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About the Tutorial
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About the Tutorial
Agenda

Part 1– Refresher

� Memory fundamentals

� Memory acquisition 
techniques

� Kernel objects

� Memory analysis 
techniques

Part 2 – Using Volatility

� Volatility overview

� Built-in functions

� Selected plug-ins

� Hands-on exercises

Part 3 – Programming

� Address spaces

� Objects and Profiles

� Your first plug-in

� Building blocks
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About the Tutorial
Course Materials

� Virtual machine, requires VMware player/workstation 6.5.2
� Ubuntu Linux
� Login as user , password is us3rpw
� Volatility and plug-ins installed
� Several other memory analysis tools (PTFinder, PoolTools)
� Sample memory images

� Tools
� VMWare Player 2.5.2 for Windows and Linux (.rpm)
� Symbol viewers
� Volatility 1.3.1 beta and SVN, with plug-ins

� Literature

� Slides (will be uploaded to the conference website after the tutorial)
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Part 1
Memory Analysis Primer
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Introduction
Why do we need Memory Analysis?

Main memory contains evidence!
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� No one would exclude a disk from a forensic examination. Physical memory 
is a storage media like a hard disk drive. So why act arbitrarily?

� Physical memory contains unique data, not just a duplicate of data that can 
be found elsewhere.

� When examining a network-based attack, physical memory provides the 
missing link between network data (capture/IDS alert) and possible artifacts 
on a disk.

� Only (physical) memory documents the current status of a computer/device.

� Some attacks don’t leave traces on disk, but only in memory.

Introduction
Why do we need Memory Analysis?
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Live Response

� Focus on “time”

� Acquisition and analysis in one step

� Untrusted environment

� Not repeatable

� Tools tend to be obtrusive

Introduction
Live Response vs. Memory Analysis
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Order of Volatility
Live Response vs. Memory Analysis

89.876.9DD (live acquisition)

100.0100.0Start

96.790.4Idle for 1 hour

96.179.7Idle for 2 hours

85.674.8Idle for 15 hours

% RAM unchanged

69.467.2WFT (live response)

512 MB RAM256 MB RAM

Action

Effects on main memory, according to Walters and Petroni (2006)
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Memory Analysis

� Focus on “best evidence”

� Acquisition and analysis in separate steps

� Acquisition in an untrusted environment

� Analysis in a trusted environment

� Analysis tools not limited by target OS

� Analysis is repeatable (acquisition is not)

Introduction
Live Response vs. Memory Analysis
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Introduction
Preserve Data in Order of Volatility

P ro c e s s e s

R e g is te r

M ain M e m e m o ry

Ne two rk S tatus

C D , P rinto ut

B ac kup

Hard d rive

-1 0 -8 -6 -4 -2 0 2 4 6 8 1 0

D ata  L ifesp an  in  S econ d s (log 1 0)
ac c o rd ing  to  V e ne m a and  F arm e r (2 0 0 4 )
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� Solomon, Huebner, Bem and SzeŜynska (2007)

� Age of deallocated pages does NOT affect the order of reallocation

� Majority of pages persisted for less than 5 minutes

Introduction
Persistence in Userland
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Introduction
Persistence in Kernel Space

Chow, Pfaff, Garfinkel, 
Rosenblum (2005)
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� Schuster (2008)

� 90% of freed process objects after 24 hours of idle activity

� Re-allocation of memory by size, LIFO principle

� Kernel tries to free memory pages

� Important objects (processes, threads, files, …) are of fixed size.

� Live response can be devastating!

� Install agents prior to the incident!

Introduction
Persistence in Kernel Space
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Memory Acquisition
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Memory Acquisition
Considerations

� Time of installation
prior to incident vs. post incident

� Access to system
local vs. remote

� Access to main memory
pure hardware vs. software

� Required privileges
user vs. administrator

� Impact on system
in vivo vs. post mortem

� Atomicity of image

� Image file format
� raw
� crash dump
� hiberfil.sys
� EWF, AFF
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Image File Formats
Raw

� “dd format”

� 1:1 copy of physical memory. Some regions may not be accessible, tough.

� offset == physical address

� Several proof-of-concept tools only operate on this format.



19

Image File Formats
Crash Dump

� Required by Microsoft Tools 

� Extension .DMP

� CPU state information

� Segmented format:

� One or many blocks of physical memory

� Holes, e.g. BIOS, DMA, AGP video

� Extra data from devices that employ  
nt!KeRegisterBugCheckReasonCallback
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Image File Formats
Hibernate File

Hibernate file

� hiberfil.sys

� Compressed

� Contains only physical memory that is “in use”
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Image File Formats
Expert Witness Format

� Popular, thanks to Guidance Software’s EnCase and WinEn (.E01)

� libewf
by Joachim Metz
http://sourceforge.net/projects/libewf/

� Different levels of compression

� Meta-Information (case number, examiner, MD5 hash, etc.)

� Similar, but open source: Advanced Forensic Format (AFF) 
http://www.afflib.org/
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Tools
Validation

� There’s a plenty of memory acquisition tools available…

� … but none has been validated yet.

� FAIL:
� Image of expected size, but first 256 MBytes all zero
� Image of expected  size, but repeatedly filled with first 256 MBytes
� Page 0 missing from image
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Tools
Recommendations

� VMware
� Suspend VM, then copy “physical memory” file (.vmem)
� Malware can (and does!) detect the hypervisor

� win32dd
� by Mathieu Suiche

http://win32dd.msuiche.net/
� Free, open source
� Produces images in either raw or crash dump formats

� kntdd
� by George Garner Jr.

http://www.gmgsystemsinc.com/knttools/
� Commercial
� Produces raw and crash dump at the same time
� Enterprise version available (agent, X.509 certificates, etc.)
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Tools
Recommendations

� F-Response
� http://www.f-response.com/
� Enables access to physical memory over iSCSI
� Use with acquisition tool of your choise

� Hibernation
� Built-in, commonly activated on laptop computers
� powercfg /hibernate on

� Cause system to hibernate, then acquire hard disk and extract 
hiberfil.sys

� Crash Dump
� Built-in
� Needs to be configured in advance, reboot required
� Kernel dumps are small
� Minidumps are essentially useless for forensic memory analysis
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Tools
Recommendations

� FireWire
� Read (and write!) access to lower 4 GB of physical memory
� Python tools available at http://storm.net.nz/projects/16
� Rutkowska (2007) redirects access to physical memory!

