
For PCs, Macintosh, and UNIX

+ Your complete guide
to understanding and
using Internet files

+ Provides inside
information on the
major file formats

+ Includes the best
.u.u•v for working

Internet files

nm Kientzle

I
CORIOLIS
GROUP
BOOKS

ormats

mats

Tim. Kientzle

IJ CORIOLIS GROUP BOOKS

Publisher
Editorial Director
Managing Editor
Editor
Cover Design
Interior Design
Layout Production
CD Production

Keith Weiskamp

Jeff Duntemann

Ron Pronk

Diane Cook

Gary Smith and Bradley Grannis

Tim Kientzle

Tim Kientzle

Anthony Potts

Trademarks: Cenain names used in this book are trademarks, registered trademarks, or trade
names of their respective owners.

Text Copyright © 1995 The Coriolis Group, Inc. All rights under copyright reserved. No part
of this book may be reproduced, stored, or transmitted by any means, mechanical, electronic,
or otherwise, without the express written consent of the publisher.

Distributed to the book trade by IDG Books Worldwide, Inc.

All rights reserved.

Reproduction or translation of any part of this work beyond that permitted by section 107 or
108 or the 1976 United States Copyright Act without the written permission of the copyright
owner is unlawful. Requests for permission or further information should be addressed to:
The Coriolis Group, 7339 E. Acoma Drive, Suite 7, Scottsdale, Arizona 85260.

This book was produced using 151EX2e and dvips typesetting software on FreeBSD 2.0R
The text fonts are Adobe Garamond and Computer Modern Typewriter; headings are in
Adobe Helvetica and Monotype Arial.

Library of Congress Cataloging-in-Publication Data
Kientzle, Tim

Internet File Formats/Tim Kientzle
p. em.

Includes bibliography and index.
ISBN 1-883577-56-X: $39.99

Printed in the United States of America

10 9 8 7 6 54 3 2

:r.q .. ~~-~)!·
.-.

Acknowledgments
Many people have generously contributed to the production of this book,
among them: Jeff Duntemann and Keith Weiskamp suggested the idea for
this book. Tom Lippincott read and critiqued some of the early chapters.
Diane Cook's watchful red pen corrected many slips and blunders. Anthony
Potts' enthusiastic gathering made the accompanying CD-ROM a useful ac­
companiment. The staff at Dr. Dobb's gave me the time and encouragement
to finish. But most importantly, Beth brought me innumerable ice cream
sandwiches when I needed them most.

Contents

1 The Great Melting Pot
lnternetworking
Bulletin Board Systems
Greater lnternetopolis .
Sticking to the Big Streets
About Standards

1
1
2
3
4
4

2 Researching File Formats 7
Identifying the Format of a File 7
Using the Files . 9
File Formats on the World Wide Web 9
Other File Format Resources . . . 11
General Research on the Internet 14

Part One Text and Document Formats

3 About Text
Character Sets

Names and Numbers . .
A Subtlety
Why Bother?

Markup

vii

19
20
21
22
23
24

viii • Contents

Logical vs. Physical Markup
Preserving Markup

4 HTML
Universal Resource Locators ..
About Domain Names .
About HTTP
HTTP URL Modifiers .
An HTML Primer . . .

Tags and Elements
Structure of an HTML Document . .
HTMLHead ...
Paragraphs
Headings
Text Styles
Special Characters
Links and Anchors
Graphics
Forms
Tables
Mathematics

HTML Style Guidelines .
More Information

5 1FX and 1flFX
IDE)(..... .

Other 1FX Variants
Recognizing lEX and IDE)(Files
Using 1FX and IDE)(Files . . .
A IDE)(Primer . .

Preamble .
Paragraphs
Headings ..
Text Styles
Special Characters
Graphics and Figures
Tables

24
26

29
30
33
35
37
39
40
41
41
43
43
44
44
45
47
48
50
50
53
57

59
61
62
62
64
66
66
68
69
69
70
71
72

Mathematics
More Information

6 SGML
An International Standard Markup Language . . .
More Information

7 TROFF
Using TROFF Files
A TROFF Primer

Paragraphs
Text Styles
Headings ..
Graphics and Figures .
Tables
Mathematics

More Information

8 PostScript
Recognizing PostScript Files .
PostScript Font Files . .

Type 3 Fonts
Type 1 Fonts
Other Font Types
Other Font-Related Files .

Structured PostScript Files
Encapsulated PostScript

Encapsulated PostScript Previews.
EPSI Previews
Macintosh Previews
TIFF and Windows Metafile Previews . .

PostScript Dialects
Hints for Handling PostScript . .
Legal Issues
Strengths and Weaknesses
More Information

Contents • ix

74
75

77
78
80

81
82
84
85
85
86
88
88
90
91

93
94
95
96
96
97
98
98

100
100
101
101
101
101
103
104
105
106

x • Contents

9 PDF (Acrobat)
Using PDF
How PDF Works
Strengths and Weaknesses
PDF vs. PostScript ..
Alternatives to PDF
More Information

10 Word Processors
More Information

Part Two Graphics Formats

11 About Graphics
Color and Resolution
Kinds of Colors
Kinds of Images
Compression

One Size Doesn't Fit All
Lossy Compression .

More Information

12 ASCII Graphics
How to Use ASCII Graphics
More Information

13 GIF
When to Use GIF
Recognizing GIF Files .
How to Use GIF . .
Legal Issues
How GIF Works . . .

GIF Header
G IF Terminator
GIF Image

109
110
110
Ill
112
112
112

113
114

117
118
119
121
122
122
123
124

125
125
128

129
130
131
131
132
132
133
134
134

GIF Extension Blocks
Comment Extension .
Text Extension
Graphics Control Extension .
Application Extension

More Information

14 PNG
When to Use PNG
How PNG Works .

PN G Signature .
PNG Chunks ..
Image Header Chunk
Picture Information Chunks
Image Data
Optional Chunks .. .
End-of-Data Chunk

More Information

15 TIFF
When to Use TIFF
Strengths and Weaknesses
How TIFF Works . . .

TIFF Header
TIFF Image ...
TIFF Image Data . .

More Information

16)PEG OFIF)
When to Use JPEG
How to Use JPEG
Recognizing JPEG and JFIF Files
How JFIF Works
How JPEG Compression Works . .

Color Model
Subsampling
Discrete Cosine Transform . .

Contents • xi

135
135
135
136
137
137

139
140
140
141
141
143
143
145
146
146
147

149
149
150
151
152
153
153
156

157
158
159
160
161
163
164
164
164

xii • Contents

Quantization
Compression

Future Lossy Compression Methods .
Lossless JPEG
More Information

17 VRML
How to Use VRML
How VRML Works
More Information

18 Other Formats
XBMandXPM
BMP .. .
PICT
IFF
PBM, PGM, PPM, and PNM . . .

Part Three Compression and Archiving Formats

19 About Archiving and Compression
About Archiving
A Brief History of Compression . . .
Compression Isn't Perfect . . .
A Note About Encryption
Which is Best?
More Information

20 TAR
How to Use TAR
How TAR Works
More Information

21 Compress
How to Use Compress . .
How Compress Works . .

165
166
167
167
168

169
170
171
174

177
177
178
178
178
179

183
183
184
187
190
190
191

193
194
195
198

199
200
200

More Information

22 ARC
How to Use ARC
How ARC Works
More Information

23 ZIP
How to Use PKZIP/ZIP .
ZIP File Format
ZIP's Compression Algorithms

How Shrinking Works .
How Reducing Works .
How Imploding Works .
How Deflation Works

Drawbacks to ZIP .
More Information

24 GZIP
How to Use GZIP/GUNZIP
How GZIP Works
About the Free Software Foundation
More Information

25 SHAR
How to Use SHAR
How SHAR Works
More Information

26 zoo
How to Use ZOO .

Using Generations
How ZOO Works
Recovering Damaged ZOO Archives
ZOO's Compression Methods .
More Information

Contents • xiii

204

205
206
206
208

209
210
212
216
217
218
218
219
220
221

223
223
224
226
226

227
228
228
230

231
231
232
233
238
239
239

xiv • Contents

27 Stuffit
How Stufflt Works .
More Information

28 Other Formats
SEA, SFX and EXE
AR]
LHNLZH .. .
RAR
AR
Pack and Compact .
Squeeze
CompactPro
WEB Compression

Part Four Encoding Formats

29 About Encoding

30 UUEncode
When to Use UUEncode
How to Use UUEncode and UUDecode
How UUEncode Works
UUEncode Program . .
UUDecode Program . .

31 XXEncode
How to Use XXEncode
When to Use XXEncode . .
How XXEncode Works . .
XXEncode and XXDecode Programs

32 BtoA
When to Use BtoA
How to Use BtoA
How BtoA Works .

241
242
244

247
247
248
249
249
249
250
250
250
250

255

257
257
258
259
260
261

263
263
264
264
264

267
267
268
268

More Information

33 MIME
When to Use MIME
How MIME Works .

MIME Content Types
More Complex Messages . .
Encoding ..

Security
More Information

34 BinHex
How to Use BinHex . .
How BinHex Works . .
BinHex Variants . .
More Information . . .

Part Five Sound Formats

35 About Sound
Playing Sound

External Synthesizers ..
FM Synthesis
Sampled Sounds
Digital Signal Processors
High-Quality Sound on Low-Quality Hardware .

Storing Sound
Silence Encoding
JL-Law and A-Law Compression
DPCM and ADPCM
More Advanced Techniques

More Information

36 AU
More Information

Contents • xv

270

271
272
273
273
275
278
279
279

281
282
282
284
284

289
290
290
291
291
292
292
292
293
293
294
295
296

297
298

xvi • Contents

37 WAVE
How RIFF Works
WAVEForm ...

WAVE PCM Data Storage . .
Additional Chunk Types .

38 Other Formats
MIDI
MOD
IFF
AIFF .. .

Part Six Movie Formats

39 About Video
Real-Time Compression .
Compressing in Space and Time . .
Rate Limiting
Replaceable Codecs ..
Audio and Other Data
More Information

40 AVI
How AVI Works .

RIFF AVI Form .
LIST hdrl Form
LIST movi Form
LIST rec Form

41 QuickTime
How QuickTime Works .

Single-Fork File Format
moov Atom
trak Atom
mdiaAtom

299
299
300
300
302

305
305
306
307
307

311
311
312
314
315
315
316

317
318
318
319
319
320

321
322
324
325
325
326

More Information

42 MPEG
How to Use MPEG
How MPEG Video Works . .

General Issues .
!-Frames ..
P-Frames
B-Frames

How MPEG Audio Works .
More Information

Appendices

A About the CD-ROM
About Shareware . . .
CD-ROM Organization ..
Text
Graphics
Compression
Encoding ..
Sound
Video . .

B About Files
Definition of a File
What Files Are Made Of. . .
How Files Get Around .
About Text and Binary .

c About File Formats
What a File Format Does
Fixed Formats
Type-Length-Value Formats
Random-Access Formats . . .

Contents • xvii

.......
.

.
.

.......

.......

.

.

326

327
328
330
331
332
332
333
334
335

339
339
340
342
345
350
352
353
355

357
357
358
359
359

361
361
363
363
364

xviii • Contents

Stream Formats
Script Languages
Text and Binary Formats.

D About Transferring Files
Post Office
FTP

A Sample FTP Session
More FTP Commands . . .
Other Ways to Access FTP . .

World Wide Web
Gopher
Electronic Mail
Direct Connect Modems

Remote-Access Programs .
Bulletin Board Systems .

E A Binary Dump Program

Bibliography

Index

365
366
366

369
369
370
370
372
374
375
376
376
377
378
378

379

381

385

The Great
Melting Pot

New York has built a reputation as a place where people from many different
cultures live and work together. Much of current American culture was shaped
by the immigrants of the early 1900s, and today's immigrants will doubtless
shape future American culture. Similarly, the Internet is a place where different
technologies and computer cultures meet. Hopefully, the best ideas from each
will form a sound technological basis for tomorrow's networked society. In the
meantime, the overabundance of different approaches and standards is creating
a lot of confusion.

I nternetworki ng
In the early 1970s, many people were experimenting with different ways to
connect computers. At one end of the spectrum, the Xerox Palo Alto Research
Center (P ARC) was developing the precursor of today's high-speed Ethernet.
At the other end, the University of North Carolina and nearby Duke Univer­
sity were using slow dial-up modem connections for what later grew to be the
Usenet news system. The various networking ideas and approaches were far
from compatible, which made it all the more remarkable when the Advanced
Research Project Agency (ARPA) and the Defense Advanced Research Project
Agency (DARPA) set out to connect the computerized islands at various uni­
versities and research agencies.

The approach used to build ARPAnet and DARPAnet was dubbed inter­
networking. Rather than try to convert all of the participating companies and

2 • Chapter 1: The Great Melting Pot

organizations to the same kind of network, they fostered the development of
gateways to bridge the different networks. These gateways used a common
software protocol appropriately dubbed the Internet Protocol (IP).

The resulting conglomerate grew in many directions. As IP became more
standardized, it was used for local networks as well, which led to new services
being built on top of IP. Services built on IP could be accessed not only within
the local network, but also from computers at other companies, which contin­
ued to foster the adoption of IP as a fundamental networking technology. The
growing standardization and improving services attracted many new users, and
the number of computers with direct or indirect access to these services grew
steadily. Eventually, users began to think of this loosely connected group of
computers as a single entity, the Internet.

Bulletin Board Systems
While university and corporate researchers were laying the foundation for to­
day's Internet, microcomputer hobbyists took a slightly different track. The
availability of inexpensive modems allowed them to connect their computers
over the phone lines to exchange programs and information. Dedicated com­
puters were set up as electronic bulletin board systems (BBSs), which answered
the phone and allowed the caller to copy files to and from the system, and to
read and exchange messages.

Each BBS was set up by a single person, and usually reflected the interests
of that person. Most BBSs only stored programs and data files for users of a
particular kind of computer. Macintosh BBSs and IBM PC BBSs often had
little in common.

This isolation weakened as BBSs began to relay messages to one another.
The most successful relay system was Fidonet. Fidonet is a loose affiliation of
BBSs that periodically exchange data over normal dial-up telephone connec­
tions. Fido-compatible BBS software is widely available and fairly easy to use.
As a result, Fidonet is remarkably widespread. In some parts of the world, it's
the predominant form of networking.

The growth of BBSs and Fidonet had much in common with the early
growth of the Internet. BBSs have traditionally been improved by amateurs,

Greater lnternetopolis • 3

who develop new services and approaches not for commercial gain, but simply
out of personal curiosity. Similarly, many Internet services were developed at
universities and research establishments as tools for sharing information with
colleagues or experimenting with new ideas.

Greater lnternetopolis
Today, these networking services are merging. The term "Internet" now com­
monly refers not only to the system of computers connected by IP but also to
the much larger universe of computers that can access such basic services as
electronic mail (email). This larger Internet subsumes ARPAnet and Fidonet,
as well as many non-Fidonet BBSs and major online services. The "core"
Internet-the part connected by IP-is also growing rapidly, as the "fringe"
Internet becomes more tightly interconnected.

As a result of this consolidation, the walls between computing communi­
ties are slowly dissolving. The Internet of the 1990s is a melting pot, where
users of Macintosh, Unix, MS-DOS, Amiga, Atari, OS/2, BSD, VMS, Win­
dows, Apple II, and TSO, are exposed, if not to one another's ideas and
viewpoints, at least to their files. One of the most common questions asked
on Internet newsgroups is how to handle a particular kind of file. Such ques­
tions come from PC users unfamiliar with Unix files and from Macintosh users
trying to extract data from Amiga files.

These problems are not unique to the Internet. The Internet is just the
most visible way that people exchange files between different types of comput­
ers. Diskettes and modems are still widely used. Whether you're downloading
files from an Internet archive on another continent or handing a diskette to
your next door neighbor, you need a basic understanding of the various file
formats and what they mean.

The variety of file formats causes problems even for experienced users.
One long-time user and programmer of IBM PC systems confessed to me
that shortly after he got an Internet email connection, he was stumped by a
uuencoded gzipped tar file, a mixture of three formats of which he'd never
heard, much less seen.

4 • Chapter 1: The Great Melting Pot

Sticking to the Big Streets
In practice, the concerns of file portability have led to the dominance of a
handful of file formats. Formats popular on the Internet as a whole are formats
that can be easily manipulated on a wide variety of systems. People who pull
files from Internet archives, or who exchange files on diskettes, usually deal
with only a small fraction of the file formats that exist.

Different formats serve different needs, even though the distinction isn't
always obvious. Just as the National Enquirer doesn't directly compete with
the New York Times, the JPEG graphics format isn't a direct substitute for
GIF. These two formats each have unique strengths and weaknesses. Similarly,
PDF and PostScript are very similar in some ways, but shouldn't be used for
the same purposes. Understanding these differences is important not only for
the person creating these files, but for the person using them. Every format
has inherent limitations, and it's helpful to understand those limits.

Each community has its favorite file formats as well. You may be surprised
to find a lot of MIDI files on an Atari ST archive until you discover that the
Atari's built-in MIDI port made it very popular with musicians. Similarly, a
lot of early multimedia work was done on the Amiga; the Macintosh graphic
interface still enjoys a loyal following among graphic designers; and MS-DOS
is the mainstay of many business users.

Such history isn't as trivial as it sounds. When looking for a program
to decode BinHex files on a Unix machine, I first looked in several Unix
archives with no luck. BinHex is used primarily on the Macintosh; a popular
Macintosh archive had a section for Unix programs that answered my need.
Similarly, if you're looking for information about UUEncode, you might want
to check a Unix archive, since UUEncode originated on Unix systems.

About Standards
Many arguments about the "best" file format for a particular purpose have
been settled by the observation that one of the formats is a "standard." Unfor­
tunately, this reasoning isn't always relevant.

The term "standard" sometimes simply refers to "accepted practice." Ac­
cepted practice can vary widely between groups of users, and is a difficult

About Standards • 5

criterion to use in practice. The term "standard" is also used to refer to a for­
mal standard produced by a national or international organization. Standards
organizations attempt to define and promote common practices so that prod­
ucts manufactured by different companies can be used together. The theory
is that these codified practices help both businesses and consumers. It's not
surprising that some of the more sophisticated file formats in this book were
created by standards organizations. 1

Most standards organizations create standards through a consensus process
that solicits input from many corporate and governmental bodies. Unfortu­
nately, the politics involved in this process can go awry in a number of ways.
One pitfall is that some participants may have their own agendas. As a result,
some standards end up promoting a solution owned by a single company. For
example, the V.42bis standard for modems relies on an algorithm patented by
Unisys. Modem manufacturers who want to comply with this standard must
pay royalties to Unisys.

Another danger for this process is when the standard appears too late or
too early. Some standards have been produced that disagreed with existing
widespread practice. Conversely, some standards have been produced before
anyone had practical experience in the area, and were so complex and theo­
retical that compliance was almost impossible. Either situation can result in
a formal standard that's generally ignored by the industry it was designed to
help.

One of the major reasons that companies comply with formal standards is
to allow their products to work with products from other companies. In mar­
kets with many small suppliers, this compatibility is very important. However,
not all software markets are competitive enough for compatibility to be an
important consideration. Frequently a few companies dominate a single mar­
ket, so that their products become de facto standards. The popular GIF file
format was never sanctioned by a standards organization, but it has become
a widespread format simply because it was promoted by CompuServe, whose
online service was a focal point for exchanging computer graphics.

All of the formats in this book are "standards" in some sense. A few are
formal standards defined by some international body; the rest were created by

1 The best known standards organizations are the American National Standards Institute
(ANSI), International Organization for Standardization (ISO), and the International Telecom­
munications Union (ITU)-formerly the International Consultative Committee for Telephone
and Telegraph (CCITT).

6 • Chapter 1: The Great Melting Pot

some company or individual to fill a particular need. All of them have become
so widely used that you'll probably encounter most of them.

Researching
File Formats

If you have a file in a format you don't understand and want to use it, what
should you do? In this chapter, I'll discuss some resources that can help you
track down the information you need.

Identifying the Format of a File
There are a number of tools you can use to identify the format of a file. The
first is the name of the file. Filenames typically contain a period in them
(sometimes several, depending on the system). The letters after the last period
are the file extension. Traditionally, the extension is used to identify the type
of the file. For example, in ocean. jpg, the extension is . jpg. If you look in
the index, you'll quickly find that this is a short form for JPEG, the name of a
popular graphics format used for photographic images. Sometimes, a file will
have more than one extension. It's common for Unix users to see files such as
library. tar. gz. Again, you can use the index to figure out that the . gz
indicates this is a GZIP compressed file. After you uncompress it, you'll be
left with library. tar, which is a TAR archive file.

But not all files have extensions, and even when they do, the extensions
don't always reflect the type of data in the file. Some people use the ex­
tension for the date-such as report. 817 for the August 17th version-or
for the initials of the person creating the file-Joan Smith's report is named
report . j s while Greg Zambrana's is report . gz. If the file doesn't have a

7

8 • Chapter 2: Researching File Formats

useful extension, you basically have to guess what the format is, although there
are a few tricks you can use.

On some systems (especially Unix systems), there's a command named
file that knows how to recognize many different types of files. For ex­
ample, typing file jeff might reveal jeff: GIF picture - version
87a. Again, the index will tell you that GIF files are CompuServe's Graphics
Interchange Format, a popular picture format. The file program relies on
a large table of magic numbers, special values that appear at certain locations
in certain file formats. The quality of these tables varies dramatically; some
programs only recognize a few file types while others recognize hundreds. For­
tunately, the magic numbers are usually stored in a text file. You can add your
own new entries to this list of magic numbers to make the file command
more useful.

If you don't have a file command, it's time to look at the contents of the
file. Before you try this, think carefully about what tools you have and what
kind of file it might be. Files are generally divided into text files and binary
files. Text files-often called ASCII files-only contain "safe" byte values, ones
that correspond to letters, numbers, and punctuation marks. Binary files can
contain any byte value. This division is a technical one that has little to do
with the contents of the file; some graphics formats are text files that use leners,
numbers, and punctuation marks to encode the picture data. Conversely, most
word processor documents are binary files. The problem is that simply listing
a binary file to your screen is rarely useful. Depending on the system, you can
even lock up your computer or terminal (though you can't actually damage
the computer this way).

Binary files frequently have some text near the beginning that identifies
the type of the file. You can use a program such as the dump program I discuss
on page 379, or the Unix od program. These programs read binary files, and
output the numeric value or corresponding character for each byte. The dump
program outputs both the numeric value and the character. (The od program
can output many different formats.) The important point is that you can
look at the contents of the file without having your screen go out of control.
Usually, you'll send the output into more so you can skim through it a page
at a time. 1

1 The Unix strings program can also be useful; it reads a file and outputs only the valid
text characters in the file.

Using the Files • 9

You can frequently read a binary file into a text editor. You should be very
careful, however; do not save the file. Most text editors will slightly mangle
binary files when they read them. If you save the file, you'll mangle the version
on disk as well.

If it's a text format, of course, things are much simpler. You can simply
list it to your screen or read it into a text editor to see what it looks like. Even
if the bulk of it is unintelligible, the first line or two will frequently contain
useful clues. For example, if the file begins with %PDF, then this is a PDF file
(see page 1 09). If it contains xbtoa, then it's a BtoA file (see page 267).

Using the Files
Once you have some clues about the type of file, the next step is to figure out
what you can do with it. Just knowing it's a graphics file isn't enough.

Of course, since you're already holding this book, the first thing you should
do is see if the information you need is here. Each chapter ends with a
More Information section that describes sources of suitable software, much
of which is included on the accompanying CD-ROM. For some formats,
especially graphics files, there are programs that handle many different formats.
The More Information section in the About Graphics chapter (page 124) lists
some sources of such software. That section also discusses other sources of
information about graphics formats in general. The other About . . . chapters
have similar information.

No book will have information on all of the formats you might encounter,
and this one is no exception. If the information you want isn't here, there are
a number of other resources available to you. Several of these resources are
available on the Internet.

File Formats on the World Wide Web
The World Wide Wleb is a data access system that runs on the Internet. It
allows people to access pages of information that can contain text, graphics
and references to other pages of information. Graphical browser programs
allow you to simply click on a reference to see the other related page. To get
started, you need a Universal Resource Locator (URL), which is much like a

10 • Chapter 2: Researching File Formats

"telephone number" for a page on the World Wide Web (page 30 has more
detailed information about URLs).

Several people have created Web pages to help people understand different
file formats and locate associated software.

If you already have a World Wide Web browser, it probably has a button
or menu entry that connects you to the home page of the people who produce
the browser (such as Netscape, QuarterDeck, Spry, or NCSA). Those home
pages usually have information about helper programs that work with their
browser, as well as information on configuring the browser. Even if you're not
specifically looking for assistance for your World Wide Web browser, most of
these "helper" programs are generic view or play programs that can be easily
used alone.
. There are also a number of Web pages that people have created to help
provide information about the various formats. Here are a few:

The Cross-Platform Page Eric Bennett's index lists information about a va­
riety of file formats, and tells you where to get software for a number of
platforms. It's available at http: I /www. mps. org/-e bennett. Another copy
isathttp://www.mcad.edu/guests/ericb/xplat.html.

Common Internet File Formats This Macintosh-oriented resource lists a
number of different file formats and tells you where to get corresponding
software. (http: I /www. matisse. net/files/formats. html)

The Ultimate Macintosh This is a good guide to Macintosh resources on
the World Wide Web. (http: I /www. freepress . com/myee/umac. html)

Multimedia File Formats on the Internet Allison Zhang's highly-rated and
nicely-decorated guide has general information and software pointers for PC
users. (http: I I ac. dal. ca/-dong/ contents. html)

WWW Viewer Test Page This page helps you configure your Web browser,
and has pointers to helper software for Macintosh, PC, and Unix systems.
(http://www-dsed.llnl.gov/documents/WWWtest.html)

Other File Format Resources • 11

Name Location
ftp: I lwuarchi ve. wustl. edu St. Louis, Missouri, USA
ftp: I lftp. cdr om. com Walnut Creek, California, USA
ftp: I lftp. digital. com Palo Alto, California, USA
ftp: I lftp .leo. org Munich, Germany
ftp: I I archie. au Melbourne, Australia

Table 2.1 Selected Large Archive Sites

Note: Many archives with names beginning in ftp also have corresponding World
Wide Web access. Try replacing ftp: I lftp with http: I lwww, for example,
http:llwww.leo.org.

Other File Format Resources
Even if you don't have access to the World Wide Web, you still can find
many resources. Even the most basic Internet account typically allows you to
access various databases using FTP (File Transfer Protocol) and Gopher (see
Appendix D). FTP allows you to copy files from Internet databases down to
your computer. There are a handful of mail FTP systems that accept FTP
commands over electronic mail and return the results in the same fashion.
The Gopher system is a system of linked menus that is similar to, but much
older than, the World Wide Web. If you don't have any access to the Internet
at all, you can frequently get CO-ROMs with the contents of one of these
repositories.

I only have room to list a few of the many good resources on the Internet.
To best take advantage of these resources, you should look on each site for a
README file. 2 This file will tell you something about the archive and should
also list mirrors, other archives that maintain exact copies of these archives.
Always find and use the mirror that's closest to you. Using a nearby mirror
makes it easier for you {international network links tend to be slow) and more
pleasant for everyone else using the Internet. A sampling of large sites that
mirror many different archives is shown in Table 2.1.

2 Unfortunately, "read me" files have many slighdy different names, including READ. ME,
README.lST, OOREADME, and readme. txt.

12 • Chapter 2: Researching File Formats

Keep in mind that none of these archives is devoted exclusively to a par­
ticular system. You'll frequently find MS-DOS software on OS/2 archives and
Unix software on Macintosh archives.

MS-DOS The SIMTEL collection contains a large amount of freeware and
shareware for MS-DOS systems, including viewer programs for a variety of
formats. It's a good place to start looking. Among the more accessible mir­
rors are ftp. coast. net, oak. oakland. edu, wuarchi ve. wustl. edu, and
ftp. cdrom. com, all accessible by anonymous FTP.

The Finnish Garbo archive is located at garbo. uwasa. fi. It stores a vari­
ety of software for many systems, but is probably best known for its collection
of MS-DOS software and information.

Windows The Center for Innovative Computer Applications (CICA) at the
University of Indiana hosts a sizable collection of software for all flavors of Mi­
crosoft Windows. The CICA archive is accessible from the World Wide Web
(http://winftp.cica.indiana.edu),FTP(ftp://winftp.cica.indi­
ana. edu), and Gopher (gopher: I /winftp. cica. indiana. edu).

Macintosh The Info-Mac archives are substantial and widely mirrored. Be­
cause of the enormous load on su.mex-aim. stanford. edu (the original
site), you should probably avoid using it directly and instead use one of its
many mirrors. Not surprisingly, Apple mirrors this and many other sites
(ftp: I /mirror. apple. com). Another particularly interesting mirror is the
Hyper-Archive, which provides a searchable World Wide Web interface to the
archives (http: I /hyperarchi ve .lcs. mit. edu/HyperArchi ve. html).

The University of Michigan also maintains a sizable collection of Macin­
tosh software (http: I /www. u.mich. edu/-archi ve/mac). You should start
at http://www.u.mich.edu/-archive to find out information about the
archive itself and how best to use it. This main page also accesses several other
archives maintained at the same location.

The Berkeley Macintosh User's Group (BMUG) is the world's largest Mac­
intosh user's group. They provide numerous services to their members, and
maintain and distribute an enormous collection of freeware and shareware.
You can find more information at http: I /www. bmug. org, or by writing to:
BMUG, 1442A Walnut St. #62, Berkeley, CA, USA, 94709.

Other File Format Resources • 13

OS/2 The Hobbes archive at New Mexico State University collects many
OS/2 programs. It's available at ftp: I /ftp-os2. nmsu. edu.

Unix One of the greatest assets of any Unix system is the online man pages.
Simply typing man command will give you documentation on the desired
command. Many Unix users don't realize that the man pages also contain
a wealth of information about file formats and other technical information.
The man pages are divided into sections. For example, section I is used for
user commands. Information on file formats is found in section 4 or 5 (de­
pending on the system). For example, typing man uuencode will display
information about the uuencode program. To see the file format used by
UUEncode, you would type man 5 uuencode (on a BSD-derived system)
or man 4 uuencode (on a SysV-derived system). There are many variations;
consult man man for the details of using the man command on your par­
ticular system. If you don't have access to a Unix system, O'Reilly & As­
sociates has published a five-volume set containing the complete man pages
for 4.4BSD,3 along with many other related documents. [USD94, URM94,
PRM94, PSD94, SMM94].

The various comp. sources newsgroups are a source of new and interest­
ing Unix software. These include comp. sources . unix, comp. sources . x,
comp. sources. sun, and comp. sources. 3b1. Many of these newsgroups
are archived at ftp. uu. net. UUNet also archives many other newsgroups,
and contains information and software for a variety of systems. Don't forget
the GNU repository at ftp: I /prep. ai . mit . edu, which contains a lot of
freely available software.

Amiga Aminet is a large collection of Amiga software and information. The
primary site at ftp: I /ftp. wustl. edu is extremely busy. It's mirrored at
ftp: I /ftp. cdrom. com and http: I /www. eunet. ch/-aminet.

3The Berkeley Standard Distribution (BSD) is a collection of Unix software and operating
system extensions contributed by people from around the world. The project has been coor­
dinated by the Computer Science Research Group of the University of California at Berkeley
since 1979. BSD has been very influential in Unix system development, and portions of it
appear in many Unix-like systems, including SunOS, BSDI, and Linux. The free portions
of 4.4BSD-available by anonymous FTP and on CO-ROM-are very nearly a complete re­
placement for Unix, and several groups have filled in the missing pieces to build free Unix-like
systems from this base.

14 • Chapter 2: Researching File Formats

The Amiga Home Page at http: I /www. omnipresence. com/ amiga has
pointers to other archive sites and a variety of additional information.

General Research on the Internet
A number of resources exist for doing general research on the Internet. I'll
discuss a few of the more important ones.

The following resources have a lot of overlap. The World Wide Web
indexes include a lot of FTP and Gopher information, and Veronica (the
Gopher index) also includes a lot of World Wide Web and FTP information.
But each has a slightly different focus. Spend a little time familiarizing yourself
with each of these resources and learning how to use them.

FAQ Archive Frequently Asked Questions (FAQ) files are lists of common
questions and answers on specific topics. Many are regularly posted (usually
about once per month) to different newsgroups. Answering common questions
in this manner prevents the newsgroups from being constantly flooded with
the same questions. If you know of a newsgroup that might have information
you want, watch the newsgroup for several weeks and read the FAQ file before
asking questions. Your question may be answered without you having to ask
it. Collectively, the FAQ files are an enormously useful resource. Many of
them have general overviews of a topic and bibliographies of books, articles,
and other information about the topic.

Many FAQ files are available using anonymous FTP from the FAQ archive
at ftp: I /rtfm. mit. edu/pub/usenet. Many FAQ files are also posted to
the news . answers newsgroup.

Yahoo Yahoo (http: I /www. yahoo . com) is a searchable directory of the
World Wide Web. It has a hierarchical directory you can browse, as well
as a powerful search feature. Visiting this index is a good first step to find
information on the World Wide Web.

Indexes that have search features are powerful tools, but you should use
them carefully. Spend a few minutes thinking about the best terms to use. If
you want QuickTime movies, for instance, search for quicktime and not for
movies; the latter will produce a much longer list with a lot of things you
don't want (like movie reviews and movie studios).

General Research on the Internet • 15

Spiders Yahoo is built primarily from contributions; people specifically ask
for their Web pages to be added. The Lycos (http: I /www .lycos. com) and
WebCrawler (http: I /webcrawler. com) databases are constructed in a dif­
ferent fashion. In addition to contributed references, Lycos and WebCrawler
use "spider" or "robot" programs that follow links over the entire Web. These
programs automatically find new World Wide Web pages and add them to
a growing database. Lycos currently indexes over two million pages; We­
bCrawler has identified over 50,000 servers. One interesting aspect of both of
these projects is the additional statistics they are collecting about the World
Wide Web, currently the best statistics available.

Archie The Archie system is a collection of databases indexing files available
by FTP. If you have a SLIP or PPP account, you can use Archie to locate a
file. The only catch is that you need to know the name of the file first.

Veronica Just as Archie indexes FTP resources and Yahoo indexes World
Wide Web resources, Veronica indexes Gopher pages. Like Lycos and Web­
Crawler, Veronica uses a mix of user submissions and automated searches to
build its index. Veronica is referenced from many different Gopher servers. Its
home is gopher: I /veronica. scs. unr. edu: 70/11/veronica.

Part One

Text and Document
Formats

About Text

Text files are the most common type of data found on the Internet and else­
where. Although they seem very simple at first, there are two major com­
plicating factors. The first complication is the enormous number of charac­
ters needed to support a variety of different languages. American program­
mers used to working with the 128 characters of the US ASCII character set
need to keep in mind that well over 250 characters are needed just to deal
with the two dozen or so European languages based on the Roman alpha­
bet. Other alphabets-Cyrillic, Greek, Hebrew, Arabic, Devenagari, Sanskrit,
and so on-add hundreds more characters, and the Chinese, Japanese, and
Korean ideograms add tens of thousands more. While the Internet is still pre­
dominantly English-speaking, this is changing. Savvy software developers will
want to take advantage of the opportunities for multilingual software. The
next section describes the history of different character sets and provides some
background for developing and using multinational software.

The other complicating factor is that text alone is increasingly inadequate.
People want to augment their printed documents with graphics, charts, foot­
notes, headers, and font changes. Online documents may need to contain
animation, links to networked databases, and audio annotations. Combining
these different types of data results in multimedia documents. Text formats­
because they are so basic-are the starting point for many multimedia docu­
ment formats. Many of the formats in the next few chapters are not merely
text formats, but are perhaps more accurately described as document formats,
providing the overall framework in which text, graphics, and other forms of
data can be combined.

19

20 • Chapter 3: About Text

Character Sets
If you take a critical look at variou.S discussions of characters and character
sets, you'll eventually realize that the idea of a "character': is hard to pin down.
Because there are so many subtly different definitions already, I'm going to
deliberately avoid using the word "character" or "character set" in any precise
way. The terminology I'll use instead is taken from Dan Connolly's "Character
Set" Considered Harmfol [Con95]. 1 Connolly's paper attempts to clarify the
core ideas that appear in different standards by precisely defining certain terms.
The title suggests that the term character set has been used in so many diverse
ways as to become almost meaningless.

Most people would agree that A and A are the same character, even though
they look different. Typographers use the word glyph to refer to the specific
appearance of .a particular character. Even though they represent the same
character, A, A, A, A, A, A, .9L, A, and A are all different glyphs. More
technically, a glyph is a specific visual representation of a character.

Of course, a single character or single glyph isn't all that useful. What you
need is a selection of characters. For American English, a useful collection
of characters consists of 52 uppercase and lowercase letters, ten digits, and a
variety of punctuation marks. Such a collection is referred to as a character
repertoire. A corresponding collection of glyphs, one for each character, is
called a font.

There are many different character repertoires. One reason for this variety,
of course, is language. An American English repertoire has little need for a~
character, which is essential in French. Another reason for a variety of reper­
toires is the special symbols that are required by certain people. For example,
publishers use bullets (•), pilcrows ('JD, and ligatures (ff, ffi); musicians need
flats (D) and sharps (~); bridge players need card suits {., ~); and mathe­
maticians need a variety of special symbols (oo, V, f). Of course, having too
many different repertoires is confusing, so there's a natural trend towards fewer
distinct repertoires.

1 Connolly's paper was published as an Internet Draft, a working document developed
and distributed to solicit comments on new ideas. Although I've included a reference in the
bibliography, Internet Drafts are temporary in nature, and the original document may be
difficult to find.

Character Sets • 21

Names and Numbers
We humans commonly refer to characters in two different ways. The first, of
course, is to offer a representative glyph, such as &. Another is to give a name
to the character, such as ampersand. Many of the file formats I'll describe
in subsequent chapters use names for less common characters. For example,
PostScript fonts use names such as quotedblleft for", ccedilla for~' and
!grave for l. The Hypertext Markup Language (HTML)2 uses names such
as & for & and &!grave; for l. (Note that the HTML names all begin
with an ampersand and end with a semicolon.)

This approach is a bit circular, because these names are themselves ex­
pressed as sequences of characters. The PostScript name for the character I
is simply I. For a computer, you have to represent at least some characters
using the numbers that computers manipulate most naturally. Once you have
enough characters represented in this way, you can use those characters to write
names for the rest. There are two subtly different approaches: A coded charac­
ter set simply assigns a particular character to each number, while a character
encoding represents a sequence of characters as a sequence of byte values.

A coded character set thinks of each character as a single number. For
example, in the ISO Latin 1 coded character set, the number 65 is used for A,
126 is used for..-, and 241 represents .fi.. If you have a sequence of numbers,
you can simply look up each number in a table to find out which character it
represents.

Of course, different countries and languages need different collections of
characters. The most convenient set of numbers to use for coded character
sets has been the numbers from zero to 255 (the possible values of a single
byte). Of course, with only 256 numbers, you can't give a unique code to
every possible character, so people have developed different coded character
sets. The ISO Latin 1 coded character set I mentioned earlier was developed
by the International Organization for Standardization (ISO) to hold all of
the characters needed for a certain group of languages (in this case, Western
European languages using Roman letters). Other ISO coded character sets
attempt to satisfY the needs of other groups, and most popular computer
systems have their own peculiar coded character sets (such as IBM's "code
pages" coded character sets used by MS-DOS and Windows).

2See page 29.

22 • Chapter 3: About Text

The simplest character encodings are based on a single coded character set
with 256 or fewer codes. If you have a text file that uses such a character
encoding, you can pick any byte from that file and tell what character it
represents simply by looking up the byte value in a table. If you use several
coded character sets in the same text file, life becomes more complex. In that
case, you have special character codes that inform the program reading the file
to switch to a different coded character set. Another international standard,
ISO 2022, describes one way to switch among character encodings. Notice
that you can't now simply look at a byte from the middle of the file and know
what it means; you have to read the entire file from the beginning to see if any
special escape sequences have changed the coding. Only then will you know
which table to use.

Languages such as Chinese have far more than 256 characters to represent,
so character encodings for these languages use multiple bytes for each charac­
ter. These character encodings use a variety of different approaches. One ap­
proach switches among several different single-byte character encodings, each
encoding a portion of the total character repertoire. Another approach uses
more than one byte for each character. To save space, often some characters
are encoded with one byte, and others with two or more. In practice, these
approaches are usually combined, which makes reading text files using Chinese
character encodings considerably more complex than the simple "one byte is
one character" assumption familiar to so many Western computer program­
mers.

One attempt to consolidate this mess is the Unicode standard (also known
as ISO 10646). Unicode is a coded character set that uses numbers from
zero to 65,536 for character numbers. This larger range allows Unicode to
number enough characters to satisfy the needs of most people on the planet.
Many international standards are moving toward the use of Unicode to provide
support for multiple languages. Future versions of HTML may be based on
Unicode.

A Subtlety
One fine point that pops up in international standards bears some considera­
tion. Many standards use special characters to mark commands or other special
features in a file. For example, Rich Text Format (RTF) starts each command

Character Sets • 23

with a backslash (\) character. RTF files are usually written in US-ASCII,
in which the backslash character is code 92. As a result, many RTF-reading
programs simply skim the file looking for code 92. The problem is: What if
RTF is written using a character encoding in which code 92 is not always a
backslash? For example, encodings for Japanese often use two bytes per char­
acter, and the second character may be a 92. A program that simply looks
for byte number 92 might interpret the second byte of a two-byte character as
the backslash; worse, some international character encodings use code 92 for
something completely different. The question arises: Is the start-of-command
character in RTF a backslash or is it character 92?

Fortunately, this issue doesn't arise in RTF. RTF can only appear in a
handful of character encodings, and the characters that have special importance
in RTF are the same in all of those encodings. This point of confusion may
become an issue for HTML, however. HTML may someday officially support
character encodings other than ISO Latin 13, and this precise question is one
of the stumbling blocks.

Why Bother?
Many Americans who have read this far are probably scratching their heads
and wondering "Why should I care?" One answer is simply that the Internet
is international. While the United States has dominated the Internet for many
years, to the extent that American English is considered by many to be the
unofficial "official" language of the Internet, this situation is changing. Even
when text files are written in American English, it's increasingly common for
them to appear in a character encoding other than simple ASCII.

Another reason that you should to be aware of these issues is that even
within the United States, the character encodings used by popular computer
systems do vary. Many Macintosh users have been perplexed by neatly format­
ted text such as:

!fffffffffffff¢
2 Hello 2
Jffffffffffffi

3ISO Latin 1 is the current standard character encoding for HTML, alchough there is
considerable pressure for HTML to support a larger repertoire.

24 • Chapter 3: About Text

when what was intended was:

r-------------,
I Hello I L _____________ J

The original author could make sure that more people would appreciate this
artistic touch by only using characters that are the same across most platforms:

+-------------+
Hello

+-------------+
While the effect is less impressive to other MS-DOS users, it is at least intelli­
gible to people not using MS-DOS computers.

Because different computer systems use different coded character sets, this
type of problem is rampant. It will be solved only when either everyone uses
the same character encoding (which is unlikely to happen for a long time)
or systems explicitly indicate which character encoding is being used by each
text message, so that intelligent software can translate. Many new software
standards are beginning to make this second option more of a reality.

Markup
Many text files are transferred as "plain" text. Unfortunately, plain text is ex­
actly what it sounds like: plain. A plain text file doesn't have fonts, embedded
graphics, headings, titles, footnotes, italics, or other features that would help
to make the text more attractive and easier to understand. These additional
features are called markup, and they can be vitally important. One simple
form of markup is the inclusion of names for special characters, as I discussed
in the previous section. Next I'll describe how other types of markup can be
represented.

Logical vs. Physical Markup
The first point of which you should be aware is the distinction between physical
and logical markup. Physical markup specifies the ·exact appearance of each

Markup • 25

piece of text, for example, "centered in 14pt Bold Oblique Futura Condensed.''
Logical markup specifies the logical significance of a piece of text, for example,
"this is a chapter title.''

These two types of markup are appropriate in different situations. Be­
fore you can print something on a printer, you clearly need to have physical
markup. Decisions must be made about the size of margins, the format of
footnotes, and the amount of indentation to use at the beginning of each
paragraph. Early word processors used this type of markup exclusively, requir­
ing you to specify the font, size, and style of each piece of text.

When exchanging information with other people, physical markup can
be limiting. For example, standard paper sizes vary from country to coun­
try. Something that looks very nice on US letter-size paper can look quite
awkward when printed on the slightly narrower and longer A4 paper used in
Europe. The situation is even worse for purely electronic documents such as
online help. Screen sizes and resolutions, fonts, and graphic support all vary
widely among different systems, making it best if the document can be easily
reformatted to fit the available display.

For these reasons, computer applications are increasingly moving to logi­
cal markup. Logical markup tags each part of the document with its logical
significance. For example, a word might be tagged with "emphasis" rather
than "italics." When the document is printed or displayed, this logical for­
matting will be converted into physical formatting that's appropriate for the
situation. Emphasized words might be underlined on a system that doesn't
support italics, or set in bold type in a country where bold is considered more
appropriate.

Logical markup is very important in some situations. One is the exchange
of electronic documents, such as World Wide Web pages. Another is in the
development and publication of large works such as books. Many publishers
store their books electronically using the Standard Generic Markup Language
(SGML). This approach helps simplify the creation of books (there's no need
to constantly remember the precise font and layout used in an earlier chapter)
and it also simplifies the publication of books in different sizes and formats.

The conversion of logical markup into physical markup is controlled by
a style sheet. A style sheet simply lists the visual appearance of each logical
element. For example, this book uses a style sheet that specifies Adobe Gara­
mond Italic for emphasized words. The details of this conversion are handled
differently by different systems. In some cases, the logical markup is specified

26 • Chapter 3: About Text

with text commands, and the entire document is processed to generate an out­
put that contains physical markup. In others, the logical markup is stored in
a binary word processor format, and the user edits the document with the full
physical markup apparent.

Preserving Markup
When you want to transfer data between different computers, the easiest route
is often to transfer plain text. When the markup is also important, you can
use one of three general approaches.

The first way to preserve the markup is to include markup information
in the text, for example: the <bold> right <endbold> decision might
be "the right decision." The advantage of this approach is that the file is a
text file (although admittedly rather funny-looking). & a text file, it's easier to
transfer between different computers. If you have a program that understands
the format, you can view it as the creator intended, but even if you don't have
the right software, you may be able to understand it anyway. There are many
different ways to represent the markup, including:

• HyperText Markup Language (HTML), used by the World Wide Web,

• TROFF, used for Unix manuals,

• lEX and IDfX., used by some academic publishers, and

• SGML (Standard Generalized Markup Language).

Each is discussed in more detail in later chapters.
The second way to preserve the markup is to transfer a picture of each

page. Fax machines work this way; they take a picture of each page and
then send that picture. One critically important aspect of this process is that
the receiver of such an image gets only a picture of the page. In particular,
before editing the contents, the receiver must retype the entire document.
This restriction isn't always a bad thing: You don't always want the recipient
to be able to easily alter what you send them. Two popular ways to share
text files use exactly this approach. Fax modems make it possible to transfer
documents directly from one computer to another. PostScript is a popular
format for representing documents that, despite being a text format, can be
very difficult to convert back into editable text without retyping.

Markup • 27

The third way to preserve the markup is to develop a new kind of file
specifically intended to contain both text and markup information. Most
word processors and desktop publishing programs use this approach. The
biggest problem is that almost every word processor and desktop publishing
program uses a different format. While more expensive programs can often
read files created by their competitors, this ability is not something you can
assume. As a result, these specialized files are usually not a good choice for
sharing documents.

HTML

The World Wide Web is built on three important standards. The first is the
Universal Resource Locator (URL), which provides a standard way to specify the
location of any piece of accessible data on the global Internet. The second is
the HyperText Transfer Protocol (HTTP), which can directly access and transfer
individual pieces of data located anywhere on the network. Finally, the Hyper­
Text Markup Language (HTML) provides a way of enriching text documents
with a variety of markup, including "links" specifying the URL of other pieces
of data. Most often, these links specify other HTML documents, which can
in turn be accessed with HTTP, providing users a global interconnected web
of information.

HTML itself is widely misunderstood. Many HTML documents on the
World Wide Web contain extensive, detailed formatting commands that allow
the document to look very nice on a particular browser on a particular op­
erating system and a particular size of screen. When viewed with a different
browser, the document can be completely illegible. The author of the docu-

HTML at a Glance

Name:
Extensions:
Use For:
Reference:
On CD:

HTML, HyperText Markup Language
.html, .htm
Electronic on-screen hyperlinked documents
The HTML Sourcebook [Gra95]
HTML editors for Macintosh, Windows

29

30 • Chapter 4: HTML

ment failed to realize a fundamental aspect of HTML: HTML does not allow
you to control the appearance of a document. Rather, HTML allows you to
suggest how the document should be displayed. Different browsers can (and
should) interpret those suggestions in different ways. For example, HTML
is designed to be easily converted into spoken text or braille for blind users;
HTML is also intended to be easily displayed on graphical screens or text-only
terminals. Authors that depend on the peculiarities of one browser should
realize that they are limiting their audience.

Universal Resource Locators
Before you can fully appreciate HTML, you need a good understanding of
URLs. URLs specify the location of a piece of data. They have a very specific
format, which I'll explain in this section.

First, I'll discuss an analogy that may help explain one often-overlooked
subtlety. Suppose you want to contact your old school friend Joan. One of
the first questions you might ask is: "Should I call her or write?" If you decide
to call, you'll need her phone number. If you want to write, you may need· a
variety of information: a ZIP code or postal code, country, state, city, street,
mail stop, building, apartment number, and so on. What information you
need depends on how you want to contact her.

The same is true of data on a network such as the Internet. First, you need
to know how you're going to access the data. Then, depending on the method
you choose, you may need a variety of additional information.

URLs specify first the method to use to access the data, and then a variety
of additional information required to uniquely identify that data. Table 4.1
lists some sample URLs. As you can see, the precise information required
varies depending on the access method. The following items will give you a
more detailed explanation of each one of these access methods:

HTTP The Hypertext Transfer Protocol was designed specifically for the
World Wide Web. To use HTTP, you need to specify the machine name
and additional information which that machine can use to find or create
the needed data. This additional data often looks like a filename with
directory information. Partly because the early work on the World Wide

Universal Resource Locators • 31

URL
http://www.w3.org
ftp://ftp.coriolis.com/pub/index.txt
pgopher://info.itu.ch
mailto:orders@coriolis.com
finger:kientzle@netcom.com
news:comp.newusers.announce
news:3009951049270001@system3.com

Table 4.1 Sample URLs

Description
System home page
Single file by FTP
Top-level Gopher menu
Mail URL
Finger URL
Newsgroup
Single news article

Web was done on Unix, the slash character(/) is used to separate directory
names and filenames when they appear in URLs.

FTP The File Transfer Protocol is an old access method that was de­
signed to make it simple to transfer large quantities of data over the Inter­
net. Because it is so old, it is widely available. To access a file or directory
with FTP, you need to specify a machine name and the name of a file or
directory on that machine. 1

Gopher This method is similar to HTTP. in some respects, but is more
limited in the type of data it can support. Gopher is text~oriented, al­
lowing you to browse menus and download files. The menus can contain
references to files or other menus (possibly on other machines). To access
data using Gopher, you need the name of the machine and the name of
the file or menu.

Finger This system makes it easy for people to find out basic informa­
tion about other network users, such as their account name and when they
last logged in. A common extension allows you to create a file (usually
called . plan) that will be returned to anyone who fingers you. This op­
tion exists so people can provide additional information such as a home
phone number or mailing address, but a few people do publish HTML

1 In normal FTP, a file name that includes a directory name uses the syntax of the host
machine. For example, if you're retrieving a file from a VAXNMS system, you may need
to give a name like [directory] filename. extension. URLs, however, always use the
Unix-style syntax of directory/filename.extension.

32 • Chapter 4: HTML

data in this way. Unfortunately, a bug in many Unix systems enabled
people to break into computers that allowed finger access.2 Although this
particular problem has been fixed, many system administrators no longer
allow finger a2tess.

To access data using finger, you need the name of the machine and the
account name of a user on that machine.

Mail Electronic mail is one of the oldest ways to relay data over the
Internet. Unlike all of the methods listed above, mail is a push protocol;
the sender actually initiates the movement of data from one computer
to another. The other approaches are pull protocols; the data is made
available somewhere and the recipient moves the data. Mail URLs use the
term mail to to emphasize this distinction.

To mail data, you have to know the mail address of the receiver, which
can be a user or program on another machine. If your system supports
domain addressing (almost all systems do these days), the mail address will
consist of a user name and machine name separated by an "at sign" (@).
The mail address j oan<Outopia. ny. pandora. com refers to a user named
joan on a computer named utopia.ny .pandora. com.

News News is a networked system that is divided into several thousand
"groups." An article posted to a particular group is relayed to every other
machine on the Internet that is interested in that group. Major Internet
sites handle all several thousand groups; smaller sites may only handle a
few hundred.

Identifying a specific news article is very different from the other trans­
fer methods I've mentioned. Because news is relayed to machines all over
the Internet, there's little point in specifying a particular machine. It's
far _more efficient for you to retrieve a specific article from your local
machine or some nearby machine that carries that group. As a result,
news URLs look quite different from other URLs. News URLs refer to
an entire newsgroup by name or a single article by an article identifier (a

2The well-publicized "Morris Worm" was a program that exploited several bugs in popular
Unix-like systems to copy itself to other computers. A few computers ended up with several
hundred copies of this program running simultaneously, which blocked the use of those
systems and disrupted the regular handling of mail and other network services. Fortunately,
no serious damage was caused apart from this disruption.

About Domain Names • 33

horrendous-looking sequence created by the computer on which the article
originated).

To limit the amount of disk space used by news, all systems expire news
articles, deleting old articles to reclaim space for new ones. News URLs
are even less permanent than other kinds of URLs. Many newsgroups are
permanently archived, and their contents can be accessed by HTTP or
FTP if you know the computer where those archives are kept.

A URL .is like a phone number. If the data moves for any reason, the
URL is no longer useful. A similar ~ituation occurs when a person moves and
gets a new phone number. However, as long as you know generally where
the person lives, you can find the new phone number by calling directory
assistance; no such facility currently exists for URLs. There is a project to
develop a system of Universal Resource Names (URNs), which would assign
unique names to pieces of data. You could then find the name in some widely
available database (similar in concept to directory assistance) which would give
you the URL for that data. Eventually, the World Wide Web will use such
URNs instead of URLs; your browser program will automatically ask directory
assistance for the correct URL for each URN, and then use the URL to access
the data. Creating such a directory and figuring out how to maintain and
access it is an enormous task, and it's unlikely to be available very soon.

About Domain Names
Many URLs depend on being able to specify a particular machine on the
Internet. While there are many ways of naming a particular machine, the
scheme currently in use on most of the Internet is called domain naming. In
this scheme, you identify a machine by specifying successively more specific
"domains." Contrary to what you might expect, the most general {largest)
domain is placed on the right, and the names are separated by periods.

Consider the domain name utopia. ny. pandora. com. In this example,
the least-specific (biggest) domain is com, which is used by commercial for­
profit companies in the United States. The name pandora is the (fictitious)
name of a single network3, whose full name is pandora. com. The Pandora

3Remember that the name "Internet" refers to the idea that many individual networks are
being connected.

34 • Chapter 4: HTML

Domain Explanation
com For-profit commercial
edu Universities
gov Government
mi 1 Military
net Network services
org Non-profit organizations

oz ,au Australia
ca Canada
fi Finland
de Germany
ja Japan
no Norway
za South Africa
es Spain
ch Switzerland
uk United Kingdom
us United States

Table 4.2 Selected Top-Level Domain Names

Corporation apparently has a New York office whose network is known as
ny .pandora. com, with a machine named utopia.ny .pandora. com. The
number of names that can appear in a machine address is not fixed; from two
to five names is typical.

Table 4.2 lists a few of the "top-level" domains. The first six were inher­
ited from the original ARPAnet, which preceded today's Internet. They are
currently used primarily within the United States. As the Internet has grown
into an international communications system, other domains have been based
on geography, rather than an arbitrary categorization of users. Some countries
have chosen to base their second-level domains on this original heirarchy, for
example, edu. au for Australian universities.

The domain naming scheme allows a distributed form of routing. (Rout­
ing is the process of figuring out how to get an electronic message from one
machine to another over a large network.) When your computer attempts to

AboutHTTP • 35

send data to utopia. ny. pandora. com, that data is first relayed (frequently
by one of a few dozen major "backbone, computers) to the official represen­
tative of the pandora. com network, which knows how to reach the official
representative of the ny. pandora. com network, which then sends it to the
machine utopia on that network.4

For mail, the official representative systems sometimes know about actual
end users. If Joan's full mail address is j oan<Dutopia. ny. pandora. com, the
machine that represents the pandora. com network may know how to get
mail to Joan. The address j oan<Dpandora. com may suffice to get the message
all the way to utopia and into Joan's mailbox. Such fine points vary widely,
though. This scheme also allows local networks to simulate non-existent ma­
chines. For example, many networks now pretend to have a machine name
www for World Wide Web use.

While domain addressing is fairly widespread, some mail systems still use
"UUCP-style, addressing.5 This approach requires that you list each machine
that needs to relay the data, separated by exclamation marks. The previ­
ous example might look like netrelay! pandora1! nyhub! utopia! joan.
This address instructs your local computer to relay the mail to a computer
named netrelay, which should send it to pandora1, then to nyhub, then
to utopia, and finally to Joan's mailbox on utopia. This example assumes,
of course, that your local system knows how to contact a machine named
netrelay. You can see why domain addressing is preferred; UUCP-style ad­
dresses require you to know a lot about how different networked computers
are connected. Domain addressing and UUCP-style addressing are occasion­
ally mixed, but interpretation of mixed addresses is inconsistent at best.

About HTTP
Most of the URLs you use will be HTTP URLs. HTTP was designed specifi­
cally for use on the World Wide Web, and works essentially as follows:

1. The process starts when you request a particular URL, by typing one
in, clicking on a link in a document, or submitting a form.

4This is, of course, a highly simplified description.
5 UUCP is the Unix to Unix Copy system, a very early networking approach using modems.

UUCP-style addressing is sometimes called "bang" addressing. "Bang" is one name for the
exclamation point character used in these addresses.

36 • Chapter 4: HTML

2. Your browser dissects the URL to obtain several pieces of information:
the name of the machine, the name of the document, and a possible
modifier (see the next section).

3. Your browser sends an HTTP request to that machine for that docu­
ment. (If a form is involved, your browser will also attach the contents
of the form.) This request is received by an HTTP "server" program.

4. If the request requires a response (usually a document), the server pro­
gram attempts to locate the requested data, which may be as simple as
looking up a file with that name. If an imagemap or form is involved,
the server may locate a program (usually a script of some sort) and run
that program to create the document, or at least generate the URL of
the document. 6

5. The server program sends the requested document to your browser,
which uses the MIME type (see page 273) to determine how to display
it. If your browser discovers other documents are needed (such as em­
bedded pictures), it will go through the entire request cycle again. Once
all of the data is available, it can display the complete document for
you. (Some of the more intelligent browsers display data as it becomes
available, which allows you to read the text of a document before the
pictures are available, or to begin reading a long text document before
it's completely received.)

Sometimes, instead of returning a document, the server will return another
URL that your browser should then request. This indirection is especially
useful for search programs and indexes: Rather than returning the document
pertaining to your request, the server can simply respond with the URL of
the requested page. Your browser will then make a second request to obtain
the actual document. (This approach may seem somewhat circuitous until
you remember that the result of the search may be a document on another
machine. This indirect approach means that the server won't have to request
that document from another server just to pass it along to you.) Usually, this
kind of multiple request is invisible to you.

An HTTP server is stateless. After it returns the document you requested,
the HTTP server can simply forget about you. It doesn't need to remember

60ne interesting point is that the HTIP server explicitly identifies the document type to
the browser using MIME content type names (see page 273).

HTTP URL Modifiers • 37

who you are or what you were doing, although more advanced servers will keep
track of certain things about you for efficiency reasons. If you just requested
a document with embedded images, you're likely to be requesting the actual
images shortly, and the server can speed things up by locating those images in
advance.

Contrast this stateless approach with a protocol such as FTP. In FTP,
you first log in to the server. The server keeps track of who you are and
what you're doing until you tell the server you're done. Because FTP was
originally designed to require a password, the server needs to either remember
who you are or require a password for every separate file you transfer. Also,
because FTP is often used to retrieve many files at one time, the FTP server
can simplify things by keeping track of what you're doing. However, the
additional overhead required to keep track of what each user is doing makes
FTP somewhat less efficient for the kind of sporadic access that is typical on
the World Wide Web.

HTTP URL Modifiers
One point I omitted earlier is that HTTP URLs can use two special characters
to indicate that a document should be retrieved in a particular fashion. For
example, if you hand your browser the URL

http://utopia.ny.pandora.com/joan/useful#chapter2

it will dissect this lengthy URL into a request to use HTTP to connect to
a machine called utopia.ny .pandora. com and request a document. This
example uses the # character, which indicates a location within a larger doc­
ument. With this particular URL, your browser would actually request a
document called joan/useful, and then search the document for a location
called chapter2. If it finds this location, it will display the document begin­
ning at that location. Note that the #chapter2 was not actually included in
the document request.

In the previous paragraph, notice that I didn't say your browser would "re­
quest a file called joan/useful." In fact, there may not be such a file. The
program that handles HTTP requests may use any of a variety of methods
to obtain the document you request. It may use the document name as a

38 • Chapter 4: HTML

filename; it may use the document name as an index into a large database;
it may somehow create the document automatically. One common use of
HTTP is to access large indexes. You request information from such an in­
dex by specifying a URL chat includes a search request. A search request is
indicated with a ? character. For example, consider the document name
joan/useful ?http. When you request this document, the server locates a
database called joan/useful and searches for items chat match http. It chen
creates a document containing chose items and returns the resulting document
to you. (Usually the server uses the name j a an/useful to find a program,
and runs chat program to find or create a document corresponding co http.)
Note the difference between the # and ? modifiers; the # modifier is handled
by your browser, while the ? modifier is handled by the remote server.

This search mechanism has found two important uses. The first, obviously,
is to add search capabilities to large World Wide Web servers. An HTML
form allows you co fill in certain information in a document. When you
finish, your browser requests a URL that includes a search term specifying
the information you filled in, and the server responds with a constructed
document that satisfies your search request. This method is used, for example,

Honolulu Community College II:Jliim'm

10 ----Figure 4.1 Example HTML lmagemap

An HTML Primer • 39

by bookstores and libraries that allow you to search for particular books in
their collections. 7

The other use of the search modifier is with HTML imagemaps. An im­
agemap is a picture on which you can click. When you click on the picture,
your browser requests a URI.. that contains a search request consisting of the
coordinates where you clicked. For example, Figure 4.1 shows a map of the
Honolulu Community College. 8 If you click on Building 6, your browser
might generate a request for a URI.. ending in hccmapd?309, 242. The server
would then use the coordinates to decide which document to return. In this
case, you would find out about the Administration and Student Services build­
tng.

It is possible-if you have either a fast connection or a lot of patience-to
create graphical adventure games using imagemaps. The user clicks on each
image, and receives a different image depending on where they click. In this
way, they wander through an imaginary world.

An HTML Primer
The original HTML language was fairly simple, but a variety of pressures
are causing HTML to rapidly become more complex. Companies marketing
HTML browsers often distinguish their products by supporting extensions to
the current HTML standard. The best of these proprietary extensions will
be incorporated into the next version of the standard, along with other new
features designed to satisfy the needs of new groups of users. This cycle of
ongoing change is already well established, and will probably continue for
many years. The current widespread standard is HTML 2. All currendy
available browsers should support that standard. HTML 3 is still being refined,
but some of its features are already widely supported.

However, because HTML is based on the Standard Generalized Markup
Language (SGML) (see page 77), the basics are quite stable.

7Forms are handled in two slightly different ways. One way is to include the form data as
part of the URL; the other is to include the form data separately within the HTIP request.
The difference is subtle, and completely transparent to the user.

8This map was copied from http: I /www. hcc. hawaii. edu/hccmap/hccmap. html.

40 • Chapter 4: HTML

Tags and Elements
HTML files are text files with embedded markup in the form of tags. A tag
is surrounded by angle brackets < ... >, has a name, and may have additional
attributes. For example, the tag has the name A, and
the attribute HREF with the value "location". Most attributes have values.9

Some tags stand on their own. For example, the <P> tag indicates the start
of a new paragraph. Most tags, however, come in matched pairs of a start tag
and an end tag. End tags look just like start tags, except that the name has a
I in front of it. For example, <Hl> is a start tag; the corresponding end tag is
</Hl>.

Start and end tags surround some piece of text. To emphasize a section
of text, you include emphasis to produce emphasis. This compo­
sition of a start tag, some text, and an end tag is referred to as an element.
Elements can sometimes be nested; you can emphasize a single word in a
heading with <Hl>The Real McCoy</Hl>.

Some people fall into the trap of thinking of as starting emphasis,
and as ending emphasis. If you think of it that way, you might be
tempted to try writing bold emphasis to get bold em­
phasis, on the logic that you're first turning on bold and emphasis and then
turning off bold and emphasis. However, the browser tries to interpret this
as one element nested within another. The correct way to write this request
is bold emphasis, an emphasis element within a bold
element.

One point bears repeating. Any markup within an HTML document is
strictly a request. Some requests will be ignored by some browsers. For exam­
ple, if you try to use the above example and the browser doesn't have a bold
emphasized font, it may simply ignore the request and leave the text in the
default font. Also, different browsers will interpret tags differently. For exam­
ple, text-based browsers may simply omit embedded graphics, or replace them
with the informative [picture]. It's the responsibility of HTML authors to
make sure that their documents make sense with any reasonable interpretation
of the tags.

9Technically, tags don't require a name. However, proper use of the empty tags <> and
</> requires some care, and their use is generally discouraged.

<HTML>
<HEAD>

Head
</HEAD>
<BODY>

Body
</BODY>

</HTML>

Figure 4.2 Structure of an HTML Document

Structure of an HTML Document

An HTML Primer • 41

An entire document is a single HTML element, which in turn contains HEAD
and BODY elements. In simpler terms, every HTML document looks like
Figure 4.2. ·

The head part of an HTML document contains information about the
document that is not displayed. This information identifies the document,
author, and other such information about the document. This information
is important because it is used by many browsers. For example, the tide of
the window is typically set to the title of the document. This information is
also used in the massive indexes of the entire Web being compiled by several
groups {see page 15).

Unfortunately, the tags shown in Figure 4.2 are optional and often omitted
in practice. As a result, the only reliable way to distinguish the head infor­
mation from the body is to understand the kinds of tags that appear in each
section.

HTML Head
The purpose of the head is to provide the browser and HTTP server with
certain basic facts about the document.

The most common element used in this section is the TITLE element. The
"tide" of the document is used in a variety of ways: Many browsers display it

42 • Chapter 4: HTML

in the title bar of the window when the document is displayed; users can often
add it to a menu of favorite locations; and automatic indexing programs use
the title to identify the page. These diverse uses make it somewhat difficult
to select a good title. A good title is long enough to accurately identify that
particular page in a menu or index, but short enough to fit into a menu or
title bar. A title such as Introduction is not very useful in isolation; on the
other hand, the following title from Gulliver's Travels [Swi26, Part Ill, Chapter
VII] is clearly too long for most tide bars:

The Author leaves Lagado, arrives at Matdonada. No ship ready. He
takes a short voyage to Glubbdubdrib. His reception by the Governor.

