance management applications,

356–357
Performance Management Architect

application, 379–382
Planning application for. See Planning

application
Profitability and Cost Management

application, 373–382
purchased by Oracle, 56–57
query performance, 432–439
reporting options, 55
Smart Space. See Smart Space
spreadsheet replacing, 465–467
SQL reports replacing, 468–470
user-created reports, 469

Essbase Application Manager, 55
Essbase Calculation gadget, 397
Essbase Data Load gadget, 397
Essbase database building, 220

automating processes, 285–289
calculation process, 252–254
data source mapping, 224–227
data source modeling, 227–231
demonstration overview, 220–222
deployment, 245–249
dimensions, 231–239
drill-through reports, 254–258
Essbase Studio overview, 222–224
ESSCMD, 285
lineage tracking, 258–259
load rules. See load rules
member formulas and calculation scripts,

272–279
minischemas, 228–231
modeling, 239–245
reports, 279–284

Discoverer Plus OLAP, 49, 335–336, 461
Discoverer Viewer, 49
disk footprint for aggregate storage, 101
Display Transactions dialog box, 453
divide operator (/) in OLAP DML, 201
document attachments in forms, 369–370
Dodeca tool, 129

for ad hoc reporting, 335
case study, 349–352
for Essbase reporting, 347–349

dot (.) notation, 276
drill paths

ad hoc analysis, 41
for reports, 312

drill-through functionality
Dodeca, 351
Essbase database reports, 254–258
Essbase Studio, 121
Integration Studio, 122

driver-based plans, 357
drivers in Profitability and Cost Management

models, 374–375
dropping partitions, 35
DSSs (decision support systems), 45
duplicate members, 29–30
Dynamic Calc property, 436
Dynamic Calc & Store property, 436
dynamic dimensions, 438–439
dynamic models, 49
dynamic performance tables, 423–424

E

e-mail notification, 372
Easycast application, 45
EasyTrac application, 45–46
EDIT program, 199
EIS (Executive Information System) product, 47
ELT (extract, load, and transform) tool, 124
Enable plugins option, 135
END_DATE attribute, 71, 158–159
end users

tools, 127–129
training, 60

energy consumption and supply projections, 460
ENFORCED setting for query rewrites, 207
enterprise performance management (EPM), 3, 55
Enterprise Performance Management Workspace

(EPM Workspace) web client, 381
enterprise resource planning (ERP) systems, 56,

467–468
Enterprise Standards for reporting, 333
EPM (enterprise performance management), 3, 55
EPM Workspace (Enterprise Performance

Management Workspace) web client, 381
ERP (enterprise resource planning) systems, 56,

467–468
Escendo Analytics tools, 345–347

Index 489
F

fact tables for minischemas, 228
Fast refresh method, 182
Fast Solve refresh method, 183
Favorites gadget, 395–396
FCCLOSE command, 212
FCEXEC command, 212
FCOPEN command, 212
FCQUERY command, 212
FCSET command, 212
FDM (Financial Data Quality Management), 125
Few, Stephen, 297
Field Properties dialog box, 268
fields for load rules, 268–269
file-based load rule settings, 266–268
FILEREAD command, 203
filters for reports, 307–308
financial data analysis, 462–464
Financial Data Quality Management (FDM), 125
Financial Management System (FMS), 46–47
Financial Reporting product, 127–128
FINDCHARS command, 201
finer-grain security, 209–211
Fixed Loop component, 361
Flashback with analytic workspaces, 429–430
flexible analytic environments, 467–468
flexible reporting, 8
flipping positive-negative sign, 462–463
flow capability for time balancing, 89
FMS (Financial Management System), 46–47
folder structure in Metadata Navigator, 232–233
food processing company case study, 16
Force refresh method for cubes, 183
FORECAST command, 202
forecasting techniques, 211–214
formatting category for report scripts, 282
forms, 363

creating, 363–364
working with, 364–370

formulas
Calculation Manager business rules, 359
Essbase database building, 272–279

free-form reporting, 321–322
front-end analysis, 9
full database backups, 420
functionality in web-based OLAP reporting,

302–304
functions

Calc Scripting Language, 274
calculated measures, 194–196
MDX, 275–276
Member Formula Editor, 277

G

gadgets, Smart Space, 392–397
Gantt charts, 333
Generate Surrogate Keys option, 146

summary, 250–252
validation, 254

Essbase database design, 81–82
aggregate storage, 100–102
alternate views, 94–97
block storage, 98–100
data sources, 82–83
data types, 93–94
designers for, 82
dimension types, 87–93
outline definitions, 83–86
outline validation, 86–87
partition strategies, 102–108
storage model selection, 101–102
summary, 108
third-party reporting tools, 347–352
varying attributes, 97–98

Essbase Login dialog box, 247
Essbase MaxL Shell (ESSMSH), 288
Essbase Server, 118–119
Essbase Studio. See Essbase database building
Essbase Web Gateway, 55
ESSCMD scripting language, 124, 285
ESSMSH (Essbase MaxL Shell), 288
ETL (extract, transform, and load) process

data-integration, 124–125
Essbase connections, 117
OWB, 112, 133

Excel-based data-entry forms and annotations, 357
Excel spreadsheets

ad hoc reports, 300–301, 334–338
Dodeca compatibility, 349
linked partitions in, 106
PivotTable feature, 339–340
workbook replacement, 465–467