� Cold Boot Attack
� Exploits remanence of DRAM
� Cooling slows down the degradation of memory contents
� http://citp.princeton.edu/memory/
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Concepts
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Concepts
Physical Memory

� Physical memory is the short-term memory of a 
computer.

� Rapid decay of information as soon as memory 
module is disconnected from power and clock 
sources.
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Concepts 
Address Space

�4 GiB of (virtual) address space per process

�Split into halves

4 GiB

explorer.exe

Application
2 GiB

System
2 GiB
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Concepts 
Virtual Memory

�Physical memory is divided into so called “pages”. 

�Allocated virtual memory is mapped onto physical memory page by page.

explorer.exe

sol.exe

physical
memory
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Concepts 
Virtual Memory

The same page of physical memory can appear at different locations within the 
same address space or in different address spaces.

explorer.exe

sol.exe

physical
memory
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Concepts 
Virtual Memory

Data can be moved from physical memory into a page file to clear some space.

explorer.exe

sol.exe

physical
memory page file
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Memory Pools
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Memory Pools
Concept

� Memory is managed through the CPU’s Memory Management Unit (MMU).

� Allocation granularity at the hardware level is a whole page (usually 4 kiB).

� Concept of “pools”: several pages are pre-allocated to form a pool of 
memory.

� Small requests are served from the pool, granularity 8 Bytes (Windows 2000: 
32 Bytes).

� There are mostly two pools:

� non-paged pool (frequently used information like processes, threads)

� paged-pool (allocations also can be found in page file)
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Memory Pools
POOL_HEADER

struct _POOL_HEADER, 9 elements, 0x8 bytes

+0x000 PreviousSize     : Bitfield Pos 0, 9 Bits

+0x000 PoolIndex : Bitfield Pos 9, 7 Bits

+0x002 BlockSize        : Bitfield Pos 0, 9 Bits

+0x002 PoolType : Bitfield Pos 9, 7 Bits

+0x000 Ulong1           : Uint4B

+0x004 ProcessBilled : Ptr32 to struct _EPROCESS

+0x004 PoolTag : Uint4B

+0x004 AllocatorBackTraceIndex : Uint2B
+0x006 PoolTagHash : Uint2B

Note: There are multiple interpretations for the DWORD at offset 4.
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Memory Pools
POOL_HEADER

� BlockSize:
� size of this allocation
� pointer to next allocation

� PreviousSize:
� size of the previous allocation
� pointer to previous allocation
� must be 0 for the first allocation in a memory page

� Both:
� measured in units of 8 bytes (Windows 2000: 32 bytes).
� includes the _POOL_HEADER (8 bytes), so must be 1 at least.
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Memory Pools
POOL_HEADER

� Pool type:

� Declared in Windows Development Kit, file wdm.h

� values found in memory are increased by 1

� 0 now indicated a “free” block

� odd value = non-paged pool

� even value = paged pool

.
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Memory Pools
POOL_HEADER

� PoolTag:

� According to documentation of ExAllocatePoolWithTag in MSDN:
�up to 4 character literals
�ASCII values between 0 and 127
�stored in little-endian (reverse) byte-order

‘1234’ stored as ‘4321’
�every allocation code path should use a unique pool tag
�“protection” bit for kernel objects

� There is no registry for pool tags. 

� Every application is free to use any pool tag!
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Kernel Objects
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Objects
Concept

� NT and Vista kernels are object oriented

� Uniform way to access different kinds of system resources

� Charge processes for their object (= resource) usage

� Objects can be found at different levels 

� These objects do not interoperate! 

� e.g. GDI Object (brush) and Executive Object (process)
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Objects
Objects of the Executive

� The Executive implements 
� 27 object types on Windows 2000
� 29 object types on XP and Server 2003 

� Important object classes
� Thread: executable entity within a process
� Process: execution environment, collection of ressources
� Driver: loadable kernel module
� File: instance of an open file or I/O device
� Token: SID and privileges
� Key: registry
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Objects
Objects of the Executive

� All objects of the Executive 
share a common structure, 
the _OBJECT_HEADER

� Caveats

� A pointer will always 
point right behind the 
header 

� The header grows in the 
direction of lower 
addresses

Source: Schreiber, 2001
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Analysis Techniques
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Analysis Techniques
Strings

� Could provide some leads:
� Passwords
� URLs
� IP addresses (if not in binary)
� File names and contents

� Remember to look for ASCII/ANSI and UNICODE strings!

� Expect large quantities of data and a lot of noise.

� Memory is heavily fragmented.