Three other tags frequently appear in the head. ISINDEX allows a simple
type of database query. BASE tells the browser to pretend the document was
pulled from a particular URL. LINK specifies other URLs that are related to
this document.

The ISINDEX 'tag prompts the browser to request a string from the user
and return it to the server. In essence, ISINDEX acts as a very simple fixed
form. It is being displaced by the more flexible FORM element (see page 48).

It's easier to refer to related documents with abbreviated URLs that provide
only the final name than to include the machine and full directory information
in every link. These partial URLs require the browser to know the full URL of
the current document; the browser can then substitute the partial information
to build the full URL that it needs. This scheme breaks down if the base
document is moved to another directory or another machine; the partial URLs
will then be interpreted in the new context, rather than referring back to the
original source. The BASE element specifies the base URL that the browser
should use when interpreting partial URLs within that document.

One of the popular additions to HTML 3 is support for style sheets. Style
sheets allow the document creator to suggest specific formatting (including
fonts, colors, and alignment) for certain tags. Because the same style sheet is
often shared by several documents, it's nice to store the style sheet separately.
Specifying the URL of the associated style sheet is one use of the LINK ele­
ment. Other uses have been suggested, but are not yet widely implemented. 10

10Style sheets are quite different from the popular Netscape extensions. The Netscape
extensions embed physical markup directly in the document. Style sheers are separate files
which can be referenced by many HTML documents.

An HTML Primer • 43

Element Description
<H1> ... </H1> First-level heading; document title
<H2> ... </H2> Second-level heading
<H3> ... </H3> Third-level heading
<H4> ... </H4> Fourth-level heading
<HS> ... </HS> Fifth-level heading
<H6> ... </H6> Sixth-level heading

Table 4.3 HTML Heading Elements

Paragraphs
If you use electronic mail, you probably expect the text you type to appear
exactly as you type it, line breaks and all. HTML normally ignores line breaks
completely; the words are repackaged to fit onto lines however the HTML
browser sees fit. Two common tags affect this process. The first tag is <P>,
which marks the beginning of a paragraph. (There actually is a matching </P>
tag to mark the end of a paragraph, but it is rarely used.)

The other important tag is <PRE>, which is used for preformatted text.
Any text between <PRE> and </PRE> is displayed with line breaks and spacing
exactly as you typed it. Usually, preformatted text is displayed in a typewriter
font.

Headings
The tide that occurs in the head is not displayed as part of the document. To
display a title, you need to use one of the heading elements shown in Table 4.3.
Headings in typical documents appear in levels. A first-level heading is usually
larger or darker than a second-level heading. (If you look at this book, the
phrase "Headings" above is a third-level heading; the corresponding second­
level heading is "An HTML Primer" on page 39; the first-level heading is the
chapter tide "HTML" on page 29.)

Usually, HTML documents have a single first-level heading at the top
of the document, then some number of second-level headings below that.
It's unusual to see more than three levels of headings except in very long
documents.

44 • Chapter 4: HTML

Tag Description
 ... Emphasis
 ... Strong emphasis
<CITE> ... </CITE> Reference to a book or other document
<CODE> ... </CODE> Short piece of computer code
<DFN> ... </DFN> Defining instance of a word
<KBD> ... </KBD> Literal keyboard input
<SAMP> ... </SAMP> Sample text
<VAR> ... </VAR> Variable name
<STRIKE> ... </STRIKE> R~moved Text

Table 4.4 Logical Text Styles

Text Styles
HTML supports both logical text styles, which specify the meaning of a block
of text, and physical text styles, which specify the appearance of a block of text.
Table 4.4 lists the most common logical text styles and suggests one way they
might be displayed. Notice that these tags all have different meanings, even
though in practice many of them have an identical appearance.

For comparison, Table 4.5 lists the physical text styles. You should use the
logical styles whenever possible, to allow the target browser to choose the most
appropriate appearance. Using logical styles also helps the reader. For example,
a reader might search your document for the <CITE> tag in order to identify
the citations. The physical styles are primarily for use by programs that convert
from other formats to HTML, since it's impossible to automatically add logical
formatting to a document.

Most browsers will honor nested requests, although the result can vary.
A request for <I><TT>Italic Typewriter</TT></I> may yield Italic
Typewriter, Italic Typewriter, Italic Typewriter, or even simply Italic
Typewriter, depending on the browser.

Special Characters
Entities are a notation for special characters. Four characters have special mean­
ing in HTML: < > 11 &. To include them explicitly in your document, you

An HTML Primer • 45

Tag Description
 ... Bold
<U> ... </U> Underline
<I> ... </I> ltaua
<TT> .. . <ITT> Typewriter font
<S> ... <IS> Strike tluet:1gh
_{...} Subscript
^{...} Superscript

Table 4.5 Physical Text Styles

have to refer to them by name. Although HTML currently uses the eight-bit
ISO Latin 1 coded character set, not all text editors and other tools have di­
rect support for that coded character set. As a result, HTML provides entity
names for all of the ISO Latin 1 characters that aren't also in seven-bit ASCII.
Table 4.6 is a complete list of the entity names supported by HTML 2. Note
that all entity names begin with & and end with;.

HTML also allows you to identify characters by specifying the character
code (HTML 2 uses the ISO Latin 1 coded character set). The entity names
are easier to understand and preferred for most uses.

Links and Anchors
Of course, the point of HTML is to support the hyperlinked World Wide
Web. HTML's anchor tag serves two purposes: It can define a button which,
when selected, instructs the browser to retrieve another document, or it can
mark a location within a document (see page 37). Put slightly differently, an
anchor can serve either as the start or end of a link.

In everyday use, anchor tags take two forms. The most common form is
This is an anchor.</ A>, which marks the text "This
is an anchor." In many browsers, this text will be displayed in a different
color, in a box, or with a small icon beside it. When selected, the browser will
jump to the indicated URL.

The other form is Chapter 2</ A>. This kind
of anchor creates a named location in an HTML document. (This anchor is

46 • Chapter 4: HTML

Entity Numerical Entity Numerical
Symbol Name Name Symbol Name Name

" " < &It; <
& & & > > >

A À À a. à à
A Á Á a á á
A Â Â a â â
A Ã Ã a &a tilde; ã
.A Ä Ä a ä ä
A Å Å a å å
1E Æ Æ re æ æ
<; Ç Ç ~ ç ç
E È È e è è
E É É e é é
~ Ê Ê e ê ê
~ Ë Ë e ë ë
l &!grave; Ì l ì ì
r &!acute; Í { í í
I &lcirc; Î î î
r &luml; Ï i' ï ï
D Ð Ð a ð ð
N Ñ Ñ ii ñ ñ
0 Ò Ò 0 ò ò
6 Ó Ó 6 ó ó
L> Ô Ô A ô ô 0

6 Õ Õ 6 õ õ
0 Ö Ö 0 ö ö
X × ÷
0 Ø Ø 0 ø ø
(J Ù Ù u ù ù
u Ú Ú u ú ú
0 Û Û u û û
0 Ü Ü ii ü ü
y Ý Ý y ý ý
I> Þ Þ p þ þ
g ß ß y ÿ ÿ

Table 4.6 Entity Names

Attribute
HREF
NAME
REL,REV
URN
TITLE
METHOD
EFFECT
PRINT
TYPE

Table 4.7

Description
Destination of this link
Create a named location

An HTML Primer • 47

Relation between this document and the target document
Destination of this link as a URN (not yet supported)
Proposed title for target of link
Proposed access methods
How to display new document
Suggested format for printing new document
Type of the new document

Anchor Tag Attributes

called a fragment in the HTML standards.) Such a location can be referred
to as part of a URL. Lengthy HTML files often have a "table of contents" at
the beginning, with items such as Chapter 2.
Chapter 2's heading might look like <Hl>Chapter
2</ A></Hl>. When a user selects the line in the table of contents, she'll. be
taken directly to the corresponding location in the text. A single anchor can
have both a NAME and HREF attribute.

Because people access data in so many different contexts, anchor tags sup­
port a variety of attributes. HTML 2 added several new attributes, and HTML
3 is adding even more. As document structures become more complex, anchor
tags will become even more sophisticated. Table 4. 7 lists some of the attributes
that have been proposed for anchor tags.

Graphics
One of the biggest selling points of the World Wide Web is that HTML
supports graphics. Graphics are handled in two different ways. The first way
is to treat the graphic as a document in its own right. This is possible because
a link can refer to any type of data, including a separate picture. Especially for
very large images, it's common to simply have a link to the actual picture.

The second way to handle graphics is to embed an image directly in the
HTML document. The IMG tag embeds an image as if it were a single large
character, allowing you to place images in the middle of a paragraph or have

48 • Chapter 4: HTML

Attribute
SRC
ALT
ISMAP
ALIGN

Table 4.8

Description
URL to load the image from
Text alternative
Use this as an imagemap
How this aligns with nearby text

IMG Tag Attributes

several images on a line. A typical use of the IMG tag is <IMG SRC= 11 URL 11

ALT= 11 temt 11 >. The URL specifies the source of the image data, and the ALT
keyword gives a text string that can substitute for the picture. This text string
is used by text-only browsers. (For example, a company logo might use the
company name here.)

IMG tags support many additional attributes. One attribute is ISMAP,
which indicates that a graphic is actually an imagemap. This form of the IMG
tag must be nested within an anchor tag; the anchor tag provides the URL for
the final search and the IMG tag provides the image.

Forms
Unlike 1FX and TROFF, HTML documents are intended to be used in a
dynamic, interactive fashion. Forms are HTML documents with special input
fields-areas that the reader of the document is able to change. After changing
those elements, the reader can select a button embedded in the document to
send the contents of the form back to the server. When the server receives the
form, it usually looks up an appropriate program or script and hands the data
to that program. Depending on the particular usage, this process can be either
a one-way transaction where the contents of the form are silently accepted or
a two-way transaction in which the server ultimately returns a new document
as a result of the form.

Elements within a form are organized by variables. Each form element,
whether it's a push button, scrolling list, or type-in field, has a variable name
and value. When the form is submitted, the browser looks at each item, and
tells the server the value of each variable. For example, Figure 4.3 shows a
SELECT element, which the browser displays as a pop-up menu. The person
reading this form can click on the menu and select any one of the three

I want to vote for:
<SELECT NAME= 11 vote 11 >

<OPTION> Candidate 1
<OPTION> Candidate 2
<OPTION> Candidate 3

</SELECT>

Figure 4.3 Example of SELECT Tag

What flavors do you like?

 <INPUT TYPE= 11 checkbox 11

NAME= 11 flavor 11 VALUE= 11 Choc 11 >
Chocolate
 <INPUT TYPE= 11 checkbox 11

NAME= 11 flavor 11 VALUE= 11 Van11 >
Vanilla
 <INPUT TYPE= 11 checkbox 11

NAME= 11 flavor 11 VALUE= 11 Straw 11 >
Strawberry
 <INPUT TYPE= 11 checkbox 11

NAME= 11 flavor 11 VALUE= 11 Ban 11 >
Banana

Figure 4.4 Example of INPUT Tag

An HTML Primer • 49

options. If the user selects "Candidate 1," the server will be told (when the
form is submitted) that the variable named vote has the value "Candidate 1."

One variable can have more than one value at a time. Figure 4.4 shows
a form fragment with several checkboxes. If both Chocolate and Banana are
checked, the returned form will specify both flavor=Choc and flavor=Ban.

Given the flexibility of forms, it's somewhat surprising how few tags are in­
volved. Each form consists of a single FORM element containing various items.
(Figures 4.3 and 4.4 are examples of items that can go within a FORM element.)
The contents of the forms are specified by SELECT elements (pop-down menus
and scrolling lists), TEXTAREA elements (multiline type-in fields), and INPUT

50 • Chapter 4: HTML

Tag
SELECT
SELECT MULTIPLE
INPUT TYPE="checkbox"

Description
Pop-up menu of choices
Scrolling list allowing multiple selections

INPUT TYPE="radio" Linked buttons; only one can be selected
INPUT TYPE="text 11 Single-line text field
INPUT TYPE="reset 11 Discard user changes
INPUT TYPE=" submit 11 Send form to server
INPUT TYPE=" image 11 lmagemap
TEXTAREA Multi-line text field

Table 4.9 Tags Used in HTML Forms

elements (various types of buttons and single-line text fields). Table 4.9 lists
some of the variations of these elements.

Tables
Tables are a new feature in HTML 3. The basic structure is very simple: A
TABLE element contains a series of TR (row) elements, each of which in turn
contains a series of items. Header items (TH elements) are used for column and
row labels; data items (TD elements) are used for regular data. Figure 4.5 shows
an example table, which was created by the HTML commands in Figure 4.6. 11

Note the use of nested tables to selectively include certain rules.
If you compare this table with the J5IEX example on page 72 and the

TROFF example on page 88, you'll notice I made no attempt to force the text
style and alignment to precisely match those examples. As with most aspects
of HTML, it's important not to over-specify the appearance.

Mathematics
Mathematics support is another new feature in HTML 3. Within the MATH
element, several new tags are available to produce subscripts (SUB), super-

11 This table was adapted from an example in UNIX in a NutsheO [Gil92], and typeset with
Netscape Navigator.

An HTML Primer • 51

I Horizontal Local Motions I
Effect in I F f I UDCIODI

TROFF II NROFF I
\h'n' Move distance N

\(space) Unpaddable space-size space

\0 Digit-size space

D 1/6 em space ignored

1/12 em space ignored 1\

Figure 4.5 Example HTML Table11

scripts (SUP), fractions (BOX element and OVER tag), and other mathematical
constructions. For example, the simple equation J; ~ :;;: lnx can be specified
with:

<MATH> ∫₁^x
<BOX>dt<OVER>t</BOX> = &ln; x </MATH>

This simple example illustrates several points about HTML,s mathematics
notation. Variables are normally set in italic type. Entity names are used both
for special characters (such as ∫ for f) and also for the names of special
functions that are traditionally set in roman type (such as &ln; for In). The
construction <BOX> numerator <OVER> denominator </BOX> is used to
build fractions. Note that HTML uses superscript and subscript constructions
to place limits on integrals and summations.

Because the tag forms are a bit unwieldy, HTML 3 allows you to surround
subscripts with _ characters and superscripts with - characters. Similarly, {
and } can be used in place of <BOX> and </BOX>. When using these substitu­
tions, HTML mathematics looks remarkably like 1fX/MIEX mathematics (see
page 74); HTML has even borrowed the names of many special symbols from
1fXIMIEX. Table 4.10 gives some more examples. In the last example, note
that you can,t use the short form for nested subscripts.

52 • Chapter 4: HTML

<TABLE BORDER>
<TR><TH COLSPAN=3>Horizontal Local Motions
<TR><TH ROWSPAN=2>Function<TH COLSPAN=2>Effect in
<TR><TH>TROFF<TH>NROFF
<TR>

<TD> <TABLE>
<TR><TD> \h'n'
<TR><TD> \(space)
<TR><TD> \0
</TABLE>

<TD COLSPAN=2>

<TR>

<TABLE NOWRAP>
<TR><TD>Move distance N
<TR><TD>Unpaddable space-size space
<TR><TD>Digit-size space
</TABLE>

<TD> <TABLE>
<TR><TD> \I
<TR><TD> \""
</TABLE>

<TD> <TABLE>
<TR><TD>l/6 em space
<TR><TD>l/12 em space
</TABLE>

<TD> <TABLE>
<TR><TD>ignored
<TR><TD>ignored
</TABLE>

</TABLE>

Figure 4.6 HTML Table Source

<MATH> e~x-= ∑_i=o_-&inf;~
{x-i-<OVER> i!} </MATH>

HTML Style Guidelines • 53

<MATH> Ψ = {&pd;E <OVER> &pd;x} </MATH>

<MATH> x_{a₁}
+ x_{a₂}
+ &cdots; = π/4 </MATH>

Table 4.10 Examples of HTML Mathematics

HTML Style Guidelines
Both creators and users of HTML should be aware of HTML style issues.
There are good reasons why many HTML documents have a similar layout.
Being aware of those reasons can help you make the best use of those pages.

HTML authors need to consider three general issues when they design
their World Wide Web pages:

Maintenance An HTML document may be available on the Internet
for months or even years. During that time, the document will need to
be modified to correct errors, to add new information, and to keep up-to­
date with changes on the system, on the Internet, and even in the HTML
standard itsel£

Accessibility Not everyone uses the same browser, and todais most
popular browser may not be around tomorrow. For this reason, consid­
erate designers avoid features that are available only in certain browsers.
Remember that many people still use text-based browsers. In fact, many
people prefer text-based browsers because they are so much faster, and they
may use them even when graphical browsers are available.

Speed People have different Internet connections. Someone accessing
through a 2400 baud modem may not appreciate waiting ten or fifteen
minutes for a large picture to be received.

Many people blithely ignore these considerations, and create HTML doc­
uments that are intended to be read only by a few friends with high-speed

54 • Chapter 4: HTML

connections, all using the same browser. However, many businesses hire pro­
fessional designers who work very hard to create documents that are attractive
and address these concerns. Here are a few specific ideas to consider:

Keep It Simple. Professional designers spend years learning how differ­
ent effects combine. They learn how to balance effects so that insignificant
parts of the design (like a single emphasized word) don't overwhelm the
rest of the document. Achieving this balance is made even harder by the
fact that each browser handles things differently (for example, the align­
ment of images and text will vary between browsers). The most common
mistake made by the creators of new World Wide Web documents is trying
to use too many special effects.

Don't Use Deprecated Features. Certain HTML tags (such as XMP,
LISTING, or PLAINTEXT) are listed as deprecated in references. This label
means that people who work with HTML extensively have decided these
tags aren't a good idea. Newer browsers may not support these tags at all.

Use Interlaced Graphics. The GIF graphics files used in most World
Wide Web documents have an interlaced form in which every eighth line
is transferred, then every fourth, and so on. On some browsers, the picture
is incrementally displayed as it is transferred, allowing people to get a good
idea what the picture is long before the whole thing is received.

Use Graphics Sparingly. Graphics take much longer to transfer than
text, and people with slow connections are unlikely to revisit a page that
takes too long to display. With a little care, a few small images can pro­
vide the same impact as a more complex graphical image, but they will
download and display much faster.

Use Stylized Graphics. Graphics are transferred in a compressed form.
The better the graphics compress, the faster they'll transfer. Graphics that
have only a few colors compress much better. Stylized woodcut or art-deco
images can look very modern while still compressing well. Graphics with
smoothly varying colors, on the other hand, compress very poorly.

Defer Large Images. Rather than placing a large image or imagemap
in the middle of a page, considerate designers use a small version of the
image as a link to the larger version. This way, people reading your page
can decide whether or not they want to wait for the whole picture.

HTML Style Guidelines • 55

Use Repeated Graphics. Most HTML browsers will recognize multi­
ple uses of a single image and only download it once, even if it appears
on many different pages. This approach allows more color on a page with
little degradation in speed.

Choose Appropriate Sizes. Different kinds of information fit on dif­
ferent page sizes. If you expect people to read it straight through, or to
download it and read it later, put all the information on one page. If you
expect people to read only small portions, break it into several pages so
people can find and go directly to the part that interests them. Be wary
of very large pages, which may be unusable by some people. (I've had
browsers crash trying to read very large pages.)

Don't Use Browser-Specific Features. If a particular feature is avail­
able in only a few browsers, be careful using that feature in your pages.
The effect may look odd on other browsers. Also, keep in mind that
other browsers may have deliberately chosen not to implement that fea­
ture. (What do they know that you don't?)

Be Cautious with Unusual Symbols. The HTML standard currently
specifies ISO Latin 1, but not all browsers have access to this character set.
Be careful with non-ASCII characters. One common error that I've seen in
HTML references is the claim that Microsoft Windows uses the ISO Latin
1 character set. This statement is not true; Microsoft Windows supports a
number of characters that are missing from ISO Latin 1, including open
and close quotes(" and"), en-dashes and em-dashes(- and-), and a few
other such characters.

Use Rules. Especially in larger pages, rules (horizontal lines that cross
the page) are a simple and effective way to separate the major parts. Some
HTML writers have attempted to substitute a long horizontal graphic. If
you do so, be careful. Such images don't resize with the window; users
who change the size of their browser window may be surprised.

Use Logical Markup. While HTML does have tags to specify partic­
ular font effects (Bold, Italic, Underline), not all browsers support those
specific effects. All browsers do support some form of emphasis, however.

56 • Chapter 4: HTML

Use Few Fonts. One of the most common mistakes made by amateur
graphics designers is to use too many fonts. Generally, plain text and
emphasis are sufficient, with occasional use of tags such as CODE or SAMP.

Keep Links to Other Documents in One Place. The worst mainte­
nance headache encountered by HTML authors is making sure that all of
the links to other people's documents are still valid. One way to simplify
this task is to resist the temptation to scatter a lot of links throughout the
pages. By gathering all external links on a single page entitled Bibliography,
More Information, or Other Cool Sites, you only need to check one page to
make sure all of the external links are still valid.

Use Relative Links. Links between closely related pages don't need to
use absolute URLs. By only giving the last part of the URL and letting the
browser use the current URL to build the correct full address, the pages
are better insulated against certain kinds of common changes.

Link to Your Own Home Page. People periodically find themselves at
an odd page, and want to find the corresponding home page. This situa­
tion can happen because someone else linked directly to a page, or because
someone downloaded a page to review it more carefully. In either case,
having a home page link on every page lets people find the home page.

Link to Other People's Home Pages. People usually keep their home
pages accessible, but often have few qualms about rearranging their other
pages. When possible, link to other people's home pages rather than the
specific page of interest. If you must link to the specific page, a nearby
link to the corresponding home page helps ensure that people will be able
to find the information even if the specific page has moved.

Sign Your Pages. It has become traditional for every page to have a
link labelled with the author's name or mail address. The target of this
link is a page with information about the author, sometimes including a
photograph, resume, or other information.

Proofread Your Pages. One of the biggest things that distinguishes
the few very good Internet resources from the huge clamor of poor ones
is that the good ones are carefully reviewed and edited. Time spent proof­
reading, soliciting comments from friends, and conscientiously double­
checking can impart that air of professionalism that will help your pages

More Information • 57

stand out. Such care takes time, which is exactly why so many people fail
to do it.

More Information
If you have access to the World Wide Web, one good place to start is the
home page of W3, which sponsors much of the development of World Wide
Web standards. Point your browser to http: I /www. w3. org for more details.
Even if you prefer to read a good book on the subject, this page is a good
resource for up-to-date information. Because these standards are evolving so
rapidly, any book will have some out-of-date information.

With the current rapid growth of interest in the World Wide Web, there
are several good books devoted exclusively to the subject of HTML. Ian Gra­
ham's HTML Sourcebook [Gra95] is one good reference to HTML and HTTP.

HTML editors and other tools for the Macintosh can be found on the
Info-Mac archives (see page 12) in the text/ _HTML directory.

Yahoo (see page 14) has a well-organized listing of HTML tools for many
platforms, including stand-alone editors and tools to convert many different
word processor formats into HTML. From the main Yahoo index, select Com­
puters and Internet, then World Wide "Web, then HTML Editors.

1fX and INEX

Donald Knuth, a computer science professor at Stanford University, developed
the TF)(typesetting system (pronounced "tek") to simplify the production of
books containing mathematics. He spent nearly ten years refining TfX, and
the resulting system has been ported to a variety of different computers. Free
implementations of TEX are available for most computers, and several com­
mercial implementations are available for PC and Macintosh platforms.

1fX has a powerful macro language that makes it relatively easy to add
new capabilities. Several extensive macro packages have been created for TfX.
The most popular of these is 11IfX. Most 1fX systems today include 11IfX.

A 1fX system consists of a number of different programs. The most
important one is tex, which reads a 1fX input fi le and interprets the text
markup to produce a device-independent DVI output file. This DVI fi le

TEX and ~TEX at a Glance

Names:
Extensions:
Use For:

References:

On CD:

JEX,MIE)C,TeX, LaTeX
. tex, . 1 tx, .latex
Typesetting large documents, especially those with
mathematics
B7F)(: A Document Preparation System [Lam94]; The
7F)(book [Knu86a]
Alpha editor for Macintosh; complete Web2C MIEX system
for Unix

59

60 • Chapter 5: 7fX and /NfX

specifies the font and position of each character on the page, and is designed
to be easily translated to generate output for any particular printer. The tex
program itself is completely printer-independent; it reads the input file and a
variety of other files that describe the available fonts and other information to
produce the correct output.

The 1FX system (including the IDEX ·extensions) is quite popular, espe­
cially in universities. There are a number of reasons for this:

• lEX is free. Implementations for many different computers are available
on the Internet. Commercial implementations offering greater speed
and improved interfaces are also available for many systems.

• lEX is stable. Knuth has promised that lEX 3.0 (released in 1990) rep­
resents the last important change. This stability means that documents
based on lEX will continue to be usable for the foreseeable future,
which makes 1FX a good choice for exchanging documents. Macro
packages built on lEX have a solid, dependable base for developing
new typesetting features.

• 1FX has unparalleled support for mathematics typesetting. This support
makes it very popular in academic settings, and explains why the Amer­
ican Mathematical Society (AMS) has adopted 1FX for typesetting all of
its journals. 1fX's wide availability and mathematical capabilities allow
the AMS to accept electronic submissions that require a minimum of
editing before they are included directly in the final journal. The high
quality of lfX's output makes the final result comparable in quality to
more expensive approaches.

• 1FX is flexible. lEX internally makes almost no assumptions about fonts
or page layout. It can be adapted to generate a wide variety of output.1

1FX is used for publishing many academic journals, and has also found adher­
ents among textbook publishers and database publishers, who use sophisticated
programs to automatically produce a variety of listings from large databases
(parts of the TV Guide magazine are typeset with lfX).

1 This flexibility also makes it possible for amateur designers to produce truly horrific
output, a problem lEX shares with many of the powerful publishing systems that are being
used today.

LNEX • 61

1EX input files are text with markup in the form of "macro commands."
Commands typically begin with a \, and often accept arguments surrounded
by { and } . For example, \uppercase{argument} produces ARGUMENT.
The document can define new macros in terms of old ones and use these
new macros to define new markup. 1FX documents frequently begin with a
long list of definitions of new macros that embody knowledge of particular
typesetting issues and are then used in the rest of the document.

By isolating these macros, 1FX provides support for logical markup (see
page 24). A separate file of macro definitions can serve as a style sheet, defining
how to translate logical macro names (such as \chapter{Introduction})
into specific low-level typesetting instructions (start a new page, typeset this
text in a particular font, write it to the table-of-contents file, and enter it into a
variable so it will appear in the running head). TEX.'s macro language provides
a full-featured programming environment, and lEX macros exist to perform a
number of routine formatting chores.

l:J1F)(uses separate files of macro definitions to add logical markup capabilities
to 1f.X. I5lfX is a collection of lEX macros that adds a great deal of func­
tionality to the "Plain lEX" defined by Knuth. In addition to basic logical
markup, I5lfX supports a variety of page and document styles and provides
automatic cross-referencing, table of contents, and footnotes.

I5lfX files are usually typeset with a special version of the tex program
called latex, which has the I5lfX macros pre-loaded. MTEX files begin with a
\documentclass or \documentstyle command.2 The \documentstyle
command is used by the older I5lfX 2.09, which was widely used from 1987
until 1994, when an enhanced version of I5lfX known as I5lfX 2e became
available. The newer I51fX2e made major improvements to two specific areas:
It improved the handling of fonts, and it added support for packages, collec­
tions of macros providing specific features. For example, packages can define
new collections of fonts, redefine the page style, or add new types of tables,
figures, bibliographies, or other structures.

2The \document class or \document style command is not always the first line of the
file. Several lines of comments may appear prior to that (comments in a I5IfX file begin with
%), and a handful of 111EX commands can precede the \document class command.

62 • Chapter 5: 7EX and IN£X

Other TEX Variants
ffiEX is not the only extended macro collection created forTE/C. Other vari­
ants include:

eplain This macro package is an enhanced version of Knuth's original
Plain lEX macros. It provides some of the cross-referencing and other
capabilities of ffiEX .

.9l!Jv{S-1EX This variant was developed for the American Mathematical
Society. It includes a large collection of mathematical symbol fonts and
macros for specialized mathematics typesetting.

~lEX and J2tW5-ffiEX These collections are two early attempts to
combine the document structuring features of ffiEX with the mathemati­
cal typesetting capabilities of .9l!Jv{S-1FX. (Both have been supplanted by
MfFX2e's amstex package.)

texinf o This format is a fairly limited one, designed to be processed by
tex into typeset documentation, or converted by the texinfo program
into a hyperlinked online document. This format is used by the Free
Software Foundation to document their software tools.

font inst This specialized 1FX dialect does no typesetting. Rather, it is
used to generate virtual font descriptions, which interface 'IfX's native font
system to other font technologies, especially PostScript.

Many other variants have been created to provide special typesetting capa­
bilities for particular environments. Many of these formats are being converted
into ffiEX packages, to make it possible to combine various typesetting capa­
bilities in a single document.

Recognizing TEX and ~EX Files
As with any loosely-structured text format, it's not always easy to identify a
1FX or ffiEX document. If you know the actual file name, you can often
use the file extension. Unfortunately, the most popular extension for lEX and
ffiEX documents is . tex, which is also used by many people for plain text

Recognizing 1£X and ~X Files • 63

documents. If you don't know the file extension, here are a few clues you can
use:

• The most obvious clue is the \documentclass or \documentstyle
command that must appear in every MIEX document. Usually, this
command will be at the beginning of the document.

• lEX and MIEX files use a percent sign (%) to indicate the beginning of
a comment. Several lines of comments often appear near the beginning
of a file. Of course, many text formats (including PostScript) use the
percent sign as a comment indicator.

• The third useful clue is the appearance of the embedded commands.
lEX and MIEX commands begin with a backs lash (\), and sometimes
have arguments surrounded by { ... } or [...] .

Of course, not all1fX and MrFX files are documents. Here are some other
file extensions you may see:

.latex, .1 tx A few people consistently use these extensions for MIEX
files instead of the more confusing . tex extension .

. sty, . cls, . clo These files describe MIEX packages and document
classes. Often, they will accompany a MIEX document file .

. fd, . def, . tfm, . pl These files describe fonts to 1EX or MIEX. To
process a document, 1EX does not need to know what the fonts actually
look like; it only needs to know the size of each character and a few
other basic facts about the font. In particular, although these files may
be sufficient to typeset the document, they are not sufficient to print the
document .

. pk Most 1EX systems use "bitmapped" fonts that were built for a spe­
cific printer resolution. The result looks very good as long as the correct
resolution fonts are used. (Bitmap fonts do not scale well.) The . pk
format is the most widely used format for storing these fonts .

. mf METAFONT files are programs in a special language that describes
fonts using a combination of outline and stroke techniques. The mf pro­
gram is required to convert these descriptions into a bitmap form suitable
for printing.

64 • Chapter 5: 1£X and fNEX

. vf, . vpl Virtual font files are used by various programs to convert
DVI output for a particular printer. These files specify how to to match
characters used by TEX with those available on a particular printer .

. afm, . pfa, . pfb Improved font support is a major feature of MlfX2e.
In particular, it became much easier to use PostScript fonts. These files are
discussed in more detail beginning on page 95.

Using TEX and ~EX Files
You're likely to encounter lEX and MifX files in three different formats. The
first format you may see is TEX or NEX source files, which are text files. How
you handle those files depends on whether or not you have a 1EX or ~lEX
system available.

The second format you may see is lEX's DVI output format. DVI is a very
dense binary format that describes the position and font of each character, and
needs to be translated into a form suitable for your screen or printer. If you
don't have a suitable translation program available (and the several megabytes
of associated fonts and other programs that may be required), you can use
dvi2tty (or crudetype) to convert the DVI file into a very rough t~xt

approximation. The output of dvi2tty has many problems (in particular,
dvi2tty doesn't know about all the different fonts, so sometimes substitutes
the wrong character), but the output is generally sufficient for reading the
contents.

The final format you may encounter is PostScript that has been generated
by one of the DVI-to-PostScript conversion programs, such as dvips. While
dvips generates high-quality PostScript output that should easily print on
any PostScript printer, you should be aware of two limitations. Most TEX
installations use bitmap fonts by default. The dvi ps program selects bitmap
fonts whose resolution matches the device that dvips thinks will be used for
the final printing. Usually, 300 dpi fonts will be used. The problem is that the
file will look best only on a device with the correct resolution. In particular,
it may look poor if you use a PostScript previewer to display the result on the
screen. The other potential limitation is that if the creator of the file used
PostScript outline fonts other than the standard Times Roman, Helvetica,
and Courier, she probably did not include those fonts in the PostScript file,

Using 1£X and /NfX Files • 65

and you may have difficulty printing the file. This problem is inherent to
PostScript; see pages 1 04-1 OS for more details.

If you receive a 1EX or IDEX source file and you have access to the tex
or latex programs, you should be able to simply type tex filename or
latex filename to generate a DVI output file. How you print that file will
depend on the particular system. On Unix, you may be able to print the DVI
files directly using the system 1 p or 1 pr command; on other systems you may
need to use a program (whose name typically begins with dvi) to convert the
DVI file into a more appropriate format, and then print the result of that
converston.

You may encounter a few problems when you try to process a 1EX or IDEX
source file:

• Older versions of the 1FX program were often compiled with fairly
limited capacity. Some newer documents may require more capacity,
requiring you to replace or reconfigure the tex program.

• Some dialects require specialized fonts. These fonts are typically avail­
able in METAFONT format, which is the font-building program devel­
oped by Knuth to accompany 1F/(. If your 1F)C system either doesn't
use METAFONT (a few use PostScript or TrueType fonts instead) or
doesn't include META FONT (many include pre-built versions of the most
common fonts instead of the METAFONT program), you may have to
obtain the fonts in a form suitable for your system.

• IDEX documents may require a variety of different packages. If you
don't have those packages, you may need to obtain them. They should
be available from the same source as the original document. If you have
Internet access, they may be available from one of the CTAN (Com­
prehensive 1FX Archive Network) sites (see page 75). Some packages
aren't really necessary to process the document; they only have a cos­
metic effect. In that case, you can comment out the corresponding
\ usepackage command by placing a % at the beginning of the line.

• Some substantial changes were made between the older IDEX 2.09 and
the current IDfX2e. While most older documents should be correctly
handled by the new system, a few (especially those that tried to ma­
nipulate fonts) will not be correctly processed. Documents designed for

66 • Chapter 5: 1fX and /NfX

\documentclass{ ... }
Preamble

\begin{document}
Body

\end{document}

Figure 5.1 The Structure of a ~TEX File

the newer version are unlikely to be correctly processed by the older
version. Again, if you are using an older version of I5lfX., you should
be able to obtain the necessary updates from the CTAN archives.

A NEX Primer
If you see a I5lfX. document and you don't have the latex program available,
you should simply print it (I5lfX. files are plain text files) and try to read it.
While it won't look as pretty as originally intended, it should be fairly intelli­
gible. This section will help you to understand the embedded commands.

Plain 1EX imposes almost no structure on a document file, which can
make documents written for Plain 1EX quite difficult to understand. I5lfX.,
on the other hand, does impose a certain structure on documents. The most
general structure is shown in Figure 5 .1. As you can see, I5lfX. files are divided
into a preamble, which tells I5lfX. how to format the file, and a body, which
contains the actual text of the document.

Preamble
As a logical markup system, I5lfX. attempts to separate the meaning of a docu­
ment element (for example, \chapter{Introduction}) from the appearance
of that element (the specific font and positioning). Generally, commands in
the preamble (preceding \begin{document}) define the appearance of the
document, while commands in the body define the meaning of various parts
of the document. For example, if a document contains "keywords," it may de­
fine a \keyword command. The body of the text will use that command as in

A INfX Primer • 67

\keyword{floogleblatz}. The command may be defined in the preamble
to typeset keywords in italics (jloogleblatz) or bold (floogleblatz) or even in a
different font (floogleblatz). If you're reading the raw file, you may see Now
let's discuss a \keyword{floogleblatz}.

General information about a document and its appearance goes into the
preamble. Usually, if you're reading the raw file, you'll simply skip the entire
preamble. If you're using a text editor, search for the \begin{document}
command.

If you get confused, you can quickly skim the preamble for the following
commands, which may help you to understand what the author intended:

\documentclass This command appears at the beginning of the file
to set the basic format, for example, \documentclass{article} or
\documentclass{book}. The book class creates a separate title page;
the article class places the title at the top of the first page. The older
IDFX 2.09 used the similar \documentstyle command instead.

\set length This command adjusts a variety of typesetting parameters,
from the page margins to the paragraph indentation.

\newcommand This command is used to define new commands such as
\keyword. Commands can be defined to accept arguments surrounded
by { and } or optional arguments surrounded by [and] . For example,
the \documentclass command can accept options that affect the general
layout of the document; \documentclass [11pt] {article} selects a
default font size of 11 points. Commands can also make general changes to
the appearance of subsequent text. For example, the \ ttf amily command
selects a typewriter style font. The effect of such commands can be
restricted by surrounding a part of your document with { and } characters,
as in {\ttfamily typewriter style}.

\newenvironment Commands are sometimes awkward, so IDFX also
has environments, which begin with \begin{ environment-name} and
end with a matching \end{ environment-name}. An environment
alters the way text within it is formatted. For example, the raggedright
environment produces an effect like this paragraph.

\usepackage The \usepackage command reads in a package, which
may define a collection of new commands and environments (the amstex

68 • Chapter 5: 1£X and /NfX

package defines a large number of macros for mathematical typesetting),
alter the way some standard ffiFX operations work (the fancyheadings
package changes the way headers and footers are defined}, or otherwise
affect how the document appears (the makeidx package causes an index
to be generated).

Paragraphs
As with many text-based document formats, ffiFX ignores the line breaks you
type. Instead, ffiFX considers a blank line as a paragraph break. All of the
words in a paragraph are strung together, and ffiFX then determines the best
way to arrange them into a paragraph. The underlying 1fiC engine is very
particular about breaking paragraphs into lines. If it can't find a solution that
meets its stringent standards, it usually will leave one line obviously too long,
and complain about an overfUll hbox (an "hbox" is just a horizontal line of
text).

Likewise, 1fiC doesn't care how much space you put between words or
at the beginning of a paragraph. One or more spaces or tabs simply serve
to separate words; lEX will explicitly decide how much space to use. This
approach differs from many popular word processors, where additional spaces
in the input will result in additional space in the output. By default, lEX adds
a small amount of additional space after certain punctuation marks to help
separate major phrases and sentences. 3

There are several environments that produce special kinds of para­
graphs. For example, \begin{quote} ... \end{quote} is used
to present quoted material, which is usually typeset like this para­
graph. The raggedright environment produces ragged-right
paragraphs, the center environment centers whatever appears

30ne interesting variation in typesetting fashion over the years has been the amount of
space placed between sentences. Hand-set type traditionally placed extra space between sen­
tences, partly because it is easier to justify a line by placing additional space at one point
than to carefully distribute small slivers of metal. This practice was adopted by typists who
developed the practice of putting a double space after full stops. On the other hand, early
computerized typesetting couldn't easily handle such distinctions, which led to the current
preference for even spacing everywhere. It will be interesting to see whether improved com­
puter software will prompt a return to the varying spaces of hand-set type.

A INfX Primer • 69

Description Command
\part{ ... }
\chapter{ ... }
\section{ ... }

Broad division, often unnumbered
Main division of a book or report
Main division of an article

\subsection{ ... } Minor division
\subsubsection{ ... } Minor division
\paragraph{ ... } Minor division
\subparagraph{ ... } Smallest division

Table 5.1 ~TEX Heading Commands

inside of it, and a variety of other environments produce lists,
typeset poetry, and perform many other tasks.

Headings
I5lFX provides a number of commands to specify different divisions of the
document, as shown in Table 5.1. Depending on various settings (which can
be adjusted in the preamble) these commands can also contribute information
to the table of contents or automatically number the headings. Each command
takes the title of the chapter or section as an argument. Frequently, this title is
also used in the table of contents and running headers or footers. 4

Text Styles
The most common text style command is the \ emph { ... } command, which
emphasizes its argument. The \text... commands provide more direct
control. These commands typeset their argument in typewriter {\texttt),
sans serif {\text sf), italic (\ texti t), or bold {\ textbf) font. These
commands can be combined to produce effects such as bold italic characters
{\ textbf{\ texti t{bold italic}}). However, the precise combinations

4"Running" headers or footers are the information that's repeated at the top or bottom of
each page of a book. Contrast these with "subheads," which indicate major divisions within
the text.

70 • Chapter 5: 7EX and NEX

Char Command Char Command Char Command
A \AA 0 \0 $ \$

0 a \aa 0 \o # \#
lE \AE s \ss & \&
re \ae I> \TH _
D \DH p \th { \{
a \dh t \dag } \}
t \L § \S o/o \%
l \1 'II \P \ \backslash

CE \OE © \copyright \-{ }
re \oe £ \pounds ,-{ }

Table 5.2 ~EX Special Character Commands

available depend on the available fonts. For example, the default Computer
Modern fonts lack a bold typewriter variant.

These commands are new with IDEX 2e. The previous version of IDEX
used two-letter commands that did not accept an argument and could not
be combined; for example, {\bf bold} for bold, or {\em emphasis} for
emphasis; but {\bf\em bold emphasis} is only bold emphasis. The braces
limit the effect of the font change.

Special Characters
The accented characters used in many European languages are produced with
a variety of short commands. These commands add an accent to the character
that follows: o (\ ' { o}), 6 (\ ' { o}), o (\-{ o}), o (\" { o}), fi (\-{n}), ~

(\c{c}). Other special characters can be accessed as shown in Table 5.2. The
entries in the last column of Table 5.2 are needed to access characters that
otherwise have special meanings to IDfX. 5

5The last three entries in the last column deserve some explanation. Because the simple
commands \\, \-, and \- have other definitions in IDfX, some additional tinkering is
required to generate these characters. The \ character can be generated as a math symbol,
and the other two can be generated by placing an appropriate accent over nothing. They are
fortunately very rare in normal text.

A INEX Primer • 71

Char Command Char Command Char Command
fi fi " c c ?' (

fl fl
,

' ' ! c

ff ff -- (en-dash)
ffi ffi --- (em-dash)
fH ffl

Table 5.3 ~TEX Ligatures

The 1EX typesetting engine makes extensive use of ligatures, single glyphs
that combine more than one character. For example, when it sees an f followed
by an i, it automatically substitutes a single fi glyph. This process is controlled
by parameters in the font; a typewriter font usually lacks an fi ligature, so this
replacement isn't done. The ligature mechanism is also used to make several
common characters easy to type. Table 5.3 lists several of these characters.

Graphics and Figures
IDEX has only minimal direct support for graphics and figures. A picture
environment allows simple figures to be created using lines, dots, and a handful
of other shapes from a special graphics font. Several packages extend this
approach to build fairly complex diagrams for specific uses in mathematics,
physics, and chemistry.

More elaborate graphics are generally handled with \special commands
that are not interpreted direcdy by IDEX or lfX, but are instead stored ver­
batim in the DVI file to be interpreted by the program that converts the DVI
file for the printer.

There are two popular ways to exploit this mechanism. One is based
on TROPP's PIC language. A program called tpic can be used to process
picture descriptions in the PIC language and output a file containing the
corresponding \special commands. Macro packages that can generate these
\special commands from within lEX and IDEX are also available. In either
case, the program that converts the DVI file for the printer must recognize the
PIC codes.

72 • Chapter 5: 7£X and INfX

Horizontal Local Motions

Function
Effect in

TROFF I NROFF
\h'n' Move distance N

\(space) Unpaddable space-size space
\0 Digit -size space
\I 1/6 em space I ignored
\"' 1/12 em space ignored

Figure 5.2 Example ~TEX Table6

This approach is also used to embed raw PostScript commands. Most
of the DVI-to-PostScript converter programs support this mechanism, which
allows MIE'X files to exploit the graphical capabilities of PostScript, either by
including Encapsulated PostScript (EPSF) graphics files (see page 1 00} or by
including literal PostScript commands. A PostScript printer must be available
to print the result, unlike the picture environment, which can be used on
any MIEX system, or the PIC approach, which can be used with a variety of
different printers.

Tables
The tabular environment defines tables in MIEX. Each row is terminated
with \\, and items on a row are separated by & characters. Figure 5.2 shows
a table example, which was created by the MIE'X commands shown in Fig­
ure 5.3.6

Don't confuse the tabular environment with the similarly-named table
environment. The table (and figure) environments allow their contents
to "float" to an appropriate place in the text (usually the top or bottom of a
following page), and optionally create an entry in a table of figures or table of
tables. The most significant difference between the two is how they word the
caption.

6This table was adapted from an example in UNIX in a Nutshell [Gil92], and typeset with
J5IEX2e.

A /NfX Primer • 73

\newcommand{\BS}{\texttt{\symbol{92}}} Y. Access special symbols
\newcommand{\VERT}{\texttt{\symbol{124}}}
\newcommand{\CARET}{\texttt{\symbol{94}}}
\begin{tabular}{lclllll}
\hline

\multicolumn{3}{1cl}{\textbf{Horizontal Local Motions}}\\
\hline

\raisebox{-1.5ex}[Opt][Opt]{\textit{Function}}
& \multicolumn{2}{cl}{\textit{Effect in}} \\

\cline{2-3}

\hline

\hline

\hline

& \multicolumn{1}{cl}{\textit{TROFF}}
& \multicolumn{1}{cl}{\textit{NROFF}} \\

\BS h'n'
& \multicolumn{2}{li}{Move distance N} \\
\BS (space)
& \multicolumn{2}{li}{Unpaddable space-size space}\\
\BS 0
& \multicolumn{2}{li}{Digit-size space} \\

\BS\VERT
& 1/6 em space
& ignored \\
\BS\CARET
& 1/12 em space
& ignored \\

\end{ tabular}

Figure 5.3 Example INEX Table Source

7 4 • Chapter 5: 1£X and INEX

Mathematics
lfX and I1IEX have a separate "mathematics mode" in which certain characters
have special meanings. A large number of additional symbols are available in
mathematics mode. This mode is used within certain I1IEX environments
(such as the equation environment) or surrounded by special markers. For
example, to obtain the simple equation J; ~ = In x, you type:

$\int_l~x {dt \over t} = \ln x$

The $ characters mark this as a mathematical equation. Several different mark­
ers are used in different situations. The $... $ or \ (... \) markers are used
for equations in text, where a somewhat more compact form is appropriate.
The alternative is a displayed equation, which is set off from the text like this:

ooxi
ex= L ;j"

i=O l.

Displayed equations use larger symbols and more generous spacing than equa­
tions in the text, and can be marked with $$... $$ or \ [... \] . The above
display might be written:

$$e~x=\sum_{i=o}-{\infty}\frac{x-i}{i!}$$

This example also shows how the ... (superscript) and _ (subscript) characters
are used both for normal superscripts and subscripts and for the limits above
and below large operators. The lower limit of the summation required { ... }
to indicate that the entire i=O should be treated as a subscript.

Of course, mathematics support requires a variety of special symbols.
Greek letters and many other symbols can be generated with special com­
mands. The equation 'I' = f can be written:

\(\Psi =\frac{\partial E}{\partial x}\)

Finally, here's a displayed equation with multiple subscripts:

Xa 1 + Xa2 + · · · = 1i/ 4

This example requires { ... } to group the subscripts:

\[x_{a_l} + x_{a_2} + \cdots = \pi/4\]

Using centered dots(···) rather than lowered dots(...) and setting the fraction
as n/ 4 rather than ~ are fine touches that are best learned by experience. Good
mathematical typesetting requires judgment and experience as well as flexible
tools.

More Information • 75

More Information
More files on the Internet are in IDEX format than any of the other lEX
dialects. If you want to understand what's in those files, a good place to start
is with Leslie Lamport's book Jj7J:)(: A Document Preparation System [Lam94].
Serious users of IDEX will want to have a more comprehensive reference, such
as The Jj7J:)(Companion [GMS94].

The core lEX system has been thoroughly documented by its creator, Don­
ald Knuth, in The 7J:)(book [Knu86a]. The 7J:)(book is the first in a series of
books written by Knuth about computerized typesetting. The other volumes
present Knuth's METAFONT font-description language [Knu86c], his Computer
Modern collection of fonts [Knu86e], and the complete, annotated source
code for the lEX and META FONT programs [Knu86b, Knu86d].

If you're interested in using lEX and 151EX, two excellent Internet resources
are the comp. text . tex newsgroup and the Comprehensive lEX Archive Net­
work (CTAN). CTAN is a collection of FTP sites that lives up to its name.
The three primary sites are ftp. shsu. edu in the US, ftp. tex. ac . uk in
Great Britain, and ftp. dante. de in Germany. Here you can find free 1F)C
and IDEX systems for many popular computer systems, as well as a large quan­
tity of associated information.

The American Mathematical Society also has an index of lEX-related in­
formation on its World Wide Web site (http: I I e-math. ams. org).

For the Macintosh, Andrew Trevorrow's OzyP)(system is an easy way to
get started. It's complete, free, and easy to use. It's available using anonymous
FTP to midway. uchicago. edu in the pubiOzTeX directory. The Alpha text
editor, available from the same location, is a nice tool for editing lEX and
IDEX source code.

Web2C 7J:)(system is the standard Unix lEX system, named after the tools
used to compile the suite of programs. This distribution consists of several
large archives, containing all of the core lEX programs, a number of macro and
font packages, including 151EX, and some documentation. It compiles easily
on most Unix-like systems. The only omission is that the Web2C distribution
does not include any DVI translators. Most people use xdvi to preview DVI
files under X, dvi ps to convert DVI files into high-quality PostScript, and
dvilj to convert DVI files for the popular Hewlett-Packard LaserJet printers.
All of these are available in k versions which use Karl Berry's path search library

76 • Chapter 5: 7EX and 151£X

to allow easy configuration of the directory layout for the hundreds of different
files used by large 1EX installations.

The CTAN archives also contain several complete 1fX systems forMS­
DOS. These work fine with Windows with the addition of a DVI previewer.
Several Windows previewers are available from the same source. Many of these
programs are also available from SIMTEL in the msdos/tex and win3/tex
directories.

SGML

The idea I've referred to as logical markup (see page 24) isn't new. It goes
back to the late 1960s under the name generic coding. At that time, a number
of people began to realize the distinction between the content of a document
and its presentation. This observation led to work at IBM and other places
on systems that would explicitly mark the content of a document ("this is
a chapter tide") separately from the presentation ("this is in 24pt Helvetica
Oblique, starts a new right-hand page, with one-half inch of space below").

This distinction may seem somewhat academic if you're used to creat­
ing one-page documents that are printed and promptly deleted. But imagine
you're in charge of the documentation for a new battleship design for the
military. Not only are there hundreds of thousands of pages of documents,
you have to make sure those documents will still be usable for as long as that
battleship exists, which might be fifty years or more. A word processor format
isn't sufficient; you can't even be sure that word processor will still exist in fifty
years, and you can't afford to convert all of your documents every few years
to keep track of changes and updates to that word processor. You may also

SGML at a Glance

Name: SGML, Standard Generalized Markup Language
Extension: . sgml
Use For: Managing large collections of documents
References: ISO Standard 8879; Practical SGML [vH94]

77

78 • Chapter 6: SGML

have requirements for different kinds of printed and online versions of the
documentation, which means that the same documents have to be formatted
differently to fit different screen types and manual sizes. Worse, those require­
ments may change periodically, forcing you to reformat all of those documents
to match the new guidelines.

A similar problem is faced by many book publishers. Book styles change
from year to year, and book publishers who need to reprint five- or ten-year­
old books want those books to look as current as possible, without having to
manually reformat the entire book.

The solution is to carefully define three separate pieces, so that you can
conveniently change any one whenever you want. You need to:

• Explicitly define what markup you're using in these documents.

• Have documents using that markup.

• Have some way to translate that markup into a visual appearance.

An International Standard Markup
Language

The system IBM developed to support this division was called the Generalized
Markup Language (GML). This system was later extended and became an
international standard in 1986, the Standard Generalized Markup Language
(SGML).

SGML actually only deals with the first two items I described above.
SGML provides a way to define what markup is being used in a document.
In fact, HTML is defined using SGML. 1 Translating that markup into a par­
ticular visual format requires additional software that understands the markup
you're using. In practice, this translation may involve converting your SGML

1 Entities and elements are standard SGML terms, and many of the tags used in HTML are
taken directly from the SGML reference concrete syntax, a "sample markup language" that is
given in the ISO standard.

An International Standard Markup Language • 79

markup into TROFF or 1£X, and then using those tools to actually create
printable output. 2

If you have to translate the result into some other format to print it, why
not just use that other format directly? The first reason deals with the three
distinct pieces I described earlier. Recall that SGML asks you to explicitly
define what markup you're using, and encourages you to avoid shortcuts:

"I'll just put this one word in italics; I'm in a hurry and don't
want to bother to create a new character style just for this."

Over the lifetime of a document (measured in decades), such shortcuts slowly
pile up into a mess that makes it difficult to change the appearance of the
document. By explicitly defining your markup system, you can limit such
shortcuts, or at least document them so they'll be easier to find and update in
the future.

Another reason for preferring SGML relates to maintenance. SGML was
designed for industrial settings where documents need to be available for a
long time. In ten or twenty years, the system you used may not be available
or may have changed enough to require substantial updating of your software.
Having an explicit definition of the markup in your documents makes it much
easier to create new software, if necessary, to handle that particular markup.
For a large project, the documentation may be far larger than the software used
to process the documentation. As a result, it may be cheaper to completely
replace the software than to convert the documentation into a new format.

SGML's approach to generic markup has several advantages when used to
manage large amounts of data. One advantage is that it allows many properties
of documents to be automatically verified. For example, it's possible to scan
hundreds of megabytes of technical documentation to make sure that each
manual contains a summary (which isn't too long), table of contents, bibliog­
raphy, and index. This kind of automatic verification is possible with SGML
because each of these components is specified as a separate element. In fact,
you can treat a large collection of SGML documents as a database where you
can extract only the summaries for all the documents, or merge the indexes to
do rapid searches through a group of documents.

2A more technical explanation is that SGML is used to define the syntax (what the markup
looks like}, but not the semantics (what the markup means}. If you're a programmer, here's a
useful analogy: SGML is to HTML as YACC is to C.

80 • Chapter 6: SGML

More Information
Joan Smith's SGML and Related Standards [Smi92] is a good survey that will
help you understand the purpose of the various ISO document standards.

Eric van Herwijnen's Practical SGML [vH94] may be more appropriate if
you want to understand how SGML is used in practice.

TROFF

The original Unix manuals were developed with a simple text formatter de­
signed for the line printers available at the time. Because Unix was being used
in universities and other large companies and the formatter program was part
of Unix, it was easy to include the electronic source of the manuals with the
system software so that the company or university using Unix could print as
many copies of the manuals as needed.

With a formatter that generated output suitable for line printers and the
manual source available online, it was a small step to create a program that
formatted any requested part of the manual and printed it to a computer
screen. Thus, the Unix man command was born. It's now taken for granted by
Unix users that man command will produce a description of any Unix com­
mand. The man pages, as this electronic resource is now called, also include
information for programmers and descriptions of many system resource files.
Although printed versions of this information are available, they're rarely used.

TROFF at a Glance

Names:
Extensions:
Used For:
References:

On CD:

TROFF, NROFF, DITROFF, GROFF, etc.
.man, .ms, .me, .1- . 9
Unix online manuals, program documentation
4.4BSD User's Supplementary Documents [USD94]; Unix in
a Nutshell [Gil92]
GROFF system for MS-DOS

81

82 • Chapter 7: TROFF

The original Unix formatter was named ROFF, which was an abbreviation
for "run off," as in "would you please run off four copies of this memo?" It has
since been superceded by NROFF (New Roff, used to format text for screens
and line printers) and TROFF (Typesetting Roff, which formats for high­
resolution printers and typesetters), and many other programs with similar
names and capabilities. These programs were heavily used for typesetting
reports and memorandums at AT&T Bell Labs and elsewhere for many years.
Although less widely used today, these programs are still important because
they can produce either high-quality typeset output or output suitable for
simple text terminals and printers. Either form of output can be produced
from the same original source.

Because TROFF and NROFF accept identical input (with a very few ex­
ceptions), I'll refer to TROFF throughout. You should remember that NROFF
functions identically, just with different-looking output.

Using TROFF Files
Formatting a file with TROFF requires that you know two things:

• Which macro package this file expects.

• Which preprocessors should be used.

Like 1fX/IDfX, TRO FF allows you to define "macros" to encapsulate com­
mon chores. For example, a simple macro might leave a blank line and indent
for a new paragraph. Several macro packages are fairly standard and available
on most systems. The three most common are man, ms, and me. As you can
guess, man is used to format Unix manual pages. The ms and me packages are
used for more general formatting of reports and articles.

These macro packages augment the built-in capabilities of TROFF. An­
other approach is to use a preprocessor, a separate program that understands
certain complex commands and converts them into TROFF commands. The
common preprocessors all work in essentially the same way:

PIC PIC recognizes certain special TROFF macros as the start and end
of a picture description. PIC interprets the picture description and replaces
it with a series of rather cryptic TROFF commands. When processed by
TROFF, these commands create the requested figure.

Using TROFF Files • 83

TBL TBL functions similarly to PIC, but recognizes a language used to
describe tables.

EON EQN recognizes mathematical equations and converts them into
TROFF commands.

REFER REFER recognizes specially marked bibliographic references in
the text, looks them up in a separate database, and replaces them with
an accurate bibliographic citation, which can include full information in a
footnote or endnote. It can also be used to build a traditional bibliography.

SOELIM One problem with the above preprocessors is that they don't
recognize any TROFF commands except for their own special additions.
In particular, they don't recognize the . so command to read in a separate
file. SOELIM eliminates . so commands by replacing each one with the
contents of the corresponding file. This allows you to place PIC or TBL
instructions in separate files.

Processing a TROFF file requires first invoking the appropriate prepro­
cessors, then feeding the result to TRO FF-with the correct macro package
loaded-to generate the final output. On Unix, this process is usually handled
with a pipeline, which lets the output of one program feed into the input of
another. A typical TROFF command on Unix will look something like:

pic fiLename I tbl I eqn I troff -ms -t >output_file

This tells Unix to run the pic command on the file, feed the output of pic
into tbl, feed the output of tbl into eqn, and feed the output of eqn into
TROFF. The > sign instructs Unix to put the final output (of TROFF) into
some output file. This example uses the ms macro package. To use another
macro package, substitute the appropriate name. I've also instructed TRO FF
to send its output to the standard output path (-t). Additional options depend
on the particular implementation ofTROFF you're using. For GNU GROFF,
you may want to use the -Tps option to generate PostScript output.

The standard preprocessors leave unaltered anything that isn't marked
specifically for that preprocessor, so you can almost always use a particular
preprocessor even if it's not needed. If you're unsure what preprocessors are
required, you can usually just use them all, as in the example above.

NROFF is used identically to TROFF, except that you must use neqn
instead of eqn to process equations for NRO FF. Note that generally, though,

84 • Chapter 7: TROFF

trying to process equations with NROFF is not a good idea, except for very
hasty proofreading.

A TROFF Primer
TROFF reads a plain text file with embedded markup and generates an output
file that can be displayed or printed with the appropriate software. The par­
ticular output format will depend on the version of TRO FF you use. Many
versions generate output for the extinct C/ NT phototypesetter, and provide
postprocessor programs to convert it into something more useful. Others
produce PostScript, 1FX DVI format, DITROFF format output (a device­
independent text format similar in concept to DVI), or another comparable
format. The output ofNROFF can also be tailored to a variety of line printers
and terminals.

The markup appears in two forms: Dot commands are indicated by a pe­
riod at the beginning of a line, while escapes are preceded by a backslash {\)
character and can occur anywhere on a line. Dot commands are usually two
characters and take the rest of the line as arguments to the command. For
example, the line

.ft I

starts with the command to select a font; the argument I selects the italic font.
In NROFF, this font request produces underlined text if the display supports
it. (Most terminals and line printers can support both underlined and bold
text.)

Many escapes also accept arguments. Most escapes are a single letter,
possibly followed by an argument. The argument is either a single character,
or two characters preceded by a (. For example, the \f escape selects a new
font; the following character determines the font selected: I for italic, B for
bold, P for the previously selected font. Thus, \f I selects the italic font.
Some versions of TROFF have fonts with two-character names. These fonts
are selected by \f (, which takes the next two characters as an argument, such
as \f (CW for a constant-width typewriter font. When one or two characters
isn't enough, as with escapes that require a distance argument, the arguments
are surrounded by single quotes ('), as in \h' lin' to move horizontally by
one inch.

A TROFF Primer • 85

The dot commands always begin at the start of a line, while escapes can
appear anywhere within a line. Typically, dot commands are used for structural
commands, such as paragraphs and headings, while escapes are used for special
symbols. This rule isn't hard and fast; many tasks can be done either way. Also
note that all dot commands and escapes are case sensitive: \L and \1 are quite
different.

Paragraphs
TROFF is normally in fill mode, where it combines consecutive lines and uses
them to "fill" paragraphs. A new paragraph can be indicated with a blank line
or an indented line. Usually, however, the macro package will define a special
macro that should be used to begin a new paragraph. For example, the ms
macros use . PP or . LP to start a paragraph, and the me macros use . pp or
.lp. (The . PP or . pp macros start an indented paragraph; . LP or .lp start a
non-indented paragraph.) For example, the start of this paragraph appears like
this using the ms macros:

.LP
TROFF is normally in \f!fill mode\fP, where it
combines consecutive lines and uses them

The \f I escape switches to italics; the \fP escape switches back to the previous
font.

Each macro package defines a variety of macros to start different types
of paragraphs, including bulleted paragraphs for building lists and indented
paragraphs for displaying quoted material.

Text Styles
While most modern versions of TRO FF do support a variety of fonts, the
original program was designed for a particular phototypesetter that only had
four fonts: Roman, Italic, Bold, and a symbol font. As a result, using fonts
other than these four is heavily site-specific. Some old systems still use over­
printing to simulate bold italic (by printing the words twice at a slight offset)
and other styles. These special styles can be tricky to use correctly; the origi­
nal documentation for the me macros contains a warning about misuse of the
bo!JJJU/alialic feature.

86 • Chapter 7: TROFF

Char Escape

•
D

t
¢

0

\(bu
\(sq
\(dg
\(ct
\(de
\(em

Char
®
©

Escape
\(rg
\(co
\(14
\(12
\(34

Char
fi
fl
£f
ffi
ffi

Escape
\(fi
\(fl
\(ff
\(Fi
\(Fl

Table 7.1 TROFF Escapes for Special Characters in the Standard
Fonts

However, even this early phototypesetter supported a wide range of sym­
bols, including standard publishing and mathematics symbols. Tables 7.1
and 7.2 show some of the characters that are standard in most TROFF imple­
mentations. Most of these characters are not available in NROFF, although
some NROFF systems can simulate them by overstriking (for example, ~ for
1:).

Headings
TROFF's basic ability to select various font sizes and styles allows heading
macros to be defined in much the same way J5IEX document classes (see
page 67) define different macros to handle headings.

The ms macros use . NH and . SH to begin a numbered or unnumbered
heading, respectively. An optional trailing number gives the level of the head-. .
tng, as 1n:

.SH 1
A TROFF Primer

.SH 2
Headings

The me macros use . sh for numbered sections, and . uh for unnumbered
sections.

A TROFF Primer • 87

Char Escape Char Escape Char Escape
§ \(sc a \(*a A \(*A

+ \(dd p \(*b B \(*B
0 \(ci r \(*g r \(*G

\(aa 8 \(*d Ll \(*D
\(ga £ \(*e E \(*E

-+ \(-> ' \(*z z \(*Z
+-- \(<- TJ \(*y H \(*Y
t \(ua (} \(*h e \(*H
-!- \(da l \(*i I \(*I
+ \(pl 1C \(*k K \(*K

\(mi II, \(*1 L \(*L

* \(** J.L \(*m M \(*M
X \(mu v \(*n N \(*N

\(di ~ \(*C ... \(*C """""
:;:: \(eq 0 \(*0 0 \(*0
> \(>= 1f \(*p n \(*P
< \(<= p \(*r p \(*R
:/ \(!= a \(*s r, \(*S
± \(+- q \(ts

t' \(*t T \(*T
v \(*U y \(*U
t/J \(*f <I> \(*F
% \(*X X \(*X

"' \(*q '¥ \(*Q
{J) \(*w Q \(*W

Table 7.2 TROFF Escapes for Special Characters in the Symbol
Font

88 • Chapter 7: TROFF

Horizontal Local Motions

Function
Effect in

TROFF NROFF

\h'n' Move distance N
\(space) Unpaddable space-size space

\0 Digit-size space

\I 1/6 em space ignored
\A 1112 em space ignored

Figure 7.1 Example TBL Table1

Graphics and Figures
Besides the ability to place any character at any point, many versions of
TROFF support special drawing commands. These commands allow TROFF
to draw lines, circles, and other simple graphic elements. Using the special
drawing escapes directly is fairly cumbersome, however, so these facilities are
usually exploited indirectly. The PIC preprocessor recognizes lines beginning
with . PS and . PE commands, translating text between them into suitable
TROFF commands.

Tables
Tables are usually handled by the TBL program, which reads table descriptions
between . TS and . TE macros, and replaces them with the lower-level TROFF
commands to produce the table. Figure 7.1 shows the results generated by the
GNU version ofTBL and TROFF with the input in Figure 7.2. 1

A table consists of several sections, each of which contains declarations de­
scribing general properties of the table, templates with formatting information
for each column, and data to be formatted into those columns. The table
shown in Figure 7.2 has three sections, separated by . T& macros. The first

1This table was adapted from an example in UNIX in a Nutshell [Gil92], and generated
by GNU GROFF.

.TS
center box linesize(6) tab(@);
cb s s.
Horizontal Local Motions

.T&
ci I ci s
ci I ci s
ci I ci ci
c I 1 s.
Function@Effect in
\""@_
\""@TROFF@NROFF

\eh'n'@Move distance N
\e(space)@Unpaddable space-size space
\eO@Digit-size space

.T&
c I 1 I 1.
\el@l/6 em space@ignored
\e""@l/12 em space@ignored
.TE

Figure 7.2 TBL Table Source

A TROFF Primer • 89

90 • Chapter 7: TROFF

section has one line of declarations (terminated by a semicolon), which spec­
ifies that the @ character will be used to separate items in different columns.
The second section contains four lines of templates (the last one ends in a
period), followed by eight lines of data. The template ci I ci s applies to
the data Function@Effect in. This template specifies that the first column
is centered in an italic font, a vertical rule separates the first two columns, the
second column is also centered and in italics, and the third column is part of
the second column (the entry "spans" the second and third columns). Special
commands in the data are used to indicate vertical spanning(\-) and horizon­
tal rules (_). The \ e escape is a standard TRO FF command to generate the
current escape character (generally\}.

Mathematics
EQN looks for lines beginning with . EQ and . EN, and interprets text between
those lines as mathematical equations in a special language. EQN translates
these mathematical equations into low-level TROFF commands that, after
being processed by TRO FF, produce the final equation. For example, the
lines

.EQ
int from 1 to x {dt} over t = ln x
.EN

produce the formula:

!
X dt
t = lnx

1

One of the appealing aspects of EQN is that the equations read fairly
naturally. EQN recognizes many special words in the input (such as ln in the
above example) and chooses special ways to typeset them.

EQN leaves the . EQ and . EN macros in the converted output. Various
TRO FF macro packages define these macros in various ways, for example to
set the formula as a displayed equation:

OOJ!
ex= L ;y

i=O t.