Execute Calculation dialog box, 253
Execute Free Form MDX Query dialog box, 280
executing load rules, 269–270
Executive Information System (EIS) product, 47
existing data, new results from, 39–40
expense reporting, 88–89
exponent operator (**) in OLAP DML, 201
EXPORT command, 203, 421–422
Export Database dialog box, 448
exporting databases, 420–422, 448–449
Express, 45, 47–48
Express 4GL language, 50
Express Administrator, 48
Express Basic, 48
Express MDB, 46
Express Web Agent, 48
expressions

OLAP DML for, 201–202
user-defined, 6

extended OLAP (XOLAP), 12
extract, transform, and load (ETL) process

data-integration, 124–125
Essbase connections, 117
OWB, 112, 133

490 Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution

intelligent calculations, 444
Intelligent navigation in Dodeca, 349
interactive reports, 129, 300, 334
interdimensional references, 463
interviews for user information, 293
intradimensional calculations, 6
IRI (Information Resources, Inc.), 46
@ISMBR function, 274
iterative design, 61–62
iterative planning cycles, 357

J

Java
API provider, 120
applets, 48
BI Beans, 402–408
Essbase connections, 408–410
OLAP API, 49
resources, 410

Java API for Oracle Essbase Javadoc, 410
Java Database Connectivity (JDBC), 109
Java Developer Center, 410
Java Virtual Machine (JVM), 414
JavaServer Pages (JSP) tag library, 406
JDBC (Java Database Connectivity), 109
JDeveloper, 49, 402, 406–407
JOB_QUEUE_PROCESSES parameter, 415
JOINCHARS command, 201
joins

for minischemas, 230–231
from tables, 178–179

JSP (JavaServer Pages) tag library, 406
JVM (Java Virtual Machine), 414

K

Keep Only actions, 42
Key Contacts gadget, 393–394
keys, 30

for dimensions, 146, 148
and performance, 417

Knowledge modules, 124

L

label-based outlines, 86–87
Label Only property, 436
labels

cubes, 170
dimensions, 147
levels, 148
measures, 176

Last Period calculation, 191
Last Year calculation, 191
leaf members, 26
legends in scatter plots, 328–329
level-based aggregation, 167

generations of hierarchies, 28
GRANT command, 39
Graph Type panel, 403–404
graphical calculations, 357
graphical user interfaces (GUIs), 47
grids in reports, 310–311, 323–328

H

heat maps, 333
hierarchies

in ad hoc analyses, 316
alternate, 28–29
creating, 234–236
dimensions, 5, 70–71, 146, 149–151
in Essbase, 95, 231–239
multidimensional view of information, 25–29
operators, 40
for repurposing members, 66
skip-level, 27, 156–157

historical data in predictive analytics, 4
HOLAP (hybrid OLAP), 11–12, 32
HTML clients, 405
HTTP, 116–117
hybrid Essbase architectures, 56
hybrid OLAP (HOLAP), 11–12, 32
hypercubes, 24
Hyperion

Data Integration Management, 125
Interactive Reporting, 129, 334
Performance Management Architect,

379–380
Planning. See Planning application
Profitability and Cost Management Model.

See Profitability and Cost Management
application

Provider, 115, 118, 120, 408
Shared Services, 126
Smart Search, 126
Smart View. See Smart View
Solutions, 55–56

I

IMPORT command, 203, 422
indexes, bitmapped, 34
inferences, dimensions for, 65
Information Resources, Inc. (IRI), 46
inputs

in Crystal Ball application, 384–388
in design, 62

installation validation for Oracle OLAP, 412–414
integer types in cube storage, 419
integrated database connections, 314–315
integration in Planning application, 358
Integration Services

for Essbase tiers, 115–116
for outlines, 83
overview, 122–123

Index 491
Marketing Fact Book, 46
marketing lift analysis, 16
Master Data Management, 125
materialized views, 80–81, 204–208, 459
math

Calc Scripting Language function, 274
in Essbase, 94

matrix calculations, 6
Maximum (Max) function, 92
Maximum number of parallel processes

setting, 162
MaxL language, 123, 285–286

BSO database backups, 449–452
client tier, 115
replay transactions, 453
sample script, 286–288
script creation, 288–289
script execution, 288

MaxL MDX (MDX for Essbase), 123–124
MaxL Script Editor, 289
MDBMSs (multidimensional database management

systems), 54
MDSs (Management Decision Systems), 45
MDX. See Multidimensional Expressions (MDX)

query language
MDX for Essbase (MaxL MDX), 123–124
measures

calculated, 40, 73–74, 194–197
cubes, 174–178
multidimensional view of information, 30–31
stored, 73

MEDIAN command, 201
Member Formula Editor, 277
member formulas

creating, 276–277
Essbase database building, 272–279

Member Properties dialog box, 277
Member Range component, 361
member set functions, 274
members

aggregate storage, 101
multidimensional view of information,

25–28
reports, 304–305, 319–320
return functions in MDX, 275
share calculations, 188
unique and duplicate, 29–30

Member’s ancestors at level option, 188
Member’s parent option, 187
MEMORY_MAX_TARGET parameter, 415
MEMORY_TARGET parameter, 415
menus in Planning application, 370–371
metadata

dimensions for, 65
Dodeca tool, 347
Essbase database building, 232–233
Essbase database design, 83
Essbase repository, 122
system views with, 111
validating, 254

level-based hierarchies, 70–71, 146, 149
levels

dimensions, 148–149
Essbase database building, 232
hierarchies, 28
partitioning dimensions, 36

