
1

Windows Memory Forensics
with Volatility

Andreas Schuster

2

About the Tutorial

3

About the Tutorial
Agenda

Part 1– Refresher

� Memory fundamentals

� Memory acquisition
techniques

� Kernel objects

� Memory analysis
techniques

Part 2 – Using Volatility

� Volatility overview

� Built-in functions

� Selected plug-ins

� Hands-on exercises

Part 3 – Programming

� Address spaces

� Objects and Profiles

� Your first plug-in

� Building blocks

4

About the Tutorial
Acknowledgements

� Pär Österberg Medina
Swedish IT Incident Center SITIC,
Stockholm, Sweden
http://www.sitic.se/

� AAron Walters
Volatile Systems LLC, USA
https://www.volatilesystems.com/

� Brendan Dolan-Gavitt
Georgia Institute of Technology,
Atlanta, GA, USA
http://moyix.blogspot.com/

� Bradley Schatz
Schatz Forensic Pty Ltd,
Brisbane, Australia
http://www.schatzforensic.com.au/

� hogfly
http://forensicir.blogspot.com/

5

About the Tutorial
Course Materials

� Virtual machine, requires VMware player/workstation 6.5.2
� Ubuntu Linux
� Login as user , password is us3rpw
� Volatility and plug-ins installed
� Several other memory analysis tools (PTFinder, PoolTools)
� Sample memory images

� Tools
� VMWare Player 2.5.2 for Windows and Linux (.rpm)
� Symbol viewers
� Volatility 1.3.1 beta and SVN, with plug-ins

� Literature

� Slides (will be uploaded to the conference website after the tutorial)

6

Part 1
Memory Analysis Primer

7

Introduction
Why do we need Memory Analysis?

Main memory contains evidence!

8

� No one would exclude a disk from a forensic examination. Physical memory
is a storage media like a hard disk drive. So why act arbitrarily?

� Physical memory contains unique data, not just a duplicate of data that can
be found elsewhere.

� When examining a network-based attack, physical memory provides the
missing link between network data (capture/IDS alert) and possible artifacts
on a disk.

� Only (physical) memory documents the current status of a computer/device.

� Some attacks don’t leave traces on disk, but only in memory.

Introduction
Why do we need Memory Analysis?

9

Live Response

� Focus on “time”

� Acquisition and analysis in one step

� Untrusted environment

� Not repeatable

� Tools tend to be obtrusive

Introduction
Live Response vs. Memory Analysis

10

Order of Volatility
Live Response vs. Memory Analysis

89.876.9DD (live acquisition)

100.0100.0Start

96.790.4Idle for 1 hour

96.179.7Idle for 2 hours

85.674.8Idle for 15 hours

% RAM unchanged

69.467.2WFT (live response)

512 MB RAM256 MB RAM

Action

Effects on main memory, according to Walters and Petroni (2006)

11

Memory Analysis

� Focus on “best evidence”

� Acquisition and analysis in separate steps

� Acquisition in an untrusted environment

� Analysis in a trusted environment

� Analysis tools not limited by target OS

� Analysis is repeatable (acquisition is not)

Introduction
Live Response vs. Memory Analysis

12

Introduction
Preserve Data in Order of Volatility

P ro c e s s e s

R e g is te r

M ain M e m e m o ry

Ne two rk S tatus

C D , P rinto ut

B ac kup

Hard d rive

-1 0 -8 -6 -4 -2 0 2 4 6 8 1 0

D ata L ifesp an in S econ d s (log 1 0)
ac c o rd ing to V e ne m a and F arm e r (2 0 0 4)

13

� Solomon, Huebner, Bem and SzeŜynska (2007)

� Age of deallocated pages does NOT affect the order of reallocation

� Majority of pages persisted for less than 5 minutes

Introduction
Persistence in Userland

14

Introduction
Persistence in Kernel Space

Chow, Pfaff, Garfinkel,
Rosenblum (2005)

15

� Schuster (2008)

� 90% of freed process objects after 24 hours of idle activity

� Re-allocation of memory by size, LIFO principle

� Kernel tries to free memory pages

� Important objects (processes, threads, files, …) are of fixed size.

� Live response can be devastating!

� Install agents prior to the incident!

Introduction
Persistence in Kernel Space

16

Memory Acquisition

17

Memory Acquisition
Considerations

� Time of installation
prior to incident vs. post incident

� Access to system
local vs. remote

� Access to main memory
pure hardware vs. software

� Required privileges
user vs. administrator

� Impact on system
in vivo vs. post mortem

� Atomicity of image

� Image file format
� raw
� crash dump
� hiberfil.sys
� EWF, AFF

18

Image File Formats
Raw

� “dd format”

� 1:1 copy of physical memory. Some regions may not be accessible, tough.

� offset == physical address

� Several proof-of-concept tools only operate on this format.

19

Image File Formats
Crash Dump

� Required by Microsoft Tools

� Extension .DMP

� CPU state information

� Segmented format:

� One or many blocks of physical memory

� Holes, e.g. BIOS, DMA, AGP video

� Extra data from devices that employ
nt!KeRegisterBugCheckReasonCallback

20

Image File Formats
Hibernate File

Hibernate file

� hiberfil.sys

� Compressed

� Contains only physical memory that is “in use”

21

Image File Formats
Expert Witness Format

� Popular, thanks to Guidance Software’s EnCase and WinEn (.E01)

� libewf
by Joachim Metz
http://sourceforge.net/projects/libewf/

� Different levels of compression

� Meta-Information (case number, examiner, MD5 hash, etc.)

� Similar, but open source: Advanced Forensic Format (AFF)
http://www.afflib.org/

22

Tools
Validation

� There’s a plenty of memory acquisition tools available…

� … but none has been validated yet.