� Don’t jump to conclusions!
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Analysis Techniques
List Walking

flink
blink

PsActive
ProcessHead

smrss

flink
blink

rk

flink
blink

explorer

Enumerating the list of processes
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Analysis Techniques
List Walking

� Technique also applies to
� Single lists (e.g. buckets in hash tables)
� Trees (e.g. VAD, handles)

� Simple, fast, efficient (false positives are rare)

� Usually works well across OS version/SP/hotfix

� Possible failures:
� OS housekeeping (e.g. terminated process, closed file)
� non-atomic acquisition methods, broken chain
� purposefully unlinked objects (DKOM, rootkits)
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Analysis Techniques
List Walking

Anti-forensic attack: Direct Kernel Object Manipula tion (DKOM)

flink
blink

flink
blink

PsActive
ProcessHead

smrss

flink
blink

rk explorer

flink
blink

rk
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Analysis Techniques
Scanning

� Define signature on
� Constant parts of structure
� Ranges of values
� Complex conditions

� Scan whole memory image

� Slow (depending on complexity)

� Specific to OS version/SP/hotfix

� Possible failures:
� Un-specific signature causes high rate of false positives
� Weak signature causes false negatives (adversary modifies non-

essential data to thwart detection)
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Analysis Techniques
Finding Suspicious Activity

� Cross-view detection
� Different APIs
� Compare results of list-waking and scanning
� Examine any differences!

� Conformance checks
� Null pointers
� Iinvalid object types
� Missing strings 
� …
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Part 2
Using Volatility
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Overview
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Overview
History

� FATkit
� Petroni and Walters, 2006
� Layered, modular architecture
� http://www.4tphi.net/fatkit/

� VolaTools
� Walters and Petroni, 2007
� Intellectual property of Komoku, sold to Microsoft in March 2008
� Mostly open source, but closed-source address translation

� Volatility
� Walters et al., 2007
� Completely open source, community project
� https://www.volatilesystems.com/
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Overview
Ressources

� Mailing list
� use of the tools and general questions 

vol-users@volatilesystems.com
� New features and design decisions

vol-dev@volatilesystems.com

� Chat (IRC): #volatility@freenode.net

� Blogs
� http://volatilesystems.blogspot.com/
� http://volatility.tumblr.com/
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Overview
Contributors

� Code Contributors
� Michael Cohen
� David Collett
� Brendan Dolan-Gavitt
� Blake Matheny
� Andreas Schuster

� Research Collaborators
� Jide Abu
� Jose Nazario
� Doug White
� Matthieu Suiche

� Testing/Bugs
� Joseph Ayo Akinyele
� Tommaso Assandri
� Brian Carrier
� Harlan Carvey
� Eoghan Casey
� Jim Clausing
� Jon Evans
� Robert Guess
� Jesse Kornblum
� Jamie Levy 
� Eugene Libster
� Erik Ligda
� Tony Martin
� Golden G. Richard III
� Sam F. Stover
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Overview
Prerequisites

� Python 2.5
� Windows users: Active State Python

http://www.activestate.com/activepython

� Volatility
� stable https://www.volatilesystems.com/default/volatility
� SVN on http://code.google.com/p/volatility/, see instructions

� Plug-ins may require additional software, e.g.
� pefile http://code.google.com/p/pefile/
� pydasm http://dkbza.org/pydasm.html
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Overview
Plug-ins

� Comprehensive, but unofficial list of Volatility plug-ins
http://www.forensicswiki.org/wiki/List_of_Volatility_Plugins

� Standard procedure: install into memory_plugins subdirectory

� Some plug-ins may depend on additional python modules or require different
installation procedures!

� Run python volatility – the new command(s) should now appear.

� Run python volatility command --help to learn about the syntax.
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Commands
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Commands
Getting Help

� For a list of internal- and plug-in commands:
python volatility

� For help on any command:
python volatility command --help
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Commands
Standard Options

� -f FILENAME

--file= FILENAME 

Path and name of memory image

� -b BASE_ADDRESS

--base= BASE_ADDRESS 

Physical offset (in hex!) of Directory Table Base (CR3)

� -t TYPE

--type= TYPE

Type of memory image. Valid parameters are:
� auto (default)
� pae

� nopae
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Commands
Information about the Memory Image

� ident

Image Name: /samples/hxdef.dd
Image Type: Service Pack 2
VM Type: nopae
DTB: 0x39000
Datetime: Fri Apr 10 10:58:53 2009

� datetime

Image local date and time: Fri Apr 10 10:58:53 2009

� Both commands report the system’s local time!

� datetime on DVD has been modified to report time in UTC, too.
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Commands
Hands-on: Information about the Memory Image

� Analyze memory image “/samples/exemplar13.vmem” by hogfly.

� Authenticate the memory image
MD5 5ec0c6dffa29b1bd5a6cbec1829df25d

� Determine the OS version and the system’s time. This becomes the endpoint 
of our timeline.
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Commands
Hands-on: Information about the Memory Image

� Authenticate the memory image
MD5 5ec0c6dffa29b1bd5a6cbec1829df25d

md5sum /samples/exemplar13.vmem
5ec0c6dffa29b1bd5a6cbec1829df25d

Match!
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Commands
Hands-on: Information about the Memory Image

� Determine the OS version and the system’s time. This will become the latest 
point in our timeline.

> python volatility ident –f /samples/exemplar13.vme m
Image Name: /samples/exemplar13.vmem

Image Type: Service Pack 2
VM Type: pae

DTB: 0x7d0000
Datetime: Wed Jan 07 20:54:57 2009

> python volatility datetime –f /samples/exemplar13. vmem
Image local date and time: Wed Jan 07 20:54:57 2009
Image date and time (UTC): Thu Jan 08 01:54:57 2009
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Commands
Hands-on: Timeline

memory image obtainedThu Jan 08 01:54:57 2009
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Commands
Threads

� thrdscan
� Searches for DISPATCHER_HEADER
� Applies several constraints
� Based on PTFinder, though less strict constraints
� Slow

� thrdscan2
� Searches for POOL_HEADER
� Applies only a few constraints
� Fast 
� Does not detect the idle thread
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Commands
Threads

Options

� thrdscan
� -s HEXADDRESS

--start= HEXADDRESS
Start address

� -e HEXADDRESS
--end= HEXADDRESS
End address

� -s
--slow
Perform scan on original address space instead of flat file
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Commands
Threads