LIMIT command, 45, 203, 421
line charts, 333
lineage tracking, 258–259
linked data type, 92
linked partitions, 36, 106–107
LIST command, 197, 199
LISTNAMES command, 197, 203
Little, John, 45
Load actions in cube scripts, 184
LOAD_AND_AGGREGATE script, 214
load rules, 249

creating, 264–271
data rules, 262–264
data sources, 265–266
dimension build rules, 259–262
executing, 269–270
fields for, 268–269
file-based settings, 266–268
and SQL interface, 271–272
validating and saving, 269

load speed for aggregate storage, 101
loading

Essbase optimizations, 440–441
at multiple levels, 79
from multiple tables, 180–181
Oracle OLAP performance, 416–417

local control of data, partitions for, 103
Lodish, Len, 45
LOG command, 201
logging transactions, 452–454
logins

AWM, 134–135
Essbase, 247–248

LONG_DESCRIPTION attribute, 151
long timelines, partitions for, 104
low-cardinality columns in bitmapped indexes, 34
lower density cubes, 10

M

Mainframe Express, 45
Maintenance Wizard

cubes, 181–183, 185
dimensions, 160–161

manageability, cube partitioning for, 79
management consulting and research company

case study, 18
Management Decision Systems (MDSs), 45
mapping

cubes, 178–181
data source, 224–227
dimensions, 152–157
relational data to multidimensional objects,

68–69

Oracle-Regular / Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution/ Schrader et al. / 182-2 / Index Oracle-Regular

492 Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution

Oracle-Regular / Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution/ Schrader et al. / 182-2 / Index Oracle-Regular

N

names
analytic workspaces, 144
attributes, 151
connections, 225
cube schemas, 240
cubes, 170
dimensions, 141–142, 147, 237
Essbase logins, 247–248
guidelines, 141–144
hierarchies, 150, 234
levels, 149
measures, 176–177
member, 30
minischemas, 228
report scripts, 284

Never Share Data property, 436
not-null constraints, 80
Notification gadget, 393–394
NPV command, 201
number return functions in MDX, 275
numeric data type, 66

for attributes, 92
cube storage, 419
Essbase, 93
load rules, 262

O

OBIEE (Oracle Business Intelligence Enterprise
Edition), 49

OBIEE Plus (Oracle Business Intelligence Suite
Enterprise Edition Plus)

ad hoc reporting, 335
client tier, 115
overview, 127–129
for reporting, 292, 335, 338
Smart View, 120–121

Object Security wizard, 209–210
OCI (Oracle Call Interface), 109
ODBC (Open Database Connectivity), 109
ODI (Oracle Data Integrator Enterprise Edition)

Essbase, 124–125
Planning application, 358

OEA (Oracle Express Analyzer), 47–48
OEO (Oracle Express Objects), 47–48
OFA (Oracle Financial Analyzer), 47
OLAP (online analytical processing)

ad hoc analysis, 40–43
aggregation operators, 40
applications, 13
architecting solutions, 18–19
benefits, 4
in BI, 2–4
business-focused calculations, 6
business-focused multidimensional data, 5–6
cubes, 35
data sources, 32–33

Metadata Catalog, 116
Metadata Navigator, 223–224
Microsoft Office reports, 301–302, 338
middle tier

Essbase, 114–115
OLAP systems, 12, 14

Minimum (Min) function, 92
Minischema Wizard dialog box, 229
minischemas

recursive joins for, 230–231
from relational sources, 228–230

minus signs (-)
flipping, 462–463
in OLAP DML, 201

missing data values in reports, 313
models

calculation, 74–75
Crystal Ball application, 384–385
data sources, 227–231
Essbase databases, 239–245
OLAP, 30
Profitability and Cost Management

application, 373–378
MOLAP (multidimensional OLAP), 10, 32
Monte Carlo simulation methods, 383–384
moving average calculations, 192–194
Moving Average template, 192
MOVINGTOTAL command, 201
multicurrency applications, 358
multidimensional data, 5–6, 110–111
multidimensional database management systems

(MDBMSs), 54
multidimensional databases, 45
Multidimensional Expressions (MDX) query

language, 50
for aggregate storage databases, 275–276
vs. Calc Scripting Language, 273–276
Essbase, 123
Oracle OLAP, 109, 113
for queries, 279–281
Simba MDX Provider, 339–341

multidimensional objects, mapping relational
data to, 68–69

multidimensional OLAP (MOLAP), 10, 32
multidimensional storage, 9, 33–34
multidimensional view of information, 23

aggregation, 31
attributes, 28
cubes, 23–24
dimensions, hierarchies, and members,

25–29
measures and values, 30–31
unique and duplicate members, 29–30

multiple hierarchies enabled dimensions, 438–439
multiple levels, loading at, 79
multiple tables, loading data from, 180–181
multiple year aggregation, 70
multiply operator (*) in OLAP DML, 201
Multiply Result by 100 option, 188

Oracle-Regular / Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution/ Schrader et al. / 182-2 / Index Oracle-Regular / Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution/ Schrader et al. / 182-2 / IndexOracle-Regular / Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution/ Schrader et al. / 182-2 / Index Oracle-Regular / Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution/ Schrader et al. / 182-2 / Index

Index 493
Oracle BI Discoverer, 461
Oracle Business Intelligence Enterprise Edition