This formula can be generated with the EQN input:

More Information • 91

.EQ
e sup x = sum from i=O to inf {x sup i} over {i!}
.EN

EQN differs from ffiEX and HTML in that it doesn't use superscript and
subscript constructions to handle limits on large operators. The from and to
commands handle limits.

Of course, not all equations are set as displays. To get an equation in the
text, such as 'I' = ~, you need to mark the equation in a different way. One of
the special EQN commands allows you to define special characters to delimit
equations in the text:

.EQ
delim $$
.EN

To get an equation in the text,
such as $Psi = {partial E} over {partial x}$, you need
to mark the equation in a different way.

Not all of EQN's special commands are words. It also recognizes several
other symbols, including -> for --+ and +- for ±. EQN supports multiple
subscripts fairly simply, for example:

can be generated with:

x sub a sub 1 + x sub a sub 2 + ... =pi I 4

More Information
TROFF and its friends were heavily used at AT&T Bell Labs for text process­
ing by everyone from computer researchers to secretaries, and the documenta­
tion written there is remarkably clear.

If you want to know more about TROFF, a good starting place is Brian
Kernighan's A TROFF Tutorial [Ker79]. Joseph Ossanna's NROFFITROFF

92 • Chapter 7: TROFF

User's Manual [Oss79] gives more complete information. These documents
are reproduced in the 4.4BSD User's Supplementary Documents [USD94], along
with several other papers discussing the various macro packages and prepro­
cessors.

Most Unix systems already include NROFF. A few fail to include TROFF,
however. You can get the GNU GROFF system from any repository of GNU
software (see page 13). GROFF includes implementations of all the programs
mentioned in this chapter. It also includes the useful groff program that
provides a simpler way to run the various preprocessors and postprocessors.

The GROFF system is also available for MS-DOS from the Garbo archive,
in the pc/unix directory.

One somewhat extreme way to get TROFF and NROFF for a PC is to
install a complete Unix-like system. There are three complete, freely available
Unix-like systems for PCs: Linux, FreeBSD, and NetBSD. All three include
GROFF and a host of related utilities.

PostScript

PostScript is a complete programming language that has a powerful set of
graphics and font-manipulating operations. It is widely used in printers and
high-end graphics systems, and has become the lingua franca of most of today's
publishing industry.

PostScript was created by Adobe Systems in 1984, and was quickly adopted
by Apple Computer for use in its LaserWriter printers. From there, it was
adopted by many other printer manufacturers, and is now standard in mid­
range laser printers through to high-end imagesetters. PostScript's graphics
engine-in the form of a programming system called Display PostScript-has
also been adopted by NeXT and the X windowing system for on-screen display.

Some people write PostScript programs by hand, but the bulk of all
PostScript is generated by machine. Typically, word processors or desktop

PostScript at a Glance

Names:

Extensions:
Use For:

References:

On CD:

PostScript, Encapsulated PostScript, Type 1 Font, Type 3
Font
. ps, . eps, . epsf, . pf a, . pfb, . afm, . pfm
Printing, storing fonts; can be used to exchange formatted
documents if you are careful about font usage
PostScript Language Reference Manual [Ado90b]; Adobe
Type 1 Font Format [Ado90a]
PostScript previewers for Windows, Macintosh

93

94 • Chapter 8: PostScript

publishing programs translate their internal formats into a PostScript program
that is relayed to a printer. The printer interprets the PostScript on-the-fly to
generate a graphical image of one or more pages.

PostScript's biggest strength is that it uses a device-independent rendering
model. In plain English, that means that a PostScript file describes what a
page should look like without assuming anything about the printer or screen
that will display it. The same PostScript file can be displayed on a 72 dpi
(dot-per-inch) screen or a 2400 dpi imagesetter, and the result in either case
will be the best ouput possible from that device. Publishers can be assured that
the PostScript file they previewed on their 300 dpi laser printer will take full
advantage of the 2400 dpi imagesetter used to print the final book.

One drawback of PostScript's flexibility is that understanding an arbitrary
PostScript file is quite difficult. PostScript interpreters are complex, and very
few applications can justify the additional expense of a full PostScript in­
terpreter. So, several kinds of PostScript files use only a small subset of
PostScript's capabilities. The most common PostScript files are font files in
Adobe Type 1 format. These files contain a handful of definitions of font
properties and an encoded set of outlines describing the font appearance. This
very restricted format makes it possible to write programs that read and un­
derstand Type 1 font files without understanding the entire PostScript lan­
guage. Another approach to handling PostScript's complexity is to combine a
PostScript description with another, simpler format. "Encapsulated PostScript
Files" (EPSF) often contain a low-resolution bitmapped preview that can be
easily and quickly extracted.

Recognizing PostScrript Files
PostScript is a programming language, and generally, recognizing a source file
for a programming language is difficult. Because PostScript files are usually
created and consumed by machine, Adobe defined a convention for rapidly
determining if a file is a PostScript file.

The % character is a comment indicator in PostScript. The first line of
any PostScript file is a comment line beginning with the two characters %! .
Usually, the rest of the line will identify the type of the file. Table 8.1 shows
some different first lines and what they mean.

PostScript Font Files • 95

First Line Extension File Format
% ! . ps PostScript file
%! PS-Adobe-3. 0 . ps Structured PostScript file
%! PS-Adobe-3. 0 EPSF -3.0 . eps, . epsf Encapsulated PostScript file
%! PS-AdobeFont-1. 0 . pfa, . pfb Type 1 Font file
%!FontType1-1.0 .pfa, .pfb Type 1 Font file

Table 8.1 Identifying a PostScript File by the First Line

There are two cases in which data will appear before the initial % ! line.
One case is Type 1 font files in binary format. The other case is Encapsulated
PostScript files containing a machine-specific preview. I'll discuss each of these
in later sections.

PostScript Font Files
PostScript's font machinery is very general. It thinks of a font as a collection of
PostScript procedures. Whenever a character from that font needs to be drawn,
the corresponding PostScript procedure is executed. A PostScript font file
provides a variety of information about the font, a procedure for every "glyph,"
a default mapping of character codes to glyph names, 1 and a transformation
to be applied to each character as it is drawn.

PostScript font files are PostScript programs that define a fairly complex
data structure. The first part of the definition is always in plain text, and
gives such information as the name of the font, copyright information, and
the "encoding"2 used by the font. The remainder of the definition provides
procedures for drawing each individual character.

1 A glyph is a pattern on a screen or paper. For example, "a" and "a" are different glyphs.
See page 20 for more details. In general, a font consists of a collection of glyphs together with
an encoding, which specifies how to select glyphs (see page 20).

2The encoding determines the glyph that should be used for each character code. For
example, Adobe's StandardEncoding selects the glyph named "dagger" (t) to print character
178.

96 • Chapter 8: PostScript

Type 3 Fonts
PostScript identifies different types of fonts. Type 3 fonts are the most general.
PostScript Type 3 fonts define each glyph with a PostScript procedure. Type
3 fonts are capable of spectacular effects, including multicolored characters or
characters that change their appearance each time they're drawn.

The drawback is that Type 3 fonts require a complete PostScript in­
terpreter, since the process of drawing a character may require almost any
PostScript operator. Because of this limitation, Type 3 fonts are fairly unusual.
Instead, most fonts are in a more restrictive format that can be interpreted by
a program much simpler than a full PostScript implementation.

Type 1 Fonts
Type 1 fonts are the most common PostScript fonts. Type 1 fonts describe
each character with an outline. In normal use, the outline is filled to create
a solid character, but a variety of PostScript operators can be used to take
advantage of this outline in other ways. (For example, Figure 8.1 was created
by drawing the outline of each character first with a thick black line, then with
a narrow white line.) Despite being somewhat more restricted than Type 3,
Type 1 fonts have several advantages over Type 3 fonts. The biggest adv'lntage
is that Type 1 fonts contain hints that indicate the significance of certain font
features. This additional information allows the PostScript interpreter to adjust
the font outlines slightly for the best possible appearance at small sizes or low
resolutions. 3

The actual outline information in a Type 1 font file is encoded in a dense
binary format and then encrypted. The full details of the encoding and en­
cryption are available in Adobe Type 1 Font Format [Ado90a].

Type 1 fonts come in two slightly different flavors. PFB (PostScript Font­
Binary) files store the encrypted outline data in a raw binary form. This more
compact format is somewhat more troublesome to handle. PFA (PostScript
Font-ASCII) files encode the outline data in hexadecimal, which is easier

3The presence of high-quality hints is the biggest difference between professionally­
designed fonts and the cheap imitations that have become so common recently. Hints are
critically imponant at the low resolution used by computer monitors, and the effect of hint­
ing is noticeable on 300 dpi and 600 dpi printers.

PostScript Font Files • 97

Figure 8.1 Character Outline

Bytes Description
1 Flag byte: 128
1 Format of following data
4 Length of following data, from LSB to MSB

Table 8.2 Data Format Markers for PFB Files

to handle but somewhat larger. Both file formats carry precisely the same
information, and freely available utilities can convert between the two.

To simplify programs that want to understand Type 1 fonts, PFB files
contain binary markers that can be used to rapidly identify parts of the file
data. These markers are six bytes long, as indicated in Table 8.2. The format
byte is 1 for ASCII data, 2 for binary data that can be converted into ASCII
hexadecimal, and 3 for end-of-file. These markers simplify downloading fonts
to a printer, because a PFB file can be rapidly converted into a PFA file, which
is more appropriate for many printers.

Other Font Types
Other font types are used to indicate other font formats. Type 4 and Type 5
formats are used for the built-in fonts in certain PostScript printers.

Type 42 is used to print True Type fonts on some PostScript printers. True­
Type fonts are similar in concept to Type 1 fonts. They were originally devel­
oped by Apple as an alternative to Type 1, and were later adopted by Microsoft
for its popular Windows operating system.

98 • Chapter 8: PostScript

Other Font-Related Files
While the PFA or PFB file contains all the information needed to use a font,
these files are overkill for many situations. Word processors and desktop pub­
lishing programs don't need to know exactly what the font looks like; they'll
use a low-resolution screen font to display the text on the screen. But, to
get accurate results on the printer, they need to know the exact metrics of the
actual PostScript characters. For PostScript fonts, this metric information-in
addition to being contained in the PFA or PFB file-is available in a PFM
(PostScript Font Metrics) or AFM (Adobe Font Metrics) file.

PFM and AFM files contain slightly different information in very different
formats. PFM files are stored in binary, and are used by Windows. AFM files
are in a text format, and are used by most Unix software. (The Macintosh
uses its own special format for metric information.) Because they are in a text
format, it is generally easier to work with AFM files. Utilities are available to
convert between PFM and AFM format. When you purchase PostScript fonts,
you usually receive a PFA or PFB file and both PFM and AFM files for each
font.

Adobe also distributes PPD (PostScript Printer Description) files for a va­
riety of printers. These files are used by print manager systems to describe the
capabilities of a particular printer.

Structured PostScript Files
PostScript files are often assembled from several pieces. Most applications build
a PostScript file first by copying a standard "prologue" file, then copying one
or more font files, then spitting out PostScript commands to draw the pages
for the document. Along the way, the application may copy other PostScript
files containing commands to draw special images.

Ideally, applications shouldn't have to copy special prologues or fonts into
every PostScript file they create, since this extra data bloats the generated
PostScript. Many printers allow special prologues and fonts to be stored per­
manently in the printer, which removes the need for these files to be copied
into every file that uses them. The problem is that the application may not
know what special resources are stored on the printer.

Structured PostScript Files • 99

On many systems, an individual application doesn't deal directly with the
printer (this is especially true when the printer is located elsewhere on a large
network). To allow the program that's managing the printer to selectively
remove PostScript commands that are already resident in the printer, or to
selectively add fonts or prologues that aren't already available, PostScript files
need a structure that can be easily understood. This structure also allows
PostScript files to be easily manipulated, for example, to select or rearrange
pages.

Adobe has defined the PostScript Document Structuring Conventions (DSC),
which consists of special structured comments, beginning with %%, that indicate
certain aspects of the document. The full list of these comments is available
in Adobe's PostScript Language Reference Manual [Ado90b]. PostScript docu­
ments that follow these conventions are informally referred to as "structured
PostScript files."

Adherence to Adobe's DSC allows printer management software to select
the best printer for a particular job and optimize printing in a variety of ways.
For example, the printer management software can automatically add required
fonts to a document prior to printing, which removes the need to copy font
files over the network and consolidates font storage. The software can detect
often-used fonts and download them directly to the printer, further speeding
the printing of documents. Pages can be automatically rearranged for face-up
or two-sided printing.

'While sophisticated document management is primarily useful to large or­
ganizations with a battalion of networked printers, structured PostScript does
have benefits for less sophisticated environments. Many people use simple
utilities to select and rearrange pages or produce "thumbnails" of a large doc­
ument. This is especially useful when you're only interested in a few pages of
a large PostScript document. In particular, the popular GhostView previewer
uses the structured comments to identify pages within a document. Unfor­
tunately, many PostScript-generating programs don't properly generate these
structured comments, which makes it difficult to manipulate the documents
in PostScript form.

Keep in mind that these structured comments are almost always ignored
by a PostScript printer. They're purely for the use of an intermediate program
that might want to use or alter the PostScript file before it is printed. If you
are writing an application that outputs or manipulates DSC files, you should
study Adobe's documentation carefully.

1 00 • Chapter 8: PostScript

Encapsulated PostScript
Because so many programs know how to generate PostScript output, you may
need to include a PostScript file in another document. Such inclusion is fairly
simple if the PostScript program to be included is well-behaved. PostScript
is a complete programming language, so an included file can easily alter the
printing environment and prevent the rest of the document from printing
correctly.

To help avoid this problem, Adobe has defined the Encapsulated PostScript
File (EPSF) format. An EPSF file is a PostScript file that adheres to the
DSC (so the application that reads it can make sense of it) and is careful not
to do anything anti-social. The restrictions are quite reasonable, and many
PostScript files can be converted into Encapsulated PostScript files with two
minor changes. The first line has to look like %! PS-Adobe-3. 0 EPSF -3. 0,
and a %%BoundingBox comment must be near the beginning of the file. 4

The %%BoundingBox comment tells the application that uses the EPSF
file the size of the graphic image defined by the EPSF file. The two cor­
ners are specified using PostScript points, which are exactly 1/72 of an inch.
For example, an image one inch high and two inches wide might have these
bounding box coordinates: 0 0 144 72. If printed alone, this image would sit
at the lower left corner of the page, and extend two inches to the right and
one inch up.

%%BoundingBox: <lower left corner> <upper right corner>

Encapsulated PostScript Previews
Because displaying EPSF files requires a full PostScript interpreter, many EPSF
files also contain a bitmap that can be used by application programs to display
the contents of the file. This dual approach allows interactive applications to
quickly display the contents of the file using the bitmapped preview informa­
tion, while preserving the more accurate PostScript version for printing. Four
different types of previews are in common use.

4The version numbers refer to the current version of the Document Structuring conven­
tions and the EPSF standard, respectively. Some older applications require specific version
numbers other than 3.0.

PostScript Dialects • 101

EPSI Previews

PostScript files are often carried from one computer to another, so it's con­
venient to have a preview format that can be easily decoded on almost any
platform. The Encapsulated PostScript Interchange (EPSI) format stores the
preview as a simple, uncompressed bitmap contained in a series of comments
at the beginning of the PostScript file.

Macintosh Previews

The Macintosh operating system stores a file in two forks. The "data fork"
contains the file data, while the "resource fork" contains a database of addi­
tional information. Macintosh EPSF files typically store a standard Macintosh
PICT preview in the resource fork.

TIFF and Windows Metafile Previews

Other systems lack the flexibility of Macintosh's separate resource fork, so the
preview data must be stored with the EPSF data. The preview can be stored
as an EPSI preview, as described above, or as a TIFF or Windows Metafile
image. In this latter approach, a short directory is attached to the beginning
of the file indicating where the PostScript, TIFF, and Metafile data is stored
in the file. Table 8.3 details the format of this header. Note that the "magic
number" is the ASCII representation of EPSF, with the high bit of each byte
set.

PostScript Dialects
The original PostScript language supported the needs of black and white print­
ers reasonably well. Over time, Adobe and other vendors have added a variety
of extensions to PostScript to support color printers and on-screen display,
provide better access to the features of high-end printers, and provide more
sophisticated graphics functionality. As a result, PostScript now has three ma­
jor dialects.

The original PostScript language is now known as PostScript Level 1. It
is still supported by many printers, and forms the core of the newer dialects.
Level 1 's primary drawback is its lack of color support.

1 02 • Chapter 8: PostScript

Bytes
4
4
4
4
4
4
4
2

Table 8.3

Contents
Magic number: hex C5 DO D3 C6
File offset of start of PS data
Size of PS data
File offset of start of Metafile data
Size of Metafile data
File offset of start of TIFF data
Size of TIFF data
Checksum of previous bytes

Preview Directory

Adobe developed Display PostScript (DPS) to provide a more sophisticated
way for programs to draw on the screen. DPS is part of the NeXT graphical
interface and many commercial versions of the X window system for Unix.
DPS adds color and multitasking support to the original PostScript Level 1, as
well as an interface that allows programs written in a variety of languages to
execute fragments of PostScript code and recover the results.

The current PostScript language used in most newer printers is PostScript
Level 2. PostScript Level 2 adds a variety of new features, including sophisti­
cated color support, a standard way to access the features of high-end printers,
and new operators to simplify many kinds of PostScript programs.

Most applications now generate PostScript output that checks whether
the printer supports Level 1 or Level 2. If the printer supports Level 2, the
program will take advantage of those features. If not, the program will attempt
to simulate the effect of such features. Because of this simulation, PostScript
files will often print slightly faster and with slightly better quality on true Level
2 printers than on comparable Level 1 printers.

A few relatively minor compatibility problems exist. The first problem
is that many PostScript files are not written to work with generic Level 1
printers, but rather with the Apple LaserWriter, which included a handful of
specific extensions to the Level 1 standard. Fortunately, better Level I printers
do emulate these LaserWriter extensions. Another occasional problem is that
Level 2 is not precisely an extension of Level 1. A few (relatively minor)
details of PostScript are not con1patible, which is why many Level 2 printers
also support a separate Level 1 emulation. This is a minor concern simply

Hints for Handling PostScript • 1 03

because Level 2 has been available for long enough that few applications rely
on those details.

Hints for Handling PostScript
PostScript files are usually text files, and as such, can be read into a text editor
and altered if necessary. One of the most common alterations you might want
to make is to convert a normal PostScript file into an Encapsulated PostScript
file so you can insert it into another document. You need to edit the first line,
and make sure there's an accurate bounding box comment at the beginning of
the file. If not, you'll need to add one. The easiest way is to print the file
and use a ruler to draw a rectangle enclosing the image. Then measure the
position of the lower left corner and upper right corner of the rectangle. If
you measure in inches, multiply each dimension by 72 and use those in the
%%BoundingBox comment (see page 100).5 Frequently, this alteration will be
sufficient to include the PostScript file in another document.

The %%Pages comment indicates the number of pages in the document.
You can consult this value when deciding whether to print a file youve received
or view it using a PostScript viewer such as GhostView.

Each page of a structured PostScript file begins with a %%Page comment
that provides a label (usually the label is the number printed on the page) and
an ordinal page number {which always starts at 1). Generally, pages can be
removed or rearranged with impunity. Just be careful to keep everything that
defines a single page together.

If youre going to use a PostScript file repeatedly, you may want to trim it to
conserve disk space. Often, stripping out comments and removing extraneous
spaces can reduce a PostScript file by 20 percent or more. Spaces are not
necessary before or after certain punctuation (including {, } , [, and]) and
can usually be removed before I, <, and (, and after > and) . You do need to
be careful not to alter anything in a string; strings in PostScript are enclosed
in (and).

Removing the binary preview will also reduce the size of a PostScript file
considerably. The PostScript file proper begins with % ! and ends with an

5In PostScript, a point is precisely 1/72 of an inch. This occasionally causes problems be­
cause the standard point used by printers for over a century is slightly smaller. You sometimes
see people refer to PostScript points as DTP points, as opposed to printer's points.

1 04 • Chapter 8: PostScript

%%EOF comment. Anything outside of that can be safely removed without
affecting how the PostScript file will print. Frequently, this step alone reduces
the total size of the file by 50 percent or more.

PostScript files are usually completely ASCII, so you can edit them easily
with a standard text editor. A few PostScript files have binary data embedded
in them, however, so it's best if you use a text editor that doesn't have arbitrary
line-length limitations that damage binary data. (I often use GNU Emacs for
this kind of work.) As always, you should edit a copy of the file and make
sure the altered version prints identically before you delete the original.

Legal Issues
PostScript files often have to include other data. The most common example
is the use of non-standard fonts. To print the file, you must either have that
font in your printer or include the font as part of the PostScript file. If you
want to give the PostScript file to someone else, you usually have to include
the required font; you can't always assume that they have the font you used.

The problem is that fonts are usually copyrighted; you probably don't have
the right to give the other person a copy of the font. If you include the
font in the PostScript file, you've given the person a copy of the font, since
they can easily pull the PostScript file into a plain text editor and separate the
font information. As a result, you usually can't legally include the font in the
PostScript file.

The current status of fonts with regard to US copyright law is a bit con­
fusing. Under current US copyright law, the visual appearance of a font can't
be copyrighted. Under most circumstances, you can make visual copies (for
example, on a photocopier or printing press) of a font without violating any
copyright. However, PostScript fonts (and other similar font formats, such
as TrueType, Sun F3, and Speedo fonts) are considered programs, and pro­
grams can be copyrighted. Because of this dichotomy, it's often impossible
to legally distribute the PostScript file of a document you create (because it
contains copyrighted fonts), even though you can legally print and give away
photocopies of the same document. 6

6I'm simplifying this issue enormously. For example, only parts of a font file are subject
to copyright protection. The distinction between visual appearance and program that I've

Strengths and Weaknesses • 1 05

The easiest way around this problem is to stick to the handful of fonts
that are present in every PostScript-compatible printer, namely Times Roman,
Helvetica, and Courier. 7 If you use only those fonts, you can distribute your
PostScript document easily because you won't have to include any font files.

Conventional wisdom says that because the visual appearance of a font
cannot be copyrighted, neither can the bitmapped version of a font. As a re­
sult, converting Type 1 fonts into fixed-resolution bitmap fonts and including
those in your document probably suffices to get around this restriction.8 Font
foundries currently claim that the copyrights on their PostScript font descrip­
tions also apply to any font description converted from their PostScript fonts.
It's unclear whether this applies to bitmaps created from those descriptions,
or just to translations of those descriptions into other comparable formats (a
TrueType conversion of a copyrighted Type 1 font is still copyrighted). To
my knowledge, this ambiguity hasn't been tested in court, and until it is, it's
hard to say whether or not the distribution of bitmaps derived from PostScript
outline fonts is legal.

Strengths and Weaknesses
One way to summarize the previous section is to say that PostScript, while
an excellent format for document description, is a poor choice for document
interchange. This weakness is one of the reasons for the development of file for­
mats specifically targeted for document interchange, such as Adobe's Portable
Document Format (also known as Acrobat), which I discuss in the next chapter.

PostScript's other major weakness is that is complex. As a full-fledged
programming language, it's not possible for a program to be able to understand
an arbitrary PostScript file well enough to effectively alter it if necessary. As a

given here is a convenient way to think about this problem, but the actual legal issues are
considerably more subtle.

7 Although the appearance of a font can,t be protected, the names can be. The names Ttmes
Roman and Helvetica are trademarks of Linotype-Hell, which explains why many "look alikes"
have slightly different names. Courier was originally designed for IBM; the name appears to
never have been trademarked. As a result, many different fonts have the name "Courier."

8Bitmapped fonts can be stored as PostScript Type 3 fonts. Such fonts can be used at any
resolution, but tend to look rather poor at resolutions other than the resolution for which
they were created.

1 06 • Chapter 8: PostScript

result, few applications even attempt to read and utilize data from PostScript
files.

It's relatively easy to build PostScript files that make no assumptions about
the resolution, color support, or other capabilities of the final output device.
However, PostScript does support bitmapped images, color printing, and other
features to take advantage of such capabilities when they are available. A large
market exists for professional-quality fonts and clip art in PostScript formats,
and much of the printing and publishing industry relies heavily on PostScript.

PostScript files are usually text files, which makes it simple to store, ma­
nipulate, and transport files. PostScript printers are designed to accept any
common end-of-line termination, making them compatible with PC, Macin­
tosh, and Unix systems.

More Information
Adobe has thoroughly documented most aspects of PostScript in a series of
books. The principal ones have become known as the "color" books, because
they were originally published with solid-colored covers that made them quite
distinctive. Adobe's PostScript Language Tutorial and Cookbook [Ado85] (the
"blue book"), PostScript Language Program Design [Ado88] (the "green book"),
and PostScript Language Reference Manual [Ado90b] (the "red book") are worth
investigating if you want to use and understand the PostScript language. The
Adobe Type 1 Font Format [Ado90a] (the "black book") describes the storage
and concepts behind Type 1 font files in considerable detail.

On the Internet, you can find active discussion of PostScript in the news­
groups comp.lang.postscript and comp.fonts.

Norman Walsh's The comp.fonts Home Page (http: I I jasper. ora. com)
has information about PostScript fonts as well as pointers to other PostScript­
related resources. This same site has information on many other related topics,
including TFXIIITEX and SGML. Aaron Wigley's Internet PostScript Resources
is also useful (http: I /yoyo. cc .monash. edu. auf-wigs/postscript).

GhostScript is a full-blown PostScript interpreter that can print PostScript
files on a variety of non-PostScript printers and display PostScript files to the
screen on most systems. Versions of GhostScript for Windows, MS-DOS and
Unix are available from ftp: I /ftp. cs. wise. edu/pub/ghost.

More Information • 107

The Ghost View program simplifies displaying displaying PostScript files on
the screen with GhostScript. Versions for Windows and OS/2 are available
in ftp://oak.oakland.edu/simtel/win3/printer/gsview12.zip. A
Unix version is available from ftp: I /prep. ai. mit. edu/pub/ gnu.

The ViewPS program displays PostScript files on the Macintosh. It's avail­
able from ftp: I /ftp. shsu. edu/tex-archi ve/ systems/mac/ cmactex.

PDF (Acrobat)

The general method that PostScript uses to describe a document is quite ap­
plicable to electronically distributed documents (see Chapter 8). Electronically
distributed documents have to look good at any resolution, from screen to
imagesetter, and PostScript excels at this.

However, PostScript per se isn't particularly well-suited to electronic dis­
tribution. One problem is that copyrights prevent embedding fonts in a
PostScript file, which makes it difficult to distribute PostScript files that use
anything other than the most common PostScript fonts. Another problem is
that finding a particular page in a PostScript file requires scanning through the
entire document from the beginning.

Adobe's Portable Document Format (PDF), also known as Acrobat, addresses
these limitations. PDF uses the same general approach to page description as
PostScript. Also like PostScript, PDF is a text format, which simplifies the

PDF at a Glance

Names:
Extension:
Use For:
Reference:
On CD:

PDF, Portable Document Format, Acrobat
.pdf
Exchanging formatted documents
Portable Document Format Reference Manual [Ado93]
Acrobat PDF viewers for Macintosh, Windows, MS-DOS;
Common Ground viewers for Macintosh, Windows; Envoy
viewers for Macintosh, MS-DOS

109

110 • Chapter 9: PDF (Acrobat)

exchange of PDF documents. However, PDF is better suited for electronic
distribution. PDF stores just enough information about a font to allow the
viewer to substitute a similar font, removing the need to include the actual font
outlines in the PDF file. 1 PDF's hierarchical structure includes a directory at
the end of the file, allowing any page to be rapidly located. Finally, PDF's
structure is simpler and more restricted than PostScript, which makes PDF
files much easier to read and understand.

Using PDF
Many desktop publishing programs can now create PDF files. Free PDF view­
ers are available from ftp: I /ftp. adobe. com. Adobe also sells its Acrobat
Distiller, which can translate any PostScript file into an equivalent PDF file.
On certain systems, this product allows any program to create PDF files by
simply printing through the PostScript printer driver and converting the re­
sulting file with Acrobat Distiller.

How PDF Works
A PDF file is a text file. 2 The first line of the file contains %PDF-1. 0, where
the number 1.0 refers to the current version of the PDF standard. The rest
of the file is a sequence of nutnbered objects. At the end of a file is a cross­
reference table that allows an application to locate any specific object in the file.
The cross-reference table specifies the byte offset in the file of each numbered
object. A reading application starts at the end of the PDF file, where a trailer
specifies the location of the cross-reference table and object number of the
"root" object. Each object reference is an object number, which can be looked
up in the cross-reference table. By following object references from the root

1 PDF stores the font metrics-the width and height of each character-which can be used
to scale another font to fit. This information is insufficient for special symbol fonts. In that
case, PDF stores outlines for only those characters necessary to display the document.

2Curiously, despite being a purely text format, PDF files should always be transferred as
binary data. The damage caused by text transfer can be easily repaired by savvy PDF-reading
applications, but binary transfer helps avoid even minor problems.

Strengths and Weaknesses • 111

object, every object in the document (including individual pages, thumbnails,
and an optional outline) can be quickly accessed.

This structure allows an application to rapidly find any particular item in
the file, without keeping the entire file in memory or scanning the entire file
from the beginning. Another advantage of this indirection is that objects can
be updated by appending a revised copy of the object to the end of the file and
extending the cross-reference table. PDF allows the cross-reference table to be
in several pieces, with later pieces superseding earlier ones. A PDF file can be
incrementally modified (for example, to add annotations) without changing
any of the original data.

Larger objects are compressed, to save size, and encoded so that PDF files
can be easily transferred through mail or other text-oriented mechanisms. After
being decoded and decompressed, the lowest-level objects contain graphics
instructions similar to those used in PostScript.

Strengths and Weaknesses
PDF is a physical markup system (see page 24). Like a fax, you can't easily
reformat a PDF document, although you can usually copy text and graphics
from the PDF file into another document. PDF is a good choice when the
precise formatting must be preserved. Some publishing houses are consider­
ing various forms of "on-demand" publishing, in which books or leaflets are
printed only when needed, rather than the current scheme of printing tens of
thousands of copies to be kept in a warehouse. Many large companies want to
make formatted manuals available online so they can be printed out whenever
needed. PDF is well-suited to this type of distribution.

Adobe has proposed PDF as a format for publishing on the World Wide
Web. However, as a physical markup system, it's not particularly well-suited
for this type of work. PDF files are rigid, and can't easily be reformatted to
suit the requirements of various output devices. Having to scroll the document
from side-to-side on a low-resolution screen is awkward at best; it's far more
appropriate to use a logical markup system (see page 24) which allows the text
to be reformatted to suit the output device.

Of course, it's much easier to convert existing documents into PDF than
to insert the logical markup necessary to convert them into a less rigid format.
This makes PDF a good choice for publishing pre-existing documents on

112 • Chapter 9: PDF (Acrobat)

the World Wide Web. Many of these documents are in PostScript or word­
processor formats.

PDF vs. PostScript
PDF includes all of the basic graphics and drawing capabilities of PostScript,
which allows you to do very sophisticated graphics in PDF. Indeed, any
PostScript page description can be converted into a PDF file. Conversely,
any PDF file can be converted into a PostScript file for printing.

Despite this fundamental sitnilarity, PDF and PostScript are intended for
different uses. PDF's hierarchical structure makes it easy to find particular
pieces in a file on disk, but difficult to display a file as it becomes available.
Conversely, PostScript is designed to be displayed as it is read. This distinction
makes PDF ideal for online display and browsing, but makes PostScript better
for printing. PDF and PostScript should be looked at as a complementary pair
of formats: one for electronic distribution, the other for printing.

Alternatives to PDF
PDF is not the only file format designed to fill this niche. Common Ground
Software's DigitalPaper (which uses extension . dp) and Novell's Envoy (which
uses extension . evy) are formats that provide similar functionality.

More Information
Adobe has thoroughly documented the PDF format in its Portable Document
Format Reference Manual [Ado93]. Adobe also distributes free viewer programs
that allow users of Macintosh, Windows, MS-DOS, and Sun Solaris to read
PDF files. Some information is also available on Adobe's World Wide Web
site at http: I lwww. adobe. com.

The newest version of GhostScript (see page 106) supports PDF files.
Envoy information is available from http: I lwww. novell. com. Digital­

Paper information is available from http: I lwww. commonground. com.

Word
Processors

The "text" formats people deal with most frequently are the common word
processor formats. If two people use the same word processor or desktop
publisher program, it makes perfect sense for them to exchange word processor
files. Be careful, though, because there are some hidden traps.

One thing that deserves some inspection is whether the word processor
has an alternate text-based format. Framemaker's MIF (Maker Interchange
Format) and Microsoft's RTF (Rich Text Format) are text versions of their
standard binary word processor formats. Although these text versions don't
always store the same information, they are often easier to transfer between
different computers. Such formats are also more likely to be supported by
other software. RTF, in particular, has been documented by Microsoft and is
supported by several non-Microsoft word processors.

While many people regularly exchange word processor files with no prob­
lems at all, many people do run into obstacles:

• Many programs claim to read and write competing formats. Such sup­
port varies widely. Your document can lose most of the formatting
(fonts, alignment) when you use this method.

• Different versions of the same program can't always trade files easily.
Going from a newer version to an older version is especially problem­
atic.

• It's not always easy to exchange files between the same program on
different systems. Macintosh and Windows versions of a word processor
don't necessarily read and write the same files.

113

114 • Chapter 10: Word Processors

• Worse, even with the same word processor on the same system, files
don't always transfer correctly. For example, people who exchange files
between Western and Eastern Europe have discovered that popular word
processors don't always mark the font encoding used. The different font
encodings used in these countries cause the file to appear as gibberish
when opened in a different national version of the same program and
operating system.

Before deciding what format to use to send a file to someone else, try to
figure out what they'll do with the file.

• If the recipient is just going to print it, you can send PostScript (if
a PostScript printer is available) or PDF. (You may even be able to
include a copy of the freely available PDF viewer.) Fax machines also
work well in this case.

• Many publishers and magazines that have to accept files from a variety
of people end up purchasing "one of each" so that they can read many
word processor formats. Frequently, they read the file into the word
processor, export it as plain ASCII, import the ASCII into a publishing
system, and then manually reformat the document. In this case, you
should just send a plain ASCII file. If the formatting is critical, send a
printout as well.

The best approach is to make sure you know what software they have
before you try to send them a file. If you're going to publish something on
the Internet or World Wide Web, you don't know what software the recipients
might have. You may want to try to offer the file in several different formats:
a word processor format, a printer format (such as PostScript), and a plain
ASCII format.

More Information
GUnter Born's File Formats Handbook [Bor95] covers many proprietary word
processor formats in detail.

Part Two

Graphics Formats

About
Graphics

The computers on display in your local computer store aren't running demon­
strations of word processors and spreadsheets. They're showing graphics, rang­
ing from simple slide shows to animated games to full-motion recorded video.
Similarly, on most electronic services, the most popular items to download
are graphics. For many years, the Internet has been used as a repository for
images, ranging from astronomical and medical images to photographs of a
proud parent's new baby. One could even make a case that the current enor­
mous popularity of the World Wide Web is in large part due to the fact
that it's one of the first widely available Internet services supporting integrated
graphics.

There are an enormous number of different file formats used for graphics,
including some of the formats I discussed in Part One (such as PostScript and
PDF). One reason for this variety is that many program authors create simple
formats of their own rather than adopting more complex "standard" formats.
Another reason is that steady improvements in computer hardware have altered
expectations. In the early 1980s, CompuServe's online service had a standard
graphics format that supported black and white pictures up to 256 by 192
pixels. When a large number of computers had better graphics support, they
replaced that format with one that supported much larger images with up to
256 colors. CompuServe is now adopting the new PNG format (see page 139)
to support even higher-quality images. As graphics hardware, storage capacity,
and modem speeds continue to improve, there is also increasing interest in
formats such as TIFF that once were used almost exclusively by professional
graphics designers.

117

118 • Chapter 11: About Graphics

Color and Resolution
Another reason for the variety of graphics formats is that different kinds of
pictures lend themselves naturally to different kinds of storage. The most
obvious two properties of an image are its color depth and resolution. Briefly,
color depth refers to the number of different colors that can be in a picture.
Resolution refers to the number of pixels in the picture.

Images from a fax machine or the most common printers are bilevel im­
ages; they only have two colors, usually black and white. The next step up
is grayscale. Grayscale images are typically characterized by the number of bits
used for each pixel. For example, a four bit per pixel (bpp) image can have
sixteen (24) different shades of gray, including pure black and pure white. A
sixteen bpp image can have over 65,000 (216

) shades of gray.

Color images are often preferred to bilevel or grayscale. The simplest way
to store a color image is to store the precise color of each separate pixel. This
method is usually referred to as direct color or true color. Typically, a single
color requires either 24 or 32 bits per pixel, which is a lot of memory. A
I 024 by 768 pixel screen that uses 32 bits per pixel requires three megabytes
of memory. A 1600 by 1200 screen, commonly used by professional graphics
designers, requires over seven megabytes of memory if you store the color
directly. Such a large amount of data creates many problems. Not only does
the data require a lot of video memory, it requires a lot of disk storage for the
images, and it creates design problems for the video card, monitor, and even
the video cable. That 1600 by 1200 screen requires the video card to transfer
over 500 megabytes of picture data from video memory to the monitor every
second!

To reduce memory requirements and simplify the design of video cards,
many systems use a color look-up table (CLUT). In this approach, only eight
bits are stored for each pixel, allowing 256 colors. The video circuitry stores
a table that converts each of these numbers into a different color. As long as
you don't need more than 256 colors at one time, you get the same results as
a direct color approach, but with only one-third of the memory requirement.
The CLUT method even has an interesting advantage. Because the color table
can be quickly reprogrammed, you can do a simple form of animation by
altering the colors. This type of animation is very simple and fast, since the
actual picture data is never altered.

Kinds of Colors • 119

As you can see, there is a trade-off between color depth (the number of bits
per pixel) and resolution. Greater color depth requires more memory, which
typically restricts the resolution you can use, and vice versa. Fortunately, this
trade-off also appears in the human visual system. With clever programming,
grayscale screens appear to have higher resolution by using shades of gray to
smooth out the jagged edges. Conversely, high resolution screens can use
"dithering" or "halftoning" techniques to increase the apparent color depth,
effectively blending two or more colors.

Kinds of Colors
There is a theory that the human retina has three different kinds of color
receptors, one sensitive to red light, one to green light, and one to blue light.
This theory is the origin of the popular RGB (Red-Green-Blue) system of
specifying colors. Color computer monitors use three electron beams to elicit
light from three different colors of phosphors. By varying the intensity of the
electron beams, you can generate different intensities of red, green, and blue
light. Most computer video hardware uses this approach directly; a color is
specified to the video hardware by setting levels for each of these three color
channels. 1

The RGB system is simple, but it doesn't work for all devices. Ink on
paper, for example, reflects light instead of producing it. Color printers must
instead use the "opposite" colors: cyan, magenta, and yellow (CMY). In the­
ory, these three inks, printed on bright white paper, can produce the same
range of colors as an RGB monitor. In practice, you can't produce a really
dark black this way, so printers usually add black ink (K), which gives the
familiar CMYK four-color system used in most color printing. Even with this
addition, CMYK printing can't reproduce every color. Very high-quality print­
ing will often augment CMYK with other ink colors to reproduce specific
colors accurately. If you tear open the flaps on the bottom of your cereal box,
you'll find test patterns that show the ink colors used to print that box.

1 Conventional wisdom says that eight bits is sufficient for each color channel. As a result,
24 bits per pixel has become the standard for high-end color graphics. Computer researchers
and some graphics professionals do use 48 bits per pixel or more, although such "deep-pixel"
images are usually converted to 24 bits per pixel before they are displayed.

120 • Chapter 11: About Graphics

A problem that both RGB and CMYK share is that, although they do
seem to match how the human eye works, they don't really match how we
think about color. When we see a color, we don't see a mixture of three
or four colors, but rather a single hue, with a certain saturation and value.
Saturation is how "strong" the color is; a red sports car is very saturated while
a pale pink rose is very unsaturated. Totally unsaturated colors are shades of
gray. Value is how "light" or ''dark" the color is; a cherry soda has a high
value; a red wine has a low value. A zero value is black. Artists and graphics
designers often want to deal directly with these HSV (Hue-Saturation-Value)
colors, rather than the less-intuitive RGB or CMYK systems.

Unfortunately, none of the above color systems is perfectly standardized;
an RGB color of (51 ,27,31) vrt•ill give slightly different colors on different
monitors. Two systems that are totally standard are the CIE X1Z color system
and the Pantone system. The CIE XYZ color system is defined in terms
of specific wavelengths of light, so a particular set of numbers always define
the exact same color. Pantone is a commercial system of numbered colors;
printed samples can be purchased that are guaranteed by the manufacturer to
be exactly the same color as all other samples with that name.

Converting between these various systems is difficult in practice. Although
simple formulas can be used to get approximate conversions, these formulas
are frustrated by many issues. The most obvious problem is that not all
color-producing devices behave identically. For example, different computer
monitors use phosphors that have slightly different colors. Even a pure red on
two different monitors may look distinctly different. The situation is worse
when you try to convert between different types of devices. RGB Monitors
can produce colors that CMYK printers cannot. Correct translation from
RGB to CMYK sometimes requires significant care to maintain the overall
appearance of a picture, even if the technical accuracy of the color conversion
is sacrificed. Finally, no color device, including the human eye, is completely
linear. Doubling the intensity of an electron beam doesn't produce precisely
twice as much light from the monitor. Even if it did, you wouldn't perceive
precisely "twice as much color." The exact relations are complex and not
completely understood.

Most popular graphics formats use the RG B system to specify colors. Be­
cause RGB is not standardized, the formats used by graphics professionals try
to do more. Sometimes these formats use a different color system; PostScript
can accept CIE XYZ colors. Sometimes these formats include extra infor-

Kinds of Images • 121

mation so that the recipient can decipher the RGB numbers; TIFF images
can specify the original RGB phosphor colors in terms of another CIE color
system.

Besides the color itself, another piece of information that can be useful is
the transparency or alpha. Images are almost always stored as rectangles. If
you overlay a picture of a rose on top of the image of a table, you don't want
a black rectangle surrounding the rose. Many graphics formats allow you to
specify parts of the picture as transparent, typically with a special "color" in
the picture. 2 Sometimes, you need to specify that parts of the picture will
blend with what is underneath; this way you can see part of the lunch counter
through the cherry soda. The alpha of a pixel indicates the opacity of that spot.
A completely opaque pixel obscures what is behind it; a completely transparent
one is invisible. An intermediate value blends with the background, such as
the cherry soda that makes the counter behind it look pinkish.

Kinds of Images
One reason there are so many ways to describe color is that there are many
different kinds of pictures. Charlie Brown's striped shirt does not need to be
exacdy the same shade of red in every newspaper's Sunday comics. On the
other hand, a movie poster that displays a sexy starlet with a slight greenish
tint to her skin could seriously impact the box-office earnings.

The kind of picture has many other effects as well. People who work with
graphics generally distinguish three kinds of pictures. Bilevel (black and white)
images generally contain text and other solid lines and simple patterns. Line
art or synthetic images are like cartoons; they usually have only a few colors
with lines and simple patterns, and are often stored using a color look-up
table. Finally, continuous tone or photographic images have smoothly varying
shades. Note that continuous tone images can be either grayscale or color.

Different kinds of images can be handled in different ways. For example,
line art often can be reduced to a set of drawing commands specifying lines

2This approach is similar to the "blue screen" used in television and motion picture pro­
duction. A particular shade of blue is interpreted by some television equipment as "transpar­
ent." Your TV weather forecaster is actually walking in front of a blue curtain that tells the
television equipment to let the weather map "show through." This technique can produce
amusing effects if her clothes happen to be the same color as the curtain.

122 • Chapter 11: About Graphics

and colors of areas. Continuous tone images usually cannot be reduced to a set
of simple drawing commands. Also, color accuracy is usually more important
for continuous tone photographs than synthetic images.

Compression
Even a single picture can require significant amounts of storage. But one pic­
ture rarely stands alone; a product catalog on the World Wide Web might have
thousands of images of different products. To reduce these storage require­
ments, an enormous amount of work has gone into finding ways to compress
tmages.

One Size Doesn't Fit All
Like many other aspects of image handling, different types of compression
are suitable for different types of pictures. For bilevel images, two general
compression approaches are used. The first approach is run-length encoding.
Because bilevel images typically contain areas of a solid color, they can often
be described as repetitions, or runs, of a single color. Instead of listing the
black and white pixels on a line, you might instead say "27 white, 3 black,
48 white, 23 black, ... " This idea is used by the common Group 3 fax
compression. Another approach is to consider the context of each pixel. If you
look at several nearby pixels, you'll find that you can often predict the color of
the next pixel. This idea is used by the new JBIG compression method. 3

Run-length encoding can also be effective on simple color images. Gen­
erally, however, other methods work better. Most compression methods for
images with 256 or fewer colors use standard compression techniques as a
starting point, and augment them with a few simple tricks. One trick is to re­
member that images are, in fact, two-dimensional, while standard compression
techniques deal only with a one-dimensional list of pixels. These compression
methods fail to take advantage of the vertical redundancy in most images. To
exploit this redundancy, you could list the pixels on the first line of the image,

3JBIG stands for the Joint Bllevel .Experts Group, the name of a group formed specifically
to develop an effective compression method for bilevel images.

Compression • 123

then list the numerical differences between successive rows of the image. Ver­
tical similarities will show up as zero values in the differences, and these zero
values compress very well. This type of preprocessing is often referred to as
a predictor. A predictor is a simple function that tries to guess the next pixel
value.

A successful predictor can greatly improve compression. Intuitively, any­
thing the predictor can successfully predict doesn't need to be stored, since the
decompressor can use the same predictor to guess those pixels correctly. Only
pixels the predictor gets wrong need be stored. In practice, a predictor such as
"each pixel is the same as the previous pixel" can work remarkably well. Sim­
ple images have blocks of solid colors, and this predictor will always be right
within such blocks. Essentially, only the edges of solid color blocks will need
to be stored. (This predictor is essentially just doing run-length encoding.)

The combination of predictors and standard compression methods can also
work well on continuous tone images. Of course, the predictors are more so­
phisticated; one popular predictor averages several nearby pixels. Many contin­
uous tone images come from photographs, however, and any physical process
(such as a camera, scanner, or camcorder) will introduce noise. Technically,
noise is random variations. Usually, this noise doesn't impact the image-in
fact, it's very often completely invisible to the eye-but it does make the image
more difficult to compress.

Lossy Compression
One way to address the noise problem is to use lossy compression. Lossy com­
pression deliberately throws out some data in order to obtain better compres­
sion. The challenge is to remove data that does not impact the appearance of
the image but does help improve the compressibility.

There's another way to think about lossy compression. The way a com­
puter screen draws a picture, by specifying the color of each pixel, does not
match how the human visual system works. The human retina has several lay­
ers of neurons that, in essence, preprocess the image seen by the eye, altering
the image data into a form that's easier for the brain to understand. In the
process, some visual data is lost. Because this data will be removed by your
eye before you "see" the image, you don't need to store that data on your hard
disk.

124 • Chapter 11: About Graphics

]PEG (see page 157) is one of the best-known lossy compression meth­
ods. It is based on the fact that the human eye is more sensitive to changes in
brightness than in color, and more sensitive to gradations of color than to rapid
variations within that gradation. JPEG maintains most of the brightness infor­
mation while dropping some color information, and retains gradual changes
of color while throwing out sotne more rapid variations in color. As a result,
]PEG is very effective at compressing continuous tone images, but introduces
noticeable distortion around the sharp edges of many synthetic images (where
rapid variations in color are important). While]PEG's compression is im­
pressive, it is not a substitute for the many "lossless" compression techniques
developed for other types of images.

More Information
There are several excellent books on graphics storage and file formats. James D.
Murray and William vanRyper's Encyclopedia of Graphics File Formats [Mv94]
has comprehensive coverage of a variety of different graphics formats. It covers
over one hundred graphics formats, and the accompanying CD-ROM includes
official specifications, source code, sample images, and viewers for a variety of
platforms.

Mark Nelson's The Data Compression Book [Nel92] is an excellent intro­
duction to the principles of data compression.

If you're interested in programming for these formats, you may want to
examine Jef Poskanzer's PBM (Portable BitMap) collection. This collection
includes a programming library of generic bitmap manipulation routines and a
suite of programs that can convert between a huge variety of different formats.
See page 179 for more information.

Graphics viewer programs are plentiful, and most major archive sites have
several from which to choose. The SIMTEL archives have MS-DOS viewers
and utilities under msdos/graphics. Viewers for Unix machines running X
are available from ftp. x. org in the various contrib directories. Graphics
utilities are also available from ftp. uu. net; look especially in the graphics
and usenet/ comp. sources. x directories. Macintosh graphics utilities are
on the Info-Mac archives in the _Graphic_&_Sound_Tool/ _Graphic direc­
tory.

ASCII
Graphics

In the excitement of new technology, many people forget that the Internet is
primarily a communications tool. Fancy formats and sophisticated compres­
sion are useless if the person receiving your file can't make sense of it.

The one format that is almost universally understood is seven-bit ASCII
text, and you can use the variety of different punctuation and letter shapes to
draw simple diagrams and figures. With a little creativity, you can create very
interesting designs in this way. A good place to look for creative uses of this
type of graphics is in the "signatures" that many people routinely append to
their news and mail postings.

How to Use ASCII Graphics
The simplest forms of ASCII graphics are rectangular diagrams using I , -,
and _ for vertical and horizontal lines, and + for intersections of lines. This
approach is often used to draw simple maps, boxes, and tables. For example,
Figure 12.1 shows one way to create the table from page 72 using ASCII
graphics. 1 Notice the use of all capital letters for the table heading. Capital
letters in plain text are used for emphasis.

ASCII graphics have even found their way into formal standards. One
of the goals of HTML (HyperText Markup Language) is to support text-only
terminals, which requires tables and mathematics to be displayed using ASCII

1This table was adapted from an example in UNIX in a Nutshell [Gil92].

125

126 • Chapter 12: ASCII Graphics

+--+
HORIZONTAL LOCAL MOTIONS

+----------+-----------------------------+
Effects in

I Function +---------------+-------------+
I I TROFF I NROFF I
+----------+---------------+-------------+
I \h'n' I Move distance N I
I \(space) I Unpaddable space-size space I
I \0 I Digit-size space I
+----------+---------------+-------------+
I \1 I 1/6 em space I ignored
I \- I 1/12 em space I ignore
+----------+---------------+-------------+

Figure 12.1 Example Table Using ASCII Graphics1

inf
i

X \ X

e = I
--- i!
i=O

partial E
Psi

partial X
X + X +

a a
1 2

Figure 12.2 Mathematics Using ASCII Graphics

.•• = pi/4

graphics. Figure 12.1 shows how a table might be displayed on a text terminal.
On page 53, I gave several examples of HTML mathematics and showed how
they might look when typeset. On a text terminal, they could be displayed as
shown in Figure 12.2.

With a little practice, it's relatively easy to create this type of image. By
expanding your repertoire to include angled lines {/ and \), various arrows
(<->v), and the creative use of other punctuation, you can create maps and
other types of line graphics, as shown in Figure 12.3.

More abstract graphics are also possible. Many people now decorate their
mail messages with graphical "signatures," similar to Figure 12.4. Elaborate
images of animals, cars, planes, and even stylized self-portraits have been con­
densed into five or six lines of ASCII graphics.

How to Use ASCII Graphics • 127

Highway 25
======================================;

!Green Road
Left Turn --> \ ______ _

\ <-- Right Turn
River I ---------)!(____________ _

.... I Bridge
About 2.5 miles I I

I I +
MY HOUSE! >--------->* v I 0 Church
7234 Red Road ---------1
Phone: 555-1234 I

I
Red Road I

Figure 12.3 A Map Drawn with ASCII Graphics

I
I *

I I I I)
(_I _l_l I_

) I
I I

1-< *
I) I I_) I

I l_l_l_1

Figure 12.4 A Signature

I)

I II
_I _ _ , I I

) I I I (I I_)
l_l_l _l_l_1_

I I
(_I

One of the earliest examples of computer graphics was a scheme for pro­
ducing graphics on old line printers. By overstriking characters, it's possible to
produce black blocks (for example, I was created by overstriking *0/\=WM);
different combinations of overstruck characters produce different darknesses
of block. By combining such blocks, you can create remarkably high-quality
grayscale images on wide printers. Many old computer rooms were decorated
with images of the Statue of Liberty or Albert Einstein produced in this way.
Figure 12.5 should give you the general idea. {It helps if you hold this picture
at arms length and squint.)

128 • Chapter 12: ASCII Graphics

Maull!
N!M!N!II~~~~~##OO#i

!NINM!!!I~me~m~#oo••*+*
NIIMM!!!II~i~~#OOO**++::::

KIIM!NN!!III~m~##OO••++::::::+
IIINN!!!!!!IIimm##OO•*+:::::::.+
IIIN!NNN!!I!!~i~##OOO••+::::::: .. :.

IIINMINNN!!N!IIim#o#O***+:::::
... ~···~~#0000••+++::: :
IIIINN!!M!!!II~~~m~o·•oo•+:+:::.: +
~•••mme#•••oo•+:::: +
IMIIIIINNNNN!!KMM!~i~#OOOO+::: :~
NNNIN!NN~i~~~~OOO•::: OI
NIINN!N!!N!!~N~##~~~~!NI~O+ .. :iNI
NIIM!N!I!!IIUI!IIN!INII!~!II!I~O+•~#**::~
NNINN!N~IIIIU!!!!NN!NI:#eo~••~·#e+::l~#~
IIIM!N!ImiiUIII!!NNN~.OI*OI~O+:::.O~+~
IIIN!N!!NN!U!I!MNNN!O:.##O++::::.+~O~

MNNNN!!!I!INNKMN!I#+ .. O~~~~OO••:*
NNNN!!!I~I~*O::OIO+: ... +

!II!NIIXNNNN!I~~o~~+::::OI#+:.:
IIIIIIIINNKMNim!MMNMNNIII~O++::+O*+:.
-·~0•::::+#0+:::
1111111111~1!!1111~0+::::+:::~
11111111~1~#0*+::+::::+~··
111111111111~1~#0+::::01111~~~~~
IIIIIIIIIIIKIIN!!NNN!III~O#OINII~I!~~~~~~~~~

Figure 12.5 An Example of "Line Printer Art''

More Information I I A I\
(0 0)

-oOOO--(_)--OOOo-2

Jan Wolter's cursive program can automatically generate script text simi­
lar to that shown in Figure 12.4. It's available in C source form from Vol­
ume 2 of the comp. sources. games archives. These archives are available on
ftp://ftp.digital.com.

2Image copied from a signature seen on Usener.

.oooO
() Oooo.

---\ (---()---
_)) I

(_I

G/F

CompuServe's Graphics Interchange Format (GIF) is one of the most widely
used graphics file formats. It is currently in use on nearly every platform, and
is the standard image format used on the World Wide Web. Designed in
1987, GIF overshadowed formats such as MacPaint or PCX for several rea­
sons. First, GIF was designed to be used on many platforms. It explicitly
includes all of the information needed to display the image and omits features
that would only be useful on a handful of systems. Second, GIF uses a power­
ful compression algorithm (LZW) with a freely-available implementation (the
Unix compress program). Finally, CompuServe successfully encouraged the
development of GIF viewers and translators for many systems.

CompuServe introduced GIF to fill a very specific need. CompuServe's
Special Interest Groups (SIGs) attracted users of a huge variety of different
computer systems. They needed a format for storing color graphics that would
be usable on all of these different systems. CompuServe also wanted a compact
format that could be downloaded quickly and displayed during download.

GIF at a Glance

Name:
Extension:
Use For:
Reference:
On CD:

GIF, Graphics Interchange Format
.gif
Exchanging eight-bit graphics
CompuServe's definitions of the GIF format
Various graphics viewers, converters, GIF specifications

129

130 • Chapter 13: G/F

No existing format really filled this requirement. Popular graphics formats
on many systems assumed resolutions or color depth (such as 320x200 with
16 colors) appropriate for a specific computer system. Similarly, many graphics
formats either used no compression at all, or used simple run-length encoding
techniques that only offered modest compression.

In contrast, GIF supports any resolution up to 65,536 by 65,536 and any
color depth from 1 to 8 bits per pixel. It uses the 12-bit LZW compression
algorithm (see page 185), which offers good compression and requires less
than 16 kilobytes of memory for compression or decompression, making it
useful on all but the smallest microcomputers. GIF makes some concessions
to simplify implementations. It uses a color table (or palette) for every picture.
Also, it only stores information that is useful on nearly every system, omitting
such things as an alpha channel or animation information.

Although designed primarily for viewing online graphics, GIF support was
quickly added to a variety of applications. Today, GIF is probably the single
most widely supported graphics format.

When to Use GIF
GIF is generally a good choice for exchanging pictures between systems. BBS
systems and Internet sites frequently contain archives of GIF images. GIF
is widely supported by many graphical applications, including all graphical
World Wide Web browsers.

However, GIF does have an important limitation: It does not support more
than eight bits per pixel. Generally, eight bits per pixel is fine for synthetic
images such as cartoons and drawings, which tend to use fewer colors, or for
small images, where it's easier for an application to select 256 colors that can
accurately represent the image. For large photographic images, however, the
]PEG or TIFF formats may be better (see pages 157 and 149, respectively).

While the LZW compression algorithm used by GIF is one of the bet­
ter general-purpose compression algorithms, it wasn't designed specifically for
graphics. It doesn't work very well for bilevel (black and white) or true color
images. For bilevel images, fax-style Group 3 or Group 4 compression (sup­
ported by TIFF) or }BIG compression generally work better. Similarly, }PEG
is often better for continuous tone photographic images.

Recognizing GIF Files • 131

Recognizing GIF Files
The first six bytes of a GIF file are the version identifier, either GIF87a or
GIF89a.

How to Use GIF
The GIF format has two variants. The first official version of GIF was GIF87a,
named after the year when the official description was published. The format
was later updated to provide a handful of additional features; the new version
is called GIF89a. By now, most programs that read GIF files support GIF89a,
although a handful of older programs don't handle the newer extensions.

The features added by GIF89a are not particularly exciting. GIF89a adds
the ability to include text (either text overlays or text comments) with the
file, overlay multiple images from a single file, specify a "transparent" color,
or include additional application-specific information. When none of these
features is needed, a good GIF writing program will create a GIF87a file
(which is identical to a GIF89a file except for the version and the lack of
GIF89a extension blocks), which helps simplify portability. As a result, even
programs that only understand GIF87a can comfortably handle most of the
images found on the Internet and elsewhere.

GIF allows the graphics data to be stored in two different orders. The nor­
mal order stores the lines of data consecutively from top to bottom. The other
order, known as interlaced, stores every eighth row, then every fourth, and so
on. When displaying interlaced GIF images, you have a rough preview with
only one-eighth of the data available. This is especially useful for applications
where pictures are displayed as they are received, such as with World Wide
Web browsers. When you have an option, store GIF files in the interlaced
form.

GIF's LZW compression is very similar to the compression used by popular
archiving programs. As a result, it's rarely useful to attempt to further compress
a GIF file. 1

1 If you attempt to compress something twice with the same method, you rarely ob­
tain any significant additional compression. See page 250 for a lengthier discussion of this
phenomenon.

132 • Chapter 13: GIF

Block ID
hex 2C
hex 3B
hex 21

Table 13.1

Block Name
Image (comma)
End-of-file (semicolon}
Extension (!)

SubiD Description
hex 01 Plain text
hex F9 Graphic control
hex FE Comment extension
hex FF Application extension

GIF Block Types

Legal Issues
When CompuServe designed GIF, they apparently were unaware that the
LZW compression algorithm they chose was patented. For many years, this
patent was of little concern, but in 1994, Unisys (who currently owns one of
the patents on LZW) reached an agreement with CompuServe about licens­
ing the LZW compression algorithm for use with GIF. This agreement affects
everyone who has written software to read or write GIF files.

This change in the legal landscape has created a flurry of interest in re­
placing GIF with a newer format that does not use a patented compression
algorithm. PNG (the Portable Network Graphics format, discussed in the next
chapter) is one proposed alternative. Replacing GIF will be difficult, however.
Not only is GIF widely available, it is thoroughly understood by developers,
and is fairly simple to read and write.

How GIF Works
A GIF file is organized as a header followed by a series of blocks. The header
holds general information about the pictures, including a color table that ap­
plies to all images in the file. Each block begins with one or two bytes that
identify the type of block. Table 13.llists the block types currently supported
by GIF.

How GIF Works • 133

Size Description
3 GIF
3 Version, currently either 87 a or 89a
2 Width of screen
2 Height of screen
1 Screen and color information

Bits Description
0-2 Size of global palette
3 1 if palette is sorted
4-6 Color resolution (number of bits minus 1)

7 1 if there is a global palette
1 Background color
1 Aspect ratio
3 x n Global palette

Table 13.2 GIF Header

GIF Header
GIF's header, detailed in Table 13.2, is divided into three sections. The signa­
ture is used to identify GIF files. The Logical Screen Descriptor describes the
screen assumed by the file. The third section contains the default color palette.

The signature is six bytes. The first three bytes are always G IF and the
next three bytes are the version. Currently, the version is either 87 a or 89a.

One idea underlying a multi-image GIF file is that a particular file is
intended for display on a certain kind of screen. The header describes that
"ideal" screen, including the resolution (no picture in the file is larger than
this size), color depth, aspect ratio, background color, and default color palette.
Each successive picture from the file will be displayed on the same screen.

One interesting optimization is that the palette size and color resolution
are stored in a very compact manner. Since palettes are typically a power of
two in size, GIF stores one less than the power. For a screen with two colors,
GIF stores a zero for the color resolution (2 = 2°+1). For a screen with 256
colors, GIF stores a seven for the color resolution (256 = 27+

1). This method
allows GIF to store the palette size and color resolution in only three bits.2

20f course, many pictures won't require a palette that's precisely a power of two in size,
so GIF's scheme wastes several bytes storing additional palette entries just so it can save a few

134 • Chapter 13: GIF

Size Description
1 Block type: hex 2C
2 X position of image on screen
2 Y position of image on screen
2 Width of image
2 Height of image
1 Image information

Bits Description
0 1 if there is a local palette

1 if image is interlaced
2 1 if palette is sorted
3-4 Reserved: always zero
5-7 Size of local palette

3 x n Local palette (optional)
Sub-blocks containing compressed image data

Table 13.3 GIF Image

GIF Terminator
The last block in any GIF file consists of a single semicolon (hex 3B).

GIF Image
An image block, detailed in Table 13.3, contains three sections. The first sec­
tion describes the image and how it is stored in the file. The second (optional)
section is a color palette that applies to only this image. The third section is
the actual picture data.

Each image in a GIF file is displayed on the screen indicated in the header.
However, each image does not necessarily contain the same color palette, nor is
each image necessarily the same size. A single GIF file can hold a "slide show"
in which successive images overlay different parts of the full picture. Note that
this type of partial overlay requires the use of a global palette, because few
systems can use different palettes for different parts of the screen.

bits on the palette size. Ultimately, though, any wastage or savings in this part of the file will
be dwarfed by the size of the graphics data, so it's not an important issue in any case.

How GIF Works • 135

The actual image data is contained in a series of sub-blocks. Each sub­
block contains a one-byte count, followed by the indicated number of bytes.
A sub-block with a count of zero marks the end of the compressed image data.
The sub-block boundaries have no relation to the graphics data; conceptually,
the data from all of the sub-blocks is strung together and decompressed into
a series of pixels. Those pixels are then divided into separate scan lines and
placed on the screen. In practice, of course, these operations are frequently
interwoven so that data can be decompressed and placed onto the screen as
quickly as it is available.

GIF Extension Blocks
All GIF extension blocks have the same general format. This format makes it
easy to simply skip any extension block that a reader doesn't recognize. A GIF
extension block starts with hex 21 (an exclamation mark), which is followed
by a one byte extension type (see Table 13.1) and a series of sub-blocks. Just
as with an image block, the end of the extension block is indicated by a sub­
block with a count of zero. For most extension types, the first sub-block is
somewhat special, containing specific information about this extension block.

Comment Extension
The simplest extension block is the comment extension block. The sub-blocks
simply contain ASCII text. These comments are not intended to be displayed
as part of the image. A GIF-savvy reader will usually show these comments in
a separate window or screen only when the user asks to see them.

Text Extension
A multi-image GIF file can be looked upon as either a slide show or a set of
images that must be combined to produce a single picture. A text extension
block allows text to form an image of its own, or serve as an overlay of an­
other graphic image. Storing text explicitly requires less space than the graphic
equivalent, and allows programs to search GIF files for specific text strings.
Also, the quality is usually much higher; the decoder may have to make com­
promises to effectively display the graphic image, but it can always display text
characters using the highest quality supported by the hardware. In particular,

136 • Chapter 13: GIF

Size Description
2 X position of start of text area
2 Y position of start of text area
2 Width of text area in pixels
2 Height of text area in pixels
1 Character width in pixels
1 Character height in pixels
1 Palette number of text foreground color
1 Palette number of text background color

Table 13.4 GIF Text Extension Data

decoders may use dithering or halftoning to simulate unavailable colors when
decoding the graphics data. Dithering often renders text completely illegible.
By specifying the text separately, the decoder can dither the graphic image, but
draw the text in a solid color to improve legibility.

For consistent results, you must make sure the text is displayed in the
same position and at approximately the same size by all decoders. The first
sub-block of the text extension block specifies the size and position of the text.
It contains the data described in Table 13.4. Remaining sub-blocks contain
the actual text data, using the US ASCII character encoding.

Graphics Control Extension

Multi-image files were not very widely used with GIF87a, partly because it was
never clear what to do with multiple images. GIF89a resolves this problem by
allowing any image (or text extension block) to be immediately preceded by a
graphics control extension block. This block essentially informs the decoder how
the following image interacts with the rest of the images. It specifies what the
decoder should do after the following image or text is displayed:

• The image may be erased to the background color.

• The previous image may be restored.

• The decoder might wait for user input before proceeding.

• The decoder might wait for a period of time before proceeding.

More Information • 137

Size Description
1 What to do when graphic is finished

Bits Description
0 1 if there is a transparent color
1 1 if decoder should wait for user
2 1 to leave graphic on screen when done
3 1 to erase graphic to background color
4 1 to restore previous image
S-7 Reserved: always zero

2 Delay after this image (lOOths of seconds)
1 Treat this palette color as transparent

Table 13.5 GIF Graphics Control Extension Data

A graphics control extension block contains a single sub-block of four
bytes. Its contents are described in Table 13.5.

Application Extension
Because so many people use GIF for so many different purposes, GIF89a
includes application extension blocks to allow individual applications to store
any information they want within the GIF file. This extension block may be
used to specify a variety of application or system specific data. The first sub­
block is always eleven bytes. It specifies two codes, an eight-byte ASCII code
and a three-byte binary code that an application can use to identify extensions
that it understands.

More Information
CompuServe's detailed GIF specifications [GIF87, Gra90] are available from
ftp://x2ftp.oulu.fi/pub/msdos/programming/formats.

PNG

While CompuServe's Graphics Interchange Format (GIF) is probably the most
widely used graphics format in existence (see page 129), it has developed a few
leaks. The increasing availability of 24-bit graphics boards makes GIF's limit of
eight bits per pixel look a bit miserly. Worse, the LZW compression algorithm
used by GIF is patented. For many years, this patent was not a problem, but
in 1994 Unisys (who owns the patent on LZW) began to collect royalties from
developers who use GIF.

