199nipns

0111101001100101

1;:
1001100111010100 L

4 \ " .
. -}}

Forensics ||

Usage of RCE?
Managed code and obfuscation
Assembly basics
Executable formats [some repetition]

What is Reverse Code Engineering?

Some people say "Reverse Engineering is an art"

— It is more an application of standard methods that evolve constantly, actually,
everybody can learn these methods and start to RE executables

Reverse engineering is like solving a jigsaw puzzle

— In order to see the whole picture you need to find the corner pieces, then the
frame, and then work your way forward from there
The corner pieces for reversing are strings, constants and function
names

— The function names that people normally start with are the one's imported from
shared libraries (e.g. DllIs)

— Strings contain human readable hints about the functionality
— Specific constants add more clues to solve the puzzle or can sometimes even be
used to identify certain (types of) algorithms
The major problem is that a lot of experience is needed to identify
strings, constants and to know what the combination of imported
functions may result in

Usage of Reverse Engineering

* Common uses of reverse engineering include
— Recovery of business data from proprietary file formats

— Creation of hardware documentation from binary drivers, often for
producing Linux drivers from Windows or Apple drivers

— Enhancing consumer electronics devices

— Malware analysis and creation, often involving a search for
security holes when systems inter-operate

— Discovery of undocumented APIs that may be useful
— Military or commercial espionage
— Copyright and patent litigation

— Breaking software copy protection (legally and not), often for
games and expensive engineering software

— Academic/Learning purposes and curiosity
— Etc. ...

Patent troll

* Example Rockstar
— Owned by Apple, Microsoft, BlackBerry, Sony and Ericsson

— Bought Nortel patents (former Canadian telecom company) worth
$4,5 billion in 2012

— “Rockstar produces no products
and practices no patents.
Instead, Rockstar employs
a staff of engineers in
Ontario, Canada, who examine
other companies’ successful
products to find anything that
Rockstar might use to demand
and extract licenses to its
patents under threat of litigation.”
- Google 2013-12

RCE of managed code 1

* Managed code
— .NET family of languages, Java etc.
— CLR (Common Language Runtime), JVM (JRE)

— Java bytecode and the Common Intermediate Language CIL
(previously known as MSIL - Microsoft Intermediate Language)

bytecode
* CLI (Common Source code | Bytecode | Native code
Language 4 | compie
Infrastructure) <
VB.NET compiler CLR
VB.NET P CIL code P Native code
* Obfuscation
— Fight other NET Other compiler
decompilers | |'anguage >
and

disassemblers |

Compile time ‘ Runtime

RCE of managed code 2

Managed code is much more simple than native code to RCE,
Why??

If not obfuscated more or less a source backup can be made!
Red Gate .NET Reflector pro (trial)

— VS debug and decompile support
— http://www.red-gate.com/products/dotnet-development/reflector/
Free .NET Reflector v6 and add-ins
— http://27.am/posts/how-to-download-net-reflector-6-for-free
— Many useful add-ins
— https://reflectoraddins.codeplex.com/
— http://www.red-gate.com/products/dotnet-development/reflector/add-ins
Reflector demo of LookingGlassReflector program
— Export disasseblies to files

RCE of
managed
code 3

Tutorial

- https://www.simple-
talk.com/dotnet/.net-
tools/first-steps-with-.net-
reflector/

Free alternatives to
Reflector (.NET
decompiler)

http://blog.wibeck.org/201
3/02/free-options-for-
reflector-net-decompiler/

" Red Gate's .NET Reflectar

= mreecorib

w2 Syrsbermiml

~ Sysberm Diats

=3 SyrstemDravwing

O Systerm. Windows . Forms

= Wy Systern Windows, Foems. dl
% =gl References

-

) System

[} System Rescurces

= L} System Windoes. Forms
* u# AccessbleEverss

" G-

El

£ ApplcationContext

o Arangeliection

M ArvangeStartngPoskion
o A ecion

a5 n e

15-

_._f-' Mu{mﬂtm

¥ Aol onpeshe 30O

“f AuhoCompheteStringColedtion

< >

EEHEEEEEEEEEEEEREE BB E

pulic class Button : ButtonBase, [ButionControl
Manne: System. Veindows. Forms. Button
Assembly: Syskbam. Windows Forms, Yersone2, 0,000

b

[ComVisble(tres),
public class Button : ButtorBase, [BubtonContro

i

H

Expand Methods

€

=

Disassembler pane

DesgnerSyshem Windows P Dresign ButtonBaseDes

prr-'-:ﬂe-w-e-ﬂ.t dialog_result;

[EditorBrowes shls(EdiorBrowsshlst ste, Advanc ad), Brovessbis(f slse)]
publc syvank EvertHardar DoubleClick;

[B bl f aboss), Bt orBrowvsabla{EdiborBromeablasste, fdvarad)]
publc svent MoueEventHendisr MouseDoubleChick;

p-.tl-:mttml'_:-;

rhernal iverrice voed DrassPantEventAngs peverd];

irkernal ik Size GetPrefercedSizeCoreSioe propossdsizel;
publc virtual void NotifyDefault{bool value);

protected ovesride vosd DNCIki(E vertArgs e

proteched override voud DnFontChanged(Evercargs el
provected overide vodd DnMouseEntenEwertargs o)
probected cverride voud OnMouseleave(Evertangs e
provected override vold DnMouseUpMoUseE ventir gs mevent];
provected override vold OnTextChanged(EventSngs el;

publs void PerformiClick);

protected override bool ProcessMnemoniciche charCode);
public overide string ToString();

probected override vold WndProcref Mescsge m);

[I'.‘wcn'-ul.i:\'d.le{lil Lot slizabsbaitnue), Browrssbie(bos)]
publc feofizeiods AuboSineMode | gat; st b
protected override Crastelsrans CreabePararms | ost; }
[Dadf sl adus{ioh]

publie virtual DiskooR el DislogReslt | get; aet; |

i System. Windows, Forms Butbon
¥ Depencs On

0¥ Lsed By

0 Exposed By

(8 Dnstantiabed By

BHEE P

Analyzer pane

Protect managed code 1

Why you need obfuscation?
* Goal of obfuscation — Create confusion

Benefits of obfuscation
— Post-development recompilation system

— It analyzes applications and makes them smaller, faster, and harder to
reverse-engineer (more secure) - In short, it makes them better!

Renaming (code renamed to compact names) and overload induction

— Rename as many methods and variables as possible to the same name,
use return type and parameters as a criterion in determining uniqueness

String Encryption — Makes it very hard to locate strategic logic
Control Flow Obfuscation — Produces spagetti logic, hard to analyze
Pruning — Removes unused code

Assembly Linking — Merge multiple assemblies into one

* Watermarking — Embed a signature

Debugging Obfuscated Code - bug reports, stack traces etc. is a problem
— Using the renaming map file with special tools can decode stack traces

Obfuscation examples C#

Renaming and Overload Induction

Reverse-Engineered Source Code

Original Source Code Before Obfuscation After Overload Induction Dotfuscation
private void CalcPayroll(SpecialList employeeGroup) { orivate void a(a b) {
while (employeeGroup.HasMore()) { while (b.a()) {
employee = employeeGroup.GetNext(true); I a = b.a(true);
employee.UpdateSalary(); a.a(); '
DistributeCheck(employee); a(a)"
})
})
. . Reverse-Engineered Source Code
Renaming and Control Flow Obfuscation| . - Control Elow Obfuscation
—) public virtual int _a(Object A_0) {
Original Source Code Before Obfuscation int localo. locall:
(Snippet from WordCount.cs C# example code) localO = this.a — (c) A_0.a;
public int CompareTo(Object o) { if (local0 != 0) goto iO;
int n = occurrences — ((WordOccurrence)o).occurrences; goto il;
if (n==0) { while (true) {
n = String.Compare(word, ((WordOccurrence)o).word); return locall:
} i0: locall = localO;
return(n); }
} i i1: localO = System.String.Compare(this.b, (c) A_0.b);
goto i0;
}

Protect managed code 2

* PreEmptive
Dotfuscator
Community
edition bundled
with VS 20*

* String encryption

Disassembler

private void Ofint CI)

{
O.0("O", new abject[] { this, O });

}

Good list;

Start .
4 {¥ Dotfuscatorl Getting Started
= Inputs . Exclusions
2 Properties
4 |/ Configuration Options .
| 0 Analytics Built-In Rules
) 3 Renaming Options

—_—

@ PreEmptive Dotfuscator and Analytics CE - Dotfuscatorlxml*

Eile VMiew Build Toocls Help

& Results

Secure .NET Software
Development Lifecycle

Develop
and Build
[Use Sacura

Coding

Principles)

IS

Protect

= Pratect MET Code

cator

Deploy
(Manitor for
Broaches)

\ S

Test
(Penetration
Testing)

[=] Build Output

Ready.