(OBIEE), 49
Oracle Business Intelligence Suite Enterprise

Edition Plus. See OBIEE Plus (Oracle Business
Intelligence Suite Enterprise Edition Plus)

Oracle Call Interface (OCI), 109
Oracle Data Integrator Enterprise Edition (ODI)

Essbase, 124–125
Planning application, 358

Oracle Enterprise Performance Management
System, 127

Oracle Essbase. See Essbase
Oracle Express Analyzer (OEA), 47–48
Oracle Express Objects (OEO), 47–48
Oracle Financial Analyzer (OFA), 47
Oracle Hyperion. See Hyperion
Oracle OLAP, 43, 132

analytic workspaces. See analytic
workspaces and Analytic Workspace
Manager (AWM)

APEX for, 399–402
architectures, 108–111
backups, 420–422
C programming language, 46
case studies, 17–18
client applications for, 111–113
configuring and tuning, 412–419
cube-organized materialized views, 459
data warehouse acceleration, 458–459
database-centric OLAP, 14–15
database parameters, 414–416
DBA scripts, 426–429
diagnostic commands, 424–425
dynamic performance tables, 423–424
Essbase OLAP comparisons, 19, 43–44
Essbase OLAP differences, 14–15
Essbase OLAP similarities, 13–14
examples, 459–464
Express, 47–48
financial data analysis, 462–464
future, 50
GUIs, 47
installation validation, 412–414
Java development for, 402–408
Mainframe Express, 45–46
multidimensional databases, 45
optimizer, 205–206
Oracle 9i, 48–49
Oracle 10g, 49
Oracle 11g, 50
performance tuning, 416–419
projection analysis, 460–461
third-party reporting applications, 339–347
troubleshooting, 422–430

Oracle OLAP Worksheet
editor, 199–200
OLAP DML commands, 200–204
purpose, 112–113
for worksheet management, 197–199

with data warehouses, 12
Essbase. See Essbase
flexible, self-service reporting, 8
multidimensional storage and access, 33–34
multidimensional view of information, 23–31
new results from existing data, 39–40
Oracle. See Oracle OLAP
partitions, 35–36
products, 12
reports. See reports and reporting
security and user access, 39
slowly changing dimensions, 36–38
speed-of-thought analysis, 7–8
system components, 9
themes, 22–23, 43–44
trustworthy data and calculations, 7
types, 10–12, 32

OLAP API, 111
OLAP design, 60

data storage models, 98–102
data types in, 66
dimensions, 65–66
end-user tools, 127–129
general principles, 60–61
iterative, 61–62
partition strategies, 102–108
simplicity in, 63–65
third-party applications, 129
training and testing areas, 67
user access and security, 67
user requirements, 62–63
views in, 66

OLAP_DML_EXPRESSION form, 196
OLAP DML language

actions in cube scripts, 184
calculated measures, 196
commands, 112–113, 200–204
diagnostic commands, 425
dimension calculation models, 75
exporting functions, 421
forecasting functions, 212–214
OLAP Worksheet, 197–199
overview, 110
stored measures, 73

OLAP_PAGE_POOL_SIZE parameter, 416
OLAP_TABLE function, 49, 111, 215
OLAPTRAIN OLAP demo data, 134
OneBox appliance, 126
online transactional processing (OLTP) systems, 3,

33, 467
Open Database Connectivity (ODBC), 109
Open dialog box for load rules, 265–266
Open SQL Data Sources dialog box, 271
operating system backups, 447
operators

aggregation, 40, 166
OLAP DML, 201
for outlines, 86

optimization. See performance
Oracle Application Express (APEX), 399–402

Oracle-Regular / Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution/ Schrader et al. / 182-2 / Index Oracle-Regular

494 Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution

Oracle-Regular / Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution/ Schrader et al. / 182-2 / Index Oracle-Regular

Essbase overview, 430–432
Essbase query, 432–439
OLAP database parameters, 415
Oracle OLAP, 416–419
partitions for, 167
queries, 80

Performance Management Architect, 379–380
period-to-date reporting in block storage, 100
persistent status in sessions, 204
PGA (Program Global Area), 426
PGA_AGGREGATE_TARGET parameter, 415
pivot tables, 305–307, 332
pivoting in ad hoc analysis, 42, 317
PL/SQL

for cube scripts, 184
for Oracle OLAP, 109

Planning application, 127, 357–358
Calculation Manager, 358–362
custom menus, 370–371
data-entry forms, 363–370
process management, 372
task lists, 372

Pluging directory setting, 136
plus signs (+)

ad hoc analyses, 316–317
flipping, 462–463
OLAP DML, 201
for outlines, 86
reports, 307–308

populating
cubes, 181–183
dimensions, 145–149, 159–163

Port setting for Essbase logins, 247
POVs (points of view)

ad hoc analyses, 316–317
reports, 307–308

power business users, 82
preaggregation, 8

in block storage, 100
and performance, 417–419

precomputing aggregates, 78–79
predefined calculations in forms, 367–368
predictive analytics, 4
presentation beans, 403–405
Prior/Future Comparisons category for

calculations, 175
probabilities in Crystal Ball application, 387–389
procedural calculations

in block storage, 100
OLAP systems, 6

process management in Planning application,
357, 372

production reports, 298–300, 334
Profitability and Cost Management application,

127, 373
allocation tracing, 378–379
model building, 373–377
model validation, 377–378