� FAIL:
� Image of expected size, but first 256 MBytes all zero
� Image of expected size, but repeatedly filled with first 256 MBytes
� Page 0 missing from image

23

Tools
Recommendations

� VMware
� Suspend VM, then copy “physical memory” file (.vmem)
� Malware can (and does!) detect the hypervisor

� win32dd
� by Mathieu Suiche

http://win32dd.msuiche.net/
� Free, open source
� Produces images in either raw or crash dump formats

� kntdd
� by George Garner Jr.

http://www.gmgsystemsinc.com/knttools/
� Commercial
� Produces raw and crash dump at the same time
� Enterprise version available (agent, X.509 certificates, etc.)

24

Tools
Recommendations

� F-Response
� http://www.f-response.com/
� Enables access to physical memory over iSCSI
� Use with acquisition tool of your choise

� Hibernation
� Built-in, commonly activated on laptop computers
� powercfg /hibernate on

� Cause system to hibernate, then acquire hard disk and extract
hiberfil.sys

� Crash Dump
� Built-in
� Needs to be configured in advance, reboot required
� Kernel dumps are small
� Minidumps are essentially useless for forensic memory analysis

25

Tools
Recommendations

� FireWire
� Read (and write!) access to lower 4 GB of physical memory
� Python tools available at http://storm.net.nz/projects/16
� Rutkowska (2007) redirects access to physical memory!

� Cold Boot Attack
� Exploits remanence of DRAM
� Cooling slows down the degradation of memory contents
� http://citp.princeton.edu/memory/

26

Concepts

27

Concepts
Physical Memory

� Physical memory is the short-term memory of a
computer.

� Rapid decay of information as soon as memory
module is disconnected from power and clock
sources.

28

Concepts
Address Space

�4 GiB of (virtual) address space per process

�Split into halves

4 GiB

explorer.exe

Application
2 GiB

System
2 GiB

29

Concepts
Virtual Memory

�Physical memory is divided into so called “pages”.

�Allocated virtual memory is mapped onto physical memory page by page.

explorer.exe

sol.exe

physical
memory

30

Concepts
Virtual Memory

The same page of physical memory can appear at different locations within the
same address space or in different address spaces.

explorer.exe

sol.exe

physical
memory

31

Concepts
Virtual Memory

Data can be moved from physical memory into a page file to clear some space.

explorer.exe

sol.exe

physical
memory page file

32

Memory Pools

33

Memory Pools
Concept

� Memory is managed through the CPU’s Memory Management Unit (MMU).

� Allocation granularity at the hardware level is a whole page (usually 4 kiB).

� Concept of “pools”: several pages are pre-allocated to form a pool of
memory.

� Small requests are served from the pool, granularity 8 Bytes (Windows 2000:
32 Bytes).

� There are mostly two pools:

� non-paged pool (frequently used information like processes, threads)

� paged-pool (allocations also can be found in page file)

34

Memory Pools
POOL_HEADER

struct _POOL_HEADER, 9 elements, 0x8 bytes

+0x000 PreviousSize : Bitfield Pos 0, 9 Bits

+0x000 PoolIndex : Bitfield Pos 9, 7 Bits

+0x002 BlockSize : Bitfield Pos 0, 9 Bits

+0x002 PoolType : Bitfield Pos 9, 7 Bits

+0x000 Ulong1 : Uint4B

+0x004 ProcessBilled : Ptr32 to struct _EPROCESS

+0x004 PoolTag : Uint4B

+0x004 AllocatorBackTraceIndex : Uint2B
+0x006 PoolTagHash : Uint2B

Note: There are multiple interpretations for the DWORD at offset 4.

35

Memory Pools
POOL_HEADER

� BlockSize:
� size of this allocation
� pointer to next allocation

� PreviousSize:
� size of the previous allocation
� pointer to previous allocation
� must be 0 for the first allocation in a memory page

� Both:
� measured in units of 8 bytes (Windows 2000: 32 bytes).
� includes the _POOL_HEADER (8 bytes), so must be 1 at least.

36

Memory Pools
POOL_HEADER

� Pool type:

� Declared in Windows Development Kit, file wdm.h

� values found in memory are increased by 1

� 0 now indicated a “free” block

� odd value = non-paged pool

� even value = paged pool

.

37

Memory Pools
POOL_HEADER

� PoolTag:

� According to documentation of ExAllocatePoolWithTag in MSDN:
�up to 4 character literals
�ASCII values between 0 and 127
�stored in little-endian (reverse) byte-order

‘1234’ stored as ‘4321’
�every allocation code path should use a unique pool tag
�“protection” bit for kernel objects

� There is no registry for pool tags.

� Every application is free to use any pool tag!

38

Kernel Objects

39

Objects
Concept

� NT and Vista kernels are object oriented

� Uniform way to access different kinds of system resources

� Charge processes for their object (= resource) usage

� Objects can be found at different levels

� These objects do not interoperate!

� e.g. GDI Object (brush) and Executive Object (process)

40

Objects
Objects of the Executive

� The Executive implements
� 27 object types on Windows 2000
� 29 object types on XP and Server 2003

� Important object classes
� Thread: executable entity within a process
� Process: execution environment, collection of ressources
� Driver: loadable kernel module
� File: instance of an open file or I/O device
� Token: SID and privileges
� Key: registry

41

Objects
Objects of the Executive

� All objects of the Executive
share a common structure,
the _OBJECT_HEADER

� Caveats

� A pointer will always
point right behind the
header

� The header grows in the
direction of lower
addresses

Source: Schreiber, 2001

42

Analysis Techniques

43

Analysis Techniques
Strings

� Could provide some leads:
� Passwords
� URLs
� IP addresses (if not in binary)
� File names and contents

� Remember to look for ASCII/ANSI and UNICODE strings!

� Expect large quantities of data and a lot of noise.

� Memory is heavily fragmented.

� Don’t jump to conclusions!