Output format

� Number
� Unique Process ID (PID)
� Thread ID (TID)
� Physical offset into memory image

No.  PID    TID    Offset
---- ------ ------ ----------

1    888   1716 0x0008a020
2    888   1712 0x0008ada8
3   1296   1384 0x001a5230

� Version on DVD also reports thread creation and exit times.
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Commands
Modules

� modules
� Starts off from PsLoadedModuleList
� Traverses list of loaded modules (in load order)

� modscan / modscan2
� searches for POOL_HEADER
� modscan2 is much faster!
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Commands
Modules

Options

� modscan
� -s HEXADDRESS

--start= HEXADDRESS
Start address

� -e HEXADDRESS
--end= HEXADDRESS
End address

� -s
--slow
Perform scan on original address space instead of flat file
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Commands
Modules

� Output format
� File name
� Base address
� Size in bytes
� Module name

� All three functions share a common output format!
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Commands
Modules

moddump plug-in

� Written by Brendan Dolan-Gavitt
http://moyix.blogspot.com/2008/10/plugin-post-moddump.html

� Dumps loaded kernel module(s) to disk

� Command line options
� -m MODE

--mode=MODE
� -u

--unsafe
� -o OFFSET

--offset=OFFSET
� -p REGEX

--pattern=REGEX
� -i

--ignore-case
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Commands
Processes

� pslist
� Starts off from PsActiveProcessHead
� Traverses EPROCESS. ActiveProcessLinks

� psscan
� Searches for DISPATCHER_HEADER (finds Idle process)
� Applies several constraints
� Based on PTFinder, though less strict
� Slow

� psscan2
� Searches for POOL_HEADER
� Applies only a few constraints
� Fast



72

Commands
Processes

Options

� psscan
� -s HEXADDRESS

--start= HEXADDRESS
Start address

� -e HEXADDRESS
--end= HEXADDRESS
End address

� -s
--slow
Perform scan on original address space instead of flat file

� psscan and psscan2
� -d FILE

--dot= FILE
Draw process tree in DOT format for GraphViz



73

Commands
Processes

� Output format (common data)
� Name (shortened to 16 characters)
� Unique Process ID (PID)
� Parent Process ID (PPID)
� Creation time

� Additional information:
� Number
� Thread count
� Handle count
� Exit time
� Physical offset into memory image
� CR3 (DTB, PDB, ...)

� Three functions, three different output formats!
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Commands
Processes

pstree plug-in

� Written by Dr. Michael Cohen
http://scudette.blogspot.com/2008/10/pstree-volatility-plugin.html

� Visualizes parent-child relationship through indentation

� Isolated parts of the process tree may be missing.

� -v

--verbose

Displays full path name (from process audit), command line and path (from 
process environment block PEB)
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Commands
Processes
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Commands
Processes
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Commands
Hands-on: Processes

� Analyze memory image “/samples/exemplar13.vmem” by hogfly.

� Find the PID, start/end times and exit code for processes
� explorer.exe
� ud32.exe
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Commands
Hands-on: Timeline

memory image obtainedThu Jan 08 01:54:57 2009

process 1040 terminated, exit code 0Thu Jan 08 01:53:10 2009

processes 464 and 1040 (ud32.exe) started by proces s 
1928 (explorer.exe)

Thu Jan 08 01:53:09 2009
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Commands
Per-Process Information

dlllist

� Enumerates DLLs (and EXEs) loaded by a process

� Does not work for terminated or hidden processes

� -p PID

--pid= PID

explorer.exe pid: 2032
Command line : C:\WINDOWS\Explorer.EXE
Service Pack 2

Base         Size         Path
0x1000000    0xff000      C:\WINDOWS\Explorer.EXE
0x7c900000   0xb0000      C:\WINDOWS\system32\ntdll .dll
0x7c800000   0xf4000      C:\WINDOWS\system32\kerne l32.dll



80

Commands
Per-Process Information

files

� Enumerates file handles that were opened by a process

� -p PID
--pid= PID

Pid: 2032
File   \Documents and Settings\All Users\Desktop
File   \Documents and Settings\TestUser\Desktop
File   \Documents and Settings\TestUser\Start Menu
File   \Documents and Settings\TestUsers\Start Menu
File   \wkssvc
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Commands
Per-Process Information

getsids plug-in

� Written by Grendan Dolan-Gavitt
http://moyix.blogspot.com/2008/08/linking-processes-to-users.html

� Does not examine terminated and hidden processes

VMwareService.e (1332): S-1-5-18 (Local System)
VMwareService.e (1332): S-1-5-32-544 (Administrators )
VMwareService.e (1332): S-1-1-0 (Everyone)
VMwareService.e (1332): S-1-5-11 (Authenticated User s)
alg.exe (1524): S-1-5-19 (NT Authority)
alg.exe (1524): S-1-1-0 (Everyone)
alg.exe (1524): S-1-5-32-545 (Users)
alg.exe (1524): S-1-5-6 (Service)
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Commands
Per-Process Information

memmap

� Displays mapping between virtual and physical addresses

memdmp

� Dumps process memory

� Command line options
� -o HEXOFFSET

--offset=HEXOFFSET

� -p PID

--pid= PID
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Commands
Per-Process Information

procdump

� Dumps the executable into a file
� The executable is likely to crash (state!)
� Great command for static analysis, though

� Command line options
� -o HEXOFFSET

--offset=HEXOFFSET
� -p PID

--pid= PID
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Commands
Network Sockets

� sockets
� Locates tcpip module
� Looks for list head at known offsets into module
� Traverses list of socket objects

� sockscan / sockscan2
� Searches for POOL_HEADER
� sockscan2 is much faster!
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Commands
Network Sockets