Program Global Area (PGA), 426

Oracle Real Application Testing, 459
Oracle Sales Analyzer, 47
Oracle Warehouse Builder (OWB), 17

for client tier, 109
overview, 112–113, 133–134

order
aggregation, 166
dimensions, 77
in outlines, 85–86

OUTFILE command, 203
outliers in scatter plots, 328
Outline Browser gadget, 399
outline viewer in Member Formula Editor, 277
outlines

alternate views in, 94–97
data types, 93–94
defining, 83–86
dimension types, 87–93
order in, 85–86
validating, 86–87

outputs
in Crystal Ball application, 387–389
in design, 62

OWB (Oracle Warehouse Builder), 17
for client tier, 109
overview, 112–113, 133–134

OX tool, 113

P

page dimensions, 53
page pool in OLAP, 415
parallel period percent difference calculations,

190–192
parameters for Oracle OLAP databases, 414–416
parent-child tables in AWM, 140
parent dimensions, 76
Parent function, 275
@PARENTVAL function, 274
Partition Change Tracking refresh method, 183
partitions, 102

benefits, 102–103
cubes, 79–80, 167–169, 172
overview, 35–36
solution design with, 107–108
types, 104–107

passwords
database connections, 135
Essbase logins, 247
OLAP, 39

pcEXPRESS, 46
percent difference calculations, 189–192
performance

applications, 356–357, 380–382
cube partitioning for, 79
Essbase caches, 445–446
Essbase calculations, 440–445
Essbase data loads, 440

Oracle-Regular / Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution/ Schrader et al. / 182-2 / Index Oracle-Regular / Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution/ Schrader et al. / 182-2 / IndexOracle-Regular / Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution/ Schrader et al. / 182-2 / Index Oracle-Regular / Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution/ Schrader et al. / 182-2 / Index

Index 495
Remove Only actions, 42
removing dimensional slices, 317
replacing

custom SQL reports, 468–470
Excel workbooks, 465–467

Replay Transactions dialog box, 453–454
replicated partitions, 36, 104–105
REPORT command, 203
Report Script, 281–284
reports and reporting, 292

ad hoc spreadsheet, 300–301
basic, 296
compound, 297
dashboard, 297–299
decoding, 62–63
deployment options, 333–338
in design, 62
desktop-based, 314–319
drill-through, 254–258
Essbase database MDX queries, 279–281
Essbase options, 55
Essbase third-party tools, 347–352
flexible, self-service, 8
free-form, 321–322
functionality in, 302–304
grids in, 310–311, 323–328
interactive management, 300
member-selection tools for, 319–320
Microsoft Office, 301–302, 338
OLAP tools, 9
options for, 308–313
Oracle OLAP third-party tools, 339–347
production, 298–300
query creation for, 320–322
replacing, 468–470
scatter plots in, 323–331
skeleton, 304–308
user-created, 469
user discovery in, 292–294
user needs in, 294–295
visualization in, 323–333

resources in Java, 410
Restore Database dialog box, 452
restoring BSO databases, 450–452
RMAN (Recovery Manager), 420
ROLAP (relational OLAP), 10–11, 32
rolling up, 41
rotating cubes, 42
ROUND command, 201
RTPs (run-time prompts), 362
.RUL files, 261
rules

business, 359–361
load. See load rules
rule sets, 362

rules-based optimizer, 205
Run maintenance task immediately in this session

setting, 162
Run-time prompts (RTPs), 362

projection analysis, 460–461
properties

dimensions, 237
Essbase database models, 241–245
for joins, 230–231

Provider Services, 115, 118, 120, 408
pruning partitioning, 168

Q

qualified data references (QDRs), 202, 343
queries

Essbase methods, 116–118
performance, 417–419, 432–439
report scripts, 281–284
reports, 320–322

query languages, 123–124, 279–284
QUERY_REWRITE_ENABLED parameter, 205
QUERY_REWRITE_INTEGRITY parameter, 207
query rewrites, 206–208
Query wizard, 337
questionnaires for user information, 293

R

rack applications, 100
ragged hierarchies, 26–27
RAM, indexes in, 34
ranges in Crystal Ball application

input, 384–388
output, 387–389

RANK command, 201
Raymond, Lee, 460
RDBMS source in Essbase, 116
read-only access setting, 136–137
real-world examples, 458

Essbase, 464–470
Oracle OLAP, 458–464

Recovery Manager (RMAN), 420
recursive joins, 230–231
redundancy, partitions for, 103
Refresh After Errors option, 161
refresh methods

cube-organized materialized views, 81
cubes, 182–183, 206
synchronization, 160–161

regional batch windows, partitions for, 104
regional versions, partitions for, 103
REGRESS command, 202
reinstalling Oracle OLAP, 414
relational databases

Essbase database sources, 116
schemas, 32–33

relational OLAP (ROLAP), 10–11, 32
Relational Schema Advisor, 81
relational sources, minischemas from, 228–230
relationship functions in Calc Scripting

Language, 274

Oracle-Regular / Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution/ Schrader et al. / 182-2 / Index Oracle-Regular / Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution/ Schrader et al. / 182-2 / Index