44

Analysis Techniques
List Walking

flink
blink

PsActive
ProcessHead

smrss

flink
blink

rk

flink
blink

explorer

Enumerating the list of processes

45

Analysis Techniques
List Walking

� Technique also applies to
� Single lists (e.g. buckets in hash tables)
� Trees (e.g. VAD, handles)

� Simple, fast, efficient (false positives are rare)

� Usually works well across OS version/SP/hotfix

� Possible failures:
� OS housekeeping (e.g. terminated process, closed file)
� non-atomic acquisition methods, broken chain
� purposefully unlinked objects (DKOM, rootkits)

46

Analysis Techniques
List Walking

Anti-forensic attack: Direct Kernel Object Manipula tion (DKOM)

flink
blink

flink
blink

PsActive
ProcessHead

smrss

flink
blink

rk explorer

flink
blink

rk

47

Analysis Techniques
Scanning

� Define signature on
� Constant parts of structure
� Ranges of values
� Complex conditions

� Scan whole memory image

� Slow (depending on complexity)

� Specific to OS version/SP/hotfix

� Possible failures:
� Un-specific signature causes high rate of false positives
� Weak signature causes false negatives (adversary modifies non-

essential data to thwart detection)

48

Analysis Techniques
Finding Suspicious Activity

� Cross-view detection
� Different APIs
� Compare results of list-waking and scanning
� Examine any differences!

� Conformance checks
� Null pointers
� Iinvalid object types
� Missing strings
� …

49

Part 2
Using Volatility

50

Overview

51

Overview
History

� FATkit
� Petroni and Walters, 2006
� Layered, modular architecture
� http://www.4tphi.net/fatkit/

� VolaTools
� Walters and Petroni, 2007
� Intellectual property of Komoku, sold to Microsoft in March 2008
� Mostly open source, but closed-source address translation

� Volatility
� Walters et al., 2007
� Completely open source, community project
� https://www.volatilesystems.com/

52

Overview
Ressources

� Mailing list
� use of the tools and general questions

vol-users@volatilesystems.com
� New features and design decisions

vol-dev@volatilesystems.com

� Chat (IRC): #volatility@freenode.net

� Blogs
� http://volatilesystems.blogspot.com/
� http://volatility.tumblr.com/

53

Overview
Contributors

� Code Contributors
� Michael Cohen
� David Collett
� Brendan Dolan-Gavitt
� Blake Matheny
� Andreas Schuster

� Research Collaborators
� Jide Abu
� Jose Nazario
� Doug White
� Matthieu Suiche

� Testing/Bugs
� Joseph Ayo Akinyele
� Tommaso Assandri
� Brian Carrier
� Harlan Carvey
� Eoghan Casey
� Jim Clausing
� Jon Evans
� Robert Guess
� Jesse Kornblum
� Jamie Levy
� Eugene Libster
� Erik Ligda
� Tony Martin
� Golden G. Richard III
� Sam F. Stover

54

Overview
Prerequisites

� Python 2.5
� Windows users: Active State Python

http://www.activestate.com/activepython

� Volatility
� stable https://www.volatilesystems.com/default/volatility
� SVN on http://code.google.com/p/volatility/, see instructions

� Plug-ins may require additional software, e.g.
� pefile http://code.google.com/p/pefile/
� pydasm http://dkbza.org/pydasm.html

55

Overview
Plug-ins

� Comprehensive, but unofficial list of Volatility plug-ins
http://www.forensicswiki.org/wiki/List_of_Volatility_Plugins

� Standard procedure: install into memory_plugins subdirectory

� Some plug-ins may depend on additional python modules or require different
installation procedures!

� Run python volatility – the new command(s) should now appear.

� Run python volatility command --help to learn about the syntax.

56

Commands

57

Commands
Getting Help

� For a list of internal- and plug-in commands:
python volatility

� For help on any command:
python volatility command --help

58

Commands
Standard Options

� -f FILENAME

--file= FILENAME

Path and name of memory image

� -b BASE_ADDRESS

--base= BASE_ADDRESS

Physical offset (in hex!) of Directory Table Base (CR3)

� -t TYPE

--type= TYPE

Type of memory image. Valid parameters are:
� auto (default)
� pae

� nopae

59

Commands
Information about the Memory Image

� ident

Image Name: /samples/hxdef.dd
Image Type: Service Pack 2
VM Type: nopae
DTB: 0x39000
Datetime: Fri Apr 10 10:58:53 2009

� datetime

Image local date and time: Fri Apr 10 10:58:53 2009

� Both commands report the system’s local time!

� datetime on DVD has been modified to report time in UTC, too.

60

Commands
Hands-on: Information about the Memory Image

� Analyze memory image “/samples/exemplar13.vmem” by hogfly.

� Authenticate the memory image
MD5 5ec0c6dffa29b1bd5a6cbec1829df25d

� Determine the OS version and the system’s time. This becomes the endpoint
of our timeline.

61

Commands
Hands-on: Information about the Memory Image

� Authenticate the memory image
MD5 5ec0c6dffa29b1bd5a6cbec1829df25d

md5sum /samples/exemplar13.vmem
5ec0c6dffa29b1bd5a6cbec1829df25d

Match!

62

Commands
Hands-on: Information about the Memory Image

� Determine the OS version and the system’s time. This will become the latest
point in our timeline.