Options

� sockscan
� -s HEXADDRESS

--start= HEXADDRESS

Start address

� -e HEXADDRESS

--end= HEXADDRESS

End address

� -s

--slow

Perform scan on original address space instead of flat file
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Commands
Network Sockets

� Output format
� Unique Process ID (PID)
� Port (if applicable)
� Protocol
� Create time

� Output formats differ slightly.
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Commands
Network Sockets

� sockets
Pid Port   Proto  Create Time
4      1026   6      Thu Jun 11 14:32:15 2009
4      0      47     Thu Jun 11 14:32:15 2009
928    0      2      Thu Jun 11 14:32:13 2009
4      445    6      Thu Jun 11 14:31:28 2009

� sockscan / sockscan2
PID    Port   Proto  Create Time                Off set
------ ------ ------ -------------------------- ------- ---

1524   1025   6      Thu Jun 11 14:32:15 2009   0x0 083c838
4      1026   6      Thu Jun 11 14:32:15 2009   0x0 1031620
1640   31337  6      Thu Jun 11 14:35:15 2009   0x0 104eb78
4      138    17     Thu Jun 11 14:32:06 2009   0x0 1057e98
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Commands
Network Connections

� connections
� Locates tcpip module
� Looks for TCBtable at known offsets into module
� Locates and dumps connection objects

� connscan / connscan2
� Searches for POOL_HEADER
� connscan2 is much faster!



89

Commands
Network Connections

Options

� connscan
� -s HEXADDRESS

--start= HEXADDRESS

Start address

� -e HEXADDRESS

--end= HEXADDRESS

End address

� -s

--slow

Performs scan on original address space instead of flat file
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Commands
Network Connections

� Output format
� Local IP address and port
� Remote IP address and port
� Unique Process ID (PID)

� Output formats differ slightly.
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Commands
Network Connections

� connections
Local Address             Remote Address            Pid
192.168.242.128:135       192.168.242.1:1777        848

� connscan / connscan2
Local Address             Remote Address            Pid
------------------------- ------------------------- - -----

192.168.242.128:135       192.168.242.1:1777        848
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Commands
Hands-on: Processes

� Analyze memory image “/samples/exemplar13.vmem” by hogfly.

� Find network sockets and connections opened by the following processes
� explorer.exe (PID 1928)
� ud32.exe (PID 464 and 1040)
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Commands
Hands-on: Timeline

process 1928 (explorer.exe) creates socket for port  
1048/tcp, connects to 67.215.11.138:7000

Thu Jan 08 01:53:07 2009

memory image obtainedThu Jan 08 01:54:57 2009

process 464 creates sockets for ports 27714/tcp and  
1052/udp
process 1040 terminated, exit code 0

Thu Jan 08 01:53:10 2009

process 1928 (explorer.exe) creates sockets for por ts 
1049/tcp and 1050/tcp, and connects both to 
72.10.166.195:80
processes 464 and 1040 (ud32.exe) started by process 
1928 (explorer.exe)

Thu Jan 08 01:53:09 2009
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Commands
Registry

regobjkeys

� Lists opened registry keys

� Command line options
� -o HEXOFFSET

--offset=HEXOFFSET

� -p PID

--pid= PID

Pid: 464
\REGISTRY\MACHINE
\REGISTRY\MACHINE\SYSTEM\CONTROLSET001\SERVICES\TCPIP\PARAMETERS
\REGISTRY\MACHINE\SYSTEM\CONTROLSET001\SERVICES\NETBT\PARAMETERS
\REGISTRY\USER\S-1-5-21-1614895754-1604221776-83952 2115-

1003\SOFTWARE\MICROSOFT\WINDOWS\CURRENTVERSION\INTERNET SETTINGS
\REGISTRY\MACHINE\SYSTEM\CONTROLSET001\SERVICES\WINSOCK2\PARAMETER

S\PROTOCOL_CATALOG9
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Commands
Registry

VolReg plug-in package

� Written by Brendan Dolan-Gavitt
http://moyix.blogspot.com/2009/06/volreg-06-now-with-bigdata.html

� Installation
� Some modules depend on PyCrypto

http://www.amk.ca/python/code/crypto.html
� Windows binary distribution at

http://www.voidspace.org.uk/python/modules.shtml
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Commands
Registry

VolReg plug-in package

� Preparation 
� call hivescan to scan for _CMHIVE structures
� call hivelist on any of the found structures to map them to hive files

� Data access
� hivedump

�dumps whole hives (optional: with values)
�timestamps in local time zone of the analysis workstation

� printkey
�queries a single key
�timestamps in local time zone of the analysis workstation
�do not escape backslash on Windows!
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Commands
Hands-on: Registry

� Analyze the memory image “exemplar13.vmem” by hogfly.

� Examine some well-known autostart entries:
� HKCU\Software\Microsoft\Windows\CurrentVersion\Run
� HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Windows
� HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Winlogon

� A comprehensive list of launch and hijack points can be found at
http://www.silentrunners.org/sr_launchpoints.html

� Create a timeline of events for the whole registry.
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Commands
Hands-on: Registry

python volatility hivescan -f /samples/exemplar13.vm em
Offset          (hex)
34786144        0x212cb60
35029896        0x2168388
36798472        0x2318008
52190048        0x31c5b60
61227776        0x3a64300
62263304        0x3b61008
62692192        0x3bc9b60
78032904        0x4a6b008
117499936       0x700e820
117721952       0x7044b60
118016032       0x708c820
181174280       0xacc8008
182220832       0xadc7820
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Commands
Hands-on: Registry

python volatility hivelist -f /samples/exemplar13.v mem 
-o 0x212cb60

Address      Name
0xe179e008   [no name]
0xe1a58b60   \Documents and Settings\foo\NTUSER.DAT
0xe1548008   [no name]
0xe1535820   \Documents and Settings\LocalService\N TUSER.DAT
0xe1095820   [no name]
0xe107e820   \Documents and Settings\NetworkService \NTUSER.DAT
0xe13a3008   \WINDOWS\system32\config\software
0xe1397300   \WINDOWS\system32\config\default
0xe13a0b60   \WINDOWS\system32\config\SECURITY
0xe1362b60   \WINDOWS\system32\config\SAM
0xe11c2008   [no name]
0xe1018388   \WINDOWS\system32\config\system
0xe1008b60   [no name]
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Commands
Hands-on: Registry