A large group of software developers have designed the Portable Network
Graphics (PNG) format as a successor to GIF. Like GIF, PNG (pronounced
"ping") is usable on a wide variety of platforms, omitting features that are
usable on only a few systems. Unlike GIF, PNG is unencumbered by patents,
and it supports up to 64 bits per pixel. PNG also adds a handful of new
features, such as transparency information (alpha), improved compression, and
other options that will make PNG viable for many years.

This chapter is based on an article first published in PC Techniques, June/July 1995.

PNG at a Glance

Name:
Extension:
Use For:
Reference:
On CD:

PNG, Portable Network Graphics
.png
Eight-bit and 24-bit graphics
http://sunsite.unc.edu/boutell
Various graphics viewers, converters

139

140 • Chapter 14: PNG

When to Use PNG
PNG is a good candidate to replace GIF. It does almost everything that GIF
does (PNG doesn't support multiple images), and a few things that GIF doesn't
but arguably should (PNG supports 24 bit per pixel direct color images). Like
GIF, PNG files can be read and displayed incrementally. PNG files have an
"interlaced" mode similar in concept to GIF's (see page 131), which makes
them a good candidate for the World Wide Web and other systems where
incremental display is important. Royalty-free source code to read and write
PNG files is freely available, so it should be easy for developers to add PNG
support to their applications. Finally, PNG is not subject to any patents,
which makes it an attractive alternative to GIF in the eyes of many developers.

Before I look at the details of the PNG format, I'll discuss some of the
things that PNG does not try to do. First, PNG does not support multi­
ple images. The PNG designers decided that multiple image files were not
common enough to justify the additional complexity. To reduce complexity
further, PNG does not support any data except bitmapped graphics and text
comments. Finally, PNG does not support "lossy" compression (see page 123).
The PNG designers felt that JPEG was already an effective standard for lossy . .
tmage compresston.

How PNG Works
A PNG file consists of an eight-byte signature followed by a series of chunks.
The signature is a fixed sequence of bytes that is specifically designed to let
the reader detect common types of file corruption early. Each chunk contains
a different piece of information about the picture, and within certain broad
limits, the chunks can appear in any order. The name of the chunk uses
a simple trick to help file readers intelligently deal with chunks they don't
understand. Every chunk includes a 32-bit CRC to guard against corruption.

The use of individually labelled chunks for storing information was chosen
for several reasons. First of all, no successful file format is static; extensions
and changes are inevitable. But you don't want changes to the format to
break existing programs. The easiest way to avoid this problem is to identify
each piece of information. Programs can then simply ignore data they don't
understand. This approach also allows the creation of simple utilities that, for

How PNG Works • 141

Decimal 137 80 78 71 13 10 26 10
Hexadecimal 89 50 4e 47 Od Oa 1a Oa

C notation \211 p N G \r \n \032 \n

Figure 14.1 PNG Signature

example, find and print out any text comments in the file. Such utilities need
only know how to identify a chunk and how to deal with a few panicular
types of chunks. They don't need to understand many variants of the file
format with different version numbers.

PNG Signature
PNG's file signature includes a number of tricks that other file format designers
would do well to imitate. By design, the signature should be damaged if any
part of the file is damaged; this property allows a PN G reader to immediately
detect if the file has been corrupted. The most common types of corruption
occur when transferring files: A PNG file might be transferred over a seven­
bit connection, or it might be transferred as text, with automatic end-of-line
translation. PNG's signature, shown in Figure 14.1, detects both types of
damage. The inclusion of an eight-bit value, and two different kinds of end­
of-line markers helps ensure that the signature will be damaged in the cases
described above.

The signature also contains the name of the format in ASCII characters
and a Control-Z byte, which is an end-of-file indicator on MS-DOS. This
character will stop the file from being listed to the screen or printer on such a
system. 1 Finally, the first two bytes of the signature differ from any other file
format, so a PNG file can be detected based on just these two bytes.

PNG Chunks
Similar care was taken with the chunk design shown in Figure 14.2. A chunk
consists of a four-byte length, a four-byte name, some data, and a four-byte

10n the two most common IBM PC code pages, code 137 is e. fu a result, an attempt
to TYPE a PNG file to the screen under MS-DOS displays ePNG.

142 • Chapter 14: PNG

CRC check. The length (like all numbers in a PNG file) is stored starting with
the most significant byte. The name indicates the type of data in the chunk.
The CRC is computed over both the name and data to detect corruption of
the data.

: lenph : I : na!ne : I length byres of dat_a_____._: _cR:...___~ c__._: ___.I

Figure 14.2 PNG Chunk Format

The PNG format can easily be extended by adding new chunks. There's
no need to change the meaning of existing chunks. This approach allows old
software to handle new files reasonably well. A problem occurs if the new
chunks are actually critical to the meaning of the data. PNG uses the case
of the four letters in the chunk name to indicate certain basic facts about
the chunk. If the first letter is uppercase, the picture cannot be understood
without understanding this chunk (an IDAT chunk contains the actual image
data). If the first letter is lowercase, it's possible to get a useful image even if
this chunk is not understood (a tEXt chunk contains a text comment). The
case of the last letter indicates if an unrecognized chunk can be copied to a
different file without modification. For example, a tEXt chunk can be copied
to a different file; a tiME chunk with the last modification time of the file can­
not be meaningfully copied. The second and third letters are always uppercase
for the standard chunks. A lowercase second letter indicates a private or ex­
perimental chunk. These conventions allow programs to do simple surgery on
PNG files without having to understand the complete format. They also allow
programs to intelligently handle unrecognized chunks.

The four required chunk types (chunks with the first letter capitalized)
are: IHDR, PLTE, IDAT, and !END. The PNG signature is always followed
immediately by the IHDR (Image Header) chunk. Following the IHDR are the
PLTE (palette information) and a collection of optional chunks that carry a
variety of information about the picture. The actual compressed picture data
is held in one or more IDAT (Image Data) chunks, and an !END (Image End)
chunk marks the end of the file.

How PNG Works • 143

Image Header Chunk
Table 14.1 describes the information in the IHDR chunk. The bit depth in­
dicates the number of bits in each picture sample. Unlike GIF, PNG only
allows certain values. Color palette images may only contain 1, 2, 4, or 8
bits per pixel. Grayscale images without an alpha channel may contain 1, 2,
4, 8, or 16 bits per pixel. Other picture formats may only use 8 or 16 bits.
The color type code indicates the type of picture, using three bits to indicate
the presence of a palette, color, and alpha information. At one extreme, color
type 0 with a bit depth of 1 is a plain black and white image. At the other
extreme, color type 6 (color image with alpha channel and no palette) with a
bit depth of 16 is a true color image with a total of 64 bits per pixel (16 bits
each for red, green, blue, and alpha). A GIF-style palette image with 16 colors
is color type 3 (color image with palette and no alpha) with a bit depth of 4.
I'll discuss the filtering and interlacing later.

Picture Information Chunks
A number of chunks can be used to convey additional information about the
picture. These chunks must all precede any IDAT image data chunks. The
PLTE chunk is required for a palette image.

PLTE This chunk carries a GIF-style color palette. The palette is simply a
list of three-byte RGB colors.

sBIT To speed decoding, PNG restricts the number of bits used to store
each pixel to one of a handful of values. Some pictures use different color
depths, however. While the actual color depth of the original picture isn't
important for most decoders, some decoders can utilize this information. This
chunk allows the encoder to specify the actual number of bits in the original
color data.

pHY s One common problem is that not all graphics devices have the same
aspect ratio. The aspect ratio is the ratio of height to width. Currently, most

144 • Chapter 14: PNG

Size Description
4 Picture width, in pixels
4 Picture height
1 Bit depth
1 Color type

Bit Description
0 1 if palette is used
1 1 if image is color
2 1 if alpha channel included
3-7 Reserved

1 Compression. The only value defined in the first version of PNG
is 0, indicating the image data is compressed in Ziplib format.

1 Type of filtering applied to the image before compression. In the
first version of PNG, this must be 0, indicating a per-line
adaptive scheme.

1 How the image is interlaced. No interlacing is indicated by 0; a
value of 1 indicates an interlaced image.

Table 14.1 IHDR Chunk Information

monitors have square pixels and a 4:3 ratio of width-to-height overall. How­
ever, many printers and scanners have different horizontal and vertical resolu­
tions. The pHY s chunk allows the encoder to specify the actual physical size
and aspect ratio of the picture, so that the decoder can display the picture
without it looking unnaturally tall or wide.

tRNS One of PNG's features is that it allows for full transparency, which is
necessary for correctly overlaying different types of graphics. However, speci­
fying the precise transparency of each individual pixel is usually not necessary.
The tRNS chunk allows for a simpler type of transparency. For palette im­
ages, the tRNS chunk specifies the transparency of each color in the palette.
For grayscale and direct-color images, it specifies a single color that should be
considered transparent.

bKGD The bKGD chunk specifies the background color against which the
image should be displayed.

How PNG Works • 145

hiST If the decoder is not physically capable of displaying all of the colors in
the image, it will have to somehow choose which colors to display. Most color­
selection algorithms need to know how often each color appears in the picture.
The problem is that this requirement prevents the decoder from displaying the
picture as it arrives; it must first have the entire picture available before it can
analyze the colors to decide how to display it. The only way to prevent this
delay is for the encoder to provide this statistical information in advance. The
hiST chunk allows the encoder to record the relative frequency of each color
in the image, so that the decoder can decide how to display the image before
it begins to receive and decode the image data.

gAMA The gAMA chunk indicates the "gamma response" used by the picture.
Few systems have truly linear color response; this number allows high-end
graphics systems to correct for non-linearity in the picture data.

cHRM The cHRM chunk specifies the exact color of the red, green, and blue
primaries, and the white point, using CIE XYZ coordinates. This chunk
allows high-end graphics systems to correct for differences in the phosphor
color between different monitors.

Image Data
Image data is carried in one or more IDAT chunks. Conceptually, to recover
the image, you combine the data from all of the IDAT chunks, decompress the
data, and then undo the filtering. Chunk boundaries have no significance at
all. The PNG encoder is free to place the entire compressed image in a single
IDAT chunk, or place each separate byte in its own chunk.

To avoid patent problems, PNG uses the Deflation compression algorithm
(see page 219). This algorithm is used in many "zip" programs, including
PKZIP and GNU GZIP, and is widely believed to be free of patents. Freely­
usable implementations are available on the Internet.

Like most general-purpose compression algorithms, Deflation is not ideal
for image compression, because it doesn't exploit the two-dimensional nature
of the picture. PNG uses filtering to help improve the compression. Before
compressing the data, the encoder applies a set of simple functions to the
image data. For example, one function simply subtracts each pixel from the

146 • Chapter 14: PNG

one to its right. This step converts large areas of nearly the same color to large
areas with very small values. Other functions do slightly more sophisticated
transformations, but the general idea is the same. Deflation, like many other
compression algorithms, works much better when the data to be compressed
has a lot of very small values. The encoder indicates, for each scan line, which
filter function was used on that scan line. After decompressing the raw data,
the decoder can undo the filtering to recover the original image.

PNG supports an interlaced format similar in concept to GIF's interlaced
format, but somewhat more ambitious. GIF's method allows a viewable image
with only one-eighth of the image data, and requires four passes to transfer
the entire image. PNG starts by transferring every eighth pixel of every eighth
scan line, allowing a viewable image with only 1164 of the image data. The
remaining seven passes are carefully arranged so that each pass can be com­
pressed and encoded as if it were a complete rectangular image in its own
right.

Optional Chunks
Several optional chunks can either follow or precede IDAT chunks, but cannot
appear between IDAT chunks. The tEXt and zTXt chunks allow textual
information to be attached to the file. Each chunk contains a keyword (such
as '1\.uthor"), a null byte to mark the end of the keyword, and text. The
zTXt chunk stores the text in a compressed form (but the keyword is not
compressed). These text chunks are comments; they are not displayed as part
of the image. (PNG does not have an analogue of GIF's text extension blocks.)
The tiME chunk carries the time that the image was last modified.

End-of-Data Chunk
The lEND chunk marks the end of the PNG file. Any data after the lEND
chunk is simply ignored. An explicit end-of-file marker is important for any
file format that might be lengthened in the process of being transferred from
system to system. Common file transfer protocols, particularly XModem, add
garbage bytes to the end of each file transferred. Having a definite marker
within the file prevents the decoder from becoming confused.

More Information • 147

More Information
At this time, the complete description of PN G is available on the World Wide
Web at http: I I sunsi te. unc. edu/boutell. Information on the Deflation
compression algorithm and the Ziplib compressed data format is available from
ftp: I /quest. jpl.nasa. gov/beta/ziplib. Information is also available
in the comp. graphics and comp. compression newsgroups.

Lee Daniel Crocker's PNG: The Portable Network Graphic Format [Cro95]
in Dr. Dobbs journal provides some additional information and the C source
code for a complete PNG-to-TIFF conversion utility.

Support for PNG is rapidly being added to many graphics utilities. You
can ask the manufacturer of your favorite graphics software if they support
PNG.

TIFF

The Tagged Image File Format (TIFF) was originally developed by Aldus Cor­
poration to store high-resolution grayscale images from scanners. It was later
adopted by many professional graphics packages, and has been extended sev­
eral times to support better compression, several types of color images, and a
variety of additional picture information. TIFF's major strengths are that it is
flexible and it stores images in a piecemeal format that allows applications to
rapidly access parts of a large image.

When to Use TIFF
TIFF's primary strengths are its support for very large images, multi-image
files, and a variety of different compression methods. These features make
TIFF well-suited to professional graphics work (which deals with large images)

TIFF at a Glance

Name:
Extensions:
Use For:
Reference:
On CD:

TIFF, Tagged Image File Format
. tiff, . tif
Working with large, high-resolution images
TIFF Revision 6. 0 Specification [TIF92]
Various grap~ics viewers, converters, sample images,
specifications

149

150 • Chapter 15: Tl FF

and fax (which needs multi-page images and support for fax-specific compres­
sion methods).

TIFF supports a color image format that is similar to GIF (see page 129),
making TIFF viable for exchanging most types of graphics. TIFF's one major
disadvantage compared to GIF is that TIFF files cannot generally be displayed
as they are read. GIF and PNG are better choices for situations where you
want to be able to see a partial image as it is downloaded.

Strengths and Weaknesses
TIFF is well-suited to handling large graphic images. Graphics professionals
need formats that allow fast access to any part of the picture. They also need
lossless compression so that the picture will not degrade with repeated manip­
ulation. As a result, TIFF is a popular format for clip art and photographic
images intended for use by graphics designers and publishers.

The TIFF standard is large, and includes many optional extensions. As a
result, there have been TIFF applications that understood distinct subsets of
the standard, and had problems exchanging TIFF files. The TIFF standards
have taken two different approaches to minimize this problem. The TIFF 5.0
specification defined several different subsets of TIFF, called classes. Table 15.1
lists the different classes. Each application was free to choose one or more of
these four classes to support. Enough overlap exists among four classes that
any reader supporting one class will be able to at least recognize the other
classes. The TIFF 6.0 specification took a slightly different approach. TIFF
6.0 defines Baseline TIFF, which all TIFF readers should support. Baseline
TIFF includes minimal support for all four classes. TIFF 6.0 then defines a
large number of optional features. Apparently, the intention is to provide a
way for the standard to evolve: Experimental features developed by various
people will be added to the standard as optional extensions and, if they receive
widespread support, will become part of the baseline.

Although TIFF 6.0 has been available as a standard for some time now,
a huge number of images were created with TIFF 5.0-compatible software.
Better software should support both TIFF 5.0 and TIFF 6.0. Fortunately,
TIFF 6.0 is primarily a superset of TIFF 5.0; a program that supports TIFF
6.0 well should be able to handle all TIFF 5.0 images.

How TIFF Works • 151

Class Description
B Bilevel images
G Grayscale images
P Palette-color images
R Full color images

Table 15.1 TIFF 5.0 Classes

The LZW patent that has plagued GIF (see page 132) is also a concern
for TIFF. Due to this patent conflict, LZW compression, which was a popular
part of TIFF 5.0, is not a part of Baseline TIFF 6.0. Some new TIFF pro­
grams do not support this (now optional) extension. This omission may cause
problems reading older TIFF 5.0 files, many of which were stored with LZW
compression.

TIFF stores data in a file very differently from other graphics formats.
TIFF does not store the data in the file in any particular order. Instead, a
program must follow references within the file to find various pieces of data.
This makes it easy for well-written applications to access any part of the image
quickly. It also makes it more difficult to write a good TIFF application. There
have been TIFF viewers that could only read files created by certain programs,
because the viewer expected the data to be in a certain order in the file.

Fortunately, several good programming libraries can read and write TIFF
files. As software developers increasingly depend on these libraries, there
should be better conformance between different TIFF-using applications. Se­
rious incompatibilities should be much less common than before, although
transferring files from high-end software that relies on TIFF's more esoteric
extensions to older software that doesn't understand these extensions will al­
ways cause some problems.

How TIFF Works
TIFF is a random-access file format. Structures within the file use file offsets
to indicate the position of other data in the file. The result is a tree structure,
which begins with the TIFF header. The header contains the file position of
the first image in the file. Each image contains the file position of the next

152 • Chapter 15: TIFF

Header ---+ Image I ---+ Data (-+ Other Data)
-L.

Image2 ---+ Data

-L.
Image3 ---+ Data

Figure 15.1 Conceptual Structure of a TIFF File

Size Description
2 Byte order marker: I I or MM
2 Magic number 42
4 File offset of first image

Table 15.2 TIFF Header

image in the file. An image is a directory containing 12-byte entries. Each
directory entry contains a tag, indicating the purpose of the entry, and some
data. For simple tags, the data is contained directly within the entry. For more
complex tags, the entry indicates the position in the file of the associated data.
Conceptually, TIFF files are structured as shown in Figure 15.1.

The actual order in which data is stored in the file will vary depending
on the application. The only piece that's stored at a particular location is the
header, which is always stored at the beginning of the file.

TIFF Header
The TIFF header, shown in Table 15.2, is very simple, containing only three
pieces of information. The first two bytes indicate how multi-byte values
are stored in the file. I I here indicates that two- and four-byte integers are
stored starting with the least significant byte (the format used by the Intel
80x86 processors), while MM indicates the opposite order (the order used by the
Motorola 68000-series processors). The two-byte value 42 provides a double­
check that the application is reading data with the correct byte order.

How TIFF Works • 153

Size Description
2 Number of entries in directory

12 X n Entries
4 File offset of next image directory

Table 15.3 TIFF Image Directory

The last four bytes hold the file offset of the first image. Notice that the
first image might immediately follow the header, it might be at the end of the
file, or it could be anywhere in between.

TIFF Image
An image in a TIFF file is stored as a directory containing a number of entries.
Each 12-byte entry holds a different piece of information about the image. For
example, the ImageWidth entry contains the width of the picture. Table 15.3
shows the layout of this directory.

Each directory entry contains a tag that describes the purpose of the data,
a type that describes how numeric data is stored, a length, and four bytes for
the actual data.

Notice from Table 15.4 that the actual size of the data (in bytes) is the
product of the number of elements times the size of each element. If the
total size is four bytes or less, the data is stored directly in the directory entry;
otherwise, the directory entry holds the file position of the actual data.

TIFF Image Data
TIFF was originally developed to handle large images, and this emphasis has
been retained and expanded with TIFF 6.0. No single tag refers to the image
data. Rather, the image data is stored in strips or tiles.

Strips have been an integral part of TIFF since the beginning. The idea is
that, rather than storing the entire image as one monolithic chunk, you divide
the image into more manageable pieces by storing horizontal strips that span
the picture.

154 • Chapter 15: TIFF

Size Description
2 Tag; purpose of data
2 Type of numeric data

Type Size Description
1 1 Unsigned integer
2 1 ASCII character
3 2 Unsigned integer
4 4 Unsigned integer
5 8 Fraction: two four-byte unsigned integers
6 1 Signed integer
7 1 Raw {non-numeric) byte
8 2 Signed integer
9 4 Signed integer
10 8 Fraction: two four-byte signed integers
11 4 IEEE single-precision floating point
12 8 IEEE double-precision floating point

4 Number of elements
4 Data or file offset of data

Table 15.4 TIFF Directory Entry

Images stored as strips use three directory entries to indicate where in the
file the actual image is stored. The RowsPerStrip directory entry specifies
how many pixel rows are stored in each strip. The StripOffsets directory
entry contains a list of file offsets, one for each strip. The StripByteCounts
directory entry contains a corresponding list of sizes for each strip. 1

The reason for storing images as strips is to make it easier to handle very
large images. For example, a TIFF file might store a full color image destined
for an 8 1/2 by 11 inch piece of paper at 300 dots per inch. Uncompressed,
such an image requires just over 24 megabytes of storage. Manipulating such
an image requires either a very large amount of memory or the ability to
quickly find and manipulate parts of the image on disk. A single row of pixel
data from such a picture is less than 8000 bytes. By storing each row as a

1 Remember that every directory entry "contains" either the actual data or else the file offset
where the data is stored. If the image data can be stored as a single strip, the single file offset
of the complete image data will be within the directory; otherwise, the directory entry will
hold the offset of a part of the file where the offsets of each strip are held.

How TIFF Works • 155

separate strip, an application that wants to edit a part of the picture can read,
update, and alter just the necessary data, without requiring excessive amounts
of memory.

Even strips can go only so far, however. Using strips requires always work­
ing with the full width of the image, which can require reading and writing a
lot of unneeded data. It's much faster if you can read and write small rectan­
gles of image data. For this reason, TIFF 6.0 has added tiles. Tiles work much
like strips, except that the picture is divided into a two-dimensional grid. Tiles
are especially useful for people working with images that: are very large (poster
or billboard size), have a very high resolution (2400 dpi), or have demanding
color requirements (48 bits or more per pixel).

Of course, simply knowing how to locate the data in the file isn't enough.
You also have to know how it's compressed and what the data means when it's
uncompressed. TIFF supports many different options. Compression options
include:

• No compression at all (which allows the fastest possible reading and
writing of small parts of large images),

• The simple PackBits compression scheme,

• T3 and T4 compression (the same as used by fax machines), and

• Several optional compression methods, including LZW and JPEG.

The uncompressed data can range from bilevel (for fax software) to 96 bits
per pixel full color data (for high-end image processing). Alpha data can be
included, and TIFF contains tags to specify a variety of different color models
and additional information required for accurate color reproduction.

Again, the most important point about TIFF files is that, as far as the
program reading the file is concerned, the actual data (picture data, palette
data, image directory, and so on) is randomly ordered within the file. In
particular, individual strips or tiles of image data may appear in any order
at any location in the file. Programs that update a TIFF file must be very
cautious not to move or overwrite any other data in the file.

For example, consider a program that simply adds comments to images in
a TIFF file. Adding a comment to an image requires extending that image's
directory. Because the program cannot know if important data follows the
directory, it must use something like the following procedure:

156 • Chapter 15: TIFF

I. Add the new comment to the end of the file.
2. Copy the entire image directory to the end of the file, adding the new

entry for the comment.
3. Update the previous image directory so that it holds the new file offset

of this image directory.

Similar gymnastics must be performed when any data within a TIFF file is
lengthened. You can see that often-updated TIFF files can have their different
components in an essentially random order within the file. Furthermore, it's
not generally possible to "squeeze" a TIFF file to remove any holes that have
developed in the process. Private tags can refer to blocks of data in the file that
themselves refer to other blocks of data. If you don't understand the private
tag in the first place, you can never be certain that a block of data isn't being
used by a reference within that private data.

More Information
The official TIFF 6.0 specifications have been maintained by Aldus Corpora­
tion, now a part of Adobe Systems. The complete specifications are currently
available using anonymous FTP from ftp. adobe. com, under the filename
pub/adobe/DeveloperSupport/TechNotes/PDFfiles/TIFF6.pdf

JPEG (JFIF)

As graphics hardware improves to support higher resolutions and a wider color
range, graphics files are becoming significantly larger. Professional graphic
artists now routinely deal with graphics files that contain 10 or more megabytes
of data for each image. Even less sophisticated users have become used to
dealing with 640 by 480 pixel images in 256 colors {over 300 kilobytes).
They are beginning to work with 1024 by 768 pixel direct color images (over
2.3 megabytes of data). As these high-quality images become more common,
the limitations of general-purpose compression methods such as LZW have
become more apparent.

Two influential international standards bodies, the International Telecom­
munications Union (ITU) 1 and the International Organization for Standard­
ization (ISO) created the joint Photographic Experts Group UPEG) to find a
better way to compress photographic-quality digital images.

1 The ITU was formerly known as the International Consultative Committee for Telephone
and Telegraph (CCITT).

JPEG at a Glance

Names:
Extensions:
Use For:
Reference:
On CD:

JPEG, JFIF UPEG File Interchange Format)
. jpeg, . jpg, . jfif
High-resolution photographic images
]PEG: Still Image Data Compression Standard [PM93]
Various graphics viewers, converters

157

158 • Chapter 16: JPEG (JFIF)

The JPEG committee considered a half-century's worth of research into
human vision and computer graphics, drawing on expertise developed by tele­
vision engineers, computer scientists, and many other disciplines. The final
report of the JPEG committee contained a detailed recommendation for a
technique to dramatically reduce the size of photographic-quality digital im­
ages. The name "JPEG" has since been used to refer to this compression tech­
nique as well as several different file formats that use this technique. The most
widespread of these file formats is the]PEG File Interchange Format QFIF),
which essentially standardizes one simple way to wrap a JPEG compressed im­
age into a file. In fact, many images referred to as "JPEG" are more properly
called "JFIF" images.

The name "JPEG" refers to a compression method, not a particular file
format. A number of slightly different file formats are commonly referred
to as "JPEG" and a few radically different file formats (such as TIFF and
QuickTime) may use JPEG compression. Fortunately, the most common file
formats referred to as JPEG are all quite similar, and you probably won't run
into problems, but you should be aware of this possible complication.

When to Use JPEG
]PEG differs from the other graphics formats I've considered by being a lossy
approach. JPEG selectively identifies and removes information to which the
human eye is less sensitive. As a result,]PEG can achieve much higher com­
pression without a noticeable loss in picture quality.

This lossy approach has a number of implications. JPEG achieves its im­
pressive compression abilities by discarding the kind of graphic information
that doesn't typically appear in natural images. The sharp edges that appear in
line art or cartoons produce "ripples" when compressed with)PEG. If you see
images produced with)PEG that have text overlaid, look carefully around the
text characters and you'll see this effect. This effect can be minimized by keep­
ing the quality setting very high, but that keeps the image from compressing
well. Future additions to]PEG may allow different quality settings in different
parts of the image, which would allow high quality (with no ripples) in areas
with sharp edges, while using reduced quality (and better compression) for the
bulk of the image.

How to Use JPEG • 159

]PEG discards some information every time it is used. This fact makes
JPEG a poor candidate for storing intermediate images. Graphic artists often
store intermediate images that will later be subject to additional manipulation.
If you store these intermediate images with JPEG, you'll lose more detail each
time you touch the image. You should instead store the intermediate images
using a lossless format such as TIFF and only compress the final result with
]PEG.

Because of the way JPEG stores varying color, it works best for full color
images with 24 bits or more per pixel (sometimes referred to as "millions of
colors"}. It also works well for high-resolution images. If you need to store
low-resolution images or images with a restricted set of colors, you should
consider other file formats. You'll find that GIF or PNG compress many
eight-bit images better than JPEG, without the side effects of]PEG's lossy
approach.

Generally, JPEG is best for high-resolution full color images that will be
displayed on 24-bit color displays. If you know that you'll never use this type
of display, you may be able to do better by storing the image using GIF or
another eight-bit format. Simply converting from 24 bits to eight bits per
pixel reduces the amount of data by two-thirds. On the other hand, if you
know that your images will be displayed on a variety of different monitors,
storing them in a full-color format such as JPEG allows them to look as good
as possible on a wide variety of displays.

How to Use JPEG
Because JPEG is lossy, you have to be careful when creating JPEG files. Most
programs that create such files allow you to set the quality of the picture. Typ­
ically, this value ranges from zero to one hundred. A low quality setting allows
the JPEG compressor to discard more information, resulting in a much smaller
file. Conversely, a high quality setting restricts the amount of information that
the compressor will discard. 2

The trick, then, is to use the lowest quality setting that doesn't result in
visible deterioration of the picture. Usually, you'll start with a moderately high

20ne common error is to interpret the zero to one hundred quality scale as the percentage
of data that is preserved. To reduce this misunderstanding, some newer JPEG software simply
provides a handful of settings, ranging from "best compression" to "best quality."

160 • Chapter 16: JPEG (JFIF)

setting, then carefully look at the result. If you can see visible deterioration,
try a higher setting; if not, try a lower one. Look for the following when
inspecting the picture:

• Look for problems near sharp edges and corners, for example, around
text or a foreground image that has a sharp edge against the background.
Such sharp edges often produce "smears" or "ripples" that can be quite
visible.

• JPEG compresses tiles of eight pixels by eight pixels at a time. At low
quality settings, the edges of these tiles will be noticeable.

If you already have images in GIF or some other eight-bit format, you
may be tempted to convert them into JPEG. While this sometimes results
in significant space savings, such conversions often require more work than
they're worth. If you do want to try it, begin by checking the number of colors
used by your GIF images. A GIF image with only 64 colors will rarely benefit
from conversion to JPEG, because an image with so few colors doesn't have
the kind of gradual color variation that JPEG compresses so well. Conversion
to JPEG will simply damage the image with no significant space savings.

One of the most serious problems converting GIF images into JPEG is
that GIF images have already been limited to 256 or fewer colors, often by
dithering or halftoning, in which two different colors of pixels are mingled to
produce the effect of a third color. These techniques create detailed patterns
that prevent them from being effectively compressed by JPEG. Better software
will allow you to "smooth" the picture to average out these patterns before
conversion, which can help to improve the compression achievable by JPEG.

Recognizing JPEG and JFIF Files
Any]PEG data stream begins with the two bytes 255 and 232. Many JPEG
file formats add a header before the JPEG data stream, so this marker won't
always appear at the beginning of the file. JFIF files are JPEG data streams,
so they always begin with this marker. In addition, the letters JFIF appear
starting at the seventh byte of a JFIF file.

How JFIF Works • 161

Y = 0.299R + 0.587G + 0.114B

Cb -0.1687R- 0.3313G + 0.5B + 128

Cr = 0.5R- 0.4187G- 0.0813B + 128

Figure 16.1 Converting from RGB to JFIF's Color System

How JFIF Works
The final report of the JPEG committee was extensive, but omitted a handful
of details. These omissions prompted a variety of minor extensions. Fortu­
nately, most of the file formats built around JPEG compression simply use the
"Baseline JPEG" defined by the JPEG committee and add a header to carry
some additional information. Better JPEG software knows how to search
through a file for the start of the Baseline JPEG data, ignoring any additional
header that it doesn't understand.

Because an additional header is likely to be ignored anyway, the most pop­
ular JPEG file format is also one of the simplest. The JPEG File Interchange
Format QFIF) defined by C-Cube Systems simply nails down some of the
ambiguities in the standard, and takes advantage of the modular format of
Baseline JPEG.

JFIF specifies a few things that Baseline JPEG leaves undefined. One of
these is the color model. As I'll describe later, JPEG takes advantage of certain
kinds of color models to provide good compression. JFIF uses the YCb Cr color
model, which describes a color in terms of lightness (Y) and two chromaticities
(Cb and Cr). Figures 16.1 and 16.2 show how to convert between eight-bit
RGB and the color model used by JFIF.

Baseline JPEG uses a number of markers to store specific data. These
markers all start with a two-byte code beginning with 255. Some markers
include data, in which case the code is followed by a two-byte count and
corresponding data. (Note that the count value includes the two count bytes
but does not include the two-byte code.)

Rather than wrap a Baseline JPEG compressed data stream inside of an­
other structured data file, JFIF simply uses a Baseline JPEG compressed data
stream and embeds additional information in markers. JFIF files use Base-

162 • Chapter 16: JPEG (JFIF)

R Y + 1.402(Cr- 128)

G = Y- 0.34414(Cb- 128)- 0.71414(Cr- 128)

B Y + 1. 772(Cb - 128)

Figure 16.2 Converting from JFIF's Color System to RGB

Size Description
2 APPO marker (255, 240)
2 Length of remaining data + 2
4 Identifier: JFIF
1 Zero byte
2 Version (1, 2)
1 Units for X and Y densities
2 X (horizontal) density
2 Y (vertical) density
1 Width of thumbnail: x
1 Height of thumbnail: y
3 X x X y Raw RGB values for thumbnail

Table 16.1 The JFIF APPO Marker

line]PEG's Application Marker 0 (APPO) to embed this extra information.
The data within an APPO marker begins with a zero-terminated string that
indicates the purpose of this marker.

Currently, two such APPO markers are defined. The first marker is the
]FIF APPO marker (see Table 16.1), which gives the JFIF version, picture
resolution, and an optional thumbnail image. The]FXX APPO marker (see
Table 16.2) is a recently-introduced marker designed to hold other optional
JFIF information. Currt:ntly, the JFXX extension is used to hold thumbnails.
This extension allows a single image to have multiple thumbnails (at different
sizes) and allows thumbnails to be compressed with JPEG or by storing a
palettized image. (The JFIF APPO marker only supports a single uncompressed
thumbnail).

Size Description
2 APPO marker (255, 240)
2 Length of remaining data + 2
4 Identifier: JFXX
1 Zero byte
1 JFIF extension code

16 JPEG compressed thumbnail
17 Eight bit per pixel thumbnail
19 24 bit per pixel thumbnail

n Extension data

Table 16.2 The JFXX APPO Marker

SOl
~

255 232 255 240 0 16 'J'
'-v-"
Length

Figure 16.3 Structure of a JFIF File

How JPEG Compression Works • 163

APPO

'F' 'I' 'F' 0 1 2
~

JFIF Version

Because a JFIF file is a JPEG data stream, it starts with a JPEG Start-of
Image (SOl) marker (255, 232) and ends with an End-of/mage marker (255,
233). The JFIF APPO marker immediately follows the SOl marker in a JFIF
file. Figure 16.3 shows the beginning of a typical JFIF file.

How JPEG Compression Works
To do good data compression, you must understand your data. JPEG com­
presses graphics data by understanding how humans see, and I can't explain
]PEG without delving into some basic facts about human vision.

JPEG compression is done in several stages. The purpose of these stages is
to convert the graphics data into a form where unimportant visual information
can be easily identified and discarded. This lossy approach differs from most
graphics formats, which attempt to preserve the exact pattern of bits in the
image.

164 • Chapter 16: JPEG (JF/F)

Color Model
The first step in)PEG is to choose an appropriate way to represent colors.
Colors are usually described using a three-dimensional coordinate system. The
system familiar to most computer programmers describes each color as a com­
bination of red, green, and blue. Unfortunately, this system isn't the best way
to describe colors if you're interested in compression. The problem is that all
three of red, green, and blue are equally important. By changing to a different
color system, you can concentrate some of the important information.

Two color models used by graphic artists are the HSL (Hue-Saturation­
Lightness) and HSV (Hue-Saturation-Value) models. Intuitively, lightness and
value are different ways of measuring how light or dark something is. Satu­
ration measures how "pure" a color is; unsaturated colors are often informally
described as "grayish." Hue is what we think of as color, such as red or
greenish-blue. The important fact is this: Human vision is more sensitive to
changes in lightness than in color.

Different implementations of)PEG compression use different color sys­
tems. JFIF uses a system called YCb Cp which is similar to the one developed
many years ago for color television.

Subsampling
The basic reason for converting to a different color model is to isolate in­
formation that's less important to the image.)PEG reduces the resolution
of the color information. While the lightness is stored at the full resolution
of the picture, the two color components are usually stored at only half the
resolution. This simple step alone reduces the amount of data by one-half.

This subsampling corresponds to the way that color television handles
color. Color television is actually a black-and-white television image (light­
ness) with additional color information sent separately. The separate color
information is transmitted in a less exact form than the black-and-white infor­
mation.

Discrete Cosine Transform
After subsampling, each of the color components is handled separately, as if
they were three grayscale images instead of a single color image. If you look

How JPEG Compression Works • 165

at a detailed image from far away, all you can discern is the overall color of
the image, whether it's "mostly blue" or "mostly red." As you get closer, finer
and finer details become evident. JPEG uses a mathematical trick to simulate
this effect. This trick, called the Discrete Cosine Transform (DCT), converts a
group of pixels to a description of how those pixels vary. The first thing the
DCT tells you is the average color of an area; then it tells you increasingly
more detailed information about how the color changes.

Just like a picture seen from far away, the average color is the most impor­
tant fact about an area. Your eyes are less sensitive to rapid changes, so those
are less important. By rearranging the color information in this way, we've
isolated information that can be safely sacrificed.

The DCT stage is usually described as being inherently lossy. If you use
just a DCT to encode a picture and then do an inverse DCT to recover the
original picture, you won't have the exact same bits. However, the errors occur
only because of rounding errors in the arithmetic, and are generally very small.
I prefer to think of the DCT stage as "mostly lossless."

Computing a DCT or an inverse DCT is very time-consuming for large
images. To save time, JPEG breaks the entire picture into tiles that are eight
pixels wide and eight pixels high. Each of these tiles is handled separately,
which greatly reduces the amount of computation needed by the DCT stage.
One problem with this approach is that after the quantization stage (which
I'll describe in the next section), the tiles may no longer "line up" perfectly;
noticeable edges can appear between the tiles at low quality settings.

Quantization
The designers of JPEG were primarily interested in photographic images,
which are often described as "continuous tone," meaning that they tend to
have smoothly varying regions of color. For these images, the low-frequency
(slowly changing) components of the DCT are more important than the high­
frequency (quickly changing) components.

The term quantization simply means "rounding." JPEG discards graph­
ics information by rounding each DCT term by a different factor. Higher­
frequency components are rounded more than lower-frequency components.
For example, the lowest-frequency component, which simply stores the av­
erage lightness, may be rounded to the nearest multiple of three, while the

166 • Chapter 16: JPEG (JFIF)

highest-frequency component might be rounded to the nearest multiple of
100.

This quantization explains why JPEG compression produces ripples near
sharp edges. Sharp edges are defined by high-frequency (quickly varying) color
information. Because that high-frequency information is rounded, you get a
ripple near the sharp edge. (At first glance, it might seem that you. should get
a blurred edge, but remember that the C in DCT stands for Cosine.)

Typically, the color planes are quantized more aggressively than the light­
ness plane. This is another place where the selection of an appropriate color
model helps to selectively discard information.

Compression
Thus far, no compression has occurred, except for the subsampling of the two
color channels. All of the other steps-converting color models, DCT, and
quantization-leave the data exactly the same size. The last step is to use a
standard lossless compression technique to actually reduce the size of the data.

The result of the preceding steps is a collection of data that can be com­
pressed much more effectively than a raw RGB graphics dump. Each of the
preceding steps altered the data in a way that allows the final data to be com­
pressed very effectively.

The change in color model allowed certain channels to be subsampled and
then quantized more aggressively.

The DCT isolated high-frequency information. This high-frequency in­
formation is usually quite small in value, so the output of the DCT stage has
a disproportionate number of small values, which makes it easier to compress.

The quantization step rounded most of the high-frequency information to
zero, and the rest to a small number of distinct values. Reducing the number
of different values also makes the data easier to compress.

The JPEG standard specifies two different lossless compression methods
that can be used for this final step. Huffman compression (see page 185) is
simple to program, and it is an old compression method with no patent com­
plications. Arithmetic coding (see page 186) is a newer technique that is the
subject of a number of patents. (Not surprisingly, many JPEG compressors
support only Huffman compression.)

Future Lossy Compression Methods • 167

Decoding a JPEG image requires reversing each of these steps. The data
stream is first decompressed, then each 8 x 8 block is recovered by an inverse
DCT, and finally the image is converted into the appropriate color space
(usually RGB). Note that the information that was deliberately thrown away
by subsampling and quantization is never recovered. When don~ correctly,
however, this lost information does not cause any visible degradation of the
Image.

Future Lossy Compression Methods
JPEG is not the only lossy compression technique for graphics. Many others
have been proposed, and new research into human vision is discovering facts
that may make future compression techniques even more effective.

One weakness of JPEG is that it tends to throw out high-frequency infor­
mation that defines edges in the picture. The loss of this information causes
visible smears and ripples at lower quality settings. One area of research is
to find ways to identify and separately compress the edge information. Such
a technique may allow a future lossy compression algorithm to obtain even
better compression.

Lossless JPEG
The report of the JPEG committee actually specified two completely different
compression techniques. The best-known is the lossy technique I described
earlier. The report also describes a lossless technique that has received lit­
tle attention. The lossless technique uses a simple "filter" followed by either
Huffman or arithmetic encoding.

For photographic images, standard JPEG offers much better compression,
even at high quality settings. For other types of images, there are many popular
and effective lossless compression methods, and hence there is little need for
another. Generally, you should use standard lossy JPEG for photographic
images, and look to other formats if you require good lossless compression.

168 • Chapter 16: JPEG (JFIF)

More Information
The report of the }PEG committee is available from the ISO or ITU. You
can also get detailed information from William B. Pennebaker and Joan L.
Mitchell's book]PEG: Still Image Data Compression Standard [PM93].

Most better graphics viewer programs support }PEG images, check the
archive sites listed in Chapter 2 to find software for your particular plat­
form. If you're a programmer, you may be interested in the }PEG compres­
sion and decompression code available from the Independent JPEG Group at
ftp://ftp.uu.net/graphics/jpeg.

There is also a }PEG FAQ available from ftp: I /rtfm. mit. edu in the
directory pub/usenet/news. answers.

VRML

The Virtual Reality Modeling Language (VRML) can be viewed as many dif­
ferent things. Most simply, it's a graphics format based on a subset of Silicon
Graphics' Open Inventor. However, instead of flat, two-dimensional images,
VRML worlds are three-dimensional. VRML browsers display these worlds
and let you walk around and explore them. As used on the World Wide Web,
you download the world to your computer and then display and explore it
there. A VRML world can be a single three-dimensional object (such as a car
or airplane) or a simulated city with buildings and sidewalks.

Some of the worlds that have been created are quite impressive, such as
Planet9's VirtualSOMA, which lets you walk around several blocks of San
Francisco's "South of Market Area." However, impressive graphics don't quite
explain the excitement that VRML has generated. The two evolving features
of VRML that make it most interesting are its connections to the World Wide
Web and the emerging possibilities of multiple people interacting in a single
world.

VRML at a Glance

Name:
Extension:
Use For:
Reference:
On CD:

VRML, Virtual Reality Modeling Language
.wrl
Exchanging three-dimensional models
VRML: Browsing and Building Cyberspace [Pes95]
Viewers for Windows, Macintosh

169

170 • Chapter 17: VRML

Size constraints place some practical limits on how complex a single world
can be. VRML skirts this limit by including HTML-style links to other
worlds. For example, VirtualSOMA lets you dick on a storefront to access
a new world modeling the inside of a building. In this way, worlds developed
by different people are being linked together into larger metropolises. It's also
possible to link from a VRML world to other types of data. For example, you
might browse the bookshelves of a VRML library and dick to view an HTML
version of a particular book. Many of the VirtualSOMA storefronts are links
to the home pages of the respective companies.

A more experimental facility is being developed to allow multiple people to
interact within one VRML world. The basic idea is that each person's VRML
browser broadcasts a location in the VRML world using the well-established
Internet Relay Chat mechanism. 1 This technique allows your VRML browser
to display the other people currently visiting that world.

VRML promises to transform the flat, static World Wide Web into a
three-dimensional interactive space.

How to Use VRML
To use VRML, you'll need a VRML browser. Typically, you'll configure your
World Wide Web browser to automatically run your VRML program when­
ever you receive a world file. Depending on the setup, the VRML browser will
often use your World Wide Web browser to access any other pages needed.
VRML worlds can then link to HTML pages or any other data type supported
by your World Wide Web browser.

You should be ~ware that, in theory, VRML precisely specifies the ap­
pearance of a three-dimensional model. In practice, subtle variations between
browsers cause the results to vary. One obvious variation is that different
browsers interpret lighting and color differently; a model that looks subtly
shaded in one browser might look flat and dark in another. Also, browsers
make many concessions to speed, which in practice means that many models

1 Internet Relay Chat (IRC) allows multiple people to hold live discussions by relaying
typed comments to all of the other participants. When combined with VRML, the browsers
use this to relay encoded information to the other browsers.

How VRML Works • 171

will look better in certain browsers. (In particular, texture mapping and shad­
ing are time-consuming options that are handled quite differently by different
browsers.)

One optimization causes a few strange effects for people using PC-based
browsers. In practice, solid objects are defined by listing flat polygons that
define the surface of the object. For efficiency, most PC browsers assume that
one side of each face is "facing out" and the other side is "facing in." This
assumption makes the browser much faster, because it can ignore about one­
half of the faces at any given time. The problem is that not all faces are on
the surface of some object. Sometimes a single face is used by itself as part of
a sign, for example. In this case, the sign may disappear when viewed from
the wrong side. More problematically, large objects are sometimes created
by placing individual faces without connecting them. In this case, it's very
difficult for the browser to correctly identify which side of a face is which. A
wrong guess will result in visible holes in the object.

This problem is common because the optimization is often not done on
high-end workstations that have hardware-assisted graphics. Many of the more
impressive VRML models have been created on such workstations, where faces
appear solid from both sides. Sometimes, transferring such models to a less
sophisticated PC causes some of the faces to disappear. Most PC viewers
provide an option to synthesize the back of each polygon. This option causes
the viewer to duplicate each polygon so that you'll always see the front of
one of them. Enabling this option allows these problematic models to display
correctly, but at a noticeable cost in speed.

Because VRML files use a text-based graphics format, they tend to be
fairly large. Fortunately, they compress very well, and are frequently stored
and transferred in a compressed format.

How VRML Works
VRML files are text files with a list of nodes. Some of these nodes define new
visible objects on the screen. For example,

Sphere { radius 2.3 }

creates a sphere with the indicated radius. Note that nodes contain a type
followed by curly braces containing some fields. If you don't specify any fields,

172 • Chapter 17: VRML

some reasonable defaults will be used. For example, Cube{} defines a cube
one unit long on each side at the current position, with the current orien­
tation and color. Other nodes change the way later nodes are drawn. The
Translation node moves the current position, affecting where the follow­
ing objects will appear; the Material node affects the surface appearance of
subsequent objects.

Figure 17.1 shows a simple VRML model. This model was created by
the listing in Figure 17.2. This fairly simple model illustrates a few aspects
of VRML. The first thing you should notice is the use of Separator to
enclose the entire file and certain collections of nodes. Separator nodes
isolate changes to the current position and other rendering variables. Placing
the whole file within a Separator makes it easier to include this file into
another file.

Within the outermost Separator, the first two nodes set a light and a
camera. The camera is also called the viewpoint; it's where you are when you
first look at the model. As you'll see in a moment, the center of the table is at
(0,0,0). The location (-2, 2, 8) for the camera places the camera slightly to the
left (x is -2), slightly above (y is 2), and in front of (z is 8) the model. Notice
that positive z coordinates are towards you, out of the screen. The orientation
specifies the line through the points (0,0,0) and (1,.7,0) and a rotation about
that line. The numbers listed here were determined pretty much by trial and
error.

The Material node defines the appearance of the surface of the following
objects. To keep this example simple, I've only specified a color, and omitted
reflection and transparency information.

I then proceed to define the different objects that make up the table. By
enclosing each object in a Separator, I can move the current position and
change the current material for just that object, without complicating anything
else. The first object is the table top itself, which is a rectangular solid created
by the Cube node. The Translation places the center of the table top
slightly below the origin, to simplify placing the objects that will rest on top
of the table. The sphere and cube are created similarly, but each of those
also specifies a new color. The legs take advantage of VRML's DEF and USE
features. The DEF LEG preceding the Separator defines a LEG object as a
tall thin cylinder with its center moved down below the current position. The
following statements move the current position to the remaining three corners

How VRML Works • 173

Figure 17.1 Example VRML Table

of the table and re-USE the LEG object. Judicious use of this technique can
make VRML files much smaller.

Many of the more elaborate VRML files don't look very much like my
example. Many worlds are created in modeling programs that don't work
with cubes and spheres internally. Rather, they store the surfaces of objects
as collections of flat polygons, usually triangles. In VRML, solids defined
from groups of triangles are expressed by first listing many points inside of the
PointSet node. These become the current points, and can then be used much
as the current material or position is used. In particular, an IndexedFaceSet
node defines a single solid by listing the points on the edge of each polygon.
Each point is described with a single number identifying one of the current
points. Typically, the faces are all triangles, so the IndexedFaceSet will

17 4 • Chapter 17: VRML

contain a long list of numbers arranged in threes. (There are actually four
numbers in each group; a -1 is included to mark the end of each face.)

For increased realism, many VRML worlds also make extensive use of
texture mapping. Rather than simply specifying the color of a cube, a texture
map is a graphic image that is shown on the outside of a solid. This image
can be used, for example, to simulate a stone or brick wall. Texture maps
are usually stored in GIF or some similar graphics format, and are often quite
modestly sized. A brick wall only requires a small image of a few bricks. The
VRML browser will then tile the image, duplicating it to cover the entire solid.
In this way, a few small G IF images can greatly enrich a VRML world.

More Information
As a new and rapidly evolving standard, the best sources ofVRML information
are on the World Wide Web. Searching Yahoo (see page 14) for vrml returns
a manageable number of references, many of which are references to worlds
that people have created or to people marketing VRML browsers (often free
for personal use).

The VRML standard on http: I lwww. virtpark. comlthemelvrml is a
particularly good reference. It includes many examples in source code form,
with links to the examples themselves. If you have a VRML browser, you'll be
able to compare the source code to the final effect.

The VRML Repository at http: I lsdsc. edulvrml contains lots of point­
ers to the VMRL standards, a bibliography, mailing lists, research projects, and
other information.

The VirtualSOMA project is a VRML gateway to a group of San Fran­
cisco multimedia companies. The HTML home page has several images of
VirtualSOMA viewable by people without VRML browsers, as well as links to
the model itself (http: I /WWTil.hyperion. comlplanet9/vrsoma.htm).

Mark Pesce's VRML: Browsing and Building Cyberspace [Pes95] provides
a good look at VRML and many of the tools and techniques used to build
VRML worlds.

#VRML V1.0 ascii
Separator{

PointLight{

}

}

location 10 10 30
intensity .7

PerspectiveCamera {
position -2 2 8
orientation 1 .7 0 -.4

}
Material { diffuseColor .2 .2 .2 }
Separator{ # Table top

}

Translation{ translation 0 -.1 0}
Cube{ width 6.5

height .1
depth 6.5

}

Separator { # yellow-brown sphere
Translation { translation -2 1 1 }
Material {diffuseColor 1 .4 0}
Sphere{}

}

Separator { # bluish cube

}

Translation { translation 1 1 -2 }
Material {diffuseColor .3 .5 .8}
Cube{}

Separator { # Four legs

}

Translation { translation 3 0 -3 }
DEF LEG Separator { # One leg

Translation { translation 0 -1.6 0 }
Cylinder {radius .1

height 3
}

}

Translation { translation -6 0 0 }
USE LEG
Translation { translation 0 0 6 }
USE LEG
Translation { translation 6 0 0 }
USE LEG

Figure 17.2 Source for VRML Table

More Information • 175

Other
Formats

The graphics formats I've discussed so far cover the majority of files exchanged
on the Internet, but you may stumble across many other types of files. I'll
briefly mention a few other graphics formats in this chapter.

XBM and XPM
X is the name of a windowing system for Unix, originally developed at the
Massachusetts Institute of Technology and now a widespread standard for Unix
workstations. Much of the original work for the World Wide Web was done
on Unix systems, so it's no surprise that most browsers support the X BitMap
(XBM) format. XBM is a simple bilevel format that provides a list of numeric
byte values, each byte holding eight pixels. It uses C language notation to
simplify compiling pictures directly into a program. As a simple text format,
XBM files are very easy to understand and use, which also helps explain why
it was supported by many early World Wide Web browsers. The glaring
disadvantage is that these files are quite large.

The X PixMap (XPM) format is a similar text format that also supports
grayscale and color images. Rather than storing numeric values, XPM files use
character sequences to represent colors. The image is stored as a collection of
quoted strings, each representing a single row of the picture. The character se­
quences can be defined to represent different colors in different environments,
so that the same image data represents both a grayscale and color image.

177

178 • Chapter 18: Other Formats

BMP
The BMP format is the native graphics format for both OS/2 and Windows.
A lot of images are available in this format. BMP has two practical limitations
that have restricted its widespread adoption. First, although BMP is used
both by OS/2 and Windows, the current versions of OS/2 and Windows
support slightly different versions of BMP. Second, BMP only supports very
simple compression methods, which are rarely used. This makes BMP a good
candidate for reading and writing small images very quickly (BMP is often
used by people experimenting with simple animation techniques). However,
BMP is not very well suited for exchanging files between different systems.

PICT
PICT images are used primarily on the Macintosh. The Macintosh clipboard
uses PICT format to exchange graphics data between different programs. This
format is also used in the "resource fork" of a Macintosh file to attach a variety
of graphical images to files. PICT images can contain graphics data in a variety
of sub-formats, including bilevel bitmaps, full color JPEG images, or a list of
drawing commands for reproducing an image.

On the Macintosh, PICT format is supported directly by the system.
However, internally, PICT is fairly complex, so it's not widely supported on
other platforms. Some versions of the NetPBM utilities for Unix or MS-DOS
can convert PICT files into other formats for viewing.

IFF
The Commodore Amiga was one of the first personal computer systems to
include sophisticated video and audio capabilities. It rapidly became a standard
part of inexpensive video editing systems. It also provided fertile ground for
early experiments with the mixture of sound, graphics, and computer interface
that later became known as multimedia. Interchange File Format (IFF) is a
flexible format that started on the Amiga and has become common outside
of the Amiga community. Like Microsoft's RIFF (Resource Interchange File
Format, see page 299), IFF allows a wide variety of different kinds of data

PBM, PGM, PPM, and PNM • 179

to be stored in the same file. IFF files can include bitmapped graphics, text,
sound, and many other types of data.

Outside of the Amiga world, IFF files are used primarily for bitmapped
images and sound.

PBM, PGM, PPM, and PNM
Many programs convert between different graphics formats. Unfortunately, if
you want to build a collection of such programs to convert between any two
formats in a single step, you need a lot of programs.

One way to reduce the amount of work is to choose a single intermediate
format, and develop conversions between this intermediate format and all the
others. Using this approach, you only need twice as many programs as formats.
A good intermediate format for this scheme should be very simple, because
every converter will have to read or write it.

Jef Poskanzer's PBM system does exactly this. Poskanzer designed a very
simple graphics format with three different variants: PBM (Portable BitMap)
for black and white images, PGM (Portable Gray Map) for grayscale images,
and PPM (Portable PixelMap) for color images. Each of these formats is noth­
ing more than a list of the pixels in the picture (either binary or ASCII), with
no compression or special encoding. Because they are so simple, many pro­
grams convert to and from these formats and do various picture manipulations
on images in these formats.

For example, to convert a GIF picture to TIFF format, you would first use
giftopnm to convert the GIF picture into PPM format, then pnmtotiff to
convert it into TIFF format. ("PNM, stands for "Portable aNyMap, and indi­
cates a program that supports all three of PBM, PGM, and PPM.) Once you
have the picture in PPM format, you could scale the picture (with pnmscale),
smooth it (with pnmsmooth), and add a border (with pnmmargin) before con­
verting it into TIFF.

Poskanzer's original PBM utilities have grown extensively, both from his
own work and contributions by many people. The NetPBM collection, which
combines many of these tools, has been ported to many different systems. It
is a useful set of tools for anyone who must deal with many different graphics
formats.

180 • Chapter 18: Other Formats

Because the PBM formats are so simple, they're supported by many view­
ing utilities. If you're interested in the PBM utilities, the source code is avail­
able using anonymous FTP from the archives at ftp. x. org. Ports of the
PBM utilities to MS-DOS are available from both the SIMTEL and Garbo
archives.

Part Three

Compression and
Archiving Formats

About
Archiving
and Compression

It's a fact of life that even computers sometimes break. When they do, the
information stored on them becomes inaccessible. Sometimes the situation
can be remedied quickly (say, by plugging the computer back in after you
trip over the power cord), but other times there's no easy fix (such as when
lightning strikes the powerlines near your house).

To guard against the havoc caused by this loss of information, cautious
people back up the critical data on their computers, usually by copying it to
floppy disks, tape, or some other removable media, so it can be stored apart
from the computer. 1

About Archiving
Copying thousands of individual files is inconvenient at best, so most backup
schemes involve archiving-wrapping up many files into a single file. The
resulting archive file can later be burst into its separate components to retrieve
the files that are stored within it.

Archiving is also useful in other situations. When transferring files by
modem or mail, it's usually simpler to send a single file. Similarly, software
distributed on floppy disk or CD-ROM is often archived to simplify the in­
stallation software.

1 Some people think a second hard disk is a good form of backup. Unfonunately, many of
the causes of system failure-such as power supply problems-will damage every connected
drive, which is why the "removable,. aspect is so imponant.

183

184 • Chapter 19: About Archiving and Compression

One less obvious benefit to archiving is that simply combining files saves
some space. All computer systems waste a small amount of space for each file.
This wasted space may only be a few thousand bytes per file, but it adds up
when you have several hundred or several thousand files. Archiving also allows
you to preserve filenames. If you send a single file through mail, you have
no guarantee that the recipient will save the file under the correct name. Files
sometimes need to refer to one another by name, such as a program and a
configuration file for that program. If the recipient unwittingly changes the
name of the configuration file, the program may not work. By storing the files
in an archive, the files will automatically end up with the correct names when
the recipient de-archives them. Similarly, most archiving methods can preserve
the directory structure, so that when the archive is burst, not only will the files
be extracted, but they will be extracted into appropriate directories.

Stringing together a few thousand files gives you a pretty large archive file.
As a result, archiving programs often incorporate file compression techniques.
These techniques encode data in such a way that the result is frequently smaller
than the original data. While specialized compression techniques geared to
specific types of data are an important part of graphics, audio, and video file
formats, archiving programs must use more general techniques that attempt to
give good compression on a wide variety of data.

On Unix, the TAR program was developed to archive files to tape (hence
the name "tape archive"). It does no compression, so Unix users have be­
come accustomed to first archiving files using the TAR program, and then
compressing the resulting archive file with a separate program.

Archive programs for microcomputer systems usually take a slightly differ­
ent approach. The archiver program compresses each file as it is included in
the archive. This approach makes the archiver program faster and easier to use
because single files can be extracted without having to first uncompress the
entire archive. On the other hand, compression techniques are generally more
effective when used on larger files, so compressing the entire archive at once
usually results in a somewhat smaller overall result.

A Brief History of Compression
In the 1940s, computer scientists realized that it was possible, for most data
files, to develop ways of storing that data in less space. Much of the basic

A Brief History of Compression • 185

theory was developed by Claude Shannon, who explored the subtle distinction
between semantics (what something means) and syntax (how something is ex­
pressed). Once you realize that the same meaning (semantics) can be expressed
in many different ways (syntax), you can ask the question: What's the smallest
way to express something? This question led Shannon to define the idea of
entropy, which is (loosely speaking) the relative amount of information con­
tained in a file. Compression techniques attempt to increase the entropy of a
file, that is, make the file shorter while still containing the same information.

For example, in most files, some byte values occur more often than others.
By using different-sized codes for each byte, you can significantly reduce the
total size of the data. This basic idea led to the Shannon-Fano and Huffman
compression algorithms. These algorithms choose shorter codes for common
byte values, and longer codes for less-common byte values. They usually
compress text files (which use certain byte values much more heavily than
others) fairly well.

For over 30 years, Huffman compression and its variants were the most
popular compression methods around. In 1977, two computer researchers in
Israel developed a completely different approach. Abraham Lempel and Jacob
Ziv had the idea of building a "dictionary" of common sequences in the data
to be compressed, and then compressing the data by using a code for each
entry in the dictionary. Their two algorithms, now known as LZ77 and LZ78,
managed to arrange things so that you don't need to include the dictionary
with the data; if you build your dictionary in a certain way, the decoder can
reconstruct the dictionary directly from the data. Unfortunately, LZ77 and
LZ78 weren't very fast at building an effective dictionary. Lempel was hired
by Sperry to help them develop ways to pack more data onto computer tapes.
There, Terry Welch was able to extend LZ78 into an algorithm that became
widely known as LZW.

A group of Unix programmers noticed Welch's work and implemented
LZW compression in their aptly-named compress program. They added sev­
eral refinements and published their public domain program in an Internet
newsgroup, where many other people saw it and began to use it.

The popularity of the LZW algorithm is due in large part to the success
of the compress program. The most recent version of the program handles
both compression and decompression in a modest 1200 lines of source code.
The core compression code is a mere 100 lines, and the decompression code

186 • Chapter 19: About Archiving and Compression

is only slightly larger. Programmers found it easy to read and understand the
algorithm and adapt it to a wide variety of purposes.

LZ-style algorithms (including LZW, LZ77, LZ78, and many variations)
are very popular wherever general-purpose compression is needed. LZW is
used in the V.42bis modem standard, the ZModem file transfer protocol,
GIF, TIFF, ARC, compress, and other applications. Other LZ algorithms
are used in disk compression utilities such as DoubleSpace and Stacker, graph­
ics formats such as PNG, as well as general-purpose archiving and compression
utilities including ZIP, GZIP, and LHA.

While dictionary-based compression algorithms receive a lot of attention,
there are other approaches. Huffman compression, which exploits statistical
variations in the occurrence of certain bytes, led to a powerful compression
method known variously as arithmetic encoding, entropy coding, or Q-coding.
Arithmetic encoding improves Huffman compression in two ways. The first
improvement is that it does not require the selected codes to be a whole
number of bits. While Huffman compression might choose some two-bit
codes and some four-bit codes, an arithmetic encoder can choose a code that
is 6.23 bits long. (The precise definition of ".23 bits" is somewhat techni­
cal; see [Nel92] for another explanation of arithmetic coding.) The second
improvement (which can also be applied to Huffman compression) is that
arithmetic coding uses more complex statistics. Rather than simply looking
at how often each byte occurs in the entire file, it looks at how often a byte
occurs in a particular context. For example, with normal Huffman compres­
sion, the letter "u" might receive a fairly long code, since it doesn't occur very
frequently. But in a sophisticated arithmetic encoding program, a "u" that
followed a "q" would be encoded very compactly, since "u" is very likely to
occur after a "q." The combination of these two improvements results in very
effective compression.

Most other compression techniques are tailored for a specific type of data,
/ so they aren't well suited for archiving. The three basic methods I've described
here-Huffman compression, the various LZ techniques, and arithmetic cod­
ing-cover the bulk of what's used in practice. Many of the improvements in
recent years have revolved around ways of combining these techniques (for ex­
ample, using Huffman codes for the dictionary entries) or doing sophisticated
preprocessing to change the data so it's more effectively compressed by one of
these methods. OPEG converts and selectively removes graphical data so it
can be compressed with Huffman or arithmetic encoding; PNG uses a simple

Compression Isn't Perfect • 187

filter technique to convert graphics data so it can be more effectively encoded
with a dictionary-based approach.)

Perhaps the single most significant development in compression algorithms
over the last several decades is the appearance of software patents. Since 1981,
the United States Patent and Trademark Office (USPTO) has accepted patent
applications for software algorithms. Many patents have been awarded for
compression techniques, of which the most publicized are Unisys' patents on
LZW compression and IBM's patents on arithmetic encoding. Unfortunately,
the USPTO did not initially handle such patent applications well; several
patents have been awarded to different people for the same algorithm (some­
times with almost identical wording). Few of these patents have been chal­
lenged in court, and the high cost of patent lawsuits makes it unlikely that
many will be challenged.

One positive result of these patents is the enormous amount of work that
has been done to develop new compression algorithms (most of which are
promptly patented by their inventors). Another effect, however, has been quite
negative. Many compression algorithms were adopted for specific uses either as
part of international standards (such as V.42bis and JPEG) or by companies or
individuals who copied public domain code (the compress implementation
of LZW was widely copied for various uses). The financial penalties for using
these algorithms (in the form of royalties to the patent owners) has dissuaded
support for these standards by authors of shareware, free software or "royalty­
free" libraries. A few companies have publicly announced that they will not
charge royalties for use of their patented algorithms in free software, but this
policy is uncommon. It's unclear what effect this conflict will have on the free
software industry or on patent law. At least one organization, the League for
Programming Freedom, is opposed to software patents and is actively working
to have software patents overturned.

Compression Isn't Perfect
Compression algorithms are useful, but they have limits. The most obvious
limit is that no compression method (or combination of compression meth­
ods) is perfect; some data will become larger when you use that technique.2

2When you look carefully at how compression algorithms work, it's really quite remarkable
that these algorithms do manage to reduce so many types of data.

188 • Chapter 19: About Archiving and Compression

Intelligent compression programs put a marker at the beginning of their out­
put indicating how the data was compressed. If the data could not be made
smaller, that marker indicates that the data is "uncompressed." In this case, the
data has been enlarged only by the size of the marker, but it has still become
larger.

Occasionally, a compression program claims to compress "any file down
to 16 kilobytes," or "compress every file by at least 30 percent." Any such
claim is simply wrong, although a few highly respected publications have been
persuaded to publish announcements of such products. (See page 250 for the
story of one product that claimed perfect compression.)

A few of these claims have been shown to be simple fraud: The data to
be "compressed" was copied into a separate hidden file, leaving the original
file obviously smaller. While such a scheme does look impressive in a direc­
tory listing, it hardly qualifies as "compression." Most "perfect compression"
claims have been quietly withdrawn without public scrutiny of the proposed
compression techniques.

A few perfect compression claims have turned out to be simple fraud. One
such program, when asked to archive a file, would delete the file from your
hard disk and the archive would only grow by a hundred bytes. De-archiving
restored the file as you would expect, unless you were unlucky enough to use
your hard disk before attempting to de-archive. The program actually stored
only the filename and the location on the disk where the file data remained,
and then deleted the file. It could properly restore the file to a directory only
as long as that part of the hard disk had not been re-used for another file. If
that area had been re-used, your data was simply gone.3

It's not difficult to see why any compression technique must make some
files longer. Remember that these techniques are really "encoding" techniques,
which take some information and store it in a different way. Once you sidestep
the prejudice of using the word "compression," it's reasonable that any en­
coding method that makes some information smaller must also make some
information larger.

30ne simple way to test for this sort of hoax is to perform the following experiment: Copy
several files onto a freshly formatted floppy disk, use the program to archive the files, then
copy the archive onto another freshly formatted floppy disk and try to extract the files from
the archive.

Compression Isn't Perfect • 189

But the real proof is to think not of the encoding (compression) technique,
but the decoding (decompression) technique. A compression method that
doesn't allow you to recover the original data isn't very useful.

Here's a little thought experiment for you. Pretend that you actually have
a compression program that makes every file smaller. Also pretend you have a
computer with a really big hard disk, and you have on this hard disk a copy
of every possible 10,000 byte file. Now, take your imaginary compression
program and compress every one of those files. When you're finished, every
one of those files is shorter than 10,000 bytes.

It may not seem relevant, but exactly how many files are there? Since a
byte has eight bits in it, there must be 280

•
000 files with exactly 10,000 bytes

in them. So, our little thought experiment now has 280•000 files, all of which
are shorter than 10,000 bytes. What may not be entirely obvious is that all
of those "compressed" files aren't different! The reason is that there aren't that
many different files shorter than 10,000 bytes. If you add together the number
of files exactly 9,999 bytes long, and the number of files exactly 9,998 bytes
long, and so on, you end up with a number less than 280•000•

The important consequence is that two of the compressed files must be iden­
tical. If this seems like a big jump, imagine that you have five face-down cards.
Because there are only four possible suits, you know that two of those cards
have the same suit (it's possible that all five have the same suit, but you can't
be certain). The same principle applies: This thought experiment leaves you
with 280

•
000 files, and there are fewer possible different files, so two of them

must be the same.