> python volatility ident –f /samples/exemplar13.vme m
Image Name: /samples/exemplar13.vmem

Image Type: Service Pack 2
VM Type: pae

DTB: 0x7d0000
Datetime: Wed Jan 07 20:54:57 2009

> python volatility datetime –f /samples/exemplar13. vmem
Image local date and time: Wed Jan 07 20:54:57 2009
Image date and time (UTC): Thu Jan 08 01:54:57 2009

63

Commands
Hands-on: Timeline

memory image obtainedThu Jan 08 01:54:57 2009

64

Commands
Threads

� thrdscan
� Searches for DISPATCHER_HEADER
� Applies several constraints
� Based on PTFinder, though less strict constraints
� Slow

� thrdscan2
� Searches for POOL_HEADER
� Applies only a few constraints
� Fast
� Does not detect the idle thread

65

Commands
Threads

Options

� thrdscan
� -s HEXADDRESS

--start= HEXADDRESS
Start address

� -e HEXADDRESS
--end= HEXADDRESS
End address

� -s
--slow
Perform scan on original address space instead of flat file

66

Commands
Threads

Output format

� Number
� Unique Process ID (PID)
� Thread ID (TID)
� Physical offset into memory image

No. PID TID Offset
---- ------ ------ ----------

1 888 1716 0x0008a020
2 888 1712 0x0008ada8
3 1296 1384 0x001a5230

� Version on DVD also reports thread creation and exit times.

67

Commands
Modules

� modules
� Starts off from PsLoadedModuleList
� Traverses list of loaded modules (in load order)

� modscan / modscan2
� searches for POOL_HEADER
� modscan2 is much faster!

68

Commands
Modules

Options

� modscan
� -s HEXADDRESS

--start= HEXADDRESS
Start address

� -e HEXADDRESS
--end= HEXADDRESS
End address

� -s
--slow
Perform scan on original address space instead of flat file

69

Commands
Modules

� Output format
� File name
� Base address
� Size in bytes
� Module name

� All three functions share a common output format!

70

Commands
Modules

moddump plug-in

� Written by Brendan Dolan-Gavitt
http://moyix.blogspot.com/2008/10/plugin-post-moddump.html

� Dumps loaded kernel module(s) to disk

� Command line options
� -m MODE

--mode=MODE
� -u

--unsafe
� -o OFFSET

--offset=OFFSET
� -p REGEX

--pattern=REGEX
� -i

--ignore-case

71

Commands
Processes

� pslist
� Starts off from PsActiveProcessHead
� Traverses EPROCESS. ActiveProcessLinks

� psscan
� Searches for DISPATCHER_HEADER (finds Idle process)
� Applies several constraints
� Based on PTFinder, though less strict
� Slow

� psscan2
� Searches for POOL_HEADER
� Applies only a few constraints
� Fast

72

Commands
Processes

Options

� psscan
� -s HEXADDRESS

--start= HEXADDRESS
Start address

� -e HEXADDRESS
--end= HEXADDRESS
End address

� -s
--slow
Perform scan on original address space instead of flat file

� psscan and psscan2
� -d FILE

--dot= FILE
Draw process tree in DOT format for GraphViz

73

Commands
Processes

� Output format (common data)
� Name (shortened to 16 characters)
� Unique Process ID (PID)
� Parent Process ID (PPID)
� Creation time

� Additional information:
� Number
� Thread count
� Handle count
� Exit time
� Physical offset into memory image
� CR3 (DTB, PDB, ...)

� Three functions, three different output formats!

74

Commands
Processes

pstree plug-in

� Written by Dr. Michael Cohen
http://scudette.blogspot.com/2008/10/pstree-volatility-plugin.html

� Visualizes parent-child relationship through indentation

� Isolated parts of the process tree may be missing.

� -v

--verbose

Displays full path name (from process audit), command line and path (from
process environment block PEB)

75

Commands
Processes

76

Commands
Processes

77

Commands
Hands-on: Processes

� Analyze memory image “/samples/exemplar13.vmem” by hogfly.

� Find the PID, start/end times and exit code for processes
� explorer.exe
� ud32.exe

78

Commands
Hands-on: Timeline

memory image obtainedThu Jan 08 01:54:57 2009

process 1040 terminated, exit code 0Thu Jan 08 01:53:10 2009

processes 464 and 1040 (ud32.exe) started by proces s
1928 (explorer.exe)

Thu Jan 08 01:53:09 2009

79

Commands
Per-Process Information

dlllist

� Enumerates DLLs (and EXEs) loaded by a process

� Does not work for terminated or hidden processes

� -p PID

--pid= PID

explorer.exe pid: 2032
Command line : C:\WINDOWS\Explorer.EXE
Service Pack 2

Base Size Path
0x1000000 0xff000 C:\WINDOWS\Explorer.EXE
0x7c900000 0xb0000 C:\WINDOWS\system32\ntdll .dll
0x7c800000 0xf4000 C:\WINDOWS\system32\kerne l32.dll

80

Commands
Per-Process Information

files

� Enumerates file handles that were opened by a process

� -p PID
--pid= PID

Pid: 2032
File \Documents and Settings\All Users\Desktop
File \Documents and Settings\TestUser\Desktop
File \Documents and Settings\TestUser\Start Menu
File \Documents and Settings\TestUsers\Start Menu
File \wkssvc

81

Commands
Per-Process Information

getsids plug-in

� Written by Grendan Dolan-Gavitt
http://moyix.blogspot.com/2008/08/linking-processes-to-users.html

� Does not examine terminated and hidden processes

VMwareService.e (1332): S-1-5-18 (Local System)
VMwareService.e (1332): S-1-5-32-544 (Administrators)
VMwareService.e (1332): S-1-1-0 (Everyone)
VMwareService.e (1332): S-1-5-11 (Authenticated User s)
alg.exe (1524): S-1-5-19 (NT Authority)
alg.exe (1524): S-1-1-0 (Everyone)
alg.exe (1524): S-1-5-32-545 (Users)
alg.exe (1524): S-1-5-6 (Service)

82

Commands
Per-Process Information

memmap

� Displays mapping between virtual and physical addresses

memdmp

� Dumps process memory

� Command line options
� -o HEXOFFSET

--offset=HEXOFFSET

� -p PID

--pid= PID

83

Commands
Per-Process Information

procdump

� Dumps the executable into a file
� The executable is likely to crash (state!)
� Great command for static analysis, though

� Command line options
� -o HEXOFFSET

--offset=HEXOFFSET
� -p PID

--pid= PID

84

Commands
Network Sockets

� sockets
� Locates tcpip module
� Looks for list head at known offsets into module
� Traverses list of socket objects

� sockscan / sockscan2
� Searches for POOL_HEADER
� sockscan2 is much faster!