[

http://www.csharp411.com/net-obfuscators/

Protect managed code 3

* Confuser - free

* http://confuser.
codeplex.com/

Features:

» Antl debugger

» Antl memory dumping

» Anti decompiler

» Prevent any tampering of the assemblies
» Encrypt codes

» Encrypt constants {l.e. numbers & strings)
» Encrypt resources

» Control flow obfuscation

» External/Internal reference proxy

» Renaming

Assemblies

~® Mono.Cecil
-
~m Confuser.Core

Confuser v1.8.0.0 - confuser.crproj *
Options Basic settings Confuse!

Anti Debug Confusion

Anti Dumping Confusion

[anti 1L Dasm Confusion

Anti Tampering Confusion

| Constants Confusion const encrypt Mimimum

|Cundmdnf Proxy Confusion ctor proxy Normal

Control Flow Confusion
Invalid Metadata Confusion

Method Proxy Confusion

[Name Confusion

Reduce Metadata Confusion

Resource Encryption Confusion

Apply To Members

List: http://en.wikipedia.org/wiki/List_of obfuscators for .NET

Java decompilers, debuggers
and obfuscators

* The builtin one
javap -c class-file

* Best java
decompiler is
free!l —

* Others
— DJ Java
— Jad

* ProGuard

— Obfuscator
* JDebugTool

JDebug

Tool
debugtools.com

& Java Decompiler -0l x|
File Edit Mavigate Help
=y o »

Integet.class ¥

petstore-ejb3.0.jar ¢ | Object.class

Skring. class

CharSequence. class

'Ea' META-INF
E|EE petskare

=4 eib

E---E} dan

----- [J] EXBCatalogDad,class
----- [J] EIBCataloaDACRemate. tlass
=-F3 model
----- [J] EntityCategory.class
----- m EntitvCakeqoryDetail, class
----- [J] EntityTtem, class
----- [J] EntityTtemDetail.class
----- [J] EntityPraduct. class
----- [J] EntityProductDetail. class

B £ kil

EJECatalogDad, class EntityCategory.class

JD-GUI

demo if time
permits

http://jd.benow.ca/

import Jjavax.perzsistence.PerzistenceContext;
import jawvax.persistence.Table;

FEntity
[Tahle (name="CATEGORY™]
public class EntityCateqory
{
[PersistenceContext
private EntityManager em;
private int id:;

private Map<3tring, EntityCategqoryDetail> details;

public EntityCategory()
{

this.id = 0;

this.details = new HashMap():
'

[EId
[Generatedv¥alue
[AColunn (name="ID"]
public int getId()
{

return this.id;

< |

Firnd:

j "}][5 i} Previous ¥ Case senstive

http://java-source.net/open-source/obfuscators

|A-32 (x86) assembly
Internal buses and

Segment registers ’ \\
|5 0 Address bus
cs ™, / Memory
Ds iy
55 Control unit Data bus
ES
g ~, I/ peripherals
i Control bus
| | el \l—l/
| |
-' ALU
3 g « Address bus
EFLAGS
e — Select addresses to
e read/write to memory
L L M T « Data bus
EAX AH AL | AX
EBX BH | BL |BX — Move data around the
ECX CH | L |ex CPU and to/from memory
EDX DH DL | DX
s = * Control bus
€| o |k — Control external devices
uRE BP oy and execute instructions
ESP SP
Figure 7-1 Diagram of the inside of a modern Intel processor

Floating point registers, ST(0) through ST(7) , 80 bits wide

Debug registers DRO - DR7

registers

GENERAL PURPOSE 32-BIT REGISTERS

EAX
ECX
EBX
EDX
ESI
EDI
ESP
EBP

Contains the return value of a function call.
Used as a loop counter. "this" pointer in C++.
General Purpose

General Purpose

Source index pointer

Destination index pointer

Stack pointer

Stack base pointer

SEGMENT REGISTERS

cs
SS
DS
ES
FS
GS

Code segment

Stack segment

Data segment

Extra data segment

Points to Thread Information Block (TIB)
Extra data segment

Misc. REGISTERS

EIP
EFLAGS

Instruction pointer
Processor status flags.

STATUS FLAGS

ZF
CF
SF
OF

Zero: Operation resulted in Zero

Carry: source > destination in subtract
Sign: Operation resulted in a negative #
Overflow: result too large for destination

16-BIT AND 8-BIT REGISTERS
The four primary general purpose registers (EAX, EBX,
ECX and EDX) have 16 and 8 bit overlapping aliases.

EAX 32-bit

16-bit
8-bit

AX
AH |

AL

EFLAGS

33029282726252423222120191817161514131211109 8 7 6 5 4 3 2 1 0

VaRY

I AVIR
DDDDDDDDDDDII{:I?J‘F

o|p|1|T|s|z
P|F F

N A
o7 F

I
o
P
L

ID Flag (1D} ‘
Virtual Interrupt Pending (VIP)

Virtual Interrupt Flag (VIF)
Alignment Check (AC)
Virtual-8086 Mode (VM)
Resume Flag (RF)
Nested Task (NT)
I/O Privilege Level (IOPL)
Overflow Flag (OF)
Direction Flag (DF)
Interrupt Enable Flag (IF)
Trap Flag (TF)
Sign Flag (SF)
Zero Flag (ZF)
Auxiliary Carry Flag (AF)
Parity Flag (PF)
Carry Flag (CF)

RCE _
S flags

DOV XXKXOWMXKXXX X X XXX

Indicates a Status Flag
Indicates a Control Flag
Indicates a System Flag

X Ow

Reserved bit positions. DO NOT USE.
Always set to values previously read.

Ad d reSS I n g m Od e The Netwide Assembler

<mnemonic> <dest>, <src> http://www.nasm.us/
Addressing Mode Description NASM Examples
Register Registers hold the data to be manipulated. No mov ebx, edx
memory interaction. Both registers must be the add al, ch
same size.
Immediate Source operand is a numerical value. Decimal is mov eax, 1234h
assumed; use h for hex. mov dx, 301
Direct First operand is the address of memory to mov bh, 100
manipulate. It's marked with brackets. mov[4321h], bh
Register Indirect The first operand is a register in brackets that mov [di], ecx
holds the address to be manipulated.
Based Relative The effective address to be manipulated is mov edx, 20[ebx]
calculated by using ebx or ebp plus an offset
value.
Indexed Relative Same as Based Relative, but edi and esi are used mov ecx, 20[esi]

to hold the offset.

Based Indexed-Relative The effective address is found by combining mov ax, [bx][si]+]
based and indexed modes.

* Intel Hex Opcodes (the binary instructions) And Mnemonics
— [server]\tools\IDA Pro\opcodes.hlp

Microsoft Macro Assembler

; MASM Hello World! Console program

; Visual Studio vcvars32.bat or CMD prompt
; ml.exe cons.asm /link /subsystem:console
.386

.model flat, c

includelib kernel32.1lib

.data

szHello db 'Hello, world!',60dh,Oah
Hellolen equ 15

STD_OUT HANDLE equ -11

.code

GetStdHandle PROTO stdcall :DWORD

WriteConsoleA PROTO stdcall :DWORD,
:DWORD, :DWORD, :DWORD, :DWORD

WriteConsole equ WriteConsoleA
ExitProcess PROTO stdcall :DWORD
start proc c public

local hStdout: DWORD

local dwNumWrit: DWORD

invoke GetStdHandle, STD_OUT_HANDLE
mov [hStdout], eax

lea edx, [dwNumWrit]

invoke WriteConsole, hStdout, offset
szHello, Hellolen, edx, O

invoke ExitProcess, 0
start endp

end start

; ml.exe mbox.asm /link /subsystem:windows
.386

.model flat, stdcall

option casemap:none

include \masm32\include\windows.inc
include \masm32\include\kernel32.inc
includelib \masm32\lib\kernel32.1lib
include \masm32\include\user32.inc
includelib \masm32\lib\user32.1lib

.data

MsgBoxCaption db "An example of Cancel,

Retry,Continue",0

MsgBoxText db "Hello Message Box!",0
.code
start:
invoke MessageBox, NULL, addr MsgBoxText,

addr MsgBoxCaption,

MB ICONERROR OR MB ABORTRETRYIGNORE
.IF eax==IDABORT

; Abort was pressed

-ELSEIF eax==IDRETRY An example of Cancel Retry Continue

; Retry was pressed

[@] Hello Message Box!

Abort | Retry

.ELSEIF eax==IDCANCEL
; Cancel was pressed

.ENDIF

Ignare

invoke ExitProcess,NULL

end start

ASM commands/operators

* In most cases you will only be dealing with the general purpose
registers, the instruction pointer, the segment registers and the status

register

* OFFSET - Returns the offset from the beginning of the data segment
* PTR - Used to override the default size of an operator (casting in C)

* SIZEOF -AsinC

* Hex dump - opcodes
— 0x55, 0x8BEC, 0x83C4F8, Ox6AF5, Ox...