� HKCU\Software\Microsoft\Windows\CurrentVersion\Run

Address      Name

0xe1a58b60   \Documents and Settings\foo\NTUSER.DAT

> python volatility printkey –f /samples/exemplar13. vmem

-o 0xe1a58b60 'Software\Microsoft\Windows\CurrentVe rsion\Run'

'Software\Microsoft\Windows\CurrentVersion\Run'
Key name: Run (Stable)
Last updated: Thu Jan 08 01:53:10 2009

Subkeys:

Values:
REG_SZ    Windows Network Data Management System Se rvice : 

"ud32.exe" *  (Stable)
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Commands
Hands-on: Registry

� HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Windows

Address      Name

0xe13a3008   \WINDOWS\system32\config\software

> python volatility printkey –f /samples/exemplar13. vmem

-o 0xe13a3008 'Microsoft\Windows NT\CurrentVersion\ Windows'

'Microsoft\Windows NT\CurrentVersion\Windows'
Key name: Windows (Stable)
Last updated: Thu Jan 08 01:53:10 2009

Subkeys:

Values:
REG_SZ    AppInit_DLLs :   (Stable)
REG_SZ    Spooler    : yes  (Stable)
REG_SZ    load       : ud32.exe  (Stable)
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Commands
Hands-on: Registry

�HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Winlogon

"Microsoft\Windows NT\CurrentVersion\Winlogon"
Key name: Winlogon (Stable)
Last updated: Thu Jan 08 01:53:10 2009

Subkeys:
GPExtensions (Stable)
Notify (Stable)
SpecialAccounts (Stable)
Credentials (Volatile)

Values:
REG_SZ    DefaultDomainName : EXEMPLARXP  (Stable)
REG_SZ    DefaultUserName : foo (Stable)
REG_SZ    Shell      : Explorer.exe (Stable)
REG_SZ    Userinit : 

C:\WINDOWS\system32\userinit.exe,ud32.exe  (Stable)
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Commands
Hands-on: Registry

� Create a timeline of events for the whole registry.

> python volatility hivedump -f /samples/exemplar13. vmem -o 0x212cb60 -v
Dumping  => e179e008.csv
Dumping \Documents and Settings\foo\NTUSER.DAT => e 1a58b60.csv
Dumping  => e1548008.csv
Dumping \Documents and Settings\LocalService\NTUSER .DAT => e1535820.csv
Dumping  => e1095820.csv
Dumping \Documents and Settings\NetworkService\NTUS ER.DAT => e107e820.csv
Dumping \WINDOWS\system32\config\software => e13a30 08.csv
Dumping \WINDOWS\system32\config\default => e139730 0.csv
Dumping \WINDOWS\system32\config\SECURITY => e13a0b 60.csv
Dumping \WINDOWS\system32\config\SAM => e1362b60.cs v
Dumping  => e11c2008.csv
Dumping \WINDOWS\system32\config\system => e1018388 .csv
Dumping  => e1008b60.csv

> sort –n *.csv > timeline.csv
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Commands
Hands-on: Registry

MANDIANT Highligher
http://www.mandiant.com/software/highlighter.htm
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Commands
Hands-on: Timeline

http://192.168.30.129/malware/sys32.exe executed
sys32.exe and flypaper.exe saved to foo’s desktop

Thu Jan 08 01:52:50 2009

process 1928 (explorer.exe) creates socket for port 
1048/tcp, connects to 67.215.11.138:7000
sys32.exe entry for Active Setup

Thu Jan 08 01:53:07 2009

memory image obtainedThu Jan 08 01:54:57 2009

process 464 creates sockets for ports 27714/tcp and 
1052/udp
process 1040 terminated, exit code 0

service “BNDMSS” created/modified
firewall opened for BNDMSS and ud32.exe

Thu Jan 08 01:53:10 2009

process 1928 (explorer.exe) creates sockets for ports 
1049/tcp and 1050/tcp, and connects both to 
72.10.166.195:80

processes 464 and 1040 (both are instances of ud32.exe) 
started by process 1928 (explorer.exe)

Thu Jan 08 01:53:09 2009
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Commands
More Kernel Objects

� Plug-ins by Andreas Schuster
http://computer.forensikblog.de/files/volatility_plugins/

� objtypescan - Scans for object type objects
� driverscan - Scans for driver objects
� fileobjscan - Scans for file objects and displays the owner 
� jobscan - Scans for job objects and their processes
� mutantscan - Scans for mutants (mutexes)
� symlinkobjscan - Scans for symbolic links 
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Commands
Secrets

� cryptoscan
� by Jesse Kornblum

http://jessekornblum.com/tools/volatility/cryptoscan.py
� finds TrueCrypt passphrases

� suspicious
� by Jesse Kernblum

http://jessekornblum.com/tools/volatility/suspicious.py
� searches for suspicious command line parameters
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Commands
Secrets

� keyboardbuffer
� by Andreas Schuster

http://computer.forensikblog.de/files/volatility_plugins/keyboardbuffer.py
� Builds on research by Jonathan Brossard
� Relies on page 0 to be present in the memory image
� Depends on hardware/software
� Don’t expect too much from it!
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Commands
Secrets

� Part of VolReg package
by Brendan Dolan-Gavitt

� cachedump - Dumps cached domain credentials
� hashdump - outputs LM/NTLM hashes in pwdump format
� lsadump - decrypts and dumps SECURITY\Policy\Secrets 
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Commands
Hands-on: Registry

� Analyze the memory image “exemplar13.vmem” by hogfly.