85

Commands
Network Sockets

Options

� sockscan
� -s HEXADDRESS

--start= HEXADDRESS

Start address

� -e HEXADDRESS

--end= HEXADDRESS

End address

� -s

--slow

Perform scan on original address space instead of flat file

86

Commands
Network Sockets

� Output format
� Unique Process ID (PID)
� Port (if applicable)
� Protocol
� Create time

� Output formats differ slightly.

87

Commands
Network Sockets

� sockets
Pid Port Proto Create Time
4 1026 6 Thu Jun 11 14:32:15 2009
4 0 47 Thu Jun 11 14:32:15 2009
928 0 2 Thu Jun 11 14:32:13 2009
4 445 6 Thu Jun 11 14:31:28 2009

� sockscan / sockscan2
PID Port Proto Create Time Off set
------ ------ ------ -------------------------- ------- ---

1524 1025 6 Thu Jun 11 14:32:15 2009 0x0 083c838
4 1026 6 Thu Jun 11 14:32:15 2009 0x0 1031620
1640 31337 6 Thu Jun 11 14:35:15 2009 0x0 104eb78
4 138 17 Thu Jun 11 14:32:06 2009 0x0 1057e98

88

Commands
Network Connections

� connections
� Locates tcpip module
� Looks for TCBtable at known offsets into module
� Locates and dumps connection objects

� connscan / connscan2
� Searches for POOL_HEADER
� connscan2 is much faster!

89

Commands
Network Connections

Options

� connscan
� -s HEXADDRESS

--start= HEXADDRESS

Start address

� -e HEXADDRESS

--end= HEXADDRESS

End address

� -s

--slow

Performs scan on original address space instead of flat file

90

Commands
Network Connections

� Output format
� Local IP address and port
� Remote IP address and port
� Unique Process ID (PID)

� Output formats differ slightly.

91

Commands
Network Connections

� connections
Local Address Remote Address Pid
192.168.242.128:135 192.168.242.1:1777 848

� connscan / connscan2
Local Address Remote Address Pid
------------------------- ------------------------- - -----

192.168.242.128:135 192.168.242.1:1777 848

92

Commands
Hands-on: Processes

� Analyze memory image “/samples/exemplar13.vmem” by hogfly.

� Find network sockets and connections opened by the following processes
� explorer.exe (PID 1928)
� ud32.exe (PID 464 and 1040)

93

Commands
Hands-on: Timeline

process 1928 (explorer.exe) creates socket for port
1048/tcp, connects to 67.215.11.138:7000

Thu Jan 08 01:53:07 2009

memory image obtainedThu Jan 08 01:54:57 2009

process 464 creates sockets for ports 27714/tcp and
1052/udp
process 1040 terminated, exit code 0

Thu Jan 08 01:53:10 2009

process 1928 (explorer.exe) creates sockets for por ts
1049/tcp and 1050/tcp, and connects both to
72.10.166.195:80
processes 464 and 1040 (ud32.exe) started by process
1928 (explorer.exe)

Thu Jan 08 01:53:09 2009

94

Commands
Registry

regobjkeys

� Lists opened registry keys

� Command line options
� -o HEXOFFSET

--offset=HEXOFFSET

� -p PID

--pid= PID

Pid: 464
\REGISTRY\MACHINE
\REGISTRY\MACHINE\SYSTEM\CONTROLSET001\SERVICES\TCPIP\PARAMETERS
\REGISTRY\MACHINE\SYSTEM\CONTROLSET001\SERVICES\NETBT\PARAMETERS
\REGISTRY\USER\S-1-5-21-1614895754-1604221776-83952 2115-

1003\SOFTWARE\MICROSOFT\WINDOWS\CURRENTVERSION\INTERNET SETTINGS
\REGISTRY\MACHINE\SYSTEM\CONTROLSET001\SERVICES\WINSOCK2\PARAMETER

S\PROTOCOL_CATALOG9

95

Commands
Registry

VolReg plug-in package

� Written by Brendan Dolan-Gavitt
http://moyix.blogspot.com/2009/06/volreg-06-now-with-bigdata.html

� Installation
� Some modules depend on PyCrypto

http://www.amk.ca/python/code/crypto.html
� Windows binary distribution at

http://www.voidspace.org.uk/python/modules.shtml

96

Commands
Registry

VolReg plug-in package

� Preparation
� call hivescan to scan for _CMHIVE structures
� call hivelist on any of the found structures to map them to hive files

� Data access
� hivedump

�dumps whole hives (optional: with values)
�timestamps in local time zone of the analysis workstation

� printkey
�queries a single key
�timestamps in local time zone of the analysis workstation
�do not escape backslash on Windows!

97

Commands
Hands-on: Registry

� Analyze the memory image “exemplar13.vmem” by hogfly.

� Examine some well-known autostart entries:
� HKCU\Software\Microsoft\Windows\CurrentVersion\Run
� HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Windows
� HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Winlogon

� A comprehensive list of launch and hijack points can be found at
http://www.silentrunners.org/sr_launchpoints.html

� Create a timeline of events for the whole registry.