* Shellcode to x86 (asm, exe) converter

.data

.code

myDouble DWORD 1234h

mov ax, myDouble ; error is raised!
; two ways to fix it, how?

Hello World (cons.asm) as OllyDbg show it with MASM disasm syntax

http://zeltser.com/r
everse-
malware/convert-
shellcode.html

Ba461661
aa481 663
BE4E1 8685
BE4E1 665
BE4E1 660

BE4E 1525
BE4E 1827
AE4E1E2C
AE4E1 832
BE4E] 828

Address |Hex dump

Dicassembly

Comment

"5 E5
. SBEC

. 93C4 Fa

- BH F&

. E& 1FoB&a0E:s
. 8945 FC

. 80EE F2

. EA 8@

« 52

. 5H @F

. EE BE3E4 860

. FF?S FC
. E& BDoasacEs

. BA Ba
ES @CBanEaa

"i-FF25 DEZB4DoD
f-FFZ5 QRZR400D
—FFZ5 4204000

FUsH EEBF

Mow EEF,ESF

AOD ESP, %2

FUSH -8B

CALL <JHP.&KERMELZSZ2.GetStdHand e

HMOL DWORD PTR S55: CEEP-41,ERX

LER EDX,OWORDO PTR S55:[CEEBP-21

FUSH @

FUSH ED

FUSH &F

FUSH cons. 884830606

FUSH OWORD FTR S55: [EEF-41

CALL <JHP.&KERMELSZ.WriteConsolerds

FUSH &

CALL <.JHP.&KERMELZZ.Ex itProcess>

JMP DWORD PTR OS: [<%KERMELZ2Z. GetStdHand
JMP DWORD PTR OS: [<%KERMELZZ. WriteConso
JHMP OWORD PTR O5: C<&KERHELZ2Z.Ex itProces

OewTupe = STO_OUTPUT_HAHOLE
GetStdHandle

pReserwed = MULL
plicitten

CharsTollrite = F [15.1
Euffer = cons.B8483084
hConsole

WriteConsoler

ExitCode = @

Ex itProcess
kernel32.GetStdHand le
kernel32.WMriteConsolerd
kernel32.Ex itProcess

TITLE Krypteringsprogram by hjo

INCLUDE C:\ASM_IA32\Irvine32.inc .
XORVAL = 239 ; cryptkey - rVI l le

.data MASM

plainString BYTE 80 DUP(0) ,0 o) o)

cryptString BYTE 80 DUP(0),0 — http://en.wikipedia.org/wiki/Microsoft_Macro_Assembler
copyString BYTE 80 DUP(0),0

byteCount DWORD ? — http://www.masm32.com/

.code * Easy Code

main PROC

Xor eax,eax ; nollstall eax - http://WWW'eaSyCOde-Cat

mov edx ,OFFSET plainString
mov ecx,SIZEOF plainString
;call DumpRegs

http://en.wikipedia.org/wiki/Comparison_of assemblers

call ReadString ; Reads string from stdin

mov byteCount, eax ; spara antal tecken

mov esi,O Easy PC ASM Stal‘t'
1pl: . .

mov al,plainString[esi] ; char in al http//klplwlnecom/asm/
Xor al, XORVAL ; kryptera bokstaven

mov cryptString[esi] , al ; spara krypterade char

inc esi

o g ~ ASSEMBLY

mov edx ,OFFSET cryptString

call WriteString ; echo crypt string LANGUAGE

mov byteCount,esi ; get len of crypt string FOR x86 PROCESSORS
mov esi,O ; reset index

1p2:

mov al,cryptString[esi]

Xor al, XORVAL ; dekryptera bokstaven

mov copyString[esi] ,al ; spara dekrypterade char i en kopia

inc esi

dec byteCount

jnz 1p2

mov al,O0Ah ; skriv nyrad LF

call WriteChar

mov edx ,OFFSET copyString

call WriteString ; echo decrypted copy string
exit

main ENDP

END main

Function calls and the stack

* The cdecl calling convention is used by many C systems for the x86
arch}teoture. In cdecl, function parameters are pushed on the stack in a right-
to-left order.

— Function return values are returned in the EAX register (except for floating point
values, which are returned in the first floating point register fp0). Registers EAX,
ECX, and EDX are available for use in the function.

* For instance, the following C code function prototype and function call:

int func(int, int, int);

inta, b, c, x; The Stack
_ . Low Empty
X= func(a, b, C)’ Addresses
. . Local Variables <ESP paints here

Will produce the following x86 Assembly code pop

(written in MASM syntax, with destination first):

T EBP-x <-EBP points h

h U EBP+x | Saved EBP points here
push C Return Pointer
push b pUSh Parameters
pUSh a ;a;ent function's

1] .t . a a

call func ; We goto the Iat?el func:” assembly sub routine High Grand-parent
add esp, 12 ; Stack Cleanlng Addresses | function's data

mov X, eax ; EAX will be set in sub

* The calling function “cleans” the stack after the function call returns

http://en.wikipedia.org/wiki/X86_calling_conventions

RCE and calling conventions

* The main differences between the calling conventions

— __cdecl is the default calling convention for C and C++ programs. The
advantage of this calling convention is that it allows functions with a
variable number of arguments to be used.

Example: int printf (const char * format, ...);

« Stack cleanup is performed by the caller

— __stdcall is used to call Win32 API functions. It does not allow functions to
have a variable number of arguments

« Stack cleanup is performed by the called function

— __fastcall attempts to put arguments in registers, rather than on the stack,
thus making function calls faster

— Thiscall calling convention is the default calling convention used by C++
member functions that do not use variable arguments

« Stack cleanup is performed by the called function
* "Calling Conventions Demystified” - stack, functions prolog and epilog
— http://'www.codeproject.com/KB/cpp/calling_conventions_demystified.aspx

Executable formats

* Executable file formats

— ELF32/64, PE32/64, COFF32/64 (.exe, executable rights)
— Obiject code (.0)
— Shared libraries (.dll, .so)
 Different versions of the application
— Source code

— Debug binary Going from source code to a binary excutae
 Contains debug info Snun:e . Comular ’ qu?ﬂ.'_.fd’ - ’ h
— Regular binary Executaple

* Dynamic linked libraries
— Regular binary

 Static linked libraries
— Stripped binary

* Symbols are removed

http://en.wikipedia.org/wiki/Category:Executable_file_formats

Executable file formats

* Symbols

— Defined symbols, which allow it to be called by other modules
— Undefined symbols, which call other modules where these symbols are

defined

— Local symbols, used internally within the object file to facilitate relocation

* Linker
— Linking of libs and obj files resolving symbols
— Arranging objects in programs address space
— Relocation of code

* What is relocation?

lib | |obj| |obj
lib | | dil | |exe

— Combine all the objects sections like .code (.text), .data, .bss, etc. to a

single executable

— Replacing symbolic references or names of libraries with actual usable

(runnable) addresses in memory

PE basic concepts

There are 4 ways to refer to a location in a PE image

Executable File Offset from beginning of the file/image (on disk)
Relative Virtual Address (RVA)

— Offset from the base address once the image has been mapped into
memory (RAM), RVA = target address — base address

— Various sections needs to be aligned which creates memory holes in
memory (less present in the file), called code caves

Section (or view) offset
— This is the offset from the data structure you currently are in
Virtual address

— This is a full pointer to the address space of the process in memory
— VA = RVA + base address

For almost all executables the image base address is 0x400000

For DLLs the base address can vary since it can collide with other
DLLs

Note! Base address == load address and target address == Virtual Address

X86 Win32_ Reverse Engineering Cheat Sheet.pdf

Pointer to Raw Data
Size of Raw Data
RVA

Virtual Address (VA)

Virtual Size

Base Address
ImageBase

Module

Pointer

Entry Point

Import

Export

RVA->Raw Conversion
RVA->VA Conversion
VA->RVA Conversion
Raw->VA Conversion

Terminology and Formulas

Offset of section data within the executable file.

Amount of section data within the executable file.

Relative Virtual Address. Memory offset from the beginning of the executable.
Absolute Memory Address (RVA + Base). The PE Header fields named
VirtualAddress actually contain Relative Virtual Addresses.

Amount of section data in memory.

Offset in memory that the executable module is loaded.

Base Address requested in the PE header of a module.

An PE formatted file loaded into memory. Typically EXE or DLL.

A memory address

The address of the first instruction to be executed when the module is loaded.
DLL functions required for use by an executable module.

Functions provided by a DLL which may be Imported by another module.