What does all of this mean? You started by pretending you had a perfect
compression method, one that compressed every file. I then showed you that
at least two files were different before they were compressed, but were the same
after they were compressed. There's no way to decompress those two files to
obtain the originals.

What this thought experiment shows is that it's perfectly possible to have
some program that compresses every file, but only as long as you don't expect
to have a corresponding decompression program. Of course, a compression
program that doesn't allow you to retrieve the original data is not very useful.
(Put slightly differently, one "perfece' compression method for paper files is
incineration. Your files do indeed become much smaller, but recovering them
is rather tricky.)

190 • Chapter 19: About Archiving and Compression

A Note About Encryption
Encryption is similar to compression in many ways. The goal of encryption is
to encode data so that it is difficult for anyone to figure out what the data is.
Usually, encryption requires a password for encoding, and the same password
for decoding, although "public key" schemes such as pgp actually use different
passwords for encryption and decryption.

Many archiving programs also support some form of encryption. The
idea of such encryption is to make it difficult for anyone who doesn't know
the password to extract the files from the archive. No encryption method is
impossible to break, given enough resources. A few encryption methods {such
as the algorithms used by some Unix crypt programs and the popular pgp
program) are widely believed to require enormous resources to break, and are
considered "secure" by experts. Generally, the encryption techniques used by
archiving programs are not considered "secure" by experts. In fact, some freely
available programs claim to be able to decrypt an encrypted ZIP file in a few
hours, without requiring the password.

However, you rarely need more security than that provided by ZIP or
similar programs. If all you want to do is deter a snoopy coworker from read­
ing your personal files, the security provided by PKZIP or a similar archiving
program may well be sufficient. (Of course, if you've inadvertently left the
original, unencrypted file on the same disk, or left a printout sitting on your
desk, then the encryption in the archive is useless.)

However, even the modest security provided by an encrypted archive is
difficult to circumvent. If you forget the password, you may never recover the
data.4

Which is Best?
Choosing an archiving and compression program is complicated by several
factors. New compression methods are created almost weekly, each claiming
marginally better compression or speed than its predecessors. You must often

4 My advice for data that you want to protect is to store it, unencrypted, on a floppy disk
in a locked drawer. This method probably is more secure than any easily available encryption,
is easier to understand, and involves fewer risks.

More Information • 191

decide between a newer program that offers better compression and an older,
more established program that will be easily available to people with whom
you may trade files. Another factor is that different archiving and compression
programs have become popular on different platforms. If you need to move
archived data between different types of computers, you have few real options.
Finally, the reason for archiving data is often to give it to someone else or
to store it away somewhere. You want to make sure that the necessary de­
archiving program will be available.

For most users, the security of using a well-established product far out­
weighs the advantages of better compression in new programs. Stick with the
established standards for your particular platform: Stuffit for Macintosh users,
TAR/compress or TAR/GZIP for Unix users, and ZIP or PKZIP for MS-DOS
users. If you need to exchange data across different systems, look at ZIP or
ZOO, both of which are well-established and available on a wide range of
different systems. Finally, the better archivers have a "free" companion de­
archiver that you can give to your friends; include a copy on any floppy disk
or hard disk directory that contains archived data. You'll be glad you did.

More Information
A good introduction to a variety of basic compression algorithms can be found
in Mark Nelson's The Data Compression Book [Nel92]. If you have Internet ac­
cess, the FAQ (Frequently Asked Questions) file for the comp. compression
newsgroup is also a good source of general compression information. If you're
curious about the absolute best compression available, a ranking of compres­
sion programs is published on http: I /www. mi. net/ act/ act. html.

A variety of MS-DOS archiving and compression programs are available
from the SIMTEL archives in the msdos/archi ver and msdos/ compress
directories.

The League for Programming Freedom (LPF) is an organization that op­
poses software patents and user interface copyrights. You can find out more
from their World Wide Web site http: I /www .lpf. org, or by writing to:
League for Programming Freedom, 1 Kendall Square #143, P.O. Box 9171,
Cambridge, MA 02139.

TAR

TAR is one of the oldest archiving programs, and is still heavily used on Unix
systems. A lot of the information on the Internet is archived with TAR, then
compressed using one of two common Unix compression programs.

Because of this two-stage handling (archive with TAR and then compress
with a separate program), these archives usually end up with two file exten­
sions on Unix systems. For example, a group of files may be archived to
form files. tar, and then compressed with the GZIP program to form
files. tar. gz. Systems such as MS-DOS and Windows don't allow mul­
tiple extensions, so this name is frequently condensed to files. tgz. Simi­
larly, an archive files. tar. Z compressed with the Unix compress program
is typically named files. tz or files. taz on MS-DOS and Windows.

To recover such files, you need to first uncompress the file and then de­
archive, although some programs perform both steps simultaneously. I'll talk
about the GZIP and compress formats in later chapters.

TAR at a Glance

Name:
Extensions:
Use For:
References:

On CD:

TAR, Tape Archiving utility
. tar, . tgz, . taz, . tz
Archiving files
Unix man pages, 4.4BSD Programmer's Reference
Manual [PRM94]
TAR programs for MS-DOS, Macintosh

193

194 • Chapter 20: TAR

Command Line Description
tar tf archive. tar List the contents of the archive
tar tvf archive. tar Give a detailed listing
tar xvf archive. tar Extract all the files
tar xvf archive. tar fi Zes . . . Extract only the named files
tar cvf archive. tar files . . . Create a new archive

Table 20.1 Common TAR Command Lines

How to Use TAR
TAR is an old format supported by many programs, including graphical
archiving programs on some systems. I'll describe how to use the traditional
Unix command-line version. Although there are many different versions of the
command-line program, they are all used in the same way. 1

The first item on the command line is a set of command letters that specify
what the TAR program should do. These letters also determine how the rest
of the items on the command line should be interpreted.

Here are a few examples. The command tar t means to give a listing
(think "table of contents") of the current archive. What's the "current" archive?
Well, remember that TAR stands for tape archive, and you can reasonably
guess that the "current" archive is the one currently in the tape drive. Of
course, you probably don't have a tape drive, so you'll almost always include
the letter f, which means the archive should be read from the indicated file.
The most common way to get a listing of the contents of a TAR archive is
with the command tar tf archive. tar. The v modifier tells TAR to be
verbose about whatever it's doing. A verbose listing tells you the sizes and other
information about each file. Thus, tar tvf archive . tar gives a pretty
thorough overview of the contents of the file archive. tar. Table 20.1 gives
some other common uses of the TAR program.

Notice that the first letter is the command letter (t for table or x for
extract) and the remaining letters are modifiers. Besides the common v and f
modifiers, many others are of interest only if you're using TAR to back up a

1 Even if you expect to use a graphical version, it's worth knowing how to use the command
line version. Not only will it give you a feel for what TAR does, if you ever use a Unix Internet
shell account, you'll have access to the text-based TAR program there.

How TAR Works • 195

First File Second File

Header I File Contents Header I File Contents

Figure 20.1 Organization of a TAR Archive

Unix system to a tape drive. The z modifier supported by the GNU version of
TAR is quite useful.2 The z modifier instructs TAR to compress the archive as
it is being created, or uncompress it as it is being extracted. The result is the
same as compressing the archive with GZIP (see page 223) after it is created,
or uncompressing it with GUNZIP before it is extracted.

How TAR Works
Since TAR does no compression, it's a good place to start understanding how
simple archiving programs work. Most archiving programs are fundamentally
similar. As shown in Figure 20.1, a TAR file is created simply by appending
the files to be archived, preceding each one with a 512-byte header containing
information about the file. The end of the archive is marked by two blocks of
512 zero bytes each.

If 512 bytes of header for each file seems like a lot, that's because it is.
In fact, the current standard format for TAR archives only uses 345 of those
bytes, and most of that is usually empty. Table 20.2 lists the contents of the
header. Unlike many programs, all of the information in the TAR header is in
ASCII text format, with null bytes filling any unused space.

Although the format shown in Table 20.2 is currently the most widespread,
there have been many slightly incompatible formats for the data in the header:

• The original TAR dates back to the early 1970s. It only stored the
information identified in Table 20.2 as "Old."

2Type the command tar --version to see if you're using the GNU version of TAR.
Yes, there are two dashes in that command.

196 • Chapter 20: TAR

Size Origin Description
100 Old Name of file
8 Old File mode in octal
8 Old User ID of file owner in decimal
8 Old Group ID of file owner in decimal
12 Old File size in decimal
12 Old File date in decimal. Seconds since 0:00 January 1, 1970
8 Old Checksum of header
1 Old Type of link
100 Old Name of linked file

8 PO SIX Magic value ustar followed by 2 blanks and a null
32 PO SIX User name
32 PO SIX Group name
8 PO SIX Device major number in decimal
8 PO SIX Device minor number in decimal

Table 20.2 Header of a TAR File

• The POSIX standard extended the old TAR header with a few useful
new fields, the most important being the magic string ustar ("Unix
Standard TAR") which can be used to quickly identify TAR archives. 3

• Prior to the POSIX standard for TAR, the Computer Science Research
Group at the University of California at Berkeley developed another
extension to the old TAR format as part of their 4.2BSD operating
system. The 4.2BSD TAR format has been largely replaced by the
POSIX format.

• Unix System V used another slightly incompatible extension to the TAR
format. This extension has also given way to the POSIX format.

3"Unix" is the trademarked name of a specific operating system, originally developed by
AT&T. However, the word is commonly used to refer to any similar system. The IEEE's
Portable Open Systems standard (POSIX) was developed to maintain a high degree of com­
patibility between Unix-like systems developed by different groups. No operating system is
acrually called "POSIX." POSIX itself is defined only on paper. Most Unix-like operating
systems now attempt to be "POSIX-compatible." Throughout this book, I'll succumb to the
common error of using "Unix" to refer to any Unix-like system.

How TAR Works • 197

• The Free Software Foundation (see page 226) has spent many years
developing a freely distributable collection of Unix software, with the
intention of eventually developing a complete Unix-like system they
call GNU. The GNU version of TAR includes several extensions to the
POSIX standard, most notably support for sparse files. (Sparse files use
less disk space than the official length of the file; these files often are
created database programs that only store a few records in a large file.
Many Unix-like systems will only allocate disk space to the part of the
file that currently holds data.)

Unless you're transferring data between Unix systems, only the original
TAR header fields are important. The extensions added by POSIX, 4.2BSD,
System V, and GNU are probably of interest only if you're actually backing up
Unix file systems to tape.

All of the information in a TAR header is stored as ASCII strings. The
file size, for instance, is stored as an ASCII string with the decimal number,
rather than in binary. You can (if you're careful) manually disassemble a TAR
archive by using a binary editor program: Just read the name and size of the
file, shave off the 512-byte header, and store the appropriate number of bytes
into the desired file.

Any unused part of the 512-byte header is filled with zero bytes. (In
particular, all strings are terminated by zero bytes.) This convention helps
distinguish the different TAR header formats. If a particular part of the header
is filled with zero bytes, that part is not being used and can be ignored.

The POSIX standard added a "magic string" that can be used to rapidly
tell if a file is a TAR file. Unfortunately, this string doesn't help detect old­
format TAR files. If a file lacks the magic string, you can tell if it's a TAR file
by verifying the checksum:

• Read the decimal number from the checksum part of the header.

• Fill the checksum part of the header with eight blanks (ASCII 32).

• Add together the value of every byte in the header.

• If the result matches the number you read from the checksum part, the
header is valid.

Obviously, this procedure isn't something you'd want to do by hand, but it is
useful if you want to write a program that recognizes TAR files.

198 • Chapter 20: TAR

The TAR format also supports "links." Unix systems allow a single file to
appear under multiple names. This feature is used in a variety of ways, both
to conserve disk space and to maintain compatibility when different programs
expect to find certain files in different locations. It's wasteful to store the
same file data multiple times in the TAR file, so TAR includes the ability to
explicitly store a link, which specifies another name for the same file data. This
approach both saves space in the TAR file (since the file data isn't duplicated)
and helps preserve the link status when the TAR file is de-archived. The link
type field is also used to indicate a file stored in a special format.

Also note that the name of the file can be up to 1 00 bytes long. This
name is the full path name of the file, with I characters separating directories.
It's quite common for the names in a TAR file to begin with . I, where the
period indicates the current directory.

More Information
Most Unix-like systems already have some form of TAR. If you're on an old
system, the native TAR program may not support the newer POSIX, 4.2BSD,
or GNU extensions. In that case, you may want to obtain the GNU version.

The GNU TAR program is available from any GNU archive site, including
ftp://prep.ai.mit.edu/pub/gnu.

The Windows WinZip program supports TAR and many other formats.
It's available from http: I /www. winzip. com/winzip.

Several TAR programs for MS-DOS are available from the SIMTEL col­
lection in the pub/ arc hi ver directory.

The Macintosh suntar program is available from the Info-Mac archives.

Compress

In the previous chapter, I mentioned that TAR archives are usually compressed
with a separate program. Over ten years after its creation, the compress pro­
gram is still the most popular choice for this separate compression. Perhaps
more importantly, its source code was placed in the public domain, which
allowed many programmers ro adapt its compression code to other purposes.
The compression algorithm from compress was used in the popular MS-DOS
ARC archiving program, CompuServe's GIF graphics format, and ZModem's
compression extension. Compress itself has been ported ro a variety of differ­
ent systems.

The popularity of compress source code has led ro a number of con­
flicts with Unisys' patent on the LZW algorithm used by compress. Although
Unisys has not tried ro restrict the use of compress, it has charged licensing
fees for ocher software implementations of the LZW algorithm. As a result, the
use of compress is being discouraged by some groups. This patent issue was
one of the major motivations for the development of GZIP (see page 223).

Compress at a Glance

Name:
Extensions:
Use For:
Reference:

(Unix) Compress
.z, . ??Z

Compressing a single file
Unix man page, reproduced in [URM94]

199

200 • Chapter 21: Compress

How to Use Compress
The compress program does one thing, and it does it very simply: Type
compress fi tename to compress the indicated file. If compress is success­
ful, it changes the filename by adding . Z to the end of the file. 1 If compress
cannot make the file smaller (see page 187), it leaves the file unchanged.

To uncompress a file, type uncompress fi tename or compress -d
fi tename if you don't have a separate uncompress program. The file will be
uncompressed and restored to its original filename.

These programs have few options. Besides -d (decompress), there are -v
(verbose), -f (force compression, even if the result is larger), -c (list the data
to the screen, rather than replacing the file2), and - b (use the specified number
of bits). The default for -b is 16 bits, which requires over 400 kilobytes of
memory for compression or decompression. When compressing something to
be decompressed on a machine with limited memory, use -b 12 (which only
requires about 30 kilobytes of memory to decompress).

How Compress Works
Compress' LZW algorithm works by listing all of the sequences it has seen so
far in a dictionary. Whenever it sees a sequence in the data to be compressed,
it looks in the dictionary:

• If the sequence is in the dictionary, the compressor outputs the code for
that entry.

• If the sequence extends a sequence already in the dictionary, it's added
to the table.

For example, if the compressor already has Kientz in the dictionary and it
sees Kientzl, it will output the code for Kientz, then output 1, and then
add Kientzl to the dictionary. If it later sees Kientzle, it will output the
code for Kientzl followed by e and add Kientzle to the dictionary. Each
time it sees something that's in the dictionary, it spits out the code from the

10n Unix systems, note that this is an uppercase Z. On MS-DOS, filenames can only have
a single period, so rather than add a new extension, the last letter of the current extension will
be changed to Z.

2The letter c is suggestive of the Unix cat program, which simply lists a file.

How Compress Works • 201

dictionary and adds a new entry that's one byte longer. In this way, each time
a sequence of bytes is repeated, the dictionary grows to include a longer part
of that sequence. Note that it has to see the string Kientzle at least eight
times before it creates a dictionary entry containing the entire string.

Actually, the prior paragraph is a bit misleading. The compressor works
one byte at a time, not by grabbing a bunch of bytes, although the end result
is still the same. Initially, the dictionary contains every single-byte sequence,
numbered 0 through 255, and one extra entry numbered 256, which I'll
discuss later. Let's walk through as the LZW compressor reads each byte of
abc abc.

a This is already in the dictionary, so the compressor remembers it and
gets the next byte.

b Since ab isn't in the dictionary, it gets added as code 257. The com­
pressor outputs a and starts looking for sequences starting with b.

C Since be isn't in the dictionary, it gets added as code 258. The com­
pressor outputs band starts looking for sequences starting with c.

a Again, ca isn't in the dictionary, so it gets added as code 259. The
compressor outputs c and starts looking for sequences starting with a.

b Now ab is in the dictionary, so the compressor remembers it (actually,
it remembers the code for it: 257) and keeps going.

C Now the compressor has 257 (the code for ab) and c. Since abc
isn't in the dictionary, it gets added (code 260), 257 is output, and the
compressor looks for sequences starting with c.

Table 21.1 summarizes a longer example in a more compact form. Notice
that at every step, either the current sequence is already in the table (indicated
by a number in parentheses) or is added to the table. Also notice that the
sequences being added to the table grow longer and longer, and the entries in
the output column become less frequent.

If you follow these steps carefully, you'll get a good feel for how LZW
compression works. Besides the dictionary, the compressor actually uses very
little data. It only needs to keep the code for the sequence matched so far and
the current byte.

202 • Chapter 21: Compress

Previous Current Current Add to Output
Code Byte Sequence Dictionary
None a a
a b ab 257 a
b c be 258 b
c a ca 259 c
a b ab (257)
257 c abc 260 257
c a ca (259)
259 b cab 261 259
b c be (258)
258 a be a 262 258
a b ab (257)
257 c abc (260)
260 a abc a 263 260
a b ab (257)
257 c abc (260)
260 a abca (263)
263 b abcab 264 263

Table 21.1 An Example of LZW Compression

As I discussed on pages 187-189, no compressor is very useful without
the corresponding decompressor, so let's take a look at how the LZW de­
compressor works. Actually, you've already seen most of it; the decompressor
works pretty much the same as the compressor. Whenever the compressor
finds a long sequence that needs to be added, it outputs the previous code,
rather than the one it just added to the dictionary. The decompressor can just
follow along, building the same dictionary as the compressor. Whenever the
decompressor reads a code, it decodes it from the dictionary and then mimics
the compressor's operation to update the dictionary. Table 21.2 shows how
the decompressor decodes the output of the compressor above. Notice that it
builds the same dictionary as the compressor.

With one exception, Table 21.2 shows that the decompressor never sees
a code until after that code has been entered in the dictionary. The one
exception is for data that looks like byte-sequence-byte-sequence-byte, such as

How Compress Works • 203

Input Output Add to Dictionary
a a
b b ab (257)
c c be (258)
257 ab ca (259)
259 ca abc (260)
258 be cab (261)
260 abc bca (262)
263 abc a abca (263)

Table 21.2 LZW Decompression Example

abcabca. In this case, the code for byte-sequence-byte (263 in the example) will
be seen by the decoder before it gets entered in the dictionary. Fortunately, the
only way the decompressor will see a code that's not already in the dictionary
is in this exact situation, so the decompressor can simply use the preceding
code (260 in the example) to figure out what the code should be.

One part that requires some explanation is the reserved code 256 that I
mentioned earlier. As you can tell from the examples so far, the dictionary
grows steadily as the data is compressed. To do this sort of compression on
very large files, you must somehow limit the amount of memory used to store
the dictionary. The compressor places a fixed limit on the size of the dictionary
(typically between 4,096 and 65,536 entries) and clears the dictionary when it
reaches this size. That way, the memory usage can be limited. To keep from
confusing the decompressor, the compressor inserts code 256 (which is called
the reset code) whenever it clears the dictionary. When the decompressor sees
code 256, it resets its dictionary.

When compress starts, it only has 257 entries in its dictionary, so only
nine bits are required to represent any dictionary code. Once the dictionary
grows to 512 entries, ten bits are required. Compress optimizes its output by
only using as many bits as necessary to represent everything in the dictionary.
After the 511 th entry is made in the dictionary, it begins to output 10 bits for
each code; after the 1023rd entry is made, it outputs 11 bits for each code;
and so on. As long as the decompressor is building the same dictionary, it can
switch code sizes at the correct time.

204 • Chapter 21: Compress

Compress implements some improvements on Welch's original LZW algo­
rithm. The most interesting is adaptive reset. Rather than dearing the dictio­
nary as soon as it fills, as I suggested earlier, compress actually continues to
use the dictionary as long as the compression remains high. This approach is
motivated by two observed facts about LZW compression. First, the amount
of compression depends heavily on the size of the dictionary. A larger dic­
tionary will have longer entries that can be compressed into a single code.
Adaptive reset attempts to exploit a large dictionary by not throwing it away
too soon. The other observation is that many files (especially TAR archives
that contain different kinds of files within the archive) contain sections with
very different kinds of data. As the LZW algorithm progresses, it builds a
dictionary specifically tailored for a particular type of data. If the data changes
significantly, the dictionary will no longer compress well. By monitoring how
well the data is being compressed, the compress program can tell when this
degradation occurs, and reset the dictionary at that point.

Other programs that use LZW actually use two reserved codes. In addition
to the reset code, they use a special code to mark the end of the compressed
data.

More Information
Many Unix systems have the compress and uncompress programs already avail­
able. If you have compress but not uncompress, just use compress -d in­
stead. The source code is in Volume 2 of the comp. sources. unix archives.

A version of compress for MS-DOS systems is available from the SIMTEL
archives as msdos/ compress/ comp430s. zip. It's also available from the
Garbo archive as pc/unix/ comp430s. zip.

A version of compress for the Macintosh is available from the Info-Mac
archives as cmp/maccompress-32. hqx.

ARC

In 1985, Thorn Henderson of Software Enhancement Associates (SEA) wrote
a simple archiving utility, ARC, that attempted to compress each file as it was
added to the archive. He gave it away with two interesting conditions:

• You can copy it and give a copy to anyone.

• Commercial users must pay for their use of it.

The primary goal was to distribute the program cheaply. Rather than sinking
money into packaging and distribution to stores, SEA chose to rely on word­
of-mouth and informal copying to make it available to users. This method of
distribution proved to be quire successful, and ARC rapidly became a de facto
standard.

Over the next several years, Henderson proceeded to experiment with a
variety of different compression methods, eventually settling on LZW com­
pression code copied from the Unix compress utility. Henderson's utility was
very influential, and inspired the development of many later archivers.

ARC at a Glance

Names:
Extension:
Use For:

On CD:

(MS-DOS) ARC, SEA ARC, PKARC
.arc
Archiving files with compression to exchange with
MS-DOS systems
WinZip program for Windows

205

206 • Chapter 22: ARC

Letter Description
1 List contents
x Extract files
a Add files to archive
t Test archive

Table 22.1 ARC Command Letters

Command Line Description
arc 1 archive. arc List contents of archive
arc x archive. arc Extract files from the archive
arc x archive. arc files . . . Extract named files

Table 22.2 Sample ARC Command Lines

How to Use ARC
Two different ARC programs are widely available. Besides the original SEA
ARC, the clone PKARC program, developed by Phil Katz, is also widespread.
Both of these programs were originally for PC systems, but ARC has since
been ported to a wide variety of systems. These programs are all compatible,
except that PKARC adds a compression method not supported by the original
SEA ARC. The portable version of ARC (based on the source code for SEA
ARC) does support this additional compression method.

Like TAR, ARC is a command-line program where the first item on the
command line is a series of letters specifying what the program should do and
the second is the name of the archive file. Also like TAR, the letters begin
with a command letter, and can include several options. Table 22.1 lists the
most common commands. Table 22.2 gives some sample command lines.

How ARC Works
The basic organization of an ARC file is the same simple "header-data" ar­
rangement used by TAR, as shown in Figure 22.1.

How ARC Works • 207

First File Second File

Header I File Contents Header I File Contents

Figure 22.1 Organization of an ARC File

Size Description
1 Byte 26 (hex 1A) to mark the start of a header
1 Type of compression
13 File name with zero byte at end
4 Size of compressed file
2 File date, in 16-bit MS-DOS format
2 File time, in 16-bit MS-DOS format
2 CRC-16 of uncompressed file data
4 Size of uncompressed file

Table 22.3 Header of an ARC File

ARC's header, however, is much smaller. ARC was designed for MS-DOS,
which is reflected in the header structure described in Table 22.3. The filename
can only be 12 characters long, and the date and time are stored in compact
MS-DOS formats.

The compression type field indicates how the file data is stored, according
to Table 22.4. Compression type zero is used to indicate the end of the file.
Compression type one indicates an old header format that omits the size of
the uncompressed file. Compression type nine is not supported by the MS­
DOS SEA ARC program. It was introduced by PKARC, and later added to
the portable version of ARC. Note that the LZW compression went through
several different versions before it adapted the code from compress.

ARC uses MS-DOS format for storing dates and times. The date is a
single 16-bit number, where the high-order seven bits are the number of years
since 1980, the next four bits are the month number (1-12), and the low­
order five bits are the day number (1-31). The time is a 16-bit number where
the high-order five bits are the hour (0-23), the next six bits are the minute
(0-59), and the low-order five bits are the seconds divided by two (0-29).

208 • Chapter 22: ARC

Value Compression Type
0 None: Marks end-of-archive
1 Uncompressed (obsolete, old header format)
2 Uncompressed
3 Packed (run-length encoding)
4 Packed, then Squeezed (Huffman compression)
5 crunched (early LZW attempt)
6 Packed, then crunched
7 Packed, then crunched (modified)
8 Crunched (compress-style 12-bit LZW)
9 Squashing (Packed, then compress-style 13-bit LZW)

Table 22.4 ARC Compression Type Codes

More Information
ARC has been largely supplanted by the newer ZIP format, but there are still
many ARC files in older archives.

For MS-DOS, the area and arce programs can be used to create and de­
archive ARC files, respectively. They're available from the SIMTEL archives in
the msdos/ archi ver directory.

The Macintosh arcmac program is available from the Info-Mac archives.
A Unix version of ARC is available from the CTAN archives (see page 75)

in the tex-archive/archive-tools/arc521 directory. It's also in Volume
26 of the comp. sources . unix archives.

ZIP

Phil Katz became well known first for his clone of SEA ARC (see page 205).
Known as PKARC, Katz's program was faster and smaller than SEA ARC, and
was a popular alternative.

After a legal conflict with SEA, Phil Katz abandoned PKARC to develop a
new program which he called PKZIP. PKZIP was similar in many respects to
ARC, but added a few nice features.

• It stores a centralized directory of all files at the end of the archive. If the
archive is written to multiple floppy disks, PKZIP can prompt the user
to insert the last floppy disk (which contains the central directory) and
then insert only the floppy disks actually required to access a particular
file.

• PKZIP's header and directory information support very long filenames
and a variety of additional information. The PKZIP file format can be
used on many different platforms, unlike the ARC file format, which
can't handle long Unix or Macintosh filenames or other information.

ZIP at a Glance

Names:
Extensions:
Use For:
On CD:

PKZIP/PKUNZIP, ZIP/UNZIP
.zip
Archiving files with compression
ZIP programs for MS-DOS, Macintosh, Windows, Linux

209

21 0 • Chapter 23: Zl P

• PKZIP uses different compression methods. In particular, Katz devel­
oped a compression technique called Deflation, which is believed to be
completely free of patent restrictions. This compression method has
been adopted by the PNG graphics format (see page 139) and GNU
GZIP compression utility (described in the next chapter).

How to Use PKZIP/ZIP
Katz' PKZIP and PKUNZIP are standards among PC users. They're dis­
tributed as shareware: You can copy and test the programs for free, but are
encouraged to pay for them if you do use them.

Because Katz was generous enough to allow free use of the PKZIP file for­
mat, ZIP name, and Deflation compression algorithm, several other programs
support ZIP archives. For example, the ZIP and UNZIP programs are freely
available for a variety of systems. These programs are functionally equivalent
to the most recent PKZIP and PKUNZIP programs, although their options
and capabilities differ slightly.

Unlike ARC or TAR, which handle both archiving and de-archiving in
a single program, ZIP and PKZIP only create archives, while UNZIP and
PKUNZIP only know how to extract archives. I'll describe how to use either
set of utilities to perform standard archiving tasks.

The first task you will usually encounter is simply finding out what's in an
archive. You can get that information with either pkunzip -v archive. zip
(think "view") or unzip -v archive. zip.

The second task is extracting files from an archive. One important distinc­
tion needs to be made here. Frequently, if you're using an archive to transfer a
small collection of files, the directory structure is unimportant. On the other
hand, if you're archiving a large set of files (or an entire hard disk), restoring
each file to an appropriate directory is necessary.

The problem is that sometimes, the person creating the archive will over­
specify the directory. For example, if the archive has two files in it, stored as
C:\SOME\LONG\PATH\FILE1.TXT and C:\SOME\LONG\PATH\FILE2.TXT,
you'll probably want to extract them as FILE1. TXT and FILE2. TXT in the
current directory. Fortunately, this situation is relatively rare, but you should
keep this example in mind.

How to Use PKZIP/ZIP • 211

PKUNZIP and UNZIP differ in how they handle directory names stored
in the archive. By default, PKUNZIP ignores all directory names. Typing
simply pkunzip archive. zip will de-archive all the files in the archive to
the current directory. This approach handles the example I gave in the previous
paragraph. If you want to restore all files to the specified directory, you should
give the -d option as in: pkunzip -d archive. zip.

UNZIP, on the other hand, always uses the directory names by default. If
you have FILE1. EXE (some program) and CONFIG\FILE1. TXT (a configura­
tion file for that program), UNZIP would create the CONFIG directory. If you
want UNZIP to ignore ("junk'') the directory names (mimicking PKUNZIP),
use the -j option, as in: unzip -j archive. zip.

Both PKUNZIP and UNZIP allow you to specify which files to extract.
Simply list the names you want to extract after the name of the archive. There's
one caveat, though: PKUNZIP runs on MS-DOS, where case in filenames
doesn't matter. UNZIP, however, is designed to run on many different systems,
and case does matter. So, you need to either type the filename exactly as it
is shown by unzip -v, or else use the -C option to make UNZIP mimic
PKUNZIP's handling of case.

To create an archive, you use PKZIP or ZIP. If you just want to archive a
bunch of files, use pkzip archive. zip fi ~enames or zip archive. zip
fi~enames.

Like their counterparts, PKZIP and ZIP disagree about how to handle
directory names. PKZIP, by default, does not store directory names, just
the names of the files. If you want to archive everything in a directory, use
pkzip -P archive. zip directory (note that's uppercase P), which will
store everything in the directory and include the directory names. Remember
to either use UNZIP or use PKUNZIP's -d option when extracting.

ZIP does store the directory names, but won't look inside the directories
unless you tell it to. Use zip -r archive. zip directory to archive
everything in the directory.

PKZIP /PKUNZIP and ZIP /UNZIP all handle wildcards. The details vary
from system to system.

Simply typing pkunzip, unzip, pkzip, or zip will yield a brief help
message. ZIP and UNZIP are distributed with free documentation; PKZIP
and PKUNZIP include documentation if you pay for them.

212 • Chapter 23: ZIP

First File Second File

Header I File Contents Header I File Contents I· ..
Central Directory

···I Entry I Entry I I Entry I End-of-Archive Record I
Figure 23.1 Organization of a Zl P File

ZIP File Format
ZIP files have the same general organization as TAR and ARC, but with a
more sophisticated header, and with the addition of a central directory at the
end of the archive, as shown in Figure 23.1.

ZIP files can be processed in two different ways. If a program needs to
access a single file in a large archive, it can look at the end-of-archive record to
find the beginning of the central directory, scan the central directory to find
the desired file, and then go directly to the file. This approach is especially
useful if the archive is split across many floppy disks; the user can be prompted
to insert the last floppy (which probably contains the entire central directory)
and then insert the floppy containing the desired file.

On the other hand, if a program wants to sequentially access all of the files
in the archive, it can ignore the central directory and read each file in turn.
This method makes it possible to read ZIP files on-the-fly.

I'll describe the different parts of a ZIP file starting from the end-of-archive
record, to show you how a program might find and extract a single file from a
multi-floppy archive.

The end-of-archive record is shown in Table 23.1. All binary numbers
are stored starting from the least-significant byte (Intel byte order). Most of
the information in the end-of-archive record is intended to help applications
quickly locate the central directory. The disk containing the central directory
and the position of the central directory on that disk are provided. The total
size of the central directory (in bytes) allows an application to quickly copy the
entire central directory into memory. Frequently, the entire central directory

ZIP File Format • 213

Size Description
2 Special code: PK
2 End-of-archive code: 5, 6
2 Number of this disk
2 Number of the disk where the central directory starts
2 Total number of central directory entries on this disk
2 Total number of files in archive
4 Number of bytes in central directory
4 Byte offset of central directory
2 Length of the archive comment
n Comment

Table 23.1 Zl P End-of-Archive Record

will be on the same disk as the end-of-archive record, but if it's not, ZIP
ensures that no central directory entry is split across two disks.

The central directory itself is composed of a number of entries that not
only identify basic facts about the file (size and filename) and how it's stored
(the type of compression used), but also provides an "extension" area that can
be used to hold platform-specific information such as link information on
Unix or OS/2 extended attributes.

The central directory entry, outlined in Table 23.2, holds a complete set
of information about the file. The central directory has enough information
to generate a list of the archive's contents or to locate any particular file in the
archive. Some explanation of these fields might be helpful.

Version that Created this Archive This eight-bit number encodes the
version number. Version 2.0 is represented as 20, version 1.10 as 11.

System that Created this Archive A few of the fields are interpreted
differently on different systems. This code also provides a due about the
format of text files. Table 23.3 lists the codes that can appear in this field.

Version That Can Extract This Archive This field partially depends
on the type of compression used. If no compression was used, this field is
set to 10, indicating that any version (1.0 or higher) can be used to extract
this archive. Most de-archivers simply ignore it.

214 • Chapter 23: ZIP

Size Description
2 Special code: PK
2 Central directory code: 1, 2
1 Version that created this archive
1 System that created this archive
1 Version that can extract this archive
1 Reserved: always zero
2 General purpose bit flag
2 Compression method
2 File modification time
2 File modification date
4 CRC-32 of uncompressed file data
4 Compressed size of file
4 Uncompressed size of file
2 Length of filename
2 Length of extra data
2 Length of file comment
2 Volume number on which file begins
2 Internal file attributes
4 External file attributes
4 Position of file header on volume
n Filename
n Extra data
n File comment

Table 23.2 ZIP Central Directory Entry Format

General Purpose Bit Flag The lowest-order bit indicates whether the
file is encrypted. The next two bits are used to indicate additional options
with compression methods 6 and 8.

Compression Method This field indicates how the file was compressed,
using a code from Table 23.4. Generally, each successive compression
method has provided somewhat better compression on typical data.

Date and Time Fields The date and time are represented using stan­
dard MS-DOS formats (see page 207).

ZIP File Format • 215

Code System
0 MS-DOS and OS2 with FAT file system
1 Amiga
2 VAX/VMS
3 Unix-like systems
4 IBMVM/CMS
5 Atari ST
6 OS/2 HPFS
7 Macintosh
8 Z-System
9 CP/M

Table 23.3 ZIP System Codes

Code Compression Type
0 No compression
1 Shrinking (modified LZW)
2 Reduced with factor 1
3 Reduced with factor 2
4 Reduced with factor 3
5 Reduced with factor 4
6 Imploded
7 Reserved
8 Deflated

Table 23.4 ZIP Compression Codes

CRC-32 The CRC-32 of the uncompressed data is provided so that the
de-archiver can verify the integrity of the file.

Volume Number This field indicates the disk on which the file header
begins. Disks are numbered starting at zero.

Internal File Attributes This bitmap indicates properties of the file that
may be significant to an archiver or de-archiver. Currently, only bit zero is
defined. If set, it indicates that the archiver believed this ·was a text file.

216 • Chapter 23: ZIP

External File Attributes ZIP puts MS-DOS attributes in the low-order
byte and Unix-style attributes in the the two high-order bytes.

Position of File Header on Volume This field indicates the byte po­
sition where the file begins, relative to the start of the archive file on the
volume identified.

Filename Unlike ARC, ZIP places no limits on the length of the file­
name, making it useful on a variety of systems. MS-DOS versions of ZIP
store the filename in all uppercase.

Extra Data The extra data section allows special system-specific infor­
mation to be stored. Data in this field consists of a series of entries, each
containing a two-byte ID (a binary number; 0-31 are reserved), a two­
byte data size, followed by the data. To simplify reading an entire central
directory entry into memory, the entire size of the central directory entry,
including the filename, extra data, and comment, must be less than 64
kilobytes.

As you can see, the central directory entry serves two purposes. Besides
serving as an index to help applications rapidly find a single file in a large
multi-volume archive, it also duplicates all of the information stored in the
per-file header. This duplication helps recover information from a damaged
archive; even if the per-file header is damaged, it may be possible to recover
the file contents using the information in the central directory.

The per-file header, described in Table 23.5 contains most of the informa­
tion in the central directory.

ZIP's Compression Algorithms
Like many such archive programs, a number of different compression methods
have been developed for use with ZIP. In theory, a ZIP program could try each
different method and use whichever one worked best for a particular file. In
practice, this time-consuming approach is never used. Usually, the newest
compression method is the best for most types of files. As a result, most
ZIP programs try only the newest method (possibly altered by command-line
switches), reverting to an uncompressed format if the file grows.

ZIP's Compression Algorithms • 217

Size Description
2 Special code: PK
2 File header code: 3, 4 (multi-disk archives use 7,8 here)
1 Version that can extract this archive
1 Reserved: always zero
2 General purpose bit flag
2 Compression type
2 File modification time
2 File modification date
4 CRC-32 of uncompressed file data
4 Compressed size of file
4 Uncompressed size of file
2 Length of filename
2 Length of extra data
n Filename
n Extra data

Table 23.5 ZIP Per-File Header

I'll discuss these starting with the oldest format (rarely used today) and
proceeding to the newer ones. The current Deflation algorithm has been
adopted by other compression utilities (including GZIP and the PNG graphics
format) in large part because it is believed to be completely free of patent
restrictions.

How Shrinking Works
Shrinking is a modified version of the LZW algorithm used by compress (see
page 200). The first change is that Shrinking only does a partial reset. Rather
than completely emptying the dictionary at each reset, Shrinking only removes
the longest strings. As I mentioned when describing compress, LZW compres­
sion relies on the existence of long strings in the dictionary. By only partially
clearing the dictionary, some long strings are maintained, hopefully preserving
a modest compression even after a reset.

Shrinking also optimizes compress' variably-sized output (see page 203)
by only switching to a longer code when that longer code is needed for the

218 • Chapter 23: ZIP

output. For example, assume the compressor has just created entry number
511 in the dictionary. At this point, compress would switch to ten-bit codes
so it would be prepared to output code 512. However, it may be some time
before any code above 511 is actually used in the output. Shrinking defines
a special sequence that it outputs just before switching to a longer code size.
The decompressor switches code sizes only when it sees this special code.

How Reducing Works
Of course, since Shrinking is based on LZW, it may be subject to the patent
on that algorithm, which explains why ZIP switched to variants of the (un­
patented) LZ77 compression algorithm. Rather than output a code for each
recognized sequence, LZ77 instead outputs an offset into the previous data.
For example, abcdabc might be compressed as abed followed by an offset of
-4 and a length of 3, indicating to go back four bytes and copy three bytes.

Reducing, Imploding, and Deflation differ in how they store the offsets
and lengths in the output and what kind of additional compression they use.

Reducing stores offsets and lengths by using an escape code. The encoder
writes each uncompressed byte as-is, and precedes an offset/length pair with
byte 144 (ASCII DLE with the high bit set). The offset and length together are
either two or three bytes, divided between offset and length in different ways
depending on the "compression factors, mentioned in the table on page 215.
A larger compression factor allows larger offsets, while a smaller compression
factor allows larger lengths.

After this LZ77 compression stage, the result is compressed again with a
simple probabilistic method. This method builds a list that stores, for every
byte value, the most common "follower, bytes. For example, the followers for
t might include hand o. Reducing stores common followers using fewer bits
than less-common followers. The table of common followers is attached to the
beginning of the compressed data.

How Imploding Works
The two-stage compression used by Reducing, Imploding, and Deflation has
two goals. The first is to take advantage of the strengths of two very different

ZIP's Compression Algorithms • 219

compression techniques (LZ77 and Huffman-style compression). The other
goal is to optimize the output of LZ77 by using short codes for common
offsets and lengths.

Imploding starts with LZ77 compression with a limit of either 4096 or
8192 on the offsets. It then uses Shannon-Fano compression to select vari­
able bit-length codes for the literal (uncompressed) bytes, the offsets, and the
lengths. These three Shannon-Fano trees are built separately; the compressed
output includes an extra bit before each literal or offset to indicate whether
the next bits encode a literal or an offset/length pair.

How Deflation Works
The Deflation algorithm handles LZ77 compression by keeping a table of all
three-byte sequences that appear in the data. If three bytes match a table
entry, it then looks at that point in the previous data to see if the match
can be extended to more than three bytes. A parameter controls when the
algorithm tries to find a better match. The "fastest" setting essentially means
the compressor always uses the first match it finds. The "best" setting instructs
the compressor to look at every match to find the one that works best. The
decompressor just needs to keep the previous 32 kilobytes of decoded data
available; the compressor will never use a larger offset.

Once this LZ77 compression is done, the result is evaluated in blocks of
32 kilobytes at a time, and three sets of Huffman codes are built. The first
encodes the literals and offsets together (removing the need for the extra bit in
the Implode algorithm), while the second encodes the length values. The third
set of Huffman codes is used to compress the first two Huffman trees. The
decompressor reads the first tree from the beginning of a compressed block,
and uses it to decode the literal/offset Huffman tree and the length Huffman
tree. These latter trees are used to decode the actual compressed data.

Overall, the Deflation algorithm is usually slightly better in terms of com­
pression and slightly slower than the LZW compression used by the compress
program.

Generally, combining two or more compression methods gains very little.
However, this particular combination (LZ77 and Huffman) works reasonably
well for two reasons: First, LZ77 and Huffman compress very different types

220 • Chapter 23: ZIP

of data. LZ77 compresses data that has repeating patterns of bytes, while
Huffman compresses data that has an unequal distribution of byte values. The
combination tends to compress more kinds of data than either one alone.
More importantly, though, both LZ77 and Huffman have good "worst case"
behavior. Neither one will ever lengthen the data very much, which makes it
less likely that (unintended) expansion from one algorithm will cancel out any
gains made by the other.

Drawbacks to ZIP
Overall, ZIP is a well-designed format, with only a few minor drawbacks. One
drawback is that it's difficult to build ZIP archives on-the-fly. ZIP stores both
the compressed and uncompressed data sizes in the file header. This means
that ZIP must be able to do one of the following two things:

• Find the sizes before it writes the compressed data to the archive. This
usually requires having enough temporary disk storage to store the com­
pressed data. ZIP can then compress the data to a temporary file, then
copy it to the archive. This isn't possible if the file to be compressed is
extremely large.

• Edit the file header after writing the compressed file data. This requires
that ZIP be able to seek back to the beginning of the file. This may not
be possible if the archive is being sent to a tape drive or over a serial
connection.

This restriction precludes ZIP from being used as one stage of a Unix pipeline.
See page 224 to see how GZIP handles this issue.

A similar restriction occurs because of ZIP's central directory. As ZIP
builds an archive, it needs to keep a list of all the files in the archive so that
it can write the central directory at the end. This list must be kept either in
memory or in a temporary file. If memory is limited and no temporary file
can be created, then ZIP will not be able to build a very large archive.

These restrictions are rarely an issue, except for some Unix applications
that require the ability to read data being generated by one program, compress
it, and pass the result immediately to another program.

More Information • 221

More Information
The PKZIP and PKUNZIP programs for MS-DOS are available from many
locations, including the SIMTEL archives in the msdos/zip directory.

The Info-ZIP project has been developing their ZIP and UNZIP pro­
grams as portable, free clones of PKZIP and PKUNZIP. ZIP and UNZIP
are available for many different platforms, including Macintosh, Amiga, OS/2,
MS-DOS, and many Unix variants. The programs, source code, and informa­
tion are available using anonymous FTP from quest. jpl. nasa. gov, in the
pub directory.

The ZIP format has been fairly well documented in a series of notes in­
cluded with PKZIP. The ZIP format is also a registered MIME format type.
The full registration, which includes the most recent documentation of the file
format, is available using anonymous FTP from ftp: I /ftp. isi. edu in the
directory in-notes/iana/assignments/media-types/application.

GZ/P

Because of the patent cloud surrounding compress (see page 199), there's been
interest in an alternative compression program that could take its place. The
GZIP program is a stand-alone compression program that can be used as a
replacement for compress in most circumstances, provides marginally better
compression, and is free of patent constraints. GZIP uses the Deflation com­
pression algorithm developed for PKZIP (see page 219).

How to Use GZIP/GUNZIP
GZIP is used in essentially the same way as its predecessor compress: You
type gzip filename to compress a file and gunzip filename or gzip
-d fi 1.ename to uncompress a file. GZIP compresses a file by reading the
original and writing the compressed result to a file with the same name but
the extension . gz. Table 24.1 lists a few additional options.

GZIP at a Glance

Name:
Extension:
Use For:
On CD:

GNU GZIP/GUNZIP
.gz
Compressing a single file
GZIP program for MS-DOS

223

224 • Chapter 24: GZ/P

-d Decompress. Useful if you have GZIP but not GUNZIP.

-c Write the result to standard output, instead of replacing the file.

-r Recursively visit each directory and subdirectory, compressing each
file. This method is completely different from an archiver such as ARC
or ZIP, which combines the compressed files into a single archive. This
option simply compresses each file in place.

-1 List information about a compressed file, including the original (un­
compressed) name and size.

-1, -2, ... , -8, -9 These options set the amount of compression
desired. The option -1 is the fastest and usually offers the least compres­
sion, while -9 is the slowest and usually has the best compression. De­
pending on the data, the default -6 setting may actually compress better
than -9.

Table 24.1 GZI P Options

One common point of confusion with the GZIP program is that, although
GUNZIP is usually quite good at detecting damaged files, it will occasionally
emit the somewhat cryptic error message " ... is a multi-part gzip file - get
newer version of gzip." Multi-part GZIP files are a planned. addition that
will allow a single file to be compressed into multiple parts (for example, to
compress a large archive onto multiple floppies). This extension has not yet
been implemented, however, so you should interpret this error message as
indicating that the compressed file is damaged. 1

How GZIP Works
GZIP is not an archiving program. It's intended to be used in conjunction
with TAR or a similar archiver. It is frequently used as part of a Unix pipeline,

1 Another point of confusion is that the GZIP documentation also uses the term "multi­
part" to refer to a single GZIP .file that contains multiple compressed .files within it.

How GZIP Works • 225

Size Description
2 Identifying bytes: 31, 139
1 Compression method (currently always 8: Deflation)
1 Flags

Bit Description
0 File is probably ASCII
1 This file continues a multi-part GZIP file
2 The extra field is present
3 The original file name is present
4 The file comment is present
5 The file is encrypted
6, 7 Reserved

4 File modification time
1 Compression flags
1 Operating system
2 (optional) Part number
2 (optional) Length of extra field
? (optional) Extra field
? (optional) Original file name (null terminated)
? (optional) File comment (null terminated)
12 (optional) Encryption information
? Compressed data
4 CRC-32
4 Size of uncompressed data

Table 24.2 GZIP File Format

where data is sent into the GZIP program to be compressed (or decompressed),
and the compressed data is immediately passed along. The output of GZIP
can't require backing up to update data earlier in the file. The brief header at
the beginning of the file cannot hold the size of the compressed data, since
that's not known until the file is completely compressed. For that matter, the
size of the uncompressed data may not be known until the complete file has
been read.

Table 24.2 outlines the GZIP file format. Some of these fields are loosely
based on corresponding fields in the ZIP file format. The fields marked

226 • Chapter 24: GZ/P

"optional" appear only if the corresponding flag is set in the flags byte. All
numbers are stored starting with the least-significant byte (little-endian). The
Deflation compression algorithm was described in the previous chapter.

About the Free Software Foundation
The Free Software Foundation (FSF) is an organization working to produce a
complete Unix-like operating system called GNU. The most interesting aspect
of the FSF's work is the copyright notice included with all of their software.
Among other things, the GNU General Public License (GPL) guarantees that
end users of FSF software will always have access to the source code for that
software.2 Anyone who distributes programs based on FSF source code is ob­
ligated to make the complete program source available. One result of this
restriction is that FSF software is rarely used as the basis for commercial prod­
ucts, although companies do sell FSF software.

The quality of FSF software is generally quite high, and many Unix-like
operating systems include the GNU Emacs text editor and GNU GCC C
compiler (with source, of course).

More Information
GZIP source code is available by anonymous FTP from prep. ai. mit. edu,
in directory /pub/gnu. Look for gzip-version. tar. This distribution
should compile on most Unix-like systems and several non-Unix systems. A
text file in the same directory explains how to obtain versions of GZIP for
other platforms.

GZIP for MS-DOS is available from the same location in a self-extracting
archive named gzip-msdos-version. exe. It's also available from the SIM­
TEL archives.

The Info-Mac archives have the MacGZIP program for Macintosh.

2The GNU GPL is colloquially known as "copyleft" to contrast it with more traditional
commercial copyright notices. This nickname has caused much confusion among people who
fail to understand the basics of copyright law. Despite the cute names, the GNU GPL is a
copyright notice, and does place restrictions on the use of FSF software.

SHAR

One interesting fact about Unix systems and the Internet is that the vast
majority of data shared between Unix systems is in text form. Unlike MS-DOS
or Macintosh users, it's fairly unusual for Unix users to exchange compiled
programs. Rather, they usually send the source code for that program, because
different Unix-like systems have different kinds of processors and different
ways of storing executable programs. The various standards that apply to
Unix systems attempt to make sure that programs can easily be written that
will compile on a variety of different Unix systems. Few standards concern
themselves with binary compatibility.

For this reason, there's a real use for an archive format that can archive text
files so that the resulting archive is itself a text file. This format makes it easy,
for example, to bind a bunch of source files into a single mail message.

One way to build such an archive is to write a batch file that, when
executed, creates the resulting files. In Unix, such batch files are typically
executed by the shell, hence the name shell archive, abbreviated to SHAR.
Note that the batch file itself is the archive. This technique is similar to the
"self-extracting" archives that are popular on MS-DOS and Macintosh systems.

SHAR at a Glance

Name:
Extensions:
Use For:

Shell Archive, SHAR
.shar, .sh
Archiving text files for transfer through mail or news

227

228 • Chapter 25: SHAR

cat >Gettysburg <<END_OF_FILE
Four score and seven years ago, our fathers brought forth
upon this continent a new nation: conceived in liberty, and
dedicated to the proposition that all men are created equal.
END_OF_FILE
cat >Constitution <<END_OF_FILE
We the people of the United States, in Order to form a more
perfect Union, establish Justice, insure domestic Tranquility,
provide for the common defence, promote the general Welfare,
and secure the Blessings of Liberty to ourselves and our
Posterity, do ordain and establish this Constitution for the
United States of America.
END_OF_FILE
exit

Figure 25.1 A Simple SHAR Archive

How to Use SHAR
A SHAR archive is a Unix batch file. Usually, you can tell when you have one
by a series of comments at the beginning of the file. These comment lines
begin with # and usually read something like the following:

This is a shell archive. Save it in a file, remove anything before
#this line, and then unpack it oy entering "sh file".

If you're on a Unix system, you can simply follow the instructions. If
not, there's an unshar program available for many systems that understands
enough about Unix batch files to be able to unpack most SHAR files.

How SHAR Works
Figure 25.1 shows a simple example of a SHAR file. On Unix, typing
sh file will invoke the standard Bourne shell program to interpret it as a
batch file. The files are actually created with the cat program, which simply
copies its input to its output. In this case, the > symbol instructs the shell to
direct the output of the first cat command to a file named "Gettysburg." The
<<symbol directs the shell to feed the subsequent lines to the cat command,

How SHAR Works • 229

This is a shell archive. Save it in a file, remove anything before
#this line, and then unpack it by entering "sh file". Note, it may
create directories; files and directories will be owned by you and
have default permissions.

This archive contains:

Gettysburg
Constitution

echo x - Gettysburg
sed 's/-X//' >Gettysburg << 'END-of-Gettysburg'
XFour score and seven years ago, our fathers brought forth
Xupon this continent a new nation: conceived in liberty, and
Xdedicated to the proposition that all men are created equal.
END-of-Gettysburg
echo x - Constitution
sed 's/-X//' >Constitution << 'END-of-Constitution'
XWe the people of the United States, in Order to form a more
Xperfect Union, establish Justice, insure domestic Tranquility,
Xprovide for the common defence, promote the general Welfare,
Xand secure the Blessings of Liberty to ourselves and our
XPosterity, do ordain and establish this Constitution for the
XUnited States of America.
END-of-Constitution
exit

Figure 25.2 A Real SHAR Archive

until it sees a line containing END_OF _FILE. The second cat command sim­
ilarly copies some text into a file named ''Constitution."

Most SHAR archives are slightly more complex than this example. T yp­
ically, some shell commands are used to detect if the file exists before trying
to create it, and often an additional check is made after the file is created to
make sure the resulting file is the same as the original. A few SHAR files are
quite complex, invoking a variety of Unix commands to recreate a complex
hierarchy of files with a variety of checks on the result. Figure 25.2 is a more
typical example of a SHAR archive. This particular example was created with
the shar command in 4.4BSD.

Figure 25.2 is actually only slightly more complex than Figure 25.1. It has
a series of comments at the beginning telling the human recipient how to un­
pack it. The echo commands provide some progress information to the person

230 • Chapter 25: SHAR

who runs this batch file. Finally, instead of simply using cat, this SHAR file
uses the sed (stream editor) command to remove the X characters from the
beginning of each line. Although usually unnecessary, the X characters here
help prevent any initial spaces from being lost. 1

More Information
SHAR archives can usually be easily disassembled in any ordinary text editor.
Some can be fairly complex, though, so it's certainly convenient to have a
program that can do this for you.

Unix users should already have shar available for building shell archives,
and should also have the sh shell and other utilities (including cat and sed)
available for unpacking them. If you lack the shar program, search for
shar. sh on the http: I /ftp. digital. com archive to obtain a very short
and simple version of the shar program. Versions of the sh shell and other
utilities can be obtained from the GNU software collection.

The shar and unshar programs for MS-DOS are available from the SIM­
TEL archives in the msdos/fileutil directory.

An unshar program for Macintosh is available from the Info-Mac archives
in the _Compress_&_ Translate directory.

1 Amazing damage can be done to text sent through the Internet mail system. The more
common abuses are the loss of spaces or certain punctuation at the beginning or end of lines.
A discussion of other techniques used to guard against such mistreatment starts on page 255.

zoo

Rahul Desi's ZOO is an old and well-known archiver on many platforms.
Since the first version appeared in 1986, the author has been very careful to
preserve compatibility with older versions of ZOO, and to make sure that
ZOO will work well on many different platforms. As such, it is a good choice
for archiving files when you need to access the archive on a variety of systems.

How to Use ZOO
ZOO's biggest drawback is the enormous number of options that it supports.
These options are provided to allow expert users to control how files are stored
in the archive. ZOO can maintain multiple generations of a file and access or
retrieve any one of them. When a new file with the same name is added to an
existing archive, you can ask ZOO to leave both files in the archive. You can
then extract either one of them by specifying a generation number.

ZOO at a Glance

Name:
Extension:
Use For:
On CD:

zoo
.zoo
Archiving files with compression
ZOO programs for MS-DOS, Unix

231

232 • Chapter 26: ZOO

Command Line
zoo -list archive.zoo
zoo -extract archive.zoo
zoo -extract archive.zoo files
zoo -add archive.zoo files ...

Description
List the archive's contents
Extract all the files
Extract only the named files
Create an archive or add
files to an archive

Table 26.1 Common ZOO Command Lines

While this feature is quite useful to some people, most users don't need it.
For that reason, the ZOO program includes two different modes of operation.
Like most archivers, ZOO interprets the first argument as a set of instructions.
Instructions beginning with a dash (-) are novice commands, which make it
easy to perform the most common tasks. Table 26.1 describes some typical
commands.

Using Generations
Suppose you have an archive project. zoo that has a file called Q3. txt. If
you update your third-quarter estimates and add it to the archive with zoo
-add project.zoo Q3.txt, ZOO actually goes through several steps. It
first compresses Q3 . txt and adds it to the archive. It then scans through the
archive to see if another Q3 . txt is already in the archive. If it is, ZOO marks
that older version as deleted.

By default, ZOO then packs the archive to reclaim the space used by any
deleted files. Packing an archive involves first renaming the old archive to
project . bak, then copying all of the files to a new project . zoo.

All of the above steps are the default behavior of the -add option. By
using the expert commands, you can control each of them. In this example,
you might need to keep previous versions of your third-quarter estimates to
show your boss. By enabling generations, ZOO will allow several different
Q3 . txt files to reside in the archive. You enable generations with a command
similar to zoo gA+ project. zoo. ZOO will now allow multiple copies
of Q3 . txt to reside in the archive. By default, it will allow three copies
before it starts deleting them. You can adjust the limit on an individual
file with a command like zoo gl=5 project. zoo Q3. txt. When you list

How ZOO Works • 233

the contents of an archive, ZOO will append a semicolon and a number to
indicate the generation. If your third-quarter estimates are updated frequently,
you can use zoo -list project. zoo Q3. txt;* to list all the generations
of Q3. txt that are currently in the archive (by default, ZOO will only list the
most recent generation). 1 The output might look something like this:

Archive project.zoo:
Length CF Size Now Date Time
-------- -------- --------- --------

19423 68% 6215 18 Aug 95 11:17:23 1641 Q3.txt;47
21237 65% 7433 18 Aug 95 14:12:08 56e8 Q3.txt;48
23088 67% 7619 18 Aug 95 16:37:45 d427 Q3.txt;49
24046 72% 6733 19 Aug 95 10:04:01 2f60 Q3.txt;50
23879 66% 8119 19 Aug 95 12:54:28 69e7 Q3.txt;51

-------- -------- --------- --------
111673 69% 36119 5 files

How ZOO Works
ZOO has several features that make it possible to extract data from archives
under a variety of less-than-ideal circumstances. ZOO tags each piece of crit­
ical data with magic numbers so that a quick scan through the file can locate
much of this data. These magic numbers frequently make it possible to recover
data from a damaged archive. New versions of ZOO store additional informa­
tion in the archive, but in such a way that older versions will not notice this
extra information. Older versions will often be able to successfully extract data
from newer archives. 2 Finally, ZOO tries ensure that archives can be burst
on platforms other than the one on which they were created. ZOO stores
information in a platform-neutral format, or at least identifies the originating
platform so the de-archiver can translate as necessary.

Figure 26.1 shows the logical structure of a ZOO file. Like TIFF, ZOO
uses file position to locate various pieces of data. You can't predict the order
in which this information will actually appear in the file. The archive header

1 On Unix, you'll need ro put quotes around the name, as in "Q3 . txt ; * ", to keep the
shell from trying to interpret the filename before handing it to ZOO.

2The one fundamental obstacle is the compression method. Later versions of ZOO have
added new compression methods, and files compressed with newer methods cannot be ex­
tracted with older versions of ZOO that don't support those methods.

234 • Chapter 26: ZOO

Archive Header ---* Directory Entry ---* File Data

-1.
Directory Entry -+ File Data

-1.
Directory Entry -+ File Data

Figure 26.1 Conceptual Structure of a ZOO File

always appears at the beginning of the file, but the various file headers, blocks
of compressed data, and file comments can appear in any order. Unused gaps
can exist in the file, caused by the "deletion" of files from the archive.

The archive header shown in Table 26.2 illustrates how this process works.
Older versions of ZOO will only read and interpret the first fields; they will
skip directly to the first directory entry without reading any data that remains
in the archive header. Later versions can store additional information in the
archive header while still allowing older versions to read files from the archive.
A single archive may be manipulated by many different versions of ZOO
during its lifetime. 3

ZOO's archive header defies traditional wisdom in an interesting way.
Most file formats try to place a signature value in the first few bytes of the
file. This signature allows many programs to quickly identify a file format
based just on the first few bytes. This trick is used by many graphics pro­
grams, and is an important feature of current Unix systems (which use the
first few bytes to determine how to execute different types of programs). ZOO
instead leaves the first twenty bytes of the file undefined. ZOO archivers place
a brief text message there, indicating the version of ZOO that created the file.
However, these twenty bytes could be used for a variety of other purposes.

The version numbering flags control ZOO's generational feature, which
allows you to save many different versions of the same file in an archive. This

3There's one exception to the general rule that parts of a ZOO file can occur in any
order: In old ZOO archives, the first directory entry was always located at position 34. This
placement cannot happen in newer ZOO archives, because the archive header is now longer
than 34 bytes. This fact is used to identify old ZOO archives. Such a trick is needed because
the original archive header didn't include a version field. Later versions of the archive header
can be distinguished by the value of this field.

How ZOO Works • 235

Size Description
20 Text identifier
4 Magic bytes: 220, 167, 196, 253
4 File position of first directory entry
4 Twos-complement of previous number
1 Major version needed to manipulate file
1 Minor version needed to manipulate file
1 Version of archive header
4 File position of file comment
2 Length of file comment
2 Version numbering flags

Table 26.2 ZOO Archive Header

feature is a simple way to keep track of old files without wasting too much disk
space or having elaborate file naming schemes to separate different versions of
the same file. However, you don't always want old versions occupying space
in your archives. Rather than requiring you to specify whether to keep old
versions in the archive on every update, ZOO lets you mark the archive itsel£
If you don't specify manually, ZOO will decide whether or not to keep old
versions by examining flags in the archive. The version flag byte has the high
bit set if old versions should be kept; the bottom four bits specify how many
old versions should be preserved.

The directory entry shown in Table 26.3 uses the same approach as the
archive header. It gives the specific byte positions of other data (the file data,
file comment, next directory entry, and next subfile). One interesting aspect is
that ZOO uses the system type to help deal with filenames. Filenames have dif­
ferent formats on different systems. A typical filename on a VAX/VMS system
might look like sys$user: [kientzle. work] program. pascal; 17.4 ZOO
attempts to deal with the multiplicity of different formats in two ways. File­
names can be stored in the native format, or they can be stored in a canonical
"portable format." In either case, the system identifier indicates the format.

4Brief explanation: sys$user is a logical name, similar to environment variables on Unix
or MS-DOS systems. In this case, the logical name indicates the disk used for user accounts.
The square brackets hold a sequence of directories separated by dots. The filename and
extension are separated by a period. The number following the semicolon is a version number.

236 • Chapter 26: ZOO

Size Description
4 Magic bytes: 220, 167, 196, 253
1 Version of directory entry
1 Compression method

0 No compression
1 LZW compression
2 LZH compression

4 File position of next directory entry
4 File position of compressed file data
2 Date, in MS-DOS format (see page 207)
2 Time, in MS-DOS format {see page 207)
2 CRC of uncompressed file data
4 Uncompressed file size
4 Compressed file size
1 Major version needed to extract file
1 Minor version needed to extract file
1 1 if this file is "deleted"
1 File type
4 File position of comment
2 Size of comment
13 MS-DOS-format filename
2 Length of variable section
1 Timezone
4 CRC of directory entry
n Variable section

Table 26.3 ZOO Directory Entry

If a ZOO de-archiver sees a system identifier (filename format) it doesn't
understand, it can fall back on the short MS-DOS-style filename that is also
stored in the file. Of course, every ZOO de-archiver should understand the
portable format.

A few restrictions ensure that every system can understand and use the
portable format. The portable format only allows lowercase letters, digits, and
the underscore character (_) in names. The directory names are separated
by slash characters (/) and may be preceded with . I to start in the current

Size Description
1 Length of long filename
1 Length of directory name
n Long filename
n Directory name
2 Filename format

0 Unix-style system
1 MS-DOS
2 Portable format

3 File attributes
2 Version number
4 Next subfile
1 Sequence number

How ZOO Works • 237

Table 26.4 ZOO Directory Entry Variable Section

directory. The filename can have a single period to separate the primary name
from an extension.

The variable part of the directory entry, shown in Table 26.4, may be
truncated at any point. This allows the archiver program to only store the
information it needs. The de-archiver must be careful to check the length of
this part.

Extracting data from a damaged archive is tricky business. ZOO attempts
to simplify this process by tagging special points in the archive. You saw earlier
that the archive header has a four-byte magic number, which is also used to tag
each file header. In addition, the five bytes 64, 41, 35, 40, 0 ("@)#("followed
by a zero byte) appear immediately before the compressed file data. This latter
marker is not seen by a ZOO de-archiver under normal circumstances. The
file position in the file header indicates the beginning of the actual compressed
data that follows this marker. If an error prevents data from being extracted
normally, the FIZ program can be used to scan through the entire archive and
locate the file headers and file data. FIZ uses these markers to identify the
data. Once you have a list of the file positions of the file headers and file
data, you can instruct ZOO (using special options) to extract single files from
particular locations in the archive. In this way, you can extract the undamaged
parts from a large archive.

238 • Chapter 26: ZOO

Recovering Damaged ZOO Archives
The previous section showed that each file has two parts in the archive: The
directory entry, which stores the filename and other information, and the
actual compressed file data. The zoo program has an option @ that lets you
specify the byte position in the file of these two components. To recover data
from a damaged archive, you first use the f iz program, which scans through
the file to locate the magic numbers marking these parts of the file, and simply
prints the location of each one. For example, suppose you tried to extract some
files from an archive with zoo -extract project . zoo and were greeted
with the message Zoo: FATAL: Invalid or corrupted archive.

Often, such a message really only means that some part of the archive is
damaged. If you can find a part that's undamaged, ZOO will usually be able
to recover it. So, the first step is to type fiz project .zoo. FIZ will tell you
something like the following:

112: DATA

2323: DIR [Q1.txt] ==> 2394
2394: DATA

5915: DIR [Q2.txt] ==> 5986
5986: DATA

8160: DIR [Q3.txt] ==> 8231
8231: DATA

16618: DIR [Q3.txt] ==> 16689
16689: DATA

25076: DIR [Q3.txt] ==> 25147
25147: DATA

33534: DIR [] ==> 0

FIZ tells you the byte position of each directory entry or file data marker
that it finds. For the directory entry, it tells you the name found in that
location and the data to which it points. In this case, it looks like the first
directory entry was damaged, but the rest of the data looks okay. You can
list those files with zoo 1@2323 project . zoo, or extract them all with zoo
x@2323 project.zoo.

ZOO's Compression Methods • 239

The tricky part in this example is extracting the data for the first file.
You must give ZOO both a directory entry and file data position, as in: zoo
x@2323, 112 project. zoo. This command will extract the data for the first
file under the name Q1. txt. ZOO will complain; each directory entry has a
check to make sure the file data is correct, and since you're using the wrong
directory entry, that check will fail. But, this procedure will often extract the
data successfully. You'll have to manually check the data and decide what the
actual filename should be.

ZOO's Compression Methods
ZOO stores files using either of two different compression methods. ZOO's
LZW compression is based on Unix compress. ZOO's LZH method is similar
to ZIP's Deflation algorithm (see page 219). It starts with LZ77 compression,
and uses Huffman compression to reduce the offset and length codes.

More Information
The ZOO program can be found on the SIMTEL archives in the msdos/ zoo
directory.