98

Commands
Hands-on: Registry

python volatility hivescan -f /samples/exemplar13.vm em
Offset (hex)
34786144 0x212cb60
35029896 0x2168388
36798472 0x2318008
52190048 0x31c5b60
61227776 0x3a64300
62263304 0x3b61008
62692192 0x3bc9b60
78032904 0x4a6b008
117499936 0x700e820
117721952 0x7044b60
118016032 0x708c820
181174280 0xacc8008
182220832 0xadc7820

99

Commands
Hands-on: Registry

python volatility hivelist -f /samples/exemplar13.v mem
-o 0x212cb60

Address Name
0xe179e008 [no name]
0xe1a58b60 \Documents and Settings\foo\NTUSER.DAT
0xe1548008 [no name]
0xe1535820 \Documents and Settings\LocalService\N TUSER.DAT
0xe1095820 [no name]
0xe107e820 \Documents and Settings\NetworkService \NTUSER.DAT
0xe13a3008 \WINDOWS\system32\config\software
0xe1397300 \WINDOWS\system32\config\default
0xe13a0b60 \WINDOWS\system32\config\SECURITY
0xe1362b60 \WINDOWS\system32\config\SAM
0xe11c2008 [no name]
0xe1018388 \WINDOWS\system32\config\system
0xe1008b60 [no name]

100

Commands
Hands-on: Registry

� HKCU\Software\Microsoft\Windows\CurrentVersion\Run

Address Name

0xe1a58b60 \Documents and Settings\foo\NTUSER.DAT

> python volatility printkey –f /samples/exemplar13. vmem

-o 0xe1a58b60 'Software\Microsoft\Windows\CurrentVe rsion\Run'

'Software\Microsoft\Windows\CurrentVersion\Run'
Key name: Run (Stable)
Last updated: Thu Jan 08 01:53:10 2009

Subkeys:

Values:
REG_SZ Windows Network Data Management System Se rvice :

"ud32.exe" * (Stable)

101

Commands
Hands-on: Registry

� HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Windows

Address Name

0xe13a3008 \WINDOWS\system32\config\software

> python volatility printkey –f /samples/exemplar13. vmem

-o 0xe13a3008 'Microsoft\Windows NT\CurrentVersion\ Windows'

'Microsoft\Windows NT\CurrentVersion\Windows'
Key name: Windows (Stable)
Last updated: Thu Jan 08 01:53:10 2009

Subkeys:

Values:
REG_SZ AppInit_DLLs : (Stable)
REG_SZ Spooler : yes (Stable)
REG_SZ load : ud32.exe (Stable)

102

Commands
Hands-on: Registry

�HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Winlogon

"Microsoft\Windows NT\CurrentVersion\Winlogon"
Key name: Winlogon (Stable)
Last updated: Thu Jan 08 01:53:10 2009

Subkeys:
GPExtensions (Stable)
Notify (Stable)
SpecialAccounts (Stable)
Credentials (Volatile)

Values:
REG_SZ DefaultDomainName : EXEMPLARXP (Stable)
REG_SZ DefaultUserName : foo (Stable)
REG_SZ Shell : Explorer.exe (Stable)
REG_SZ Userinit :

C:\WINDOWS\system32\userinit.exe,ud32.exe (Stable)

103

Commands
Hands-on: Registry

� Create a timeline of events for the whole registry.

> python volatility hivedump -f /samples/exemplar13. vmem -o 0x212cb60 -v
Dumping => e179e008.csv
Dumping \Documents and Settings\foo\NTUSER.DAT => e 1a58b60.csv
Dumping => e1548008.csv
Dumping \Documents and Settings\LocalService\NTUSER .DAT => e1535820.csv
Dumping => e1095820.csv
Dumping \Documents and Settings\NetworkService\NTUS ER.DAT => e107e820.csv
Dumping \WINDOWS\system32\config\software => e13a30 08.csv
Dumping \WINDOWS\system32\config\default => e139730 0.csv
Dumping \WINDOWS\system32\config\SECURITY => e13a0b 60.csv
Dumping \WINDOWS\system32\config\SAM => e1362b60.cs v
Dumping => e11c2008.csv
Dumping \WINDOWS\system32\config\system => e1018388 .csv
Dumping => e1008b60.csv

> sort –n *.csv > timeline.csv

104

Commands
Hands-on: Registry

MANDIANT Highligher
http://www.mandiant.com/software/highlighter.htm

105

Commands
Hands-on: Timeline

http://192.168.30.129/malware/sys32.exe executed
sys32.exe and flypaper.exe saved to foo’s desktop

Thu Jan 08 01:52:50 2009

process 1928 (explorer.exe) creates socket for port
1048/tcp, connects to 67.215.11.138:7000
sys32.exe entry for Active Setup

Thu Jan 08 01:53:07 2009

memory image obtainedThu Jan 08 01:54:57 2009

process 464 creates sockets for ports 27714/tcp and
1052/udp
process 1040 terminated, exit code 0

service “BNDMSS” created/modified
firewall opened for BNDMSS and ud32.exe

Thu Jan 08 01:53:10 2009

process 1928 (explorer.exe) creates sockets for ports
1049/tcp and 1050/tcp, and connects both to
72.10.166.195:80

processes 464 and 1040 (both are instances of ud32.exe)
started by process 1928 (explorer.exe)

Thu Jan 08 01:53:09 2009

106

Commands
More Kernel Objects

� Plug-ins by Andreas Schuster
http://computer.forensikblog.de/files/volatility_plugins/

� objtypescan - Scans for object type objects
� driverscan - Scans for driver objects
� fileobjscan - Scans for file objects and displays the owner
� jobscan - Scans for job objects and their processes
� mutantscan - Scans for mutants (mutexes)
� symlinkobjscan - Scans for symbolic links

107

Commands
Secrets

� cryptoscan
� by Jesse Kornblum

http://jessekornblum.com/tools/volatility/cryptoscan.py
� finds TrueCrypt passphrases

� suspicious
� by Jesse Kernblum

http://jessekornblum.com/tools/volatility/suspicious.py
� searches for suspicious command line parameters

108

Commands
Secrets

� keyboardbuffer
� by Andreas Schuster

http://computer.forensikblog.de/files/volatility_plugins/keyboardbuffer.py
� Builds on research by Jonathan Brossard
� Relies on page 0 to be present in the memory image
� Depends on hardware/software
� Don’t expect too much from it!