Raw = (RVA - SectionStartRVA) + (SectionStartRVA - SectionStartPtrToRaw)

VA = RVA + BaseAddress

RVA = VA - BaseAddress

VA = (Raw - SectionStartPtrToRaw) + (SectionStartRVA + ImageBase)

File offset and RVA 0
/ Base of Image Header

Microsoft PE format

Microsoft Portable Executable and Common Object File Format Specification

MS-DOS 2.0 Compatible
EXE Header

Unused

%

OEM Identifier
OEM Information

Offset to PE Header

MS-DOS 2.0 Stub Program
and
Relocation Table

Unused

A

PE Header
(Aligned on 8-byte boundary)

Section Headers

* Portable EXE File Layout
— Not architecture specific

The PE file header consists of a
__—— MS DOS stub (IMAGE_DOS_HEADER)
MS-DOS 2.0 Section _ IMAG E_NT_H EADERS

r (for MS-DOS v
* The PE signature (DWORD, PE)

compatibility, only)
* The COFF file header
(IMAGE_FILE_HEADER)

* And a not so optional header
_ (IMAGE_OPTIONAL_ HEADER)

* In both cases (PE and COFF), the file
headers are followed immediately by a

B

.

Import Pages
Import information
Export information
Base relocations

section headers table

. - Which point to .text, .data, .rdata etc.

Resource information

* OpenRCE.org

— PE Format.pdf (very good!)

http://www.microsoft.com/whdc/system/platform/firmware/PECOFF.mspx

Microsoft PE/COFF format

Microsoft COFF Header

Section Headers

Raw Data
Code
Data
Debug information
Relocations

PE/COFF
IMAGE_FILE_HEADER

—

Offset

— O

* Common Object File Format

— PE structure is derived from COFF

* A COFF object file header consists of a

— PE/COFF file header (IMAGE_FILE_HEADER)
— And the optional header (IMAGE_OPTIONAL_HEADER)

Size
2

Field

Machine

Description
The number that identifies the type of target machine. For
more information, see section 3.3.1, “Machine Tvpes.”

NumberOfSections

The number of sections. This indicates the size of the section
table, which immediately follows the headers.

12

TimeDateStamp

PointerToSymbolTable

NumberOfSymbols

The low 32 bits of the number of seconds since 00:00 January 1,
1970 (a C run-time time_t value), that indicates when the file
was created.

The file offset of the COFF symbol table, or zero if no COFF
symbol table is present. This value should be zero for an image
because COFF debugging information is deprecated.

The number of entries in the symbol table. This data can be
used to locate the string table, which immediately follows the
symbol table. This value should be zero for an image because
COFF debugging information is deprecated.

16

SizeOfOptionalHeader

The size of the optional header, which is required for
executable files but not for object files. This value should be
zero for an object file. For a description of the header format,
see section 3.4, “Optional Header (Image Only).”

18

Characteristics

The flags that indicate the attributes of the file. For specific flag
values, see section 3.3.2, “Characteristics.”

Microsoft PE/CQFF format

struct _IMAGE_OPTIONAL_HEADER {
0x00 WORD Magic;

) O pti O n a I h ead e r ox02 BYTE M.ajDﬂJ:ﬂkBlVEfS?ﬂﬂE
(IMAGE_OPTIONAL_HEADER) 0104 DWORD SizeOiCods:

0x08 DWORD SizeOfinitializedData;
—_ c - i I i 0x0c DWORD SizeOfUninitializedData;

Mag|C 32/64 blt appllcatlon 0x10 DWORD AddressOfEntryPoint;
0x14 DWORD BaseOfCode;

- Addl’eSS Of Entry POlnt (+ |mage base) 0x18 DWORD BaseOifData;
Oxic DWORD ImageBase;

— Base of Code and Data 0x20 DWORD SectionAlignment
0x24 DWORD FileAlignment;
—_— 0x28 WORD MajorOperatingSystem\ersion;
Image Base 0x2a WORD MinorOperatingSystemVersion;
— Subsystem, DIl Characteristics o0 WORD Maorimasovorion
0x30 WORD MajorSubsystemVersion;
- EtC 0x32 WORD MinorSubsystemVersion;

* IMAGE_DATA_DIRECTORY 038 DWOTD SoeOtmage

0x40 DWORD CheckSum;

— Size and RVA to 0x44 WORD Subsystem;
0x46 WORD DICharacteristics;
° [O] Export tab|e 0x48 DWORD SizeOfStackReserve;

0xd4c DWORD SizeOfStackCommit;

* [1] Import Descriptor Table 0x38 DWORD ScOTt eapGommit:
— 0x58 DWORD LoaderFlags;
* [12] Import Address Table 0x5c DWORD Nu?nt?ér(?f?%aﬂmdﬁizes;
. . — | ox60 _IMAGE_DATA_DIRECTORY DataDirectory[16];
* Etc. 16 entries in total (10h) k

* An In-Depth Look into the Win32 Portable Executable File Format

http://msdn.microsoft.com/en-us/magazine/cc301805.aspx

Import tables (IDT, IAT) 1

* Index 1in IMAGE_DATA_DIRECTORY, the
IMAGE_DIRECTORY_ENTRY_IMPORT have a RVA to where the
IMAGE_IMPORT_DESCRIPTOR array begins (Import Directory Table)

* The array contains all DLLs (Name) the PE file is linked against

* The last import descriptor have all fields zeroed - marks array end
* OriginalFirstThunk is a RVA as is Name (of DLL) and FirstThunk

As the comments indicate, there
are in fact two import tables for
each DLL

Where the non-zero (union),
OriginalFirstThunk refers to the
"Unbound" Import Table

FirstThunk, on the other hand,
refers to the "bound” Import
Address Table (IAT)

rStruct _IMAGE_IMPORT_DESCRIPTOR {

0x00 union{
/* 0 for terminating null import descriptor */
0x00 DWORD Characteristics;
/* RVA to criginal unbound AT */
0x00 PIMAGE_THUMNK_DATA CriginalFirstThunk;
b us
0x04 DWORD TimeDateStamp; {* 0if not bound,
* -1 if bound, and real date'time stamp
* in IMAGE_DIRECTORY_ENTRY_BOUND_IMPORT
" (new BIND)
* otherwise date/time stamp of DLL bound to
*{Old BIND)
“
0x08 DWORD ForwarderChain; {* -1if no forwarders */
0x0c DWORD Name;

/* RVAto AT (if bound this |AT has actual addresses) */
0x10 PIMAGE_THUNK_DATA FirstThunk;
k

Import tables (IDT, IAT) 2

* The IMAGE_THUNK DATA data structure describes both of these
import tables - note that its type is a union
— Usually the two tables: Import Name Table (OriginalFirstThunk) and

Import Address Table (FirstThunk) looks exactly the same at rest (on
disk)

* |AT is rewritten when loaded into memory and points to the actual
addresses of imported functions

* The "Unbound" OriginalFirstThunk Import Name Table remains
unchanged

An imported function can be listed (imported)
by name (MSB=0), or it can be listed
(imported) by an ordinal number (MSB=1)
which represents its position in the DLL's
export table

If imported by ordinal the remaining 31 bits
corresponds to the ordinal number

If imported by name the remaining bits are a
RVA to IMAGE _IMPORT_BY_ NAME

-
typedef struct _IMAGE_THUNK_DATA {

union {

0x00 LPBYTE ForwarderString;

0x00 PDWORD Function;

0x00 DWORD Ordinal;

0x00 PIMAGE_IMPORT_BY_NAME AddressOfData;

put;
} IMAGE_THUNK_DATA,*PIMAGE_THUNK_DATA:;

typedef struct _IMAGE_IMPORT_BY_NAME {
0x00 WORD Hint;

0x02 BYTE MName[1];
} IMAGE_IMPORT_BY_NAME,"PIMAGE_IMPORT_BY_NAME;

Import Roadmap

- [IMAGE_IMPORT BY NAME

— The Hint can help the OS PE loader to look up the functions faster
— The Name is terminated by at least one zero (needs proper alignment)

DOS HEADER & 3TUB
PE HEADER

DLL #1

DLL #2

LI:IF'TH:INJ-ﬂkL HEADER

L DATA DIRECTORY

E

[1 2]

IMPORT ADDRESS TABLE

[1] MPORT DESCRIPTOR TAELEj

or Import Directory Table

IMAGE_THUNK_DATA

3

i

ORIGINALFIRSTTHUNEK
TIME/DATE STAMP
FORWARDER CHAIN
NAME

FIRSTTHUNK

IDT

-l naME

SHINT

NAME

ORDINAL

NAME

NAME

NAME

ASCII NAME

HINT

ASCII NAME

NAME

ORIGINALFIRSTTHUNEK
TIME/DATE STAMP
FORWARDER CHAIN
NAME

FIRSTTHUNK

_JiﬂAsn

ORDINAL

x

Il NAME |

/

Shortcut
IAT

DLL #2 DLL #1
THUNK & THUNK
THUNK THUNK
THUNK THUNK
THUNK THUNK
THUNK THUNK
THUNK THUNK
THUNK THUNK
THUNK THUNK

dll file néme

.dll function name

Definition: http://thunk.org/

So what's a thunk?