496 Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution

Oracle-Regular / Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution/ Schrader et al. / 182-2 / Index Oracle-Regular / Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution/ Schrader et al. / 182-2 / Index

share calculations, 186–189
Share template, 186–187
Shared Member property, 436
shared members, hierarchies using, 95
Shared Services, 126
sharing results in Crystal Ball, 389–390
SHORT_DESCRIPTION attribute, 151
SHOW command, 203
shuffling process, 46
Simba MDX Provider, 339–341
simple intradimensional calculations, 6
simplicity in design, 63–65
SIN command, 201
single sign-on (SSO) service, 126
size of storage blocks, 433–438
skip-level aggregation, 79
skip-level hierarchies, 27, 156–157
Skip setting in Essbase database models, 243
slices

in ad hoc analyses, 317
dimensions, 42–43

slowly changing dimensions, 36–38
Smart Book gadget, 395, 397
smart organizations, 3
Smart Search, 126
Smart Space, 391

Administration Utility, 399
desktops, 391–392
gadgets, 392–397
software development toolkit, 397–399

Smart View
ad hoc analyses, 317
ad hoc reporting, 335
alternate views in, 98
Essbase, 115, 118–120
for integrated database connections,

314–315
MDX queries, 280
reports, 469–470
text in, 93–94

snowflake schemas, 33
cube data in, 68
data sources, 137, 139–140
dimension mapping using, 156–157

software development toolkit (SDK), 397–399
Solutions tool, 55–56
sorting BSO databases, 440–441
source data. See data sources
Source Navigator, 223–224
sparse cubes, 10, 35
sparse dimensions, 75, 169, 436–438
sparsity settings in cube storage, 419
special characters

Calc Scripting Language, 275
MDX, 276
in names, 147
in paths, 286

speed-of-thought analysis, 7–8
spread marts, 53–54
Spreadsheet Add-in, 118–120

S

SalesAnalyzer, 47
SalesPartner, 47
Save maintenance task to script setting, 162
saving

calculated measures to XML files, 196–197
dimensions as XML templates, 163–164
load rules, 269
report scripts, 284

scale
aggregate storage for, 101
cube partitioning for, 79

scaled operators, 40
scatter plots

creating, 323–328
data presentation in, 328–331

scenario playing, 39
scheduling cubes, 183
schemas

analytic workspaces, 141
cubes, 240–241
databases, 32–33

scripts
BSO database backups, 449–452
Calc Scripting Language, 273–276
calculation, 278–279, 443–445
Calculation Manager business rules, 360
client tier, 115
creating, 288–289
cubes, 182, 184–185
ESSCMD, 285
executing, 288
member formulas, 276–277
Oracle OLAP, 426–429
replay transactions, 453
reports, 281–284
sample, 286–288

SDK (software development toolkit), 397–399
Search gadget, 395–396
Secure Enterprise Search, 126
security

cubes, 208–211
in design, 67
dimensions, 164–165, 208–211
OLAP, 39
partitions for, 103
SQL commands, 209

select area for MDX queries, 279
self-service reporting, 8
semicolons (;) in Calc Scripting Language, 275
server tier in performance management, 381
servers, OLAP, 9
sessions, persistent status in, 204
SESSIONS parameter, 415
Set Object Security dialog box, 164
set return functions in MDX, 275
SGA (System Global Area), 416
SGA_TARGET parameter, 415
shape in scatter plots, 328–331

Oracle-Regular / Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution/ Schrader et al. / 182-2 / Index Oracle-Regular / Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution/ Schrader et al. / 182-2 / IndexOracle-Regular / Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution/ Schrader et al. / 182-2 / Index Oracle-Regular / Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution/ Schrader et al. / 182-2 / Index

Index 497
templates

AWM, 135
Calculation Manager, 361–362

testing in design, 67
text

for attributes, 92
Essbase, 93–94
for load rules, 262
member formulas, 277–278
for minischemas, 228
in scatter plots, 328–329

text tables, 332
themes, 22–23, 43–44
third-party applications

Essbase reporting, 347–352
OLAP, 129
Oracle OLAP reporting, 339–347

time balancing, 88–89, 243
time dimensions, 145

aggregation, 70
building, 236–239
description, 69
order of, 77
overview, 89–90
for partitioning, 168
working with, 158–159

Time Frame category for calculations, 175
time-series calculations, 6
time-specific member selection for reports, 310
time-to-date values in reports, 89
timelines, partitions for, 104
TIMESPAN attribute, 71, 158
top-down partition approach, 107
top-down planning, 357
Top of hierarchy option, 187
TOTAL command, 201
tracing allocations, 378–379
tracking

lineage, 258–259
transactions, 452–454

training
in design, 67
end users, 60

transaction replay, 452–454
transparent partitions, 36, 105–106
troubleshooting Oracle OLAP, 422–430
TRUSTED setting for query rewrites, 207
trustworthy data and calculations, 7
Two Pass Calculation setting, 242
Type 1 dimensions, 37
Type 2 dimensions, 37
Type 3 dimensions, 37
Type 6 dimensions, 37–38

U

UGA (User Global Area), 416
unary operators for outlines, 86
underscore characters (_) in names, 141
UNDO_MANAGEMENT parameter, 415

spreadsheet hell, 7, 51–53
spreadsheets, 7

ad hoc reports, 300–301, 334–338
Dodeca compatibility, 349
Excel workbook replacement, 465–467
linked partitions in, 106
PivotTable feature, 339–340
workbook replacement, 465–467

SQL
cube interface, 14–15
load rules, 271–272
for multidimensional data types, 110–111
for OLAP, 214–217
for Oracle OLAP, 109, 113
report alternatives, 468–470
security commands, 209