A portable version of ZOO that compiles and runs under most Unix-like
systems is available in Volume 17 of the comp. sources. unix newsgroup.
Archives of this newsgroup are available from http: I /ftp. digital. com.
They can also be accessed using anonymous FTP to ftp. uu. net, in the
directory usenet/ comp. sources. unix.

The maczoo program for the Macintosh is a simple, but functional, port
of ZOO. It's available from the Info-Mac archives.

Stufflt

The original designers of the Macintosh system wrestled with a difficult prob­
lem for which they developed an interesting solution. The problem was how
to juggle the various pieces of information that needed to be kept for each file.
In addition to such mundane information as the name of the file and the time
it was created, they also wanted to track the application that owned each file
and a number of other details.

Their solution was to store each file as several distinct pieces. On MS­
DOS or Unix, a file consists of only two pieces: the file data and the file
directory information, which contains such trivia as the filename and the time
the file was last modified. The Macintosh separates each file into three pieces.
The directory information includes a variety of information, including the
application associated with this file. The file data is stored as two separate
pieces, called forks. The data fork is similar to files on MS-DOS or Unix,
while the resource fork is a simple database used to store a variety of structured
information.

Stufflt at a Glance

Name:
Extensions:
Use For:
On CD:

Stufflt
. sit, . sea
Archiving files with compression
Stuffit Expander Lite for Macintosh

241

242 • Chapter 27: Stufflt

The extended directory information and the resource fork solve several
problems. For example, many other systems attempt to decide what program
to associate with a file based purely on the name of the file. This approach fails
if the user who creates the file doesn't cooperate. For example, some people use
their initials or the date as the file extension, foiling systems that rely on the
file extension to determine the type of the file. (The files chapter7. tbk and
f igure2. tbk are probably not the same type of file, despite the common ex­
tension.) The Macintosh stores a separate code in the directory to identify the
file format and the application that owns the file. Programs use the resource
fork to store the text and images that they use internally. This makes it easy
to customize a program's visual appearance (for example, to translate the text
into a different language) without having to recompile the program. A resource
editor can be used to browse the resource fork and examine and alter data in
it.

As you can imagine, archiving a Macintosh file requires some additional
attention. An archiver for Macintosh files must store all of the directory in­
formation and the resource fork in the archive, which must be a single stream
of bytes that can be transferred using conventional serial protocols. Of the
archivers I've examined so far, only ZIP and ZOO are capable of handling
this additional information, and then only within limits. ZIP's "extra infor­
mation" fields can be used to hold the additional Macintosh-specific directory
information, but the limit of 64 kilobytes for this information makes it a poor
candidate for storing the resource fork. ZOO is a better fit, since it allows a
single file to be stored as multiple "sub files," which can be adapted to store
Macintosh files as three separate pieces. (In fact, Macintosh files are often
stored on MS-DOS or Unix disks as three separate files.)

Aladdin's Stuff/t program fills the bill nicely. Originally a shareware pro­
gram developed by Ray Lau, Stuffit is freely available from many sources,
offers good compression, and was designed specifically to handle the Macin­
tosh's structured files.

How Stufflt Works
A simple Stuffit archive is organized as shown in Figure 27.1. Table 27.1
details the information in the archive header.

How Stufflt Works • 243

Archive Header File ... File ...

File Header Resource Fork Data Fork

Figure 27.1 Organization of a Stuff It Archive

Size Description
4 Magic value: SIT!
2 Number of files in archive
4 Length of archive, including this header
4 Magic value: rLau
1 Version number of archive
7 Reserved

Table 27.1 Stuff It Archive Header

The primary difference between Stufflt's file header, shown in Table 27.2,
and the file header used by the other archivers we've examined is the additional
information for the resource and data fork. The file type and file creator are
four-character codes indicating the kind of data in the file and the applica­
tion that currently owns the file. The compression codes that appear at the
beginning of the file header are shown in Table 27.3.

Rather than storing the full name of a file, including the name of the
folder, Stufflt indicates the folder containing a group of files by placing two
special file headers before and after the group of files. The file header preceding
the group of files uses compression code 32 to indicate the beginning of a new
folder. The file header contains the name and other information about the
folder itsel£ The file header following the group of files is identical, except
that the compression type fields are set to 33 to indicate the end of the folder.
By using these "start-of-folder" and "end-of-folder" markers, a Stuffit file can
reproduce any set of nested folders without having to unnecessarily copy the
folder name with every file stored in that folder.

244 • Chapter 27: Stufflt

Size Description
1 Compression method for resource fork
1 Compression method for data fork
1 Length of filename
63 Filename
4 File type
4 File creator
2 Finder flags
4 Creation date. Seconds since 0:00 January 1, 1904
4 Modification date. Seconds since 0:00 January 1, 1904
4 Length of uncompressed resource fork
4 Length of uncompressed data fork
4 Compressed length of resource fork
4 Compressed length of data fork
2 CRC of resource fork
2 CRC of data fork
6 Reserved
2 CRC of file header

Table 27.2 Stufflt File Header

More Information
Aladdin Systems distributes commercial, shareware and freeware versions of
Stuffit for Macintosh, MS-DOS and Windows. For further information,
check http: I lwww. aladdinsys . com or anonymous FTP to Aladdin Sys­
tems' archive site at ftp. aladdinsys . com.

Unix programs that are capable of packing and unpacking old-style Stuffit
archives are available from the University of Michigan Macintosh archive
(http: I /www. umich. edul-archi velmaclutillunix).

More Information • 245

Value Description
0 No compression
1 RLE compression
2 LZW compression, a la compress
3 Huffman compression
32 Start-of-folder
33 End-of-folder

Table 27.3 Stuff It Compression Codes
Note: These are the compression codes used by the original shareware version of
Stuffit. Newer versions support additional compression methods.

Other
Formats

I've tried to cover the most important archiving and compression utilities, but
there are literally hundreds of different programs available. This chapter briefly
describes a few others.

SEA, SFX and EXE
It's a good idea to archive and compress a group of files before you send them
to someone else. However, the recipient must be able to extract the files when
she receives your archive, which generally means that she needs a copy of the
corresponding de-archiving program.

If you're unsure what de-archiving programs she has, you can simplify
things by providing a self-extracting archive. A self-extracting archive is a file
that bundles a short de-archiving program with the archived data. The result is

Other Compression and Archiving Formats at a Glance

Names:

Extensions:

Use For:
On CD:

LHA, ARJ, RAR, AR, Pack, Compact, Squeeze,
CompactPro
.lzh, . arj, . rar, . ar, . z, . C, . ?q?, . cpt, . exe, . sea,
.sfx
Archiving and/ or compressing files
Various archiving and compression utilities

247

248 • Chapter 28: Other Formats

a program that, when run, de-archives the data contained within the program.
On MS-DOS, self-extracting archives always have the extension . exe. On the
Macintosh, they can have a variety of different extensions; . sea and . sfx are
common.

Of course, self-extracting archives are only self-extracting on the appropri­
ate system. If you have an MS-DOS self-extracting file and you're using a
Macintosh, you'll need an appropriate de-archiver to extract the data. There
are two nasty complications. The first complication is that you need to figure
out which de-archiver to use. An MS-DOS file with an . exe extension could
have been created by any of a number of archivers. The second complication
is that you may need a special version of the de-archiver to extract the data.
Because self-extracting files have an executable program attached to the be­
ginning of the file, many de-archivers won't be able to find the archived data
within the file.

If you have a binary dump program, you can often puzzle out the format
of the archived data by looking at the beginning of the program. There is
usually a block of text identifying the archiver, or at least the manufacturer of
the archiver.

How you create a self-extracting archive varies widely. In some cases, the
normal archiving program can build one directly. In other cases, you use a
separate program to attach the de-archiving code to the archive.

ARJ
Robert J ung's AR] archiver has been gaining converts among many MS-DOS
users. It offers good compression and speed, and the freely available version
offers a number of features only available in the registered versions of its com­
petitors, such as the ability to build self-extracting archives. ARJ archives have
the extension . ar j .

The ARJ program for MS-DOS is available in the SIMTEL archives in the
msdos/ archi ver directory. A simple UNARJ extraction utility is available
in source code form from the same source. UNARJ can be compiled on a
variety of systems, and is capable of extracting both normal and self-extracting
ARJ archives. An UNARJ program for the Macintosh is available from the
Info-Mac archives.

LHA/LZH • 249

LHAILZH
LHA is an archiver similar to ARC and ZIP. It was originally named LHARC,
but the name was shortened to avoid any confusion with the ARC program.
(Some versions of the program are still called LHARC.) LHA is available for
a number of platforms, and has been fairly popular. One confusing point is
that LHA uses the file extension . lzh, unlike many other compressors whose
name and extension are the same.

An LHA program for MS-DOS is available in the SIMTEL archives in
the msdos/ starter directory. The MacLHA program for the Macintosh is
available from the Info-Mac archives.

RAR
RAR is another archiver that has been gaining some attention. Its primary
feature is that it offers a "solid, archive option. With this option, RAR builds
the archive and then compresses the entire archive at once, rather than com­
pressing each file as it is added. Usually, this approach results in noticeably
better compression, at the cost of making the archive slower to manipulate
(extracting one file requires decompressing the entire archive). RAR archives
have the extension . rar.

The MS-DOS version of RAR is available from the SIMTEL archives
in the msdos/ archi ver directory. This file is a RAR-format self-extracting
archive. The source code for a portable UNRAR de-archiving utility is in­
cluded.

AR
There are (unfortunately) many different programs with the name AR. The
Unix AR is an archiving program that does no compression, and is used pri­
marily to maintain programming libraries. Haruhiko Okumura's AR archiver
implemented the LZHUF compression algorithm that was later adopted by
ZOO, ARJ, and several other programs. Carl Kreider's AR archiver is based
on LZW code from compress, and has been a standard in the OS/9 commu­
nity for many years.

250 • Chapter 28: Other Formats

Pack and Compact
Pack and Compact are two old Unix compression programs that are similar to
compress, but have less effective compression. Pack uses an extension of . z,
and Compact uses an extension of . C.

The GUNZIP program can uncompress Pack format. Compact is docu­
mented in [URM94].

Squeeze
Squeeze (also called SQ) is an old CP/M program that found its way toMS­
DOS and a few other systems. Squeeze, like compress and GZIP, was a
single-file compressor. It compressed a file and changed the second letter of
the extension to Q to indicate this fact. For example, PROGRAM. COM would
compress to PROGRAM. CQM.

CompactPro
Bill Goodman's CompactPro is another popular Macintosh archiving program.
CompactPro archives have the extension . cpt.

WEB Compression
In 1992, WEB Technologies announced a new compression product called
DataFiles/16. WEB made a number of claims. The most interesting one was
"that virtually any amount of data can be squeezed to under 1024 bytes by
using DataFiles/16 to compress its own output multiple times."1

This idea of repeatedly using a compression program to make a file smaller
and smaller is quite appealing. In many ways, this idea is the software analog
of the perpetual motion machine; people never seem to really believe that it's
impossible. (See pages 187-189 for an explanation of why this is impossible.)

1 Byte 'Week, April 20, 1992, quoting a WEB Technologies press release.

WEB Compression • 251

Many programs have claimed this feat. WEB was merely one of the best
publicized.

In practice, running any file through a good compression program a second
time will often reduce the size by an additional one or two percent. Beyond
that, the compression program is as likely to expand the data as to compress
it. The feat that WEB was attempting is impossible, although numerous tricks
can make it appear to work.

Some of these compression claims can be attributed to programmers who
fail to completely understand what they're doing. For example, many repeated
compression ideas rely on altering the filename to indicate how many times the
file has been "compressed." This method essentially boils down to transferring
data from the file to the filename. The problem is obvious: Only so much
data can fit in the filename.

WEB Technologies' perfect compression claim was silently dropped after
several months.

Part Four

Encoding Formats

About
Encoding

If you've ever accidentally listed a binary file to your computer screen, you
know how unpleasant the results can be. Like your screen, many computer
connections are designed to handle text files, and they get rather upset if you
feed them raw binary data.

However, you often need to transfer raw binary data through mail or some
other connection that's geared to handling text. To do this, you encode the
data, converting it into a form that doesn't choke the computer connection
and can be safely decoded on the other end.

Encoding is fairly simple. Many different programs perform suitable en­
coding. The most popular is the old UUEncode program. This program is
simple and effective, but the output is not quite clean enough for a few un­
usually sensitive situations, which led to the development of alternatives such
as XXEncode.

Encoding is increasingly being built into programs that access electronic
mail. This allows you to send and receive binary data without having to worry
about the actual mechanics of encoding and decoding. Systems such as MIME
(which is used by many Unix, PC, and Macintosh mail readers, including the
popular Eudora program) support this process nicely. They automate not
only the encoding and decoding, but also mark the type of data, so that the
recipient's mail program can show the data in an appropriate way.

255

UUEncode

UUEncode is still one of the most widely-used methods for encoding binary
files to be transferred through mail. Unfortunately, some mail systems damage
UUEncoded files, so UUEncode is slowly being replaced with more robust
approaches.

When to Use UUEncode
Although UUEncode is very popular, it doesn't always work. UUEncode uses
a lot of punctuation marks in the encoded output, and many of these punctu­
ation marks are mangled or lost by certain mail gateways. You have no control
over the path your mail takes through the Internet. If your message travels
through one of these gateways, your UUEncoded data could get damaged. As
a result, there are several incompatible versions of UUEncode floating around.

UUEncode at a Glance

Name:
Extensions:
Use For:
Reference:
On CD:

UUEncode/UUDecode
.uue, .uu
Encoding files for transfer through mail or news
Unix man page, reproduced in [PRM94]
UUDeview for Unix and MS-DOS; WinCode for Windows

257

258 • Chapter 30: UUEncode

The original UUEncode program used spaces in its output. A space is
the most common character that gets altered through certain mail gateways.
Multiple spaces occasionally get reduced to a single space and spaces at the
ends of lines can be lost. To avoid this problem, some versions of UUEncode
use slightly different characters in their output. The most common variation
is to use c (ASCII character 96) instead of space; another variation uses -
instead of space. Because of this variation, you may receive a UUEncoded file
that your particular version of UUDecode can't decode.

You won't encounter either of these problems very often. As the Internet
evolves, problematic mail gateways are slowly being replaced or upgraded, and
the version of UUEncode that uses c instead of space is the most common
one in widespread use. Some versions of UUDecode recognize the output of
several different UUEncode programs. But occasionally, you will find a file
that has been mangled by a wayward mailer or was created with a different
variant of UUEncode. In that case, you might want to try another encoding,
such as XXEncode or MIME encoding. These encodings are very similar to
UUEncoding, but avoid strange punctuation marks and spaces in their output.

How to Use UUEncode and UUDecode
UUEncoding converts a binary file into a file that consists only of text char­
acters. You can then mail this file to someone, who can convert it back into
a copy of the original binary file. On Unix or MS-DOS, you would use
something like the following command to encode the file:

uuencode myfile <myfile >myfile.uue

The name following the UUEncode command is the name that will be
placed inside the encoded file. Usually this name is the same as that of the file
being encoded. By default, as with many programs that originated on Unix,
the output is simply printed to the screen, and you must redirect it to a file to
save it. The extension . uue is common.

You can mail the UUEncoded file the same way you would mail any text
file. Details vary widely from system to system. On a Unix system, you might
use the following command:

mail -s 11 A file for you" tim@humperdinck <myfile.uue

How UUEncode Works • 259

Other mail systems also allow you to mail a pre-existing file; check the
documentation for your mail program. For many newer mailers, you simply
begin a new message, and then read the pre-existing file into the mail editor.

At the other end, this process must be reversed, first saving the UUEn­
coded text into a file, and then using the uudecode command to decode the
result. The common UUDecode program uses the filename specified by the
sender.

UUEncoding and UUDecoding are now widely supported by archiving
and mail reader programs.

How UUEncode Works
The output of UUEncode begins with the word begin and ends with the
word end. These words let the UUDecode program ignore any text that may
precede (such as mail headers} or follow (such as signatures) the encoded in­
formation. The begin line also specifies a three-digit number and the name of
the file. The three-digit number specifies the file permissions using a common
Unix notation; usually this number is 755 or 700 for executables, or 644 or
600 for other types of files. The remaining lines contain the actual encoded
data.

begin 644 test
45&AI<R!I<R!A('1E<W0@9FEL90JD

end

Each line of the encoded data starts with a character indicating the number
of bytes in the decoded data for that line. The number of bytes in the decoded
line is added to 32 to obtain an ASCII character. In this example, the first line
of data starts with 4 (ASCII 52), indicating the line decodes to 20 bytes
of data. The second line of data starts with ' , which is substituting for
space (ASCII 32), indicating there are no bytes of data. By tradition, a line
containing zero bytes of data is included at the end of the file. (Typically, a
long UUEncoded file will have M at the beginning of most lines, because a full
line encodes exactly 45 bytes of data.)

The actual encoding uses an algorithm known as base 64 or four-for-three
encoding. Three bytes of data are a total of 24 bits. Taking these bits six

260 • Chapter 30: UUEncode

at a time gives four numbers between 0 and 63. UUEncode converts these
numbers into characters by adding 32 to get a character value ranging from
space for zero to underscore (ASCII 95) for a value of 63. Newer versions of
UUEncode replace a space wherever it occurs with '.

UUEncode Program
UUEncode is actually fairly simple to implement; here's a C implementation:

I• Simple implementation of UUEncode •I
#include <stdio.h>
static char encode[] =
II c ! \ 11#$%&, () •+'-. /0123456789: ; <=>?(QABCDEFGHIJKLMNOPQRSTUVWXYZ [\\]--II;
#define WRITEBITS(n) putc(encode[(n)&Ox3f] ,outfile);

EncodeLine(length, line, outFile)
int length; char •line; FILE •outFile;
{ char •p;

}

putc(ENCODE(length),outFile);
for (p=line;length > O;p+=3,length-=3) {

}

long 1 = (((long)p[O] & Oxff) << 16) I• collect 3 bytes •I
I (((long)p[1] & Oxff) << 8) I (((long)p[2] & Oxff));

WRITEBITS(l>>18); WRITEBITS(l>>12); I• Output 4 characters •I
WRITEBITS(l>>6); WRITEBITS(l);

putc('\n',outFile);

EncodeFile(name, inFile, outFile)
char •name; FILE •inFile, •outFile;
{char line[80]; inti;

}

fprintf(outFile,"begin 644 Y.s\n",name);
while ((i=fread(line,1,45,inFile)) > 0) I• At most 45 bytes/line •I

EncodeLine(i,line,outFile);
EncodeLine(O,O,outFile); I• Encode one final zero-length line •/
fprintf(outFile,"end\n");

int main(argc,argv)
int argc; char ••argv;
{ if (argc != 2) { I• Exactly one argument •I

fprintf(stderr,"Usage: Y.s name <infile >outfile\n",argv[O]);
return 1;

}

}
EncodeFile(argv[1],stdin,stdout);
return 0;

UUDecode Program
UUDecode is only slightly more complex:

I* Simple implementation of UUDecode *I
#include <stdio.h>
#include <string.h>
#include <stdlib.h>

UUDecode Program • 261

int decode[256]; I* Use a look-up for faster decoding *I
#define VALID(c) (decode[(int)(c) & Oxff] >= 0)
#define DECODE(c) (decode[(int)(c) & Oxff])

!nit() I* Build decoding array *I
{ int i;

}

for (i=O;i<256;i++) decode[i] = -1; I* Make everything invalid *I
for (i=O;i<64;i++) decode[i+' ']=i;
decode[(int)'''] = 0; I* Decode both ' and space to 0 *I

DecodeLine(line, length, outFile) I* Decode one line of data *I
char *line; int length; FILE *outFile;
{ long 1; int i;

}

while (length > 0) {
1 = 0;

}

for (i=O;i<4;i++) { I* Collect four characters *I

}

if (!VALID(*line)) fprintf(stderr,"Illegal char '%c'\n",*line);
1 = (1 << 6) I DECODE(*line++);

putc((l >> 16) & Oxff, outFile); I* Output three bytes *I
if (length> 1) putc((l >> 8) & Oxff, outFile);
if (length> 2) putc(l & Oxff, outFile);
length -= 3;

DecodeFile(inFile, outFile)
FILE *inFile, *outFile;
{char line[80]; int length;

do { I* Decode each line *I
if (fgets(line,80,inFile) == NULL) { I* Read the line *I

fprintf(stderr,"Error reading input.\n");
exit(1);

}
if (!VALID(line[O])) I* Is count character valid? *I

fprintf(stderr,"Illegal line count character '%c'\n",line[O]);

262 • Chapter 30: UUEncode

}

else I• Valid count, decode the line •I
DecodeLine(line+1,length = DECODE(line[O]),outFile);

} while (length> 0); I* Stop at a zero-length line •I
fgets(line,79,inFile);
if (strncmp(line,"end",3) != 0)

fprintf (stderr, "Final ''end'' missing. \n");
return;

I• Scan input looking for ''begin'' line •I
FILE * FindBegin(inFile)
FILE *inFile;
{char line[SO], fileName[SO];

int mode;

}

do {
if (fgets(line,SO,inFile) == NULL) {

fprintf(stderr,"No 'begin' found.\n");
exit(1);

}

} while (strncmp(line,"begin",5) != 0);
sscanf(line,"begin %o %79s",&mode, fileName);
printf("Decoding file '%s'\n",fileName);
return fopen(fileName,"w");

int main(argc, argv)
int argc; char **argv;
{FILE *f = FindBegin(stdin);

}

!nit();
if (f != NULL) {

DecodeFile(stdin,f);
fclose(f);

} else {

}

fprintf(stderr,"Couldn't open file.\n");
exit(1);

return 0;

XXEncode

The problems with UUEncode and UUDecode (see page 257) led to the
creation of similar programs called XXEncode and XXDecode. These programs
are used identically to UUEncode and UUDecode, but files encoded with
XXEncode are much less susceptible to damage.

How to Use XXEncode
Two programs, called XXEncode and XXDecode, are used to encode and
decode binary files. XXEncode converts a binary file into one that consists
only of text characters. You can mail the encoded file in the same way you
would mail any text file. The recipient can use the XXDecode program to
convert it back into a copy of the original binary file. The syntax is identical
to UUEncode.

xxencode myfile <myfile >myfile.xxe

XXEncode at a Glance

Name:
Extensions:
Use For:
On CD:

XXEncode/XXDecode
.xxe, .xx
Encoding files for transfer through mail or news
UUDeview for Unix and MS-DOS; WinCode for Windows

263

264 • Chapter 31: XXEncode

At the other end, this process must be reversed, first saving the encoded
text version into a file, and then using the xxdecode command to decode the
result. The XX.Decode program puts the result into a file whose name was
specified by the sender.

When to Use XXEncode
XXEncode is more reliable than UUEncode, but is still not very well known
and not everyone has access to it. For that reason, it's probably best to stick
with UUEncode unless you encounter problems with files that cannot be prop­
erly decoded. In that case, if XXEncode is available, it's a good choice.

How XXEncode Works
XXEncode works identically to UUEncode with one important change. In­
stead of simply adding 32 to obtain a character value, XXEncode takes the
value from 0 to 63 and uses the values in Table 31.1 to convert it into a
character.

XXEncode and XXDecode Programs
XXEncode is the same as UUEncode except for the string used to encode the
actual digits. Here are the only two lines that needs to be changed in the
source code on page 260:

static char encode[] =
11 +-0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz";

Similarly, because UUDecode uses a look-up table to convert characters
into the corresponding digit, only the Ini t function needs to be changed for
XX.Decode. The rest is the same as page 261:

static char encode[] =
"+-0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz";

!nit() I* Build decoding array •/

XXEncode and XXDecode Programs • 265

Code Char Code Char Code Char Code Char
0 + 16 E 32 u 48 k
1 17 F 33 v 49 1
2 0 18 G 34 w so m

3 1 19 H 35 X 51 n

4 2 20 I 36 y 52 0

5 3 21 J 37 z 53 p
6 4 22 K 38 a 54 q
7 5 23 L 39 b 55 r
8 6 24 M 40 c 56 s
9 7 25 N 41 d 57 t

10 8 26 0 42 e 58 u
11 9 27 p 43 f 59 v
12 A 28 Q 44 g 60 w
13 B 29 R 45 h 61 X

14 c 30 s 46 62 y
15 D 31 T 47 63 z

Table 31.1 XXEncode Encoding

{

}

int i;
for (i=O;i<256;i++) decode[i] = -1; I• Make everything invalid •/
for (i=O;i<64;i++) decode[(int)encode[i] & Oxff]=i;

BtoA

One common complaint about UUEncode and similar programs, such as
XXEncode, is that the encoded file is 33 percent larger than the binary file.
The BtoA (Binary-to-ASCII) program encodes binary files into an ASCII form
that is only 25 percent larger than the original. The AtoB (ASCII-to-Binary)
program decodes this format.

When to Use BtoA
The encoded output of BtoA is noticeably smaller than the output of either
UUEncode or XXEncode. As a result, BtoA is a good choice when the size
of the encoded result is important. If you have problems with long messages
being either lost or truncated, try compressing the files and using BtoA instead
of UUEncode. BtoA also includes a simple check to make sure the file hasn't
been corrupted, something UUEncode and XXEncode both lack. You have
some assurance that if AtoB doesn't complain, the file is correct.

BtoA at a Glance

Name:
Use For:
On CD:

BtoA/AtoB
Encoding files for transfer through mail or news
Source code for BtoA/ AtoB programs; ecd66win for
Windows

267

268 • Chapter 32: BtoA

BtoA achieves its size reductions by using more characters in the encoded
output (UUEncode and XXEncode only use 64 characters in their output;
BtoA uses 85). For this reason, BtoA-encoded files are more likely to be
damaged by nonstandard mailers than either UUEncoded or XXEncoded files.
If you encounter problems where AtoB can't decode a file that was encoded
with BtoA, it might be a good idea to try UUEncode or XXEncode. As I
mentioned in the last chapter, XXEncode is by far the most reliable of the
three.

How to Use BtoA
The simple Unix versions of AtoB and BtoA simply read a file and convert its
contents accordingly. BtoA is used to encode a file for mailing; AtoB is used
to recover the file upon receipt.

If you're using a Unix system to send mail, you can use a pipeline, feeding
the file to be mailed into btoa, then feeding the output of that into the mail
program to be mailed. A typical command line might look like:

btoa <fiLename I mail-s "Subject" someone@host.com

It's always a good idea to first send a brief message, so the recipient will
know to expect a large mail message, and will know how to decode it.

When you receive such a message, you should save it into a file, then use
the atob program to recover the original. If you save it into a file called
temp. asc, you might use the following command:

atob <temp.asc >fiLename

How BtoA Works
Another way to explain the operation of UUEncode and XXEncode is to say
that they take three bytes as a single number, then express that as a four-digit
number in base 64. BtoA uses a similar idea, except that it takes four bytes as
a single number and expresses it as a five-digit number in base 85. Of course,

How BtoA Works • 269

this method requires you to have 85 different characters to use as digits, which
is most of the ASCII character set.

BtoA collects four bytes at a time from the input, converts that four-byte
number into five numbers in base 85, and converts each of those into a single
"digit" by adding 33 to get an ASCII character. The encoded output is broken
into lines of 78 characters. BtoA has a few extra characters to play with because
there are more than 85 characters in the ASCII set. After it reads four bytes
for conversion, if all of those bytes are zero (which is quite common in some
types of data), it outputs a single z rather than the ! ! ! ! ! which it would
otherwise use. This simple compression helps compensate for the expansion
caused by the encoding.

The character x is used to mark the beginning and end of the encoded
data. BtoA places the line xbtoa Begin at the beginning of the encoded data,
and xbtoa End at the end. The xbtoa End line also has several numbers on
it, which are used to check for errors. Here's a typical end line:

xbtoa End N 8783 224f E c3 S 5613b R c3155fdd

The two numbers after N are the file size in decimal and hexadecimal,
respectively. At the end of the file, if there are fewer than four bytes left, BtoA
pads with zero bytes to get four bytes for its encoding. The file size at the
end is necessary so that AtoB can strip those added bytes. 1 The hexadecimal
values following E, S, and Rare three simple error checks that are used by the
decoder to verify that the data wasn't damaged. These error checks include
any zero bytes added to the end of the data.

The E check is the exclusive-or of the data bytes. The S check is the 32-bit
sum of the data bytes added to the length of the data (including the padding
zero bytes). The R check is a 32-bit value computed as follows: For each byte
of data, rotate the R value to the left by one bit, moving the high-order bit
into the low-order bit, then add the byte. All of these are computed on the
unencoded binary data.

1 The authors of BtoA were apparently unfamiliar with the technique of writing fewer than
five characters at the end to indicate the correct number of bytes to the decoder without
requiring an explicit count.

270 • Chapter 32: BtoA

More Information
Source code for BtoA and AtoB is included with the source code for the com­
press program, which can be found in Volume 2 of the comp. sources. unix
archives. One location of these archives is ftp. uu. net.

MIME

Programs such as UUEncode and UUDecode work, but they're not particu­
larly easy to use. Over the last few decades, several enhanced mail facilities
have been proposed. Many of these, such as the ISO X.400 standard, re­
quire dramatic changes to the way mail is delivered and stored, and for this
reason, these proposals have been slow to gain acceptance on the Internet.
The Internet is a huge collection of computers managed by many different
organizations, and major changes at low levels take many years to be deployed.

An alternative approach is to automate the encoding and decoding per­
formed by such programs as UUEncode and UUDecode, so that arbitrary
content can be mailed without any special knowledge on the part of the user.
The Multipurpose Internet Mail Extemiom (MIME) standard does exactly this.
It defines a standard way that the programs used to read and compose mail
messages can encode and decode data without any user intervention. It also
provides a standard way to tag the type of data so that the recipient's mail pro­
gram can display it (or play it through the speaker, as appropriate) correctly.

This chapter is based on an article first published in Dr. Dobbs journal, September 1995.

MIME at a Glance

Name:
Use For:
Reference:
On CD:

Multipurpose Internet Mail Extensions, MIME
Transferring data through mail or news
RFC 1521
UUDeview for Unix and MS-DOS; WinCode for Windows

271

272 • Chapter 33: MIME

These type indications have been adopted by the HTTP protocol used by
the World Wide Web (see page 35) to inform a browser of the type of data
being sent. World Wide Web browsers also use this to inform HTTP servers
what types of data they can accept.

When to Use MIME
MIME is usually integrated into the mailer program. Many mail reader pro­
grams now automatically recognize and decode MIME-format mail. Some can
automatically create MIME-format mail; you simply specify an "attachment"
to your message and the mail program will automatically encode the file.

This procedure is quite convenient if both the sender and recipient have
MIME-compatible mail readers. If not, it's still possible to use MIME, but
it is more complex. Several programs, including the metamail program for
Unix, can decode MIME-encoded mail. To use them, simply save the received
message to a file and process it with the appropriate program. Manually
encoding a file into MIME format can be tricky, since you have to specify the
content type properly in order for the receiving mail program to automatically
recognize the file. It may be better to stick with UUEncode rather than
manually encoding a file using MIME.

One complication that sometimes arises is that MIME supports many
different types of data. When you decode a MIME-format message, your
decoder has only a few options:

• It might have built-in support for that kind of data. For example, many
MIME decoders support compound messages directly.

• It might call another program to handle that data. Graphics, sound, and
movie formats are usually handled by an external program. You must
have a suitable external program and configure your MIME decoder so
it will know to use that program.

• It might simply decode the data into a file and tell you the format. It's
then up to you to figure out how to view it. In this minimal form,
MIME is comparable to UUEncode; it lets you safely transfer binary
data through the mail.

How MIME Works • 273

The most common source of problems with MIME is not having your MIME
software properly configured to use the correct external programs.

How MIME Works
The basic definition of Internet mail is contained in RFC822. 1 According to
RFC822, a mail message consists of header lines followed by a blank line and a
message body. While RFC822 describes the syntax of header lines in consider­
able detail, it is less precise about the body: "The body is simply a sequence of
lines containing ASCII characters." MIME augments this definition by adding
the five new headers described below. These five headers, among other things,
specify the precise format of the message body:

Content-Type Specifies the type of data contained in the message. For
example, a Content-Type of "audio/basic" indicates a particular audio for­
mat that the mail reader should decode and play.

Content-Transfer-Encoding Specifies how the data is encoded into
seven-bit text.

MIME-Version Indicates MIME compliance. This header was omitted
from early drafts of MIME, so isn't yet used by all encoders.

Content-10 Uniquely identifies the body of the message.

Content-Description Provides an additional human-readable descrip­
tion.

MIME Content Types
MIME specifies the format of the message body in three layers. The first is a
broad type that identifies the general kind of data. By itself, the type doesn't
provide enough information for the reader to do anything useful, but it does
help the reader select a default handling for certain classes of messages (for

1 An RFC is a "Request For Comments," a document being evaluated as an Internet
standard.

27 4 • Chapter 33: MIME

Type
text

audio
image
video
application

message
multipart

Description
Human-readable text, possibly with textual markup. Any
file with type text should be intelligible if simply listed to
the screen. (Binary word processor formats are not text.)
Sound data
Still image
Movie or animated image
Application-specific data file; this type includes script files
in certain text languages
Wrapper for an embedded message
Multi-part message. Each part may be in a different for­
mat. Subtypes indicate the relationship between the differ-
ent parts

Table 33.1 MIME Top-Level Content Types

example, text formats might be simply listed to the screen, while unrecog­
nized image formats would not be). The second layer is the subtype. The type
and subtype together specify the exact kind of data in the message (such as
image/ gif). The third layer specifies how the data is encoded into seven-bit
ASCII.

The Content-Type header contains a type and subtype separated by a
I character, followed by a list of keyword=value pairs. For example, the type
text/plain; charset=iso-8859-8 might be used for a plain text file con­
taining characters in the ISO Roman/Hebrew character set. If the display sup­
ported Hebrew characters, the mail reader could (after decoding) display the
text as it was intended by the sender.

There are currently seven defined top-level types, listed in Table 33.1. Note
that types, subtypes, and keywords are all case-insensitive. Whether or not the
keyword values are case-sensitive depends on the particular keyword.

The first five top-level types in Table 33.1 indicate a single data file in a
single format. Some subtypes are given in Table 33.2. These basic types are
a big improvement over text-only mail, allowing messages to contain graphics,
sound, or other types of data. They are also quite easy to support; mail readers
only need to parse the Content-Type and Content-Transfer-Encoding
headers and decode two simple data formats.

Type
text/plain

How MIME Works • 275

Description
Plain text with no special formatting. The charset key
is used to specify US-ASCII, or one of the IS0-8859
character sets.

text/enriched An alternate format specified in RFC1563.
audio/basic

image/gif
image/jpeg
image/tiff
video/mpeg

A single-channel 8000hz audio file in eight-bit ISDN
,u-law format.
A still image in GIF format.
A still image in JPEG format.
A still image in TIFF format.
A video image in MPEG format. Video images may or
may not contain an associated soundtrack.

video/quicktime A video image in QuickTime format.
application/ octet-stream Binary data of an unspecified format. The

type key can be used to give additional, human-readable
information. The padding key can be used to specify up
to seven bits of padding that were added to round a
bit-oriented file to a whole number of eight-bit bytes.

application/postscript A PostScript file.
application/mac-binhex40 A Macintosh file encoded with BinHex.

Table 33.2 Simple MIME Data Types

More Complex Messages
The remaining two types, message and multipart, provide a number of
useful features that can reduce mail delivery costs and allow single messages to
combine different kinds of data.

The message type provides three important capabilities. The subtype
message/rfc822 allows another mail message to be embedded within a
MIME message. This is useful primarily for mailers that must automati­
cally forward or return messages. The message/external-body type saves
on transfer costs by specifying that the actual message body is contained else­
where. Keywords define exactly how the message body can be retrieved (for ex­
ample, by anonymous FTP or as a local file). The message/external-body
type uses keywords to indicate exactly how to retrieve the data.

276 • Chapter 33: MIME

The message/partial type allows a single large message to be split and
sent as several smaller messages. This capability can be useful when dealing
with mail systems that limit the size of messages. The message/partial
type has three keywords: id specifies a unique identifier that is used to match
different pieces of the same message; number specifies the order of the parts
(parts are numbered starting with 1); and total gives the total number of
parts. The id and number keywords are required on all parts; total is
required only on the last part.

The multi part types allow a single message to contain several pieces, each
in a different format. The most common of these types is multipart/mixed.
This type indicates that the message consists of multiple pieces, each with
its own separate Content-Type header. A multipart/alternative mes­
sage includes several alternative forms of the same information (such as both
plain text and a word processor file with the same content). The parts of
a multipart/parallel message are intended to be displayed simultane­
ously {such as an audio recording and a photograph of the speaker). A
multipart/digest message is the same as multipart/mixed except that
the default Content-Type for each part is message/rfc822 rather than
text/plain.

All message and multipart types allow (indeed, often require) the em­
bedded data to have its own headers. Technically, the embedded data is
not an RFC822 message (for instance, it may lack a From header), even
though it has the same general format. For example, if a message has type
message/external-body, the body contains a series of lines that look like
RFC822 headers, including Content-Type (the type of the data in the exter­
nal file) and Content-Transfer-Encoding (how the data is encoded in the
external file). Like RFC822, a blank line indicates the end of the headers.

Multipart messages must have some way to separate the different parts.
The "boundary" keyword specifies a string that does not occur anywhere else in
the message. The actual separators consist of the specified string preceded by -­
(two hyphens). The end of the multipart message is marked by the boundary
string preceded and followed by --. Figure 33.1 shows this mechanism in
action. This message displays a text message while retrieving and playing
audio data from a local file. A minimal MIME-compliant mail reader would
show the text part, and inform the user of the type and location of the external
file data.

From: tim~humperdinck (Tim Kientzle)
To: tim~humperdinck

Subject: A Sample Multipart message
MIME-Version: 1.0

How MIME Works • 277

Content-Type: multipart/parallel; boundary=SoMeBoUnDaRy

Any text preceding the first boundary string is ignored
by MIME-compliant mail readers. This area usually holds
a short message informing a person using a non-compliant
reader that this is a MIME message that they may not be
able to read.
--SoMeBoUnDaRy

The preceding blank line ends the headers for this part.
Since there were none, this is assumed to be plain text
in US-ASCII. The boundary cannot occur in the actual
text, so that mailers can quickly scan the text to
locate the boundaries.
--SoMeBoUnDaRy
Content-Type: message/external-body; access-type=local-file;
name=/pub/file.audio
Content-Transfer-Encoding: 7bit

Content-Type: audio/basic
Content-Transfer-Encoding: binary

This text is ignored, the actual audio comes from the
file /pub/file.audio. Both blank lines above are
important. Also note the different encodings.
The 7bit encoding means that this embedded message is
in 7bit (which is mandatory for message/external-body),
while the actual audio data is stored in binary in the
local file.
--SoMeBoUnDaRy--
This text follows the closing boundary marker above,
and is therefore ignored by compliant mail readers.

Figure 33.1 Sample Multipart Message

278 • Chapter 33: MIME

Encoding Description
7bi t Unencoded seven-bit text
8bi t Unencoded eight-bit text

binary Unencoded binary data
Quoted-Printable Most seven-bit characters are unencoded;

other characters are represented as= followed
by two hex digits

Base64 Encoded in base 64 using digits A-Za-z0-9+/

Table 33.3 MIME Encoding Types

Encoding
Transparent handling of binary data is one of the primary goals of MIME.
MIME uses the Content-Transfer-Encoding header field to specify the
encoding. The five currently-defined encodings are given in Table 33.3. The
first three indicate that the data is unencoded. The 8bi t and binary types
are used primarily with message/external-body and occasionally with mail
systems that support eight-bit messages.

The Quoted-Printable encoding is intended for data that is primarily
seven-bit, with occasional eight-bit values within it. For example, text messages
in ISO character sets are often predominantly seven-bit. Quoted-Printable
allows most seven-bit text characters to represent themselves. The remaining
characters are encoded as three-character sequences consisting of= followed by
two uppercase hexadecimal digits. Note that= is encoded as =3D.

The advantage of the Quoted-Printable encoding is that it allows any
part of the data that is in seven-bit US-ASCII to be read without decoding.
However, for raw binary data, it can introduce excessive overhead. The pre­
ferred encoding for raw binary data is the Base64 encoding. Each three bytes
of binary data is encoded as four characters. The 24-bit value is treated as four
six-bit numbers, which are then encoded from the characters A-Z, a-z, 0-9,
+, and I. Thus, the becomes dGhl. The result is padded with = to a multiple
of four characters, and broken into 72-character lines. This encoding is similar
to the one used by the popular UUEncode utility (see page 257), but avoids
using punctuation characters that are lost or altered by certain mail gateways.

Security • 279

In some cases, no encoding is necessary. In particular, the multi part type
always uses 7bit, as do message/partial and message/external-body.
Under certain circumstances, other message types can use binary or 8bi t.
The remaining types can use any available encoding. The point of these re­
strictions on message and multipart is to avoid the possibility of nested
encodings, which can unnecessarily bloat the message. Remember that a
Content-Transfer-Encoding of 7bi t for a multipart message means
that the individual parts have all been encoded for seven-bit transport.

Security
Many projects have used mail to transfer scripts to be automatically executed
on the receiving machine. MIME's application/postscript is one ex­
ample, and other such types are being proposed. Any system that allows a
received program to be automatically executed is a potential security risk. The
PostScript language includes the ability to modify files, and even without that
capability, it is possible to crash many systems by consuming excessive memory
or disk space. Security-conscious systems may need to restrict the handling of
these types. For example, it is usually more secure to send PostScript files to a
printer than to interpret and display the data on the host machine.

More Information
The current MIME specification is RFC1521, which is available from the mail
server at RFC-INFQ(Disi. edu. Include the following two lines in the body of
your message (other RFC documents can be retrieved in a similar fashion):

retrieve: RFC
doc-id: RFC1521

MIME does not extend RFC822 to allow the use of non-ASCII char­
acters in mail headers. A related proposal, documented in RFC1522, does
permit non-ASCII characters in mail headers. An extended text subtype
text/enriched is described in RFCI563. This replaces the text/richte~t

280 • Chapter 33: MIME

type proposed in an earlier MIME draft (the name change was to reduce con­
fusion with Microsoft's Rich Text Format).

The complete MIME specification, in both text and PostScript form, and
the freely-available MetaMail implementation of MIME can be obtained from
ftp: I /thumper. bell core. com/pub/nsb. MetaMail integrates well with a
number of popular Unix mail reader programs, including Pine and Elm.

The popular Eudora mail reader allows users of Macintosh and Windows
to access Internet mail on a remote Unix machine. It uses MIME to encode
and decode attached documents. (http: I /www. qualcomm. com/ quest)

Bin Hex

The encodings discussed thus far all presume that the file contents are simply
a stream of bytes. This is true for Unix and most microcomputer operating
systems, but isn't true for some other systems. Most notably, Macintosh and
OS/2 both attach databases to each file (Macintosh literature refers to this
database as the "resource fork" while OS/2 calls it "extended attributes"). En­
coding a file on these systems requires a bit more care. Not only must the file
contents per se be encoded, but the attached database must also be encoded,
and the receiver must be able to separate these two parts of the file.

Apple has defined BinHex as a standard way of converting any Macintosh
file, including the resource fork, into a single stream of bytes. The text version
of this format can be used to transfer Macintosh files through mail. While
rarely seen outside of the Macintosh community, it is sometimes necessary to
decode such files on another system. Usually, the resource fork has nothing
that is usable on another system, so it's sufficient to simply extract and decode
the data portion of the file.

BinHex at a Glance

Name:
Extension:
Use For:

BinHex
.hqx
Encoding Macintosh files for transfer through mail

281

282 • Chapter 34: BinHex

How to Use Bin Hex
For Macintosh users, converting files to and from BinHex format can be easily
handled by a variety of utilities. Many terminal programs support BinHex, as
do many archiving programs. For users of other systems, BinHex files are a
little more challenging.

If you're not using a Macintosh, decoding a BinHex file will give you three
different output files. These three files hold the data fork, the resource fork,
and the Macintosh directory information. Usually, the data fork is the only
usable part.

For example, suppose you download a file with the extensions . sea. hqx
from an archive. The final . hqx marks this as a BinHex file. After decoding,
you'll have three files, corresponding to the three parts of a Macintosh . sea
self-extracting Stuffit archive. 1 In this case, the resource fork holds the self­
extraction program, and the data fork holds the actual archived data. If you're
not on a Macintosh, the self-extraction program isn't useful. You'll need a
suitable Stuffit de-archiver to burst the archived data from the data fork.

How BinHex Works
BinHex encoding is performed in three stages. First, the resource and data
forks are archived into a single stream of bytes with some error checks so
that the decoder can be certain the decoded data is correct. This archive is
compressed using a very simple run-length encoding approach. Finally, the
data is encoded into a text form.

The archiving step combines the data and resource forks into a single
stream of bytes. This is necessary to transfer the file using standard protocols
such as ZModem or FTP. This is also necessary to store the file on a Unix
archive site. BinHex archiving is pretty simple; it bundles the basic file in­
formation with a CRC on each section so the decoder can check for errors.
Table 34.1 details the format.

1 The . sea extension is used for several different self-extracting archive formats; Stuffit is
the most common.

Length
1
n
1
4
4
2
4
4
2
n
2

Description
Length of filename (1-63)
Filename
Version (currently zero)
File type
File creator
Finder flags
Length of data fork
Length of resource fork
CRC of previous data
Data fork
CRC of data fork

n Resource fork
2 CRC of resource fork

Table 34.1 BinHex Archive Format

How BinHex Works • 283

Once the file is archived, BinHex does some simple run-length compres­
sion. Any sequence of three or more repeated bytes is replaced by a single
copy of the byte followed by 144 and the one-byte repeat count. For example,
if the value 137 were repeated 23 times, it would be replaced with the three
bytes 137 144 23. As a special case, the byte 144 is encoded as 144 0. The
zero repeat count means this encodes a single 144, not a repeat of the previous
byte.

After compression, you have a single Macintosh file encoded as a stream
of binary data. Technically, this intermediate format is called hqx8, but it is
rarely used. Instead, BinHex encodes the data into a text format that's suitable
for mail transfer. This stage uses a base 64 encoding similar to UUEncode,
but using Table 34.2 to convert six-bit values into characters. The final text
consists of a leading comment line,

(This file must be converted with BinHex 4.0)

followed by the encoded data. A colon character (:) is added to the beginning
and end of the encoded data, and the result is broken into lines of at most 64
characters.

284 • Chapter 34: BinHex

Code Char Code Char Code Char Code Char
0 16 3 32 J 48
1 " 17 4 33 K 49 a
2 # 18 5 34 L so b
3 $ 19 6 35 M 51 c
4 o/o 20 8 36 N 52 d
5 & 21 9 37 p 53 e
6 22 @ 38 Q 54 f
7 (23 A 39 R 55 h
8) 24 B 40 s 56
9 * 25 c 41 T 57 J

10 + 26 D 42 T 58 k
11 27 E 43 v 59 I
12 28 F 44 X 60 m

13 0 29 G 45 y 61 p
14 1 30 H 46 z 62 q
IS 2 31 I 47 [63 r

Table 34.2 BinHex 4.0 Text Encoding

Bin Hex Variants
The most widely-used BinHex encoding is known as BinHex 4.0. Earlier ver­
sions ofBinHex are hardly ever seen. A program from Apple called BinHex 5.0
actually supports an encoding more widely known as MacBinary. MacBinary
is used by many Macintosh terminal programs to archive the various compo­
nents of a file so it can be transferred using common file transfer protocols
such as ZModem. It's less often seen on the Internet simply because it is a
binary encoding, and is therefore unsuitable for use with mail.

More Information
BinHex is supported by nearly all Macintosh archiving programs and many
terminal programs and mail readers. If you need a Macintosh program for de­
coding BinHex files, you'll have difficulty getting it from the Internet because,

More Information • 285

of course, Macintosh files on the Internet are usually BinHex encoded. In this
case, you may want to start by contacting BMUG (see page 12).

Some of the larger multi-format archivers for MS-DOS and Windows also
support BinHex. Aladdin Systems, the manufacturer of Stuffit, also has freely
available programs for MS-DOS and Windows available from their archive site
(http: I /www. aladdinsys. com).

A simple BinHex decoder for Unix and MS-DOS is available from the
CTAN archives (see page 75) in the archi ve-tools/xbin directory.

Part Five

Sound Formats

About
Sound

Conceptually, digital sound is fairly simple. A sound is carried along a wire
as a varying analog voltage. To handle this digitally, you sample the sound,
measuring the voltage at regular intervals with an analog-to-digital converter
(ADC). You can then store and manipulate these samples as digital data, and
finally reproduce the sound by converting it back into a varying voltage with
a digital-to-analog converter (DAC). Figure 35.1 illustrates this conversion.

Two important issues affect the quality of the resulting sound. The sam­
pling rate is how often you sample the sound waveform. The sample size con­
trols the accuracy of the samples. If you increase both the sampling rate and
sample size, you'll get better-quality sound, but you'll also increase the amount
of data you have to store. Just one second of CD-quality sound (44,100 sam­
ples per second, 16 bits per channel, two channels) is 172 kilobytes of data. To

Figure 35.1 Sampling a Sound Wave

289

290 • Chapter 35: About Sound

determining the best sampling rate and sample size, you must carefully judge
the trade-off between sound quality and data size.

Fortunately, it's fairly easy to quantify the effects of these two factors.
The sampling rate controls the highest frequency that you can reproduce.
A fact known as Nyquist's Law says that the highest frequency that you can
reproduce is one-half the sampling rate. For example, audio CDs store digital
sound sampled at 44,100 samples per second, so they can store sounds with
frequencies up to 22,050 hertz. 1 This frequency is well beyond what most
people can hear, and helps account for the high perceived quality of CD
audio. By contrast, much of the current telephone network uses digital sound
sampled at about 8,000 samples per second. Because most human speech lies
below 3,000 hertz, this sampling rate works quite well for this application.

The sample size controls a factor known as the signal-to-noise ratio. Any
method of storing and reproducing sound introduces some random loss, which
is heard as noise. For digital sound, the inherent noise is determined by the
accuracy of the samples. More accurate samples leave less margin for noise.

Playing Sound
Playing sound requires some way to convert a description of the sound in the
computer into a varying voltage that you can feed to the speakers. There are a
number of different approaches.

External Synthesizers
The easiest way to play a sound from the computer's point of view is to get
someone else to do it. The Musical Instrument Digital Interface (MIDI) is a
standard way to connect computers to music synthesizers, allowing the com­
puter to simply instruct the synthesizer to play certain notes. More recently,
MIDI-capable synthesizers have become available on add-in cards for various
computer systems. These cards have essentially the same electronics as their
stand-alone brethren, only without a keyboard.

1 Hertz = cycles per second. Hertz is also used for sampling rates.

Playing Sound • 291

FM Synthesis
One of the simpler ways to generate sounds electronically is with a technique
called FM synthesis. This technique is available on a single chip from a number
of sources, and is used by many low-end synthesizers and sound cards. FM
synthesis chips are controlled by specifying a set of frequencies and a way to
combine them. This approach is relatively easy from the computer's point of
view, which made it very popular before computers were really fast enough to
handle the requirements of sampled sounds.

Sampled Sounds
Both of the previous methods are somewhat limited in that you can produce
only a limited set of sounds. Synthesizers only support a limited collection
of different sounds, and FM synthesis is also limited in this regard. These
methods are also unable to record sound.

The electronics for handling digital sampled sounds are not that complex:
An ADC converts an analog sound into a series of digital samples; a DAC
converts them back. The problem is that this approach requires the computer
to quickly shuffle a lot of data.

The better sound cards have a quantity of dedicated memory for stor­
ing sound samples. The computer programs the sound card, then transfers
blocks of sound data to the sound card's internal memory. The sound card
collects samples from the internal memory and sends them to the DAC at
a steady rate, notifying the computer when it needs additional data. With
careful programming or a very fast computer, it's possible to perform complex
calculations to either create or alter the sound data on-the-fly. The computer
has to be able to read a block of sound data, and perform the calculations
before the sound card requires that block.

One common use for this type of processing is to combine multiple sounds
to simulate a synthesizer playing several notes. Each sound must be frequency­
shifted to the correct note, then the sounds are combined. Some sound cards
provide memory for multiple sounds. The sound card hardware then reads
and combines the sounds automatically; the computer only needs to make
sure the correct sounds are loaded into the proper place at the proper time.

292 • Chapter 35: About Sound

Digital Signal Processors
Complex audio effects and sophisticated audio compression can require sig­
nificant amounts of processing. Doing this processing as the sound is played
is simply impossible on many systems. For this reason, high-end sound cards
now include digital signal processors (DSPs). DSPs are specialized computers
designed to perform the type of computation required by sound processing.
The computer simply transfers the raw data to the sound card along with a
program for the DSP. The DSP then performs the calculations prior to passing
the data along to the DAC.

High-Quality Sound on Low-Quality Hardware
Although sound cards are becoming more popular, many computers still lack
anything more sophisticated than a single-bit speaker, such as the one built
into most PCs. As you might guess, one-bit sound doesn't precisely qualify
as "hi-fi." The following trick requires a lot of care but does allow reasonably
high-quality sound in this situation.

Pulse width modulation involves turning the speaker on and off extremely
fast. Each pulse is translated by the speaker into some intermediate value,
allowing the single-bit speaker to simulate a higher-resolution device. While
this approach can produce acceptable results, it does require the full attention
of the computer to precisely time the speaker pulses.

Storing Sound
The most obvious way to store sound data in a file is to simply write all of
the samples, one after the other. This simple scheme is known as pulse code
modulation (PCM). The fancy name comes from old electrical engineering
terminology. Of course, good file formats will also store the sampling rate and
sample size in the file, so that different sounds can be recorded in different
ways.

Because sound files require so much data, there's a lot of interest in com­
pression. Unfortunately, standard compression algori~hms do very poorly on
sound. Just as with photographs, low-level noise confounds the standard algo­
rithms.

Storing Sound • 293

Simple sound compression schemes were developed by the telephone com­
pany many years ago to allow them to pile more telephone conversations on
the same amount of wire. Th~ telephone companies have historically only
been interested in fixed-rate compression, in which all sounds are compressed
by exactly the same amount. This approach differs from typical computer
compression applications, which don't care if different data compresses by dif­
ferent amounts. However, the predictability of fixed-rate methods is a major
asset, which makes this type of compression quite popular with computer
sound applications.

Silence Encoding
When people speak, a considerable amount of time is occupied by silence.
Simple PCM sound requires just as much storage for ten seconds of silence
as for ten seconds of your next door neighbor's favorite loud music. A simple
way to reduce the size of many sound files is to replace stretches of silence
with a single code indicating the duration of the silence.

11-Law and A-Law Compression
When you feed sound data to your sound card, the sound card converts each
sound sample into a voltage, which is amplified and fed to your speakers or
headphones. As the sound samples vary, this voltage varies, and the speakers
convert the varying voltage into varying air pressure, which travels through the
air to your ears.

What exactly is the relationship between the sound sample values and the
voltages produced by your sound card? One obvious approach is to make this
relation linear, that is, a sound sample of 50 will produce exactly twice the
voltage as a sound sample of 25. This approach is not very efficient. The
catch is that you want to be able to reproduce a wide range of loudnesses, and
our ears don't respond to sound linearly. The difference between 0 and 1 may
be too large for quiet sounds, even though the difference between 49 and 50
is too small to be audible.

What you really want is for small sound samples (like I) to be very small,
and for larger sound samples (like 50) to be very large. What works well is to
use a logarithmic scale. In this scale, a sound sample of 50 will produce more

294 • Chapter 35: About Sound

The IJr Law relation is used primarily in North America and Japan. The fol­
lowing equation converts linear samples m into Jl-Law samples y p· Here, mp
is the peak sample value and J1 is a constant, usually IOO or 255.

sign(m) 1 (I I m I) y Ji = ln(l+p) n + /1 mp

A-Law is used primarily in Europe. Again, this equation converts linear sam­
ples m into A-Law samples YA· A is the constant 87.6.

{

l+tnA<,::)

YA =
sign(m) (I +InA 1.!!!..1)
l+lnA mp

Figure 35.2 11-Law and A-Law Sound Conversions

than twice the voltage (and sound pressure) as a sound sample of 25. This
technique increases the range of loudness without requiring a larger range of
numbers.

Two common equations specify the exact relationship. The Jl-Lav? and
A-Law relations allow eight-bit sound samples to represent the same range
as I2-bit linear sound samples. By changing what your numbers mean, you
obtain over 30 percent compression! Figure 35.2 gives the precise relationships
between linear, Jl-Law, and A-Law sound formats.

DPCM and ADPCM
Another simple fixed-rate compression scheme converts a sequence of sam­
ples by storing only the difference between each sample and the previous one.
This method, known as Differential PCM (D PCM), saves space because the
differences are typically smaller than the samples themselves. One of the sim­
plest reasonably effective compression methods for sound is to use Huffman
compression (see page 185) on these differences.

To maintain the accuracy of the original samples, you must store some
fairly large differences, even though most differences are quite small. Adaptive

2p is the greek letter "mu." p-Law is often written as u-Law.

Storing Sound • 295

Differential PCM (AD PCM) uses special codes to indicate the scale of the
next group of differences. This scaling factor allows a relatively small numeric
difference to occasionally represent a large change. ADPCM techniques can
compress sound data by a factor of four with reasonable quality.

More Advanced Techniques
More sophisticated compression techniques have been developed to take ad­
vantage of facts about human hearing, similar to the way }PEG exploits facts
about human vision (see page 157). These methods selectively choose sound
data to discard, resulting in fairly impressive compression while retaining high
quality. The biggest obstacle to widespread use is that they do require a large
amount of computation, and current computers aren't quite capable of per­
forming these complex calculations fast enough to decompress the sound as it
is being played.

Some compression techniques were developed for use by telephone sys­
tems, including cellular telephones. These methods are based on a model of
the human vocal tract. They analyze the sound for specific kinds of patterns
that are created by the larynx, throat, and mouth, and convey just those pat­
terns. These methods can achieve impressive compression of human speech.

More powerful schemes have been developed to compress sounds other
than speech. MPEG (see page 327) defines three successively more powerful,
and more complex, sound compression techniques. Electronics companies
have invested significant amounts of money to develop proprietary schemes
that allow them to pack hours of music onto compact digital tapes and discs.

Different people are interested in different kinds of sound compression.
People with faster computers and DSP chips are using MPEG and other
more sophisticated compression techniques, while people with slower sys­
tems can't reasonably use these computation-intensive approaches. Because
of this variation, many of the current sound-handling systems, including
the one in the Macintosh's QuickTime toolbox, support replaceable codecs
(compression/decompression modules). Using replaceable modules allows the
same basic software to be easily tailored to specific situations, and also makes
it easy to upgrade the software to support newer compression methods and
DSP chips.

296 • Chapter 35: About Sound

More Information
The camp. dsp newsgroup covers digital signal processing at a fairly techni­
cal level. The FAQ has a good (if somewhat dated) bibliography of related
materials. Another useful FAQ is the audio_fmts FAQ, regularly posted to
comp. dsp and news. answers. This is a fairly comprehensive and concise
summary of a number of different sound file formats.

The Computer Music journal archives have pointers to a lot of differ­
ent music-related resources. They also have a collection of sound files in
different formats. The archives are available on the World Wide Web at
http: I /www-mi tpress .mit. edu/Computer-Music-Journal/. They are
also available using anonymous FTP to mi tpress. mit. edu; look in the di­
rectory pub/Computer-Music-Journal.

The utexas mac archive lists a variety of sound players for the Macintosh
(http: I /wwwhost. ots. utexas. edu/mac/main. html). It's also available
using anonymous FTP to ftp: I /ftp. utexas. edu/pub/mac.

Yahoo (see page 14) has an extensive list of sound files and software. Look
under Multimedia.

AU

The AU sound file format is one of the most common sound formats on the
Internet today. This format is fairly simple. A small header specifies the basic
parameters of the sound-sampling rate, sample size, number of channels, and
encoding method-and the sound data follows. The major complication is
that these files are known as AU files on Sun systems and SND files on NeXT.
Some further confusion arises from the fact that old Sun AU files lacked a
header entirely, and SND is a common extension used by many other formats
on other systems.

Despite these minor issues, AU files are common and easy to play on most
systems. The most common AU files are 8000 hertz single-channel j.L-Law
files, although 16-bit linear stereo at 22,050 and 44,100 hertz sampling rates
are also common. Many of the sound format codes are used for special NeXT
and Sun formats that are rarely seen outside of those platforms.

The 8000 hertz J.L-Law format corresponds to the hardware support on
several popular Unix-like systems. The I dev I audio device on Sun worksta­
tions, Linux1

, FreeBSD1
, and several other systems defaults to this format. On

1Using the WJxW&re audio driver and a compatible sound card.

AU at a Glance

Names:
Extensions:
Use For:

AU, Sun AU, NeXT SND
.au, .snd
Exchanging sound data

297

298 •

Length
4
4

4
4

4
4
n
n

Chapter 36: AU

Description
Magic string: . snd
Offset of the sound data from the beginning of the file
(at least 28)
Number of bytes of sound data
Sound format

Code Description
1 8-bit J.l-Law
2 8-bit linear
3 16-bit linear
4 24-bit linear
5 32-bit linear
27 8-bit A-Law

Sampling rate in samples per second
Number of channels
Optional text description (at least four bytes)
Sound data

Table 36.1 AU File Format

these systems, you can simply dump AU files in this format to /dev/audio
to play them. A typical command is:

cat funny.au >/dev/audio

More Information
The Sunsite archive has a large collection of AU files available using anonymous
FTP from suns i te . unc . edu; look in the pub/multimedia/ sun-sounds
directory.

WAVE

With the growing popularity of Windows, the native WAVE sound format is
increasingly common. WAVE is actually a special type of RIFF file, so I'll
digress for a moment to discuss RIFF files.

How RIFF Works
RIFF (Resource Interchange File Format) is a file format that allows essentially
arbitrary data to be stored in a structured fashion. RIFF files can contain
blocks with different types of data in them. They are quite similar to the
Electronic Arts' IFF format originally designed for the Amiga. A RIFF file
is composed of chunks, some of which can contain other chunks in a nested
fashion. Each chunk has a four-character identifier and a length, as shown in
Figure 3 7 .1.

An entire RIFF file is actually a single chunk. The RIFF chunk serves to
collect and organize a group of other chunks. The first four bytes of data in a
RIFF chunk are a form identifier, as shown in Figure 37.2. The form identifier

WAVE at a Glance

Name:
Extension:
Use For:

Microsoft Windows RIFF WAVE
.wav
Windows sound storage

299

300 • Chapter 37: WAVE

length~ byres

Chunk Data

Figure 37.1 General Chunk Format

length,.. bytes

Sub-Chunk Sub-Chunk I
Figure 37.2 RIFF Chunk Format

indicates the type of chunks you should expect. The one we're interested in
here is the WAVE form, which stores information about a sampled sound.

WAVE Form
The WAVE form can have a variety of chunks within it, although usually
there's only a single fmt chunk and a single data chunk. In fact, many
programs that work with WAVE files assume the rigid format shown in Ta­
ble 37.1. While this assumption is usually acceptable, programs that only
recognize such a rigid format will not be able to handle WAVE files that in­
dude optional comment chunks or other data. Properly written programs that
deal with WAVE files will skip chunks they don't understand.

The fmt chunk, whose contents are outlined in Table 37.2, contains basic
information about the sample data. Most of these fields are self-explanatory.
Almost all WAVE files on the Internet are PCM format. The number of
channels and samples per second are basic sound parameters. The average
number of bytes per second is provided to help the player choose appropriate
sizes for buffers. Many sound systems buffer one second of sound at a time.

WAVE PCM Data Storage
The actual PCM data is stored in a fairly direct fashion. For concreteness,
assume you're dealing with a stereo sound with 20 bits for each sample. Each

WAVE Form • 301

Size Description
4 Chunk type: RIFF
4 Total file size minus eight
4 Form name: WAVE
4 Chunk type: fmtu
4 Format chunk data length: usually 16
16 Format chunk data
4 Chunk type: data
4 Length of sound data
n Actual sound samples

Table 37.1 Naive WAVE File Format

Size Description
2 Sample data format

Code Description
1 PCM data
257 IBM p-Law data
258 IBM A-Law data
259 IBM AVC ADPCM format

2 Number of channels
4 Samples per second
4 Average number of bytes per second
2 Block alignment
2 Significant bits per sample (only for PCM data)

Table 37.2 WAVE Format Chunk Data

individual 20-bit sample would be stored in three bytes. Because there are two
channels, samples appear in pairs; the first sample is for the left channel, the
second for the right. A group of samples, one for each channel, is a block. The
block alignment value in the format chunk specifies the total size of this block
(six in this example); this value is specified to help WAVE readers optimize
data transfers.

To put your 20-bit sample into those three bytes, WAVE specifies that you
add four zero bits to the bottom (least significant end) of the sample to pad

302 • Chapter 37: WAVE

Unsigned Sound Signed
Byte Value Byte
255 +127 127
254 +126 126

130 +2 2
129 +1 1
128 0 0
127 -1 255
126 -2 254

1 -127 129
0 -128 128

Table 37.3 Signed and Unsigned Eight-Bit Sound Samples

it to 24 bits. This style of padding lets a reader handle it as if it were 24-bit
data. Similarly, 12-bit data can be treated as if it were 16-bit data.

You also need to know how to handle positive and negative values. Sound
sample data is inherently signed-there are both positive and negative values.
One approach for working with signed numbers is known as two's complement,
which represents a sound value of zero with a byte value of 0. Another is to
offiet the values. For one-byte numbers, you can offset them by 128. This
represents a zero sound value with a byte value of 128. Two's complement is
often referred to as "signed format," while the offset method is often referred
to as "unsigned format." Table 37.3 shows the correspondence between signed
sound values and these two formats for eight-bit samples.

WAVE's PCM data format uses unsigned format for sound samples up to
eight bits, and signed format for larger samples.

Additional Chunk Types
Although not often used, WAVE does support a variety of additional chunks.
The fact chunk stores additional information about compressed sound data,
such as the total number of samples in the file. The cue chunk lets you

WAVE Form • 303

mark special positions in the sound data stream. This information can be
useful when a sound file needs to be synchronized with other events, such as a
slide show or movie. The plst playlist chunk can specify the order in which
parts of the sound file should be played. Other chunks allow text data to be
included.

WAVE supports several forms of compressed data, but none of them is
frequently used. IBM has registered format codes for jl-Law, A-Law, and
ADPCM compression. In addition, PCM WAVE files can replace the single
data chunk containing the PCM data with a LIST chunk. A LIST chunk
is structured like a RIFF chunk, containing a form code and a collection
of other chunks. WAVE files use a LIST chunk with the wavl form code to
store silence-encoded PCM data. The sub-chunks are data chunks containing
PCM data as usual and slnt chunks indicating a stretch of silence. The data
for the slnt chunk is a single 32-bit integer with the number of samples that
it's replacing.

Other
Formats

While WAVE and AU files are fairly prominent, many other sound and music
formats are available on the Internet. This chapter describes a few.

MIDI
The Musical Instrument Digital Interface (MID I) is a fairly old and established
standard for connecting a variety of musical equipment. It can be used, for
example, to allow a single keyboard to control many synthesizers, or to allow
a computer to store keypresses from a synthesizer keyboard and replay them.
MIDI can also be used with drum synthesizers and lighting equipment. In­
deed, MIDI is one of the technologies that has made some of today's concert
special effects possible, by providing a way to synchronize a variety of music
and special effects.