� Dump the LM/NTLM hashes and examine their quality
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Commands
Hands-on: Secrets
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Commands
Malware

� malfind
� by Michael Hale Ligh

http://mhl-malware-scripts.googlecode.com/files/malfind.py
� Looks for (possibly) injected code
� Invoke from Volatility base directory only!

� usermode_hooks
� by Michael Hale Ligh

http://mhl-malware-scripts.googlecode.com/files/usermode_hooks.py
� Detects IAT and EAT hooks, detours
� Depends on pydasm and pefile
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Commands
Malware

� ssdt
� by Brendan Dolan-Gavitt

http://moyix.blogspot.com/2008/08/auditing-system-call-table.html
� Examines System Service Descriptor Table per thread
� You may want to filter out ntoskrnl.exe and win32k.sys

> python volatility ssdt -f /samples/exemplar15.vmem " | 
grep -v ntoskrnl.exe | grep -v win32k.sys

Gathering all referenced SSDTs from KTHREADs...

Finding appropriate address space for tables...

SSDT[0] at 80501030 with 284 entries

Entry 0x00ad: 0xf8dfe23e (NtQuerySystemInformation)  owned 

by PCIDump.SYS
SSDT[1] at bf997600 with 667 entries
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Commands
Virtual/Physical Conversions

� memmap
� Maps virtual to physical addresses

� strings
� Maps a string (physical address) to process and virtual address
� Generate table of strings using strings –o or a similar command
� Edit to reduce clutter and speed up things (lookup is slow!)
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Commands
Dump Format Conversions

� dmp2raw
� Converts a crash dump into a raw memory image

� raw2dmp
� Converts raw dump into crash dump
� Needs to reconstruct parts of the dump header

� hibinfo
� converts hiberfil.sys into raw dump
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Part 3
Programming Volatility



117

Architecture
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Architecture
Main Components

1. Address spaces

� access to different memory dump formats

� Virtual to physical address conversion

2. Profiles and objects

� collection of data structures for different operating systems and versions

� simplified access to structure members

3. Data view modules

� locate, interpret and present data
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Address Spaces
Overview

Purpose

� simulate random access to linear data, like in a raw/dd memory dump

� non-contiguous files: crash dump (DMP)

� compressed files: hibernation file

� structured files: AFF, EWF 

� translate between physical and virtual address spaces

� filter data

� privacy preserving address space proposed by A. Walters

� provide layered abstraction of data
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Address Spaces
Layers (v1.3.1)

File layer

� FileAddressSpace

� WindowsCrashDumpSpace32

� WindowsHiberFileSpace32

Virtual address layer

� IA32PagedMemory

� IA32PagedMemoryPae
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Address Spaces
Class Hierarchy (SVN)

BaseAddressSpace

FileAddressSpace

BufferAddressSpace

EWFAddressSpace

WindowsCrashDumpSpace32

WindowsHiberFileSpace32

IA32PagedMemory

IA32PagedMemoryPae
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Address Spaces
Interface (SVN)

Common functions

� __init__(self, base, opts)

� read(self, addr, len)

� get_available_addresses(self)
� is_valid_address(self, addr)

Improved data access

� read_long(self, addr)

� zread(self, vaddr, length)

Address conversion

� vtop(self, vaddr)
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Address Spaces
Overview

How do you access data

� in the virtual address space indicated by CR3 

� in non-PAE mode

� that has been stored in hiberfil.sys?

FileAddressSpace hiberfil.sys

WindowsHiberFileSpace32
decompresses file, 
provides physical address space

IA32PagedMemory
provides virtual address space, 
no PAE, CR3
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Profiles and Objects
Overview

Purpose

� Profiles provide knowledge about 

� native types (endianess, size)

� data structures

� symbols (i.e. named addresses)

� Objects

� dynamic getters for simplified data access

� encapsulation of standard functionality, 
e.g. a process automatically providing its virtual address space
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Extending Profiles
Helpful software

Dump debug symbols (PDB)

� Microsoft Debugger
http://www.microsoft.com/whdc/devtools/debugging/default.mspx

� Symbol Type Viewer by Lionel d'Hauenens
http://www.labo-asso.com/download/SymbolTypeViewer_v1.0_beta.zip

� TypeInfoDump by Oleg Starodumov:
http://www.debuginfo.com/tools/typeinfodump.html

Reverse-engineer kernel and drivers

� IDA Pro Disassembler by Hex-Rays
http://www.hex-rays.com/idapro/
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Extending Profiles
Research Structure Information
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Extending Profiles
Research Structure Information
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Extending Profiles
Research Structure Information
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Extending Profiles
Research Structure Information



130

Extending Profiles
Define the structure

1. symlink_types = {
2. '_SYMLINK_OBJECT' : [ 0x20, {
3. 'CreatedTime' : [ 0x0, ['_KSYSTEM_TIME']],
4. 'Target' : [ 0x8, ['_UNICODE_STRING']], 
5. 'LinkTargetRemaining' : [ 0x10, ['_UNICODE_STRING'] ],
6. 'LinkTargetObject': [ 0x18, ['pointer', ['void']]],
7. 'DosDeviceDriveIndex' : [ 0x1c, ['unsigned long']],          
8. } ],    
9. }
10.
11. # …
12. # merge type information
13. types.update(symlink_types)
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Extending Profiles
Define the structure

� native types: see also builtin_types in forensics/object.py

� char
� unsigned char
� unsigned short
� short
� int
� unsigned int
� long
� unsigned long
� long long
� unsigned long long
� address

� pointer: 
� ['pointer', ['_HANDLE_TABLE']]]
� ['pointer', ['void']]]