SQL*Net, 135
SQR Production Reporting, 129
SQRT command, 201
SSO (single sign-on) service, 126
stack applications, 100
STALE_TOLERATED setting, 207
standard time dimensions, 90
star schemas, 32–33

analytic workspace, 68
data sources, 137–140
dimension mapping using, 153–156

storage. See data storage
Store Data property, 436
stored dimensions, 438–439
stored measures, 30, 73, 176
Submit the maintenance task to the Oracle Job

Queue setting, 162
SUM function, 92, 275
@SUM function, 274
suppressing missing data in reports, 313
surrogate keys, 30

for dimensions, 146
and performance, 417

survey data, 460–461
synchronizing dimensions, 159–161
SYS_DEFAULT script, 182, 185
system components, 9
system-defined attributes, 71–72
System Global Area (SGA), 416
system views, 111

T

tables
dynamic performance, 423–424
for Essbase databases, 226–227
joins from, 178–179
pivot, 305–307, 332
presentation beans, 404–405

tags in user-defined attributes, 96–97
target databases for partitions, 104
task lists, 372
TCP/IP protocol, 116–117

498 Oracle Essbase & Oracle OLAP: The Guide to Oracle’s Multidimensional Solution

varying attributes, 97–98
verifying query rewrites, 207–208
View Generator plug-in, 215
views

AWM, 139
cube-organized materialized, 80–81,

204–208, 459
in design, 66
Essbase, 94–97
V$AW, 423–424

virtual private databases (VPDs), 39, 208
visualization in reports, 323–333
VSS Business Analyzer, 49

W

Web Analysis product, 127–128
Web-based data-entry forms and annotations, 357
web-based deployment options for reports, 334
web-based OLAP reporting, 302–304
weighted operators, 40
where area in MDX queries, 279
WHILE loops, 203
Work area in Essbase Studio, 223–224
Workbook Wizard, 335
workforce planning module, 358
workspaces. See analytic workspaces and Analytic

Workspace Manager (AWM)
World Wide Web, 48
write-back functionality

ClearView, 344
cubes, 39

Wurts, Jay, 45

X

XML Developer Kit (XDK), 414
XML files and templates

saving calculated measures to, 196–197
saving dimensions as, 163–164

XML for Analysis (XMLA) query language, 115
XMLA API provider, 120, 124
XOLAP (extended OLAP), 12

Z

zooming
in ad hoc analyses, 316
in drill paths, 41

unique members, 29–30
universal installer, 413
untyped dimensions, 87
UPCASE command, 201
Update Outline dialog box, 269–270
updating dimensions, 161–163, 182
upper-level input in block storage, 99
Urban, Glen, 45
Use Keys from Data Source option, 146
user access

in design, 67
OLAP, 39

user-created reports, 469
user-defined items

attributes, 72, 96–97
dimensions, 145
expressions, 6
level names, 28

user dimensions, 69
user discovery in reporting, 292–294
User Global Area (UGA), 416
user needs in reporting, 294–295
user requirements

in design, 62–63
dimensions from, 67

usernames
database connections, 135
Essbase logins, 247

UTL_FILE_DIR parameter, 415

V

V$AW views, 423–424
validating

Essbase databases, 254
load rules, 269
Oracle OLAP installation, 412–414
outlines, 86–87
Profitability and Cost Management models,

377–378
value-based hierarchies, 70–71, 146
values

calculated, 40
Crystal Ball assignments, 384–388
in forms, 366
OLAP, 30–31

@VAR function, 273
variables in Calculation Manager, 362
variance calculations, 273, 276–277
Variance Reporting setting, 243
@VARPER function, 273

	Contents
	Foreword
	Acknowledgments
	Introduction
	1 Introduction to OLAP
	OLAP as a Component of Business Intelligence
	Enterprise Performance Management
	Data Warehousing
	Business Reporting
	Predictive Analytics and Data Mining
	OLAP

	Why OLAP?
	Business-Focused Multidimensional Data
	Business-Focused Calculations
	Trustworthy Data and Calculations
	Speed-of-Thought Analysis
	Flexible, Self-Service Reporting

	OLAP Primer
	OLAP System Components
	OLAP Types
	OLAP Products
	OLAP with a Data Warehouse
	Typical OLAP Applications

	Why Two OLAP Products from Oracle?
	Similarities Between Essbase and Oracle OLAP
	Differences Between Essbase and Oracle OLAP

	OLAP Business Case Studies
	Essbase Case Studies
	Oracle OLAP Case Studies

	Architecting the Appropriate OLAP Solution
	Choosing the Solution That Meets Your Needs
	Better Together

	Conclusion
	References

	2 OLAP Concepts and History
	Common OLAP Themes
	Multidimensional View of Information
	From Data Source to Multidimensional Data
	New Results from Existing Data
	Ad Hoc Analysis: Having a Conversation with Your Data
	Summary of Common OLAP Themes

	The History of Oracle OLAP
	Why a Multidimensional Database?
	1960s to 1985—Glory Days of Mainframe Express
	1985 to 1990—A New C-Based Engine
	1990 to 1996—Express Goes GUI
	1995 to 1997—Oracle Buys and Markets Express
	1998 to 2001—Integrating Express into the Oracle Database
	2002 to 2003—Oracle9i OLAP
	2004 to 2006—Oracle OLAP 10g
	2007 to 2009—Oracle OLAP 11g
	2009 and Beyond

	The History of Essbase
	Why Essbase?
	1992 to 1994—Essbase Is Born
	1994 to 1998—APIs and the Essbase Web Gateway
	1998 to 2003—New Reporting Options for Essbase
	2003 to 2007—Aggregate Storage and Hybrid Architecture
	2007 to Present—Essbase Powers Oracle EPM and BI