First a word on thunks, and why we have an IAT to begin with. Because each process is contained
in its own little virtual address space, and because the OS is responsible for loading a DLL into
that space, a program cannot know what base virtual address a DLL is going to be loaded at
when the program is compiled.

Furthermore, the may be loaded at a different address every time the program is run (relocated
DLL). To fix this problem, the program doesn't call DLL functions directly. Instead, it calls the
address pointed to by a known address. In assembly, ways of doing this is: (se below)

where 00408004 is a local address in the module. Ultimately address 00408004 will contain the
address of the entry point for the function which we are trying to call. This mechanism is called
a thunk. We put all of these "proxy" addresses together into a thunk table when we compile the
program so that our code never makes a direct call to an extramodular address.

We provide the operating system with a list of all the functions we want to import, and where in the
table we need their addresses to be written so that our code will wind up calling the right
location at runtime. The IAT is the thunk table which the PE loader builds for us.

I/\Tz 00408000: 12 5A 36 77 <Entry point of external function #1 Function address

00408004: 37 92 15 77 ~Entry point of external function #2 0x77159237
00401236: CALL DWORD PTR DS:[00408004] ; call IAT direct
0040123C: CALL 004015BA ; second method via thunk table
004015B4: JMP DWORD PTR DS:[00408000] ; Jump thunk table

004015BA: JMP DWORD PTR DS:[00408004] ; DataSegment direct@address ...

Memory Lavout for Windows XP

KERNEL ADDRESS SPACE - Ox@0000000 -= IxFFFFFFFF

-
USER ADDRESS SPACE - 0x00000000 > Ox7FEFFFFF
[0x40000000 = OxTFFFFFFF i

TEB 0«7 FFDEDNDOL]
[The address varies in
Windows XP 5P2)

Exerpt from
"Windows Memory
Layout, User-Kernel
Address Spaces.pdf”

OpenRCE.org

-Ux1ﬂ DWORD Base; —~ address_of_function[2]
0x14 DWORD MNumberOfFunctions; ;

_\ name_crdinal[NumberOfNames]

Export Roadmap

Index 0 in IMAGE_DATA DIRECTORY, the
IMAGE_DIRECTORY_ENTRY_EXPORT have a RVA to where the
IMAGE_EXPORT DIRECTORY array begins

struct _IMAGE_EXPORT_DIRECTORY {
0x00 DWORD Characteristics;

0x04 DWORD TimeDate Stamp; (Indexed by Ordinals]

0x08 WORD MajoriVersion;

0x0a WORD Minorersion; address_of_functicn[0]

0x0c DWORD Mame; address_of_functicn[1] — TP)

— Ao/ Dot
ar Code/Data '
0x18 DWORD NumberQOfNames; : \
Ox1c DWORD AddressOfFunctions; .

0x20 DWORD AddressOfNames; address_of_functicn[NumberOfFuncticns]
0x24 DWORD AddressOfNameOrdinals;
2

If 2 symbal N is exported by ordinal and name then:
-Its name will be located at AddressOfNames[N]
-Its ordinal at AddressOfNameOrdinals[N]

-And its address® will be

i ' i -
Array of WORDs Pointers to sirings AddressOfFunctions[AddressOfNameOrdinals[N]]
name_crd?nal [0] address_of_name[0] The functicn might be forwarded, in that case the last
name_ordinal[1] address_of_name[1] pointer will refer to an address within the exports
name_ocrdinal[2] address_of_name[2]

pointing to the forwarder string, which will contain
information on the symbcl and the medule where to
find it.

address_of_name[NumberOfiNames]

———

Microsoft PE/COFF format

Microsoft COFF Header

Section Headers

Raw Data
Code
Data
Debug information
Relocations

Section
header

* N sections headers point out
where code, data, resources etc.

are stored

* Characteristics — sections flags

RWX etc.

* Name can be set by programmer
* RVA = Relative Virtual Address

* Virtual (or target) Address

= RVA + Load (or Base) address

—

—

Offset

Size

Field
Name

VirtualSize

Description

An 8-byte, null-padded UTF-8 encoded string. If the string is exactly

8 characters long, there is no terminating null. For longer names, this field
contains a slash (/) that is followed by an ASCII representation of a decimal
number that is an offset into the string table. Executable images do not use
a string table and do not support section names longer than 8 characters.
Long names in object files are truncated if they are emitted to an
executable file.

The total size of the section when loaded into memory. If this value is
greater than SizeOfRawData, the section is zero-padded. This field is valid
only for executable images and should be set to zero for object files.

12

VirtualAddress

For executable images, the address of the first byte of the section relative
to the image base when the section is loaded into memory. For object files,
this field is the address of the first byte before relocation is applied; for
simplicity, compilers should set this to zero. Otherwise, it is an arbitrary
value that is subtracted from offsets during relocation.

16

SizeOfRawData

The size of the section (for object files) or the size of the initialized data on
disk (for image files). For executable images, this must be a multiple of
FileAlignment from the optional header. If this is less than VirtualSize, the
remainder of the section is zero-filled. Because the SizeOfRawData field is
rounded but the VirtualSize field is not, it is possible for SizeOfRawData to
be greater than VirtualSize as well. When a section contains only
uninitialized data, this field should be zero.

20

PointerToRawData

The file pointer to the first page of the section within the COFF file. For
executable images, this must be a multiple of FileAlignment from the
optional header. For object files, the value should be aligned on a 40byte
boundary for best performance. When a section contains only uninitialized

datathizficldchould bezarg

24

28

32
34

PointerToRelocations

PointerToLinenumbers

NumberOfRelocations

NumberOfLinenumbers

The file pointer to the beginning of relocation entries for the section. This
is set to zero for executable images or if there are no relocations.

The file pointer to the beginning of line-number entries for the section.
This is set to zero if there are no COFF line numbers. This value should be
zero for an image because COFF debugging information is deprecated.

The number of relocation entries for the section. This is set to zero for
executable images.

The number of line-number entries for the section. This value should be
zero for an image because COFF debugging information is deprecated.

36

Characteristics

The flags that describe the characteristics of the section. For more
information, see section 4.1, “Section Flags.”

PEview - cons.exe

Offset type

pFile = offset to data/value in file

- IMPORT Address Table

- IMPORT Directary Table

- IMPORT Marme Table

‘.. IMPORT Hints/Mames & DLL Mames
- SECTION data

Im Memory
_ A

other sections

dl I—
Unmapped Data
Jata section
I e

other sections
Jtext section

anooa0z2o
20000000
40000000

i PEview - C)\data\asm\cong.exe ' — I Section Tabe
File View Geo Help hr'““ 7 m
2000 O|IMyxH|([@= =
= cons. exe pFile Data Description

- IMAGE_DOS_HEADER OO0001BS |2E 74 65 78 Name .'.'fﬁ'l:: DOS Hoador 048 Header
- M5-005 Stub Program Qooo01BC |74 00 00 OO0
=- IMAGE_NMT_HEADERS Q00001 Co O000003E Wirtual Size
- Signature 000o01c4 | (00001000 RWVA | offset to .text/.code in memory
- IMAGE_FILE_HEADER aooon ca ao0o000200 Size of Raw Data
- IMAGE_OPTIONAL HEADER 00D001CC || 0DODO400 Pointer to Raw Data | offset to .text/.code in file
R IMAGE SECTION HEADER text 000001 oo 00000000 Pointer to Relocations
- IMAGE_SECTION HEADER rdata ooooaT D 00000000 Painter to Line Mumbers
- IMAGE_SECTION_HEADER .data aooon Da aaoo Mumber of Relocations
- SECTION text 00001 DA ooao Mumber of Line Mumbers
= SECTION .rdata ooooo1 D BOOOOOZ0 Characteristics