109

Commands
Secrets

� Part of VolReg package
by Brendan Dolan-Gavitt

� cachedump - Dumps cached domain credentials
� hashdump - outputs LM/NTLM hashes in pwdump format
� lsadump - decrypts and dumps SECURITY\Policy\Secrets

110

Commands
Hands-on: Registry

� Analyze the memory image “exemplar13.vmem” by hogfly.

� Dump the LM/NTLM hashes and examine their quality

111

Commands
Hands-on: Secrets

112

Commands
Malware

� malfind
� by Michael Hale Ligh

http://mhl-malware-scripts.googlecode.com/files/malfind.py
� Looks for (possibly) injected code
� Invoke from Volatility base directory only!

� usermode_hooks
� by Michael Hale Ligh

http://mhl-malware-scripts.googlecode.com/files/usermode_hooks.py
� Detects IAT and EAT hooks, detours
� Depends on pydasm and pefile

113

Commands
Malware

� ssdt
� by Brendan Dolan-Gavitt

http://moyix.blogspot.com/2008/08/auditing-system-call-table.html
� Examines System Service Descriptor Table per thread
� You may want to filter out ntoskrnl.exe and win32k.sys

> python volatility ssdt -f /samples/exemplar15.vmem " |
grep -v ntoskrnl.exe | grep -v win32k.sys

Gathering all referenced SSDTs from KTHREADs...

Finding appropriate address space for tables...

SSDT[0] at 80501030 with 284 entries

Entry 0x00ad: 0xf8dfe23e (NtQuerySystemInformation) owned

by PCIDump.SYS
SSDT[1] at bf997600 with 667 entries

114

Commands
Virtual/Physical Conversions

� memmap
� Maps virtual to physical addresses

� strings
� Maps a string (physical address) to process and virtual address
� Generate table of strings using strings –o or a similar command
� Edit to reduce clutter and speed up things (lookup is slow!)

115

Commands
Dump Format Conversions

� dmp2raw
� Converts a crash dump into a raw memory image

� raw2dmp
� Converts raw dump into crash dump
� Needs to reconstruct parts of the dump header

� hibinfo
� converts hiberfil.sys into raw dump

116

Part 3
Programming Volatility

117

Architecture

118

Architecture
Main Components

1. Address spaces

� access to different memory dump formats

� Virtual to physical address conversion

2. Profiles and objects

� collection of data structures for different operating systems and versions

� simplified access to structure members

3. Data view modules

� locate, interpret and present data

119

Address Spaces
Overview

Purpose

� simulate random access to linear data, like in a raw/dd memory dump

� non-contiguous files: crash dump (DMP)

� compressed files: hibernation file

� structured files: AFF, EWF

� translate between physical and virtual address spaces

� filter data

� privacy preserving address space proposed by A. Walters

� provide layered abstraction of data

120

Address Spaces
Layers (v1.3.1)

File layer

� FileAddressSpace

� WindowsCrashDumpSpace32

� WindowsHiberFileSpace32

Virtual address layer

� IA32PagedMemory

� IA32PagedMemoryPae

121

Address Spaces
Class Hierarchy (SVN)

BaseAddressSpace

FileAddressSpace

BufferAddressSpace

EWFAddressSpace

WindowsCrashDumpSpace32

WindowsHiberFileSpace32

IA32PagedMemory

IA32PagedMemoryPae

122

Address Spaces
Interface (SVN)

Common functions

� __init__(self, base, opts)

� read(self, addr, len)

� get_available_addresses(self)
� is_valid_address(self, addr)

Improved data access

� read_long(self, addr)

� zread(self, vaddr, length)

Address conversion

� vtop(self, vaddr)

123

Address Spaces
Overview

How do you access data

� in the virtual address space indicated by CR3

� in non-PAE mode

� that has been stored in hiberfil.sys?

FileAddressSpace hiberfil.sys

WindowsHiberFileSpace32
decompresses file,
provides physical address space

IA32PagedMemory
provides virtual address space,
no PAE, CR3

124

Profiles and Objects
Overview

Purpose

� Profiles provide knowledge about

� native types (endianess, size)

� data structures

� symbols (i.e. named addresses)

� Objects

� dynamic getters for simplified data access

� encapsulation of standard functionality,
e.g. a process automatically providing its virtual address space

125

Extending Profiles
Helpful software

Dump debug symbols (PDB)

� Microsoft Debugger
http://www.microsoft.com/whdc/devtools/debugging/default.mspx

� Symbol Type Viewer by Lionel d'Hauenens
http://www.labo-asso.com/download/SymbolTypeViewer_v1.0_beta.zip

� TypeInfoDump by Oleg Starodumov:
http://www.debuginfo.com/tools/typeinfodump.html

Reverse-engineer kernel and drivers

� IDA Pro Disassembler by Hex-Rays
http://www.hex-rays.com/idapro/

126

Extending Profiles
Research Structure Information

127

Extending Profiles
Research Structure Information

128

Extending Profiles
Research Structure Information

129

Extending Profiles
Research Structure Information

130

Extending Profiles
Define the structure

1. symlink_types = {
2. '_SYMLINK_OBJECT' : [0x20, {
3. 'CreatedTime' : [0x0, ['_KSYSTEM_TIME']],
4. 'Target' : [0x8, ['_UNICODE_STRING']],
5. 'LinkTargetRemaining' : [0x10, ['_UNICODE_STRING']],
6. 'LinkTargetObject': [0x18, ['pointer', ['void']]],
7. 'DosDeviceDriveIndex' : [0x1c, ['unsigned long']],
8. }],
9. }
10.
11. # …
12. # merge type information
13. types.update(symlink_types)

131

Extending Profiles
Define the structure

� native types: see also builtin_types in forensics/object.py

� char
� unsigned char
� unsigned short
� short
� int
� unsigned int
� long
� unsigned long
� long long
� unsigned long long
� address