It's quite natural that MIDI is an integral part of many music-editing
systems. MIDI is based on packets of data, each one representing a musical
event, ranging from a keypress to a simple time marker. MIDI segregates
these events by channel. In a complex MIDI environment, there may be
many different appliances, each responding to events on a different channel.
Alternatively, a single synthesizer may respond to all of the channels.

A standard known as General MIDI specifies a method to store MIDI
events in a file. This file format has become a standard way to store and
exchange music. The advantage of exchanging MIDI files over sampled sound

305

306 • Chapter 38: Other Formats

files is that MIDI files are much smaller, because they just store the note names
rather than a detailed recording of the sound.

For personal computer users, however, MIDI has two major drawbacks.
The first is that it does often require a significant hardware investment. The
second is that the MIDI file itself doesn't specify everything that you need to
reproduce the sound. MIDI events may specify that channel seven should be
playing notes based on the "space warp" sound, but it won't specify in any
concrete way what that sound is.

The alt. binaries. sounds. midi newsgroup is used to share music files
in MIDI format. The associated FAQ provides general information about
MID I files and software.

MOD
Several alternative formats essentially follow MIDI's "note-by-note" data stor­
age approach, but store digitized sound samples to be used as templates for
the individual notes. These formats are collectively known as "player mod­
ules," and usually use a . mod file extension. MOD files begin with a set of
sound samples, and then specify notes and timing information. Each note is
played by using one of the sound samples given at the beginning. Essentially,
the final sound is built by copying these template sounds to form a complete
piece of music.

MOD files have many of the benefits of MIDI. They are relatively small,
and have a note-based structure that makes it easy to edit them using tools
that mimic traditional music notation. In addition, they completely specify
the sound, allowing them to be played on almost any system, even if you don't
have a synthesizer with the "space warp" sound available.

The major drawback is that assembling a high-quality sampled sound from
the information in a M 0 D file is a time-consuming task. At any time, a dozen
or more samples may have to be copied on top of each other to simulate
simultaneous notes. This intensive data manipulation makes programs to play
MOD files rather difficult to write. Because a MOD file can comfortably hold
an hour of music or more, it's not feasible to first expand the MOD file into
a sampled sound format (such as WAVE or AU) and then play the result. It's
necessary to assemble the sound on-the-fly.

IFF • 307

The al t . binaries . sounds. mods newsgroup is dedicated to the ex­
change of MOD files. The associated FAQ has information about this format
and pointers to software for a variety of platforms.

IFF
The Interchange File Format (IFF) was originally developed by Electronic Arts
for use on the Amiga. It's currently also used on CD-I. IFF is a structured
format whose overall structure is almost identical to RIFF (see page 299). 1

An IFF file is a single FORM chunk, which acts like the RIFF chunk shown
on page 300. Sound files are stored in an 8SVX (eight-bit sampled voice) form
that contains a VHDR chunk with information about the sound and a BODY
chunk containing the signed data bytes.

The 8SVX form was designed to hold sampled musical instrument sounds.
Because a note can last for a long time, it must be possible for a sound to be
extended indefinitely. The VHDR chunk specifies two parts of the sound, an
initial one-shot section that's played only once, and a repeating section that can
be repeated as often as necessary.

AIFF
The Audio Interchange File Format (AIFF) is used on the Macintosh and
SGI machines. It's similar to the WAVE format in many respects, but al­
lows both sampled sounds and sampled instrument information (see MOD).
The compressed version, known as AIFC or AIFF-C, is also gaining popular­
ity. More complete specifications are available using anonymous FTP from
ftp. cwi . nl, in the pub/ audio directory. The AIFF-C specification is avail­
able using anonymous FTP from ftp. sgi . com, in the sgi directory.

1 The most significant difference between IFF and RIFF is that IFF stores numbers in
big-endian Motorola format and RIFF stores them in litde-endian Intel format.

Part Six

Movie Formats

About Video

Video technology brings together a lot of different disciplines, and will have
a big impact on the way we think about and use computers. New applica­
tions already feature help files that replace cryptic instructions with animated
demonstrations. New games seamlessly intermingle live action with synthe­
sized effects. Telephone, movie, and television companies are eagerly promising
a future of interactive movies-on-demand.

One interesting side effect of video technology is that it's also changing the
way computer systems are designed. Issues such as compression and time syn­
chronization used to be dealt with separately by each independent program.
Because compression and time synchronization are so critical to video, pro­
gramming libraries designed for video work are finding use in many related
areas. A particularly good example is Apple's QuickTime toolbox, which pro­
vides developers with a broad collection of tools that are useful outside the
specialized realm of conventional video.

Real-Time Compression
Video processing is an example of particularly tough real-time programming.
Playing a movie at a modest rate of just ten frames per second requires that the
player program retrieve and display each frame in less than one-tenth second.
If some frames require more time than that, the motion will appear jerky. If
data is being stored uncompressed, a modest 360 by 240 pixel image with 16
bits per pixel requires over a megabyte per second to be read and relayed to the

311

312 • Chapter 39: About Video

screen. Worse, this data rate has to be sustained for as long as the movie lasts.
In ten minutes, over 600 megabytes of data have to transferred, the equivalent
of a full CD-ROM.

Because they contain so much data, computer movies are typically dis­
tributed on CD-ROMs. Unfortunately, CD-ROM drives are quite slow. A
single-speed CD-ROM drive can only sustain a data transfer of about 150
kilobytes of data per second. Even the fastest "6x" speed CD-ROM drives
can't maintain the megabyte per second of our modest example. So compres­
sion is necessary. But there's a catch. Compression makes it possible to read
the data from the disc fast enough, but makes it much harder for the proces­
sor, which now has to decompress the data before displaying it on the screen.
Smooth video requires just the right amount of compression. If you compress
too much, the computer won't be able to decompress the image fast enough. If
you compress too little, you won't be able to read the data into the computer
fast enough.

In practice, you can achieve this balance in two ways. One is to use special­
ized hardware to handle the decompression. Video processors handle high-speed
compression and decompression without bogging down the processor. Some
are even capable of applying special effects (such as sharpening, dithering, or
fades) as the data is decompressed and relayed to the video display. Another
approach is to develop specialized compression methods that can be decom­
pressed very quickly in software.

Compressing in Space and Time
Currently, video decompression hardware is not particularly widespread, mak­
ing specialized software compression techniques an important part of the video
arsenal. Video compression starts with the same techniques used in still graph­
ics. In fact, some of the earliest computer video approaches simply used basic
graphics compression approaches on each frame. By looking at more than one
frame at a time, though, you can achieve better compression.

The first trick is differencing. The easiest form of differencing is to simply
subtract one frame from the previous frame and only compress the difference.
Frequently, most of the image will be the same, so differencing will reduce
large parts of the image to zero. As you've already seen, reducing large parts of
an image to zero is a good way to prepare it for compression.

Compressing in Space and Time • 313

Subtraction is easy to do, but fails to help much in a few common cases.
For example, a slow pan across a detailed scene will cause almost every pixel
to change with every frame; simply subtracting the two frames gains you
very little in this case. A more powerful differencing technique is motion
prediction. With motion prediction, the encoder looks for blocks of pixels
that have moved, and encodes just the coordinates of the block and how it
moved. With motion prediction, a slow pan is compressed very well; most of
the picture is reduced to a small offset.

Motion prediction is effective and easy to decompress, but it's very hard to
compress. Essentially, the encoder has to look at many small blocks of pixels
in the first image and see if they reappear anywhere in the second image. As
a result, some of the very best video compression algorithms are asymmetric.
An asymmetric algorithm takes much longer to compress than to decompress,
which is usually fine for video. Professional video developers use high-end
systems that have the speed, storage space, and additional hardware to do video
editing comfortably even without stellar compression. They only compress the
video once when it's finished, and they don't really care if it takes hours or even
days. All that matters is that the video can be decompressed quickly enough
for comfortable viewing on the mid-range systems that their customers are
using.

The better video compression methods use some form of differencing in
conjunction with typical still-image compression techniques. Of course, the
first frame of the movie can't use differencing, so there will always be. at least
one key frame, a frame that doesn't require you to know the preceding frame
before you can decode it. The remaining frames are called difference frames,
since they only encode the difference from a preceding frame, and can't be
used on their own.

At first glance, you might reasonably expect only the first frame of a movie
to be a key frame, but in practice many key frames are scattered throughout the
movie. Some frames are natural key frames, frames where the difference from
the preceding frame is so huge that it makes sense to not bother differencing
it. These frames can happen because of editing; a cut-over from one scene
to another will change the entire frame at once. Having regular key frames
also simplifies random access. If the user decides to start playing the movie
halfway through, she doesn't want to wait while the decompressor starts from
the beginning to add up all of the differences.

314 • Chapter 39: About Video

Frequent key frames also help the decompressors in other ways. A software
decompressor on a desktop PC can't always decompress quite quickly enough
to keep up. In practice, such a decompressor will keep track of when the next
key frame should occur, and will skip ahead to that frame at the appropriate
time if it can't decompress fast enough. This trick allows software decompres­
sors to provide reasonable synchronization even on slower machines. Digital
video is also starting to be used in broadcasting. Some direct-satellite systems
use compressed digital video, and the forthcoming HDTV (High-Definition
Television) system will be very similar to MPEG. A digital television will oc­
casionally lose data because of static or a weak signal. If it loses a frame, any
subsequent difference frames aren't very useful. The television will probably
not be able to resume decoding the video signal until it sees the next key frame.
Frequent key frames (several per second) are critical for useful broadcasting.

Rate Limiting
One goal of video compression is simply to reduce the total storage require­
ments so you can fit longer, higher-quality movies in the same space. You
also need compression so you can read the movie data from a hard disk or
CD-ROM fast enough. This second concern introduces a new compression
requirement. Not only must the compression ensure that the entire movie is
small, it must also make sure that each individual frame is small enough. A
few very large frames can throw the timing off, even if the rest of the movie is
very compact.

Actually, you don't need to make every frame small. In practice, the player
program reads several frames at a time before they are needed. Having one
frame that's a bit too big can be acceptable as long as the nearby frames are
sufficiently small. The process of making sure that the average data rate is low
enough is called rate limiting.

Rate limiting is frequently done separately, after the initial compression. A
separate pass checks the size of the data and tries to address areas where the
compression is insufficient. One trick is to replace key frames with difference
frames. Difference frames are usually smaller, so such replacement can help
smooth out the bumps. You can also deliberately discard some visual data.
As I discussed in Chapter 16, throwing out less-noticeable data can signifi­
cantly improve the compression. Finally, you can simply drop frames, either

Replaceable Codecs • 315

by duplicating a previous frame (which results in a highly-compressible zero
difference) or doubling the duration of a previous frame.

Replaceable Codecs
The most popular video file formats are in a sense merely wrappers around
a compression/decompression engine (codec). Programs supporting Apple's
QuickTime and Microsoft's Video for Windows (VfW) usually allow the ac­
tual codec to be replaced. Any codec that meets certain guidelines can be
used. This approach allows the general formats (and the software that sup­
ports them) to easily adapt to new technologies as they become available.
Both VfW and Quick Time were initially released with very simple codecs, but
have gradually adopted more sophisticated approaches. Even better techniques
are being developed, but the best compression methods currently require too
much computation to be efficiently performed by today's mid-range systems.
As computers become more powerful and additional hardware becomes readily
available, more sophisticated codecs will become generally available.

Replaceable codecs are good for application programmers and end users,
but this approach has drawbacks for video producers. Because different users
may have different codecs available, it can be difficult for video producers to
compress their movie with a single codec that performs well and is readily
available. Some video producers provide their own codec with the movie so
the end user can simply plug it in to existing software. Other video producers
provide their movies compressed with several different codecs, allowing the
user (or in some cases, the software) to select the appropriate one. Some
producers are simply careful to only use codecs that are widely available.

Audio and Other Data
Silent movies just aren't as popular as they used to be. Most video also includes
an audio track, and sometimes additional data beyond that. In addition, the
more flexible movie formats can be used for any type of time-sensitive data,
including sound, text (for subtitles or lyrics), music notes (as with MIDI; see
page 305), or instructions for heavy machinery. For movies, it's sometimes
nice to have alternate audio tracks. Imagine watching your favorite Ingmar

316 • Chapter 39: About Video

Bergman movie with a choice of listening to the original Swedish dialogue, an
English translation, or a narrator explaining what is really going on.

More Information
Video and video compression are large subjects. You can read a number of
good books for more information.

Nels Johnson's How to Digitize Video UGF94] offers a hands-on look at
the theory and practice of creating digital videos with a computer. If you
don't know a time base corrector from a dubbing deck, but still want to make
high-quality videos, this is one place to start. It includes a summary of the
underlying technology.

If you want the real nuts and bolts, A. Murat Tekalp's Digital Video Pro­
cessing [Tek95] dives deeply into the mathematical and engineering theory
behind video compression, including a detailed look at television standards
ranging from NTSC to MPEG-2.

AVI

Microsoft's Video for Windows uses another specialization of the RIFF file for­
mat (see page 299 for more information about RIFF). AudioNideo Interleave
(AVI) files get their name from their alternating chunks of audio and video
data. Playing an A VI file requires first parsing a header with various informa­
tion about the file, including the frame rate and size. The program then pulls
in a single video frame and the accompanying audio, passes the audio along to
the sound card, and proceeds to decompress and display the video sample.

This simple process is complicated by a number of factors. The computer
may not be fast enough to fully decompress a single frame in the required time,
which may require skipping one or more video frames to maintain synchro­
nization. It also requires pausing occasionally during the video decompression
to retrieve the sound. In practice, AVI player programs retrieve a number of
frames at one time so that they can keep the audio playing even if it becomes
necessary to drop one or more video frames.

Maintaining a steady flow of data requires attention to many details. CD­
ROM drives typically operate most efficiently when data requests always fall

AVI at a Glance

Names:
Extension:
On CD:

Video for Windows, A VI, Audio-Video Interleave Format
.avi
Video for Windows players for Windows, Macintosh;
sample A VI movies

317

318 • Chapter 40: AVI

lengeh,. bytes

Sub-Chunk Sub-Chunk

Figure 40.1 LIST Chunk Format

on certain boundaries. Other parts of the computer system have similar re­
quirements, from the sound and video cards to the processor and memory
interface. Obtaining peak performance from these different systems requires a
great deal of attention.

How AVI Works
As with any RIFF file, an AVI file contains a single RIFF chunk, as shown
in Figure 37.2 on page 300. AVI files use AVIu as the form ID (the fourth
character is a space). 1

The AVI form contains at least two sub-chunks, each of type LIST. LIST
chunks, like RIFF chunks, collect a number of other chunks. Their content is
determined by a form ID, as shown in Figure 40 .1.

RIFF A VI Form
Figure 40.2 shows the general structure of an AVI file. The RIFF AVI form
contains two LISTs. The LIST hdrl comes first, with information about the
movie and each of its streams. For example, it might specify that stream zero
contains 180 X 240 pixel video at 10 frames per second, and stream one holds
eight-bit PCM audio at 8000 samples per second. The LIST movi holds the
actual data. Other chunks may also appear. An idx1 chunk contains an index
into the movie data; a junk chunk is padding inserted by the writer.2 As with
any RIFF form, programs should ignore any chunks they don't understand.

1 Note that the form and chunk IDs are always four characters. When you see a three­
character ID, the fourth character will be a space.

2Padding appears for two reasons. On most systems, data is naturally read in blocks of a
certain size. If significant data boundaries match the block size, reading can occur much more
quickly. The more important reason for padding is to simplify creating these files. Because
data at the beginning of the file requires information such as the length and number of tracks,

RIFF AVI
LIST hdrl

l ~~~~ strl
1-strh
Lstrf

LIST strl
1-strh
Lstrf

LIST movi
LIST rec

1-oowb
Loldc

LIST rec
1-oowb
Loldc

LIST rec
1-oowb
Loldc

Header information

Stream zero

Stream one

Movie sample data
First sample block
Stream zero data
Stream one data

Second sample block

Figure 40.2 Outline Structure of an AVI File

LIST hdrl Form

How AVI Works • 319

The LIST hdrl form contains information about the movie. The avih
chunk contains general information, while the LIST hdrl forms contain in­
formation about each separate stream.

LIST movi Form
The LIST movi form contains the actual movie data. This chunk is a se­
quence of records, each one containing a single video frame and a correspond­
ing chunk of sound data.

it's easier to write all of the movie data, then go back and fill in the initial header. If the writer
doesn't know the size of the initial data, it may need to insert junk chunks to fill any gap
between the header and the rest of the movie data.

320 • Chapter 40: AVI

LIST rec Form
Each record is stored in its own LIST rec form. The record contains one
chunk for each active stream. AVI specifies that the sound data is actually
skewed three-quarters of a second ahead of the video, so the first several records
will typically contain sound but no video. Other points in the movie may lack
either sound or video, so those records will have no entry for the corresponding
stream.

The chunks containing stream data don't have fixed names. Rather, the
four-character identifiers are built from the stream number and data type. For
example, OOwb is a chunk containing audio data (wb) for stream zero (00);
01dc is video data (de) for stream one (01). The streams are numbered in the
order they appear in the initial LIST hdrl.

QuickTime

Apple's Quick Time is really two different things. For users, it's a uniform way
to deal with video, audio, and other sorts of time-varying data. For developers,
it's a flexible toolkit that brings together a wide variety of useful technologies.

As a file format, QuickTime is very popular with graphics professionals.
The Macintosh has a loyal following among graphics designers and publish­
ers, and many high-end graphics tools are released first on the Macintosh.
The companies developing these high-end tools have been quick to integrate
Quick Time support into their existing applications and to develop specialized
applications for creating and manipulating QuickTime data. The abundance
of high-quality movies has made the QuickTime movie format popular on
Windows as well.

As a development toolkit, Quick Time provides a standard way for develop­
ers to access a variety of useful facilities. These facilities range from low-level
tools for graphics and audio compression and timing routines to high-level
interfaces that make it easy to include full-motion video and audio editing in

QuickTime at a Glance

Name:
Extensions:
Reference:
On CD:

Apple QuickTime
.mov, .MooV

Inside Macintosh: Quick Time [App93a]
QuickTime player for Windows; QuickTime editor for
Macintosh

321

322 • Chapter41: QuickTime

applications. Even applications that make no direct use of video often rely on
QuickTime services for compressing and decompressing pictures and synchro­
nizing multiple events.

How Quicklime Works
The Quick Time file format is considerably more flexible than AVI, so it helps
to describe some of the environments that Quick Time supports before trying
to evaluate the format itsel£

While Quick Time supports movie production very well, it was designed
to support any type of time-based information. A QuickTime file can be as
simple as a single photograph. QuickTime is commonly used to store audio
data. At the other extreme, QuickTime movies can contain multiple video
and audio tracks, and there may be a variety of criteria for selecting which
tracks to use and how they should be combined. For example, a Quick Time
movie may have several parallel audio tracks in different languages. It may
also contain time-varying data other than video and audio. For example, you
could store a song as two Quick Time tracks, one containing MID I -style note
information (see page 305) to control an external synthesizer, and another
containing textual lyrics to be displayed as the song is played.

This last example suggests another Quick Time feature. Not all notes in
a piece of music last the same amount of time, and if there are multiple
instruments, not all of them change to a new note simultaneously. Similarly,
Quick Time does not assume that all events occupy the same amount of time.
In an A VI file, a single global frame rate determines how long each frame
should display. In a QuickTime file, every event in every track can have a
different duration. This feature is useful even with video. Computer-generated
animation and some videos contain still images that remain on the screen for
long periods of time. Rather than needlessly store copies of the same image,
a QuickTime movie can simply store a single copy and lengthen its duration.
Quick Time can overlay multiple video tracks; a complex background might
be stored as a single long-duration frame in one track, while the foreground
action is stored in a separate track.

Quick Time also attempts to provide a flexible environment for editing.
Imagine a high-quality video editing system that allows you to combine se­
quences from laserdisc, computer-generated animation, and recorded video

How Quick Time Works • 323

stored on a hard disk. Rather than copy all of this information into a sin­
gle movie file, QuickTime uses a variety of referencing techniques to allow
this melange of data sources to be treated as a single movie, while leaving the
actual data in place.

QuickTime uses a three-tier structure. The movie specifies the number
and type of each track, and gives general information about the movie as a
whole. The tracks specify the duration, sequencing, and source of each set of
data. Finally, the media contain the actual data. In this example, you wouldn't
need to copy any data from the laserdisc to include it in your movie; the
appropriate track would simply specify the laserdisc itself as the media. "When
the movie was viewed, the appropriate media handler software would read the
digital image directly from the laserdisc. Editing a movie simply rearranges
the references within the track; there's no need to physically copy the frames.
Similarly, tracks can be added to and removed from the movie without having
to recopy a large quantity of data. Perhaps more importantly, QuickTime
allows a single movie to simultaneously play several video and audio tracks.
Each audio track can specify a different volume level, and each video track can
be independently cropped and rotated before being combined into a single
display.

In practice, even when these sophisticated capabilities are used during the
production and editing of a video, the final result is "flattened" down into a
single file. This single file often exists in a slightly different format on the
Macintosh than on other systems. On the Macintosh, the movie is stored in a
file's resource fork, while the track and media information is stored in the data
fork. The big advantage of this approach is that the movie data is fairly small,
and can easily be copied between applications while the much larger track and
media data remains in the original file. Other systems, of course, don't support
this two-fork approach, so the movie, tracks, and media are all copied into a
single large file.

This extreme flexibility is mostly an advantage for video developers, but
has benefits for end users as well. For example, a movie might contain four
video tracks. The first is the full, high-resolution version of the video. The
second track references a single frame from the same media, which can be
used as a still-image "poster" for the movie. The third video track is a full­
screen preview that selects excerpts from the full version. This third track adds
very little to the movie's size, since it references the same media data as the
first track. The final track is a reduced-size version for people with slower

324 • Chapter41: QuickTime

lengt~ byres

Data ...

Figure 41.1 Atom Format

computers. Only one of these would be played at a time, of course, but it's
convenient to have them all available in the same file. Similarly, a movie might
contain several audio tracks in different languages.

Single-Fork File Format
I'll only discuss the single-fork version here. For details about storing Quick­
Time data in double-fork Macintosh files or multiple files, you'll need to refer
to Inside Macintosh: Quick Time [App93a], and possibly other Inside Macintosh
volumes.

Quick Time files consist of a series of nested atoms. Atoms are similar
in concept to the chunks used by RIFF files such as WAVE or AVI. Each
atom contains a four-byte length, followed by a four-byte identifier. Programs
reading this format should simply skip atoms they don't understand.

As I described earlier, a QuickTime file has a number of components:
a single "movie," several "tracks," and a collection of "media." The media
contain the actual video frames and sound data. In a single-fork file, all of
the media information is lumped together in a single mdat atom, and the rest
of the information is stored in a highly-structured moov1 atom. Although the
media information can appear in any order within the mdat atom, it's best
if the video frames and sound samples are interleaved in small sections. This
arrangement enables the player program to read and play the data without
searching back and forth in the file. As you might expect, the moov atom
contains some general information and a collection of trak atoms describing
each track. The trak atoms contain mdia atoms, which describe the format
and location of the media data in the mdat atom.

One advantage of this approach is the ease with which Quick Time can be
integrated with compressed video formats such as MPEG (see the next chap­
ter). The MPEG data stream can be stored in the mdat atom, and can be read

1 Pronounced "moo-vee."

How Quick Time Works • 325

and played directly even by applications that don't understand the QuickTime
format. Conversely, the moov atom provides random-access information that
is a useful addition to the MPEG data.

moovAtom

The moov atom contains a mvhd movie header atom and a collection of trak
atoms. The movie header lists a number of basic facts about the movie,
including the creation time, when it was last modified, which part of the
movie is currently selected, which part of the movie can be used as a preview,
which single image can be used as a "poster," the volume and visual size of the
movie, the duration of the movie, and the time scale.

Unlike AVI files, which have a single rate that dictates when each frame
will display, QuickTime allows different events (such as frames or sections
of audio) to have different durations. Each individual duration needs to be
specified. The problem is what units to use. Apple chose to let the video
developer specify the units. A time scale of 1 means that all time values in the
movie represent a number of seconds, while 1000 means that all time values
represent 1 OOOths of a second. Usually, time scales between 100 and 1000 are
used.

trakAtom

Conceptually, a movie contains several independent sources of data. Each of
these data sources is a single track containing video, audio, or text. The trak.
atom contains a tkhd track header atom describing the kind of data in the
track, an edts edit list atom that specifies the order in which parts of the
track should be played, and a mdia media atom describing how to access the
data.

The tkhd atom gives the same basic information about the track that the
mvhd atom gives about the movie. Each track can have a different position
and size on the screen and a separate volume. This information is used to
combine different tracks to create a single audio or video result. In addition,
each track can have a different time scale that specifies how the durations given
in the track relate to the time scale of the movie as a whole. This information
is particularly important for audio tracks, which usually have a much higher
sampling rate than video tracks.

326 • Chapter41: QuickTime

The edts edit list atom specifies the order in which parts of the track
should be played. This atom provides simple editing capabilities, and can help
to compress a large movie. For example, it might specify that part of the audio
should be repeated, rather than storing the audio multiple times.

mdiaAtom

The mdia media atom actually describes the format of the compressed data.
Recall that all of the movie data for a single-fork QuickTime movie is con­
tained in a single undifferentiated mdat atom. The media atom describes the
format of some of that data (by naming a software component that knows
how to retrieve it) and where the data is located in the mdat atom.

The precise location of a single video frame or audio sample requires un­
derstanding several atoms within the mdia atom. The stts time to sample
atom specifies the duration of each sample, and is needed to convert a time
position in the movie into a particular sample. The stsc sample to chunk
atom specifies which samples are grouped into chunks. The st co chunk offiet
specifies where each chunk is located in the media data. Finally, the stsz
chunk specifies the size of each sample. This information allows you to find
a sample within a chunk by skipping the preceding samples in that chunk; it
also tells you the length of the desired sample.

If this whole scheme seems unnecessarily complex, keep in mind that most
of this complexity is provided to allow high-end video tools to comfortably
manipulate multiple sources of data. The movie files that are released to end
users are deliberately simplified so that they can be read and played as quickly
as possible.

More Information
The definitive reference for QuickTime is Apple's Inside Macintosh: Quick­
Time [App93a]. Additional programming information is located in the com­
panion volume Inside Macintosh: Quick Time Components [App93b].

Apple also maintains a World Wide Web site devoted to QuickTime, con­
taining software, technical information, and links to other Quick Time re­
sources (http: I /quicktime. apple. com).

MPEG

The Motion Picture Experts Group (MPEG) was organized by the ISO to de­
velop standards for high-quality video compression. It first met in 1988, and
has produced a number of related standards. As a result, a large body of re­
search has been codified into a collection of recommended methods for com­
pressing audio and video. These general methods are now being used by many
different video compression products.

The MPEG committee also defined a number of very specific formats for
compressed video and audio. These formats vary in the quality of the result
and the data rate required.

MPEG-1 The original video format supports television-quality video
with a data stream of only 200 kilobytes per second. Its quality is compa­
rable to VHS videotape.

MPEG-2 This newer standard supports high-quality video over higher­
speed digital connections (up to 2.5 megabytes per second). It is closely
related to HDTV (High Definition Television).

MPEG at a Glance

Name: MPEG
Extensions: Various, see Table 42.1
On CD: MPEG players for Windows, Macintosh, Unix; MPEG

FAQ

327

328 • Chapter 42: MPEG

MPEG-4 A forthcoming standard is intended to support lower-quality
video over modem-speed data connections. This format is intended pri­
marily for videophone systems.

Layer-1 , 2, 3 MPEG-1 defines three different audio formats, which are
also used (with minor extensions) in MPEG-2. The three are similar, but
with different trade-offs between compression and complexity. Layer-1 is
the simplest, but offers the poorest compression, while Layer-3 is the most
complex and offers the best compression.

Although the MPEG-1 video format has data rate requirements well within
the capabilities of today's CD-ROM drives, it is not yet widely supported
by personal computers. The reason is simply that MPEG decoding is very
computation intensive. Software-only MPEG decoders are improving, but
still have trouble on all but the very fastest computers. However, hardware
MPEG decoders are already being widely used in video games and industrial
applications, and are starting to find their way into personal computers as well.

How to Use MPEG
Before you try to use MPEG, you should understand a few general facts.

A variety of different data formats are defined by MPEG standards. The
MPEG-1 standard defines one format for encoded video, three for encoded
audio, and a system stream format for combining video and audio. MPEG-2
has the same variety, although you're unlikely to see MPEG-2 video, since
it's really intended for broadcast use and isn't a very good match for desktop
computers.

This diversity of formats leads to an even wider variety of of file extensions.
These extensions often try to specify the particular format, but such attempts
are confused by the different numbered parts. For example, a "2" in the
extension might refer to MPEG-2 video or Layer-2 audio, or it might mean
that the file is audio-only. (The video, audio, and system data formats are
parts 1, 2, and 3 of the official standard documents.) Fortunately, the audio
layers are somewhat compatible, so many decoders support all three and you
don't have to worry about it. Table 42.1 shows some of the extensions you
might see.

Extension
.mpg
.mps
.mpv
.mpa
.mp2
.13
.mls
.mlv
.mla
.m2s
.m2v
.m2a

Table 42.1

Description
Various
MPEG-1 system stream
MPEG-1 video only
MPEG-1 layer-1 or layer-2 audio
MPEG-1 layer-1 or layer-2 audio
MPEG-1 layer-3 audio only
MPEG-1 system stream
MPEG-1 video only
MPEG-1 audio only
MPEG-2 system stream
MPEG-2 video only
MPEG-2 audio only

MPEG File Extensions

How to Use MPEG • 329

MPEG standards define how the data is stored, but don't specify how to get
raw video data into that format. In addition, MPEG is a lossy format; encoders
can discard data to provide better compression. As you might imagine, these
two facts allow for an enormous amount of variation in the compression and
video quality of different encoders.

To encode video data into MPEG format as it is received requires dedicated
hardware, since no desktop computer is fast enough to handle the computa­
tional requirements. If you must use software to compress MPEG data, you'll
have to first capture the data in some other format and then compress it sep­
arately. Capturing raw video data is clearly the best option, but disk storage
becomes a limiting factor. As a result, MPEG movies are sometimes captured
in QuickTime or AVI formats and then converted into MPEG. The prob­
lem is that the most popular QuickTime and AVI codecs are also lossy. By
the time the data reaches MPEG format, it's been through two different lossy
compression algorithms, which can severely degrade the quality.

Similar comments apply to decoders. Software decoders can take many
shortcuts to improve their speed, but these shortcuts degrade the video and
audio quality noticeably. Converting into other lossy formats for faster play­
back also degrades the image quality.

330 • Chapter 42: MPEG

These cocerns apply to both MPEG video and audio compression, but
especially for audio, another concern arises. The audio formats encode blocks
of audio data. Any good compressor will have to collect some sound, then
analyze and encode it. This procedure causes a short delay between the un­
compressed audio going into an MPEG compressor and the compressed audio
coming out. For Layer-3 audio especially, this delay can be quite noticeable,
which makes Layer-3 audio format a poor choice for interactive applications
such as teleconferencing and telephone systems.

Overall, MPEG offers excellent compression and very high quality. Un­
fortunately, desktop computer systems don't yet have the processing power to
handle MPEG well without separate hardware. That obstacle is slowly fad­
ing, however, as hardware MPEG decoders become more available and more
powerful processors make software decoding more of a possibility.

How MPEG Video Works
MPEG's video formats combine a number of compression tricks that you've al­
ready seen in)PEG with new techniques for encoding the differences between
successive frames. You should be familiar with the material in Chapter 16
before reading the following paragraphs.

MPEG stores several different types of video frames. !-.frames (indepen­
dent) are key frames, which don't require any additional information to de­
code. 1-frames are compressed using a general technique that is quite similar to
JPEG compression, but usually provides slightly better compression. P-.frames
(predictive) are stored as a difference from the previous P-frame or 1-frame.
MPEG uses motion prediction to store P-frames by storing offsets for 8 x 8-
pixel squares. B-.frames (bidirectional predictive) are stored using differences
from both previous and future frames. 1

Because B-frames can rely on frames that follow them in time, frames do
not always appear in the file in temporal order. For example, consider the
sequence of frames shown in Figure 42.1. The arrows indicate dependencies;
for example, frame 2 requires information from frame 3 before it can be

1 There are also D-frames: Separate, low-resolution versions of certain frames intended to
simplifY browsing. D-frames are rarely used, so I won't discuss them in any detail.

How MPEG Video Works • 331

l

Figure 42.1 A Sequence of MPEG Frames

decompressed. Frames 3 and 6 are P-frames. To decompress frame 3, you
need to have frame 0 available; to decompress frame 6, you need to have
first decompressed frame 3. The B-frames, however can depend on frames
that follow them in time. Before you can decompress frame 1, you must first
decompress both frame 0 and frame 3. As a result, the compressed frames
do not appear in the file in the obvious order. You have to make sure that
when a frame is read, any frames it depends on have already been decoded.
In this case, one possible order is 0, 3, 1, 2, 4, 6, 5, although there are other
possibilities.

Genera/Issues
MPEG video depends on some of the same facts about human vision as JPEG.
It should be no surprise, then, that MPEG uses a color system that separates
luminance (lightness) from chroma (color). MPEG uses the YCbCr color sys­
tem. This system was chosen partly to provide a good start for DCT -based
compression and partly because it's the same system used by the PAL and
SECAM television standards. 2

2The NTSC television standard used in the US and Japan uses the similar YIQ color
format. PAL and SECAM are currently used in most of the world outside of the US and
Japan.

332 • Chapter42: MPEG

/-Frames
!-frames are compressed using an approach very similar to JPEG. The primary
difference is that MPEG groups four 8 X 8 blocks into a single macro block,
and allows the quantization coefficients to change between macroblocks. By
allowing the quantization to vary across the image, MPEG can achieve slightly
higher compression than JPEG. It can use an overall lower quality, increasing
the quality only where it's necessary, while JPEG has to use the higher quality
everywhere. A good MPEG encoder will quantize very busy areas more ag­
gressively, while using more modest quantization on quieter areas where errors
are more noticeable.

P-Frames
Like an 1-frame, a P-frame is compressed by evaluating 8 X 8 blocks of pixels.
However, a P-frame has more options than an !-frame, because it can refer to
data in the most recent 1-frame or P-frame, which I'll call the previous reference
frame. A single block in a P-frame can use any of the following methods to
specify its contents:

• A block can specify that it's identical to the same block in the previ­
ous reference frame. This method provides very good compression for
such images as "talking head" news programs that have an unchanging
background.

• A block can specify an offset, indicating that data from another part of
the previous reference frame should be copied. This motion prediction
works well for slowly-moving images.

• In either of the previous cases, the current block may not be identical
to the block being copied from the previous reference frame. In that
case, the encoder can subtract the two blocks and use a DCT and
quantization to compress the difference. The difference will usually be
very small and easy to compress. The combination of motion prediction
and a compressed difference handles such factors as changes in lighting
as an object moves.

• If no part of the previous reference frame matches, the encoder can
compress the block independently.

How MPEG Video Works • 333

The compression depends heavily on how well the encoder can locate
similar blocks in the previous reference. The MPEG standard doesn't specify
how the encoder should locate these blocks, and different MPEG encoders will
make different trade-offs between speed and compression.

8-Frames
If you lost a few frames from the middle of a long movie, you could use several
methods to fill in the gap. You could copy the frame just before the gap. That
would work well if the gap was short and there was little motion, but it could
throw off the timing. Your next attempt might be to copy the frame before
the gap into the first half and the frame after the gap into the second half,
on the logic that the missing frames would be most similar to frames close
to them. Finally, you might try averaging some existing frames to fill in the
missing entries.

B-frames can mix these approaches, copying data (possibly with a com­
pressed difference) from the previous reference frame, the following reference
frame, or averaging data from each one. In Figure 42.1, notice that some of
the B-frames only refer to one of the previous or following reference frames,
while some refer to both. Each block of a B-frame can contain any of four
types of data:

• As with a P-frame, B-frames can copy blocks from a previous 1-frame
or P-frame with or without a difference.

• B-frames can also copy data from the next 1-frame or P-frame.

• A B-frame can specify a block of pixels from the previous reference
frame and a block of pixels from the following reference frame that
should be averaged. A compressed difference can also be included.

• Finally, if nothing in either the previous or following reference frames
matches closely enough, the block of pixels can be compressed directly.

All compressed pixel data, including differences, are compressed using the
same JPEG-like approach: Each 8 X 8 block is converted with a Discrete Cosine
Transform into frequency information, these coefficients are quantized, and the
final values are Huffman compressed.

334 • Chapter 42: MPEG

How MPEG Audio Works
Just as JPEG graphics compression is a big step beyond GIF's lossless approach,
MPEG audio is a big step beyond simple PCM or J.L-Law encoding. MPEG
uses a variety of facts about human hearing to select data to discard. The
complete process is too complex to describe precisely, but the following para­
graphs should give you an idea of the techniques involved. As I mentioned
before, the MPEG standard doesn't specify precisely how to compress data. In
the following discussion, I'll refer to what an MPEG "encoder" does, but you
should keep in mind that I'm only talking in general terms. Specific MPEG
encoders will handle this process in slightly different ways, with corresponding
variations in sound quality and compression. Regardless of how the encoder
works internally, the resulting data is decoded in the same way.

Noise Floor MPEG's audio compression relies on a simple fact. If you're
standing next to a loud siren, you won't hear the whispered conversation taking
place across the street. Researchers have discovered that this phenomenon isn't
just a matter of your attention being drawn to the louder sound; your ears
actually lose sounds that are close in frequency to much louder sounds. This
masking effect varies with the difference in loudness and frequency of the two
sounds.

One of the basic ways to compress sound is to reduce the number of bits
used for each sample. Reducing the number of bits is equivalent to adding
noise to the sound. MPEG exploits the masking effect to make sure you won't
hear the noise it adds. If the masking effect is very strong, MPEG can raise
the noise floor by reducing the number of bits used for the sound.3 A weaker
masking effect means that the encoder must be more cautious.

Subbands The masking effect depends heavily on how close two sounds are
in frequency. An MPEG encoder must be careful to only add noise that is
close in frequency to very loud sounds. The audio frequencies are divided
into subbands, and each range is handled separately. The encoder identifies the
loudest sounds in each subband and uses that information to determine an
acceptable noise floor for that subband. Better MPEG encoders also compute

3"Raising the noise floor" is audio-engineer-speak for allowing more noise.

More Information • 335

an interaction between subbands; a very loud sound in one subband will have
a masking effect on nearby subbands.

Psychoacoustic Modeling This technique relies heavily on models of how
humans hear sound. Psychoacoustic models are sets of rules used to select which
subbands are most important. To compress the audio data as well as possible,
some quieter subbands are eliminated entirely, and subbands that are near the
center of the human hearing range are preserved more carefully than ones near
the edge.

Unfortunately, no neat mathematical formulas precisely specify the opti­
mal noise floor for each subband. Human hearing is a complex process that
involves many poorly-understood phenomena. The MPEG committee based
much of its analysis of competing audio compression approaches on extensive
listening tests, in which expert listeners were asked to compare sounds that
had been subjected to various types of compression. Such tests are arguably
subjective, but the MPEG committee's final analysis has borne up well under
repeated listening tests. Future refinements of these psychoacoustic models will
improve the quality and compression of future MPEG encoders.

Fortunately, the MPEG decoders need to know very little about how the
data was encoded. The complexity of selecting noise floors for each subband is
a process used by the encoder to determine what data can be sacrificed without
compromising the quality of the result. The decoder simply takes the data
that remains and reconstructs a sound from it. Future MPEG encoders can
continue to refine their methods while still retaining complete compatibility
with existing decoders.

More Information
The MPEG FAQ contains an extensive list of pointers to MPEG software
and books and articles about MPEG. It is periodically posted to several news­
groups, including comp. graphics and comp. compression.

A. Murat Tekalp's Digital Video Processing [Tek95] describes the theories
underlying MPEG's video encoding in considerable detail. However, he does
not discuss audio encoding, nor does he detail the MPEG encoding at a byte­
for-byte level.

Appendices

About
the CD-ROM

The companion CD-ROM, compiled by The Coriolis Group, contains tools
to help you understand and use the files you encounter on the Internet. It
is ISO 9660 compliant and can be used on most platforms. There are tools
here for MS-DOS, Windows, Macintosh, and Unix that will help you use the
formats in this book. This appendix explains how the CD-ROM is organized
and provides brief descriptions of some of the applications included. 1

If you don't see what you are looking for here, there are several places
in the book you should check. Chapter 2: Researching File Formats indicates
some good general Internet resources and large archive sites. In addition, the
More Information sections at the ends of most chapters give pointers to books,
software, and other sources of information.

About Shareware
Many of the programs on the CD-ROM are shareware. Shareware is a means
of distributing software that allows anyone to copy and test a program without
having to pay for it. If you continue to use it, however, you are obligated to
pay the original author for the program. This differs from traditional software
publishing, where you have to pay money before you can even see how the
program works. The shareware system has many advantages over traditional
software publishing:

1This appendix does not discuss everything included on the CD-ROM.

339

340 • Appendix A: About the CD-ROM

• It allows authors to spend more time developing programs and less time
marketing, which results in higher-quality software.

• It reduces the cost of producing software, which allows more people to
develop their ideas into useful programs and results in a greater variety
of software.

• It allows you to test software before you decide to buy it, so that you
can pick the best software for you.

• Shareware authors can release new versions very quickly. (Sometimes,
a problem report results in a new version in only a few hours!) This
allows shareware authors to be very responsive to their customers.

This entire system depends on honest people paying for the software they use.
None of the proceeds from sales of this book go to the authors whose software
is on the CD-ROM. The CD-ROM is simply another way for their software
to reach you so that you can evaluate it and decide if you want to use it. If
you find a program useful, please pay the author.

CD-ROM Organization
The organization of the CD-ROM mirrors the structure of the book. Thus,
the contents of the CD-ROM are first separated by format type: text, graph­
ics, compression and archiving, encoding, sound, and video. Most subdi­
rectories correspond to a single format and are further subdivided by oper­
ating system. For example, ZIP programs for MS-DOS are found in the
compression/zip/dos directory. The apps subdirectories contain general
applications that handle several formats. For instance, graphics/apps/mac
contains graphics viewers for the Macintosh that support a variety of graphics
formats.

For some formats, spec and sample directories are provided. The spec
directories contain the format's specifications, detailed information about that
format. The sample directories contain just that, sample files in that format.

Figure A.l has a graphical overview of the CD-ROM's directory structure.

text
apps

[mac
windows

html
~windows
Lmac

postscri

graphics

ap[p:ac
[gifconve

windows
unix

gVspec
tmac

jpeg
[s~ples

compress
encoding
sound
video

CD-ROM Organization • 341

Tools for handling text formats
Tools useful with many formats

Tools for dealing with HTML files
Windows tools for dealing with HTML files
Macintosh tools for dealing with HTML files

Tools for dealing with PostScript files

Tools for handling graphics formats
Tools useful with many graphics formats

GIFConverter program

Tools useful with GIF
Specifications for GIF format

Sample JPEG files

Compression and archiving tools
Encoding tools
Sound tools
Video tools

Figure A.1 Outline of CD-ROM Directory Structure

342 • Appendix A: About the CD-ROM

Text
Application: MegaEdit
File Formats: Text
Operating System: Windows
Location on CD: text/ apps/windows/megaedi t
Source: ftp://ftp.cica.indiana.edu/pub/pc/win3/util/megaedit.zip
Description: MegaEdit is an ASCII text editor, designed to facilitate complex

editing tasks involving multiple and/ or large files.

Application: Alpha
File Formats: Text, especially lEX and IDFX
Operating System: Macintosh
Location on CD: text/latex/mac
Source: ftp://midway.uchicago.edu/pub/DzTeX
Description: Alpha is a Macintosh editor that has several features that make it

especially convenient for editing lEX and IDFX files.

Applications: HTML editors
File Format: HTML
Operating Systems: Macintosh and Windows
Location on CD: text/html
Source: http://www.yahoo.com/Computers_and_Internet/Internet

/World_Wide_Web/HTML_Editors/
Description: Now that the World Wide Web is several years old, there are

many freely available HTML editors for all platforms. These editors allow
you to edit and format your document using a WYSIWYG (What You
See Is What You Get) interface. The editor saves the file with HTML
markers correctly embedded. There are many that we couldn't include,
check Yahoo for a more up-to-date listing.

Application: Adobe Acrobat Reader
File Format: PDF
Operating Systems: MS-DOS, Macintosh, Sun, and Windows
Location on CD: text/pdf

Figure A.2

Temporal Quality setting

Temp:~ralcompun:nlorlya~csbsecpn::nofime.ga(bbvdlo) Tbtypof
com~&.U.e•a.dwmaceofthe ftc11ha! ac:vu tru:. ontn~.ua klttncommon
Wlih the frame before 1t, tbtrefort •codlc o:tlyreeds 'OI'Ortthe cMrc• llta tht
pevl.Omfmme IzaQU:lT"tme, ''d11I'trtr.:e liamH .. (all f't&mu thtt ma't Uyframtt)41"1
•mp>Wiyeom~.ed.

QukTime'sTnn;:ora.lQOOilystderlfi'ec' the tert1f.Cr&lque.htyoflhe comJI"N''I'd
:an~•· which1r.flue~ the tmaur-Jof~mp:.rdcompttmnlhe.t"nbtachae'V'ed In
other v.otds, W Tetttp:nal~lity.tDr leb ;ou adjUA the quahtyoftt. cbfTererce
frames.

Temp:11·al comprez:ion eli:nll'lb.tts ttdurdu\1 iNonn.t.DOl!. between frarnet 1n Ut i:Mge
seq,~~tn::e. TM stardaldirnege COn'lfh•iot~.dilbg willorJycbtplaytN Sp.tialQuality
(somellmuju:st sh:Jwn u ''Quality") dider.

lf)OuselectKeyFr~.:nr-s for)l:lurirMge ~ret, tiwn the Sp!ltlll Q,lahty .. i&u wil l
control both JpatW W •mpnal quality No• thattN TemJXInl ~Wyaltlte ~ybe
tdjJ:Stedauto!MlUDybytbteodee tMthubHn •lee led so IM t 1t eormJXIndf '0 •
Yllloe that the c:odec JURX)rts. As ~th !he SplialQua,h1)' .. ttnoc. tome co&.ct will
JURDrtalosles 1e~ toltl.p'!Shh 'lrl:tn the setti:c :t~ pl.aced atlvblt

,-Temporal

1~1
Yousbouldbw thacor.trol's scth::c; &I Mchur:1 an!aut.Nre 1U btofruobOnfAmrlo
f."C~.e i:t'Pflll.Clo11&t ~tqum::e -mwio::b.c ..)OUSK!ukfthlt~.tryfM.ri:c tbt .. tiUI(

bei~Wtft MeCt::n W Low t:l dtmue ~!.! bl~ netct.d b pla)bll:k. 1M eompttsed
so will also ~t~:rutM tt.~:~ud»tr ofwf.:uud

Adobe Acrobat for Windows

Text

Source: http://www.adobe.com/Software/Acrobat/
Description: Adobe Acrobat Reader lets you read and print PDF files.

Application: ViewPS

File Format: PostScript

Operating Systems: Macintosh
Location on CD: text/postscr i /mac/viewps
Description: ViewPS lets you view PostScript documents.

Application: PSUtils

File Format: PostScript
Operating Systems: : Unix, MS-DOS
Location on CD: text/postscri/unix/psutils

• 343

344 • Appendix A: About the CD-ROM

Description: PSUtils is a set of utilities to select, rearrange, and manipulate
pages of a PostScript file. It assumes the files have correct DSC comments
in them (see page 99), although there are programs included that can "fix"
the output of several popular programs. Although originally for Unix, they
can also be compiled for MS-DOS.

Application: GhostScript
File Format: PostScript
Operating System: Windows
Location on CD: text/postscri/windows/gscript
Description: GhostScript can interpret PostScript files and create output for

a variety of non-PostScript printers. It can also generate screen output to
allow you to preview PostScript documents.

Application: GhostView
File Format: PostScript
Operating System: Windows
Location on CD: text/postscri/windows/ gsview
Description: GhostView lets you view PostScript documents on the screen.

It uses GhostScript (above) to do the actual drawing, but puts up a nice
interface that lets you select specific pages, print them, and view the output
at various sizes.

Applications: Common Ground viewers
File Formats: Text
Operating Systems: Macintosh and Windows
Location on CD: text/ commongd
Source: http://www.commonground.com
Description: These are viewers for documents in Common Ground Software's

DigitalPaper format.

Application: GNU GROFF
File Formats: TROFF, NROFF
Operating Systems: MS-DOS
Location on CD: text/troff I dos
Description: This is a complete TROFF and NROFF system for MS-DOS.

Applications: Web2C, DVIPSK, DVILJK
File Formats: TE/{, 11TEX
Operating System: Unix
Location on CD: text/latex/unix

Graphics • 345

Description: This is a fairly complete TFX system for Unix. It includes
the I1IFX macros and many other useful packages. The DVIPSK and
DVILJK programs convert the DVI output of 1EX into output suitable
for PostScript printers or the Hewlett-Packard Laserjet printers.

Graphics
Application: GIFConverter 2.3. 7
File Formats: GIF, JPEG, PICT, RIFF, TIFF, other graphics, Encapsulated

PostScript
Operating System: Macintosh
Location on CD: graphics/ apps/mac/ gif conve
Source: http://wwwhost.ots.utexas.edu/mac/pub-mac-graphics.html
Description: GIFConverter, by Kevin A. Mitchell, reads and writes many

graphics file formats. It also provides image enhancement, cropping, color
table selection, and dithering features. GIFConverter can easily create GIF
images with transparent backgrounds, which is especially useful for images
that will be used on the World Wide Web.

Application: ImageMagick version 3.6.6
File Formats:]PEG, PNG, TIFF, others
Operating System: Unix
Location on CD: graphics/apps/unix/imagemag
Source: http://www.wizards.dupont.com/cristy/ImageMagick.html
Description: lmageMagick is a collection of image display and manipulation

tools for Unix computers running the X windowing system. It supports
many popular image formats. The tools include interactive display and
manipulation tools and command line programs for batch image manipu­
lation. ImageMagick works with most Unix systems including Linux. See
the README file on the CD-ROM for compiling instructions.

346 • Appendix A: About the CD-ROM

Figure A.3 Paint Shop Pro version 3 from JASC, Inc.

Application: Paint Shop Pro version 3
File Formats: GIF, JPEG, PBM, many others

Operating System: Windows

Location on CD: graphics/apps/windows/psp3
Source: http://www.winternet.com/-jasc/index.html
Description: Paint Shop Pro is a complete graphics program for image cre­

ation, viewing, and manipulation. The program features include: painting,
photo retouching, image enhancement and editing, color enhancement,
image browser, batch conversion, and TWAIN scanner support. It also
includes 20 standard image processing filters and 12 deformations. Paint
Shop Pro supports over 30 file formats.

Graphics • 347

Figure A.4 XV's Color Editing Window

Application:)(V

File Formats: GIF, PBM, XBM, EPSF,]PEG, T IFF, XPM, others

Operating System: Unix
Location on CD: graphics/apps/unix/xv
Description: John Bradley's graphics viewer program lets you view, crop, and

manipulate images in a variety of formats.

Application: Weblmage
File Formats: GIF, PNG, others

Operating System: Windows

Location on CD: graphics/png/windows/webimage

348 • Appendix A: About the CD-ROM

Source: http://www.group42.com/webimage.htm
Description: Weblmage, by Group 42, is designed to help generate images

suitable for use with HTML. It can create GIF images with transparent
background, reduce the number of colors in an image, and create the files
needed to use an image as an HTML imagemap.

Application: XPaint
File Formats: PPM, TIFF, XBM, others

Operating System: Unix
Location on CD: graphics/apps/unix/xpaint
Source: http://hoth.stsci.edu/man/mann/xpaint.html
Description: XPaint is a color image editing tool that features most standard

paint program options. It allows the editing of multiple images simultane­
ously. XPaint's user interface has a toolbox area to select the current paint
operation and paint windows to create and modify images. Each paint
window has access to its own color palette and set of patterns. XPaint runs
on a variety of X displays, though you should be aware that XPaint saves
images in the current display type (for instance, a color image edited on a
grayscale screen would be saved as a gray image). XPaint has an extensive
online help system.

Application: WorldView .9e Pre-Beta
File Format: VRML
Operating System: Windows
Location on CD: graphics/vrml/windows/wrldview
Source: http://www.webmaster.com:BO/vrml/
Description: WorldView is a VRML viewer with integrated networking func­

tionality.

Application: Whurlwind 3D Browser
File Formats: VRML, others
Operating System: Macintosh
Location on CD: graphics/vrml/mac/whrlwind
Source: http://www.info.apple.com/qd3d/Viewer.HTML
Description: Whurlwind is a VRML viewer that uses QuickDraw 3D. It's a

new program that doesn't yet support all of the features you might want;
check Whurlwind's World Wide Web site for more current information.

Graphics • 349

Figure A.5 WorldView Interface

350 • Appendix A: About the CD-ROM

(B 2ZIP25.ZIP

I !13 2ZIP25.ZIP...,. r Arohwe contains 2 files and is 19K on disk.

Name Expanded Zipped

I) 2ZIP.EXE 21479 13054
~2ZIP.TXT 17792 6166

2 items 39271 19220

Figure A.6 The Ziplt Interface

Compression
Application: ARC Master
File Formats: Compression
Operating System: Windows

Saved Method

3990 Imploded
6590 Imploded

5190

Location on CD: compress/ arc/windows/ arcmastr

00§

Date MB LF p

12/8/89 0 D ;Q
12/8/89 0 •

~
~

Description: This is a shareware graphical compression and decompression
program. You can simply drag files into the ARC Master window to add
them to an archive.

Application: Zipit version 1.31
File Formats: Compact Pro, PKZIP, ZIP
Operating System: Macintosh
Location on CD: compress/zip/mac/zipi t
Source: http://www.awa.com/softlock/zipit/zipit.html
Description: Ziplt handles ZIP format files with an interface based on Bill

Goodman's Compact Pro. Ziplt comes with an extensive manual that
explains how to use all of its features.

Application: WinZip version 5.6
File Formats: Compress, GZIP, PKZIP, TAR, ZIP, (also ARC, ARJ, LZH)

Compression • 351

09/15/95 03:33 1,946,693 884.291 fury3x\sys tem\
fury3x.exe 09/15/95 03:33 921,088 69% 283,11 7 fury3x\
fury3x.hlp 09/15/95 03:33 290,288 65% 1 01}54 fury3x\
sortkey.nl_ 1 0/08/94 15:00 130.239 28% 94,383 fury3x\setup31 \win32s\disk1 \
w32scomb.dl_ 04/05/95 15:00 127,518 4% 122,196 fury3x\setup31 \win32s\disk 1\
crtdll.dl_ 01/22/95 15:00 104,972 3% 101.408 fury3x\setup31 \win32s\disk1 \
p_950.nl_ 08/28/94 15:00 99,802 9% 90,685 fury3x\setup31 \win32s\disk1 \

01 /14/95 15:00 89,504 49% 45,206 fury3x\setup31 \win32s\disk1 \
08/14/94 00:00 88,360 3% 85.796 fury3x\setup31 \wing1 O.win\
08/24/94 00:00 87.460 5% 83.421 fury3x\setup31 \wing1 O.win\
09/21/94 00:00 81}89 78.130 fury3x\setup31 \wing1 O.win\

Figure A.? The WinZip Interface

Operating System: Windows

Location on CD: compress/zip/windows/winzip
Source: http://www .winzip.com/winzip/
Description: WinZip provides a convenient graphical interface for manipulat­

ing many types of archives. Support for ZIP, TAR, compress, and GZIP
formats is built-in, other formats require you ro obtain an external pro­
gram. W inZip also interfaces ro most virus scanners so that you can check
compressed files before yo u run them.

Application: GZIP
File Formats: GZIP, (also Compress, Pack)

Operating System: MS-DOS
Location on CD: compress/gzip/dos
Source: http://andrew. t riumf.ca/pub/linux/gzip.html

352 • Appendix A: About the CD-ROM

Description: GZIP is a widely used compression program on Unix systems.
The companion GUN ZIP program can decompress files created by GZIP,
Compress, or Pack. GZIP can be handy for people who also use Unix
systems.

Application: Stuffit Expander
File Formats: BinHex, Compact Pro, Stuffit
Operating System: Macintosh
Location on CD: compress/ stuffi t/mac/ stufli te
Source: http://www.xensei.com/ose/utils/tools.html
Description: Stuffit Expander is designed to decompress any compressed Mac­

intosh file. It fully supports the three most popular archiving formats
used on the Macintosh, including files created with the commercial Stuffit
Deluxe 3.0 and the shareware Stuffit Lite 3.0. Stuffit Expander also sup­
ports files encoded with BinHex 4.0, such as those commonly found on
Internet archives and the comp. binaries . mac newsgroup. Stuffit Ex­
pander requires System 6.0.4 or later.

Encoding
Application: Wincode 2.6.1
File Formats: MIME Base64, UUEncode, XXEncode
Operating System: Windows
Location on CD: encoding/apps/windows/wincode
Source: http://snappy.globalone.net/
Description: Wincode is a Windows 3.1 program which converts eight-bit bi­

nary files to seven-bit ASCII text files for mailing or posting to newsgroups
(and vice versa).

Application: UUDeview
File Formats: MIME Base64, UUEncode, XXEncode
Operating Systems: MS-DOS, Unix and Windows
Location on CD: encoding/uuencode/ dos, windows, unix
Source: http://www.uni-frankfurt.de/-fp/uudeview/

Sound • 353

Description: UUDeview is a simple, flexible decoder that easily handles the
common encoded formats, including those that have been split across mul­
tiple mail messages or multiple news postings. You simply save a group of
articles from your mail program or news reader into single or multiple files,
then use UUDeview to decode them. Note: The MS-DOS and Windows
versions are distributed in binary form, but the source code is identical for
all systems, so you can use the Unix source if you need to recompile it.

Application: UULite
File Format: UUEncode
Operating System: Macintosh
Location on CD: encoding/uuencode/mac
Source: ftp://src.doc.ic.ac.uk/computing/systems/mac/umich

/util/compression/uulite1.7.cpt.hqx
Description: UULite is a utility that simplifies UUEncoding and UUDecod­

ing. Includes help files and a tutorial on reading news files and extracting
files obtained from a news reader.

Sound
Application: Sound Machine
File Format: AU
Operating System: Macintosh
Location on CD: sound/ apps/mac/ sndmachn
Source: http://www.znet.com/mac/soundmachine.html
Description: The Sound Machine will play Sun AU format sound files, the

most common sound format used on the World Wide Web. It is the
default sound helper for MacWeb.

Application: SoundApp
File Formats: Sun AU, NeXT SND, AIFF, AIFF-C, WAVE, QuickTime au-

dio, MOD, IFF, others
Operating System: Macintosh
Location on CD: sound/ apps/mac/ soundapp
Source: http://www-cs-students.Stanford.EDU/-franke/SoundApp/

354 • Appendix A: About the CD-ROM

Description: SoundApp will play or convert AIFR WAVE, and other sound
formats. Simply drop the file onto the SoundApp icon to play. Using
QuickTime 1.6 or later, Sound.App can convert audio CD tracks. MOD
playback is PowerPC-accelerated on Power Macintoshes.

Application: WPLANY
File Formats: AU, IFF, SND, WAVE, others

Operating System: Windows
Location on CD: sound/ apps/windows/wplayany
Source: http://burgoyne.com/vaudio/netsound.html
Description: WPLANY is a compact utility that will detect and play any

sound file through a Windows 3.1 audio device. The proper drivers for
your sound card (or PC speaker) must be loaded prior to using WPLANY.

Application: WHAM
File Formats: WAVE, others
Operating System: Windows
Location on CD: sound/ apps/windows/wham
Source: http://www.netscape.com/MCOM/tricks_docs/helper_docs/
Description: WHAM (Waveform Hold and Modify) is a Windows 3.1 appli-

cation for manipulating digitized sound. It can read and write Windows
3.1 WAVE files, raw eight-bit digitized sound files and files of several other
formats (of which more may be added), and can perform various opera­
tions on this sound. WHAM can handle sounds of any size, restricted only
by memory.

Application: WinJammer
File Format: MIDI
Operating Systems: Windows, MS-DOS
Location on CD: sound/midi/windows/winj amr
Source: http://www.netscape.com/MCOM/tricks_docs/helper_docs/
Description: WinJammer is a fully featured MIDI player and editor for Win-

dows. The companion WinJammer Player can play MIDI song files in the
background, even in MS-DOS.

Video • 355

onuon
0.5 • 1.5 • l!lil
1.0 • 2.0 • c:::J

·-------------------·
'

... _ • -- ii. '- - - . ;"· ' . '. ' .' - '
~- ~ ... ·-------------------·

Figure A.8 QuickEdit QuickTime Movie Editor

Video
Application: QuickEdit
File Format: QuickTime
Operating Systems: Macintosh
Location on CD: video/ quiktime/ mac

Description: QuickEdit is a simple QuickTime movie editor.

Application: QuickTime for Windows
File Format: QuickTime
Operating Systems: Windows
Location on CD: video / quiktime/ windows/ quiktime
Source: http: //quicktime.apple. com/

356 • Appendix A: About the CD-ROM

Description: This is Apple's own player for QuickTime movies under Win­
dows. Note: As this book was going to press, a new version of Quick Time
for Windows was being released, so you may want to get the newest version
directly from Apple's World Wide Web site.

Application: Video for Windows

File Format: AVI
Operating Systems: Windows and Macintosh

Location on CD: video/ a vi
Description: These are Video for Windows (VfW) players for Macintosh and

Windows 3.1. {Windows 95 users don't need this because it's built-in.)

Application: MPEG movie players

File Format: MPEG

Operating Systems: Macintosh, Unix, and Windows

Location on CD: video/mpeg
Source: http://www-plateau.cs.berkeley.edu/mpeg/mpegptr.html
Description: The CD-ROM includes several easy-to-use MPEG players.

About Files

The seemingly naive question "what is a number?" was seriously examined by
mathematicians at the beginning of the 20th century. This deceptively simple
question spawned a huge quantity of new work in logic and set theory, and
led to the discovery of basic facts about the nature of mathematics. 1 Exploring
the question "what is a file?" is unlikely to lead to any such revolution, but
thinking about it carefully will help you to better understand why there are
so many different types of files, and how to choose the best file type for a
particular purpose.

Definition of a File
Before trying to nail down what files are, let's first take a look at what they are
used for. As any computer user knows, the primary purpose of a file is to save
the work you've done. Put slightly more technically, files are persistent; they
stay around even when the programs that use them are no longer in use.

Files are also the fundamental way that data is transferred from program
to program and system to system, that is, files are portable. Even when no file
is obvious to the user, such as in the cut-and-paste or clipboard provided by
newer computer systems, a file is often being used behind the scenes. (One
way to implement cut-and-paste is to have the cut data stored in a file and
then to pass the name of the file to the receiving application.)

1 An excellent introduction to some of the apparent paradoxes that arose from this work is
Douglas Hofstadter's Godel Escher. Bach [Hof79].

357

358 • Appendix B: About Files

The fundamental properties of a file are persistence and portability. In fact,
you could almost go so far as to define a file as persistent, portable data.

I've glossed over an important detail here. So far, I've only discussed the
data in a file. A file consists of more than just data. The particulars vary from
system to system, but usually a file also has a name, attributes, a modification
time, a creation time, and sometimes a complete database of resources, properties,
or extended attributes. Throughout this book, I often succomb to the typical
practice of using the word "file" to refer to the "data in a file," but you should
be aware that there are a few places where the distinction is critical.

What Files Are Made Of
As computer systems have changed through the years, so have the basic units
used to store and manipulate files. Mainframe operating systems think of a
file as a repository for a database. Each item in a database is a record, and so
mainframes treat files as a collection of records. Typically, all records in a file
are the same size; text is often stored in records of 80 characters each. The
development of mainframe operating systems was often driven by the desire
to work with large databases, and an enormous amount of work was done to
make it possible for programs to find and read or write rapidly any record in
a large file.

The development of the Unix operating system in the late 1960s was
partly driven by a desire to simplify operating systems for use on much smaller
computers. One way in which Unix was simpler than mainframe systems was
in how it looked at files. In Unix, a file is a sequence of bytes. This restriction
simplified Unix in many ways. It made the storage of files on disk simpler-it
was not necessary for the disk storage to remember the record size, for instance.
It simplified the disk access, since the operating system didn't need complex
strategies for dealing with different kinds of records. And, finally, it allowed
Unix to treat terminals and printers simply as another kind of file.

Unix was very influential; almost every microcomputer operating system
has followed Unix's idea that a file is simply a sequence of bytes. Any more
complex structure can be simulated by suitable programming. In particular,
fixed-length records can be stored in a Unix file by simply placing the records
one after the other.

How Files Get Around • 359

The previous paragraph holds an important point: Any file, even a main­
frame file with a complex structure, can be represented as a stream of bytes.
Sometimes, the transformation isn't completely trivial, but it can always be
done. Byte-stream files have become the basic method of exchanging data
between computer systems. When a computer has a more complex file struc­
ture (as OS/2 and Macintosh computers do), that more complex structure can
always be translated into a stream of bytes and translated back at the other
end.

What exactly is a byte? The word byte is generally used to refer to the
smallest amount of computer storage that can be easily referenced. Modern
microcomputers have settled on an eight-bit byte, which is more formally
known as an octet. However, as with so many things in computer science, this
definition isn't universal. Computers exist with a variety of byte sizes. As you
might expect, exchanging files between systems with different byte sizes is a
tricky topic. Fortunately, the eight-bit byte is nearly universal nowadays, and
it's unlikely you'll encounter this particular problem.

For our purposes, then, a file is a sequence of bytes, and a byte is simply
storage for eight bits.

How Files Get Around
Portability means that files can be carried from system to system. This "carry­
ing" occurs in many ways: On floppy disk, through networks, over modems.
Some files are exchanged directly from person-to-person, while others are es­
sentially made available to the general public through one-to-many "publish­
ing," such as through the World Wide Web. Appendix D gives a little back­
ground on the different means for transporting files.

About Text and Binary
I mentioned above that the data exchanged between different programs or
different computers is usually a sequence of bytes. It's a fairly natural step
to store one character in each byte by assigning each character a particular

360 • Appendix 8: About Files

value. 2 It's also rather natural that the connections between computers evolved
so that the byte values not used for characters were either dropped or used for
other purposes. As a result, many computer connections, including most mail
systems and dial-up connections, only support a restricted set of byte values.

The general terminology is that files that contain only "safe" byte values­
values that correspond to the codes for letters, numbers, and punctuation
marks-are called text files, even if their contents aren't particularly legible.
Files containing unsafe byte values are called binary files. This distinction is
a bit confusing, especially since many word processors (which deal exclusively
with text) store information in a binary file format. Similarly, non-text infor­
mation is often encoded into a text format.

2See page 20 for a more thorough discussion of characters and their relation to bytes.

About
File Formats

The way in which data is organized into bytes in a file is called the file format.
To read a spreadsheet file, you have to know which bytes represent which
numbers (or formulas or text) in which cells; to read a word processing file,
you have to know which bytes represent characters and which represent fonts
or margins or other information.

What a File Format Does
Programs can store data in a file however the programmer chooses. However,
you often want to share files among several different programs. For this reason,
many applications support some widely-understood file format, so that other
programs can understand the data in the file. At the very least, large companies
(who want to believe that their programs are "standards") often will publish
information on the formats they've created for their particular programs so
that other programs can use them.