� array: ['array', 16,['unsigned char']]]
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Files and Functions
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Files and Functions
Directories

./ (base directory)

� administrative stuff (readme, license, setup.py)

� main script (volatility)

� supporting core files (vmodules,  vsyms, vtypes, vutils)

./forensics/

� x86 address translation

� Volatility registry 

� base classes (address spaces, plugins)
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Files and Functions
Directories

./forensics/win32/

� more address spaces (crash dump, hibernate file)
� constrained-based scanners
� fast pool scanner

./memory_objects/

� drop data structures and objects here, recursively searched

./memory_plugins/

� drop your plug-ins here, recursively searched

./thirdparty/

� utility functions taken from other projects
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Building Blocks
Plug-ins



136

Writing Plugins
Create a new class

� Subclass from forensics.commands.command

� The name of the class becomes your new command verb

� There can be multiple classes (and commands) in a single plugin file.

1. class mycmd(forensics.commands.command):
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Writing Plugins
Provide meta-information and help

1. # Declare meta information associated with this plu gin
2.
3. meta_info = forensics.commands.command.meta_info
4. meta_info['author'] = 'Your Name'
5. meta_info['copyright'] = 'Copyright (c) 2009 Your N ame'
6. meta_info['contact'] = 'your_name@example.com'
7. meta_info['license'] = 'GNU General Public License 2.0 or later'
8. meta_info['url'] = 'http://www.example.com//'
9. meta_info['os'] = 'WIN_32_XP_SP2'
10. meta_info['version'] = '1.0'
11.
12. def help(self):
13. return “list foobar objects" 
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Writing Plugins
Optional: add command line options

� Volatility command line parser builds on the optparse module.

� For further documentation and examples see the Python library docs at 
http://docs.python.org/library/optparse.html

1. def parser(self):
2. # call method in superclass
3. forensics.commands.command.parser(self)
4.
5. # add your own options, first a string
6. self.op.add_option(‘-o’, ‘—offset’, help=‘Offset (i n hex)’,
7. action=‘store’, type=‘string’, dest=‘offset’)
8.
9. # and now a boolean value
10. self.op.add_option(‘-v’, ‘—verbose’, help=‘print mo re information’,
11. action=‘store_true’, dest=‘verbosity’)
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Writing Plugins
Do all the work

1. def execute(self):
2. op = self.op # command line parser instance
3. opts = self.opts # parsed options
4.
5. # work hard
6. # …
7.
8. # display results
9. print "%20s %6s %6s“ % ('Name', 'Pid' , 'PPid')
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Writing Plugins
A peek into the future

Meta info

� meta_info is likely to go away

Rendering

� separation of calculations and rendering steps

� single calculate() routine

� specialized renderers, named render_ format ()

� execute() calls calculate (), then the appropriate renderer

� standard option will select the format, defaults to “text”
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Writing Plugins
Hands-on: Write your first plug-in

Create a plug-in named “myplugin.py” that writes “Hello world!” to the console.



142

Writing Plugins
Hands-on: Write your first plug-in

1. class mycmd(forensics.commands.command):
2. meta_info = forensics.commands.command.meta_info
3. meta_info['author'] = 'Your Name'
4. meta_info['copyright'] = 'Copyright (c) 2009 Your N ame'
5. meta_info['contact'] = 'your_name@example.com'
6. meta_info['license'] = 'GNU General Public License 2.0 or later'
7. meta_info['url'] = 'http://www.example.com//'
8. meta_info['os'] = 'WIN_32_XP_SP2'
9. meta_info['version'] = '1.0‘
10.
11. def help(self):
12. return “Prints a famous greeting." 
13.
14. def execute(self):
15. print “Hello world!”
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Writing Plugins
Hands-on: Write your first plug-in

� Modify your plug-in to 

� accept a numeric parameter “-a”, 

� store it in a variable “myaddr” and

� echo it to the console.

� Test it!
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Writing Plugins
Hands-on: Write your first plug-in

1. class mycmd(forensics.commands.command):
2. meta_info = forensics.commands.command.meta_info
3. meta_info['author'] = 'Your Name'
4. meta_info['copyright'] = 'Copyright (c) 2009 Your N ame'
5. meta_info['contact'] = 'your_name@example.com'
6. meta_info['license'] = 'GNU General Public License 2.0 or later'
7. meta_info['url'] = 'http://www.example.com//'
8. meta_info['os'] = 'WIN_32_XP_SP2'
9. meta_info['version'] = '1.0‘
10.
11. def help(self):
12. return “Prints a famous greeting.”
13.
14. def parser(self):
15. forensics.commands.command.parser(self)
16. self.op.add_option(‘-a’, action=’store’, type=’int’ , dest=’myaddr’)
17.
18. def execute(self):
19. op = self.op # command line parser instance
20. opts = self.opts # parsed options
21. print “The value is %x” % self.opts.myaddr
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Writing Plugins
Hands-on: Write your first plug-in

� Modify your plug-in to 

� load an image file (-f)

� convert the virtual address (-a) into a physical address and 

� echo it to the console.
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Writing Plugins
Hands-on: Write your first plug-in

11.def help(self):
12. return “Convert virtual into physical address”
13.
14. def parser(self):
15. forensics.commands.command.parser(self)
16. self.op.add_option(‘-a’, action=’store’, type=’int’ , dest=’myaddr’)
17.
18. def execute(self):
19. op = self.op # command line parser instance
20. opts = self.opts # parsed options
21.
22. (addr_space, , ) = load_and_identify_image(self.op,  self.opts)
23. print “%x -> %x” % (self.opts.myaddr, 
24. addr_space.vtop(self.opts.myaddr))
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Thank You for Your Attention!

Andreas Schuster

a.schuster@yendor.net
http://computer.forensikblog.de/en/