� pointer:
� ['pointer', ['_HANDLE_TABLE']]]
� ['pointer', ['void']]]

� array: ['array', 16,['unsigned char']]]

132

Files and Functions

133

Files and Functions
Directories

./ (base directory)

� administrative stuff (readme, license, setup.py)

� main script (volatility)

� supporting core files (vmodules, vsyms, vtypes, vutils)

./forensics/

� x86 address translation

� Volatility registry

� base classes (address spaces, plugins)

134

Files and Functions
Directories

./forensics/win32/

� more address spaces (crash dump, hibernate file)
� constrained-based scanners
� fast pool scanner

./memory_objects/

� drop data structures and objects here, recursively searched

./memory_plugins/

� drop your plug-ins here, recursively searched

./thirdparty/

� utility functions taken from other projects

135

Building Blocks
Plug-ins

136

Writing Plugins
Create a new class

� Subclass from forensics.commands.command

� The name of the class becomes your new command verb

� There can be multiple classes (and commands) in a single plugin file.

1. class mycmd(forensics.commands.command):

137

Writing Plugins
Provide meta-information and help

1. # Declare meta information associated with this plu gin
2.
3. meta_info = forensics.commands.command.meta_info
4. meta_info['author'] = 'Your Name'
5. meta_info['copyright'] = 'Copyright (c) 2009 Your N ame'
6. meta_info['contact'] = 'your_name@example.com'
7. meta_info['license'] = 'GNU General Public License 2.0 or later'
8. meta_info['url'] = 'http://www.example.com//'
9. meta_info['os'] = 'WIN_32_XP_SP2'
10. meta_info['version'] = '1.0'
11.
12. def help(self):
13. return “list foobar objects"

138

Writing Plugins
Optional: add command line options

� Volatility command line parser builds on the optparse module.

� For further documentation and examples see the Python library docs at
http://docs.python.org/library/optparse.html

1. def parser(self):
2. # call method in superclass
3. forensics.commands.command.parser(self)
4.
5. # add your own options, first a string
6. self.op.add_option(‘-o’, ‘—offset’, help=‘Offset (i n hex)’,
7. action=‘store’, type=‘string’, dest=‘offset’)
8.
9. # and now a boolean value
10. self.op.add_option(‘-v’, ‘—verbose’, help=‘print mo re information’,
11. action=‘store_true’, dest=‘verbosity’)

139

Writing Plugins
Do all the work

1. def execute(self):
2. op = self.op # command line parser instance
3. opts = self.opts # parsed options
4.
5. # work hard
6. # …
7.
8. # display results
9. print "%20s %6s %6s“ % ('Name', 'Pid' , 'PPid')

140

Writing Plugins
A peek into the future

Meta info

� meta_info is likely to go away

Rendering

� separation of calculations and rendering steps

� single calculate() routine

� specialized renderers, named render_ format ()

� execute() calls calculate (), then the appropriate renderer

� standard option will select the format, defaults to “text”

141

Writing Plugins
Hands-on: Write your first plug-in

Create a plug-in named “myplugin.py” that writes “Hello world!” to the console.

142

Writing Plugins
Hands-on: Write your first plug-in

1. class mycmd(forensics.commands.command):
2. meta_info = forensics.commands.command.meta_info
3. meta_info['author'] = 'Your Name'
4. meta_info['copyright'] = 'Copyright (c) 2009 Your N ame'
5. meta_info['contact'] = 'your_name@example.com'
6. meta_info['license'] = 'GNU General Public License 2.0 or later'
7. meta_info['url'] = 'http://www.example.com//'
8. meta_info['os'] = 'WIN_32_XP_SP2'
9. meta_info['version'] = '1.0‘
10.
11. def help(self):
12. return “Prints a famous greeting."
13.
14. def execute(self):
15. print “Hello world!”

143

Writing Plugins
Hands-on: Write your first plug-in

� Modify your plug-in to

� accept a numeric parameter “-a”,

� store it in a variable “myaddr” and

� echo it to the console.

� Test it!

144

Writing Plugins
Hands-on: Write your first plug-in

1. class mycmd(forensics.commands.command):
2. meta_info = forensics.commands.command.meta_info
3. meta_info['author'] = 'Your Name'
4. meta_info['copyright'] = 'Copyright (c) 2009 Your N ame'
5. meta_info['contact'] = 'your_name@example.com'
6. meta_info['license'] = 'GNU General Public License 2.0 or later'
7. meta_info['url'] = 'http://www.example.com//'
8. meta_info['os'] = 'WIN_32_XP_SP2'
9. meta_info['version'] = '1.0‘
10.
11. def help(self):
12. return “Prints a famous greeting.”
13.
14. def parser(self):
15. forensics.commands.command.parser(self)
16. self.op.add_option(‘-a’, action=’store’, type=’int’ , dest=’myaddr’)
17.
18. def execute(self):
19. op = self.op # command line parser instance
20. opts = self.opts # parsed options
21. print “The value is %x” % self.opts.myaddr

145

Writing Plugins
Hands-on: Write your first plug-in

� Modify your plug-in to

� load an image file (-f)

� convert the virtual address (-a) into a physical address and

� echo it to the console.

146

Writing Plugins
Hands-on: Write your first plug-in

11.def help(self):
12. return “Convert virtual into physical address”
13.
14. def parser(self):
15. forensics.commands.command.parser(self)
16. self.op.add_option(‘-a’, action=’store’, type=’int’ , dest=’myaddr’)
17.
18. def execute(self):
19. op = self.op # command line parser instance
20. opts = self.opts # parsed options
21.
22. (addr_space, ,) = load_and_identify_image(self.op, self.opts)
23. print “%x -> %x” % (self.opts.myaddr,
24. addr_space.vtop(self.opts.myaddr))

147

Thank You for Your Attention!

Andreas Schuster

a.schuster@yendor.net
http://computer.forensikblog.de/en/