File formats exist so that applications can store information and retrieve it.
There are a number of different goals that file format designers might have:

Size Generally files should occupy as little space as possible. This goal
may involve file compression or simply avoiding redundant data.

Fast Writing Many programs guard against disaster by checkpointing
(saving their current state to disk) at regular intervals. Since such data is
rarely read, it's not important that it be easy or fast to read, but to avoid

361

362 • Appendix C: About File Formats

interrupting the user, that this information should be written quickly. Sav­
ing a file can be slow if the file data is large or if complex transformations
must be performed (such as compression or encryption).

Fast Reading Other types of files are read far more often than they
are written, and fast reading is the important goal. Video is one example;
additional care while creating the video data can greatly speed the playback
and avoid many problems.

Random Access With large files such as high-resolution graphics or
large spreadsheets, the file may be the primary place data is stored while
it is manipulated. If all of the data cannot be read into memory, it is
necessary to locate and update arbitrary pieces of information within the
file.

Portable among Applications To be portable among applications, file
formats need to avoid making assumptions about the internal structure of
the program.

Portable among Computer Architectures Every computer system has
its own conventions about such things as the format of floating point num­
bers, the order of bytes within a multi-byte value, and the organization of
complex data structures in memory. For files to be easily portable among
different kinds of computer systems, programmers need to avoid the temp­
tation to use system-specific tricks.

These goals are often contradictory. For example, one way to minimize the
size of a file is to use a standard compression algorithm to compress data as
it is written. The result, however, is significantly slower reading and writing,
and you generally lose the ability to randomly access parts of the file on disk.
Similarly, portability often requires the use of explicit data conversions while
reading and writing, which results in slower file operations. Balancing these
requirements is difficult; some applications have multiple file formats that
they use for different purposes, a fast but large format that's used purely for
temporary storage (often referred to as "virtual memory") and a more compact
and portable format used for longer-term storage and exchange with other
applications.

Fixed Formats • 363

Fixed Formats
The easiest way to design a file format is simply to list all of the things that
need to be saved and allocate each one a fixed amount of storage at a fixed
location in the file. Many early graphics file formats followed this simple
approach, using fixed locations to store the palette colors and other basic
information and storing the (sometimes uncompressed) pixel data at a fixed
location in the file. These are known as fixed formats.

While simple, and useful for simple applications, this approach becomes
cumbersome when the requirements change. A few simple tricks can help
extend the lifetime of these simple formats. The most common trick is to
include a version number in the file header and define a certain area of the file
as "Reserved." This area of the file is set to zero in the basic file format. When
the file format needs to be changed, the version number is changed, and some
part of the Reserved area is redefined for the new purpose.

Type-Length-Value Formats
One weakness of a fixed layout is that you cannot define what may be included
in the file. For example, a word processor format may need to include font
information; if a particular file doesn't need as many fonts, less space in the file
is needed. An alternative approach is to build a file from a series of "blocks"
or "packets," each one specifying the kind of data in that block and the length
of the block. This is known as a type-length-value format.

The major advantage of this approach is that it simplifies cross-version file
support. Usually, newer files can be read successfully by older applications that
simply ignore any blocks they don't understand. Applications can minimize
the file size by including only the information necessary for that particular file.
This method can also simplify random access; a reading program can scan the
file to locate each block and then select blocks from the file as they are needed.

This approach is widely used, and there are many minor variations. One
common omission is to not explicitly give the size of the block, relying on
the type to implicitly specify the size of the data. This omission makes cross­
version support much more difficult, since an application cannot easily skip
blocks that it doesn't understand.

364 • Appendix C: About File Formats

Simply skipping an unrecognized block isn't always a good idea. Some
formats label each block so the reader can make reasonable assumptions about
blocks it doesn't understand. One of the more ambitious approaches is used by
the PNG graphics format. PNG files mark whether each block is essential. If a
program reading a PNG file sees an "essential" block that it doesn't understand,
it should give up; if it doesn't understand a "non-essential" block, it can simply
ignore it. Similarly, each block is marked to indicate if it can be safely copied
to a different PNG file without being updated. A comment block can safely
be copied without being altered, while a block giving statistical information
about the picture can't. This type of marking allows simple utilities to make
minor changes to a file without understanding every single type of block they
might see.

Reading such files is usually both quick and simple. The reader simply
reads the type of each block, and either calls a function to read and interpret
the data or skips the data. The only point of complexity is that sometimes
dependencies exist between the blocks. For example, it might be necessary to
know the width and height of a graphics image before attempting to decom­
press the actual graphics data.

Random-Access Formats
Many programs deal with files by simply reading the entire thing into memory.
That's not always possible, though. Sometimes the data is too large to reason­
ably fit into memory (remember that some systems have only a small amount
of memory). Sometimes, even if the file isn't large, you want to quickly iden­
tify the particular piece of the file in which you're interested. The result is
called a random-access format.

A good example of this type of format is the TIFF graphics format. A
TIFF file consists of a small header that specifies where an image file directory
is located in the file. That directory in turn specifies where the actual picture
data is stored in the file. Note that you don't read a TIFF file from beginning
to end; you read the header, then follow a chain of file positions to locate
additional information.

This indirect arrangement may seem curious for a graphics file until you
realize that TIFF was originally designed for use in professional image ma­
nipulation. Graphics professionals routinely deal with high-resolution images

Stream Formats • 365

requiring many megabytes each. The ability to store several different images in
one file (such as both low- and high-resolution versions of the same picture)
and retrieve any particular image or part of an image on demand is a vital
feature for this type of work.

This type of random-access format is also used by some programs that
store intermediate data on disk using "virtual memory;" program performance
often hinges on how fast data can be moved between disk and memory. Such
file formats are beyond the scope of this book, since they're usually intended
only for the internal use of that program; they're often deleted as soon as the
program finishes.

A drawback of this kind of random-access approach is that it's often cum­
bersome to simply read the file from beginning to end. For example, PDF is
a random-access format used to store electronic documents. Although it has
the same graphics capabilities as PostScript, PDF would be a poor choice for
sending documents to a printer. It's impossible to make sense of a PDF file
until the directory at the very end of the file is available. If you tried to build a
printer to accept PDF files, it would have to receive and store the entire PDF
file. Contrast this with a PostScript file, which can be readily interpreted as
the printer receives it. On the other hand, it's easier for an application to find
a particular page in a PDF file than in a PostScript file. For the PDF file, the
directory simply tells you where each page resides in the file; finding a page in
a PostScript file requires reading the entire file from the beginning.

Stream Formats
One of the benefits I mentioned above for type-length-value approaches is
that such files often can be easily read from beginning to end. Being able
to understand a file by reading it in this manner is sometimes a desirable
property all by itsel£ One reason is that disk drives and many other computer
components are often optimized for handling files sequentially from beginning
to end. Another reason is that when files are being transferred, whether over a
modem or from one program to another on the same machine, it's convenient
if the program reading the data can digest it immediately.

A good example of the latter concern is how some graphics formats (GIF
and PNG, in particular) interleave picture data. GIF can store picture data
starting with every eighth line, then every fourth line, and so on. A program

366 • Appendix C: About File Formats

reading a GIF file can create a low-resolution image using the initial data, then
progressively refine the image as more data becomes available. This approach
allows people to view pictures as they are downloaded by modem. The person
downloading can see a rough overview of the picture very quickly and decide
whether or not to bother waiting for the rest of the picture.

This kind of stream format requires that the information in the file appears
in an appropriate order. The file format designer has to ensure that the reader
of such a file will be able to interpret each part of the file as it is read.

Script Languages
The word interpret in the preceding paragraph is no accident. The purpose of
a file is really to recreate a certain program state. One way to do that is to
provide the reading program with a set of instructions to produce that program
state. For example, you could store a picture as a set of drawing instructions.

Many applications store information by writing a text script file that can be
interpreted by the application. One of the simplest examples is the Microsoft
Windows' INI files. INI files can be thought of as simple scripts that, when
interpreted, define a collection of variables. At the other extreme are full-blown
programming languages such as PostScript or 1F)C. The biggest disadvantage
of using script files is that it requires writing an interpreter, which can be a
formidable challenge for the application writer. However, because scripting is
such a useful part of a large application anyway, program designers often take
advantage of this approach.

Text and Binary Formats
Script files, as I described earlier, usually take the form of text. Text files are
generally easier to transfer between computers, which explains why the PDF
format, which is used to share electronic documents, is a text format. Also,
text files are generally much easier for humans to create and understand. The
electronic documents used by the World Wide Web are in a format that is
easy to create and modify with standard text editors. This format allowed
the developers of the World Wide Web to experiment easily, and made it

Text and Binary Formats • 367

possible for tens of thousands of people to create new HTML documents
using standard text editors.

Text and binary formats have many size trade-offs. When they store the
exact same kind of data, text formats are almost always larger than the corre­
sponding binary formats. PostScript Type 1 font files can be stored in either
a text or binary format; the binary format is typically about half as large as
the text format. On the other hand, text formats often allow people to store
data in a more abstract (and compact) form. Graphics formats that store a col­
lection of text drawing commands are much more compact than formats that
store high-resolution binary bitmaps. Either way, text formats do tend to be
marginally slower to read and write, due in part to the additional conversions
that must be done to convert data between the text format in the file and an
efficient binary format.

These trade-offs are evident in the file format descriptions in this book.
Formats that might need to be edited directly by humans, or which need to be
shared among many different types of computers, are often text formats. File
formats that might be used to store very large amounts of data or for which
fast, efficient access is critical are often in a binary form.

About
Transferring
Files

The portability of files is more crucial than ever in our increasingly networked
computer culture. This appendix looks at some of the ways that data gets from
one computer to another, and some of the unique features of each approach.

Post Office
Although electronic mail, the World Wide Web, and other such Internet mar­
vels receive a lot of attention, not everyone has access to them. They also
require a fair bit of knowledge to use, knowledge you can't safely assume ev­
eryone has.

For many years, publishers have been transferring their books to printers
electronically by simply placing the entire book-tens or even hundreds of
megabytes of data-on a disk, which is then mailed overnight to the printer.
Surprisingly, this approach is often both faster and cheaper than using the
Internet. With overnight delivery, the printer is likely to have the entire book
in an immediately usable form early in the morning. Unless the printer is
unusually Internet-savvy, it may require several hours to download, decode,
and decompress all of the data. Since human time is expensive, the Internet
approach is likewise more expensive. Clearly, as Internet tools become more
common, the economics will change, but there will always be situations in
which it truly is cheaper to ship a disk than to use the Internet. (In fact,
overnight mail delivery of a CD-ROM represents a data transfer rate about
four times the speed of today's fastest modems!)

369

370 • Appendix D: About Transferring Files

The type of disk to use depends in part on the amount of data and the plat­
form. Graphic artists and publishers often use Macintosh-format removable
hard disk cartridges, because of the popularity of Macintosh systems among
people in the publishing business and the need to transfer files too large to
be comfortably copied onto floppy disks. Magneto-optical disks (which hold
anywhere from 128 megabytes to over four gigabytes) are also popular in some
circles. On Unix platforms, quarter-inch tape cartridges are the most common
way to share data.

For most other purposes, the closest thing to a standard is a 3 1 /2 inch
floppy disk in 1.44meg or 720k MS-DOS format. These disks can now be
read in all new PC-compatibles, most Macintoshes, Atari ST, Amiga, and
many Unix systems. The most common platforms that can't read this type of
floppy are older Macintoshes and machines that completely lack floppy drives
(which includes many new PC and Mac laptops as well as many workstations).

FTP
Most Internet connections now offer access to FTP (File Transfer Protocol).
FTP is a way of transferring files across the Internet, best suited for publishing;
normally files are placed in a special area where anyone on the Internet can
access them. FTP can be used for person-to-person transfer, but it requires
careful setup to ensure that only certain people can access the data.

The most common FTP client program is ftp. While there are many
graphical FTP clients, the text-based ftp program is often the most reliable.

FTP allows you to log in to a remote computer and transfer files between
that computer and the one from which you're running FTP. That part about
"logging in" is a bit of a problem; rather than try to create new accounts for
everyone who uses an FTP archive, the system administrators usually create a
special restricted account called "anonymous." In this way, you can use FTP to
connect to a remote site (logging in as "anonymous") and retrieve files. (This
is commonly known as anonymous FTP.)

A Sample FTP Session
Here's a short example session, which I started by typing ftp ftp. shsu. edu
on an Internet shell account.

FTP • 371

Connected to pip.SHSU.EDU.
220 pip.shsu.edu FTP server (Version wu-2.4(4) Thu May 19 1994)

The first response was a message from the FTP server (the program at the
other end that manages the archive site). Notice that the name it responded
with (pip. SHSU. EDU) was not the name I specified (ftp. shsu. edu). This
event is quite common; many Internet hosts respond to several different
"aliases." You should stick with the most appropriate one. Today, the archive
site is located on a machine called pip; tomorrow it might be on a different
machine. In any case, the alias ftp. shsu. edu will always refer to the ma­
chine that contains the archive files. The second thing this response tells you
is the program that's managing the FTP site. This particular site is using the
wu server, which was compiled on May 19, 1994. After using FTP for a long
time, you'll begin to recognize some of the more widely used FTP servers; a
few offer special features that can help you find specific files. (The wu FTP
server was developed by the people who maintain one of the largest Internet
archive sites, and is one of my favorites.)

Name (ftp.shsu.edu:kientzle): anonymous
331 Guest login ok, send your complete e-mail address as password.
Password:

This particular FTP site allows anonymous logins under the user name
anonymous. Just ignore the default name the ftp program concocts for you.
It's customary to provide your electronic mail address as the password when­
ever you use an anonymous FTP site. This information helps people who are
in charge of the site to help you; for example, if they find out they are getting
many requests from your area, they may find someone to "mirror" their site in
your area. This mirror will provide you with faster access to those files. Since
anonymous FTP is so common, newer FTP programs {including most World
Wide Web browsers) automatically log you in as anonymous by default, using
your mail address as the password.

230-You are 33 of 100 users allowed for your class.
230-
230-Please read the file README
230- it was last modified on Thu Mar 23 06:08:22 1995
230 Guest login ok, access restrictions apply.

372 • Appendix D: About Transferring Files

After you're logged in, the FTP server tells you some things you might
need to know. In this case, it draws your attention to a README file that you
should download and read to find out more about this site. This server also
tells you how many people are using the archive site. This information is
helpful because it lets you know what to expect; if there are very many users
(say 100 out of 1 00), things might be a bit slower. Pay attention to this type
of information when it's available; the Internet can be exceedingly slow when
it's busy, and you can make your online time much more productive if you
learn to schedule your usage for quiet times.

ftp> get README
200 PORT command successful.
150 Opening ASCII mode data connection for README (1343 bytes).
226 Transfer complete.
local: README remote: README
1375 byte& received in 0.21 seconds (6.3 Kbytes/s)

The purpose of FTP is to move files around, and the command you'll
use most often is the get command, which copies a file from the archive to
the machine running the ftp program. Note that the format of the filename
depends on the host; since most server programs run on Unix computers,
filenames are usually case-sensitive-README is not the same as readme. You
should be careful to type the names correctly.

One other thing that you should notice about the previous part of the
session: I typed the command to the ftp program running on one machine,
which in turn negotiated the transfer with the remote server. When several
different programs are running like this, it's sometimes tricky to keep track of
who's giving commands to whom. In this case, you give commands to the ftp
program, and it gives commands to the server program.

ftp> quit
221 Goodbye.

Once you've gotten the files you need, you simply exit the ftp program.
The ftp program will tell the server you're finished.

More FTP Commands
The example above was deliberately very simple. The common FTP programs
allow much more than this. There are even graphical FTP interfaces, but they

FTP • 373

vary considerably in how you use them and what capabilities they offer; the
ones I've used are not as flexible as the basic text-oriented FTP program. I'll
go through the most important commands you'll see used:

get I've already briefly discussed the get command. On many systems,
the get command also allows you to specify the name to which the file
should be copied, which can be useful if the system you're using has restric­
tions on the format of filenames. The Unix systems used by many archive
sites allow for very long filenames that can include any number of unusual
characters. For example, if you're using FTP to copy files from a Unix ma­
chine to a MS-DOS system, a simple get README. uploads might result
in the file README. UPL, which is a tad cryptic. It might be easier to get
README. uploads uploads . txt instead.

One feature of some FTP servers is that they allow you to request a com­
plete directory. The server will automatically archive the directory and send
you the archive. Just add . zip to the name of the directory to ask for a zip
archive of the directory contents, or . tar. gz to ask for a Unix-style archive.

cd Just like most computer systems, the files on an archive site are arranged
into directories and subdirectories. Usually, there is a pub directory, which
contains files available for public retrieval.

On most FTP sites (but not all), you can use cd .. to tell the server to
go to a higher directory. (The catch is that the name after cd is interpreted by
the server system. While .. means "next directory up" on Unix, MS-DOS,
and many other systems, it's not quite universal.)

dir /ls Of course, all of the above would be much easier if you could see
what files were in a directory. The dir and ls commands work slightly
differently; the ls command gives you only the names of the files, usually
unsorted, while the dir command gives you a sorted list, together with such
information as the size and date of the files. 1

binary /text FTP by default assumes that you are transferring text files. If
you're transferring non-text files (such as graphics or compressed files), you'll

1 One of my complaints with some graphical FTP programs is that they only give you the
names of the files, and not the sizes or other information.

37 4 • Appendix D: About Transferring Files

need to tell FTP by giving it the binary command. Similarly, the text
command sets up FTP to copy text files.

mget A FTP archive may have a large collection of files that you want.
On some archive sites, you can request an entire directory, and the contents
will be automatically wrapped into a single archive file for you. When that
approach isn't available, you can use the mget command to specify a wildcard
pattern; all files matching the wildcard will be retrieved. The kind of wildcards
allowed varies by site, but almost all support * (any group of characters) and
? (any single character). For example, mget README* would retrieve all of
the files starting with README. Again, remember that most FTP archives are
case-sensitive.

By default, mget asks you before it downloads a file. This step allows you
to select only the particular files you want. The prompt command allows you
to change this behavior, so that you can retrieve large groups of files without
answering a Yes/No question for every one.

put/mput FTP also allows you to copy files to a FTP site, using the put
and mput commands, which work almost identically to get and mget.

led Being able to switch directories on the archive site is fine, but you might
also need to change directories on the local machine, so you can decide where
any files you copy will land. The led command (which stands for "local
change directory") does exactly that.

This isn't a complete listing of the commands supported by the FTP pro­
gram, but these are the commands that you're most likely to use.

Other Ways to Access FTP
The venerable ftp program has many competitors. I generally use the ncftp
program, which has a similar text-oriented interface but offers a number of
additional features. Most World Wide Web browsers also support FTP. A
graphical browser is a convenient way to find out what's available on a par­
ticular FTP site, but I generally prefer a text-based FTP client program to
download files. Of course, you may have a different opinion. I suggest you try
several different FTP clients and see which one works best for you.

World Wide Web • 375

World Wide Web
The World Wide Web was designed to make it easy to request specific pieces
of data from different computers. A World Wide Web client (called a browser)
asks for specific files from other machines. Those files can contain markers
indicating the name and address of other small files. A user can read a page of
information and simply click on a highlighted entry to retreive another page
with different information.

The World Wide Web depends on three mechanisms. Loosely, these three
mechanisms answer the following three questions:

• How do you identify a piece of information?

• How do you retrieve a piece of information once you know its name?

• Once you have the information, how do you make sense of it?

The first question is answered by a Universal Resource Locator (URL),
which is a notation for describing the location of a piece of information.
In essence, a URL is a "phone number and extension" for a file somewhere on
the Internet (see page 30). Note that like a telephone number, when the data
moves, the URL is no longer valid.

The second mechanism used by the World Wide Web is the HyperText
Transfer Protocol (HTTP). HTTP is the "language, used by the client program
(that runs on your computer) to request specific information from a server
program somewhere on the Internet (see page 35). It's possible to use just
about any protocol, and there are parts of the Internet that use the FTP
protocol as a substitute for HTTP, but HTTP has several features specifically
designed for the World Wide Web.

The third piece of the puzzle is the Hyper Text Markup Language (HTML).
HTTP can be used to transfer any type of information, and people are ex­
perimenting with using it to transfer movies, interactive three-dimensional
environments, and sound files, but the bulk of the information currently on
the World Wide Web uses HTML. HTML is discussed in more detail starting
on page 29, but the the idea is that HTML specifies the general appearance
of a text document, and in particular, can specify that certain parts of the
document are links to other documents. World Wide Web client programs
usually highlight those links; when the user selects the highlighted element,

376 • Appendix D: About Transferring Files

the client program retrieves the data from the corresponding URL. In this
way, you can follow connections to different data stored all over the Internet.
People have assembled vast collections of data simply by taking information
that each person had on a separate computer and providing links to tie the
individual pieces together into a seamless whole.

Gopher
Gopher is a file transfer method that is similar to HTTP in some respects, but
is more limited in the type of data it can support. Gopher is text-oriented,
allowing you to browse menus and download files. The menus can contain
references to other files (possibly on other machines). To access data using
Gopher, you need the name of the machine and the name of the file or menu.

Electronic Mail
The World Wide Web is growing rapidly, but is not suited to all types of data
exchange. Primarily, the World Wide Web is oriented towards publishing,
making data available to anyone who's interested. Often, you have a file that
you want to send to a small number of people, and the World Wide Web isn't
particularly helpful in this regard. FTP can be used to transfer files between
individuals, but it requires some care to set up for this kind of use.

Electronic mail (email) is often a better option, but there are still some
hurdles to overcome. Electronic mail typically only supports text files and
can transfer only one file at a time. There are also limits on the size of mail
messages.

Overcoming these restrictions requires the use of several programs to pack­
age the data you want to send and to convert it into a form palatable to the
mail system. The recipient must then carefully unwrap the package to retrieve
the original data. The specific steps to send a file are:

1. Archive several files into a single file.

2. Compress the archive to make it smaller.

3. Encode the archive into a text format.

Direct Connect Modems • 377

Frequently, a single program will handle two of these steps, and some mail
programs (such as Eudora and MetaMail) will handle all of them for you. The
catch is that both the sender and recipient must be using compatible software.
You'll frequently have to handle each of these steps manually.

Specific programs to handle the first two steps (archiving and compres­
sion) are discussed in more detail starting on page 183, and the third step is
discussed starting on page 255.

Direct Connect Modems
Often, using mail to transfer files requires that you first upload the file, send
it through mail, and then download it at the other end. In this case, it might
make more sense to try a direct modem-to-modem connection. The details of
how you do this depends on your particular terminal program, but a typical
scenario is outlined in Figure D.l. This approach is easier if you can talk
to each other on the phone while doing this, but that requires two separate
phone lines.

1. Both people turn on their modems and start their terminal programs.
2. The callee enables auto-answer on her modem.
3. The caller asks her modem to dial the callee's modem.
4. The modems connect.
5. Both people type to each other to make sure the connection is working.
6. The sender starts sending the files.
7. The receiver starts receiving the files.

Figure 0.1 Steps for a Direct Modem-to-Modem Transfer

GettiHg this method to work can be tricky, but here are a few suggestions:

• Set both terminal programs to 8 bits, No parity, and 1 stop bit (8, N,
1). This configuration is fast, and avoids some common problems.

• To get your modem to auto-answer, type ATSO=l followed by the Enter
key; the modem should answer OK. This setting tells the modem to
answer on the first ring. Do this before the caller tries to dial. (Many

378 • Appendix D: About Transferring Files

terminal programs have a menu option or command that takes care of
this step for you.)

• Set both terminal programs to use ZModem, and make sure that Auto­
matic ZModem Download is enabled. If both terminal programs don't
support ZModem, try YModem (sometimes called "YModem-Batch''),
Kermit, or XModem, in that order.

• If you have trouble getting the modems to connect (the modem never
says CONNECTED), then first try resetting both modems (ATZ), then read
the modem manuals. It's an unfortunate fact that getting some modems
to talk to each other can require technical tricks. Sometimes the modem
manual will have specific information on how to set it up to talk to
particular modems. Sometimes, you can call the modem manufacturer
and ask them. Sometimes, you just have to guess.

If all else fails, use freshly formatted floppy disks and an overnight delivery
serv1ce.

Remote-Access Programs
There are a number of specialized remote-access programs designed specifically
to simplifY the direct connect process. By running one copy on each computer,
either person can connect to the other computer and easily copy files between
the two systems. These programs can be much simpler than using generic
terminal programs, though they tend not to be very standard, requiring each
person to have a copy of the same program.

Bulletin Board Systems
If you have the technical expertise (and there are several good books on the
market to help you if you don't), you could even set up a bulletin board system
(BBS). Many terminal programs come with simple bulletin board software
that lets you define who can dial into your computer and what files they can
access. If you find yourself transferring a lot of data by modem, it may be
worth investing in a good BBS program.

A Binary
Dump Program

I have written a short program in C that I use to look at the contents of files.
To use it, simply type dump filename. For example, I typed dump jeff,
and the first few lines of output looked like:

jeff:

Addr 0 1 2 3 4 5 6 7 8 9 A B C D E F 0 2 4 6 8 A C E

00000000 4749 4638 3761 5100 7800 f300 0000 ffOO GIF87aQ.x.s
00000010 1010 1018 1818 2929 2939 3939 5252 525a)))999RRRZ
00000020 5a5a 7373 7384 8484 9c9c 9cad adad bdbd ZZsss ---==
00000030 bdce cece f1f1 f100 0000 0000 002c 0000 =NNNqqq , ..
00000040 0000 5100 7800 0004 fe10 c849 abbd 38eb .. Q.x .. . -.HI+=8k

T he left column tells you where in the file you are, the middle columns
give the numeric values of the bytes, and the right column shows you the
characters in those locations (unprintable values are shown as periods) . The
numbers are all in hexadecimal; don't worry if you don't read hexadecimal­
you are usually interested in only the right column. In this case, the first
line in the right column starts with GIF87a, indicating that this is a GIF file.
Similarly, most binary file formats have the file type somewhere in the first 20
or 30 bytes.

#include <stdio. h>
#include <ctype.h>
char line [80];
long address;

379

380 • Appendix E: A Binary Dump Program

void puthex(n, digits, pos)
long n; int digits, pos;
{if (digits> 1) puthex(n/16,digits-1,pos);

line[pos+digits-1] = "0123456789abcdef"[n%16];
}

void dumpfile(f)
FILE *f;
{ int c,i;

address = 0;
c=getc(f);
while (1) {

for (i=O;i<50;i++) line[i]=' ';
for (;i<80;i++) line[i] = 0;
puthex(address,8,0);
if (c == EOF) return;
for (i=O;i<16;i++) {

}

puthex(c & Oxff,2, 10 + i*2 + i/2);
line[50+i] = '.';
if (isprint(c & Ox7f)) line[50+i] c & Ox7f;
if ((c=getc(f)) == EOF) break;

if ((address % 256)==0) {
puts("");

puts(" Addr 0 1 2 3 4 5 6 7 8 9 A B CD E F 0 2 4 6 8 ACE");
puts("-------- ---- ---- ---- ---- ---- ---- ---- ----------------");

}
}

}

puts(line);
address += 16;

void main(argc,argv)
int argc; char **argv;
{ if (argc < 2) dumpfile(stdin);

else {

}
}

while (--argc > 0) {

}

FILE *f = fopen(*++argv, "rb");
printf("%s:\n",*argv);
if (f) {

dumpfile(f);
fclose(f);

} else printf("*** Can't open %s!!\n", *argv);

Bibliography

[Ado85] Adobe Systems Incorporated. PostScript Language Tutorial and
Cookbook. Addison-Wesley, Reading, MA, USA, 1985.

[Ado88] Adobe Systems Incorporated. PostScript Language Program Design.
Addison-Wesley, Reading, MA, USA, 1988.

[Ado90a] Adobe Systems Incorporated. Adobe Type 1 Font Format. Addison­
Wesley, Reading, MA, USA, 1990.

[Ado90b] Adobe Systems Incorporated. PostScript Language Reference Manual.
Addison-Wesley, Reading, MA, USA, second edition, 1990.

[Ado93] Adobe Systems Incorporated. Portable Document Format Reference
Manual. Addison-Wesley, Reading, MA, USA, 1993.

[App93a] Apple Computer, Inc. Inside Macintosh: Quick Time. Addison-Wes­
ley, Reading, MA, USA, 1993.

[App93b] Apple Computer, Inc. Inside Macintosh: QuickTime Components.
Addison-Wesley, Reading, MA, USA, 1993.

[Bor95] GUnter Born. File Formats Handbook. International Thomson
Computer Press, London, UK, 1995.

[Con95] Daniel W. Connolly. "Character set" considered harmful. Published
as an Internet Draft, April 1995.

381

382 • Bibliography

[Cro95] Lee Daniel Crocker. PNG: The portable network graphic format.
Dr. Dobbs journal, pages 36-44, July 1995.

[GIF87] GIF Graphics Interchange Format: A standard defining a mechanism
for the storage and transmission of bitmap-based graphics information.
Columbus, OH, USA, 1987.

[Gil92] Daniel Gilly. UNIX in a Nutshell· System V Edition. O'Reilly &
Associates, Sebastopol, CA, USA, second edition, 1992.

[GMS94] Michel Goossens, Frank Mittelbach, and Alexander Samarin. The
BTFX Companion. Addison-Wesley, Reading, MA, USA, 1994.

[Gra90] Graphics Interchange Format: version 89a. Columbus, OH, USA,
1990.

[Gra95] Ian S. Graham. HTML Sourcebook. John Wiley & Sons, Inc., New
York, NY, USA, 1995.

[Hof79] Douglas R. Hofstadter. Godel, Escher, Bach: An Eternal Golden
Braid. Basic Books, New York, NY, USA, 1979.

UGF94] Nels Johnson, Fred Gault, and Mark Florence. How to Digitize
Video. John Wiley & Sons, Inc., New York, NY, USA, 1994.

[Ker79] Brian W. Kernighan. A TROFF Tutorial, 1979. Reproduced
in [USD94].

[Knu86a] Donald E. Knuth. The TF)(book, volume A of Computers and Type­
setting. Addison-Wesley, Reading, MA, USA, 1986.

[Knu86b] Donald E. Knuth. TF)(: The Program, volume B of Computers and
Typesetting. Addison-Wesley, Reading, MA, USA, 1986.

[Knu86c] Donald E. Knuth. The METAFONTbook, volume C of Computers
and Typesetting. Addison-Wesley, Reading, MA, USA, 1986.

[Knu86d] Donald E. Knuth. METAFONT: The Program, volume D of Com­
puters and Typesetting. Addison-Wesley, Reading, MA, USA, 1986.

Bibliography • 383

[Knu86e] Donald E. Knuth. Computer Modern Typefaces, volume E of Com­
puters and Typesetting. Addison-Wesley, Reading, MA, USA, 1986.

[Lam94] Leslie Lamport. lflp)(: A Document Preparation System: User's Guide
and Reference Manual. Addison-Wesley, Reading, MA, USA, second
edition, 1994.

[Mv94] James D. Murray and William vanRyper. Encyclopedia of Graphics
File Formats. O'Reilly & Associates, Sebastopol, CA, USA, 1994.

[Nel92] Mark Nelson. The Data Compression Book. M&T Books, New
York, NY, USA, 1992.

[Oss79] Joseph E Ossanna. NROFFITROFF User's Manual, 1979. Repro­
duced in [USD94].

[Pes95] Mark Pesce. VRML: Browsing and Building Cyberspace. New Riders,
1995.

[PM93] William B. Pennebaker and Joan L. Mitchell.]PEG: Still Im­
age Data Compression Standard. International Thomson Computer
Press, London, UK, 1993.

[PRM94] 4.4 Berkeley Software Distribution: Programmer's Reference Manual.
The USENIX Association and O'Reilly & Associates, Inc., Se­
bastopol, CA, USA, 1994.

[PSD94] 4. 4 Berkeley Software Distribution: Programmer's Supplementary Doc­
uments. The USENIX Association and O'Reilly & Associates, Inc.,
Sebastopol, CA, USA, 1994.

[Smi92] Joan M. Smith. SGML and Related Standards: Document Description
and Processing Languages. Ellis Horwood Limited, Hemel Hemp­
stead, Hertfordshire, UK, 1992.

[SMM94] 4.4 Berkeley Software Distribution: System Manager's Manual. The
USENIX Association and O'Reilly & Associates, Inc., Sebastopol,
CA, USA, 1994.

[Swi26] Jonathan Swift. Travels into Several Remote Nations of the World, in
Four Parts, by Lemuel Gulliver. 1726.

384 • Bibliography

[Tek95l A. Murat Tekalp. Digital Video Processing. Prentice Hall PTR,
Upper Saddle River, NJ, USA, 1995.

[TIF92] TIFF Revision 6.0. Seattle, WA, USA, 1992.

[URM94] 4. 4 Berkeley Software Distribution: User's Reference Manual. The
USENIX Association and O'Reilly & Associates, Inc., Sebastopol,
CA, USA, 1994.

[USD94] 4.4 Berkeley Software Distribution: User's Supplementary Documents.
The USENIX Association and O'Reilly & Associates, Inc., Se­
bastopol, CA, USA, 1994.

[vH94] Eric van Herwijnen. Practical SGML. Wolters-Kluwer Academic
Publishers, Boston, MA, USA, second edition, 1994.

Index

A
A-Law, 293-294, 298, 301, 303
Acrobat, 1 OS, 109-112
Acrobat Distiller, 110
adaptive reset, 204
ADC (Analog-to-Digital Converter), 289, 291
Adobe Systems, 93, 110, 112, 156
ADPCM (Adaptive Differential PCM), 294,

295,301,303
AFM (Adobe Font Metrics), 98
AIFF (Audio Interchange File Format), 307,

353
AIFF-C (Audio Interchange File

Format-Compressed), 307
Aldus Corporation, 149, 156
Alpha text editor, 75
alph~ 121, 139, 155
American Mathematical Society (AMS), 60, 75
Amiga, 13, 178

software, 13
Amiga Home Page, 14
Aminet, 13
J'lMS-'IfX, 62
amstex package, 62
anonymous FTP, 370
ANSI (American National Standards

Institute), 5
anti-aliasing, 119
APPO JPEG Extension Marker, 162, 163
AR archiver, 247, 249
ARC archive format, 186, 199, 205-210, 212,

216,224,249,350
ARC program commands, 206

385

Archie, 15
archiving, 183-191

benefits, 184
defined, 183

arithmetic coding, 166, 186
ARJ archiver, 247-248, 350
ARPA (Advanced Research Projects Agency), 1
ARPAnet, 1, 3, 34
art-deco, 54
ASCII (American Standard Code for

Information Interchange), 8, 19,
23, 45, 55, 96, 97, 101, 104, 114,
125-128,267

as preferred text format, 114
aspect ratio, 143
asymmetric compression, 313
Atari ST, 4
AtoB decoding program, 267-270
atoms, Quick1ime, 324
AU s9und format, 297-298, 305, 353, 354
audio compression delay, 330
AVI (AudioMdeo Interleave), 317-320, 322,

356

B
back up, 183
bang addressing, 35
base 64 encoding, 259, 268, 283
base 85 encoding, 269
Base64 MIME encoding, 278
Baseline JPEG, 161
Baseline TIFF, 150
BBS (Bulletin Board System), 2, 3, 130, 378

386 • Index

Bennet, Eric, 10
Berry, Karl, 75
bilevel images, 118, 121, 130
binary file, 9, 255, 366, 367, 379

defined, 8, 360
BinHex, 275, 281-285, 352

on Unix, 4
variants, 284

bits per pixel, 118
Bitstream Speedo font format, 1 04
black book, 106
blue book, 106
blue screen, 121
BMP (Windows-OS/2 Bitmap), 178
BMUG (Berkeley Macintosh User's Group),

12,285
body of IDfX document, 66
book publishing, 78
Born, GUnter, 114
Y.Y.BoundingBox, 100
BSD (Berkeley Standard Distribution), 13
BtoA encoding program, 9, 267-270
byte

as character, 21, 22
defined,359
in file, 358
muldbyte characters, 22
order, 152
"safe" values, 8, 360
signed, 302

byte-stream files, 359

c
C-Cube Systems, 161
Cl NT phototypesetter, 84
cat program, 228
CCITT (International Consultative

Committee for Telephone and
Telegraph), 5, 157, see ITU

CD-ROM, 339-356
drive, 312, 317, 328

character, 20-24
coded character set, 21
encoding, 21-23, 95
escape, 90
image as, 47
math, 51
mathematics, 74
names, 21
names in HTML, 44, 45

outline, 97
overstruck, 85, 86, 127
special in HTML, 44
special in TROFF, 86, 87
special in URLs, 37
special in IDF){, 70

"Character Set" Considered Harmfol, 20
chroma, 331
chromaticities, 161
CI CA (Center for Innovative Computer

Applications), 12
CIE XYZ Color System, 120, 145
CLUT (Color Look-Up Table), 118
CMYK (Cyan-Magenta-Yellow-Black Color

System), 119, 120
code pages, 21
codec (compressor/decompressor}, 295, 315
coded character set, 21
"color" books, 106
color conversion, 120
color depth, 118, 119
color histogram, 145
color system, see YCbCr, see HSV, see RGB

standard, 120
comments, 61, 63, 94, 135

structured, 99
Common Ground Software, 112
Common Internet File Formats, 10
The comp.fonts Home Page, 106
Compact compressor, 247, 250
CompactPro, 250
Compress compression program, 129, 185,

199-204
GZIP as a replacement for, 223

compression, 122-124, 183-191
contextual, 186
losslesss, 124
lossy, 123-124, 158, 167
ranking, 191

CompuServe Information Service, 5, 8, 117,
129, 132, 137, 139, 199

Computer Music journal, 296
Connolly, Dan, 20
Content-Description,273
Content-!0,273
Content-Transfer-Encoding,273,274
Content-Type,273,274
continuous tone, ·121
converting between movie formats, 329
copyleft, 226

copyright
bitmapped fonts, 105
fonts, 104

Courier font, 64, 105
Crocker, Lee Daniel, 147
Cross-Piatfonn Page, 10
crudetype program, 64
Crunching, 208
crunching, 208
CfAN (Comprehensive 1FX Archive

Network), 65, 66, 75
cursive program, 128

D
DAC (Digital-to-Analog Convener), 289,

291, 292
DARPA (Defense Advanced Research Projects

Agency), 1, see ARPA
DARPAnet, 1
data fork, 101, 241, 243, 244, 282, 283, 323

as separate file, 282
DataFiksl 16, 250
DCf (Discrete Cosine Transform), 165-167,

331-333, see JPEG
deep-pixel images, 119
Deflation, 145, 146, 210, 215, 219-220, 239
Desi, Rahul, 231
device-independent rendering model, 94
difference frames, 313, 314
differencing, 312
DigitalPaper, 112
direct color, 118
Display PostScript, 93, 102
dithering, 119, 160
DITROFF text formatter, 81, 84
document formats, 19
document maintenance, 53, 78, 79
domain addressing, 32, 35

mixed with UUCP addressing, 35
domain names, 33-35
dot commands, 84
DPCM (Differential PCM), 294
DSC {PostScript Document Structuring

Conventions), 99
DSP (Digital Signal Processor), 292, 295
dump program, 8, 379
Duntemann, Jeff, 128
DVI {'JFX Device-Independent output

format), 59, 64, 65, 71, 72, 75, 76
as output from TROFF, 84

Index • 387

converting to PostScript, 64
PostScript commands in, 72

dvi2tty program, 64
dvilj program, 75
dvips program, 64, 75

E
eight is enough, 119
electronic mail, 3, 32, 56, Ill, 125, 126, 183,

184,227,230,255,257,268,
271-281, 283, 284

defined, 32, 273
security, 279
sending files, 258
transferring files, 376-377

elements
from SGML, 78

emphasis in plain text, 125
empty tags, 40
encoding, 255
encryption, 190
end tag. 40
entities, see HTML entities

from SGML, 78
entropy, 185
entropy coding, see arithmetic coding
Envoy, 112
eplain,62
ePNG, 141
EPS, see EPSF
EPSF (Encapsulated PostScript File), 72, 94,

100,101,347
creating, 103
EPSF previews, 100

EPSI (Encapsulated PostScript Interchange
Format), 101

EQN preprocessor, 83, 90, 91
examples, 90

equations, 126
escapes, TROFF, 84
Ethernet, 1
Eudora mail reader, 280
evolution, 150
exchanging files, problems, 105, 113, 255
expen listeners, 335
expire news articles, 33
extension, 7

. ??Z, 199

.?q?, 247

.1, 81

388 • Index

.9, 81

.afm,64, 93

.ar,247,249

.arc,205

.arj,247,248

.au,297

.avi,317

.BMP, 178

.C,247,250

.clo,63

.cls,63

.cpt,247,250

.def,63

.dp, 112

.dvi,59

.eps,93,95

.epsf,93, 95

.evy, 112

.exe,247, 248

.fd,63

.gif, 129

.gz, 7,223

.hqx,281,282

.htm,29

.html,29

.iff, 178

.jfif, 157

.jpeg, 157

.jpg, 7, 157

.13,329

.latex, 59,63

.ltx, 59,63

.lzh,247,249

.m1a,329

.m1s,329

.m1v,329

.m2a,329

.m2s,329

.m2v,329

.man, 81

.me, 81

.m£,63

.mod,306

.MooV,321

.mov,321

.mp2,329

.mpa,329

.mpg,329

.mps,329

.mpv,329

.ms, 81

.pbm, 179

.pdf, 109

.pfa,64,93,95

.pfb,64,93, 95

.pfm, 93

.pgm, 179

.pict, 178

.pk,63

.pl,63

.png, 139

.ppm, 179

.ps,93,95

.rar,247,249

.sea,241,247,248,282

.sfx,247,248

.sgml, 77

.sh,227

.shar,227

.sit,241

.snd,297

.sty,63

.tar, 7, 193

.taz, 193

.tex, 59,62,63

.tfm,63

.tgz, 193

. tif, 149

.tiff, 149

.tz, 193

.uu,257

.uue,257,258

.vf,64

.vpl,64

.vav,299

.vrl, 169

.xbm, 177

.xpm, 177

.xx,263

.xxe,263

.z, 199, 200

.z,247,250

.zip,209

.zoo, 231

F
FAQ (Frequently Asked Questions) file

obtaining, 14
fax machine, 26, 118, 122
Fidonet, 2, 3

file
components, 241, 281, 358
defined,357,358
extension, 7
persistence, 357
ponabiliry, 357
transferring, 369-378

by mail, 376-377
by modem, 377-378

file command, 8
file format, 4, 361-367

binary, 359, 366, 367
fixed, 363
identifying, 7-9, 62, 94-95, 131, 160,

197,228,234,379
random-access, 151, 364, 365
script languages, 366
stream,365, 366
text, 359, 366, 367
type-length-value, 363, 364

filename, 7
fill mode, 8 5
filtering, 145
finger, 31
fixed file format, 363
fixed-rate compression, 293, 294
FIZ, 237, 238
Aoogleblatz, 67
FM synthesis, 291
font, 20

as a collection of procedures, 95
as program, 104
bitmapped, 63
encoding, 95
hinting, 96
interfacing PostScript and lfX, 62, 64
metrics, 98, 11 0
outline, 96
virtual, 62, 64

fontinst,62
fork, see data fork, see resource fork
forms, see HTML forms
four-for-three encoding, 259
Free Software Foundation, 197, 226
FTP (File Transfer Protocol), II, 31, 37, 282,

370-374
example session, 370-372

ftp program, 370
commands, 372-374

G
gamma, 145

Index • 389

Garbo archive, 12, 92, 180, 204
gateways, 2
General MIDI, 305
generations, 231-233
generic coding, 77
GhostScript PostScript Interpreter, 106, 112
GhostView PostScript previewer, 99, 107
GIF (Graphics Interchange Format), 4, 8, 54,

117, 129-137, 139, 140, 143,
146, 150, 151, 159, 160, 179,
186,199,275,345-348,365,379

application extension, 137
as standard, 5
block types, 132
comment extension, 135
extension blocks, 135
graphics control extension, 136, 137
header, 133
identifying files, 131
legal issues, 132
limitations, 130
sub-block, 135
text extension, 135, 136, 146
version, 133

GIF87a, 131
GIF89a, 131, 136, 137
glyph, 20, 95, 96
GML (Generalized Markup Language), 78
GNU (GNU's Not Unix), 13, 83, 88, 92,

145, 195, 197, 198, 210, 223, 226
General Public License, 226
GROFF text formatter, 81, 83, 88, 92
software, 13
TAR, 195

Goodman, Bill, 250
Gopher, 11, 14, 15, 31, 376
Graham, Ian, 57
graphics

general, 117-124
programming, 124

grayscale, 118
green book, 1 06
Group 3 fax compression, 122, 130
Group 4 fax compression, 130
Gulliver, Lemuel, 42
GUNZIP, 195, 224, 250, 352
GZIP, 7, 145, 186, 191, 193, 195, 199,210,

217,220,223-226,250,350-352

390 • Index

as a replacement for compress, 223

H
halftoning, 119, 160
HDTV (High Definition Television}, 314, 327
Helvetica font, 64, 105
Henderson, Thorn, 205
hertz, 290
van Herwijnen, Eric, 80
Hobbes OS/2 archive, 13
HSL (Hue·Saturation·Lightness Color

System), 164
HSV (Hue·Saturation·Value Color System),

120, 164
HTML (HyperText Markup Language),

21-23, 26, 29-57. 78, 79, 91,
125, 126, 170, 174, 367

anchor tag, 45
anchor tag attributes, 47
deprecated features, 54
elements, 40
entities, 44-46
example table, 51, 52
forms, 38, 48-50
imagemaps, 39, 48
input fields, 48
mathematics, 50-Sl, 53
style sheets, 42
variables, 48, 49

HTML tags, 4~ 1
A,45,47
B,45
BASE,42
BODY,41
BOX, 51
CITE,44
CODE,44,56
DFN,44
EM,40,44
FORM,42,49
H1,43
H2,43
H3,43
H4,43
H5,43
H6,43
HEAD,41
HTML,41
I,45
IMG,47,48

INPUT,49
ISINDEX,42
KBD,44
LINK,42
LISTING, 54
MATH, 50
OVER, 51
P,43
PLAINTEXT, 54
PRE,43
8,45
SAMP,44, 56
SELECT,48,49
STRIKE,44
STRONG,44
SUB,45, SO
SUP,45, 51
TABLE, 50
TD, 50
TEXTAREA,49
TH,50
TITLE,41
TR, 50
TT,45
U,45
VAR,44
XMP,54

HTTP (HyperText Transfer Protocol), 29-31,
33,35-39,41,57,272

URL modifiers, 37
URLs, 35-39

hue, 120, 164
Huffman compression, 166, 185, 186, 208,

219,220,239,294,333
human hearing, 290, 295, 334, 335
human speech, 290, 293, 295
human vision, 123, 124, 158, 163
Hyper·Archive, 12

IFF (Interchange File Format), 178, 179, 299,
307,354

image compression, 122
Imploding, 215, 218-219
impossibility of perfect compression, 189
including PostScript files, 100
lnfo·Mac archive, 12, 57, 124, 204
INI file format, 366
interlaced graphics, 54, 131, 140, 146
Internet

defined, 2, 3
Internet Drafts, 20
Internet PostScript Resources, 106
Internet Relay Chat, 170
internetworking, 1
invisible woman, 121
IP (Internet Protocol), 2, 3
ISO (International Organization for

Standardization), 5, 21-23, 45, 55,
77, 78, 80, 157, 168

ISO 10646, 22
ISO 2022,22
ISO Latin 1, 21, 23, 45

compared to Windows character set, 55
ISO X.400 electronic mail standard, 271
ITU (International Telecommunications

Union), 5, 157, 168

J
JBIG Uoint Bilevel Expens Group), 122, 130
JFIF UPEG File Interchange Format),

157-168
JFXX APPO Marker, 162, 163
Johnson, Nels, 316
JPEG Uoint Photographic Experts Group), 4,

7, 124, 130, 155, 157-168, 186,
275,330-334,345-347

committee, 157
compression, 158, 159, 163-167
data stream, 160
identifying files, 160
Lossless, 167
markers, 161
quantization, 165

Jung, Robert, 248

K
Katz, Phil, 206, 209
Kernighan, Brian, 91
key frame, 313, 314, 330
Knuth, Donald Ervin, 59, 75
Kreider, Carl, 249

L
Lamport, Leslie, 75
~1FX.62
LaserWriter, 93, 102
IDfX, iv, 26, 50, 51, 59-76, 82, 86, 91, 106,

342,345
document classes, 63
identifying files, 62

packages, 61, 63
special characters, 70
versions, 66

IDFX and 1FX commands
\(, 74
\), 74
\begin,67
\bf, 70

Index • 391

\cdots, 74
\chapter,69
\documentclass, 61,67
\documentstyle,61,67
\em, 70
\emph,69
\end,67
\frac, 74
\infty, 74
\int, 74
\keyword, 66
\ln, 74
\newcommand,67
\newenvironment,67
\over, 74
\paragraph, 69
\part,69
\partial, 74
\pi, 74
\Psi, 74
\raggedright,67
\section,69
\setlength,67
\special, 71
\subparagraph,69
\subsection,69
\subsubsection, 69
\sum, 74
\textb£,69
\textit, 69
\texts£,69
\texttt,69
\uppercase, 61
\usepackage,67

IDFX environments
center,68
figure, 72
picture, 71, 72
quote,68
raggedright,68
table, 72
tabular, 72

392 • Index

Lau, Ray,242
League for Programming Freedom, 187
Lempel, Abraham, 185
Level 1 PostScript, 101
Level 2 PostScript, 102
LHA archiver, 186, 247, 249
ligatures, 20, 71
lightness, 161, 164
limits of compression, 187-189
line art, 121
line printer art, 128
linear sound, 293
link,29, 35
linked files, 198
Linotype-Hell, 105
logarithmic sound encoding, 293
logical markup, 25, 26, 55, 61, 77, Ill
Logical Screen Descriptor, 133
logical text styles, 44
Lossless]PEG, 167
lossy compression, 123-124, 159, 163, 329
luminance, 331
Lycos, 15
LZ77 compression, 185, 218-220, 239
LZ78 compression, 185
LZH, see LHA
LZH compression method, 239
LZHUF compression, 249
LZW (Lempel-Ziv-Welch Compression

Algorithm), 129-132, 139, 151,
155. 157, 185-187, 199-205, 207,
208, 215, 217-219, 236, 239,
245, 249

explained, 200-204

M
MacBinary, 284
Macintosh, 2-4, 10, 12, 23, 59, 98, 101, 106,

112,113,124,178,191,193,
19~ 204,208,20~ 215,221,
226,227,230,239,241,242,
244,248,249,255.275,
281-284,295,296,307,321,
323,324,339,342-345,348,
350,352,353,355,356

software, I 0, 12
MacPaint, 129
macroblock, 332
magic number, 8, 101, 233
magic string, 197

mail FTP, 11
mail program, 258, 268
mailto,32
man command, 81
man pages, 13, 81
map, 126
markup,24-27, 29,40,61, 78,84

logical, 25, 26, 111
physical, 24-26, Ill
preserving, 26, 27
text-based, 26

masking effecr, 334
mathematics, 50-51, 53, 74, 90-91, 126
METAFONT, 63, 65, 75
MetaMail, 272
MetaMail, 280
MIDI (Musical Instrument Digital Interface),

290,305,306,322,354
and Atari ST, 4

MIF (Maker Interchange Format), 113
MIME (Multipurpose Internet Mail

Extensions), 255, 2;8, 271-276,
278-280,352

and HITP, 36
MIME-Version, 273
mirror, 11, 371
Mitchell, Joan L., 168
MOD sound format, 306-307, 353
modems, 377-378
more program, 8
Morris Worm, 32
motion prediction, 313, 332
MPEG (Motion Picture Experts Group), 275,

295,314,327-335.356
audio, 334-335
B-frames (bidirectional predictive), 330,

331,333
D-frames, 330
FAQ, 335
file extensions, 329
frames, 330-333
1-frames (independent), 330, 332
Layer-1, 328
Layer-2, 328
Layer-3, 328, 330
MPEG-1, 327, 328
MPEG-2, 327, 328
MPEG-4, 328
P-frames (predictive), 330-333
system stream, 328

video, 330-333
MS·DOS, 3, 4, 12, 21, 24, 76, 81, 92, 112,

124, 141, 178, 180, 191, 193,
19S..200,204,205, 207-209,211,
214-216,221,223,226,227,230,
231,235-237,241,242,244,
248-250,257,258,263,271,
285,339,342-344,351-354,373

software, 10, 12
Jl·Law, 275, 293-294, 297, 298, 301, 303,

334
multi·volume archive, 212
multimedia, 4, 10, 19, 178
Multimedia File Formats on the Internet, 10
multipan message, 276, 277
Murray, James D., 124

N
natural key frames, 313
ncftp program, 374
NCSA (National Center for Supercomputer

Applications), 10
Nelson, Mark, 124, 191
NEQN preprocessor, 83
NetPBM Utilities, 179
Netscape, 10
news, defined, 32
newsgroups

alt.binaries.sounds.midi,306
alt.binaries.sounds.mods, 307
comp.binaries.mac,352
comp.compression, 147, 191,335
comp.dsp,296
comp.fonts, 106
comp.graphics, 147,335
comp.lang.postscript, 106
comp.sources, 13
comp.sources.3b1, 13
comp.sources.games, 128
comp.sources.sun, 13
comp.sources.unix, 13,204,208,

239, 270
comp.sources.x, 13
comp.text.tex, 75
news.answers, 14,296

nodes, 171
noise, 123, 292, 334

adding, 334
floor, 334, 335

non·linear color response, 120

Index • 393

Novell, 112
NROFF text formatter, 81-92
NTSC television standard, 331
Nyquist's Law, 290

0
octet, 359
od program, 8
Okumura, Haruhiko, 249
Open Inventor, 169
OS/2

extended attributes, 213, 281, 358
software, 13

OS/2 Bitmap graphics format, 178
Ossana, Joseph, 91
outline fonts, 96
overfull hbox, 68
OzTfj'(system, 75

p

Pack compressor, 247, 250
PackBits, 155
Packing compression, 208
padding, 318
Y.Y.Pages, 103
PAL television standard, 331
palette size, 133
Pantone, 120
PARC (Xerox Palo Alto Research Center), 1
patent, 132, 187, 191

on arithmetic coding, 166
on LZW, 132, 139, 151, 199, 218

PBM (Portable BitMap), 124, 179, 180, 346,
347

PCM (Pulse Code Modulation), 292-295,
300-303,318,334

PCX, 129
PDF (Portable Document Format), 4, 9, 105,

109-112, 114, 117, 365
transferring in binary mode, 110

Pennebaker, William B., 168
perfect compression, 250
Pesce, Mark, 174
PFA (PostScript Font-ASCII), 96-98
PFB (PostScript Font-Binary), 96-98

format, 97
PFM (PostScript Font Metrics), 98
PGM (Portable GrayMap), 179
photographs, 121, 130
physical markup, 24-26, 111

394 • Index

limits, 25
physical text styles, 44, 45
PIC preprocessor, 71, 72, 82, 83, 88

defined, 82
PICf (Macintosh Image Resource Formal),

101, 178, 345
pipeline, 83
PKARC archiving program, 205-207, 209
PKUNZIP, 209-211, 221
PKZIP, 145, 190, 191, 209-211, 221, 223,

350
.plan,31
PNG (Ponable Network Graphics), 117, 132,

139-147, 150, 159, 186, 210,
217,345,347,364,365

bKGD (Background chunk), 144
cHRM (Chrominance chunk), 145
chunk names, 142
chunks, 140-142
gAMA (gamma chunk), 145
hiST (Histogram chunk), 145
IDAT (Image Data chunk), 142, 143,

145, 146
IEND (Image End chunk), 142, 146
IHDR (Image Header chunk), 142-144
pHYs (Physical Size chunk), 143, 144
PLTE (Palene chunk), 142, 143
sBIT (Significant Bits chunk), 143
tEXt (Text chunk), 142, 146
tiME (Time chunk), 142, 146
tRNS (Transparency chunk), 144
zTXt (Compressed Text chunk), 146

PNM (Ponable aNyMap), 179
point

DTP, 103
PostScript, 100, 103
printer's, 103

polygons, 171
portability, 359, 362
portable filename format, 235, 236
POSIX (Ponable Open Systems Standard),

196-198
Poskanzer, Jef, 124, 179
Post Office, 369
PostScript, 4, 21, 26, 62-65, 72, 83, 84,

93-107, 109, 110, 112, 114, 117,
120,275,279,280,365,366

dialects, 101-1 03
Display, see Display PostScript
editing, 104

Encapsulated, see EPSF
fonts, 21
identifying files, 94-95
legal issues, 104-105
rearranging pages, 99
reducing size of PS files, 103
StructUred, 99
with IDf)(, 72

PPD (PostScript Printer Description), 98
PPM (Portable PixMap), 179, 348
preamble of IDfX document, 66
predictor, 123, 145
preprocessors, 82-83
progressive display, 131, 146
psychoacoustic models, 335
public key encryption, 190
publishing, 359
pull protocol, 32
pulse width modulation, 292
push protocol, 32

Q
Q-coding, see arithmetic coding
quality, 158
quantization, 165
QuanerDeck, 10
QuickTime, 158, 295, 311, 315, 321-326

atoms, 324
chunks, 326
double-fork files, 324
media, 323-326
movie, 323-326
poster, 323, 325
single-fork file, 326
single-fork files, 324
track, 323-326

Quoted-Printable encoding, 278

R
random-access file format, 151, 362, 364, 365
RAR archiver, 247, 249
rate limiting, 314
real-time programming, 311
record, 358
red book, 106
Reducing, 215, 218
REFER preprocessor, 83
reference concrete syntax, 78
relative URLs, 56
remote-access programs, 378

repeated compression, 251
repertoire, 20
replaceable codecs, 315
reset code, 203
resolution, 118, 119
resource editor, 242
resource fork, 101, 178, 241-244, 281-283,

323, 358
as separate file, 282

retina, 119
RFC (Request For Comments), 273

obtaining, 279
RFC1521, 279
RFC1522, 279
RFC1563, 279
RFC822, 273, 279

RGB (Red-Green-Blue Color System},
119-121, 143, 161, 162, 166, 167

conversion, 161, 162
RIFF (Resource Interchange File Format),

178,299,300,307,317,345
chunks, 299-303

ripples, 160, 166
robots, 15
ROFF text formatter, 82
routing, 34
RTF (Rich Text Format), 22, 23, 113
run-length encoding, 122, 123, 130, 208,

282,283
vanRyper, Wtlliam, 124

s
sample size, 289, 290, 297
sampled sound, 289, 291, 306
sampling rate, 289, 290, 297, 298
San Francisco, see Virtua/SOMA
saturation, 120, 164
script languages, 366
SEA (Software Enhancement Associates),

205-207, 209
search request, 38
SECAM tdevision standard, 331
security, 279
sed program, 230
self-extracting archive, 247, 282

on Unix, 227
semantics, 79, 18 5
SGML (Standard Generalized Markup

Language), 25, 26, 39, 77-80, 106
Shannon, Claude, 185

Index • 395

Shannon-Fano compression, 185, 219
SHAR (Shell Archive), 227-230

identifying, 228
shareware, 12, 187, 210, 242, 244, 339-340
Shrinking, 215, 217-218
SIG (Special Interest Group), 129
signal-to-noise ratio, 290
signature

design, 141
GIF, 133
PNG, 140, 141

signatures in mail, 125, 126
signed sound data, 302
SJMTEL archive, 12, 76, 124, 180, 191, 198,

204,208,221,226,230,239,
248,249

slide show, 134
Smith, Joan, 80
smoothing to improve compression, 160
SND sound format, 353, 354
SOELIM preprocessor, 83
software patents, see patent
solid archive, 249
sound, 289-296
sound compression, 292-295, 330, 334-335
South of Market Area, see Virtua/SOMA
spacing after period, 68
sparse files, 197
sphere, 171
spiders, 15
Spry, 10
SQ. see Squeeze
Squashing, 208
Squeeze, 247, 250
standard

defined, 4, 5
StandardEncoding, 95
start tag, 40
stateless, 36
stream file formats, 365, 366
stream of byres, 359
strings program, 8
strips, 153-155
Stufflt archiving program, 191, 241-245, 282,

352
style sheet, 25

HTML, 42
sub-block, 135
subbands, 334, 335
subsampling, 164

\

396 • Index

subscripts, multiple, 7 4
Sun F3 font format, 104
Sunsite archive, 298
syntax, 79, 185
synthesizing the back of polygons, 171
synthetic images, 121

T
T3 compression, 155
T4 compression, 155
tables

in HTML, 50, 51
in IDE){, 72, 73
in plain text, 125
in TROFF, 88
in VRML, 173, 175

tags, see HTML tags, see TIFF tags
talking head, 332
TAR (Unix Tape ARchiver), 7, 184, 191,

193-199,204,206,210,212,
224, 350, 351

and compression, 193
commands, 194
identifying, 197

TBL preprocessor, 83, 88, 89
example, 88, 89

Tekalp, A. Murat, 316, 335
~26,48,51, 59-76,79,82,84,106,342,

345, 366, see IDE){
variants, 62

texinfo,62
text as graphic, 135
text file, 19-27, 366, 367

defined, 8, 360
texture mapping, 17 4
thumbnails, 99, 162
TIFF (Tagged Image File Format), 101, 117,

121, 130, 147, 149-156, 158, 159,
179,186,275,345,347,348,364

Baseline TIFF, ISO
Classes, 150, 151
file structure, 152
strips, 153-155
tag, 152
TIFF Image, 153
tiles, 153-155

tiles, 153-155, 160
tiling, 174
Times Roman font, 64, 1 OS
tpic program, 71

transparency, 121
simplified, 144

Trevorrow, Andrew, 75
triangles, 173
TROFF text formatter, 26, 48, 50, 71, 79,

81-92
dot commands, 85
escapes, 84
me macros, 85
ms macros, 85

true color, 118
True Type fonts, 97, 104
TV Guide, 60
two's complement, 302
Type 1 fonts, 94, 96, 106
Type 3 fonts, 96
Type 4 fonts, 97
Type 42 fonts, 97
Type 5 fonts, 97
type-length-value file formats, 363, 364

u
f.L-Law, 275, 293-294, 297, 298, 301, 303,

334
Ultimate Macintosh, 1 0
Unicode, 22
Unisys, 5, 132, 139, 187, 199
University of Michigan Macintosh Archive, 12
Unix,339,343,345,348,352,356,358

software, 10, 13
UNZIP, 209-211, 221
URL (Universal Resource Locator), 9, 10,

29-33,35-39,42,45,47,48,56
modifiers, 37

URN (Universal Resource Name), 33, 47
Usenet, origin of, 1
UUCP (Unix to Unix Copy), 35
UUCP-style addressing, 35
UUDecode, 257-259, 261, 263, 264, 271

program, 261
UUEncode,4, 13,255,257-260,263,264,

267,268,271,272,278,283,
352,353

program, 260
UUNet, 13

v
V.42bis modem standard, 5, 186
value, color, 120, 164
varying OCT quantization, 332

VAX/VMS filenames, 235
Veronica, 14, 15
vertical differencing, 123
VfW (Video for Windows), 315, 317, 356
video, 311-316
video compression, 312-315, 327-333
video processors, 312
viewpoint, 172
VirtuaiSOMA, 169, 170, 174
VRML (Virtual Reality Modeling Language),

169-175
Cube, 172
current points, 173
DEF, 172
example, 172, 173, 175
fields, 171
IndexedFaceSet, 173
Material, 172
PointSet, 173
polygons, 171
rendering problems, 171
Separator, 172
Sphere, 171
standard, 17 4
Translation, 172
triangles, 173
type, 171
USE, 172

VRML Repository, 17 4

w
W3 organization, 57
Walsh, Norman, 106
WAVE form, 300
WAVE sound format, 299-303, 307, 353, 354
WEB Technologies, 250
~b2C, 75
~bCrawkr, 15
Welch, Terry, 185
Wigley, Aaron, 1 06
Windows, 12,339,342,344,346-348,

350-352, 354-356
software, I 0, 12

Windows Bitmap graphics format, 178
Windows Metafile graphics format, 1 0 1
Wolter, Jan, 128
word processor formats, 113
World Wide Web, 29-57, 366, 375-376

defined, 9
page design, 53

Index • 397

pages,9, 15,25, 53,366
reason for popularity, 117

worlds, 169
WWW Viewer Test Page, 10

X
X (windowing system for Unix), 93, 124, 177
XBM (X Bitmap), 177, 347, 348
xdvi program, 75
XModem, 146
XPM (X Pixmap), 177, 347
~ecode, 263,264

program, 264
~ncode,255,258,263-265,267,268,352

program, 264

y
Yahoo, 14, 15, 57, 174, 342
YCbCr> 161, 164, 331

z
Zhang, Allison, 10
ZIP, 186, 190, 191, 208-218, 220, 221, 224,

225,239,242,249,350,351
Ziv, Jacob, 185
ZModem, 186,199,282,284,378
zoo, 191, 231-239, 242, 249

generations, 231-233
identifying, 234
recovering damaged archives, 238-239

)

,...--

\

Using the
CD-ROM

The CD-ROM contains a variety of useful tools compiled by the Coriolis
Group staff to accompany this book. For more information about the CD­
ROM and the software it contains, please refer to page 339.

Overall Organization
The CD-ROM is organized to match the book:

• The top-level directories correspond to the major divisions of the book:
text, graphics, compression and archiving, encoding, audio, and video.

• Subdirectories correspond to specific formats, such as graphics/ jpeg
for files related to]PEG.

• Within each format are directories for each specific platform. 1 For
HTML tools for Windows, look in text/html/windows.

Not all files can be neatly classified this way. For example, many of the
graphics programs support a variety of formats, and have been placed in the
graphics/ apps directory rather than being duplicated under each format.
You'll also find scattered directories with names like sample (with sample files
in that format) and spec (containing official specifications for that format).

1 Many of the Unix archives on the CD-ROM had their original . tar. gz extensions
inadvertently shortened to . gz rather than . tgz. We apologize for any confusion this may
cause.

The Internet is a melting pot where differer
computing communities mingle and share the
cultures, their hopes and dreams, and, ultimate/
their files. While this rich brew creates a Jot c
vitality, it also causes a lot of confusior
Everyone who uses the Internet is familiar wit
the problem of how to use a particular file.

Internet File Formats brings together the expertise and the tools you need to unde1
stand and use the files you' ll find on the Internet and elsewhere. From AU to Z C
long-time Internet user and fi le transfer expert Tim Kientzle explains each of the mm
importan t formats. Along the way, you'll learn:

• T he history and fundamental ideas behind major fil e formats
• How popular file co mpression techniques work
• The best places on the Internet to find information and programs for

working with different file types
• Practical advice about how and when to u e different formats

Internet File Formats is divided into six parts, each covering a different kind of file
Whether you're simply an Internet user down loading files or an aspi ring World Wid.
Web publisher, you need this information to navigate the sea of file formats:

• Document Formats: HTML, .J!.TEX , SGML, TROFF, Post crip t, and PDF
• Graph ics Formats: G IF, PNG, TIFF,]PEG, and VRML
• Compression and Archiving Formats: ARC, TAR, Z IP, Compress, GZIP, SHAR

ZOO, and tufflt
• Encoding Formats: UUEncode, XXEncode, MIME, BtoA, and BinHex
• Audio Formats: WAVE, AIFF, and AU
• Video Formats: AVT, QuickTime, and MPEG

THE CORIOLIS GROUP
7339 E. Acoma Drive, Su ite 7
Scottsdale, AZ 85260 USA
(800) 41 0-0192 (602) 483-0192

Shelving: Internet
ISBN 1·883577 · 5b·X

53999