IMAGE_SCM_CNT CODE
IMAGE_SCM_MEM_EXECUTE
IMAGE_SCM_MEM_READ

4

Ll

Viewing IMAGE_SECTIOM_HEADER text

(target address) 0x401000 - (load address) 0x400000 = (RVA) 0x1000

PEview - cons.exe

& IMAGE_NT_HEADERS

L Dignature

- IMAGE_FILE_HEADER

I

Data “Walue

aoodnooo

Description
Size

pFile
0000013

IMPORT Table

aooooT 44 Oooo00Ze Size

| IMAGE_OPTIONAL_HEADER |

- SECTION .rdata

.~ IMPORT Address Table

[MPCRT Directory Table |

- TWMPORT Marme Table

- IMPORT Hints/Mames & DLL Names

= SECTION .rdata

.~ IMPORT Address Table

- IMPORT Directory Table

LIMPORT Mame Table |

L IMPORT Hints/Marmes & DLL Names

= SECTION rdata

.~ IMPORT Address Table

= IMPORT Directory Table

- IMPORT Marne Table

| MPORT Hints/MNames & DLL MNames |

| o000 45 aoooooog— Rya, RESOURCE Table

Description alue
Impart Mame Table R

Tirme Date Stamp

nooooooo

0000Z010

aooo2o14

Oo00z01s 00000000 Faorwarder Chain
Q000201 c 00002076 Mame RwA, KERMELIZ.dIl
Q0002020 00002000 Import Address Table RWA,
|IAT is equal to Import Name Table on disk
) Data Description alue

00002035 00002055 Hint/Marme RwA g

Oo00z203c 00002065 Hint/MName RYWA, 0104 ExitFrocess
O00Cz2040 00002045 Hint/Name RWA, 0238 GetStdHandle
00002044 /DDDDEIEIEIEI End of Imports KERMEL32. dIl
R'WwA ¢ Faw Data Yalue
000020453 5B 02 47 B5 74 53 74 B4 45 61 BE B4 BC GBS 00 00 ; GetStdHandle. .
00002055 82 04 57 72 69 74 B5 43 6F BE 73 6F BC B5 41 00 . WriteConsoleh.

.ExitProcess. KE
RMWEL3IZ2. dI 1.

BF B3 BS 73 73 00

BC BC OO

04 01 45 75
52 AE 45

00002068

O000207s

33 32 2E B4

PEview - cons.exe

Address |Hes dump Oisassembly Corment

'5 EE FUSH EEF
[EEET=RN=T= R SEBEC Moy EEF, ESF
AEdEl@Ez|] . 8204 F2 AOD ESF, -2
AEdE1AEs|l . 60 FE FUSH -BE OewTupe = STO_OUTPUT_HRAMOLE
AEdElEEz] o« ES 1FEEEEEE CALL <JMP.&KERMEL2Z2.GetStdHandle > GetStdHandle
AE4E1EE0)] .« 8945 FC MOV DWORD PTR S5:[EBP-41,EAX
AEdE1A1E|] . 808E F2 LERA EDX,OWORD FPTR S5:[EBFP-21
AEdElalz|| « &R B8 FUSH & pReserwved = HULL
Aa4a1als)|] . 52 PUSH EDX pllritten
Aa4a1ais|l . &0 AF PUSH @F CharsTaollrite = F (15.)
AEdEl@lz|] o« 68 BEIE4808 PUSH cons. 884838688 Buffer = cons.d@4838668
AEd4a1aii)l .« FFPS FC PUSH DMDHD FTR 55: [EEFP-41 hConzole
AEdEl@zE |l . ES BhEaaaass CALL <JMP.&KERHELZZ.WriteConsoleAx Wy iteConsolerA
HEdEl@zE] . &H B8 PUSH B ExitCode = 8
HEdEl @27 |k, ES BCEaEEanE CALL <JMP.%KERMELZ2Z.Ex itProcess?s Ex itProcess
AEdEl @z $—-FF25 @gz2ed8aa JMP DWORD PTR DS: [<&%KERHELZ2Z2.G=tStdHand| kernel22.GetStdHandle
AE4E1 A2 $=FF25 Bazedsaa) JMP DWORD PTR DS: [<&KERHELZZ.WriteConso| kernel3Z2.WriteConzsoled
AE4E1AZE] —~FF25 842848868 JMP DWORD PTR 0S: [<&KERHEL3Z.Ex itProces] kernel32.EH itProcess

= CONS. BXE Rlwi Raw Data “alle
- IMAGE_DOS HEADER aooo1oa0 &5 BB EC 83 C4 FE BA FS EZ 1F OO0 OO0 0O 83 45 FC U . . b E.
- Ma-005 Stub Program aooo1oM0 80 55 FE8 BA OO 52 BAOF B3 00 30 40 00 FF 75 FC U Rj. h. 0&. . u.
+- IMAGE_NT HEADERS Oooo1020 ES OD 00 OO0 00 6A 00 ER OC 00 00 00 FF 25 03 20 T . .
- IMAGE_SECTION HEADER .text Q0001030 40 00 FF 25 00 20 40 00 FF 25 04 20 40 00 00 00 @ . .%. @ . %. @. ..
- IMAGE_SECTION HEADER .rdata Q001040 00 00 00 00 00 00 00 00 00 00 00 00 00 o0 oo aoo
- IMAGE_SECTION _HEADER .data aooo1o0s0 0o 00 00 00 00 00 0O 00 00 00 00 00 00 oo oo ao oo oo
WSECTION text Q0001060 OO0 00 00 00 00 00 00 00 00 00 00 00 00 o0 oo aoo oo
= CONS. BXE Rlwi Raw Data “alle
- IMAGE_DOS HEADER Q0003000 48 65 BC BC BF 2C 20 77 BF 72 BC B4 21 0D OA OO Hello, woreldl .
- Ma-005 Stub Program Q0002010 00 00O 00 00 00 00 0o 00 00 00 00 o0 00 00 oo ag oo ...
+- IMAGE_NT HEADERS Q0003020 OO0 00 00 00 00 00 00 00 00 00 00 00 00 o0 oo aooo.
- IMAGE_SECTION HEADER .text Q0003030 00 00 00 00 00 00 00 00 00 00 00 00 00 o0 oo aoo oo
- IMAGE_SECTION HEADER .rdata Q0003040 00 00 00 00 00 00 00 00 00 00 00 00 00 o0 oo ao oo
- IMAGE_SECTION _HEADER .data Q0002050 00 00 00 00 00 00 0o 00 00 00 00 oo 00 00 oo Qg ...
- BECTION text Q0003060 OO0 00 00 00 00 00 00 00 00 00 00 00 00 o0 oo aoo oo
+- SECTION rdata Q0003070 OO0 00 00 00 00 00 00 00 00 00 00 00 00 o0 oo ao oo
W CECTION data Q0003030 00 00 00 00 00 00 00 00 00 00 00 00 00 o0 oo aoo oo

PE/COFF tools...

* Dependency Walker
* PEID

* PE.explorer

* PETools

* ProcDump32

* LordPE

* PEdump

* PEview

* Periscope

* FileAlyzer

* 7zip can dump PE/COFF
sections to files (.data, .text etc.)
* Perl (ch6 WFA)
— Pedmp.pl
— Fvi.pl (resources)

-~ -
PEID v0.95 =T
File: |D:\disk\temp\protected.exe
Entrypoint: | 00005BDG EP Section: i
File Offset: 00002506 FirstBytes: [E9,25E4FF [= |
Linker Info: [5.12 Subsystem: [Win32GUI | > |

tElodk 0.98b1 -= tE!
Multi Scan Task Viewer Options About | Exit |
[v Stay on top ==

Section Viewer

MName V. Offset | V. Size R. Offset | R. Size Flags

Jdext 00001000 Q0001000 00000400 Q0000200 CO0Q00440
rdata 00002000 Q0001000 00000500 Q0000200 CO0000440
.data 00003000 Q0001000 00000200 Q0000200 CO0a0044a

00004000 00003000 00000AOQD 00002200 C0000040

Close |

Address of entry point (EP)
should be located in .text or .code

CFF Explorer

A freeware suite of tools. The PE editor has full support for PE32/64. Special fields
description and modification (.NET supported), utilities, rebuilder, hex editor, import
adder, signature scanner, signature manager, extension support, scripting,
disassembler, dependency walker etc. The suite is available for x86, x64 and Itanium.