	Conclusion
	References

	3 Design and Overall Methodology
	General Design Principles
	Design Is an Iterative Process
	User Requirements Drive Design
	What's Left Out Is as Important as What Goes In
	Dimension Types Offer Convenience
	Data Types Improve Data Quality
	Different Uses Require Different Views of the Data
	User Access and Security Needs Planning
	Allow Areas for Training and Testing

	Designing an Oracle OLAP Analytic Workspace
	Determining Dimensions from User Requirements
	Relating Oracle OLAP Data to a Star Dimensional Model
	Mapping Relational Data to Multidimensional Objects
	Determining Dimensions of Cubes
	Designing Oracle OLAP Cubes
	Summary of the Oracle OLAP Design Process

	Designing an Essbase Database
	Identifying Data Sources
	Defining the Outline
	Validating the Outline with Business Users
	Enhancing the Outline
	Choosing a Data Storage
	Considering Partition Strategies
	Summary of the Essbase Design

	OLAP Architectures
	Oracle OLAP Architecture and Components
	Essbase Architecture and Components
	End-User Tools

	Conclusion
	References

	4 Building an Oracle OLAP Analytic Workspace
	Oracle OLAP Demonstration Overview
	From Source to Cubes with Analytic Workspace Manager
	Getting Started with Analytic Workspace Manager
	Preparing the Data
	Creating an Analytic Workspace
	Creating and Populating Dimensions
	Creating and Populating Cubes
	Summary of the Cube-Building Process

	Adding Business-Savvy Calculations to Cubes
	Creating a Share Calculation
	Creating a Percent Different Prior or Parallel Period Calculation
	Creating a Moving Average Calculation
	Creating Custom Calculated Measures
	Managing Calculated Measures

	Advanced Topics
	Managing Workspaces with OLAP Worksheet
	Working with Cube-Organized Materialized Views
	Managing Security of Cubes and Dimensions
	Creating Advanced Cubes for Typical Business Purposes
	Using SQL with OLAP

	Conclusion

	5 Building Your Essbase Database
	Demonstration Overview
	From Source to Database with Essbase Studio
	Overview of Essbase Studio
	Mapping Data Sources
	Modeling the Data Source
	Building Dimensions (Hierarchies)
	Modeling the Essbase Database
	Deploying the Essbase Database
	Summary of the Database Building Process
	Calculating the Essbase Database
	Validating the Essbase Database

	Using Essbase Features
	Creating Drill-Through Reports
	Leveraging Lineage Tracking
	Creating Custom Load Rules
	Creating Member Formulas and Calculation Scripts
	Using Essbase Query Languages for Reports

	Automating Processes
	Using ESSCMD
	Using MaxL

	Conclusion

	6 Reporting from an OLAP Application
	User Discovery
	Identifying the Consumers of OLAP Reports
	Gathering Information About Your Users
	Discussing the Reporting Needs of Your Users

	Types of Reports
	Basic Report
	Compound Report
	Dashboard Report
	Production Reports
	Interactive Management Reports
	Ad Hoc Spreadsheet Reports
	Custom Microsoft Office Reports

	Desirable Functionality in Web-Based OLAP Reporting
	Creating the Skeleton of a Report
	Adding Functionality to a Report

	Desirable Functionality in Desktop-Based Reporting
	Integrated Database Connection
	Powerful Ad Hoc Analysis Features
	Easy Report-Creation Tools
	Visualization

	Understanding Deployment Options
	Fitting in with Enterprise Standards
	Web-Based Deployment Options
	Desktop-Based Deployment Options

	Third-Party Reporting Applications
	Third-Party Reporting Tools for Oracle OLAP
	Third-Party Reporting Tools for Essbase

	Conclusion
	References

	7 Leveraging OLAP in Your Organization
	Performance Management Applications Leveraging Essbase
	Oracle Hyperion Planning
	Oracle Hyperion Profitability and Cost Management
	Oracle Hyperion Enterprise Performance Management Architect
	Architecture of Performance Management Applications

	Oracle Crystal Ball with Essbase
	Crystal Ball and Monte Carlo Simulation Methods
	Crystal Ball Analysis
	Crystal Ball with Planning Models
	Crystal Ball Decision Optimizer

	Oracle Smart Space with Essbase
	Smart Space Desktops
	Smart Space Gadgets
	Software Development Kit

	Oracle Application Express for Oracle OLAP
	Java Development
	Using Oracle BI Beans with Oracle OLAP
	Connecting Java Applications to Essbase

	Conclusion
	References

	8 Keeping It Running
	Oracle OLAP Care and Maintenance
	Configuring and Tuning Oracle OLAP
	Backing Up Oracle OLAP
	Troubleshooting Oracle OLAP

	Essbase Care and Maintenance
	Optimizing Essbase
	Backing Up Essbase

	Conclusion
	References

	9 Real-World Examples
	Oracle OLAP Examples
	Accelerating a Data Warehouse
	Analyzing Projections
	Analyzing Financial Data

	Essbase Examples
	Replacing the Excel Workbook
	Enhancing an ERP System
	Replacing Custom SQL Reports

	Conclusion
	OLAP as a Cornerstone of BI
	References

	Glossary
	A
	B
	C
	D
	E
	F
	G
	H
	I
	L
	M
	O
	P
	Q
	R
	S
	T
	U
	V
	X

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