http://www.ntcore.com/exsuite.php

w' CFF Explorer VII - [CFF Explorer.exe] | ol h;i
File Settings ? a —
H @ CFF Eaplorer exe w1l eme x|
- 7 I
MName Virtual Size | Virtual Address | Raw Size Raw Address | Reloc Address | Linenumbers | Relocations N.. | Linenumbers ... | Characteristics
File: CFF Explorer. i }
G_: 3 Dos Headar o 000001 E8 DDOO01FD | DOD0OLF4 0001F8 | DODDO1FC | 0000200 0000204 00000208 00000204 0000020C ‘
8 Mt Headers Byte{8] Dword | Dword Dword Dword Dword Dword Ward Word Dwword
&l File Header
@ Optional text 00102485 00001000 00103000 00001000 DDOOO00D 000000 0000 0000 G0000020 |
3 Data Drectories) adata DOO4B2TA 00104000 0004000 00104000 00000000 00000000 0000 0000 40000040
[[Section Headen: h] data D0O106ER 00150000 0000C000 00150000 00000000 00000000 0000 0000 0000040
— D import Directory
|— (23 Rescurce Direciory asee DOOATELD 00161000 DOOABDO0 0015C000 0000000 00000000 0000 0000 40000040
— X\, Dependency Walker This section contains: -
F— &, Hex Editor
: Code Entry Point: 0000475
— ;, Identifier '5, Quick Disassembler - [CFF Explorer.exe] | =NEC] “l
F— 4, import Adder =
— N\ Quick Disassembler R A9 ™ A,E Disassembler Par smeters Viguakization Dptions
F— 4 Rebuilder —
. e DEfcatecledle 1 2 3 4 5 6 7 B 9 A B C D Disassembler: | %64 - Bace Address: 000000000
Section Flags s b=l K s 24 04 95 co 75 OE S0 8B 41 20 50 FF 1 R
-~ - 50 00 C2 04 0D BB 40 20 50 BB 41 20 50 F Offsst: 1040 sho
Is shareable 47 00 C2 04 00 CC OC CC CC CC CC CC O
i) exexiati B 64 0B 00 C2 cc cc cc ¢ oF
/| 1s readable e S IR ——— Sae; Desassemble
Is writeable — G
Contains extended relocations Copy
Con be diecarded Write T ——
I3 mot cachable .
Is not papeable Select All T
No pad Uricod ”
J| Contains code Fill With... S Address Opcode Instruction
Containg intiskzed data Modify. Edlitor Display 00000000 5 push rsi
Containg Unintiakzed data — 00000001 BBF1 MoV esl, BOK
Contains information C/C++ A .
Contents wan't become part of image Go To Offset . e 00000003 EB 38 64 08 00 call D440
Contents comdat Disassernble * C#/lava Array 00000008 B3FBFF mp eax, 0x1
i 4 p 1 Pascal Amay 00000008 7506 e 13
= 1E Aoch O0000000 0B CO or eaX, eax
Algnment Eytes): | Default -| 0 i} o DDOO000F SE pop rsi
, oAGan = 1 Lua Array 00000010 C20400 ret 04 -
I 1
x| el 3z8 ‘ Tnto New File

Executable (PE/COFF) obfuscation

* Binders
— Bind two applications into one, mainly used for trojans

* Packers or compressors

— Compress the binarys sections to make it smaller and harder to
detect and analyse

— Works much like a virus appending an application and when
unpacked in memory the entry point is reset to original

— ASPack, UPX, FSG, Armadillo, Morphine, MEW ... etc.

Redirect
— Scan for section names
indicating a packer Packer + Targeted =|
, , Host File Host File
— Special tools is neded
to unpack the binary, then l l
dump and rebuild it

Image dump !'= MS .dmp file

Packer

http://www.woodmann.com/crackz/Packers.htm

Executable (PE/COFF) obfuscation

* Cryptors

— As packers but with encrypted sections usually with anti-
disassembly and anti-debugging techniques, also

— Rebuilding the import address tables at runtime
* Example: tElock
. tElock v0.98 B)
* Crackers Kit v2.0/3.2 [& = : EoX

tELock Setiings |

— Large packages with

[~ Add Debugger detection [~ Dontdisplay detection messages
tOOIS aS ¥ Smart compress resources Iv¥ Enable IAT-Redirection
[~ Compress entire resource section [v Strip Overlays (recommended)
- PaCkerS [~ Mutex check: [Strip .reloc section if possible
[~ Preserve all icons [Don't create backup (* bak) file
- UnpaCkerS [~ Store personal string in file: I Register Shell-extension

[v Save Settings on exit

Section names

— Rebuilding
. " User defined (8 Chars max.); | .data
— AnalyS|S ¢ Random numbers [0000000-0999999]
™ Random known packer [UPX! aspack.]
- PatCherS f* Don'trename ™ Clear all

— Google for it A TMG production. {c) 2000-2001 by tE!

ELF (Executable and Linking Format)

* ELF header

Tells us basic info and where everything is located in the file
Can be read directly from the first e_ehsize (default: 52) bytes of the file

Fields of interest: e_entry, e _phoff, e shoff, and the sizes given. e_entry specifies the
location of _start, e _phoff shows us where the array of program headers lies in relation
to the start of the executable, and e_shoff shows us the same for the section headers

I* ELF File Header */
ELF header typedef struct
{
Program header table unsigned char e_ident[EI_NIDENT]; /* Magic number and other info */
EIf32_Half e type; /* Obiject file type */
Elf32_Half e _machine; /* Architecture */
text Elf32_Word e_version; I* Object file version */
Elf32_Addr e_entry; /* Entry point virtual address */
Elf32_Off e_phoff; /* Program header table file offset */
Elf32_Off e_shoff; [* Section header table file offset */
.rodata Elf32_Word e_flags; I* Processor-specific flags */
Elf32_Half e_ehsize; /* ELF header size in bytes */
Elf32_Half e_phentsize; /* Program header table entry size */
EIf32_Half e _phnum,; /* Program header table entry count */
¢ .data > Elf32_Half e_shentsize; /* Section header table entry size */
Elf32_Half e_shnum; /* Section header table entry count */
. ElIf32_Half e_shstrndx; [* Section header string table index */
Section header table } EIf32_Ehdr:

http://en.wikipedia.org/wiki/Executable_and_Linkable_Format

ELF (Executable and Linking Format)

* ELF Program segment headers
— Describe the segments of the program used at run-time
— In a typical ELF executable usually end-to-end, forming an array of structs
— The interesting fields in this structure are p_offset, p_filesz, and p_memsz
* ELF Section headers
— Describe various named sections of the binary as a file
— Each section has an entry in the section headers array
* HT Editor (http://hte.sourceforge.net/)
— Examine and modify everything in an ELF file (PE files also), disassemble etc.

I* Section header */

I* Program segment header */ typedef struct

typedef struct {

{ Elf32_Word sh_name; /* Section name (string tbl index) */
Elf32_Word p_type; I* Segment type */ Elf32_Word sh_type; /* Section type */
Elf32_Off p_offset; /* Segment file offset */ EIf32_Word sh_flags; * Section flags */
Elf32_Addr p_vaddr; /* Segment virtual address */ Elf32_Addr sh_addr; /* Section virtual addr at execution */
Elf32_Addr p_paddr; /* Segment physical address */ EIf32_Off sh_offset; I* Section file offset */
EIf32_Word p_filesz; /* Segment size in file */ Elf32_Word sh_size; I* Section size in bytes */
EIf32_Word p_memsz; /* Segment size in memory */ Elf32_Word sh_link; /* Link to another section */
Elf32 Word p_flags; /* Segment flags */ Elf32_Word sh_info; /* Additional section information */
Elf32_Word p_align; /* Segment alignment */ Elf32_Word sh_addralign; /* Section alignment */

} EIf32_Phdr; EIf32_Word sh_entsize; /* Entry size if section holds table */

} EIf32_Shdr;

ELF Object File Format

Some of the sections (from elf.pdf)

.bss This section holds uninitialized data that contribute to the program's

memory image. By definition, the system initializes the data Linking View Execution View
with zeros when the program begins to run. ELF Header ELF Header
.comment This section holds version control information. Program Header Table Program Header Table
.data and .data1 These sections hold initialized data that optional

contribute to the program's memory image. Section 1 Segment 1
.debug This section holds information for symbolic debugging. e

The contents are unspecified. All section names with the prefix Sectionn Segment 2
.debug are reserved for future use.

.dynamic This section holds dynamic linking information

-hash This section holds a SymbOI hash table. Section Header Table Section Header Table
line This section holds line number information for symbolic optional

debugging, which describes the correspondence between the
source program and the machine code. The contents are unspecified.

.rodata These sections hold read-only data that typically contribute to a .rodata1 non-writable segment in the
process image.

.shstrtab This section holds section names.

.strtab This section holds strings, most commonly the strings that represent the names associated with
symbol table entries.

.symtab This section holds a symbol table, as "Symbol Table"
.text This section holds the "text," or executable instructions, of a program.

weetscape 010 editor - ELF template

010 Editar - C\data\HDA\Digitalbratt - [ESTEER
File Edit Search View Scripts Templates Teols Window Help
- e P = - o N T
O-2-d@aBD dHhEY@:L ~RBDO -lairenYg
EditAs: [Hex w | Al w e RRekhef: NS 2P - | 5 2 g arenpatebt ~
Waorkspace = X| Startup | challengew| £
Open Files 0 i 2 2 3 S5 & 7 B 9 A2 B C D E F 0123456785ABCDEF =
[CAdata\HDA\..\labs_mmichallenge 0000h: &
¥ Favorite Files 0010R: |—|
*¥ Recent Files 0020h:]
2 C:\Users\hj:o\...\ELl-—l'emplate.bt 0030R: 06 .
Bookmarked Files 0040h: 34 80 04 08 CO 00 00 00 CO 00 00 00 05 00 00 00 4€..A...A.......
Ll 0050R: 04 00 OO0 00 03 00 OO0 OO0 F4 OO0 OO0 OO0 F4 80 04 08 |uw 4...6€..
0060h: F4 80 04 08 13 0O OO0 OO0 13 0O OO0 OO0 04 OO0 00 OO O . i i
0070h: 01 00 OO0 0O 01 OO0 OO OO OO0 OO OO0 OO0 OO0 80 04 08 |cevuwunn £..

QO080R: 00 80 04 08 04 O6 00 00 04 O& Q0D OO OS5 00 OO 0O i i
00%0n: 00 10 00 00 01 00 00 00 04 06 00 00 04 96 04 08 || .. .vvvunanns —a
00ROh: O4 %6 04 08 18 01 OO0 OO0 28 01 OO0 OO 06 QO OO0 OO0 c=cccceoc lcccccocc
Q00BEQh: 00 10 00 00 02 00 OO0 OO0 14 06 00 0D 14 96 04 08 |cccunun —a

(5 Fles | Explorer [Template Results - ELFTemplate.bt x|

Name Value Start Size Color
Inspector BX | 4 ctruct ILE file Fih
Type Value [__E.E-
Signed Byte 127 > struct e_ |dent te |dent 10h Fao:
Unsigned Byte 127 enum e_type32_e e type ET_EXEC... ll]h 2h Fg: Bg:
Signed Short 17791 enum e_machine32_e e_machine EM_386G (3) 12h 2h Fao: Bag:
Unsigned Short 17791 enum e_version32_e e_version EV_CUR... 14h 4h Fg: Bg
Signed Int 1179403647 Elf32_Addr e_entry_START_ADDRESS 134513600 18h 4h Fg: Bg:
Unsigned Int 1179403647 Elf32_Off e_phoff_PROGRAM_HEADER_OFFSET_IM_FILE 52 1Ch 4h Fg: Bg:
Signed Int64 282579962709375 EIf32_Off e_shoff_SECTION_HEADER_OFFSET_IN_FILE 8723 20h 4h Fg: Bg:
Unsigned Int64 282579962709375 Elf32_Word e_ﬂa.gs 0 24h 4h Fg: Bg
Float 1307337 Elf32_Half e_ehsize_ELF_HEADER_SIZE 52 28h 2h Fg: Bg:
BaohlE 1.39613051777803=-209 Elf32_Half e_phentsize_PROGRAM_HEADER_ENTRY_SIZE_IN_FILE 32 2Ah 2h Fg: Bg:
String [ELF rrr Elf32_Half e_phnum_MUMBER_OF_PROGRAM_HEADER_ENTRIES 6 2Ch 2h Fg: Bg:
Unicode g, Elf32_Half e_shentzise SECTION_HEADER_ENTRY_SIZE 40 2Eh 2h Fg: Bg:
DOSDATE 11/31/2014 Elf32_Half e_shnurm_MNUMBER_OF_SECTIOM_HEADER_EMTRIES 34 30h 2h Fg: Bg: I
DOSTIME 08:43:62 Elf32_Half e_shtrndx_STRING_TABLE_INDEX 31 3zh 2h Fg: Bg:
FILETIME 11,/24/1601 01:26:36 4 struct PROGRAM_HEADER_TABLE program_header_table 34h COh Fg: Bg
OLETIME 4 struct program_table_entry32_t program_table_element[5] 34h COh Fg: Bg
time_t 05,17/2007 12:07:27 > struct program_table_entry32_t program_table_element[0] 34h 20h Fg: Bg
[struct program_table_entry32_t program_table_element[1] 54h 20h Fg: Bg:
> struct program_table_entry32_t program_table_element[2] T4h 20h Fg: Bg
| [struct program_table_entry32_t program_table_element[3] 9k 20h Fg: Bg
it > struct program_table_entry32_t program_table_element[4] Bdh 20h Fg: EBg
I struct program_table_entry32_t program_table_element[5] Ddh 20h Fg: EBg

(Z auto | Variables |@ Bookmarks 3
Selected: 52 [34h] bytes (Range: 0 [0h] to 51 [33h]) Start: 0 [Oh] Sel: 52 [34h] Size: 12002 ANSI LT W OVR

References if not given in presentation

* Import Mechanisms and Intermodular Calls
— http://www.woodmann.com/yates/documents/30.html

* Understanding the Import Address Table

— http://sandsprite.com/CodeStuff/Understanding_imports.html
Introduction to Reverse Engineering Software

— http://www.acm.uiuc.edu/sigmil/RevEng/
X86/Win32 Reverse Engineering Cheat-Sheet

— http://www.rnicrosoft.net/
x86 processor information

— http://www.sandpile.org/
Moving to Windows Vista x64 - x64 ASM, PE64, etc.

— http://www.codeproject.com/KB/vista/vista x64.aspx

End!
and
Backups

Application/File analysis

)

X

Physical Storage Media Analysis

Network Analysis

Source: ,File System Forensic Analysis”, Brian Carrier

Programs in memory |

* When processes are loaded into memory by the OS loader, they are
basically broken into many small sections. There are six main sections
that we are concerned with:

* .text or.code Section

The .text section basically corresponds to the .text portion of the binary executable file. It
contains the machine instructions to get the task done. This section is marked as read-
only and will cause a segmentation fault if written to. The size is fixed at runtime when the
process is first loaded.

* .data Section

The .data section is used to store global initialized variables such as:

inta=0;

The size of this section is fixed at runtime.

* .bss Section

The below stack section (.bss) is used to store global non-initialized variables such as:
int a;

The size of this section is fixed at runtime.

Lower addresses Higher addresses

text .data .bss Heap é Unused é Stack Env.

Programs in memory ||

* Heap Section

The heap section is used to store dynamically allocated variables and grows from the
lower-addressed memory to the higher-addressed memory. The allocation of memory
is controlled through the malloc() and free() functions. Example:

int i = malloc(sizeof (int)); //dynamically allocates an integer

e Stack Section

The stack section is used to keep track of function calls (recursively) and grows from the
higher-addressed memory to the lower addressed memory on most systems. As we
will see, the fact that the stack grows in this manner allows the subject of buffer
overflows to exist. Local variables exist in the stack section.

* Environment/Arguments Section

The environment/arguments section is used to store a copy of system-level variables that
may be required by the process during runtime. For example, among other things, the
path, shell name, and hostname are made available to the running process.

This section is writable, allowing its use in format string and buffer overflow exploits.
Additionally, the command-line arguments are stored in this area.

Lower addresses Higher addresses

fext .data .bss Heap é Unused % Stack Env.

Memory management 1

Logisk minnesrymd
for process A

) Fysiskt minne (RAM)

Adressoversattning
3 &

C

Sidor som tillhor process A

Sidor som tillhor process B

Sidor som tillhor operativsystemet

Memory management 2

Thread accesses
a block of data

'

Is the data e _ Is the data inthe = .. Access violation
: NO— -, : NQ —3= S
? S :
_\\ in RAM? (fault oceurs) paging file? ! is raised J
._\\ S
& b
YES
YES Does a free page - Find a page in
inst in RAM? LS RAM to free
.‘\-‘
YES
Y Y
CPU maps the Load the data from the ,
process’s virtual address| .a———— paging file into the free | -—NO —-_ Is the p_ageas
to the physical address page in RAM — - data dirty?

.,

l Yis

The data is 1
accessed

Write the page to
— the paging file

Translating a virtual address to a physical storage address

Link Libraries and OS relocation 1

A dynamic link library (or shared library) takes the idea of an ordinary library
(also called a statically linked library) one step further

A dynamic/shared link library is a lot like a program, but instead of being run
by the user to do one thing it has a lot of functions "exported" so that other
programs can call them

— This list, called the export table, gives the address inside the DLL file of each of
the functions which the DLL allows other programs to access

— The calling executable have a list of imports or imported functions from every DLL
file it uses

When Windows loads your program it creates a whole new "address space”
for the program

When your program contains the instruction "read memory from address
0x40A0FO0 (or something like that) the computer hardware actually looks up
in a table to figure out where in physical memory that location is

— The address 0x40A0FO0 in another program would mean a completely different
part of the physical memory of the computer

Link Libraries and OS relocation 2

Programs, when they are loaded, are "mapped" into address space.
This process basically copies the code and static data of your
program from the executable file into a certain part of address space,
for example, a block of space starting at address 0x400000

— The same thing happens when you load a DLL

A DLL, or a program for that matter, tells the operating system what
address it would prefer to be mapped into

— Although the same address means different things to different programs,
within a single program an address can only be used once

If two DLLs wants to be mapped to the same address the OS first
check if the DLL is relocateable

If so it performs the necessary relocations

The relocateable DLL contains information so that the OS can
change/adjust all those internal function addresses in the DLL

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54

